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A B S T R A C T   

While many pesticides are detrimental to human health and the environment, drastically reducing their use and 
risks in agriculture has been set as a key target for global environmental policies. To this end, redesigning 
agroecosystems by increasing plant diversity at the cropping system and landscape levels is increasingly seen as 
imperative. Positive evidence that diversifying agroecosystems suppresses pests is accumulating and many 
ecological mechanisms driving pest suppression are known. Yet, variability in effects, risks of failure, and the 
limited adoption of diversification practices, call for improving diversification science. The overarching chal
lenge lies in shifting from homogeneous production systems targeting yield at the cost of high input uses, to 
complex biodiversity-based environments resilient to pest pressure and delivering multifunctional performances. 
Therefore, a new conceptual umbrella to guide future agroecosystem design is proposed, which consists of 
integrating four principles: (i) embracing complexity, by jointly considering the multiple pests and their enemies; 
(ii) considering traits, in mobilizing the functional grammar; (iii) stacking diversification practices, by strate
gically combining the multiple facets of plant diversity at multiple scales; (iv) translating ecological processes 
into socio-economic benefits to adopt a multifunctional perspective. While addressing the associated implications 
for science and research, the present review critically discusses how to mobilize the spatio-temporal cross-scale 
dependencies of interactions in agroecosystems. Promoting synergies and building on the functional comple
mentarities of ecological processes is proposed as a way to strengthen agroecosystem resilience to pest outbreaks.   

1. Introduction 

Agriculture is facing tremendous challenges to feed an increasing 
world population, without harming biodiversity, and while adapting to 
climate change. With the aim of producing more, conventional agri
culture has intensified crop production systems with the use of synthe
sized inputs (Tilman et al., 2002), and by simplifying agricultural 
landscapes (e.g. Ihse, 1995). These practices, however, share re
sponsibility in global warming (Mbow et al., 2019) and the loss of 
biodiversity (Gamez-Virués et al., 2015; Outhwaite et al., 2022). 
Through a negative feedback loop, the climate and biodiversity crises 
are now already beginning to challenge cropping systems’ productive 
capacity by aggravating abiotic, but also biotic, stresses (Ortiz et al., 
2021). 

A critical threat lies in pests (i.e. insect herbivores, weed plants and 
pathogens of crop plants), for which management in conventional 
agriculture has largely relied on applying synthesized pesticides (Hos
sard et al., 2017; Tilman et al., 2002). Global warming is now expected 

to increase crop losses to insect pests (Deutsch et al., 2018) and diseases 
(Pautasso et al., 2012), and pesticide efficacy at controlling pests is ex
pected to decline with climate change (Matzrafi, 2019). Pesticides, in 
addition, negatively affect the potential of natural regulation (i.e. bio
logical control) offered by natural enemies (i.e. predators and parasit
oids) (Geiger et al., 2010), whose abundance and diversity are generally 
declining along with the loss of biodiversity (Zhou et al., 2023). 

Homogenous crop fields, and fields in simplified landscapes, are 
frequently and intensively treated with pesticides (Gagic et al., 2021; 
Meehan et al., 2011; Nicholson and Williams, 2021). They are sensitive 
to outbreaks of specialist pests and are poor in natural enemies, hence 
facing low effective biological control (Paredes et al., 2021; Rusch et al., 
2016). While pesticides threaten natural enemies on the one hand (Pisa 
et al., 2021), pesticide efficacy at reducing pests may be significant only 
in the absence of natural enemies on the other hand (Janssen and van 
Rijn, 2021). Getting out of this pesticide treadmill requires to deeply 
redesign agroecosystems towards pest suppressive cropping systems and 
landscapes. 
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An agroecosystem associates a field and its margins, and is embedded 
in a broader landscape (Moonen and Bàrberi, 2008). It is made of 
planned and associated biodiversity, the former creating the conditions 
for the later to develop (Altieri, 1999). Planned biodiversity includes the 
crop plants and/or livestock raised at the field level, and the non-crop 
plants sown and managed at the field margins and at the broader 
landscape. Associated biodiversity – that can be found at the field, the 
margins, and the landscape level – is made of all the organisms that were 
not included on purpose. Some of them are harmful to the crops and the 
livestock: the spontaneous plants potentially competing with crops for 
resources (i.e. weeds), herbivores and disease-transmitting vectors (i.e. 
many insects), and bacteria, fungi and viruses responsible for diseases (i. 
e. pathogens) (Oerke, 2006). Others are beneficial, i.e. the natural en
emies, that can be predators and parasitoids of insects and weeds, and 
beneficial micro-organisms (Wyckhuys et al., 2022). Redesigning agro
ecosystems for insect pest, disease and weed control can imply revisiting 
soil management strategies (Müller et al., 2022), integrating crop and 
livestock production (Clark and Gage, 1996), and diversifying the 
cropping systems and landscapes through increasing plant diversity over 
time and space within fields (on-site) and at their margins (off-site) 
(Lemaire et al., 2018). Diversifying – the focus of the present article – is 
especially a key strategy to maximize functional biodiversity, towards 
reducing the ability of pests to colonize crops and spread, and to favour 
biological control by natural enemies (Hatt et al., 2018a). Several 
diversification practices exist: rotating crops, cultivar mixtures, inter
cropping, companion planting, agroforestry, managing field margins 
(defined in Table 1). 

As elaborated below, well-designed diversified agroecosystems 
significantly suppress pests. Ecological principles driving pest suppres
sion in diversified agroecosystems have been described repeatedly 
(Andow, 1991; Bianchi et al., 2006; Boudreau, 2013; Petit et al., 2018; 
Plantegenest et al., 2007), and empirical evidence has been compiled in 
quantitative syntheses. This article briefly recalls these principles and 
summarizes this evidence, while aiming to pave the way forward. 
Indeed, despite overall positive impact at suppressing pests, variability 
in effects (Karp et al., 2018) and risks of failures (Tscharntke et al., 2016) 
remain; and overall, adoption of diversification practices by farmers has 
been limited. Beyond socio-technical barriers hindering the adoption of 
diversification practices (Meynard et al., 2018; Timaeus et al., 2022), 
research on diversification to enhance pest control has remained too 
fragmented in its scientific objects, methodological approaches, scale of 
implementation, and evaluation criteria. It is argued that for new 
agroecosystem design to substantially increase synergies and be more 
resilient, diversification science needs to adopt a more integrative 
perspective. Through a thorough analysis of the scientific literature, and 
building on the authors’ experience as field-based experimenters, a new 
conceptual umbrella for an integrative diversification science is pro
posed, consisting of four principles: (i) embracing complexity, and 
considering pests and their natural enemies jointly because they 
generally occur simultaneously in fields and interact; (ii) considering 
traits, and adopt a stronger functional approach because the interactions 
between organisms depend on their respective 
morpho-physio-phenological attributes; (iii) stacking diversification 
practices, by strategically combining the multiple facets of plant diversity 
because complementary bottom-up and top-down effects are observed; 
(iv) translating ecological processes into socio-economic benefits, because 
for farmers, not only the ecological functioning matters, but also busi
ness and the opinion of society. The perspective in which the integration 
of these principles can enhance synergies and strengthen resilience to 
pest outbreaks is critically addressed. Finally, the implications for sci
entific research, and the capacity of this last point to effectively diversify 
crop production systems, are discussed. 

2. Diversifying to suppress pests 

The impact of cropping system and landscape diversification on 

insect pests, weeds and diseases and their regulation by natural enemies 
has been extensively studied. Knowledge on the underlying ecological 
mechanisms and the quantitative evidence that increasing plant di
versity reduces pests in general is summarized. Recalling this knowledge 
allows identifying room for improvement to design pest suppressive 
agroecosystems. 

2.1. Why does it work 

Diversifying crop sequences through time is an ancient practice 
(White, 1970). Alternating crop species of different families and culti
vation seasons generates an offset between pests’ life cycle and the 
crops, which limits the building-up of pest populations (Francis, 2005). 
Variations in field disturbance caused by preparation works (ploughing, 
seed bed preparation) especially affect weed populations by disrupting 
their growth and development and prevent that only few species 
dominate in the weed flora (Liebman and Dyck, 1993). In space, diluting 
pests’ host plants within non-host ones creates physical barriers 
affecting insect (Finch and Collier, 2012; Mansion-Vaquié et al., 2020) 
as well as disease (Zhu et al., 2000) capacity to spread. It modifies visual 
contrasts used by insects to locate their host plants (Döring, 2014; 
Döring and Röhrig, 2016), and changes micro-climate, wind, and splash 

Table 1 
Definitions of key diversification practices.  

Practice Brief description 

Rotation “Growing different crops in systematic and recurring 
sequence on the same land, as compared to monoculture, in 
which a particular crop is planted repeatedly in the same 
field” (Liebman and Dyck, 1993). Rotations range from 
very simple alternations of two crop species (e.g. 
maize-soybean or rice-wheat) to complex succession of 
several crops including for instance cereals, legumes, 
oilseed crops, and tuber crops. They may include winter 
cover crops to bridge harvest in summer and next sowing in 
spring, and temporal grasslands grazed or harvested in 
integrated crop-livestock systems. 

Cultivar mixtures “The simultaneous cultivation of multiple cultivars of the 
same species” (Reiss and Drinkwater, 2018). It can involve 
two to many cultivars being mixed. A similar approach of 
intraspecific (i.e. genetic) diversification is the use of 
composite cross populations (Döring et al., 2011). 

Intercropping Growing together two or more cash crop species at least for 
a time. Species can be mixed or associated in rows or strips 
of various width. Relay intercropping implies a time shift in 
the sowing and harvest of the associated crops. Identity, 
proximity (high in mixture, low in strip intercropping) and 
the relative density of the intercropped species are key 
parameters determining intercropping performances (Li 
et al., 2020). 

Companion planting Growing a cash crop with one or more plants that are not 
harvested. Companion plants can be preestablished as a 
living mulch, sown with the cash crop, or later on in relay ( 
Verret et al., 2017). 

Agroforestry “The deliberate integration of trees with agricultural crops 
and/or livestock either simultaneously or sequentially on 
the same unit of land” (Mosquera-Losada et al., 2009). 
Agroforestry systems are classified notably according to 
their associated components (trees and crops and/or 
livestock) and their spatio-temporal arrangement (i.e. from 
densely mixed to sparse and aligned) (McAdam et al., 
2009). 

Field margin 
management 

Managing and conserving “the whole of the crop edge, any 
margin strip present and the semi-natural habitat 
associated with the boundary” (Marshall and Moonen, 
2002). Boundaries are the outer limits of the field, and are 
typically a hedge, fence or wall, with potential herbaceous 
vegetation, and any associated watercourse. Margin strips 
are established between the crop and the boundaries, and 
are typically grassy or flowering strips. Sown strips can 
largely differ from their species composition (e.g. 
forb/grass ratio), richness (mono- vs. pluri-specific incl. 
tens of species), perenniality (annual vs. pluriannual).  
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from rain drops involved in pathogen dispersion (Boudreau, 2013). 
Increasing sown plant diversity strengthens the competition for light, 
nutrient and water resources and eventually leave fewer opportunities 
for weeds to establish and grow (Petit et al., 2018). Aside crop fields, 
field margins favour the conservation of natural enemies controlling 
pests (Gurr et al., 2017). In annual cropping systems facing high dis
turbances, field margins represent stable (Tooker et al., 2020) and 
continuous (Iuliano and Gratton, 2020) trophic and structural resources 
that are essential for natural enemies to accomplish their life cycle. 
Pluriannual non-crop habitats are overwintering sites (Ganser et al., 
2019) and provide essential and alternative food, such as pollen and 
nectar that are key resources increasing fitness of several natural en
emies, e.g. predatory hoverflies (Syrphidae) (Van Rijn and Wäckers, 
2016), lacewings (Chrysopidae) (Resende et al., 2017), ladybird beetles 
(Coccinellidae) (Hatt and Osawa, 2019a) and parasitoid wasps (Lu et al., 
2014). Hence, at a broader scale as well, semi-natural habitats in the 
landscape provide trophic and structural resources for natural enemies 
of pests (Begg et al., 2017). Since different natural enemy taxa respond 
differently to habitat types (Labruyere et al., 2016; Lefebvre et al., 2016; 
Sarthou et al., 2005), a diversity of habitats is necessary at the landscape 
level to support the diversity of pest natural enemies (Holland et al., 
2016). Finally, a heterogeneous configuration of the landscape, leading 
to a high density of edges, allows natural enemies overwintering in 
semi-natural habitats to spill over into crop fields and control pests 
(Martin et al., 2019). A diversity of habitats in the landscape also re
duces disease infection, by diluting hosts and acting as barriers to 
pathogen spread, although corridors and edges can also favour pathogen 
dispersion (Plantegenest et al., 2007). As for weeds, the diversity of 
habitats in complex landscapes increases the pool of plant diversity 
potentially spilling over to the cultivated fields. On the one hand, di
versity of non-crop habitats can result in increasing the diversity of 
in-field weed communities and reducing the abundance of aggressive 
and highly problematic species (Petit et al., 2011; Roschewitz et al., 
2005), in fine mitigating weed impact on crop yield (Adeux et al., 2019). 
On the other hand, non-crop habitats at field margins can represent 
refugia for plant diversity without increasing weed pressure in the centre 
of the field (Cordeau et al., 2012; Marshall, 2009). 

2.2. Evidence that it works 

Effects of diversification on pest control were synthesized in quan
titative reviews published over the last decade. They show that at the 
field and farm scales, increasing plant diversity within fields and at 
margins significantly reduces herbivores and their damages on crops 
and increases their natural enemies (Letourneau et al., 2011; Wan et al., 
2020). At the field scale specifically, the abundance of generalist pred
ators increases while the abundance of specialist herbivores decreases 
when plant diversity increases (Dassou and Tixier, 2016). When 
considering certain diversification practices specifically, wildflower 
strips at field margins enhance insect pest control by 16 % in the adja
cent crops (Albrecht et al., 2021). Intercropping a cash crop with a 
legume companion plant reduces weed biomass by 42–56 % without 
reducing crop yield (Verret et al., 2017). Intercropping two cash crops 
reduces weed biomass by 58 % on average in comparison to the less 
weed competitive crop species grown as sole crop (Gu et al., 2021). 
Intercropping cereals with legumes reduces disease incidence by 45 % 
on average (Zhang et al., 2019). A vote counting analysis found a sig
nificant number of cases (81 %) reporting a significant reduction of 
herbivores in wheat (Triticum aestivum L., Poaceae)-based intercropping 
systems compared to sole-cropping, but inconsistent effects were found 
on their natural enemies (Lopes et al., 2016). Agroforestry generally 
allows to reduce weed abundance, but a significant reduction of insect 
pests and diseases was only found in agroforestry systems involving 
perennial crops (Pumariño et al., 2015). Diversifying crop rotations al
lows reducing weed density by 49 % on average, but no significant effect 
was found on weed biomass (Weisberger et al., 2019). At the landscape 

scale, landscapes with higher proportions of semi-natural areas have 
lower insect pest abundance or higher insect pest control in fields (Veres 
et al., 2013). Notably, aphid (Hemiptera: Aphididae) control linearly 
decreases when the proportion of cultivated land increases (i.e. when 
the proportion of semi-natural habitats decreases) and was found to be 
46 % lower in homogeneous than complex landscapes (Rusch et al., 
2016). Chaplin-Kramer et al. (2011) however did not find an effect of 
landscape complexity on pest abundance although at the same time 
reported a strong positive effect at increasing natural enemy diversity. 
By disentangling the cascading effects of landscape complexity on pest 
control, Dainese et al. (2019) showed that pest control relies on natural 
enemy richness, which is however negatively affected by landscape 
simplification. Finally, among a pool of 750 species of natural enemies, 
44 % of species reach highest abundances in landscapes with high edge 
density (i.e. high configurational heterogeneity) while at the same time 
edge density improves pest control by 1.4-fold (Martin et al., 2019). 
Duarte et al. (2018) found that landscape complexity (i.e. areas with 
higher percentages of natural habitats) can increase disease control up 
to 20 %. While there are several studies that show weed diversity is 
higher in fields embedded in diversified landscapes (e.g. Gaba et al., 
2010; Roschewitz et al., 2005), quantitative reviews summarizing the 
effects of landscape complexity on weed pressure and diversity are 
currently missing. 

2.3. Room for improvement 

Despite these significant positive effects, diversification practices 
remain poorly adopted by farmers. Suppressing pests through 
biodiversity-based approaches rather than by spraying pesticides is 
perceived as complex from an ecological perspective, and challenging 
from a technical point of view (Kleijn et al., 2019; Timaeus et al., 2022). 
For many farmers, the overall significant positive effects found in 
quantitative syntheses may not be convincing enough when variability 
in effects (Karp et al., 2018) and even risks of failures (Tscharntke et al., 
2016) remain. Consequently, relying on regulating processes in agro
ecosystems to control pests is perceived as risky (Salliou and Barnaud, 
2017). This may explain why pesticide-based plant protection remains 
the norm (Hossard et al., 2017), even in Integrated Pest Management 
(IPM) (Deguine et al., 2021) where using pesticides should be consid
ered as a last resort (Stenberg, 2017). 

For addressing the problem of variable effects and low adoption it is 
argued that diversification science needs to build on a better basis; first, 
through a better integration of its research objects: while research on 
diversification has been increasingly considering the diversity of pests 
and enemies occurring simultaneously in fields (i.e. insects, weeds, 
pathogens) (Baniszewski et al., 2021; Ratnadass et al., 2021), few are 
assessing their interactions (Serée et al., 2023) and the resulting syn
ergies or trade-offs in their joint management (Tamburini et al., 2016). 
Second, through a better integration of its methodological approaches: 
by considering biological diversity mostly through a taxonomic 
perspective, studies on diversification have been producing results that 
very much depend on species identity (Hatt et al., 2019b). Although 
useful for practical applications, research would highly gain from 
adopting a more functional approach, which handles interactions 
through organisms’ traits. Mechanisms could then be described beyond 
species identity (Cadotte et al., 2011), rendering findings more general 
(Gardarin et al., 2018; Perovic et al., 2018). Third, through a better 
integration of the variety of diversification practices: each diversifica
tion practice taken separately allows to partially reduce pest pressure 
(see section above) but the absolute effect, although significant, might 
not be sufficient to fully protect crops against pests (Romeis et al., 2019; 
Torres and Bueno, 2018). Although an array of diversification practices 
affect both insects, weeds and pathogens (i.e. crop rotation, intercrop
ping, agroforestry, companion planting) (Kremen and Miles, 2012; and 
section above), the synergistic effects of stacking them remain poorly 
studied (Ditzler et al., 2021; Juventia et al., 2021). Fourth, through a 
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better integration of the evaluation criteria: most studies on diversifi
cation for pest suppression evaluate the impact on pest reduction, and 
crop damage when it is relevant (e.g. for fresh-marketed products). Ef
fects on crop productivity remain limited for some diversification 
techniques (e.g. field margin management, Albrecht et al., 2021) and 
economic and societal evaluations are scarce. More importantly, 
experimental studies rarely address both the impact on pest control and 
socio-economic performances of diversification (Vialatte et al., 2022; 
but see Gurr et al., 2016). 

3. Principles for an integrative diversification science 

Four principles are proposed with the aim of improving the science 
base when designing pest suppressive agroecosystems. While each 
principle addresses one of the issues identified above (section 2.3), they 
constitute the basis for an integrative diversification science. 

3.1. Embracing complexity 

Multiple organisms in agroecosystems potentially affect crop yield 
and quality, either positively through the delivery of ecosystem services, 
or negatively when they are responsible for ecosystem disservices (Gil
lespie and Wratten, 2017; Zhang et al., 2007). While these organisms 
interact and potentially regulate each other, it is necessary to consider 
them jointly and assess the net positive/negative effects, needed to guide 
management decisions. Some insect pests feeding on plant resources 
transmit viruses responsible for important yield loss (e.g. Hemipteran 
like aphids) (Williams and Dixon, 2007). Their regulation should 
simultaneously reduce direct damages caused by feeding, and indirect 
damages caused by the viruses. Diversification of tobacco (Nicotiana 
tabacum L., Solanaceae) cropping through cultivar mixtures (variety 

mixtures) was shown to reduce the abundance of the green peach aphid 
(Myzus persicae Sulzer), as well as the incidence and severity of the 
Tobacco Mosaic Virus it transmits (Lai et al., 2017). Regulation of insect 
pests can be mediated by natural enemies, nonetheless natural enemies 
can trigger anti-predation or anti-parasitism behaviour leading to pest 
dispersion and consequently to virus spreading. Dáder et al. (2012) 
showed in the case of the aphid Aphis gossypii Glover facing parasitism, 
that although the parasitoid Aphidius colemani (Viereck) (Hymenoptera: 
Braconidae) favoured the dispersion of the Cucumber Mosaic Virus and 
the Cucurbit Aphid-borne Yellow Virus in the short-term, virus inci
dence was reduced by the control of aphid abundance in the long term. 

In the insect-pathogen system, weeds can have dual effects as they 
closely interact with disease inocula and populations of animal pests and 
natural enemies (Barbercheck and Wallace, 2021; Franke et al., 2009). 
Indeed weeds, in addition to their potential competition for resources 
against crops, can be alternative hosts of pathogens and food sources for 
animal pests. However, weed cover can also positively affect predatory 
invertebrates (Fig. 1a) (Smith et al., 2020), notably the density and 
activity of carabid beetles (Coleoptera: Carabidae) (Diehl et al., 2012). 
Flowering weeds can also attract and benefit flower visiting natural 
enemies (Fig. 1 b-f) (Altieri and Nicholls, 2004; Norris and Kogan, 
2000). Finally, some weed species can host non-pest insects being (or 
producing) alternative resources for natural enemies. For instance, 
DiTommaso et al. (2016) highlighted how the common milkweed 
(Asclepias syriaca L., Apocynaceae), although a competitor against 
maize, facilitates the parasitism of the corn borer (Ostrinia nubilalis 
Hübner, Lepidoptera: Crambidae) by supporting aphid-produced hon
eydew benefiting to the corn borer parasitoid Trichogramma ostriniae 
Peng and Chen (Hymenoptera: Trichogrammatidae). 

In this context, Storkey and Westbury (2007) asked whether there is 
“such a thing as a ‘good weed’?“, and defined a beneficial weed as “a 

Fig. 1. Predatory insects on weeds: ladybird beetles on (a) weed vegetation nearby faba bean (Vicia faba L.), (b) on black-bindweed (Fallopia convolvulus (L.) Á.Löve) 
looking for alternative aphid prey, and (c) on mustard (Sinapis arvensis L.) flower bud; lacewings (Chrysoperla carnea Stephens) on (d) chamomille (Matricaria recutita 
L.), and (e) poppy (Papaver rhoeas L.); (f) a hoverfly on F. convolvulus flower. (Photos: S. Hatt). 
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species that provides low levels of competition with the crop and has 
potential value as a resource for higher trophic groups.” Eighteen weed 
species were classified as “with biodiversity value” (i.e. benefiting nat
ural enemy insects and birds) and with intermediate or low competitive 
ability with winter wheat in the context of UK (Storkey, 2006; Storkey 
and Westbury, 2007). The list includes for example the chickweed 
Stellaria media L. (Caryophyllaceae), the groundsel Senecio vulgaris L. 
(Asteraceae) or the annual meadow grass Poa annua L. (Poaceae). The 
same authors classified thirteen other species as “pernicious weeds that 
must be controlled,” including the creeping thistle Cirsium arvense L. 
(Asteraceae) and the bitter dock Rumex obtusifolius L. (Polygonaceae). As 
some weed species can be desirable in agroecosystems, it was proposed 
to maintain a 10%-cover with such desirable weed species within crops 
(winter wheat) to support populations of higher trophic groups and 
related ecosystem services such as biological pest control (Smith et al., 
2020). By attracting and supporting natural enemies within crops, 
weeds can be a key tool for conservation biological control, by getting 
the natural enemies close to the pests, i.e. their prey or host (Serée et al., 
2023). In addition, the presence of weeds within crops would enhance 
plant diversity and could participate in diluting host plants and reducing 
risks of infection by pathogens and colonization by insect pests (Gunton, 
2011). 

Like weeds which can play a role in the control of insect pests and 
diseases, the presence of some insect pests can play an important role in 
the regulation of diseases. In shaded-coffee (Coffea sp. L., Rubiaceae) 
agroecosystems in Central America, a relatively high abundance of 
green coffee scales (Coccus viridis (Green), Hemiptera: Coccidae) allows 
the development of its natural enemy, the white halo fungus (Lecani
cillium lecanii), this last being also a mycoparasite of the fungus Hemileia 
vastatrix responsible for the coffee leaf rust disease (Vandermeer et al., 
2009, 2019). While green coffee scales are able to build large enough 
populations thanks to the protective action of ants (Azteca instabilis 
(Smith), Hymenoptera: Formicidae), they are not critical pests for the 
coffee plants since the associated built-up of the white halo fungus 
regularly eradicate them (Vandermeer et al., 2019). However, the 
development of L. lecanii, thanks to the mutualistic relation between 
Azteca ants and the green coffee scales, allows to partially maintain the 
coffee leaf rust disease at a moderate level (Jackson et al., 2012) 
(although other factors such as landscape effects have led to coffee rust 
disease outbreaks in the past, Avelino et al., 2012). 

Through these examples, and in the continuity of Storkey and 
Westbury (2007), it can be asked whether there is such a thing as a 
“good pest”? Although pests are by definition harmful (Oerke, 2006), 
they can also be helpful. Helpful ‘pests’ would be those providing more 
benefits than damages, being more allies than threats, delivering more 
services than disservices, depending on context. Making such a 
distinction between helpful and harmful pests, however, represents a 
costly informational challenge: first, the helpful/harmful status of a 
given pest is likely to be density-dependent, as the density of the pest 
determines the level of damages on crops, but also triggers the devel
opment of its natural enemies (e.g. DiTommaso et al., 2016); second, the 
helpful/harmful status of a pest would depend on the combination of 
several of its traits and their net effects on ecosystem (dis)service (Yvoz 
et al., 2021), however variable across ecological conditions due to the 
inherent intraspecific plasticity of functional traits (Yvoz et al., 2020). 

3.2. Considering traits 

Assessing whether a given organism can provide benefits for agri
cultural production necessitates to understand how plants, animals, and 
micro-organisms interact in agroecosystems and how such interactions 
are translated into regulating processes. Considering organisms’ traits, 
in addition to their taxonomic identity, can provide valuable under
standing of the mechanisms underlying ecosystem processes (Cadotte 
et al., 2011). Applying, in pest science, theories and methods developed 
by functional ecology is promising to understand the effect of 

management strategies on pests and their natural enemies (Perovic 
et al., 2018), and to design pest suppressive diversified agroecosystems 
(Table 2; Gaba et al., 2014). 

Organism’ traits have been classified in two types: (i) response traits, 
that are those associated with the response of organisms to environ
mental factors; and (ii) effect traits, that are those affecting ecosystem 
functioning (Lavorel and Garnier, 2002). Single response or effect traits 
in a community can be studied by considering their 
community-weighted mean (CWM) and their functional divergence 
(FDvar). For a given trait, CWM is the mean of trait values weighted by 
the relative abundance of taxa bearing each value (Lavorel et al., 2008), 
while FDvar is the variance of trait values weighted by the abundance of 
each taxon in the community (Mason et al., 2003). The response/effect 
of multiple traits is captured by their functional diversity, that assesses 
the “distribution of traits in a community or the relative magnitude of 
species similarities and differences” (Cadotte et al., 2011). Among 
several available indices measuring functional diversity (Pla et al., 
2012), functional dispersion (FDis) and Rao’s quadratic entropy (Rao’s 
Q) quantify the dispersion of species in the trait space weighted by their 
relative abundances. Being highly correlated to each other, FDis calcu
lates the mean distance of individual species to the centroid of all species 
in the community while Rao’s Q calculates the mean distance between 
two randomly selected individuals (Laliberté and Legendre, 2010). 

Considering response traits of pests and their natural enemies can 
help understanding effects of agroecosystem diversification on func
tional biodiversity (Fig. 2). Comparisons of sole cropping (of wheat and 
oilseed rape (Brassica napus L., Brassicaceae)) with agroforestry systems 
showed that diversification favoured weed plants with competitive traits 
(i.e. perenniality, creeping habit, late and brief flowering) typical from 
less disturbed environments, herbivore and natural enemy invertebrates 
with a poor ability to disperse, and herbivores with specialist diets 
(Staton et al., 2021). Wheat fields with wildflower strips at margins 
hosted more spiders with active hunting strategies while fields without 
wildflower strips favoured more web-builder species (Gallé et al., 2020). 
Smaller fields (of about 3 ha on average, i.e. embedded in more diver
sified landscapes) promoted smaller and more carnivorous carabid 
species compared to larger fields (of about 18 ha on average) (Gallé 
et al., 2019). Assessing the effect of diversification practices on response 
traits furthermore informs on eventual cascading pest regulation pro
cesses since response traits are potentially linked with effect traits 
(Lavorel and Garnier, 2002; Perovic et al., 2018). Diet specialization 
obviously indicates whether a certain arthropod is a sap-sucker, an in
sect predator or a seed feeder, or both (e.g. Brooks et al., 2012). Body 
size can affect level of predation (Rusch et al., 2015). Dispersal ability, 
often correlated with body size in arthropods (Boetzl et al., 2019; 
Greenleaf et al., 2007), informs on the ability to spill over from 
semi-natural habitats into crops, affecting crop infestation by pests but 
also pest regulation by natural enemies (Pecheur et al., 2020; Staton 
et al., 2021). Hence, considering functional biodiversity through the lens 
of the response-effect model can lead to applying management strategies 
favouring species that do not adversely affect crops, and/or enhancing 
pest regulation. 

Considering traits can also be used to design agroecosystems (Fig. 2). 
Knowledge on plant effect traits can be originally used to identify the 
plant species (i.e. crops but also weeds) that will directly and indirectly 
enhance pest regulating services (Hatt et al., 2019b; Navas, 2012), and 
can be applied to engineer diversified cropping (Storkey et al., 2015) 
and non-crop habitats (Hatt et al., 2020). Early biomass and allelopathic 
activity were identified as key plant traits determining plant competi
tiveness against other plants (Bertholdsson, 2005). Flower morphology, 
size and effective depth, blooming period, and flower height are among 
floral traits significantly affecting the attractivity and fitness of flower 
visiting insects (Fiedler and Landis, 2007; Van Rijn and Wäckers, 2016). 
In practice, Apiaceae species (e.g. Coriandrum sativum L., Foeniculum 
vulgare Mill., Anethum graveolens L.), but also Centaurea cyanus L. 
(Asteraceae) and Vicia sativa L. (Fabaceae), can be sown (or preserved if 
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occurring as weed) to support predatory insects with short mouth parts 
(e.g. hoverflies, lacewings, ladybird beetles) thanks to their accessible 
nectar related to their reduced corolla depth and extra-floral nectar, 
respectively (e.g. Tschumi et al., 2016b). Alsike clover (Trifolium 
hybridum L., Fabaceae) and black medic (Medicago lupulina L., Fabacae) 
can be used as cover crops or companion plants to control weeds thanks 
to their rapid growth rate and allelopathic effect, respectively (Elsalahy 

et al., 2019). Barley (Hordeum vulgare L., Poaceae), harboring both a 
high early vigor and a high allelopathic activity (Bertholdsson, 2005), 
can be cultivated in association with poor weed competitive crops (e.g. 
pea (Pisum sativum L., Fabaceae)) to reduce weed presence (Corre-Hellou 
et al., 2011). 

The studies that identified the plant effect traits useful to enhance 
pest regulating processes have often used monospecific plantings (e.g. 

Table 2 
Selection of recent studies assessing the effect of agroecosystem diversification on weeds, insect pests and/or their natural enemies using functional metrics.a.  

Diversification approach Agroecosystem compartment Organisms Metrics Trait type 
(Response; Effect) 

References 

Companion planting Crop Weeds Community Weighted Mean (CWM) Response Ciaccia et al. 
(2020)  

Agroforestry Crop Weeds, Insect herbivores, 
Insect natural enemies 

Functional dispersion (Rao’s Q) Response Staton et al. 
(2021) 

Understory vegetation strip; 
Crop 

Spiders, Carabids Functional divergence (FDvar); 
Community Weighted Mean (CWM) 

Response Boinot et al. 
(2019b, 2020) 

Understory vegetation strip; 
Crop 

Weeds Functional composition Response Boinot et al. 
(2019a)  

Field margin management Wildflower strip Forbs Functional dispersion (Rao’s Q) Effect Hatt et al. (2017) 
Wildflower strip Forbs Functional dispersion (FDis) Effect Gardarin et al. 

(2021) 
Wildflower strip Forbs Community Weighted Mean (CWM) Effect Hatt et al. (2019b, 

2018b) 
Hedgerow, grassy strip, 
wildflower strip; Crop 

Carabids Functional dispersion (FDis); 
Community Weighted Mean (CWM) 

Response Pecheur et al. 
(2020) 

Crop Spiders, Carabids Functional divergence (FDvar); 
Community Weighted Mean (CWM) 

Response Gallé et al. (2020)  

Landscape heterogeneity 
(small vs. large field) 

Crop Spiders, Carabids Functional divergence (FDvar); 
Community Weighted Mean (CWM) 

Response Gallé et al. (2020, 
2019)  

a CWM is the mean of trait values weighted by the relative abundance of taxa bearing each value (Lavorel et al., 2008). FDvar is the variance of trait values weighted 
by the abundance of each taxa in the community (Mason et al., 2003). Functional dispersion (FDis) and Rao’s quadratic entropy (Rao’s Q) quantify the dispersion of 
species in the trait space weighted by their relative abundances (Laliberté and Legendre, 2010). 

Fig. 2. Pest regulation processes as a function of key effect and response traits of plants, natural enemies and pests (insects, weeds and pathogens) in relation to field, 
their margins, and landscape diversification. Arrows indicate the relationships between the ecological processes, and hence the intersections of effect and response 
traits that potentially occur across spatial scales. 
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Fiedler and Landis, 2007) or even artificial devices (e.g. Sutherland 
et al., 1999). Nonetheless, in the case plant species are mixed, it becomes 
necessary to understand how the relative abundance of different traits 
and their value (dis)similarities affect ecological processes. Research on 
wildflower mixtures sown to support natural enemies of insect pests 
found that a higher dissimilarity in trait values between the mixed 
species (i.e. higher functional diversity) does not attract and support a 
higher abundance and diversity of aphid predators (Hatt et al., 2017); 
and instead showed that the abundance of natural enemies is driven by 
the relative abundance of certain trait values (i.e. community weighted 
mean of some traits). In particular, it was observed that parasitoids of 
pollen beetles (Meligethes spp. Stephens, Coleoptera: Nitidulidae) were 
more abundant in mixtures with yellow flowers and flowers with 
peripherical corolla parts reflecting ultra-violet (Hatt et al., 2018b), the 
lacewing Chrysoperla carnae Stephens and the ladybird beetles Harmonia 
axyridis Pallas and Propylea quatuordecimpuctata Linnaeus were more 
abundant in mixtures with flowers harbouring an ultra-violet pattern, 
the hoverflies Episyrphus balteatus De Geer and Eupeodes corollae Fab
ricius were more abundant in mixtures with open-nectar flowers (Hatt 
et al., 2019a). 

When it comes to designing plant mixtures to enhance the natural 
regulation of pests, individual species known to compete against pests or 
known to favour pest natural enemies can be associated. This ‘pick-and- 
mix’ approach (Wäckers and Van Rijn, 2012) showed its effectiveness in 
the case of wildflower strips sown at field margins to enhance conser
vation biological control (Tschumi et al., 2015, 2016b). Plant species 
harbouring useful traits could also be associated to design a mixture 
that, as a whole, would showcase a relative abundance of trait values 
positively affecting pest regulation. This ‘tailored functional diversity’ 
approach (Hatt et al., 2020) nonetheless throws up new questions: what 
is the set of traits that must be considered? How many plant species 
harboring the same trait values but also different trait values should be 
mixed? What would be the right balance between trait diversity and 
redundancy? 

3.3. Stacking diversification practices 

Arranging and managing plant diversity has been the basis of agro- 
ecological engineering for new agroecosystem design (Gurr et al., 
2004). Nonetheless so far, research on diversification has been focusing 
on one or the other component of the agroecosystem, e.g. intercropping 
for the crop field (Hufnagel et al., 2020) or wildflower strips for the 
margins (Hatt et al., 2020), and rarely attempted to combine different 
diversification practices. It can be hypothesised that “stacking diversity” 
through combining the various spatial and temporal diversification 
practices will strengthen their effects on pest regulation (Hokkanen, 
2017). 

A three-dimensional diversity approach was proposed, consisting of 
combining long-term rotations (temporal diversity) with species inter
cropping (spatial diversity) and cultivar mixtures (genetic diversity) 
(Ditzler et al., 2021). Empirical evidence was provided for two of the 
three dimensions (i.e. intercropping associated to cultivar mixtures). On 
the one hand, Ditzler et al. (2021) showed that combining strip inter
cropping (potato (Solanum tuberosum L., Solanaceae)-spring wheat) with 
cultivar mixtures (three different potato cultivars) significantly lowered 
the spread rate of the late blight disease (caused by Phytophthora infes
tans (Mont.) de Bary) on potato compared to intercropping alone and 
sole cropping. On the other hand, the same study reported that associ
ating intercropping (wheat-faba bean (Vicia faba L., Fabaceae)) with 
cultivar mixtures of both species did not enhance the activity density, 
richness and evenness of aphid natural enemies, when compared to 
intercropping alone. Another study with cabbage (Brassica oleracea L., 
Brassicaceae) as the focus crop tested various crop and non-crop com
binations in strip intercropping designs, and in some cases with crop 
cultivar mixtures (Juventia et al., 2021). Interestingly, non-crop features 
such as wildflower strips and grass-clover mixtures were associated in 

some strip intercropping designs. A key finding was that, across loca
tions and designs, feeding injuries on cabbage leaves were significantly 
reduced as plant diversity within 15 m radius of cabbage strip increased 
(Juventia et al., 2021). This suggests that increasing plant diversity at 
the field scale beyond two cultivars or species (i.e. intercropping), or 
sole cropping with flower strips at margins, do indeed further enhance 
pest regulation. 

These recent studies support the hypothesis that key synergies will 
arise from complex designs associating various diversification practices, 
including diversified cropping and the implementation of non-crop 
habitats. The strategic integration of these processes should lead to 
mobilizing five-dimensional diversity in new agroecosystem designs. 
Following the path opened by Ditzler et al. (2021) and Juventia et al. 
(2021), five-dimensional diversity would take advantage of a 
three-dimensional crop diversity (i.e. rotation, cultivar mixtures, and 
species intercropping) with a two-dimensional non-crop diversity (i.e. 
direct field margin, and surrounding landscape management) (Fig. 3). 
Nonetheless, this raises new challenges. First, implementing a 
five-dimensional diversification would have to deal with different 
spatio-temporal scales. Especially, the two dimensions of non-crop di
versity are managed at different spatial scales, with direct field margins 
implemented at the farm level, and landscape diversity handled at the 
regional level. Hence, mobilizing four-dimensional diversity (i.e. rota
tion, cultivar mixtures, species intercropping, and direct field margin 
management) is in each farmer’s hands; realising five-dimensional di
versity necessitates organising stakeholders beyond farms’ borders (Hatt 
et al., 2018a; Landis, 2017). Second, for experimental research, testing 
such multidimensional diversification is not trivial, because factorial 
experiments combining different factors of diversification are forbid
dingly large and complex, while simpler trials testing the performance of 
a single stacked diversification treatment against current practice may 
fail to attribute observed effects to the components of diversification. 
Solutions may lie in the use of modelling (Bonato et al., 2023), from 
which predictions allow building scenarios that can be compared by 
varying key parameters, e.g. the proportion of non-crop habitats in a 
landscape (Ekroos et al., 2014) or the crop species to include in rotations 
or mixtures (Colbach et al., 2021). Yet, trade-offs between realistic 
predictions and generalization across systems occur as modelled systems 
complexify (Alexandridis et al., 2021). Using archetypes of ecological 
responses, defined as ecological phenomena showing similar responses 
to land-use change across different contexts and explained by similar 
trait-mediated processes, has been recently proposed to develop 
“mechanistic models of intermediate generality” (Alexandridis et al., 
2022). Other developing pathways involve the collection of “big data” 
facilitated by the use of automated sensing technologies, and analyzed 
through machine learning algorithms (Høye et al., 2021). 

3.4. Translating ecological processes into socio-economic benefits 

Positive socio-economic benefits can arise from the diversification of 
agroecosystems. A recent meta-analysis showed that diversified farming 
systems are at least as profitable as simplified ones, and highlighted that 
total costs, gross income and profits are higher on average in diversified 
than in simplified systems, while the benefit-cost ratio are equivalent 
(Sánchez et al., 2022). Pesticide use could be reduced without any effect 
on productivity and profitability (e.g. 30–60% in France, Lechenet et al., 
2017). In diversified agroecosystems, reducing pesticide usages en
hances the natural regulation of insect pests (Geiger et al., 2010), which 
participates in maintaining productivity. Experiments conducted in rice 
agroecosystems showed that managing rice field bunds with non-rice 
crops (e.g. sesame Sesamum indicum L., Pedaliaceae (Gurr et al., 
2016), mung bean Vigna radiata (L.) R. Wilczek, Fabaceae (Sattler et al., 
2021)) allows reducing or avoiding insecticide applications while 
maintaining rice yield and increasing total income (e.g. +7.5% or US 
$215 ha− 1, Gurr et al., 2016). Wildflower strips sown adjacent to organic 
vegetable greenhouses significantly reduced bio-insecticide applications 
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(− 34%) while eggplant (Solanum melongena L., Solanaceae) yield was 
maintained (Li et al., 2021). Infestation of insect pests was delayed in 
cotton (Gossypium hirsutum L., Malvaceae) cultivated in smaller fields 
and embedded in more diverse landscapes, leading to reduced insecti
cide applications, and resulting in higher yield (Gagic et al., 2021). 

While diversifying would not reduce profitability, increasing crop 
diversity and reducing input usages (including pesticides) favour sta
bility of farm income (Harkness et al., 2021). Income stability is, in 
addition to net income, an important financial indicator as it allows a 
better farm planning and management. Income stability in diversified 
and low input cropping systems is explained by, on the one hand the 
reduction of financial investment risks through a reduction of monetary 
production costs (van der Ploeg, 2021), and on the other hand a higher 
resilience of farm businesses to price fluctuations and extreme climatic 
events (Altieri et al., 2015; Lin, 2011). To be resilient (i.e. to have the 
capacity to absorb disturbance and still retain its basic function and 
structure, Walker and Salt, 2012), a system needs to include components 
performing the same functions but in different ways, so that the func
tions are maintained even if one of the components fails. It is the case in 
intercropping, where the (at least) two crop species grown together are 
(at least partly) redundant in their functions of production and income 
source for farmers. In the case where one crop partner fails or experi
ences reduced growth, the associated crop species can compensate the 
loss in producing higher yield than originally expected, thanks to a 
reduced competition for resources (or competitive release) (Döring and 
Elsalahy, 2022). Referred to as the insurance hypothesis (Yachi and 
Loreau, 1999), this compensation effect is also the basis of an increased 
yield stability in intercropping (Raseduzzaman and Jensen, 2017), of
fering a reduction of production risks over time and across environ
mental conditions. 

Payments for environmental services are the other explanatory 

reason for the increased stability of income in farms investing in agri
cultural diversification (Harkness et al., 2021). In various countries, 
measures of biodiversity conservation in agricultural landscapes are 
supported by agri-environmental policies (e.g. in Europe, Batáry et al., 
2015; in China, Zhu et al., 2018). Backed by important public subsidies 
(e.g. Pe’er et al., 2019), payments for environmental services aim at 
compensating farmers for implementation costs and potential yield 
losses (in the European Union at least). While monetary incentive is 
generally seen as key argument in most farmers’ willingness to imple
ment agri-environmental measures (Swinton et al., 2015; Zhang et al., 
2015), it offers a regular and guaranteed source of income to farmers. 
Yet, it is worth noting that it is the agri-environmental payments, and 
not the direct subsidies (which largely depend on farm size in the Eu
ropean agricultural policy), that improve income stability, suggesting an 
effect of regulating ecosystem services on farm income (Harkness et al., 
2021). Studies have indeed highlighted that landscape features such as 
hedgerows and flower or grassy strips implemented as part of subsidised 
agri-environmental measures to preserve biodiversity enhance the nat
ural regulation of insect pests in adjacent crops (Sutter et al., 2018; 
Tschumi et al., 2016a) without significant trade-offs, such as fields 
becoming infested by weeds originating from the focal habitats (Cor
deau et al., 2012). The enhanced regulating services provided by mea
sures aiming at supporting biodiversity may not be seen as very 
surprising since biological regulation is mediated by plant and animal 
diversity (Dainese et al., 2019). Nonetheless, these are not trivial find
ings since many policy-makers (Hatt and Osawa, 2019b) and farmers 
(Salliou and Barnaud, 2017) do not necessarily link biodiversity con
servation with regulating services useful for agricultural production. 

Last but not least, agroecosystem diversification can benefit society 
beyond farm economies by improving environmental quality. Meta- 
analyses evaluating the multifunctional performances of diversified 

Fig. 3. Stacking diversification practices: towards a five-dimensional diversity taking advantage of a three-dimensional crop diversity (i.e. rotation, cultivar mix
tures, and species intercropping) with a two-dimensional non-crop diversity (i.e. direct field margin, and surrounding landscape management). 
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agroecosystems reveal that while favouring the natural regulation of 
pests, diversified cropping in general (Tamburini et al., 2020) and 
agroforestry especially (Beillouin et al., 2021) improves water quality 
and quantity. It can be explained by the positive effect of agroforestry 
(Torralba et al., 2016), and perennial grass strips and hedges (Vought 
et al., 1995), in controlling nutrient leaching and soil erosion. In addi
tion, agroforestry, but also intercropping, can favour carbon storage in 
soil, potentially contributing to climate change mitigation (Beillouin 
et al., 2021). Finally, studies on landscape aesthetics showed that 
non-farmers significantly prefer diversified agroecosystems and land
scapes, combining for instance trees, flower strips and a diversity of 
crops (Junge et al., 2011). These multiple environmental benefits of 
diversified cropping systems and landscapes contrast with the environ
mental and societal costs of pesticide use borne by society, estimated at 
$9.6 billion. year− 1 in the USA alone. This sum attributes $1.1 billion for 
pesticide impact on public health, $2.2 billion for bird losses, and $2.0 
billion for groundwater contamination (Pimentel and Burgess, 2014). 
While policies aiming at reducing pesticide uses has been failing at 
reaching their goals so far (Hossard et al., 2017), highlighting the 
environmental and health hazard of pesticides may convince farmers to 
adopt pesticide-free production programs (Finger and Möhring, 2022). 
Similarly, the multifunctional ecological and socio-economic perfor
mances of diversified agroecosystems, at the farm level and beyond, 
should be emphasized, as part of a holistic approach in 
pesticide-reduction policies (Möhring et al., 2020). 

4. Towards an integrative framework 

It is suggested that integrating the four proposed principles when 
designing diversified agroecosystems would create synergies favouring 
the control of multiple crop pests while delivering socio-economic 
benefits (Fig. 4). Yet, implications for scientific research and beyond 
towards implementing integrative diversification science are identified 

and discussed. 

4.1. Favouring synergies to strengthen resilience 

In a hypothetical diversified cropping system, one can speculate that 
by applying intercropping or companion planting, weeds would not 
affect crop yield (Verret et al., 2017), while the flowers of some of the 
remaining weed plants would attract natural enemies (Fig. 1). These 
natural enemies would have benefited from non-crop habitats at mar
gins, such as wildflower strips composed of trait-attractive forb species. 
The weed plants will thus indirectly enhance biological control of insect 
pests (Serée et al., 2023), and complement the bottom-up effect of mixed 
cropping at limiting pest infestation and spread (Lopes et al., 2016). 
Economic benefits for farmers are expected from net yield gain (Li et al., 
2020) and increased yield stability (Raseduzzaman and Jensen, 2017) 
offered by intercropping, pesticide reduction (Gurr et al., 2016), and 
potential payment for environmental services when implementing 
non-crop habitats (Harkness et al., 2021). Indirect benefits for society 
would arise from lowering the hidden costs of pesticide use (Pimentel 
and Burgess, 2014), improving water quality, contributing to mitigating 
climate change (Beillouin et al., 2021), and embellishing landscapes 
offering cultural services of intangible value (Junge et al., 2011). 

These synergistic benefits are likely to occur over complementary 
short- and longer-term processes. Annual mixed crops reduce pests 
without delay (Zhu et al., 2000) and economic benefits from net yield 
gain are expected at harvest (Li et al., 2020). However, enhancing nat
ural enemies with non-crop habitats can take 1–5 years with pluriannual 
wildflower and grass strips (Ganser et al., 2019), or 5–10 years with 
(agro)forests (Staton et al., 2019), explaining that biological control 
increases over the years after establishment (Thies and Tscharntke, 
1999; but see Albrecht et al., 2021). Yet subsidies for semi-natural 
habitats are paid for at least five years and can include a bonus on 
year 1 to compensate the implementation costs (e.g. 

Fig. 4. Framework for an integrative diversification science to design pest suppressive agroecosystems. It invites to embrace complexity and consider the multiple 
pests and their enemies in interactions in highly diversified farming systems and landscapes stacking diversification practices, by considering organisms’ traits 
through metrics capturing their mean and functional diversity effects. Resulting synergies and strengthened resilience are expected to be translated into socio- 
economic benefits for farmers and for the society as a whole. 1Diversification practices are defined in Table 1. 2A key selection of effect and response traits is 
provided in Fig. 2. 
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Landwirtschaftskammer NRW, 2022). This bonus would also compen
sate the delay in natural enemy enhancement and effective pest control. 

This complementarity in effects is likely to increase the resilience of 
agroecosystems thanks to the redundancy of functions occurring at 
different time and spatial scales. As explained (section 3.4), a resilient 
system needs to include components performing the same functions but 
in different ways, so that the functions are maintained even if one of the 
components fails. When stacking diversification practices, cultural 
practices are based on genetic and species diversification while various 
non-crop habitats are found both at the direct field margin and at the 
broader landscape. To sustain natural enemies relying on nectar and 
pollen, flower resources are made available in fields (through weeds that 
are tolerated thanks to mixed cropping), and off-field with flower strips 
and hedgerows managed at margins. Hence, pests are controlled 
through top-down (by natural enemies) and bottom-up (through mixed 
cropping) effects. Finally, the stability of farms’ economies is built on 
selling diverse commodities and low production costs and payments for 
environmental services. In contrast, simplified farming systems, that 
include a limited diversity of crops, and which base pest control on silver 
bullets face dramatic consequences when the unique pest control tool 
fails or is banned. Illustrations are the “super-weeds” (e.g. Palmer 
amaranth Amaranthus palmeri S. Wat., Amaranthaceae), which have 
developed in monocultures of genetically-engineered herbicide-resistant 
crops and become hardly manageable (Gilbert, 2013); or virus yellows 
transmitted by the aphid M. persicae, which have led to significant yield 
losses on sugar beet (Beta vulgaris L., Amaranthaceae) in Europe after the 
ban of neonicotinoid insecticides (Dewar and Qi, 2021). 

4.2. Implications for science and research 

By relying on ecological processes, any diversification approach 
must account for local farm context (Settele and Settle, 2018). Farming 
context comprises the biotic and abiotic conditions, and the manage
ment practices, at scales from the field to the landscape. It exerts a se
lection pressure on the assemblage of the communities, i.e. organisms, 
their traits, and consequently on their mutual regulation (Muneret et al., 
2022). It is well acknowledged that diversification science must follow 
principles, rather than recipes, that must be translated locally into 
adaptative management practices (Duru et al., 2015). It has however 
several implications for scientific research. 

First, it necessitates increasing the diversity of experimental envi
ronments and maximizing informational exchange. Together, this calls 
for collaborative—rather than competitive—research, conducted 
through more decentralized field trials, by multiplying autonomous 
experimental stations and the expansion of on-farm studies. 

Second, it requires longer-term research to take into account the 
relentless evolutionary adaptation of farming systems (Rodrigues et al., 
2022). Although crucial, long-term research is far too rare, because re
searchers have to deal with short-term funding and unstable positions 
(Butler-Rees and Robinson, 2020), and because farmer innovators have 
to cope with uncertain economic and regulatory perspectives (Morel 
et al., 2020). 

Third, it demands acquiring and mobilizing broad and specialised 
knowledge and skills (David and Bell, 2018). It includes knowing 
functional biodiversity, understanding the key ecological processes at 
work in fields and landscapes, designing and managing complex agro
ecosystems, and running economically viable and socially relevant en
terprises (González-Chang et al., 2020). Knowledge and skills from a 
variety of (sub-)disciplines are necessary. While multi- and inter
disciplinarity are nowadays generally advocated in scientific research 
(Ledford, 2015), their realization is not trivial because each disciplinary 
knowledge has been specialising in an unprecedented manner, but also 
because each discipline has its own methods, language, frameworks, and 
traditions (Brown, et al., 2015). 

Finally, it implies to revise and diversify the indicators of perfor
mance. Yield growth has driven the simplification of agroecosystems 

through input-intensive agriculture (Robinson and Sutherland, 2002), 
not surprisingly in an economy structured around production growth 
(Hickel et al., 2022). Diversification science must evaluate its perfor
mance by considering alternative indicators in addition to absolute 
yield. They include environmental quality comprising biological di
versity and regulating processes in agroecosystems (Dainese et al., 
2019), resource use efficiency (Li et al., 2020) and climate change 
mitigation and adaptation (Mbow et al., 2014), stability in yield 
(Raseduzzaman and Jensen, 2017) and income (Harkness et al., 2021). 
Importantly, the various indicators must be used jointly to perform in
tegrated assessments with a view on multifunctional effects at the 
agroecosystem level (Boeraeve et al., 2020; Hodbod et al., 2016). 

Scientific research alone, however, cannot diversify farmers’ farms. 
Structural factors upstream and down-stream production have been 
identified, locking most of farms into input-intensive and simplified 
systems (Carlisle et al., 2022; Meynard et al., 2018). Unlocking farms 
and redesigning agroecosystems necessitates thinking and acting out of 
the box. New approaches can come from pioneer farmers whose suc
cessful radical innovations developed on the fringe of the mainstream 
production system radiate out to neighboring farmers and beyond, their 
farms becoming “agroecological lighthouses” (Nicholls and Altieri, 
2018). They can also be driven by policies, with regulations and in
centives exerting a significant impact on the existing system (e.g. the 
European Union Common Agricultural Policy represents €55 billion of 
subsidies annually) (Pe’er et al., 2019). Both the niche innovations and 
the exogenous factors (e.g. infrastructures, norms and regulations, so
cietal concerns) impact the mainstream socio-technical system (sensu 
Geels, 2019), but they also influence each other through cross-scale 
feedback (a process also known as panarchy, Gunderson and Holling, 
2002). Research is at the cross-road of these influences. It produces 
expert knowledge that must guide policy makers (Pe’er et al., 2022), it 
can accompany innovating farmers by objectivizing practical knowledge 
(MacMillan and Benton, 2014), and last but not least it teaches the 
current and next generations of farming and food system stakeholders 
(David and Bell, 2018). 

5. Conclusion 

Drastically reducing the use of pesticides in agriculture would 
require increasing plant diversity at the cropping system and landscape 
levels. The ecological mechanisms at play and the quantitative evidence 
that diversifying works in general to control the multiple pests of crops 
were recalled here. Yet, variability in effects and risks of failure, 
partially explaining the relatively low adoption of diversification prac
tices by farmers, call for improving the science base. The present review 
attempted to make a contribution towards filling this gap, and proposed 
four principles which, adopted within an integrative framework, are 
expected to enhance synergies to strengthen the resilience of agro
ecosystems to pest pressure. 

Future work will have to verify empirically the general approach 
proposed here. Original cropping systems and landscapes would be 
designed by stacking different diversification practices, where crop and 
non-crop mixtures would be chosen based on their beneficial effect 
traits. The complex interactions at play would be analyzed using the 
response/effect trait model, considering the diversity of interacting or
ganisms (crop and non-crop plants, insect and micro-organism pests and 
natural enemies) through their functional characterization in additional 
to their taxonomic description. The multifunctional performances need 
to be quantified, allowing identifying synergies, but also potential trade- 
offs, in the delivery of multiple ecosystem services towards socio- 
economic benefits. Such empirical research should be conducted both 
on experimental stations and on farms, likely with iterative loops of 
exploration, implementation and assessments between the two. 

World nations recently agreed to reduce “the overall risk from pes
ticides and highly hazardous chemicals by at least half” by 2030 and 
called to base this shift on science (UNEP, 2022). Scientific paradigms to 
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reduce pesticides are various and sometimes propose antagonistic so
lutions (Altieri et al., 2017). The present review calls for an ambitious 
science, taking diversity as cornerstone, and integration as core strategy, 
to embrace the complexity of agroecosystems as multidimensional 
socio-ecological systems. 
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Östman, Ö., Ouin, A., Pak, D., Paredes, D., Parsa, S., Parry, H., Perez-Alvarez, R., 
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