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Abstract

This thesis presents quantum simulation of strongly-correlated systems beyond standard Hubbard
models, using ultracold fermionic potassium atoms in both static and periodically-driven optical
superlattices. For this study, we utilize a three-dimensional optical lattice setup, controlling particle
interactions via magnetic Feshbach resonances and tunneling between lattice sites through optical
lattice intensity. High-resolution absorption imaging combined with radio-frequency spectroscopy
distinguishes between singly and doubly occupied sites.

To enhance our systems capabilities beyond the standard Hubbard model, we extend the apparatus
with an in-plane optical superlattice, creating a bi-chromatic structure by superposition of two optical
lattices with commensurate lattice spacings. Using a phase locked loop with an environmental feed
forward, we create an excellent phase stability of the superlattice exceeding 3 mrad. This precision
allows us to explore both static and periodically-driven one-dimensional tight-binding models with
strong interactions.

We characterize the static superlattice through radio-frequency spectroscopy and Rabi oscillations,
and validate the experimental data against theoretical calculations. In a tilted superlattice configuration,
we successfully prepare and detect repulsively bound atom pairs, representing a highly excited
eigenstate of the system.

Furthermore, we demonstrate control over pair tunneling dynamics in a double-well potential
using Floquet engineering, employing a low-noise periodic modulation of the optical superlattice tilt.
Using an adiabatic band mapping technique, we directly observe the tunneling dynamics in the driven
superlattice. We realize dynamic localization in quarter-filled wells and density-assisted tunneling up
to the third harmonic order in half-filled wells. We observe a crossover from density-assited tunneling
to dominant pair tunneling by tuning the effective interactions. Remarkably, the pair tunneling is not
only enhanced relative to the suppressed single-particle tunneling but also exceeds the superexchange
rate of a static double-well by more than a factor of two.

This opens the possibility to study many-body systems with dominant pair tunneling, that extend
beyond the standard Hubbard model.
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CHAPTER 1

Introduction

The observation of high-𝑇C superconductivity in cuprates in the year 1986 [1] has sparked an enduring
research interest for now almost 40 years. The observed critical temperatures of up to 147 K were
so much larger than that of the known conventional superconductors ∼ 30 K, that the underlying
mechanism was clearly a different one [2]. And indeed, while conventional superconductivity in
the Bardeen-Cooper-Schrieffer (BCS) theory [3] is based on weakly attractive interactions between
electrons enabled by cooper pairing, the high 𝑇C superconductivity appears in a system of large
repulsive interactions and strong electron localization. This so-called strongly correlated regime
–where phenomena cannot be explained by single-particle behavior alone, but are inherently many-body–
makes the description challenging and contributes to the fact that a comprehensive understanding of
the processes behind the observed high-𝑇C superconductivity is still missing.

Cuprates serve as an exceptional example of the unconventional nature of strongly correlated systems
[4]. These ceramics consist of two-dimensional layers of copper oxides as its parent compound and
various constituents that introduce charge doping to the layer. Contrary to what one would expect
from a system at half-filling in a single-particle description, cuprates do not exhibit a metallic state.
Instead, they form an antiferromagnetic Mott insulating state, where strong electron interactions
suppress all dynamics. Upon doping the system with electron holes, a superconducting phase with
d-wave symmetry emerges, though the exact pairing mechanism remains unknown. The microscopic
processes driving these novel phases are naturally of great interest, but isolating them within the
complex crystalline structure of real materials remains challenging.

In 1963, J. Hubbard proposed a conceptually simple model to describe strongly-correlated electrons
in solids [5]. In this tight-binding model, the kinetic energy of the electrons is described by tunneling
events between adjacent lattice sites, and they interact with each other when occupying the same
site. Despite the model’s simplicity, the interplay of these processes provides valuable insight into
the microscopic processes behind the novel phases of strongly-correlated matter, like the cuprates.
For instance, the Hubbard model predicts an insulating phase at half-filling with large repulsive
interactions, which for low enough temperatures exhibits anti-ferromagnetic order driven implicitly
through a second-order tunneling process known as superexchange. Away from half filling, Scalapino
et al. predicted that the Hubbard model features a d-wave superconducting phase in three dimensions
[6]. These findings suggest that the solution of the Hubbard model could potentially explain the
high-𝑇𝐶 superconductivity observed in cuprates [7]. Unfortunately, theoretical investigations of the
Hubbard model are notoriously difficult, as the Hilbert space grows exponentially with the number
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Chapter 1 Introduction

of particles. Exact solutions are only available in very specific cases, like one-dimensional systems,
and numerical calculations require assumptions from which the actual model is extrapolated [7, 8].
Therefore, even 60 years after its initial formulation, the exact phase diagram of the two-dimensional
Hubbard model, particularly for doped systems, remains a topic of ongoing debate.

Quantum simulation offers a complementary approach to the theoretical study of strongly correlated
systems like the Hubbard model. This concept was first envisioned by Feynman in 1982 [9], when
he suggested: "Let the computer itself be built of quantum mechanical elements [...]." He proposed
the idea of a "universal" (or digital) machine capable of simulating any quantum mechanical system
[10]. However, a more specialized machine –an analogue quantum simulator– can be used to study
specific systems. This analogue quantum simulator [11] is a quantum-mechanical emulation of a
model system, that is governed by the same Hamiltonian, while being built of different constituents.
It provides excellent control over system parameters, and excels at giving qualitative insights into
debated topics.

Ultracold atomic gases in optical lattices present a highly suitable platform for analogue quantum
computation of strongly-correlated systems [12–14]. In this setup, a periodic lattice structure is created
by interfering laser beams, which is then filled with a quantum-degenerate atomic gas, mimicking the
behavior of electrons in solids. The platform enables a clean emulation of various model Hamiltonians
with exceptional control over the system parameters, like the lattice depths and interaction strength.
Furthermore, the timescales of the atoms, in the kHz range, and the lengths scales, in the µm range,
are easily experimentally accessible compared to those in real materials. However, to realize a
quantum-mechanical system, the atomic cloud must be cooled to quantum degeneracy –typically
around 100 nK– where the de Broglie wavelength of the atoms exceeds the inter-particle distance,
causing the system’s properties to be governed by quantum statistics.

The journey from a neutral atom gas at room temperature to quantum degeneracy had its breakthrough
with the discovery of laser cooling, for which the Nobel Prize was awarded in 1997 [15–17]. Shortly
thereafter, the development of evaporative cooling brought the onset of quantum degeneracy with the
observation of Bose-Einstein condensation [18, 19] and Fermi-degeneracy [20]. Finally, in 2005, the
realization of a quantum degenerate Fermi gas in an optical lattice [21] established the groundwork to
emulate the Hubbard model. Since then, quantum simulations of the Hubbard model with ultracold
atomic gases have achieved several groundbreaking results, from the observation of a Mott insulator in
2008 [22, 23] to long-range antiferromagnetic correlations [24, 25] and, recently an antiferromagnetic
phase transition [26]. Moreover, quantum gas microscopy [27] has recently expanded the experimental
control to the level of individual atoms, providing direct access to correlations between atoms that
are otherwise elusive. Despite these technological advances, the lowest temperatures achieved in
current experiments are around 𝑘𝐵𝑇/𝑡 = (0.25± 0.02) [26, 28], which remains significantly above the
proposed critical temperature for the superconducting phase, estimated at approximately 𝑘𝐵𝑇/𝑡 ∼ 0.05
[7].

Extensions to the Hubbard model are often necessary to emulate the physics of real materials, as
evidenced by the absence of a superconducting phase in the pure two-dimensional Hubbard model [29].
For example, density-assisted tunneling is required to accurately map the three orbital cuprates onto a
single band model [30]. The study of non-standard Hubbard models, that incorporate processes beyond
conventional nearest-neighbor tunneling and on-site interactions, has improved our understanding of
the physics in real materials. For instance, the creation of a Bilayer Hubbard model, by coupling two
two-dimensional Hubbard layers, showed the competition of magnetic order between and within the
coupled layers [31].
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In this work, we have developed a phase-stable in-plane superlattice to explore physics beyond the
standard Hubbard model. A superlattice, typically a bi-chromatic structure with two characteristic
tunneling amplitudes, has been used to observe a wide range of phenomena, from superexchange
dynamics [32, 33], to quantized transport in topological models [34, 35], and cooling mechanisms
for bosons in a tilted superlattice [36]. Moreover, Kantian et al. [37] proposed using superlattices to
create a superconducting condensate of 𝜂-pairs [38] in an optical lattice. However, to observe novel
phenomena in optical superlattices, sufficient phase stability is necessary to prevent excessive lattice
heating. We present the setup and calibration of a superlattice with excellent phase stability, exceeding
3 mrad, which is comparable to the best reported realizations [39, 40].

A periodic drive of the superlattice can fundamentally alter the system’s properties. Under fast
modulation, effective systems with properties vastly different from their static counterpart can be
realized, a concept known as Floquet engineering [41]. Floquet engineering has been used to invert
the sign of magnetic correlations [42], to study artificial gauge fields in optical lattices [43, 44], and
famously, to achieve dynamic localization [45, 46], where single-particle tunneling is completely
suppressed.

In this work, we demonstrate experimental control over pair tunneling in the double well, which
forms the unit cell of the superlattice, using periodic modulation in a strongly interacting system. For
a drive that is resonant to the interaction energy, we realize density-assisted tunneling in the absence
of single-particle tunneling. Moreover, we show this behavior for various harmonic orders of the
resonance condition and validate that the effective dynamic timescales are governed by Bessel functions
of different orders. We then introduce effective interactions to the system by detuning the driving
frequency. This allows us to observe a Floquet engineered crossover from density-assisted tunneling
to dominant pair tunneling, thereby realizing a system where dynamics are restricted to atom-pairs
while single particles remain localized over a wide range of effective interactions. Remarkably, the
effective pair-tunneling rate is enhanced not only compared to the suppressed single particle tunneling,
but also exceeds the static superexchange.

This work represents a first step towards the realization of many-body systems with dominant pair
tunneling, such as the Penson-Kolb Hubbard model [47], which exhibits 𝜂-pairing superconductivity
[48, 49]. In the future, observing and characterizing these exotic superconducting phases may provide
insights into the mystery of high 𝑇C superconductivity in cuprates.

Thesis Structure

In this work, I present an investigation of ultracold fermionic potassium atoms in both periodically-
driven and static superlattices. To achieve this, we have extended our three-dimensional optical
lattice setup by incorporating an in-plane superlattice. The primary focus of this work is the study of
interacting fermions in periodically-driven double wells and the necessary setup and calibration of
the static superlattice to enable this investigation. The contents of this thesis are summarized briefly
below. Each chapter begins with a short introduction to the topic, followed by an outline of the chapter,
so this overview will remain brief.

In Chapter 2, we discuss the theoretical framework behind our experimental quantum simulator.
This includes the concept of optical lattices and the experimental control over interactions via magnetic
Feshbach resonances. We also present the newly adapted tight-binding theory for interacting fermions
in the superlattice.

Chapter 3 provides a brief summary of the experimental apparatus, most of which was assembled
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Chapter 1 Introduction

before this work. We place particular focus on the new implementation of the phase-stable superlattice
and the realization of suitable experimental observables.

In Chapter 4, we discuss experiments conducted in the one-dimensional static superlattice. We
calibrate the tight-binding parameters of the superlattice in an array of isolated double wells.
Additionally, we demonstrate the excellent phase stability of our superlattice and discuss the preparation
and detection of repulsively-bound pairs in the double well.

In Chapter 5, we explore periodically driven double wells from both theoretical and experimental
standpoints. We present experimental control over effective single-particle tunneling and report
density-assisted tunneling for a resonant drive of various harmonic orders.

In Chapter 6, we examine the impact of effective interactions on the periodically driven system.
We discuss a Floquet-engineered crossover from density-assisted to dominant pair tunneling and
investigate the enhancement of pair tunneling compared to the static counterpart.

Finally, Chapter 7 provides a conclusion and outlook for future work.
This work was conducted on an experimental apparatus that has been developed by a series of

PhD students over the last decades. The scientific investigations presented in this thesis were carried
out by the team of Valentin Jonas, Janek Fleper, and me. In this thesis, we newly implemented and
characterized an in-plane superlattice which was utilized to conduct the scientific investigations of
this work. I made the main contributions to the experimental and theoretical study of interacting
fermions in both static and periodically-modulated double wells, which are detailed in Chapters 4, 5
and 6. My colleague Valentin Jonas developed the scheme to periodically modulate the superlattice by
programming an arbitrary waveform generator, as detailed in Chapter 3, and adapted the theory to
describe driven double wells in Chapter 5. Janek Fleper developed the environmental feed-forward
system to stabilize the superlattice phase, as summarized in Chapter 3, and led the programming
efforts necessary to operate and evaluate an experiment of this scale. Finally, the LATEXtemplate for
this thesis was provided by Prof. Dr. Ian Brock [50].

Publications

During this work I have co-authored the following paper:

[51] N. Klemmer∗, J. Fleper∗, V. Jonas, A. Sheikhan, C. Kollath, M. Köhl and A. Bergschneider,
"Floquet-driven crossover from density-assisted tunneling to enhanced pair tunneling" (Currently
under review at Physical Review Letters)

*These authors contributed equally
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CHAPTER 2

Ultracold atoms in optical lattices

Ultracold atomic atoms in optical lattices present an exceptional platform for simulating strongly
correlated matter [13, 27, 52]. In this context, neutral atoms confined in the periodic potential of an
optical lattice mimic the behavior of electrons in the crystalline structure of a solid. This emulation
effectively captures the quantum mechanical statistics of the system, provided the atoms are sufficiently
cold such that their de Broglie wavelength exceeds the inter-particle distance. Furthermore, this
platform offers control over the lattice geometries and dimensions as well as the interaction, via
magnetic Feshbach resonances [53]. The experimental observables are readily accessible as the
lattice spacing typically falls within in the µm range and the timescales are in the kHz regime. This
setup creates a scalable and clean emulation of various quantum mechanical models, including the
prominent Fermi-Hubbard model.

The Hubbard model [7, 8] is arguably conceptually the simplest model to describe strongly-correlated
electrons in solids. In this model, electrons express their kinetic energy through tunneling events
between neighboring lattice sites, interacting only if they occupy the same site (cf. figure 2.1 a). The
intricate interplay between the tunneling energy 𝑡, the interaction energy𝑈, and the Pauli principle
governing fermions of the same spin gives rise to a rich phase diagram (cf. figure 2.1 b and the
caption below). Most of the phase diagram at half filling, where each lattice site is on average filled
by one particle, is well-established and has been successfully observed. For example, cold-atom
experiments have realized the Mott insulating phase [22, 23] and observed antiferromagnetic spin
order [24–26]. However, the phase diagram for doped systems remains a topic of ongoing debate [14],
and the existence of a superconducting phase was recently questioned [29].

Non-standard Hubbard models [54], which incorporate processes beyond the conventional tunneling
𝑡 and on-site interaction 𝑈, offer a more nuanced description of the complex physics observed
in real materials. To explore these richer physics, we have enhanced the emulation capabilities
of our experimental apparatus by introducing an optical superlattice. A superlattice is formed by
superimposing two optical lattices with commensurate lattice spacing, creating a bi-chromatic structure.
This setup enables the study of topological systems [55], which led to the observation of quantized
transport in Thouless pumps for both bosons [34, 56] and fermions [35]. Additionally, a superlattice
serves as a versatile tool for implementing a periodic drive to the system [41], which allowed for the
manipulation of magnetic correlations [42] and the study of gauge fields [57, 58].

In this chapter, we explore the theoretical framework behind our quantum simulator, with a particular
emphasis on the optical superlattice. We discuss the band structure of the optical lattices and detail
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Figure 2.1: The two-dimensional Hubbard model: (a) In this description, strongly correlated matter is
governed by the interplay of two fundamental processes: The nearest neighbor tunneling 𝑡 and the on-site
interaction𝑈. (b) Schematic phase diagram of the two-dimensional Hubbard model at half-filling, for various
temperatures 𝑘𝐵𝑇 and interaction strengths. The density sector contains three distinct phases that are separated
by the approximate critical temperature 𝑘𝐵𝑇 = |𝑈 | (dashed line): (i) The unordered metallic phase for weak
attractive and repulsive interactions, (ii) the Mott insulator (MI) for large repulsive interactions, where double
occupancies are suppressed and (iii) the preformed pairs (PP) for strong attractive interactions, where double
occupancies are favoured. If the temperature is lowered below the superexchange energy scale 𝐽 = 4𝑡2/𝑈 (dotted
line), an antiferromagnetic phase (AFM), with antiparallel spin alignment, arises for repulsive interactions.
On the attractive site, this leads to a checkerboard structure of doublons and holes in the charge density wave
(CDW). This subfigure was adapted from [13, 52].

the experimental techniques used to control it. Additionally, we introduce the interaction mechanism
of neutral atoms, expressing how these interactions are manipulated by magnetic Feshbach resonances.
Finally, we compute the many-body Hamiltonian of the superlattice in the tight-binding description,
demonstrating how each parameter can be experimentally controlled. We specifically focus on the
interplay between the interaction strength𝑈 and the underlying trapping potential.

2.1 Atom-light interaction

In this section, we discuss the interaction of an atom with a light field, focusing on how atoms can be
trapped by light while minimizing heating.

There are two fundamental processes of atom-light interaction, which we first highlight qualitatively.
One process is absorption (and consequential emission) of the light, which changes the momentum of
the atom. The alternative is a refraction of light, where the atom acts as a dispersive material towards
the photons. Intuitively, the detuning Δ = 𝜔 − 𝜔0 of the photons with respect to the atomic resonance
𝜔0 plays a pivotal role in the interplay of these two processes: On resonance, the atoms absorb the
photons and therefore the refractive process is irrelevant. For a large detuning, the absorption process
is suppressed, the atoms become transparent and interact with the light in a refractive manner.

In the following, we briefly summarize the atom light interaction for a quantum mechanical two-level
system as discussed in Atomic Physics by C.J.Foot [59]. An electric field 𝑬 = 𝐸0 cos(𝜔𝑡 − 𝑘𝑥) 𝑒𝑧
propagating along the x-direction with a linear polarization along the z-axis induces a dipole moment
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2.1 Atom-light interaction

𝒅 at the atom
𝒅 ≡ −𝑒𝒓 = 𝜖0 𝜒a 𝐸0 cos(𝜔𝑡 − 𝑘𝑥) 𝑒𝑧 (2.1)

with the polarizability 𝜖0𝜒a. The induced dipole then interacts with the electric field as

𝑈 = −𝒅 · 𝑬 = −1
2
𝜖0 𝜒a 𝐸

2
0 . (2.2)

The quantum-mechanical force �̄�𝑥 , that the atoms experience from this interaction is then obtained by
the differentiation of this interaction energy and the time average over many oscillations[59]. This
force

�̄�𝑥 = 𝐹dipole + 𝐹scatt. (2.3)

separates into the dipole force and the scattering force. The dipole force

𝐹dipole = −
ℏΔ

2
Ω

Δ
2 +Ω2/2 + Γ2/4

𝛿Ω

𝛿𝑥
, (2.4)

with the Rabi frequency Ω and the linewidth Γ that vanishes for resonant light Δ = 0. On the other
hand, the scattering force

𝐹scatt = ℏ𝑘
Γ

2
Ω

2/2
Δ

2 +Ω2/2 + Γ2/4
(2.5)

decreases with the detuning ∼ 1/Δ2.
Therefore, it is suitable to work in the far-detuned regime Δ ≫ Γ, Ω for trapping atoms in the

dipole potential. In this regime, the dipole potential, or the light shift of the energy levels, is given as

𝑈dipole = ±
ℏΓ

2

8𝐼sat

𝐼

Δ
(2.6)

with the normalized intensity 𝐼/𝐼sat = 2Ω2/Γ2. Here, the positive sign corresponds to the ground
state and the negative sign to the excited state. For red-detuning Δ < 0, atoms in the ground state
experience an attractive potential that changes with intensity. For blue-detuning Δ > 0, the ground
state is repelled from the high-intensity regions by a repulsive potential and vice versa for the excited
state.

The scattering rate 𝑅scatt = 𝐹scatt/ℏ𝑘 in the far-detuned regime approaches

𝑅scatt =
Γ

3

8𝐼sat

𝐼

Δ
2 . (2.7)

Relative to the dipole potential (∼ 1/Δ), the scattering rate decreases faster with the detuning ∼ 1/Δ2.
Therefore, a large detuning allows for a trapping of atoms in the dipole potential, while the heating
from scattered photons is suppressed.

Nonetheless, there is a remaining heating process in the dipole potential due to spontaneous emission
from the excited state. In short, the trapped eigenstate of the two-level system in a driving field is a
dressed state of the atomic level and the laser mode [60]. This dressed state has a small admixture of
the excited state of the atom with a finite lifetime. In a radiative cascade, this excited state can decay
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Chapter 2 Ultracold atoms in optical lattices

to trapped or untrapped states by spontaneous emission of a photon. This leads to fluctuations in the
dipole force and is therefore a source of heating in the dipole potential.

2.2 Single-particle description of optical lattices

In this section, we explore how the dipole potential can be used to create optical lattices of different
symmetries for neutral atoms. In particular, we discuss how the geometry of the interference changes
the lattice spacing and how the superposition of bi-chromatic lasers leads to an optical superlattice.
Moreover, we calculate the band structure of these periodic potentials using Bloch’s theorem. Finally,
we compare two different basis sets of the optical lattice: The delocalized Bloch functions and the
localized Wannier functions.

A monochromatic optical lattice is created by interfering two laser beams of the same wavelength
𝜆 = 2𝜋/𝑘 and with wave vectors 𝒌, 𝒌′. The simplest interference geometry is given by two counter-
propagating plane waves 𝒌 = −𝒌′ along the y-direction (cf. figure 2.2 a), which creates a periodic
intensity pattern

𝐼 (𝑦) =
𝑐𝜖0
2

���𝐸0𝑒
𝑖 (𝑘𝑦−𝜔𝑡 ) + 𝐸0𝑒

−𝑖 (𝑘𝑦+𝜔𝑡 )
���2 = 𝐼0 cos2(𝑘𝑦). (2.8)

When the frequency of the lasers is far-detuned from the atomic resonances, this intensity pattern
creates a periodic optical dipole potential (compare equation 2.6)

𝑉latt(𝑦) = ±𝑉0 cos2
(𝜋𝑦
𝑎

)
, (2.9)

with the lattice spacing 𝑎 = 𝜆/2 and the light shift amplitude 𝑉0. The sign of 𝑉latt is given by the
detuning and creates either repulsive (blue detuned) or attractive (red detuned) potentials.

The spacing 𝑎 of the optical lattice can be adjusted using a shallow-angle interference geometry
(cf. figure 2.2 b). For an interference angle of 2𝛾, the interference also creates an optical potential
according to equation 2.9, but the periodicity of the lattice is given by

𝑎 =
𝜆eff
2

=
𝜆

2 sin(𝛾) . (2.10)

The obtained lattice spacing is minimal for counter-propagating beams and increases with finite
interference angles.

An optical superlattice is created by superimposing two optical lattices with commensurate
wavelengths 𝜆𝑙 = 𝑚𝜆𝑠 (cf. figure 2.2 c), which we denote the long and short wavelength respectively.
In our realization, the superlattice potential is created by a blue-detuned short lattice and a red-detuned
long lattice of twice the wavelength, resulting in the superlattice potential

𝑉sup(𝑥) = −𝑉𝑙 cos2(𝑘𝑙𝑥 + 𝜙) +𝑉𝑠 cos2(2𝑘𝑙𝑥) (2.11)

with the superlattice phase 𝜙. This potential is a bipartite structure consisting of lattice sites and
sublattice sites. The infrared lattice defines a lattice site that is ’split’ into two sublattice sites (left and
right) by the green lattice.

The superlattice phase defines the symmetry of the potential. In the symmetric configuration 𝜙 = 0,
the potential minimum of the attractive infrared lattice coincides with the potential maximum of the

8



2.2 Single-particle description of optical lattices

Figure 2.2: Various types of optical lattices in the experimental setup: The lattices along the 𝑥, 𝑦 and 𝑧
direction have different lattice geometries and lattice spacings compared to the wavelength 𝜆𝑙 = 1 064 nm. (a) A
monochromatic optical lattice along the y-direction is created by interference of two counter-propagating laser
beams with wavelength 𝜆𝑙 . (b) A shallow-angle optical lattice along the z-direction is created by interference of
two laser beams with wavelength 𝜆𝑠 = 𝜆𝑙/2 under an angle 2𝛾 = 24◦. (c) An optical superlattice is created
along the x-direction by superimposing two monochromatic lattices of harmonic wavelengths 𝜆𝑙 = 2𝜆𝑠 . In this
experiment, the short wavelength lattice is blue detuned and the long lattice is red detuned.
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Figure 2.3: Periodicity of the optical superlattice: The potential of an optical superlattice according to equation
2.11 changes its symmetry with the superlattice phase 𝜙. (a) For a symmetric superlattice 𝜙 = 0, the left and
right sublattice sites are energetically degenerate. Increasing the superlattice phase 𝜙 = 𝜋/8 (b) introduces an
asymmetry until the completely asymmetric phase is reached at 𝜙 = 𝜋/4 (c). (d) The asymmetry is reduced,
when increasing the phase even further𝜙 = 3𝜋/8. (e) After one period 𝜙 = 𝜋/2, the symmetric configuration is
restored, but the unit cell has shifted by one short lattice length 𝑎𝑠 .

green lattice (cf. figure 2.3 a).1 This results in the same potential energy of the left and right sublattice
site. In the completely asymmetric configuration 𝜙 = 𝜋/4, both intensity minima coincide, resulting
in the maximal energy difference between the sublattice sites (cf. figure 2.3 c). For a superlattice
phase of 𝜙 = 𝜋/2, the symmetric configuration is restored, however, the unit cell has shifted by one
short lattice spacing 𝑎𝑠.

1 Subplots in this thesis are created using ProPlot [61], an enhanced wrapper for Matplotlib.
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Chapter 2 Ultracold atoms in optical lattices

The optical lattice depth is typically given in units of the recoil energy 𝐸rec = ℎ
2/(8𝑚𝑎2), with

Planck’s constant ℎ. This describes the energy an atom with mass 𝑚 obtains by absorbing a photon
from the lattice with spacing 𝑎. The benefit of this description is a normalized energy scale for atoms
in optical lattices that allows for the comparison of lattices with different spacing (or atomic species).
We have a three-dimensional optical lattice, where the lattice depths are denoted 𝑠𝑧 , 𝑠𝑦 , 𝑉𝑠, and 𝑉𝑙,
with the latter two depths referring to the superlattice along the x-direction.

2.2.1 Band structure of optical lattices

In this subsection, we explore the eigenenergies and eigenstates of a single particle in an optical lattice.
The Hamiltonian for a one-dimensional optical lattice

�̂� (𝑥) = �̂�kin +𝑉latt(𝑥) (2.12)

is given by the kinetic energy operator �̂�kin and the periodic lattice potential 𝑉latt(𝑥 + 𝑎) = 𝑉latt(𝑥).
The eigenstates of a periodic system can be constructed according to the Bloch theorem [62]. It
states, that the eigenfunctions are given by plane wave states 𝑒𝑖𝑞𝑥 with wave vector 𝑞 multiplied by an
envelope function 𝑢𝑞 (𝑥) that inherits the lattice periodicity.

Band structure of a monochromatic lattice

In the following, we will determine the specific wave vector 𝑞 and the envelope function for the
monochromatic optical lattice. For this purpose, it is beneficial to decompose the lattice potential
(equation 2.9) in its Fourier components

𝑉latt =
𝑉0
4

(
𝑒
𝑖𝐺𝑥 + 𝑒−𝑖𝐺𝑥 + 2

)
(2.13)

with the reciprocal lattice vector 𝐺 = 2𝑘 . This decomposition shows, that the lattice Hamiltonian of
equation 2.13 couples plane wave states with a momentum difference corresponding to multiples of
the reciprocal lattice vector 𝐺. Therefore, the discrete translational symmetry of the lattice leads to a
conservation of the quasi-momentum 𝑞, which is defined as the momentum modulo the reciprocal
lattice vector 𝐺. Now, we can use the Bloch theorem to construct a basis set

|𝑞, 𝑚⟩ ≡ 𝑢𝑚(𝑥) 𝑒
𝑖𝑞𝑥

= 𝑒
𝑖 (𝑞+𝑚𝐺)𝑥 (2.14)

that corresponds to plane waves with an overall momentum given by the quasi-momentum 𝑞 plus
integer multiples 𝑚 of the reciprocal lattice vector 𝐺.

In this basis, the matrix elements of the kinetic operator

⟨𝑞′, 𝑚′ | �̂�kin |𝑞, 𝑚⟩ =
ℏ

2

2𝑚
(𝑞 + 𝑚𝐺)2 𝛿𝑞,𝑞′ 𝛿𝑚,𝑚′ (2.15)

are diagonal. On the other hand, the matrix elements of the optical potential follow directly from
equation 2.13:

⟨𝑞′, 𝑚′ |𝑉latt |𝑞, 𝑚⟩ =
𝑉0
2
𝛿𝑞,𝑞′ 𝛿𝑚,𝑚′ +

𝑉0
4
𝛿𝑞,𝑞′ 𝛿𝑚±1,𝑚′ (2.16)
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Figure 2.4: Band structure of monochromatic optical lattice: The eigenvalues of the lattice Hamiltonian
𝐸𝑛 (𝑞) are plotted versus the quasimomentum 𝑞. The quasimomentum is restricted to the first Brillouin zone
𝑞 ∈ (−𝜋/𝑎, 𝜋/𝑎] due to the discrete translation invariance of the optical lattice. This spectrum is shown for
various lattice depths 𝑉0 = 0, 2, 6 and 50 Erec in subfigures a, b, c and d respectively.

and showcase again the coupling between different plane wave states, while conserving the quasimo-
mentum. For a given quasimomentum 𝑞, we construct the lattice Hamiltonian in matrix form
for discrete values of 𝑚 ∈ [−10, 10]. Diagonalizing this Hamiltonian yields the eigenstates and
eigenvalues of the optical lattice, which are described by the following equation

�̂� (𝑥) 𝜓𝑛 (𝑞, 𝑥) = 𝐸𝑛 (𝑞) 𝜓𝑛 (𝑞, 𝑥), (2.17)

where 𝑛 ∈ N represents the band index, a new quantum number introduced in this formalism.
In the following, we investigate the single particle energy spectrum 𝐸𝑛 (𝑞) of the optical lattice: the

band structure. In figure 2.4, we plot the spectrum of a monochromatic lattice for increasing lattice
depths 𝑉0. For a shallow lattice (subfigure a), the spectrum resembles a parabola that is folded at the
edge and center of the Brillouin-zone (BZ) where 𝑞 = 𝑚𝜋/𝑎. This corresponds to the free particle
dispersion relation with a restriction to the first BZ due to the definition of the quasi-momentum
𝑞 ∈ (−𝜋/𝑎, 𝜋/𝑎]. Increasing the lattice depth (subfigures b to c), opens one or more gaps at the
points of degeneracy, effectively separating the spectrum into energy bands, hence the name. This gap
opening is caused by the optical lattice that couples the eigenstates and creates avoided crossings at the
points of degeneracy. The spectrum above the lattice depth still resembles a free particle dispersion
relation and is therefore referred to as the continuum. For very deep lattices (subfigure d), the lowest
bands become flat and thus show no dispersion. These deep lattices are referred to as frozen, as they
suppress all dynamics.

Band structure of a bi-chromatic superlattice

The band structure of a bi-chromatic superlattice is obtained in a manner similar to that for the
monochromatic lattice.

We start by considering a monochromatic lattice of the short wavelength with the reciprocal lattice
vector 𝐺𝑠 = 2𝑘𝑠 and the corresponding quasi momentum |𝑞𝑠 | ≤ 𝜋/𝑎𝑠. The lattice Hamiltonian is
given by equation 2.13 with the repulsive lattice depth 𝑉𝑠. Next, we introduce the attractive lattice of
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Figure 2.5: Band structure of bichromatic optical superlattice: The eigenvalues of the superlattice Hamiltonian
𝐸𝑛 (𝑞) are plotted versus the quasimomentum 𝑞. The quasimomentum is restricted to the first Brillouin zone
𝑞 ∈

(
−𝜋/𝑎𝑙 , 𝜋/𝑎𝑙

]
. This spectrum is shown in a symmetric configuration 𝜙 = 0 for a short lattice depth

𝑉𝑠 = 6 Erec and various long lattice depths 𝑉𝑙 = 0, 2, 6 and 20 Erec in subfigures a, b, c and d respectively.

the long wavelength with the halved reciprocal lattice vector 𝐺𝑙 = 𝐺𝑠/2 and halved Brillouin zone
|𝑞𝑙 | ≤ 𝜋/2𝑎𝑠. This gives the Fourier components of the superlattice potential as

𝑉sup =
𝑉𝑠

4

(
𝑒
𝑖𝐺𝑠𝑥 + 𝑒−𝑖𝐺𝑠𝑥 + 2

)
−
𝑉𝑙

4

(
𝑒
𝑖 (𝐺𝑠/2𝑥+𝜙) + 𝑒−𝑖 (𝐺𝑠/2𝑥+𝜙) + 2

)
. (2.18)

The introduction of the long-wavelength lattice leads to an additional coupling between plane wave
states with a momentum difference of 𝐺𝑠/2, the halved reciprocal lattice vector. The solution of the
superlattice Hamiltonian is then analogue to the monochromatic scenario 2.

In general, the band structure of the superlattice depends on three parameters: the two lattice depths
𝑉𝑠, 𝑉𝑙 and the superlattice phase 𝜙. In figure 2.5, we consider a symmetric superlattice 𝜙 = 0 with
a constant short lattice depth 𝑉𝑠 = 6 Erec and increasing long lattice depths. The smaller Brillouin
zone of the long lattice leads to an additional folding at the new edge of the Brillouin zone 𝑞 = ±𝜋/𝑎𝑙
(dotted vertical lines in subfigure a). Increasing the long lattice depth 𝑉𝑙 (subfigure b to d), opens
another gap at the edges of the smaller Brillouin zone, creating band-pairs (or mini-bands) with a
small band gap.

The resulting mini-band structure is a direct consequence of the bi-chromatic lattice configuration,
which introduces both lattice and sublattice sites. Compared to the monochromatic lattice, this
substructure effectively splits each band into two mini-bands. This behavior will be explored in greater
detail in the next section, where we discuss the eigenstates of the superlattice.

2.2.2 Bloch waves in optical lattices

The eigenfunctions of a single particle in an optical lattice are the Bloch waves 𝜓𝑛 (𝑞, 𝑥) for a given
band 𝑛 and quasi momentum 𝑞. As postulated in the Bloch theorem, they are plane waves that inherit
the periodicity of the underlying potential by the envelope function 𝑢𝑞 (𝑥). Therefore, the Bloch waves

2 For a detailed calculation and discussion of the superlattice band structure, please refer to my Master thesis [63].
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Figure 2.6: Bloch waves of different optical lattices: The eigenfunctions of the optical lattice are plotted
qualitatively into the optical lattice potential and offset by their eigenenergies. (a) In a shallow monochromatic
lattice 𝑉0 = −2 Erec, the Bloch waves 𝜓𝑛 (𝑞, 𝑥) of the lowest band 𝑛 = 1 (blue shaded region) depend strongly
on the quasimomentum 𝑞 = 0 (dashed line) or 𝑞 = 𝜋/𝑎 (dotted line). (b) For a deep lattice 𝑉0 = −30 Erec, the
probability density |𝜓𝑛 (𝑞, 𝑥) |

2 is strongly peaked at the lattice sites and the band index 𝑛 dictates the number
of nodes. The different bands are indicated by the color coding, and the probability density is offset by the
energy of the corresponding band. (c) In the symmetric superlattice configuration (𝑉𝑠 = 4 Erec, 𝑉𝑙 = 6 Erec,
𝜙 = 0), the Bloch waves of the lowest two bands are coupled and delocalized over both sublattice sites. (d) In
the completely asymmetric superlattice configuration 𝜙 = 𝜋/4, the Bloch waves of the two lowest bands are
localized on one specific sublattice site.

can be written as
𝜓𝑛 (𝑞, 𝑥) =

∑︁
𝑚

𝑢𝑞𝑚𝑛𝑒
𝑖 (𝑞+𝑚𝐺)

𝑥 (2.19)

with the relative weight 𝑢𝑞𝑚𝑛. The characteristics of the Bloch waves change with the quasi momentum
and band index. The quasimomentum defines the phase of the plane wave states at neighboring lattice
sites: For 𝑞 = 𝜋/𝑎, the plane waves accumulate a phase factor of −1 between adjacent lattice sites,
whereas for 𝑞 = 0 the sign stays the same. The band index is the dominant energy scale and defines
the number of nodes in the wave function.

We show the Bloch waves 𝜓𝑛 (𝑞, 𝑥) of the lowest band (𝑛 = 1) in figure 2.6 a for a shallow lattice
of 𝑉0 = 2 Erec. Here, the energy band is indicated by a colored region and the corresponding Bloch
waves by a dashed line (𝑞 = 0) and a dotted line (𝑞 = 𝜋/𝑎), showcasing the different phases between
adjacent lattice sites. Moreover, the Bloch waves are delocalized over the lattice and inherit its
periodicity. However, they still have finite probabilities at the high intensity regions due to the small
lattice amplitude that results in a large bandwidth. For a deep monochromatic lattice 𝑉0 = 30 Erec, this
bandwidth decreases significantly (cf. figure 2.6 b). Therefore, the Bloch waves are sharply peaked at
the lattice sites, as the probability density |𝜓𝑛 (𝑞, 𝑥) |

2 (solid line) is negligible in the high intensity
regions. The band index 𝑛 changes the number of nodes of the Bloch wave, in strong resemblance of
the harmonic oscillator wave functions.

In an optical superlattice, the characteristics of the Bloch waves change with the superlattice phase.
In a symmetric superlattice 𝜙 = 0, the Bloch waves of the lowest two bands are delocalized over all
(sub)lattice sites (cf. figure 2.6 c). They only differ in their probability density between the sublattice
sites. The reason for this similarity is the coupling of the two bands that is indicated by the small
band gap. The coupling is related to the energy degeneracy of the two sublattice sites, which we
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Chapter 2 Ultracold atoms in optical lattices

will investigate further in the next section. For the completely asymmetric configuration 𝜙 = 0, this
degeneracy is lifted and the two bands decouple (cf. figure 2.6 d). Here, the Bloch waves of the first
(second) band are localized at the left (right) sublattice sites. A thorough (theoretical) investigation of
the Bloch waves in optical superlattices can be found in the Master thesis of F. Görg [64].

2.2.3 Wannier functions in optical lattices

So far, we have described optical lattices using the Bloch basis. As discussed, Bloch waves are
completely delocalized across the lattice and posses fixed quasi-momenta. Alternatively, the lattice
can be described in a localized basis, known as the Wannier basis [65], which is constructed as
a superposition of all momenta. Wannier functions are localized at specific lattice sites, thereby
discretizing the lattice. It should be stressed, that these functions are not the eigenfunctions of the
system as their localization is energetically costly. However, they are typically used as a basis for
many-body lattices theory with local interactions in a tight-binding description, like the Fermi-Hubbard
model.

In the following, we introduce the Wannier functions for monochromatic and bichromatic lattices.
The obtained wave functions will serve as the basis for the tight-binding description of the optical
superlattice in section 2.4. The Wannier function of band 𝑛 that is localized at site 𝑙 is typically defined
as

𝑤
𝑛
𝑙 (𝑥) =

1√︁
𝑁𝐿

∑︁
𝑞

𝑒
−𝑖𝑞𝑙𝑎

𝜓𝑛 (𝑞, 𝑥), with 𝑞 ∈
(
−𝜋
𝑎
,
𝜋

𝑎

]
(2.20)

with the number of lattice sites 𝑁𝐿 [66]. This definition is practically a Fourier transformation of
the Bloch waves of one specific band. In the monochromatic lattice, this procedure gives Wannier
functions that are localized at one lattice site, as shown in figure 2.7 a. However, in a symmetric
superlattice the Wannier functions of the two lowest bands (blue and orange line) are delocalized
over both sublattice sites (cf. figure 2.7 b). The reason for this remaining delocalization is the
aforementioned coupling between these two bands, which makes the definition of equation 2.20
unsuited for the superlattice.

For the optical superlattice, we define the Wannier functions as the eigenfunctions of the band
projected position operator (BPO), as introduced by S.Kivelson [67]. The obtained Wannier functions
are maximally localized [68], and were applied to superlattices by U.Bissbort [69] and F.Görg [64].
The band projected position operator 𝑥M for a band manifoldM is defined as

𝑥M = �̂�M𝑥�̂�M (2.21)

with the manifold projection operator

�̂�M =
∑︁
𝑛∈M

∑︁
𝑞

|𝑞, 𝑛⟩ ⟨𝑞, 𝑛| (2.22)

and the Bloch waves |𝑞, 𝑛⟩. The maximally localized Wannier functions |𝑙, 𝑚⟩M then solve the
eigenvalue equation

𝑥M |𝑙, 𝑚⟩M = 𝑥𝑙𝑚 |𝑙, 𝑚⟩M (2.23)

with their center of mass position 𝑥𝑙𝑚, the lattice site index 𝑙 and the generalized band index 𝑚 ∈ M.
At the heart of this method is the appropriate choice of the band manifoldM that includes the
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Figure 2.7: Wannier functions of different optical lattices: The probability densities of different Wannier
functions |𝑤𝑛𝑙 (𝑥) | are plotted into the potential of various optical lattices and are offset by their energy. (a) In a
monochromatic lattice 𝑉0 = 24 Erec, the Wannier functions of the lowest band are localized at one lattice site.
(b) In a bichromatic superlattice (𝑉𝑠 = 6 Erec, 𝑉𝑙 = 6 Erec, 𝜙 = 0), the single-band Wannier functions (𝑛 = 1, 2)
are localized at one lattice site but delocalized over both sublattice sites. (c) Considering a band manifold
M ∈ {1, 2} in the calculation of the Wannier functions, results in two wave functions that are localized on the
left (dotted line) and right (dashed line). (d) In a completely asymmetric superlattice ( (𝑉𝑠 = 6 Erec, 𝑉𝑙 = 20 Erec,
𝜙 = 𝜋/4)), the Wannier function on the right well is calculated using the manifoldM ∈ {2, 3}.

coupled bands. For example, in the symmetric configuration of the superlattice, the lowest two bands
are chosen as the manifoldM ∈ {1, 2} to obtain Wannier functions that are localized on one sublattice
site (cf. figure 2.7 c). However, the choice of the manifold depends on the superlattice phase. For a
completely asymmetric superlattice, the second and third band are coupled (cf. figure 2.7 d). Here,
the Wannier function on the lower well is calculated from the first band and the one on the upper well
from the manifoldM ∈ {2, 3}.

To circumvent the necessity of choosing the right manifold, we have developed the multiband
description which considers manifolds of more than two bands. The method is described in detail in
my master thesis [63]. In short, the larger manifold size gives more than one localized function per
sublattice site. Therefore, an additional calculation step is required in which the multiple Wannier
functions per sublattice site serve as a basis for the actual maximally localized Wannier function. The
final result is a maximally localized Wannier function at lattice site 𝑙, which now also differentiates
between sublattice sites

|𝑙, 𝑚⟩M ≡ 𝑤
𝑚
𝑙 (𝑥) = 𝛼

∑︁
𝑞

∑︁
𝑛∈M

𝑑
𝑞𝑛

𝑙𝑚
𝜓𝑛 (𝑞, 𝑥) (2.24)

with the Bloch functions 𝜓𝑛 (𝑞, 𝑥) of band 𝑛 and quasi momentum 𝑞 and their weight 𝑑𝑞𝑛
𝑙𝑚

, the
generalized band index 𝑚 and a normalization constant 𝛼.

In general, the Wannier functions are three-dimensional just as the lattice structure that they describe.
However, the lattices are (almost) orthogonal and therefore their band structure as well as the Wannier
functions separate

𝑤𝑖, 𝑗 ,𝑘 (𝑥, 𝑦, 𝑧) = 𝑤𝑖 (𝑥) · 𝑤 𝑗 (𝑦) · 𝑤𝑘 (𝑧), (2.25)

where we have neglected the generalized band indices for better readability.
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Chapter 2 Ultracold atoms in optical lattices

2.3 Interacting particles in optical lattices

At the heart of quantum simulation lies the study of interacting matter. In this section, we focus
on the interaction mechanisms between neutral atoms and methods to experimentally control these
interactions. Although the study of interactions typically spans the complex fields of quantum
chemistry and molecular physics, we will see that the low temperatures characteristic of ultracold
atomic gases provide a substantial simplification [70]. This simplification allows us to describe the
interaction process using a single key parameter: the scattering length.

First, we discuss the quantum mechanical treatment of collisional interactions in the scattering
theory. Then, we explore the experimental control of the scattering length via magnetic Feshbach
resonances. This section offers a brief overview of the vast topic of interacting ultracold atoms. For a
more thorough investigation, readers are encouraged to consult the articles that inspired this section:
"From van der Waals universality to Fano–Feshbach resonances" by J.Dalibard [70] and "Atomic,
Molecular and Optical Physics" by M.Köhl [60].

2.3.1 Scattering theory

Ultracold atoms primarily interact through elastic two-body collisions, which are best described using
quantum mechanical scattering theory. Scattering theory’s simplicity lies in its reduction of complex
molecular interactions to just one key parameter, the scattering length 𝑎. This simplification allows us
to visualize the scattering process as though it were occurring off a hard sphere with radius 𝑎.

The molecular potential 𝑉 (𝒓) characterizes the interaction between two neutral atoms and changes
considerably with the distance 𝑟 between them. For large inter-particle distances that exceed the Bohr
radius (𝑟 ≫ 𝑎0), the atoms experience the weakly attractive van-der-Waals interaction 𝑉vdW ∼ −𝑟

−6 by
induced dipole-dipole interactions. Conversely, at short distances 𝑟 < 𝑎0, the two atoms strongly repel
each other due to Pauli-blocking between the two electron clouds. Although an ab-initio determination
of the exact molecular potential is difficult, it can be estimated with the Lennard-Jones potential (black
line) in figure 2.8. We will see that an approximation of the inter-molecular potential is appropriate as
the exact shape of the potential is irrelevant for low-energy collisions.

The scattering process between two particles is described typically in the relative coordinate frame
𝒓 = 𝒓1 − 𝒓2, which gives the Hamiltonian

�̂� (𝒓) = −ℏ
2∇2
𝑟

2𝜇
+𝑉 (𝒓), (2.26)

with the reduced mass 𝜇 =
𝑚1𝑚2
𝑚1+𝑚2

. For a radially symmetric interaction potential 𝑉 (𝑟), the momentum
of the scattering process is conserved [59]. Consequently, the eigenfunctions of the collision process
separate into a radial and angular part 𝜓(𝒓) = 𝜓(𝑟)𝑌𝑙,𝑚(𝜃, 𝜙). In this expression, the spherical
harmonics 𝑌𝑙,𝑚(𝜃, 𝜙) represent the angular part of the scattering process, which corresponds to an
angular momentum transfer of 𝑙. The radial part of the wave function describes an incoming plane
wave along the x-direction, that is scattered into a spherical wave

𝜓(𝑟) ∝ 𝑒𝑖𝑘𝑥 + 𝑓𝑘 (𝜃)
𝑒
𝑖𝑘𝑟

𝑟
(2.27)

with the scattering amplitude 𝑓𝑘 (𝜃) for an azimuthal angle 𝜃 and momentum 𝑘 .

16



2.3 Interacting particles in optical lattices

0

r / a.u.

E
ne

rg
y 

/ a
.u

.

molecular potential l=0

scattering phase shift δ0plane wave

centrifugal barrierscattered wave

Figure 2.8: Sketch of two-particle scattering process: The two-particle interaction is dictated by the molecular
potential as a function of the relative coordinate 𝑟 . For s-wave scattering (𝑙 = 0), the molecular potential can be
estimated by the Lennard-Jones potential (black line). If the particles exchange momenta (𝑙 ≠ 0), the centrifugal
barrier creates a local maximum that suppresses access to the attractive part of the potential. The scattered wave
function (blue line) is perturbed by the molecular potential and approaches a plane wave for large inter-particle
distances. Here, the impact of the scattering process is characterized by the scattering phase shift 𝛿0 compared
to an unperturbed plane wave state (blue dashed line).

The scattering process is significantly simplified for low-energy collisions, as we will discuss. The
influence of the orbital angular momentum can be incorporated into an effective interaction potential
for the radial wave function, given by

𝑉eff = 𝑉 (𝑟) + ℏ
2
𝑙 (𝑙 + 1)
2𝑚𝑟2 . (2.28)

The second term of this expression is the centrifugal-barrier, which introduces a local potential
maximum as indicated as the gray line in figure 2.8. This maximum 𝐸𝑚𝑎𝑥/𝑘𝐵 ∼ 1 mK significantly
exceeds the typical temperatures of ultracold gases [60] and suppresses access to the short-range
molecular potential. Only for s-wave scattering (l=0), the centrifugal-barrier vanishes and the attractive
part of the molecular potential is probed by the atoms. Therefore, ultracold atomic gases interact
exclusively via s-wave scattering processes.

Interestingly, the de Broglie wavelength 𝜆DB of these s-wave atoms is much larger than the effective
range of the molecular potential 𝑟𝑐 = 64.9 a0 (for 40

𝐾 [53]). Therefore, the low-energy particles are
insensitive to the details of the potential, and we can characterize the scattering process in the far-field
regime 𝑟 ≫ 𝑟𝑐. Here, the effect of the collision is simply described by a phase shift 𝛿0(𝑘), relative to
the unperturbed plane wave (cf. figure 2.8). In general, the phase of the scattered particle advances
more quickly in attractive potentials than for a free particle, which results in a positive phase shift
𝛿0 > 0 and vice versa for repulsive potentials. This phase shift is then used to define the scattering
length 𝑎 as [70]

1
𝑎
= − lim

𝑘→0
𝑘 cot(𝛿0). (2.29)

This scattering length can be considered as the radius of a hard-sphere potential that causes the
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Chapter 2 Ultracold atoms in optical lattices

observed phase shift. However, the scattering length can be positive, negative, zero and infinite, and
therefore the image of a hard sphere radius "is just a useful fiction that is mathematically equivalent to
the scattering potential" [59].

Moreover, the scattering length can drastically change with the potential depth of an attractive
potential [60]. For shallow potentials, the scattering length is negative and decreases with the potential
depth. When the potential is sufficiently deep, a bound state energy becomes resonant with the energy
of the incoming wave and the scattering length diverges as 𝛿0 = 𝜋/2. After this resonance, the
scattering length is positive until this behavior repeats itself for the next bound state. This phenomenon
is called resonant scattering and is utilized in Feshbach resonances, which we discuss in the next
section.

We have established, that the scattering process is characterized completely by the scattering length
𝑎 and–in the case of s-wave scattering– the atoms do not sample the exact shape of the molecular
potential. Therefore, it is beneficial (from a computational perspective) to replace the molecular
interaction potential with a simpler potential that gives rise to the same scattering length. A suitable
pseudo potential is the regularized contact potential

𝑉pseudo(𝒓) = 𝑔𝛿(𝒓)
𝛿

𝛿𝑟
𝑟 (2.30)

with the coupling strength 𝑔 = 2𝜋ℏ𝑎2/𝑚.

2.3.2 Feshbach resonances

To realize a good quantum simulator, we need experimental control over the interaction strength and
sign. However, for a given atomic species the molecular potential is fixed (for a specific hyperfine
mixture) and so is the scattering length 𝑎. This limitation is overcome by the use of magnetic Feshbach
resonances [53, 70] that effectively manipulate the scattering length with a magnetic field. In the
following, we will discuss the use of magnetic Feshbach resonances for the fermionic potassium
isotope 40K.

Magnetic Feshbach resonances utilize the aforementioned resonant scattering, but the resonance is
created between two collisional channels (cf. figure 2.9 a). The open channel describes a molecular
potential between two hyperfine states (i.e. |𝐹 = 9, 𝑚𝐹 = −9/2⟩ and |𝐹 = 9, 𝑚𝐹 = −7/2⟩), which is
energetically lower than the kinetic energy, and hence the name. The closed channel corresponds
to a different hyperfine state mixture (i.e. |𝐹 = 9, 𝑚𝐹 = −9/2⟩ and |𝐹 = 7, 𝑚𝐹 = −7/2⟩) which is
energetically inaccessible at large distances. However, at short distances, a bound state of the closed
channel can be resonant to the scattering particles of the open channel. This modifies the scattering
length, if the two channels couple to one another by spin-exchange interactions, for which the sum of
the magnetic quantum number 𝑚𝐹 must be conserved [60].

Conveniently, the resonance condition can be manipulated using an external magnetic field, as the
two different channels experience a relative Zeeman shift due to their different magnetic momenta.
This allows for a precise control of the s-wave scattering length 𝑎 around a magnetic Feshbach
resonance according to [70]

𝑎(𝐵) = 𝑎bg

(
1 − Δ𝐵

𝐵 − 𝐵0

)
. (2.31)

The background scattering length 𝑎bg describes the behavior far from the resonance and is spin
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Figure 2.9: Magnetic Feshbach resonances: (a) Resonant scattering between two collisional channels. The
open channel is given by the initial hyperfine mixture which is energetically lower than the kinetic energy of the
colliding particles. The closed channel for a different hyperfine mixture is energetically inaccessible for large
inter particle distances 𝑟, but the bound state can be resonant to the collisional energy. If the two hyperfine
mixtures couple to one another by a spin-exchange interaction, resonant scattering is induced which alters
the scattering length significantly. The energy difference between both channels is controlled by an external
magnetic field as this changes the relative Zeeman shift. (b) Magnetic Feshbach resonances of 40K. The three
lowest hyperfine mixtures |9, 7⟩, |9, 5⟩ and |7, 5⟩ are depicted in blue, orange, and green.

independent. For 40K, the background scattering length was measured to be 𝑎bg = (174 ± 7) a0 [71].
The position and width of the magnetic Feshbach resonance are denoted by 𝐵0 and Δ𝐵, respectively.
In general, these parameters are determined experimentally and a list of all relevant parameters for
fermionic potassium is given in [72].

We plot the magnetic Feshbach resonances according to equation 2.31 for the three lowest hyperfine
mixtures in figure 2.9 b. The mixture of the lowest two hyperfine states |𝑚𝐹 = −9/2⟩ and |𝑚𝐹 = −7/2⟩
is denoted as |9, 7⟩ and shown in blue, |9, 5⟩ is shown in orange, and |7, 5⟩ is shown in green. Clearly,
magnetic Feshbach resonances are an excellent tool to adjust the scattering length over a large
parameter range. It should be noted, that the scattering length between the two resonances of the
|7, 5⟩ hyperfine mixture is not modelled correctly by equation 2.31. Instead, in this region one should
rely on experimental data of the scattering lengths [73, 74].

2.4 Tight binding description of optical lattices

After discussing the periodic potential of optical lattices and the interaction mechanism of ultracold
atoms, we can explore the many-body physics in optical lattices using the tight-binding description.
This approach assumes that the atoms are well localized at the lattice sites, which significantly
simplifies the analysis: The atoms can only tunnel between neighboring sites and only interact if they
occupy the same site. This procedure leads to the paradigmatic Hubbard model for monochromatic
lattices and the Rice-Mele model for superlattices. We start this section, by calculating the parameters
of the single-band tight-binding models and exploring how they can be controlled by the optical
lattices and the scattering length. Then, we discuss how the population of higher bands leads to
second-order processes in the model and why they are negligible for typical configurations. Finally,
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Chapter 2 Ultracold atoms in optical lattices

we explore the interplay between interactions and the underlying potential, focusing on how it changes
the observed interaction strength.

We start with the quantum many-body Hamiltonian in second quantization [13] for an optical
(super)lattice potential 𝑉 (𝒓) (equation 2.11), and the contact interaction 𝑉pseudo(𝒓) (equation 2.30)

�̂� =
∑︁
𝜎

∫
𝑑𝒓 �̂�†𝜎 (𝒓)

[
−ℏ2∇2

2𝑚
+𝑉 (𝑟)

]
�̂�𝜎 (𝒓) + 𝑔

∫
𝑑𝒓 �̂�†↑ (𝒓)�̂�

†
↓ (𝒓)�̂�↓ (𝒓)�̂�↑ (𝒓), (2.32)

with the field operator �̂�†𝜎 (𝒓) that creates a particle at position 𝒓 with spin 𝜎 ∈ {↑, ↓}. We emulate
the spin with a pseudo-spin, where ↓ corresponds to the ground state of the hyperfine manifold
|𝐹 = 9/2, 𝑚𝐹 = −9/2⟩ and ↑ is given by |𝐹 = 9/2, 𝑚𝐹 = −7/2⟩. The first term of the many-body
Hamiltonian describes the kinetic energy and the potential landscape, while the two-particle interactions
are incorporated in the second term.

We express the quantum many-body Hamiltonian in the Wannier basis, using the fermionic field
operator in one dimension

�̂�
†
𝜎 (𝑥) =

∑︁
𝑗

𝑤 𝑗 (𝑥) 𝑐
†
𝑗 𝜎

(2.33)

with the Wannier function localized at lattice site 𝑗 according to equation 2.24 and the fermionic
creation operator 𝑐†

𝑗 𝜎
of a particle with spin 𝜎. In general, this is a suitable basis as long as the

lattice depth is large enough to realize strongly peaked wave functions at the lattice sites. Moreover,
the appropriate band manifoldM depends on the energy scales of the atomic cloud, namely the
temperature and interaction strength. Typically, these energy scales are smaller than the band gap
of the monochromatic lattice which allows for a single-band treatment in this case. However, for
the superlattice, the manifold choice is more delicate due to the small band gap between mini-bands
as discussed in section 2.2.3. Therefore, we consider a band-manifold of four bands and use the
energetically lowest one (generalized band index 𝑚 = 1) as our Wannier basis.

The single-band many-body Hamiltonian of equation 2.32 is given in the Wannier basis as

�̂� = −
∑︁
⟨𝑖, 𝑗 ⟩,𝜎

𝑡𝑖 𝑗

(
𝑐
†
𝑖𝜎
𝑐 𝑗 𝜎 + ℎ.𝑐.

)
+
∑︁
𝑖,𝜎

𝐸𝑖 �̂�𝑖𝜎 +𝑈
∑︁
𝑖

�̂�𝑖↑�̂�𝑖↓, (2.34)

with the number operator 𝑛𝑖𝜎 = 𝑐
†
𝑖𝜎
𝑐𝑖𝜎 and the sum over neighboring lattice sites ⟨𝑖, 𝑗⟩. The particles

express their kinetic energy by tunneling events between neighboring sites with amplitude 𝑡. They
experience an onsite energy 𝐸𝑖 at lattice site 𝑖, and if two particles of opposing spin occupy the same
site, they experience the interaction energy𝑈.

The parameters 𝑡, 𝐸 , and𝑈 characterize the tight-binding Hamiltonian and are typically referred to
as Hubbard parameters. The tunneling amplitude between two sites 𝑖 and 𝑗 and along the direction 𝑥
is given by

𝑡𝑖 𝑗 =

∫
𝑑𝑥 𝑤

∗
𝑖 (𝑥)

[
−ℏ2∇2

2𝑚
+𝑉 (𝑥)

]
𝑤 𝑗 (𝑥). (2.35)

This tunneling amplitude depends on the spatial overlap between the Wannier functions of the two sites.
Therefore, the restriction to tunneling between neighboring sites is reasonable in the tight-binding
picture as the Wannier functions are exponentially localized. For the special case of 𝑖 = 𝑗 , equation
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2.4 Tight binding description of optical lattices

Figure 2.10: Interacting Rice-Mele model in one dimension The tight-binding Rice-Mele model describes
fermions in a superlattice potential with four characteristic energy scales. The particles can tunnel within one
unit cell with the rate 𝑡in/ℎ and out-of the unit cell with 𝑡out/ℎ. If two particles occupy the same lattice site they
experience an on-site interaction𝑈. The energy offset between both lattice sites of a unit cell is twice the tilt 2Δ.

2.35 gives the onside energy 𝐸𝑖 .

The interaction energy𝑈 at lattice site 𝑖 is given by

𝑈 =
4𝜋ℏ2

𝑎

2𝑚

∫
𝑑𝒓 |𝑤𝑖 (𝒓) |

4 (2.36)

with the scattering length 𝑎. Here, it is important to note that the interaction energy depends on the
three-dimensional Wannier function unlike the directional tunneling amplitude of equation 2.35.

The definition of these parameters holds for both monochromatic and superlattices. However, for
the superlattice, two characteristic tunneling amplitudes exist due to the sublattice structure: The
tunneling within a lattice site 𝑡in and the out-of-site tunneling 𝑡out (cf. figure 2.10). Moreover, the
onside energy can differ significantly between the sublattice sites, which is typically encaptured by the
tilt Δ = (𝐸𝑖 − 𝐸𝑖+1)/2.

The tight-binding model for a superlattice structure is given by the Rice-Mele model

�̂�RM = −
∑︁
𝑖

(
𝑡𝑖𝑛 �̂�

†
𝑖𝜎
�̂�𝑖𝜎 + 𝑡𝑜𝑢𝑡 �̂�

†
𝑖𝜎
�̂�𝑖−1𝜎 + ℎ.𝑐.

)
+ Δ

2

∑︁
𝑖,𝜎

(
�̂�
𝑎
𝑖𝜎 − �̂�

𝑏
𝑖𝜎

)
+𝑈

∑︁
𝑖

(
�̂�
𝑎
𝑖↑𝑛

𝑎
𝑖↓ + �̂�

𝑏
𝑖↑𝑛

𝑏
𝑖↓+

) (2.37)

with the lattice index 𝑖 and the number operator at the left sublattice site �̂�𝑎𝑖𝜎 = �̂�
†
𝑖𝜎
�̂�𝑖𝜎 and at the right

sublattice site �̂�𝑏𝑖𝜎 . For a balanced system Δ = 0 the model is referred to as the Su-Schrieffer-Heeger
(SSH) model, which is a paradigmatic topological model. Notably, the Hubbard model is a special
case of the Rice-Mele model (𝑡in = 𝑡out and Δ = 0) and we will restrict the further discussion to the
richer Rice-Mele model.
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Figure 2.11: Hubbard parameters vs. superlattice parameters: The Hubbard parameters are calculated for
a superlattice configuration of 𝑉𝑆 = 10 Erec, 𝑉𝐿 = 15 Erec, 𝜙 = 0, and scattering length 𝑎 = 265 a0. (a) The
short lattice depth 𝑉𝑆 supresses both tunneling amplitudes 𝑡in (blue) and 𝑡out (orange) exponentially. (b) The
long lattice depth enhances 𝑡in and suppresses 𝑡out. (c) A superlattice phase 𝜙 ≠ 0 lifts the energy degeneracy
between sublattice sites. The energy of the lower (upper) well is decreased (increased) as indicated by the
solid (dashed) orange line. (d) The interaction energy 𝑈 of the lower well (solid green line) increases with
the superlattice phase 𝜙 ≠ 0, as the Wannier function is squeezed by the tighter confinement. This behavior is
inverted for the upper well as indicated by the dashed line. Note that for the calculation of the interaction energy
additional lattice depths of 𝑉𝑦 = 60 Erec and 𝑉𝑧 = 110 Erec have been considered.

Experimental control over the tight-binding parameters

The tight binding parameters can be controlled precisely with the superlattice properties 𝑉𝑆 , 𝑉𝐿 , 𝜙,
and the scattering length 𝑎. From equation 2.36 we see that the interaction can be changed linearly
with the scattering length 𝑎 and also depends on the shape of the Wannier function. We will see in the
next section that this linear scaling with the scattering length is only true for small scattering lengths.
But for now, we explore the scaling of the Hubbard parameters with the superlattice parameters.

We start with the symmetric superlattice configuration 𝜙 = 0. Here, the tunneling within a lattice
site 𝑡in exceeds 𝑡out. The reason for this is that the potential barrier within a lattice site is created by the
superposition of the attractive and repulsive potential that partially cancel each other (cf. figure 2.3 a).
The lattice depths of the short and long lattice then change both tunneling amplitudes in different
ways. Increasing the short lattice depth enhances confinement at all lattice sites, leading to a stronger
localization of the Wannier functions and an exponential suppression of both tunneling amplitudes (cf.
figure 2.11 a). On the other hand, increasing the depth of the long lattice effectively shifts the Wannier
functions toward the center of each lattice site, resulting in an increase of 𝑡in, while simultaneously
decreasing 𝑡out (cf. figure 2.11 b).

Introducing a superlattice phase 𝜙 ≠ 0 breaks the symmetry of the superlattice. The onside energy
changes differently for the sublattice sites as one is energetically lowered while the other is raised (cf.
figure 2.11 c). This energy imbalance is often characterized by the energy tilt Δ = 𝐸𝑖 − 𝐸𝑖+1, which
scales linearly with small superlattice phases. Moreover, already for small phases 𝜙 = 0.05𝜋, the tilt
dominates the tunneling Δ ≫ 𝑡in, thereby suppressing all dynamics.

The degeneracy of the interaction energy 𝑈 between sublattice sites is lifted by a non-zero
superlattice phase 𝜙 ≠ 0 (cf. figure 2.11 d). In this configuration, the Wannier function on the lower
well experiences a tighter confinement, and therefore, the interaction energy is increased and vice
versa for the upper well. Additionally, the interaction energy 𝑈 is sensitive to the lattice depths, as
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these alter the confinement within the superlattice. For more detailed plots illustrating the dependence
of the Hubbard parameters on the superlattice parameters, please refer to Appendix A.

Higher band corrections to tight-binding model

So far, we have considered the tight-binding model in the single-band picture (or two band picture
for the superlattice). This description is accurate for deep lattice configurations, where all energy
scales are smaller than the gap to the next band 𝑘𝐵𝑇,𝑈 ≪ 𝐸gap. However, there are second-order
tight-binding parameters, that describe additional processes in optical lattices, where the higher bands
are populated [54]. Here, we introduce these parameters and show that they are negligible for our
typical lattice configuration of 𝑉𝑠 = 10 Erec, 𝑉𝑙 = 15 Erec, 𝑠𝑦 = 60 Erec, 𝑠𝑧 = 110 Erec, and 𝜙 = 0.
Nonetheless, for periodically driven systems these higher-band processes can become significant as
we show in chapter 6.

We start the discussion with the tunneling between lattice sites beyond the nearest-neighbor limit.
The dominant process is between next-to-nearest neighboring lattice sites 𝑡𝑖𝑖+2, as defined in equation
2.35, which is negligible as 𝑡𝑖𝑖+2/𝑡in ∼ 5 × 10−3. Therefore, it is a reasonable assumption to restrict
the tight-binding model to tunneling between nearest-neighboring lattice sites.

The interactions also influence the dynamics in the system by changing the shape of the wave
functions and therefore, also the overlap of wave functions between neighboring lattice sites. This
results in an additional density-dependent part in the tight-binding Hamiltonian

−𝛿𝑡
∑︁
𝑖

(
𝑐
†
𝑖
(�̂�𝑖 + �̂�𝑖+1)𝑐𝑖+1 + ℎ.𝑐

)
(2.38)

which is referred to as density-dependent or density-assisted tunneling, and was observed in optical
lattices [75, 76]. Therefore, we incorporate a correction to the single particle dynamics 𝑡′in = 𝑡in + 𝛿𝑡
with

𝛿𝑡 =
4𝜋ℏ2

𝑎

𝑚

∫
𝑑𝒓 |𝑤𝑖 (𝒓) |

2 · 𝑤𝑖 (𝒓)𝑤𝑖+1(𝒓) (2.39)

for half-filled lattice systems (cf. figure 2.12 a). The amplitude of the density-assisted tunneling 𝛿𝑡
depends linearly on the scattering length, and therefore, is relevant for large interaction strengths.
However, for typical interaction strengths𝑈/𝑡 = 8, the density-assisted tunneling correction is rather
negligible 𝛿𝑡/𝑡in ∼ 7 × 10−2.

The remaining corrections are the nearest neighbor interaction �̂�nn, the direct exchange �̂�de that
introduces spin flips between neighboring sites, and the correlated tunneling �̂�ct [77] (cf. figure 2.12 b
and c), which are given as

�̂�nn = 𝑉nn

∑︁
𝑖

(
�̂�𝑖↑�̂�𝑖+1↓ + ℎ.𝑐.

)
,

�̂�de = 𝑉de

∑︁
𝑖

(
𝑐
†
𝑖↑𝑐𝑖+1↑𝑐

†
𝑖+1↓𝑐𝑖↓ + ℎ.𝑐.

)
�̂�ct = 𝑉ct

∑︁
𝑖

(
𝑐
†
𝑖↑𝑐𝑖+1↑𝑐

†
𝑖↓𝑐𝑖+1↓ + ℎ.𝑐.

)
,

(2.40)
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δt Vde=Vnn Vct

Figure 2.12: Higher-band corrections to tight-binding model (a) Density-assisted tunneling 𝛿𝑡 modifies the
tunneling dynamics of half-filled lattices. (b) The nearest neighbor interaction 𝑉nn is of the same strength as the
direct exchange interaction 𝑉de that introduces effective spin flips. (c) The correlated tunneling 𝑉ct describes an
explicit pair hopping.

with an equal amplitude for all three processes

𝑉nn = 𝑉de = 𝑉ct =
4𝜋ℏ2

𝑎

𝑚

∫
𝑑𝒓 |𝑤𝑖 (𝒓) |

2 · |𝑤𝑖+1(𝒓) |
2
. (2.41)

For static lattices with𝑈/𝑡in = 8, these corrections are negligible 𝑉ct/𝑡in = 8 × 10−4, however, we will
show in chapter 6, that for a periodic drive, the correlated tunneling can be enhanced significantly
exceeding the effective single particle tunneling.

It is important to note, that we have calculated the Hubbard parameters with the non-interacting
Wannier functions. This basis was obtained from the single particle description of the optical lattice
and, therefore, does not account for the distortion of the wave functions by interactions apart from the
density induced tunneling. We will address this inaccuracy in the next section.

2.4.1 Interplay between interactions and the underlying potential

So far, we have separated the interaction process from the calculation of the lattice energy spectrum.
In particular, we have used the Wannier functions of the single-particle band structure to determine
the interaction strength𝑈 according to equation 2.36. However, we didn’t account for the fact, that the
interactions also influence the wave functions in the lattice.

Intuitively, we would expect a broadened version of the Wannier function for repulsive interactions,
as this would minimize the additional interaction energy. This would in turn, lead to an increase of the
potential energy, as the broadened wave function penetrates further in the high intensity regions of
the lattice. We can imagine this energy-interplay to happen iteratively until the wave function that
minimizes the overall energy is found, which differs from the non-interacting wave function used in
the previous chapter.

To explore interactions in the presence of an underlying potential, we study two fermions that
interact via the contact potential of equation 2.30 in a harmonic confinement, which serves as a good
approximation of a deep lattice site. This model was solved analytically for an isotropic harmonic
oscillator by Busch et al. [78] and adapted to cylindrical symmetries by Idziaszek and Calarco
[79], which was used to model the behavior in our monochromatic two-dimensional lattices [72,
80]. However, the symmetry of the superlattice potential is completely anisotropic, for which the
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2.4 Tight binding description of optical lattices

analytic solution was recently published by Chen et al. [81], and was applied to our system in this
work. The anisotropy of a typical superlattice configuration (𝑉𝑆 = 10 Erec, 𝑉𝐿 = 15 Erec, 𝑉𝑦 = 60 Erec,
𝑉𝑧 = 110 Erec and 𝜙 = 0) is characterized by the different trap frequencies

𝜔𝑧 ∼ 23 kHz, 𝜂𝑥 =
𝜔𝑥

𝜔𝑧
= 4.41, 𝜂𝑦 =

𝜔𝑦

𝜔𝑧
= 2.95, (2.42)

where we have introduced the aspect ratios 𝜂𝑖 . In a monochromatic lattice, the trapping frequency is
directly derived from the lattice depth 𝜔𝑖 = 2

√︁
𝑉𝑖 𝐸rec/ℏ [13]. In contrast, for a superlattice, while

the trapping potential remains approximately harmonic, it depends on both the lattice depths and the
phase of the superlattice. To determine the trapping frequency in this case, we fit a harmonic oscillator
potential to the specific well under consideration.

We use the solution presented in [81] to solve the anisotropic harmonic oscillator with interactions
for our specific trap symmetry. We compute the energy spectrum as a function of the scattering
length 𝑎, and relative to the ground state energy of the non-interacting harmonic oscillator 𝐸0 in figure
2.13 a. For non-interacting systems (𝑎 = 0), we observe an energy spacing of Δ𝐸 = 2ℏ𝜔𝑧 , which
corresponds to every second non-interacting harmonic oscillator level. This energy spacing is caused
by the symmetry of the interaction potential, which couples only states with even parity 𝑛 ∈ 0, 2, 4, . . ..

We discuss interacting systems for the example of the lowest harmonic oscillator level 𝑛 = 0,
which corresponds to the lowest band of the lattice. Introducing a finite repulsive scattering length,
linearly increases the energy for small scattering lengths and vice versa for attractive scattering
lengths. For large scattering lengths |𝑎 | ≫ 1 𝑙𝑧𝐻𝑂, where the harmonic oscillator length is defined as
𝑙
𝑧
HO = ℏ

𝑚𝜔𝑧
∼ 1 900 a0, the energy saturates. The change in energy relative to the non-interacting case

gives the interaction energy𝑈HO = 𝐸 − 𝐸0. This model clearly demonstrates that the linear scaling of
interaction energy with scattering length, as postulated in equation 2.36, only holds true for small
scattering lengths. Moreover, there exists a bound state for repulsive interactions 𝑎 ← 0+, which can
be used to create Feshbach molecules [82].

We can gain further insight into the model by studying the relative wave functions along the
𝑧-direction, as depicted in figure 2.13 c to g. The relative wave functions are plotted for increasing
scattering lengths and energies, which are indicated by orange dots in the spectrum shown in subfigure
a. We start our discussion with the wave function of the non-interacting system (subfigure e), which
corresponds to the non-interacting ground state of the harmonic oscillator. If we include interactions,
the eigenstate responds to the interaction potential by coupling to higher bands of the harmonic
oscillator. For repulsive interactions, the relative wave function minimizes the density in the interaction
region and becomes broader (subfigure f), and vice versa for attractive interactions (subfigure d). This
broadening of the wave function happens until the restoring force of the harmonic potential balances
the repulsion of the interaction in the saturated region. For attractive interactions, the kinetic energy
counteracts the interaction induced localization of the wave function leading to the observed saturation.
Note that the positive parity of the wave functions is conserved for all scattering lengths, due to the
aforementioned parity of the pseudo potential.

Still, the obtained interaction energy overestimates the interactions in an optical lattice, as the
confinement is slightly stronger in the harmonic oscillator [83]. As a consequence, the eigenfunctions
of the harmonic oscillator, the Gauss functions, are more localized than the Wannier functions. To
account for this inaccuracy, we employ a correction factor A [83] to determine the interaction energy
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Figure 2.13: Anisotropic harmonic oscillator spectrum and corrected interaction strength: (a) The spectrum
of an anisotropic harmonic oscillator with aspect ratios 𝜂𝑥 = 4.4 and 𝜂𝑦 = 3 is plotted versus the scattering
length 𝑎 in units of the harmonic oscillator length 𝑙𝑧HO along the 𝑧-axis. The energy zero is set to the energy of
the lowest band in the non-interacting limit 𝐸0. The relative wave function for the eigenstates of the lowest band
(orange dots) are plotted in (c) to (g) along the 𝑧-direction. (b) Interaction energy 𝑈 in a three-dimensional
lattice configuration for different computation methods. The interacting anisotropic harmonic oscillator is
shown as a solid blue line, and including the correction for Wannier functions as a dashed blue line. The
calculations with non-interacting wave functions is shown for a Gaussian wave function as a solid green line
and for a Wannier function as a dashed green line. The inset shows the behavior for repulsive interactions that
are typically used in our experiment. The considered lattice configuration for both subplots is 𝑉𝑆 = 10 Erec,
𝑉𝐿 = 15 Erec, 𝑉𝑦 = 60 Erec, 𝑉𝑧 = 110 Erec, and 𝜙 = 0.
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2.4 Tight binding description of optical lattices

in an optical lattice from the harmonic oscillator

𝑈latt = A𝑈HO, with A =
𝑈𝑊

𝑈𝐺
=

∫
𝑑𝒓 |𝑤𝑖 (𝒓) |

4∫
𝑑𝒓 |𝑔𝑖 (𝒓) |

4 , (2.43)

where we have introduced the Gaussian function

𝑔𝑖 (𝒓) = 𝑔𝑖 (𝑥)𝑔𝑖 (𝑦)𝑔𝑖 (𝑧), with 𝑔𝑖 (𝑥) =
1

4
√︃
𝜋𝑙

2
𝑥

𝑒

−(𝑥−𝑥𝑖 )
2

2𝑙2𝑥 . (2.44)

We compare the different methods to determine the interaction strength for various scattering
lengths in figure 2.13 b. The linear scaling is evident in both non-interacting calculations using
Gaussian functions 𝑈𝐺 (solid green line) and Wannier functions 𝑈𝑊 (dashed green line). Notably,
|𝑈𝐺 | > |𝑈𝑊 |, highlighting the aforementioned overestimation of the confinement for the harmonic
trap. Additionally, we observe the impact of the correction factor, that adjusts𝑈HO (blue line) to give
the actual interaction strength in the lattice𝑈latt (blue dashed line).

Moreover, the saturating behavior of 𝑈HO becomes significant for large scattering lengths |𝑎 | ≳
500 a0. The inset provides a zoomed-in version of the plot for typical repulsive interaction strengths
in an experiment (𝑈/𝑡 ∼ 8), where the various interaction strengths only differ by ∼ 𝑡. This minor
discrepancy is caused by the strong confinement of the considered lattice configuration, with the
deviation being more pronounced for shallower lattices, where higher band contributions are more
significant [80].

In this work, we use the interaction energy 𝑈latt to calculate the interactions in our system. The
calibration of the interaction energy is discussed in section 4.2.2, where we find great agreement
between this theory and our experimental data.
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CHAPTER 3

Experimental apparatus

In this chapter, we discuss the experimental apparatus used to study ultracold fermionic atoms in a
three-dimensional optical lattice. We begin by summarizing the process of transforming a hot atomic
vapor of potassium atoms into a quantum-degenerate fermionic gas confined in the optical lattice.
Then, we explore the implementation of an in-plane superlattice, which is central to the research
presented in this thesis. Finally, we discuss the detection methods used in this work.

At the start of this work, this experimental setup was already assembled and had been refined by
many generations of PhD students. Therefore, most components of the apparatus are only briefly
reviewed here, with detailed descriptions available in the work of my predecessors [72, 80, 84–90].
During this work, we newly implemented a phase-stable and periodically-drivable superlattice (section
3.2) and investigated its observables (section 3.3.4).

3.1 Creation of a quantum-degenerate Fermi-gas in an optical lattice

In this section, we discuss the preparation of ultracold fermionic potassium atoms in a three-dimensional
optical lattice for quantum simulation. Achieving this requires cooling the atoms so that their behavior
is primarily governed by quantum mechanics. This necessitates a high phase space density, which is
more challenging for fermions than for bosons due to the Pauli exclusion principle.

The Pauli exclusion principle dictates that the many-body fermionic wave function, composed
of a spin and a spatial wave function, must be antisymmetric under particle exchange. As a result,
s-wave scattering, which requires a symmetric spatial wave function (compare section 2.3.1), can only
occur between fermions with different spins. Consequently, identical fermions cease to interact at
increasingly low temperatures.

To overcome this thermalization issue, we prepare a spin mixture during the various cooling
processes. This approach ensures that the fermionic atoms can interact and thermalize effectively,
allowing us to reach the necessary phase space density for quantum simulation.

In the following, we explore the techniques employed to cool a hot atomic gas of potassium to
quantum-degeneracy in more detail. The cooling process begins with a magneto-optical trap and laser
cooling. Subsequently, the atoms undergo evaporative cooling in magnetic and optical traps. Finally,
we discuss the atom transfer into a two-dimensional optical lattice, which serves as the starting point
for the experiments conducted in this thesis.
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Figure 3.1: Level Structure of 40𝑲 with and without external magnetic field: (a) Level Scheme of 40
𝐾

without a magnetic field. The atoms are primarily cooled on the |𝐹 = 9/2⟩ → |𝐹′ = 11/2⟩ transition of the D2
Line with an additional repumper laser that is necessary due to the small energy splitting of the excited state
manifold. Both lasers are red detuned by 32 MHz with respect to their transitions and therefore contribute to the
cooling of the atom cloud. (b) Breit-Rabi diagram of the two lowest hyperfine manifolds in an external magnetic
field. The energy difference between (within) the two manifolds is in the microwave (radio-frequency) regime.

3.1.1 Properties of potassium-40

We conduct our experiments with the fermionic isotope of potassium 40
𝐾 . This Alkali atom has one

valence electron and a nuclear spin 𝐼 = 4. The consequential level structure is shown in figure 3.1
and is particularly suited for laser cooling. The ground state 42

𝑆1/2, with a total angular momentum
quantum number 𝐽 = 1/2, composes of two hyperfine-manifolds |𝐹 = 9/2⟩ and |𝐹 = 7/2⟩. We laser
cool the atoms primarily on the |𝐹 = 9/2⟩ → |𝐹′ = 11/2⟩ transition of the D2 Line (766.7 nm).
However, due to the relatively small level spacing in the excited states, some atoms are off-resonantly
excited to the |𝐹′ = 9/2⟩ state from which they can decay to the |𝐹 = 7/2⟩ state. Therefore, a second
laser is used to re-pump the atoms back into the primary cooling cycle. Both lasers are red detuned by
32 MHz to provide an effective cooling force.

Introducing an external magnetic field 𝑩 = 𝐵𝑒𝑧 lifts the energy degeneracy of the ground state. In
particular, for the two hyperfine manifolds of the ground state, the Hamiltonian in an external magnetic
field is given by

�̂�𝐻𝐹 =
𝐴

ℏ
2 𝐼 · 𝐽 +

1
ℏ
(𝑔𝐽𝜇𝐵𝑚𝐽 − 𝑔𝐼𝜇𝑁𝑚𝐼 )𝐵. (3.1)

For the magnetic fields used in typical quantum-gas experiments of up to a few hundred Gauss, the
hyperfine Hamiltonian crosses from the low-field (Zeeman) regime to the high-field (Paschen-Back)
regime. In the low-field regime, the hyperfine constant dominates the magnetic coupling 𝐴 ≫ 𝑔𝐽𝜇𝐵𝐵,
causing the electron and nuclear angular momenta to couple into the total angular momentum 𝐹. In
the high-field regime 𝐴 ≪ 𝑔𝐽𝜇𝐵𝐵, the external magnetic field dominates, and both momenta couple
individually to the external field. Although the good quantum numbers differ between these two
regimes, the magnetic quantum number 𝑚𝐹 remains a valid quantum number in both. The energy
spectrum in this system is known as the Breit-Rabi spectrum [60, 91] and is depicted in figure 3.1 b.

For small magnetic fields, the eigenenergies scale linearly with the magnetic field. Here, the
atoms are in the Zeeman regime, where their energy scales with the magnetic quantum number 𝑚𝐹 .
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3.1 Creation of a quantum-degenerate Fermi-gas in an optical lattice

However, in the high-field regime > 500𝐺 the eigenenergies depend mostly on the electronic angular
momentum 𝑚𝐽 which can have a different slope and sign. In this work, we mostly work in the regime
around ≈ 200𝐺, where the Feshbach resonance of the lowest two 𝑚𝐹 states is located (cf. figure 2.9).
Here, in between the two magnetic-field regimes, the level splitting between the different 𝑚𝐹 is not
equidistant, allowing for selective transfers between the states by radio-frequency (RF) pulses (section
3.3.1). On the other hand, the energy difference between the 𝐹 states is in the GHz regime, which
allows for microwave (MW) transfers.

3.1.2 Magneto-optical trap and transfer to the science cell

The first step in the experimental sequence to cool our atom from room temperature to quantum-
degeneracy is the magneto-optical trap (MOT), which is described in detail in [84, 85, 92]. We use
enriched Potassium with approximately 10 percent 40

𝐾 that is directly loaded from the background
gas into our MOT.

The MOT consists of three pairs of counter propagating laser beams and a magnetic field gradient
created by a pair of coils in anti-Helmholtz configuration. This creates a position dependent force,
simultaneously trapping and cooling the atoms depending on the detuning of the lasers from the
D2 line. In the first step, a large detuning is chosen to realize a large capture range, when initially
confining the atoms. Then, the density of the cloud is increased by decreasing the detuning. Finally,
the intensity of the repumper is reduced drastically, which realizes a dark MOT [93], where only a
small fraction of the atoms are actively part of the cooling cycle. This increases the atomic density
further, as the repulsive forces from rescattered photons are decreased.

Loading the MOT directly from the background gas has the upside of fast loading cycle that
produces approximately 500 × 106 atoms in 5 s with a temperature close to the Doppler temperature

𝑇𝐷 =
ℏΓ

2𝑘𝐵
= 150 µK. (3.2)

However, the downside is a relatively high vacuum-pressure of ∼ 10−9 mbar. As a result, the collision
rate of the atomic cloud with the background gas is too high to reach quantum-degeneracy. Therefore,
the atoms are transported mechano-magnetically from the MOT-chamber to the science-chamber. The
science chamber consists of a glass-cell in an ultrahigh vacuum system with a background-pressure
of ∼ 10−11 mbar. The transport is realized by moving a magnetic trap between the two chambers
mechanically on a ballscrew-based translation stage.

To load the atoms from the MOT into the magnetic trap, they need to be in trappable low-field
seeking state 𝑚𝐹 > 0. However, after the MOT they populate all 𝑚𝐹 states equally which is addressed
by an optical pumping procedure after turning off the MOT. Here, 𝜎+ light is shone onto the atoms
while creating a homogenous magnetic along the z-axis, defining the quantization axis. This pumps
the atoms dominantly to the |𝑚𝐹 = 9/2⟩ and |𝑚𝐹 = 7/2⟩ states that are then trapped in the minimum
of a magnetic quadrupole field created by two coils in anti-Helmholtz configuration. This coil-pair is
attached to the motorized translation stage that moves the atoms to the science chamber.

3.1.3 Evaporative cooling to quantum-degeneracy

We perform two evaporative cooling steps in the UHV science chamber: the first is conducted in a
magnetic trap and the second in an optical dipole trap. Evaporative cooling in general follows the
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Figure 3.2: Schematics of various evaporative cooling techniques: (a) Evaporative cooling of a hot cup of
coffee. The hottest atoms evaporate from the cup, effectively lowering the temperature. (b) Forced evaporative
cooling technique in the magnetic trap around 100 G. Atoms in the |𝐹 = 9/2, 𝑚𝐹 = 9/2⟩ state (light blue)
occupy different regions of the trap depending on their temperature. First, the hot atoms are selectively
transferred by a MW pulse to the untrappped |𝐹 = 7/2, 𝑚𝐹 = 7/2⟩ state (yellow). In a second evaporation
step, a RF transition to the untrapped |𝐹 = 9/2, 𝑚𝐹 = −9/2⟩ state (blue) is utilized for lower temperatures. (c)
Evaporative cooling in an optical dipole trap. Gravity tilts the confining potential of the dipole trap for low
intensities. Reducing the optical power spills the hottest atoms from the optical dipole trap. This sub-figure was
inspired by [88].

same working principle as cooling down a hot cup of coffee (compare figure 3.2). Initially, the trapped
ensemble consists of atoms at various temperatures that follow the Boltzmann distribution. Selectively
removing the hottest atoms allows the ensemble to thermalize to a lower temperature, where the
high energy states are populated by fewer atoms. Repeating this process then iteratively reduces the
population of the high energy states and thus continuously lowers the temperature of the ensemble.
This principle holds true for all trap designs, however, the selective removal technique can range from
blowing into a cup for your morning coffee to applying a radio frequency pulse in a magnetic trap.

At first, the atoms are confined in an Ioffe-Pritchard trap, a magnetic trap with a non-zero field
minimum [84, 85]. This design has the advantage of absent Majorana-losses at the field minimum and
a large mode overlap with the dipole traps of the next cooling step. Initially, the removal process is
forced by a microwave transfer to the untrapped high-field seeking states (𝐵 < 200𝐺) of the |𝐹 = 7/2⟩
manifold (compare figure 3.1). During this process atoms with higher temperatures are selected
by choosing a microwave frequency for large magnetic fields that are only experienced by the hot
atoms on the edges of the trap (compare figure 3.2 b). An interesting advantage of this process is
that it removes the population of the unwanted low 𝑚𝐹 states that more likely populate the outer
regions of the trap due to their smaller magnetic moment [85]. This MW evaporation is followed by a
radio-frequency evaporation to the lowest 𝑚𝐹 states of the |𝐹 = 9/2⟩ manifold that is more efficient
for lower temperatures. After the evaporative cooling in the magnetic trap, we obtain roughly 10× 106

atoms at 3 µK.
In the next step, the atoms are transferred from the magnetic trap to a crossed-beam optical dipole

trap (compare section 2.1). These traps have the advantage over a magnetic trap, that their depth is not
dependent on the internal state of the atoms. The two red-detuned beams in use are the horizontal
dipole trap (Dth) and the dimple dipole trap (Dtd), both with a wavelength of 1 064 nm. First, the
atoms are transferred from the magnetic trap to the Dth, which has a similar confinement as the
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3.1 Creation of a quantum-degenerate Fermi-gas in an optical lattice

Axis Lattice type Lattice spacing Laser source

x retro reflection
𝑎

1064
𝑥 = 532 nm NKT Koheras Adjustik + Boostik Y10
𝑎

532
𝑥 = 266 nm SHG + Coherent Mephisto MOPA 55W

y retro reflection 𝑎
1064
𝑦 = 532 nm Innolight Mephisto MOPA 20W

z shallow-angle
𝑎

1064
𝑧 = 2 129 nm Innolight Mephisto
𝑎

532
𝑧 = 1 064 nm Coherent Verdi V10

Table 3.1: Parameters of three-dimensional optical lattice setup

magnetic field due to the small beam waist along the z-direction 𝑤𝑧 = 12.5 µm. Here, we transfer
the atoms from the highest 𝑚𝐹 states to the two lowest hyperfine states 𝑚𝐹 ∈ {−9/2,−7/2} via a
Landau-Zener sweep (compare section 3.3.1). We perform up to three spin-mixing pulses [88], to
ensure a balanced population of our quasi-spin states for the following experiments.

Then, we include the dimple to deepen the potential of the optical trap. In particular, the additional
laser increases the confinement along the z-direction of our optical dipole trap and ensures a high
phase-space density throughout the following evaporation process. This evaporation is performed
simply by lowering the intensity of both dipole lasers. As a consequence, the high-temperature atoms
are pulled from the trap by gravity along the z-direction figure 3.2.

This evaporation is performed in two steps: first at repulsive interactions (𝐵 = 235𝐺) and then at
attractive interactions (𝐵 = 204𝐺). This final attractively-interacting evaporation has the benefit of
higher atomic densities at the trap center and therefore better band-insulator fidelities in the optical
lattice. We characterize the final evaporation step in a thermometry measurement by ballistic expansion
[72, 80, 94] that gives

100 × 103 atoms, at 𝑇 ≲ 0.1𝑇𝐹 (3.3)

with the Fermi temperature 𝑇𝐹 . With these temperatures well below the Fermi-temperature, we have
reached the quantum-degenerate regime, where the behavior of the fermionic cloud is dictated by
quantum statistics. For a detailed discussion of the current evaporation process in the dipole traps,
please refer to [88].

3.1.4 Loading into a two-dimensional optical lattice

At the heart of the experimental apparatus lies a three-dimensional optical lattice setup. The lattices
along the x- and y-direction are created by means of retro reflection, while along the z-direction a
shallow-angle lattice is created by interfering two beams under an angle of 29◦ (cf.figure 3.3). In
general, we either use red-detuned infrared lasers with a wavelength of 1 064 nm or blue-detuned
green lasers with a wavelength of 532 nm to create the optical lattices.

In the following, we discuss the experimental sequence to create a quantum-degenerate Fermi gas
in a two-dimensional optical lattice. This is the starting point of all experiments discussed in this
thesis. We start by loading the three-dimensional Fermi gas from the optical dipole traps into the
green lattice along the z-direction within 3 second. Here a further evaporation procedure is realized
by the interplay of the attractive dipole traps and the repulsive lattice beam [80]. In particular, the
repulsive nature of the lattice introduces additional local minima of the potential from which the hot
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Figure 3.3: Three-dimensional optical lattice setup: The green shallow-angle lattice along the z-direction
separates the cloud into a pancake structure. Two infrared lattices along the x- and y-direction are created by retro
reflection and realize a two-dimensional optical lattice. The apparatus is extended further, by superimposing an
infrared (green) laser along the z-(x-)direction, which creates an optical superlattice. Details on the specific
lattice parameters are given in table 3.1. This figure was adapted from [72].

atoms are able to escape. This additional evaporation step is necessary, as the loading itself is not
sufficiently adiabatic which leads to higher band populations of the lattice.

In the second-step, the infrared in-plane lattices are ramped within 500 ms to 6 Erec. This time was
optimized to be the shortest timescale for which the system has thermalized in the lattice. To this
end, two different thermometers in the lattice were compared: the spin correlations via the staggered
structure factor (SSF) and the temperature extraction from the density profile. The spin correlations
are measured in an auto-correlation analysis of the spin states after a Ramsey-type sequence [95]. On
the other hand, the density thermometer extracts the temperature from the fitted equation of state [96].

For loading times larger than 500 ms, both thermometers measure a constant heating rate of
(0.37 ± 0.05) t/s 1. In contrast, for smaller loading times, only the spin-thermometer detects the
linear scaling whereas the density-thermometer measures much higher temperatures. This deviation
is accounted to density redistributions during the thermalization process that are detected by the
density-sensitive thermometer. The realized temperatures in the 2D Fermi-Hubbard model depend
on the relative interaction strength𝑈/𝑡 and the absolute timescale 𝑡 defining the thermalization time.
For a repulsive interaction of𝑈/𝑡 = (8.2 ± 0.5), 2 my colleagues have measured temperatures from
𝑘𝐵𝑇/𝑡 = (0.96 ± 0.02) [98] down to 𝑘𝐵𝑇/𝑡 = (0.63 ± 0.02) [96] showcasing a quantum-degenerate
fermionic gas in a two-dimensional optical lattice.

With this procedure we have prepared a two-dimensional realization of the Fermi-Hubbard model
in the quantum-degenerate regime. This serves as the starting point for all experiments conducted

1 This heating rate is extrapolated for a constant lattice depth.
2 At this specific interaction, the highest temperature 𝑘𝐵𝑇/𝑡 ∼ 0.3 for the occurrence of anti-ferromagnetic ordering is

expected [97].
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during this thesis.
It should be noted, that there is also a digital micro-mirror device (DMD) installed in the experimental

apparatus. We use a far detuned laser at 730 nm to image the almost arbitrary pattern of the DMD
onto the atomic cloud along the z-imaging axis. This was successfully used to create potential barriers
separating the high-density from the low-density regions of the two-dimensional lattice [31, 88, 90].
However, when compensating for the Gaussian envelope of the lattice beams with the DMD, the atoms
localize and become immobile [99]. This observation is accounted to disorder in the DMD potential
on length-scales that are not observable due to our limited resolution. The DMD was not used in the
experiments discussed in this work, and the reader is referred to the aforementioned works of my
colleagues, for more detailed information.

3.2 Superlattice setup

We have implemented an optical superlattice along the x-direction of our three-dimensional lattice
setup during this work. This superlattice is created by superimposing a 1 064 nm and a 532 nm laser,
forming a bi-chromatic lattice structure through retro-reflection from the same mirror.

The infrared laser in use is a NKT photonics Koheras Adjustik/Boostik Y10 with a linewidth reduced
to less than 3 kHz. The green laser is created by second-harmonic generation (SHG) from a Coherent
Mephisto MOPA 55W 1 064 nm pump laser. This procedure provides us with a green laser source that
inherits the small line width of its pump laser (1 kHz over 100 ms [100]) which are superior to other
commercially available green lasers like the Verdi laser systems with a linewidth in the MHz regime
[101]. Detailed experimental information on this SHG in a monolithic bow-tie cavity can be found in
my Bachelor thesis [102].

This section is organized as follows. First we introduce the optical setup to create an intensity-stable
optical superlattice in the atom-plane. Next, we discuss the relative-phase control of both lasers on
short and long timescales independently. This enables stable superlattice phases that can be modulated
quickly for the realization of Floquet-driven systems.

3.2.1 Optical setup of the in-plane superlattice

The optical setup of the superlattice is separated into two parts. On the laser table, both lasers are
intensity- and phase-stabilized before being coupled into optical fibers going to the experimental table.
On the experimental table, the lasers are superimposed and used to create an optical superlattice at the
atom position.

Optical setup on the laser-table

The optical setup on the laser table to obtain an intensity stable pair of 1 064 nm and 532 nm lasers is
shown in figure 3.4. It was initially set up during my Master thesis [63] and significantly updated since.
The following paragraph describes this optical setup and is partially extracted from my Master thesis.
X1064: The pair of half-wave plate (𝜆2 ) and polarization dependent beam splitter (PBS) splits the
laser power in two parts. The majority of the light is sent through an acousto-optic modulator (AOM)
in double-pass configuration before being coupled into the fiber towards the experiment. The purpose
of this AOM is two-fold: Firstly, it is used to stabilize the intensity of the laser on the experimental
side. For this purpose, a photodiode on the experimental table (see figure 3.5) monitors the intensity
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Figure 3.4: Superlattice setup on laser table: Optical setup to create a phase and intensity stable pair of
1 064 nm and 532 nm lasers. This graphic is adapted from [63].

of the laser and changes the RF input power of the AOM in a feedback loop accordingly. Secondly, the
frequency of the AOM can be changed to control the frequency of the infrared laser in a rapid fashion,
which will be discussed in more detail in the next section.

SHG Cavity: The infrared laser is mode matched and coupled into the monolithic-bow-tie cavity.
Here, the SHG is performed using a Lithium Triborate (LBO) crystal with a high damage threshold
lager than 10 GW/cm2 [103]. A Haensch-Couillaud lock [104] ensures that the optical path length
inside the cavity is kept resonant to the pump laser frequency using a piezo chip behind one of the
cavity mirrors. The principle of the lock itself is the following: The cavity represents a polarization
filter due to the Brewster cut of the LBO crystal, resulting in a clean p-polarization inside the cavity.
Therefore, when probing the beam reflected from the cavity, the light that picked up the phase inside
the cavity is orthogonally polarized to the directly reflected beam. These two parts get mixed again
using a quarter-wave plate, a PBS and a balanced photodiode PDB210A/M from Thorlabs resulting in
an error signal which is fed back to the piezo mirror. In the current configuration, pumping the cavity
with ∼ 18 W leads to ∼ 5 W green laser power.

X532: The cavity output beam is divergent and elliptic which is compensated by a collimation
lens right after the cavity and a cylindrical telescope of 2/3 x magnification (in the p-axis). This
results in a 1/𝑒2 beam diameter of ∼ 2 mm. The light is coupled through an AOM to create an
intensity stabilization scheme similar to the aforementioned one. Finally, a single-mode polarization-
maintaining photonic-crystal fiber LMA-PM-15 from NKT photonics guides the light to the experiment
table. We have observed a drastic dependence of the fiber-coupling efficiency on the minimal bending
radius of this photonic crystal fiber. Therefore, we ensure a minimal bending radius > 30 cm and
achieve a fiber coupling efficiency of > 65 %. We attribute this limited coupling efficiency to the
remaining ellipticity of the beam profile.

Beat signal: A small fraction of the X1064 laser power and the X532 pump laser power is used
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to create a beat signal. In particular, both infrared beams are overlapped using a 50/50 BS and
coupled into the same fiber leading to a fiber-coupled avalanche photodiode DET08CFC/M with
5 GHz bandwidth from Thorlabs. This creates a beat signal of the frequency difference of both lasers
that is used in a phase-lock scheme to stabilize the frequency and phase difference of both lasers
(compare section 3.2.2).

Optical setup on the experiment-table

The optical setup of the x-direction superlattice on the experimental side is shown in figure 3.5. The
infrared lattice along the x-direction was implemented many years ago [72, 80], while the green lattice
was initially set up during my Master thesis [63]. Therefore, the following paragraph is partially
extracted from this work with updates according to the significant changes.

X1064: The infrared beam is polarization cleaned and beam-shaped after the out-coupling from
the fiber. An optical isolator (M714 from conoptics inc.) prevents back-reflections into the fiber. A
fraction of the laser power is split, wavelength filtered using a line filter and monitored on a photodiode
(PD). This PD signal is used for the intensity stabilization of the lattice laser. In particular, intensity
fluctuations at the PD are compensated in a feedback loop with the AOM on the laser table. After
another beam shaping telescope, the lattice laser is sent to the science chamber.
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Science chamber: The infrared beam is overlapped with the horizontal dipole trap using a PBS
and subsequently aligned and focused onto the atom cloud. Moreover, the last dichroic mirror before
the chamber enables imaging along the x-direction. After the glass cell, the beams are collimated
by the achromatic doublet YAP-250 from CVI Laser Optics with a focal length of 250 mm. Then
another dichroic mirror transmits the imaging wavelength 767 nm to a CCD camera which images the
atom plane. However, a small fraction of the infrared and green light is also transmitted enabling a
monitoring of the beam profile at the place of the atoms. Finally, a motorized mirror, which will be
referred to as retro-mirror, retro-reflects the lattice lasers resulting in a standing wave intensity pattern
at the position of the atoms.

X532: The green lattice setup also consists of an optical isolator and an intensity stabilization
photodiode. A cylindrical telescope creates an elliptical beam shape with an aspect ratio of
𝑤𝑧/𝑤𝑦 ∼ 0.4 in the atom plane. This ellipticity allows for the creation of deeper lattices for a given
power at the cost of a decreased Rayleigh length. However, due to the small extend of the atomic
cloud along the z-direction the larger beam divergence is acceptable. The green beam is superimposed
with the infrared beam by two motorized mirrors before the dichroic mirror. Finally, a 10 mm thick
anti-reflection coated window from Eksma optics in a motorized mount from Newport Agilis is used to
displace the beam. This displacement leaves the position of the beam at the atoms-position unchanged
while it varies its angle. In section 4.1.2 we demonstrate, that this X532-displacement plate angle can
change the superlattice phase spatially in the atom plane.

3.2.2 Superlattice phase control

The final and most challenging task in the setup of the optical superlattice is the phase stability. This
superlattice phase 𝜙 controls the symmetry of the optical potential

𝑉sup(𝑥) = 𝑉𝐿 cos(𝑘𝐿𝑥 + 𝜙)
2 +𝑉𝑆 cos(𝑘𝑆𝑥)

2 (3.4)

with the lattice depths 𝑉𝑖 and wave vectors 𝑘𝑆 = 2𝑘𝐿 . However, the individual phases of the lattice
potentials cannot be altered directly. Specifically the retro-reflection that generates the standing-wave
intensity pattern creates a node at the mirror position, thereby the lattice phases. Instead, a relative
phase at the atom position is accumulated by detuning the laser frequency of the infrared lattice
𝑘𝐿 → 𝑘𝐿 + 𝛿𝑘 , which is sketched in figure 3.6. This detuning induces the superlattice phase

𝜙 = 𝐿 · 𝛿𝑘 = 𝐿 ·
2𝜋𝛿𝜈
𝑐

(3.5)

with the optical path length between the atom cloud and the retro-mirror 𝐿 ∼ 50 cm. The periodicity
of our superlattice configuration is 𝜋/2 (cf. figure 2.3), which requires a frequency change of
𝛿𝜈 ∼ 150 MHz.

We achieve experimental control over the superlattice phase by the frequency of the infrared laser
in a two-fold approach. Firstly, we lock its frequency to the infrared pump laser for the SHF in an
optical phase locked loop [105]. In this process, we also account for changes in the optical path length
due to environmental parameters (i.e. pressure, temperature) in a feed-forward mechanism. Secondly,
we adjust the frequency of the infrared lattice laser with a double-pass AOM after the phase-lock.
This serves as a secondary tuning knob for the superlattice phase which we use to realize periodically
modulated superlattice potentials.
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Figure 3.6: Superlattice phase stability schematic: Detailed information is given in the text.

Phase locked loop and environmental feed-forward

We experimentally achieve a stable superlattice phase by an optical phase locked loop (PLL) [105], as
depicted in figure 3.6. In short, the beat signal Δ𝜈 between the infrared lattice laser 1064 Seed and the
infrared pump laser for the SHG 1064 pump is compared to a reference frequency 𝜈ref and feed-back
to the former laser.

The reference frequency is created by a direct digital synthesis device (DDS) AD9914 that uses an
external 10 MHz clock and digital-to-analog conversion to create analog frequency signals of up to
1.4 GHz [106]. The DDS creates a variable reference frequency that can also be swept linearly to
create phase ramps.

The mixed signal of the beat and the reference frequency is then split in a fast and a slow feedback
loop. For the fast feedback loop we use a fast analog linewidth control unit mFALC110 from Toptica
with a bandwidth of up to 100 MHz. This is connected to the current modulation port of the 1064
Seed, a self-built interference filter laser [107], that is connected to the fiber amplifier from NKT
photonics. We have replaced the commercial seed laser from NKT because of its limited frequency
modulation linewidth of ∼ 20 kHz.

For the slow feedback loop, we use a self-built PID lock box with a sufficient bandwidth of
∼ 15 kHz that is connected to the piezo of the seed laser. Moreover, we have the possibility to apply a
feed-forward voltage directly to the piezo of the seed laser. This is necessary for fast linear ramps of
the superlattice phase that otherwise risk the lasers to fall out of lock.

In practice, our phase locked loop has the purpose to create a minimal linewidth beat signal as the
phase stability itself is given by the aforementioned node at the retro-mirror. We observe a locked beat
signal with a bandwidth (FWHM)≪ 1 kHz that greatly exceeds the former results of our frequency
offset lock ∼ 10 kHz [63].
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This linewidth is 5 orders of magnitude smaller than the periodicity of the superlattice, which
suggests an excellent stability of the superlattice phase. However, this statement is only true for the
precision of the phase and not the accuracy. The accuracy of the superlattice phase is greatly worsened
by the change of the optical path length 𝐿 by the environmental parameters: temperature 𝑇 , pressure
𝑃 and humidity 𝐻. These parameters change the relative refractive index of air (and glass) between
the lattice lasers and thus the relative optical path length.

We measure the environmental parameters with a BME280 sensor from Bosch on the optical table
close to the retro-mirror. The temperature on the optical table is regulated by a filter fan unit (FFU) in
combination with an AC system and therefore only drifts on the order of ∼ 0.1 ◦C. The pressure in the
lab is not regulated and therefore changes according to the whether which can be on the orders of a
few 10 mbar over the course of a day. The humidity in the lab is also not regulated but limited by
dehumidifiers below typically 40 %. Typical changes in the humidity over the course of a day are on
the order of a few percent.

In the following, we discuss the impact of the environmental parameters on the two main constituents
of the optical path: air and various glasses. We use a calculation based on the Ciddor equations
[108] to model the refractive index change of air with the environmental parameters [109] for the
two wavelengths. According to these equations the refractive index is linear within all environmental
parameters, which we therefore reference to

𝑇0 = 23 ◦C, 𝑃0 = 1 000 mbar, 𝐻0 = 25 %. (3.6)

We calculate the change of the superlattice phase with the environmental parameters using equation
3.5 and the geometrical path length in air 𝑙air = 45.8 cm:

𝛿𝜙

𝛿𝑃
= −1.04 MHz/mbar,

𝛿𝜙air
𝛿𝑇

= 2.09 MHz/◦C and
𝛿𝜙

𝛿𝐻
= −0.08 MHz/%. (3.7)

Clearly, for the optical path in air the aforementioned pressure changes have the largest impact on the
superlattice phase.

The optical path also propagates through the L6 lens (cf. figure 3.5) that consists of 13 mm NBK7
and 4 mm NSF11 glass as well as through 4 mm UVFS of the glass cell. The refractive index of these
glasses changes significantly with temperature, while it remains constant for pressure and humidity
changes. We calculate the change of the superlattice phase contribution of glass from the Sellmeier
equation

𝛿𝜙glass

𝛿𝑇
= −12.3 MHz/◦C, which gives

𝛿𝜙

𝛿𝑇
=
𝛿𝜙glass

𝛿𝑇
+
𝛿𝜙air
𝛿𝑇

. (3.8)

We measure the environmental parameters once per experimental cycle and compare them to the
reference values 𝑇0, 𝑃0 and 𝐻0. Then, we adjust the set value of the DDS according to the calibrated
slopes of the superlattice phase. We discuss the characterization of the superlattice phase in section
4.1.2, where we show the successful compensation of the environmental changes. This environmental
feed-forward was primarily developed by my colleague Janek Fleper [110].

Superlattice phase modulation

We modulate the superlattice phase with an AOM in double-pass configuration. This double-pass
configuration is realized by coupling the deflection of the AOM in a cat-eye configuration back through
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Figure 3.7: Calibration of the superlattice phase modulation: (a) For a given RF amplitude the observed
intensity at the regulation PD varies with the carrier frequency, showcasing the frequency dependent diffraction
efficiency of the AOM. This is compensated by an amplitude rescaling (blue) that limits the power to the minimal
observed power. (b) Time calibration of a modulation signal. In the first three milliseconds the modulation
amplitude is ramped linearly to 𝐴

𝜈
mod = 5 MHz. For the next two milliseconds the signal is modulated at

full amplitude with a driving frequency of 𝜈mod = 15 kHz. Finally, the amplitude is ramped down in the
same fashion as before. The observed AC signal on the photodiode is shown without compensation (blue)
and after the fifth compensation step (orange). (c) The standard deviation 𝜎 of the AC coupled signal is
compared to the static noise floor 𝜎0 for various compensation epochs. The different modulation amplitudes
𝐴
𝜈
mod = 2, 4, 6 and 8 MHz are shown in blue, orange, green, red and pink.

the AOM. With this setup, the frequency of the acoustic-wave in the AOM –and therefore the frequency
of the laser beam– can be changed without beam steering. The AOM in use is a 3080-199 from G&H
with a carrier frequency of 80 MHz and a bandwidth of 20 MHz. Compared to the periodicity of the
superlattice in the MHz regime and usual tunneling amplitudes of a few hundred Hz, this is a very
suitable setup for fast modulation of the superlattice phase.

We generate the RF source for the AOM with an arbitrary-waveform generator (AWG) board
M4i.6631-x8 from spectrum instrumentation. This AWG has a sampling rate of 1.25 GSamples/s
and a bandwidth of 400 MHz on two output channels. We program 3 the AWG to write segments of
sinusoidal signals with variable amplitudes and phases, that are output one after another. In the static
scenario, the AWG outputs a sinusoidal signal with a frequency of 80 MHz. For a periodic modulation,
we change the carrier frequency also in a sinusoidal manner while preventing phase slips of the signal
between the different segments.

It is crucial to avoid lattice-heating during the periodic modulation. Therefore, we minimize the
intensity noise of the optical lattice during the modulation-sequence in a two-step procedure. First, we
compensate the carrier-frequency dependent diffraction efficiency of the AOM, as shown in figure
3.7 a. For this purpose, we measure the lattice intensity at the experiment-PD for various carrier
frequencies and compensate lower diffraction efficiencies with increased RF power. This procedure
also compensates power losses due to residual beam-steering at the cost of maximal lattice depth. The
calibration itself is dependent on the overall RF-power, but otherwise stable over months.

In the second step, we compensate for time-dependent intensity fluctuations that occur for fast
changes of the carrier-frequency. The lower limit for frequency changes is given by the rise time of
the AOM which is in our case a few hundred nanoseconds for a beam diameter of 1 mm and the speed
of sound in the crystal material TeO2 4.2 mm/µs. However, also for frequency changes that are slower
than the rise time, we observe intensity fluctuations. We account these ripples in the laser intensity to

3 For details on the programming of the AWG please refer to [111].
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interference effects between forward-going and reflected acoustic wave with different frequencies.
These ripples are strongly dependent on the specific modulation parameters and must therefore be
compensated for each modulation scheme individually.

At the beginning of each experimental sequence a time calibration for the specific modulation
scheme is performed. First, the modulation signal is applied to the AOM and the response of the
lattice intensity is observed on the PD (compare figure 3.7 b). Then, the RF-amplitude of the different
frequencies is adjusted to compensate for the intensity fluctuations. This procedure is repeated in
usually five epochs to converge to an acceptable intensity profile. The ultimately obtained signal
is then used for the experimental realization a few seconds later. We compare the noise floor of
the modulated signal by the standard deviation of the ac coupled signal 𝜎 to the corresponding
un-modulated intensity noise 𝜎0 in figure 3.7 c. For an uncompensated signal the noise floor strongly
depends on the modulation amplitude of the modulated signal and can exceed the static counterpart by
more than a factor of three. However, after the compensation procedure we achieve lattice intensities
with a relatively small noise increase of 𝜎/𝜎0 ∼ 1.1. This procedure was developed by my colleague
Valentin Jonas [112].

3.2.3 Lattice potential characterization

The final step in the setup of our optical superlattice is the calibration of the lattice potential at the
atom position.4 For this purpose, we determine the lattice depths at the trap center as well as the
waists of the lattices.

We calibrate the lattice depth by a lattice modulation spectroscopy measurement. In short, we load
the atoms in the lowest band of the lattice and then modulate the lattice depth at a variable frequency.
When the energy of the driving photons is resonant with a transition from the first- to a higher-band, we
observe an atom loss. Finally, we compare the resonance frequencies with band structure calculations
(as introduced in section 2.2.1) to determine the corresponding lattice depth. In the past, we have
performed this lattice-modulation spectroscopy with a global evaluation technique based on adiabatic
band mapping (compare section 3.3.4). This method is explained in detail in my Master thesis [63] but
only calibrates the lattice depth at the trap center, which leaves the lattice waist to be determined. For
the superlattice, we perform the spectroscopy measurement first for the infrared lattice and then for the
superlattice. This way, the infrared lattice depth is already calibrated for the superlattice spectroscopy
and the number of free variables is reduced.

The lattice waists are determined in a trap frequency measurement (for details refer to [90]), that
determines the overall underlying lattice potential. This potential structure is governed by the Gaussian
envelope of the beams, as well as a running-wave component of the lattice beams. The latter is created
by a power imbalance 𝛾 of forward-going and retro-reflected beam that is caused by losses at the optical
components, and which we calibrate directly with a power meter. For the trap-frequency measurement
we prepare a spin polarized cloud and deflect the cloud from the center with a magnetic field kick
along one axis direction. Along this direction we only create a dipole potential, by blocking the
retro-reflected beam, which allows the atoms to perform a sloshing motion in the remaining harmonic
confinement. From the frequency of the harmonic oscillation, we calibrate the last uncertainty of the
underlying potential: the waist of the lattice beam.

Recently, we have implemented an in-situ lattice modulation spectroscopy. This measurement

4 This procedure is necessary for all optical lattices but is discussed exemplary for the superlattice.

42



3.3 Detection methods

resolves the lattice depth locally and therefore directly measures the lattice depths and waists. Therefore,
it has replaced the two-fold characterization technique with just one measurement. The implementation
of this method will be discussed in the thesis of my colleague Janek Fleper [110].

For the optical superlattice, the lattice potential can be characterized even more rigorously by a
direct measurement of the Hubbard parameters 𝑡, Δ and 𝑈. In general, these parameters can be
calculated for a given superlattice depth, phase and scattering length, as introduced in section 2.4.
However, a direct measurement can be used to verify, or – if necessary– calibrate these theoretical
calculations. We discuss this characterization technique in chapter 4.

3.3 Detection methods

The first step for an analogue quantum simulator is to assemble an experimental apparatus that realizes
the system of choice. We have discussed this setup to create an ultracold fermionic gas in an optical
(super-) lattice in the first two chapters. To further study the system of choice, it is crucial to implement
detection methods that extract its characteristic observables.

In this section, we discuss the specific detection methods that were applied in this work. Most of
these methods were set up during previous PhD works and will only be shortly summarized. However,
the adiabatic band mapping technique (section 3.3.4) to observe sublattice populations in an optical
superlattice was newly implemented.

3.3.1 Radio-frequency transfers between hyperfine states

The manipulation of the hyperfine states of the atoms is a fundamental part of every experimental
cycle. We have introduced the preparation of the lowest two hyperfine states with high fidelities in the
first section of this chapter. However, for the detection procedure we need to change the hyperfine
states i.e. to differentiate sites with double occupation from singly occupied sites.

We implement adiabatic transfers between the hyperfine states with RF sweeps. These transfers are
can address specific hyperfine transitions as the energy spectrum around ∼ 200𝐺 is not equidistant
(cf.3.1) and differs typically by more than 2 MHz. Moreover, we ensure the adiabaticity by implementing
Landau-Zener sweeps with a HS1 pulse form of the RF sweep. This pulse form is used in nuclear
magnetic resonance (NMR) spectroscopy [113] and modulates the amplitude and the frequency of the
signal.

This state transfer becomes more delicate when considering interactions. For example, we prepare
the lowest two hyperfine states and transfer the |𝑚𝐹 = −7/2⟩ to the |𝑚𝐹 = −5/2⟩ state. The two
hyperfine mixtures before and after the transfer have different interaction strengths as their Feshbach
resonance positions differ (cf. figure 2.9 b). Therefore, the resonance frequency of doubly occupied
sites 𝜈𝛿𝑈 is shifted by Δ𝑈/ℎ = (𝑈final −𝑈initial)/ℎ with respect to the resonance for singly occupied
sites 𝜈𝑠 (compare figure 3.8). With this occupation-dependent splitting, we can selectively transfer
singly and doubly occupied sites, which gives the name of singles-doubles spectroscopy (SD).

This interaction shift is usually on the order of a few kHz and therefore, the pulse width must be
chosen carefully. On the one hand, it must be small enough to avoid a transfer of singly occupied sites
while it must be large enough to sample the spatially varying interaction shift (cf. figure 6.5). As a
compromise, typical Singles-Doubles separation pulses have a width of 1 kHz. Alternatively, a large
pulse width of typically 175 kHz is chosen for a transfer of both site occupations.
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Figure 3.8: Singles-doubles (SD) spectroscopy: (a) The hyperfine states have different energies in the external
magnetic fields and can be changed by a radio-frequency transfer with frequency 𝜈𝑆 . In a monochromatic
lattice configuration, the interaction energy𝑈𝑖 depends on the hyperfine mixture- Therefore, the frequency for a
transfer of double occupied sites is different 𝜈𝛿𝑈 ≠ 𝜈𝑆 (b) Typical signal for radio-frequency spectroscopy of
the differential interaction energy Δ𝑈 = 𝑈2 −𝑈1 = ℎ(𝜈𝛿𝑈 − 𝜈𝑆).

The small pulse width of the SD separation leads to strong requirements on the magnetic field
stability: The differential slope between the |𝑚𝐹 = −7/2⟩ and |𝑚𝐹 = −5/2⟩ state of the Breit-Rabi
diagram at 200𝐺 is ℎ · 170 Hz/m𝐺. Therefore, magnetic field stabilities on the order of m𝐺 are
realized by a 𝜇-metal shielding of the experimental chamber and a low-noise magnetic coil design.
For details on the design of the magnetic coils please refer to [72, 80].

It should be noted that these transfers are sensitive to the frequency sweep direction, which can
cause unwanted coupling to higher lattice bands [80]. Finally, the RF transfer scheme can also be used
as a spectroscopy method for the rich band structure of interacting particles in optical superlattices.
We will discuss this RF spectroscopy technique in section 4.2.2.

3.3.2 Strong saturation absorption imaging

We observe the atomic density via absorption imaging on the 𝐷2 line of potassium 42
𝑆1/2 → 42

𝑃3/2. In
short, the atoms are exposed to resonant imaging pulses that imprint a shadow of the atomic cloud onto
the imaging beam. We use circularly polarized light 𝜎− with a wavelength of 𝜆 = 766.7 nm to transfer
atoms from |𝐹 = 9/2, 𝑚𝐹 = −9/2⟩ to |𝐹 = 11/2, 𝑚𝐹 = −11/2⟩ in a closed imaging transition.

The optical density (𝑜𝑑) is a dimensionless measure of the light absorption that is defined as the
intensity difference of the imaging beam before and after the measurement 𝐼𝑖, 𝑓 . Using Beers Law
[59], the optical density for a low-intensity imaging beam along the z-direction is given as

𝑜𝑑 (𝑥, 𝑦) = − ln(𝐼 𝑓 (𝑥, 𝑦)/𝐼𝑖 (𝑥, 𝑦)) = 𝜎0𝑛(𝑥, 𝑦) (3.9)

with the absorption cross-section 𝜎0 and the column density 𝑛(𝑥, 𝑦). However, in reality the
cross-section of the realized two-level system is intensity dependent

𝜎(𝐼) =
𝜎0

1 + 𝐼/𝐼sat
(3.10)
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with the saturation intensity 𝐼sat. This gives the modified Beer’s law [114]

𝑑𝐼

𝑑𝑧
≡ −𝑛𝜎(𝐼 (𝑥, 𝑦))𝐼 (𝑥, 𝑦) = −𝑛(𝑥, 𝑦)𝜎∗0

𝐼 (𝑥, 𝑦)
1 + 𝐼 (𝑥, 𝑦)/𝐼∗sat

(3.11)

with the effective saturation intensity 𝐼∗sat = 𝛼
∗
𝐼sat and effective absorption cross-section 𝜎∗0 = 𝜎0/𝛼

∗

induced by the imaging correction parameter 𝛼∗, that accounts for all imaging imperfections in the
experimental apparatus. Integrating the modified Beer’s law and performing a separation of variables
then gives the optical density for saturated absorption imaging

𝑜𝑑 (𝑥, 𝑦) = −𝛼∗ ln
(
𝐼 𝑓 (𝑥, 𝑦)
𝐼𝑖 (𝑥, 𝑦)

)
+
𝐼𝑖 (𝑥, 𝑦) − 𝐼 𝑓 (𝑥, 𝑦)

𝐼sat
. (3.12)

This strong saturation absorption imaging scheme was developed by Reinaudi et al. [114] and
applied to our experiment by J. Drewes [89], L. Miller [80] and E.Cocchi [72] including the crucial
calibration of 𝛼∗.

3.3.3 High-resolution in-situ imaging

We employ a high-resolution imaging apparatus along the z-direction to obtain an image of the atoms
in the two-dimensional optical lattice. This apparatus was already in place and calibrated before this
work [72, 80, 89]. Here, we will briefly summarize the setup and the calibration results that are
relevant for this work.

At the heart of the imaging setup are two commercially available aspheric lenses (Thorlabs 352240-
B) glued inside the glass cell (cf. figure 3.9). The high numerical aperture 𝑁𝐴 = 0.5 is achieved using
a small working distance of 5.92 mm to the position of the atomic cloud. The achromatic doublet
outside the glass cell sets the magnificationM and creates a first image plane at its focal point. Here,
a mask of two razor blades defines the image frame that is projected onto a CCD camera chip using a
1:1 relay. This exposes only a third of the camera chip, while the masked area is used as a storage
area. The fast kinetics mode of the Andor camera allows us to take three images in fast succession
during one experimental cycle. The first two frames are used to image optical densities OD1 and
OD2 while the third frame is a bright image to calibrate the spatially varying intensity of the imaging
beam. To account for intensity fluctuations between the three imaging pulses, we compare the imaging
intensities in a mask of the imaging frame without atoms and rescale them accordingly. Moreover, a
𝜆/4 plate is placed before the 1:1 relay to prevent interference effects from back reflections and a line
filter is used to discard non-resonant light.

During the imaging of the lowest hyperfine state we want to avoid off-resonant scattering of the
imaging light. For this purpose, we employ a microwave-shelving technique that transfers the other
hyperfine state to the far-detuned |𝐹 = 7/2⟩ state by a broad microwave sweep. Note, that during
the shelving process atoms from both hyperfine states on doubly occupied sites are lost due to
spin-changing collisions. Therefore, the microwave-shelving is usually combined with a SD separation.
After the first imaging procedure, a second MW sweep brings the shelved atoms back to the initial
hyperfine state, which is followed by the second imaging pulse. We showcase the microwave-shelving
in a sketch of the experimental sequence for 𝜂-pair observations in figure B.1.

Our imaging system is characterized by its magnificationM and the imaging resolution. The
former is determined by a time of flight image revealing the fermionic anti-bunching at the edges of
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Figure 3.9: High resolution imaging system: Left: Schematics of the imaging system along the z-axis. The
CCD camera in use is the Andor Ixon 888 with a schematic of the CCD chip shown on the right-hand side. A
mask at the first image plane of the imaging system defines the image frame and exposes only a third of the
CCD chip. Using the fast kinetics mode of the camera, an image can be transferred to the masked area after the
exposure allowing for three images in total for each experimental run. The schematics are adapted from [89].

the Brillouin-zone [115], from which we can deduce the magnification of our setup [89]

M = (22.69 ± 0.01). (3.13)

With this magnification one lattice site with spacing 𝑎1064
𝑥,𝑦 = 532 nm corresponds to approximately

0.93 pixels with size 𝑎𝑝𝑥 = 13 µm.
The imaging resoultion, on the other hand, is more delicate to determine. The Rayleigh criterion gives

a first estimate of the diffraction limited resolution of 𝑟 = 1.22𝜆/𝑁𝐴 = 0.94 µm. A more elaborate
measure of the imaging quality is the point-spread-function (PSF). The PSF P(𝑟) characterizes the
smearing of the actual atomic density 𝑛(𝑟) when observed in the camera frame

𝑛exp(𝑟) =
∫

𝑑𝑟
′
𝑛(𝑟 ′)P(𝑟 ′ − 𝑟) (3.14)

due to contributions from atoms at lattice site 𝑟 ′. Experimentally, the point spread function is
determined by in-situ density fluctuations revealing the modulation transfer function (MTF) [116] and
consequentially the PSF. For our imaging apparatus the calibrated FWHM radius of the Airy-disk-like
PSF is [89]

P𝐹𝑊𝐻𝑀 = 2.5 µm ≈ 4.7 𝑎1064
𝑥,𝑦 = 9.4 𝑎532

𝑥 . (3.15)

This shows, that while the magnification would theoretically allow for an imaging of individual lattice
sites, the atomic density is smeared over roughly 5 lattice sites radially. The most plausible cause
for this larger PSF is that the atoms are not located exactly at the working distance of the high NA
lenses. Unfortunately, neither the atomic position, which is determined by the magnetic field of the
Ioffe-Pritchard coils, nor the lenses are movable.

In general, our in-situ imaging technique resolves the atomic densities along the x- and y-direction
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while integrating over the z-direction. However, the different planes along the z-direction have
vastly different fillings and therefore realize different two-dimensional systems. Thus, we apply a
radio-frequency tomography to selectively address atoms from one specific plane. First, a magnetic
field of roughly 214𝐺 is applied, and the atoms are transferred to a |𝑚𝐹 = −7/2⟩, |𝑚𝐹 = −5/2⟩
mixture. At this specific magnetic field the transition frequency for a |𝑚𝐹 = −5/2⟩ → |𝑚𝐹 = −3/2⟩
transfer is the same for singly and doubly occupied sites. Then, a strong magnetic field gradient
of 33𝐺/cm is applied along the z-direction, which separates the transition frequency between the
different planes. In particular, for the green z-lattice the spacing between two planes of 𝑎532

𝑧 = 1 064 nm
leads to a relative detuning of the transition frequency of ∼ 600 Hz. This detuning can be increased
further by a factor of two using the superlattice along the z-direction to only occupy every second
plane [88, 90]. Note that this tomography was also used during the aforementioned determination of
the PSF.

3.3.4 Adiabatic band mapping in time-of-flight (TOF) imaging

The limited in-situ imaging resolution is an even bigger challenge with respect to the smaller lattice
spacing of the superlattice 𝑎532

𝑥 = 266 nm. In particular, dynamic measurements of population
density oscillations between neighboring lattice sites are not resolvable in-situ with a PSF of 9.4 𝑎532

𝑥 .
Therefore, we have adapted the adiabatic band mapping measurement technique [32, 117, 118] that
effectively resolves the density in momentum- instead of position-space. While this allows for a
discrimination between sublattice sites, it is a global measurement averaged over the three-dimensional
optical lattice.

The concept of the adiabatic band mapping is most intuitively explained by localized, spin-polarized
particles in one unit cell of the superlattice.5 First, the atoms are localized by freezing the optical
superlattice after the experiment. Here, they are described by Wannier functions of different Bloch
bands (compare section 2.2.3), depending on the lattice configuration. Adiabatically removing the
optical lattice, unfolds the Band structure and maps the different bands, initially folded at the edge
of the Brillouin-zone, to the free space momentum (cf. figure 3.10 a and d). Ballistic expansion for
𝑡tof = 6 ms, then maps the position to quasimomentum in a time-of-flight (TOF) measurement. Here,
the quasimomentum 𝑞 is given in the camera-frame as

𝑞 =
𝑝𝑥 · 𝑑𝑝𝑥
𝑀

· 𝑚

𝑡tof𝑘
(3.16)

with the pixel 𝑝𝑥, the pixel size 𝑑𝑝𝑥 , the magnification 𝑀, the mass of the atoms 𝑚 and the lattice
momentum 𝑘 . We integrate the measured density along the y-axis, to obtain the quasimomentum
distribution of the superlattice 𝑞𝑥 .

We calibrate the adiabatic band mapping technique as follows. For the symmetric superlattice
configuration (subfigure a and d), the Wannier functions of the left and right sublattice cannot be
distinguished, as both sites are given by the superposition of the first and second Bloch band. Here,
the quasimomentum density (gray line in subfigure d) is the same for atoms prepared on either
sublattice site. Therefore, we diabatically ramp the phase of the superlattice to 𝜙 = 𝜋/4, where the
Wannier function of the upper (lower) site is mapped to the second (first) Bloch band. This mapping is
reproduced experimentally by the measurements of the quasimomentum density in figure 3.10 e: The

5 The procedure also works for the delocalized eigenfunctions of the optical superlattice: the Bloch wave functions.

47



Chapter 3 Experimental apparatus

3 2 1 0 1 2 3
0
1

4

9

E 
/ (

2 q
2 x/2

m
)

3 2 1 0 1 2 3
qx / ( /d)

3 2 1 0 1 2 3

de
ns

ity
 / 

a.
u.

de
ns

ity
 / 

a.
u.

Figure 3.10: Adiabatic band mapping in the optical superlattice: The particles localized on the different
sites of the superlattice unit-cell are described by Wannier functions (gray lines) of different Bloch bands
depending on the lattice configuration (a to c). The adiabatic band mapping technique [32, 117] maps the
band-structure of the optical superlattice to the free space momentum. For this purpose, the lattice depths are
ramped down in 1 ms seconds practically unfolding the band-structure to the free space dispersion relation (d to
f). The mapping of the Bloch bands to the different quasi momenta is indicated by the color code. Ballistic
expansion for 6 ms before taking the absorption image (time-of-flight measurement) allows to determine the
quasimomentum occupation. The atom density is plotted versus the quasimomentum, that correspond to the
Wannier functions shown above. The lattice configurations are (a, d): 𝑉𝑠 = 12 Erec, 𝑉𝑙 = 15 Erec, 𝜙 = 0, (b, e):
𝑉𝑠 = 12 Erec, 𝑉𝑙 = 15 Erec, 𝜙 = 𝜋/4, (c, f): 𝑉𝑠 = 12 Erec, 𝑉𝑙 = 45 Erec, 𝜙 = 𝜋/4.
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atoms prepared on the left well are detected in the first BZ (dashed line) and the atoms on the upper
well are detected mostly in the second BZ (solid line). However, both density profiles are not sharply
restricted to their theoretically expected Brillouin-zones, which makes a clear distinction between the
two sublattice sites difficult. The reason for this is most likely that we are not perfectly in the far-field
regime and instead the initial density distribution impacts the quasimomentum mapping. Usually, the
far-field limit is ensured by large expansion times 𝑡tof , however, this is not possible in our scenario due
to the large magnification of the imaging setup. To amplify the resolution between the two sublattice
sites, we quench the long lattice depth to 𝑉𝑙 = 45 Erec (c and f). This maps the Wannier function of the
upper well to a superposition of the third and fourth band, allowing us to differentiate the population
on both sublattice sites.

Finally, we characterize the relative detection efficiency between the two sites. For this purpose, we
prepare the atoms either on the lower site or perform an additional diabatic phase ramp to prepare
them on the upper well. We observe a relative detection efficiency of (0.91 ± 0.05) on the upper site
with respect to the lower site. We account this detection efficiency difference to atom losses on the
higher site during the lattice quench. Note that during this calibration we have considered, that the
dark counts for the first Brillouin zone are approximately four times larger than for the third and fourth
Brillouin zone combined. This spatial dependency on dark counts can be accounted to the rescaling
region which is applied of-center for the time-of-flight images, and therefore works worse for the first
BZ.

It is important to note, that this adiabatic band mapping technique was evaluated for a spin polarized
atom cloud. The mapping from quasimomentum to free-space momentum would be altered by
interactions between different spin species during the ballistic expansion [119]. Nonetheless, we use
this technique to observe dynamic signals of interacting particles by introducing an additional spin
cleaning pulse, as we will discuss in section 5.3.2.

In summary, we have adapted the adiabatic band mapping technique in this work to successfully
detect the population on sublattice sites for interacting and non-interacting atomic samples.
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CHAPTER 4

Ultracold fermions in a static array of double
wells

An optical superlattice, created by a superposition of two optical lattices with commensurate lattice
constants, has proven to be a versatile extension of monochromatic lattices. For example, it was used
in the realization of a bilayer Hubbard model [31], allowed for the study of topological models [34,
35, 120] and recently to engineer Hubbard couplings [40] and to realize a quantum register [121].
Additionally, optical superlattices are ideal for studying driven systems by periodically modulating the
frequency of one of the lasers. We will discuss these Floquet systems in chapters 5 and 6.

In this chapter we utilize our superlattice to study and characterize the Rice-Mele model (cf. figure
4.1), which represents the single-band tight-binding model of the superlattice, as defined in equation
2.37. For the characterization of the superlattice, it is beneficial to depart from the many-body system
and isolate the individual processes. For this purpose, we suppress the out-of-cell tunneling 𝑡out,
thereby creating an array of decoupled double wells (DW). These double wells are the fundamental
building block of the Hubbard model as they resemble a minimal lattice consisting of two-sites [122,
123]. Their study has led to the observation of atom interferometry of a Bose Einstein condensate
[124] and second-order tunneling [32, 33] as well as quantum computing operations [125, 126].

Figure 4.1: Rice-Mele model of fermions in a superlattice potential The tight-binding Rice-mele model
describes fermions in a superlattice potential with four characteristic energy scales. The particles can tunnel
within one unit cell with the rate 𝑡in/ℎ and out-of the unit cell with 𝑡out/ℎ. If two particles occupy the same
lattice site they experience an on-site interaction𝑈. The energy offset between both lattice sites of a unit cell is
the tilt Δ.
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This chapter is organized as follows: First we study non-interacting fermions in double wells. We
characterize the inner-cell tunnel coupling 𝑡in via Rabi oscillations and the stability of the superlattice
phase. Then we explore the interacting double well. We start with the theoretical discussion followed
by the characterization of the interaction energy via density assisted tunneling. We conclude the
characterization procedure by a radio-frequency (RF) spectroscopy of the interacting double well.
Finally, we discuss the preparation and detection of repulsively bound atom pairs in double well.

4.1 Non-interacting fermions in an array of double wells

In this section, we examine non-interacting fermions in double wells from both theoretical and
experimental perspectives. This investigation serves as a preliminary step towards exploring interacting
fermions in double wells, as outlined in section 4.2. We explore this non-interacting model to
characterize the Hubbard parameters of our experimental apparatus, specifically the tunnel coupling 𝑡
within the double well and the energy differential Δ between the lattice sites. Initially, we study a
single fermion in a double well theoretically. Subsequently, we detail the experimental characterization
of the Hubbard parameters through Rabi oscillations.

4.1.1 Theoretical description of a single fermion in a double well

We study a single fermion in a double well in the Wannier basis (compare section 2.4) of a particle
localized on either the left site |𝐿⟩ or on the right site |𝑅⟩. In this basis, this gives the Hamiltonian of
a single particle in the double well

𝐻 =

(
Δ/2 −𝑡
−𝑡 −Δ/2

)
(4.1)

with the tunneling between lattice sites 𝑡 and the difference of the on-site energy between the lattice
sites - the tilt Δ. Despite the simplistic nature of this model, it is suited to showcase fundamental
properties of quantum mechanics: In a balanced system Δ = 0, the tunneling between the lattice sites
energetically favors a delocalization of the particles. Therefore, the eigenstates of the system are the
symmetric and antisymmetric superposition of the basis states:

𝜓± =
1
√

2
( |𝐿⟩ ± |𝑅⟩) (4.2)

with energies 𝐸± = ∓𝑡. As a side note, these eigenstates are in direct analogy to the eigenstates of
the 𝐻+2 -molecule, where the node in the wave function was unfavorable due to the increased kinetic
energy [59, 60]. On the other hand, the tilt decouples the lattice sites resulting in localized particles
for strong tilts Δ ≫ 𝑡. This interplay of the tilt and the tunneling leads to a spectrum with an avoided
crossing like behavior at Δ = 0 with a gap of 2𝑡 as depicted in figure 4.2.

4.1.2 Experimental characterization of non-interacting double wells

We experimentally determine the Hubbard parameters 𝑡 and Δ for the non-interacting double well
using a fermionic spin-polarized cloud within an optical superlattice As previously described in section
2.4, this superlattice is characterized by three parameters in the tight binding model 𝑡in, 𝑡out and Δ. In
our experiments, we choose the lattice depths of the superlattice 𝑉𝑠 and 𝑉𝑙 to suppress the out-of-well
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Figure 4.2: Spectrum of a singly occupied double well vs. tilt: The eigenvectors and eigenvalues of the
ground state (blue) and excited state (orange) change with the tilt of the double well Δ. For strongly tilted
systems −Δ ≫ 𝑡, the ground (excited) state decreases (increases) its energy linearly with the tilt and can be
described by a particle localized at the lower (upper) well |𝐿⟩ (|𝑅⟩). In a balanced, configuration the ground
(excited) state is delocalized in the double well with an even (odd) parity superposition |𝐿⟩ + |𝑅⟩ (|𝐿⟩ − |𝑅⟩ )
and lowers (increases) its energy by 𝑡.

tunneling 𝑡out/𝑡in ≪ 1. For example, a typical lattice configuration of 𝑉𝑠 = 12 Erec, and 𝑉𝑙 = 15 Erec
gives an intra-well tunneling 𝑡in ∼ 480 Hz that dominates the out-of-well tunneling 𝑡in/𝑡out = 5.6. This
configuration effectively isolates each double well, with a characteristic tunneling 𝑡 ≡ 𝑡in.

We directly measure this tunnel coupling 𝑡 through Rabi oscillations. Furthermore, we refine the
Rabi oscillations technique to determine the symmetry point, where the superlattice phase 𝜙 is adjusted
to ensure that double wells are balanced Δ = 0. This method also allows us to calibrate the phase
stability of the superlattice.

Rabi oscillations of non-interacting fermions in double wells

The non-interacting double well at half filling resembles the quantum-mechanical two-level system.
Hence, if it is not prepared in one of it eigenstates, Rabi oscillations [90] with frequency

𝑓R =

√︁
4𝑡2 + Δ2/ℎ (4.3)

and peak-to-peak amplitude

𝐴R =
1
2

1
1 + (Δ/2𝑡)2

(4.4)

occur. In the following, we will discuss how we probe these oscillations and determine 𝑡 and Δ.
We prepare a spin-polarized atom cloud in the lowest Bloch band of an optical superlattice with

lattice depths𝑉𝑠 = 12 Erec and𝑉𝑙 = 15 Erec. The lattices along the y- and z-axis are frozen (𝑠𝑦 = 55 Erec
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Figure 4.3: Rabi oscillations of non-interacting fermions: (a) The population contrast C oscillates with the
holding time 𝜏 (blue data points). The fitted damped sinusoidal function (orange line) gives a Rabi frequency
𝑓𝑅 = (1 040 ± 4) Hz. (b) Initially (first red data point), almost all atoms occupy the first Brillouin-zone. (c)
After half a period (second red data point), most atoms occupy the third- and fourth-Brillouin-zone.

and 𝑠𝑧 = 110 Erec). Initially, we choose the superlattice phase 𝜙 such that all dynamics are frozen
Δ ≫ 𝑡. Then, we diabatically remove the lattice tilt and prepare the atoms at one site of the double i.e.
|𝐿⟩. As discussed, this induces Rabi oscillations between the lattice sites. After a holding time 𝜏 we
project the system back onto the |𝐿⟩ , |𝑅⟩ basis by diabatically introducing a tilt Δ ≫ 𝑡. Unfortunately,
we cannot resolve the density on the individual lattice sites of the double well as they are 266 nm
apart and the point-spread function of our imaging system is 2.5 µm (FWHM) [89]. Therefore, we
use the adiabatic band mapping technique, as introduced in section 3.3.4, to detect the lattice site
occupation. With this technique, we map the |𝐿⟩ lattice site to the first Brillouin-zone (BZ) and |𝑅⟩ to
the third- and fourth BZ. Measuring the occupations of these Brillouin-zones 𝑁𝑖 then gives the global
observable of the population contrast

C =
𝑁1 − 𝑁34
𝑁1 + 𝑁34

. (4.5)

We observe oscillations in the population contrast with one characteristic frequency and a pronounced
dephasing (cf. figure 4.3 a). Initially, the atoms are almost exclusively in the first BZ (figure 4.3 b) and
after half a period the third- and fourth BZ is dominantly occupied (figure 4.3 c). The dephasing stems
from the Gaussian nature of our lattice beams resulting in spatially dependent parameters 𝑡 (𝒙) and
Δ(𝒙). Therefore, the global observable is averaged over several DWs with various Rabi frequencies
and amplitudes resulting in the observed dephasing.

To extract the characteristic frequency of the oscillation, we fit a damped sinusoidal function to the
data

𝑎𝑒
−𝜏/𝜏0 · cos(2𝜋 𝑓R · 𝜏) + 𝑏, (4.6)

with the amplitude of the oscillation 𝑎, the decay constant 𝜏0, the Rabi frequency 𝑓R = 2𝑡/ℎ and
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Figure 4.4: Tunneling rate as a function of the lattice depths: (a) Normalized tunneling rate as a function of
the short lattice depth 𝑉𝑠 for a long lattice depth 𝑉𝑙 = 30 Erec. (b) Normalized tunneling rate as a function of the
long lattice depth 𝑉𝑙 for a short lattice depth 𝑉𝑠 = 10 Erec. For both subplots, the data is shown in blue and the
1𝜎 confidence interval of the theoretical simulation is indicated in orange.

the offset 𝑏. The offset is necessary to account for the imperfect detection efficiency of |𝐿⟩ and
|𝑅⟩ (compare section 3.3.4) and for residual tilts Δ, which we will address in the next section.
The fitted damped-sinusoidal function is shown as an orange line in figure 4.3 a, and agrees very
well with the observed signals within the first three periods. Moreover, the extracted frequency of
𝑓R = (1 040 ± 4) Hz agrees roughly with the theoretical expectation of (961 ± 14) Hz, but shows,
that a direct calibration is necessary. Note, that the theoretical tunneling rate is calculated from the
Wannier functions of the lattice according to equation 2.35, where we have considered a lattice-depth
uncertainty of 1 %.

We further compare our direct measurements of the tunneling rate 𝑡 with the theoretical expectations
by changing the two lattice depths 𝑉𝑠, 𝑉𝑙 independently. Here, we observe that our observed scaling of
the tunneling rate agrees with the theory excellently (cf. figure 4.4 a and b). The observed deviation
for very small short lattice depths might be caused by a breakdown of the tight-binding approximation.
In this case, the green lattice depth is not large enough to ensure two well-separated lattice sites of the
double well.

To conclude, we have directly measured the tunneling rate and verified its theoretically expected
scaling. Our experimental data shows good agreement with the theoretical expectations.

Phase-stability of the superlattice

The discussed Rabi oscillations can also be used to characterize the tilt of the double well. We are
especially interested in studies of balanced double wells and therefore in the symmetry-point 𝜙0, where
the superlattice phase 𝜙 is chosen such that the double well is balanced Δ = 0.

At the symmetry-point, the Rabi frequency 𝑓𝑅 is minimal (compare equation 4.3) and the amplitude
𝐴𝑅 maximal (compare equation 4.4). We visualize this in figure 4.5 a, where we compute the
population contrast for various tilts theoretically. To determine the symmetry point, we choose a fixed
holding time 𝜏 on the first decreasing slope, near the minimum of the Rabi oscillation (black vertical
line) and vary the tilt, which creates a signal with a minimal population contrast at the symmetry point,
where Δ = 0 (compare figure 4.5 b).
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Figure 4.5: Symmetry-point measurements: (a) Theoretical calculations of Rabi oscillations in the population
contrast C for various tilts Δ/𝑡 = 0, Δ/𝑡 = 0.5, Δ/𝑡 = 1, and Δ/𝑡 = 2 are shown in blue, orange, green and red as
a function of the time 𝑡𝑎𝑢. (b) Theoretical calculation of a symmetry-point measurement at time 𝜏 = 0.2/𝑡
(as indicated as a black vertical line in subfigure a) for various tilts Δ/𝑡. The data points corresponding to
the dynamic traces of subfigure a, are plotted in the same color coding. (c) Experimental symmetry-point
measurements for two different lattice configurations: 𝑉𝑠 = 10 Erec, and 𝑉𝑙 = 15 Erec (pink), as well as
𝑉𝑠 = 14 Erec, and 𝑉𝑙 = 30 Erec (brown). The lattice configurations differ in the tilt they realize at a superlattice
phase Δ𝜙 = 1 MHz (gray vertical line), which is Δ/𝑡 = 1.5 for the shallow lattice (pink) and Δ/𝑡 = 4 for the
deep lattice (brown). The data set consists of 32 measurements (pink) and 80 measurements (brown), that were
re-binned according to the deviation of the data point from the fitted symmetry point Δ𝜙 for better visibility.

In the experiment, we use the superlattice phase to change the tilt and observe the minimum in
the population contrast, which we then extract by fitting a Gaussian function. We show an averaged
signal for a lattice configuration of (𝑉𝑠 = 10 Erec, and 𝑉𝑙 = 15 Erec), as the pink data points in figure
4.5 c. Here, the population contrast is plotted versus the deviation of the superlattice phase from the
symmetry point Δ𝜙 = 𝜙 − 𝜙0, for better visibility. The width of the signal is dictated by the lattice
configuration, which creates a tilt of Δs/𝑡 = 1.5 for a superlattice phase of Δ𝜙 = 1 MHz (vertical
gray line). For a deeper lattice configuration (𝑉𝑠 = 15 Erec, and 𝑉𝑙 = 10 Erec), the tilt at the same
superlattice phase is much larger Δd/𝑡 = 4, and therefore, the symmetry-point signal is more narrow
(brown data points). The ratio of the fitted Gaussian widths is directly the inverse of the tilt ratios
𝑤𝑠/𝑤𝑑 ∼ 2.7 ∼ Δ𝑑/Δ𝑠, which verifies experimentally, that the sensitivity of the symmetry-point
signal is governed by the ratio Δ/𝑡 at a given superlattice phase Δ𝜙.

Theoretically, we can use a lattice configuration with large Δ/𝑡 determine the symmetry-point with
extreme precision. However, the symmetry-point drifts over time significantly due to the optical path
length changes with the environmental parameters: temperature, pressure and humidity. As introduced
in section 3.2.2, we account for this by an environmental feed-forward (FF) [110]. Nonetheless,
the symmetry-point still fluctuates due to imperfections of this environmental FF. We categorize
these fluctuations into long-term drifts and short-term shot-to-shot variations, the latter occurring
on timescales shorter than a single measurement of the symmetry point, which usually consists of
approximately 10 sequences.

The long-term behavior of the symmetry-point and the applied FF over a period of 40 h is depicted
in figure 4.6. The peak to peak amplitude of the applied FF of roughly 5 MHz shows that it is crucial
for the stability of the superlattice phase, especially when comparing it to the width of the symmetry
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Figure 4.6: Symmetry-point long term fluctuations: The symmetry point 𝜙0, compared to the first measured
value, changes over the course of over 40 h (blue data points and left axis), despite the applied environmental
feed-forward (orange data points and right axis). The chosen lattice configuration was 𝑉𝑠 = 10 Erec, and
𝑉𝑙 = 15 Erec.

point signals in figure 4.5 c. We quantify the remaining fluctuations of the symmetry point with the
mean value and the standard deviation

𝜙0 = 0.45 MHz, 𝜎Δ𝜙 = 0.22 MHz = 2.4 mrad. (4.7)

The mean value expresses a drift of the symmetry point compared to the first measurement, while the
standard deviation quantifies the fluctuations. However, compared to the periodicity of our superlattice
(148.9± 0.1)MHz, both values show excellent stability. In general, we could improve the feedforward
by minimizing the standard deviation of the symmetry-point measurements, with respect to the
parameters of the FF. However, to ensure a global optimum we would need a lot of data to optimize
the three-dimensional environmental parameter space. As we cannot control these parameters this
would require too much measurement time to be feasible.

The shot-to-shot fluctuations are difficult to determine directly, as they occur on faster timescales
than our symmetry-point measurement. Therefore, we try to estimate them by statistical means. We
perform the symmetry-point measurement 80 times and fit the symmetry point to each individual data
set. Then, we determine the population contrast as a function of the deviation of the superlattice phase
from the symmetry point Δ𝜙 = 𝜙 − 𝜙0. We bin Δ𝜙 in intervals of 0.2 MHz and average, resulting in a
very clear signal as depicted in figure 4.7 a. Interestingly, the standard deviation of the population
contrast shows a double-peak signature (cf. figure 4.7 b) with a local minimum at Δ𝜙 = 0. This is a
clear indication of shot-to-shot fluctuations that lead to larger standard-deviations on the slopes of the
symmetry-point signal.

We compare this data to Monte-Carlo (MC) simulations of the shot-to-shot fluctuations in the
symmetry-point measurement. For this purpose, we perform our usual symmetry-point fit to the
averaged signal and simulate the shot-to-shot fluctuations as uncertainties on Δ𝜙 with various standard
deviations 𝜎𝜙. We show the standard deviation of a MC simulated symmetry-point signal with
shot-to-shot fluctuations of 𝜎𝜙 = 0.2 MHz as the green trace in (cf. figure 4.7 b). Then, we calculate
the difference of the standard deviation profile between the experimental data and the MC simulated
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Figure 4.7: Shot-to-shot fluctuations of the symmetry point: (a) Average of the population contrast as a
function of the deviation of the superlattice phase from the fitted symmetry-point Δ𝜙. (b) Standard deviation 𝜎
of the population contrast as a function of Δ𝜙 (orange) compared to Monte-Carlo simulated symmetry-point
measurements with shot-to-shot fluctuations of 𝜎𝜙 = 0.2 MHz (green). (c) Difference of the standard deviation
profile shown in (b) between the experimental data and MC data for various MC simulated standard deviations
𝜎𝜙 (red line). We fit a Gaussian function (black line) to extract the estimate of the shot-to-shot fluctuations at
the minimal difference. The chosen lattice configuration was 𝑉𝑠 = 14 Erec, and 𝑉𝑙 = 30 Erec.

data for various shot-to-shot fluctuations 𝜎𝜙 on the −0.5 ≤ Δ𝜙 ≤ 0.5 interval. This deviation is shown
in figure 4.7 c and shows a clear minimum at

𝜎𝜙 = (0.12 ± 0.01)MHz = (1.3 ± 0.1)mrad, (4.8)

which is our estimate for the shot-to-shot fluctuations.
With these measurements, we have determined the phase fluctuations on long and short timescales in

an averaged measurement over the whole cloud to be < 3 mrad. Compared to other reported stabilities
of optical superlattices ( 4.5 mrad [40], 9.4 mrad [39]), the presented results are excellent. Moreover,
for typical lattice configurations of 𝑉𝑠 = 10 Erec and 𝑉𝑙 = 15 Erec, the shot-to-shot fluctuations
correspond to a tilt of Δ = 0.18 t, which shows that the fluctuations are also acceptable on an absolute
scale.

In-situ symmetry-point measurement

In previous measurements of the symmetry-point, we used global observables that did not provide
insight into local variations of the symmetry point. Here, we discuss a method to measure the
symmetry-point in-situ, providing local information. This method is also based on the aforementioned
Rabi oscillations but with a different detection scheme, which we discuss in the following.

After the Rabi oscillations the system is projected onto the |𝐿⟩ , |𝑅⟩ basis by the diabatic introduction
of a tilt Δ ≫ 𝑡. Then, the long-lattice depth is increased rapidly to 𝑉𝑙 = 54 Erec, which maps the |𝑅⟩
basis to the third and fourth band, as depicted in figure 4.8 a. In this configuration, the energy gap
between the third- and fourth- and the second energy band is 23 Erec. This is resonant with the gap
from the first band to the continuum in the y-lattice (cf. figure 4.8 b). The coupling between the x- and
y-bands is usually assumed to be suppressed, however, it is possible due to the imperfect orthogonality
of ≈ 84◦ [90]. Next, this configuration is held for 1.04 s to allow the atoms in the |𝑅⟩ state to leave
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Figure 4.8: In-situ symmetry point measurement: (a) Band structure of the superlattice along the x-direction
for 𝑉𝑠 = 15 Erec and 𝑉𝑙 = 54 Erec. The atoms on the |𝐿⟩ sites are in the first band and frozen, while the atoms
on the |𝑅⟩ sites are in a superposition of the third and fourth band. The energy difference between the third
and fourth and the second band is ≈ 23 Erec and corresponds to the energy difference from the first band to the
continuum of the y lattice (b) for a lattice depth of 𝑠𝑦 = 20 Erec. (c) Map of the relative in-situ symmetry point
Δ𝜙 for binned pixels of 9𝑝𝑥 · 9𝑝𝑥 with significant phase gradient along the y-direction. The x-lattice has an
angle of (5.3 ± 0.3)◦ [90] to the camera frame, which causes the observed rotation of the map. (d) The angle
of the phase-plate can be used to change the gradient along the y-direction, while keeping the gradient along
x-direction constant.

the trap in y-direction via the continuum state, whereas the |𝐿⟩ state remains frozen. As we lose the
atoms in the |𝑅⟩ state, it is not possible to calculate a population contrast between the two lattice sites.
Instead, we measure the density of the left well 𝑁𝐿 averaged over ∼ 10 × 10 lattice sites, due to the
imaging resolution (compare section 3.3.3).

This measurement technique gives a map of the relative symmetry point Δ𝜙 over the cloud, as
depicted in figure 4.8 c. We observe a symmetry-point map with a strong gradient along the y-direction
of (0.17 ± 0.02)MHz/9𝑝𝑥 and a slight rotation with respect to the camera frame. The rotation is
caused by the angle between the x-lattice and the camera frame of (5.3 ± 0.3)◦ [90]. We attribute
the gradient to different angles of the incoming lattice beam and the retro reflected lattice beam, that
result in spatially dependent optical path lengths [110]. To control the angle of the lattice beams at the
atom cloud, we have installed a phase-plate, as introduced in section 3.2.1. In figure 4.8 we show,
that by changing the angle of this phase-plate with respect to the lattice beam, we can change the
phase-gradient along the y-direction linearly, while keeping the gradient along the x-direction almost
constant.

There is an additional phase gradient along the x-direction, that is caused by the y-lattice. The
y-lattice has a running wave component, due to the unavoidable power imbalance of forward-going and
retro-reflected beam of approximately 𝛾𝑦 = 0.77. This creates an underlying attractive potential that
changes along the x-direction due to the Gaussian beam profile of the y-lattice beam. Unfortunately,
we cannot compensate this gradient with the phase plate due to its non-linear profile. In the future, we
plan to compensate this inhomogeneity with light sheets, which will be discussed in the outlook of
this thesis in more detail.

This in-situ symmetry-point measurement provides us with a spatially-resolved insight into the
superlattice phase. Moreover, we control the phase-gradient along the y-direction with a phase-plate,
allowing us us to create systems of double wells with almost homogeneous superlattice phases. 1

1 Unfortunately, this method is not suitable to measure the Rabi oscillations locally with high precision, as the long holding
times and atom loss lead to noisy signals.
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4.2 Interacting fermions in an array of double-wells

In this section, we explore the interplay between interactions and kinetic energy in the paradigmatic
Hubbard model, focusing on its fundamental building block: the interacting double well. First,
we theoretically analyze two interacting fermions in a double well. We examine the characteristic
eigenstates and their dependence on the interaction energy𝑈 and the tilt Δ. Then, we experimentally
determine the remaining Hubbard parameter𝑈 by means of density-assisted tunneling in tilted double
wells. To conclude our calibration, we perform a relative spectroscopy of an array of repulsively
interacting double wells for various tilts. Finally, we discuss the preparation and detection of
repulsively-bound pairs in double wells.

4.2.1 Theoretical description of two interacting fermions in a double well

We study two interacting fermions of opposite spin in a double well potential. Here, the two-particle
wave functions separate into a spatial- and a spin-part, as the Hamiltonian itself is spin independent

𝜓(𝒙1, 𝒙2, 𝜎1, 𝜎2) = 𝜙(𝒙1, 𝒙2) · 𝜉 (𝜎1, 𝜎2) (4.9)

with the spin of the particles 𝜎 = {↑, ↓}. The spatial wave function determines the energy spectrum,
while the spin part describes the magnetic correlations of the system [90]. We obtain the tight-binding
Hamiltonian of the double well by introducing the field operator [13]

�̂�𝜎 (𝒙) =
∑︁

𝑖={𝐿,𝑅}
𝑤𝑖 (𝒙) 𝑐𝑖𝜎 (4.10)

with the fermionic annihilation operator 𝑐𝑖𝜎 and the Wannier functions 𝑤𝑖 (𝒙), as introduced in section
2.2.3, that are localized either on the left or right lattice site. In this work, we use the Fock basis [58]

|𝐿𝐿⟩ ≡ |↑↓, 0⟩ = 𝑐
†
𝐿↓ 𝑐

†
𝐿↑ |0⟩

|𝐿𝑅⟩ ≡ |↑, ↓⟩ = 𝑐
†
𝑅↓ 𝑐

†
𝐿↑ |0⟩

|𝑅𝐿⟩ ≡ |↓, ↑⟩ = 𝑐
†
𝑅↑ 𝑐

†
𝐿↓ |0⟩

|𝑅𝑅⟩ ≡ |0, ↑↓⟩ = 𝑐
†
𝑅↓ 𝑐

†
𝑅↑ |0⟩

(4.11)

which gives the Hamiltonian in matrix form

𝐻DW =

©«
𝑈 + 2Δ −𝑡 𝑡 0
−𝑡 0 0 −𝑡
𝑡 0 0 𝑡

0 −𝑡 𝑡 𝑈 − 2Δ

ª®®®¬ + 𝐻corr (4.12)
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with the higher-band corrections 𝐻corr, as introduced in section 2.4. These corrections include the
correlated tunneling 𝑉ct, a nearest-neighbor interaction 𝑉nn and the direct spin-exchange 𝑉de, giving

𝐻corr =
©«

0 0 0 𝑉ct
0 𝑉nn −𝑉de 0
0 −𝑉de 𝑉nn 0
𝑉ct 0 0 0

ª®®®¬ . (4.13)

However, in the discussed single band picture, where the interaction energy𝑈 is much smaller than
the band gap to higher Bloch bands they are negligible. Finally, there is a correction to the tunneling
amplitude 𝛿𝑡, also referred to as density-assisted tunneling, that considers the impact of interactions
on the Wannier functions, which we consider implicitly 𝑡 → 𝑡 + 𝑡corr.

Two interacting fermions in the balanced double well

The interplay between interactions and kinetic energy is best studied in the balanced double well
Δ = 0. Here, it is convenient to change to a basis consisting of the singlet state |𝑠⟩, the (spin) triplet
state |𝑡⟩ and two states of double occupancies |𝑑+⟩ and |𝑑−⟩ with different parity

|𝑠⟩ = 1
√

2
( |↑, ↓⟩ − |↓, ↑⟩)

|𝑡⟩ = 1
√

2
( |↑, ↓⟩ + |↓, ↑⟩)

|𝑑+⟩ =
1
√

2
( |↑↓, 0⟩ + |0, ↑↓⟩)

|𝑑−⟩ =
1
√

2
( |↑↓, 0⟩ − |0, ↑↓⟩).

(4.14)

The triplet state |𝑡⟩ is an eigenstate of the (balanced) double well with zero energy ⟨𝑡 |𝐻DW |𝑡⟩ = 0,
that doesn’t couple to any other eigenstate. Moreover, the odd parity doubly-occupied state |𝑑−⟩ is
an eigenstate of the balanced double well with energy ⟨𝑑− |𝐻DW |𝑑−⟩ = 𝑈. This state is of particular
interest, as it resembles an 𝜂-pair which is a highly excited eigenstate of the Hubbard model with
off-diagonal long range order [127] for repulsive interactions. We will discuss the preparation and
detection of this repulsively-bound pair state in section 4.2.3.

The remaining two eigenstates are the ground state and the (most-)excited state and are superpositions
of |𝑠⟩ and |𝑑+⟩ that are coupled by the tunneling in the double well. The composition of the ground
(excited) state depends on the interaction energy𝑈, as illustrated in the spectrum of figure 4.9: For
strong attractive interactions −𝑈 ≫ 𝑡, double occupancies are energetically favorable, and therefore
the ground state consists of |𝑑+⟩. However, for strong repulsive interactions𝑈 ≫ 𝑡 double occupancies
are energetically more costly and thus the ground state is |𝑠⟩ and vice versa for the excited state. Of
particular interest is the energy of these two eigenstates

𝐸g,e(𝑈) =
1
2

(
𝑈 ∓

√︃
(4𝑡)2 +𝑈2

)
(4.15)

which gives the gap of the avoided crossing for non-interacting systems Δ𝐸 (𝑈 = 0) = 4𝑡. Moreover,
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Figure 4.9: Spectrum of a balanced doubly occupied double well vs. interaction strength: The eigenvectors
and eigenenergies of the system change with the interaction strength𝑈. The |𝑑−⟩ state (orange) is a superposition
of the doubly occupied sites with uneven parity and has an energy of 𝑈. For strong attractive interactions
−𝑈 ≫ 𝑡, the ground state (blue) is described by the doubly occupied state with even parity |𝑑+⟩ and has an
energy of 𝑈 + 4𝑡2/𝑈. At these interactions, the excited state (red) is described by the There is an avoided
crossing at vanishing interactions 𝑈 = 0 between the ground and excited state The triplet state (green) is a
superposition of the singly occupied sites with even parity has zero energy and does not couple to the other
states.

in the strongly repulsively interacting limit𝑈 ≫ 𝑡, the energy of the ground state defined in equation
4.15 approaches

𝐸g(𝑈 →∞) ≈
−4𝑡2

𝑈
. (4.16)

In this system, where single particle tunneling is suppressed by the strong repulsion, this ground
state energy is lowered by a second order tunneling process: the superexchange [128, 129] with rate
𝐽 = −4𝑡2

𝑈
that is illustrated in figure figure 4.10 a. Here, the particles tunnel virtually from the singlet

state to the doublet state and back, effectively interchanging the spins in the double well. This effective
spin-spin interaction is only possible for the anti-ferromagnetic spin configuration of the singlet state
(compared to the ferromagnetic order of the triplet) and therefore implicitly introduces magnetic order
in the system.

However, the temperature restrictions to observe these antiferromagnetic correlations are very
challenging: When the temperature is below the interaction energy 𝑘𝐵𝑇 ≪ 𝑈, the double well is in
the Mott-insulating regime and the doubly occupied states |𝑑+⟩ and |𝑑−⟩ are not populated. Only
if we increase the temperature further below the superexchange energy 𝑘𝐵𝑇 ≪ 𝐽, the singlet state
is dominantly populated and antiferromagnetic correlations are dominant. These antiferromagnetic
correlations in the double well are usually measured via singlet-triplet oscillations [130, 131], where
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Figure 4.10: The superexchange process in strongly interacting double wells: (a) The superexchange 𝐽 as
an effective spin-spin interaction for the singlet state. While the single particle tunneling is suppressed by the
strong interaction, this second order tunneling process virtually populates a doublet state resulting in a spin
exchange. (b) The superexchange 𝐽 as an effective pair tunneling for doublet states. The pair tunnels within the
double well as two consecutive tunneling events via the virtual singlet state. This figure was inspired by [123].

an external magnetic field gradient lifts the degeneracy of the spin states and induces Rabi oscillations
between the singlet and the triplet state. For more information on experimental studies of quantum
magnetism with our experimental apparatus the reader is kindly referred to the thesis of my predecessors
Nicola Wurz, Marcell Gall and Chun Fai Chan [87, 88, 90].

The introduced superexchange also describes a second-order pair-tunneling process for strongly
interacting systems as illustrated in figure 4.10 b. This process of two consecutive single-particle
tunneling events lowers (increases) the energy of the doublet state of even parity |𝑑+⟩ compared to
|𝑑−⟩ for strong attractive (repulsive) interactions (cf. figure 4.9). We will show in Chapter 6, that this
process can be enhanced by a periodic modulation of the system.

Two interacting fermions in the tilted double well

Introducing a tilt Δ to the repulsively interacting double well, changes the spectrum and eigenstates
of the system significantly. The only exception is the triplet state |𝑡⟩, that remains at zero energy
due to the lack of coupling to the other states (cf. figure 4.11 a). For a dominant tilt −Δ ≫ 𝑈, 𝑡 the
system is in an insulating state with a localized ground state |𝐿𝐿⟩ and excited state |𝑅𝑅⟩. The state
adiabatically connected to |𝑑−⟩ is in the singlet state |𝑠⟩ and energetically degenerate with the triplet
state. Decreasing the tilt leads to the first avoided crossing at −2Δ = |𝑈 | of the ground state and the
state adiabatically connected to the |𝑑−⟩-state. Here the ground state is dominantly in a superposition
of the singlet state |𝑠⟩ and the localized doublet state |𝐿𝐿⟩

|𝜓0(−2Δ = 𝑈)⟩ ≈ 1
√

3
( |𝐿𝐿⟩ − |𝐿𝑅⟩ + |𝑅𝐿⟩) + 𝜖 |𝑅𝑅⟩ (4.17)
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Figure 4.11: Spectrum of an interacting doubly occupied double well vs tilt: (a) Repulsively interacting
double well with𝑈 = 6𝑡. The ground state (blue) changes its energy and composition of basis states with the tilt
Δ. There is an avoided crossing at −2Δ = 𝑈 between the ground state and the state adiabatically connected
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attractively interacting double well𝑈 = −6𝑡 the spectrum is identical to the repulsive spectrum for 𝐸 → −𝐸 .
Note that only the dominating part of the eigenstates is denoted in this graphic for simplicity.

with a negligible population (𝜖 ≪ 1) of the localized doublet |𝑅𝑅⟩. This results in the ground state
energy

𝐸0(−2Δ = 𝑈) = −
(
4
3
+ 𝜖

)
𝑡, (4.18)

which is solely dependent on the single particle tunneling 𝑡. Evidently, the interaction energy and the
tilt cancel each other and (up to first order) allow for single particle tunneling in a virtually balanced
double well. Decreasing the tilt further to Δ = 0 leads to the second avoided crossing between the
|𝑑−⟩ state and the excited state. Here, the energy-gap is given by the superexchange 𝐽.

In the upcoming sections, we will leverage several aspects of the tilted interacting double well. First,
we utilize the resonance condition 2Δ = 𝑈 for density-assisted tunneling, to calibrate the interaction
strength𝑈 in section 4.2.2. Furthermore, we implement a new detection scheme for the population of
the repulsively bound pairs (|𝑑−⟩) in section 4.2.3. Here, we utilize that the |𝑑−⟩ state is mapped to
the singlet state for large tilts Δ ≫ 𝑡,𝑈. Finally, we exploit the coupling of the ground state and the
state adiabatically connected to the |𝑑−⟩ state around 2 − Δ = 𝑈 to induce Rabi oscillations between
these two states and verify the measured population.

4.2.2 Characterization of interacting fermions in double wells

We experimentally characterize the interacting double wells by measuring the characteristic Hubbard
parameters 𝑡, Δ and 𝑈. Notably, we have determined 𝑡 and Δ in the non-interacting double well
setup, as discussed in section 4.1.2, leaving only the interaction strength 𝑈 to be quantified. In the
following subsection, we will explore the characterization of𝑈 through density-assisted tunneling in
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the tilted double well. We conclude our experimental characterization of the interacting double well
by performing a radio-frequency spectroscopy.

Density-assisted tunneling in tilted double wells

The variable tilt of the double well Δ allows for a direct measurement of the interaction strength
𝑈 through density-assisted single particle tunneling in the virtually balanced double well. For this
purpose, we prepare two fermions on one lattice site |𝑅𝑅⟩ and choose the superlattice phase such
that the tilt balances the interaction energy |𝑈 − 2Δ| = 0. This allows for density-induced tunneling
with a rate proportional to 𝑡 [33, 123], as shown in figure 4.12 a and calculated in equation 4.18.
We use this method to perform an experiment similar to the in-situ symmetry-point introduced in
section 4.1.2, that determines the superlattice phase, where the single particle tunneling is resonant.
However, the obtained resonance Δ𝜙𝑈 is shifted with respect to the symmetry-point measurement due
to the interaction strength and the changed y-lattice depth 𝑠𝑦 = 55 Erec (compared to 𝑠𝑦 = 20 Erec).
Calculating the difference pixel wise with a bin size of 10× 10 lattice sites, shows a spatial variation of
Δ𝜙

𝑈 , due to the Gaussian nature of the lattice beams (figure 4.12 b). Then, we calculate the spatially
varying tilt 2Δ(𝒙) from the calibrated lattice depths as well as the interaction strength 𝑈 (𝒙, 𝑎), as
introduced in section 2.4. Finally, we minimize |2Δ(𝒙) −𝑈 (𝒙, 𝑎) | with respect to the scattering length
𝑎 in the high density region, to calibrate the interaction strength.

We perform in-situ symmetry-point measurements and density-assisted tunneling calibrations in
an alternating fashion, to be less susceptible for symmetry-point drifts. We use this procedure to
observe the change of the scattering length 𝑎 with the external magnetic-field strength 𝐵, as depicted
in figure 4.12 c. Comparing our data to the calibrated Feshbach resonance [71, 72, 74] (orange line),
shows great agreement. However, it should be noted that the magnetic field values in this plot are not
calibrated but calculated from Biot-Savart’s law for the applied currents to the magnetic field coils.
The presented method is a direct measurement of the interaction strength𝑈 and consequentially the
scattering length 𝑎. Therefore, it can be used to calibrate the Feshbach resonances of 40

𝐾 which will
be discussed in the thesis of my colleague Janek Fleper [110].

Radio-frequency spectroscopy of interacting fermions in double wells

We conclude the characterization of the interacting double well at half filling with a spectro-
scopic measurement. Initially, we prepare a balanced mixture of the lowest two hyperfine states
|𝐹 = 9/2, 𝑚𝐹 = −9/2⟩ and |𝐹 = 9/2, 𝑚𝐹 = −7/2⟩, for which we will use the shorthand notation
|9, 7⟩ from now on. For the chosen magnetic field 𝐵 ∼ 209𝐺, this is a non-interacting hyperfine
mixture with 𝑈97 ∼ 0𝑡. First, we prepare the atoms in the ground state of the strongly tilted Δ ≫ 𝑡

double well: |𝐿𝐿⟩. Then, we adiabatically change the tilt to the desired final value and perform a
radio-frequency transfer with small pulse width 𝛿𝜈𝑆𝐷 = 1 kHz to the repulsively interacting |9, 5⟩
hyperfine mixture with interaction strength 𝑈95 ≈ 8.1 𝑡. Interestingly, for a small tilt Δ ≈ 3𝑡, this
spectroscopy shows three distinct resonances as depicted in figure 4.13 a. The lowest frequency
resonance corresponds to the singly occupied sites at frequency 𝜈𝑆 . Here, the RF-frequency is
resonant with the energy difference of the different 𝑚𝐹 states in the external magnetic field. From
the singles-doubles (SD) spectroscopy in the monochromatic lattice (compare section section 3.3.1)
we would expect just one second resonance shifted by Δ𝑈/ℎ = |𝑈95 −𝑈97 |/ℎ = 𝑈95/ℎ. However,
the richer spectrum of the double well allows for -a priori- four additional resonances, one for each
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Figure 4.12: Interaction strength U calibration: (a) Density assisted tunneling, where 2Δ = 𝑈, in a tilted
double well induces dynamics with the single particle tunneling rate 𝑡. (b) The superlattice phase for resonant
density-assisted tunneling Δ𝜙

𝑈 varies over the cloud due to the Gaussian nature of the lattice beams. The
corresponding scattering length 𝑎 is fitted in the high density region (white line). (c) The calibrated scattering
lengths change with the external magnetic field 𝐵 (blue data points) and agree with the expectation from the
Feshbach resonance (orange line).

eigenstate.
We have performed this spectroscopy for several tilts and extracted the observed resonance

frequencies by fitting a Gaussian to the peaks. The mean value of the singles peak was 𝜈𝑆 =

(48.419± 0.001)MHz which slightly deviates from the expected value of 48.429 MHz for a magnetic
field of 𝐵 = 209.319𝐺. In particular, this measurement of the energy shift between the |𝑚𝐹 = −7/2⟩
state and |𝑚𝐹 = −5/2⟩ state is a suitable and very precise calibration method for the external magnetic
field.

Extracting the energy difference of the additional resonances compared to the singles’ resonance
ℎΔ𝜈 gives the (relative) spectrum of the repulsively interacting double well (cf. figure 4.13 b). For
small tilts Δ < 0.5𝑈, we observe two resonances. The energetically lower one (blue data points)
scales almost linearly with the tilt, while the energetically higher one (orange data points) remains
almost constant. For large tilts Δ > 0.5𝑈, we only observe the energetically lower resonance with an
energy difference approaching the interaction energy𝑈95 asymptotically. We compare these observed
resonances with the theoretical expectation (shaded regions) for the differential spectrum between the
energies of the repulsively interacting double well 𝐸95

𝑖 and the ground state of the non-interacting
double well 𝐸97

0 . Clearly, the observed energetically lower resonances correspond to a transfer between
the two ground states (blue), whereas the energetically higher resonances correspond to a transfer to
the |𝑑−⟩ state (orange).

An insight into this relative spectrum, can be gained by comparing the spectra of the non-interacting
and repulsively interacting double well in figure 4.14. The prepared ground state of the non-interacting
double well (dashed blue line) changes its energy linearly with the tilt Δ. However, the ground state of
the repulsively interacting double well (blue line) has a constant energy until the tilt is comparable to
the interaction energy Δ > 0.5𝑈95. Therefore, the energy difference between these two ground states
changes linearly, until both states are localized on the lower lattice site Δ ≫ 0.5𝑈95, where the double
well effectively reproduces the behavior of a monochromatic lattice.

The possibility of observing a transfer between the prepared ground state 𝜓97
0 and any final state
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Figure 4.13: Radio-frequency spectroscopy of interacting double well: (a) Radio-frequency transfer from
atoms in the |9, 7⟩ hyperfine mixture to the |9, 5⟩ hyperfine mixture. The magnetic field is chosen to create
a non-interacting |9, 7⟩ hyperfine mixture and a repulsively interacting mixture |9, 5⟩ with 𝑈95 ≈ 8.1𝑡. The
number of transferred atoms changes with the frequency detuning from the singles resonance Δ𝜈 = 𝜈 − 𝜈𝑆 and
shows three distinct peaks for a tilt of Δ ≈ 0.4𝑈. The resonances above the singles peak arise from transfers
between doubly-occupied double wells with different interaction energies. (b) Relative spectroscopy signal of
atoms prepared in the ground state of a non-interacting double well 𝜓97

0 that are transferred to various states of
the interacting double well Ψ97

𝑖 . The gray vertical line indicates the spectroscopy signal of subfigure a. For small
tilts Δ/𝑈95 < 0.5, the atoms are only transferred to the ground state 𝜓97

0 (blue data points) and second-excited
state Ψ

97
2 (orange data points). The experimental data agrees well with the theoretical expectation obtained

from Monte-Carlo simulations with the 1𝜎 confidence interval indicated as shaded regions.

𝜓
95
𝑖 is defined by the overlap between the states

𝐴𝑖 =

���〈𝜓97
0 |𝜓

95
𝑖

〉���2 , (4.19)

as the utilized RF-transfer leaves the spatial wave function of the particles unchanged. This overlap
changes drastically with the tilt Δ (cf. figure 4.14 b): For large tilts, there is only a finite overlap to the
ground state of the repulsively interacting double well, which explains the observed single resonance.
Moreover, for intermediate tilts 0 < Δ/𝑈95 ≤ 0.5, there is an additional significant overlap to the |𝑑−⟩
state resulting in two possible transfers. For vanishing tilts Δ = 0, the transfer to the |𝑑−⟩ state should
not be possible, which does not match our observations. However, this spectrum was averaged over
the center region of the trap (20 × 20 lattice sites) and before we had control over the spatially varying
superlattice-phase gradient. Therefore, it is reasonable to assume, that the number of double wells
with vanishing tilt over the considered lattice sites is small.

This differential spectroscopy of the double well validates our calibration of the Hubbard parameters
𝑡, Δ,𝑈 of the interacting double well. Interestingly, we have seen that a transfer to a highly-excited
eigenstate of the repulsively interacting double well is possible. We will explore the preparation and
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Figure 4.14: Energies and wave function overlap for relative spectroscopy measurement: (a) Non-interacting
ground state energy 𝐸97

0 (blue dashed line) compared to the energies of the repulsively interacting double well
𝐸

95
𝑖 for various tilts Δ. Here, the interaction energy 𝑈95 ≈ 8.1 𝑡 is chosen. (b) The overlap 𝐴𝑖 between the

non-interacting ground state wave function 𝜓97
0 and the wave functions of the repulsively interacting double

well 𝜓95
𝑖 are plotted for various tilts Δ. In both subplots, the ground state is shown in blue, the triplet state in

green, the |𝑑−⟩ state in orange and the excited state in red.

detection of this peculiar state in the next section.

4.2.3 Repulsively-bound pairs in double wells

In the last subsection, we have performed radio-frequency spectroscopy of interacting fermions in
double wells, where we have observed transfers to highly excited eigenstates (orange data points
in figure 4.13 b) for large repulsive interactions. For a balanced system Δ = 0, this eigenstate is a
coherently delocalized pair state, written as

|𝑑−⟩ =
1
√

2
( |𝐿𝐿⟩ − |𝑅𝑅⟩). (4.20)

This highly excited eigenstate is peculiar, as it is a coherent pair state of fermions despite the large
repulsive interactions. Therefore, we refer to this state as a repulsively-bound pair state [132]. In this
section, we investigate the experimental preparation of this excited eigenstate and present a detection
scheme to measure its population coherently. This will allow for a future investigation of the lifetime
of these repulsively-bound pairs.

It should be stressed, that this excited eigenstate changes its composition of basis states with the tilt
Δ, as we have shown by the orange trace in figure 4.11 a. For a balanced double well, it corresponds to
the |𝑑−⟩ state, while for a dominant tilt Δ ≫ |𝑈 | it becomes the singlet state |𝑠⟩. To avoid confusion
throughout this section, we always refer to this excited state as the |𝑑−⟩ state.

Preparation and detection of repulsively-bound pairs

We experimentally prepare the repulsively-bound pairs in an array of double wells, that is created
by the lattice configuration 𝑉𝑠 = 10 Erec, 𝑉𝑙 = 15 Erec, 𝑠𝑦 = 55 Erec and 𝑠𝑧 = 110 Erec. We start in a
balanced hyperfine mixture of |𝐹 = 9/2, 𝑚𝐹 = −9/2⟩ and |𝐹 = 9/2, 𝑚𝐹 = −7/2⟩ (shorthand notation
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for the mixture is |9, 7⟩), with negligible interactions 𝑈97 ∼ 0𝑡. Then, we prepare the |𝑑−⟩ state of
the double well by a RF Landau-Zener transfer to the hyperfine mixture of |𝐹 = 9/2, 𝑚𝐹 = −9/2⟩
and |𝐹 = 9/2, 𝑚𝐹 = −5/2⟩, that is repulsively interacting𝑈95 ∼ 8𝑡. To ensure a significant overlap
between the spatial wave functions (cf. figure 4.14 b), we choose a tilted double-well configuration
Δ ∼ −𝑈95/2 during the RF-transfer. This preparation procedure allows for a preparation fidelity of the
repulsively-bound pair-state of 0.93+0.07

−0.18. This preparation fidelity was determined by comparing the
number of atoms transferred into the |𝑑−⟩ with the initial number of atoms in doubly occupied double
wells.

After the preparation, a planned experiment will measure the lifetime of the repulsively-bound
pairs at arbitrary double-well tilts Δ. During this experiment, the pairs might decay to the ground
state or get excited into a higher lying state by heating processes. To observe the state populations
after the experiment, we adiabatically introduce a large tilt Δ ≫ 𝑈, 𝑡. In this configuration, the |𝑑−⟩
state is adiabatically connected to the |𝑠⟩ state, whereas the ground- and excited state are mapped to
the doubly occupied states |𝐿𝐿⟩ and |𝑅𝑅⟩ (cf. figure 4.11 a). The distinction of singly and doubly
occupied lattice sites, using the SD separation introduced in section 3.3.1, allows for a detection of the
|𝑑−⟩ state population 𝑁𝑆 compared to the added population of ground and excited state 𝑁𝐷 . We use
both populations to calculate the population contrast

C =
𝑁𝐷 − 𝑁𝑆
𝑁𝐷 + 𝑁𝑆

, (4.21)

which is insensitive to fluctuations of the total atom number. This applied series of the preparation
and detection scheme requires an elaborate series of RF transfers, the technical details for this are
given in figure B.1 of Appendix B.

In this detection method based on the population of strongly-tilted double wells, singly occupied
double wells (e.g. |𝐿⟩) cannot be distinguished from the |𝑑−⟩ state, nor can incoherent doubly occupied
states (e.g. |𝐿𝐿⟩) be distinguished from the ground state populations. However, due to the possible
decay mechanisms, it is not guaranteed that the prepared |𝑑−⟩ state remains a pure state. Therefore, to
measure the population of the pure state, we induce Rabi oscillations between the |𝑑−⟩ state and the
ground state, before the SD separation. The amplitude of this oscillation is a direct measure of the
desired eigenstate populations, while other states like singly occupied double wells would result in an
offset. To induce the Rabi oscillations between both states, we modulate the tilt of the double well 2 at
their avoided crossing where Δ = −𝑈95/2.

In the following, we briefly show that the periodic modulation of the double well induces Rabi
oscillations between the |𝑑−⟩ state and the ground state at their avoided crossing. The Hamiltonian of
the double-well modulation is given as

𝐻mod(𝜏mod) = Δmod · cos(𝜔𝜏mod) ( |𝐿𝐿⟩ ⟨𝐿𝐿 | − |𝑅𝑅⟩ ⟨𝑅𝑅 |) , (4.22)

with the tight binding modulation amplitude Δmod and frequency 𝜔 ≡ 2𝜋𝜈mod. For a driving frequency
𝜔 close to the energy gap between the |𝑑−⟩ state and the ground-state 𝜔0 = (𝐸𝑑− − 𝐸GS)/ℏ, this
system can be approximated by a driven two-level system. This simplification is possible, as the
triplet state |𝑡⟩ can be neglected due to a lack of coupling and the participation of the excited state
is suppressed by the large energy detuning Δ𝐸 ≈ 2𝑈. In this approximate two-level system, at the

2 For a fast modulation of the tilt, we change the superlattice phase via the double pass AOM, as introduced in section 3.2.2.
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avoided crossing of the |𝑑−⟩ state and the ground state, the two basis states are

|𝑑−⟩ ≡ 𝛼 |𝐿𝐿⟩ + 𝛽 |𝑠⟩ + 𝜖𝑑− |𝑅𝑅⟩ ≡
(
1
0

)
(4.23)

and
|𝐺𝑆⟩ ≡ 𝛾 |𝐿𝐿⟩ + 𝛿 |𝑠⟩ + 𝜖GS |𝑅𝑅⟩ ≡

(
0
1

)
(4.24)

with a negligible population of |𝑅𝑅⟩, as 𝜖𝑑−, 𝜖GS ≪ 𝛼, 𝛽, 𝛾, 𝛿. In this new basis, the Hamiltonian of
the modulation can be written as

𝐻mod(𝜏mod) = Δmod cos(𝜔𝜏mod) ·
(
𝛼

2
𝛼𝛾

𝛾𝛼 𝛾
2

)
+ O(𝜖2) (4.25)

where the population coefficients are considered to be real-valued. The off-diagonal elements of this
Hamiltonian couple the two basis states and thus induce Rabi oscillations between them. Using the
rotating-wave-approximation [60], the Hamiltonian of this driven two-level system is given in the
rotating-frame as

𝐻rot ≈
ℏ

2

(
−𝛿𝜔 Ω𝑅
Ω𝑅 𝛿𝜔

)
, (4.26)

with the Rabi frequencyΩ𝑅 = 𝛼𝛾Δmod/ℏ and detuning from resonance 𝛿𝜔 = 𝜔0−𝜔. This Hamiltonian
of the driven system in the rotated frame is not diagonal, and therefore, the |𝑑−⟩ state and the ground
state are no eigenstates of this system. Therefore, when initially preparing the |𝑑−⟩ state, the periodic
modulation induces Rabi oscillations between the |𝑑−⟩ state and the ground state with a frequency
given as [60]

𝑓 =
1

2𝜋

√︃
𝛿

2
𝜔 +Ω

2
𝑅 . (4.27)

Evidently, we expect a Rabi oscillation with minimal frequency for a resonant drive 𝛿𝜔 = 0. Moreover,
increasing the amplitude of the modulation Δmod increases the Rabi frequency Ω𝑅 and therefore
the oscillation frequency 𝑓 . Note that with this modulation technique, we solve the aforementioned
problem of singly occupied double wells (e.g. |𝐿⟩ states) being detected in the same fashion as |𝑑−⟩
states, via the SD separation. These singly occupied states do not change their state by the periodic
modulation, and therefore are visible as an offset to the oscillation.

We experimentally probe the Rabi oscillations between the |𝑑−⟩ state and the ground state for a
tilted double well Δ = −𝑈95/2. The population contrast C at the trap center (averaged over 20 × 20
lattice sites) oscillates during the modulation time 𝜏mod, as shown in figure 4.15 a, for an almost
resonant drive. We observe a clear sinusoidal signal according to with one characteristic frequency
and a pronounced dephasing due to the inhomogeneous lattice depths. This shows qualitatively, that
we have coherently prepared and detected an excited eigenstate of this system.

We fit a damped sinusoidal function (compare equation 4.6) to the data to obtain a more quantitative
measure of the oscillations. We extract an amplitude of (−0.66 ± 0.01) for the oscillation shown
in figure 4.15 a. Compared to the maximal value of 1, this amplitude indicates a significant but
improvable preparation of a coherent excited state. The reasons for this imperfection are most likely
caused by the averaging over inhomogeneous double-wells, but this needs to be investigated in more
detail in the future.
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Figure 4.15: Rabi oscillations between repulsively-bound pairs and the ground state of the double well: (a)
For a tilt modulation with amplitude Δmod/ℎ = 2.5 kHz and frequency 𝜈mod = 5 kHz, the population contrast C
oscillates as a function of the time 𝜏mod. The data is shown in blue and a fitted sinusoidal function accordingis
shown in orange. (b) The extracted oscillation frequency 𝑓 (blue data points) changes with the modulation
frequency 𝜈mod for a constant modulation amplitude of Δmod/ℎ = 2 kHz. (c) For a resonant drive and constant
driving frequency of 𝜈mod = 5.4 kHz, the observed oscillation frequency 𝑓 changes linearly with the Rabi
frequency Ω𝑅 ∝ Δmod/ℏ. For subplots b and c, the fitted behavior according to equation 4.27 is shown in orange.

To determine the driving frequency for a resonant modulation 𝛿𝜔 = 0, we vary 𝜈mod and compare
the extracted frequencies (cf. figure 4.15 b). We fit equation 4.27 and extract the minimal oscillation
frequency 𝑓min =

Ω𝑅

2𝜋 = (672 ± 3) Hz at a driving frequency of 𝜈mod = (5.12 ± 0.01) kHz. Finally,
we change the driving amplitude Δmod for a fixed driving frequency and observe the expected linear
scaling of the Rabi frequency with the amplitude (cf. figure 4.15 c). Evidently, the driving induced
Rabi oscillations change their oscillation frequency 𝑓 with the driving frequency 𝜈mod and driving
amplitude Δmod as theoretically expected.

We have successfully implemented a scheme to prepare repulsively bound atom pairs in an array
of double wells using a radiofrequency transfer with high fidelity. Moreover, we have applied a tilt
modulation scheme to drive coherent Rabi oscillations, that allow a transfer between the |𝑑−⟩ state and
the ground state of the system. We have demonstrated, that the observed Rabi oscillation frequency
changes with the detuning Δ𝜔 and the driving amplitude Δmod according to the theoretical expectation,
establishing our experimental control over this technique. In the future, we will use this technique to
extract the pure state fraction of the prepared excited state. We will employ this technique to study the
lifetime of repulsively-bound pairs in balanced double wells in the future.
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Periodically modulated double wells

A periodic modulation of a system can fundamentally alter its intrinsic properties. A famous classical
example is a macroscopic ball on a saddle-point surface as depicted in figure 5.1. In the static scenario,
the slightest deviation from the exact center position is unstable and makes the ball roll down. However,
a periodic drive (in this case a rotation of the saddle point) creates an effectively stable potential if the
frequency is much faster than the eigenfrequency of the system. Moreover, the ball performs a wiggly
motion on an elliptical trajectory during the drive as it rolls to the time dependent potential minimum.
The amplitude of this motion intuitively depends on the driving frequency and is usually referred to as
a micromotion.

This description of a periodically driven system by a separation into a slow effective behavior and
a fast motion within one driving period is the fundamental concept of Floquet physics [133, 134].
Moreover, the presented possibility to create effective systems with properties that go beyond their
static counterparts is usually referred to as Floquet engineering. This concept is of natural interest
across many physics disciplines. For instance, coupled waveguides were used to realize Floquet
topological insulators [135] and to highlight the importance of dissipation in the context of quantized
transport [136] in the photonics community [137]. In solid state physics, femtosecond laser pulses
were used to demonstrate light-induced superconductivity [138] and manipulate magnetic order [139].

Quantum simulation using ultracold atoms is a particularly suitable platform for the study of
periodically driven systems due to its excellent control over system parameters as well as timescales

Drive

Figure 5.1: Ball on a static and driven saddle-shaped potential: This figure was inspired by [59].
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in the kHz regime [41, 140]. For example, the dynamic properties of lattice systems were changed
fundamentally by modulating the lattice position or the external magnetic field [141, 142]. Moreover,
complex tunneling amplitudes were realized [57], that have enabled the study of quantized gauge
fields [43, 44]. And recently, a periodically driven honeycomb-lattice was used to study an anomalous
Floquet-topological system with topological edge modes despite a vanishing Chern number [143,
144].

In this chapter we are going to study periodically-modulated double wells [145–147] in the high-
frequency and the resonantly-driven limit. We are going to briefly introduce Floquet theory [133, 134]
and discuss the stroboscopic, as well as the effective description of periodically modulated systems.
Then, we will apply this formalism to describe driven double wells as introduced in [77] and compare
this to our experimental results: We will demonstrate the phenomenon of dynamic localization [45],
where dynamics are frozen due a strong periodic drive, in the high frequency limit. Finally, we realize
density dependent tunneling [75, 76] for resonantly driven double wells.

5.1 Floquet theory

In this section we are going to study the theoretical description of periodically driven systems following
the works of Bukov et al. [134] and Goldman et al. [133]. These driven systems can be described by
separable Hamiltonians

�̂� (𝜏) = �̂�0 +𝑉 (𝜏) = �̂�0 +𝑉 (𝜏 + 𝑇), (5.1)

with the time independent part �̂�0, and the time dependent part 𝑉 (𝜏) with periodicity 𝑇 . First, let’s
develop an intuitive understanding of a periodically driven system characterized by a driving frequency
𝜈 and amplitude 𝐾0, by examining two contrasting regimes: In the adiabatic driving regime, where
𝜈 is significantly lower than the system’s intrinsic frequencies, the eigenstates adapt to follow the
driving frequency. Conversely, when the driving frequency surpasses any intrinsic frequency of the
system, the response typically resembles that of an effective static potential. In its simplest form, this
(effectively static) potential is equivalent to the time-averaged value 1/𝑇

(∫ 𝑇
0 𝑑𝜏�̂� (𝜏)

)
= �̂�0.

Even though Floquet physics describes periodically driven systems beyond these two extreme
regimes, the connection is evident: In analogy to Bloch’s Theorem, Floquet physics aims to decompose
the time evolution of the periodically driven system into two parts: A slow motion governed by
a time-independent Floquet Hamiltonian �̂�F and a fast motion within the driving period 𝑇 – the
micromotion. As a consequence, the time evolution operator can be written as

�̂� (𝜏1, 𝜏2) = 𝑒
−𝑖�̂� (𝜏2 )𝑒−𝑖�̂�F · (𝜏1−𝜏2 )𝑒𝑖�̂� (𝜏1 ) , (5.2)

where �̂� (𝜏) = �̂� (𝜏 +𝑇) is the time-periodic Kick operator. In general, there are several approaches to
finding a Floquet Hamiltonian and corresponding Kick operator that fulfill equation 5.1. However, in
this work we use the High-Frequency Expansion (HFE) to pertubatively calculate the effective Floquet
Hamiltonian �̂�eff and corresponding kick operator. In the next section we will start with the intuitive
stroboscopic description of periodically driven systems and continue with the effective picture.
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5.1 Floquet theory

5.1.1 The stroboscopic and effective Floquet Hamiltonian

The basic concept of a stroboscopic description is that due to the periodicity of the drive, the time
evolution for times corresponding to integer multiples of the periodicity 𝛿𝜏 = 𝑛𝑇 is linear. However,
there is a gauge freedom of the phase or the reference time within the modulation 𝜏0 at which the
Floquet Hamiltonian �̂�𝐹 (𝜏0), which governs this linear time evolution, is applied. To determine the
time evolution operator in the stroboscopic approach, we start with the evolution operator defined as

𝑈 (𝜏2, 𝜏1) = T𝜏𝑒
−𝑖

∫ 𝜏2
𝜏1
�̂� (𝜏′ )𝑑𝜏′

, (5.3)

with the time ordering operator T𝜏 [134]. This evolution operator factorizes𝑈 (𝜏2, 𝜏1) = 𝑈 (𝜏2, 𝜏0) ·
𝑈 (𝜏0, 𝜏1) and fulfills𝑈 (𝜏2, 𝜏1) = 𝑈 (𝜏2 + 𝑛𝑇, 𝜏1 + 𝑛𝑇) for integer 𝑛 due to the periodicity of the drive.
With this, the general evolution can be written as

𝑈 (𝜏2, 𝜏1) = 𝑈 (𝜏2, 𝜏0 + 𝑛𝑇) 𝑒
−𝑖�̂�𝐹 (𝜏0 )𝑛𝑇 𝑈 (𝜏0, 𝜏1), (5.4)

illustrating that the time independent stroboscopic Floquet Hamiltonian �̂�𝐹 (𝜏0) describes the evolution
for integer multiples of the driving period depending on the Floquet gauge choice. This gauge
dependency of the Floquet Hamiltonian can be problematic in comparison to experimental observations,
as an exact phase stabilisation between readout and modulation is difficult. Therefore, the phase
dependency of the stroboscopic Floquet Hamiltonian can be gauged into the kick operators resulting in

𝑈 (𝜏1, 𝜏2) = 𝑒
−𝑖𝐾 (𝜏2 )𝑒−𝑖�̂�eff · (𝜏1−𝜏2 )𝑒𝑖𝐾 (𝜏1 ) , (5.5)

with the gauge and time independent effective Floquet Hamiltonian �̂�eff . This time evolution can be
interpreted as a three-step procedure, starting with a transformation into a rotating frame. Here, the
time evolution is governed by the effective Hamiltonian. After this evolution, the system is transformed
to a measurement-time dependent final frame which causes the micromotion.

One main task of Floquet theory is the determination of the effective Hamiltonians and kick
operators for a given driving scheme. In some situations, this is done in an iterative approach to solve
the differential formulation of Floquet’s theorem

�̂�eff = 𝑒
𝑖�̂� (𝜏 )

�̂� (𝜏)𝑒−𝑖�̂� (𝜏 ) + 𝑖
(
𝜕𝜏 𝑒

𝑖�̂� (𝜏 )
)
𝑒
−𝑖�̂� (𝜏 )

, (5.6)

however, we are going to introduce a perturbative approach to face this problem.

Inverse frequency expansion

The Floquet Hamiltonian can only in rare cases be determined analytically. Therefore, for large driving
frequencies, a perturbative approach is reasonable. For example, let’s consider interacting fermions in
a balanced double well with interaction energy𝑈 and tunneling 𝑡. If the driving frequency dominates
ℎ𝜈 ≫ 𝑈, 𝑡, the system cannot absorb energy from the drive, which makes a perturbative approach
resonable.

There are different expansion methods to pertubatively determine the Floquet Hamiltonians,
depending on the Floquet gauge. Usually, the Magnus expansion is chosen to approximate the
stroboscopic Floquet Hamiltonian [134]. However, in this work, we are going to focus on the effective
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Chapter 5 Periodically modulated double wells

Floquet Hamiltonian. In this case, the High-Frequency Expansion is suitable to expand the effective
Hamiltonian and kick operator as

�̂�eff =

∞∑︁
𝑛=0

�̂�
𝑛
eff , 𝐾eff (𝑡) =

∞∑︁
𝑛=1

𝐾
𝑛
eff (𝑡), (5.7)

where �̂�𝑛eff ∝ 1/𝜈𝑛 and 𝐾𝑛eff ∝ 1/𝜈𝑛 [148]. In order to determine these expansion components, we
start from the time evolution operator over a full driving cycle

𝑈 (𝑇, 0) = T𝜏 exp
(
−𝑖

∫ 𝑇

0
𝑑𝜏
′
�̂� (𝜏′)

)
= exp

(
−𝑖�̂�eff𝑇

)
, (5.8)

where we have used equation 5.5 for the second equality. Taking the logarithm and performing a
Taylor expansion with regards to 1/𝜈 gives the first components of the effective Hamiltonian [149]

�̂�
0
eff = �̂�0 = 1/𝑇

∫ 𝑇

0
𝑑𝜏
′
�̂� (𝜏′), (5.9)

�̂�
1
eff =

1
2𝜋𝜈

∞∑︁
𝑚=1

1
𝑚

[
�̂�𝑚, �̂�−𝑚

]
, (5.10)

and the kick operator

𝐾
1
eff (𝑡) =

1
2𝜋𝜈

∑︁
𝑚≠0

𝑒
𝑖2𝜋𝑚𝜈𝑡

𝑚
�̂�𝑚, (5.11)

where we have introduced the Fourier components of the Hamiltonian �̂�𝑚. Evidently, for an infinitely
high frequency drive, the effective behavior matches the intuitive picture: The effective Hamiltonian
is described by the time average of the time dependent Hamiltonian and the kick operator is zero,
suppressing the micromotion.

However, if one deviates from the high-frequency limit, the computational amount of the inverse
frequency expansion increases drastically, as more terms of equation 5.7 are required to describe
the effective Hamiltonian. In this work, we consider an inverse frequency expansion up to the third
order 1/𝜈3 to ensure a convergence of the expansion. Moreover, when computing the first order
correction to the effective Hamiltonian �̂�1

eff , the sum over the commutator needs to converge as well.
This convergence depends on the driving amplitude, as the Fourier components of the Hamiltonian
�̂�𝑚 are usually expanded in terms of Bessel functions. We consider Bessel functions J𝑗 (𝐾0) for
𝑗 = 0, 1, 2, 3 to realize converging Fourier components, which we have checked explicitly [112].

Eigenvalues and observables

The eigenvalues and eigenstates of the Floquet Hamiltonian are of particular interest in order to
determine the expectation values of observables in driven systems. The (pertubatively) determined
effective Hamiltonian fulfills the time independent Schrödinger equation

�̂�eff |𝑢𝑛⟩ = 𝜖𝑛 |𝑢𝑛⟩ (5.12)
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Figure 5.2: Spectrum and Floquet zones of a periodically modulated double well: The quasi energies
𝜖 of the effective Hamiltonian (blue, orange and green lines) are only defined mod ℎ𝜈. This causes the
spectrum to contain infinite copies of quasi energies that are spaced by ℎ𝜈. Within one Floquet zone
(𝑛ℎ𝜈 − ℎ𝜈/2, 𝑛ℎ𝜈 + ℎ𝜈/2] with integer 𝑛 (dashed lines), the quasi energy is well-defined.

with the effective eigenvectors |𝑢𝑛⟩ and eigenvalues 𝜖𝑛. Following Floquet’s theorem the Floquet
states are eigenstates of the time dependent Schrödinger equation and are defined as

|𝜓𝑛 (𝜏)⟩ = 𝑒
−𝑖 𝜖𝑛𝜏 𝑒−𝑖𝐾 (𝜏 ) |𝑢𝑛⟩ (5.13)

where the Floquet mode |𝑢𝑛 (𝜏)⟩ = 𝑒
−𝑖𝐾 (𝜏 ) |𝑢𝑛⟩ is introduced. Evidently, the time evolution of the

Floquet state is in analogy to Bloch’s theorem separable into the slow time evolution with the quasi
energies 𝜖𝑛 of the Floquet modes and their rapid time evolution with the micromotion. Moreover, the
quasi energies are only defined up to multiples of ℎ𝜈 as adding or removing a driving quantum leaves
the Floquet states unchanged [58]. This gives rise to a ladder-type spectrum (cf. figure 5.2) which has
infinite rungs and therefore no well-defined ground state. Therefore, we restrict the quasi energies to
the first Floquet zone 𝜖𝑛 ∈ (−ℎ𝜈/2, ℎ𝜈/2].

With the Floquet states we can compute the expectation value of an observable �̂�〈
�̂�
〉
= ⟨𝜓(𝜏) | �̂� |𝜓(𝜏)⟩ (5.14)

= ⟨𝑢𝑛 | 𝑒
𝑖𝐾 (𝜏 )

�̂�𝑒
−𝑖𝐾 (𝜏 ) |𝑢𝑛⟩ (5.15)

which oscillates in similar fashion as the driving frequency. This phenomenon is called micromotion.

5.2 High frequently driven double wells

In this section we are going to discuss periodically driven double wells in the high frequency limit
both theoretically and experimentally. First, we are computing the effective Hamiltonian in the
high frequency expansion for a periodically modulated double well, following [77]. Then, we are
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Chapter 5 Periodically modulated double wells

studying this model experimentally using a spin polarized cloud in an effectively one-dimensional
optical superlattice with periodic drive. We are going to show observations of the rescaled tunneling
amplitudes with the 0th order Besselfunction, the effect of dynamic localization and the effects of
micromotion.

5.2.1 High frequency expansion of driven double wells

We study Floquet physics by applying a periodic modulation to the tilt of an array of double wells, as
described in section 3.2.2. The application of the HFE to this model is discussed in detail in [77, 112]
and will be shortly summarized in the following. This driven system can be described by the time
dependent Hamiltonian

�̂� (𝜏) = �̂�0 + �̂� (𝜏), �̂�0 =

©«
𝑈 −𝑡 𝑡 0
−𝑡 0 0 −𝑡
𝑡 0 0 𝑡

0 −𝑡 𝑡 𝑈

ª®®®¬ , (5.16)

where we have used the balanced, interacting double-well Hamiltonian �̂�0, as introduced in section
4.2.1,1 and the modulated on-site energy

�̂� (𝜏) = ℎ𝜈𝐾0 cos(2𝜋𝜈𝜏) ℎΔ, ℎΔ =

©«
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

ª®®®¬ , (5.17)

in the usual Fock basis, where the normalized, dimensionless driving amplitude is denoted 𝐾0 and the
driving frequency 𝜈. First, we will discuss the high frequency limit ℎ𝜈 ≫ 𝑈, 𝑡, however the amplitude
of the periodic modulation also scales with the driving frequency. Therefore, a description in a rotating
frame is necessary in order to make use of the high frequency expansion introduced in section 5.1.
Introducing the rotation matrix

𝑅1(𝜏) = exp
[
−𝑖

∫
𝜕𝜏𝑉 (𝜏)

]
= exp

[
−𝑖𝐾0 sin(2𝜋𝜈𝜏)ℎΔ

]
(5.18)

the Hamiltonian in the rotated frame is given by

�̂�rot(𝜏) = 𝑅
†
1 (𝜏)�̂�0𝑅1(𝜏) =

©«
𝑈 −𝑡 (𝜏) 𝑡 (𝜏) 0
−𝑡∗(𝜏) 0 0 −𝑡 (𝜏)
𝑡
∗(𝜏) 0 0 𝑡 (𝜏)
0 −𝑡∗(𝜏) 𝑡

∗(𝜏) 𝑈

ª®®®¬ , (5.19)

1 Here we have neglected the higher-band corrections 𝑉nn, 𝑉de and 𝑉ct due to their vanishing amplitude.
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with the time dependent tunneling amplitude 𝑡 (𝜏) = 𝑡 exp
[
𝑖𝐾0 sin(2𝜋𝜈𝜏)

]
. The effective Hamiltonian

in the lowest orders 5.9 of the HFE is then given by

�̂�
0
eff =

©«
𝑈 −𝑡J0(𝐾0) 𝑡J0(𝐾0) 0

−𝑡J0(𝐾0) 0 0 −𝑡J0(𝐾0)
𝑡J0(𝐾0) 0 0 𝑡J0(𝐾0)

0 −𝑡J0(𝐾0) 𝑡J0(𝐾0) 𝑈

ª®®®¬ (5.20)

and �̂�1
eff = 0 where we have used the definition of the Bessel functions of order ℓ

Jℓ (𝑥) =
1
𝑇

∫ 𝑇

0
𝜕𝜏 exp [𝑖(𝑥 sin(2𝜋𝜈𝜏) + ℓ2𝜋𝜈𝜏)] . (5.21)

Evidently, the effective Hamiltonian in lowest order can be obtained by replacing 𝑡 → 𝑡J0(𝐾0) in the
static Hamiltonian, which clearly deviates from a mere time averaging of the potential. This interesting
behavior arises since the driving amplitude is also frequency dependent in the applied driving scheme.
The corresponding kick operator in the lowest order2 is

𝐾
1
rot(𝜏) = 2𝑖

𝑡

ℎ𝜈
J1(𝐾0) cos(2𝜋𝜈𝜏)

©«
0 1 −1 0
−1 0 0 1
1 0 0 −1
0 −1 1 0

ª®®®¬ (5.22)

with a dimensionless amplitude 𝐴1
rot ≡ 𝑡J1(𝐾0)/(ℎ𝜈) which is clearly vanishing in the high frequency

limit. However, the transformation into the rotating frame leads to a second contribution to the
micromotion that cannot be neglected in general [58, 77, 134]. This part of the micromotion changes
our specific observables, which we will introduce in the next section, only perturbatively and was
therefore neglected in the fitting procedures due to computational reasons [112]. Now that we have
introduced the theoretical framework to describe the periodically driven double wells in the high
frequency limit we can compare this to our experimental findings.

5.2.2 Spin-polarized fermions in periodically driven double wells

We study periodically driven double wells in the high frequency limit by loading a spin polarized
cloud into our optical superlattice. As a consequence of the spin polarization, there is no interaction
strength𝑈 = 0 and thus the driving frequency only needs to be larger than the tunnel coupling 𝜈 ≫ 𝑡

to realize the high-frequency regime. The experimental procedure follows section 4.1.2, where we
have probed the tunneling dynamics in an array of double wells, with the addition of a periodic drive.
We start with a cloud of polarized atoms at approximately unity filling in a three-dimensional lattice
configuration 𝑉𝑙 = 15 Erec, 𝑠𝑦 = 55 Erec and 𝑠𝑧 = 110 Erec. The tunnel coupling in 𝑦- and 𝑧-direction
is suppressed significantly compared to the 𝑥-direction 𝑡𝑧/𝑡𝑥 < 𝑡𝑦/𝑡𝑥 ≲ 0.01, which allows us to
describe the system as an array of one-dimensional systems.

We adiabatically load our atoms from the monochromatic lattice into the lowest Bloch band of the
superlattice by ramping up the green lattice laser to 𝑉𝑠 = 30 Erec in 35 ms, as shown in figure 5.3. This

2 The lowest order in this case means in terms of 1/𝜈 as well as Bessel functions up to the first order.
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Figure 5.3: Visualization of the experimental scheme to probe periodically modulated double wells: The
green lattice depth 𝑉𝑠 is indicated as the blue trace. The energy offset, or tilt, of the double well Δ0 is shown as
the orange trace. The Floquet drive is implemented by modulating the frequency of the lattice AOM 𝜈AOM and
shown as a green trace. The relevant timescales are 𝜏1 − 𝜏0 = 35 ms, 𝜏2 − 𝜏1 = 3 ms and the experiment time
𝜏 = 𝜏3 − 𝜏2. For a detailed description of the scheme please refer to the text.

effectively splits every monochromatic lattice site into two sites with a maximal occupation of one
particle per double well. The superlattice phase is chosen such that the energy offset within the double
well dominates the tunnel coupling Δ0 ≫ 𝑡in and hence freezes all dynamics within the double well.
This tilt is then removed diabatically, which projects the atoms onto one site of the double well.3 As
this projected state is no eigenstate of the double well, we expect to observe Rabi oscillations between
the sublattice sites of the double wells. However, due to the large green lattice depths the tunnel rate is
only 𝑡in/ℎ ≈ 13 Hz. This renders all manipulations of the system that are much faster than 70 ms to be
effectively instantaneous.

We now want to adiabatically connect our static double well Hamiltonian to the Floquet Hamiltonian.
For this purpose, we adiabatically ramp up the amplitude of the drive 𝐾0 within 3 ms, according to [77].
Next, we unfreeze the green lattice diabatically within 200 µs to 𝑉𝑠 = 12 Erec. This enables tunneling
dynamics with frequencies 𝑡in/ℎ = 480 Hz, 𝑡out/ℎ = 65 Hz within the double well.4 After a holding
time 𝜏, the system is projected onto the {|𝐿⟩ , |𝑅⟩} basis by diabatically introducing a tilt within the
double well Δ0 ≫ 𝑡in. The population of left and right sublattice sites is measured using the adiabatic
band-mapping technique, as introduced in section 3.3.4. Then, we use the obtained populations of the
Brillouin zones 𝑁𝑖 to compute our global observable, the time dependent population contrast

C𝑆 (𝜏) =
[
(𝑁34 − 𝑁1)/(𝑁34 + 𝑁1)

]
𝜏

(5.23)

3 Without loss of generality, we consider the atoms to be initially on the left sublattice site |𝐿⟩.
4 For this lattice configuration, the intra-well tunneling dominates the out-of-well tunneling 𝑡in ≫ 𝑡out and will be the only

reference from now on 𝑡 ≡ 𝑡in.
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Figure 5.4: Tunneling dynamics in driven double wells in the high frequency limit: The population contrast
C𝑆 is shown as a function of the time 𝜏 for various driving amplitudes 𝐾0 = 0, 1.3, 2.6 and fixed driving
frequency 𝜈 = 5.8 kHz as blue data points(a to c). The fitted population contrast is shown as a red line and all
uncertainties are omitted for better visibility. The corresponding periodic modulation of the AOM frequency
𝜈AOM is plotted below (d to f). (g) The observed effective tunneling rates are obtained from the fit to the
population contrasts according to section 6.1 and compared to the 0th order Bessel function as a function of the
driving amplitude 𝐾0. Note that the uncertainties of the fit results are smaller than the marker size.

for the spin-polarized cloud.
We have measured the effective dynamics for a driving frequency 𝜈 = 5.8 kHz and various

driving amplitudes 𝐾0. This driving frequency is much larger than the relevant tunneling amplitude
ℎ𝜈 ≫ 𝑡, which makes an effective description in the high-frequency limit appropriate. Moreover, the
dimensionless micromotion amplitude in the lowest order is negligible |𝐴1

rot | ≤ 0.04. In this limit, we
expect an effective behavior, that can be described purely by a rescaling of the tunneling rate as given
by equation 5.20. Without any periodic modulation we see the expected oscillation in the contrast (cf
figure 5.4 a, d) with an approximate periodicity of 1 ms and a dephasing due to the inhomogeneous
lattice configuration, as discussed in section 4.1.2. As we introduce a driving amplitude of 𝐾0 = 1.1,
via a modulation of the AOM driving frequency with amplitude 2.5 MHz, the periodicity increases
qualitatively (cf figure 5.4 b, e) while for a modulation amplitude 𝐾0 = 2.2 the oscillation almost
vanishes. Moreover, the signal shows no oscillations with the same frequency as the periodic drive,
which confirms the expected suppression of the micromotion.

We evaluate this behavior quantitatively, by fitting the lattice depth 𝑉𝑠 at the trap center and
calculating the global contrast due to the calibrated lattice inhomogeneities. The fitted population
contrast is shown as a red trace and matches the characteristics of our data excellently. The fitting
procedure will be introduced in detail in section 6.1 for an interacting system. For this non-interacting
case, the procedure treats our driven system like a static double well with a driving-amplitude dependent
lattice depth 𝑉𝑠 (𝐾0). The fitted lattice depths are in turn used to calculate the driving-amplitude
dependent effective tunneling |𝑡 (0)eff (𝐾0) |/𝑡 in the high frequency limit, as shown in figure 5.4 g.
A comparison of the fitted rescaled tunneling with the 0th order Bessel function shows excellent
agreement. Evidently, the driving amplitude in the high frequency limit can decrease the tunnel
coupling until it is completely suppressed for an amplitude 𝐾0 = 2.4. This phenomenon is called
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Figure 5.5: Effects of the micromotion for spin polarized driven double wells: The oscillations in the
population contrast C𝑆 are shown for a periodic drive with frequency 𝜈 = 2 kHz and amplitude 𝐾0 = 1.2 for
two holding time 𝜏 intervals (a and b). Note that the data points are connected as a guide to the eye and the
uncertainties are omitted for better visibility. The corresponding periodic modulation of the AOM frequency
𝜈AOM is plotted below (c and d). The phase of the frequency modulation in c and d is uncertain and was adjusted
in the plots to match the oscillation in the population contrast.

dynamic-localization [45] and has been first observed via the expansion of a Bose-Einstein condensate
in an optical lattice [141].

So far, we have neglected the micromotion due to the negligible amplitude 𝐴1
rot for the given driving

amplitude 𝜈 = 5.8 kHz. However, a direct observation of the micromotion is of interest to demonstrate
control over the driven system in its entirety. For this purpose, we have probed the driven system as
described before but with a driving frequency 𝜈 = 2 kHz and amplitude 𝐾0 = 1.2 (cf. figure 5.5). The
latter was chosen to observe the interplay between effective tunneling frequency and micromotion
that scale with the 0th and first order Bessel functions respectively. Moreover, the micromotion
amplitude is enhanced by more than a factor three compared to the 5.8 kHz drive. For short times,
the oscillation of the population contrast shows a clear beating with the driving frequency, which
is shown in figure 5.5 a and c. To isolate the effect of the micromotion, we observe the population
contrast for large holding times 𝜏 > 20

𝑡
. This ensures that the oscillation due to the effective tunneling

dynamics have dephased. However, the micromotion is not that sensitive to the inhomogeneities of
the lattice as only its amplitude and not its frequency is affected. Therefore, for these large holding
times the population contrast should only show dynamics due to the micromotion, which agrees very
well with our observations in figure 5.5. In this qualitative demonstration of the micromotion, we
have chosen the phase of the modulation arbitrarily. Nonetheless, a variation of the phase can have a
significant impact on the observed oscillations, as we have observed and will be discussed in [112]. If
the micromotion amplitude is small, however, the micromotion all together has a negligible impact
and we will work in this regime from now on.
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5.3 Resonantly driven double wells

In this section, we study interacting double wells with a periodic drive that is resonant to the interaction
energy. First, we introduce the theoretical framework for near-resonantly driven double wells, as this
includes the regime of a resonant drive. Next, we discuss our experimental scheme to probe resonantly
driven double wells and compare our findings to the formerly introduced theory. Here, we show the
realization of a double well with density-dependent tunneling of several harmonic orders.

5.3.1 Near-resonantly driven double wells in the high frequency expansion

In this section, we study the driven interacting double well in the near-resonant limit 𝑈 ≈ ℓℎ𝜈 ≫ 𝑡

with the integer harmonic order ℓ theoretically, according to [77]. The driving frequency is still a
dominant energy scale, and therefore, we start by a transformation to the rotating frame via equation
5.18. Unlike in the high frequency limit, we cannot directly expand the effective Hamiltonian in terms
of the reverse frequency as the terms ∝ 𝑈/ℎ𝜈 would not converge. We perform a second rotation to
solve this problem via [133]

𝑅2(𝜏) = exp
[
−𝑖 2𝜋ℓℎ𝜈𝜏 ℎ𝑈

]
, ℎ𝑈 =

©«
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

ª®®®¬ . (5.24)

Then we follow the procedure of section 5.2.1, where we perform two rotations instead of one
𝑅1(𝜏) → 𝑅2(𝜏)𝑅1(𝜏). This gives the Hamiltonian in the co-rotating frame

�̂�rot =
©«
𝑈 − ℓℎ𝜈 −𝑡+(𝜏, ℓ) 𝑡+(𝜏, ℓ) 0
−𝑡∗+(𝜏, ℓ) 0 0 −𝑡− (𝜏, ℓ)
𝑡
∗
+(𝜏, ℓ) 0 0 𝑡− (𝜏, ℓ)

0 −𝑡∗− (𝜏, ℓ) 𝑡
∗
− (𝜏, ℓ) 𝑈 − ℓℎ𝜈

ª®®®¬ (5.25)

with 𝑡±(𝜏, ℓ) = 𝑡 exp
[
𝑖(±2𝜋ℓℎ𝜈 + 𝐾0 sin(2𝜋𝜈𝜏))

]
. Evidently, the tunneling in this frame gains a time-

and harmonic order-dependent phase. Now this rotated Hamiltonian converges in an inverse frequency
expansion as ℎ𝜈 ≫ 𝑈 − ℓℎ𝜈, 𝑡. Using equation 5.21 this gives the effective Hamiltonian of lowest
order in the rotating frame

�̂�
0
eff =

©«
𝑈eff (−1)ℓ+1 · 𝑡ℓeff (−1)ℓ · 𝑡ℓeff 0

(−1)ℓ+1 · 𝑡ℓeff 0 0 −𝑡ℓeff
(−1)ℓ · 𝑡ℓeff 0 0 𝑡

ℓ
eff

0 −𝑡ℓeff 𝑡
ℓ
eff 𝑈

0
eff

ª®®®®¬
(5.26)

with the effective interaction strength𝑈eff = 𝑈 − ℓℎ𝜈5 and effective tunneling rate 𝑡ℓeff = 𝑡Jℓ (𝐾0).
These effective Hubbard parameters lead to some intriguing effects: The effective tunneling can be

adjusted through the driving amplitude and the harmonic order of the drive, and it exhibits behavior

5 Note, that in this theoretical framework the sign of the driving frequency 𝜈 is always the same as for the interaction
strength𝑈. However, this sign of the driving frequency is neglected in this work, as it is just a mathematical necessity.
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Chapter 5 Periodically modulated double wells

distinct from that seen in the high-frequency limit. This phenomenon is usually interpreted as
density-dependent tunneling: For a near-resonant drive ℓℎ𝜈 ≈ 𝑈 ≫ 𝑡, a singly occupied double well
is in the high frequency limit as it experiences no interaction energy and the effective Hamiltonian
is governed by the 0th order Bessel function. In contrast, for a double well with half-filling, the
tunneling is modified by the ℓth order Bessel function leading to a different tunneling rate. The
effective interaction strength, on the other hand, changes linearly with the driving frequency and
harmonic order. This adjustability allows for precise control over the interaction strength, enabling
transitions from attractive to effectively repulsive interactions, and vice versa.

Surprisingly, there are sign changes of some of the effective tunnel coupling elements in 5.26,
that change with harmonic order. This has implications on the coupling between the three relevant
eigenstates of the double well

|𝑠⟩ = 1
√

2
( |𝐿𝑅⟩ − |𝑅𝐿⟩), |𝑑−⟩ =

1
√

2
( |𝐿𝐿⟩ − |𝑅𝑅⟩) and |𝑑+⟩ =

1
√

2
( |𝐿𝐿⟩ + |𝑅𝑅⟩). (5.27)

For odd harmonic orders, the singlet state |𝑠⟩ couples to the negative parity doublet state |𝑑−⟩. On the
other hand, for even harmonic order the singlet |𝑠⟩ couples to the even parity double state |𝑑+⟩, just
like the static double well.

The consequences of this coupling change can be obtained by studying the spectra of driven double
wells. In figure 5.6 a, we show the quasi-energy spectrum of an attractively interacting system with
a periodic drive of frequency ℎ𝜈 = 10𝑡 but negligible driving amplitude 𝐾0 = 0. Here, the singlet
state |𝑠⟩ crosses two doublet states from another Floquet-zone that has an additional energy of ℎ𝜈.
However, if we increase the driving amplitude 𝐾0 = 2.4, |𝑠⟩ couples to |𝑑−⟩. As a consequence, the
spectrum shows an avoided crossing with a gap of 4𝑡ℓeff = 4𝑡J1(𝐾0) at 𝑈 = ℎ𝜈 (cf. figure 5.6 b).
Moreover, for the second harmonic order, we see a similar avoided crossing at𝑈 = 2ℎ𝜈 but with a gap
of 4𝑡ℓeff = 4𝑡J2(𝐾0) (cf. figure 5.6 c).

These spectra resemble the one of a static double well with a few subtle but important differences.
After the avoided crossing we see the doublet states increasing or decreasing in energy almost linearly,
indicating the appearance of effective interactions with different sign as discussed. However, the gap
between |𝑑+⟩ and |𝑑−⟩ is larger (smaller) for effective attractive (repulsive) interactions of first (second)
harmonic order. Moreover, the gap between |𝑠⟩ and zero quasi energy is different for strong attractive
and repulsive interactions. The reason for both phenomena are higher order Hubbard parameters 𝑉ct,
𝑉nn and 𝑉de of significant amplitude that arise in the higher orders of the high frequency expansion and
were included in this calculation. We will discuss their impact in more detail in Chapter section 6.3.

The kick operator in the rotated frame for harmonic order ℓ in the lowest order of the inverse
frequency expansion cannot be written in a compact form anymore [112]. Intuitively, the two rotations
with different frequencies 𝑅1,2 cause a frequency beating between 𝜈 and ℓ𝜈 that shows in the kick
operator. In addition, the Fourier components of this kick operator 𝐾1

rot have amplitudes that scale with
Bessel functions of orders that depend on the harmonic order ℓ. As an example we are considering the
kick operator in the rotated frame for the lowest harmonic order ℓ = 1. In the lowest order6 of the

6 This considers Bessel functions up to the first order.
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Figure 5.6: Quasi-energy spectra of near-resonantly driven double wells: For a periodic drive with driving
frequency ℎ𝜈 = 10𝑡 the quasi-energy spectrum changes with the interaction strength 𝑈. (a) For a negligible
driving amplitude 𝐾0 ≈ 0 and attractive interactions the singlet state |𝑠⟩ is crossed by two doublet states
|𝑑−⟩ and |𝑑+⟩ of another Floquet zone with additional energy ℎ𝜈. (b) Introducing a finite driving amplitude
𝐾0 = 2.4 couples |𝑠⟩ and |𝑑−⟩ of the different Floquet zones and leads to an avoided crossing. The gap of
size 4𝑡J1 (𝐾0) opens at𝑈 = ℎ𝜈. The resulting spectrum resembles the one of an interacting double well with
changed parameters𝑈eff and 𝑡eff . (c) For the second harmonic order ℓ = 2 the singlet state |𝑠⟩ couples to |𝑑+⟩
resulting in another avoided crossing around𝑈 = 2ℎ𝜈.

inverse frequency expansion, this kick operator is twofold 𝐾1
rot(𝜏) = 𝜅1(𝜏) + 𝜅2(𝜏) [58] with

𝜅1(𝜏) = 𝑖
𝑡

2ℎ𝜈
J1(𝐾0)

©«
0 𝑒

𝑖4𝜋𝜈𝜏 −𝑒𝑖4𝜋𝜈𝜏 0
−𝑒−𝑖4𝜋𝜈𝜏 0 0 𝑒

−𝑖4𝜋𝜈𝜏

𝑒
−𝑖4𝜋𝜈𝜏 0 0 −𝑒−𝑖4𝜋𝜈𝜏

0 −𝑒𝑖4𝜋𝜈𝜏 𝑒
𝑖4𝜋𝜈𝜏 0

ª®®®®¬
(5.28)

and

𝜅2(𝜏) = 𝑖
𝑡

ℎ𝜈
J0(𝐾0)

©«
0 𝑒

𝑖2𝜋𝜈𝜏 −𝑒𝑖2𝜋𝜈𝜏 0
−𝑒−𝑖2𝜋𝜈𝜏 0 0 𝑒

−𝑖2𝜋𝜈𝜏

𝑒
−𝑖2𝜋𝜈𝜏 0 0 −𝑒−𝑖2𝜋𝜈𝜏

0 −𝑒𝑖2𝜋𝜈𝜏 𝑒
𝑖2𝜋𝜈𝜏 0

ª®®®®¬
. (5.29)

Both contributions scale with order 1/𝜈 and therefore the relative contribution to the micromotion
depends mostly on the driving amplitude 𝐾0.

This formalism is used to describe the effective behavior of resonantly driven ℓℎ𝜈 = 𝑈 half-
filled double wells with attractive interactions in the next section. Moreover, it is used in the
near-resonant regime ℓℎ𝜈 ≈ 𝑈 to describe a Floquet driven crossover from density-induced tunneling
to pair-tunneling, which is the topic of Chapter 6.

5.3.2 Interacting fermions in resonantly-driven double wells

We study attractively interacting fermions in resonantly-driven double wells using a degenerate mixture
of the lowest two hyperfine states. The experimental procedure is the same as for the spin-polarized
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Figure 5.7: Sketch of the spin cleaning procedure: Between the experiment and the adiabatic band-mapping
procedure the unwanted hyperfine states are cleaned via the imaging transition. First, a singles-doubles RF
pulse transfers atoms in the |−7/2⟩ to the |−5/2⟩ hyperfine state if they are on doubly occupied sites. Then,
the reference state |−9/2⟩ and the residual atoms in the |−7/2⟩ state are cleaned consecutively. The remaining
atoms are only in one hyperfine state and are then imaged via the adiabatic band-mapping technique.

experiments described in section 5.2.2 with an adjusted detection method: The adiabatic band-mapping
technique introduced in section 3.3.4 ends with a time-of-flight expansion. In short, the atoms expand
freely with different momenta according to their quasimomenta in the lattice. This procedure is not
directly applicable to interacting particles as the two spin species might interact during the expansion
and the interactions might alter the mapping from quasimomentum to free-space momentum [119].
A typical approach to perform TOF-type measurements of interacting particles is a Stern-Gerlach
procedure [22, 150], that separates the different hyperfine states during the expansion.

However, we have chosen a different approach to this problem using a spin cleaning procedure,
as sketched in figure 5.7. After the experiment, we populate the lowest two hyperfine states of the
𝐹 = 9/2 manifold |−9/2⟩ and |−7/2⟩ in the frozen lattice configuration Δ ≫ 𝑡. First, we perform
a selective RF-transfer from the |−7/2⟩ to the |−5/2⟩ hyperfine state, for doubly doubly occupied
sites (see section 3.3.1 for details). Then, we clean the |−9/2⟩ hyperfine state via the closed imaging
transition (see section 3.3.2 for details). This cleaning is repeated for the atoms in the initial |−7/2⟩
state at singly occupied lattice sites after an additional RF swap. After this cleaning procedure, only the
|−5/2⟩ hyperfine state is populated and can be used for the usual adiabatic band-mapping procedure.
This combination of bandmapping and selection of doubly-occupied sites allows us to measure in
the |𝐿𝐿⟩ and |𝑅𝑅⟩ basis of the double well at half-filling. In this basis we determine the population
contrast for half-filled double wells C𝐷 according to equation 5.23.

Unfortunately, the spin cleaning procedure affects the atoms in the |−5/2⟩ hyperfine state differently
depending on their position in the double well |𝐿𝐿⟩ or |𝑅𝑅⟩. After the spin cleaning procedure we
detect atoms on the upper well |𝑅𝑅⟩ with a detection efficiency of (0.44 ± 0.08) normalized to the
detection on the lower well |𝐿𝐿⟩. The atoms on the upper well are less confined than in the lower well
leading to larger tunneling rates. This might increase the possibility of losses during the cleaning
procedure and cause the lower detection efficiency.

We probe the resonantly-driven double well for an attractive interaction strength of 𝑈/𝑡 ≈ −18.
For this purpose, we choose a lattice configuration 𝑉𝑠 = 12 Erec, 𝑉𝑙 = 15 Erec which realizes the
dominant tunneling frequency of 𝑡in/ℎ ≈ 480 Hz and a suppressed out-of cell tunneling frequency of
𝑡out/ℎ ≈ 65 Hz. Without any driving amplitude, there is no clear sign of oscillations in the population
contrast (cf. figure 5.8 a).
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Figure 5.8: Dynamic signals of resonantly driven double wells at half filling: For an attractively interacting
double well 𝑈 ∼ 18𝑡 ∼ ℎ · 8 kHz, the population contrast C𝐷 is shown for a resonant drive 𝑈 = ℓℎ𝜈 of first
harmonic order with various driving amplitudes 𝐾0 = 0, 2.4 (a, b). The fitted population contrast is shown as
a red solid line with the shaded region indicating the 1𝜎 confidence interaval. The corresponding periodic
modulation of the AOM frequency 𝜈AOM is plotted below (c and d). The observed effective tunneling rates
for various driving frequencies 𝜈 = 8, 4.325 and 2.775 kHz (blue, orange, green) as a function of the driving
amplitude are compared to Bessel functions of various harmonic orders (e). The first harmonic order is shown
in blue, the second in orange and the third in green.

This behavior stems from the fact that our time evolution in the strongly attractive double well
is described by the superexchange process with rate 𝐽 = 2𝑡2

𝑈
. This is a second-order process of two

particles tunneling sequentially via a virtual state before recombining again emulating an effective
pair tunneling [32, 33]. Nonetheless, it is the dominant process compared to the much faster single
particle tunneling 𝑡 as this process would come at a cost of the interaction𝑈 and is thus suppressed.
This allows us to treat the interacting double well in the strongly attractive regime as an effective
two-level system via the Schrieffer-Wolff [151] transformation of the half-filled double well. In the
{|𝐿𝐿⟩ , |𝑅𝑅⟩} basis the two level system Hamiltonian reads:

�̂� =

(
2Δ0 −𝐽
−𝐽 −2Δ0

)
. (5.30)

Note that compared to the singly occupied double well the tilt has an additional factor of two due to
the higher particle number and the tunneling is replaced by the superexchange. Preparing the localized
state |𝐿𝐿⟩ induces Rabi oscillations within the double well with amplitude

𝐴 =
1
2

1
1 + (2Δ0)

2/𝐽2 . (5.31)

The superexchange rate for our lattice parameters is 𝐽 ∼ 50 Hz and thus roughly 10 times lower than
the tunneling rate. This makes the amplitude of the Rabi oscillations ∼ 400 times more sensitive to
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tilts compared to the quarter-filled double well. In combination with our position dependent tilts,
due to the Gaussian nature of our lattice beams (compare section 6.1) and shot-to-shot fluctuations
(compare section 4.1.2) this explains negligible oscillations in the population contrast.

Introducing a resonant periodic drive ℓℎ𝜈 = 𝑈 changes this behavior drastically: For a driving
frequency 𝜈 = 8 kHz and amplitude 𝐾0 = 2.4 the population contrast oscillates with a significant
amplitude and periodicity of ∼ 2 ms (cf. figure 5.8 b, d). This observed behavior agrees with the
expectation from the effective Hamiltonian of equation 5.26: The interaction energy is effectively
balanced by the resonant driving quantum 𝑈eff ≈ 0. Moreover, the effective tunneling is 𝑡eff =

𝑡J1(𝐾0) ≈ 0.5𝑡 which results in roughly twice the periodicity compared to the non-interacting
dynamics (cf. figure 5.4 a). Thus, we have realized density-assisted tunneling by applying a resonant
periodic modulation with driving amplitude 𝐾0 = 2.4. The emphasis on assisted stems from the
suppressed single particle tunneling in quarter-filled double wells, via the chosen driving amplitude 𝐾0.
This regime will be explored further in the next chapter 6, with the addition of effective interactions
𝑈eff ≠ 0 by detuning the driving frequency from resonance.

Moreover, we have verified the rescaling of the effective tunneling amplitude with the Bessel
function Jℓ (𝐾0) up to the third harmonic order ℓ = 1, 2, 3 (cf.figure 5.8) The effective tunneling is
determined in the same manner as for the spin polarized scenario and agrees excellently with the
theoretical expectation. However, for higher harmonics the higher order frequency corrections play an
increasingly important role, which made realizations for ℓ > 3 not feasible for the chosen interaction
strength. In comparison with the spin-polarized realization we have observed an effective tunneling
with different scaling according to 𝑡eff = 𝑡Jℓ (𝐾0). This phenomenon is called density dependent
tunneling and has been observed in tilted optical lattices [75] as well as periodically driven realizations
[43, 76, 152].
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CHAPTER 6

Floquet-driven crossover from density-assisted
tunneling to enhanced pair tunneling

Understanding the fundamental properties of correlated quantum-many body states lies at the heart
of our research. The Fermi-Hubbard model is famously capable of the description of correlated
matter despite its simplistic nature: Particles can either tunnel between neighboring lattice sites or
two-particles can interact with each other on the same lattice site as shown in figure 6.1. Quantum
simulation [9] using ultracold atomic gases has shown great success in the study of Hubbard-model
where theoretical calculations are not feasible anymore [12, 13]. The most famous achievements
range from the study of Mott-insulators [153, 154] to superconductors [6] and quantum-magnets [14,
25, 155], to name only a few. However, the ultra-low temperatures required to study the postulated
high-𝑇𝐶 superconductivity are still elusive despite the proposal of novel cooling schemes [156–158].

Therefore, the focus of current research has shifted towards extended Hubbard models which
consider additional processes. For example, coupling two planes of two-dimensional Hubbard models
realizes the Bilayer Fermi Hubbard model which more accurately resembles the lattice structure of
real materials. Here, the competition of magnetic correlations [31] was studied as a first step towards
the theoretically predicted superconducting pairing mechanism [159].

Another approach is to study systems with higher order tunneling processes that go beyond the
single particle dynamics of Hubbard models [160–163]. One example is density-assisted tunneling,
where the tunneling depends on the occupation of the lattice site, which was recently found to be
essential for mapping a three-orbital model to a single-orbital model [30].

Moreover, the Penson-Kolb-Hubbard [47] model can induce superconducting 𝜂−pairing phases by
including explicit pair hopping [48, 49]. This crucial process is only partially included in the regular
Hubbard model as a second-order process for large interactions called superexchange (cf. figure 6.1
left column). It describes pair hopping as two sequential single-particle hopping events with a rate
𝐽 = 2𝑡2/𝑈 and is usually dominated by the single-particle tunneling.

In this chapter, we will explore how a near-resonant periodic drive can fundamentally alter the
dominant dynamics of a double well. We will show a crossover from a regime with density-
assisted tunneling (cf. figure 6.1 middle column) to enhanced pair tunneling (cf. figure 6.1 right
column). Surprisingly, this pair tunneling can be enhanced not only compared to the Floquet-reduced
single-particle tunneling but even beyond the static superexchange rate.

This chapter is organized as follows: First we will explore the dynamic signals of near-resonantly
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Figure 6.1: Schematics of static and driven double wells (DW): The static double well resembles the
fundamental building block of the Fermi Hubbard model with nearest-neighbor tunneling 𝑡 and on-site interaction
𝑈 (left column). For strong interactions, the two-particle dynamics are governed by the superexchange 𝐽 ≪ 𝑡

(lower row, left column). A periodic drive with driving amplitude 𝐾0 and driving frequency 𝜔 = 2𝜋𝜈 can
fundamentally alter these dynamics. For a quarter-filled double well, the single-particle tunneling is rescaled
as 𝑡 (0)eff (upper row, middle and right column). For a half-filled double well and a resonant drive ℓℎ𝜈 = 𝑈, the
interaction energy is balanced 𝑈eff = 0 and the tunneling is rescaled 𝑡 (ℓ )eff depending on the harmonic order ℓ
(lower row, middle column). This realizes density-assisted tunneling for a driving amplitude 𝐾0 = 2.4 and is
discussed in section 5.3.2. Detuning the driving frequency from resonance, gives rise to effective interactions
𝑈eff ≠ 0 (lower row, right column) that induce pair tunneling. The driving amplitude 𝐾0 can be chosen to
enhance the effective two particle-tunneling above the effective single particle tunneling 𝐽eff ≫ 𝑡

(0)
eff .
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driven double wells and the underlying effective Hamitlonians. We will discuss the evaluation of
our data in detail and how we compute the global observables from a inhomogeneous system. Next,
we investigate the spectra of the realized effective systems and extract the characteristic parameters.
Finally, we explore and characterize the pair tunneling in the effective systems. Here, we discuss the
pivotal role of higher order Hubbard parameters in the enhancement of the pair tunneling with respect
to the static double well.

6.1 Dynamic signals of near-resonantly driven double wells

In this section, we explore the dynamics of periodically modulated double wells with effective
interactions, by adjusting the driving frequency 𝜈 away from resonance. Initially, we will examine
the dynamic signals from the driven double wells with effective interactions. Following this, we
will outline the methodology for calculating and fitting the population contrast C𝐷 . We begin by
addressing the variation of Hubbard parameters across the atom cloud. Subsequently, we will explain
how spatially and temporarily varying superlattice phases across the cloud are incorporated. Lastly,
we present the fitting approach that accommodates these inhomogeneities and contrast these findings
with our empirical observations.

Our experimental sequence is (apart from the changed driving frequency) the same as for the
resonantly-driven interacting double well, as discussed in section 5.3.2. Additionally, we suppress
single-particle tunneling via the driving amplitude 𝐾0 = 2.4. The observed dynamic signals in the
population contrast C𝐷 for attractive interactions 𝑈/𝑡 ≈ −9 and various driving frequencies are
presented in figure 6.2. For an effectively non-interacting system with 𝜈 ≈ |𝑈 | /ℎ (see figure 6.2 a)
the oscillation dynamics exhibit a single characteristic frequency. This indicates density-assisted
tunneling, as introduced in figure 5.8. Upon introducing a small detuning of the driving frequency
from the resonance, a beating becomes apparent in the contrast measurement (see figure 6.2 b-e). This
beating becomes more pronounced with increasing detuning and is accompanied by a decrease in
oscillation amplitude. When the driving frequency is approximately 𝜈 ≈ 𝑈/(2ℎ) (cf. figure 6.2 e),
the oscillation amplitude increases again and the characteristic signature of frequency beating is
less pronounced. This indicates that another effectively non-interacting system is realized by the
second-harmonic resonance condition [43, 44].

We evaluate these dynamic signals by comparing them to the expectation from the effective
Hamiltonian of a near-resonantly driven double well, as introduced in section 5.3.1. However, the
population contrast is a global observable and therefore, we have to account for the inhomogeneous
intensity distribution of our optical lattice in our theoretical analysis. Thus, we calculate the spatially
dependent Floquet and Hubbard parameters 𝐾0(𝒙), 𝑡 (𝒙), 𝑈 (𝒙), and Δ0(𝒙). With these parameters,
we solve the different Floquet-driven double-well Hamiltonians and compute the time- and position-
dependent contrast C𝐷 (𝒙, 𝜏). Then, we perform a density-weighted average over the inhomogeneous
density distribution resulting in the global observable C𝐷 (𝜏). To account for experimental fluctuations,
this contrast is then fitted to our experimental data leaving the scattering length 𝑎 and the green lattice
potential depth at the trap center 𝑉𝑠 as fit parameters. Moreover, this fit is repeated several times
for various spatially varying superlattice phase maps, to account for phase fluctuations during the
measurements. The mean values of the fitted results are presented as solid lines in figure 6.2, with the
1𝜎 confidence interval indicated as a shaded region. The numerical data accurately replicates the
dynamic features observed in our experimental data as well as a pronounced dephasing.
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Figure 6.2: Dynamic signals of near-resonantly driven double wells at half filling: For attractive interactions
𝑈 ≈ −9𝑡 ≈ −4 kHz, the measured population contrast C𝐷 is shown as blue datapoints for a driving amplitude
𝐾0 = 2.4 and various driving frequencies 4.05, 3.9, 3.6, 2.7, 2.25 and 2.05 kHz (a to f). The fitted population
contrast is shown as an orange line with the 1𝜎 confidence interval indicated as a shaded region.

This summarized fitting procedure will be discussed in more detail in the following subsection.
The inhomogeneities are discussed in the 𝑥𝑦-plane of the three-dimensional optical lattice, neglecting
the changes along the 𝑧-direction. This is a reasonable simplification, as the atom cloud is compressed
significantly along the 𝑧-direction compared to the waist of the Gaussian beams along this axis. In the
following, we visualize the 𝑥𝑦-plane in the 𝑧-imaging camera frame with a binning of 10 × 10 lattice
sites to keep the computational effort at bay.

6.1.1 Calibration of the optical lattice setup

We start with the calibration of our optical lattice setup. First, we perform the in-situ lattice modulation
spectroscopy to calibrate the lattice depths, as discussed in section 3.2.3. In table 6.1, we show the
results of one specific setup during the Floquet experiments, as an example. The lattices are aligned
very precisely to the center of the camera frame to achieve the most symmetric lattice setup as possible.

We determine the optical density profile in the chosen lattice configuration by an average over
several in-situ images and the lattice-dependent interaction strength via the density-assisted single
particle tunneling measurement, introduced in section 4.2.2. From the calibrated lattice depths and
scattering length we can compute a grid of the relevant Hubbard parameters during one experimental
cycle, as introduced in section 2.4. The results are shown in figure 6.3 with the high-density region of
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X532 X1064 Y1064 Z532

𝜃𝑥 / ° -5.7 -5.7 – –
𝜃𝑦 / ° – – 0.1 0.4
𝑥0 / px – – 1.4 4.2
𝑦0 / px -7.3 -2.5 – –
𝑤0 / µm 124 179 159 110

Table 6.1: Lattice parameters during the Floquet experiments: The properties of the four relevant lattices
are listed for one exemplary realization: The angles 𝜃𝑥,𝑦 and the center positions 𝑥0, 𝑦0 are given with respect
to the camera frame and the waist of the Gaussian beams is given in µm.

doubly occupied sites od ≤ 0.1 max(od) indicated as a solid gray line and highlighting the relevant
area of the Hubbard parameters. Clearly, the interaction energy𝑈 (𝒙) and intra-well tunneling 𝑡in(𝒙)
vary significantly in the high-density region. Moreover, there is an additional tilt Δlatt

0 (𝒙) that stems
from the Gaussian nature of the 𝑦− and 𝑧−lattice and has a significant impact for effectively interacting
systems. Finally, the out-of-well tunneling 𝑡out(𝒙) is suppressed significantly compared to the intra-well
tunneling. Since the tunneling along the 𝑦-direction and 𝑧-direction are suppressed as well, we consider
independent double wells, with spatially varying Hubbard parameters 𝑡 (𝒙) ≡ 𝑡in(𝒙) + 𝑡corr(𝒙) and
𝑈 (𝒙). Here we have introduced the correction of the tunneling rate due to interactions, as introduced
in section 2.4.

6.1.2 Calibration of the superlattice phase fluctuations

The phase of the superlattice along the x-direction varies across the cloud. We calibrate these phase
variations using the in-situ symmetry point measurement, as detailed in section 4.1.2. This gives
the spatially varying superlattice phase relative to the set point of the experiment Δ𝜙(𝒙) in MHz
(cf. figure 6.4 a). The given example shows a well-aligned superlattice resulting in a small mean
deviation from the set symmetry point of (−0.15 ± 0.30) MHz. This relative superlattice phase is used
to calculate the phase tilt Δ𝜙0 (𝒙) (cf. figure 6.4 b), taking into account that the lattice dependent tilt
Δ

latt
0 is lattice depth dependent and thus different for the calibration method and the actual experiment.

Finally, the overall tilt of the double wells Δ0 = Δ
𝜙

0 + Δ
latt
0 is obtained by summation of the phase tilt

Δ
𝜙

0 with the lattice tilt Δlatt
0

Unfortunately, the superlattice phase is despite the environmental feed forward [110] not exactly
stable over time (compare section 4.1.2). To account for these phase fluctuations, we calibrate the
phase tilt once per hour during the experimental cycle. This phase tilt changes significantly over
time, as shown in figure 6.4 c which is 10 h after the first measurement. To account for these phase
fluctuations, the different phase tilt grids are treated independently in the following fitting procedure.

Before we perform the actual fitting procedure, we ensure the validity of the phase-tilt measurements
by statistical means: First, we characterize the phase maps via the mean phase tilt and their phase
gradient along the 𝑥- and 𝑦-direction which gives us a quantitative measure for their inhomogeneity.
Then, we drop statistical outliers with respect to these characteristics. By this procedure we ensure,
that only phase-tilt maps with reasonable results are considered.
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Figure 6.3: Hubbard parameters during Floquet experiments: The Hubbard parameters vary over the atom
cloud due to the Gaussian nature of the lattice beams. These maps show these inhomogeneities along the 𝑥−
and 𝑦−direction binned over 10 × 10 lattice sites. The optical density for doubly-occupied sites indicates the
trap center and dictates the area of interest of the optical lattices (a). The black line shows the boundary of the
high density region 𝑜𝑑 ≤ 0.1 max(𝑜𝑑). The Hubbard parameters (b to f) are calculated according to section
2.4 for the calibrated lattice parameters (compare table 6.1). They are calculated for 𝑉𝑠 = 12 Erec, 𝑉𝑙 = 15 Erec,
𝑠𝑦 = 55 Erec, 𝑠𝑧 = 110 Erec and the scattering length 𝑎 = −131 𝑎0, which corresponds to𝑈/𝑡 ∼ 9.
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Figure 6.4: Position-dependent superlattice phase during Floquet experiments: The relative superlattice
phase compared to the symmetry point Δ𝜙 is determined via the in-situ symmetry point measurements (a). The
mean value of this relative superlattice phase is (−0.15 ± 0.30) MHz and indicates a well-adjusted superlattice
before the experiment. The spatially varying phase tilt Δ𝜙0 is calculated from the relative superlattice phase (b)
but varies significantly over the course of an experimental cycle of 10 h (c).
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Figure 6.5: Hubbard parameters considered in the fitting procedure: The optical density for doubly occupied
sites is used as a relative weight during averaging over the double wells and the boundary of high-density region
od ≤ 0.1 max(od) is indicated as a gray line. The tunneling 𝑡 = 𝑡in + 𝑡corr (a) is determined from the intra-well
tunneling 𝑡in and the correction for interacting Wannier functions 𝑡corr. (b) The normalized interaction 𝑈/𝑡
varies significantly from −9 to −7 within the high density region. The tilt Δ0 = Δ

𝜙

0 + Δ
latt
0 is shown for one

specific realization (c) and varies over time. The normalized driving amplitude 𝐾0 also changes with the optical
lattice depths (d), however, the driving frequency 𝜈 is constant.

6.1.3 Fitting the population contrast for an inhomogeneous array of double wells

In the fitting procedure, we perform a density weighted average of the spatially varying population
contrast C𝐷 (𝒙) to obtain the global observable C𝐷 . For this purpose, we consider an array of
independent near-resonantly driven double wells with the parameters𝑈 (𝒙), 𝑡 (𝒙), Δ0(𝒙), 𝐾0(𝒙) and 𝜈
(cf. figure 6.5). We solve the Hamiltonians (compare section 5.3.1) and obtain four eigenvalues 𝜖𝑖 and
eigenvectors |𝜓𝑖⟩ per double well. This gives the time evolution for one double well initially prepared
in |𝐿𝐿⟩

|Ψ(𝜏)⟩ =
∑︁
𝑖

𝛼𝑖𝑒
𝑖 𝜖
ℏ
𝜏 |𝜓𝑖⟩ (6.1)

with 𝛼𝑖 = ⟨𝜓𝑖 |𝐿𝐿⟩. From this we compute the population contrast for each individual double well

C𝐷 (𝜏) = ⟨Ψ(𝜏) |𝐿𝐿⟩ − ⟨Ψ(𝜏) |𝑅𝑅⟩⟨Ψ(𝜏) |𝐿𝐿⟩ + ⟨Ψ(𝜏) |𝑅𝑅⟩ , (6.2)

and thus the spatially dependent population contrast C𝐷 (𝜏, 𝒙).1 Finally, the calibrated optical density
is used for a density weighted average of the population contrast resulting in C𝐷 (𝜏).

However, to account for experimental fluctuations, we allow for a variation of the green lattice depth
𝑉𝑠 as well as the scattering length 𝑎 and consequential fitting of the population contrast to our data.
Moreover, we perform these fits for all tilt maps Δ0(𝒙) of one experimental cycle independently. We
average over the individual fits to obtain the final result and its uncertainty shown as a solid line and a
shaded region in figure 6.2. The fitted dynamic signals clearly reproduce the characteristics of our
data. We compare our fitted lattice depths and scattering lengths for various driving frequencies with

1 For the computation of the population contrast we consider the smaller detection efficiency on the upper well of
(0.44 ± 0.08) normalized to the detection efficiency on the lower well |𝐿𝐿⟩, as discussed in section 5.3.2.
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Figure 6.6: Fitted lattice depth and scattering length: For the attractive interaction 𝑈 ≈ −9𝑡 ≈ 4 kHz the
fitted lattice depths 𝑉𝑠 of the green lattice (a) agree well with the independent calibration (12.0 ± 0.1) Erec. The
fitted scattering lengths 𝑎 agree excellently with the independently calibrated value (−131.4 ± 3.0) 𝑎0.

the expected values from independent calibrations in figure 6.6. Evidently, our obtained result agree
very well with our expectations.

6.2 Spectra of near-resonantly driven double wells

We are interested in the effective processes that cause the observed dynamics in the driven systems.
For this purpose, we extract the quasi-energy spectra of the fitted effective Hamiltonian at the trap
center for half filling

�̂�eff =

©«
𝑈eff + 2Δ0 (−1)ℓ+1 · 𝑡eff (−1)ℓ · 𝑡eff 𝑉

eff
ct

(−1)ℓ+1 · 𝑡eff 𝑉
eff
nn −𝑉eff

de −𝑡eff
(−1)ℓ · 𝑡eff −𝑉eff

de 𝑉
eff
nn 𝑡eff

𝑉
eff
ct −𝑡eff 𝑡eff 𝑈eff − 2Δ0

ª®®®®¬
(6.3)

with the effective tunneling 𝑡eff , the effective interaction𝑈eff , the tilt Δ0 and the effective higher-order
Hubbard parameters: the explicit pair hopping 𝑉eff

ct , the nearest-neighbor interaction 𝑉eff
nn and the direct

spin exchange 𝑉eff
de . Note, that these three higher-order Hubbard parameters are negligible in the static

case 𝑉nn = 𝑉de = 𝑉ct = 8 × 10−4 t and only arise in the higher orders of the high-frequency expansion
of the effective Hamiltonian (compare equation 5.7) and will be discussed in detail in section 6.3.

The effective Hamiltonian provides us with three relevant quasienergies and a fourth value,
corresponding to the spin-triplet state that we omit from display due to a lack of coupling. We show
this spectrum for attractive interactions𝑈 ≈ −9𝑡 ≈ −4 kHz and the first two harmonic orders ℓ = 1, 2
in figure 6.7. As discussed in section 5.1.1, these quasienergies are only defined within one Floquet
zone. Therefore, we normalize the quasienergies with the driving frequency and restrict the display to
−0.5 ≤ 𝜖𝑖/ℎ𝜈 ≤ 0.5. We compare our measurements to independent Monte-Carlo simulations with
the 1𝜎 confidence interval shown as shaded regions. In these simulations, we have considered the
uncertainty of our lattice depths to be 0.5 % and of the scattering length to be 3 𝑎0, according to our
calibrations.

We observe two distinct avoided-crossing-like behaviors around ℎ𝜈/𝑈 ≈ 1, 0.55 corresponding
to the first (second) harmonic resonance condition. Here, the intermediate quasi-energy is roughly
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Figure 6.7: Quasi-energy spectrum for a near-resonantly driven double well at half filling: In an attractively
interacting system𝑈 ≈ −9𝑡 ≈ −4 kHz the energy eigenvalues 𝜖𝑖/ℎ𝜈 of the fitted Hamiltonians at the trap center
are plotted for various driving frequencies ℎ𝜈/𝑈. The driving amplitude is chosen to suppress tunneling in
half-filled double wells 𝐾0 = 2.4. The first (second) harmonic resonance is indicated by circles (diamonds) and
the shades of green differentiate the various eigenenergies. The shaded regions indicate the 1𝜎 confidence
interval of independent Monte-Carlo simulations of the system.

equidistant to the lowest and highest quasi-energy, resembling a non-interacting double well. From
the effective interaction strength up to the lowest order𝑈eff = 𝑈 − ℓℎ𝜈 we would expect the second
harmonic resonance to be at ℎ𝜈/𝑈 ≈ 0.5. However, the observed deviation stems from the higher
order corrections to the effective Hamiltonian, that are more relevant for the lower frequencies of the
second harmonic order. Nonetheless, the linear scaling of this effective interaction is visible in the
spectrum: Increasing the driving frequency from resonance, pushes the upper two quasi-energies up
as their contribution of double occupancies increases their energies. On the other hand, decreasing the
driving frequency realizes effective attractive interaction and thus pushes the lower two quasi-energies
down. Moreover, the different slope of the intermediate state for the two harmonic resonances shows
the expected behavior of the effective interaction with the harmonic order.

Note, that the periodicity of the quasienergies is visible in the theoretical spectrum of the second
harmonic order. Here the highest two eigenenergies reach the upper edge of the Floquet zone
around ≈ 0.65 ℎ𝜈/𝑈 and seem to re-emerge at the lower edge of the Floquet zone. Moreover, in
this intermediate regime between the two resonances, the near-resonant theory breaks down, as
𝑈eff ≪ ℎ𝜈 is no longer valid. However, this regime might be of interest, as the repulsive branch
of the second harmonic resonance approaches the attractive branch of the first harmonic resonance
and thus, intuitively, the meaning of the effective interaction becomes unclear. Unfortunately, these
regimes of large effective interactions –or in well-defined terms: large frequency detunings– are not
experimentally accessible for us. As shown in figure 5.8 a (and the corresponding discussion), our
global observable is not insightful in these regimes of large (effective) interactions, as the atoms
localize in the double wells due to the residual tilt. Nonetheless, we see a great agreement of our

97



Chapter 6 Floquet-driven crossover from density-assisted tunneling to enhanced pair tunneling

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
 

0.1

0.2

0.3

0.4

0.5

m
in

/2
t

2t(1)
eff / 2t

2t(2)
eff / 2t

h /U

Figure 6.8: Minimal quasi-energy difference for a near-resonantly driven double well: In an attractively
interacting system𝑈 ≈ −9𝑡 ≈ −4 kHz the minimal quasi energy difference of the spectrum Δ𝜖min/2𝑡 is plotted
for various driving frequencies ℎ𝜈/𝑈. The driving amplitude is chosen to suppress tunneling in half-filled
double wells 𝐾0 = 2.4. The first (second) harmonic resonance is indicated by circles (diamonds) and the shaded
region denotes the 1𝜎 confidence interval of an independent Monte-Carlo simulation. The dashed (dotted)
line corresponds to the effective single particle tunneling for the effectively non-interacting systems of the first
(second) harmonic resonance.

experimental data and the theoretical simulations within the observed regions.

We proceed with our analysis by determining the minimal quasienergy difference, Δ𝜖min/2𝑡, from
our spectra (refer to figure 6.8). We identify two distinct peaks at the same driving frequencies where
the spectra exhibit avoided crossings. In this context, the minimal energies are associated with the
density-assisted tunneling rates 𝑡ℓeff , which vary according to the harmonic order ℓ, as previously
introduced in figure 5.8 e. For large effective interactions the breaking of pairs is suppressed and
the minimal quasi-energy difference corresponds to the effective pair tunneling rate |𝐽eff |. Clearly
this pair-tunneling rate is smaller than the density-assisted tunneling rate of the same harmonic
order. However, it is dominant compared to the single particle tunneling which we suppress via the
driving amplitude 𝐾0 = 2.4. This already shows the crossover from a dominant density-assisted to
pair-tunneling regime qualitatively. However, we will quantify this crossover more in detail in the
next section. Note that we have also extracted the spectra of near-resonantly driven double wells for
even larger attractive interactions 𝑈eff ≈ −18𝑡 and small attractive interactions 𝑈eff ≈ −6𝑡, that are
presented in the appendix in figure C.1 and figure C.2. This shows, that our findings are reproducible
for other interaction strengths as well.
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Figure 6.9: Effective Hubbard parameters of near-resonantly driven double wells: In an attractively
interacting system𝑈 ≈ −9𝑡 ≈ −4 kHz the effective interaction strength𝑈eff changes linearly with the driving
frequency ℎ𝜈 (a). The first (second) harmonic order is indicated by circles (diamonds) and the shaded region
denotes the 1𝜎 confidence interval of an independent Monte-Carlo simulation. The driving amplitude is chosen
to suppress tunneling in quarter-filled double wells 𝐾0 = 2.4. (b) The effective tunneling 𝑡ℓeff depends on the
harmonic order ℓ and is almost independent of the driving frequency.

6.3 Floquet-driven crossover from density-assisted tunneling to
enhanced pair tunneling

In this section we explore a Floquet-driven crossover from density-assisted tunneling to enhanced
pair tunneling quantitatively using the effective Hubbard parameters. For this purpose, we consider
the effective Hamiltonians at the trap center and extract the effective Hubbard parameters given in
equation 6.3. With these effective parameters, we characterize the crossover using two properties of
the two-particle dynamics: The pair-tunneling fidelity, which measures the relative amplitude of the
pair-tunneling and the minimal energy difference of the spectrum, that corresponds to the characteristic
frequency of the dynamics.

We start with the discussion of the effective Hubbard parameters. The dominant parameters are the
effective interaction strength𝑈eff and the effective tunneling 𝑡 (ℓ )eff , which we plot against the driving
frequency 𝜈 in figure 6.9. This reproduces the qualitative analysis of the former section in a more
quantitative fashion: The effective interaction is exactly balanced at the resonance conditions for the
different harmonic orders and changes linearly with different slopes depending on the harmonic order,
as shown in subfigure a. On the other hand, the effective tunneling is different for the harmonic order
but otherwise not frequency dependent. With these two effective parameters per harmonic order we
achieve comparability of the driven systems between each other and with respect to the static scenario,
which we will apply in the following.

We have discussed the realized effective systems in the two regimes of balanced interactions and
very strong interactions in the former section. Here, we have identified the density-assisted tunneling
regime for𝑈eff = 0, as well as the pair-tunneling regime |𝑈eff | ≫ 𝑡

(ℓ )
eff . To quantify this crossover and

study also the intermediate regimes we introduce the pair tunneling fidelity

Fpair = 1 − 4 · 𝐴split (6.4)

with the time averaged population of split pairs

𝐴split = |⟨𝐿𝑅 |Ψ(𝜏)⟩|
2 + |⟨𝑅𝐿 |Ψ(𝜏)⟩|2. (6.5)
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Figure 6.10: Pair-tunneling fidelity of near-resonantly driven double wells: The pair-tunneling fidelity
Fpair = 1−4𝐴split quantifies the pair splitting during the tunneling dynamics. (a) Fpair is determined as a function
of the normalized effective interaction strength𝑈eff/𝑡

(ℓ )
eff for various interaction strengths𝑈/𝑡 ≈ −9 (dark green),

𝑈/𝑡 ≈ −18 (green),𝑈/𝑡 ≈ −6 (light green) and harmonic orders ℓ = 1 (circles) and ℓ = 2 (diamonds). (b to d)
Tunneling dynamics in systems with various interaction strengths𝑈/𝑡 = 0, 3, 6. The pair tunnels from the left
lattice site (brown) to the right lattice site (purple) via the split state (green). The time averaged population of
the split pairs 𝐴split changes with the interaction strength.

This fidelity measures the participation of the split pairs in the two-particle dynamics, as we show
theoretically in figure 6.10 b to d. For an effectively non-interacting system (subfigure b), the atoms
tunnel from the |𝐿𝐿⟩ state (pink trace) to the |𝑅𝑅⟩ state via the split states |𝐿𝑅⟩ and |𝑅𝐿⟩ (green).
Here, the time averaged population of the split pairs is 𝐴split = 0.25 leading to a pair-tunneling fidelity
of Fpair = 0. Increasing the effective interactions (subfigure c and d) suppresses the population of
split pairs, thereby increasing the pair-tunneling fidelity which approaches unity for infinitely large
effective interactions.

We present our measurements of the pair-tunneling fidelity as a function of the normalized effective
interaction strength in figure 6.10 a. The data is shown for various interaction strengths and harmonic
orders and compared to MC simulations, which are represented by the shaded region. Across all
different realizations, the fidelity increases with the absolute value of the effective interaction strength,
which suppresses the population of split pairs, matching our theoretical expectations. In effectively
non-interacting systems within the density-assisted regime, we observe a vanishing fidelity. Increasing
the effective interactions raises the pair-tunneling fidelity, until for |𝑈 | /𝑡 > 5 the pair tunneling fidelity
exceeds 60 % significantly, rendering pair tunneling the dominant process in the system. With this
pair-tunneling fidelity we have characterized the relative amplitude of the pair tunneling within the
two-particle dynamics of the half-filled double well.

Next, we are interested in the frequency of the two-particle dynamics in the effective system, and
how they compare to their static counterpart. For this purpose, we plot the minimal energy difference
of the spectrum Δ𝜖min/2𝑡

(ℓ )
eff as a function of the effective interaction strength 𝑈eff/𝑡

(ℓ )
eff in figure
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6.11 a. In the static double well, the minimal energy difference (gray line) corresponds to twice the
single-particle tunneling for non-interacting systems and approaches the superexchange 𝐽 for large
interactions. We reproduce this behavior for near-resonantly driven systems of first harmonic order
(ℓ = 1) and different absolute interaction strengths𝑈/𝑡 = −9 (dark blue) and𝑈/𝑡 = −18 (light blue).
Here, we have realized effective systems with two-particle dynamics that are comparable to the static
double well over a wide range of interactions, but with completely suppressed single-particle tunneling
(dotted line), via the driving amplitude of 𝐾0 = 2.4. Especially for the large attractive effective
interaction𝑈eff/𝑡

(1)
eff ∼ −5, where we have established pair tunneling to be the dominant process via

the pair-tunneling fidelity, we have realized a system with dominant pair tunneling 𝐽eff > 𝑡
(0)
eff .

Remarkably, the pair-tunneling rate in the driven systems can be enhanced not only compared to
the localized quarter-filled double wells but also compared to its static counterpart. In figure 6.10 b,
we show the minimal energy difference for a near-resonantly driven system of second harmonic
order (ℓ = 2) and absolute interaction strength 𝑈/𝑡 = −9 (dark blue). Interestingly, the repulsive
branch exceeds its static comparison significantly for large effective interactions. In particular, for
𝑈eff/𝑡

(2)
eff = 6 this enhancement exceeds a factor of two. This effect is also directly visible when

comparing the dynamic signals for the driven and static double well (cf. figure 6.10 c and d). Notably,
the time averaged split population 𝐴split is very similar for both scenarios, as it is only a measure of the
(effective) interaction strength𝑈eff/𝑡

(ℓ )
eff , which is the same for both cases. Evidently, we have realized

effective systems with a pair-tunneling rate that is enhanced not only compared to the suppressed
single-particle tunneling but also compared to the superexchange of the static counterpart.

Driving induced enhancement of the correlated tunneling

We have observed, that for large effective interactions the minimal quasienergy difference, which
corresponds to the pair-tunneling rate, can be enhanced above the superexchange rate of the static
counterpart. To understand this enhancement, we compare the pair-tunneling rate of the driven systems
with the static counterpart. We define the pair-tunneling rate as the quasienergy difference Δ𝜖pair

between the two states that consist dominantly of pairs, for large effective interactions.2

In the static double well, the states with dominant pair occupancies are the |𝑑−⟩ and the ground
state (excited state) for attractive (repulsive) interactions, as shown in figure 4.9, and their energy
difference is

Δ𝐸pair = 𝐸g,e − 𝐸𝑑− = −𝑈/2 ±
√︃

16𝑡2 +𝑈2/4. (6.6)

For large interactions |𝑈 | ≫ 𝑡, this energy difference approaches the superexchange Δ𝐸pair ∼ 4𝑡2
𝑈

,
which is the pair-tunneling rate of the static system.

In the driven double well, the states with dominant pair occupancies change with the harmonic
order and with the sign of the interaction, as we have shown in figure 5.6 b and c. Note that the reason
for this behavior is that the sign of the effective tunnel coupling changes with the harmonic order and
therefore, the pair states that couple to the singlet state. The relevant quasienergy gap is given by

Δ𝜖pair =

{
𝜖𝑔,𝑒 − 𝜖𝑑+ ℓ odd
𝜖𝑔,𝑒 − 𝜖𝑑− ℓ even

. (6.7)

2 This energy difference between states that consist dominantly of pairs is the same as the minimal energy difference, when
neglecting the triplet state.
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Figure 6.11: Enhanced pair tunneling in near-resonantly driven double wells: (a) For attractive interactions
𝑈eff ∼ −9𝑡 ∼ −4 kHz (dark blue), and 𝑈eff ∼ −18𝑡 ∼ −8 kHz (light blue) and driving amplitude 𝐾0 = 2.4,
the minimal quasi-energy difference Δ𝜖min/2𝑡

ℓ
eff changes with the effective interaction strength𝑈eff/𝑡

(ℓ )
eff for a

near-resonantly driven double well of first harmonic order ℓ = 1. The shaded region denotes the 1𝜎 confidence
interval of an independent Monte-Carlo simulation for𝑈eff ∼ −18𝑡, while for𝑈eff ∼ −9𝑡 the MC simulation is
not shown for better visibility. The behavior of the static double well (gray line) and the driven quarter-filled
double well (dotted line) is shown for comparison. The second harmonic order ℓ = 2 for𝑈eff ∼ −9𝑡 is shown in
subfigure (b). (c and d) Comparison of tunneling dynamics in systems with and without periodic modulation.
(c) In the driven double well with harmonic order ℓ = 2 and 𝑈/𝑡 (2)eff = 6, the pair tunnels from the left lattice
site (brown) to the right lattice site (purple) with only a minimal population of the split state (green). In
comparison to the corresponding static double well (d), the dynamic timescale of the driven double well is
enhanced significantly, whereas the split amplitude 𝐴split remains almost the same.
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6.3 Floquet-driven crossover from density-assisted tunneling to enhanced pair tunneling

Unlike in the static scenario, in the driven double well the higher-order Hubbard parameters can have
significant amplitude, as we will show. Therefore, the quasienergy gap of the driven system also
depends on the higher-order Hubbard parameters and is given as

Δ𝜖pair =
−𝑈eff + (−1)ℓ 3𝑉eff

ct + 2𝑉eff
nn

2

±

√︃
16 𝑡2eff +𝑈

2
eff + (−1)ℓ 2𝑈eff 𝑡

eff
pair − 4𝑈eff 𝑉

eff
nn + ((−1)ℓ+1𝑉eff

ct + 2𝑉eff
nn )

2

2
,

(6.8)

where we have used 𝑉eff
de = 𝑉

eff
nn [77] and neglected the harmonic order ℓ superscript of the effective

tunneling for better readability. Clearly this expression reproduces the result of the static double
well of equation 6.7, when neglecting the higher order parameters. For large effective interactions
|𝑈eff | ≫ 𝑡eff , 𝑉

eff
ct , 𝑉

eff
nn , this quasienergy difference approaches the effective-pair tunneling rate

𝐽eff ∼
4𝑡2eff
𝑈eff
+ (−1)ℓ 2𝑉eff

ct + O(𝑈
−2
eff ). (6.9)

This effective pair-tunneling rate resembles the static superexchange rate with a harmonic order
dependent correction by the effective correlated tunneling rate 𝑉eff

ct . Whether the correlated tunneling
rate leads to an enhancement –or rather a suppression– of 𝐽eff , depends on the sign of the effective
interaction strength, as well as the harmonic order.

The amplitude of the correlated tunneling determines, whether the correction to the pair tunneling is
relevant. We show the amplitudes of the effective correlated tunneling for different interaction strengths
and harmonic orders in figure 6.11 a. For the first harmonic order (ℓ = 1) and both interaction strengths
𝑈/𝑡 ∼ −9 (dark blue circles), and𝑈/𝑡 ∼ −18 (light blue circles) the effective correlated-tunneling rate
is very small compared to the effective tunneling 𝑡 (ℓ )eff . On the other hand, for the second harmonic order
and𝑈/𝑡 ∼ −9 (dark blue diamonds), the correlated tunneling rate is of significance 𝑉eff

ct > 0.2 𝑡 (2)eff for
all effective interaction strengths. For attractive interactions, this suppresses 𝐽eff as the signs of the
two summands differ. On the other hand, this enhances the pair-tunneling amplitude for repulsive
interactions resulting in the asymmetric behavior observed in figure 6.11 b.

There remain two open questions about this driving induced enhancement of the correlated tunneling:
Why is the effective correlated tunneling in the driven system sometimes large (dark blue diamonds in
figure 6.10 a) and sometimes negligible (circles of both shades)? And why does the harmonic order
change the sign of the contribution of the effective correlated tunneling to the effective pair tunneling
in equation 6.9? In the following, we give answers to both questions, starting with the latter.

In short, the harmonic order dependent sign can be understood as the parity of our driving protocol
changing the tunneling parity and thus interchanging the two basis states of the double well |𝑑+⟩
and |𝑑−⟩, if the harmonic order is uneven as shown in figure 5.6. Now, the pair tunneling operator
𝑡pair = 𝑐

†
𝑅↑𝑐
†
𝑅↓𝑐𝐿↑𝑐𝐿↓ affects the two doublet states differently, as

⟨𝑑+ |𝑡pair |𝑑+⟩ = 𝑉ct and ⟨𝑑− |𝑡pair |𝑑−⟩ = −𝑉ct. (6.10)

This quasi energy change then leads to an opening or closing of the gap between the two doublet states
that depends on their initial quasi-energy hierarchy (cfs. figure 5.6 b and c).

Note that the other two higher-order Hubbard parameters 𝑉nn and 𝑉de are always of the same
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Figure 6.12: Effective Hubbard parameters of higher orders for near-resonantly driven double wells In
a driven attractively interacting system 𝑈 ∼ −9𝑡 ∼ −4 kHz (dark blue) and 𝑈 ∼ −18𝑡 ∼ −8 kHz (light blue)
the effective correlated tunneling 𝑉eff

ct /𝑡
(ℓ )
eff has a significant amplitude for the second harmonic order ℓ = 2

(diamonds) compared to the first (circles) (a). The shaded region denotes the 1𝜎 confidence interval of an
independent Monte-Carlo simulation. (b) The effective nearest neighbor interaction 𝑉eff

nn is much larger for
the second harmonic than for the first harmonic order. Note that the effective direct exchange 𝑉eff

de behaves in
the exact same fashion as the effective nearest neighbor interaction. In the static scenario, these higher order
parameters are negligible 𝑉ct = 𝑉nn = 𝑉de ≤ 8.4 × 10−4 t.

amplitude and are also of relevance for our system (cf. figure 6.12 b). The corresponding operators
only couple to the singlet state

⟨𝑠 |�̂�nn |𝑠⟩ = 𝑉nn and ⟨𝑠 |�̂�de |𝑠⟩ = 𝑉de (6.11)

and thus increase the singlet states energy (cf. figure 5.6 c). In our system this has the consequence
that the smallest energy gap at effectively non-interacting systems is lower than twice the effective
tunneling (cf. figure 6.11 a). Moreover, these higher-order corrections to the singlet states energy
were used in another experiment to change the magnetic correlations in a driven double well from
antiferromagnetic to ferromagnetic [42, 164].

Finally, we investigate how the periodic modulation can cause a significant enhancement of the
correlated tunneling rate in the effective system. For this purpose, we compute the effective correlated
tunneling rate in the high frequency expansion resulting in

𝑉
eff
ct =

𝑡
2

ℎ𝜈

(
𝛼
(ℓ )J0(𝐾0)

2 + 𝛽 (ℓ )J1(𝐾0)
2 + O(J>1(𝐾0)

2)
)
+ O(1/𝜈2) (6.12)

with the harmonic order dependent pre factors 𝛼 (1) = 2, 𝛼 (2) = 1, 𝛽 (1) = −1, and 𝛽 (2) = −8/3 [112].
Clearly, 𝑉eff

ct decreases with the driving amplitude 𝜈 linearly and is therefore largest for the second
harmonic order at smaller attractive interactions 𝑈 ∼ −9𝑡 (diamonds in figure 6.12), as the driving
frequency is the lowest. Therefore, to realize systems with effective higher-order Hubbard parameters
of relevant amplitude small driving frequencies compared to the single particle tunneling are necessary.
However, in this regime it is crucial to verify that the inverse frequency expansion is still valid [77],
which we have done by testing the convergence of the effective parameters [112].
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6.3 Floquet-driven crossover from density-assisted tunneling to enhanced pair tunneling

Summary and Outlook

In conclusion, we have utilized Floquet engineering to enhance pair tunneling both compared to the
suppressed single-particle tunneling and compared to the superexchange rate of static double wells.
Moreover, we have discussed and quantified a crossover from a density-assisted tunneling regime to
the pair-tunneling regime by detuning the driving frequency. In particular, we have investigated the
crucial role of higher-order Hubbard parameters in the enhancement of the pair tunneling.

In the future, this will allow for the realization of models with dominant pair tunneling beyond the
usual Hubbard physics. For example, a system very similar to a ladder with dominant pair tunneling
along the rungs and single-particle tunneling along the spars was theoretically predicted to have
topologically protected edge states with Majorana-like properties [160, 161]. These Majorana fermions
[165] are their own anti-particles and have been part of theoretical studies ranging from particle
physics to condensed matter systems [166, 167] but have yet to be observed experimentally. In general,
this ladder system could be emulated in our setup by unfreezing the tunneling along the y-direction
and applying the near-resonant periodic drive to the double wells along the x-direction. However,
several experimental aspects such as the homogeneity of the system and the possible observables still
need to be resolved.
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CHAPTER 7

Conclusion and Outlook

In this thesis, we have experimentally investigated the behavior of ultracold fermionic potassium
atoms in both periodically-driven and static superlattices. We have observed novel physics beyond
the standard Hubbard model of monochromatic lattices, which I will summarize in the following
alongside the experimental achievements required for their realization.

In the course of this thesis, we have built and characterized a phase-stable in-plane superlattice,
created by the superposition of an infrared and a green lattice. We have characterized the superlattices’
tight binding parameters directly using Rabi oscillations, density-assisted tunneling and radio-
frequency spectroscopy, validating our newly developed theoretical framework for the calculation of
these parameters. Moreover, we have established significant control over the superlattice phase by
employing a phase-locked loop with an environmental feed-forward. Notably, we have realized a
phase-stability of the superlattice better than 3 mrad, which presents one of the best reported phase
stabilities [39, 40].

Using the superlattice, we explored the dynamics in periodically-driven double-well potentials. In
particular, we employed a low-noise periodic modulation of the onsite energy to study a Floquet-driven
crossover from density-assisted tunneling to dominant pair tunneling. We demonstrated the realization
of an effective Hamiltonian, where the effective tunneling amplitude varied with the driving amplitude
following a Bessel function behavior. For a drive resonant with the interaction energy, we have
observed density-assisted tunneling, fully suppressing single-particle dynamics for various harmonic
orders. Detuning the drive from resonance introduced effective interactions and led to pair-tunneling
in the absence of single-particle tunneling. Remarkably, we enhanced the pair tunneling in the driven
system by more than a factor of two, compared to the static counterpart, due to a driving induced
enhancement of the correlated tunneling.

Additionally, the superlattice offers the potential to discover new physics even in static configurations.
In this work, we have newly developed a preparation and detection scheme for repulsively-bound pairs
in array of tilted double-wells. We have prepared these pairs with high fidelity by a radio-frequency
transfer between hyperfine states. Moreover, we have utilized a fast modulation of the double-well tilt
to induce Rabi oscillations between the eigenstates of the system, coherently measuring the population
of the repulsively bound pairs.

Exploring 𝜼-pairs using an in-plane optical superlattice In the future, the static in-plane
superlattice offers the exciting possibility to study 𝜂-pairs [38], They are a unique eigenstate of the
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Chapter 7 Conclusion and Outlook

Hubbard model, that posses off-diagonal long-range order [127], a property that is believed to be
a characteristic of superconductivity [168]. In particular, they are delocalized pair-states with a 𝜋
phase shift between neighboring sites and a characteristic center-of-mass momentum at the edge of
the Brillouin zone of 𝜋/𝑎 [38].

The double well serves as a fundamental building block of the Hubbard model and is, therefore,
particularly well-suited for studying 𝜂-pairs through a bottom-up approach. In the balanced double
well, the 𝜂 pair refers to the repulsively-bound pair state with negative parity

|𝜂⟩ = |𝑑−⟩ =
1
√

2
( |𝐿𝐿⟩ − |𝑅𝑅⟩), (7.1)

which is adiabatically connected to the excited state that we have prepared via a radio-frequency
transfer as discussed in Chapter 4. In the future, adiabatic removal of the double-well tilt will prepare
the 𝜂-pair and allow for the investigation of its properties using the established detection scheme based
on Rabi oscillations.

The lifetime of these 𝜂-pairs in a many-body system is of natural interest. For this purpose, the
𝜂-pairs are initially prepared in the double wells. Then the infrared part of the superlattice can be
ramped down adiabatically to probe the 𝜂-pairs in the extended green lattice [37], before employing
the established detection technique. Varying the exposure time of the pairs in the extended lattice will
determine their lifetime.

Another possibility is to probe the characteristic properties of the 𝜂-pair directly. To determine the
center-of-mass momentum, the 𝜂-pairs could be transformed to Feshbach molecules by ramping the
magnetic field close to the Feshbach resonance [169]. Performing a ballistic expansion of the created
molecules would determine their momentum [170]. However, this would be a global measurement
of the momenta and therefore is only ideal for a homogeneous system. Instead, one could measure
the coherence (ODLRO) of the pairs. One approach would be a diabatic introduction of the tilt Δ for
a variable time 𝜏, after the preparation of the 𝜂-pair. This would introduce a time dependent phase
𝜙(𝜏) = ±Δ/ℏ𝜏 with different sign for the doubly occupied basis states (|𝐿𝐿⟩ and |𝑅𝑅⟩), while leaving
the split states (|𝐿𝑅⟩ and |𝑅𝐿⟩) unchanged. The time dependent phase would induce Rabi oscillations
between the 𝜂-state and the most excited state, as this state is essentially the 𝜂-state with positive parity.
These Rabi oscillations would be a direct measure of their coherence, the Fourier transformation of
the center-of-mass momentum [38].

Many-body systems with dominant pair tunneling Another interesting project is the study of
many-body systems with dominant pair tunneling, that extend beyond regular Hubbard models. We
have established a periodic modulation technique to create double wells with dominant pair tunneling,
which can be applied to many-body systems as well. For example, unfreezing the 𝑦-lattice while
periodically driving the double-wells along the 𝑥-direction, would create a ladder type system with
dominant pair tunneling along the rungs and single-particle tunneling along the spars. Such a ladder
system is theoretically predicted to exhibit topologically-protected edge states with Majorana-like
properties [160, 161]. These Majorana fermions [165], are their own anti-particles and have been part
of theoretical studies ranging from particle physics to condensed-matter systems [166, 167], but have
yet to be observed experimentally.
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Creating homogeneous lattice systems using light-sheets Both of the aforementioned future
projects rely on a system that is homogeneous with respect to the superexchange interaction 𝐽 = 4𝑡2/𝑈,
which is the characteristic energy scale. Only if the superexchange exceeds the energy offset between
lattice sites, it governs the physics of the system. However, the Gaussian envelopes of the lattice
beams create an underlying potential of approximately harmonic nature, which tends to dominate the
superexchange. To compensate this harmonic confinement, we will employ light-sheets along the
𝑥− and 𝑦−axes, with an intensity distribution inverse to the Gaussian envelopes of the lattice beams.
These light-sheets will be created by superimposing multiple beams diffracted from an acousto-optic
deflector (AOD) driven with several radio-frequencies at once, to create a smooth overall potential.
By minimizing the number of diffracted beams, we can prevent disorder patterns observed in the past
when a digital micromirror device (DMD) was used to compensate the harmonic confinement. The
first steps towards the creation of a homogeneous lattice systems using light sheets are discussed in the
upcoming Bachelor thesis of Juliane Reuter [171].
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APPENDIX A

Hubbard parameters vs. Superlattice
parameters

This appendix provides detailed plots of the tight-binding Hubbard parameters 𝑡in, 𝑡out,𝑈 and Δ for
various lattice depths and scattering lengths. The calculation of these tight-binding parameters is
discussed in detail in section 2.4.

In figure A.1, the two tunneling rates of the superlattice are plotted versus the lattice depth of the
green lattice 𝑉𝑠 and of the infrared lattice 𝑉𝑙. In figure A.2, the interaction strength is plotted versus
the lattice depths of the three-dimensional lattice configuration 𝑉𝑠, 𝑉𝑙 , 𝑠𝑦 , 𝑠𝑧 for a scattering length of
𝑎 = −265 a0. In figure A.3, the tilt of the superlattice is plotted versus the lattice depth of the green
lattice 𝑉𝑠 and of the infrared lattice 𝑉𝑙.
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Figure A.1: Tunneling vs. lattice depths: (a) Tunneling between two sublattice sites 𝑡in versus the short- and
long-lattice depth (𝑉𝑠 and 𝑉𝑙 respectively). The relative tunneling between lattice sites 𝑡out is shown in (b)
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Figure A.2: Interaction strength vs. lattice depths: (a) Interaction strength 𝑈 for a scattering length of
𝑎 = −265 a0 and lattice depths 𝑠𝑦 = 60 Erec and 𝑠𝑧 = 110 Erec versus the short and long lattice depths of the
superlattice. (b) Interaction strength𝑈 for a scattering length of 𝑎 = −265 a0 and lattice depths 𝑉𝑠 = 10 Erec and
𝑉𝑙 = 15 Erec versus the lattice depth of the y- and z-lattice.
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Figure A.3: Tilt vs. lattice depths: (a) Tilt between sublattice sites for a superlattice phase 𝜙 = 1 MHz relative
to the dominant tunneling 𝑡in. (b) Superlattice phase 𝜙 that is necessary to realize a tilt equal to the dominant
tunneling Δ(𝜙) = 𝑡in.
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APPENDIX B

Hyperfine populations during pair experiment
cycle

This appendix provides a sketch of the hyperfine state population during the preparation and detection
of repulsively-bound pairs in double-wells, according to section 4.2.3.

The elaborate series of radio-frequency transfers that are necessary to conduct these experiments
are given in figure B.1. The most important aspects of this sequence are the pair preparation and pair
detection phase. The detailed information on this sequence is given in the caption of the figure and in
section 4.2.3.
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Figure B.1: Sketch of hyperfine state populations during pair experiment cycle: The |𝑑−⟩ state is prepared
by a RF-transfer with a pulse width of 3 kHz. After the experiment, the |𝑑−⟩ state population is detected in
a strongly tilted double well Δ ≫ 𝑈, 𝑡. Here, the |𝑑−⟩ state is adiabatically connected to the singlet state |𝑠⟩
(denoted as 𝑑𝑆𝑚), whereas the excited- and the ground-state are connected to doubly occupied states (denoted as
𝑑
𝐷
𝑚 ). These states are differentiated by a singles-doubles separation pulse. Shelving the |𝑑−⟩ states with singly

occupations allows for the measurement of the remaining |𝑑−⟩ state population 𝑁𝑆 via OD2 compared to the
sum of the population of excited- and ground-state 𝑁𝐷 via OD1. The green arrows indicate radio-frequency
transfers between the 𝑚𝐹 states with the sign of the frequency detuning states above.

113





APPENDIX C

Additional spectra of near-resonantly driven
double wells

This appendix provides additional two additional spectra of near-resonantly driven double wells as
discussed in section 6.2. In figure C.1, we show the spectrum of a near-resonantly driven double
well with large effective interactions𝑈 ≈ −18𝑡 ≈ −8 kHz. In figure C.2, we show the spectrum of a
near-resonantly driven double well with small effective interactions𝑈 ≈ −6𝑡 ≈ −8 kHz.
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Figure C.1: Quasi-energy spectrum for a near-resonantly driven double well with strong attractive
interactions: In an attractively interacting system 𝑈 ≈ −18𝑡 ≈ −8 kHz the energy eigenvalues 𝜖𝑖/ℎ𝜈 of the
fitted Hamiltonians at the trap center are plotted for various driving frequencies ℎ𝜈/𝑈 (a). The driving amplitude
is chosen to suppress tunneling in half-filled double wells 𝐾0 = 2.4. The first (second) harmonic resonance is
indicated by circles (diamonds) and the shades of green differentiate the various eigenenergies. The shaded
regions indicate the 1𝜎 confidence interval of independent Monte-Carlo simulations of the system. (b) The
minimal quasi energy difference of the spectrum Δ𝜖min/2𝑡 is plotted for various driving frequencies ℎ𝜈/𝑈 with
the same color coding.

115
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Figure C.2: Quasi-energy spectrum for a near-resonantly driven double well with weak attractive
interactions: In an attractively interacting system 𝑈 ≈ −6𝑡 ≈ −2.8 kHz the energy eigenvalues 𝜖𝑖/ℎ𝜈 of the
fitted Hamiltonians at the trap center are plotted for various driving frequencies ℎ𝜈/𝑈 (a). The driving amplitude
is chosen to suppress tunneling in half-filled double wells 𝐾0 = 2.4. The first (second) harmonic resonance is
indicated by circles (diamonds) and the shades of green differentiate the various eigenenergies. The shaded
regions indicate the 1𝜎 confidence interval of independent Monte-Carlo simulations of the system. (b) The
minimal quasi energy difference of the spectrum Δ𝜖min/2𝑡 is plotted for various driving frequencies ℎ𝜈/𝑈 with
the same color coding.
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