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ABSTRACT

In recent years, the mobility domain has gained attention from urban planners and
researchers due to its essential role in enhancing urban safety and development.
This interest can be attributed to the increased availability of geospatial and mobility
data from a wide variety of sources, such as OpenStreetMap and knowledge graphs.
Geospatial and mobility data enable the development of predictive models such as
accident and crime prediction, enhancing urban safety, and planning. However,
there are specific challenges to utilizing geospatial and mobility data when building
predictive models. First, mobility data is typically sparse. Data sparsity occurs when
spatio-temporal events, such as traffic accidents, are scarce and scattered across ge-
ographic regions. Due to data sparsity, predicting future events at specific locations
becomes challenging. Second, geospatial and mobility data from multiple sources
are often utilized by machine learning pipelines to generate latent representations.
The latent representations derived from multimodal data are richer in context and
beneficial for several predictive tasks. However, the diversity in data sources makes
it challenging for machine learning pipelines to integrate these sources effectively,
resulting in ineffective latent representations. Third, personal mobility data can con-
tain sensitive information, such as visited locations, traveled routes, and driver pro-
files. Applications relying on personal mobility data require effective and robust
methods to confirm provenance and authenticity. However, existing methods in the
mobility domain are neither effective nor robust, which makes tracing personal mo-
bility data challenging. This lack of traceability of personal mobility data limits its
use in predictive model development.

This cumulative thesis summarizes several novel methods to address these chal-
lenges. First, we propose a novel adaptive clustering method for accident prediction
(ACAP) to address the challenge of data sparsity. ACAP aggregates traffic accident
events dynamically with a grid-growing algorithm while considering underlying
data distribution. Furthermore, ACAP enhances the prediction results of traffic ac-
cident events by focusing on adaptive task-specific regions. Second, to address the
challenge of ineffective latent representations of geospatial regions, we propose a
multimodal and multitask approach for region representation learning (MAGRE).
MAGRE leverages multitask learning combined with attention-based fusion to en-
hance the effectiveness of region latent representations. These effective latent repre-
sentations maintain the semantics for several downstream predictive tasks. Further-
more, the adaptive representations generated by MAGRE can be aggregated for user
regions of interest of any shape and size without retraining. Third, to address the
challenge of the lack of traceability of personal mobility data, we propose a novel
watermarking approach for GPS trajectories called W-Trace. W-Trace embeds water-
marks within GPS trajectories and is robust to adversarial modifications, enhancing
traceability. In addition, W-Trace maintains the utility of watermarked GPS trajec-
tories for several downstream tasks. In summary, this thesis presents three novel
contributions: i) an adaptive aggregation method for accident event data, ii) an ef-
fective and adaptive representation learning approach for geospatial regions, and
iii) an effective, robust, and utility-preserving watermarking method for GPS trajec-
tories.

Keywords: Spatio-temporal Data Analysis, Adaptive Clustering, Adaptive Geospatial
Region Representation, Watermarking GPS Trajectory
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Chapter 1

Introduction

This chapter begins with introducing geospatial and mobility data and discusses its
importance in predictive modeling. Then, we explore several challenges associated
with this data for building predictive models. Next, we outline the key research
questions to address these challenges. In the end, we summarize the main contribu-
tions of the thesis.

1.1 Motivation

Mobility is a basic human trait. It is a fundamental behavior that drives us to move
from one place to another to fulfill our needs. Thousands of years ago, humans
traveled long distances for food and shelter, motivated by their need for survival.
Over time, technological advancements in sensors have pushed the mobility do-
main to new heights. Nowadays, most vehicles are equipped with sensors that
capture various parameters, such as speed, acceleration, and steering wheel angle,
generating a wealth of mobility data. Beyond physical movement, mobility also re-
quires an understanding of the geography of a location. In this context, geographic
information plays an important role in understanding the surroundings of a loca-
tion, which is beneficial for navigating unfamiliar places. One such example of ge-
ographic information is geospatial maps. Geospatial maps have also transitioned
from paper-based to digital maps, such as OpenStreetMap (OSM)1 [OSMa], produc-
ing vast amounts of geospatial data. Geospatial and mobility data acquired from
multiple sources enables the development of predictive models in the mobility do-
main. For instance, the predictive models can help in predicting traffic accidents
[DFD21], and support improved urban planning and safer transportation systems.

Utilizing geospatial and mobility data for predictive modeling comes with chal-
lenges. The first challenge is related to the sparsity of mobility data. This sparsity
occurs when events like traffic accidents are scarce and dispersed across geograph-
ical regions. As a result, predicting future traffic accident events at specific loca-
tions becomes challenging. The second challenge involves integrating geospatial
and mobility data from multiple sources to enhance the learning context for machine
learning (ML) pipelines. These machine learning pipelines create latent representa-
tions for geospatial regions from multimodal data, which can be beneficial to sev-
eral predictive tasks such as crime prediction and land use classification. However,
the diversity in data sources makes it difficult for ML pipelines to integrate diverse
sources effectively, resulting in ineffective region representations. In addition, the
broad range of user regions of interest (ROIs) further complicates learning effective

1The OpenStreetMap name is a trademark of the OpenStreetMap Foundation and is used with their
permission. We are not endorsed by or affiliated with the OpenStreetMap Foundation.
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FIGURE 1.1: Overall pipeline for building predictive models utilizing
geospatial and mobility data adopted in this thesis

representations for geospatial regions. The third challenge is the sensitive nature of
personal mobility data, which can include details such as visited locations or driver
profiles. Applications that rely on personal mobility data need effective and robust
methods to verify provenance and authenticity. However, existing methods in the
mobility domain are neither effective nor robust [Pan+19; Jin+05], which makes trac-
ing of personal mobility data challenging. This lack of traceability limits the use of
personal mobility data in predictive model development.

This cumulative thesis addresses the challenges associated with geospatial and
mobility data in building predictive models. In particular, we address three main
challenges: i) data sparsity, ii) ineffective latent representations, and iii) lack of trace-
ability. Figure 1.1 illustrates an overall pipeline of building predictive models uti-
lizing geospatial and mobility data. In this figure, we illustrate how the above-
mentioned challenges are addressed in this thesis by three novel methods, which
generate relevant data representations, such as aggregated data, effective latent rep-
resentations, and watermarked data. In the end, these representations are utilized in
several prediction tasks.

1.2 Research Questions

In this section, we discuss the challenges associated with geospatial and mobility
data, i.e., data sparsity, ineffective latent representations, and lack of traceability,
which are addressed in this thesis.

RQ1. How to create an adaptive geospatial aggregation method to predict traf-
fic accidents in urban regions?

A traditional approach to address data sparsity in the mobility domain relies
on fixed geospatial aggregations, such as fixed grids or administrative boundaries
[Moo+19; Zha+20]. These fixed aggregations aggregate the data from multi-
modalities within a grid or administrative boundary and perform predictions on
these spatial aggregations. However, these fixed aggregations often fail to align
with the actual spatial distribution of the event data [DFD21]. For instance, traffic
accident events in a given region might be split across multiple grid cells, leading
to a few events in each grid cell. Furthermore, there is no standard approach
for selecting the fixed aggregation grid size, such as 1km × 1km or 5km × 5km.
This inconsistency can result in variations in prediction results in traffic accident
prediction tasks. Therefore, addressing the data sparsity challenge requires adaptive
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aggregation methods for event data that accurately reflect the underlying spatial
distribution of the data. Geospatial and mobility data from multi-modalities
are often utilized by machine learning pipelines to create geospatial region rep-
resentations. Due to data heterogeneity, creating effective and adaptive latent
representations for geospatial regions is challenging. This brings us to the second
research question.

RQ2. How to create an effective and adaptive geospatial region latent repre-
sentation?

Geospatial and mobility data from multiple sources are often utilized to enhance
contextual understanding of machine learning pipelines. These ML pipelines create
region representations from multimodal data that are beneficial to several predictive
tasks. Due to data heterogeneity, integrating multiple data sources with different
structures and types is challenging for ML pipelines, leading to ineffective region
representations. Furthermore, various user regions of interest require adaptive re-
gion representations. For instance, one might be interested in predicting the crime
rate within a 200-meter radius of Bonn Central Station, while another might want
to extend this radius to 500 meters. A machine learning pipeline trained for one re-
gion of interest requires retraining for another, increasing the computational costs of
training. However, creating effective and adaptive geospatial latent representations
that do not require retraining for ROIs and can be utilized for several downstream
predictive tasks is challenging. Therefore, there is a need to develop an effective
and adaptive geospatial latent representation learning method that can retain the
semantics from multimodal data for several predictive tasks and flexibly align with
user-defined ROIs.

Creating latent representations for geospatial regions from mobility data, such
as GPS trajectories, can include user-specific information. Once this data is shared,
authenticating the shared data and verifying its provenance becomes challenging.
Verifying the data provenance is important in several scenarios, such as verifying
user consent, confirming the driver’s identity during risk assessment for personal-
ized insurance policies, and validating insurance claims [Dad+24]. This brings us to
the third research question.

RQ3. How to develop a robust, effective, and utility-preserving watermarking
method for GPS trajectories?

As discussed, GPS trajectory data may contain personal information such as
travel patterns and driver profiles. Sharing such data for any task needs careful
handling [Dad+22]. To address the challenge of lack of traceability, provenance in-
formation can be embedded in GPS trajectories with a watermarking method, result-
ing in watermarked data. Watermarking integrates provenance information within
the trajectory data, enabling the tracing of data origin. However, developing an ef-
fective, robust, and utility-preserving watermarking technique for GPS trajectories
poses several challenges. On the one hand, a watermark needs to be effective and ro-
bust. This means the watermark should embed enough information for verification
and be resilient against modifications by potential adversaries. On the other hand,
the watermark should have minimal impact on the utility of watermarked trajec-
tories for downstream applications. Additionally, GPS trajectories present unique
challenges for digital watermarking due to positional inaccuracies and non-uniform
sampling rates. Therefore, there is a need to develop a novel watermarking ap-
proach for GPS trajectories to enable the watermark to remain intact under various
data modifications while maintaining the data utility for analytical and predictive
tasks.
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1.3 Contributions

This section presents our contributions to address the research questions presented
above.

Adaptive Clustering for Aggregating Accidents Events [DFD21]. As discussed
in RQ1, to tackle the data sparsity challenge, spatio-temporal data, such as traf-
fic accident events, are often aggregated into fixed geospatial aggregations, which
leads to uneven data distributions. To address these challenges, we propose a novel
adaptive clustering method for accident prediction (ACAP), which identifies task-
specific regions for prediction purposes. The adaptive clusters generated with the
grid-growing algorithm capture the underlying spatial distribution of the traffic ac-
cident events, addressing the problem of uneven distributions. We utilize a neural
network architecture to predict accident events within adaptive clusters at specific
time frames. The experiment results demonstrate that the ACAP approach increases
the F1-score by 2-3 percent point on average compared to existing state-of-the-art
methods in three German cities. Furthermore, the grid-growing approach outper-
forms the clustering-based baselines by four percentage points on average. The fea-
ture analysis experiment indicates the importance of points of interest (POIs) and
temporal features in improving traffic accident prediction results.

Adaptive Geospatial Region Latent Representation [DYD24]. To address the
challenge of ineffective latent representations in geospatial data representation
learning (as outlined in RQ2), we introduce MAGRE: a novel approach designed
to create effective and adaptive region representations. By incorporating features
from multi-modal sources, such as OSM images and POI count, MAGRE enriches
the context for the region representation learning process. Furthermore, multitask
learning based on an attention-based fusion effectively integrates different data
representations and enhances the effectiveness of region representations. The
effectiveness of the MAGRE representations is evaluated on several downstream
tasks. In particular, the experimental results demonstrate that the MAGRE approach
outperforms state-of-the-art embedding baselines, reducing root mean squared
error by 19.08% for check-in count prediction and by 25.73% for crime rate pre-
diction. The use case study on crime prediction task demonstrates that the region
embeddings generated by MAGRE can handle ROIs of different shapes and sizes,
demonstrating the adaptiveness of our approach.

Robust, Effective, and Utility-preserving Watermarking Method [Dad+24;
Dad+22]. To address the lack of traceability challenge (as outlined in RQ3), we
present W-Trace, a novel GPS watermarking method that is robust, effective, and
preserves utility for downstream tasks. W-Trace transforms the GPS trajectories
into a complex domain, and Fourier transformation is applied to decompose the
trajectory into frequency representation. The watermark is embedded in these
frequency components and verified through a spatiotemporally-aware procedure.
The GPS trajectories watermarked by the W-Trace method are robust to several
modifications, achieving a high recognition rate of 99% on average on two datasets.
This high recognition rate highlights the robustness and effectiveness of the W-Trace
method, enabling data traceability. W-Trace preserves the utility of watermarked
GPS trajectories for downstream tasks like map matching and predictive tasks
such as trajectory user linking. Furthermore, W-Trace embeds more watermark
information into the GPS trajectories than the state-of-the-art methods.
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1.4 Thesis Structure

The rest of the thesis is structured as follows:

• Chapter 2 provides an overview of relevant concepts crucial for understanding
the terminology adopted in the thesis. This chapter introduces a geospatial and
mobility data-based predictive pipeline that illustrates various concepts, such
as spatio-temporal data representations, aggregations, and predictive model
development.

• In Chapter 3, we discuss the state-of-the-art works for event prediction, latent
representations for geospatial regions, and watermarking methods.

• Chapter 4 addresses the first research question on data sparsity and summa-
rizes the proposed adaptive clustering approach for traffic accident prediction.

• Chapter 5 addresses the second research question regarding ineffective latent
representations and introduces a novel method for generating effective and
adaptive latent representations for geospatial regions.

• Then, Chapter 6 addresses the third challenge regarding the lack of traceabil-
ity and discusses an effective, robust, and utility-preserving watermarking ap-
proach for GPS trajectories.

• Lastly, Chapter 7 concludes our work by briefly summarizing the results ob-
tained throughout the thesis. Additionally, this chapter provides an outline for
potential future research directions.
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Chapter 2

Background

This chapter presents fundamental concepts for understanding the terminology
adopted in the thesis. We introduce a predictive pipeline based on geospatial and
mobility data, beginning with data acquisition from different sources, followed by a
series of transformations, and concluding with developing predictive models.

Geospatial and mobility data come in different types and granularity over space
and time. As discussed in Chapter 1, this data is beneficial in several predictive
tasks, including traffic prediction, accident prediction, and travel time estimation
[Moo+19; DFD21]. Geospatial and mobility data often require various transforma-
tions to make the data suitable for modeling. Figure 2.1 illustrates typical compo-
nents of a geospatial and mobility data-based predictive pipeline. This pipeline be-
gins by acquiring geospatial and mobility data from different sources. Next, the data
is transformed into spatio-temporal (ST) representations, such as geospatial points
and trajectories. To enable traceability, the mobility data, such as GPS trajectories,
is processed through a watermarking method where provenance information is em-
bedded into the data. Then, the data aggregation step transforms the data to create
different aggregations, addressing the data sparsity challenge. Next, the model de-
velopment step transforms the aggregated data into meaningful representations for
learning models. This step then identifies the most suitable predictive model for the
generated representations. Finally, the selected model outputs predictions based on
the tasks, such as regression and classification. We discuss each step in more detail
in the following sections.

2.1 Geospatial and Mobility Data

This section explores data sources responsible for generating geospatial and mobility
data, as illustrated in the first block of Figure 2.1.

2.1.1 Sources of Geospatial Data

Geographic information, such as the location details of geographic entities like
Points of Interest (POIs), is referred to as geospatial data. Satellite imagery, vol-
unteered geographic information (VGI), web-based applications, and knowledge
graphs (KGs) are some sources that contain geospatial data. In this thesis, we
utilize geospatial data from VGI. VGI refers to geographic data collected through
the efforts of volunteers. A well-known example of VGI is OpenStreetMap (OSM).
OSM is an open-source spatial database that aims to capture data about geographic
objects like roads, rivers, and country boundaries. OSM operates under the Open
Database License (ODbL), with contributors voluntarily providing geographic data.
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FIGURE 2.1: Overview of a geospatial and spatio-temporal (ST) mo-
bility data-based predictive pipeline. Map data: ©OpenStreetMap

contributors, ODbL

OSM models spatial data in three ways: nodes, ways, and relations. A node is a
specific geographic point on the earth’s surface, e.g., landmarks. Each node is char-
acterized by a unique identifier and its corresponding latitude and longitude coor-
dinates. Ways are represented by a sequence of nodes, illustrating entities such as
roads or rivers. Relations represent a complex object that is an ordered list of nodes,
ways, and other relations, such as city boundaries or administrative districts. The
different ways to access geospatial data from OSM are:

• Nominatim leverages the OSM data to perform geocoding, enabling users to
search for locations based on names and addresses [Nom].

• OSM API is an interface for accessing and modifying geospatial data stored
within the OSM database [APIa].

• Overpass API is a read-only API to access specific segments of the OSM data
and works similarly to a web-based database [APIb].

• OSM Planet consolidates the OSM data into a single file released weekly, with
each new version [OSMb].

In this thesis, we access geospatial data from OSM, which is helpful in predictive
tasks, such as land use classification and crime prediction [DYD24].

2.1.2 Sources of Mobility Data

Mobility data is often represented with space and time. Mobility data originates from
GPS sensors, transmitting data periodically over time [An+16], as illustrated in the
first block of Figure 2.1. For instance, a GPS sensor installed in a car continuously
records the location of the vehicle at specific intervals. Similarly, sharing locations
on location-based social networks (LBSNs) at different time intervals leads to the
generation of mobility data [Yan+13]. The mobility data has applications in predic-
tive tasks such as next location prediction [Sun+24], crowd flow prediction [Jia+23],
region representation [DYD24] and traffic prediction [Han+23].

The geospatial and mobility data acquired from the above sources typically re-
quire further preprocessing for predictive modeling. One of the preprocessing steps
is transforming the geospatial and mobility data into spatio-temporal data represen-
tations.
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2.2 Spatio-temporal Data Representation

This step transforms geospatial and mobility data into one of the well-known spatio-
temporal data representations, as illustrated in the second component of Figure 2.1.
This thesis discusses the most common spatio-temporal data representations, such
as geospatial point, event, trajectory, polygon, and spatial map.

2.2.1 Geospatial Point

A geospatial point represents the geographic location of a particular place, repre-
sented by a pair of latitude and longitude [DGL07].

Definition 1 (Geospatial Point) A geospatial point P is a point located on the earth’s
surface and denoted as:

P = (lat, lon),

where lat is the latitude, and lon is the longitude.

For instance, Bonn Central Station is a Point of Interest (POI), represented by a
geospatial point (50.73185, 7.09776), where 50.73185 and 7.09776 are latitude and
longitude, respectively, as illustrated in Figure 2.2a. The distance between the
two geospatial points can be calculated utilizing Euclidean or Haversine distance.
Geospatial points are called nodes in OSM data modeling, as described in Section
2.1.1.

2.2.2 Event

An event is a real-world occurrence that takes place at a particular time and location
[Zha22].

Definition 2 (Event) An event E is recorded at a specific geospatial point P and time t,
denoted as:

E = (P, t).

For instance, an accident event is recorded with a geospatial point (50.7346, 7.0902)
at time 11-04-2024 16:00:05, as illustrated in Figure 2.2a. In this thesis, we utilize
traffic accident data as events and POI data from OSM as geospatial points for the
accident prediction task [DFD21].

2.2.3 Trajectory

A trajectory is an ordered collection of geospatial points, where each point is
recorded at specific timestamps. The geospatial points in the trajectory represent
the locations visited by the moving object, as illustrated in Figure 2.2b. Examples
of trajectories include the path followed by a taxi from the point of pick-up to the
drop-off destination [Far+16].

Definition 3 (Trajectory) A trajectory T consists of geospatial points organized chrono-
logically and paired with the corresponding timestamps [Dad+22],

T = [(Pj, tj)], with tj < tj+1 for all j,
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A) Geospatial point and event B) Trajectory C) Geospatial map

FIGURE 2.2: Examples of spatio-temporal data representations:
geospatial point, event, trajectory, and geospatial map. Map data:

©OpenStreetMap contributors, ODbL

where Pj = (latj, lonj) denotes the geospatial point, and tj refers to the timestamp associated
with Pj.

Further preprocessing steps can enhance the trajectory quality and usefulness in ap-
plication tasks. For instance, initial preprocessing steps can include data cleaning to
remove outliers, matching the GPS coordinates to the road segments (map match-
ing), trajectory segmentation to identify distinct movement patterns, and feature
extraction to extract relevant features for the analysis. In this thesis, we leverage
trajectory data for watermarking GPS coordinates [Dad+22; Dad+24].

2.2.4 Polygon

A polygon encloses a geospatial region with a specific size and shape. Examples of
geospatial regions represented with polygon shapes can be squares, rectangles, and
hexagons. Polygons represent geospatial entities such as parks, city boundaries,
building footprints, or water bodies. In this thesis, a polygon is defined as follows:

Definition 4 (Polygon) A polygon Gr consists of unique geospatial points connected by
straight lines [ESR],

Gr = [(P1, P2, ..., Pn−1, Pn)],

such that the last and first geospatial points are identical, i.e., P1 = Pn.

This thesis utilizes polygon shapes like squares and hexagons for partitioning the
geospatial regions in the following tasks: traffic accident prediction and geospatial
region representation [DFD21; DYD24].

2.2.5 Geospatial Map

A geospatial map is a visual representation of geographic areas, generally displaying
spatial features such as boundaries, landmarks, and geographical attributes. Figure
2.2c illustrates a geospatial map of the Bonn region represented as an OSM image.
The OSM utilizes distinct colors to represent different objects, facilitating the inter-
pretation of the map. For instance, the light-brown color commonly depicts build-
ings, blue represents water bodies, and green signifies trees and vegetation. The en-
coded colors in the OSM provide information about the region characteristics, which
can help learn region representations and improve land use type predictions, such
as identifying business and commercial areas. In this thesis, we divide the OSM
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into various image segments and utilize the segmented images to learn the latent
representation of the geospatial regions [DYD24].

2.3 Watermarking

Spatio-temporal data representations, such as trajectory, can contain sensitive in-
formation. Sharing such data needs careful handling [Dad+22]. To address these
concerns, inserting provenance information into the data before sharing is essential.
This allows the shared data to be traced back to its source, enabling traceability. One
such method for embedding provenance information is watermarking. Watermark-
ing refers to techniques that embed provenance information (referred to as a wa-
termark) within data [Dad+22]. There are two types of watermarking approaches:
one is blind, and another is non-blind. The blind watermarking techniques do not
require the original data for watermark extraction, while the non-blind methods re-
quire access to the original data. Generally, the non-blind methods are more robust
against attacks than the blind [HKB09]. The watermarking process typically consists
of two main steps: watermark embedding and watermark verification. We discuss
each of the steps in detail.

2.3.1 Watermark Embedding

Watermark embedding is the process of inserting a watermark into existing data
without affecting the data utility [Dad+22]. The watermark embedding method
inserts a watermark into each data sample, which results in the creation of water-
marked data. Once the watermark embedding process is complete, the watermarked
data can be shared for further analysis. This watermarked data can be modified by
adversarial modifications, transforming the data into attacked data. These modifi-
cations can pose threats to the authenticity and reliability of the shared data. Water-
mark verification is crucial to verifying the provenance information in the attacked
data.

2.3.2 Watermark Verification

The watermark verification process validates whether the attacked data contains the
inserted watermark. The first step in watermark verification is watermark extrac-
tion. Watermark extraction is essential in recovering the embedded watermark from
the attacked data. Once the watermark is extracted, the extracted watermark needs
to be verified against the original inserted one. In this thesis, we utilize Normalized
Cross-Correlation (NCC) to find the correlation between two watermarks, which is
defined as:

NCC(W, Ŵ ′) = ∑i WiŴ ′i√
∑i W2

i

√
∑i Ŵ ′

2
i

,

where W is the inserted watermark in the original data and Ŵ ′ is the extracted wa-
termark from the attacked data. The value of NCC lies between −1 and 1. The NCC
value 1 indicates that watermarks are highly correlated, while 0 and −1 indicate
no correlation and negative correlation, respectively. The watermark verification is
successful if the NCC score between two watermarks for a given data sample ex-
ceeds a predefined threshold. To identify whether a whole dataset is watermarked,
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A) Spatial aggregation of traffic accident
events based on administrative districts

B) Spatio-temporal aggregation of traffic
accident events based on grids

FIGURE 2.3: Examples of spatial and spatio-temporal aggregations
of traffic accident events. Map data: ©OpenStreetMap contributors,

ODbL

the recognition rate can be utilized as an evaluation metric. The recognition rate
is the ratio of correctly identified watermarked samples (true positives) to the to-
tal number of watermarked samples. This thesis proposes a robust, effective, and
utility-preserving watermarking method for GPS trajectories to address the lack of
traceability challenge [Dad+22; Dad+24].

2.4 Data Aggregation

The data aggregation step transforms spatio-temporal representations into an ag-
gregated form to handle the data sparsity. This thesis discusses four main types
of aggregations: spatial, temporal, spatio-temporal, and adaptive, as illustrated in
Figure 2.1.

2.4.1 Spatial Aggregation

Spatial aggregation is the most common way to aggregate the data based on spatial
boundary [Zha+20; Moo+19]. Spatial aggregation can be performed based on poly-
gons, administrative boundaries, and graphs. We discuss spatial aggregation types
in detail.

Polygon. As discussed in Section 2.2.4, we can partition a geospatial region with
user-defined polygon shapes. A grid (square or rectangle) is the most common way
to represent a region [Moo+19; Li+22b]. In grid aggregation, data such as geospa-
tial points or events are aggregated in a fixed-size grid cell, where the size of the
grid cell is user-defined [Moo+19]. The commonly utilized approach for construct-
ing grids is geohash. Geohash transforms a geographic location into alphanumeric
strings [DFD21]. The longer the geohash length, the finer the resolution, resulting in
smaller grid cells. For instance, geohash with lengths of five and six correspond to
approximate grids of sizes 4.89km× 4.89km and 1.22km× 0.61km, respectively. The
grid-based spatial aggregation comes up with challenges. The grid-based aggrega-
tion does not follow the underlying distribution of spatial data. For instance, dense
traffic accident events in the city center may lie in multiple grid cells. Hence, some
grid cells may get fewer traffic accident events than others, leading to an uneven
distribution of events.
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Administrative. An administrative region can be defined with census tracts or
street segments [Zha+20]. Figure 2.3a illustrates the division of the North Rhine-
Westphalia (a federal state of Germany) based on administrative districts and ag-
gregates traffic accident events in each district. Such data aggregation helps city ad-
ministrators make informed decisions, such as allocating more resources in densely
populated areas. The effectiveness of this aggregation is hindered by the varying
shapes and sizes of administrative boundaries adopted by city administrations. For
instance, the Manhattan region (in the United States of America (USA)) is subdi-
vided into 180 administrative districts based on street networks [Zha+20]. In con-
trast, another division of the Manhattan region is based on census blocks leading to
270 administrative districts [Li+24; ZLC23]. As a result, transitioning between dif-
ferent types of boundary configurations requires reprocessing the data, increasing
computational demands.

Graph. In graph aggregation, the geospatial and mobility data is aggregated in
graphs. A graph is typically represented as G(V, E), where V is the set of nodes or
vertices and E is the set of edges. For instance, the road network can be expressed
as a graph, in which each vertex represents a road segment, and edges represent
the connection between the road segments [SHD23]. The geospatial points, events,
and trajectory data along the road segments can be aggregated to each node or road
segment for several tasks, such as speed prediction and traffic forecasting.

2.4.2 Temporal Aggregation

In temporal aggregation, spatial granularity is fixed. Temporal aggregation aggre-
gates the data based on timestamps for a particular region. An example of temporal
aggregation is analyzing taxi ride data to understand peak hours of activities in a
city center [Liu+12]. By aggregating the data into different time intervals, such as
morning rush hour, afternoon, evening, and late night, urban planners can identify
when taxi demand is high in the city center. These intervals can vary from applica-
tion to application.

2.4.3 Spatio-temporal Aggregation

The geospatial and mobility data is aggregated over space and time in spatio-
temporal aggregation, as illustrated in Figure 2.3b. At distinct time intervals, this
data can be aggregated over spatial representations, such as grids, graphs, and ad-
ministrative districts. For instance, aggregating spatial events for each 5km× 5km
grid cell in each 15-minute interval in a given region [Moo+19]. This spatio-temporal
aggregation allows a more fine-grained analysis of spatial and temporal patterns
than the aggregations discussed above. However, data sparsity remains a challenge
due to fixed and uniform aggregations. An adaptive aggregation method needs to
be developed to address the data sparsity challenge.

2.4.4 Adaptive Aggregation

The previously presented aggregation methods do not capture the underlying dis-
tribution of the data. For instance, the geospatial spread of POIs does not conform
to fixed boundaries such as grids or administrative boundaries. Similarly, traffic ac-
cident events at a specific junction can be partitioned across multiple grid cells. The
above examples highlight the need for an adaptive geospatial aggregation technique



14 Chapter 2. Background

to handle such problems. This thesis addresses the data sparsity challenge for traffic
accident event data by proposing a novel adaptive clustering method for accident
prediction [DFD21].

2.5 Predictive Model Development

In predictive model development, we first create the representation required by the
learning models, then input these representations to the predictive models and per-
form prediction tasks. In the following sections, we discuss the whole process in
more detail.

2.5.1 Data Representation for Learning Models

Effective data representation is crucial for the model learning process to make ac-
curate predictions. Data representation can vary depending on the data type and
the model structure. The most common data representations are feature vectors,
matrices, graphs, and latent representations that we have adopted in the thesis.

Feature vectors are the most common representation for learning models. A
feature vector is a list of numerical values that describe an instance of data [VR04].
Each vector dimension corresponds to a specific feature, such as a raw measurement,
an engineered feature, or a categorical variable converted to a numeric form. Given
a dataset with n features, each data instance xi can be represented as a n-dimensional
feature vector:

xi = [xi1, xi2, . . . , xin],

where xi is the feature vector for the i-th instance. xij represents the j-th feature of
the i-th instance. For instance, consider a feature vector xi = [2, 40, ”rainy”] repre-
senting features for a specific geospatial region i. Here, the value 2 represents the
number of traffic accidents, 40 indicates the number of POIs, and “rainy” is a cate-
gorical value describing the weather in the geospatial region i. To prepare this data
for predictive models, the numerical values (2 and 40) are scaled between 0 and 1,
and the categorical value (“rainy”) is transformed into a numerical form utilizing
techniques like one-hot encoding. Scaling the numerical values confirms that all fea-
tures contribute equally to the analysis, preventing features with larger ranges (like
the number of POIs) from dominating those with smaller ranges (like the number
of traffic accidents) [SS20]. The one-hot encoding method converts categorical fea-
tures, like “rainy,” into a numerical form, allowing the model to distinguish between
different categories (e.g., “rainy”, “sunny”, and “cloudy”). In this thesis, we create
feature vectors based on categorical and numerical features from the data sources
such as OSM [DFD21; DYD24].

Matrices are utilized when the data involves relationships between entities. Each
matrix element can represent a relationship between two entities, such as correla-
tions. A matrix M can be represented with a m× n matrix,

M =




x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

...
...

xm1 xm2 . . . xmn


 ,
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where m and n are the number of rows and columns, respectively. For instance,
in graphs, the relation between two entities can be represented with an adjacency
matrix. Furthermore, in image processing, an image is often represented as a matrix,
with each element corresponding to a pixel value. In this thesis, we segment spatial
maps from OSM as images, transform each spatial map image as a matrix, and utilize
the matrix representation for learning region representation [DYD24].

Graphs are represented as G(V, E), where V is the set of nodes or vertices and E
is the set of edges, as discussed in Section 2.4.1. The graph vertices can be associated
with feature vectors. The connection between the vertices can be expressed with an
adjacency matrix A, where A is a |V| × |V|matrix,

Aij =

{
1 if there is an edge between vertex i and vertex j
0 otherwise,

where 1 and 0 are the edge weights. For instance, edge weights with value one can
indicate that a geospatial region i is spatially connected with a geospatial region j.
The edge weights can also be calculated based on the similarity between the feature
vectors of nodes. In this thesis, we construct graphs from hexagonal grid cells, called
grid graphs. In grid graphs, the grid cells act as vertices, and the connection between
the grid cells is based on the cosine similarity between the feature vectors of the
nodes [DYD24].

FIGURE 2.4: Geospatial region representation. Map data:
©OpenStreetMap contributors, ODbL

Latent representation refers to a compressed and meaningful data abstraction,
represented in low-dimensional vectors, capturing essential features and underly-
ing patterns [CG23]. Latent representation reduces storage requirements by trans-
forming data from multi-modalities into a lower-dimensional space while preserv-
ing important information [She+23]. In the geospatial domain, the data from multi-
modalities, such as geospatial and mobility data, is utilized to create the latent repre-
sentation of the geospatial regions, as illustrated in Figure 2.4. This thesis focuses on
creating effective and adaptive latent representations for geospatial regions. These
effective representations retain the semantics for various downstream tasks and can
be flexibly aggregated to any region of interest [DYD24].

2.5.2 Types of Models

This section explores predictive models that leverage machine learning and deep
learning techniques for geospatial and mobility data.

Machine Learning. Machine learning (ML) models are algorithms that learn pat-
terns from historical data and make predictions on unseen data [Sar21]. One of the
main advantages of utilizing ML models is that they do not require large amounts
of data to learn the patterns [JZH21]. Broadly, there are two types of learning in
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ML: supervised ML and unsupervised ML [Sar21]. In supervised ML, the algorithm
is trained on a labeled dataset, where each input data point is paired with a corre-
sponding target label. Here, the input data may belong to one of the representations
discussed in the previous section, e.g., feature vectors. During training, the algo-
rithm adjusts the parameters to minimize the difference between the predictions and
the actual labels provided in the training data. Common tasks in supervised learning
include regression and classification. A regression task predicts a numerical value,
while a classification task categorizes input data into different categories. Examples
of supervised learning algorithms include linear regression, decision trees, gradient-
boosting classifiers, support vector machines (SVM), and logistic regression. In the
mobility domain, random forests and logistic regression models are commonly uti-
lized in prediction tasks such as speed and traffic accident prediction [Bra+19; CC20].
In this thesis, we utilize logistic regression [Cox58] and gradient-boosting classifier
[Fri01] as baseline methods for the traffic accident prediction task [DFD21]. Logistic
regression is a statistical model for binary classification. It estimates the probabil-
ity of an event occurring based on input features by fitting data to a logistic curve
[Cox58]. On the other hand, a gradient-boosting classifier is an ensemble method.
It builds multiple decision trees and combines the predictions of the decision trees
sequentially [Fri01].

In unsupervised ML, the algorithm is given unlabeled data without specific tar-
get outputs. Unsupervised learning aims to learn the underlying patterns within
the data without supervision. The common tasks in unsupervised learning include
clustering and dimensionality reduction. In this thesis, we leverage clustering meth-
ods, such as KMeans [Mac67], DBSCAN [Est+96], HDBSCAN [CMS13], and self-
organizing map (SOM) [Koh95] to group geospatial coordinates based on spatial
proximity [DFD21]. KMeans is an iterative algorithm for partitioning the data into
a ’K’ number of clusters [Mac67]. In contrast, DBSCAN is a density-based cluster-
ing algorithm, requiring two input parameters: a minimum number of points and
a radius-defining the neighborhood of each data point [Est+96]. DBSCAN can de-
tect clusters of different shapes and sizes and distinguish outliers in the data com-
pared to KMeans [KJ16]. Similarly, HDBSCAN builds on the principles of DBSCAN,
which requires only one input parameter, i.e., a minimum number of points to form
a cluster [CMS13]. Finally, SOM is an unsupervised ML method that maps high-
dimensional data onto a 2D grid, where similar data points are grouped into neigh-
boring nodes [Koh95].

Deep Learning. With the increasing volume of data, deep neural network-based
models have demonstrated superior predictive abilities compared to classical ma-
chine learning models [DTV19]. Deep learning refers to Deep Neural Networks
(DNN), structured with multiple layers of neurons that enhance their capacity for
expression and performance [Cha+20]. We discuss three DNN models relevant to
the thesis: Recurrent Neural Networks (RNNs), Convolutional Neural Networks
(CNNs), and Graph Neural Networks (GNNs) for processing sequential, grid, and
graph data, respectively.

Recurrent Neural Networks (RNNs) [RHW86] models are deep learning mod-
els tailored for sequential data, such as trajectory, text, and temporal data. RNNs
employ a recurrent mechanism to learn the sequential patterns [PMB13]. However,
RNNs are subject to vanishing gradient problems. This occurs when the gradient
diminishes substantially over time, which makes learning long-term dependencies
challenging. Variants of RNNs such as Long-Short-Term Memory (LSTM) [HS97]
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and Gated Recurrent Unit (GRU) [BCB15] have been introduced to address the gra-
dient vanishing problem. These variants are designed to better retain the informa-
tion over longer sequences. In the mobility domain, RNN models have applications
in mobility-related tasks, including predicting road segment speeds within fixed
time intervals [XL23] and predicting traffic accidents within a specified grid over
the next hour [Moo+19]. This thesis utilizes GRU for the traffic accident prediction
task [DFD21]. The advantages of GRU are that GRU has a smaller number of model
parameters and is computationally less expensive than LSTM [Chu+14].

Convolutional Neural Networks (CNNs) [LeC+98] learn features from input
data with grid patterns, such as images [Yam+18] and spatial grids. They are widely
utilized in image and video recognition tasks [Li+22a]. In the mobility domain,
CNNs are also utilized to learn the latent representation of segmented spatial maps
[Var+19]. CNNs can recognize spatial patterns and structures in segmented spa-
tial maps, which makes CNNs useful for applications such as land use classification
[Ver+21]. In this thesis, we customize a variant of the CNN model, the EfficientNet
model [TL19], to learn the representation of OSM map images for region embed-
dings [DYD24].

Graph Neural Networks (GNNs) [Sca+09] are applied to the graph-structured
data consisting of nodes and edges. GNNs are neural architectures designed to
capture the relationships within graphs by exchanging messages between the nodes
[Zho+20]. Common variants of GNNs include Graph Convolutional Networks
(GCN) [KW17] and Graph Attention Networks (GAT) [Vel+18]. The main difference
between GCN and GAT is that these models employ different mechanisms for
aggregating information in the neighborhood to capture graph dependencies.
GCNs aggregate information from neighboring nodes, e.g., by taking a weighted
sum of the features. Meanwhile, the GAT utilizes attention mechanisms to weigh
the importance of neighboring nodes dynamically during information aggregation.
GAT performs better than GCN due to attention mechanisms [Vel+18]. In this thesis,
we leverage GAT to learn the latent representation of geospatial regions [DYD24].

2.5.3 Predictive Tasks

This section discusses predictive tasks such as regression, classification, and cluster-
ing. We also discuss different methods to evaluate these tasks.

Regression. A regression task aims to predict a continuous value based on input
features fed to the model. In this thesis, we evaluate the regression models utilizing
metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
R-squared (R2). In the evaluation settings, if n is the total number of observations,
oi represents the actual output value for the i-th observation, and ôi represents the
predicted value for the i-th observation in the data, then the metrics MAE, RMSE,
and R2 are defined as follows:

• MAE measures the average absolute difference between actual and predicted
values,

MAE =
1
n

n

∑
i=1
|ôi − oi|.
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• RMSE is determined by computing the square root of the average of the
squared differences between actual and predicted values,

RMSE =

√
1
n

n

∑
i=1

(ôi − oi)2.

• R2 is also known as the coefficient of determination. It calculates how well the
regression model aligns with the data and ranges from 0 to 1, where a value
close to 1 indicates a better fit of the model to the data,

R2 = 1− ∑n
i=1(ôi − ôi)

2

∑n
i=1(oi − ōi)2 ,

where ōi is the average of the actual output values.

In this thesis, we utilize MAE, RMSE, and R2 for regression tasks such as crime count
and check-in count prediction [DYD24].

Classification. The objective of a classification task is to assign input data into
predefined categories or classes. Classification tasks are usually evaluated utilizing
accuracy, precision, recall, and F1-score metrics. To understand the classification
metrics better, we rely on a confusion matrix, as illustrated in Table 2.1. In a binary
classification problem, the confusion matrix is a 2× 2 table with four cells, i.e., true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN).
True positives (TP) are the positive tuples correctly labeled by the classifier. False
positives (FP) are the negative tuples incorrectly labeled as positive. True negatives
(TN) are the negative tuples correctly labeled by the classifier. False negatives (FN)
are the positive tuples mislabeled as negative. Next, the classification metrics are
defined based on the confusion matrix.

TABLE 2.1: Confusion matrix

Actual Label
Positive Negative

Predicted Label
Positive TP FP
Negative FN TN

• Accuracy is defined as the proportion of correctly classified instances among
all instances,

Accuracy =
TP + TN

TP + TN + FP + FN
.

• Precision represents the proportion of correctly predicted positive instances
out of all instances predicted as positive,

Precision =
TP

TP + FP
.
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• Recall, also known as sensitivity or true positive rate, indicates the proportion
of correctly predicted positive instances out of all actual positive instances,

Recall =
TP

TP + FN
.

• F1-score is the harmonic mean of precision and recall,

F1− score = 2 ∗ Precision ∗ Recall
Precision + Recall

.

In this thesis, we utilize the F1-score as a metric in the traffic accident prediction task
[DFD21].

Clustering. In clustering, a dataset is partitioned into groups or clusters to max-
imize the intra-cluster similarity and minimize the inter-cluster similarity. The eval-
uation metrics for clustering are divided into two parts: 1) when actual labels are
present and 2) when actual labels are absent. In this thesis, we look into the first type,
i.e., when actual labels are present, and utilize evaluation metrics such as Adjusted
Rand Index (ARI) [HA85] and Normalized Mutual Information (NMI) [LFK09].

• Adjusted Rand Index (ARI) measures the similarity between the actual label
and the clustering result obtained by the algorithm. It yields a score between
-1 and 1, where 1 indicates perfect cluster similarity.

• Normalized Mutual Information (NMI) measures the mutual dependence be-
tween the true and predicted clustering, normalized between 0 and 1. NMI
values close to 1 indicate strong agreement between the clustering.

When actual labels are absent, the metrics for assessing cluster quality include intra-
cluster variability and the Silhouette coefficient. In this thesis, we utilize NMI and
ARI metrics for land use classification tasks when evaluating the latent representa-
tions of geospatial regions [DYD24].
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Chapter 3

Literature Review

This chapter overviews state-of-the-art methods, focusing on event predictions, re-
gion representations, and watermarking techniques. First, we review several state-
of-the-art methods that rely on fixed geospatial aggregations for traffic accident pre-
diction tasks. Next, we discuss the related works on the latent representation of
geospatial regions. Finally, we discuss state-of-the-art watermarking methods from
media and mobility domains.

3.1 Geospatial Aggregations for Accident Event Predictions

Traffic accident prediction tasks are crucial in urban safety and planning, provid-
ing valuable insights for addressing real-world problems. Due to the data sparsity,
accurate prediction of accident events often relies on geospatial aggregations. The
event prediction tasks often involve aggregating data from multiple sources over
grids of different sizes and administrative districts with varying levels of temporal
granularity [YZY18; Moo+19]. For instance, Moosavi et al. developed a deep acci-
dent prediction (DAP) model [Moo+19] that aggregates data into 5km× 5km grids
to predict accident occurrences in 15-minute intervals. They enriched each grid with
data from several sources, such as weather information, POIs count, and temporal
features. Similarly, Yuan et al. [YZY18] considered a similar geospatial granular-
ity but extended the temporal granularity to one day for predicting traffic accident
counts. They introduced Hetero-ConvLSTM, a deep-learning method that integrates
data such as road conditions, weather, traffic volume, and satellite images for each
grid. In addition, some studies, like Chen et al. [Che+16], reduced the geospatial
granularity to 500m× 500m, demonstrating the variation in grid sizes for the traffic
accident prediction task. They proposed a stacked denoise autoencoder (SdAE) ap-
proach incorporating historical traffic accident data and human mobility patterns.
Recent work on traffic accident prediction considered hexagonal grids instead of
square or rectangular grids [Mon+23]. They developed crashFormer, a deep learn-
ing method that leverages OSM map images, historical traffic accidents, and weather
information for traffic accident prediction.

Existing approaches for traffic accident prediction tasks typically rely on fixed
grids of arbitrary sizes, leading to an uneven distribution of accident events in each
grid cell. This thesis proposes a novel adaptive clustering method for accident pre-
diction (ACAP) to address the challenge of data sparsity [DFD21]. ACAP learns the
underlying distribution of traffic accident events through adaptive clustering and
performs accident prediction on dynamically determined clusters. Our experimen-
tal results demonstrate the effectiveness of the ACAP approach in the traffic accident
prediction task.
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3.2 Latent Representation of Geospatial Regions

Multimodal data is commonly utilized to create latent representations for geospatial
regions. The geospatial region representations have applications in several tasks,
such as land use classification, region popularity prediction, and crime forecasting.
However, integrating data from multimodal sources is challenging due to data het-
erogeneity, resulting in ineffective latent representations. In addition, the geospatial
regions can vary in shape and size depending on the user regions of interest. The
state-of-the-art methods construct region representations from multimodal sources,
which are ineffective and do not align with the user ROIs. For instance, Zhang et al.
[Zha+20] presented a multi-view graph representation approach (MVURE), which
integrated multiple modalities such as mobility patterns, POI data, and location-
based social network check-in data to embed the administrative districts. Similarly,
Fu et al. [Fu+19] developed a multi-view POI-POI network and utilized human mo-
bility data to create the region representation for administrative regions. Zho et al.
[Zho+23] build a heterogeneous region graph with human mobility and POI data
(HREP) to create the region representation for administrative districts.

In contrast, some state-of-the-art methods have focused on a single modality for
region representation learning. For instance, Wu et al. [Wu+22] focused on leverag-
ing mobility data and developed a multigraph fusion network (MGFN) for embed-
ding fixed-sized regions. Similarly, Li et al. [Li+23] presented a contrastive learning-
based method (RegionDCL) based on OSM building data for creating a latent repre-
sentation of regions divided based on street segments. Unlike creating region rep-
resentation for fixed administrative regions, Woźniak et al. [WS21] developed the
region representation for the hexagonal grid cell (Hex2Vec). They incorporated POI
data from OSM for each grid cell and applied the continuous bag of words (CBOW)
method to generate the region representation.

In addition, existing methods have considered different configurations for the
administrative regions, as discussed in Section 2.4.1. For instance, while most state-
of-the-art methods generate region representations for Manhattan City with 180 ad-
ministrative regions [Zho+23; Zha+20], some approaches have also considered 270
regions [Li+24; ZLC23]. As a result, transitioning between different types of region
configurations requires retraining the region representation learning model.

The region representations developed by the state-of-the-art methods are inef-
fective and are not adaptive to the user ROIs. This thesis proposes a novel approach
called MAGRE that creates effective and adaptive latent representations for geospa-
tial regions [DYD24]. Our experimental results demonstrate the effectiveness and
adaptability of MAGRE embeddings in several downstream tasks.

3.3 Watermarking GPS Trajectories

As discussed in Section 2.3, watermarking is a technique to embed the provenance
information into the data to enhance traceability. Most of the research related to wa-
termarking is carried out in the media domains such as audio, image, and videos
[HF24; Luo+23]. In the audio domain, El-Wahab et al. [El-+21] and Naqash et al.
[NMP24] utilized Empirical Mode Decomposition (EMD) to break down the audio
signal into multiple Intrinsic Mode Functions (IMFs) and embedded the watermark
vector into one of the IMFs. K. et al. [KSD11] introduced a blind audio watermark-
ing approach, employing Singular Value Decomposition (SVD) and Quantization
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Index Modulation (QIM) methods for both watermark embedding and verification.
In the image domain, Hosseini et al. proposed a blind digital image watermark-
ing method that combines Discrete Cosine Transform (DCT), Principal Component
Analysis (PCA), and Discrete Wavelet Transform (DWT) methods [HF24] for water-
marking images. In the video domain, Luo et al. [Luo+23] employed an adversarial
training method to insert the watermark in the video.

The mobility domain, particularly GPS trajectories, remains largely unexplored
in watermarking. Jin et al. [Jin+05] introduced a blind watermarking technique
that embeds watermarks into GPS coordinates based on the trajectory shape. This
method has limitations, particularly its ineffectiveness in scenarios with consecutive
similar coordinates, such as stops within trajectory data. In contrast, the TrajGuard
approach, a state-of-the-art method for watermarking GPS trajectories, employs a
geometric transformation [Pan+19]. This technique partitions trajectories into sub-
trajectories and embeds the watermark utilizing centroid distance.

The state-of-the-art watermarking methods in the mobility domain are neither
robust nor effective. In addition, the utility of watermarked trajectories has not been
studied by the existing methods. In this thesis, we propose an effective, robust,
and utility-preserving watermarking approach called W-Trace that embeds a water-
mark into the GPS trajectory based on the Fast Fourier Transform (FFT) [Dad+22;
Dad+24]. W-Trace is a non-blind method and embeds more watermarking informa-
tion than state-of-the-art methods. Through experiments, we demonstrate that our
proposed W-Trace approach is robust, effective, and preserves utility for downstream
applications.
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This chapter addresses the first research question regarding data sparsity in traffic
accident event data. To tackle this challenge, we propose a novel adaptive cluster-
ing method for accident prediction (ACAP). ACAP addresses the limitations of data
sparsity posed by the traditional aggregation methods and enhances the accident
prediction performance.

4.1 Introduction

Predicting accident events is a crucial task in the mobility domain, enabling urban
safety and planning. However, prediction of traffic accident events is a challeng-
ing task. First, traffic accident events are scattered across diverse geographic loca-
tions and recorded at a point-level granularity. This fine granularity often leads to
a scarcity of data, which makes predicting accident events at the point level chal-
lenging. Existing traffic accident prediction approaches utilize fixed geospatial ag-
gregations, such as administrative districts or fixed grids, to handle the data spar-
sity challenge. However, these predefined aggregations do not accurately capture
the underlying distribution of traffic accident events. For instance, traffic accident
events within a specific region could be distributed across multiple grid cells, result-
ing in only a few events in each cell. Second, current accident prediction models
often rely on data from US cities [Moo+19], which have a grid-like layout [Boe19].
This contrasts with cities in Europe, which have more circuitous spatial structures.
As a result, the grid-based aggregation methods designed for US cities cannot be di-
rectly applied to European cities. Moreover, the state-of-the-art accident prediction
methods emphasize feature selection and model architecture while overlooking the
significance of geospatial aggregation.

This work proposes an adaptive clustering approach for accident prediction
(ACAP), a novel method for inferring adaptive clusters from sparse accident
data. We present a clustering-based grid-growing (GG) algorithm that identifies
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task-specific regions for accident prediction. In summary, our contributions are
listed below:

• We propose a novel accident prediction approach, ACAP, which infers adap-
tive clusters formed by a grid-growing algorithm from sparse accident distri-
butions.

• Our experiments demonstrate that ACAP outperforms the state-of-the-art
methods by 2-3 percentage points on average regarding F1-score across three
German cities.

• ACAP enhances accident predictions by two percent points in the F1-score
compared to fixed grid aggregations 1km× 1km in more complex regions like
city centers.

4.2 Definitions and Problem Formulation

Given the historical traffic accident observations, the goal is to create adaptive re-
gions that follow the underlying distribution of accident events and predict binary
accident events for these adaptive regions.

Definition 5 (Adaptive Accident Prediction) Given a region formed through adaptive
clustering of accident events, train a function Φ → {0, 1} such that Φ outputs ’1’ if an
accident event is observed in the next period in the region and ’0’ otherwise [DFD21].

4.3 Summary of the ACAP Approach

This section presents the ACAP approach. The overall architecture of the ACAP ap-
proach is illustrated in Figure 4.1. First, we introduce an adaptive clustering method
designed to create clusters that align with the spatial distribution of accidents in Sec-
tion 4.3.1. Next, in Section 4.3.2, ACAP incorporates data from different sources for
each adaptive cluster and constructs temporal and geospatial feature embeddings.
Finally, we present a predictive model of the ACAP approach in Section 4.3.3.
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4.3.1 Adaptive Clustering with Grid Growing Algorithm

Existing traffic accident prediction methods often rely on uniform geospatial aggre-
gation techniques, such as administrative districts or geohash, as prediction targets.
These aggregations, often constrained by pre-aggregated data (e.g., for anonymiza-
tion), result in coarse grids that do not represent the actual distribution of accident
events. Additionally, existing studies evaluate the accident prediction methods on
US-based datasets [Moo+19], where uniform grid structures align with typical city
layouts [Boe19]. In contrast, European cities have more complex road layouts that
deviate from a grid pattern. The challenges outlined above motivate us to perform
adaptive clustering, generating geospatial aggregations that align more closely with
the infrastructure and road layout of the target region.

We introduce an adaptive clustering method that accurately captures the spatial
distribution of accident events. Adaptive clustering consists of two steps: i) grid
construction and ii) grid growing, as illustrated in Figure 4.1a. In the grid construc-
tion step, a small-sized geohash of length seven is utilized to build grids of size
150m× 150m in a given region. In the grid growing step, we randomly choose a
seed representing a grid cell with accidents and expand the area from the current
seed by searching for accidents in the neighbor cells. When no accidents are found
in adjacent cells, expansion terminates, and a cluster is assigned to the resulting
region. Subsequently, another seed cell is randomly selected from the remaining
accident-prone grid cells. This algorithm iterates until all accident-prone grid cells
are assigned to a cluster.

4.3.2 Features & Embeddings

We enrich each adaptive cluster obtained from the grid-growing algorithm with tem-
poral, accident, and regional features, as illustrated in Figure 4.1b.

• The temporal features include ten temporal features: weekends, weekdays,
months, years, seasons, hours of the day, daylight, solar inclination, solar posi-
tion, and solar elevation. We encode all the temporal features with the one-hot
encoding technique.

• The accident features include the road conditions and accident type during the
accident and are transformed into one-hot-encoded vectors.

• Regional features are the infrastructural characteristics of roads, such as ameni-
ties count, number of crossings, and number of junctions. Regional features are
normalized to the range between 0 and 1.

To generate temporal embedding, temporal features are fed to the Gated Recurrent
Network (GRU) [BCB15]. The static features, such as accident and regional features,
are passed through a feed-forward neural network to obtain the embeddings.

4.3.3 Predictive Model

The predictive model of ACAP generates softmax probabilities for accidents and
non-accidents, which we convert into binary labels: ’1’ for accidents and ’0’ for
non-accidents, as illustrated in Figure 4.1c. The predictive model input comprises
temporal, regional, and accident embeddings. ACAP model processes these embed-
dings through the neural network layers with decreasing dimensionality, applying
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the rectified linear unit (ReLU) activation function in the first three layers and the
softmax function in the last layer to classify accident events. The predictive model is
optimized utilizing categorical cross-entropy as the loss function.

4.4 Evaluation

As the first part of the evaluation, we evaluate the impact of geospatial clustering
methods on accident prediction. We compare the grid-growing approach against
K-means, DBSCAN, HDBSCAN, and self-organizing map (SOM) in the Hannover
region for accident prediction. The grid-growing method outperforms all the
clustering-based baseline methods by at least four percent points. To examine the
general performance, we evaluate ACAP with various spatial aggregations and four
prediction baseline methods: gradient boosting classifier (GBC), logistic regression
(LR), deep neural network (DNN), and deep accident prediction (DAP) model
[Moo+19]. In particular, we select four spatial aggregations: GG, SOM, 1km× 1km,
and 5km× 5km. We consider three German cities: Hannover, Munich, and Nurem-
berg. In all the geospatial aggregations and all cities, ACAP approach obtains the
highest F1-score in the accident prediction. We also assess the effectiveness of the
grid-growing algorithm in urban areas, ranging from the Hannover city center
to the larger Hannover region. In the inner-city center, ACAP with grid growing
outperforms the uniform grids (1km× 1km) by two percent points. In the end, we
examine the significance of the three feature groups, namely regional, temporal,
and accident features. We observed that temporal and regional features are crucial
for accident prediction.

4.5 Discussion

In this chapter, we summarized ACAP, a novel accident prediction method based on
a grid-growing approach to tackle the data sparsity challenge presented in Chapter
1. The existing approaches (e.g., [Moo+19]) primarily focused on feature selection
and predictive model architecture and neglected the importance of geospatial ag-
gregation in accident prediction. For geospatial aggregations, these methods often
relied on uniform geospatial aggregation or administrative districts that do not align
with the spatial distribution of the accident event data and lead to data sparsity.

In the ACAP approach, we included geospatial aggregation as an essential fac-
tor in modeling alongside feature selection and model architecture to tackle the data
sparsity challenge in accident prediction tasks. We proposed a novel adaptive clus-
tering method for accident prediction, which generates adaptive and task-specific
regions for accident prediction. We performed accident predictions on these task-
specific regions obtained through the proposed grid-growing method. For the pre-
dictive model, we utilized a neural network that combines temporal and static re-
gional feature embeddings and predicts accident events in these adaptive regions.

Experiments on real-world datasets demonstrated the effectiveness of the adap-
tive clustering approach on accident prediction tasks. On average, ACAP improved
the F1-score by 2-3 percentage points compared to the best-performing baseline
methods in three German cities. The grid-growing algorithm adapted dynamically
to the accident patterns and enhanced the F1-score by four percentage points over
clustering-based baseline methods. Our adaptive clustering method based on the
grid-growing algorithm is aligned with the distribution of traffic accident events and
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enhanced predictions compared to baseline methods. In future work, we can inves-
tigate the effectiveness of adaptive aggregation methods in other event prediction
tasks, such as crime prediction.

4.6 Contributions

I contributed to the conceptualization of the adaptive clustering approach. I also
developed a neural network-based approach for traffic accident prediction. In addi-
tion, I carried out the implementations, experiments, and evaluations for the ACAP
approach. Lastly, I contributed to the manuscript’s writing and review.
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This chapter addresses the second research question regarding ineffective latent
representations for geospatial regions. To tackle this challenge, we propose MAGRE
– an effective and adaptive latent representation learning method for geospatial re-
gions. The latent presentations generated by MAGRE can be aggregated to any re-
gions of interest (ROIs).

5.1 Introduction

Geospatial region representation is crucial for capturing spatial relationships within
and between regions. The region representations are beneficial in several applica-
tions, such as land use classification and predicting crime rates [Wu+22; Zho+23].
However, the representation developed by existing methods may not match the re-
gions or tasks of user interest and is subject to different limitations. First, the tra-
ditional geospatial representation learning methods depend on fixed administrative
boundaries, such as districts [Zha+20; Wu+22] and are not adaptive to the ROIs. Sec-
ond, existing approaches incorporate satellite imagery [Xi+22] as multimodal con-
textual information and require substantial preprocessing effort. Finally, region rep-
resentations are typically optimized for specific tasks [Wu+22] and are ineffective for
unseen tasks.

This work proposes a novel method, MAGRE, for creating effective and adap-
tive representations for geospatial regions. MAGRE embeds smaller geospatial units
(grid cells) and dynamically aggregates the representations into an ROI as needed.
However, such an adaptive aggregation comes with challenges. The overall seman-
tics of the ROI may differ from those of its constituent grid cells. Furthermore, in-
tegrating geospatial and mobility data for each grid cell from multimodal sources is
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challenging due to heterogeneity, resulting in ineffective representations for geospa-
tial regions. To address these challenges, we propose a multimodal and multitask
approach that incorporates rich visual information and graph context. In particular,
we first partition the region into multiple hexagonal grid cells, extract features for
each grid cell from multi-modalities, and learn the grid cell representation through
multitasking. In summary, our contributions are as follows:

• We propose MAGRE, an effective and adaptive region representation learning
method that captures region semantics utilizing a multimodal and multitask
approach. MAGRE can embed regions of varying shapes and sizes through
effective aggregation.

• MAGRE incorporates data from multiple sources to construct region represen-
tation. We integrate visual information from map images into region represen-
tations, effectively capturing the context of urban regions. The feature analysis
confirms the significance of OSM images across downstream tasks.

• MAGRE employs multitask learning to enhance the effectiveness of the region
representations. Experimental results demonstrate that MAGRE outperforms
state-of-the-art methods in several downstream tasks, such as crime rate and
check-in count predictions.

5.2 Definitions and Problem Formulation

In this section, we introduce the relevant definitions and the problem statement for
spatial region representations.

Definition 6 (Geospatial grid cell) A geospatial grid cell, represented as g, refers to the
smallest spatial unit defined by specific geometric boundaries. Each grid cell is associated
with features belonging to various categories. The features of a specific grid cell gi corre-
sponding to a feature category f are expressed as a vector h⃗i

f [DYD24].

We partition the given region into hexagonal geospatial grid cells. A feature cat-
egory f can represent the mobility patterns or population count. The relationships
between grid cells concerning a specific feature category f are modeled as a grid
graph.

Definition 7 (Grid graph) A grid graph is represented as G f = (V , E ,A f ), where V =
{g1, ..., gn} is the set of grid cells, and E is the set of edges capturing the connections between
grid cells. A f is the weighted adjacency matrix associated with the feature category f . Aij

f =

sim(⃗hi
f , h⃗j

f ), where sim(·) denotes the similarity function [DYD24].

The similarity between grid cells can be computed using the cosine similarity
of the feature vectors. To facilitate efficient representation of grid cells, we rely on
embeddings.

Definition 8 (Grid cell embedding) The embedding of a grid cell gi is defined as ei =
ϕ(gi), ei ∈ Rd is a d-dimensional dense vector representation of gi. The embedding function
ϕ(·) captures semantic and contextual information of gi [DYD24].

This thesis addresses the challenge of ineffective latent representation for geospatial
regions. These regions can be administrative districts or new business areas (ROI).
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Definition 9 (Spatial region) A spatial region is a geographic area defined by specific
boundaries, denoted as r. A spatial region r can be represented by a set of spatial grid cells
{g1, ..., gn} it either contains or intersects with [DYD24].

We aim to generate effective latent representations specific to any geospatial region
derived from the representation of the spatial grid cells within that region.

Definition 10 (Spatial region representation) For a given spatial region r, the geospa-
tial representation er is obtained by aggregating the representations of the grid cells within
the region er = γ({ϕ(gi)}), where gi ∈ r and γ(·) is an aggregation function, such that er
preserves the semantics of r [DYD24].

5.3 Summary of the MAGRE Approach

This section presents the MAGRE approach. The overall architecture of the MAGRE
approach is illustrated in Figure 5.1. In the proposed MAGRE approach, we first seg-
ment the geographic area into hexagonal grid cells and incorporate various features
for each grid cell, as presented in Section 5.3.1. Then, in Section 5.3.2, we describe
the proposed multimodal and multitask learning approach to learn the effective and
adaptive latent representation for geospatial regions. Finally, we present the embed-
ding aggregation method in Section 5.3.3.

5.3.1 Grid Construction and Feature Extraction

The initial data preprocessing step involves partitioning the entire graphic area into
hexagonal grid cells, as illustrated in Figure 5.1b. Then, we extract several features
for each grid cell from different data sources. Specifically, we represent each grid cell
through feature vectors that depict counts of points of interest (⃗hpoi), mobility pat-
terns (⃗hmob), population and popularity counts (⃗hpp). We also segment OSM images
for each grid cell. These features are illustrated in Figure 5.1c.
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5.3.2 MAGRE Model Architecture

This section presents MAGRE model architecture for creating effective and adaptive
representations for geospatial regions, illustrated in Figure 5.1d. To design the ob-
jective functions, we consider two tasks: grid graph reconstruction and predicting
POI frequency in each grid cell. To learn the effective latent representation from
multimodal data, we employ an attention-based fusion, followed by training and
inference.

For grid graph reconstruction, we first generate various graphs to capture se-
mantic and spatial similarities among the grid cells. In particular, we construct a
grid graph Gpoi derived from POIs frequency (⃗hpoi), two grid graphs Gsrc and Gdst
are generated based on mobility patterns, depicts source and destination graphs, re-
spectively (⃗hmob). In addition, a grid graph Gnbh is built to incorporate neighborhood
information, capturing relationships between grids based on their geospatial prox-
imity. We also construct a combined grid graph, represented as Gcmb = (V ,Acmb),
formed by averaging the adjacency matrices from all the individual grid graphs,
such that Acmb = 1

| f | ∑
| f |
i=1Ai, where f ∈ {poi, nbh, src, dst} [DYD24]. Averaging

adjacency matrices identify grid cells with strong and consistent connections across
modalities.

To derive meaningful representations from these grid graphs, graph attention
network (GAT) [Vel+18] is employed. The GAT efficiently propagates information
to neighboring grids within each graph, effectively updating grid representations.
To predict POI frequency in each grid image, we customize the EfficientNet model
[TL19], a variant of convolutional neural network (CNN) [LeC+98] to extract mean-
ingful representations from grid images. Attention-based fusion techniques com-
bine the representations from grid graphs and images. This fusion facilitates the
propagation of knowledge across representations from different modalities. Next,
the MAGRE model undergoes training and inference processes. The grid reconstruc-
tion task is trained unsupervised, and the reconstruction loss is computed utilizing
mean squared error (MSE) loss. To train the grid images for the POI frequency pre-
diction task, smooth L1 loss [Gir15] is employed. This loss function combines the
benefits of both L1 and L2 losses, effectively managing outlier values. Overall, the
loss function for the MAGRE model combines reconstruction loss and smooth L1
loss. During training, all embeddings and the model parameters are learned jointly
through backpropagation.

5.3.3 Embedding Aggregation for Spatial Regions

After generating the representation for grid cells, the next step involves aggregat-
ing the grid cells representations for a specified region, e.g., ROIs. The embedding
aggregation is achieved by summing the representation of grid cells within or in-
tersecting with the ROIs. In the end, the aggregated representations are utilized for
downstream tasks.

5.4 Evaluation

We evaluate the effectiveness and adaptiveness of the spatial region representation
created by MAGRE on unseen tasks. Consistent with prior studies, we focus on
the Manhattan City area. We conduct experiments on three distinct downstream
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tasks: two regression tasks, predicting crime rates and check-in counts, and one
classification task, land use classification. We compare MAGRE approach against
several state-of-the-art baseline methods such as HREP [Zho+23], MG-FN [Wu+22],
MVURE [Zha+20], Hex2Vec [WS21], RegionDCL [Li+23] and MV-PN [Fu+19]. In re-
gression tasks, MAGRE exhibits superior performance compared to baseline meth-
ods, achieving lower MAE, RMSE, and higher R2 scores. Regarding land use clas-
sification, MAGRE achieves the highest ARI score, outperforming the best baseline
methods by 3.63%. These comprehensive evaluation results across all three tasks
highlight the effectiveness of the latent representation generated from MAGRE.

To assess the influence of different features on model performance, we systemat-
ically eliminate one feature category at a time. Our results demonstrate that the best
outcomes across all three tasks are achieved when all features are utilized, highlight-
ing the effectiveness of the MAGRE approach in capturing region semantics. No-
tably, removing the OSM image significantly increases MAE and RMSE for regres-
sion tasks, alongside a decline in NMI and ARI for land use classification, demon-
strating the importance of the OSM images. We also conduct a case study to demon-
strate the adaptiveness of MAGRE representations by predicting crime rates in ROIs
with varying sizes and shapes. MAGRE outperforms the selected baseline methods,
i.e., HREP and MVURE, achieving a 63.61% reduction in MAE and a 52.02% reduc-
tion in RMSE compared to the best-performing baseline. These results highlight the
adaptiveness of MAGRE latent representations in handling varying ROIs.

5.5 Discussion

In this chapter, we summarized MAGRE, an effective and adaptive approach for
geospatial region representations to tackle the challenge of ineffective latent repre-
sentations presented in Chapter 1. The region representations generated by existing
methods are ineffective in capturing the semantics of the geospatial regions. Fur-
thermore, these region representations are based on fixed boundaries and do not
align with the user regions of interest. This misalignment between the ROIs and
the region representation provided by the state-of-the-art methods results from the
substantial limitations of the existing geospatial region representation approaches
[DYD24].

We proposed a multimodal and multitasking approach to create effective and
adaptive geospatial region representation. MAGRE constructed region representa-
tion by embedding smaller grid cells and dynamically aggregating the grid repre-
sentations for a user region of interest. The aggregated adaptive region embeddings
for ROIs effectively retained the semantic information, as confirmed by experiments
on several downstream tasks.

Experimental results across three downstream applications demonstrated MA-
GRE superior performance over the state-of-the-art methods, confirming the effec-
tiveness of multitasking and multimodal approach for urban region representation.
In particular, our experimental results demonstrated that MAGRE’s representations
outperform baseline methods, reducing root mean squared error by 25.73% for crime
rate prediction and by 19.08% for check-in count prediction. In addition, the use case
study on crime prediction task indicated the adaptiveness of MAGRE’s representa-
tions for different ROIs. In future work, we can fine-tune the grid cell embeddings
for specific tasks to assess the effectiveness of the region embeddings.
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5.6 Contributions

I contributed to the conceptualization of the adaptive geospatial region representa-
tion approach. In addition, I carried out the implementations, performed different
experiments, and evaluated the MAGRE approach for its adaptiveness. Lastly, I con-
tributed to the manuscript’s writing and review.
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Towards Effective, Robust and
Utility-preserving Watermarking of
GPS Trajectories

Publication Details

• Rajjat Dadwal, Thorben Funke, Michael Nüsken, and Elena Demi-
dova. “Towards effective, robust and utility-preserving watermarking
of GPS trajectories.” Accepted for publication in ACM Transactions on Spa-
tial Algorithms and Systems, TSAS, accepted on 03 October 2024. DOI:
10.1145/3701558

• Rajjat Dadwal, Thorben Funke, Michael Nüsken, and Elena Demidova.
“W-trace: robust and effective watermarking for GPS trajectories.” In
Proceedings of the 30th International Conference on Advances in Geographic
Information Systems, SIGSPATIAL 2022. ACM, 2022, pages 77:1–77:4 (Short
paper). DOI: 10.1145/3557915.3561474

This chapter addresses the third research question regarding the lack of traceability
in personal mobility data. To tackle this challenge, we propose a robust, effective,
and utility-preserving watermarking approach for GPS trajectories.

6.1 Introduction

GPS trajectories are the most widely utilized mobility data for predictive tasks such
as speed prediction, trajectory user linking, and next location prediction [CF22].
However, GPS trajectories often contain sensitive information such as visited loca-
tions, personal preferences, and home addresses. Sharing GPS trajectory data for
different tasks, such as predictive model development, can raise concerns [Dad+22].
Applications dependent on such data need effective and robust methods to verify
provenance and authenticity.

Digital watermarking embeds watermark information into noise-tolerant data,
enabling verification of provenance and authenticity of data. However, the water-
marking of GPS trajectories comes with challenges. The primary challenge is man-
aging the tradeoff between effectiveness and robustness of watermarking while min-
imizing the impact on data utility. A watermark must embed enough information
for verification and resist modification by adversaries while preserving the data util-
ity of watermarked GPS trajectories for downstream applications. In addition, the
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non-uniform sampling rates and positional inaccuracies of GPS trajectories make
the trajectories vulnerable to modification attacks like point removal, addition, and
resampling. Current watermarking methods either embed limited provenance in-
formation into the trajectories or lack robustness [Pan+19; Jin+05]. Furthermore, the
utility of watermarked trajectories in downstream tasks remains largely unexplored.
This work proposes a novel watermarking method, W-Trace, that is effective and ro-
bust to different attacks while preserving utility for downstream tasks.

In summary, our contributions are as follows:

• We propose W-Trace, a novel watermarking method for GPS trajectories that
represents two-dimensional coordinates as complex numbers and employs
Discrete Fourier Transform (DFT) to embed watermarks in the trajectory.

• We experimentally demonstrate that W-Trace is robust to several adversarial
modifications, achieving an average recognition rate of 99% on two real-world
datasets.

• W-Trace embeds more watermark information than state-of-the-art methods by
dispersing the watermark throughout the trajectory, enhancing effectiveness
and robustness.

• W-Trace minimizes trajectory modification to preserve essential characteristics
and maintain utility for real-world applications, such as map matching and
trajectory user linking.

6.2 Definitions and Problem Formulation

This section introduces the relevant definitions and the problem statement. Accord-
ing to the Definition 3, a GPS trajectory T consists of geospatial points organized
chronologically and paired with their corresponding timestamps. These GPS trajec-
tories are watermarked with a watermark embedding process.

Definition 11 (Watermark embedding) For a GPS trajectory T, a watermark sequence
W is inserted into T through an embedding function EMB(·),

T̃ = EMB(T, W),

where T̃ is the watermarked trajectory [Dad+24].

Watermark verification is a process of determining whether a given watermark
sequence is inserted into the trajectory.

Definition 12 (Watermark verification) Given an original trajectory T, a GPS trajectory
T̃, and a watermark sequence W, the verification function

VER(T, W, T̃, θv)→ B, B ∈ {true, f alse}

evaluates whether the specified watermark sequence W is inserted into the trajectory T̃. θv
are approach-specific verification parameters [Dad+24].

An adversary can alter the watermarked trajectory T̃ to destroy or remove the
watermark. This alteration is considered an attack, denoted as ˆ̃T = AT(T̃, θ) on the
watermarked trajectory T̃, where θ represents the parameter for a specific attack,
resulting in an attacked trajectory ˆ̃T.



6.3. Summary of the W-Trace Approach 39

Definition 13 (Attack) Given a watermarked GPS trajectory T̃ = EMB(T, W), an attack
ˆ̃T = AT(T̃, θ) aims to hinder the watermark verification process [Dad+24]:

VER(T, W, T̃, θv)→ B, VER(T, W, ˆ̃T, θv)→ B′, B′ ̸≡ B.

A watermarking approach is considered robust against an attack AT(·) if the wa-
termark verification function VER(·) outputs the same result for both the attacked
trajectory ˆ̃T and the watermarked trajectory T̃.

Definition 14 (Robust watermarking) Given a watermarked GPS trajectory T̃, an at-
tack ˆ̃T = AT(T̃, θ) and a watermark verification function VER(·), the watermarking is
considered robust against AT(·) if VER(·) outputs equivalent labels for T̃ and ˆ̃T [Dad+24]:

VER(T, W, T̃, θv)→ B, VER(T, W, ˆ̃T, θv)→ B′, B′ ≡ B.

Trajectory modifications, such as watermarking and attacks, can impact the util-
ity of trajectory data in real-world applications like accident prediction and driving
behavior profiling. These applications are referred to as predictive models, denoted
by M(·).

Definition 15 (Predictive model) Given a GPS trajectory T, a predictive model M(·)
takes a trajectory T and parameters param as inputs and outputs a label L [Dad+24], i.e.,

M(T, param)→ L,

where L is application-specific and can represent different categories, such as traffic
speed or accident probability.

We define a trajectory modification as utility-preserving regarding M(·) if apply-
ing M(·) to the original and the modified trajectories output the same label.

Definition 16 (Utility-preserving modification) Given a GPS trajectory T, and a pre-
dictive model M(·), the modification T̃ = MOD(T, ...) is considered utility-preserving
regarding M(·) if applying M(·) to both T̃ and T output the same label [Dad+24]:

M(T, param)→ L, M(T̃, param)→ L′, L′ ≡ L.

6.3 Summary of the W-Trace Approach

In this thesis, we present W-Trace, an effective, robust, and utility-preserving wa-
termarking approach for GPS trajectories. The overall architecture of the W-Trace is
illustrated in Figure 6.1. The two main steps of the watermarking approach, as dis-
cussed in Section 2.3, are watermark embedding and watermark verification. First,
in Section 6.3.1, we discuss the watermark embedding step that inserts a watermark
into the GPS trajectories, as illustrated in Figure 6.1a. Then, in Section 6.3.2, we
present the watermark verification step in which the watermark is first extracted
from the modified trajectory and then verified, as illustrated in Fig. 6.1b.
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A) Watermark embedding in W-Trace

B) Watermark verification in W-Trace

FIGURE 6.1: Overview of the W-Trace approach [Dad+24], ©2024
ACM

6.3.1 Watermark Embedding

The aim of the watermark embedding step is to insert a watermark into a given
GPS trajectory. The watermark embedding process, denoted as EMB(T, W) (in Def-
inition 11), takes the trajectory T = [(pj, tj)], where each point in pj is defined as
(latj, lonj) and along with a watermark sequence W as an input and outputs the wa-
termarked trajectory T̃. First, each GPS trajectory is partitioned into sub-trajectories
T = [t1, ..., tn] of equal length, matching the dimensions of the watermark vectors
w ∈ W. The embedding function maps each GPS point pj = (latj, lonj) within a
sub-trajectory t ∈ T to a complex number [Dad+24],

cj = latj + ilonj, (6.1)

where i is the imaginary unit.
The benefit of utilizing complex numbers is that the watermark can be spread

into both coordinates simultaneously. Next, a Discrete Fourier Transform (DFT)
[Win78] is applied to each sub-trajectory. In particular, the Fast Fourier Transform
(FFT) algorithm [Nus81] is employed to enhance computational efficiency. The FFT
algorithm processes the list of positions c = [cj]1≤j≤m from the sub-trajectory, where
these positions are represented as complex numbers. The resulting frequency com-
ponents are represented in terms of amplitude α and phase angle ϕ [Dad+24]:

α · eiϕ ← FFT(c). (6.2)

The watermark w ∈ W with strength s ∈ (0, 1) is embedded into the amplitude α of
the sub-trajectory t [Dad+24]:

α̃ = α + s · w. (6.3)



6.4. Evaluation 41

In the W-Trace approach, the watermark w is represented as a vector, with each ele-
ment randomly assigned a value of 0, 1, or -1, enabling a distinct watermark vector
for each sub-trajectory. The next step is to apply an inverse FFT (IFFT) to obtain the
watermarked trajectory:

t̃ = (ã, b̃)← IFFT(α̃ · eiϕ), (6.4)

where t̃ is a watermarked sub-trajectory [Dad+24]. All the watermarked sub-
trajectories are concatenated into the watermarked trajectory T̃.

6.3.2 Watermark Verification

Watermark verification involves determining whether a specific watermark se-
quence W is embedded within a given trajectory T̃. As stated in Definition 12, the
verification function is expressed as: VER(T, W, T̃, θv)→ B, B ∈ {true, f alse}. Here,
T represents an original trajectory, W denotes the watermark sequence, and T̃ is
a GPS trajectory to be verified. In this context, θv corresponds to the watermark
strength parameter s utilized during the watermark embedding process.

The watermarked GPS trajectories are vulnerable to adversarial modifications,
also known as attacks. The attacks considered in this work have been previously
explored in the literature within the domains of trajectory watermarking [Pan+19;
Dad+22], cryptography [HPC10] and trajectory similarity measures [Su+20]. In par-
ticular, this work considers four types of attacks: noise additive attacks, length mod-
ification attacks, point replacement attacks, and hybrid attacks. These attacks can
alter the watermarked trajectory, leading to a modified trajectory.

The watermark verification is performed to verify the watermark in the modified
trajectory. The watermark verification assesses whether a given watermark sequence
is embedded into a modified trajectory through a four-step process: candidate tra-
jectory selection, trajectory length alignment, watermark extraction, and watermark
correlation. In the first step, the verification begins by selecting the closest origi-
nal trajectory as the candidate based on Haversine distance. Then, trajectory length
alignment is performed by resampling to match the lengths of the candidate and
modified trajectory. In the watermark extraction step, the watermark is extracted
from the modified trajectory by utilizing the candidate trajectory. We extract the
watermark by [Dad+24]:

w̃ =
α̃− α

s
, (6.5)

where s is the watermark strength, w̃ ∈ W̃, and α is the amplitude of the candidate
original trajectory T. Finally, Normalized Cross-Correlation (NCC) is employed to
compute the correlation between original and extracted watermarks, as discussed
in Section 2.3. The watermark verification is successful if the NCC score exceeds
the acceptance threshold (τ). We adopt the acceptance threshold based on [Pan+19]
(τ > 0.85).

6.4 Evaluation

To evaluate the effectiveness and robustness of watermark verification, we employ
several metrics commonly utilized in assessing watermarking approaches, including
watermark recognition rate, false-positive rate, and embedding capacity. We utilize
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two real-world trajectory datasets, the German and Porto datasets, each contain-
ing 1100 randomly selected trajectories of length 256. The utility of watermarked
trajectories is assessed through two downstream tasks: map matching and neural
network-based predictive task-trajectory user linking (TUL). We utilize the Jaccard
similarity coefficient for map matching as the evaluation metric, while accuracy is
used for the TUL task.

We compare the W-Trace approach to the baseline methods, including Intrinsic
Mode Function (IMF) [El-+21], Singular Value Decomposition (SVD) [KSD11] from
the audio domain, and TrajGuard [Pan+19] from the mobility domain. The proposed
W-Trace approach demonstrates effectiveness and robustness against all the consid-
ered attacks, achieving an average recognition rate of 99% on the German and Porto
datasets. Unlike the baseline methods, which demonstrate varying performance
to the attacks in different datasets, W-Trace consistently performs well. Compared
to the TrajGuard baseline, W-Trace has high embedding capacity. Additionally, W-
Trace achieves a zero false-positive rate compared to the IMF watermarking method.
Our results demonstrate that the trajectories watermarked by the W-Trace approach
maintain the utility characteristics for map matching and trajectory user linking.

6.5 Discussion

In this chapter, we summarized W-Trace, an effective, robust, and utility-preserving
watermarking approach for GPS trajectories to tackle the challenge of lack of trace-
ability presented in Chapter 1. Existing watermarking methods are either ineffec-
tive, embedding only minimal provenance information [Pan+19] or lack robustness
[Jin+05]. Moreover, previous research has not thoroughly studied the utility of the
watermarked trajectories on downstream tasks [Pan+19; Jin+05].

To tackle these challenges, we presented an effective, robust, and utility-
preserving method for watermarking GPS trajectories to enhance traceability.
W-Trace utilized a Discrete Fourier Transform (DFT) to each sub-trajectory and
embedded an imperceptible watermark into the Fourier descriptors. By embedding
the watermark into each frequency component, W-Trace dispersed the watermark
across the frequency components, allowing for more embedded information.
Additionally, W-Trace controls the number of modifications introduced during
watermark embedding to preserve the utility of the trajectories.

Experimental results across different datasets demonstrated W-Trace’s superior
performance over the state-of-the-art methods. In particular, W-Trace achieved a wa-
termark recognition rate of 99% on average on two real-world datasets, demonstrat-
ing the effectiveness and robustness of W-Trace against the modifications. The exper-
imental results demonstrated that the GPS trajectories watermarked by the W-Trace
approach preserved the utility for downstream applications such as map matching
and predictive tasks such as trajectory user linking. Additionally, W-Trace embed-
ded more watermark information into the GPS trajectory than the state-of-the-art
methods. In future work, we can develop a domain-agnostic watermarking method
for Internet of Things (IoT) data that is robust and utility-preserving, enabling wa-
termarking applications across various domains.
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6.6 Contributions

I contributed to conceptualizing the GPS watermarking approach, implemented the
W-Trace method and baseline methods, performed experiments, and evaluated the
watermarking approach for its effectiveness, robustness, and utility preservation. In
the end, I contributed to the manuscript’s writing and review.
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Discussion and Future Work

In this thesis, we identified and addressed challenges associated with geospatial and
mobility data, such as data sparsity, ineffective region representations, and lack of
traceability. These challenges serve as the foundation for developing novel methods
in the mobility domain. We provide an in-depth discussion of our contributions and
explore potential directions for future research.

7.1 Discussion of Contributions

In this thesis, we proposed novel adaptive methods for accident prediction and
region latent representations. We also presented a robust, effective, and utility-
preserving watermarking approach for GPS trajectories. Next, we discuss each con-
tribution in detail.

In Chapter 4, we addressed the first research question regarding data sparsity in
accident event data. Existing methods often rely on uniform geospatial aggregation
or administrative districts for geospatial aggregations. These aggregations do not
align with the spatial distribution of the accident event data and lead to data sparsity.
To tackle this challenge, we proposed a novel adaptive clustering method for acci-
dent prediction called ACAP. As part of adaptive clustering (AC), the grid-growing
algorithm created adaptive clusters based on the distribution of accident events.
The features from multimodal data helped to enrich the context of each adaptive
cluster for the accident prediction (AP) task. The evaluation results demonstrated
the effectiveness of the ACAP approach on the accident prediction tasks. ACAP en-
hanced prediction performance by two percent points in the F1-score compared to
fixed aggregations in the city center. The grid-growing algorithm outperformed the
clustering-based methods by four percent points regarding the F1-score in the ac-
cident prediction task. The ablation study concluded that POIs and temporal fea-
tures are crucial for accident prediction. In summary, the grid-growing algorithm
addressed the challenges of data sparsity and improved accident prediction results,
as demonstrated by different experiments on real-world datasets.

In Chapter 5, we addressed the second research question regarding ineffective
latent representations for geospatial regions. The region representations generated
by existing methods are ineffective at capturing the semantics of geospatial regions
and are constrained by fixed boundaries that fail to align with user regions of in-
terest. We proposed an effective and adaptive geospatial representation learning
approach called MAGRE. MAGRE employed a multimodal and multitask learning
approach with attention-based fusion, leading to effective and adaptive geospatial
representations. The representations generated by MAGRE can be aggregated to any
shape or size of ROIs. Experimental results on three downstream tasks highlighted
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the effectiveness of the multimodal and multitasking approach. Specifically, the ex-
perimental findings demonstrated that MAGRE outperformed the state-of-the-art
methods, resulting in a root mean squared error reduction of 25.73% and 19.08% for
predicting crime rate and check-in count, respectively. Furthermore, the case study
on crime prediction demonstrated the representations generated from MAGRE are
adaptable across various ROIs. In summary, the geospatial region representations
generated by MAGRE retain the semantics for several downstream tasks and can be
adaptively aggregated to any ROIs.

Finally, in Chapter 6, we addressed the third research question regarding the lack
of traceability in personal mobility data, particularly for GPS trajectories. The state-
of-the-art watermarking methods for GPS trajectories are either ineffective, embed-
ding only minimal provenance information [Pan+19] or lack robustness against the
modifications [Jin+05]. We proposed a novel approach called W-Trace, which trans-
forms GPS trajectories into Fourier descriptors utilizing the Fast Fourier Transform
(FFT) and embeds imperceptible watermarks into these descriptors. W-Trace is ro-
bust to adversarial attacks compared to the state-of-the-art methods and achieved
an average watermark recognition rate of around 99%. Our results demonstrated
that the watermarked trajectories generated by the W-Trace approach retain the util-
ity characteristics for downstream tasks. Furthermore, W-Trace incorporated more
watermark information into the GPS trajectory than the state-of-the-art methods.
In summary, the W-Trace approach is an effective, robust, and utility-preserving
method that enhances traceability for GPS trajectories.

7.2 Open Research Directions

In this thesis, we presented novel approaches to tackle different challenges for
geospatial and mobility data. Based on the observations and findings presented in
this thesis, the following aspects can be explored in the future.

7.2.1 Adaptive Geospatial Aggregation

In the traffic accident prediction approach, ACAP performs adaptive clustering
based on the spatial proximity of accident events. In future work, we can generate
the latent representations of the traffic accident data and perform adaptive clus-
tering on the latent representations of events. In addition, we can explore how
our adaptive aggregation method (ACAP) can be applied to other event prediction
tasks, such as crime prediction.

7.2.2 Adaptive Latent Representation

In the adaptive latent representation approach, MAGRE aggregates the embeddings
for the user regions of interest from different grid cells and utilizes the aggregated
embeddings for several predictive tasks. A potential direction for future research is
to fine-tune the grid cell embeddings to specific tasks to explore the effectiveness of
the embeddings. Furthermore, we can look into creating embeddings for POIs and
adaptively aggregate the POIs embeddings for any ROIs.
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7.2.3 Watermarking

In the W-Trace approach, we watermark GPS trajectories for authentication purposes.
One possible direction for further research is to develop a domain-agnostic water-
marking method for Internet of Things (IoT) data. The idea is to create a robust and
utility-preserving watermarking method that can be applied to IoT data in different
fields, such as the health domain. Furthermore, we can explore AI-based methods
to authenticate the mobility data. Most AI-based research for data authentication is
conducted in media domains, such as image, audio, and video [BP23; SBG23]. With
the emerging applications of artificial intelligence in different tasks and domains,
it is interesting to examine AI-based methods for data authentication in non-media
domains and verify the robustness of AI methods.
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Abstract— Traffic accident prediction is a crucial task in
the mobility domain. State-of-the-art accident prediction ap-
proaches are based on static and uniform grid-based geospatial
aggregations, limiting their capability for fine-grained pre-
dictions. This property becomes particularly problematic in
more complex regions such as city centers. In such regions,
a grid cell can contain subregions with different properties;
furthermore, an actual accident-prone region can be split
across grid cells arbitrarily. This paper proposes Adaptive
Clustering Accident Prediction (ACAP) - a novel accident
prediction method based on a grid growing algorithm. ACAP
applies adaptive clustering to the observed geospatial accident
distribution and performs embeddings of temporal, accident-
related, and regional features to increase prediction accuracy.
We demonstrate the effectiveness of the proposed ACAP method
using open real-world accident datasets from three cities in
Germany. We demonstrate that ACAP improves the accident
prediction performance for complex regions by 2-3 percent
points in F1-score by adapting the geospatial aggregation to the
distribution of the underlying spatio-temporal events. Our grid
growing approach outperforms the clustering-based baselines
by four percent points in terms of F1-score on average.

I. INTRODUCTION

Prediction of traffic accidents is an important research area
in the mobility, urban safety, and city planning domains.
Such prediction is particularly challenging due to the data
sparsity, the complexity of the spatio-temporal event distri-
bution, the variety of the involved influence factors, and the
complexity of their relationships.

State-of-the-art accident prediction methods (e.g., [1], [2])
mainly focus on two prediction aspects, namely feature se-
lection to identify relevant influence factors and the definition
of the predictive model architecture. One crucial aspect,
typically neglected by the existing works, is the geospatial
aggregation underlying predictive models. Whereas some
urban areas, such as city centers, have a more complex
structure and tend to attract more accidents, other areas
are less accident-prone. Hence, differently from existing
works, we include geospatial aggregation as an essential
factor in our modeling. Overall, we consider the spatio-
temporal accident prediction problem according to the three
dimensions: geospatial aggregation, feature selection, and
predictive model architecture.

The forecasting of spatio-temporal accidents is particularly
challenging due to data sparsity. Existing works address the
data sparsity by adopting coarse geospatial aggregations,
such as fixed grids [3] or entire administrative districts [4],

1L3S Research Center, Leibniz University Hannover, Appelstraße 9a,
30167 Hannover, Germany dadwal@L3S.de, tfunke@L3S.de

2Data Science & Intelligent Systems (DSIS) Research Group, Uni-
versity of Bonn, Friedrich-Hirzebruch-Allee 5, 53115 Bonn, Germany
demidova@cs.uni-bonn.de

as prediction targets. However, neither predefined grid cells
nor administrative districts adequately fit the spatio-temporal
distribution of the observed events. Furthermore, existing
works on traffic accident prediction usually consider accident
datasets in US cities (e.g., [1], [2]). These cities exhibit a
grid-like structure, whereas European cities have the least
grid-like structure [5], such that the models developed for
the US cities are not directly applicable to Europe.

In this paper, we propose Adaptive Clustering Accident
Prediction (ACAP) – a novel approach to infer adaptive grids
from the observed sparse spatio-temporal event distributions.
We perform predictions on adaptive task-specific regions
obtained through the proposed clustering-based grid growing
method. As a predictive model, we rely on a neural network
approach. We combine time series forecasting, in the form
of Gated Recurrent Units (GRUs), with an embedding of
static regional features. Through experiments on real-world
datasets, we demonstrate that the proposed method increases
the prediction accuracy compared to the state-of-the-art
baselines based on fixed grids. As our experiments demon-
strate, our Adaptive Clustering Accident Prediction approach
outperforms several machine learning and neural network
baselines regarding F1-score on the accident prediction task
in several cities in Germany.

We observed that most existing works focused on eva-
luating the model performance based on private datasets
(e.g., [3]), which makes them difficult to reproduce and to
extend by other researchers. We aim to foster reproducibility,
reuse, and extensibility of our work by the research commu-
nity. Hence, we use only publicly available open datasets
as a basis for feature extraction. For example, we collect
the regional attributes, such as street types or the number
of junctions in a region, from OpenStreetMap (OSM)1 - the
largest publicly available source of map data. Furthermore,
we build our accident prediction model on the “German
Accident Atlas”2 – a publicly available official dataset con-
taining traffic accident data for Germany. Moreover, we make
our data processing pipeline available open-source3.

In summary, our contributions are as follows:

1) We propose ACAP – a novel approach to infer adaptive
grids from sparse spatio-temporal accident distribu-
tions.

2) Our proposed prediction model using ACAP as geospa-
tial aggregation achieves state-of-the-art prediction per-
formance on the general task of traffic accident predic-

1OpenStreetMap: https://www.openstreetmap.org/
2Accident data: https://unfallatlas.statistikportal.de
3Software: https://github.com/Rajjat/ACAP
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tion and significantly improves the prediction results in
the more complex areas such as city centers.

3) Our ACAP approach relies on open data and an open-
source pipeline.

4) Our experiments demonstrate that ACAP outperforms
several baselines with a performance increase of 2-3%
on average concerning F1-score on three large German
cities.

The rest of the paper is structured as follows: First, we
discuss related work in Section II. Then, in Section III
we present the formal problem statement for sparse spatio-
temporal event prediction. In Section IV, we present our
proposed ACAP approach based on adaptive clustering with
grid growing. Section V describes our experimental setup,
including baselines and datasets. We present the evaluation
results on open real-world datasets in Section VI. Finally,
we provide a conclusion in Section VII.

II. RELATED WORK

In this section, we discuss related work on accident predic-
tion. While existing approaches perform accident prediction
on fixed grids or specific highways/streets, the proposed
ACAP approach adapts to the specific regions. In the fol-
lowing, we discuss relevant accident prediction approaches
according to the spatial aggregations they adopt.

Prediction on fixed map grids. Moosavi et al. [2]
developed a DAP model for predicting the occurrences
of an accident on the 5x5 grid in a 15-minute interval.
They evaluated the model on sparse data by augmenting
it with the Point of Interests (POIs), weather, and time.
Hetero-ConvoLSTM [1] predicted the number of accidents
on the 5x5 grid during each time slot (a day). They used
heterogeneous data, including roads, weather, time, traffic,
and satellite images. Ren et al. [6] employed an LSTM model
that predicts the frequency of accidents, given the history
of the past 100 hours, for 1x1 grids. In another study by
Chen et al. [3], the accident prediction is performed on a
500m×500m grid cell with the human mobility data as well
as a set of 300,000 accident records in Tokyo (Japan). The

authors predicted the possibility of accident occurrence on
an hourly basis.

Prediction on street segments. The works in this category
deal with predicting an accident or accident count on a given
road/highway. Chang et al. [7] used information such as road
geometry, annual average daily traffic and weather data to
predict the frequency of accidents for a highway in Taiwan
using a neural network and compared the results with the
Poisson or negative binomial regression. Caliendo et al. [8]
embedded road attributes such as length, curvature, annual
average daily traffic, sight distance, side friction coefficient,
longitudinal slope, and the presence of a junction to predict
the accident count on a four-lane median-divided Italian free-
way. There are similar works related to accident prediction
on highways. For example, an accident prediction model by
Wenqi et al. [9] based on a convolution neural network is
designed to forecast an accident on the I-15 USA highway.
Yuan et al. [10] predicted the accident occurrence for each
road segment in the state of Iowa each hour in similar work.
Hollenstein et al. [11] investigated the association of bicycle
accident occurrence to roundabout properties of the road
at Swiss roundabouts using a logistic regression approach.
The authors also studied various features of roundabouts
responsible for bicycle accidents.

In summary, existing approaches rely on a fixed grid of
arbitrary size or a pre-defined street-segment aggregation. In
contrast, ACAP is a novel adaptive approach for predicting
accidents in spatially closed regions, irrespective of the fixed
grids or specific street segments. Furthermore, ACAP works
on sparse data, publicly available and easy to collect, in
contrast to the approaches that use extensive but often closed
datasets for modeling and prediction.

III. PROBLEM STATEMENT

We phrase our considered problem of traffic accident
prediction in a general fashion of sparse spatio-temporal
event prediction. Since in this paper we are only interested
in predicting traffic accidents, as a particular case of spatio-
temporal events, we use events and accidents as synonyms.



Let E ⊂ R3 be the set of spatio-temporal events, i.e.,
each event E ∈ E consists of the latitude, longitude, and
time information. We are interested in the prediction of these
events for different spatial aggregations: Let f : R3 → N2 be
the aggregation function mapped into Rmax cells and Tmax

time intervals, i.e., f(E) ⊂ {0, . . . , Rmax}× {0, . . . , Tmax}.
We are especially interested in studying the effect of different
geospatial aggregations on prediction performance.

Since time and position do not provide sufficient infor-
mation for developing predictive models in this domain,
we assume additional features about each spatial cell and
time interval. Formally, let Xtemporal ⊂ RRmax×Tmax×dt and
Xcells ⊂ RRmax×dr be the matrices of the dt temporal and dr
spatial features. For example, we have as part of the regional
information Xcells the number of junctions, the street length,
and the region size. Examples of region-specific temporal
features Xtemporal are solar elevation and solar azimuth.

Our task is to create a binary forecast based on k-historic
observations, i.e., to train a function Φ: {0, . . . , Rmax} ×
Rdr ×Rk×dt → {0, 1} such that Φ outputs 1, if an event is
observed in the next time period in the specific region, and
0 otherwise. We assume an imbalanced event set, where the
occurrence of one event, e.g., non-accident, is much more
likely than the other kind of event, e.g., accident. Further-
more, we are interested in comparing the performance over
different spatial aggregations. Hence, it leads to change of
the aggregation function f : R3 → N2 to another aggregation
function f̃ : R3 → N2.

IV. APPROACH

This section presents the Adaptive Clustering Accident
Prediction (ACAP) approach proposed in this paper. The
model architecture of ACAP is illustrated in Fig. 1. First, we
propose an adaptive clustering technique to build clusters that
reflect the geospatial distribution of the accidents, presented
in Section IV-A. Then, our method generates temporal and
geospatial feature embeddings, presented in Section IV-
B. Finally, we describe the predictive model of ACAP in
Section IV-C.

A. Adaptive Clustering with Grid Growing

Existing accident prediction approaches apply either a
uniform geospatial aggregation using standard methods, such
as geohash [12], or utilize administrative districts as a
prediction target. The geospatial aggregation adopted by
these approaches is often enforced by the already aggregated
raw data, e.g., resulting from anonymization. The resulting
uniform spatial grids are relatively coarse and do not reflect
the actual accident distribution. Furthermore, existing works
typically utilize US datasets such as Large-Scale Traffic and
Weather Events Dataset (LSTW)4, and IOWADOT data5 for
the evaluation. In these datasets, the uniform grid structure
appears meaningful, as it follows the typical layout of the
US cities. In contrast, the European cities’ road layout

4https://smoosavi.org/datasets/lstw
5https://public-iowadot.opendata.arcgis.com/

datasets/crash-data

does not typically follow the grid-like structure [5]. These
observations motivate us to perform adaptive clustering to
create geospatial aggregations that better fit the road layout
and city infrastructure in the target region.

Algorithm 1 presents an overview of the adaptive cluster-
ing approach proposed in this work. This algorithm is based
on our variant of grid growing [13], which learns geospa-
tial regions based on the training data, e.g., past observed
accidents. The algorithm includes two main steps: 1) grid
construction and 2) grid growing. The grid construction step
requires an initial geospatial grid as a basis. This grid is then
aggregated iteratively to form larger regions that follow the
event distribution. In the grid growing approach proposed
by [13], the initial number of rows and columns is user-
defined, and these parameters are not intuitive. In contrast,
we construct the grid in a novel way with the help of
geohash. Geohash encodes a geographic location into a string
of letters and digits. Each character in the geohash defines a
specific grid, e.g., “u1qcvmz82kw” stands for Hannover city
center. Longer geohash values correspond to the fine-granular
grids with smaller cell sizes. In this work, we experiment
with the geohash of length five, six, and seven, which
approximately correspond to the regions of 4.89km×4.89km
(5x5), 1.22km×0.61km (1x1), and 153m×153m (0.1x0.1),
respectively. We experimentally assess the influence of the
geohash length and utilize the geohash of length seven, which
corresponds to the smaller cell size, i.e., 0.1x0.1 (δdetail), in
our grid growing approach.

The next step is the grid growing. In the first step,
we randomly select a seed, i.e., a grid cell containing an
accident. The region starts growing from the current seed by
searching for accidents in the neighbor cells. As the eight-
neighbors search gives more accurate results than the four-
neighbors search [13], we perform an eight-neighbors search
to obtain nearby accidents in all adjacent grid cells. The grid
growing stops when the current region does not find any
accidents in the adjacent grid cells and assigns a cluster to the
resulting region. In the next step, we choose the next seed cell
randomly from the accident-prone grid cells not clustered in
the previous algorithm iterations. The grid growing algorithm
continues until it assigns all accident-prone grid cells in the
training set to a cluster. Based on the clusters generated by
the grid growing algorithm, we can, later on, assign locations
and accidents unseen during training to their nearest clusters.
To define the nearest cluster, we adopt haversine distance and
apply a distance threshold ∆. We experimentally set ∆ = 400
meters. For the accident locations not mapped to any of the
clusters due to the distance value exceeding the threshold, we
map those locations to a larger base grid cell of 1x1 (δbase)
and assign this cell to a separate geospatial cluster.

The grid growing algorithm illustrated in Fig. 1 is essential
for building adaptive regions. We compare the proposed grid
growing approach to fixed grids and clustering approaches
in the evaluation. The advantages of adaptive clustering, and
especially of the grid growing approach proposed in this
work, are as follows: (i) Our geospatial aggregation adapts
to the underlying distribution of accidents in the dataset. In



Algorithm 1 Adaptive Clustering with Grid Growing
1: Input: Spatio-(temporal) events E, e.g., training set of acci-

dents
2: Output: Spatial-aggregation function fGG
3: Hyperparameters: detailed grid size δdetail, base grid δbase,

distance threshold ∆
4: Calculate for each E ∈ E their detailed grid Gδdetail(E)
5: Initialize clusterings C = ∅ and i = 0
6: while Unmarked event E ∈ E exist do
7: Select random unmarked event E ∈ E
8: Set Ci = {E}
9: repeat

10: Check for each event in Ci the 8-Gδdetail -neighborhood
for events Eneighbors

11: Set Ci = Ci ∪Eneighbors
12: until No new neighbors, i.e., Eneighbors = ∅
13: Mark all events in Ci and set C = {C0, . . . Ci}
14: end while

15: return fGG(E) =





C, if C = argminC̃∈C d(E, C̃),

and d(E,C) < ∆,

Gδbase(E) otherwise

other words, we adjust the geospatial resolution based on
the events that occur in the geospatial proximity. (ii) Our
adaptive clustering allows us to work with sparse spatio-
temporal data, unlike other baselines [2]. This property
makes our approach easily applicable to large (rural) areas
where the data can be extremely sparse.

B. Features & Embeddings

As a data pre-processing step, we compute temporal and
geospatial features such as accident and regional features
for each adaptive cluster and each grid cell. We evaluate the
adaptive clustering approach with a fixed grid of cell size
5x5 and 1x1 in Section VI.

Temporal Features. Accidents are time-dependent, such
that we aim to learn the correlation between the accidents
and the temporal features. Our model includes ten temporal
features such as weekday/weekend, season, month, year,
weekdays, an hour of the day, daylight, solar position, solar
azimuth, and solar elevation. All temporal features are en-
coded in one feature vector using the one-hot-encoding tech-
nique. The resulting feature vector includes 36 dimensions,
where each dimension represents a possible feature value.
The degree of temporal aggregation depends, in general, on
data availability. In the “German Accident Atlas” dataset
used in the evaluation, temporal features are aggregated on
an hourly basis due to legal restrictions.

Accident Features. The accident features include the
accident type and the road conditions during the accident.
Examples of accident types in the “German Accident Atlas”
dataset include a car collision with another car or a bicycle. A
specific accident type can be more prominent at one location
than others, e.g., a city center has more car collisions than
collisions with a bicycle. Thus, the accident type feature
helps to identify such areas. Road conditions feature informs
whether the road was wet, slippery, or dry during an accident.
The accident features are converted into one-hot-encoded

vectors and averaged for the accidents in a geospatial cluster
or a grid cell.

Regional Features. Regional features are infrastructural
attributes of a specific region, i.e., a grid cell or an adaptive
cluster. Intuitively, regional features have a significant influ-
ence on accident occurrences. For example, accidents tend
to occur more often near junctions or crossings. We select
the following Point of Interests (POIs) as regional features:
amenities count, number of crossings, number of junctions,
number of railways, station frequency, stop signs count,
number of traffic signals, number of turning loops, number of
giveaways, highway types, and the average maximum speed
for each region. We normalize feature values to the range
between 0 and 1. We extract regional features from OSM.

Feature Embedding. Embeddings are continuous vector
representations of discrete variables. Embeddings can help to
reduce the dimensionality of feature vectors and to represent
latent features. We construct latent representations from one-
hot-encoded and normalized feature vectors generated above
as follows.

Temporal embeddings. For the temporal features, we
utilize Gated Recurrent Unit (GRU) to create temporal
embeddings. GRU is a type of Recurrent Neural Network
(RNN) to learn sequential or temporal data.

A set of eight temporally ordered one-hot-encoded vectors
from the preceding time points, each of length n, where n
corresponds to the number of one-hot-encoded features, are
fed to the GRU. With the temporal features listed above,
n=36. GRU includes two recurrent layers in our settings,
each with 128 units, and outputs the embedding vector of
the same length.

Embeddings of accident and regional features. For these
features, a feed-forward layer of size 128 with the sigmoid
activation function creates feature embeddings.

C. Predictive Model
The predictive model of ACAP outputs a softmax, i.e., the

likelihood for accidents respectively non-accidents. We trans-
form them into binary accident labels, i.e., ’1’ for accident
and ’0’ for non-accident. The model input is composed of
the temporal embeddings and the embeddings of the accident
and regional features of each geospatial cluster or grid cell.
The input is feed-forwarded through the neural network
layers with decreasing dimensionality. In particular, we use
a set of fully connected layers of size 512, 256, 64, and
2, respectively. The activation function is applied in each
layer to induce non-linearity in the model. The first three
layers utilize ReLU as the activation function, whereas we
apply softmax activation to the last layer’s output. We use
batch normalization [14] after the second and third layers.
The role of batch normalization is to re-scale and normalize
the intermediate outputs. The last layer is the classification
layer that predicts binary accident labels. We optimize ACAP
using categorical cross-entropy as a loss function.

V. EVALUATION SETUP

In this section we describe the baselines, datasets, para-
meters and metrics utilized in the evaluation.



A. Accident Prediction Baselines

We utilize four baseline methods, including machine learn-
ing and deep learning baselines: Logistic Regression (LR),
Gradient Boosting Classifier (GBC), Deep Neural Network
(DNN), and Deep Accident Prediction (DAP) model [2] to
compare the performance of our approach regarding accident
prediction.

LR is widely used for classification tasks where the
model outputs probabilities for classification problems. GBC,
another ML-based baseline with boosting characteristics, is
also suitable for our classification task.

To compare our approach with deep learning models, we
use DAP and DNN. DAP utilizes Long Short-Term Memory
(LSTM) for temporal learning, Glove2Vec for learning acci-
dent descriptions, and embedding components for learning
spatial attributes. DNN employs a set of fully connected
layers of size 512, 256, 64, and 2, respectively.

B. Clustering Baselines

Geospatial aggregation can be broadly divided into two
parts: grid-based and clustering-based. For the grid-based
aggregation, we use the 5x5 and more detailed 1x1 geo-
hash grids, as described in Section IV-A. The clustering
approaches belong to the three categories: neural network-
based, density-based, and centroid-based. As a representa-
tive of the neural network-based clustering methods, we
evaluated Self-Organizing Map (SOM) [15], [16], [17]. In
density-based clustering, DBSCAN [18] and its extension
Hierarchical DBSCAN (HDBSCAN) have been used to
cluster the geospatial data [13]. DBSCAN is an unsupervised
machine learning algorithm to classify unlabeled data. As a
representative of the centroid-based methods, we apply the
well-known K-means algorithm [19].

C. Dataset

The accident dataset is collected by “The Federal Statisti-
cal Office” department in Germany and is openly accessible.
This dataset includes accident information for 16 German
federal states starting from 2016 and currently contains
data until 2019. The dataset contains 24 accident attributes,
including accident id, latitude, longitude, day of the week,
hour, month, year, accident type, and road condition. Due to
Germany’s legal restrictions, the data is aggregated tempo-
rally on an hourly basis, and the specific date of the accident
is not reported in the dataset. We filtered the dataset to
obtain cities with a long observation period and a sufficient
number of accidents to facilitate model training and selected
Hannover, Munich, and Nuremberg. For example, Hannover
and Nuremberg have comparable accidents count with 7,433
and 6,121, respectively. In contrast, Munich accounts for the
highest number of accidents, with 14,986 accidents in the
considered period.

OpenStreetMap Dataset. OSM is a publicly available
geospatial database. One can easily extract and store regional
features such as POIs from OSM geofabrik6. For example,

6https://download.geofabrik.de/europe/

around 50 percent of the accidents happened at primary,
secondary, tertiary, and trunk highways in Lower Saxony,
Germany. The aim is to leverage our model with regional
features to help in the prediction task. We fetch the regional
features from the OSM dataset, e.g., number of amenities,
number of junctions, number of traffic signals, and different
highway types. We aggregate each regional feature to its
0.1x0.1 geohash and map it to the clusters and grids in our
settings.

Negative Samples. Accident prediction is a binary clas-
sification task that requires generating elements of the non-
accident class. Any spatio-temporal point where no accident
has occurred can be considered as a non-accident. However,
using all time points leads to the generation of too many non-
accidents. To compare different spatio-temporal aggregations
on the same dataset, we randomly select a 0.1x0.1 geohash
grid and randomly generate a temporal and spatial point for
the selected grid. Motivated by [10], we maintain a fixed
accident to non-accident ratio, i.e., 1:3 across training and
test data.

Training and Test Split. We split three years of data into
training and test data: first 29 months, i.e., 80% of data for
training, and last seven months, i.e., 20% for testing. For
validation, we utilize the hold-out cross-validation method.
In this method, a subset (10%) of the training data (split
temporally) is reserved for validating the model performance.
The early stopping technique based on the validation set
is performed as a regularization step with patience as an
argument. Patience represents the number of epochs before
stopping once the loss starts to increase. We train each model
separately for each city and perform testing on the same city.

D. Hyperparameters

In the following, we describe the hyperparameter settings
of the models adopted in the evaluation.

Clustering Baselines. We initialize the hyperparameters
of the clustering baseline as follows. DBSCAN takes epsilon
(e) and the minimum number of points (n) as input para-
meters. The value of e is determined by the DMDBSCAN
algorithm [20] using the nearest neighbor search. The se-
lected e with a combination of different values of n help
to determine silhouette scores [21]. The values of e and n
with the highest silhouette score are chosen. HDBSCAN has
minimum cluster size as the only parameter, which we set to
four. We apply the elbow method to determine the number
of clusters in K-means (K=4). For SOM, we choose a map
size of 30×30, which gives a comparable number of clusters
as the 1x1 grid.

Model Hyperparameters. We find the best parameter
setting for the aforementioned ML-based baseline models
by using grid-search. We follow the same setting as in [2]
and refer to our available code for further details about the
baselines’ hyperparameters.

For ACAP, Adam optimizer with an initial learning rate of
0.01 is used to train the model. A dropout of 0.2 is used for
regularization in the GRU layer. In early stopping, patience
with 15 helps in regularization. For DNN, the parameter



setting is the same as in the fully connected predictive
model of the ACAP. All the neural network-based models
are trained for 60 epochs.

E. Evaluation Metric

Due to uneven class distribution, we use F1-score as a
metric for evaluating different models. F1-score is the har-
monic mean of precision and recall. Since we are interested
in predicting the accident class, we report the F1-score of
the accident class for different models. We run each model
ten times and report the average F1-score.

VI. EVALUATION

The evaluation aims to assess the proposed accident pre-
diction approach, analyze the effect of the proposed adaptive
geospatial clustering and examine feature importance.

A. Effect of Geospatial Clustering

As the first step of the ACAP evaluation, we compare dif-
ferent spatial clustering methods by changing the clustering
in ACAP. In other words, we change the adaptive clustering
(AC) part of our approach and plug in other clustering
methods. Fig. 2 shows that our grid growing approach, i.e.,
GG outperforms all baselines by at least four percent points.
The best performing baselines are SOM and DBSCAN,
while HDBSCAN and K-means result in the worst model
performance. Overall, we can observe that the proposed
geospatial clustering has a significant positive effect on the
observed performance. To further analyze our model and
the geospatial aggregation, we evaluate ACAP and the best
clustering baseline SOM against two uniform grids on three
different cities in the next section.

B. General Performance

To extensively study ACAP performance, we evaluated
ACAP using four different spatial aggregations and four
other prediction methods on three German cities. As Table I
shows, our ACAP approach achieves the highest F1-score in
the accident prediction for all spatial aggregations and all
cities. With respect to spatial aggregation, our grid growing
clustering and 1x1 grids achieve the best results, while es-
pecially 5x5 grids reduce the prediction quality. We observe
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Fig. 2. Comparison of spatial clustering methods for Hannover city (ACAP)

that the aggregation of static features in large uniform grids
negatively impacts the performance and only achieves a one
percent point higher score in Hannover than K-means, while
having 31 regions instead of four. Overall, ACAP increases
F1-score by 2-3 percent points over the best performing
baseline on average.

C. Performance in the City Centers

To further analyze the proposed grid growing algorithm
in urban regions, we evaluate the performance of our ap-
proach starting from the city center of Hannover to the
larger Hannover region. For simplicity, we select a different
radius around the city center of Hannover and compare
the performance of grid growing and 1x1 grids. As Fig. 3
illustrates, ACAP with grid growing outperforms the uniform
grids in the inner city center by 2 percent points.

TABLE I
F1-SCORE OF ACCIDENT PREDICTIONS OF DIFFERENT CITIES WITH

DIFFERENT AGGREGATIONS

Clustering Method Hannover Munich Nuremberg

Grid-Growing ACAP 0.58 0.56 0.60
Grid-Growing DAP 0.47 0.44 0.47
Grid-Growing DNN 0.55 0.52 0.54
Grid-Growing LR 0.56 0.49 0.53
Grid-Growing GBC 0.52 0.52 0.56

SOM ACAP 0.56 0.55 0.57
SOM DAP 0.42 0.44 0.45
SOM DNN 0.51 0.51 0.54
SOM LR 0.53 0.46 0.53
SOM GBC 0.52 0.51 0.54

1x1 ACAP 0.59 0.57 0.60
1x1 DAP 0.49 0.49 0.51
1x1 DNN 0.57 0.52 0.57
1x1 LR 0.57 0.52 0.57
1x1 GBC 0.52 0.51 0.55

5x5 ACAP 0.52 0.51 0.53
5x5 DAP 0.45 0.44 0.45
5x5 DNN 0.50 0.49 0.51
5x5 LR 0.49 0.40 0.48
5x5 GBC 0.16 0.26 0.18
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Fig. 3. F1-score vs radius from the city center of Hannover (ACAP)



D. Feature Importance
As the final part of our evaluation, we study the impor-

tance of our three feature groups – regional, temporal, and
accident features – for ACAP’s performance. Fig. 4 shows the
resulting accident F1-score if the model only uses one feature
category for the prediction. We observe the high relevance of
regional and temporal features, which achieve 91% and 63%
of the model that relies on all features, correspondingly.
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Fig. 4. Effect of different features (used alone) on F1-score for Hannover
(ACAP)

VII. CONCLUSION

In this paper, we proposed ACAP – an approach that
relies on novel adaptive clustering and various temporal
and regional features to predict traffic accidents. Overall,
we achieved a 2-3 percent points increase in F1-score over
the best-performing baseline on average. Our proposed grid
growing algorithm, which flexibly adapts to the regions based
on the observed geospatial accident distribution, increases the
performance by four percent points against the clustering-
based baselines. We observed that our grid growing approach
improves the prediction performance by two percent points
in the city centers. Furthermore, ACAP is based on an
open data pipeline, which comes with our publicly available
implementation, making the proposed approach reproducible
and reusable. In future work, we plan to investigate the
impact of user-centric features, such as driver behavior, on
accident prediction.
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Abstract. Geospatial region embeddings are vital in developing predic-
tive models tailored to urban environments. Such models enable critical
applications, including crime rate prediction and land usage classifica-
tion. However, state-of-the-art methods typically generate embeddings
based on fixed administrative regions. These regions may not always
align with specific tasks or areas of user interest. Creating fine-grained
embeddings tailored to specific tasks and regions of user interest is
labor-intensive and requires substantial resources. In this paper, we pro-
pose MAGRE – a novel approach that generates fine-granular adap-
tive geospatial region embeddings by leveraging multimodal and multi-
task learning. The embeddings generated by MAGRE can be flexibly
aggregated to suit various region boundaries, rendering them effective in
diverse urban applications. Our experimental results demonstrate that
MAGRE ’s embeddings outperform state-of-the-art embedding baselines,
resulting in a 25.73% reduction in root mean squared error for crime rate
prediction and a 19.08% reduction for check-in count prediction.

Keywords: Adaptive Geospatial Embeddings · Multitask Learning

1 Introduction

Real-world applications that rely on geographic data often require embeddings of
the regions of interest (ROIs) for a particular user and a task. Geospatial region
embeddings play an essential role in consolidating information across sources and
enable capturing complex spatial relationships within and across regions. Such
embeddings have proven beneficial in various applications, including land use
classification and crime rate prediction [12,16]. However, embeddings created by
existing methods may not align with the regions and tasks of user interest.

The mismatch between the embedding provided by the state-of-the-art
methods and the ROIs results from the substantial limitations of the existing
geospatial region embedding approaches. First, conventional geospatial embed-
dings rely on fixed administrative boundaries, such as districts [12,15]. Second,

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
D.-N. Yang et al. (Eds.): PAKDD 2024, LNAI 14649, pp. 363–375, 2024.
https://doi.org/10.1007/978-981-97-2262-4_29
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Fig. 1. Manhattan division based on administrative boundaries (left) and based
on hexagonal grids (right). The user ROIs are marked in orange. Map data:
c©OpenStreetMap contributors, ODbL. (Color figure online)

geospatial embeddings created for smaller geometric-shape regions typically rely
on the skip-gram model [11], which is unsuitable for embedding aggregation [1].
Third, existing approaches use satellite imagery [13] as multimodal contextual
information. However, satellite imagery has limited accessibility and requires
substantial data acquisition and preprocessing effort. Finally, region embeddings
are often designed for specific tasks [12], neglecting significant factors of urban
dynamics and patterns, and may fail to generalize to unseen tasks.

For example, Fig. 1 illustrates the Manhattan division based on administra-
tive boundaries and smaller hexagonal-shaped grid cells. A user may be inte-
rested in assessing crime rates for property purchases for the ROIs (encoded
in orange). The spatial misalignment between the user’s ROIs and the pre-
computed region embeddings based on administrative boundaries may result in
an inaccurate crime rate assessment. In contrast, the union of the grid-cell-based
embeddings can capture the ROI more precisely.

This paper introduces a novel approach for obtaining geospatial region
embeddings efficiently, focusing on adaptable regions of interest (ROIs). Our idea
involves generating adaptive region embeddings by embedding smaller geospa-
tial units (grid cells) and dynamically aggregating them into an ROI flexibly
on demand. However, such aggregation is challenging. Due to limited data, the
representation of individual grid cells might lack context and broad applicability.
Furthermore, the semantics of the ROI as a whole may differ from that of the
union of its constituent grid cells. We tackle these challenges with a multimodal
and multitask approach, incorporating rich visual cues and graph context.

We propose MAGRE – a novel multitask and multimodal adaptive geospatial
region embedding approach. In contrast to conventional methods, MAGRE par-
titions the geospatial region into smaller hexagonal grid cells, which can be flex-
ibly aggregated to match the specific ROI. In addition to features from various
cross-modal sources such as Points of Interest (POIs) and mobility data, MAGRE
also extracts the image for each grid cell from OpenStreetMap (OSM)1 to obtain
visual information for creating comprehensive embeddings. We generate various
graphs utilizing the extracted features. These graphs capture similarities and

1 OpenStreetMap: https://www.openstreetmap.org/. The OpenStreetMap name is a
trademark of the OpenStreetMap Foundation and is used with their permission. We
are not endorsed by or affiliated with the OpenStreetMap Foundation.
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rich context of grid cells based on various factors, including mobility patterns,
locality, and infrastructural attributes. To train MAGRE , we propose a multi-
task learning approach, which enables the embedding to learn region semantics
from different perspectives and reduces overfitting through shared representa-
tions. Based on the fine-grained grid embeddings, MAGRE can efficiently gene-
rate embeddings for any ROI by embedding aggregation. The aggregated region
embeddings effectively preserve the semantic information, as demonstrated in
our experiments on several downstream tasks. Our contributions are as follows:

– We propose MAGRE – an adaptive region embedding approach, which creates
representations that accurately capture the spatial properties and relation-
ships between the hexagonal grid cells and can embed regions of flexible shape
and size through efficient aggregation.

– MAGRE leverages multimodal data from various sources to build region
embeddings. To the best of our knowledge, we are the first to incorporate
visual cues from map images into region embedding, effectively capturing the
context and features of urban regions. Our feature analysis results demon-
strate the importance of map images across different tasks.

– To enhance embedding generalizability, MAGRE embraces multitask learn-
ing, where we train our model on two tasks and test the geospatial embed-
dings on unseen tasks. Experimental results demonstrate that MAGRE out-
performs the state-of-the-art methods, leading to a root mean squared error
reduction of 25.73% and 19.08% for crime rate prediction and check-in count
prediction, respectively.

2 Definitions and Problem Formulation

In this section, we introduce the relevant definitions and formulate the problem
of spatial region embeddings.

Definition 1 (Geospatial grid cell). A geospatial grid cell, denoted as g, is a
minimal spatial unit characterized by specific geometric boundaries. A grid cell
is associated with features in different categories. Features of a grid cell gi based
on a feature category f are denoted as a vector �hi

f .

We adopt hexagonal geospatial grid cells. Feature category f can represent the
frequency of different types of POIs or mobility patterns. We represent the rela-
tionships between the grid cells according to f as a grid graph.

Definition 2 (Grid graph). We denote a grid graph as Gf = (V, E ,Af ), where
V = {g1, ..., gn} represents the set of grid cells, E is the set of edges. Af denotes

the weighted adjacency matrix associated with the feature category f . Aij
f =

sim(�hi
f ,�hj

f ), where sim(·) denotes the similarity function.

Grid cell similarity can be computed as the cosine similarity between their feature
vectors. To enable efficient grid cell representation, we rely on embeddings.
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Fig. 2. The overall architecture of the proposed MAGRE approach. Map data:
c©OpenStreetMap contributors, ODbL.

Definition 3 (Grid cell embedding). For a grid cell gi, an embedding ei =
φ(gi), ei ∈ Rd is a d-dimensional dense vector representation of gi. φ(·) is an
embedding function capturing semantic and contextual information of gi.

In this paper, we address the problem of adaptive spatial region embedding for
spatial regions of user interest, e.g., a district or a new business area.

Definition 4 (Spatial region). A spatial region, denoted as r, is a geographic
area defined by specific boundaries. A spatial region r can be represented by a set
of spatial grid cells {g1, ..., gn} it contains or intersects with.

We aim at generating embeddings tailored to any geospatial region, based on
the embeddings of the contained spatial grid cells.

Definition 5 (Spatial region embedding). For a given spatial region r, the
geospatial embedding er is constituted by the aggregation of the grid cell embed-
dings er = γ({φ(gi)}), where gi ∈ r and γ(·) is an aggregation function, such
that er retains the semantics of r.

3 The MAGRE Approach

The architecture of the proposed MAGRE approach is illustrated in Fig. 2. In
this section, we provide a detailed description of each step.

3.1 Grid Construction and Feature Extraction

In this step, we partition the entire geographic area into hexagonal grid cells and
extract features from multimodal data for each grid cell.

Grid Construction. We opt for a hexagonal grid to partition urban regions
compared to other geometric shapes, as illustrated in Fig. 2b. The hexagonal grid
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has several advantages. First, hexagonal grids experience less distortion caused
by the earth’s curvature compared to the shape of a fishnet grid [3]. Second,
due to the consistent length of each side, the centroids of neighboring cells are
equidistant [3]. We set the size of each side of the hexagonal grid to 250 m, such
that the resulting hexagon area is comparable to [11].

Feature Extraction. We express each grid cell as feature vectors representing
POIs count, mobility patterns, OSM images, population statistics, and popula-
rity count, as illustrated in Fig. 2c.

– POIs. The type distribution of POIs in a region provides important semantic
indicators, such as urban types. To capture such semantics, we extract all the
POIs corresponding to each grid cell and map them to OSM categories, result-
ing in 12 categories. Each grid cell contains a feature vector of length 12 rep-
resenting the POIs categories frequency with categories as amenity, barrier,
highway, leisure, man-made, natural, office, power, public transport, railway,
shop, and tourism. Additionally, to maintain POI semantics, we aggregate
the names of all POI venues within a particular grid cell and utilize the sen-
tence transformer [7] to generate POIs embeddings. The concatenated feature
vector of POIs category frequency along with POIs embeddings is denoted
�hpoi.

– Mobility patterns. Human mobility patterns are pivotal in understanding
the underlying correlations between regions [10]. Regions with similar incom-
ing or outgoing mobility patterns often have similar functions and are closely
connected from the human mobility perspective [14]. The number of trips

originating from and ending at a grid cell is concatenated, denoted as �hmob.
– Population and popularity. A region’s population can reflect socioeco-

nomic indicators. We aggregate population statistics as a grid feature. We
extract the popularity count of each grid cell using POI Wikidata links. A
higher number of POI Wikidata links in a grid cell acts as a proxy for popu-
larity. We denote the population and popularity frequency as �hpp.

– Map images. The visual representation of spatial regions helps to recognize
and distinguish various characteristics. For example, OSM distinct colors to
represent different objects facilitate visual map interpretation. We partition
the map into multiple images, each capturing a specific grid cell. These images
can reveal substantial patterns, such as the POI density.

3.2 MAGRE Model Architecture

In this section, we present our model architecture in detail. We consider two tasks
to design the objective functions: grid graph reconstruction, and POI frequency
prediction. To learn the joint multitask representation, we apply an attention-
based fusion, followed by training and inference, as illustrated in Fig. 2d.

Grid Graph Reconstruction. We first construct different grid graphs, cap-
turing the semantic and spatial similarity between grids. Each graph Gf is con-
structed by computing an adjacency matrix Af of all grid cells as described
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in Definition 2. This results in a grid-graph Gpoi based on POIs (�hpoi), two
grid-graphs based on mobility patterns using source and destination frequency
(�hmob), represented as Gsrc and Gdst, respectively. In addition, we create a grid
graph Gnbh for the neighborhood information, capturing the relationship between
grids based on their geospatial proximity. We also build a grid graph, which is
a combination of the average of all the adjacency matrices from different grid

graphs, represented as Gcmb = (V,Acmb), such that Acmb = 1
|f |

∑|f |
i=1 Ai, where

f ∈ {poi, src, dst, nbh}, as illustrated in Fig. 2d. The intuition behind averaging
adjacency matrices is that grid cells with high average weights in the combined
matrix indicate strong and consistent connections across different modalities.

We employ Graph Attention Networks (GAT) [9] to extract meaningful repre-
sentations from grid graphs. GAT is specially designed for graph-structured data
and employs an attention mechanism. This mechanism facilitates the update
of grid representations by efficiently propagating information to neighboring

grids within each grid graph. We represent grid cell feature as �hi where �hi ∈
{�hi

poi||�hi
mob||�hi

pp} and || represents the concatenation operator. The GAT layer
updates the grid representations through the following steps. First, we incorpo-

rate edge weights Aij as an additional feature along with the grid features �hi and
�hj in the learning process, given as cij = exp(ReLU(�aT [W �hi||W �hj ||WeA

ij ])).
The cij calculation is performed only for grids j ∈ Ni, where Ni denotes the set of
the top N neighbors of the grid i, ranked according to adjacency matrix weights
for the grid i (including i). To ensure the comparability of coefficients across dif-
ferent grids, we normalize them using the softmax function αij = softmax(cij).

Next, we compute the updated grid representation �hi′ by applying a weighted

sum of the neighboring grid representations as �hi′ = σ(
∑

j∈Ni
αijW�hj), where

the weights are given by αij and σ denotes the activation function. To improve
model convergence, we implement the skip connection mechanism, wherein cer-
tain layers in the neural network are skipped, and the output of one layer is

directly fed to the subsequent layers. We concatenate the feature vector �hi with
�hi′ , resulting in �hi′′ which denotes the representation of the grid cell i for a grid
graph. We utilize a multi-head attention mechanism within each GAT layer to
enhance performance, as proposed by [9]. In practice, we apply three GAT layers
[9] followed by fully connected (FC) layers on each grid graph, namely Gsrc, Gdst,

Gpoi, Gnbh and Gcmb. This process yields the hidden representations EG = {�h′′
src,

�h
′′
dst,

�h
′′
poi,

�h
′′
nbh, �h

′′
cmb}.

POI Frequency Prediction. In this task, we leverage Convolutional Neural
Networks (CNN) to extract meaningful representations of grid images. We aim
to train a model based on POI frequency, capable of learning object distribu-
tion within a grid image. We develop a regression model ψ incorporating the
EfficientNet architecture [8] as its base model. EfficientNet is an image classifi-
cation model known for its state-of-the-art accuracy, achieved with fewer model
parameters. We customized EfficientNet for our regression task, which predicts
the number of POIs in a given grid image. Formally, given a grid image dataset
Iimg, where Iimg ∈ {i1, .., ik, .., in} such that ik represents the image for a given
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grid cell k. We apply the regression model ψ which predicts the POI frequency
ŷ. We extract the intermediate representation of the model, i.e., Eimg.

Attention-Based Fusion. Finally, a multi-head attention-based fusion is
applied to the embeddings from the multiple grid graphs and the grid images.
This fusion helps to propagate knowledge across the representations of different
modalities, given as E = MultiHeadAtt(EG||Eimg). To reduce the dimensional-
ity, we apply an FC layer, i.e., e = FC(E), representing the grid cell embeddings.

Training and Inference. We employ the graph reconstruction task to train
the graph reconstruction module in an unsupervised way. That is, having
obtained the different representations for each grid graph, we reconstruct the
original adjacency matrix Af with Âf = sigmoid(e.eT ). We employ Mean
Square Error (MSE) loss to compute the reconstruction loss, represented as
Lrec

f = ||Af − Âf ||2. The smooth L1 loss [5] is utilized as the loss function for
predicting POI frequency in grid images which combines the benefits of both L1
and L2 loss, making it suitable for handling outlier values. For instance, the con-
trasting frequency of POIs between the Manhattan Central Park grid, which has
very few POIs, and other regions illustrates this variability. The formal defini-
tion of the smooth L1 loss between the original POIs count (y) and the predicted
values (ŷ) is computed as in [5]:

Lsmooth
img =

{∑n
i=1 0.5(ŷn − yn)2/β if |ŷn − yn| < β∑n
i=1|ŷn − yn| − 0.5 ∗ β otherwise,

(1)

where β specifies the threshold for switching between L1 and L2 loss.
We define the loss function for our model as a combination of the loss of

the two objective tasks: Ltot =
∑

k∈f Lrec
k + Lsmooth

img . During training, model
parameters and all the embeddings are learned through backpropagation.

3.3 Embedding Aggregation for Spatial Regions

Once the grid cell embeddings are generated, the next task is to aggregate embed-
dings for a given region r. We sum the grid cell embeddings for a region r, rep-
resented by the set of spatial grid cells it contains or intersects with, and obtain
er =

∑m
i=1 ei, where m is the number of grid cells in the region r. Then, we utilize

embedding er for the downstream tasks. Following [16], for the regression tasks,
the aggregated embeddings are passed through a fully connected neural network,
followed by the prediction layer resulting in the prediction value ôi. To optimize
the regression tasks, we use the MSE loss function as Lagg = 1

p

∑p
i=1(ôi − oi)

2,
where p is the number of spatial regions in the downstream task.

4 Experimental Setup

We assess the generalizability and effectiveness of the spatial region embeddings
generated by MAGRE on unseen tasks. This section describes the downstream
tasks, datasets, baselines, parameter settings, and evaluation metrics.
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Downstream Tasks and Datasets. We experiment with three distinct down-
stream tasks, including two regression tasks – crime rate prediction and check-in
count prediction, and one classification task – land use classification. For evalua-
tion, we consider the following datasets containing publicly available statistical
and geographical data:

– Crime rate statistics: We use crime statistics, i.e., the count of crimes per
region, provided by [16].

– Check-in count statistics: We use the count of check-ins per region, provided
by [16].

– Land use classification: We use the district divisions determined by the com-
munity boards [2] as the reference, which corresponds to 12 categories [16].

Following past works [12], we select the Manhattan City area. For feature
generation, we consider the following data:

– POI data: approx. 48,000 POIs extracted from the OpenStreetMap.
– Taxi data: anonymized data which contains start and end locations of approx-

imately 5 million taxi trips in 20152.
– Images: We extract images of each grid cell from OSM.
– Popularity data: We extract the Wikidata tag for each POI from OSM, and

compute the number of Wikidata links for each POI with a SPARQL query.
– Population statistics for 3,930 administrative regions, aggregated to our grids

(see footnote 2).

We map our hexagonal grids to the existing division of the Manhattan region,
consisting of 180 census blocks based on street boundaries. This alignment
ensures a fair and accurate comparison with the baselines. Particularly for the
land classification task, we further cluster the aggregated embeddings into 12
groups, to align with the number of distinct labels in the ground truth [12].

Baselines. We compare our MAGRE method with the baseline methods for
region embeddings. HREP [16] captures both intra-region and inter-region cor-
relations by integrating statistical taxi data and POI data. MG-FN [12] is a
joint learning approach, utilizing mobility patterns for region representation.
MVURE [15] is a multi-view graph representation approach that uses region
correlations based on POIs, taxi statistics, and check-in statistics to learn urban
region embeddings. Hex2Vec [11] relies only on OSM data incorporating a skip-
gram model to create vector representations of hexagonal regions. Similarly,
RegionDCL [6] considers only OSM building footprints and employs dual con-
trastive learning for region embeddings. MV-PN [4] constructs a multi-view POI-
POI network using POIs and human mobility data based on autoencoder. More-
over, we explore variations of MAGRE where we employ a Graph Autoencoder
(GAE) and node2vec instead of GAT layers on the grid graphs, represented as
MAGREn2v and MAGRE gae, respectively.

2 https://opendata.cityofnewyork.us/.
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Table 1. Performance of MAGRE and baselines on different tasks. %improv. shows
the percentage improvement of MAGRE over the best baseline result.

Methods Crime rate prediction Check-in count prediction Land use

MAE↓ RMSE↓ R2 ↑ MAE↓ RMSE↓ R2 ↑ NMI↑ ARI↑
RegionDCL 118.31 156.45 0.18 464.41 732.73 0.12 0.43 0.17

Hex2Vec 109.31 144.02 0.05 400.78 651.47 0.37 0.39 0.13

MV-PN 93.14 125.27 0.28 476.12 783.12 0.07 0.39 0.15

MVURE 65.41 91.63 0.61 297.12 494.36 0.63 0.75 0.55

MG-FN 77.34 98.32 0.56 321.44 510.04 0.61 0.74 0.55

HREP 66.66 85.13 0.67 273.27 411.98 0.75 0.75 0.53

MAGREn2v 60.46 82.99 0.69 302.35 483.93 0.65 0.66 0.42

MAGREgae 86.45 118.91 0.35 297.84 507.52 0.61 0.20 0.03

MAGRE 35.47 63.22 0.82 209.39 333.34 0.83 0.75 0.57

% improv 45.77 25.73 22.38 23.37 19.08 10.66 0.0 3.63

Evaluation Metrics. In the regression tasks, we compute all the metrics using
5-fold cross-validation with a train-test split of 80-20%. We utilize Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) to evaluate the perfor-
mance of the prediction models. Furthermore, to measure how well the regression
model fits the observed data, we use the coefficient of determination, denoted by
R2. To assess the quality of the clustering results, we utilize Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI).

Parameter Settings. For the hexagonal grid, the number of neighbors (Ni) for
each grid cell is seven, including the grid itself. For the grid embedding, we chose
an embedding dimension of 128 and utilized the Adam optimizer with a learning
rate of 0.001 [16]. For L1 smooth loss, β is set to its default value 1. MAGRE is
trained for 2000 epochs. For downstream tasks, we adopt the hyperparameters
as in [16].

5 Evaluation Results

In this section, we present evaluation results of the MAGRE compared to base-
lines and analyze the importance of features.

General Performance. First, we discuss the overall performance of our app-
roach on different downstream tasks. In regression tasks, MAGRE outperforms
the baseline methods in both MAE, RMSE, and R2, as illustrated in Table 1.
HREP, being the best-performing baseline in both regression tasks regarding
RMSE, demonstrates its effectiveness with prompt learning, which replaces the
direct use of region embedding in the downstream tasks. RegionDCL’s poor
performance is attributed to its sole reliance on OSM building data for region
embeddings, failing to capture sufficient semantics for effective prediction on
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downstream tasks. Comparing the variations of our model, we observe a similar
trend as reported in [16], i.e., MAGREn2v outperforms MAGRE gae. For the land
use classification, as can be seen in Table 1, MAGRE achieves the highest scores
in terms of ARI and surpasses the best-performing baselines by 3.63%. Regard-
ing NMI, MAGRE achieves comparable performance with the best-performing
baselines MVURE and HREP. The overall evaluation results on all three tasks
demonstrate the effectiveness of the MAGRE ’s embeddings.

(a) crime rate prediction (b) check-in count prediction (c)

Fig. 3. Results of removing MAGRE features one at a time.

Feature Analysis. To analyze the impact of each feature category on the model
performance, we systematically remove one feature category at a time, as shown
in Fig. 3. We observe that the best results in all three tasks are obtained by using
all features, demonstrating the effectiveness of our model in capturing the region
semantics. Removing the OSM image leads to a notable increase in MAE and
RMSE in regression tasks (Fig. 3a and 3b) and a decrease in NMI and ARI for
land use classification (Fig. 3c). Specifically, this leads to a 44.62% increase in
RMSE for crime rate prediction, a 36.67% increase in RMSE for check-in count
prediction, and a 54.38% decrease in NMI. This finding emphasizes that OSM
images contain useful information for learning region embeddings. The absence
of the mobility feature negatively affects check-in count prediction, which is
intuitive given the close relationship between check-in statistics and mobility
patterns. Furthermore, POI features play a crucial role in crime rate prediction.
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6 Case Study: Crime Rate Prediction on ROIs

Fig. 4. Example of different ROI shapes.

Table 2. Crime rate prediction on
ROIs.

Methods MAE↓ RMSE↓
HREP 82.81 113.50

MVURE 113.40 166.41

MAGRE 30.13 54.45

Our case study is designed to showcase the adaptability and flexibility of
MAGRE . To demonstrate its capabilities, we predict crime rates in ROIs with
varying sizes and shapes. We randomly chose 200 locations within the Manhattan
boundary. At each of these selected locations, we employ a randomization process
to generate one of three distinct shapes for spatial regions: square, rectangle, or
circle, as illustrated in Fig. 4. The area of each shape is randomly generated, with
the upper bound of the area of the largest administrative region of Manhattan.
Subsequently, we aggregate the grid embeddings to create region embeddings for
these 200 ROIs, following the steps in Sect. 3.3. For baseline methods, we chose
the top-2 best-performing baselines, i.e., HREP and MVURE. We conduct a
five-fold cross-validation to obtain prediction results. As baseline methods can
only compute predictions for administrative regions, we compute a weighted
sum of the administrative region’s prediction scores for a fair comparison. The
weights are determined by the proportion of the overlap of administrative regions
within the ROIs. As shown in Table 2, MAGRE outperforms the selected base-
line methods, leading to an MAE reduction of 63.61% and a RMSE reduction
of 52.02% as compared to the best-performing baseline, i.e., HREP. The gap
in crime rate prediction scores between the ROIs and administrative boundaries
(Table 1 and Table 2) for the two baseline methods indicates a lack of adaptability
in these approaches. These outcomes highlight the adaptability and effectiveness
of MAGRE in handling varying ROIs.

7 Related Work

This section briefly summarizes the related works in the representation learning
of geospatial regions. Some recent works incorporate POIs and mobility data
to construct meaningful region embeddings for fixed administrative boundaries.
For instance, Zhang et al. [15] introduced a multi-view graph representation
approach, which considered POI data and mobility patterns to generate a repre-
sentation of fixed-size urban regions. Similarly, Zhou et al. [16] utilized a prompt
learning method by leveraging both POI and mobility data. Wu et al. [12] focused
on leveraging mobility data alone and trained for a specific task, i.e., mobility
distribution. Xi et al. [13] integrated the satellite imagery alongside POI data.
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Fu et al. [4] built a multi-view POI-POI network utilizing POI data and employed
an autoencoder for region embedding. Woźniak et al. [11] relied only on OSM
data incorporating a skip-gram model, generating vector representations for each
hexagonal region. Similarly, Li et al. [6] utilized only OSM building footprints
for region representation with dual contrastive learning. The state-of-the-art
approaches either create region embeddings for fixed administrative boundaries
or rely on limited data sources. With MAGRE , we acquire adaptive latent rep-
resentations of grid cells that can be flexibly aggregated to a spatial region of
any shape and size.

8 Conclusion

We proposed MAGRE – a novel approach that leverages multitask learning and
multimodal spatial embeddings to create an adaptive representation of urban
regions. MAGRE leverages fine-grained hexagonal grid cells, enabling a more
precise and detailed depiction of their spatial characteristics. MAGRE can effi-
ciently generate embeddings of any ROI by embedding aggregation and effec-
tively preserves the semantics, as demonstrated in our experiments. Experimen-
tal results on three downstream tasks demonstrate that MAGRE exhibits supe-
rior performance compared to baseline methods, highlighting the benefits of mul-
titasking and multimodal approach for learning latent representations of urban
regions.

Acknowledgements:. This work was partially funded by the Federal Ministry
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Personal GPS trajectory is essential for businesses and emerging data markets due to its relevance in vari-
ous data-driven methods, including traffic forecasting, accident prediction, and profiling driving behavior.
Watermarking is a method that facilitates verification of data ownership and authenticity by embedding
provenance information into the data. Whereas watermarking is commonly adopted in the image and audio
domains, only a few initial watermarking methods exist for GPS trajectory data. GPS trajectory watermarking
is particularly challenging due to the spatio-temporal data properties and easiness of data modification. As a
result, existing watermarking methods often embed only minimal provenance information, lack robustness,
and can fail to preserve data utility for downstream applications. In this work, we propose W-Trace - a novel,
effective, robust, and utility-preserving GPS trajectory watermarking method. W-Trace transforms a GPS
trajectory into a complex domain and applies the Fourier transformation to decompose the trajectory into the
frequency representation. W-Trace embeds watermarks in the frequency representation and verifies them in a
spatiotemporally-aware procedure. We demonstrate the effectiveness, robustness, and utility of the proposed
W-Trace approach in realistic settings using real-world GPS trajectory datasets. In contrast to the baselines,
the proposedW-Trace approach is robust to a wide range of trajectory modifications while preserving the GPS
trajectory characteristics required for the downstream applications.
CCS Concepts: • Information systems→ Spatial-temporal systems; • Security and privacy;
Additional Key Words and Phrases: GPS trajectory, Watermarking, Data provenance

1 INTRODUCTION
Personal GPS trajectory data originating from vehicle sensors, navigation devices, and mobile
apps is critical for a wide range of real-world applications. These applications encompass traffic
forecasting, accident anticipation, route optimization, and profiling driving behavior for insurance-
related purposes [9, 16, 18, 39]. GPS trajectory data can contain personal information, including
visited locations, travel routes, and driver profiles [11, 14, 16]. Applications that depend on personal
GPS trajectory data necessitate reliable approaches to confirm data provenance and authenticity.
The verification of data provenance is becoming increasingly important in the context of confirming
compliance with the consent requirements for personal data processing according to The General
Data Protection Regulation (GDPR) in the European Union. This verification can assist authorized
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data processors in validating consent for data processing and also help detect unauthorized sharing
of personal trajectory data. In addition, effective GPS trajectory provenance verification is becoming
increasingly important in the insurance industry. This verification can help confirm driver identity
during risk assessment for personalized insurance policies (e.g., [25]) and for validating insurance
claims.

Digital watermarking, which refers to techniques that embed provenance information (a water-
mark) within noise-tolerant data, can facilitate verification of the provenance and authenticity of
GPS data. Extensive research in watermarking has predominantly focused on the media domain,
particularly in protecting images [27, 43], audio files [2, 21], and videos [26, 28]. Notable examples
of perceptible watermarks include logos embedded in the images, a feature commonly found in
photo-sharing platforms. Another common application involves audio files, where imperceptible
watermarks aid in tracking the file origin on illicit sharing platforms [13]. Nevertheless, digital
watermarking personal GPS trajectories has received only relatively limited attention in research
(e.g., [19], [32]).

Digital watermarking GPS trajectories poses several challenges. Embedding a watermark in the
GPS trajectory data is subject to a trade-off. On the one hand, a watermark should be effective
and robust, i.e., embed sufficient information for verification and be strong enough not to be
modified or removed by potential adversaries. On the other hand, the watermark impact on the
data should be minimal to preserve data utility for downstream applications. In addition to this
general challenge for digital watermarking, real-world GPS trajectories pose unique challenges due
to their non-uniform sampling rates and positional inaccuracy, making them vulnerable to various
modification attacks aiming to remove the watermark, such as point removal, point addition, and
resampling along the path [32]. State-of-the-art watermarking methods in the trajectory domain
are either ineffective, i.e., they can only embed a small amount of provenance information [32], or
lack robustness [19]. Furthermore, the utility of the watermarked trajectories in downstream tasks
is not sufficiently studied in previous works [19, 32].

In this article, we present W-Trace – a novel approach that enables effective, robust, and utility-
preserving watermarking of GPS trajectories. The W-Trace approach operates as follows. First,
W-Trace splits the trajectories into sub-trajectories and represents two-dimensional trajectory
coordinates as complex numbers. Following that, W-Trace applies a Discrete Fourier Transform
(DFT) to each sub-trajectory and inserts an imperceptible watermark into the Fourier descriptors.
W-Trace incorporates a watermark into each frequency descriptor, enabling watermark dispersion
across the frequency components, thereby increasing the amount of embedded information. Fur-
thermore, splitting trajectories enables different watermarks to be inserted into the sub-trajectory
segments. Embedding watermarks in the DFT domain enhances the watermarking robustness
concerning scaling, translation, and resistance to noise [7]. Furthermore, W-Trace controls the
amount of modification introduced by watermarking to maintain the trajectory utility.W-Trace
effectively adjusts to the real-world GPS trajectory data properties, including sampling rate and
length variations.

In summary, our contributions are as follows:

(1) We propose W-Trace — a novel watermarking approach for GPS trajectories that represents
two-dimensional trajectory coordinates as complex numbers and adopts DFT to enable
effective, robust, and utility-preserving watermark embedding into the frequency domain.

(2) W-Trace facilitates embedding more information into the watermark, compared to the state-
of-the-art methods, by spreading the watermark throughout the entire trajectory, resulting
in a more effective and robust approach.
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Table 1. Notation table.

Notation Meaning
𝐵 boolean value
𝑐 complex numbers (C)
𝑑𝑛 number of trajectories in the dataset
𝑖 imaginary unit
𝑝 GPS point
𝑠 watermark strength
𝑇 GPS trajectory
𝑇 watermarked GPS trajectory
𝑇 ′ attacked GPS trajectory
𝑤 watermark vector
𝑡𝑠 GPS timestamp
𝐷 (.) distance function
𝐴𝑇 (.) attack function
𝐸𝑀𝐵(.) watermark embedding function
𝑀 (.) predictive model
𝑉𝐸𝑅(.) watermark verification function
𝛼 amplitude
𝜑 phase angle
𝜎 modification threshold
𝜃 attack parameter

(3) W-Trace controls the amount of trajectory modification introduced by watermarking to
preserve the essential trajectory characteristics and maintain the trajectory utility for real-
world applications.

We extensively evaluate our proposedW-Trace approach using two real-world GPS trajectory
datasets. Our evaluation results confirm the effectiveness and robustness of W-Trace under a com-
prehensive set of adversarial trajectory modifications, including noise addition, point replacement,
and length modifications. We demonstrate that under the majority of the considered attacks,W-
Trace retains the watermark with a success rate of 100%. Furthermore, we verify the utility of
watermarked trajectories on several downstream applications, such as map matching and trajectory
user linking. Our results confirm that the utility of watermarked trajectories from our approach
is comparable to original trajectories in both downstream tasks. To enhance reproducibility and
encourage further research, we make our algorithms accessible to the community as open-source
software.1
This article builds upon and substantially extends our preliminary work [10]. This extended

version provides a detailed formalization and method description, including watermark embedding
and verification algorithms. Furthermore, we conduct extensive experiments to assess the robustness
and utility of our proposed watermarking approach in downstream applications.

2 DEFINITIONS AND PROBLEM FORMULATION
In this section, we introduce the relevant definitions and the problem statement. Notations are
summarized in Table 1.
1Software: https://github.com/Rajjat/watermarkingTrajectory
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A GPS trajectory is a sequence of geospatial locations and associated timestamps. In the context
of this work, a GPS trajectory represents the movement of a person or a vehicle.

Definition 2.1 (GPS Trajectory). A GPS trajectory 𝑇 is a sequence of GPS points arranged in
chronological order and associated with their respective timestamps:

𝑇 = [(𝑝 𝑗 , 𝑡𝑠 𝑗 )],with 𝑡𝑠 𝑗 < 𝑡𝑠 𝑗+1 for all 𝑗,

where 𝑝 𝑗 = (𝑎 𝑗 , 𝑏 𝑗 ) denotes the two-dimensional points with the latitude 𝑎 𝑗 and longitude 𝑏 𝑗 , and
𝑡𝑠 𝑗 refers to the timestamp associated with 𝑝 𝑗 . The number of points in the trajectory is denoted as
the trajectory length, 𝑁 = ℓ𝑒𝑛(𝑇 ). We denote the number of trajectories in the data as 𝑑𝑛 .

Real-life trajectories exhibit differing lengths. We split these trajectories into fixed-length sub-
trajectories to facilitate effective and robust watermarking.

Definition 2.2 (Sub-trajectory). A trajectory 𝑇 can be conceptualized as a chronological sequence
comprising sub-trajectories of a fixed length𝑚, represented as𝑇 = [𝑡1, ..., 𝑡𝑛], where 𝑛 is the number
of sub-trajectories in the trajectory 𝑇 and each sub-trajectory 𝑡𝑖 has length𝑚.

We embed awatermark into the trajectory to enable data provenance and authenticity verification.
We represent a watermark as a vector. The dimensionality of the watermark vector corresponds to
the sub-trajectory length.

Definition 2.3 (Watermark vector and watermark sequence). A watermark 𝑤 is a vector with
the dimensionality𝑚. We denote the sequence of the watermark vectors embedded into the sub-
trajectories within the trajectory𝑇 = [𝑡1, ..., 𝑡𝑛] as𝑊 = [𝑤1, ...,𝑤𝑛], where𝑤𝑖 is a watermark vector
of length𝑚 embedded into the corresponding sub-trajectory 𝑡𝑖 .

Watermark embedding is a process of inserting watermark vectors into trajectory data.

Definition 2.4 (Watermark embedding). Given a GPS trajectory 𝑇 , a watermark sequence𝑊 is
embedded into 𝑇 with an embedding function EMB(·),

𝑇 = EMB(𝑇,𝑊 ),
where 𝑇 is the watermarked trajectory.

Watermark verification is a process that assesses whether the given watermark sequence is
embedded into the trajectory.

Definition 2.5 (Watermark verification). Given an original trajectory𝑇 , a watermark sequence𝑊 ,
and a GPS trajectory 𝑇 , the verification function

𝑉𝐸𝑅(𝑇,𝑊 ,𝑇 , 𝜃𝑣) → 𝐵, 𝐵 ∈ {𝑡𝑟𝑢𝑒, 𝑓 𝑎ℓ𝑠𝑒}
assesses whether the given watermark sequence𝑊 is embedded into the trajectory 𝑇 . 𝜃𝑣 are
verification parameters that are approach-specific.

In an attempt to remove or destroy the watermark, an adversary can modify the watermarked
trajectory 𝑇 . Such modification (also referred to as an attack) 𝑇 ′ = 𝐴𝑇 (𝑇, 𝜃 ) on the watermarked
trajectory 𝑇 , where 𝜃 represents the specific attack parameter, leads to a noised trajectory 𝑇 ′.

Definition 2.6 (Attack). Given a watermarked GPS trajectory 𝑇 = 𝐸𝑀𝐵(𝑇,𝑊 ), an attack 𝑇 ′ =
𝐴𝑇 (𝑇, 𝜃 ) aims to prevent a watermark verification:

𝑉𝐸𝑅(𝑇,𝑊 ,𝑇 , 𝜃𝑣) → 𝐵,𝑉𝐸𝑅(𝑇,𝑊 ,𝑇 ′, 𝜃𝑣) → 𝐵′, 𝐵′ . 𝐵.
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Watermarking aims to enable effective watermark verification in the presence of noisy data. The
watermarking approach is said to be robust against an attack 𝐴𝑇 (·) if the watermark verification
function𝑉𝐸𝑅(·) outputs the same result for the watermarked trajectory𝑇 and the noised trajectory
𝑇 ′ resulting from this attack.

Definition 2.7 (Robust watermarking). Given a watermarked GPS trajectory 𝑇 , an attack 𝑇 ′ =
𝐴𝑇 (𝑇, 𝜃 ) and a watermark verification function 𝑉𝐸𝑅(·), the watermarking is robust against 𝐴𝑇 (·)
if 𝑉𝐸𝑅(·) outputs equivalent labels for 𝑇 and 𝑇 ′:

𝑉𝐸𝑅(𝑇,𝑊 ,𝑇 , 𝜃𝑣) → 𝐵,𝑉𝐸𝑅(𝑇,𝑊 ,𝑇 ′, 𝜃𝑣) → 𝐵′, 𝐵′ ≡ 𝐵.

Trajectory modifications, including watermarking and attacks, can affect the utility of the
trajectory data for real-world applications. Applications considered in this work include predictive
tasks such as traffic forecasting, accident prediction, route planning, and profiling driving behavior.
We formalize such applications as a predictive model𝑀 (·).

Definition 2.8 (Predictive model). Given a GPS trajectory 𝑇 , a predictive model 𝑀 (·) takes a
trajectory 𝑇 and parameters 𝑝𝑎𝑟𝑎𝑚 as input and outputs a label 𝐿, i.e.,

𝑀 (𝑇, 𝑝𝑎𝑟𝑎𝑚) → 𝐿.

Depending on the specific application, 𝐿 can represent various categories, such as traffic speed,
accident likelihood, and the risk category of the driver profile.

We refer to a trajectory modification as utility-preserving regarding𝑀 (·) if applying𝑀 (·) to the
original and the modified trajectories results in the same label.

Definition 2.9 (Utility-preserving modification). Given a GPS trajectory 𝑇 , and a predictive model
𝑀 (·), the modification𝑇 = 𝑀𝑂𝐷 (𝑇, ...) is utility-preserving regarding𝑀 (·) if𝑀 (·) outputs equiva-
lent labels for 𝑇 and 𝑇 :

𝑀 (𝑇, 𝑝𝑎𝑟𝑎𝑚) → 𝐿,𝑀 (𝑇, 𝑝𝑎𝑟𝑎𝑚) → 𝐿′, 𝐿′ ≡ 𝐿.

Trajectory modifications, including watermarking and attacks, are subject to a trade-off. On the
one hand, more substantial modifications are desirable for modification effectiveness. In the case of
watermark embedding, larger modifications can be used to increase the information content of the
watermark. In the case of an attack, inserting a larger amount of noise is more likely to destroy the
watermark. On the other hand, larger modifications can reduce the utility of the data for real-world
applications by changing the trajectory and its properties. Therefore, data transformations in a
utility-preserving modification are limited.

From the practical perspective, analyzing all potential modifications, including watermarks and
attacks, and their impact on the trajectory utility is infeasible. Intuitively, a trajectory that results
from a utility-preserving modification should be similar to the original trajectory. The similarity
can be measured using the distance between the trajectories. We capture this intuition with a
modification threshold.

Definition 2.10 (Modification threshold). A modification threshold 𝜎 bounds a distance 𝐷 between
the trajectories.

D(𝑇,𝑇 ) ≤ 𝜎.

Given a modification threshold 𝜎 , we refer to 𝑇 as a 𝜎-modification of 𝑇 if 𝑇 results from a
modification of 𝑇 and the distance between these two trajectories is at most 𝜎 . We denote such
modification as𝑀𝑂𝐷𝜎 (𝑇 ).
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We refer to [36] for a survey of trajectory distance measures. In this work, we adopt the Haversine
distance that considers the curvature of the Earth’s surface for geographic distance computation.
In our experiments, we work with a modification threshold of 10 meters, which reflects the typical
inaccuracy of GPS sensors [4]. We further discuss the practical impact of watermarking on real-
world applications under this modification threshold in Section 6.2. Overall, the objective of
robust and utility-preserving trajectory watermarking is to ensure that the verification function
𝑉𝐸𝑅(𝑇,𝑊 ,𝑇 ′, 𝜃𝑣) can correctly verify the watermark in a modified trajectory 𝑇 ′ if 𝑇 ′ is a 𝜎-
modification of 𝑇 in which the watermark sequence𝑊 is embedded:

𝑇 = 𝐸𝑀𝐵(𝑇,𝑊 ),𝑇 ′ = 𝑀𝑂𝐷𝜎 (𝑇 ),𝑉 𝐸𝑅(𝑇,𝑊 ,𝑇 , 𝜃𝑣) → 𝐵,𝑉𝐸𝑅(𝑇,𝑊 ,𝑇 ′, 𝜃𝑣) → 𝐵′ =⇒ 𝐵′ ≡ 𝐵.

3 THE W-TRACE APPROACH
This section presents our proposed watermark embedding and verification method (W-Trace). W-
Trace aims at effective and robust watermarking, while preserving the utility of the GPS trajectory
data. First, we present our watermarking approach that embeds a watermark into GPS trajectories
in Section 3.1. Then, in Section 3.2, we present the watermark extraction and verification mecha-
nism. Finally, in Section 3.3, we discuss the computational complexity of the proposed watermark
embedding and verification algorithms. An overview of W-Trace is illustrated in Fig. 1.

3.1 Watermark Embedding
Watermark embedding aims to incorporate a watermark into a given GPS trajectory. According
to Definition 2.4, the watermark embedding function 𝑇 = 𝐸𝑀𝐵(𝑇,𝑊 ) takes the trajectory 𝑇 =
[(𝑝 𝑗 , 𝑡𝑠 𝑗 )], 𝑝 𝑗 = (𝑎 𝑗 , 𝑏 𝑗 ) and a watermark sequence𝑊 as an input and outputs the watermarked
trajectory 𝑇 . First, each trajectory is split into sub-trajectories 𝑇 = [𝑡1, ..., 𝑡𝑛] of equal length,
corresponding to the dimension of the watermark vectors𝑤 ∈𝑊 . The dimension of the watermark
vector is a parameter. We analyze the impact of this parameter in Section 6.4.2. The embedding
function associates each GPS point 𝑝 𝑗 = (𝑎 𝑗 , 𝑏 𝑗 ) in a sub-trajectory 𝑡 ∈ 𝑇 with a complex number,

𝑐 𝑗 = 𝑎 𝑗 + 𝑖𝑏 𝑗 , (1)

where 𝑖 is the imaginary unit. The advantage of utilizing complex numbers is to spread the water-
mark into both coordinates at the same time. Next, we apply a Discrete Fourier Transform (DFT)
[41] to each sub-trajectory, where we utilize the Fast Fourier Transform (FFT) [31] algorithm for
efficiency. The Discrete Fourier Transform (DFT) retrieves a frequency domain representation of
the input, which is a sequence of complex numbers with the same length as the input. The FFT
algorithm takes the list of positions 𝑐 = [𝑐 𝑗 ]1≤ 𝑗≤𝑚 from the sub-trajectory, represented as complex
numbers, as input. We represent the resulting frequency representations using the amplitude 𝛼
and phase angle 𝜑 :

𝛼 · e𝑖𝜑 ← FFT(𝑐). (2)
The watermark𝑤 ∈𝑊 with strength 𝑠 ∈ (0, 1) is inserted into the amplitude 𝛼 of the sub-trajectory
𝑡 :

𝛼 = 𝛼 + 𝑠 ·𝑤. (3)
The watermarks may be uniform across all sub-trajectories or vary. In our approach, we represent

the watermark𝑤 as a vector. Each element of the watermark vector is assigned a random value
from 1, -1, and 0. This random assignment ensures that the watermark vector is distinct for each
sub-trajectory. Restrictions on the values of watermark vectors and watermark strength 𝑠 ∈ (0, 1)
help minimize substantial trajectory alterations and preserve the utility of watermarked trajectories.
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(a) Watermark embedding inW-Trace.

(b) Watermark verification inW-Trace.

Fig. 1. Overview of theW-Trace approach.

The strength of a watermark is subject to a trade-off. On the one hand, a watermark should be
effective and robust. That means that the watermark should be strong enough to enable verification
and resist removal attempts by potential adversaries. A watermark with a higher strength con-
tributes to more robust watermarking, making it more resistant to various attacks [37]. On the other
hand, the watermark should have a minimal impact on the relevant data characteristics, preserving
data utility. A watermark with a higher strength results in a more substantial modification to the
trajectory and may affect the trajectory utility. The strength 𝑠 of the watermark is a parameter of
the proposed approach. We analyze the impact of the watermark strength in Section 6.4.1.

After the watermark is inserted into the amplitude of the trajectory, the subsequent step involves
an inverse FFT (IFFT) to retrieve the watermarked trajectory:

�̃� = (𝑎,𝑏) ← IFFT(𝛼 · e𝑖𝜑 ), (4)
where �̃� is a watermarked sub-trajectory. We concatenate all the watermarked sub-trajectories into
the watermarked trajectory𝑇 . The watermark embedding procedure is summarized in Algorithm 1
and is illustrated in Fig. 1a.

To enable watermark verification, the user stores the watermark sequence. Verifying ownership
of watermarked trajectory data can be accomplished by hashing the original data, the applied
watermark sequence, and the watermarking parameters onto a distributed ledger, as suggested by
Pan et al. [32]. It is important to note that such distributed ledger-based storage is not tied to any
particular watermarking method and may not be required for all use cases.

3.2 Watermark Verification
Watermark verification is a process that assesses whether the given watermark sequence𝑊 is
embedded into the trajectory 𝑇 . According to Definition 2.5, the verification function is defined
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Algorithm 1Watermark embedding
Input: GPS trajectory 𝑇 , watermark sequence𝑊 .
Hyperparameters: watermark strength 𝑠 , sub-trajectory length𝑚.
Output: Watermarked GPS trajectory 𝑇 .
1: Split each trajectory 𝑇 into fixed-length sub-trajectories [𝑡1, ..., 𝑡𝑛].
2: for each sub-trajectory 𝑡 ∈ 𝑇 do
3: Represent the sub-trajectory 𝑡 as complex numbers 𝑐 , see Eq. (1).
4: Apply FFT to 𝑐 and represent the result in polar coordinates 𝛼 , 𝜑 .
5: Add the watermark𝑤 ∈𝑊 to the amplitude 𝛼 , see Eq. (3).
6: Apply inverse FFT to obtain the resulting watermarked sub-trajectory: �̃� = IFFT(𝛼, 𝜑).
7: end for
8: Concatenate the watermarked sub-trajectories into 𝑇 .
9: return 𝑇 .

as: 𝑉𝐸𝑅(𝑇,𝑊 ,𝑇 , 𝜃𝑣) → 𝐵, 𝐵 ∈ {𝑡𝑟𝑢𝑒, 𝑓 𝑎ℓ𝑠𝑒}, where 𝑇 is an original trajectory,𝑊 is the watermark
sequence, and 𝑇 is a GPS trajectory to be verified. In the context of this work, 𝜃𝑣 refers to the
watermark strength parameter 𝑠 adopted in the watermark embedding process.

The verification process includes four steps: selection of a candidate trajectory 𝑇 , trajectory
length alignment between 𝑇 and 𝑇 , watermark extraction from 𝑇 , and watermark correlation. This
process is summarized in Algorithm 2 and is illustrated in Fig. 1b.
Candidate trajectory selection. The watermark verification process requires the original

trajectory 𝑇 as input. As a candidate original trajectory 𝑇 , we search for the closest original
trajectory based on the minimum Haversine distance to 𝑇 . We evaluate this step in Section 6.4.4.
Trajectory length alignment. Our watermark verification process requires 𝑇 and 𝑇 to be of

the same length. We align each point in𝑇 to a point in𝑇 based on the minimum Haversine distance.
If the trajectory length of 𝑇 is smaller than that of 𝑇 , multiple points from 𝑇 can be aligned to a
point in𝑇 . In this case, we add duplicate points to𝑇 to create a one-to-one alignment, as illustrated
in Fig. 1b. If the length of 𝑇 exceeds 𝑇 , multiple points from 𝑇 can be aligned to the point in 𝑇 . In
this case, we remove such points from𝑇 to create a one-to-one alignment, keeping the points based
on the minimum Haversine distance.

Watermark extraction. Watermark extraction is a process that retrieves the watermark from a
watermarked trajectory. Broadly, a watermark extraction procedure can be blind and non-blind.
Blind watermarking does not require the original data for watermark extraction, whereas non-blind
watermarking requires the original data. Non-blind watermarking is typically more robust than
blind watermarking and allows for larger watermarks [17]. The watermarking scheme considered
in our work is non-blind.
The process of extracting the watermark is the reverse of the watermark embedding process.

Given a watermarked trajectory𝑇 , the extraction function 𝐸𝑋𝑇 (·) extracts the watermark sequence
𝑊 from the trajectory 𝑇 :𝑊 = 𝐸𝑋𝑇 (𝑇,𝑇 , 𝑠). The watermark extraction function takes the original
and the given trajectory as an input and outputs the extracted watermark sequence𝑊 . More
specifically, the trajectory 𝑇 is partitioned into sub-trajectories, and then the FFT is applied to
obtain the amplitude 𝛼 . We retrieve the watermark by

𝑤 =
𝛼 − 𝛼
𝑠

, (5)

where 𝑤 ∈ 𝑊 , 𝛼 is the amplitude of the candidate original trajectory 𝑇 and 𝑠 is the watermark
strength.
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Watermark correlation. The next step is to compute the correlation between the extracted
watermark 𝑤 and the original watermark 𝑤 of each sub-trajectory to verify the watermark. To
compute the correlation, we adopt Normalized Cross-Correlation (NCC), a commonly used measure
for watermark verification [13, 21]. NCC’s scale invariance properties ensure its effectiveness
in comparing both the original watermark 𝑤 and the extracted watermark 𝑤 . The NCC of two
watermarks,𝑤 and𝑤 , is defined by

NCC(𝑤,𝑤) =
∑

𝑖 𝑤𝑖𝑤𝑖√︃∑
𝑖 𝑤

2
𝑖

√︃∑
𝑖 𝑤

2
𝑖

. (6)

The value of NCC lies between −1 and 1. NCC value 1 indicates that two vectors are highly
correlated, whereas 0 and −1 indicate no correlation and negative correlation, respectively. Finally,
an average NCC score for all sub-trajectories of a given trajectory is calculated. The verification is
successful if this score is higher than the acceptance threshold 𝜏 . We adopt 𝜏 > 0.85 based on [32].

3.3 Computational Complexity Analysis
In this section, we discuss the computational complexity of the proposed watermark embedding
and watermark verification algorithms.

3.3.1 Watermark Embedding. Our proposed watermark embedding algorithm presented in Section
3.1 splits the trajectory 𝑇 into sub-trajectories with the complexity of O(𝑁 /𝑚), where 𝑁 is the
trajectory length and𝑚 is the sub-trajectory length. Next, W-Trace employs the FFT algorithm
to embed watermarks into the sub-trajectories. For the trajectory 𝑇 , FFT has O(𝑁 log2𝑚) time
complexity [6].

3.3.2 Watermark Verification. Our proposed watermark verification algorithm is presented in
Section 3.2. In the first step, given the trajectory 𝑇 , we select a candidate trajectory 𝑇 from the
dataset using Haversine distance. The computational complexity of the selection and similarity
computation isO(𝑑𝑛∗𝑁 2), where𝑑𝑛 is the number of trajectories in the dataset, and𝑁 is the average
trajectory length. Next, we align the trajectory length 𝑇 to 𝑇 with a computational complexity
of O(𝑁 2). For extracting the watermark, 𝑇 is partitioned into sub-trajectories with O(𝑁 /𝑚)
complexity. Then, FFT is applied to extract the watermark from𝑇 with a complexity of O(𝑁 log2𝑚)
[6]. Finally, the watermark correlation computation has a O(𝑁 ) complexity.

The quadratic complexity of candidate trajectory selection and trajectory length alignment can
be further improved. For instance, deep learning-based methods such as t2vec [24] and STDRL
[8] with a linear complexity can be utilized for the candidate trajectory search. Given a trained
t2vec model, embedding a trajectory into a vector requires O(𝑁 ) time. Then, calculating the
cosine similarity between the embedding vectors of two trajectories has a time complexity of
O(|𝑣 |), where |𝑣 | << 𝑁 is the length of the embedding vector. For trajectory length alignment, the
nearest neighbor search based on spatial indexing can help to reduce the time complexity. The
time complexity for constructing the spatial index using an R-tree is O(𝑁ℓ𝑜𝑔𝑁 ) [33]. Finding the
nearest neighbor has a complexity of O(𝑁ℓ𝑜𝑔𝑁 ) [1].

4 THREAT MODEL: ATTACKS ON TRAJECTORIES
Digital watermarking is subject to adversarial modifications, denoted as attacks [34]. The objective
of the adversarial modifications analyzed in this work is twofold: First, the adversary’s goal is
to prevent successful watermark verification, to obscure data origin and ownership. Second, the
adversary who aims at illicit data monetization also seeks to retain the data utility for real-world
applications. In general, adversary capabilities can include knowledge of the data, such as the
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Algorithm 2Watermark verification
Input: Original trajectory 𝑇 , watermark sequence𝑊 , Trajectory 𝑇 , watermark strength 𝑠 .
Output: 𝐵 ∈ {𝑡𝑟𝑢𝑒, 𝑓 𝑎ℓ𝑠𝑒}.
1: Align the length of 𝑇 to 𝑇 using the Harvesine distance.
2: Split the trajectory 𝑇 into fixed-length sub-trajectories [̃𝑡1, ..., �̃�𝑛].
3: for each �̃� ∈ 𝑇 do
4: Represent the sub-trajectory �̃� as a sequence of complex numbers, see Eq. (1).
5: Apply FFT and represent the result in polar coordinates 𝛼, 𝜑 .
6: Extract watermark𝑤 from the sub-trajectory using the frequency representation of 𝑇 , see Eq. (5).
7: Calculate the normalized cross-correlation (NCC) between extracted watermark𝑤 and original water-

mark𝑤 .
8: end for
9: Calculate the average watermark correlation of the trajectory 𝑇
10: return true, if the average watermark correlation is greater than the threshold 𝜏 .

original and watermarked GPS trajectories, the watermark, and the watermarking algorithm. This
knowledge can be further subdivided into perfect knowledge, where an adversary has access to
all data, and limited knowledge, where an adversary has limited access [30]. In this work, we
assume that an adversary has limited access, namely, knows the watermarked trajectory and the
watermarking algorithm. In contrast, the original GPS data and the specific watermark embedded
into the data remain unknown. This assumption is realistic in many real-world GPS trajectory
watermarking applications. An adversary with limited knowledge cannot remove the watermark
directly. Instead, an adversary can attempt heuristic trajectory modifications to prevent watermark
verification. We refer to such modifications as attacks on trajectories.

The adversarial modifications of trajectory data are subject to a trade-off. Intuitively, when data
undergoes substantial alterations, it can impede watermark verification, but this may also result in
a reduction of the data’s usefulness in practical applications, reducing data value. This trade-off is a
constraint, restricting the extent to which the adversary can manipulate the data. To quantify the
utility of the trajectory modified in the adversarial settings, we follow the same principle as we
introduced for the trajectory watermarking and apply a modification threshold 𝜎 (see Definition
2.10):

𝑇 ′ = 𝐴𝑇 (𝑇, 𝜃 ), 𝑠 .𝑡 . 𝐷 (𝑇,𝑇 ′) ≤ 𝜎.

Here, 𝐴𝑇 (·) is the attack function, 𝑇 is the watermarked trajectory, 𝜃 represents the specific attack
parameter, 𝐷 (·) is the distance metric, 𝑇 ′ is the modified watermarked trajectory, and 𝜎 is the
modification threshold limiting the effects of the possible attacks on trajectories.

The attacks that we consider in this work have been discussed in the literature in the context of
trajectory watermarking [10, 32], trajectory similarity measures [36], and cryptography [15]. In
particular, we consider four different types of attacks: noise additive attacks, point replacement
attacks, length modification attacks, and the combination of these types, the hybrid attack. As
real-world trajectory data is noisy and comes with different sampling frequencies and lengths, we
expect downstream applications to cope with the noise introduced by these attack types as long
as the modification threshold is respected. A formal analysis of watermarking GPS trajectories is
clearly out of the scope of our application-oriented approach, as GPS trajectories serve various
downstream applications with distinct characteristics [11, 14]. Intuitively, even a strong or adaptive
adversary without access to the original data and the watermark cannot directly optimize the
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correlation or removal of the watermark. Instead, following [10, 32], we describe a reasonable set
of attacks.

4.1 Noise Additive Attacks
Noise additive attacks involve adding random noise to the trajectory coordinates, as illustrated in
Fig. 2a.

(1) Additive Gaussian White Noise (AGWN). In this attack, a value is drawn from a normal
distribution randomly, which is then added to each GPS position in the trajectory.

(2) Additive Signal to Noise Ratio (ASNR). This attack shares similarities with AGWN, but
the noise is scaled to achieve a specific signal-to-noise ratio (SNR) and added to each GPS
position.

(3) Additive Outliers with SNR (AOSNR). We randomly select some points with a probability
of 𝜃 = (𝑝AOSNR) and apply the ASNR attack to these points.

(4) Double Embedding Attack (DEA). The double embedding attack aims to remove the
original watermark from a watermarked trajectory by inserting a different watermark using
the same method.

4.2 Point Replacement Attacks
To carry out point replacement attacks, certain elements of the trajectory are eliminated and
replaced with information based on the adjacent points, as illustrated in Fig. 2b.

(1) Replace Random Points (RRP). The Replace Random Points attack involves selecting GPS
coordinates with a probability of 𝜃 = (𝑝RRP), and replacing them with the corresponding
previous points.

(2) Replace Random Points with Path (RRPP). Similar to the Replace Random Points attack,
each GPS coordinate is replaced with the probability 𝜃 = (𝑝RRPP), and the replaced value is a
convex combination of the remaining adjacent points.

(3) Replace Non-Skeleton Points with Path (RNSPP). The Ramer–Douglas–Peucker (RDP)
algorithm [12] is utilized in this attack to identify the central points of the GPS trajectory
that define its overall shape. The granularity of the remaining skeleton is controlled by a
parameter 𝜃 = (𝜀). The removed points by the RDP algorithm are substituted by a convex
combination of the neighboring points.

4.3 Length Modification Attacks
In contrast to previous attacks that maintain a constant trajectory length, length modification
attacks involve altering the length of the trajectory by either cropping or interpolating the trajectory,
as illustrated in Fig. 2c.

(1) Linear Interpolation Attack (LIA). The trajectory length is increased by inserting addi-
tional points at random positions through linear interpolation.

(2) Cropping Attack (CA). In a cropping attack, selected points are removed from the trajectory,
decreasing the trajectory length.

4.4 Hybrid Attacks
Our experiments exemplify a hybrid attack as a combination of multiple attacks applied to the same
trajectory to obscure the watermark. One example of a hybrid attack is a sequence of a cropping
attack (CA) followed by additive Gaussian white noise (AGWN) and replace random points (RRP).
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Fig. 2. (a) Noise additive attack is applied on the watermarked trajectory (red color), leading to the noisy
trajectory generation (blue color). (b) Point replacement attacks. (1) A point is replaced by an adjacent point.
(2) A point is replaced by a convex combination of the adjacent points. (c) A length modification attack is
applied to the watermarked trajectory (red color). The cross mark shows the cropping attack, whereas new
coordinates (blue color) are inserted with linear interpolation. Map data: ©OpenStreetMap contributors,
ODbL.

5 EXPERIMENTAL SETUP
In this section, we describe the datasets, baselines, parameter settings, and evaluation metrics
adopted in the evaluation.

5.1 Datasets
The proposed watermarking method is evaluated using two real-world anonymized trajectory
datasets: the Porto and the German datasets. Moreover, we create a Candidate Trajectory Dataset to
evaluate the effect of the candidate trajectory selection on the watermark verification. Furthermore,
we generate a synthetic dataset to assess the utility of watermarking methods for downstream
tasks that require user information, such as trajectory user linking.
Porto Dataset. The Porto dataset is publicly available and consists of trajectories of variable length
generated by 442 taxis in the city of Porto, Portugal, from July 1, 2013, to June 30, 2014 [29]. We
randomly sample 1,100 trajectories, each trajectory with a length of 256, from the Porto dataset,
denoted as 𝑃 . The trajectories have a sampling rate of four times per minute. The mean distance
and the standard deviation between two consecutive GPS coordinates in the Porto dataset are 4.8
meters and 16 meters, respectively.
German Dataset. This dataset is provided by a proprietary data provider. The dataset comprises
vehicle trajectory data from two German federal states, Saxony and Lower Saxony, with an average
sampling rate of 12 times per minute. The data refers to September 2019. The average distance
between two consecutive GPS coordinates is 68 meters, with a standard deviation of 56 meters. We
randomly select 2,200 trajectories from the German dataset and divide them into two subsets: 𝐺𝑤

with 1,100 trajectories to which watermarking is applied later in the experiment and 𝐺𝑛𝑤 with
1,100 non-watermarked trajectories.
Candidate Trajectory Dataset. The Candidate Trajectory Dataset 𝐺𝑐 contains 2,200 trajectories
and is divided into two subsets. The first subset, 𝐺𝑐𝑤 , consists of the trajectories from 𝐺𝑤 , with
each trajectory being watermarked and subjected to a randomly selected attack (as described in
Section 4). The second subset,𝐺𝑛𝑤 , contains 1,100 original trajectories from the German dataset
without any modifications.
Synthetic Dataset.We utilize synthetic data to evaluate watermarking method performance in
sensitive applications, such as trajectory user linking, without compromising user privacy. We
generate synthetic GPS trajectories for New York City (NYC) over three months using the method
proposed by Kim et al. [22]. The data contains time, latitude, longitude, and user ID. The dataset
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includes approximately 400 synthetic users and their trajectories, segmented on a daily basis,
denoted as 𝑆 . We watermark the synthetic dataset and assess its utility in the trajectory user linking
task.

5.2 Baselines
We compare the proposedW-Trace approach against two state-of-the-art watermarking methods
from the audio domain and TrajGuard [32], a state-of-the-art method designed for GPS trajectories.
IMFWatermarking [13]. This watermarking technique is a non-blind method commonly used for
watermarking audio signals. The trajectory data is transformed into a signal (latitude/longitude vs.
time) and then decomposed into several components called Intrinsic Mode Functions (IMFs) using
the Empirical Mode Decomposition (EMD) technique. Each IMF is a 1-D vector. Motivated by [13],
the first IMF 𝐼 is chosen and rewritten as a matrix of size 𝑋 ×𝑌 , where 𝑋 is the number of rows and
𝑌 is the number of columns. This matrix is further decomposed into singular value matrices using
Singular Value Decomposition (SVD). A watermark with a scaling factor 𝑑 is then inserted into one
of the matrices. An inverse EMD is applied to all watermarked IMF for watermarked trajectory
generation. The verification steps are the reverse of the watermark embedding process.
TrajGuard [32]. TrajGuard is a blind watermarking method for GPS trajectories that utilizes
geometric transformation. Initially, TrajGuard partitions the trajectory into multiple parts and
then distributes the watermark into all the sub-trajectories. More specifically, TrajGuard performs
spatial partition with size 𝜔𝑠 and temporal partition with interval 𝜔𝑡 for each sub-trajectory. Then,
the centroid is calculated, and a watermarking vector is inserted with an intensity 𝛾 for each
sub-trajectory by adjusting the distance of the points to the centroid.
SVDWatermarking [21]. Based on a blind audio watermarking approach, this method utilizes the
SVD technique and the quantization indexmodulationmethod for both the insertion and verification
of the watermark. First, the trajectory (2-D coordinates) is partitioned into non-overlapping 2-D
fixed-size matrix blocks of size𝑈 ×𝑉 . Then, SVD is applied to each matrix block, which gives three
singular matrices. For each block, Euclidean norms of singular values are computed. The watermark
vector is embedded by quantizing the norm of each block using a quantization coefficient Δ. A
reverse strategy is employed for the verification.

5.3 Parameter Settings
Here, we describe parameter settings for watermarking and attacks in the evaluation.

5.3.1 Method Parameters. We apply grid search to obtain optimal parameter settings for the
watermarking methods considered in this work. The parameters are selected such that the average
trajectory modification fromwatermarking remains below the modification threshold 𝜎 = 10meters
in all methods and datasets. The parameter selection details are described further in Appendix A.
W-Trace. We split each trajectory into sub-trajectories of the same length as the watermark. The
watermark strength 𝑠 = 0.0003 is obtained using grid search for all the datasets. We discuss the
impact of the parameters in Section 6.4.
IMFwatermarking.Awatermark with similar length and values comparable toW-Trace is inserted
into the trajectory. We perform a grid search on the IMF scaling factor𝑑 for all the datasets, resulting
in 𝑑 = 0.00015 for German (𝐺) and Synthetic datasets (𝑆) and 𝑑 = 0.0001 for the Porto dataset (𝑃 ).
TrajGuard. The parameters include the spatial partition 𝜔𝑠 and temporal partition 𝜔𝑡 to split the
trajectory, as well as intensity 𝛾 . We follow Pan et al. [32] to select the TrajGuard parameter values
based on the sampling rate. The resulting parameter values for the German (𝐺𝑤) and Synthetic
datasets (𝑆) are 𝜔𝑠 = 0.03, 𝜔𝑡 = 10, and 𝛾 = 0.0003. For the Porto dataset (𝑃 ), 𝜔𝑡 and 𝛾 values are
the same as the German and Synthetic datasets, except 𝜔𝑠 with a value of 0.002.
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SVDwatermarking. Awatermark comparable toW-Trace is inserted into the trajectory. We obtain
Δ = 0.0003 for all the datasets based on the grid search.

5.3.2 Attack Parameters. The parameter selection for the attacks described in Section 4 is based
on the intuition that an adversary who intends to redistribute or monetize the data would not
hamper the trajectory utility. Therefore, the parameters are set in a way that the distance between
the watermarked trajectory 𝑇 and the modified trajectory 𝑇 ′ satisfies the modification threshold.
We keep the attack parameters consistent in all the methods we evaluate. The variation of attack
parameter values is discussed in Section 6.4.5.
(1) AGWN. For each trajectory 𝑇 , we add a sample from a Gaussian distribution to each coordi-

nate with mean 𝜇 = 0 and variance 𝜎2 = 0.00002.
(2) ASNR. An SNR value of 105 is selected and inserted into each coordinate as discussed in

Section 4.
(3) AOSNR. A specific number of data points are selected with probability 𝑝AOSNR = 0.03 from

each trajectory, and an ASNR attack is applied to those selected data points.
(4) DEA. A new random watermark is embedded into the trajectory with theW-Trace water-

marking technique.
(5) RRP. In each trajectory, each point is replaced with their respective previous points with

probability 𝑝RRP = 0.005.
(6) RRPP. A set of points, selected with the probability 𝑝RRPP = 0.01, are replaced by the average

of the adjacent points.
(7) RNSPP.We use 𝜀 = 10−6 for the RDP algorithm.
(8) LIA.We select three locations randomly from the trajectory. In each location, we insert a

coordinate and timestamp generated by linear interpolation of the neighboring points.
(9) CA. Three data points with the last indices are removed.
(10) Hybrid. We utilize the same parameters as for the individual attacks.

5.4 Evaluation Metrics
To assess watermark verification effectiveness and robustness, we adopt watermark recognition
rate, false-positive rate, average modification distance, and embedding capacity. These metrics
are typically used to evaluate the performance of watermarking approaches. To assess the utility
of watermarked trajectories, we adopt two downstream tasks, map matching and trajectory user
linking. We utilize the Jaccard similarity coefficient and accuracy as evaluation metrics for map
matching and trajectory user linking, respectively.
Watermark recognition rate. To evaluate the effectiveness and robustness of watermark verifica-
tion, i.e., the capability to accurately identify a watermark in modified trajectory data, we utilize
recognition rate. The recognition rate is the ratio of correctly identified watermarked trajectories
(true positives or 𝑇𝑃 ) to the total number of watermarked trajectories. The recognition rate is
defined as follows: Recognition rate = 𝑇𝑃

𝑇𝑃+𝐹𝑁 , where 𝐹𝑁 is the number of false negatives, i.e.,
unrecognized watermarked trajectories. The recognition rate is also commonly referred to as recall
and true positive rate. We report the recognition rate in %, where 100% corresponds to 𝐹𝑁 = 0.

To compute the recognition rate, we watermark all trajectories in each dataset. Then, we apply
the adversarial modifications according to the threat model to all trajectories. We then use the
corresponding watermark verification procedure to extract the watermark. We assess the similarity
between the extracted and the embedded watermarks using the normalized cross-correlation (𝑁𝐶𝐶),
defined in Eq. 6. Following [32], we accept the watermark to be successfully verified if the average
watermark correlation between the original watermark and extracted watermark from the noised
trajectory is higher than the acceptance threshold, i.e., 𝜏 > 85%.
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False-positive rate. The false-positive rate is defined as the ratio of trajectories without a wa-
termark wrongly verified as watermarked to the total number of non-watermarked trajectories
[20]: False-positive rate = 𝐹𝑃

𝐹𝑃+𝑇𝑁 . 𝐹𝑃 is the number of false positives, i.e., trajectories wrongly
identified as watermarked, and 𝑇𝑁 is the number of true negatives, i.e., correctly recognized
non-watermarked trajectories. We use the 1100 non-watermarked trajectories 𝐺𝑛𝑤 to compute the
false-positive rate.
Average modification distance.We assess the trajectory modification distance resulting from
watermarking methods as an average Haversine distance between the original and the modified
trajectories.
Embedding capacity.We compute the watermark embedding capacity as the amount of watermark
information embedded in the watermarked trajectory data. In this context, embedding capacity is
defined as the ratio of the length of the watermark vector embedded and the total number of GPS
points in the dataset.
Jaccard similarity coefficient. This coefficient calculates the similarity between two sets. In
evaluating the map-matching task, we compute the similarity between the sets of matched street
segments obtained using the original and the watermarked trajectories. The similarity score is
calculated with the Jaccard similarity coefficient, where a score of 0 indicates no match, and a score
of 1 indicates a perfect match.
Accuracy. The trajectory user linking (TUL) task utilizes accuracy as an evaluation metric. In this
context, accuracy is defined as the proportion of trajectories correctly linked to their respective
users, divided by the total number of trajectories in the dataset.

6 EVALUATION RESULTS
Our evaluation aims to assess the effectiveness and robustness of W-Trace under the threat model.
Furthermore, we demonstrate the utility of theW-Trace watermarked trajectories for real-world
applications. Then, we discuss the time complexity of the watermarking methods. We also analyze
the impact of the method and attack parameters of W-Trace on the watermark recognition rate.

Table 2. Recognition rate of W-Trace and baseline methods on the Porto (𝑃 ) and the German (𝐺𝑤 ) datasets.

Noise additive Point replacement Size mod. Hybrid Avg.
Method AGWN ASNR AOSNR DEA RRP RNSPP RRPP LIA CA

𝑆𝑉𝐷𝑃 100.0 98.2 99.3 0.0 100.0 94.7 100.0 100.0 100.0 100.0 89.2
𝑆𝑉𝐷𝐺𝑤 100.0 79.4 99.7 0.0 100.0 65.3 100.0 100.0 100.0 100.0 84.3

𝐼𝑀𝐹𝑃 87.2 87.0 90.3 90.8 90.1 90.8 90.7 90.3 91.0 87.1 89.5
𝐼𝑀𝐹𝐺𝑤 72.5 70.6 74.5 75.2 75.8 76.0 75.1 76.0 77.1 72.1 74.5

𝑇𝑟𝑎 𝑗𝐺𝑢𝑎𝑟𝑑𝑃 59.8 56.2 55.7 61.7 68.3 65.0 68.3 63.6 64.5 57.5 62.1
𝑇𝑟𝑎 𝑗𝐺𝑢𝑎𝑟𝑑𝐺𝑤 87.6 83.2 94.4 94.4 95.6 74.2 95.9 75.2 91.9 83.8 87.6

W-Trace𝑃 100.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.8
W-Trace𝐺𝑤 100.0 99.8 98.2 100.0 98.6 100.0 100.0 100.0 100.0 94.0 99.0

6.1 Effectiveness & Robustness
In this section, we evaluate the effectiveness and robustness of the proposedW-Trace approach. We
compare our approach to the baseline methods on the German (𝐺𝑤) and Porto datasets (𝑃 ) under
various attacks described in the threat model. We report various metrics, including recognition rate,
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false-positive rate, and average modification distance. We compare the computational complexity
ofW-Trace with the baseline methods and discuss the amount of watermark information embedded
into the GPS trajectories by different methods.

6.1.1 Watermark Recognition Rate. Table 2 demonstrates the effectiveness and robustness of our
proposedW-Trace approach against all the considered attacks in the German (𝐺𝑤) and Porto (𝑃 )
datasets. The recognition rate ofW-Trace in the German (W-Trace𝐺𝑤 ) and Porto datasets (W-Trace𝑃 )
averages around 99%, confirming the effectiveness, robustness, and generalizability of our approach.
Across the German and Porto datasets, the performance of baseline methods against some

attacks varies. For instance, TrajGuard exhibits inconsistent performance against several attacks,
particularly on the Porto dataset (𝑇𝑟𝑎 𝑗𝐺𝑢𝑎𝑟𝑑𝑃 ). One reason why TrajGuard is more vulnerable
to attacks on the Porto dataset is that this dataset has a higher spatial density than the German
dataset, as mentioned in Section 5.1. This means there are more GPS points in a smaller area in the
Porto dataset, making it more challenging for TrajGuard to detect and filter out the modifications
introduced by attacks [32]. In addition, TrajGuard’s vulnerability to attacks can be attributed to
the fact that TrajGuard embeds a smaller amount of watermark information compared to W-Trace,
which explains its lower recognition rate. The performance of the IMF watermarking method
differed between the German and Porto datasets, with successful detection on the Porto dataset
(𝐼𝑀𝐹𝑃 ) but lower performance on the German dataset (𝐼𝑀𝐹𝐺𝑤 ). The denser spatial area of the
Porto dataset makes the decomposition process of the IMF method more effective, leading to an
effective watermark verification process. In contrast, the larger geographical area covered by the
German dataset makes it harder for the IMF method to decompose the trajectory into Intrinsic
Mode Functions (IMFs) effectively, resulting in a lower recognition rate. We observe that the noise
additive attack destroys the quantization-based watermark detection process in SVD watermarking.
To summarize, unlike the baselines, the proposed W-Trace method is not impacted by the sparsity
of the underlying data distribution and can effectively withstand the considered attacks.

6.1.2 False-Positive Rate. Our experiments on the German dataset (𝐺𝑛𝑤) demonstrate that the
false-positive rate is 0% for the proposed W-Trace approach, as well as for the TrajGuard, and SVD
baselines, demonstrating that these methods do not claim ownership for non-watermarked trajec-
tories. In contrast, the IMF baseline claims 29.27% of non-watermarked trajectories as watermarked,
making the IMF hardly applicable in real-world applications.

6.1.3 Average Modification Distance. The modification threshold defined in Eq. 2.10 bounds the
distance between the original and the watermarked trajectory. We observe that in the configuration
described in our evaluation design, all considered approaches respect the modification threshold
and have a comparable average distance below 6 meters for German (𝐺𝑤 ) and Porto (𝑃 ) datasets, as
illustrated in Fig. 3.

6.1.4 Embedding capacity. In this section, we analyze the amount of watermark information
embedded in the watermarked trajectory data. The embedding capacity for the proposed W-Trace
method, as well as for the IMF and SVD baseline methods, is 1, meaning that these methods embed
one watermark value per GPS coordinate. For TrajGuard, the embedding capacity is approximately
0.25, meaning that, on average, one watermark value is inserted for every four GPS points. This
suggests that TrajGuard embeds a lower amount of watermark information compared to the other
considered watermarking approaches.

6.1.5 Summary. In summary, the proposed W-Trace approach is both effective and robust against
all considered attacks, achieving a high recognition rate of 99% on average on the German (𝐺𝑤 ) and
Porto (𝑃 ) datasets. In contrast, the baselines indicate varying performance and are more sensitive
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Fig. 3. Average modification distance between the original and the watermarked trajectories on the German
(𝐺𝑤 ) and Porto (𝑃 ) datasets.

to factors such as dataset density and attacks. Compared to the TrajGuard,W-Trace embeds more
watermark information into the trajectory, leading to higher robustness. More specifically,W-Trace
embeds four times more watermark information than TrajGuard. Furthermore, W-Trace indicates a
zero false-positive rate in our evaluation.

6.2 Utility: Effect of Watermarking on Real-World Applications
As outlined in Section 2, the proposed watermarking approach is designed to preserve the data
utility for real-world applications. Consequently, downstream applications should be able to utilize
the data despite the modifications introduced by watermarking effectively. In this section, we
evaluate the impact of watermarking on real-world applications, including map matching and
trajectory user linking.

6.2.1 Map matching. We select map matching to evaluate trajectory utility, given its significance
as the initial processing step in numerous mobility applications, such as traffic speed prediction
and accident prediction. To evaluate the impact of the watermarking methods on map matching,
we filter trajectories from the German dataset (𝐺𝑤) for a specific geographic region, namely, the
federal state of Saxony described in Section 5.1, resulting in 767 GPS trajectories. We watermark
the resulting trajectories using our proposedW-Trace approach and baseline methods. Then, we
apply a state-of-the-art map matching algorithm2 to the original and the watermarked trajectories
resulting from the watermarking methods. The trajectories watermarked withW-Trace exhibit a
high average similarity score of 0.98, which confirms that watermarked trajectories resulting from
our approach match approximately the same street segments as the street segments of the original
trajectories, as depicted in Table 3. The TrajGuard approach attains an average similarity score
of approximately 0.99. The high Jaccard coefficient score of TrajGuard is due to the inclusion of
75% GPS coordinates in the watermarked trajectories from the original trajectories, as mentioned
in Section 6.1.4. In contrast, the average Jaccard coefficient value for IMF and SVD methods falls
below 0.90, indicating that watermarked trajectories resulting from these methods have lower
utility regarding map matching. In summary, our proposedW-Trace approach preserves data utility
for map-matching applications while ensuring robustness and embedding a significant amount of
watermark information compared to the baseline methods.

2https://github.com/valhalla/valhalla
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Table 3. Utility ofW-Trace and baseline methods for modified trajectories.

Applications

Watermarking method Map Matching TUL (watermarked) TUL (attacked)
(Jaccard Similarity Coefficient) (Accuracy) (Accuracy)

SVD 0.739 ± 0.139 0.982 ± 0.020 0.970 ± 0.020
IMF 0.894 ± 0.100 0.973 ± 0.017 0.970 ± 0.019

TrajGuard 0.990 ± 0.001 0.973 ± 0.018 0.971 ± 0.023
W-Trace 0.980 ± 0.003 0.979 ± 0.019 0.972 ± 0.022

6.2.2 Trajectory user linking (TUL). The identification of users based on their mobility behavior is
crucial for various applications, such as point of interest (POI) recommendation, predicting the next
location, and monitoring the COVID-19 pandemic [8]. We aim to assess how watermarking impacts
a TUL model. Furthermore, we aim to assess the influence of attacks on the utility of watermarked
GPS trajectories for TUL.
To demonstrate the utility of watermarked trajectories in the TUL context, we employ the

state-of-the-art trajectory user linking method, TULAM [23]. TULAM is a neural network-based
approach with an attention-based mechanism that leverages historical GPS trajectories. TULAM
incorporates GPS coordinates as a feature in the model architecture, which enables us to verify the
impact of watermarking on the data utility for the TULAM model. To enable our evaluation, we
watermark the NYC synthetic trajectory dataset (𝑆) with our proposedW-Trace approach and the
baseline methods. Then, we apply the hybrid attack presented in Section 4 to the watermarked
trajectories.

We train the TULAM model on the original, watermarked, and attacked trajectories. We apply 𝑘-
fold cross-validation with 𝑘=30, and compute the average accuracy score. The results are illustrated
in Table 3. The TULAM model trained on original synthetic trajectory data achieves an average
accuracy score of approximately 0.974. This high accuracy is attributed to the widespread distri-
bution of trajectories across a large region (NYC), where users exhibit distinct mobility patterns,
facilitating effective user identification. In comparison, the TULAM model trained on watermarked
trajectories resulting from our proposedW-Trace approach attains an average accuracy score for
user linking of around 0.979. To further analyze the statistical significance of the accuracy score, we
perform a paired t-test between the accuracy scores of the original and watermarked trajectories.
The outcomes of paired t-tests for ourW-Trace approach reveal that these differences are statistically
insignificant (𝑝-value > 0.05), confirming that watermarked trajectories fromW-Trace approach
preserve the utility of the watermarked trajectory. We observe similar paired t-test results for
watermarking trajectories resulting from the baseline methods. Next, we apply the hybrid attack
on the watermarked trajectories resulting from different methods and assess the utility of attacked
trajectories. The result demonstrates that the attacked trajectories also retain the utility for the
trajectory user linking tasks. In conclusion, ourW-Trace approach effectively preserves the utility
for both watermarked and attacked trajectories for the TUL task.

6.3 Analysis of the Watermarking Time Complexity
In this section, we perform a comparative analysis of the time complexity of watermarking methods.
Our proposed watermarking algorithm utilizes the FFT algorithm to embed watermarks in the
GPS trajectory. FFT has O(𝑁 log2𝑚) [6] time complexity, as discussed in Section 3.3. In the SVD
watermarking method, the trajectory (2-D coordinates) is partitioned into non-overlapping 2-D
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matrix blocks of size 𝑈 × 𝑉 . The time complexity of the SVD method is O(𝑈𝑉𝑚𝑖𝑛(𝑈 ,𝑉 )) [38].
For IMF watermarking, each trajectory is first decomposed with Empirical mode decomposition
(EMD) into IMF. The time complexity of the EMD algorithm is similar to the FFT algorithm, i.e.,
O(𝑁ℓ𝑜𝑔2𝑁 ) [40]. Further, an IMF is represented as a matrix 𝑋 × 𝑌 and decomposed with the SVD
algorithm, which has time complexity O(𝑋𝑌𝑚𝑖𝑛(𝑋,𝑌 )). So, the overall time complexity of the
IMF method is O((𝑁 log2 𝑁 ) + O(𝑋𝑌𝑚𝑖𝑛(𝑋,𝑌 )). Our proposed W-Trace watermarking method
has lower time complexity than the IMF and SVD methods. The TrajGuard watermarking approach
has a complexity O(𝑁 ) [32]. However, there is a trade-off between time complexity and robustness
against the attacks. The linear time complexity of TrajGuard comes at the price of lower robustness
compared to our proposed approach.

6.4 Parameter Analysis
In our evaluation, we assess the impact of different parameters on the effectiveness and robustness
of our approach.

6.4.1 Effect of Watermark Strength. We evaluate W-Trace with different watermark strength 𝑠 ,
defined in Eq. (3). We experiment with different values of 𝑠 , i.e., 0.0001, 0.0003 and 0.0009, and
assess the recognition rate ofW-Trace as illustrated in Fig. 4. We keep the parameters of the attacks
described in Section 5.3 consistent in all the settings. At a low watermark strength of 𝑠 = 0.0001,
the recognition rate is also low, with only 0-27% for several attacks. As expected, the recognition
rate increases with the increasing 𝑠 [37]. At 𝑠 = 0.0003 and 𝑠 = 0.0009, the minimum recognition
rate across the attacks is 94% and 99.91%, respectively.
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Fig. 4. Effect of watermark strength on the W-Trace recognition rate under different attacks on the German
dataset (𝐺𝑤 ).

6.4.2 Effect of Watermark Dimensionality. W-Trace inserts the watermark of specific dimensionality
into the sub-trajectories of each trajectory. To assess the effect of watermark dimensionality on
the W-Trace recognition rate, we insert watermarks with dimensionalities 𝑚 = {8, 16, 32} into
sub-trajectories. When the watermark dimensionality is low, i.e., eight, W-Trace performs well
under RRPP and length modification attacks. However, with such a short watermark length,W-Trace
cannot verify the watermarks under other attacks. Fourier’s descriptors of short watermarked
sub-trajectories are sensitive to external noise, causing the sub-trajectory to shift from the original
position beyond the modification threshold (𝜎). As the watermark dimensionality increases to 16
and 32, the average modification remains below the threshold, and the W-Trace approach resists all
the attacks, as illustrated in Fig. 5.
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Fig. 5. Effect of watermark length on theW-Trace recognition rate under different attacks on the German
dataset (𝐺𝑤 ).

6.4.3 Effect of Acceptance Threshold. We evaluate the effect of varying acceptance thresholds, as
defined in Section 5.4, on the recognition rate of different approaches using the German dataset
(𝐺𝑤). We vary the acceptance threshold value as 𝜏 = {> 80%, > 85%, > 90%, > 95%, 100%}, as
illustrated in Fig. 6. At lower acceptance thresholds (> 80%), all methods consistently achieve high
recognition rates for different attacks. However, all methods experience a significant decline in
recognition rates at thresholds of 95% and above. In particular, the IMF method demonstrates lower
recognition rates compared to the other approaches at different 𝜏 values. In our experiments, we
set the acceptance threshold value (𝜏) to 85%.

(a) W-Trace (b) IMF Watermarking (c) SVD Watermarking (d) TrajGuard

Fig. 6. Effect of varying acceptance threshold on recognition rate under various attacks on the German
dataset (𝐺𝑤 ).

6.4.4 Effect of the candidate trajectory selection on watermark verification. In this section, we
evaluate the effect of the candidate trajectory selection step on the watermark verification, described
in Section 3.2. In particular, we aim to determine the impact of the candidate selection based on
the Haversine distance on the watermark recognition rate and the false-positive rate. In practice,
the candidate trajectory selection step may fail to identify the matching original trajectory in two
scenarios: 1) another trajectory in the dataset has a smaller Haversine distance. This issue can be
mitigated by selecting more trajectory candidates (e.g., top-k), and 2) the trajectory of interest does
not exist in the dataset, such that the selection based on a distance metric returns a non-matching
trajectory. Given a non-matching trajectory pair provided for the watermark verification, the
intended behavior of the verification procedure is to fail to verify the watermark, i.e., to have a low
false-positive rate. We compare the performance of our proposedW-Trace approach with the IMF
watermarking, a non-blind baseline method.
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Table 4. The watermark verification results for IMF and W-Trace on the candidate trajectory dataset 𝐺𝑐 . The
table presents the total number of trajectories in 𝐺𝑐 , the percentage of trajectories in 𝐺𝑐𝑤 correctly matched
with 𝐺𝑤 , the recognition rate, and the false-positive (FP) rate.

Method # Traj., 𝐺𝑐 Traj. in 𝐺𝑐𝑤 correctly matched with 𝐺𝑤 , % Recognition rate, % FP rate, %

IMF 2,200 100 71.27 29.27
W-Trace 2,200 100 99.00 0.00

In this experiment, we utilize two datasets: the German dataset𝐺𝑤 and the candidate trajectory
dataset 𝐺𝑐 , described in Section 5.1. The German dataset 𝐺𝑤 contains original trajectories. In
these settings, the trajectory owner maintains this dataset for watermark verification purposes.
The dataset 𝐺𝑐 contains watermarked and attacked trajectories 𝐺𝑐𝑤 derived from 𝐺𝑤 and non-
watermarked trajectories 𝐺𝑛𝑤 . For each trajectory in 𝑇 ∈ 𝐺𝑐 , the candidate selection step aims
to identify the closest matching trajectory from the German dataset 𝑇 ∈ 𝐺𝑤 using the minimum
Haversine distance, as discussed in Section 3.2. The results are presented in Table 4. Our results
indicate that all the trajectories in 𝐺𝑐𝑤 correctly match their true pairs 𝑇 ∈ 𝐺𝑤 in both approaches.
In this setting, the selected candidate pairs for 𝐺𝑛𝑤 will not match by design. We extract the water-
mark from trajectories in 𝐺𝑐 based on the identified pairs and perform the watermark extraction
step. As expected, the results in Table 4 demonstrate a 99% watermark recognition rate for the
W-Trace approach and 71.27% for IMF watermarking, which are consistent with the results in
Table 2. Moreover, our approach successfully identifies non-watermarked trajectories with a zero
false-positive rate, while IMF watermarking exhibits a 29.27% false-positive rate. These results
demonstrate that ourW-Trace approach is effective and robust in distinguishing between water-
marked and non-watermarked trajectories and outperforms the IMF watermarking by a large
margin.

6.4.5 Variation of Attack Parameters. We evaluate the recognition rate of different methods with
varying attack parameters (𝜃 ) on the German dataset (𝐺𝑤). Furthermore, we vary the number of
inserted and removed data points in LIA and CA attacks, respectively. The W-Trace method is
robust to all the attacks with different values of the parameter, as illustrated in Fig. 7. The IMF
watermarking method does not perform well in all the attacks. In addition, TrajGuard and SVD
methods have the lowest recognition rate in RNSPP attacks.

7 RELATEDWORK
This section discusses state-of-the-art methods of watermarking from the media and mobility
domains. While most current watermarking research focuses on the media domain, including audio,
video, and images, watermarking in the mobility domain, and, in particular, watermarking GPS
trajectories, remains relatively limited. Furthermore, we briefly discuss representation learning
methods for GPS trajectories.
Watermarking in the media domain. In the audio domain, El-Wahab et al. [13] employed Em-
pirical Mode Decomposition (EMD) to decompose the signal into multiple Intrinsic Mode Functions
(IMFs) and added the watermark vector to one of the IMFs using Singular Value Decomposition
(SVD). Similarly, K. et al. [20] developed a blind adaptive audio watermarking algorithm based on
SVD and utilized the Discrete Wavelet Transform (DWT). DWT and Discrete Cosine Transform
(DCT) techniques are used in watermarking in the image domain [3, 5]. Additionally, deep learning-
based approaches have been utilized for encoding the watermark in images, such as adversarial
training and channel coding [27]. In the video domain, watermarking applications are explored,
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Fig. 7. Recognition rate of different methods with varying attacking parameter (𝜃 ) on the German dataset
(𝐺𝑤 ).

such as the VStegNET method [28], which extracts spatio-temporal features using 3D-CNN to
embed watermark information. Luo et al. [26] proposed an adversarial training based end-to-end
trainable framework called DVMark for video watermarking. In this article, we utilize methods
from the audio domain [13, 21] as baselines. Experimental results reveal that our proposed approach
is more robust than audio domain-based methods.
Watermarking GPS trajectories. The research on watermarking GPS trajectories is still limited.
Jin et al. [19] introduced an initial watermarking technique that involves inserting a small error
into the GPS coordinates that define the trajectory shape. This technique has limitations, such
as its inability to function effectively when consecutive similar coordinates exist, such as stops
within trajectory data. In contrast, the state-of-the-art TrajGuard approach for watermarking GPS
trajectories by Pan et al. [32] utilizes a geometric transformation to watermark GPS trajectories by
partitioning trajectories into sub-trajectories and embedding the watermark using the centroid
distance. In this article, we utilize TrajGuard as a baseline. We demonstrate through experiments
that our proposed approach,W-Trace, is more robust, effective, utility-preserving, and capable of
embedding more information.
Representation learning for GPS trajectories. Representation learning methods such as [24],
[42], [35] create low-dimensional vector representations of GPS trajectories. These methods embed
trajectories into low-dimensional vector spaces to preserve trajectory properties essential for
similarity computation. Such methods can assess trajectory similarity in the presence of noise [24]
or adversarial attacks [35]. However, unlike watermarking, such methods do not embed explicit
provenance information into the trajectories. Therefore, trajectory similarity computation based on
latent representations is less interpretable for provenance assessment than watermark verification.

8 CONCLUSION
In this article, we propose W-Trace – a novel, effective, robust, and utility-preserving approach
for watermarking GPS trajectories. W-Trace adopts a Fourier-based technique and embeds the
watermark using the Discrete Fourier Transform in the complex domain. W-Trace achieves an
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average watermark recognition rate of around 99%. Our results indicate that the watermarked
trajectories generated by theW-Trace approach retain relevant utility characteristics of the original
trajectories. Moreover, W-Trace embeds more watermark information than the baseline methods.
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A PARAMETER SELECTION
In this section, we describe a grid search to select the watermarking method parameters for three
datasets. In particular, we perform a grid search over watermark strength 𝑠 inW-Trace, scaling factor
𝑑 in IMF, quantization coefficient Δ in SVD, and intensity 𝛾 in TrajGuard, such that the average
modification distance between the original and watermarked trajectories is below the modification
threshold and comparable across the watermarking methods. We use Haversine distance as a
distance measure. Table 5 presents the average modification distance for different methods with
different parameter values for the German (𝐺𝑤 ), Porto (𝑃 ), and Synthetic (𝑆) datasets. The selected
parameters are mentioned in bold in the table.

Table 5. Average modification distance (in meters) between the original trajectory and watermarked trajectory
for the German (𝐺𝑤 ), Porto (P), and Synthetic (S) dataset

Watermarking Method Parameter German (G) Porto (P) Synthetic (S)

W-Trace
𝑠 = 0.00025 3.9 4.2 3.1
s = 0.0003 4.7 5.0 5.0
𝑠 = 0.00035 5.5 5.9 6.0
𝑠 = 0.0004 6.3 6.7 6.3

IMF
𝑑 = 0.0001 2.4 4.5 3.0

d = 0.00015 4.3 6.9 5.2
𝑑 = 0.0002 6.4 9.5 7.2
𝑑 = 0.00025 8.7 12.0 9.1

TrajGuard
𝑤𝑠 = 0.002(P),𝑤𝑠 = 0.03(𝐺𝑤 & S),𝑤𝑡 = 10, 𝛾 = 0.0001 1.7 1.7 1.8
𝑤𝑠 = 0.002(P),𝑤𝑠 = 0.03(𝐺𝑤 & S),𝑤𝑡 = 10, 𝛾 = 0.0002 3.4 3.5 3.0
ws = 0.002(P),ws = 0.03(𝐺𝑤 & S),wt = 10, 𝛾 = 0.0003 5.7 5.3 5.0
𝑤𝑠 = 0.002(P),𝑤𝑠 = 0.03(𝐺𝑤 & S),𝑤𝑡 = 10, 𝛾 = 0.0004 6.9 7.0 7.1

SVD
Δ = 0.0002 3.8 3.9 2.9
∆ = 0.0003 5.7 5.8 5.4
Δ = 0.0004 7.7 7.8 7.1
Δ = 0.0005 9.6 9.6 9.0
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ABSTRACT
With the rise of data-driven methods for traffic forecasting, accident
prediction, and profiling driving behavior, personal GPS trajectory
data has become an essential asset for businesses and emerging
data markets. However, as personal data, GPS trajectories require
protection. Especially by data breaches, verification of GPS data
ownership is a challenging problem. Watermarking facilitates data
ownership verification by encoding provenance information into
the data. GPS trajectory watermarking is particularly challenging
due to the spatio-temporal data properties and easiness of data
modification; as a result, existing methods embed only minimal
provenance information and lack robustness. In this paper, we pro-
poseW-Trace – a novel GPS trajectory watermarking method based
on Fourier transformation. We demonstrate the effectiveness and
robustness ofW-Trace on two real-world GPS trajectory datasets.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; • Security
and privacy;

KEYWORDS
GPS trajectory, Watermarking, Data provenance, Data protection

1 INTRODUCTION
Personal GPS trajectory data are adopted in various critical do-
mains, including data-driven urban traffic management, mobility,
communication, and health. However, GPS trajectory data encode
sensitive personal information such as user addresses, visited lo-
cations, and routes. Sharing and trading personal GPS trajectory
data, even based on user consent, can occasionally result in data
breaches and user privacy loss [3].

Figure 1 illustrates an example application scenario in which
GPS trajectory data, initially shared according to the user’s con-
sent, is obtained by an adversary due to a data breach, modified
to obscure the data origin, and illegally re-distributed on the mar-
ket. Whereas the modification makes it challenging to claim the
data ownership and to identify the misuse, sensitive personal in-
formation, such as user routes and driving patterns encoded in the
trajectory, remains visible. The risk of data breaches necessitates
the development of effective and robust provenance information

©Rajjat Dadwal, Thorben Funke, Michael Nüsken and Elena Demidova, 2022. It is
included into the thesis with the ACM permission. Not for redistribution. The definitive
version was published in the proceedings of The 30th International Conference on
Advances in Geographic Information Systems, SIGSPATIAL 2022, https://doi.org/10.
1145/3557915.3561474.
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Figure 1: An exampleW-Trace application scenario. Water-
marked GPS trajectory data is modified and re-distributed by
an adversary. W-Trace enables data provenance verification.
Map data: ©OpenStreetMap contributors, ODbL.

embedding methods for personal GPS trajectory data to facilitate
data provenance verification.

Digital watermarking refers to methods that embed provenance
information (so-called watermarks) into noise-tolerant data. Wa-
termarking has been extensively studied in the media domain to
protect images, videos, and audio files [2, 4]. In contrast, only a few
initial approaches target watermarking of personal GPS trajecto-
ries [6, 9]. Watermarking GPS trajectories poses several challenges
and is an inherently difficult task. The strength of a watermark
is subject to a trade-off. On the one hand, a watermark should be
robust, i.e., strong enough not to be removed by an adversary. On
the other hand, a watermark should, at the same time, be weak,
such that the watermarked data is still usable in the downstream
applications. In addition to this general challenge for digital wa-
termarking, GPS trajectories are, with their non-uniform sampling
rate and positional inaccuracy, inherently susceptible to different
modifications than media data, such as removal/addition of points
or re-sampling along the path. State-of-the-art watermarking me-
thods in the trajectory domain either lack robustness [6] or are
ineffective, i.e., they embed only a small amount of data [9].

In this paper, we proposeW-Trace – a novel, robust and effective
watermarking method for personal GPS trajectories.W-Trace repre-
sents two-dimensional trajectory coordinates as complex numbers
and adopts Discrete Fourier Transform (DFT) to enable effective
watermark embedding in the frequency domain. To the best of our
knowledge, we are the first to propose a DFT-based watermarking
scheme for GPS trajectories. We confirm the effectiveness and ro-
bustness of our approach by considering a comprehensive set of
attacks, i.e., adversarial trajectory modifications, including noise
addition, point replacement, and size modifications. We conduct an
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extensive evaluation using two real-world GPS trajectory datasets.
We demonstrate that under the majority of considered attacks, W-
Trace retains the watermark in 100% cases. We make our algorithm
and data processing pipeline available as open source1.

2 DEFINITIONS & PROBLEM FORMULATION
In this section, we introduce the definitions and the problem for-
mulation, which we tackle with the proposedW-Trace approach.

Definition 2.1 (Trajectory). A trajectory 𝑇 is a list of GPS coordi-
nates ordered by the corresponding timestamps:

𝑇 = [(𝑝 𝑗 , 𝑡 𝑗 )],with 𝑡 𝑗 < 𝑡 𝑗+1 for all 𝑗,

where 𝑝 𝑗 = (𝑎 𝑗 , 𝑏 𝑗 ) is the two-dimensional position with latitude 𝑎 𝑗
and longitude 𝑏 𝑗 and 𝑡 𝑗 is the timestamp of that position. Trajectory
size, size(𝑇 ), denotes the number of timestamps included in 𝑇 .

A watermark is a signal embedded into the trajectory to enable
verification of the trajectory origin. In this work, we represent
watermarks as integer vectors.

Definition 2.2 (Watermark). A watermark𝑤 ∈ Z𝑚 is an integer
vector with the dimensionality𝑚.

The dimensionality𝑚 of the watermark corresponds to the size
of the (sub-)trajectory in which the watermark is embedded.

Watermark verification confirms if a given original water-
mark is embedded into the data and requires both the extracted
watermark and the original watermark to be verified.

When the watermarking process modifies a trajectory 𝑇 into 𝑇 ,
𝑇 needs to maintain usability for real-world applications. We make
that intuition precise by defining a modification threshold.

Definition 2.3 (Modification threshold). A modification thres-
hold 𝜎 bounds a distance 𝐷 for trajectories. Given a modification
threshold 𝜎 , we consider 𝑇 a 𝜎-modification of 𝑇 if the spatial
distance between these two trajectories is at most 𝜎 . Formally:

D(𝑇,𝑇 ) ≤ 𝜎. (1)

In our experiments, we work with 𝜎 =10 meters, which reflects
the typical inaccuracy of GPS sensors [1].

Our goal is to watermark GPS trajectories such that the water-
marked trajectory remains usable for downstream applications and
the watermark can be verified effectively, even if the watermarked
trajectory is modified. Formally, given a watermark embedding
procedure EMB, the respective watermarking verification proce-
dure VER, and a watermark𝑤 , we aim that a trajectory 𝑇 and its
corresponding watermarked trajectory 𝑇 = EMB(𝑇,𝑤) obtained
after applying watermarking are within the predefined modifica-
tion threshold 𝜎 . Moreover, we aim that the verification of𝑤 with
VER is possible, even if 𝑇 ′ is modified from 𝑇 within a modifica-
tion threshold 𝜎 . Hence, we want to ensure that the verification
VER(𝑇 ′,𝑇 ,𝑊 ) returns true, if 𝑇 ′ is a 𝜎-modification of 𝑇 .

3 THE W-TRACE APPROACH
This section presents our proposed watermark embedding and
verification methodW-Trace.
1Software: https://github.com/Rajjat/watermarkingTrajectory

3.1 Watermark Embedding
Watermark embedding aims to incorporate a watermark into a
given GPS trajectory. We consider a trajectory 𝑇 of size 𝑛. We
associate each GPS point (𝑎 𝑗 , 𝑏 𝑗 ) with a complex number,

𝑐 𝑗 = 𝑎 𝑗 + 𝑖𝑏 𝑗 , (2)

where 𝑖 is the imaginary unit. We split the transformed trajectory
intomultiple sub-trajectories of equal size. Next, we apply a Discrete
Fourier Transform (DFT) to each sub-trajectory, where we use
the Fast Fourier Transform (FFT) [8] algorithm for efficiency. DFT
retrieves a frequency domain representation of the input and results
in a sequence of complex numbers of the same length as the input.
We feed the list of positions 𝑐 = (𝑐 𝑗 )𝑘≤ 𝑗<ℓ from the sub-trajectory
spanning the indices 𝑘 to ℓ , represented as complex numbers, into
the FFT algorithm. The resulting frequency representations we then
represent via amplitudes 𝛼 and phase angles 𝜑 :

𝛼, 𝜑 ← FFT(𝑐) . (3)

Then, for a sub-trajectory, the watermark 𝑤 with strength 𝑠 is
inserted in the amplitude 𝛼 :

𝛼 = 𝛼 + 𝑠 ·𝑤. (4)

A design decision of our method is to represent the watermark𝑤
as a vector of 1, −1, and 0 values of the same size as each sub-
trajectory. This watermark is chosen and stored by the user; the
watermark may be the same for each sub-trajectory or vary. In our
experiments, we generate the watermarks randomly. The higher
the watermark strength 𝑠 , the more we modify the trajectory by
inserting the watermark. In our experiments, we use 𝑠 = 0.0003.
We split each trajectory into sub-trajectories of size 16. In each
sub-trajectory, we embed a watermark with 10 non-zero dimen-
sions. Once the watermarks are inserted in the amplitude of each
sub-trajectory, the next step is to apply an inverse FFT (IFFT) to
obtain the watermarked sub-trajectory. We take the watermarked
amplitude 𝛼 with the original phase 𝜑 and form a complex number
𝑡 𝑗 ← 𝛼 𝑗 exp(𝑖𝜑 𝑗 ). Applying the inverse FFT to the vector 𝑡 , we
obtain the watermarked trajectory �̃� . We abbreviate this as follows:

�̃� = (𝑎, 𝑏) ← IFFT(𝛼, 𝜑). (5)

3.2 Watermark Extraction & Verification
Watermark verification aims to verify if the specific watermark𝑤
is embedded in the given trajectory 𝑇 ′. This process includes four
steps: selection of a candidate trajectory, trajectory size alignment,
watermark extraction, and watermark correlation.

Candidate selection. As input, the watermark verification pro-
cess requires the trajectory 𝑇 ′ to be verified, the original trajec-
tory 𝑇 , the watermark 𝑤 and the watermark strength parameter
𝑠 adopted in the watermark embedding process. As the candidate
original trajectory 𝑇 , we select the closest user trajectory based on
the minimum haversine distance to 𝑇 ′.

Trajectory size alignment.Ourwatermark verification process
requires𝑇 and𝑇 ′ to be of the same size. If 𝑠𝑖𝑧𝑒 (𝑇 ′) > 𝑠𝑖𝑧𝑒 (𝑇 ), i.e. the
trajectory size increased, we filter the coordinates from 𝑇 ′ based
on the minimum haversine distance to the candidate trajectory
𝑇 . If the trajectory size of 𝑇 ′ is smaller than 𝑠𝑖𝑧𝑒 (𝑇 ), we fill the
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positions in 𝑇 ′ with a re-sampling of the closest point (regarding
the haversine distance) to obtain the same size.

Watermark extraction. The watermark extraction process in
W-Trace is non-blind, i.e., requiring the original data, and is the
reverse of the watermark insertion process. We split 𝑇 ′ into sub-
trajectories of equal size and apply DFT to calculate the amplitude
𝛼 ′. We retrieve the watermark with:

𝑤 ′ = 𝛼 ′ − 𝛼
𝑠

, (6)

where 𝛼 is the amplitude of the candidate trajectory 𝑇 and 𝑠 is the
watermark strength.

Watermark correlation. The next step to verify the watermark
is to compute the correlation between the extracted watermark
𝑤 ′ and the original watermark𝑤 of each sub-trajectory. We adopt
Normalized Cross-Correlation (NCC) – a widely used watermark
verification measure [4]. NCC can successfully verify the water-
marks in GPS trajectories, as demonstrated by our experiments.
NCC of two watermarks,𝑤 and𝑤 ′, is computed as:

NCC(𝑤,𝑤 ′) =
∑
𝑖 𝑤𝑖𝑤

′
𝑖√︃∑

𝑖 𝑤
2
𝑖

√︃∑
𝑖 𝑤
′
𝑖
2
. (7)

The value of NCC lies between −1 and 1. NCC value 1 indicates
that two vectors are highly correlated, whereas 0 and −1 indicate
no correlation and negative correlation, respectively. Finally, an
average NCC score for all sub-trajectories of a given trajectory is
calculated, and the verification is successful if this value is higher
than the acceptance threshold 𝜏 . We adopt 𝜏 > 0.85 based on [9].

4 THREAT MODEL: ATTACKS ON
TRAJECTORIES

Digital watermarking is subject to adversarial attacks. The available
knowledge limits the adversary’s ability to prevent watermark ve-
rification. This paper assumes that an adversary has limited access,
namely, knows the watermarked trajectory and the watermarking
algorithm. In contrast, the original GPS data and the specific wa-
termark embedded into the data remain unknown. An adversary
with limited knowledge cannot remove the watermark directly. In-
stead, the adversary can attempt heuristic trajectory modifications
to prevent watermark verification. We refer to such modifications
as attacks on trajectories.

To quantify the utility of the trajectory modified in the adversa-
rial settings for real-world applications, we follow the same princi-
ple as we introduced for the trajectory watermarking and apply a
modification threshold 𝜎 :

𝑇 ′ = 𝐴𝑇 (𝑇, 𝜃 ), 𝑠 .𝑡 . 𝐷 (𝑇,𝑇 ′) ≤ 𝜎.

Here,𝐴𝑇 (·) is the attack function,𝑇 is thewatermarked trajectory,𝜃
represents the specific attack parameter, 𝐷 (·) is the distance metric,
𝑇 ′ is the modified watermarked trajectory, and 𝜎 is the modification
threshold limiting the effects of the possible attacks on trajectories.

In this paper, we focus on the attacks discussed in the literature
in the contexts of trajectory watermarking [9], trajectory similarity
measures [10] and themore general perspective of cryptography [5].
In particular, we consider four different attack types: noise additive

attacks, point replacement attacks, size modification attacks, and
the combination of these types, the hybrid attack.
Noise Additive Attacks. In noise additive attacks, noise is inserted
into trajectory coordinates.

(1) Additive Gaussian White Noise (AGWN) In this attack,
for each position in the trajectory, a random sample from a
normal distribution is drawn and added to the GPS position.

(2) Additive Signal to Noise Ratio (ASNR) This attack is
similar to the previous attack, but we scale the noise to
achieve a selected signal-to-noise ratio (SNR).

(3) Additive Outliers with SNR (AOSNR)We randomly select
points with the probability 𝜃 = (𝑝AOSNR), and then add
scaled noise to these positions.

(4) Double Embedding Attack (DEA) In the double embed-
ding attack, an adversary attempts to remove the original
watermark by embedding a different watermark with the
same approach as the original watermark.

Point Replacement Attacks. Point replacement attacks remove
specific trajectory elements and replace them with information
based on the adjacent points.

(1) Replace Random Points (RRP) Points are selected with
the probability 𝜃 = (𝑝RRP), and then those selected points
are replaced with their respective previous points.

(2) Replace Random Points with Path (RRPP) replaces each
point with the probability 𝜃 = (𝑝RRPP). The replaced value
is a convex combination of the remaining adjacent points.

(3) Replace Non-Skeleton Points with Path (RNSPP) In this
attack, we use the Ramer–Douglas–Peucker (RDP) algorithm.
The points removed by the RDP algorithm are replaced with
a convex combination of the adjacent points.

Size Modification Attacks. In size modification attacks, the tra-
jectory size is modified either by cropping or interpolation.

(1) Linear Interpolation Attack (LIA) Additional points are
inserted at random positions in the trajectory by linear in-
terpolation, increasing the trajectory size.

(2) Cropping Attack (CA) Cropping attack removes selected
points from the trajectory, decreasing the trajectory size.

Hybrid Attacks. An adversary can combine several attacks on the
same trajectory. We exemplify a hybrid attack as a sequence of a
cropping attack (CA) followed by additive Gaussian white noise
(AGWN) and replace random points (RRP).

5 EVALUATION
We aim to evaluate the effectiveness and robustness of W-Trace
regarding the threat model. In this section, we describe the experi-
mental setup and results.
Datasets. We use two real-world trajectory datasets for evaluating
the proposed watermarking method. We randomly selected 1100
trajectories of size 256 from each dataset.

(1) German Dataset is provided by a proprietary data provider.
The dataset contains trajectory data of vehicles from two
German federal states: Saxony and Lower Saxony, in Septem-
ber 2019. The average sampling rate is 12 times per minute.
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Table 1: Recognition Rate ofW-Trace and baseline methods on the German and Porto datasets.

Noise additive Point replacement Size mod. Hybrid Avg.
Method Dataset AGWN ASNR AOSNR DEA RRP RNSPP RRPP LIA CA
SVD German 100.0 79.4 99.7 0.0 100.0 65.3 100.0 100.0 100.0 100.0 84.3
(Blind) Porto 100.0 98.2 99.3 0.0 100.0 94.7 100.0 100.0 100.0 100.0 89.2
IMF German 72.5 70.6 74.5 75.2 75.8 76.0 75.1 76.0 77.1 72.1 74.5

(Non-blind) Porto 87.2 87.0 90.3 90.8 90.1 90.8 90.7 90.3 91.0 87.1 89.5
TrajGuard German 87.6 83.2 94.4 94.4 95.6 74.2 95.9 75.2 91.9 83.8 87.6
(Blind) Porto 59.8 56.2 55.7 61.7 68.3 65.0 68.3 63.6 64.5 57.5 62.1
W-Trace German 100.0 99.8 98.2 100.0 98.6 100.0 100.0 100.0 100.0 94.0 99.0

(Non-blind) Porto 100.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.8

(2) Porto Dataset contains variable size trajectories generated
by 442 taxis from July 1, 2013, to June 30, 2014, in Porto,
Portugal [7]. The sampling rate is four times per minute.

Baselines. We adopt state-of-the-art watermarking methods from
the audio domain and GPS trajectories domain.

(1) IMF Watermarking [4] is a non-blind technique used in
watermarking audio signals. Each trajectory is represented
as a signal (latitude/longitude vs. time) and decomposed into
multiple parts using Empirical Mode Decomposition (EMD).

(2) TrajGuard [9]watermarks a GPS trajectory using a geomet-
ric transformation based on a blind scheme, i.e., it does not
require the original data for the extraction. TrajGuard parti-
tions the trajectory into multiple parts and then distributes
the watermark into all the sub-trajectories.

(3) SVD Watermarking [2] is based on a blind audio water-
marking scheme. This method uses Singular Value Decom-
position (SVD) and quantization index modulation.

Evaluation Metrics. To assess the watermark verification effec-
tiveness and robustness, i.e., the ability to correctly recognize a
watermark in modified trajectory data, we adopt recognition rate.
Recognition rate is the ratio of the number of correctly identified
watermarked trajectories (true positives, 𝑇𝑃 ) to the total number
of watermarked trajectories: Recognition rate = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ),
where 𝐹𝑁 is the number of false negatives, i.e., unrecognized wa-
termarked trajectories. Following [9], we accept the watermark to
be successfully verified if the average watermark correlation be-
tween the noised trajectory and watermarked trajectory is higher
than the acceptance threshold, i.e., 𝜏 > 85%.
Evaluation Results. W-Trace approach is effective and robust
against all the considered attacks in both datasets, as shown in Ta-
ble 1. The average recognition rate ofW-Trace is around 99% in both
datasets, confirming the effectiveness, robustness, and generalizabi-
lity ofW-Trace. Baselinemethods demonstrate varying performance
against some attacks across the two datasets. For example, Traj-
Guard does not perform well in multiple attacks, especially on the
Porto dataset. This is because the Porto dataset is spatially denser
than the German dataset, making TrajGuard more vulnerable to
attacks [9]. Furthermore, TrajGuard embeds a smaller amount of
watermark information, leading to a lower recognition rate. IMF
watermarking failed to detect the watermark in the German dataset,

whereas this method works well for the Porto dataset. The German
dataset covers a large geographical area, including two German
federal states, whereas the Porto dataset is limited to one city. A
denser spatial area of the Porto dataset leads to a better decomposi-
tion and makes the verification process more effective. Regarding
the SVD watermarking, we observe that the DEA attack destroys
the quantization-based watermark detection process. In summary,
in contrast to the baselines, W-Trace is more robust against the
considered attacks and less dependent on data sparsity.
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