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CHAPTER 1

Introduction

Materials science, as an interdisciplinary field, plays an essential role in advancing scientific and
technological innovation. The development of advanced materials—such as high-strength steel and
long-lasting concrete—has enabled the construction of taller and more resilient structures. Yet,
the 21st century presents new demands that drive innovation at the nanoscale. The evolution of
semiconductor technology exemplifies this shift, having revolutionized modern life through profound
technological transformations. Since the 1970s, the number of transistors on integrated circuits has
doubled approximately every two years—a phenomenon known as Moore’s Law—demonstrating the
relentless progress in materials science.

The trajectory of computing advancements has been closely intertwined with breakthroughs in
materials science. Early computers relied on vacuum tubes, which were eventually replaced by silicon-
based transistors and integrated circuits due to their superior efficiency and scalability. Silicon’s
distinctive properties—such as its natural abundance, thermal stability, and tunable semiconductor
behavior via doping—have made it the ideal backbone for modern electronics. However, as silicon-
based systems near their physical and practical limitations, researchers are actively investigating
alternative materials and paradigms to sustain innovation.

One of the most promising frontiers in this pursuit is quantum computing. Unlike classical
computing systems, which process binary digits, quantum computers leverage quantum states to
encode information in qubits. In this framework, computation involves initializing quantum states,
evolving them according to quantum mechanical principles, and measuring the resulting states.
By carefully designing and sequencing these transformations, quantum computers can address
complex computational problems, such as cryptographic challenges and chemical simulations, that are
intractable for classical computers.

Despite significant theoretical advancements, building practical quantum computers remains a
formidable scientific challenge. A central obstacle is the identification of materials capable of
maintaining quantum coherence long enough to perform meaningful computations while remaining
controllable enough to implement quantum gates. Qubits are highly sensitive to environmental factors,
such as thermal fluctuations and material imperfections, which lead to decoherence. Among the
candidate materials, graphene stands out due to its exceptional electronic and structural properties.
This two-dimensional carbon lattice can adopt diverse geometries—from flat sheets to ribbons and
complex three-dimensional structures—each offering unique advantages for implementing qubits.
Graphene’s high electron mobility and low spin-orbit coupling make it particularly promising for
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Chapter 1 Introduction

preserving quantum coherence. Moreover, its compatibility with existing semiconductor fabrication
techniques presents a practical pathway for integrating quantum components into existing technological
ecosystems. However, significant challenges remain, including extending quantum coherence times
and developing precise methods to manipulate quantum states in graphene-based architectures.

In this thesis, I investigate the electronic behavior of low-dimensional nanoribbons and graphene
sheets to advance our understanding of their potential applications in quantum technologies, particularly
quantum computing. Specifically, this research examines the localization of edge states in junction
ribbons, the temperature dependence of quasi-particle energies, and the resilience of quantum states
under thermal and interaction perturbations within Hubbard-type models. This study is inherently
exploratory, with no immediate practical applications, emphasizing the necessity for continued
theoretical and experimental research. The findings contribute to the broader goal of identifying
physical systems capable of supporting coherent quantum states or exhibiting other valuable quantum
properties. The subsequent sections provide the necessary theoretical background and formal
framework for analyzing these materials, setting the stage for assessing their potential role in future
quantum technologies.

1.1 Graphene geometries

The physical systems of interest are graphene sheets, ribbons, and junction ribbons where two or more
different ribbons are joined together. Graphene is a bipartite lattice, meaning it is composed of two
identical triangular sublattices, commonly referred to as A and B. Alternatively, it can be described as
a tesselation by unit cells, each containing two sites.

Sheets

Figure 1.1: 3 × 3 Graphene sheet. Graphene forms a hexagonal bipartite lattice with two sites A and B in each
unit cell (dotted rectangle), located at 𝝃𝐴 = (0, 0) and 𝝃𝐵 = (1, 0) respectively. The lattice translation vectors,
shown in purple, are 𝒂1,2 = (3/2,±√3/2), and the nearest-neighbor vectors are marked by green arrows.
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1.1 Graphene geometries

Graphene sheets are the simplest of these geometries characterized by translation vectors:

𝒂1,2 = 𝑎
(

3
2 ±

√
3

2

)
. (1.1)

Here 𝑎 is the lattice constant. Notice that these vectors are not orthogonal:

𝒂𝑖 · 𝒂𝑖 =
√

3𝑎 , 𝒂1 · 𝒂2 =

√
3

2
𝑎 . (1.2)

Translation vectors specify the location of the unit cells. Each unit cell contains 2 sites, A/B, which
are located at:

𝝃𝐴 =
(
0 0

)
and 𝝃𝐵 =

(
1 0

)
. (1.3)

inside relative to the cell. Graphene sheets are classified by two numbers 𝐿𝑥 × 𝐿𝑦 , where 𝐿𝑥 is the
number of unit cells in the direction of 𝒂1 and 𝐿𝑦 in the direction of 𝒂2. In Figure 1.1 we show the
3 × 3 graphene system. For mathematical simplicity periodic boundary conditions are assumed in
both directions and only in the thermodynamic limit, as 𝐿𝑥 , 𝐿𝑦 → ∞ is the system meant to describe a
physical sheet. The reciprocal vectors satisfy 𝒃𝑖 · 𝒂 𝑗 = 2𝜋𝛿𝑖 𝑗 . It is straightforward to see that this is
satisfied by

𝒃1,2 =
2𝜋
𝑎

(
1
3 ± 1

3
√

3

)
. (1.4)

The vectors 𝒃1,2 span the reciprocal space. The unit cell in the reciprocal space defines the Brillouin
Zone (BZ). Graphene has a well defined BZ. Size of the BZ is the number of momentum points
Λ = 𝐿𝑥𝐿𝑦 . In Figure 1.2 the BZ for several graphene geometries are given. Within the graphene BZ

2 1 0 1 2
kx

2

1

0

1

2

k y

1x1

2 1 0 1 2
kx

1x2

2 1 0 1 2
kx

2x3

2 1 0 1 2
kx

6x6

Figure 1.2: Brillouin zones for various lattice sizes in graphene. As lattice size increases, momentum points
increasingly populate the hexagonal Brillouin zone. Of particular importance are the momentum points at the
center (Γ-point), at the midpoint of the edges (𝑀-point), and at the vertices (𝐾-points). In the thermodynamic
limit when 𝐿𝑥 , 𝐿𝑦 → ∞, the BZ forms a hexagon.

there are special points of ‘high-symmetry’: the center of the hexagon - Γ, the midpoint of the edges -
𝑀 and the vertices of the hexagon - 𝐾 =

(
± 2𝜋

3
2𝜋
3
√

3

)
, also known as Dirac points where, under the

tight-binding approximation (to be discussed later), the dispersion relation vanishes.
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Chapter 1 Introduction

Carbon nanoribbons

Ribbons posses a similar geometry to the sheets as they are also comprised of two identical sublattices,
but they differ based on their edge geometry. In Figure 1.3 two most common types of ribbons are
given, armchair Figure 1.3(a) and zigzag Figure 1.3(b). The unit cell is shown by two vertical dashed
lines. The width of the ribbon, i.e. number of sites across the ribbon is denoted by 𝑁 , whereas the
length, i.e. the number of unit cells is taken to be 𝐿. Periodic boundary conditions are assumed along
the 𝑦̂-axis and open boundaries are taken across the ribbon in the direction of 𝑥-axis. Because we no
longer have translational symmetry across the ribbon its BZ is 1D as opposed to the sheets. Armchair

(a) Armchair
(b) Zig-zag

Figure 1.3: Nanoribbon lattices. Unit cell is shown by two vertical dashed lines. Width of the ribbon is given by
𝑁 . Length of the ribbon is taken to be 𝐿. Periodic boundary conditions are assumed along 𝑦̂-axis and open
boundaries are taken across the 𝑥-axis.

ribbons behave as semi-metals at widths 𝑁 = 3𝑚 + 2 ∀𝑚 ∈ Z+ and like insulators otherwise. Zigzag
ribbons on the other hand behave like semi-metals irrespective of the width.

Hybrid ribbons

Hybrid ribbons – also known as junction ribbons – are formed by joining any number of ribbons with
different widths and geometries together. For this task, the focus is on armchair ribbons, particularly
those with widths differing by 2. These structures can either consist of two infinitely long ribbons
or a chain of shorter ribbons with alternating widths. The lattices are classified based on the widths
and lengths of the two constituent ribbons. As illustrated in Figure 1.4, the junction ribbon under
consideration consists of two armchair configurations with widths of 7 and 9 and corresponding
lengths of 3 and 5, respectively.
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1.2 Hubbard Model

Figure 1.4: Junction ribbon of two armchairs with widths of 7 and 9 and lengths of 3 and 5. Periodic boundary
conditions are assumed along the ribbons.

1.2 Hubbard Model

The simple tight-binding Hamiltonian 𝐻 with Hubbard interaction term is defined at half-filling with
hopping strength 𝑡, chemical potential 𝜇, and Hubbard interaction strength𝑈, as:

𝐻 = −𝑡
∑︁

⟨𝑥,𝑦⟩𝑠
(𝑐†𝑥𝑠𝑐𝑦𝑠 + 𝐻.𝑐.) −

𝑈

2

∑︁
𝑥

(𝑛𝑥↑ − 𝑛𝑥↓)2 − 𝜇
∑︁
𝑥𝑠

𝑛𝑥𝑠 . (1.5)

Here, ⟨𝑥, 𝑦⟩ means a sum over nearest neighbors, 𝑐†/𝑐 is the fermion creation/annihilation operator,
and 𝑛𝑥 = 𝑐

†
𝑥𝑐𝑥 is the corresponding number operator. Operators satisfy the anti-commutation relation:

{𝑐
𝑥𝑠
, 𝑐†
𝑦𝑠′} = 𝛿𝑥𝑦 𝛿𝑠𝑠′ . (1.6)

To expand the square, keep in mind that we can only have 0 or 1 fermion in the same state, meaning
𝑛𝑥 only has eigenvalues 0 and 1; therefore, 𝑛2

𝑥 = 𝑛𝑥 . We can therefore write:

𝐻 = −𝑡
∑︁

⟨𝑥,𝑦⟩𝑠
(𝑐†𝑥𝑠𝑐𝑦𝑠 + 𝐻.𝑐.) −

𝑈

2

∑︁
𝑥𝑠

𝑛2
𝑥𝑠 +𝑈

∑︁
𝑥𝑠

𝑛𝑥↑𝑛𝑥↓ − 𝜇
∑︁
𝑥𝑠

𝑛𝑥𝑠

= −𝑡
∑︁

⟨𝑥,𝑦⟩𝑠
(𝑐†𝑥𝑠𝑐𝑦𝑠 + 𝐻.𝑐.) −

(
𝜇 + 𝑈

2

) ∑︁
𝑥𝑠

𝑛𝑥𝑠 +𝑈
∑︁
𝑥

𝑐†
𝑥↑𝑐𝑥↑𝑐

†
𝑥↓𝑐𝑥↓

≡ 𝐻0 + 𝐻1 + 𝐻2 .

We can also write the Hamiltonian explicitly using A/B sublattices:

𝐻 = −𝑡
∑︁
𝑥𝑠

𝑐†𝑥𝐴𝑠 (𝑐𝑥𝐵𝑠 + 𝑐𝑥−𝒂1𝐵𝑠
+ 𝑐𝑥−𝒂2𝐵𝑠

) + 𝐻.𝑐.

−
(
𝜇 + 𝑈

2

) ∑︁
𝑥𝑠

𝑛𝑥𝐴𝑠 + 𝑛𝑥𝐵𝑠

+𝑈
∑︁
𝑥

𝑐†
𝑥𝐴↑𝑐

†
𝑥𝐴↓𝑐𝑥𝐴↓𝑐𝑥𝐴↑ + 𝑐†

𝑥𝐵↑𝑐
†
𝑥𝐵↓𝑐𝑥𝐵↓𝑐𝑥𝐵↑ .
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Chapter 1 Introduction

Here, 𝑥 goes over a single sublattice. We have also normal-ordered the operators (i.e., all annihilation
operators are ‘to the right’).

Diagonalization

In order to diagonalize the Hamiltonian, we introduce the Fourier transform as a sum over the momenta
in the BZ:

𝑐𝑥𝜆𝑠 =
1√
Λ

∑︁
𝑘

ei𝑘 (𝑥+𝝃𝜆 )𝑐𝑘𝜆𝑠 , (1.7)

Λ being the size of the Brillouin zone. Insert this back into the expression for 𝐻0:

𝐻0 = − 1
Λ

∑︁
𝑥𝑠

∑︁
𝑘𝑘′

ei(𝑘−𝑘′ )𝑥 (ei𝑘𝝃𝐵 + ei𝑘 (−𝒂1+𝝃𝐵 ) + ei𝑘 (−𝒂2+𝝃𝐵 ) )𝑐†
𝑘′𝐴𝑠𝑐𝑘𝐵𝑠 + 𝐻.𝑐.

= −
∑︁
𝑠

∑︁
𝑘𝑘′

𝛿𝑘𝑘′ 𝑓 (𝑘)𝑐†𝑘′𝐴𝑠𝑐𝑘𝐵𝑠 + 𝐻.𝑐.

= −
∑︁
𝑘𝑠

𝑓 (𝑘)𝑐†𝑘𝐴𝑠𝑐𝑘𝐵𝑠 + 𝐻.𝑐.

=
∑︁
𝑘𝑠

(
𝑐†𝑘𝐴𝑠 𝑐†𝑘𝐵𝑠

) (
0 − 𝑓 (𝑘)

− 𝑓 ∗(𝑘) 0

) (
𝑐𝑘𝐴𝑠
𝑐𝑘𝐵𝑠

)
,

where we have defined:

𝑓 (𝑘) =
3∑︁
𝑖=1

ei𝑘𝑎𝑖 = ei𝑘𝑥 + 2e−i𝑘𝑥/2 cos(
√

3𝑘𝑦/2) . (1.8)

To continue we diagonalize the matrix in sublattice space as

0 =

���� −E 𝑓 (𝑘)
𝑓 ∗(𝑘) −E

���� = E2 − | 𝑓 (𝑘) |2 ,

resulting in eigenvalues E𝜎𝑘 = 𝜎E𝑘 = 𝜎 | 𝑓 (𝑘) | with 𝜎 = ±1. Eigenvectors are found by
(−𝜎 | 𝑓 (𝑘) | − 𝑓 (𝑘)
− 𝑓 ∗(𝑘) −𝜎 | 𝑓 (𝑘) |

) (
𝛼
𝛽

)
= 0 =⇒ 𝛽 = −𝜎e−i𝜃𝑘𝛼 ,

where
e𝑖 𝜃𝑘 =

𝑓 (𝑘)
| 𝑓 (𝑘) | . (1.9)

After normalizing we arrive at

𝜙𝑘𝜎𝑠 =
1√
2

(
1

−𝜎e−𝑖 𝜃𝑘

)
=

1√
2
(𝑐𝑘𝐴𝑠 − 𝜎e−𝑖 𝜃𝑘𝑐𝑘𝐵𝑠) . (1.10)
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One can easily see that anti-commutation is preserved

{𝜙
𝑘𝜎𝑠

, 𝜙†
𝑘′𝜎′𝑠′} =

1
2
{𝑐
𝑘𝐴𝑠

, 𝑐†
𝑘′𝐴𝑠′} +

𝜎𝜎′e−i(𝜃𝑘′−𝜃𝑘 )

2
{𝑐
𝑘𝐵𝑠

, 𝑐†
𝑘′𝐵𝑠′}

=
1 + 𝜎𝜎′

2
𝛿𝑘𝑘′𝛿𝑠𝑠′ (1.11)

= 𝛿𝜎𝜎′𝛿𝑘𝑘′𝛿𝑠𝑠′ .

Note that for 𝜎, 𝜎′ ∈ {±1}, 1 + 𝜎𝜎′ = 0 if 𝜎 = 𝜎′ and zero otherwise which can be written using a
Kronecker 𝛿. After diagonalizing we can write

𝐻0 =
∑︁
𝑘𝑠

(
𝑐†𝑘𝐴𝑠 𝑐†𝑘𝐵𝑠

) (
0 − 𝑓 (𝑘)

− 𝑓 ∗(𝑘) 0

) (
𝑐𝑘𝐴𝑠
𝑐𝑘𝐵𝑠

)

=
∑︁
𝑘𝑠

(
𝜙†𝑘+𝑠 𝜙†𝑘−𝑠

) (E+
𝑘 0

0 E−
𝑘

) (
𝜙𝑘+𝑠
𝜙𝑘−𝑠

)

=
∑︁
𝑘𝜎𝑠

E𝜎𝑘 𝜙†𝑘𝜎𝑠𝜙𝑘𝜎𝑠 .

The chemical potential term is also diagonal in 𝜙 basis. First note that

𝐻1 = −
(
𝜇 + 𝑈

2

) ∑︁
𝑥𝑠

𝑐†𝑥𝐴𝑠𝑐𝑥𝐴𝑠 + 𝑐†𝑥𝐵𝑠𝑐𝑥𝐵𝑠

= −
(
𝜇 + 𝑈

2

) ∑︁
𝑥𝑠

1
Λ

∑︁
𝑘𝑘′

e−i𝑘′𝑥ei𝑘𝑥
(
𝑐†
𝑘′𝐴𝑠𝑐𝑘𝐴𝑠 + e−i𝑘′𝝃𝐴ei𝑘𝝃𝐵𝑐†

𝑘′𝐵𝑠𝑐𝑘𝐵𝑠

)

= −
(
𝜇 + 𝑈

2

) ∑︁
𝑠

∑︁
𝑘𝑘′

𝛿𝑘𝑘′
(
𝑐†
𝑘′𝐴𝑠𝑐𝑘𝐴𝑠 + e−i𝑘′𝝃𝐵ei𝑘𝝃𝐵𝑐†

𝑘′𝐵𝑠𝑐𝑘𝐵𝑠

)

= −
(
𝜇 + 𝑈

2

) ∑︁
𝑘𝑠

𝑐†𝑘𝐴𝑠𝑐𝑘𝐴𝑠 + 𝑐†𝑘𝐵𝑠𝑐𝑘𝐵𝑠 .

Now we invert the definition of 𝜙𝑘𝜎𝑠

𝑐𝑘𝐴𝑠 =
1√
2
(𝜙𝑘+𝑠 + 𝜙𝑘−𝑠) =

1√
2

∑︁
𝜎

𝜙𝑘𝜎𝑠 , (1.12)

𝑐𝑘𝐵𝑠 = −e𝑖 𝜃𝑘√
2
(𝜙𝑘+𝑠 − 𝜙𝑘−𝑠) = −e𝑖 𝜃𝑘√

2

∑︁
𝜎′
𝜎′𝜙𝑘𝜎′𝑠 . (1.13)
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Putting it all together gives

𝐻1 = −
(
𝜇 + 𝑈

2

)
1
2

∑︁
𝑘𝜎𝜎′𝑠

𝜙†𝑘𝜎𝑠𝜙𝑘𝜎′𝑠 + 𝜎𝜎
′𝜙†
𝑘𝜎𝑠

𝜙
𝑘𝜎′𝑠

= −
(
𝜇 + 𝑈

2

) ∑︁
𝑘𝜎𝜎′𝑠

1 + 𝜎𝜎′

2
𝜙†
𝑘𝜎𝑠

𝜙
𝑘𝜎′𝑠

= −
(
𝜇 + 𝑈

2

) ∑︁
𝑘𝜎𝜎′𝑠

𝛿𝜎𝜎′𝜙†
𝑘𝜎𝑠

𝜙
𝑘𝜎′𝑠

= −
(
𝜇 + 𝑈

2

) ∑︁
𝑘𝜎𝑠

𝜙†
𝑘𝜎𝑠

𝜙𝑘𝜎𝑠 .

In order to express quartic term in 𝜙 basis we first need to Fourier transform it

𝐻2 = 𝑈
∑︁
𝑥

𝑐†
𝑥𝐴↑𝑐

†
𝑥𝐴↓𝑐𝑥𝐴↓𝑐𝑥𝐴↑ + 𝑐

†
𝑥𝐵↑𝑐

†
𝑥𝐵↓𝑐𝑥𝐵↓𝑐𝑥𝐵↑

=
𝑈

Λ2

∑︁
𝑥

∑︁
𝑘′𝑙′𝑘𝑙

e−i(𝑘′+𝑙′−𝑘−𝑙)𝑥
(
𝑐†
𝑘′𝐴↑𝑐

†
𝑙′𝐴↓𝑐𝑘𝐴↓ 𝑐𝑙𝐴↑ + e−i(𝑘′+𝑙′−𝑘−𝑙)𝑎1𝑐†

𝑘′𝐵↑𝑐
†
𝑙′𝐵↓𝑐𝑘𝐵↓ 𝑐𝑙𝐵↑

)
.

We observe that

1
Λ

∑︁
𝑥

e−i(𝑘′+𝑙′−𝑘−𝑙)𝑥 =

{
1 𝑘 ′ + 𝑙′ − 𝑘 − 𝑙 = 𝑚𝑮1 + 𝑛𝑮2, 𝑚, 𝑛 ∈ Z

0 otherwise
.

In order to not get overwhelmed by notation we will use 𝛿𝑘′+𝑙′ ,𝑘+𝑙 and implicitly assume the equality
to be modulo the BZ, i.e. 𝑘 ′ + 𝑙′ − 𝑘 − 𝑙 = 𝑚𝑮1 + 𝑛𝑮2. With this we get

𝐻2 =
𝑈

Λ

∑︁
𝑘′𝑙′𝑘𝑙

𝛿𝑘′+𝑙′ ,𝑘+𝑙
(
𝑐†
𝑘′𝐴↑𝑐

†
𝑙′𝐴↓𝑐𝑘𝐴↓ 𝑐𝑙𝐴↑ + e−i(𝑚𝑮1+𝑛𝑮2 )𝑎1𝑐†

𝑘′𝐵↑𝑐
†
𝑙′𝐵↓𝑐𝑘𝐵↓ 𝑐𝑙𝐵↑

)

=
𝑈

Λ

∑︁
𝑘′𝑙′𝑘𝑙

𝛿𝑘′+𝑙′ ,𝑘+𝑙
(
𝑐†
𝑘′𝐴↑𝑐

†
𝑙′𝐴↓𝑐𝑘𝐴↓ 𝑐𝑙𝐴↑ + e−𝑖

2𝜋
3 (𝑚+𝑛)𝑐†

𝑘′𝐵↑𝑐
†
𝑙′𝐵↓𝑐𝑘𝐵↓ 𝑐𝑙𝐵↑

)
.

To make the calculations simpler we can write the relations between 𝑎, 𝑏 and 𝜙, 𝜑 as follows:

𝑐𝑘𝐴𝑠 =
1√
2

∑︁
𝜎

𝜙𝑙𝜎𝑠 𝑐†
𝑘′𝐴𝑠 =

1√
2

∑︁
𝜎′
𝜙†
𝑙′𝜎′𝑠

𝑐𝑙𝐵𝑠 = −e𝑖 𝜃𝑙√
2

∑︁
𝜎

𝜎𝜙𝑙𝜎𝑠 𝑐†
𝑙′𝐵𝑠 = −e−𝑖 𝜃𝑙′√

2

∑︁
𝜎′
𝜎′𝜙†

𝑙′𝜎′ . (1.14)

The first term gives

𝑈

4Λ

∑︁
𝑘′𝑙′𝑘𝑙

𝛿𝑘′+𝑙′ ,𝑘+𝑙𝑐
†
𝑘′𝐴↑𝑐

†
𝑙′𝐴↓𝑐𝑘𝐴↓ 𝑐𝑙𝐴↑ =

𝑈

Λ

∑︁
𝑘′ ,𝑙′ ,𝑘,𝑙
𝜌′ ,𝜎′ ,𝜌,𝜎′

𝛿𝑘′+𝑙′ ,𝑘+𝑙𝜙
†
𝑘′𝜌′↑𝜙

†
𝑙′𝜎′↓𝜙𝑘𝜌↓ 𝜙𝑙𝜎↑ ,

10
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While the second results in

𝑈

Λ

∑︁
𝑘′ ,𝑙′ ,𝑘,𝑙

𝛿𝑘′+𝑙′ ,𝑘+𝑙e
−𝑖 2𝜋

3 (𝑚+𝑛)𝑐†
𝑘′𝐵↑𝑐

†
𝑙′𝐵↓𝑐𝑘𝐵↓ 𝑐𝑙𝐵↑

=
𝑈

4Λ

∑︁
𝑘′ ,𝑙′ ,𝑘,𝑙
𝜌′ ,𝜎′ ,𝜌,𝜎′

𝛿𝑘′+𝑙′ ,𝑘+𝑙𝜌
′𝜎′𝜌𝜎e−𝑖

2𝜋
3 (𝑚+𝑛)ei(𝜃𝑘−𝜃𝑘′+𝜃𝑙−𝜃𝑙′ )𝜙†

𝑘′𝜌′↑𝜙
†
𝑙′𝜎′↓𝜙𝑘𝜌↓ 𝜙𝑙𝜎↑ .

We now introduce the following notation

𝒌 = (𝑘, 𝜌) , 𝒌′ = (𝑘 ′, 𝜌′) ,
𝒍 = (𝑙, 𝜎) , 𝒍′ = (𝑙′, 𝜎′) .

Combining the two gives the final expression for 𝐻2

𝐻2 =
𝑈

4Λ

∑︁
𝒌′𝒍′𝒌𝒍

𝛿𝑘′+𝑙′ ,𝑘+𝑙
(
1 + 𝜌′𝜎′𝜌𝜎ei(𝜃𝑘−𝜃𝑘′+𝜃𝑙−𝜃𝑙′ )e−𝑖

2𝜋
3 (𝑚+𝑛)

)
𝜙†
𝒌′↑𝜙

†
𝒍′↓𝜙𝒌↓ 𝜙𝒍↑ . (1.15)

Combining (1.12), (1.14) and (1.15) results in the following expression of the Hamiltonian:

𝐻 =
∑︁
𝒌𝑠

(
E𝒌 − 𝜇 −

𝑈

2

)
𝜙†
𝒌𝑠
𝜙
𝒌𝑠

+
∑︁
𝒌′𝒍′𝒌𝒍

𝑉𝒌′𝒍′𝒌𝒍𝜙
†
𝒌′↑𝜙

†
𝒍′↓𝜙𝒌↓ 𝜙𝒍↑ , (1.16)

where we have defined E𝒌
!
= E𝜌𝑘 as well as

𝑉𝒌′𝒍′𝒌𝒍 =
𝑈

4Λ
𝛿𝑘′+𝑙′ ,𝑘+𝑙

(
1 + 𝜌′𝜎′𝜌𝜎ei(𝜃𝑘−𝜃𝑘′+𝜃𝑙−𝜃𝑙′ )e−𝑖

2𝜋
3 (𝑚+𝑛)

)
. (1.17)

From this point on in the manuscript, in order to improve readability we will use bold multi-index
notation 𝒌 = (𝑘, 𝜌) wherever possible, unless sublattice indices are explicitly required.

Canonical transformation

We define the Fermi Energy E𝐹 such that all states with E𝒌 ≤ E𝐹 are filled [5].

𝜙𝑘𝜌𝑠 = 𝑎𝑘𝑠𝜃 (E𝜌𝑘 − E𝐹) + 𝑏†−𝑘𝑠𝜃 (E𝐹 − E𝜌𝑘 ) , (1.18)

where

𝜃 (𝑥) =



1 𝑥 > 0
1
2 𝑥 = 0
0 𝑥 < 0

. (1.19)

The 𝑥 = 0 behavior is defined in a way that is consistent with lim𝛽→∞ 𝑛𝒌 . Now, in our case E𝐹 = 0
which reduces the expression to

𝜙𝑘𝜌𝑠 = 𝑎𝑘𝑠𝜃 (E𝜌𝑘 ) + 𝑏†−𝑘𝑠𝜃 (−E
𝜌
𝑘 ) =

{
𝑎𝑘𝑠 𝜌 = + “particle”
𝑏†−𝑘𝑠 𝜌 = − “hole”

. (1.20)
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One can see that since ∀𝑘 E𝑘 > 0

𝜃 (E𝜌𝑘 ) = 𝜃 (𝜌E𝑘) = 𝜃 (𝜌) .

We can do a quick check and see that the anti-commutation relation is preserved

{𝜙
𝑘𝜌𝑠

, 𝜙†
𝑘′𝜌′𝑠′} = {𝑎

𝑘𝑠
, 𝑎†
𝑘′𝑠′}𝜃 (𝜌)𝛿𝜌𝜌′ + {𝑏†−𝑘𝑠 , 𝑏−𝑘′𝑠′}𝜃 (−𝜌)𝛿𝜌𝜌′

= 𝛿𝑘𝑘′𝛿𝑠𝑠′𝜃 (𝜌)𝛿𝜌𝜌′ + 𝛿𝑘𝑘′𝛿𝑠𝑠′𝜃 (−𝜌)𝛿𝜌𝜌′
= 𝛿𝑘𝑘′𝛿𝑠𝑠′𝛿𝜌𝜌′ (𝜃 (𝜌) + 𝜃 (−𝜌))
= 𝛿𝑘𝑘′𝛿𝑠𝑠′𝛿𝜌𝜌′ .

The above discussion is meant to illustrate the meaning behind the quantum number 𝜌. In the following
manuscript we will not perform the transformation and instead will work in the 𝜙-basis, while referring
to 𝜙𝑘,+,𝑠 states as particles and 𝜙𝑘,−,𝑠 as holes.

1.3 Thermal Field Theory

1.3.1 Time dependence

From [5] the time evolution of an operator in free theory i.e. 𝑈 = 0 is

𝑂 (𝜏) = e𝜏𝐻0𝑂e−𝜏𝐻0 = 𝑂 + 𝜏[𝐻0, 𝑂] +
𝜏2

2!
[𝐻0 [𝐻0, 𝑂]] + · · · . (1.21)

To apply this to 𝜙𝒌𝑠 we first need [𝐻0, 𝜙𝒌𝑠]:

[𝐻0, 𝜙𝒌𝑠] =
∑︁
𝒌′𝑠′

(E𝒌′ − 𝜇) [𝜙†𝒌′𝑠′𝜙𝒌′𝑠′ , 𝜙𝒌𝑠 ]

= −
∑︁
𝒌′𝑠′

(E𝒌′ − 𝜇){𝜙†𝒌′𝑠′ , 𝜙𝒌𝑠 }𝜙𝒌′𝑠′ (1.22)

= −
∑︁
𝒌′𝑠′

(E𝒌′ − 𝜇)𝛿𝒌𝒌′𝛿𝑠𝑠′𝜙𝒌′𝑠′

= −(E𝒌 − 𝜇)𝜙𝒌𝑠 .

Similarly

[𝐻0, 𝜙
†
𝒌𝑠
] = (E𝒌 − 𝜇)𝜙†𝒌𝑠 .

Which gives

𝜙𝒌𝑠 (𝜏) = 𝜙𝒌𝑠 − 𝜏(E𝒌 − 𝜇)𝜙𝒌𝑠 +
𝜏2(E𝒌 − 𝜇)2

2!
𝜙𝒌𝑠 + · · · = e−𝜏 (E𝒌−𝜇)𝜙𝒌𝑠 , (1.23)

and

𝜙†
𝒌𝑠
(𝜏) = 𝜙†

𝒌𝑠
+ 𝜏(E𝒌 − 𝜇)𝜙†𝒌𝑠 +

𝜏2(E𝒌 − 𝜇)2

2!
𝜙†
𝒌𝑠

+ · · · = e𝜏 (E𝒌−𝜇)𝜙†
𝒌𝑠
. (1.24)

12



1.3 Thermal Field Theory

1.3.2 Propagator

The free propagator is defined as

𝐺0
𝒌𝑠 (𝜏1, 𝜏2) = −𝑍−1

0 Tr
[
e−𝛽𝐻0𝑇𝜏 [𝜙𝒌𝑠 (𝜏1)𝜙†𝒌𝑠 (𝜏2)]

]
, (1.25)

with
𝑍0 = Tr

[
e−𝛽𝐻0

]
, (1.26)

and 𝑇𝜏 is a time ordering operator. It arranges 𝜏’s in decreasing order from left to right and multiplies
the result by parity of the rearrangement. It is important to note that the propagator only depends on
𝜏 = 𝜏1 − 𝜏2. We can easily show this. First assume that 𝜏1 > 𝜏2

𝐺0
𝒌𝑠 (𝜏1, 𝜏2) = −𝑍−1

0 Tr
[
e−𝛽𝐻0𝜙

𝒌𝑠
(𝜏1)𝜙†𝒌𝑠 (𝜏2)

]
= −𝑍−1

0 Tr
[
e−𝛽𝐻0e𝜏1𝐻0𝜙

𝒌𝑠
e(−𝜏1+𝜏2 )𝐻0𝜙†

𝒌𝑠
e−𝜏2𝐻0

]
= −𝑍−1

0 Tr
[
e−𝛽𝐻0𝜙

𝒌𝑠
(𝜏1 − 𝜏2)𝜙†𝒌𝑠

]
.

In the case when 𝜏2 > 𝜏1

𝐺0
𝒌𝑠 (𝜏1, 𝜏2) = 𝑍−1

0 Tr
[
e−𝛽𝐻0𝜙†

𝒌𝑠
(𝜏2)𝜙𝒌𝑠 (𝜏1)

]
= 𝑍−1

0 Tr
[
e−𝛽𝐻0𝜙†

𝒌𝑠
𝜙
𝒌𝑠
(𝜏1 − 𝜏2)

]
.

So we can define
𝐺0

𝒌𝑠 (𝜏) = −𝑍−1
0 Tr

[
e−𝛽𝐻0𝑇𝜏 [𝜙𝒌𝑠 (𝜏)𝜙

†
𝒌𝑠
]
]
. (1.27)

We also define 𝐺0
𝒌𝑠 (0−) !

= 𝑛𝒌 . Using Equation 1.11, Equation 1.21, Equation 1.23, as well as the
cyclic property of the trace we write

𝑛𝒌 = 𝑍−1
0 Tr

[
e−𝛽𝐻0𝜙†

𝒌𝑠
𝜙
𝒌𝑠

]
= 𝑍−1

0 Tr
[
e−𝛽𝐻0𝜙†

𝒌𝑠
e−𝛽𝐻0e𝛽𝐻0𝜙

𝒌𝑠

]
= 𝑍−1

0 Tr
[
e−𝛽𝐻0𝜙

𝒌𝑠
𝜙†
𝒌𝑠

]
e−𝛽 (E𝒌−𝜇)

= 𝑍−1
0 Tr

[
e−𝛽𝐻0 (1 − 𝜙†

𝒌𝑠
𝜙
𝒌𝑠
)
]

e−𝛽 (E𝒌−𝜇)

= (1 − 𝑛𝒌 )e−𝛽 (E𝒌−𝜇) ,

which gives a familiar Fermi-Dirac distribution

𝑛𝒌 =
1

e𝛽 (E𝒌−𝜇) + 1
. (1.28)
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Now the explicit time-dependent propagator becomes

𝐺0
𝒌𝑠 (𝜏) = e−𝜏 (E𝒌−𝜇)

{
−(1 − 𝑛𝒌 ) 𝜏 > 0
𝑛𝒌 𝜏 ≤ 0

. (1.29)

One can also see that the propagator is anti-periodic

𝐺0
𝒌𝑠 (−𝛽 < 𝜏 < 0) = e−𝜏 (E𝒌−𝜇)𝑛𝒌

= e−𝜏 (E𝒌−𝜇) (1 − 𝑛𝒌 )e−𝛽E𝒌

= e−(𝜏+𝛽) (E𝒌−𝜇) (1 − 𝑛𝒌 )
= −𝐺0

𝒌𝑠 (0 < 𝜏 + 𝛽 < 𝛽) ,

which results in
𝐺0

𝒌𝑠 (𝜏) = −𝐺0
𝒌𝑠 (𝜏 + 𝛽) . (1.30)

1.3.3 Frequency propagator

We define the Fourier transform in 𝜏 as

𝐺̃0
𝒌𝑠 (𝜔) =

1
2

∫ 𝛽

−𝛽
𝑑𝜏𝐺0

𝒌𝑠 (𝜏)e𝑖𝜔𝜏 , (1.31)

with 𝜔 = 𝜋
𝛽 𝑛. A very neat simplification follows when we use the periodicity property of the

propagator.

𝐺̃0
𝒌𝑠 (𝜔) =

1
2

∫ 𝛽

−𝛽
𝑑𝜏𝐺0

𝒌𝑠 (𝜏)e𝑖𝜔𝜏

=
1
2

∫ 𝛽

0
𝑑𝜏𝐺0

𝒌𝑠 (𝜏)e𝑖𝜔𝜏 +
1
2

∫ 0

−𝛽
𝑑𝜏𝐺0

𝒌𝑠 (𝜏)e𝑖𝜔𝜏

=
1
2

∫ 𝛽

0
𝑑𝜏𝐺0

𝒌𝑠 (𝜏)e𝑖𝜔𝜏 + e𝑖𝜔𝛽
1
2

∫ 𝛽

0
𝑑𝜏𝐺0

𝒌𝑠 (𝜏 + 𝛽)e𝑖𝜔𝜏

=
1 − e𝑖𝜔𝛽

2

∫ 𝛽

0
𝑑𝜏𝐺0

𝒌𝑠 (𝜏)e𝑖𝜔𝜏 .

Now

1 − e𝑖𝜔𝛽

2
=

{
1 𝜔 = 𝜋

𝛽 (2𝑛 + 1)
0 𝜔 = 𝜋

𝛽 2𝑛
.

So we can rewrite
𝐺̃0

𝒌𝑠 (𝜔) =
∫ 𝛽

0
𝑑𝜏𝐺0

𝒌𝑠 (𝜏)e𝑖𝜔𝜏 , 𝜔 =
𝜋

𝛽
(2𝑛 + 1) . (1.32)
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1.3 Thermal Field Theory

Similarly an inverse transform is defined as the Matsubara sum

𝐺0
𝒌𝑠 (𝜏) =

1
𝛽

∑︁
𝜔

𝐺̃0
𝒌𝑠 (𝜔)e−𝑖𝜔𝜏 . (1.33)

With this we can find the exact expression

𝐺̃0
𝒌𝑠 (𝜔) = −

∫ 𝛽

0
𝑑𝜏e−𝜏 (E𝒌−𝜇) (1 − 𝑛𝒌 )e𝑖𝜔𝜏

= −e𝛽 (𝑖𝜔−E𝒌+𝜇) − 1
𝑖𝜔 − E𝒌 + 𝜇

(1 − 𝑛𝒌 ) .

Since 𝜔 is odd e𝑖𝛽𝜔 = −1

𝐺̃0
𝒌𝑠 (𝜔) = −−e−𝛽 (E𝒌−𝜇) − 1

𝑖𝜔 − E𝒌 + 𝜇
(1 − 𝑛𝒌 )

=
e−𝛽 (E𝒌−𝜇) + 1
𝑖𝜔 − E𝒌 + 𝜇

(1 + e−𝛽 (E𝒌−𝜇) )−1 (1.34)

=
1

𝑖𝜔 − E𝒌 + 𝜇
.

1.3.4 Interaction picture

We will consider 𝐻
��
𝑈=0

!
= 𝐻0 to be the free part of the Hamiltonian and the rest as the interaction 𝐻𝐼 .

Then we define something analogous to the 𝑆-matrix [6]

e−𝜏𝐻 = e−𝜏 (𝐻0+𝐻𝐼 ) = e−𝜏𝐻0𝑆(𝜏) . (1.35)

The time dependence of the states is still defined via free Hamiltonian (1.21). It is easy to solve for
𝑆(𝜏) by differentiating both sides of (1.35).

−𝐻e−𝜏𝐻 = e−𝜏𝐻0
𝜕𝑆(𝜏)
𝜕𝜏

− 𝐻0e−𝜏𝐻0𝑆(𝜏) .

Multiply both sides by e𝜏𝐻0 gives an ordinary differential equation (ODE)

−𝐻𝐼 (𝜏)𝑆(𝜏) =
𝜕𝑆(𝜏)
𝜕𝜏

.

With the condition 𝑆(0) = 1 this ODE has the solution

𝑆(𝜏) = 𝑇𝜏 exp
{
−

∫ 𝜏

0
𝐻𝐼 (𝜏′)𝑑𝜏′

}
(1.36)

=
∞∑︁
𝑛=0

(−)𝑛
𝑛!

∫ 𝜏

0
𝑑𝜏1 · · ·

∫ 𝜏

0
𝑑𝜏𝑛𝑇𝜏 [𝐻𝐼 (𝜏1) · · ·𝐻𝐼 (𝜏𝑛)] . (1.37)
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Here 𝑇𝜏 is again a time ordering operator. One important corollary comes from 𝐻𝐼 being made up of
two parts 𝐻𝐼 = 𝐻𝐼1 + 𝐻𝐼2. Then the expansion reads

𝑆(𝜏) =
∞∑︁
𝑛=0

(−)𝑛𝐶 𝑝𝑛
𝑛!

∫ 𝜏

0
𝑑𝜏1 · · ·

∫ 𝜏

0
𝑑𝜏𝑛𝑇𝜏 [𝐻𝐼1(𝜏1) · · ·𝐻𝐼1(𝜏𝑝)𝐻𝐼2(𝜏𝑝+1) · · ·𝐻𝐼2(𝜏𝑛)] . (1.38)

1.3.5 Correlator

Now we can define the full thermal correlator and denote with capital 𝐶

𝐶𝒌𝑠 (𝜏) = −
Tr

[
e−𝛽𝐻𝑇𝜏 [𝜙𝒌𝑠 (𝜏)𝜙†𝒌𝑠]

]
Tr

[
e−𝛽𝐻

] . (1.39)

In literature this quantity is sometimes referred to as full propagator or dressed propagator and is
denoted with G. If we insert a complete set of states we can write the trace explicitly

𝐶𝒌𝑠 (𝜏 > 0) ∝
∑︁
𝑚,𝑛,𝑟

⟨𝑚 |e−(𝛽−𝜏 )𝐻 |𝑛⟩⟨𝑛|𝜙
𝒌𝑠

e−𝜏𝐻 |𝑟⟩⟨𝑟 |𝜙†
𝒌𝑠
|𝑚⟩

∝
∑︁
𝑛,𝑟

e−(𝛽−𝜏 )𝐸𝑛 ⟨𝑛|𝜙
𝒌𝑠
|𝑟⟩e−𝜏𝐸𝑟 ⟨𝑟 |𝜙†

𝒌𝑠
|𝑛⟩ (1.40)

∝
∑︁
𝑛,𝑟

e−𝛽𝐸𝑛e𝜏(𝐸𝑛−𝐸𝑟) |𝑧𝑛𝑟𝒌𝑠 |2 .

𝐸𝑛 is the fully interacting energy of state 𝑛. In the literature this quantity may be written as calligraphic
G to emphasize that it is a propagator that depends on imaginary time 𝜏. Using the 𝑆-matrix we
rewrite this expression [6]

𝐶𝒌𝑠 (𝜏) = −
Tr

[
e−𝛽𝐻0𝑇𝜏 [𝑆(𝛽)𝜙𝒌𝑠 (𝜏)𝜙†𝒌𝑠]

]
Tr

[
e−𝛽𝐻0𝑆(𝛽)

] . (1.41)

To avoid clutter we introduce new notation

𝑍−1
0 Tr

[
e−𝛽𝐻0𝑇𝜏 [· · · ]

]
!
=

〈
𝑇𝜏 [· · · ]

〉
0 . (1.42)

We can now write the correlator as

𝐶𝒌𝑠 (𝜏) = −

〈
𝑇𝜏 [𝑆(𝛽)𝜙𝒌𝑠 (𝜏)𝜙†𝒌𝑠]

〉
0

⟨𝑆(𝛽)⟩0
. (1.43)

This quantity is used in [4] to study the perturbative effects of Hubbard interaction on graphene sheets.
This analysis can be extended to ribbons, giving similar qualitative results.
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1.3 Thermal Field Theory

1.3.6 Wick’s theorem

As we can anticipate, our calculations require the evaluation of quantities of the form ⟨𝑇𝜏 [Φ1Φ2Φ3 · · · ]⟩0,
where Φ ∈ {𝜙, 𝜙†}. We can calculate such quantities using Wick’s theorem. First note that this
expression can only be nonzero if there are an even number of fields. Wick contraction is defined as

Φ•
1Φ

•
2 =

{Φ1,Φ2}
1 + e𝜆1𝛽E1

= ⟨Φ1Φ2⟩0 = ⟨𝑇𝜏 [Φ1Φ2]⟩0 , (1.44)

where

𝜆𝑖 =

{
1 Φ𝑖 = 𝜙

†
𝑖

−1 Φ𝑖 = 𝜙𝑖
. (1.45)

Assuming 𝜏1 > 𝜏2, explicit calculation shows that there are two options for the contraction

𝜙†•1 𝜙
•
2 = 𝛿1,2𝑛1 , (1.46)

𝜙•1𝜙
†•
2 = 𝛿1,2(1 − 𝑛1) . (1.47)

Now we can write the time ordered thermal average as a sum of all possible wick contractions [5]

⟨Φ1Φ2Φ3 · · ·⟩0 = [Φ•
1Φ

•
2Φ

◦
3Φ

◦
4 · · · ] − [Φ•

1Φ
◦
2Φ

•
3Φ

◦
4 · · · ] + · · · . (1.48)

This result is known as Wick’s theorem.

1.3.7 Feynman Rules

We can diagrammatically express the interaction vertices and propagators/correlators of our system.
This defines a set of Feynman rules,

𝐺0
𝒌𝑠 ∼ 1

𝑖𝜔−E𝒌+𝜇

𝑚2 ∼ −𝑈2

𝒌 ↑

𝒍 ↓

𝒌′ ↑

𝒍′ ↓

∼ 𝑉𝒌′𝒍′𝒌𝒍

(1.49)
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As a check we explicitly calculate to first order the 𝑚2 contribution to the correlator due to the mass
term

𝐺0
𝒑𝑟 (𝜔)

(
𝑚2

)
𝐺0

𝒑𝑟 (𝜔)

= 2
∫ 𝛽

0
𝑑𝜏1e𝑖𝜔𝜏1

∫ 𝛽

0
𝑑𝜏

∑︁
𝒌𝑠

(
−𝑈

2

)
⟨𝑇𝜏 [𝜙†𝒌𝑠 (𝜏)𝜙𝒌𝑠 (𝜏)𝜙𝒑𝑟 (𝜏1)𝜙†𝒑𝑟 ]⟩0

= −𝑈
2
𝐺0

𝒑𝑟 (𝜔)𝐺0
𝒑𝑟 (𝜔) .

The minus sign comes from the expansion of 𝑆 and the other from the definition of the propagator. As
it can be seen after amputating, i.e. removing the incoming and outgoing propagators, we get

𝑚2 = −𝑈
2
.

This agrees with our Feynman rule given above.

1.3.8 Self-energy

The self-energy is defined as the sum of all 1 particle irreducible (1-PI) diagrams Σ𝒌𝑠 (𝑖𝜔) [6]. Using
this we write the Dyson equation, which can be represented diagrammatically as

= + 1𝑃𝐼 .

The poles of the correlator give the interacting energy spectrum:

𝑖𝜔 − E𝜎𝑘 + 𝜇 − Σ𝒌𝑠 (𝜔) = 0 . (1.50)

This equation is known as the quantization condition (QC). After solving for the spectrum we can use
the Matsubara sum to find the 𝜏-dependent correlator,

𝐶𝒌𝑠 (𝜏) =
1
𝛽

∑︁
𝜔

1
𝑖𝜔 − E𝜎𝑘 + 𝜇 − Σ𝒌𝑠 (𝜔)

. (1.51)

This sum can be expressed as a complex contour integral, which is easily solved as a sum over the
residues using Cauchy formula. This leads to the following expression

𝐶𝒌𝑠 (𝜏) =
∑︁
𝑧∗

1

𝑒−𝛽𝑧
∗ + 1

Res
[

1
𝑧 − E𝜎𝑘 + 𝜇 − Σ𝒌𝑠 (𝑧)

, 𝑧∗
]
, (1.52)

where 𝑧∗ are the solutions to Equation 1.50. This expression is used to derive explicit time dependent
correlators and compare with the exact solutions in [4].

Calculating 𝚺

Σ can be calculated at different orders in𝑈. At first order O(𝑈1) there are two contributions. The first
comes from the mass term and was calculated above, while another contribution comes from quartic
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1.3 Thermal Field Theory

interaction

𝐺0
𝒑↑ (𝜔)Σ1

𝑉𝐺
0
𝒑↑ (𝜔)

=
∫
𝜏1,𝜏

e𝑖𝜔𝜏1
∑︁

𝒌′,𝒍′,𝒌 ,𝒍

𝑉𝒌′𝒍′𝒌𝒍 ⟨𝑇𝜏 [𝜙†𝒌′↑ (𝜏)𝜙
†
𝒍′↓ (𝜏)𝜙𝒌↓ (𝜏)𝜙𝒍↑ (𝜏)𝜙𝒑↑ (𝜏1)𝜙†𝒑↑]⟩0

= −
∫
𝜏1,𝜏

e𝑖𝜔𝜏1
∑︁

𝒌′,𝒍′,𝒌 ,𝒍

𝑉𝒌′𝒍′𝒌𝒍

(
−𝐺0

𝒑↑ (𝜏1 − 𝜏)𝛿𝒑𝒌′
) (

−𝐺0
𝒌↓ (0−)𝛿𝒌𝒍′

) (
−𝐺0

𝒑↑ (𝜏)𝛿𝒑𝒍
)

= −
∫
𝜏1,𝜏

e𝑖𝜔𝜏1
∑︁
𝒌

𝑉𝒑𝒌𝒌𝒑𝐺
0
𝒑↑ (𝜏1 − 𝜏)𝐺0

𝒌↓ (0−)𝐺0
𝒑↑ (𝜏)

= 𝐺0
𝒑↑ (𝜔)𝐺0

𝒑↑ (𝜔)
∑︁
𝒌

𝑛𝒌𝑉𝒑𝒌𝒌𝒑

= 𝐺0
𝒑↑ (𝜔)𝐺0

𝒑↑ (𝜔)
𝑈

2Λ

∑︁
𝒌

𝑛𝒌

=
𝑈

2
𝐺0

𝒑↑ (𝜔)𝐺0
𝒑↑ (𝜔) .

A similar calculation can be done for all possible incoming and outgoing particle/hole and up/down
spin combinations. We’ll find that the only terms surviving are 𝒑𝑠 → 𝒑𝑠, which means that up to the
first order in 𝑈 contributions from the mass term and quartic interaction cancel and leading order
contribution is ∼ O(𝑈2). Diagrammatically this cancellation is given as

+ = 0 .

The leading order contribution therefore occurs at O(𝑈2). At this order we can use the previous result
to deduce that the contributions with mass terms and tadpoles cancel. By direct inspection we get the
following contributions

2 × = −𝑈
2

2

∫
1,2
𝐺0

𝒑↑ (𝜏3 − 𝜏1)𝐺0
𝒑↑ (𝜏2)𝐺0

𝒑↑ (𝜏1 − 𝜏2) ,

=
𝑈2

4

∫
1,2
𝐺0

𝒑↑ (𝜏1 − 𝜏2)𝐺0
𝒑↑ (𝜏3 − 𝜏1)𝐺0

𝒑↑ (𝜏2) ,

=
𝑈2

4

∫
1,2
𝐺0

𝒑↑ (𝜏1 − 𝜏2)𝐺0
𝒑↑ (𝜏3 − 𝜏1)𝐺0

𝒑↑ (𝜏2) ,
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2 × = −𝑈
2

4Λ

∑︁
𝒍

∫
1,2
𝐺0

𝒑↑ (𝜏3 − 𝜏2)𝐺0
𝒑↑ (𝜏2)𝐺0

𝒍↓ (𝜏2 − 𝜏1)𝐺0
𝒍↓ (𝜏1 − 𝜏2) ,

=
𝑈2

4Λ

∑︁
𝒍

∫
1,2
𝐺0

𝒍↓ (𝜏2 − 𝜏1)𝐺0
𝒍↓ (𝜏1 − 𝜏2)𝐺0

𝒑↑ (𝜏3 − 𝜏2)𝐺0
𝒑↑ (𝜏2) .

As expected we observe

2 × + + = 0 ,

as well as

2 × + = 0 ,

which leaves only so called “sunset diagram”

.

It is evaluated as

−
∑︁
𝒍′𝒌𝒍

𝑉𝒑𝒍′𝒌𝒍𝑉𝒌𝒍𝒑𝒍′

∫
1,2,3

e𝑖𝜔𝜏3𝐺0
𝒌↑ (𝜏1 − 𝜏2)𝐺0

𝒍↓ (𝜏1 − 𝜏2)𝐺0
𝒍′↓ (𝜏2 − 𝜏1)𝐺0

𝒑↑ (𝜏3 − 𝜏1)𝐺0
𝒑↑ (𝜏2) .

From here we can take the integral by going to frequency space and performing Matsubara sums
Equation B.7. After we amputate the outgoing legs Equation B.8, we arrive at the final expression for
the leading order contribution to the self-energy

=
∑︁
𝒍′𝒌𝒍

|𝑉𝒑𝒍′𝒌𝒍 |2
𝑛−𝒍′𝑛𝒌 + (𝑛𝒍′ − 𝑛𝒌 )𝑛−𝒍

𝑖𝜔 − (E𝜌𝑘 − E𝜎′

𝑙′ + E𝜎𝑙 ) + 𝜇
.

We have defined −𝒌 = (𝑘,−𝜌). For 2-sites E𝜌𝑘 = 𝜌E and |𝑉𝒑𝒍′𝒌𝒍 |2 = 𝑈2

4 𝛿𝜋𝜎′ ,𝜌𝜎 . If we denote

𝑛± =
1

1 + e±𝛽E
, (1.53)
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we can write

Σ2
𝜋𝑠 (𝜔) =

𝑈2

4

[
3𝑛−𝑛+
𝑖𝜔 − 𝜋E + 1 − 3𝑛−𝑛+

𝑖𝜔 + 𝜋3E

]
.

1.3.9 Solving the quantization condition

It is apparent that the corrections to Σ are of the form

∑︁
𝑛

𝐶𝑛
𝑖𝜔 − 𝑅𝑛

. (1.54)

This implies that the frequency dependent correlator is a rational function of 𝜔:

𝐶𝒌𝑠 (𝑖𝜔) =
1

𝑖𝜔 − E − ∑
𝑛

𝐶𝑛
𝑖𝜔−𝑅𝑛

=
𝑃(𝑖𝜔)
𝑄(𝑖𝜔) , (1.55)

where 𝑃,𝑄 are polynomials. Finding residues of a rational function is very simple on a computer, so
we are able to evaluate Equation 1.52 numerically.

1.4 Numerical Methods

Large part of this work involves comparing and contrasting theoretical calculations with results from
numerical simulations. Therefore, in this section, we provide a cursory description of the numerical
formalisms that have been used.

1.4.1 Hybrid Monte Carlo

Thermal averages encountered in section 1.3 can be estimated using computers, by sampling values
from the probability distribution of the possible field configurations for given values of the system
parameters, i.e. 𝛽,𝑈, 𝜇 etc. and using sampled field values to calculate the thermal averages [7]. This
is a difficult task as the distribution is not known beforehand and must itself be estimated. Stochastic
methods used to sample field values are collectively known as Monte Carlo (MC) methods (after
the Monte Carlo Casino in Monaco). Monte Carlo methods are very general methods of sampling
from the distributions using computers. The specific class of these methods used here are known as
Markov chain Monte Carlo (MCMC), where the aim is to start from some initial (and presumably
random) configuration and construct the Markov chain of configurations that reach equilibrium and
approximate the desired distribution,

Φ0 → Φ1 → Φ2 → · · · → Φ . (1.56)

We can start from any Φ0 and if all configurations are reachable, that is to say we have strong ergodicity,
then after a sufficient amount of time we will converge to the same distribution.

A Markov process only depends on the previous state of the system and transition amplitude
𝑇 (Φ𝑛 |Φ𝑛−1) which is the probability of reaching configuration Φ𝑛 starting from the configuration
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Φ𝑛−1. In equilibrium the probability of hopping in and out of any configuration must be the same.
This can be accomplished under the condition of detailed balance

𝑇 (Φ|Φ′)𝑃(Φ′) = 𝑇 (Φ′ |Φ)𝑃(Φ) . (1.57)

Here 𝑃(Φ) is the probability of the system being in configuration Φ, usually one uses Boltzmann
factor - e−𝛽𝐸Φ for this. If we sum over all Φ’s we get the desired equilibrium property∑︁

Φ

𝑇 (Φ|Φ′)𝑃(Φ′) =
∑︁
Φ

𝑇 (Φ′ |Φ)𝑃(Φ) , (1.58)

where RHS is the probability of leaving configuration Φ′ and LHS is the probability of reaching it.
When doing MCMC the first 𝑁𝑡ℎ𝑒𝑟𝑚 configurations are discarded to allow the system to equilibrate or
thermalize. Subsequent configurations are saved with some chosen frequency and can be used for
estimation of the observable quantities.

Metropolis-Hastings Algorithm

The oldest and simplest MCMC algorithm is the Metropolis-Hastings:

1. Starting from Φ𝑛−1 choose Φ𝑛 using some predetermined method.

2. Accept the new configuration with a probability

min
(
1, e−𝛽Δ𝐸

)
, Δ𝐸 = 𝐸𝑛 − 𝐸𝑛−1 . (1.59)

3. Go to 1.

Every MCMC algorithm builds on this. HMC specifically introduces a deterministic method of
generating configurations based on the time evolution of the system. Since the Hamiltonian defines the
flow on the phase space, it can be numerically integrated to evolve the system from Φ𝑛−1 to Φ𝑛. This
is referred to as molecular dynamics. In order to satisfy detailed balance molecular dynamics have to
be reversible and area preserving in phase space, in other words the the transformation Φ𝑛−1 → Φ𝑛
must be canonical.

HMC also requires us to generate initial momenta Π𝑛−1. This is simply done by sampling the
momenta from the Gaussian distribution ∼ N(0, 1) and letting the time evolution equilibrate the
distributions. With this in mind we can write down the algorithm for HMC

1. Starting from Φ𝑛−1 sample Π𝑛−1.

2. Use molecular evolution to go from (Φ𝑛−1,Π𝑛−1) to (Φ𝑛,Π𝑛).

3. Accept the new configuration with probability

min
©­­
«
1,

e−
Π2
𝑛

2 −𝐸𝑛

e−
Π2
𝑛−1
2 −𝐸𝑛−1

ª®®
¬
. (1.60)
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1.4.2 Leapfrog Integration

As mentioned in the previous section molecular dynamics must be area preserving in phase space
and since we are dealing with finite precision calculations we must carefully choose the integration
procedure in order to satisfy this requirement. The simplest one is known as the Leapfrog. It is a
specific case of the more general class of Omelyan integrators [8]. Given an initial (Φ(0),Π(0)) and
timestep ℎ we first advance momenta by a half step

Π

(
ℎ

2

)
= Π(0) − 𝜕𝐻

𝜕Φ

����
0

ℎ

2
. (1.61)

Then we apply Euler method to Φ and Π successively

Φ(𝑛ℎ) = Φ(𝑛ℎ − ℎ) + Π

(
ℎ

2

)
ℎ (1.62)

Π

(
𝑛ℎ + ℎ

2

)
= Π

(
𝑛ℎ − ℎ

2

)
− 𝜕𝐻

𝜕Φ

����
𝑛ℎ

ℎ . (1.63)

Finally we do last half step to get the final value of momenta

Π(𝑛ℎ) = Π

(
𝑛ℎ − ℎ

2

)
− 𝜕𝐻

𝜕Φ

����
𝑛ℎ

ℎ

2
. (1.64)

In our case Φ(0) = Φ𝑛−1 and Φ(𝑛ℎ) = Φ𝑛, this is the configuration we do accept-reject step for. It is
easy to see that leapfrog integration has unit Jacobian. Each individual transformation changes only Φ
or Π and the transformations can be written using upper triangular matrices. e.g.

𝜕 (𝑃(ℎ/2), 𝑄(0))
𝜕 (𝑃(0), 𝑄(0)) = det ©­

«
1 −𝜕𝐻𝜕Φ

����
0

ℎ
2

0 1

ª®
¬
= 1 . (1.65)

The same goes for all other transformations. The Jacobian of successive transforms is a product of
individual Jacobians. Since the Jacobian is 1 the integration procedure preserves the volume in phase
space.

1.4.3 Fitting Correlators

After generating configurations using HMC and calculating correlators, we want to fit them to a sum
of exponentials to extract various interacting energy contributions as given in Equation 1.40. Fitting
the sum of exponentials is a notoriously hard problem. In this manuscript I’ll describe one method
that reformulates the problem. As we know the sum of exponentials is a solution to a linear ordinary
differential equation (ODE) with constant coefficients. Let

𝐶 (𝜏) = 𝑘0 +
𝑁∑︁
𝑛=1

𝐴𝑛e−E𝑛𝜏 . (1.66)
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Then it must be a solution of

𝑑𝑁

𝑑𝜏𝑁
𝐶 + 𝑎𝑁−1

𝑑𝑁−1

𝑑𝜏𝑁−1𝐶 + · · · + 𝑎1
𝑑

𝑑𝜏
𝐶 + 𝑎0𝐶 = 𝑘0 , (1.67)

if and only if the exponents E are the roots of the characteristic polynomial,

E𝑁 + 𝑎𝑁−1E𝑁−1 + · · · + 𝑎1E + 𝑎0 = 0 . (1.68)

If we integrate Equation 1.67 𝑁 times we get

𝐶 + 𝑎𝑁−1

∫
𝑑𝜏𝐶 + · · · + 𝑎1

∫ 𝑁−1
𝑑𝜏𝐶 + 𝑎0

∫ 𝑁

𝑑𝜏𝐶 = 𝑘𝑁 + 𝑘𝑁−1𝜏 + · · · + 𝑘0𝜏
𝑁 . (1.69)

Since the correlators are given for discrete values of 𝜏 = 𝛿𝑛 the integrals are calculated via trapezoidal
approximation ∫ 𝑛𝛿

0
𝑑𝜏 𝑓 (𝜏) !

=
𝑛−1∑︁
𝑗=0

𝑓 ( 𝑗𝛿) + 𝑓 ( 𝑗𝛿 + 𝛿)
2

𝛿 . (1.70)

We denote the 𝑛’th integral evaluated at 𝑗𝛿 as 𝐶𝑚𝑗 . We then repeatedly apply trapezoidal integration
and generate a data matrix of the shape 𝑁𝑡 × 𝑁 − 1

𝑌 =

©­­­­­«

𝐶1
0 · · · 𝐶𝑁0
𝐶1

1 · · · 𝐶𝑁1
...

𝐶1
𝑁𝑡

· · · 𝐶𝑁𝑁𝑡

ª®®®®®¬
. (1.71)

Now we construct the Vandermonde matrix for 𝜏’s

𝑉 =

©­­­­
«

1 0 · · · 0
1 𝛿 · · · 𝛿𝑁

...
...

1 𝑁𝑡𝛿 · · · (𝑁𝑡𝛿)𝑁

ª®®®®
¬
. (1.72)

We then adjoin the two matrices (−𝑌 |𝑉) and solve the least squares problem

©­­­­­
«

−𝐶1
0 · · · −𝐶𝑁0 1 0 · · · 0

−𝐶1
1 · · · −𝐶𝑁1 1 𝛿 · · · 𝛿𝑁

...

−𝐶1
𝑁𝑡

· · · −𝐶𝑁𝑁𝑡
1 𝑁𝑡𝛿 · · · (𝑁𝑡𝛿)𝑁

ª®®®®®
¬

©­­­­­­­­­
«

𝑎𝑁−1
𝑎𝑁−2
...
𝑘0
𝑘1
...

ª®®®®®®®®®
¬

=
©­­
«
𝐶0

0
𝐶0

1
...

ª®®
¬
. (1.73)

By using the coefficients 𝑎𝑁−1, 𝑎𝑁−2 · · · we can write down the characteristic polynomial and solve it
numerically to obtain the estimated Ê𝑛’s. With the exponentials known, we can estimate both the 𝐴𝑛’s
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as well as 𝑘0 by minimizing

𝑁𝑡−1∑︁
𝑗=0

�����𝐶 ( 𝑗𝛿) − 𝑘0 −
∑︁
𝑛

𝐴𝑛e−Ê𝑛 𝑗 𝛿

�����
2

. (1.74)
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CHAPTER 2

Topology and symmetry in carbon nanoribbons

This chapter is based on [1]

Topology and symmetry in carbon nanoribbons, L. Razmadze, PoS Regio2021 031 (2022)
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Chapter 2 Topology and symmetry in carbon nanoribbons

In the field of condensed matter physics, energy gaps provide essential insights into the electronic
and quantum behaviors of physical systems. As the size of a system approaches infinity, referred
to as the thermodynamic limit, the difference between the ground state and the first excited state
energy approaches at a certain value. Systems are classified as gapped if this energy difference
remains non-zero and typically exhibit insulating behavior. Conversely, for gapless systems this energy
difference is zero, which means creating excitations requires very little energy giving such system
metallic or semi-metallic characteristics. These distinctions between gapped and gapless phases form
the foundation for understanding the topological nature of different states of matter.

The behavior of a quantum system is governed by a Hamiltonian 𝐻 that describes the total energy
as a function of parameters such as hopping energies, interaction strengths, and chemical potentials.
When the parameters are varied adiabatically the ground state of starting Hamiltonian gets mapped to
the ground state of the final Hamiltonian. If this can be done without closing the energy gap, we say
that the two belong to the same equivalence class. Topologically trivial class would be an atomic
insulator, where electrons are tightly bound to the atomic cores. If a system is not equivalent to the
atomic insulator under this definition, it signifies a potential topological phase transition. This provides
a more refined definition of phases of matter, highlighting that two systems can both be classified as
insulators—characterized by an energy gap—yet display fundamentally different behaviors.

An essential application of topology in condensed matter physics is the emergence of topologically
protected quantum states, which derive their robustness from global properties rather than local
perturbations. These states are remarkably resistant to noise and external disturbances, making them
prime candidates for fault-tolerant quantum computing. A prototypical example of this phenomenon
is the Kitaev chain, a one-dimensional model that exhibits a transition between trivial and non-trivial
topological phases. The non-trivial phase supports Majorana zero modes, localized edge states with
zero energy that are fundamentally distinct from the bulk states. These modes have been studied as
potential physical realizations of topological qubits for quantum information processing due to their
non-local encoding of information, which enhances their stability against local decoherence.

The model studied in this work extends the Kitaev chain framework to hexagonal carbon nanoribbons
(CNRs) with both zigzag and armchair geometries. These nanoribbons, derived from graphene, possess
unique electronic properties due to their quasi-one-dimensional structure and edge configurations. The
system is described using the BCS-Hubbard model, which incorporates nearest-neighbor hopping 𝑡,
Hubbard interaction𝑈, and superconducting pairing Δ. Superconducting pairs can be experimentally
introduced by placing the nanoribbons on a superconductive substrate. Importantly, the model is
exactly solvable when the hopping and pairing strengths are equal (𝑡 = Δ), allowing for a detailed
analysis of how the system’s energy gap and quantum phases depend on interaction strength𝑈.

For𝑈 = 0, the system behaves similarly to a gapless metal for certain nanoribbon widths, particularly
in zigzag configurations and armchair ribbons with widths𝑊 = 3𝑚 + 2 (where 𝑚 is an integer). As
𝑈 increases, the energy gap opens, indicating a transition to a gapped state distinct from an atomic
insulator. In the opposite limit, as𝑈 → ∞, the system approaches an insulating state characterized by
strong electron localization. This behavior demonstrates the intricate interplay between interactions,
geometry, and superconducting pairing.

The study applies the BCS-Hubbard model to derive effective Hamiltonians for ZNRs and ANRs,
taking into account both ferromagnetic (F) and antiferromagnetic (AF) orders. In the AF phase,
sublattices exhibit opposite spin polarizations, leading to a doubly degenerate energy spectrum with a
gap. In contrast, the F phase, where spins align uniformly, results in a splitting of energy levels. The
analysis shows that both ZNRs and ANRs undergo gap-opening.
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By transforming the Hamiltonian into a Majorana fermion representation, the study reveals a
connection to a 4D Dirac equation, enabling further exploration of the system’s topological invariants
and conserved quantities. For gapped ANRs as the interaction strength increases the gap closes and
then opens again implying the existence of a critical interaction strength𝑈𝑐 where potential transition
between topologically distinct phase occurs.

2.1 Introduction

Topology is an interesting mathematical field in and of itself and existing toolkit of topology can be
used in condensed matter to extend classification of states of matter.

2.1.1 Topology in condensed matter

Key concept in topology is continuity. Two topological spaces are considered to be equivalent if they
can be continuously mapped to each-other. In condensed matter systems we introduce the notion of
topological equivalence on the space of gapped Hamiltonians. Hamiltonian is gapped if the difference
in its ground state and first excited state energies remains finite in the limit where we take the system
to be infinitely large.

Consider a space Ω of Hamiltonians. Two Hamiltonians are defined as topologically equivalent if
the two can be connected in the Hamiltonian space without closing the energy gap. Physically this
corresponds to adiabatically changing the parameters to transform one Hamiltonian into another while
every intermediate Hamiltonian remains gapped. In Figure 2.1 𝐻 and 𝐻′′ are equivalent since there
exists a path connecting them while satisfying this requirement. But 𝐻′ is separated from 𝐻 and 𝐻′′

by a wall of gap closing denoted in red, meaning 𝐻 and 𝐻′ are topologically inequivalent.

Figure 2.1: Hamiltonian space with two phases separated by wall of gap closing denoted in red. 𝐻 and 𝐻′′ are
equivalent while 𝐻 and 𝐻′ are not.

Having defined equivalence we have to define a topologically trivial phase. For this we choose
atomic insulators which are insulating because electrons are tightly bound to the atomic cores inside
the solid. If a system is not topologically equivalent to an atomic insulator then we say that it is
topological.
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Chapter 2 Topology and symmetry in carbon nanoribbons

2.2 Kitaev Chain

Kitaev introduced a 1D toy model [9] in order to argue that Majorana states could be created in solid
state systems. His main motivation was development of Majoranas as qubits for quantum computing
due to their robustness, which stems from the topological invariant that the system possesses - Parity.
The chain is a 1D system with nearest neighbor hopping 𝑡, chemical potential 𝜇 and nearest neighbor
superconductive pairing Δ. These physical properties span our parameter space. Hamiltonian is given
as

𝐻 = −𝑡
𝐿−1∑︁
𝑗=1

(𝑐†𝑗𝑐 𝑗+1 + ℎ.𝑐.) + Δ
𝐿−1∑︁
𝑗=1

(𝑐 𝑗𝑐 𝑗+1 + ℎ.𝑐.) − 𝜇
𝐿∑︁
𝑗=1
𝑛 𝑗 , (2.1)

where 𝑛 𝑗 = 𝑐
†
𝑗𝑐 𝑗 is the number operator. Note first two sums don’t include last lattice site due to

open boundary conditions. Also note that due to the pairing term 𝑈 (1) symmetry is broken down
to Z2. In order to investigate this system further we assume each lattice cite to be occupied by two
Majorana fermions 𝑐 → 𝛾𝑎, 𝛾𝑏(see Figure 2.2(a))

𝛾 𝑗𝑎 = 𝑐 𝑗 + 𝑐†𝑗 , 𝛾 𝑗𝑏 = 𝑖(𝑐 𝑗 − 𝑐†𝑗) . (2.2)

Ordinary fermion operators 𝑐 are nilpotent meaning ∃𝑛 ∈ N : 𝑐𝑛 = 0. For spin-1/2 particles like we
have here, 𝑛 = 2. Majorana fermions 𝛾 are superpositions of creation and annihilation operators of
ordinary fermions, because of that they are no longer nilpotent, instead 𝛾2 = 1. They do, however, still
retain the anti-commutation property of ordinary fermions, that is to say {𝛾𝑖𝜆, 𝛾 𝑗𝜆′} = 𝛿𝑖 𝑗𝛿𝜆𝜆′ . parity
operator can be constructed by taking products of these operators

𝑃 =
𝐿∏
𝑗=1

(−𝑖𝛾 𝑗𝑎𝛾 𝑗𝑏) . (2.3)

Assuming symmetric line conditions(Δ = 𝑡) results in

𝐻 = 𝑡
𝐿−1∑︁
𝑗=1

𝑖𝛾 𝑗𝑏𝛾 𝑗+1𝑎 −
𝜇

2

𝐿∑︁
𝑗=1

(1 + 𝑖𝛾 𝑗𝑎𝛾 𝑗𝑏) . (2.4)

This system admits two limits 𝜇 ≫ 𝑡 and 𝑡 ≫ 𝜇. In first case (Figure 2.2(b)) majoranas become
bound on the same cites and and there is no more hopping between the neighboring cites. This system
has a unique ground state. In the opposite limit we end up with a 2-fold degenerate ground state.
Degeneracy is due to parity - 𝑃 = ±1. As we can see for two sets of (𝑡,Δ, 𝜇) we get two Hamiltonians
with different eigensystems. If we were to smoothly vary these parameters (0, 0, 𝜇) → (𝑡, 𝑡, 0) there
would be gap closing at (𝑡, 𝑡, 2𝑡) which, from the definition in section 2.1.1, means that these two
Hamiltonians represent topologically distinct phases.
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2.3 BCS-Hubbard Model

(a) Each lattice cite is occupied by two Majorana fermions denoted in black and white.
Dashed line implies there are nearest neighbor interactions

(b) 𝜇 ≫ Δ, 𝑡 majorana fermions are bound to each-other on the same cite. There is no
more hopping between neighboring cites.

(c) 𝜇 ≪ Δ, 𝑡 majorana fermions from neighboring cites are bound to each-other there
are no hoppings between bound states. There are two unpaired majoranas on the
endpoints of the chain.

Figure 2.2: Diagrammatic representation of various phases in Kitaev chain

2.3 BCS-Hubbard Model

2.3.1 Hamiltonian

Consider an N-dimensional general bipartite lattice with nearest neighbor hopping - 𝑡 and super-
conductive(SC) pairing - Δ. Hopping and SC are defined only between different sublattices. Here
sublattices 𝐴 and 𝐵 are color-coded in blue and red to make the equations more amenable to visual
parsing. In this chapter 𝑖 and 𝑗 will be exclusively referring to cites on sublattice 𝐴 and 𝐵 respectively
and will be color-coded accordingly as 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐵. Nearest neighbors are denoted as ⟨𝑖, 𝑗⟩ and
𝜎 is a label for spin. Write Hamiltonian as in [10]

𝐻free =
∑︁

⟨𝑖, 𝑗 ⟩𝜎
𝑡𝑖 𝑗𝑐

†
𝑖𝜎𝑐 𝑗 𝜎 + ℎ.𝑐. + Δ𝑖 𝑗𝑐

†
𝑖𝜎𝑐

†
𝑗 𝜎 + ℎ.𝑐. . (2.5)

Furthermore Hubbard interaction at half filling is defined using the spin degrees of freedom.

𝐻hubbard = 𝑈
∑︁
𝑙

(
𝑛𝑙↑ −

1
2

) (
𝑛𝑙↓ −

1
2

)
. (2.6)

For a homogeneous case 𝑡𝑖 𝑗 = 𝑡 and Δ𝑖 𝑗 = Δ.

2.3.2 Composite fermions

We go to Majorana basis similar to Kitaev model

𝑐𝑖𝜎 = 𝜂𝑖𝜎 + 𝑖𝛽𝑖𝜎 , 𝑐 𝑗 𝜎 = 𝛽 𝑗 𝜎 + 𝑖𝜂 𝑗 𝜎 ,

resulting in

𝐻 =
∑︁

⟨𝑖, 𝑗 ⟩𝜎
2𝑖(𝑡 − Δ)𝜂𝑖𝜎𝜂 𝑗 𝜎 − 2𝑖(𝑡 + Δ)𝛽𝑖𝜎𝛽 𝑗 𝜎 −𝑈

∑︁
𝑙

(2𝑖𝛽𝑙↑𝛽𝑙↓) (2𝑖𝜂𝑙↑𝜂𝑙↓) . (2.7)

At Symmetric lines 𝐷𝑙 = 4𝑖𝜂𝑙↑𝜂𝑙↓ is conserved for each lattice cite as was shown in [11], [12].
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However, 𝐷1 =
∑
𝑙 4𝑖𝛽𝑙↑𝛽𝑙↓ and 𝐷2 =

∑
𝑙 4𝑖𝜂𝑙↑𝜂𝑙↓ are conserved for all values of Δ, 𝑡. Which is easy

to show by writing [𝐻, 𝐷𝑎] and using commutator-anticommutator identities.
From here we can make another change of basis to composite 𝑑-fermions.

𝑑𝑖1 = 𝛽𝑖↑ − 𝑖𝛽𝑖↓ , 𝑑 𝑗1 = 𝛽 𝑗↑ + 𝑖𝛽 𝑗↓ ,
𝑑𝑖2 = 𝜂𝑖↑ + 𝑖𝜂𝑖↓ , 𝑑 𝑗2 = 𝜂 𝑗↑ − 𝑖𝜂 𝑗↓ .

For Δ = 𝑡 Hamiltonian becomes quadratic for any value of𝑈, hence diagonalizable. Moreover since
𝐷𝑙 is conserved and 𝐷2

𝑙 = 1 Hilbert space gets split into 2𝑁 sectors where 𝑁 is the number of lattice
cites. In composite fermion basis 𝐷𝑙 measures 𝑦̂-axis spin polarization.

2.4 Carbon Nanoribbons

Applying BCS-Hubbard model to nanoribbons we derive Bloch matrix for zigzag and armchair
geometries and for both ferromagnetic and antiferromagnetic cases. In the rest of the paper 𝐷𝑎𝑚 and
𝐷𝑏𝑚 are 𝐷𝑙 for sublattices 𝐴 and 𝐵 respectively. 𝑚 is the index of lattice cites along the width of the
ribbon. Choosing a specific Hilbert space sector is tantamount to setting corresponding 𝐷𝑙’s to 1 or -1.

2.4.1 Zigzag Nanoribbon(ZNR)

Figure 2.3: Lattice of an zigzag carbon nanoribbon, with unit cell(dashed) of size 𝑎
√

3, width 𝑁 and length 𝐿𝑦 .

Antiferromagnetic(AF) order

In [12] the ground state of this system is shown to belong to the sector of the Hilbert space where
𝐷𝑎𝑚 = −𝐷𝑏𝑚 = −1 . This shall be referred to as AF order, since in this sector both sub-lattices are
populated by 𝑑2-fermions and on different sub-lattices 𝑑2 has opposite 𝑦-polarizations. This can be

32



2.4 Carbon Nanoribbons

verified by examining the transformations between ordinary and composite fermions bases. Now the
matrix can be written as

𝐻𝑘 =

©­­­­
«

−𝑈2 0 0 2𝑖𝑡 (𝑔𝑘1 + K)
0 𝑈

2 2𝑖𝑡 (𝑔𝑘1 + K) 0
0 −2𝑖𝑡 (𝑔𝑘1 + K†) −𝑈2 0

−2𝑖𝑡 (𝑔𝑘1 + K†) 0 0 𝑈
2

ª®®®®
¬
. (2.8)

K =
∑
𝑚 |𝑚⟩⟨𝑚 + 1| is a unilateral shift operator with ones on the upper diagonal and 𝑔𝑘 =

2 cos(√3𝑘𝑎/2). Energy levels are given in Figure 2.4(b). We observe gap opening however the
degeneracy is not lifted and every level is still doubly degenerate.

Ferromagnetic(F) order

Ferromagnetic in this context means we are considering the sector of Hilbert space where only one
sub-lattice is populated by 𝑑2-fermions. It corresponds to the state in which all 𝑑2 fermions are aligned.
It’s the same as setting 𝐷𝑙 = 1 or 𝐷𝑙 = −1. Now the matrix looks like

𝐻𝑘 =

©­­­­«

∓𝑈2 0 0 2𝑖𝑡 (𝑔𝑘1 + K)
0 ±𝑈2 2𝑖𝑡 (𝑔𝑘1 + K) 0
0 −2𝑖𝑡 (𝑔𝑘1 + K†) ±𝑈2 0

−2𝑖𝑡 (𝑔𝑘1 + K†) 0 0 ∓𝑈2

ª®®®®¬
. (2.9)

Since the spectrum is symmetric around zero, ± doesn’t change anything, and after solving for the
eigenvalues and plotting them w.r.t. momentum (Figure 2.4(c)) one can see energy levels splitting.
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(b) Antiferromagnetic order
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Figure 2.4: Zigzag energy levels for F and AF orders. 𝐸 (𝑘) and 𝑘 are measured in units of 𝑡. Calculation is
done for 𝑁 = 20,𝑈 = 1

2.4.2 Armchair Nanoribbon(ANR)

Armchair nanoribbon behavior depends on it’s width. It can be metallic or have an energy gap.

Antiferromagnetic(AF) order

As it was for zigzag configuration AF order here means that we are in the Hilbert space sector defined
by 𝐷𝑎𝑚 = −𝐷𝑏𝑚 = −1 and the matrix is rewritten as
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Chapter 2 Topology and symmetry in carbon nanoribbons

Figure 2.5: Lattice of an armchair carbon nanoribbon, with unit cell(dashed) of size 3𝑎, width 𝑁 and length 𝐿𝑦

𝐻𝑘 =

©­­­­
«

−𝑈2 0 0 2𝑖𝑡 (1 + 𝑒−𝑖𝑘𝑎𝑡/2J)
0 𝑈

2 2𝑖𝑡 (1 + 𝑒𝑖𝑘𝑎𝑡/2J) 0
0 −2𝑖𝑡 (1 + 𝑒−𝑖𝑘𝑎𝑡/2J) −𝑈2 0

−2𝑖𝑡 (1 + 𝑒𝑖𝑘𝑎𝑡/2J) 0 0 𝑈
2

ª®®®®
¬
. (2.10)

J =
∑
𝑚 |𝑚⟩⟨𝑚 + 1| + |𝑚 + 1⟩⟨𝑚 | is a bilateral shift operator with ones on the upper and lower

diagonals. Solving for the eigenvalues for every value of 𝑘 and plotting the results gives the energy
band structure 2.7(a), 2.7(b), 2.7(c). As with zigzag geometry here too we observe gap opening
without lifting the degeneracy.
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Figure 2.6: Energy bands for widths 5,6,7 for the case𝑈 = 0. Everything is measured in units of 𝑡.
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(c) N=7 (AF)

Figure 2.7: Energy bands for widths 5,6,7 in antiferromagnetic order. Everything is measured in units of 𝑡. For
all calculations𝑈 = 1

Ferromagnetic(F) order

Ferromagnetic as it was for zigzag nanoribbon means we are considering the sector of Hilbert space
where only one sub-lattice is populated by 𝑑2-fermions, resulting in 𝐷𝑎𝑚 = 𝐷𝑏𝑚 = ±1 . Now the
matrix looks like

𝐻𝑘 = ±
©­­­­«

∓𝑈2 0 0 2𝑖𝑡 (1 + 𝑒−𝑖𝑘𝑎𝑡/2J)
0 ±𝑈2 2𝑖𝑡 (1 + 𝑒𝑖𝑘𝑎𝑡/2J) 0
0 −2𝑖𝑡 (1 + 𝑒−𝑖𝑘𝑎𝑡/2J) ±𝑈2 0

−2𝑖𝑡 (1 + 𝑒𝑖𝑘𝑎𝑡/2J) 0 0 ∓𝑈2

ª®®®®¬
.

(2.11)
Since the spectrum is symmetric ± doesn’t change anything. Solving for the eigenvalues and

plotting it w.r.t. we can see the same behavior as in zigzag case, degeneracy is lifted (Figure 2.8(a),
Figure 2.8(b), Figure 2.8(c)). For some widths there exists a critical value of𝑈 = 𝑈𝑐 where the band
gap closes, but if we keep increasing𝑈 eventually gap opens again and the band structure becomes that
of a trivial insulator. Since band closing is unavoidable initial state must be topologically nontrivial.
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Figure 2.8: Energy bands for widths 5,6,7 in ferromagnetic order. Everything is measured in units of 𝑡. For all
calculations𝑈 = 1

35



Chapter 2 Topology and symmetry in carbon nanoribbons

2.5 Effective Hamiltonian

As we have seen the Hamiltonian can be written as

𝐻ZNR = −𝑈
2
𝐷 ⊗ 𝜎𝑧 − 2𝑡1 ⊗ 𝜎𝑦 ⊗ 𝜎𝑥 + 𝑖𝑡𝑔𝑘K ⊗ 𝜎+ ⊗ 𝜎𝑥 − 𝑖𝑡𝑔𝑘K† ⊗ 𝜎− ⊗ 𝜎𝑥 , (2.12)

or

𝐻ANR = −𝑈
2
𝐷 ⊗ 𝜎𝑧 − 2𝑡

(
1 + J cos(𝑘𝑎𝑇/2)) ⊗ 𝜎𝑦 ⊗ 𝜎𝑥 − 2𝑡 sin(𝑘𝑎𝑇/2)J ⊗ 𝜎𝑦 ⊗ 𝜎𝑦 . (2.13)

Matrix 𝐷 depending on Hilbert space sector can take the form 𝐷 = 1 ⊗ 1 or 𝐷 = 1 ⊗ 𝜎𝑧 . 𝜎𝑖 are
Pauli matrices, and 𝜎± = 𝜎𝑥 ± 𝑖𝜎𝑦 . Now we diagonalize the first term in the matrix product. Let
𝐴 ∈ {J,K} Then there exists a unitary transform such that

𝑈𝐴𝑈† = diag(𝜆1, 𝜆2, · · · ) , (2.14)

where 𝜆’s are the eigenvalues and consequently

𝑈 (1 + 𝐴)𝑈† = diag(𝜆1 + 1, 𝜆2 + 1, · · · ) . (2.15)

For every 𝜆 Equation 2.12 and Equation 2.13 become 4d Dirac equations, since direct product of
Pauli matrices along with 2𝑥2 unit matrix spans Clifford algebra. In fact we are free to choose the
basis {Γ𝑎}𝑎=1· · ·5 as long as it satisfies anti-commutation relations

{Γ𝑎, Γ𝑏} = 2𝛿𝑎𝑏 , [Γ𝑎, Γ𝑏] = 2𝑖Γ𝑎𝑏 . (2.16)

One possible choice is [13]

{𝜎𝑥 ⊗ 1, 𝜎𝑧 ⊗ 1, 𝜎𝑦 ⊗ 𝜎𝑥 , 𝜎𝑦 ⊗ 𝜎𝑦 , 𝜎𝑦 ⊗ 𝜎𝑧} . (2.17)
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CHAPTER 3

Localization of electronic states in hybrid
nanoribbons in the nonperturbative regime

This chapter is based on [2]
Localization of electronic states in hybrid nanoribbons in the nonperturbative regime T. Luu, U.
Meißner and L. Razmadze, Phys. Rev. B 106, 195422 (2022) [arXiv:cond-mat/2204.02742]
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Chapter 3 Localization of electronic states in hybrid nanoribbons in the nonperturbative regime

In this work, we investigate the localization of low-energy states in 7/9-hybrid nanoribbons under
strong interactions and within a finite volume. The primary objective is to understand how quasi-
particle states behave in non-perturbative regimes, where analytical solutions are challenging, and the
system’s properties are dominated by strong electron-electron interactions.

Localized edge states have been extensively studied in zigzag nanoribbons [14], which are known
to support zero-energy modes. In contrast, armchair nanoribbons do not support zero-energy edge
modes but remain compelling candidates for nanoengineering due to their potential to form hybrid
configurations. Hybrid armchair nanoribbons represent a more complex geometry, constructed from
different-width armchair ribbons capable of supporting localized states. The existence of localized,
low-energy states at the junctions of such ribbons has been demonstrated, even in the non-interacting,
tight-binding scenario [15]. These states have been identified as symmetry-protected topological
(SPT) states, with their properties determined by associated topological Z2 invariant. Notably, the
SPT protection of these states is strictly enforced only for infinitely long nanoribbons extending from
the junctions. For finite systems or repeating lattice arrangements, a more detailed examination of
their stability and low-energy nature is necessary. The topological nature of junction states makes
them promising candidates for potential building blocks for quantum engineering.

Our study focuses on periodic 7/9- and 13/15-hybrid nanoribbons to address the effects of finite
volume, where finite volume refers to the periodicity-induced finite separation between junctions. Two
distinct non-perturbative regimes are investigated. First, the Hubbard model at half-filling is employed,
and quantum Monte Carlo (QMC) simulations are performed for various on-site coupling values
𝑈, including the strongly interacting regime. Second, the symmetric line limit of the BCS-Hubbard
model is analyzed, where a nearest-neighbor superconducting pairing Δ of equal magnitude to the
hopping parameter 𝑡 is introduced. In this limit, the single-particle spectrum and wavefunctions can
be analytically determined for any𝑈 when expressed in the Majorana basis.

We examine hybrid nanoribbons formed by joining two armchair graphene nanoribbons (AGNRs)
of different widths, focusing primarily on configurations that differ in width by 2 sites. The central
question addressed is whether the edge-localized states, which are characteristic of specific ribbon
geometries, persist in the presence of strong interactions and superconductivity. By extracting the
site-dependent quasi-particle wavefunction densities, we provide a detailed analysis of the spatial
distribution of electronic states across the nanoribbon junction.

A key result is that the localization of electronic states persists even in non-perturbative regimes
under specific parameter conditions. In the case of the Hubbard model at half-filling, strong interactions
𝑈 do not entirely delocalize the edge states, though they modify the wavefunction density distribution.
For the superconducting case, the exact solutions at the symmetric line limit show that quasi-particle
localization is robust for particular combinations of interaction strength and hopping parameters.

The finite periodicity of the hybrid nanoribbon introduces a finite separation between junctions,
affecting the energy spectrum. However, our findings indicate that this does not eliminate the
topological characteristics of the junction states. The energy levels of the localized states depend
strongly on𝑈, but these states consistently remain the system’s lowest-energy states. Additionally, the
behavior of the 13/15-hybrid ribbons mirrors that of the 7/9 system, supporting the generality of our
findings.

By transforming the Hamiltonian into a Majorana fermion representation, we reveal a connection to
a 4D Dirac equation, enabling further exploration of the system’s topological invariants and conserved
quantities. We also draw parallels between these hybrid systems and domain-wall fermions in lattice
gauge theories, highlighting similarities in the mechanisms responsible for state localization and
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3.1 Introduction

protection.
The exploration of hybrid nanoribbons contributes to the broader understanding of symmetry-

protected topological (SPT) states in finite systems. By investigating these states under varying
interaction strengths and geometrical configurations, we provide insights into their potential applications
in quantum technologies. The robustness of the localized states, demonstrated under both non-
perturbative regimes, highlights their potential for incorporation into quantum devices. Our findings
suggest that these junction states could serve as robust carriers of quantum information, paving the way
for further exploration of hybrid nanoribbon systems and their applications in fault-tolerant quantum
computation.

3.1 Introduction

Recently it was shown that localized, low-energy states can occur at the junction of two nanoribbons
that are topologically distinct [15]. The presence of such symmetry-protected topological (SPT)
localized states depends on their junction geometry and topological invariance. The ability to engineer
such hybrid ribbons [16, 17] has spurred research into the use of these systems for manufacturing
quantum dots [18], potentially leading the way to novel, advanced electronic devices and an avenue
for obtaining fault-tolerant quantum computing.

The existence of localized edge states has been widely explored in, for example, zigzag nanoribbons
[14], where depending on the the presence of interactions and/or disorder the ribbon can change
from a topological insulator to a trivial or Mott insulator [19, 20]. On the other hand, the hybrid
armchair configurations we consider here are less studied despite their promise as an interesting
nanoengineering candidate. In some sense they represent the next simplest ribbon geoemetry that can
support localized states. As in the zigzag nanoribbon case, these localized states are manifest in the
non-interacting, tight-binding scenario. However, SPT protection is only strictly enforced when both
ribbons extend infinitely from their junction, as the topological invariants are calculated for infinite
armchair graphene nanoribbons (AGNRs). The system has a very small energy gap compared to the
hopping parameter. Though [15] have demonstrated the stability of such states under perturbation, the
extent to which these SPT states remain low energy, as well as localized, in the strongly interacting
regime is an open question, especially since any practical implementation of these hybrid systems will
be finite in extent, or perhaps in a repeating lattice.

In this paper we address the question of finite volume directly by investigating the periodic 7/9- and
13/15-hybrid nanoribbons in two distinct non-perturbative regimes. The term finite volume here refers
to the fact that the distance between each junction is finite in length due to the systems’ periodicity.
The first non-perturbative regime we consider is the standard Hubbard model applied to these systems
at the electrically neutral, half-filling case. Here we perform quantum Monte Carlo (QMC) simulations
for various values of the onsite coupling𝑈 that include the strongly interacting regime. In the second
regime we consider the so-called symmetric line limit [19, 21], where we introduce a nearest neighbor
superconducting pairing term Δ to the Hubbard model but with equal weight as the hopping term 𝑡. In
this limit the single-particle spectrum and wavefunctions, when expressed in a Majorana basis, can
be determined for any value of the Hubbard onsite interaction𝑈. In both cases we observe that the
energy of the localized state depends strongly on the coupling𝑈. However, it still remains the lowest
energy state of the system. Further, we find that under certain conditions the localization of these
states at the junction persists.
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Chapter 3 Localization of electronic states in hybrid nanoribbons in the nonperturbative regime

Our paper is organized as follows. In the Sect. 3.2 we describe our 7/9 and 13/15 hybrid lattice
geometries. We explicitly show the 7/9 spectrum in the tight-binding, or non-interacting, limit;
the 13/15 spectrum is very similar in nature. We then introduce a Hubbard onsite interaction 𝑈 in
Sect. 3.3 and show results of our QMC simulations for select values of𝑈. In Sect. 3.4 we consider
the symmetric line limit by adding a nearest neighbor superconducting term Δ of equal magnitude
to the hopping term. We demonstrate how this system can be solved directly for any value of 𝑈
and show the dependence of the energy and wavefunction of the localized state on 𝑈 for the 7/9
case. These localized states on opposing sublattices, or chiralities, have a potential connection to
domain-wall fermions formulated in lattice gauge theories in 4+1 dimensions [22, 23]. We comment
on this potential connection in Sect. 3.5. We recapitulate in Sect. 3.6.

3.2 Geometry of the periodic hybrid nanoribbon

Unit cells in such AGNRs are defined by their terminations i.e. shapes of their edges. In [15] four
distinct types of unit cells were defined. Based on inversion and mirror symmetries, as well as the
width of ribbons, it was been shown that such systems have an associated conserved quantity, the
so-called 𝑍2 topological invariant, that can take the values 0 or 1. The interface of two materials with
distinct topological invariants can support surface modes [24]. Since the existence of these modes
depend solely on the topological factors, they should remain even under the presence of interactions,
given that these interactions do not change the invariants themselves. The two examples used in this
paper are the 7/9- and 13/15-hybrid nanoribbons, where parts of the ribbons with lesser width have
topological invariant 𝑍2 = 0, while the parts with greater width have invariant 𝑍2 = 1 [15]. The 7/9
system has recently been experimentally engineered [16, 17].

Both systems are shown in Fig. 3.1. In both cases the figure depicts a single unit cell. The 7/9
(13/15) has 𝑁 = 132 (228) total lattice sites and is composed of six hexagonal units lengthwise for the
lesser AGNR part, and 10 hexagons lengthwise for the greater AGNR part. In terms of the lattice
spacing 𝑎 between sites, the entire length of the unit cell is 𝐿 = 24𝑎. The system is bipartite, meaning
we can divide the lattice into two independent sublattices, which we label one as consisting of A sites,
and the other B sites. We apply periodic boundary conditions at the ends so that the unit cell shown in
Fig. 3.1 repeats itself.

Under the tight-binding approximation, or equivalently the non-interacting limit, we have

𝐻0 = −𝑡
∑︁

⟨𝑖, 𝑗 ⟩,𝜎
𝑎†𝑖𝜎𝑎 𝑗 𝜎 + ℎ.𝑐. , (3.1)

where 𝑡 is the hopping parameter1, 𝑎†𝑗 (𝑎 𝑗) is the fermionic creation (annihilation) operator at lattice
site 𝑗 , 𝜎 the spin, ℎ.𝑐. stands for Hermitian conjugate, and the sum is over all nearest neighbors
⟨𝑖, 𝑗⟩. As the Hamiltonian is quadratric in the number of creation and annihilation operators, the
single particle dispersion as a function of longitudinal momentum 𝑘𝑥 can be easily determined in
this limit, which we show for the 7/9 case in Fig. 3.2. Note that the dispersion is the same for both
spins. The number of bands shown in Fig. 3.2 corresponds to the number of lattice sites in the unit
cell (132 for the 7/9 case). Aside from having more upper and lower bands due to the larger number
of unit cell lattice sites, the dispersion for the 13/15 case is qualitatively similar to the 7/9 case. Of

1 For the tight-binding description of graphene, 𝑡 ∼ 2.7 eV [25]
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3.2 Geometry of the periodic hybrid nanoribbon

Figure 3.1: Single unit cell of the 7/9 (top) and 13/15 (bottom) hybrid systems considered in this work. The
widths are set by the 7 (13) and 9 (15) armchair nanoribbon parts, while the lengths have 6 hexagons and 10
hexagons for the 7 (13) and 9 (15) parts, respectively. Periodic boundary conditions are employed at the ends.

particular interest is the point at 𝑘𝑥 = 0 where there seems to be an apparent level crossing at 𝐸/𝑡 = 0,
denoted as a red point in the main plot in Fig. 3.2. In fact, upon closer inspection as shown in the
inset of Fig. 3.2, there is no level crossing at this point since it consists of two states with energies
𝐸/𝑡 = ±0.0015996. For the 13/15 case there is also an avoided level-crossing and the corresponding
energies are 𝐸/𝑡 = ±0.0090408. In Fig. 3.3 we show the wavefunction densities, 𝜌(𝑥) = |𝜓(𝑥) |2,
for each lattice site 𝑥 on an extended hybrid system for these states on these two geometries. These
densities are the same for either positive or negative energy solutions. The localization of the states
at the junctions is apparent in this figure. Further, the localization is confined to specific sublattices
denoted by the red and blue colors in Fig. 3.3, and alternates between the different junctions.

In what follows, we assume that the system is electrically neutral and thus half-filled, meaning that
all negative energy states are occupied. The Fermi surface of the system then corresponds to zero
energy. We thus concentrate on the lowest unoccupied single-particle state. In the non-interacting
case this corresponds to the state denoted by the red dot in the inset of Fig. 3.2. In the remainder of
the paper we loosely refer to this state as the localized state, though it remains to be seen if the state
remains localized in the presence of interactions and within a finite volume.
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Figure 3.2: Non-interacting dispersion of the 7/9 hybrid ribbon. The inset shows the avoided level crossing near
the Fermi surface at 𝑘𝑥 = 0. 𝑘𝑥 is expressed in units of the inverse length 𝐿−1 with 𝐿 = 24𝑎 being the unit cell
length and 𝑎 the lattice spacing. The dispersion for the 13/15 system has more upper and lower bands but is
qualitatively similar in structure.

Figure 3.3: Non-interacting single-particle wavefunction densities for the 7/9 (above) and 13/15 (below) hybrid
ribbons. The 7/9 and 13/15 configurations have non-interacting energies 𝐸/𝑡 = 0.0015996 and 0.0090408,
respectively. The size of the circles is proportional to the density and the color denotes the two sublattices, red
= A sites, blue = B sites.
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3.3 QMC calculations of the Hubbard Model

We now include a Hubbard onsite interaction,

𝐻 = −𝑡
∑︁

⟨𝑖, 𝑗 ⟩,𝜎

(
𝑎†𝑖𝜎𝑎 𝑗 𝜎 + ℎ.𝑐.

)
+𝑈

∑︁
𝑥

(
𝑛𝑥↑ −

1
2

) (
𝑛𝑥↓ −

1
2

)
, (3.2)

where 𝑛𝑥↑ = 𝑎
†
𝑥↑𝑎𝑥↑ is the number operator for spin up fermions at site 𝑥 and similarly for spin down

fermions. The form of the interaction ensures that the system remains at half-filling for any value of𝑈.
In what follows, we assume that all stated values of 𝑈 and 𝛽 are expressed in units of the hopping
parameter 𝑡, i.e. “𝑈"= 𝑈/𝑡, “𝛽"= 𝑡𝛽. All derived quantities, such as energies, are then expressed in
units of 𝑡. Without loss of generality, this is equivalent to setting 𝑡 = 1 in Eq. (3.2) for our simulations.

Note that the onsite interaction is quartic in the number of creation and annihilation operators, and
therefore no direct diagonalizaton is possible. Therefore we use QMC simulations to investigate the
hybrid systems for values of the onsite interaction𝑈 corresponding to the strongly coupled regime.
Our formalism for performing QMC simulations of low-dimensional Hubbard systems have been
described in detail in [26–28]. Here we just point out some salient features pertinent to this work.

To extract the quasi-particle energies we calculate momentum correlators as a function of time,

𝐶𝑘 (𝜏) ≡ ⟨𝑎𝑘 (𝜏)𝑎†𝑘 (0)⟩ =
1
𝑍

Tr
[
𝑎𝑘 (𝜏)𝑎†𝑘 (0)e−𝛽𝐻

]
, (3.3)

where 𝛽 represents an inverse temperature and 𝑘 = (𝑘𝑥 , 𝜅) is a momentum index corresponding to
the state. The time 𝜏 ∈ [0, 𝛽), and in our simulations we discretize this variable into 𝑁𝑡 timeslices.
We use 𝑁𝑡 = 64, 80 and 96 in our simulations with 𝛽 = 8, 10, and 12, respectively, for the 7/9
system. For the 13/15 system we only investigate with (𝑁𝑡 , 𝛽) = (64, 8). The variable 𝜅 is an index
corresponding to one of the possible 𝑁 = 132 (228) states of the 7/9 (13/15) system for a given 𝑘𝑥 . We
choose 𝜅 to correspond to the state with the lowest possible positive energy. Fig. 3.4 shows all 𝑘𝑥 = 0
correlators at the non-interacting𝑈 = 0 case and 𝛽 = 8 for the 7/9 system. A spectral decomposition
of the expression in Eq. (3.3), as is done in App. C.1, shows that these correlators have an exponential
dependence in time, ∼ e−𝐸𝑘 𝜏 , where their arguments correspond to the non-interacting energies of the
system at 𝑘𝑥 = 0. These energies correspond to both the positive and negative points that occur at
𝑘𝑥 = 0 in Fig. 3.2. In the presence of interactions 𝑈 ≠ 0, and within a finite inverse temperature 𝛽,
the correlators will have a more complicated dependence on 𝜏 due to thermal contamination with
excited states and backwards-propagating states. However, these effects are usually fleeting since the
dependence on the excited states is exponentially suppressed. Therefore, as long as 𝜏 ≫ 1 but 𝜏 < 𝛽,
the correlators will recover an exponential dependence but now with fully interacting energies in their
arguments. One can thus extract the fully interacting energies by analyzing the exponential behavior
of the correlators in this regime. We stress that the correlator in (3.3) and the energy 𝐸𝑘 dictating its
exponential decay are not related to any response of the system due to some external probe. The energy
𝐸𝑘 represents the fully-interacting single-particle eigen-energy of the Hamiltonian given in (3.2).2

Special care must be taken when dealing with correlators that represent states with very small
energies, 𝐸𝛽 ≪ 1, as is the case in our situation. Here the backwards-propagating states can provide a

2 In practice the calculation of the correlator in (3.3) requires calculating the inverse of the so-called fermion matrix 𝑀 and
then analyzing its time-dependence. More details of this method are provided, for example, in [27] and [7].
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Figure 3.4: All non-interacting correlators at 𝑘𝑥 = 0 for the 7/9 system.

0 1 2 3 4 5 6 7 8
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C k
(

)

U = 0
U = 1
U = 2
U = 3
U = 4

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

m
ef

f(
)

U = 0
U = 1
U = 2
U = 3
U = 4

Figure 3.5: Dependence of correlators for the lowest energy localized state (left) and its corresponding effective
masses (right) as defined in Eq. (3.5). In both cases the black dashed line corresponds to the non-interacting
result.
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nearly equally important contribution to the correlator, essentially making the correlator symmetric
about the 𝜏 = 𝛽/2 point. The left panel of Fig. 3.5 shows examples of the dependence of the correlators
for the localized state as a function of𝑈. It is indeed the case that these low-energy correlators cannot
be described by a single exponential. We now describe how we extract energies from these correlators.

3.3.1 Energy of the localized states

To extract the energies from these correlators, we first take advantage of the particle-hole symmetry of
our problem that states that for any energy solution 𝐸𝑘 , there is a corresponding solution with opposite
sign, −𝐸𝑘 . This is also evident from our correlators, where for each correlator that falls off in time as
𝐶−
𝑘 (𝜏) ∼ e−𝐸𝑘 𝜏 , there is a growing correlator, corresponding to the energy with opposite sign, of the

form 𝐶+
𝑘 (𝜏) ∼ e𝐸𝑘 (𝜏−𝛽) . We average these two correlators.

𝐶
s𝑦𝑚
𝑘 (𝜏) = 1

2
(
𝐶−
𝑘 (𝜏) + 𝐶+

𝑘 (𝜏)
)
, (3.4)

to effectively make a cosh function of the form cosh
(
𝐸𝑘 (𝜏 − 𝛽/2)) in the region 𝜏 ≫ 1 and 𝜏 < 𝛽.

As a visual aid to estimating the energies of these correlators, we calculate the so called “effective
mass" 𝑚e 𝑓 𝑓 (𝜏),

𝑚e 𝑓 𝑓 (𝜏) =
1
𝛿

cosh−1

(
𝐶

s𝑦𝑚
𝑘 (𝜏 − 𝛿) + 𝐶𝑠𝑦𝑚𝑘 (𝜏 + 𝛿)

2𝐶s𝑦𝑚
𝑘 (𝜏)

)
, (3.5)

where 𝛿 is some free parameter. If 𝐶s𝑦𝑚
𝑘 (𝜏) were exactly a cosh function then 𝑚e 𝑓 𝑓 (𝜏) = 𝐸𝑘 for all 𝜏.

As the cosh behavior is only valid for 1 ≪ 𝑡 ≪ 𝛽 we expect that the effective mass to ‘flatten out’
around the region 𝜏 = 𝛽/2. The right panel of Fig. 3.5 shows our extracted effective masses for the
localized state using 𝛿 = 4𝛽/𝑁𝑡 . As expected the region around 𝜏 = 𝛽/2 is flat and corresponds to the
interacting energy 𝐸𝑘/𝑡. We stress, however, that these effective masses are only used as a visual aid
for estimating the energies.

To actually obtain the energies, we instead fit directly the correlator𝐶s𝑦𝑚
𝑘 (𝜏). We show our extracted

energies for values of 𝑈 ∈ [1, 2, 3, 4] and 𝛽 ∈ [8, 10, 12] in Fig. 3.6. Our fits are performed within
a finite window around the 𝜏 = 𝛽/2 point and are done under the bootstrap procedure to obtain
uncertainties. Looking at Fig. 3.6 we see a growing dependence on the energy of the localized state
as 𝑈 increases. We attribute this dependence to the finite volume of the system, both spatially and
temporally, since within such an environment the state is no longer protected by SPT. Still, in all cases
we examined we found that the energy of the localized state remained the lowest, despite its apparent
dependence on𝑈.

3.3.2 Wavefunction densities of the localized state

We can also extract the site-dependent densities of the states in our QMC simulations, which in turn
allow us to demonstrate localization of the states visually. A detailed explanation of our calculation is
given in App. C.1, and we provide only a cursory description here.

Instead of the momentum correlators calculated in Eq. (3.3), we instead consider the half-momentum,
half-spatial correlators

𝐶𝑘 (𝑥, 𝜏) ≡ ⟨𝑎𝑥 (𝜏)𝑎†𝑘 (0)⟩ =
1
𝑍

Tr
[
𝑎𝑥 (𝜏)𝑎†𝑘 (0)e−𝛽𝐻

]
. (3.6)
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Figure 3.6: Energy 𝐸0 of the lowest state as a function of onsite interaction𝑈 obtained from QMC calculations
for the 7/9 (dots) and 13/15 (diamonds) systems. The 7/9 simulations were performed with three different
values of 𝛽, where 𝛽 = 8 (12) results are slightly shifted to the left (right) on the x-axis so as to make the
points more easily differentiable. Only 𝛽 = 8 was used for the 13/15 system. The black points at𝑈 = 0 are the
non-interacting results.

The effective density 𝜌𝑘 (𝑥, 𝜏) for the state 𝑘 at each lattice site 𝑥 is given by

𝜌𝑘 (𝑥, 𝜏) ≡
|𝐶𝑘 (𝑥, 𝜏) |2∑
𝑦 |𝐶𝑘 (𝑦, 𝜏) |2

. (3.7)

where the sum in the denominator of the right-hand side is over all lattice sites in the unit cell. As was
the case with the effective masses, we extract the densities by looking at the region around 𝜏 = 𝛽/2
where the effective density is flat.

We plot these densities for the localized state in Fig. 3.7 for different values of𝑈 for the 7/9 system
We find that the changes in the densities vary only slightly as a function of 𝑈 and are practically
indistinguishable in Fig. 3.7. We see similar behavior for the 13/15 system. In Fig. 3.8 we concentrate
on a specific lattice site of the 7/9 system, the bottom- and left-most site of the unit cell, and show
how the density at this site varies as 𝑈 increases. When 𝑈 = 0 this site is one of four A sites that
has a maximum probability for occupation compared to other A sites. With increasing𝑈 this density
diminishes, but still remains the largest. We find a similar behavior with other high-density sites on
both 7/9 and 13/15 systems. For sites with initially low probabilities at𝑈 = 0, their densities slightly
grow with increasing𝑈. However, the changes are too small to drastically change the general electron
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Figure 3.7: Density profile of lowest 𝑘𝑥 = 0 energy state for different values𝑈, compared with the non-interacting
case (i.e. 𝑈 = 0).
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Figure 3.8: Wavefunction density 𝜌𝑘 (𝑥) of the bottom- and left-most lattice site of our unit cell hybrid AGNR
as a function of𝑈.

occupation profile. Thus the localization of this state persists as𝑈 grows large, despite its growing
energy.

Our results definitely show the strong dependence of the energy on 𝑈 within a finite volume.
The localization, however, is robust and persists in such environments. A more definitive QMC
investigation of this state would require repeated calculations of this system with more values of 𝛽 and
number of timeslices 𝑁𝑡 , as well as more unit cells, allowing for extrapolations to zero-temperature, to
the continuum limit, and to the infinite volume (length), respectively. We are actively pursuing this
line of research.

Still, the fact that these states remain localized for large values of𝑈 within such an extreme finite
volume bodes well for their potential utilization in advanced electronics, which by construction are
finite in extent.

3.4 The symmetric-line limit

We now consider the inclusion of a nearest-neighbor superconducting pairing termΔ to the Hamiltonian,

𝐻0 = −
∑︁

⟨𝑖, 𝑗 ⟩,𝜎

(
𝑡 𝑎†𝑖𝜎𝑎 𝑗 𝜎 + Δ 𝑎†𝑖𝜎𝑎

†
𝑗 𝜎 + h.c.

)
+𝑈

∑︁
𝑥

(
𝑛𝑥↑ −

1
2

) (
𝑛𝑥↓ −

1
2

)
. (3.8)

The pairing term has the same symmetry properties as the hopping term, and in particular, the
Hamiltonian remains invariant under time reversal. Therefore the inclusion of this term does not
change the topology of the system.

As described in [19–21], for example, when Δ has the same magnitude as the hopping parameter 𝑡,
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3.4 The symmetric-line limit

the onsite interaction term becomes quadratic in the number of creation and annihilation operators
and therefore the spectrum of the system can be obtained by direct diagonalization. We repeat the
derivation for our system here. We follow the conventions introduced in [19].

Typically one uses a Bogoliubov-Valatin transformation [29, 30] in theories with pairing terms.
However, in this case, with an eye towards the interacting onsite term, we instead perform a canonical
transformation to a Majorana basis,

𝑎𝑖𝜎 = 𝜂𝑖𝜎 + 𝑖𝛾𝑖𝜎 , 𝑎†𝑖𝜎 = 𝜂𝑖𝜎 − 𝑖𝛾𝑖𝜎 ,
𝑎 𝑗 𝜎 = 𝛾 𝑗 𝜎 + 𝑖𝜂 𝑗 𝜎 , 𝑎†𝑗 𝜎 = 𝛾 𝑗 𝜎 − 𝑖𝜂 𝑗 𝜎 ,

(3.9)

where 𝑖 ∈ 𝐴 sites and 𝑗 ∈ 𝐵 sites. The Hamiltonian in Eq. (3.8) then becomes

𝐻 = −2𝑖
∑︁

⟨𝑖, 𝑗 ⟩𝜎

[(Δ + 𝑡) 𝛾𝑖𝜎𝛾 𝑗 𝜎 + (Δ − 𝑡) 𝜂𝑖𝜎𝜂 𝑗 𝜎
] −𝑈 ∑︁

𝑥∈𝐴&𝐵

(
2𝑖𝜂𝑥↑𝜂𝑥↓

) (
2𝑖𝛾𝑥↑𝛾𝑥↓

)
. (3.10)

We now take the symmetric line limit by setting Δ = 𝑡, thereby eliminating the 𝜂 Majorana fermions
from the kinetic energy of the Hamiltonian above,

𝐻s𝑦𝑚 = −4𝑖𝑡
∑︁

⟨𝑖, 𝑗 ⟩𝜎
𝛾𝑖𝜎𝛾 𝑗 𝜎 −𝑈

∑︁
𝑥∈𝐴&𝐵

(
2𝑖𝜂𝑥↑𝜂𝑥↓

) (
2𝑖𝛾𝑥↑𝛾𝑥↓

)
. (3.11)

Notice that the 𝛾Majorana fermions have a kinetic term similar to the original tight-binding Hamiltonian
of Eq. (3.1), but now with a hopping amplitude 4𝑡. Indeed, when𝑈 = 0 the dispersion for this system,
when normalized by 4𝑡, is identical to the non-interacting dispersion shown in Fig. 3.2.

Now consider the site-dependent operator 𝑑 𝑗 ≡ 2𝑖𝜂 𝑗↑𝜂 𝑗↓. One has that [𝐻s𝑦𝑚, 𝑑 𝑗] = 0 ∀ 𝑗 .
Therefore, within Eq. (3.11), the term 2𝑖𝜂𝑥↑𝜂𝑥↓ (= 𝑑𝑥) can be replaced, in general, by a complex
number 𝑑𝑥 (no hat symbol). As can be derived explicitly from (3.9), the Majorana operators 𝜂 have the
property that 𝜂2 = 1/4 which implies that 𝑑2

𝑥 = 1/4 [31]. Thus we can make the following replacement
𝑑𝑥 → 𝑑𝑥 = ±1/2 in Eq. (3.11). This gives

𝐻s𝑦𝑚 = −4𝑖𝑡
∑︁

⟨𝑖, 𝑗 ⟩𝜎
𝛾𝑖𝜎𝛾 𝑗 𝜎 − 2𝑖𝑈

∑︁
𝑥∈𝐴&𝐵

𝑑𝑥

(
𝛾𝑥↑𝛾𝑥↓

)
. (3.12)

The equation above shows that in the symmetric line limit the 𝜂 Majorana fermions completely
decouple from the theory. They provide a zero-energy topological flat band to the to the dispersion,
independent of𝑈, but as argued in [19] these states do not correspond to localized states.

The Hamiltonian in Eq. (3.12) is quadratic in the Majorana operators and therefore can be directly
diagonalized once the coefficients 𝑑𝑖 are fixed. In principle, given 𝑁 lattice sites, there are 2𝑁 different
possible combinations of 𝑑𝑖, all satisfying the flat band condition for the 𝜂 Majorana fermions but
providing a different spectrum for the 𝛾 Majorana fermions. We consider two uniform solutions in this
work, the first being the ferromagnetic solution with 𝑑𝑖 = 1/2 ∀ 𝑖 and the other the antiferromagnetic
case where 𝑑𝑖 = 1/2 for 𝑖 ∈ 𝐴 sites and 𝑑𝑖 = −1/2 for 𝑖 ∈ 𝐵 sites. Lastly we consider a random
configuration where 𝑑𝑖 = ±1/2 is chosen randomly at each site 𝑖.

Since the discussion above applies to any bipartite lattice, we can directly use it on our systems. In
our calculations both 7/9 and 13/15 systems exhibit nearly identical qualitative results. To keep the
presentation reasonable we therefore only present results for the 7/9 system and comment on the 13/15
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Chapter 3 Localization of electronic states in hybrid nanoribbons in the nonperturbative regime

system when appropriate.

3.4.1 Ferromagnetic configuration

In this configuration we choose 𝑑𝑖 = 1/2 ∀ 𝑖. Our results are identical if we instead chose 𝑑𝑖 = −1/2 ∀ 𝑖.
We show the dispersion for this system for select values of 𝑈 in Fig. 3.9. In general the dispersion
becomes quite dense and the separation between the lowest state and the next excited state diminishes
as𝑈 is increased.
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Figure 3.9: Ferromagnetic dispersion in the symmetric line limit for different values of𝑈. The red horizontal
line is the flat band energy for the decoupled 𝜂 Majorana fermions.

The wavefunction densities for the lowest energy state are shown in Fig. 3.10. We find that this
configuration exhibits no localization at 𝑘𝑥 = 0 for the large 𝑈s considered here, though we have
confirmed that it is perturbatively recovered in the limit𝑈 → 0.
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U=0

U=1

U=2

U=3

U=4

Figure 3.10: Density profile of the lowest 𝑘𝑥 = 0 energy state at the symmetric line limit for the ferromagnetic
configuration for different values of 𝑈. The result is the same for either spins 𝜎. Non-interacting case
corresponds to𝑈 = 0.

Finally, the energy 𝐸0 of the lowest state has a complicated dependence on the interaction term
𝑈, as is shown in Fig. 3.11. This is due to the fact that we consider only the lowest positive energy
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Figure 3.11: Dependence of the lowest positive energy 𝐸0 as a function of𝑈 in the ferromagnetic configuration.

level at 𝑘𝑥 = 0. As𝑈 increases the energy levels from the upper and lower bands come together and
eventually cross each other. Before each crossing the minimal energy decreases and after a crossing it
begins to increase again. Eventually the lowest energy levels cross 𝐸0 = 0 after which the next highest
one takes its place.

3.4.2 Antiferromagnetic configuration

Fig. 3.12 shows the dispersion of the hybrid ribbon at the symmetric line limit for select values of
𝑈 > 0 in the antiferromagnetic configuration. Notice that the lowest positive energy increases with
larger𝑈 and forms essentially a flat band solution. Numerically we find a linear dependence of this
energy on𝑈, as shown in Fig. 3.13.

For all𝑈s investigated, the wavefunction densities of this state does not change and remains exactly
the same as that of the non-interacting state shown in Fig. 3.3. Therefore this state remains localized,
despite its energy having a linear dependence on𝑈. We conclude that the flat band that develops for
𝑈 > 0 is robust and is unaffected by interactions. Unlike the ferromagnetic case, when we increase𝑈
the gap in the antiferromagnetic system increases linearly since no low lying energy levels cross each
other and therefore no complicated𝑈 dependence is introduced.

3.4.3 Random configuration

To a certain extent a random configuration of 𝑑𝑖s is similar to the antiferromagnetic configuration in
that such a configuration has no long range order. Thus one might expect that the dispersion in the
random configuration is similar to the antiferromagnetic case. We find this to be true for values of𝑈
as large as𝑈 ≲ 2.
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Figure 3.12: Antiferromagnetic dispersion in the symmetric line limit for different values of 𝑈. The red
horizontal line is the flat band energy for the decoupled 𝜂 Majorana fermions.

To see this, we first show in Fig. 3.14 the dispersion for different values𝑈 using a single randomly
sampled configuration in each case. Not surprisingly, the dispersions becoming progressively dense
and chaotic with increasing𝑈. To construct the accompanying wavefunction densities, we calculate
100 random configurations for each value of𝑈 and average their wavefunction densities, the results of
which are shown in Fig. 3.15. In this case the localization of the lowest state can be seen for𝑈 = 1 and
𝑈 = 2. However, for larger𝑈 any analogies of the dispersion with the antiferromagnetic configuration
is lost and localization is no longer present.
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Figure 3.13: Dependence of the lowest positive energy 𝐸0 as a function of𝑈 in the antiferromagnetic configuration
for 7/9 ribbon. The 13/15 system presents the same linear relation.

3.5 Analogy with Domain-wall fermions

Domain wall fermions were formulated originally by Kaplan [22] as a way to circumvent the so-called
Nielsen-Ninomiya no-go theorem [32] in lattice gauge theory, which states that the number of
left-handed chiral fermions 𝜓𝐿 must equal the number of right-handed chiral fermions 𝜓𝑅 in any
discretized, local, Hermitian, and translationally invariant field theory. Kaplan’s formulation of
domain wall fermions introduced an extra bulk dimension on top of the four spacetime dimensions,
whereby a single fermion of one chirality was localized on the 4-d spacetime manifold (the domain
wall where all the relevant physics occurs) of the 5-d space, and another fermion of opposite chirality
was constrained on the opposite 4-d domain wall. In this manner, lattice gauge calculations utilizing
domain wall fermions could simulate, in principle, an odd number of fermions with specific chirality
by concentrating on one of the 4-d domain wall manifolds without violating the Nielsen-Ninomiya
no-go theorem. Chiral symmetry is still violated since the Ginsburg-Wilson equation remains non-zero
in the bulk. This manifests itself as a small overlap of the fermion wavefunctions in the bulk, which in
turn leads to a residual mass 𝜇 for each fermion that mixes their chiralities, 𝜇(𝜓̄𝐿𝜓𝑅 + 𝜓̄𝑅𝜓𝐿). As
the bulk direction is extended, the overlap reduces leading to a vanishingly small residual mass and
therefore a vanishing chiral-symmetry violation. Kaplan’s formulation is actually valid for any theory
in 2𝑛 + 1 dimensions, where 2𝑛 represents the spacetime dimension and the extra dimension represents
the bulk.

Chiral symmetry breaking has been discussed in the context of the 2d graphene hexagonal lattice
(see, e.g., [33, 34]). Here chiral symmetry manifests itself as a sublattice symmetry between the A and
B sites and originates from an underlying time-reversal and charge-conjugate symmetry [35, 36]. The
low-energy “Dirac" modes of the system can be described by an effective relativistic field theory in
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Figure 3.14: Dispersion at the symmetric line limit using random configurations.

2+1 dimensions. As argued in [33], the formation of a gap in these modes is equivalent to a staggered
mass [37] for the fermions that breaks the sublattice symmetry.

In our ribbons we may treat one of the spatial dimensions as the manifold, or junction, while the
other remaining spatial dimension between the junctions as the bulk. If we concentrate on just the
low-energy localized state of our system and describe it within some effective field theory, then the
shift away from zero energy can also be represented as a staggered mass that presumably depends on
the overlap of the wavefunctions of the two chiral edge states within the bulk, and thus should vanish
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U=1

U=2

U=3

U=4

Figure 3.15: Density profile of the lowest 𝑘𝑥 = 0 energy state at the symmetric line limit using random
configurations for different values of𝑈. Localization can be seen in the cases with𝑈 = 1 and 2, but is lost for
higher values.
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Figure 3.16: The non-interacting energy of the localized state for both 7/9 and 13/15 ribbons as the bulk direction
between junctions is extended in multiples of 𝑚. The width between the junctions is 3𝑚 (5𝑚) for the lesser
(greater) ribbon, corresponding 6𝑚 (10𝑚) hexagonal units. When 𝑚 = 1 we have the unit cells depicted in
Fig. 3.1.

as the bulk direction is extended. We find this to indeed be the case in the non-interacting limit as we
show in Fig. 3.16. Here we show the energy of the localized state for both 7/9 and 13/15 ribbons as we
extend the bulk direction. There is a clear exponential decay in the energy. Thus the localized states on
opposite A/B sublattices at the junctions of the topologically distinct ribbons offer a potential physical
realization of Kaplan’s domain wall fermions, albeit in reduced dimensions. A formal description of
these chiral states within an effective field theory context is something we are currently developing.

3.6 Conclusions

Localized states at the junction of topologically distinct nanoribbons offer promising avenues in
constructing advanced electronics and potentially provide a means for topological, fault-tolerant
quantum computing. Central to this idea is the stability of such states not just to slight perturbations,
but to large electron correlation effects. In principle SPT provides this stability, but only in the limit
of infinitely long ribbons where SPT invariance is manifest. In a finite volume this protection is not
guaranteed, and as such, the stability of such states comes into question when electron correlations
become large.

In this paper we investigated the stability of the (nearly) zero-mode localized states in a finite 7/9
and 13/15 hybrid nanoribbons with periodic boundary conditions under the influence of temperature
and electron-electron interactions. We investigated two scenarios, one where we considered just
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the Hubbard model at half-filling and performed QMC simulations for a range of 𝑈 that included
the strongly interacting regime. We then introduced to the Hubbard model a nearest neighbor
superconducting term whose parameter was tuned to the so called symmetric line limit. In this
limit, when transforming to a Majorana basis, we could calculate the single-particle spectrum and
wavefunctions exactly for any value of 𝑈. Provided that we concentrate on the antiferromagnetic
configuration in the latter case, we found that in both cases the energy of the localized states increased
with larger𝑈, but remained the lowest energy state regardless. More importantly, we found that the
localization of the states persisted at the junctions, indicating that this feature is robustly maintained
in the strongly interacting, finite volume regime. Though by no means a proof, our observations of
persistence of localization in both 7/9 and 13/15 hybrid geometries suggests that such effects are
generic to other hybrid geometries that support localization. But this remains to be seen. These
findings enhance the possibility of using these systems for manufacturing novel electronic devices
which are inherently finite in volume.

TL thanks Evan Berkowitz, Andrei Kryjevski, Johann Ostmeyer for enlightening discussions
related to this work. This work was supported in part by the Chinese Academy of Sciences
(CAS) President’s International Fellowship Initiative (PIFI) (Grant No. 2018DM0034) and
Volkswagen Stiftung (Grant No. 93562).
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CHAPTER 4

Effective theory for graphene nanoribbons with
junctions

This chapter is based on [3]
Effective theory for graphene nanoribbons with junctions J. Ostmeyer, L. Razmadze, E. Berkowitz,
T. Luu and U. Meißner, Phys. Rev. B 109, 195135 (2024) [arXiv:cond-mat/2401.04715]
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In prior studies, the junction states of armchair ribbons and their dependence on the on-site Hubbard
interaction were investigated. It was previously claimed that the low-energy mode in this system
arises from the differing topological Z2 charges of two ribbons [15]. However, examples exist where
localization persists even in the absence of any variation in the topological invariant between the
two ribbons. A simpler explanation can be derived by analyzing the long-wavelength limit of a
straightforward tight-binding model applied to the ribbons. In accordance with [15], only ribbons
whose widths differ by 2 were considered. Nevertheless, it is reasonable to extend the analysis to
hybrid ribbons composed of armchair graphene nanoribbons (AGNRs) of arbitrary widths.

For a ribbon of a given width 𝑁 , the Hamiltonian is decomposed into 𝑁 sectors, each described by
a massive Dirac equation:

(1 + 𝑗)𝜎𝑥 − 𝑗
3
2
𝑘𝑎𝜎𝑦 , (4.1)

where 𝑗 = 2 cos
(
𝜋
𝑁+1𝑚

)
with 𝑚 = 1, . . . , 𝑁 . For 𝑗 = −1—which occurs only for widths 𝑁 =

3𝑚 + 2—the mass term vanishes, and zero modes propagate within the ribbon. When such a ribbon
is joined with one that cannot support zero modes or massless excitations, the propagation decays
gradually, forming an evanescent wave-like pattern. When two ribbons with different widths are joined,
neither of which supports zero modes, the propagation decays on both sides of the junction, forming a
sharply localized peak independent of topological considerations. Conversely, if "garlands" of short
ribbons of alternating widths are constructed, different localization behavior emerges. Interleaving
two ribbon sections, such that only one supports zero-mass excitations, causes the wavefunction to
predominantly localize within the ribbon supporting zero modes, but this localization is distributed
over the entire section rather than forming a sharp peak. Furthermore, in scenarios where two infinite
ribbons are connected by a short segment of width 𝑁 = 3𝑚 + 2, the wavefunction becomes effectively
trapped, resulting in strong localization within a small region of the system. This configuration offers
a novel method for engineering quantum dots.

In this work, an effective theory for hybrid graphene nanoribbons was derived. This study suggests
an alternative explanation different from the Z2 topological invariant argument, highlighting that
the localization of junction states can be explained entirely without topology. Instead, a detailed
tight-binding approach was used to predict the energy gap and spatial characteristics of localized
states across a wide range of hybrid ribbon geometries.

Two distinct types of localized states were identified: the familiar, sharply defined Fuji localizations
and a newly discovered type, referred to as Kilimanjaro localizations, which are smeared over an
extended segment of the hybrid ribbon. For Fuji localizations, we found that strong localization at
symmetric junctions occurs only when the width of the narrower ribbon 𝑁 satisfies 𝑁 (mod 3) = 1.
In contrast, edge-aligned junctions, regardless of the relative widths of the ribbons, do not support
strong localization. This nuanced behavior underscores the limitations of the traditional topological
framework and demonstrates the importance of geometry and symmetry in the formation of localized
states.

The discovery of Kilimanjaro localizations revealed an important new class of states that differ
from the typical evanescent wave solutions. These states form a broader, wave-like distribution and
are more sensitive to the junction’s symmetry properties. Unlike Fuji localizations, which are highly
concentrated near the junction, Kilimanjaro localizations spread over a finite segment, indicating a
different mechanism for state formation that extends the concept of topological protection.

The implications of these findings extend beyond theoretical interest. The persistence of localized
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states in hybrid ribbons despite changes in their topological invariant suggests new avenues for the
design of robust, fault-tolerant qubits for quantum computing applications. By carefully engineering the
junction geometry and tuning the interaction strengths, it may be possible to construct nanoribbon-based
quantum dots with tailored energy spectra and enhanced stability against decoherence.

To further refine the description of these junction states, the effective tight-binding model can be
extended to include staggered mass term, that can capture additional physical effects, such as Hubbard
interaction. Specifically, introducing a staggered mass term 𝑚𝑠 in analogy to the Su-Schrieffer-Heeger

(SSH) model increases the system’s minimal energy to
√︃
(𝑡𝑁 − 𝑡𝑁+2)2 + 𝑚2

𝑠. Since the effective
hopping strengths 𝑡𝑁 and 𝑡𝑁+2 are determined by the ribbon gap, the staggered mass term modifies
the energy without altering the underlying effective hopping values. It is therefore possible to use
simulate Hubbard interactions for various interaction strengths and fit the staggered mass term to the
resulting energies to capture the𝑈 dependence of the model.

4.1 Introduction

The ability to engineer hybrid nanoribbons [16, 17] has opened up the possibility of using such systems
to manufacture quantum dots [18] and other advanced electronic devices. A central aspect that drives
the usefulness of these systems is their ability to support localized electronic states that can be achieved
through careful doping of the ribbons. Various models of nanoribbons exhibit edge-state localization
with a topological origin [14, 19, 20, 38]. In [15] it was argued that completely localized low-energy
states occur at the junction of two armchair graphene nanoribbons (AGNRs) that are topologically
distinct, forming so-called symmetry-protected topological edge states that should depend only on the
geometrical, or topological, aspects of the system and not on the details of any interaction. These
states have electrons confined not only to the edge of the ribbon, but concentrated around the junctions.

Ref. [2] confirmed that this localization is robust against the inclusion of an onsite Hubbard
interaction via non-perturbative calculations. The localization of states for the 7/9 and 13/15 hybrid
nanoribbon systems persisted for a wide range of Hubbard interactions. Recently the authors of
Ref. [39] have also investigated the role of interactions in ribbons with finite lengths using a mean-field
prescription. Other interesting phenomena occur when certain symmetries, such as the sublattice or
chiral symmetry, is broken in these systems [40].

Though states in these hybrid systems demonstrate localization originating at junctions between
different distinct AGNRs, the exact asymptotic behavior of these localized states has not been
quantified. As a function of distance from a junction wavefunctions may fall off exponentially (‘strong
localization’) or with some power law (‘weak localization’). This distinction has ramifications for
the engineering requirements for manufacturing ribbons that support localization. As we show in
this paper, ribbon junctions that support wavefunctions with exponential decays on either side can
be constructed such that they are nearly gapless under the tight-binding approximation. Further,
localization in this case can occur for a hybrid system with a single junction.

On the other hand, weak localization on either side of the ribbon junction cannot support a zero
mode. Using weak localization to concentrate a state along a ribbon segment requires ribbons with an
even number of junctions.

These findings are easily understood through an effective theory (ET) of the hybrid ribbons in one
dimension (1-D). We show how to construct such a theory, and demonstrate how the parameters of
this ET can be tuned to reproduce the low-energy spectrum of hybrid ribbons, even in the presence
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Figure 4.1: A symmetric 5/7 junction made from the intersection of a 5-AGNR and a 7-AGNR. The solid
rectangles highlight the unit cells of the two individual AGNRs, with two different but equivalent choices shown
in the left and right panels. The junction resides between the two unit cells shown, respectively. Note that the
central junction has an additional lattice point residing on the blue sublattice compared to the red sublattice in
both cases, as described in the text. The central junction and the junction on the edge of the compound unit cell
can be thought of as a single unit cell divided in two.

of non-perturbative interaction. Once tuned, it is much simpler to use this theory to ascertain the
behavior of the low-energy spectrum of these systems for different ribbon lengths. Indeed, we use this
ET to make predictions on the specifications of hybrid ribbons that lead to a (nearly) gapless system.
We verify the predictions of our ET by comparing directly with calculations on the original hybrid
systems.

Our paper is organized as follows. In Sec. 4.1 we review ribbons of uniform width and their
non-interacting dispersion relations; whether a given width is gapped or not controls how electronic
states are localized around the junctions of hybrid ribbons, which we demonstrate in Sec. 4.2. If a
uniform ribbon is gapped the wavefunction decays exponentially on a segment of that width near a
junction, while if the uniform ribbon is not gapped the wavefunction decays only with an inverse
power law. From this understanding we develop and test an effective one-dimensional tight-binding
Hamiltonian with two hopping amplitudes in Sec. 4.3. We show how the effective hopping amplitudes
depend on the specific geometries of the hybrid ribbons, identifying low-energy constants (LECs) that
depend on the width of the ribbon segments but not on their lengths. After fitting these LECs we
demonstrate how our ET predicts ribbon widths and lengths that have a nearly-gapless spectrum. We
extend the validity of the ET to hybrid ribbons with Hubbard interaction by introducing an additional
LEC and verify correctness using quantum Monte Carlo simulations. After commenting on hybrid
ribbons not aligned along their centers, we recapitulate in Sect. 4.4.

Armchair graphene nanoribbons (AGNRs) are carbon nanostructures defined by their edge termi-
nations and can be seen as a portion of an infinite honeycomb lattice with inter-ion spacing 𝑎. The
ribbons enjoy a translational symmetry along their length which generates a lattice momentum 𝑘 . The
width 𝑁 of an AGNR is the number of ions along a zigzag path across the ribbon, and a single unit
cell consists of two neighboring transverse zigzags. A ribbon of 𝑚 unit cells can be compactified with
periodic boundary conditions at its ends. Fig. 4.1 shows two ribbon segments of widths 5 and 7 joined
at a junction. Clearly both segments as well as the complete hybrid ribbon have a bipartite structure
where ions of one triangular sublattice (colored blue) have neighbors only on the other sublattice
(colored red) and vice-versa.

In order to understand how the geometry influences the strength of electronic state localisations, we
have to investigate the energy spectra of the different armchair ribbons themselves. Of interest will
be the state that is closest to zero energy, since this state will govern the long-range correlations. A
gapped system has a finite correlation length while an ungapped system has infinite correlations, cut
off in practice by the physical length of the ribbon.
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Figure 4.2: Dispersion relations of infinitely long (i.e. 𝑚𝑁 = ∞) armchair ribbons with widths 𝑁 = 5, 6, 7, 8
(top left to bottom right).

With nearest-neighbor hopping amplitude 𝜅 these systems are described by the Hamiltonian

𝐻 = −𝜅
∑︁
⟨𝑥,𝑦⟩

(
𝜓†
𝑥𝜓𝑦 + 𝜓†

𝑦𝜓𝑥

)
+ interactions (4.2)

where 𝜓𝑥 destroys an electron at site 𝑥, with 𝑥 and 𝑦 are on different sublattices, and we suppress
spin labels here and henceforth. When the interactions are neglected, 𝐻 is just the tight-binding
Hamiltonian used to describe the band structure [25, 41] and we can find energy eigenstates by
diagonalizing the adjacency matrix.

The dispersion relations of armchair ribbons of widths 5 to 8 described by this Hamiltonian are
shown in Fig. 4.2. The armchair ribbons with widths 𝑁 = 5 and 𝑁 = 8 are gapless while the widths
𝑁 = 6 and 𝑁 = 7 have finite gaps. This reflects the well-known fact that armchair ribbons are gapless
if and only if their width is

𝑁 ≡ 2 (mod 3). (4.3)

A general analytic description of the spectrum of these ribbons in the tight-binding model can be
found in Ref. [14]. The noninteracting many-body state has all the negative energy states filled.

The authors of [15] enumerated four distinct types of AGNR edge terminations based on ribbon
width and inversion and mirror symmetries. They showed that the nanoribbons have an associated
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binary conserved quantity, the so-called 𝑍2 topological invariant.

4.2 Hybrids Ribbons and Junctions

Finite ribbon segments of different width can be joined together to form a hybrid ribbon. The interface
of two materials can support surface modes [24], in this case modes localized along the hybrid ribbon’s
length. We mention two out of the multitude of possible shapes that hybrid ribbons can have: two
semi-infinite segments with only a single junction and repeated segments of alternating widths, with a
junction at every width change. If the alternation is regular the two alternating segments form one
compound unit cell which may be repeated 𝐿 times along the hybrid ribbon’s length; we reuse 𝑚 to
count the number of unit cells in a segment. The compound unit cell will later be represented by two
sites in our effective theory, one site for each junction.

In Ref. [15] it was argued that the topology of these systems preserved the localization of states
even under the presence of interactions. Their perturbative calculations corroborated this claim.
Consequently in Ref. [2] it was shown numerically that this localization persisted in the non-perturbative
regime. In particular, [2] investigated the 7/9-hybrid (and the 13/15-hybrid) nanoribbon with non-
perturbative stochastic methods and found that localization indeed persisted in the presence of a
Hubbard interaction. One goal of this present work is to better quantify the nature of these localized
states for not only the 7/9 geometry, but for other hybrid nanoribbon geometries. As we show in later
sections, the dynamics of these low-energy states can be captured in a simple effective 1-D model,
which in turn allows us to make predictions for a broader range of hybrid nanoribbons.

For simplicity we only consider ribbons segments consisting of a width-𝑁 armchair of length 𝑚𝑁
and a width-𝑁 + 2 armchair of length 𝑚𝑁+2 with odd 𝑁 . When ribbon segments of different widths
are aligned along their centers, as in Fig. 4.1, so that the ribbon has a reflection symmetry, the junction
has a surplus of a single lattice site, belonging to one of the sublattices (blue in the center of Fig. 4.1,
red at the edge). In this picture it is crucial to tile the hybrid ribbon with unit cells of similar shape
in both lattice segments. The two left-over zigzags on the junctions can be understood as a single
unit cell divided. While in the left panel of Fig. 4.1 we choose unit cells that are open at top and
bottom, we can equivalently choose all unit cells to be closed as in the right panel. In the former case
the surplus lattice site comes from the junction zigzag of the broad segment while in the latter case
the surplus resides within the narrow segment, but it always belongs to the same sublattice. This
sublattice surplus locally breaks chiral symmetry. We will find later that hybrid ribbons aligned at an
edge do not break chiral symmetry.

Fig. 4.3 shows two compound unit cells of an example 7/9-hybrid nanoribbon, where we see the
honeycomb lattice which forms the basis for extended carbon nanostructures. A ribbon of width
𝑁 = 7 has topological invariant 𝑍2 = 0, while a ribbon of width 𝑁 + 2 = 9 has invariant 𝑍2 = 1 (more
details in Tab. 4.1); localization is conjectured to occur at the junctions [15]. This system has been
experimentally fabricated [16, 17].

Because the geometry controls the gap, a localized state will decay differently on the two sides of
the junction. A localized electron’s wavefunction 𝜙 should decay with the dimensionless distance
from the junction Δ𝑥. With large enough length segment length 𝑚, we expect the asymptotic decay to
be governed by the gap or gaplessness of the infinite ribbon of the same width.1 In a gapped segment
1 Exactly how long each segment needs to be to exhibit such a simple decay is not clear a priori. While we only intend to

describe asymptotic behaviour, in practice 𝑚 ≳ 3 appears to suffice.
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we expect strong localization and exponential decay

𝜙 ∼ e−𝛽Δ𝑥 , (4.4)

and in a gapless segment we expect monomial decay

𝜙 ∼ Δ𝑥−𝛽 , (4.5)

and only weak localization. In both cases 𝛽 is some positive width-dependent parameter independent
of segment length 𝑚 and the number of compound unit cells 𝐿. This dependence on width 𝑁 has to
be determined from fits to solutions of the full problem.

In the bottom panel Fig. 4.3 we show the lowest positive-energy single-electron tight-binding
eigenfunction on a 7/9 hybrid ribbon where the width-7 segments have 5 unit cells and the width-9
segments have 8 unit cells each. We take the eigenfunction 𝜙 and compute the density normalized per
unit cell

𝜌(𝑥) = |𝜙(𝑥) |2 1
𝐿

∑︁
𝑥

𝜌(𝑥) = 1. (4.6)

The radii of the circles are proportional to 𝜌 and colored according to their sublattice. In the top panel
we show the marginal densities 𝜌(𝑥) summed over the width of the ribbon, again coloring according
to sublattice. The green line is obtained by adding both the red and blue marginal densities along a
transverse zigzag and represents the total occupancy probability along the ribbon’s length. Both 7- and
9-armchair ribbons are gapped since neither satisfy the gaplessness condition (4.3), so correlations
decay exponentially on both sides of each junction in Fig. 4.3.

That the 𝑁 = 7 gap is larger than the 𝑁 = 9 gap is apparent by the faster decay on the width-7
segments. We observe that on neighboring junctions the states are not only localized in space but
are also concentrated on one sublattice or the other. The strong exponential localization allows these
states to be clearly delineated.

We remark that this junction also has changing topology according to Ref. [15] (see Tab. 4.1)
and their prediction of localisation therefore coincides with ours. The same occurs for the 13/15
hybrid system, which we show in Fig. 4.4. However, we will see that there are counterexamples to
the otherwise well-motivated conjecture put forth in Ref. [15] that the localizations are driven purely
by the topological 𝑍2 boundary. The model we will develop in Sec. 4.3 is generally applicable and
reliably quantifies localizations even in the cases that evade the topological argument.

Fig. 4.5 shows the low-energy states from 3/5, 5/7, and 9/11 hybrid ribbons. Each of these examples
has a gapless segment, since 5 ≡ 11 ≡ 2 (mod 3) satisfying the gaplessness condition (4.3), and on
the gapless segment no sharp localization on the junction occurs. Instead, on the scale shown the
eigenstate looks essentially constant on the gapless segments.

We distinguish these ‘Kilimanjaro-localized’ states with a large plateau from the sharply-peaked
‘Fuji-localized’ states that have exponential decay on both sides of a junction.2 We remark that the
cumulated occupancy density shown in green is not exactly constant in the plateau region. Instead, the
density increases towards the center. In fact, if the gapless segment is very short, the localization can
be very sharp, not unlike Fuji localization. But, the state can also be meaningfully spread over vast
2 Mount Kilimanjaro in Tanzania has an extended high plateau, while the Japanese mount Fuji features a sharp peak. The

resemblances to the respective localisations inspired the naming scheme.
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Figure 4.3: Bottom: the Fuji-localised state of a 7/9 hybrid ribbon with (𝑚7, 𝑚9) = (5, 8), shown with 𝐿 = 2
two unit cells. The circles’ radii are proportional to the densities 𝜌 (4.6) and their color indicates the sublattice.
Top: We sum 𝜌 along the width of the ribbon and color each point colored according to sublattice. The green
line is the sum of both red and blue points along one zigzag cross-section and represents the total occupancy
probability (integrated across the ribbon’s width) along the ribbon’s length.

Figure 4.4: Similar to fig. 4.3 but now the 13/15 hybrid with (𝑚13, 𝑚15) = (6, 8).
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Figure 4.5: Lowest energy state densities of a 3/5 (top), a 5/7 (middle) and a 9/11 hybrid (bottom), all
with segment lengths (𝑚𝑁 , 𝑚𝑁+2) = (12, 16). These examples do not feature the two-sided exponential Fuji
localisation on the junctions since width-5 and width-11 armchair ribbons have long range correlations. However,
the states are trapped within those gapless segments, showing Kilimanjaro localisation.

regions if the gapless segment is long enough.
Focusing on the 5/7 hybrid, as we make 𝑚7 larger the low-energy state remains confined to the

width-5 segments. If we take 𝑚7 ≫ 𝑚5, we can effectively localize the density into an arbitrarily
small space compared to the total length of the ribbon. Unlike the Fuji localization, in this limit there
is no sharp splitting between the two sublattices. The localization in the gapless segment are only
polynomial in nature and states localized to the two sublattices at either end of the gapless segment
have a large overlap.

The 5/7 example, in particular, contradicts the claim in Ref. [15] that a change in topology implies a
Fuji localization. However, we find that the reverse implication—localization requires a change in
topology—is consistent with the examples we have examined and the effective theory we present in
Sec. 4.3.

The findings of Ref. [15] are based on hybrid ribbons with a single junction connected by semi-
infinite ends, whereas our investigations here involve hybrid ribbons with periodic boundary conditions,
which essentially models an infinite number of junctions. A natural question is whether this difference
accounts for the discrepancy between our findings. With our numerical techniques it is not possible to
model infinite ribbons. However, instead of periodic boundary conditions at the ends, we can use
open boundary conditions and investigate the nature of the localization as we extend the length of
each semi-ribbon. We show the length-normalized densities for the lowest non-zero energy state3 for
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Figure 4.6: Lowest non-zero energy state densities of the 5/7 ribbon with open boundary conditions. The top
panel has (𝑚𝑁 , 𝑚𝑁+2) = (20, 20), middle (𝑚𝑁 , 𝑚𝑁+2) = (30, 30), and bottom (𝑚𝑁 , 𝑚𝑁+2) = (40, 40). The
states are again trapped within those gapless segments and demonstrate Kilimanjaro localisation.

increasingly long 5/7 hybrid ribbons with open boundaries in Fig. 4.6. The Kilimanjaro localisation
is prominent and remains so as the ribbons’ respective lengths increase. We therefore surmise that
this type of localisation persists in the limit of semi-infinite ends. This is perfectly in line with the
expectations in our ET framework and cannot be reconciled with the predictions in Ref. [15].

Table 4.1: Topological invariant [15] (Tab. I therein) for the narrower and broader parts of different junctions
respectively. In a hybrid ribbon with a symmetric junction (Figs. 4.1 and 4.3 to 4.5), the 𝑍 ′

2 invariant describes
the topology in the narrow and 𝑍2 the broader segment. In bottom aligned junctions (Fig. 4.12) both parts are
described by the 𝑍 ′

2 invariant. Ref. [15] predicts localisations for junctions with changing topology.

𝑁 3 5 7 9 11 13 15 17 19 21
𝑁 + 2 5 7 9 11 13 15 17 19 21 23
𝑍 ′

2(𝑁) 1 0 0 0 1 1 1 0 0 0
𝑍2(𝑁 + 2) 1 1 1 0 0 0 1 1 1 0

3 With open boundary conditions we always find two degenerate zero-energy states that correspond to perfect localisations
on the extreme ends of the system. These states play no role in the limit of semi-infinite ends, as their localisations are
pushed to infinity. The relevant states are the lowest non-zero energy states, which we show in Fig. 4.6
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4.3 Effective 1-D Tight-binding model

4.3.1 Formulation

An electron localized on a junction is smeared out over many sites of one sublattice near by. We
observe in Figs. 4.3, 4.4, and 4.5 that at a junction the wavefunction is concentrated on the sublattice
with a surplus site. This sublattice symmetry breaking and wavefunction concentration allows us to
treat the 2𝐿 junctions from 𝐿 compound unit cells as the sites of our model. Because the junctions
alternate between having a surplus of one of the honeycomb sublattices (and the corresponding
wavefunction concentration), we arrive at a length 𝐿 bipartite lattice with a two-site basis. The two
effective sites can be thought of as the local surplus of one or the other sublattice. Electrons hop
between these effective sites via some hopping amplitude controlled by the width and length of the
segment connecting them; a segment of width 𝑁 and length𝑚𝑁 lets electrons tunnel with an amplitude
controlled by the wavefunction overlap. If two junctions are separated by a strongly-localizing segment
(4.4) of length 𝑚 the wavefunction overlap and thus the tunnelling amplitude 𝑡 will be exponentially
small,

𝑡 ∼ e−𝛽𝑚 , (4.7)

while two junctions separated by a weakly-localizing segment (4.5) will have polynomial overlap and
tunnelling amplitude

𝑡 ∼ 𝑚−𝛽 , (4.8)

redefining the dimensionless 𝛽.

An effective 1-D tight binding Hamiltonian that describes a hybrid ribbon of alternating widths 𝑁
and 𝑁 + 2 is

𝐻1D = −
𝐿−1∑︁
𝑥=0

(
𝑡𝑁 𝑐

†
2𝑥𝑐2𝑥+1 + 𝑡𝑁+2𝑐

†
2𝑥+1𝑐2𝑥+2 + h.𝑐.

)
, (4.9)

where 𝑐𝑥 destroys a fermion at effective site 𝑥, and 𝑡𝑁 is the tunnelling (or hopping) amplitude across
a ribbon segment of width 𝑁 . It can be block-diagonalised by a Fourier transformation yielding

𝐻1D = −
∑︁
𝑘

𝑐†𝑘

(
0 𝑡𝑁ei𝑘 + 𝑡𝑁+2e−i𝑘

𝑡𝑁e−i𝑘 + 𝑡𝑁+2ei𝑘 0

)
𝑐𝑘 , (4.10)

where the dimensionless momentum 𝑘 is in terms of the inverse lattice spacing and the creation and
annihilation operators in momentum space are two-dimensional vectors,

𝑐𝑘 =

(
𝑐𝑘,𝐴
𝑐𝑘,𝐵

)
(4.11)

and the 𝐴 and 𝐵 indices indicate the two sublattices or equivalently the two junctions.
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After diagonalising the blocks we obtain the dispersion relation

𝐸 (𝑘) = ±
√︃
𝑡2𝑁 + 𝑡2𝑁+2 + 2𝑡𝑁 𝑡𝑁+2 cos 2𝑘 (4.12)

for momenta in the reduced first Brillouin zone 𝑘 ∈ [0, 𝜋) and the energy gap

Δ ≡ 2|𝐸 (𝜋/2) | = 2
√︃
𝑡2𝑁 + 𝑡2𝑁+2 − 2𝑡𝑁 𝑡𝑁+2 = 2

��𝑡𝑁 − 𝑡𝑁+2
�� (4.13)

between lowest positive and highest negative energies which will become very important in the
following considerations. Note that a hybrid ribbon with small 𝑡𝑁 and 𝑡𝑁+2 necessarily has a small
gap. However, a small 𝑡𝑁 is a consequence of a large pure-armchair gap since in this case it less likely
to hop between junctions. This effective theory predicts that joining two strongly gapped ribbons leads
to a very small overall gap.

Sharpening the scaling of the overlaps (4.7) and (4.8) into quantitative predictions, the effective
hopping amplitudes are

𝑡𝑁 (𝑚) =
{
𝜅 𝛼 𝑚−𝛽 with 𝛽 ∼ 1 , if 𝑁 = 2 (mod 3) ,
𝜅 𝛼 e−𝛽𝑚 with 𝛽 ∼ Δ𝑁 , otherwise,

(4.14)

with 𝛼 another (apriori unknown) positive dimensionless parameter that can only depend on 𝑁 , not on
𝑚 and 𝐿 and the honeycomb 𝜅 (4.2) appears for dimensional reasons. In the first case 𝛽 is expected
to be related to critical behaviour and cannot be predicted from first principles. In contrast, the
exponential decay is governed by the magnitude of the pure 𝑁-armchair ribbon gap Δ𝑁 up to small
corrections. We will use this ansatz to fit the low-energy constants (LECs) 𝛼 and 𝛽 for different values
of 𝑁 .

Concisely, the effective treatment predicts that an 𝑁/𝑁+2 hybrid ribbon of two armchair nanoribbons
has Fuji-localised states with close to zero energy if and only if the junction is center-aligned and 𝑁
(mod 3) = 1 so that neither width fulfils the gaplessness condition (4.3).

4.3.2 Determination of the Low-Energy Constants

We now have all ingredients to fix the low-energy constants (4.14) of our 1-D effective theory (4.9).
By considering a particular 𝑁/𝑁 + 2 hybrid ribbon, we calculate the gap Δ (defined as twice the
lowest positive single-particle energy) of the hybrid system for different ribbon lengths 𝑚𝑁 and 𝑚𝑁+2.
For the sake of simplicity we choose one of the lengths very large, say 𝑚𝑁+2 ≫ 𝑚𝑁 , so that the
𝑁 + 2-width ribbon segment is long enough to be compatible with the thermodynamic limit. Then the
effects of this ribbon segment are negligible and the junction gap (4.13) reduces to Δ = 2𝑡𝑁 . We fit
our results for 𝑡𝑁 (𝑚𝑁 ) to the form of the effective hopping (4.14), fixing the parameters 𝛼𝑁 and 𝛽𝑁 .
Two representative fits are shown in Fig. 4.7, with a power law fit in the left panel and an exponential
fit on the right.

We summarise the results of the fitted low-energy constants in table 4.2 for select values of 𝑁 .
Within either class, power law or exponential, we observe the trend that both LECs 𝛼 and 𝛽 decrease
with growing 𝑁 . While we do not have a direct physical interpretation for the proportionality constant
𝛼, it is clear that 𝛽 has to follow this trend because the asymptotic 𝑁 → ∞ case of graphene is gapless.
In particular, the exponential case features decay coefficients 𝛽 similar to the pure armchair ribbon
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Figure 4.7: Gaps of a 5/7-hybrid (left) and a 7/9-hybrid (right) used to fit the LECs (4.14) for 𝑁 = 5 and 𝑁 = 7,
respectively. When fitting a power law as a function of the length 𝑚5, the length 𝑚7 = 25 has been kept fixed
and similarly for the exponential fit to 𝑚7 we fixed 𝑚9 = 25.

gap Δ𝑁 as expected.
Note how the 7/9-junction is special in the sense that it is the smallest ribbon size with strong

localisation for both widths. No Fuji localisation is possible in narrower center-aligned ribbons. We
also remark that the 3-armchair ribbon features such a strong exponential decay that it is virtually
instant and (at least within double floating precision) 𝑡3(𝑚) = 0 for 𝑚 > 0. Localised states do not
penetrate into the 3-armchair at all.

Table 4.2: Fitted low-energy constants (LECs) 𝛼, 𝛽 from eq. (4.14) following the exponential (exp) or power
(pow) laws depending on the width 𝑁 of the armchair ribbon. Δ𝑁 is the corresponding energy gap of the ribbon
without junction. For 𝑁 = 3 we have 𝛽 = ∞ and there is no value for 𝛼 since the wavefunction is exactly
confined to the junction (see Fig. 4.5).

𝑁 3 5 7 9 11 13 15 17 19 21
Decay exp pow exp exp pow exp exp pow exp exp
𝛼 - 0.57 0.21 0.22 0.43 0.13 0.15 0.32 0.09 0.11
𝛽 ∞ 0.89 0.54 0.34 0.79 0.30 0.23 0.69 0.22 0.18
Δ𝑁 0.83 0 0.47 0.35 0 0.26 0.22 0 0.18 0.16

4.3.3 Application of our effective theory

Despite the simplicity of our effective theory, we can already use it to make predictions in cases where
the original system is more difficult to simulate. We can apply our ET, for example, to predict the
respective lengths at which the gap of a hybrid nanoribbon (almost) vanishes. As an example we
return to our prototypical 7/9 hybrid system, but with the desire to pick segment lengths so that the
system is as close as possible to gapless.

To minimize the gap (4.13) our ET provides the condition

𝑡7
!
= 𝑡9 ⇒ 𝛼7e−𝛽7𝑚7 !

= 𝛼9e−𝛽9𝑚9 ⇒ 𝑚7 =
𝛽9
𝛽7
𝑚9 + ln

𝛼7
𝛼9

(4.15)
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Figure 4.8: Gap of a 7/9-hybrid ribbon given by the prediction (4.15) and direct diagonalization of the underlying
tight-binding Hamiltonian shown in (4.2) (without interactions).

has to hold as best possible for integers 𝑚7 and 𝑚9. Using the parameters given in Table 4.2 we find
that

(
𝑚7, 𝑚9

)
= (5, 8) is a good tuple that nearly satisfies this constraint. This prediction is confirmed

in Fig. 4.8, which shows the hybrid ribbon’s gap as a function of the width-7 segments’ length, holding
the width-9 segments at 𝑚9 = 8. The next three smallest tuples that our theory predicts for this
system are (22, 35), (39, 62), and (56, 89). For the 13/15 hybrid system our effective theory predicts
the following four smallest tuples giving a near zero gap: (𝑚13, 𝑚15)=(6, 8), (29, 38), (52, 68), and
(75, 98).

Note that in both these systems, both ribbon widths are gapped and the localization is Fuji. For
systems where one width is gapped and the the other is not, our theory predicts that such systems
cannot support a (near) zero gap without weakly-localising segments many orders of magnitude longer
than the strongly-localising segments. This is consistent with all our simulations to date.

4.3.4 Incorporating Interactions

So far we have focused on noninteracting tight-binding dynamics, both within the hybrid nanoribbon
and its effective 1-D description. Including interactions, for example by adding an onsite Hubbard
interaction𝑈 that couples the spin-up ↑ and spin-down ↓ electrons

𝐻Hubbard = 𝑈
∑︁
𝑥

(
𝜓†
𝑥,↑𝜓𝑥,↑ −

1
2

) (
𝜓†
𝑥,↓𝜓𝑥,↓ −

1
2

)
(4.16)

to the underlying tight-binding Hamiltonian (4.2), precludes simple diagnolization.
Ref. [2] showed that the localization was robust against the influence of the Hubbard interaction
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4.3 Effective 1-D Tight-binding model

Figure 4.9: Interacting energy 𝐸0, depicted as points with error bars, of the lowest state as a function of onsite
Hubbard interaction𝑈 obtained from QMC calculations in Ref. [2] for the 7/9 system with (𝑚7, 𝑚9) = (3, 5).
The 7/9 simulations were performed with three different values of inverse temperature 𝛽, where 𝛽 = 8 (12)
results are slightly shifted to the left (right) to help visually differentiate the points. The black point corresponds
to the non-interacting result.

(4.16) via stochastic Monte Carlo methods and that there is a nearly quadratic dependence of the gap
on𝑈. Fig. 4.9 shows this dependence for the example of the 7/9 system.

Our 1-D effective model (4.9) can easily incorporate these results by including

𝑚𝑠

(
𝑐†2𝑥𝑐2𝑥 − 𝑐†2𝑥+1𝑐2𝑥+1

)
, (4.17)

where the effective staggered mass 𝑚𝑠 is a LEC and fit to reproduce the quadratic dependence. The
momentum-space formulation (4.10) becomes

𝐻1D = −
∑︁
𝑘

𝑐†𝑘

(
𝑚𝑠 𝑡𝑁ei𝑘 + 𝑡𝑁+2e−i𝑘

𝑡𝑁e−i𝑘 + 𝑡𝑁+2ei𝑘 −𝑚𝑠

)
𝑐𝑘 , (4.18)

which can be easily diagonalized, giving

𝐸 (𝑘) = ±
√︃
𝑡2𝑁 + 𝑡2𝑁+2 + 2𝑡𝑁 𝑡𝑁+2 cos 2𝑘 + 𝑚2

𝑠 . (4.19)

and a gap

Δ = 2|𝐸 (𝜋/2) | = 2
√︃
(𝑡𝑁 − 𝑡𝑁+2)2 + 𝑚2

𝑠 . (4.20)

The presence of this staggered mass does not change the scaling behavior of the hopping terms (4.14)
and therefore does not affect the nature of the localization. For a given𝑈 simulated with a particular
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Figure 4.10: Extracting 𝑚𝑠 from the underlying theory. Here stochastic simulations of the full 7/9 hybrid
system with tuple (𝑚7, 𝑚9) = (3, 5), 𝐿 = 1 and inverse temperature 𝛽 = 8 were performed at different values of
𝑈 as labelled in the figure and shown as points with error bars. The value of 𝑚𝑠 was fitted to each of these
points, and the resulting prediction of the gap provided by our ET (eq. 4.20) for other tuples where 𝑚7 = 3 and
𝑚9 ∈ [1, 10] is plotted. The black points are the non-interacting results.

tuple (𝑚𝑁 , 𝑚𝑁+2), the parameter 𝑚𝑠 can be tuned so that our ET matches the energy of the underlying
theory, like that shown in Fig. 4.9. Once tuned, we can then make predictions for the size of the gap
for hybrid ribbons with segments of the same widths but with different lengths.

The tuple that minimizes the gap will be the one that corresponds to |𝑡𝑁 − 𝑡𝑁+2 | ∼ 0. Since the
staggered mass preserves the scaling behavior of the hopping terms, the predicted tuples that minimize
the gap in the previous section when 𝑚𝑠 = 0 will also minimize the gap for 𝑚𝑠 ≠ 0. However, in this
case the minimum gap becomes Δ ∼ 2𝑚𝑠.

As an example of how we can extract 𝑚𝑠, we perform stochastic simulations of the underlying
Hubbard theory on the full 7/9 hybrid ribbon with tuplet (𝑚7, 𝑚9) = (3, 5). The details of our Quantum
Monte Carlo (QMC) simulations are described in [2]. In short, we sample the electron configurations
from their quantum mechanical probability distribution using a Markov chain with global updates. In
the limit of high statistics these simulations become exact. Given limited computational resources,
we arrive at a distribution of values around the true result and we depict the standard error of this
distribution as error bars in Figures 4.9 to 4.11.

The results of the gap for different values of Hubbard coupling𝑈 are shown as points with errorbars
in Fig. 4.10. We then fit our ET to these results, thereby extracting 𝑚𝑠 with the values shown in
Fig. 4.10. With 𝑚𝑠 in hand, we can predict the value of the gap for other combinations of segment
lengths, shown by bands in the same figure.

To demonstrate the efficacy of our ET, we use these same values of 𝑚𝑠 to plot our predicted gaps for
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Figure 4.11: Comparing our ET prediction with the underlying theory. Using the values of 𝑚𝑠 extracted
in Fig. 4.10, we plot our ET prediction of the gap, shown as bands, for 7/9 geometries where 𝑚9 = 8 and
𝑚7 ∈ [1, 10]. Superimposed on these bands are the gaps obtained from stochastic simulations of the underlying
theory of these systems.

completely different 7/9 geometries, with 𝑚9 = 8, in Fig. 4.11. Every band in Fig. 4.11 is a prediction
given the low energy constants 𝛼 and 𝛽 from the noninteracting case and the effective staggered mass
𝑚𝑠 for that Hubbard coupling. In particular, the (𝑚7, 𝑚9) = (3, 5) hybrid geometry used to extract
𝑚𝑠 does not appear in Fig. 4.11 at all. We then perform stochastic simulations of the underlying
theory of these systems and plot their resulting gaps, shown as data points with errorbars. We find
good agreement between our simulations and ET. We thus surmise that our ET with a staggered mass
captures both the dynamics and interactions of the lowest energy spectrum of the hybrid nanoribbons.

More quantitative descriptions of interacting hybrid nanoribbons, potentially going beyond Hubbard
interactions, are possible within our formalism. For example, the inclusion of off-diagonal supercon-
ducting pairing terms, i.e. 𝑐𝑘𝑐𝑘 and 𝑐†𝑘𝑐

†
𝑘 , may be done with the aid of a Bogoliubov transformation [29].

One could alter the dynamics of the system by including next-to-nearest neighbor hoppings, or extend
the interaction by considering onsite plus nearest neighbor couplings (i.e. extended Hubbard). Such
possibilities are the subject of future investigations.

4.3.5 Misaligned Hybrid Ribbons

In the hybrid ribbons discussed so far the segments are aligned along their center. In Fig. 4.12 we
show junctions aligned along the bottom edge. Unlike the center-aligned hybrids, the junctions of
these edge-aligned hybrids do not have surplus of one sublattice or the other and do not break the
local sublattice symmetry. This can be seen by tiling the entire hybrid ribbon with similar unit cells
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Figure 4.12: Lowest energy state densities of a 7/9-junction (top) and a 9/11-junction (bottom) with (𝑚𝑁 , 𝑚𝑁+2) =
(10, 10) and aligned at the bottom rather than the center. According to Ref. [15] the 9/11-junction features a
change in the topology of the respective armchairs (see Table 4.1). Both cases are Kilimanjaro-localised since
the 9- and 11-armchair sides, respectively, exhibit long range correlations.

(closed at top and bottom as in the right panel of Fig. 4.1) so that no junction zigzag remains. Strictly
speaking, our ET breaks down in this case because no effective lattice site is generated.

Because the sublattice symmetry is locally maintained, there is no local surplus of either sublattice
and we predict that no Fuji localisation is possible. This is indeed what we observe in both cases of 7/9
and 9/11 edge-aligned junctions. The latter has a change in topology as can be seen in Table 4.1 and
thus poses another counterexample to the conjecture in Ref. [15]. We identify these states as another
realisation of Kilimanjaro-localisation; the state concentrates into the segment with the smaller gap.

For hybrids whose segments’ widths differ by more than 2 some offsets will maintain the sublattice
symmetry and some will not. We leave a detailed study of these scenarios to future work.
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4.4 Conclusions

When two armchair graphene nanoribbons (AGNRs) of different widths are joined symmetrically
(see e.g. Fig. 4.3), the combined system can feature a smaller band gap than either of the AGNRs
and the state with energy closest to zero is localised at the junction. Such a localisation can either be
strong with correlations decaying exponentially, or weak with a mere power law decay of correlations
(typically not considered localised). We showed that the nature of this localisation depends solely on
the band gaps of the AGNRs at either side of the junction. More specifically, the localisation is strong
on one side of the junction if and only if the AGNR on this side has a non-zero gap. This in turn is the
case if and only if the ribbon is of width 𝑁 ≠ 2 (mod 3).

We discovered that, in addition to localisations on junctions, a different type of localisation is also
possible, namely a state localised within a hybrid ribbon segment as shown in Fig. 4.5. We dub the
former type of localisations ‘Fuji’ and the latter ‘Kilimanjaro’. Fuji localisations require exponential
correlation decay on both sides of the junction, therefore they are only realised by symmetric 𝑁/𝑁 + 2
junctions with 𝑁 (mod 3) = 1. Kilimanjaro localisations are much more common in that they appear
in all 𝑁/𝑁 + 2 hybrid AGNRs (symmetric and non-symmetric, see Fig. 4.12) without Fuji localisation.
We observed that these results often coincide with the topology based conjecture for Fuji localisations
put forward in Ref. [15], however, we have also identified counterexamples to the predictions from
topology arguments while our description is more fundamental and rigorous for all 𝑁/𝑁 + 2 hybrid
AGNRs with odd 𝑁 .

We have derived a very simple way to predict and accurately quantify the different types of localised
bound states appearing in hybrid AGNRs. For this we reduce the initial two-dimensional tight
binding problem to a one-dimensional effective theory (ET) where the junctions of the hybrid AGNR
form the sites of the 1-D lattice. The ET also relies on a tight binding Hamiltonian (4.9) which is
diagonalised analytically and the hopping amplitude between two junctions is defined solely by the
ribbon connecting these junctions. Eq. (4.14) summarises this dependence. The hopping decays
exponentially with ribbon length for gapped ribbons, signifying strong localisation, and it decays as a
power law for gapless ribbons resulting in weak localisation. We have identified two parameters 𝛼, 𝛽,
so-called low-energy constants (LECs), in this description that depend only on the width of the AGNR
and cannot be determined other than through fitting. We have performed these fits for odd ribbon
widths up to 𝑁 ≤ 21 and summarised the results in table 4.2. The same fitting procedure can easily
be extended to arbitrarily broad ribbons, limited only by computing resources. Once the LECs are
determined, they can be used to predict the band gap in hybrid AGNRs, for instance yielding tuples of
respective ribbon segment lengths with the smallest gap.

Finally, we put forth an extension of our ET in the presence of Hubbard type interactions (4.16).
Consistent with previous findings [2], we predict the localisations to persist in the presence of interaction
and we furthermore describe the quadratic dependence of the gap on the Hubbard interaction using an
effective staggered mass term as a third LEC.

Localised Fuji-type states in armchair nanoribbons have been proposed as qubit candidates for
fault-tolerant quantum computing before [2, 15, 16, 18] (nicely explained and visualised in Ref. [42]).
Their stability against perturbations make them very promising for this application. We now add
that Kilimanjaro-localised states are also well suited for the same task and they even might have
some advantages, for instance that Fuji localisations come in alternating shapes while all Kilimanjaro
localisations are symmetric and thus equivalent. Moreover, while localised Fuji states for a particular
junction type always have the same extent, Kilimanjaro states can be smeared out over virtually
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arbitrary lengths, purely governed by the length of the confining ribbon segment.

78



CHAPTER 5

Hubbard interaction at finite 𝑻 on a hexagonal
lattice

This chapter is based on [4]
Hubbard interaction at finite𝑻 on a hexagonal lattice, L. Razmadze and T. Luu, PoS LATTICE2024
071 (2024) [arXiv:cond-mat/2411.03196]
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Understanding how interactions and external perturbations modify the behavior of quantum systems
is a central problem in condensed matter physics. Among the many models studied, the Hubbard
interaction, characterized by an interaction strength𝑈, serves as a prototypical framework for examining
these effects. The Hubbard model captures the essential physics of electron-electron interactions in
lattice systems and has been used in our prior research as a perturbing force to study stability of the
localized states. In this paper, we focus on the effects of the Hubbard interaction on the electronic
properties of graphene. However, the analysis can easily be extended to the graphene nanoribbons.

The approach builds upon the tight-binding model of graphene, which accurately describes its
low-energy electronic states. By introducing the Hubbard interaction, we systematically explore how
the energy spectrum and state properties are modified. At half-filling, our findings reveal that linear
corrections in 𝑈 vanish due to symmetry constraints, and the leading-order contributions scale as
O(𝑈2). This is also what we observed in the previous works. This result suggests that the absence
of linear corrections is not merely a coincidence but is rooted in the chiral or sublattice symmetry
of the system. This hypothesis is further supported by the observation that introducing a staggered
mass, which breaks sublattice symmetry, reinstates linear terms in 𝑈. Moreover, even when deviating
from half-filling by adding a chemical potential, the linear corrections remain absent, underscoring
the robustness of this symmetry-driven behavior.

The combined effects of interactions and thermal fluctuations on localized states remain an open
question. To investigate this, we introduce thermal perturbations and analyze their influence on
energy states and temporal correlations. Specifically, we derive time-dependent correlation functions
analytically and compare them against numerical results obtained via Monte Carlo simulations. This
comparison reveals that our perturbative treatment remains accurate even for relatively large values of
𝑈, particularly in systems with small lattice sizes where finite-size effects are prominent. In D 3 × 3
graphene is examined. Due to existence of Dirac 𝐾 points correlator at Γ point exhibits a plateau,
which was suspected from HMC simulations, but was written of as an artifact due to insufficient
precision.

To validate our findings, we further analyze smaller lattice systems using exact solutions. These
exact results exhibit remarkable agreement with the perturbative calculations, even for non-perturbative
values of𝑈. This agreement highlights the robustness of our approach and provides strong evidence
for the reliability of the perturbative framework across a broad range of interaction strengths. The
interplay between exact and perturbative results offers valuable insights into the behavior of strongly
interacting systems and the limits of analytical approximations.

Our investigation extends naturally to graphene nanoribbons, where the interplay of geometry,
symmetry, and interactions creates a rich landscape of physical phenomena. Nanoribbons exhibit
unique electronic properties, such as width-dependent bandgaps and edge states, making them ideal
systems for exploring the effects of interactions and perturbations. By analyzing nanoribbon systems,
we demonstrate how structural effects, such as ribbon width and edge symmetry, influence the behavior
of low-energy states. For example, at specific ribbon widths, chiral symmetry ensures the emergence of
zero-mass excitations, which dominate the electronic response. These properties make nanoribbons an
excellent platform for studying the combined effects of Hubbard interactions and thermal perturbations.

In the context of thermal perturbations, we explore the dependence of energy states and correlation
functions on temperature. Finite temporal volume effects are explicitly analyzed, revealing that thermal
fluctuations influence the stability of non-perturbed states. The resilience of quantum states under
thermal perturbations is a key result of our study, providing further evidence for their robustness and
potential applicability in real-world devices.
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5.1 Introduction

The broader implications of this work lie in its ability to bridge theoretical predictions and practical
applications. By elucidating the role of Hubbard interactions and thermal effects in graphene-based
systems, this study provides a framework for designing and optimizing nanoscale devices. Graphene
nanoribbons, with their tunable electronic properties and rich interplay of topology and symmetry,
emerge as promising candidates for applications in nanoelectronics and quantum information science.
Furthermore, the insights gained from this study contribute to a deeper understanding of interaction-
driven phenomena in strongly correlated systems, paving the way for future explorations of novel
materials and quantum states of matter.

5.1 Introduction

In any quantum system, we can define a characteristic temperature 𝑇𝐶 , representing a scale comparable
to the energy of the system’s lowest eigenmode. At temperatures 𝑇 ≪ 𝑇𝐶 , the thermal energy is
insufficient to excite even the lowest eigenstates, enabling an approximation 𝑇 = 0 since temporal
finite-volume effects are negligible. However, when 𝑇 ≈ 𝑇𝐶 , the application of thermal field theory
becomes essential to accurately capture the system’s behavior.

In the context of lattice QCD, this characteristic temperature corresponds to the pion mass
𝑇 ≈ 𝑚𝜋 ≈ 150MeV, a sufficiently high threshold where thermal effects significantly impact the study
of nuclear matter and quark-gluon plasma [43, 44]. In “cold” lattice QCD calculations, where the
temporal extent is ≈ 30−40 MeV ≪ 𝑚𝜋 , the finite temporal effects are justifiably ignored. Conversely,
in physical low-dimensional lattice structures—such as graphene sheets, graphene nanoribbons, and
topological insulators—the lowest energy eigenmodes are much lower than the temporal extent, often
just a few eV or even zero [45], e.g. the momentum 𝐾-points in graphene. In these systems thermal
effects must be included from the outset.

While temperature-dependent properties of small lattices can be investigated using computational
approaches like Hamiltonian Monte Carlo (HMC), these methods remain computationally demanding
even for modest lattice sizes. In this work, we approach the problem analytically, solving the
self-energy Σ of the system perturbatively in the Hubbard coupling𝑈 to arrive at explicit temperature
dependencies. For small lattices, exact solutions are also possible, enabling a direct comparison with
perturbative results. Throughout this paper, we use the inverse temperature notation, 𝛽 = 1/𝑇 , to
express temperature-dependent quantities.

5.1.1 System

We investigate this system using a tight-binding Hamiltonian with an on-site Hubbard interaction term
at half-filling [27], given by:

𝐻 = −
∑︁

⟨𝑥,𝑦⟩𝑠
(𝑐†𝑥𝑠𝑐𝑦𝑠 + 𝑐†𝑦𝑠𝑐𝑥𝑠) −

𝑈

2

∑︁
𝑥

(𝑛𝑥↑ − 𝑛𝑥↓)2 (5.1)

where ⟨𝑥, 𝑦⟩ indicates a summation over nearest-neighbor sites, 𝑐†/𝑐 denotes the fermionic cre-
ation/annihilation operator, and 𝑛 = 𝑐†𝑐 represents the corresponding number operator. This
Hamiltonian is applied to a graphene sheet of size 𝐿𝑥 × 𝐿𝑦 (see Fig. 5.1), where 𝐿𝑥 and 𝐿𝑦 refer to the
width and length of the sheet in unit cells. We will refer to the 1 × 1 sheet as the 2-site and the 1 × 2 as
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Chapter 5 Hubbard interaction at finite 𝑇 on a hexagonal lattice

Figure 5.1: 4 × 4 Graphene sheet. Graphene forms a hexagonal bipartite lattice with two sites A and B in each
unit cell (dotted rectangle), located at 𝜉𝐴 = (0, 0) and 𝜉𝐵 = (1, 0) respectively. The lattice translation vectors,
shown in purple, are 𝑎1,2 = (3/2,±√3/2), and the nearest-neighbor vectors are marked by green arrows.

the 4-site lattice. The graphene structure also has a well-defined Brillouin zone (BZ) comprising of
Λ = 𝐿𝑥𝐿𝑦 momentum points. Examples are given in Fig. 5.2.
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Figure 5.2: Brillouin zones for various lattice sizes in graphene. As lattice size increases, momentum points
increasingly populate the hexagonal Brillouin zone. Of particular importance are the momentum points at the
center (Γ-point), at the midpoint of the edges (𝑀-point), and at the vertices (𝐾-points). In the thermodynamic
limit when 𝐿𝑥 , 𝐿𝑦 → ∞, the BZ forms a hexagon.

To diagonalize the Hamiltonian, we apply a Fourier transform on each sublattice. Letting 𝑥
enumerate unit cells and 𝜆 denote the sublattice, we define:

𝑐𝑥𝜆𝑠 =
1√
Λ

∑︁
𝑘

e𝑖𝑘 (𝑥+𝜉𝜆 )𝑐𝑘𝜆𝑠 . (5.2)

The Fourier transform yields a 2x2 matrix in sublattice space, which is diagonalized to arrive at

𝐻0 =
∑︁
𝑘𝜌𝑠

E𝜌𝑘𝜙†𝑘𝜌𝑠𝜙𝑘𝜌𝑠 , E𝜌𝑘 = 𝜌E𝑘 = 𝜌 | 𝑓 (𝑘) | , (5.3)
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5.2 Thermal Field Theory

where
𝑓 (𝑘) = e𝑖𝑘𝑥 + 2e−𝑖𝑘𝑥/2 cos(

√
3𝑘𝑦/2) and 𝜌 = ±1 . (5.4)

To clarify the physical meaning of 𝜌, we introduce the Fermi energy E𝐹 , defined such that all states
with E𝜌𝑘 ≤ E𝐹 are filled [5]. States above E𝐹 are called particles and states below E𝐹 are called holes.
In our case E𝐹 = 0 which means 𝜌 = ±1 states represent particles/holes.

In this representation the interaction part of the Hamiltonian can be split into a quadratic part, 𝐻1,
which we will refer to as the mass term and a quartic part, 𝐻2, which we will call the interaction
vertex. The mass term 𝐻1 is then

𝐻1 = −𝑈
2

∑︁
𝑘𝜌𝑠

𝜙†𝑘𝜌𝑠𝜙𝑘𝜌𝑠 . (5.5)

For 𝐻2 we introduce the multi-index notation 𝒌 = (𝑘, 𝜌) and define the quartic interaction vertex

𝑉𝒌′𝒍′𝒌𝒍 =
𝑈

4Λ
𝛿𝑘′+𝑙′ ,𝑘+𝑙

(
1 + 𝜌′𝜎′𝜌𝜎e−𝑖 (𝜃𝑘−𝜃𝑘′+𝜃𝑙−𝜃𝑙′ )e−𝑖 (𝑘

′+𝑙′−𝑘−𝑙) 𝜉𝑏
)
, e𝑖 𝜃𝑘 =

𝑓 (𝑘)
| 𝑓 (𝑘) | , (5.6)

where 𝛿𝑘′+𝑙′ ,𝑘+𝑙 is defined modulo the BZ. Then the final Hamiltonian takes the following form

𝐻 =
∑︁
𝒌𝑠

(
E𝒌 −

𝑈

2

)
𝜙†
𝒌𝑠
𝜙𝒌𝑠 +

∑︁
𝒌′𝒍′𝒌𝒍

𝑉𝒌′𝒍′𝒌𝒍𝜙
†
𝒌′↑𝜙

†
𝒍′↓𝜙𝒌↓𝜙𝒍↑ . (5.7)

5.2 Thermal Field Theory

We operate within the interaction picture in imaginary time 𝜏 ≡ 𝑖𝑡, and we perturb about the free,
non-interacting (𝑈 = 0) system. We designate the𝑈-independent part of the Hamiltonian as the free
Hamiltonian, 𝐻0, and denote the remainder as the interaction term, 𝐻𝐼 . Our free propagator is

𝐺0
𝒌𝑠 (𝜏) = −

〈
𝑇𝜏 [𝜙𝒌𝑠 (𝜏)𝜙†𝒌𝑠]

〉
0
, (5.8)

where
〈
𝑇𝜏 [· · · ]

〉
0 stands for thermal average and 𝑇𝜏 is a time ordering operator. The explicit

time-dependent form of this quantity is:

𝐺0
𝒌 (𝜏) = e−𝜏E𝒌

{
−(1 − 𝑛𝒌 ) 𝜏 > 0
𝑛𝒌 𝜏 ≤ 0

with 𝑛𝒌 =
1

e𝛽E𝒌 + 1
, (5.9)

where 𝑛𝒌 is the fermion number. Since 𝐺0 is spin independent we drop the 𝑠. This propagator is
periodic in imaginary time, allowing us to express it in terms of a Fourier transform in 𝜏,

𝐺0
𝒌 (𝑖𝜔) =

∫ 𝛽

0
𝑑𝜏𝐺0

𝒌 (𝜏)e𝑖𝜔𝜏 =
1

𝑖𝜔 − E𝒌

, 𝜔 =
𝜋

𝛽
(2𝑚 + 1) 𝑚 ∈ Z . (5.10)
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Chapter 5 Hubbard interaction at finite 𝑇 on a hexagonal lattice

The inverse transform is provided by the Matsubara sum

𝐺0
𝒌 (𝜏) =

1
𝛽

∑︁
𝜔

e−𝑖𝜔𝜏

𝑖𝜔 − E𝒌

. (5.11)

To account for interactions, we introduce a quantity analogous to the 𝑆-matrix in ordinary QFT [6],
allowing us to express the interacting propagator which we’ll simply refer to as a correlator.

𝐶𝒌 (𝜏) = −

〈
𝑇𝜏 [𝑆(𝛽)𝜙𝒌𝑠 (𝜏)𝜙†𝒌𝑠]

〉
0

⟨𝑆(𝛽)⟩0
, 𝑆(𝜏) = 𝑇𝜏 exp

{
−

∫ 𝜏

0
𝐻𝐼 (𝜏′)𝑑𝜏′

}
. (5.12)

According to Wick’s theorem, thermal average of time-ordered product of the fermionic operators can
be expressed as the sum of all possible Wick contractions, defined as

𝜙•𝒌𝑠 (𝜏1)𝜙†•𝒍𝑠′ (𝜏2) = −𝛿𝒌𝒍𝛿𝑠𝑠′𝐺0
𝒌 (𝜏1 − 𝜏2) . (5.13)

Rather than computing each contraction explicitly, we employ a diagrammatic approach, using
Feynman diagrams to systematically capture higher-order contributions. In this case, we have one
propagator and two interaction vertices from 𝐻1 and 𝐻2, respectively. The complete set of Feynman
rules for our calculations is as follows:

∼ 1
𝑖𝜔−E𝒌

≡ 𝐺0
𝒌 (𝑖𝜔)

∼ −𝑈2 𝒌 ↑

𝒍 ↓

𝒌′ ↑

𝒍′ ↓
∼ 𝑉𝒌′𝒍′𝒍𝒌 (5.14)

In this way, we only have to keep track of topologically distinct Feynman diagrams instead of all the
possible Wick contractions.

5.3 Solution

In order to obtain a non-perturbative correction to the propagator we utilize the self-energy Σ𝒌 (𝑖𝜔),
which is the sum of all 1 particle irreducible (1-PI) diagrams. Σ is a 2x2 matrix in the sub-lattice basis
and in general not diagonal. The fully dressed correlator (double line) can then be expressed using
Dyson’s equation

= + Σ .

Poles of the correlator provide the spectrum arising from self-interactions, leading to the quantization
condition (QC).

det
(
𝐺0

𝒌 (𝑖𝜔)−1 − Σ𝒌 (𝑖𝜔)
) ����
𝑖𝜔=𝐸𝒌

= 0 , (5.15)

where 𝐸𝒌 is the interacting energy. Note that all temperature dependence (ie 𝛽-dependence) originates
in Σ. To get the time-dependent correlator 𝐶𝒌 (𝜏) we must perform a Matsubara sum. If Σ is diagonal
we use standard complex integration techniques to rewrite the sum over frequencies 𝜔 as a contour
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5.3 Solution

integral which can be solved as a sum over the residues at the poles of the correlator [5].

𝐶𝒌 (𝜏) =
1
𝛽

∑︁
𝜔

e−𝑖𝜔𝜏

𝑖𝜔 − E𝒌 − Σ𝒌 (𝑖𝜔)
=

∑︁
𝑧∗

e−𝑧
∗𝜏

e−𝑧
∗𝛽 + 1

Res
(

1
𝑧 − E𝒌 − Σ𝒌 (𝑧)

, 𝑧 = 𝑧∗
)
. (5.16)

Even if Σ is only approximately diagonal we can assume the off-diagonals to be zero with negligible
error. We have also observed that for Γ, 𝑀 and 𝐾 points self-energy is always diagonal.

We calculate Σ to the leading non-trivial order in𝑈. At O(𝑈) there are only two contributions, one
from the mass term and the other from the interaction vertex. These contributions are constant and
opposite in sign, canceling each other exactly. Diagrammatically the cancellation is given as

+ = 0 . (5.17)

This implies that the leading order contribution must be at least ∼ O(𝑈2). At this order we can use
(5.17) and assume all diagrams containing “tadpoles" and mass terms to cancel and we are left with a
single “sunset diagram":

𝑝𝜋 𝑝𝜋 =
∑︁
𝒍′𝒌𝒍

|𝑉𝒑𝒍′𝒌𝒍 |2
𝑛−𝒍′𝑛𝒌 + (𝑛𝒍′ − 𝑛𝒌 )𝑛−𝒍
𝑖𝜔 − (E𝒌 − E𝒍′ + E𝒍)

, (5.18)

where we used shorthand −𝒌 = (𝑘,−𝜌), and also defined 𝒑 = (𝑝, 𝜋) for external lines.

For the 2-site lattice there is only one momentum point Γ, therefore E𝜌𝑘 = 𝜌EΓ. Here |𝑉𝒑𝒍′𝒌𝒍 |2
simplifies to 𝑈2

4 𝛿𝜋𝜎′ ,𝜌𝜎 . At zero temperature the QC becomes a quadratic equation:

(𝐸 𝜋Γ − 𝜋EΓ) (𝐸 𝜋Γ + 3𝜋EΓ) −
𝑈2

4
= 0 . (5.19)

With the additional condition that 𝐸 𝜋Γ
��
𝑈=0 = 𝜋EΓ we can analytically solve for the energy

𝐸 𝜋Γ = 𝜋EΓ

(√︄
𝑈2

4E2
Γ

+ 4 − 1

)
. (5.20)

Even at 𝑇 ≠ 0 the QC for 2-sites is a cubic polynomial, making it analytically solvable. However,
exact expressions tend to be cumbersome and do not offer substantial insight. For larger lattices,
solving the QC analytically becomes infeasible so we can use numerical methods to find the roots of
(5.15). Due to the form of (5.18), QC is always a rational function of 𝐸𝒌 , meaning we can also find
residues and perform the summation in (5.16). For larger lattices, however, accumulation of numerical
errors precludes us from performing the residue sum to a sufficient degree of accuracy, forcing us to
fall back on HMC. In principle, one could use arbitrary precision methods, albeit with a significant
performance hit.
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Chapter 5 Hubbard interaction at finite 𝑇 on a hexagonal lattice

5.4 Results

5.4.1 𝑻 = 0
For the 2-site and 4-site systems, we compare perturbative results with exact solutions to assess the
validity of the leading-order (LO) approximation. First, in the zero-temperature limit (𝛽 → ∞), we
examine the dependence of energy on 𝑈 alone. In the 2-site case perturbative expression (5.20) is
equal to the exact solution given in [46]. For the 2-site problem, higher-order self-energy contributions
vanish at 𝑇 = 0, making it exactly solvable in our formalism.

For the 4-site system, which includes two momentum points in the Brillouin Zone (BZ) – Γ and
𝑀 – the discrepancy between perturbative and exact results is more pronounced. Nevertheless, the
agreement remains excellent for both momentum points, even up to 𝑈 = 20, which is well into the
non-perturbative regime, see Fig. 5.3.
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Figure 5.3: Energy dependence on 𝑈 for the 4-site system at 𝛽 → ∞. Plots are shown for Γ and 𝑀 points,
demonstrating good agreement between perturbative and exact solutions even for large values of𝑈.

5.4.2 𝑻 ≠ 0
To examine finite-temperature behavior, we calculate the time-dependent correlators using equation
5.16. Notably, the particle and hole propagators are mirror images around 𝜏 = 𝛽/2. For the 2-site
system, the perturbative and exact calculations are in close agreement, although deviations become
noticeable at very high values of𝑈 due to higher-order contributions at finite temperatures.

For the 4-site system, we analyze correlators at the Γ and 𝑀 points. The deviation between
perturbative and exact results is more pronounced here than in the 2-site case. However, the agreement
is still good, extending beyond typical perturbative limits of𝑈.

For lattices larger than 4-sites, exact solutions become computationally prohibitive, necessitating
the use of Hybrid Monte Carlo (HMC) simulations [28, 37, 47]. In Fig. 5.6, we present the correlators
for a 2 × 3 graphene. Although the Brillouin Zone (BZ) contains 6 momentum points, only 3 unique
correlators emerge, labeled as Γ, 𝑀, and 𝐴. The latter correlator provides an example where the
self-energy matrix Σ is not strictly diagonal. Despite this, we can approximate a solution to the
quantization condition. Our calculations reveal that the off-diagonal terms are an order of magnitude
smaller than the diagonal terms. If we denote this difference by 𝜖 , by setting these off-diagonal terms
to zero, we incur an error on the order of 𝜖2, which remains negligible in this context.

As in the 2- and 4-site examples, we find very good agreement between our perturbative and HMC
calculation for couplings up to 𝑈 = 3. However, at 𝑈 = 4 we see definitive discrepancies in the
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Figure 5.4: 𝐶𝒌 (𝜏) vs. 𝜏 for the 2-site system with𝑈 = 2, 8, 16 and 𝛽 = 8, 10. Deviations between perturbative
(dashed) and exact (solid) results only become apparent at very large 𝑈. Even at 𝑈 = 8, a strongly non-
perturbative value, the results show close agreement.
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Figure 5.5: 𝐶𝒌 (𝜏) vs. 𝜏 for the 4-site system at Γ (black) and 𝑀 (red) points, with 𝑈 = 2, 4, 6 and 𝛽 = 6, 8.
Deviations between perturbative (dashed) and exact (solid) results are more apparent than in the 2-site case but
still show strong agreement for high values of𝑈.

correlators.

5.5 Summary and Outlook

This proceeding presents perturbative calculations of the self-energy Σ in thermal field theory applied
to the Hubbard model on a graphene lattice, computed up to the leading non-trivial order, O(𝑈2). We
have calculated the zero-temperature energy shift, achieving perfect agreement with exact results for
the 2-site system and strong agreement for the 4-site system, even for non-perturbative values as high
as 𝑈 = 20. We further analyzed the time evolution of correlators for both 2-site and 4-site models,
observing remarkable alignment between perturbative and exact results despite the large 𝑈 values.
Additionally, we investigated correlators for 2 × 3 graphene sheet and compared our calculations to
HMC simulated data for up to𝑈 = 3 demonstrating good consistency. Only at larger𝑈 do we see a
discrepancy between perturbative and HMC results. In the future we will use our formalism here to
deduce the finite-temperature dependence of eigenenergies obtained from HMC simulations within a
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Figure 5.6: 𝐶𝒌 (𝜏) vs. 𝜏 for 2 × 3 graphene at𝑈 = 2, 3, and 4, all with 𝛽 = 6. These are Γ (black), 𝑀 (red) and
𝐴 (blue) points. Dashed lines are perturbative correlators and the dots are from an HMC simulation. Agreement
is very good. Even for 𝐴 which is not diagonal in particle-hole basis. However, off-diagonal terms are small
enough to treat it as approximately diagonal. To observe the deviation one has to go up to𝑈 = 4.

finite temporal volume.
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CHAPTER 6

Conclusion

In summary, this thesis has examined the fundamental electronic characteristics of low-dimensional
graphene sheets, nanoribbons and other complex geometries, with a particular focus on various types
of localized quantum states in hybrid ribbons [1–3], the influence of finite-temperature effects on
quasi-particle energies and two-point correlation functions [4], and the stability of quantum states
under perturbations typical of Hubbard-type models [1, 2, 4]. While the potential applications of
these findings in quantum computing present an exciting long-term aspiration, the primary aim of this
research has been to enhance our understanding of the intrinsic material properties and interactions
that could support future quantum technologies.

We investigated the role of interactions and external perturbations in shaping the electronic
properties of graphene-based systems, focusing on graphene nanoribbons (GNRs) and hybrid ribbon
configurations. Our work was motivated by the need to understand how localized states at junctions,
governed by symmetry and topology, respond to finite-temperature effects as well as interactions
which we chose to model using Hubbard-like models. This research builds upon established models
and methods in condensed matter physics, like the Kitaev chain or thermal perturbation theory and
explores these frameworks to hexagonal lattice systems and hybrid structures.

A central component of this study was the exploration of localized states and their stability under the
Hubbard and BCS-Hubbard interactions, the latter being an exactly solvable extension that includes
superconducting pairing Δ. This model incorporates nearest-neighbor hopping 𝑡, on-site Hubbard
interaction 𝑈, and pairing interactions, providing an ideal platform for investigating the interplay
between superconductivity, interactions, and topology. When 𝑡 = Δ, the BCS-Hubbard model
becomes exactly solvable, enabling us to derive closed-form expressions for the energy spectrum
and wavefunctions across a broad range of interaction strengths. Although realizing superconductive
pairing in physical systems remains challenging, the mathematical framework offers valuable insights
into interaction-driven phenomena.

We applied the BCS-Hubbard model to hexagonal carbon nanoribbons (CNRs) with zigzag (ZNR)
and armchair (ANR) geometries. These quasi-one-dimensional systems exhibit unique electronic
properties due to their edge structures and confinement effects. Our analysis showed that for𝑈 = 0,
armchair ribbons with widths 𝑁 = 3𝑚 +2 (where 𝑚 is an integer) exhibit gapless metallic behavior. As
𝑈 increases, an energy gap opens, indicating a transition to an insulating state. In the𝑈 → ∞ limit, the
system becomes an atomic insulator, with electrons tightly bound to atomic cores. These transitions
illustrate the complex interplay between geometry, interactions, and superconducting pairing.
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Chapter 6 Conclusion

The starting objective of this research was to investigate the robustness of localized states at the
junctions of hybrid GNRs. Our focus was on periodic hybrid nanoribbons, such as 7/9- and 13/15-
hybrid ribbons, where sections of different widths are joined. We employed both the BCS-Hubbard
model and standard Hubbard interactions simulated via Hybrid Monte Carlo (HMC) to study these
systems. By extracting site-dependent quasi-particle wavefunction densities, we provided a detailed
analysis of the spatial distribution of electronic states at the junctions.

A notable result of our work is the identification of two distinct types of localized states: the
familiar, sharply defined Fuji localizations and a newly discovered type referred to as Kilimanjaro
localizations. Fuji localizations are highly concentrated at the junctions and occur only when the
width 𝑁 of the narrower ribbon satisfies 𝑁 (mod 3) = 1. In contrast, Kilimanjaro localizations spread
over an extended segment of the ribbon and are more sensitive to the junction’s geometry.

In previous studies, the stability of localized states was attributed to differing topological charges of
the ribbons. However, our findings revealed counterexamples where localization persists even without
variations in the topological invariant. By analyzing the long-wavelength limit of a tight-binding
model, we demonstrated that wavefunction localization can arise from evanescent wave-like behavior
rather than purely topological protection. Our effective theory decomposes the Hamiltonian into
multiple Dirac-like sectors, each characterized by a massive Dirac equation, providing a more nuanced
explanation of localization phenomena in finite and periodic systems.

We extended our analysis to finite-temperature regimes to examine the resilience of localized states
under thermal perturbations. By deriving time-dependent correlation functions and comparing them
with numerical results from HMC simulations, we demonstrated that our perturbative treatment
remains accurate even for large interaction strengths. This accuracy underscores the robustness of
our framework. For instance, at the Γ-point of a 3 × 3 graphene lattice, we observed a plateau in the
correlation function due to Dirac 𝐾-points—a feature initially suspected to be a numerical artifact but
later confirmed through precise simulations.

Our study also highlighted the importance of chiral symmetry in suppressing linear corrections in
𝑈. At half-filling, first-order corrections to the self-energy vanish due to symmetry constraints, and
the leading-order contributions scale as O(𝑈2). This behavior was further validated by introducing a
staggered mass term that breaks sublattice symmetry, reinstating linear terms in𝑈. The absence of
linear corrections, even when deviating from half-filling, reinforces the idea that symmetry-driven
mechanisms govern the low-energy properties of the system.

We explored the implications of these findings for GNRs, which exhibit width-dependent bandgaps
and edge-localized states. By analyzing structural effects, such as ribbon width and edge symmetry,
we demonstrated how these factors influence the electronic response. At specific widths, zero-mass
excitations emerge, dominating the electronic properties and making GNRs an ideal platform for
studying interaction-driven phenomena.

Our results suggest that hybrid GNRs could serve as robust carriers of quantum information,
with potential applications in quantum dot engineering and fault-tolerant quantum computing. By
carefully engineering the junction geometry and tuning interaction strengths, it is possible to construct
nanoribbon-based quantum devices with tailored energy spectra and enhanced stability against
decoherence. We also investigated the effects of a finite temporal volume, revealing that thermal
fluctuations shift excitation energies but do not eliminate the robustness of localized states. This
resilience underscores the potential applicability of GNRs in real-world nanoscale devices.

The broader implications of this thesis lie in its ability to bridge theoretical predictions and practical
applications. By elucidating the role of Hubbard interactions, superconducting pairing, and thermal
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effects in graphene-based systems, our study provides a comprehensive framework for designing and
optimizing nanoscale devices. The insights gained contribute to the understanding of interaction-driven
phenomena in strongly correlated systems and pave the way for future explorations of exotic quantum
phases in low-dimensional materials.

Building upon the findings of this thesis, several promising avenues for future research can be
pursued.

One key direction is to extend the use of the thermal field theory formalism to more complex
geometries, including various types of graphene-based structures and hybrid nanoribbons with intricate
boundary conditions. This approach will provide a deeper understanding of how thermal fluctuations
and interaction effects manifest in different configurations and contribute to the broader study of
low-dimensional quantum systems.

Another important focus is the incorporation of higher order perturbative contributions from the
Hubbard interaction, like next-to-leading order (NLO) which would be O(𝑈3). This refinement
aims to enhance the precision of numerical simulations and analytical predictions, particularly for
capturing interaction-driven corrections and subtle effects that become prominent in specific parameter
regimes. Such higher-order contributions will allow for more accurate modeling of realistic systems
and improve comparisons with experimental results.

Additionally, an exciting avenue for exploration involves establishing the connection between the
effective model of hybrid ribbons and the topological charge of the Su-Schrieffer-Heeger (SSH) model
under periodic boundary conditions. This investigation will help elucidate the topological properties
of hybrid nanoribbons and their potential role in supporting robust quantum states, which are relevant
for applications in topological quantum computing and fault-tolerant quantum information processing.

Further research directions also include studying the resilience of localized states under additional
perturbations, such as disorder and external fields. By incorporating more complex interactions and
analyzing larger lattice systems, future work aims to refine the understanding of the interplay between
topology, symmetry, and interactions in hybrid graphene systems. These efforts underscore the
significance of materials science in advancing the field of quantum information technology and highlight
the challenges of bridging the gap between theoretical predictions and practical implementations.

Ultimately, while this thesis focuses on foundational research rather than immediate technological
application, its goal from the outset has been to contribute to the broader scientific and technological
advancement of quantum technologies and nanoelectronics. By deepening our understanding of the
underlying properties of 2D materials, this work aims to support future investigations and pave the
way for breakthroughs in quantum devices, including innovations in computation, information storage,
and energy-efficient electronics.
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APPENDIX A

Useful information

A.1 Commutator/Anticommutators

[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 , (A.1)
{𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴 , (A.2)

[𝐴, 𝐵𝐶] = [𝐴, 𝐵]𝐶 + 𝐵[𝐴,𝐶] , (A.3)
[𝐴𝐵,𝐶] = 𝐴[𝐵,𝐶] + [𝐴,𝐶]𝐵 , (A.4)

[𝐴, 𝐵𝐶] = {𝐴, 𝐵}𝐶 − 𝐵{𝐴,𝐶} , (A.5)
[𝐴𝐵,𝐶] = 𝐴{𝐵,𝐶} − {𝐴,𝐶}𝐵 . (A.6)

A.2 Matsubara sums

The inverse Fourier transform is expressed as Matsubara sum

1
𝛽

∑︁
𝑖𝜔

e−𝑖𝜔𝜏

𝑖𝜔 − E (A.7)

can be evaluated in the following way. The sum is defined over odd frequencies 𝑖𝜔 = 𝜋
𝛽 (2𝑛 + 1).

Notice that these are exactly the poles of the function

𝑓 (𝑧) = 1
e−𝛽𝑧 + 1

. (A.8)

With this in mind define a complex integral

lim
𝑅→∞

∮
|𝑧 |<𝑅

𝐹 (𝑧) 𝑓 (𝑧)𝑒𝜏𝑧 . (A.9)
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Appendix A Useful information

If 𝐹 (𝑧) vanishes as |𝑧 | → ∞ the integral is zero. On the other hand Cauchy formula tells us that this
integral is a sum of all residues inside the contour.

0 =
1
𝛽

∑︁
𝑖𝜔

e−𝑖𝜔𝜏𝐹 (𝑖𝜔) +
∑︁
𝑧∗

e−𝜏𝑧
∗

e−𝛽𝑧
∗ + 1

Res(𝐹 (𝑧), 𝑧∗) , (A.10)

where 𝛽 comes from the residue of 𝑓 (𝑖𝜔). It is easy to see that for simple propagator one recovers
Equation 1.29

1
𝛽

∑︁
𝑖𝜔

e−𝑖𝜔𝜏

𝑖𝜔 − E =
e−𝜏E

e−𝛽E + 1
. (A.11)

In general
1
𝛽

∑︁
𝜔

𝐹 (𝑖𝜔) =
{∑

𝑧0

Res(𝐹 (𝑧) ,𝑧0 )
𝑒𝑧0𝛽+1

𝜔 = 𝜋
𝛽 (2𝑛 + 1), 𝑛 ∈ Z∑

𝑧0

Res(𝐹 (𝑧) ,𝑧0 )
𝑒𝑧0𝛽−1

𝜔 = 𝜋
𝛽 (2𝑛), 𝑛 ∈ Z

. (A.12)

For poles of order 𝑛 we have

Res(𝐹 (𝑧), 𝑧0) =
1

(𝑛 − 1)! lim
𝑧→𝑧0

𝑑𝑛−1

𝑑𝑧𝑛−1
((𝑧 − 𝑧0)𝑛𝐹 (𝑧)

)
, (A.13)

1
𝛽

∑︁
𝜔′ odd

𝐺0
1(𝜔′)𝐺0

2(𝜔′ + 𝜔) = 𝑛1 − 𝑛2
𝑖𝜔 − E2 + E1

= (𝑛1 − 𝑛2)𝐺0
2−1(𝜔) , (A.14)

1
𝛽

∑︁
𝜔′ even

1
𝑖𝜔′ − E1

1
𝑖𝜔′ − E2

=
𝑛1 − 𝑛2

(1 − 2𝑛1) (1 − 2𝑛2)
1

E1 − E2
. (A.15)
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APPENDIX B

Detailed calculations

=

− 𝑈
2

∫ 𝛽

0
𝑑𝜏1𝑒

𝑖𝜔𝜏1

∫ 𝛽

0
𝑑𝜏

∑︁
𝒌𝑠

⟨𝑇𝜏 [𝜙𝒑𝑟 (𝜏1)𝜙†𝒌𝑠 (𝜏)]⟩0⟨𝑇𝜏 [𝜙𝒌𝑠 (𝜏)𝜙†𝒑𝑟 ]⟩0

= −𝑈
2

∫ 𝛽

0
𝑑𝜏1𝑒

𝑖𝜔𝜏1

∫ 𝛽

0
𝑑𝜏

∑︁
𝒌𝑠

(−𝐺0
𝒑𝑟 (𝜏1 − 𝜏)) (−𝐺0

𝒑𝑟 (𝜏))𝛿𝒑𝒌𝛿𝑠𝑟

= −𝑈
2

∫ 𝛽

0
𝑑𝜏1𝑒

𝑖𝜔𝜏1

∫ 𝛽

0
𝑑𝜏

1
𝛽2

∑︁
𝜔1,𝜔2

𝐺0
𝒑𝑟 (𝜔1)𝐺0

𝒑𝑟 (𝜔2)𝑒−𝑖𝜔1 (𝜏1−𝜏 )𝑒−𝑖𝜔2𝜏

= −𝑈
2

∫ 𝛽

0
𝑑𝜏1

∫ 𝛽

0
𝑑𝜏

1
𝛽2

∑︁
𝜔1,𝜔2

𝐺0
𝒑𝑟 (𝜔1)𝐺0

𝒑𝑟 (𝜔2)𝑒𝑖 (𝜔−𝜔1 )𝜏1𝑒𝑖 (𝜔1−𝜔2 )𝜏

= −𝑈
2

1
𝛽2

∑︁
𝜔1,𝜔2

𝐺0
𝒑𝑟 (𝜔1)𝐺0

𝒑𝑟 (𝜔2)𝛽𝛿𝜔𝜔1
𝛽𝛿𝜔1𝜔2

(B.1)

= −𝑈
2
𝐺0

𝒑𝑟 (𝜔)𝐺0
𝒑𝑟 (𝜔) .
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2× =

−2
(−)2

2!

(
−𝑈

2

) ∫
1,2

∑︁
𝒌′,𝒍′,𝒌
𝒍 ,𝒒,𝑟

𝑉𝒌′𝒍′𝒌𝒍 ⟨𝑇𝜏 [𝜙†𝒒𝑟 (1)𝜙𝒒𝑟 (1)𝜙†𝒌′↑ (2)𝜙
†
𝒍′↓ (2)𝜙𝒍↓ (2)𝜙𝒌↑ (2)𝜙𝒑↑ (3)𝜙

†
𝒑↑]⟩0

=
𝑈

2

∫
1,2

∑︁
𝒌′,𝒍′,𝒌
𝒍 ,𝒒,𝑟

𝑉𝒌′𝒍′𝒌𝒍 ⟨𝑇𝜏 [𝜙†𝒒𝑟 (1)𝜙𝒒𝑟 (1)𝜙†𝒌′↑ (2)𝜙𝒌↑ (2)𝜙𝒑↑ (3)𝜙
†
𝒑↑]⟩0𝐺

0
𝒍↓ (0−)𝛿𝒍′𝒍

+ ⟨𝑇𝜏 [𝜙†𝒒𝑟 (1)𝜙𝒒𝑟 (1)𝜙†𝒍′↓ (2)𝜙𝒍↓ (2)𝜙𝒑↑ (3)𝜙
†
𝒑↑]⟩0𝐺

0
𝒌↑ (0−)𝛿𝒌′𝒌

=
𝑈

2

∫
1,2

∑︁
𝒌′,𝒌 ,𝒍
𝒒,𝑟

𝑉𝒌′𝒍𝒌𝒍 ⟨𝑇𝜏 [𝜙†𝒒𝑟 (1)𝜙𝒒𝑟 (1)𝜙†𝒌′↑ (2)𝜙𝒌↑ (2)𝜙𝒑↑ (3)𝜙
†
𝒑↑]⟩0𝑛𝒍

+
∑︁
𝒍′,𝒌 ,𝒍
𝒒,𝑟

𝑉𝒌𝒍′𝒌𝒍 ⟨𝑇𝜏 [𝜙†𝒒𝑟 (1)𝜙𝒒𝑟 (1)𝜙†𝒍′↓ (2)𝜙𝒍↓ (2)𝜙𝒑↑ (3)𝜙
†
𝒑↑]⟩0𝑛𝒌

= 𝑈
∑︁
𝒌′,𝒌 ,𝒍
𝒒,𝑟

𝑉𝒌′𝒍𝒌𝒍

∫
1,2

⟨𝑇𝜏 [𝜙†𝒒𝑟 (1)𝜙𝒒𝑟 (1)𝜙†𝒌′↑ (2)𝜙𝒌↑ (2)𝜙𝒑↑ (3)𝜙
†
𝒑↑]⟩0𝑛𝒍 (B.2)

= −𝑈
∑︁
𝒌′,𝒌 ,𝒍
𝒒,𝑟

𝑉𝒌′𝒍𝒌𝒍

∫
1,2

(−𝐺0
𝒑↑ (𝜏3 − 𝜏1))𝛿𝒑𝒌′ (−𝐺0

𝒒↑ (𝜏1 − 𝜏2))𝛿𝒒𝒌′𝛿𝑟↑ (−𝐺0
𝒑↑ (𝜏2))𝛿𝒑𝒌𝑛𝒍

= −𝑈
∑︁
𝒍

𝑉𝒑𝒍𝒑𝒍

∫
1,2
𝐺0

𝒑↑ (𝜏3 − 𝜏1)𝐺0
𝒑↑ (𝜏2)𝐺0

𝒑↑ (𝜏1 − 𝜏2)𝑛𝒍

= −𝑈 𝑈

2Λ

∫
1,2
𝐺0

𝒑↑ (𝜏3 − 𝜏1)𝐺0
𝒑↑ (𝜏2)𝐺0

𝒑↑ (𝜏1 − 𝜏2)Λ

= −𝑈
2

2

∫
1,2
𝐺0

𝒑↑ (𝜏3 − 𝜏1)𝐺0
𝒑↑ (𝜏2)𝐺0

𝒑↑ (𝜏1 − 𝜏2) .
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=

− (−)2

2

(
−𝑈

2

)2 ∑︁
𝒌 ,𝒍
𝑟 ,𝑠

∫
1,2

⟨𝑇𝜏 [𝜙†𝒌𝑟 (1)𝜙𝒌𝑟 (1)𝜙
†
𝒍𝑠
(2)𝜙𝒍𝑠 (2)𝜙𝒑↑ (3)𝜙†𝒑↑]⟩0

= −𝑈
2

8

∫
1,2

∑︁
𝒌 ,𝒍
𝑟 ,𝑠

(−𝐺0
𝒌𝑟 (𝜏1 − 𝜏2))𝛿𝑟𝑠𝒌𝒍 (−𝐺0

𝒑↑ (𝜏3 − 𝜏1))𝛿𝑟↑𝒌𝒑 (−𝐺
0
𝒑↑ (𝜏2))𝛿𝑠↑𝒍𝒑

+ (1, 𝑘, 𝜌, 𝑟 ↔ 2, 𝑙, 𝜎, 𝑠)

=
𝑈2

4

∫
1,2
𝐺0

𝒑↑ (𝜏1 − 𝜏2)𝐺0
𝒑↑ (𝜏3 − 𝜏1)𝐺0

𝒑↑ (𝜏2) . (B.3)

=

− (−)2

2

∑︁
𝒌′𝒍′𝒌𝒍

𝒌′′′𝒍′′′𝒌′′𝒍′′

𝑉𝒌′𝒍′𝒌𝒍𝑉𝒌′′′𝒍′′′𝒌′′𝒍′′

∫
1,2

⟨𝑇𝜏 [𝜙†𝒌′↑ (1)𝜙
†
𝒍′↓ (1)𝜙𝒍↓ (1)𝜙𝒌↑ (1)

𝜙†
𝒌′′′↑ (2)𝜙

†
𝒍′′′↓ (2)𝜙𝒍′′↓ (2)𝜙𝒌′′↑ (2)𝜙𝒑↑ (3)𝜙

†
𝒑↑]⟩0

= −1
2

∑︁
𝒌′𝒍′𝒌𝒍

𝒌′′′𝒍′′′𝒌′′𝒍′′

𝑉𝒌′𝒍′𝒌𝒍𝑉𝒌′′′𝒍′′′𝒌′′𝒍′′

∫
1,2

⟨𝑇𝜏 [𝜙†𝒌′↑ (1)𝐺
0
𝒍↓ (0−)𝛿𝒍𝒍′𝜙𝒌↑ (1)

𝜙†
𝒌′′′↑ (2)𝐺

0
𝒍′′↓ (0

−)𝛿𝒍′′′𝒍′′𝜙𝒌′′↑ (2)𝜙𝒑↑ (3)𝜙†𝒑↑]⟩0

= −1
2

∑︁
𝒌′𝒌𝒍

𝒌′′′𝒌′′𝒍′′

𝑉𝒌′𝒍𝒌𝒍𝑉𝒌′′′𝒍′′𝒌′′𝒍′′𝑛𝒍𝑛𝒍′′

∫
1,2

(−𝐺0
𝒌↑ (𝜏1 − 𝜏2))𝛿𝒌𝒌′′′ (−𝐺0

𝒑↑ (𝜏3 − 𝜏1))𝛿𝒌′𝒑 (−𝐺0
𝒑↑ (𝜏2))𝛿𝒌′′𝒑

+ (1, 𝑘 ′′, 𝑘 ′′′ ↔ 2, 𝑘, 𝑘 ′)

=
∑︁
𝒌𝒍𝒍′′

𝑉𝒑𝒍𝒌𝒍𝑉𝒌𝒍′′𝒑𝒍′′𝑛𝒍𝑛𝒍′′

∫
1,2
𝐺0

𝒌↑ (𝜏1 − 𝜏2)𝐺0
𝒑↑ (𝜏3 − 𝜏1)𝐺0

𝒑↑ (𝜏2)

=
𝑈2

16Λ2

∑︁
𝒌𝒍𝒍′′

𝛿𝑝𝑘

���1 + 𝜋𝜌𝑒𝑖 (𝜃𝑘−𝜃𝑝 )
���2 𝑛𝒍𝑛𝒍′′

∫
1,2
𝐺0

𝒌↑ (𝜏1 − 𝜏2)𝐺0
𝒑↑ (𝜏3 − 𝜏1)𝐺0

𝒑↑ (𝜏2)

=
𝑈2

4

∑︁
𝒌

𝛿𝒑𝒌

∫
1,2
𝐺0

𝒌↑ (𝜏1 − 𝜏2)𝐺0
𝒑↑ (𝜏3 − 𝜏1)𝐺0

𝒑↑ (𝜏2) (B.4)

=
𝑈2

4

∫
1,2
𝐺0

𝒑↑ (𝜏1 − 𝜏2)𝐺0
𝒑↑ (𝜏3 − 𝜏1)𝐺0

𝒑↑ (𝜏2) .
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2 × =

−2
(−)2

2!

(
−𝑈

2

) ∑︁
𝒌′,𝒍′,𝒌
𝒍 ,𝒒,𝑟

𝑉𝒌′𝒍′𝒌𝒍

∫
1,2

⟨𝑇𝜏 [𝜙†𝒒𝑟 (1)𝜙𝒒𝑟 (1)𝜙†𝒌′↑ (2)𝜙
†
𝒍′↓ (2)𝜙𝒍↓ (2)𝜙𝒌↑ (2)𝜙𝒑↑ (3)𝜙

†
𝒑↑]⟩0

=
𝑈

2

∑︁
𝒌′,𝒍′,𝒌
𝒍 ,𝒒,𝑟

𝑉𝒌′𝒍′𝒌𝒍

∫
1,2

⟨𝑇𝜏 [𝜙†𝒒𝑟 (1)𝜙𝒒𝑟 (1)𝐺0
𝒑↑ (𝜏3 − 𝜏2)𝛿𝒌′𝒑𝜙†𝒍′↓ (2)𝜙𝒍↓ (2)𝐺

0
𝒑↑ (𝜏2)𝛿𝒌𝒑]⟩0

=
𝑈

2

∑︁
𝒍′,𝒍
𝒒,𝑟

𝑉𝒑𝒍′𝒑𝒍

∫
1,2
𝐺0

𝒑↑ (𝜏3 − 𝜏2)𝐺0
𝒑↑ (𝜏2)⟨𝑇𝜏 [𝜙†𝒒𝑟 (1)𝜙𝒒𝑟 (1)𝜙†𝒍′↓ (2)𝜙𝒍↓ (2)]⟩0

=
𝑈

2

∑︁
𝒍′,𝒍
𝒒,𝑟

𝑉𝒑𝒍′𝒑𝒍

∫
1,2
𝐺0

𝒑↑ (𝜏3 − 𝜏2)𝐺0
𝒑↑ (𝜏2)𝐺0

𝒒𝑟 (𝜏2 − 𝜏1)𝛿𝑟↓𝒒𝒍 (−𝐺
0
𝒒𝑟 (𝜏1 − 𝜏2))𝛿𝑟↓𝒒𝒍′

= −𝑈
2

∑︁
𝒒

𝑉𝒑𝒒𝒑𝒒

∫
1,2
𝐺0

𝒑↑ (𝜏3 − 𝜏2)𝐺0
𝒑↑ (𝜏2)𝐺0

𝒒↓ (𝜏2 − 𝜏1)𝐺0
𝒒↓ (𝜏1 − 𝜏2) (B.5)

= −𝑈
2

4Λ

∑︁
𝒒

∫
1,2
𝐺0

𝒑↑ (𝜏3 − 𝜏2)𝐺0
𝒑↑ (𝜏2)𝐺0

𝒒↓ (𝜏2 − 𝜏1)𝐺0
𝒒↓ (𝜏1 − 𝜏2) .
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=

− (−)2

2

∑︁
𝒌′𝒍′𝒌𝒍

𝒌′′′𝒍′′′𝒌′′𝒍′′

𝑉𝒌′𝒍′𝒌𝒍𝑉𝒌′′′𝒍′′′𝒌′′𝒍′′

∫
1,2

⟨𝑇𝜏 [𝜙†𝒌′↑ (1)𝜙
†
𝒍′↓ (1)𝜙𝒍↓ (1)𝜙𝒌↑ (1)

𝜙†
𝒌′′′↑ (2)𝜙

†
𝒍′′′↓ (2)𝜙𝒍′′↓ (2)𝜙𝒌′′↑ (2)𝜙𝒑↑ (3)𝜙

†
𝒑↑]⟩0

= −1
2

∑︁
𝒌′𝒍′𝒌𝒍

𝒌′′′𝒍′′′𝒌′′𝒍′′

𝑉𝒌′𝒍′𝒌𝒍𝑉𝒌′′′𝒍′′′𝒌′′𝒍′′

∫
1,2
𝐺0

𝒌↑ (0−)𝛿𝒌′𝒌 (−𝐺0
𝒍′↓ (𝜏2 − 𝜏1))𝛿𝒍′′𝒍′𝐺0

𝒍↓ (𝜏1 − 𝜏2)𝛿𝒍′′′𝒍

𝐺0
𝒑↑ (𝜏3 − 𝜏2)𝛿𝒌′′′𝒑𝐺0

𝒑↑ (𝜏2)𝛿𝒌′′𝒑 + (1, · · · ↔ 2, · · · )

=
∑︁
𝒍′𝒌𝒍

𝑉𝒌𝒍′𝒌𝒍𝑉𝒑𝒍𝒑𝒍𝑛𝒌

∫
1,2
𝐺0

𝒍′↓ (𝜏2 − 𝜏1)𝐺0
𝒍↓ (𝜏1 − 𝜏2)𝐺0

𝒑↑ (𝜏3 − 𝜏2)𝐺0
𝒑↑ (𝜏2)

=
∑︁
𝒍′𝒌𝒍

𝑈

4Λ
𝛿𝑙𝑙′

(
1 + 𝜎𝜎′𝑒𝑖 (𝜃𝑙−𝜃𝑙′ )

) 𝑈
2Λ
𝑛𝒌

∫
1,2
𝐺0

𝒍′↓ (𝜏2 − 𝜏1)𝐺0
𝒍↓ (𝜏1 − 𝜏2)𝐺0

𝒑↑ (𝜏3 − 𝜏2)𝐺0
𝒑↑ (𝜏2)

=
𝑈2

4Λ

∑︁
𝒍′𝒍

𝛿𝒍𝒍′

∫
1,2
𝐺0

𝒍′↓ (𝜏2 − 𝜏1)𝐺0
𝒍↓ (𝜏1 − 𝜏2)𝐺0

𝒑↑ (𝜏3 − 𝜏2)𝐺0
𝒑↑ (𝜏2) (B.6)

=
𝑈2

4Λ

∑︁
𝒍

∫
1,2
𝐺0

𝒍↓ (𝜏2 − 𝜏1)𝐺0
𝒍↓ (𝜏1 − 𝜏2)𝐺0

𝒑↑ (𝜏3 − 𝜏2)𝐺0
𝒑↑ (𝜏2) .
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Appendix B Detailed calculations

=

− (−)2

2

∑︁
𝒌′𝒍′𝒌𝒍

𝒌′′′𝒍′′′𝒌′′𝒍′′

𝑉𝒌′𝒍′𝒌𝒍𝑉𝒌′′′𝒍′′′𝒌′′𝒍′′

∫
1,2,3

𝑒𝑖𝜔𝜏3 ⟨𝑇𝜏 [𝜙†𝒌′↑ (1)𝜙
†
𝒍′↓ (1)𝜙𝒍↓ (1)𝜙𝒌↑ (1) (B.7)

𝜙†
𝒌′′′↑ (2)𝜙

†
𝒍′′′↓ (2)𝜙𝒍′′↓ (2)𝜙𝒌′′↑ (2)𝜙𝒑↑ (3)𝜙

†
𝒑↑]⟩0

= −1
2

∑︁
𝒌′𝒍′𝒌𝒍

𝒌′′′𝒍′′′𝒌′′𝒍′′

𝑉𝒌′𝒍′𝒌𝒍𝑉𝒌′′′𝒍′′′𝒌′′𝒍′′

∫
1,2,3

𝑒𝑖𝜔𝜏3 ⟨𝑇𝜏 [𝐺0
𝒑↑ (𝜏3 − 𝜏1)𝛿𝒌′𝒑𝜙†𝒍′↓ (1)𝜙𝒍↓ (1)𝜙𝒌↑ (1)

𝜙†
𝒌′′′↑ (2)𝜙

†
𝒍′′′↓ (2)𝜙𝒍′′↓ (2)𝐺

0
𝒑↑ (𝜏2)𝛿𝒌′′𝒑]⟩0

= −1
2

∑︁
𝒍′𝒌𝒍

𝒌′′′𝒍′′′𝒍′′

𝑉𝒑𝒍′𝒌𝒍𝑉𝒌′′′𝒍′′′𝒑𝒍′′

∫
1,2,3

𝑒𝑖𝜔𝜏3 (−𝐺0
𝒌↑ (𝜏1 − 𝜏2))𝛿𝒌′′′𝒌 (−𝐺0

𝒍↓ (𝜏1 − 𝜏2))𝛿𝒍′′′𝒍𝐺0
𝒍′↓ (𝜏2 − 𝜏1)𝛿𝒍′′𝒍′

𝐺0
𝒑↑ (𝜏3 − 𝜏1)𝐺0

𝒑↑ (𝜏2) + (1, · · · ↔ 2, · · · )

= −
∑︁
𝒍′𝒌𝒍

𝑉𝒑𝒍′𝒌𝒍𝑉𝒌𝒍𝒑𝒍′

∫
1,2,3

𝑒𝑖𝜔𝜏3𝐺0
𝒌↑ (𝜏1 − 𝜏2)𝐺0

𝒍↓ (𝜏1 − 𝜏2)𝐺0
𝒍′↓ (𝜏2 − 𝜏1)𝐺0

𝒑↑ (𝜏3 − 𝜏1)𝐺0
𝒑↑ (𝜏2)

= −
∑︁
𝒍′𝒌𝒍

|𝑉𝒑𝒍′𝒌𝒍 |2
1
𝛽5

∑︁
{𝜔𝑖 }

∫
1,2,3

𝐺0
𝒌↑ (𝜔1)𝐺0

𝒍↓ (𝜔2)𝐺0
𝒍′↓ (𝜔3)𝐺0

𝒑↑ (𝜔4)𝐺0
𝒑↑ (𝜔5)

× 𝑒𝑖 (𝜔−𝜔4 )𝜏3𝑒−𝑖 (𝜔1+𝜔2−𝜔3−𝜔4 )𝜏1𝑒𝑖 (𝜔1+𝜔2−𝜔3−𝜔5 )𝜏2

= −
∑︁
𝒍′𝒌𝒍

|𝑉𝒑𝒍′𝒌𝒍 |2
1
𝛽5

∑︁
{𝜔𝑖 }

∫
2
𝐺0

𝒌↑ (𝜔1)𝐺0
𝒍↓ (𝜔2)𝐺0

𝒍′↓ (𝜔3)𝐺0
𝒑↑ (𝜔4)𝐺0

𝒑↑ (𝜔5)

× 𝛽𝛿𝜔,𝜔4
𝛽𝛿𝜔1+𝜔2,𝜔3+𝜔4

𝛽𝛿𝜔4,𝜔5

= −
∑︁
𝒍′𝒌𝒍

|𝑉𝒑𝒍′𝒌𝒍 |2
1
𝛽2

∑︁
𝜔′𝜔1

𝐺0
𝒌↑ (𝜔1)𝐺0

𝒍′↓ (𝜔1 − 𝜔′)𝐺0
𝒑↑ (𝜔)𝐺0

𝒍↓ (𝜔 − 𝜔′)𝐺0
𝒑↑ (𝜔) .
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We amputate the diagram to get only the 1PI contribution

−
∑︁
𝒍′𝒌𝒍

|𝑉𝒑𝒍′𝒌𝒍 |2
1
𝛽2

∑︁
𝜔′𝜔1

𝐺0
𝒌↑ (𝜔1)𝐺0

𝒍′↓ (𝜔1 − 𝜔′)𝐺0
𝒍↓ (𝜔 − 𝜔′)

= −
∑︁
𝒍′𝒌𝒍

|𝑉𝒑𝒍′𝒌𝒍 |2
1
𝛽

∑︁
𝜔′

𝑛𝒍′ − 𝑛𝒌
𝑖𝜔′ − (E𝜌𝑘 − E𝜎′

𝑙′ )
1

𝑖𝜔 − 𝑖𝜔′ − E𝜎𝑙 + 𝜇 (B.8)

= −
∑︁
𝒍′𝒌𝒍

|𝑉𝒑𝒍′𝒌𝒍 |2
−1
𝛽

∑︁
𝜔′

𝑛𝒍′ − 𝑛𝒌
𝑖𝜔′ − (E𝜌𝑘 − E𝜎′

𝑙′ )
1

𝑖𝜔′ − (𝑖𝜔 − E𝜎𝑙 + 𝜇)

= −
∑︁
𝒍′𝒌𝒍

|𝑉𝒑𝒍′𝒌𝒍 |2(𝑛𝒍′ − 𝑛𝒌 )
𝑛−𝒌−𝒍′

E𝜌𝑘 − E𝜎′

𝑙′ − (𝑖𝜔 − E𝜎𝑙 + 𝜇)
+ 𝑛−𝑖𝜔−𝒍
𝑖𝜔 − E𝜎𝑙 + 𝜇 − (E𝜌𝑘 − E𝜎′

𝑙′ )

=
∑︁
𝒍′𝒌𝒍

|𝑉𝒑𝒍′𝒌𝒍 |2
(𝑛𝒍′ − 𝑛𝒌 ) (𝑛−𝒌−𝒍′ + 𝑛−𝒍)

𝑖𝜔 − (E𝜌𝑘 − E𝜎′

𝑙′ + E𝜎𝑙 − 𝜇)

=
∑︁
𝒍′𝒌𝒍

|𝑉𝒑𝒍′𝒌𝒍 |2
(𝑛𝒍′ − 𝑛𝒌 )𝑛−𝒌−𝒍′ + (𝑛𝒍′ − 𝑛𝒌 )𝑛−𝒍
𝑖𝜔 − (E𝜌𝑘 − E𝜎′

𝑙′ + E𝜎𝑙 ) + 𝜇

=
∑︁
𝒍′𝒌𝒍

|𝑉𝒑𝒍′𝒌𝒍 |2
𝑛−𝒍′𝑛𝒌 + (𝑛𝒍′ − 𝑛𝒌 )𝑛−𝒍

𝑖𝜔 − (E𝜌𝑘 − E𝜎′

𝑙′ + E𝜎𝑙 ) + 𝜇
.
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APPENDIX C

Localization of electronic states in hybrid
nanoribbons in the nonperturbative regime

C.1 Extracting site densities from QMC simulations

To extract the amplitudes for each site we first calculate site-dependent spatial correlators of the form

𝐶𝑘 (𝑥, 𝑡) ≡ ⟨𝑎𝑥 (𝑡)𝑎†𝑘 (0)⟩ =
1
𝑍

Tr
[
𝑎𝑥 (𝑡)𝑎†𝑘 (0)𝑒−𝛽𝐻

]
, (C.1)

where 𝑍 = Tr
[
𝑒−𝛽𝐻

]
and the trace is taken over the entire Fock space of the system. Here 𝑥 refers to

a particular site on the lattice and 𝑘 = (𝑘𝑥 , 𝜅) is the momentum variable that corresponds to the state
that we are interested in. The creation operator 𝑎†𝑘 is

𝑎†𝑘 =
1
𝑁𝑢

∑︁
𝑥𝑢 ,𝑖

𝑒−𝑖𝑘𝑥 𝑥𝑢𝐶𝜅𝑖 𝑎
†
𝑥𝑢 ,𝑖

, (C.2)

where the sum is over 𝑁𝑢 locations of the unit cells located at positions 𝑥𝑢 and the ions 𝑖 within
each unit cell. The coefficients 𝐶𝜅𝑖 are the non-interacting eigenvector components obtained from the
diagonalization of the tight-binding Hamiltonian. For the low-energy localized state, we have that
𝑘𝑥 = 0 and choose 𝜅 to correspond to the (non-interacting) eigenvector corresponding to this localized
state.

By expressing the time-dependence in the right-hand side of Eq. (C.1) in the Heisenberg picture,

𝑎𝑥 (𝑡) = 𝑒−𝐻𝑡𝑎𝑥𝑒𝐻𝑡 ,

we can perform a spectral decomposition and determine the leading dependence of this correlator in
the large time limit. We find

lim
1≪𝑡<𝛽

𝐶𝑘 (𝑥, 𝑡) = ⟨Ω|𝑎𝑥 |Ω + 𝑘⟩⟨Ω + 𝑘 |𝑎†𝑘 |Ω⟩𝑒−(𝜀Ω+𝑘−𝜀Ω )𝑡 + . . . , (C.3)

where the ellipsis represents terms that are exponentially suppressed. The state |Ω⟩ and its associated
energy 𝜀Ω represents the half-filling global ground state and global interacting energy minimum,
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Appendix C Localization of electronic states in hybrid nanoribbons in the nonperturbative regime
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Figure C.1: Non-interacting wavefunction densities 𝜌𝑘 (𝑥, 𝑡) (labeled as |⟨𝑘, 𝜎 |𝑎†𝑥 |Ω⟩|2 above) of the lowest
energy localized state, as defined by Eq. (C.4). The different lines correspond to different lattice sites 𝑥 and the
red/blue coloring refer to A/B sites.

respectively, and the state |Ω + 𝑘⟩ and associated energy 𝜀Ω+𝑘 is the state with an additional fermion
with momentum 𝑘 above half filling and its corresponding interacting energy, respectively. The energy
difference 𝜀Ω+𝑘 − 𝜀Ω ≡ 𝐸𝑘 is exactly the interacting energy that we refer to in the manuscript.

The amplitude we are interested in is ⟨Ω|𝑎𝑥 |Ω + 𝑘⟩. Note that in the non-interacting limit we have
that ⟨Ω + 𝑘 |𝑎†𝑘 |Ω⟩ = 1 and the amplitude is, up to an overall phase, equivalent to 𝐶𝜅𝑖 in Eq. (C.2).
With interactions, unfortunately, we cannot extract this amplitude because it is multiplied by the
factor ⟨Ω + 𝑘 |𝑎†𝑘 |Ω⟩𝑒−(𝐸Ω+𝑘−𝐸Ω )𝑡 which we do not a priori know. However, note that this factor is
independent of the site 𝑥 and carries the same time dependence for all spatial correlators. Furthermore,
we are interested in the densities, 𝜌𝑘 (𝑥) = |⟨Ω|𝑎𝑥 |Ω+ 𝑘⟩|2 which should be normalized over the lattice
unit cell,

∑
𝑥 𝜌𝑘 (𝑥) = 1. With these properties in mind, we instead analyze the following expression,

𝜌𝑘 (𝑥, 𝜏) ≡
|𝐶𝑘 (𝑥, 𝜏) |2∑
𝑦 |𝐶𝑘 (𝑦, 𝜏) |2

. (C.4)

Because of the independence of the unknown factor on spatial site 𝑥 and its identical time dependence
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C.1 Extracting site densities from QMC simulations
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Figure C.2: Same as is in Fig. C.1, but now with non-zero values𝑈. The non-interacting amplitudes at𝑈 = 0
are shown in Fig. C.1.

for each spatial site, this factor cancels in this ratio. The resulting term is automatically normalized
over all lattice sites and thus represents the density at each site 𝑥. In the non-interacting limit, the
cancellation of the unknown factor occurs exactly for all 𝜏, and so Eq. (C.4) has no dependence on
𝜏. We have verified that it produces the exact wavefunction densities, as shown in Fig. C.1. For
𝑈 ≠ 0, the cancellation of the unknown factor occurs only in the scaling region given in Eq. (C.3),
and so we extract the densities in the region where 𝜌𝑘 (𝑥, 𝑡) exhibits little to no time dependence and is
thus relatively flat. Figure C.2 shows examples of the 𝜌𝑘 (𝑥, 𝑡) for different values of𝑈 including the
non-interacting case. In all cases we extract the density in a region centered around 𝑡 = 𝛽/2.
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APPENDIX D

Hubbard interaction at finite 𝑻 on a hexagonal
lattice

D.1 Results for 3 × 3 ribbons

We also examine a 3 × 3 graphene sheet, which features three distinct correlators, labeled here as Γ, 𝐾
and 𝐴. 𝐾 corresponds to the Dirac points where dispersion vanishes. Presence of the zero-energy state
introduces a new type of behavior. 𝐾 correlator itself is flat and starts at 1/2 instead of 1, whereas
Γ correlator has a distinct plateau. This behavior is captured by the perturbative calculations, Fig.
D.1. This was assumed to be an artifact in the simulations due to insufficient precision, however
it seems that the plateau in the Γ correlator is indeed there. For 𝑈 > 1 we see a clear deviation
between the plateaus of the HMC and perturbative correlators, however, the slopes of the correlators
are approximated much better, despite the large values of the interaction strength.

0 2 4 6 8
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10 1

100
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U = 1

0 2 4 6 8
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Figure D.1: 𝐶𝒌 (𝜏) vs. 𝜏 for 3 × 3 graphene at 𝑈 = 1, 2, and 3 and 𝛽 = 8. BZ of 3 × 3 sheet contains Dirac
points 𝐾, 𝐾 ′ (red) where the dispersion vanishes. Corresponding correlator is “flat” and 𝐶𝐾 (0) = 0.5. Γ (black)
exhibits a plateau. The remaining correlator is labeled 𝐴 (blue).
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