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1 Basic equations from thermochemistry

The QCE theory is founded on basic equations from thermochemistry, derived from statisti-

cal mechanics. Therefore, important concepts are briefly recapitulated in the following. The

thermodynamic ensemble the QCE theory is defined in, is the canonical ensemble (NV T ),

characterized by a constant number of particles N , volume V , and temperature T . The

partition function of the canonical ensemble is denoted by Q (further referenced to as sys-
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tem partition function) and is given by a sum over the Boltzmann factors of all possible

microstates j of the system with their energies Ej and the Boltzmann constant kB:

Q =
∑
j

e
−

Ej
kBT . (1)

The probability pj of the system being in microstate j is then given by

pj =
1

Q
e
−

Ej
kBT , (2)

while the sum of all probabilities equals unity. The partition function is the central quantity

in statistical mechanics and the QCE theory, as all thermodynamic properties can be derived

from it. For further reading on this, we refer to standard textbooks, such as Ref. S1. When

treating a system of indistinguishable particles, the partition function can be written as

Q =
1

N !
qN , (3)

where q denotes the partition function of a single particle. The energy ε of a particle can

be decomposed into independent contributions from different degrees of freedom, such as

translation, rotation, vibration, and electronic excitations:

ε = εtrans + εrot + εvib + εelec. (4)

Hence, q can be written as a product of the partition functions of the different degrees of

freedom:

q = qtrans qrot qvib qelec. (5)
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The exact expressions for the partition functions are derived from the models of the particle

in a box, the rigid rotator, and the harmonic oscillator:

qtrans =
V

Λ3
, Λ =

√
h2

2πmkBT
, (6a)

qrot =
π1/2

σ

√
T 3

Θrot
A Θrot

B Θrot
C

, Θrot =
h2

8π2IkB
, (6b)

qvib =
3N−x∏
l=1

e−Θvib
l /2T

1− e−Θvib
l /T

, Θvib
l =

hνl
kB

. (6c)

In the above equations, h is the Planck constant, m the particle mass, σ the rotational

symmetry number, I the moment of inertia, 3N − x the number of vibrational degrees of

freedom (with x = 5 for linear molecules and x = 6 else), and νl the vibrational frequency

of the lth normal mode. The electronic partition function qelec is given by the sum of the

Boltzmann factors of the electronic states εelec, multiplied with the degeneracy g of the states.

Usually, molecules are in the electronic ground state under ambient conditions, and hence,

qelec simplifies to

qelec = g1e
− εelec1

kBT . (7)

2 mQCE and the van der Waals equation

The parameters amf and bxv are conceptually equivalent to the parameters a and b in the

van der Waals equation of state, respectively, in that they account for the attractive force

between particles as well as their volume. This can be demonstrated by deriving an expression

for the pressure based on the cluster partition functions. The total partition function of a

system of molecular clusters is given by:

Q =
L∏
i

1

Ni!
qNi
i . (8)
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We recall the connection between the system pressure and the total system partition function.

By insertion of eq. (8), we obtain:

p = kBT
∂ lnQ

∂V
=

L∏
i

NikBT
∂ ln q

∂V
. (9)

Of the partition functions in eq. (5), only qtrans and qelec depend on the system’s volume:

∂ ln qi
∂V

=
∂ ln qtransi

∂V
+

∂ ln qeleci

∂V

=
∂ (ln(V − Vex)− 3 lnΛ)

∂V
+ ∂

(
∆bindε

elec −
∑K

c nc
i
amf

V

kBT

)
1

∂V

=
1

V − Vex

−
K∑
c

nc
i

amf

kBTV 2
. (10)

By insertion into eq. (9) we obtain:

p =
L∏
i

NikBT

V − Vex

−
L∏
i

Ni

∑K
c nc

iamf

V 2

=

∏L
i NikBT

V − bxv
∑L

i Nivi
−
∏L

i Ni

∑K
c nc

iamf

V 2
. (11)

We consider a minimal cluster set containing only the monomer of a single component, i.e.,

K = L = n = 1. Equation (11) then reduces to:

p =
NkBT

V −Nbxvv
− Namf

V 2
. (12)

By comparison to the van der Waals equation

p =
NkBT

V −Nb
− N2a

V 2
(13)

it is apparent that for K = L = n = 1 there is a direct connection between the QCE

parameters and the van der Waals equation through amf = aN and bxv = b/v. An mQCE

S-4



system can therefore be understood as a multi-component van der Waals fluid.

3 Cluster size effects

 0

 10

 20

 30

 40

 50

 60

 0  5  10  15  20  25

Δ
va

pH
 / 

kJ
/m

ol

Maximum cluster size

 Chloroform
 Methanol

 Water

Figure S1: Enthalpy of vaporization ∆vapH for different pure compounds at 298.15K and
1.013 25 bar as calculated from QCE depending on the maximum cluster size included in the
cluster set.

In fig. S1, we show the dependence of the vaporization enthalpy ∆vapH of the pure

compounds chloroform, methanol, and water, as a function of the maximum cluster size,
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