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Abstract

In this work, we present a new theory to treat multi-component liquids based on

quantum-chemically calculated clusters. The starting point is the binary quantum

cluster equilibrium theory that is able to treat binary systems. The theory provides

one equation with two unknowns. In order to obtain another linearly independent

equation, conservation of mass is used. However, increasing the amount of components

leads to more unknowns and this requires linearly independent equations. We address

this challenge by introducing a generalization of the conservation of arbitrary quantities,

accompanied by a comprehensive mathematical proof. Furthermore, a case study for
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the application of the new theory to ternary mixtures of chloroform, methanol and

water is presented. Calculated enthalpies of vaporization for the whole composition

range are given, and populations or weights of the different clusters are visualized.

1 Introduction

The chemical industry has demand for accurate predictions of thermodynamic properties

of liquid mixtures.1,2 Various methods exist to accommodate this demand, such as the

quantum-chemical solvent model COSMO-RS3,4 as well as the group contribution methods

UNIQUAC5 and its functional-group extension UNIFAC.6 Today, classical molecular dy-

namics (MD) simulations, known for their computational efficiency, are routinely employed

to determine the thermodynamic and physico-chemical properties of liquids. These simu-

lations can be applied to study a diverse array of systems, relying on the underlying force

field. Calculating thermodynamic properties from MD simulations is a very active research

field, with new methods and approaches being developed and benchmarked regularly.7–12 In

the standard formulation of MD, the intra- and intermolecular interactions are described by

pairwise additive Lennard-Jones (LJ) and a Coulomb potentials. In many commonly used

force fields, the LJ potential is parameterized to reproduce experimentally obtained proper-

ties of the pure components. When extending the simulated systems from pure liquids to

multi-component systems, the multi-component properties are often calculated by averaging

over the properties of the pure components.13 In such cases, the LJ parameters are usu-

ally averaged either geometrically or arithmetically (Lorentz–Berthelot mixing rules14) to

obtain the LJ parameters of the mixture. This is computationally fast, but it might lead to

inaccurate results, especially when the LJ parameters of the pure components differ signifi-

cantly,15,16 and the inclusion of correction terms might be necessary to accurately calculate

certain properties such as diffusion coefficients.17 To avoid such inaccuracies and the need for

further parameterization, ab initio MD (AIMD) simulations present a highly accurate albeit

computationally demanding alternative.18,19 Early examples of AIMD works date back to
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the 70s,20,21 and first applications to condensed phases were published by the late 80s.22,23

Although continuous advances in computational power make AIMD an increasingly feasible

option,24,25 limiting factors such as the system size and number of simulations hamber the

sampling of a wide range of concentrations and temperatures.

One fundamentally different approach to describe liquids and their mixtures is offered by

the quantum cluster equilibrium (QCE) method.26,27 It was developed by Frank Weinhold

and is conceptually based on the idea that the liquid bulk system can be described as a dense

distribution of statistically reoccurring molecular cluster motifs. Within the framework of the

QCE method, a cluster is defined as a characteristic configuration of molecules that exists

in-between the limits of an isolated monomer in the gaseous phase and a large aggregate

in the condensed phase. Through a combination of statistical mechanics and quantum-

chemical calculations, the QCE method can be used to determine populations for a set of

representative clusters and, thus, build a cluster-based model of liquids and gases. Through

weighting the partition function of each cluster by its population, the total system partition

function can be obtained, allowing the direct calculation of thermodynamic properties such

as enthalpy or heat capacity. The QCE method has been successfully applied to study pure

liquids, molecular mixtures, and ionic liquids.26,28–40

The geometry and interaction energies of each cluster in a cluster set are quantum-

chemically optimized. A key advantage of the QCE method is that highly accurate quantum-

chemical methods can be applied to these clusters up to coupled cluster theory (CC)41,42 and

others. Additionally, QCE allows for the inclusion of different cluster sizes and compositions.

It yields weights for the clusters that outperform simple conformer weighting as is done in

standard quantum chemical calculations when bulk phase quantities need to be accessed.43

However, due to its inherently static description of the system, the QCE method is not able

to access dynamic properties (e.g., diffusion coefficients) as is done in MD simulations, but

needs additional approximations.

Up to now, the QCE theory has been limited to binary systems (bQCE),44 i.e., systems
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consisting of two different types of molecules, allowing the study of binary mixtures or ionic

liquids. Noting the existing demand for accurate predictions of thermodynamic properties

of systems with more than two components, a generalization of the QCE theory to multi-

component systems is highly desirable. In this work, we present a new theory to describe

multi-component systems within the QCE framework (mQCE) and provide a mathematical

proof for its central equations. The new theory overcomes the previous requirement for

conserved quantities to solve the central equation system for the cluster populations. Thus,

it allows the inclusion of an arbitrary number of components. Furthermore, by eliminating

the cluster mass as a quantity in the new equations presented herein, the study of components

with equal or near equal mass is possible, such as racemic mixtures or ionic liquids with an

anion and cation of similar mass.

This paper is outlined as follows: basic equations from thermochemistry are recapitu-

lated in the Supporting Information, forming the foundation of the binary QCE formalism

introduced in section 2.1 and followed by the extension to multi-component systems in sec-

tion 2.2. Computational details and a case study for the application of the mQCE theory

are given in sections 3 and 4, respectively.

2 Methodology

The underlying theory of the QCE method was initially published by Frank Weinhold in

1998.27 While the QCE theory was originally developed for the description of pure liquids

and implemented in the Peacemaker45 software in 2005,46 it was extended to binary

mixtures of liquids by our group in 2011.44

2.1 Binary QCE theory

The bQCE formalism is summarized in the following. For a more detailed derivation, we refer

the reader to Ref. 44. In the bQCE method, every particle exists either in the monomeric
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ground state or as part of a cluster. Here, a cluster consists of one or more monomers

from one (in case of a neat system) or two (in case of a binary mixture) components. The

number of cluster states that a particle can exist in is limited to a selection of representative

quantum-chemically optimized clusters that together form the so-called cluster set. The

ensemble is assumed to be in thermodynamic equilibrium, that is, the clusters form and

dissociate according to

nA+mB −−→←−− AnBm, (1)

where A and B denote the monomers of components a and b, respectively. To generalize

the above notation, a cluster of the form AnBm will be given the general label Pi, where

i ∈ {1, . . . , L} is a running index to differentiate between each unique representative cluster,

and L is the number of clusters in the cluster set. Equation (1) can then be expressed in a

more general way as

na
iA+ nb

iB −−→←−− Pi, (2)

where na
i and nb

i are the number of monomers of components a and b in the cluster Pi, respec-

tively (na
i , n

b
i ∈ N0, with N0 being the set of natural numbers including zero). By introducing

this notation, multiple clusters of identical composition (but composed of max. two com-

ponents) can exist, taking into account different conformers and molecular arrangements of

the monomers.

The initial goal is to determine the distribution {Ni} (with Ni ∈ N0) of clusters Pi that,

at a given state of volume V , temperature T , and total number of particles N tot, represents

a minimum of the free energy F :

F = −kBT lnQ. (3)

It should be noted that N tot is the sum of the total numbers of monomers of the two
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components N tot
1 , N tot

2 . The system partition function Q is given by

Q =
L∏
i

1

Ni!
qNi
i , (4)

where qi and Ni are the partition function and population of cluster Pi, and L is the total

number of clusters, respectively. The cluster partition function can be written as a product

of partition functions associated with the clusters degrees of freedom:

q = qtrans qrot qvib qelec, (5)

where qtrans, qrot, and qvib are the translational, rotational, and vibrational cluster partition

functions and are calculated using standard models of statistical thermodynamics (see SI).

The electronic cluster partition qelec is calculated from the adiabatic interaction energy

of the monomers upon cluster formation, ∆bindε
elec
i :

∆bindε
elec
i = εeleci − na

i ε
elec
1 − nb

iε
elec
2 , (6)

where εeleci is the electronic energy of cluster Pi. To account for interaction between the

clusters, an additional (attractive) mean-field term is added to the cluster partition function:

qeleci = exp

{
−
∆bindε

elec
i − (na

i + nb
i)

amf

V

kBT

}
, (7)

using the empirical mean-field parameter amf with the dimension energy ·volume. The mean-

field contribution to the electronic partition function is proportional to the cluster size and

the density of the system. The amf parameter is a simple approach to scale the strength of

the mean-field.

Moreover, to account for the eigenvolume vi of the clusters, that is inaccessible to trans-

lation, the exclusion volume Vex is introduced. Available methods to calculate the cluster
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volume, such as the GEPOL47 algorithm, are often sensitive to the choice of atomic radii.26

This requires an additional (dimensionless) empirical parameter bxv, in order to scale the

cluster volumes correctly:

Vex = bxv

L∑
i

Nivi (8)

Different approaches to implement a temperature dependence of bxv were explored in the

past,48,49 but will not be included here. Following this, the translational partition function

of the clusters is modified to

qtransi =
V − Vex

Λ3
. (9)

At this point, eqs. (7) and (9) can be combined with qvib,roti (cf. Supporting Information)

to yield the cluster partition function qi and ultimately, the system partition function Q

(eq. (4)). To calculate the partition function in practice, and yield thermodynamic data,

the characteristic quantities of the canonical ensemble ({Ni}, V, T ) as well as the empirical

parameters amf and bxv have to be determined. The parameters amf and bxv are conceptually

equivalent to the parameters a and b in the van der Waals equation of state, respectively, in

that they account for the attractive force between particles as well as their volume. A more

detailed demonstration of this connection can be found in the Supporting Information.

In terms of the canonical ensemble quantities, we start from the conservation of particles,

serving as an integral physical constraint of this ensemble:

N tot
1 +N tot

2 =
L∑
i

(na
i + nb

i)Ni, (10a)

0 =
L∑
i

(na
i + nb

i)Ni

N tot
1 +N tot

2

− 1, (10b)

0 =
L∑
i

Ñi − 1. (10c)

It should be noted that, in the above equation, N tot
1 and N tot

2 denote the total numbers of
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monomers of the components 1 and 2, respectively. We further note that, as QCE calculations

are in practice performed with N tot ≈ 1mol, the quantities N tot
1 and N tot

2 are not fractional,

but integer numbers. Additionally, the monomer-normalized populations Ñi are introduced.

Ñi is the relative population of cluster i, normalized to the number of monomers and relevant

for the visualization of the cluster distribution in following sections of this work. We note

that Ñi are fractional numbers between zero and one. With the system being in equilibrium,

any change in the free energy F due to infinitesimal changes in any cluster populations {Ni}

must be balanced by infinitesimal changes in the monomer populations:

∂F

∂Ni

= na
i

∂F

∂N1

+ nb
i

∂F

∂N2

. (11)

Using eq. (4) and

lnQ = ln

(
L∏
i

1

Ni!
qNi
i

)
(12a)

=
L∑
i

(Ni ln qi − lnNi!) (12b)

eq. (11) can be rearranged to

∂

∂Ni

L∑
i

(Ni ln qi − lnNi!) = na
i

(
∂

∂N1

L∑
i

(Ni ln qi − lnNi!)

)

+ nb
i

(
∂

∂N2

L∑
i

(Ni ln qi − lnNi!)

)
. (13)

Employing the Stirling formula to approximate ln(Ni!), eq. (13) can be solved to show the

relation between all cluster populations and the monomer populations. As aforementioned,

QCE calculations are performed for particle numbers in the range of 1023, such that any

significantly populated cluster will satisfy the requirement of a large Ni in view of the Stirling
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approximation. Equation (13) can thus be simplified to:

ln
qi
Ni

= na
i ln

q1
N1

+ nb
i ln

q2
N2

, (14a)

Ni = qi

(
N1

q1

)na
i
(
N2

q2

)nb
i

. (14b)

It should be noted that the above equation reduces the problem of finding the entire set

of cluster populations {Ni} to finding the monomer populations N1 and N2. By inserting

eq. (14b) into eq. (10b) the population polynomial ,50 one of the key ingredients of the bQCE

theory is obtained:

0 =
L∑
i

na
i + nb

i

N tot
1 +N tot

2

· qi
(
N1

q1

)na
i
(
N2

q2

)nb
i

− 1. (15)

The number of unknowns in this expression equals two (the number of components in the

system) and hence, a second equation is needed: the conservation of mass, given by

m1N tot
1 +m2N tot

2 =
L∑
i

(na
im1 + nb

im2)Ni, (16a)

0 =
L∑
i

na
im1 + nb

im2

m1N tot
1 +m2N tot

2

Ni − 1, (16b)

where m1 and m2 are the molecular weights of the two components. It should be noted

that eq. (16b) is simply the mass-weighted form of eq. (10b). Inserting eq. (14b) into eq. (16b)

yields the mass polynomial :

0 =
L∑
i

na
im1 + nb

im2

m1N tot
1 +m2N tot

2

· qi
(
N1

q1

)na
i
(
N2

q2

)nb
i

− 1. (17)

At this point, it is worth noting that the derived equations allow the calculation of the

partition function at any temperature, but only for a given volume. Therefore, the volume

is to be expressed as a function of the cluster populations. We start from the definition of
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the pressure p that can be derived from the free energy as

p = −∂F

∂V
,

0 = −p+ kBT
∂ lnQ

∂V
. (18)

Keeping the contributions to Q from different degrees of freedom in mind, only translational

and electronic contributions to the partition function depend on the volume. The other

degrees of freedom vanish during the derivation. Upon inserting eq. (12) into eq. (18) and

subsequent rearranging, the volume polynomial is obtained:

0 =− pV 3 +

(
L∑
i

kBTNi + p Vex

)
V 2

−

(
L∑
i

Ni(n
a
i + nb

i)amf

)
V

+
L∑
i

Ni(n
a
1 + nb

2)amf · Vex. (19)

Since both the population and volume polynomial depend on the monomer populations and

the volume V , an iterative procedure is applied in practice: For a given set of T, amf and

bxv, the monomer populations are calculated for the first time using an initial volume guess.

From that, volume and monomer populations are calculated in an iterative and self-consistent

fashion. Doing so, the bQCE theory is fully defined and can be applied to any system of

interest.

2.2 Multi-component QCE theory

Building up on the binary QCE theory, the multi-component QCE theory is derived. Some

equations can be extended straightforwardly. The chemical reaction of cluster formation in
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a multi-component system with K different components is given by

K∑
c

nc
iC −−→←−− Pi, (20)

where nc
i is the number of monomers C of the general component c with c ∈ {1, . . . , K}

that form the cluster Pi, i ∈ {1, . . . , L} is an index to differentiate between each unique

representative cluster, and L is the number of representative clusters in the cluster set. In

the following, the monomer of each component has the index i = c, that is, P1, P2, . . . , PK

denote the monomers of each component, respectively. By adjusting the expression of the

adiabatic interaction energy

∆bindε
elec
i = εeleci −

K∑
c

nc
iε

elec
c , (21)

the electronic partition function can easily be extended to multi-component systems:

qeleci = exp

{
−
∆bindε

elec
i −

∑K
c nc

i
amf

V

kBT

}
. (22)

Conservation of the total number of monomers N tot
c of each component is generalized by

K∑
c

N tot
c =

L∑
i

K∑
c

nc
iNi,

0 =

∑L
i

∑K
c nc

i ·Ni∑K
c N tot

c

− 1 =
∑
i

Ñi − 1. (23)

Similar to the bQCE theory, changes in the free energy with respect to the monomer popu-

lations obey to the following condition:

∂F

∂Ni

=
K∑
c

nc
i

∂F

∂Nc

. (24)
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Following the derivation presented in eqs. (11) to (14), we obtain a multi-component relation

between the cluster populations and the monomer populations:

Ni = qi
∏
c

(
Nc

qc

)nc
i

. (25)

This equation can then be transformed into the generalized population polynomial by in-

serting eq. (25) into eq. (23):

0 =
1∑K

c N tot
c

L∑
i

K∑
c

{
nc
i ·
∏
c

[
qi

(
Nc

qc

)nc
i

]}
− 1. (26)

The multi-component population polynomial contains K (number of components) un-

known monomer populations Nc. Thus, the central obstacle that hampered the development

of a generalized QCE theory for multi-component systems so far, is the need for K − 1

additional, linearly independent equations. To illustrate this, we start from a neat system

of K = 1 component where eq. (26) is reduced to

0 =
L∑
i

na
i q1
N tot

1

·
(
N1

q1

)na
i

− 1, (27)

that can be solved for N1. Extending this to a binary system with K = 2 components, we

obtain

0 =
L∑
i

na
i + nb

i

N tot
1 +N tot

2

· qi
(
N1

q1

)na
i
(
N2

q2

)nb
i

− 1, (28)

with the two unknown monomer populations N1 and N2. The solution requires the introduc-

tion of a second linearly independent equation. In case of binary systems, this issue could

be circumvented by introducing the mass polynomial as a second condition (see eq. (17)).

Accordingly, more linearly independent equations are required for systems with more than

two components. In general, the conservation of physical quantities is a possible but not the

only approach to generate new and linearly independent equations. For ternary systems,

one could think of introducing another conserved quantity, e.g. the total cluster volume.
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However, this idea is not seen as a viable option as it does not lead to a general solution for

systems with more than three components.

Instead, the path to a generalized population polynomial (eq. (26)) leads through the

realization that for binary systems, neither the exact values of m1 and m2 in eq. (17) nor

their ratio changes the exact results of the population polynomial, as long as the total mass

is conserved. Following this, eq. (17) can be generalized to conserve any quantity Z.

K∑
c

ZcN tot
c =

L∑
i

K∑
c

nc
iZcNi (29)

0 =
1∑K

c ZcN tot
c

L∑
i

K∑
c

{nc
iZc ·Ni} − 1. (30)

In eq. (29), K linearly independent realizations of Z, referenced as Zc, are introduced to

create a set of K linearly independent equations. Each Zc is a set of K coefficients that

could be considered elements of a vector. From that, a new population polynomial can be

formulated:

0 =
1∑K

c ZcN tot
c

L∑
i

K∑
c

{
nc
iZc ·

∏
c

[
qi

(
Nc

qc

)nc
i

]}
− 1. (31)

Zc is explicitly not required to represent any physical quantity. Hence, the solution of eq. (31)

is not restricted to the conservation of mass, volume, or any other physical quantity. More

precisely, the solution is achieved by creating K linearly independent sets of coefficients.

Proof. We start from eq. (29) by rewriting it in a vectorized form:

Z⃗T N⃗ tot = Z⃗TnN⃗ . (32)

In eq. (32), each of the K different Zc is expressed as a K-dimensional vector Z⃗. Moreover,

N⃗ tot is a vector with K entries containing the total number of monomers of the K components

c, n is a (K × L)-matrix containing the coefficients nc
i and N⃗ is a L-dimensional vector
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containing the populations of the L different clusters. This can be rearranged to

Z⃗T (nN⃗ − N⃗ tot) = 0 (33)

⇔ Z⃗T ⊥ (nN⃗ − N⃗ tot). (34)

The above condition is only fulfilled for any vector Z⃗, if either Z⃗T = 0 or (nN⃗ − N⃗ tot) = 0.

The former condition does not lead to a meaningful solution and hence, is excluded. The

latter leads to the condition

nN⃗ = N⃗ tot (35)

representing the conservation of particles.

Furthermore, it should be stated that for binary systems eq. (31) simplifies to eqs. (15)

and (17) in the particular cases when Zc is unity or contains m1 and m2, respectively.

With these sets of coefficients at hand, a system of non-linear equations can be formulated

and solved for the monomer populations Nc. This is done in a self-consistent manner, utilizing

a generalized volume polynomial

0 =− pV 3 +

(
L∑
i

kBTNi + pVex

)
V 2

−

(
L∑
i

K∑
c

nc
iNiamf

)
V

+ amf

L∑
i

[
K∑
c

nc
iNi

]
Vex. (36)

The polynomial is solved iteratively, together with the population polynomial as introduced

before.
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3 Computational details

Ternary mixtures of chloroform (c), methanol (m), and water (w) were investigated by

means of the mQCE theory as implemented in Peacemaker 3.51 Compositions of clusters

are characterized by cimjwk where i, j, k denote the number of monomers of the respective

species (c, m, or w) contained in a cluster. Clusters of all possible compositions that obey

i, j, k ∈ N0, with i + j + k ≤ 6 are realized. In total, 185 different clusters were used,

including multiple clusters of the same composition. A selected subset of clusters is shown

in fig. 1. It should be noted that the description of bulk properties may be limited by the

maximum cluster size, as cooperativity effects may not be fully captured by small clusters.

A previous QCE study demonstrated that the inclusion of cooperativity effects is necessary

for a realistic description of liquid water,46 but included no investigation of cluster size

effects. In 2021, a study of nine aprotic organic liquids, including clusters up to the size

of ten molecules, showed that a maximum cluster size of six molecules may be sufficient to

obtain reasonable vaporization enthalpies.38 However, a systematic QCE study of cluster

size effects in coordinating liquids such as water is unavailable at the time of writing but

may be subject to future investigations. The maximum cluster size of six molecules in

the current study was chosen as it has led to reasonable results in previous works38,52 and

offers an acceptable balance between accuracy and computational effort. Figure S1 in the

Supporting Information shows how the maximum cluster size of the cluster set affects the

vaporization enthalpies of the neat compounds. For methanol ∆vapH converges at a cluster

size of six molecules. In the case of water, however, the inclusion of larger clusters leads to

an overestimation of ∆vapH, demonstrating that the appropriate cluster size is dependent

on the system. This is important especially in multi-component systems, as the cluster

set should include a balanced representation of all possible cluster compositions within the

chosen cluster size limit to avoid introducing a bias to either neat or mixed clusters. The

current study therefore serves as an illustrative example of the extension to the QCE theory,

but a detailed investigation of cooperativity and cluster size effects is essential for future
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Figure 1: Selected subset of clusters to describe ternary mixtures of chloroform (c), methanol
(m) and water (w). The color code of the molecules is: hydrogen (white), carbon (orange),
oxygen (red), chlorine (green).

investigations.

The cluster set was created using the genetic algorithm OGOLEM,53,54 interfaced with the

AMBER 201655 molecular dynamics software package. For each composition, a structurally

diverse set of molecular geometries was chosen and optimized at the GFN2-xTB56 level of

theory. For each cluster, harmonic frequencies were calculated to identify minimum struc-

tures. The final cluster set comprises clusters without imaginary frequencies, exclusively.

The GFN2-xTB method was previously shown to produce reasonable results in combination

with the bQCE method.38,52 Extensive comparisons of various quantum-chemical methods

in combination with the QCE method can be found in literature, e.g. Ref. 41 and 57.

All mQCE calculations were performed at a constant pressure of 1.013 25 bar and a tem-

perature range of 273.15 to 400.15K. Cluster volumes were calculated as van der Waals

volumes with radii taken from the compilation of Bondi.58 The parameters amf and bxv were

optimized for each pure component using its experimental density at 298.15K and boil-

ing point, as reported in Ref. 59. Initially, a rough 20 × 20 grid sampling between 0.0 to

2.0 Jm3mol−1 and 0.5 to 1.5 for amf and bxv, respectively, was performed with uniformly

distributed sampling points. Using the parameter pair with the lowest deviation from exper-

16



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x
m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x c

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
xw

25

30

35

40

45

vap H / kJ m
ol

1

Figure 2: Vaporization enthalpies ∆vapH of ternary mixtures of chloroform, methanol and
water as a function of the mixture composition.

imental data as starting point, the Nelder–Mead algorithm was then employed to optimize

amf and bxv further until the computed properties reproduced the experimental reference with

chemical accuracy. Following the same procedure as in previous works,33,52 the parameters

at all mixed compositions were calculated from linear interpolation. Additionally, in order

to calculate enthalpies of vaporization ∆vapH at room temperature, parameter-free QCE0

calculations were performed as a gas phase reference. For QCE0 calculations the parameters

are set to amf = 0Jm3mol−1 and bxv = 1, cancelling all inter-cluster interactions.

4 Case study

In this section, we present thermodynamic properties for the ternary mixtures of chloroform,

methanol and water, as obtained from the mQCE method. Experimental thermodynamic

data for ternary mixtures in a meaningful mole fraction range are rarely available. In con-
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sideration of the fact that the QCE theory has been successful in predicting thermodynamic

properties of neat liquids and binary mixtures, we focus on the exemplary and illustrative

case study of the vaporization enthalpy here and leave a more detailed comparison to exper-

imental data for future works.

Whereas vaporization enthalpies of neat liquids are easily defined as the enthalpy differ-

ence between the liquid and the gas phase at any given temperature, in multi-component

systems the difference in composition of the liquid phase presents a more complex situation.

In the literature, usually, the integral enthalpy of vaporization is reported, corresponding to

the transfer of a liquid mixture at its bubble temperature to a gaseous mixture of the same

composition at its dew point. The computational mQCE approach allows the calculation

of enthalpies of vaporization at standard conditions. Here, isobaric vaporization enthalpies

∆vapH were calculated according to:

∆vapH(x1, x2, T ) = Hgas(x1, x2, T )−Hl(x1, x2, T ), (37)

where T = 298.15K and the pressure was set to 1.013 25 bar. Following the same procedure

as in previous works,35,52 Hl is available as a result of the standard QCE procedure and the

gas phase enthalpy Hgas was obtained from QCE0 calculations. The calculated vaporization

enthalpies of the neat liquids are listed in table 1 next to their experimental reference values.

Excellent agreement between the calculated and experimental values is observed for all three

components, with deviations falling below 2.5 kJmol−1, well within the range of chemical

accuracy.

The calculated vaporization enthalpies of the mixed systems are depicted as a function

of the mole fractions xc, xm, and xw in fig. 2. The triangle plot shows the same general

trends as observed in the neat liquids, in that a higher water amount leads to a higher

vaporization enthalpy. Remarkably, there is an exception to that behavior at low methanol

concentrations, where a valley can be observed with a minimum around a composition of

18



Table 1: Experimental and calculated vaporization enthalpies ∆vapH and differences
∆(∆vapH) (all in kJmol−1) of chloroform, methanol and water in comparison to the mQCE
results.

Exp. mQCE ∆(∆vapH)

chloroform 31.32 ± 0.0860 28.95 −2.37
methanol 37.43 ± 0.0261 39.20 1.77
water 43.87 ± 0.0362 41.85 −2.02

xc = 0.60, xm = 0.00, xw = 0.40. This finding can be rationalized by the fact that water and

chloroform are hardly miscible and form a minimum-boiling azeotrope at a mole fraction of

xc = 0.84.59 Notably, this first application of the mQCE method leads to an explanation of

an interesting thermodynamic phenomenon, observed in the mixing of a ternary mixture.

Additionally, fig. 3 shows the most populated clusters at each investigated composition

of the ternary mixture. The corners of the triangular plot, corresponding to compositions

close to the neat liquids, are dominated by larger aggregates of the pure components, namely

the c4, m5, and w6 clusters. On the other hand, in a large and central part of the molar

range, the mixed c1w1 cluster is predominant. While surprising at first glance, this finding

is indicative of the unfavorable mixed interactions of larger clusters formed between water

and chloroform. Instead, the hydrogen bond network formed by larger aggregates of water

and methanol molecules is disrupted in favor of smaller, enthalpically unfavorable clusters.

This leads to a destabilization of the liquid phase, visible in the observed minimum in the

vaporization enthalpy and also the immiscibility of water and chloroform.

5 Conclusions

In this paper, we provided a comprehensive and detailed description of the theory underly-

ing the quantum cluster equilibrium method. For the first time since it was introduced, the

theory was extended from binary liquids to multi-component systems, now being capable

of describing mixtures with an arbitrary number of distinct chemical species. This enables
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Figure 3: Highest populated cluster composition as a function of the mixture composition.
Clusters with identical composition, but different conformation are represented in an accu-
mulated manner.

studying important structural motifs and interactions in bulk phases of any composition by

means of the QCE theory. The extension to multi-component systems was achieved by elim-

inating the need for conserved physical quantities, such as the cluster mass, from the system

of equations used to solve the population polynomial. In the updated implementation, a

generalized population polynomial is introduced, allowing for the solution with an arbitrary

number of components. This is achieved through the utilization of a set of auxiliary param-

eters that do not depend on a direct physical relationship. A mathematical proof for the

new formalism was included.

Finally, we presented an exemplary study of the vaporization enthalpy in the ternary

mixture of chloroform, methanol and water. The experimental vaporization enthalpies of the

neat components are precisely replicated within chemical accuracy. For the mixed system,

the mQCE method predicts reasonable values that can easily be rationalized.
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The mQCE theory is implemented in our free and open-source software Peacemaker

and available from Ref. 51.

Data availability

The data underlying this study are publicly available on our mQCE data repository.

Supporting Information Available

In order to present a complete and self-contained introduction to mQCE theory, the Support-

ing Information provide an overview of basic equations of thermochemistry. Additionally,

the relationship between the QCE parameters and the van der Waals equation is established.

Finally, we investigate how the maximum cluster size affects ∆vapH in the neat liquids.
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