
Addressing Domain Shift in CNN-based
Image Segmentation: From Improving

Robustness to Unsupervised and Active
Learning based Domain Adaptation

KUMULATIVE DISSERTATION

zur Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

RASHA SHEIKH

aus Amman

Bonn, 2024



Angefertigt mit Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Gutachter/Betreuer: Prof. Dr. Thomas Schultz
Gutachter: PD Dr. Volker Steinhage

Tag der Promotion: 20.02.2025
Erscheinungsjahr: 2025



iii

Abstract

RASHA SHEIKH

Addressing Domain Shift in CNN-based Image Segmentation:
From Improving Robustness to Unsupervised and Active
Learning based Domain Adaptation

Pixel-wise labeling of images is a common task in applications nowadays as it
allows humans and machines to make sense of the content in an image and informs
their decisions about subsequent steps to be taken. Examples of such applications in-
clude scene understanding for autonomous driving, weeding in agricultural fields,
and interventional therapies for brain tumors. It is however challenging to build
machine learning models that perform well on data exhibiting different characteris-
tics to what they have seen during training, or put differently, that they are robust to
domain shift.

We address this problem using different approaches. A starting point is to in-
crease the robustness of a segmentation model by encouraging it to focus more on
the shape content of images rather than textural features. We accomplish this by us-
ing TV augmentation to smooth images while emphasizing object boundaries. We
compare our work to other augmentation techniques and show the benefit of our
approach. Another aspect we look into is design decisions employed by a popu-
lar open-source framework that is widely used for segmentation of medical images.
Concretely, we investigate the effect of optimizers and the number of training epochs
on domain generalization, and show through our experiments how the performance
on new domains can be improved.

If labeled images from the target domain can be acquired, then these can be used
to adapt models to the unseen domains. We devise smart sampling strategies to
select which data samples should be annotated for efficient active learning. We first
generate pseudo-labels and choose samples based on the loss and gradients of the
network. Finally, if only unlabeled images are available, we use self-supervision
to leverage this data and adapt the model to the target domain. We add a second
branch to the trained model and drive the optimization of the model by comparing
two sets of segmentation maps on target data. Our use of probabilistic maps and
limited supervision reduces the risk of propagating incorrect signals throughout the
network while allowing the model to adapt itself to target data.
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Chapter 1

Introduction

1.1 Motivation

Semantic segmentation is a computer vision task where every pixel in an image is
classified as belonging to one of a number of classes. This is a useful application and
a desired goal in various fields. Vehicles with autonomous capabilities, for instance,
use it to discern different structures in the surrounding scene. In the medical field as
another example, segmenting images into semantic regions provides assistance for
medical practitioners in diagnostic and interventional procedures.

If labeled training data is available, then deep learning models can be trained
to produce segmentation maps with great accuracy. Deploying these models and
evaluating them on unseen data is however not guaranteed to perform just as well.
Domain shift is the problem that arises when there is a difference in the distribu-
tions of the so called source data, i.e data that the model was trained and validated
on, and target data, i.e. data that will be used at inference time. Consequently, mod-
els that perform well on the training/validation set of one domain might perform
poorly on data from another domain. This is a common issue in practice, as medical
data for example, might be coming from different sites and generated with different
scanners.

The deep neural networks used for semantic segmentation learn features that
consecutively build on each other to extract the rich information needed to solve
the task. Although several efforts have been made to understand the inner working
of these deep models, they are still in some aspects similar to a black box where the
details of how the output depends on the input is not fully interpretable. This makes
it particularly challenging to understand which characteristics of the source domain
the model is overfitting on and how the model should be changed to overcome that.

The generalizability issue of deep learning models is exasperated by the fact that
in many fields, annotated data is expensive to generate. In the medical imaging
field, for instance, expert knowledge is needed to label medical datasets. Given the
limited capacity of medical professionals, it is highly desirable that trained models
are able to generalize to new data without the need to acquire new labeled data from
the target domain, and if the latter is possible or even necessary, then it is preferable
if the amount of annotations requested is limited.

1.2 Contributions

We approach this issue of domain shift for semantic neural networks from two an-
gles. The first one involves making the models more robust in the first place. In
Chapter 2 (Sheikh and Schultz, 2020), we augment the training data with images that
preserve semantic features and discard the high-frequency information that might
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not be shared between the different domains. This encourages the model to focus on
those features most relevant for the segmentation task, which consequently makes it
more generalizable to other data. In Chapter 3 (Sheikh et al., 2022), we argue that the
strategy of early-stopping, when combined with an adaptive optimizer, reduces the
risk of overfitting on the training images. This in turn improves the segmentation
performance on target data without hurting that of the source data.

The second aspect is domain adaptation. This is the task of taking a model that
was trained on one domain and adapting it to another domain. In Chapter 4 (Sheikh
et al., 2020), we devise strategies to pick which samples from the target data are to
be labeled, in order to fine-tune the model using them. Our gradient and log-based
approach picks samples that are diverse enough to allow the model to learn about
the target data without having to label the entire dataset. In Chapter 5 (Sheikh and
Schultz, 2022), we address the case of adapting the model without having any la-
beled samples from the target domain; an approach known as unsupervised domain
adaptation. We use pseudo-labels from the trained model to refine its early features.
This improvement is then propagated through the network resulting in better final
segmentations.

1.3 Publications

The research outcome of the dissertation will be presented in the following chapters:
Chapter 2: Rasha Sheikh and Thomas Schultz (2020). “Feature Preserving Smooth-

ing Provides Simple and Effective Data Augmentation for Medical Image Segmenta-
tion”. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2020
- 23rd International Conference, Lima, Peru, October 4-8, 2020, Proceedings, Part I. ed.
by Anne L. Martel et al. Vol. 12261. Lecture Notes in Computer Science. Springer,
pp. 116–126. DOI: 10.1007/978-3-030-59710-8_12. URL: https://doi.org/10.
1007/978-3-030-59710-8_12 (Sheikh and Schultz, 2020).

Chapter 3: Rasha Sheikh et al. (2022). “Adaptive Optimization with Fewer Epochs
Improves Across-Scanner Generalization of U-Net Based Medical Image Segmen-
tation”. In: Domain Adaptation and Representation Transfer - 4th MICCAI Workshop,
DART 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022,
Proceedings. Ed. by Konstantinos Kamnitsas et al. Vol. 13542. Lecture Notes in Com-
puter Science. Springer, pp. 119–128. DOI: 10.1007/978-3-031-16852-9_12. URL:
https://doi.org/10.1007/978-3-031-16852-9_12 (Sheikh et al., 2022).

Chapter 4: Rasha Sheikh et al. (2020). “Gradient and Log-based Active Learning
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1.4 Outline

In the following sections of this chapter we will review past and recent related work
and describe how our own work fits into the respective aspect of the research prob-
lem we investigated. This will be followed by the actual publications in Chapters 2,
3, 4, 5. We conclude in Chapter 6 with a summary and outlook.

1.5 Preliminary - Segmentation Network

Networks used for semantic segmentation often follow an encoder-decoder architec-
ture. The encoder part consists of several convolutional blocks arranged in multiple
resolution levels. The first convolutional block uses the image as its input feature,
and subsequent convolutional blocks in each level learn features using the output
of the previous convolutions. These are followed by a non-linearity operation such
as ReLU, and are then downsampled before inputting them into the following res-
olution level. As we go deeper into the encoder, the number of feature maps also
progressively increases to capture more of the variations in the input. The decoder
part of the network then uses convolutions in multiple levels again to gradually re-
duce the number of these feature maps and increase the resolution to finally have a
segmentation map at the end matching the size of the input image.

Several enhancements to this basic architecture have been proposed. U-Net (Ron-
neberger et al., 2015) introduces skip connections between the corresponding levels
of the encoder and decoder. The goal of these connections is to reintroduce the finer
details that are lost due to the downsampling operations. The original U-Net ar-
chitecture concatenated features from the encoder with those from the decoder and
followed that with convolutions that learn from both sets of features. Subsequent
works (Isensee et al., 2021) have also experimented with adding those features in-
stead of concatenating them in order to reduce the number of parameters. The model
in Chapter 4 does not use skip connections. It rather stores the max-pooling indices
used in the encoder and passes them to the decoder. Concatenating features is used
in Chapters 2 and 3, whereas in Chapter 5 they are added.

In Chapter 3, we use the nnUNet (Isensee et al., 2021) as our segmentation frame-
work. As the name suggests (No-New-UNet), this framework uses the U-Net archi-
tecture for its model but instead of having a fixed structure, the framework adapts
the model to properties of the dataset it is trained on. If the images are quite large for
instance, it is possible to downsample them a greater number of times in comparison
to a dataset with smaller images. The framework would therefore in this case favor
instantiating deeper models in order to learn richer features.

Another variation to the original U-Net implementation that is sometimes used
and is in fact employed by nnUnet is deep supervision. This is where segmenta-
tion maps are learned at the end of each resolution level instead of only at the final
one. Having these segmentation maps contribute to the overall loss aids in learning
consistent segmentations at different levels since multiple training signals are prop-
agated back. We do not use deep supervision in our models except for the work in
Chapter 3 where the nnUNet framework is used.
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1.6 Augmentations

One common method to improve the generalization of models is to augment the
training data with different transformations. A survey of data augmentation tech-
niques can be found in (Chlap et al., 2021). We summarize next some of the com-
mon techniques and recent work in this field. Traditional augmentations include
geometric transformations such as scaling, flipping, rotation, and shear. Operations
that change the intensities of images are often used. Examples include Gamma cor-
rection, histogram equalization, noise injection with Gaussian, uniform, or salt and
pepper noise. Filtering the image to sharpen it or blur it can be helpful as well.

More sophisticated augmentation methods include elastic deformations with ran-
dom displacement fields or deforming images by registering them to other scans.
Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) have also been
exploited to synthesize new images that look similar to the original training images
(Zhu et al., 2017; Isola et al., 2017). In the case of MR images, there have been works
(Shaw et al., 2019), that introduce alterations to the k-space of images, which when
reconstructed would show effects similar to motion artifacts that MR images can
suffer from. Augmenting the training data with these images would therefore in-
crease the robustness of the model against this particular type of artifact. Recently,
diffusion models (Ho et al., 2020) have been used to generate synthetic images that
are similar to the input distribution. These images can be conditioned on certain
properties of the dataset generating realistic-looking images (Pinaya et al., 2022).

Nalepa et al., 2019 surveyed the type of augmentations used by the submissions
to the BraTS 2018 challenge and found that the most common ones in the top per-
forming submissions were simple affine transformations such as flipping, rotation
and scaling.

Another form of augmentation preserves the original image intensities and ge-
ometry and instead occludes parts of it (DeVries and Taylor, 2017). The intuition
here is that the network will then rely on global information available in the image
to discern useful features. This bears similarities to dropout, differently however, it
operates on the input to the network rather than internal feature maps of the net-
work. Pixels in the occluded regions could share the same value or as in (Zhong
et al., 2020) be sampled from the entire range of intensities. This introduces an addi-
tional source of noise that the network should learn to discard and focus instead on
other key features of the image.

Zhang et al., 2018a argue that augmentations based on geometric transforma-
tions are dataset-dependent, in the sense that prior knowledge is needed to deter-
mine whether a certain augmentation of the image should produce the same label.
They came up therefore with a new type of augmentation that is not dependent on
this knowledge. In their work, linear combinations of a pair of images along with
the same linear combination of the target labels are added to the training data. With
this augmentation, their models were able to generalize better and additionally bet-
ter cope with noisy labels. Eaton-Rosen et al., 2018 verify that this approach not only
works for natural images but is also helpful for the task of tumor segmentation.

Once a set of augmentations is found to be useful, a natural extension is to com-
pose them. An image could for instance be first rotated then have its intensity modi-
fied. This increases the variability of data and improves the robustness of the model.
In (Hendrycks et al., 2020), several such compositions are performed, then linearly
combined. In addition to the primary loss that uses the ground-truth, a consistency
loss encourages the network to produce similar embeddings for the original image
and its augmentation.
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The best augmentations can also be learned instead of being fixed. Cubuk et al.,
2019 use Reinforcement Learning to train a controller RNN that predicts policies of
different augmentations which are then used to train a network. The validation ac-
curacy of that trained network acts subsequently as the reward that guides the train-
ing of the network. Although this exploration of the augmentations search space
could boost the performance, training so many models is expensive and therefore a
significant drawback of this approach.

Cubuk et al., 2020 found that a similarly good performance can be obtained with
a reduced search space. The two hyperparameters needed are the number of com-
posite transformations applied to each image and their magnitude. Both of which
could be optimized with a grid search using a validation set. They argue that these
parameters are also intuitively related to the strength of regularization induced by
the augmentation. A smaller model for example might require weaker regulariza-
tion so one could reduce the number of composite transformations applied to an
image and/or reduce how large their deviation is from the original image.

To preserve object boundaries, Hammoudi et al., 2022 exploit the structure ob-
tained with superpixels. Once these are generated, a few can be randomly selected
to be replaced with their mean values or dropped altogether in a similar fashion to
cutout (DeVries and Taylor, 2017) with pixels. People have also experimented with
mixing images, where the pixel values of dropped superpixels are replaced with
those from a different image (Hammoudi et al., 2022; Franchi et al., 2021).

In our work, we augment the data with images that have been generated using
Total Variation (Rudin et al., 1992). This type of filtering has the appealing quality
that it smoothes images without corrupting edges. This is particularly useful for the
task of semantic segmentation since edges often delineate different classes.

Recently, Wang et al., 2020 have argued that models are driven to learn both the
low-frequency components, which humans correlate with class semantics, and the
high-frequency components. They found that this latter part makes the model less
robust to data that has been perturbed. This observation supports our approach
where we discard textural information with TV augmentation and focus on the se-
mantics.

The motivation behind using TV-augmentation in our work was to encourage the
model to focus on shape rather than texture. There have also been works that aim to
increase the impact of shape using techniques other than augmentations. Takikawa
et al., 2019, for example, add a branch to their model that focuses on learning the
shape of objects in an image. Attention maps are constructed from the main branch
and applied to the second branch at multiple layers, resulting in shape features that
are then fused back with the main segmentation maps. In addition to the ground-
truth semantic segmentation masks, the loss includes terms that use binary edge
masks, driving the model to learn semantic classes that explicitly exploit shape in-
formation. Zotti et al., 2018, on the other hand, make use of shape priors. Label
maps are first aligned then the the pixel-wise frequencies of each class are computed.
These frequencies are turned into probabilities and act as shape priors, which are
concatenated with feature maps from the network and further processed. The con-
tours of the classes are also added as an additional component to the loss. Another
work that explicitly integrates shape priors is (Ambellan et al., 2019). The task in
their work is to segment knee and bone cartilage using MR images. A combina-
tion of 2D and 3D CNNs are trained to learn the desired segmentation. A Statistical
Shape Model (SSM) is applied to the output as a post-processing step in order to
increase the robustness of segmentations in the presence of image artifacts or low
contrast, and produce label masks that are anatomically valid.
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1.7 Early Stopping and Optimizers

Arpit et al., 2017 investigate how the learning process of deep neural networks
evolves over time. They argue that the complexity of what the network learns is
reflected in the number of decision regions that the input space is divided into. This
can be approximated by looking at the number of samples with predictions different
from one or more other data points in their neighborhood. They track this measure
over the training time of the network and observe that this number gradually in-
creases along with the number of epochs until it reaches a plateau. They conclude
that this indicates the model first learns simple patterns common between the sam-
ples then starts learning more complex decision boundaries fitting even noisy data.

Wang et al., 2020 argue that models tend to first learn low-frequency components
of images, and these components are what usually allows the model to generalize
to unseen data. Then as the model is trained for more and more epochs, the high-
frequency components are learned. These latter components reflect textural infor-
mation specific to the training images or even noise that should not be learned.

The insights of the previous two works support our idea of not training the
model for a large number of epochs if we want to generalize to other domains,
since otherwise the model might start learning features that are highly tailored to
the source domain and do not carry over to a different domain. With early-stopping
on the other hand, the model is more likely to have learned features that are still se-
mantically relevant but with a weaker dependence on the peculiarities of the training
data.

Loshchilov and Hutter, 2019 investigated the influence of combining L2 regu-
larization with different optimizers when training deep learning models. Adding
the L2 norm of the weights to the loss helps regularize the model and prevent over-
fitting. In the popular open-source frameworks, weight decay, where weights are
exponentially decayed over time, has been used as a proxy for L2 regularization.
Loshchilov and Hutter, 2019 show however that weight decay and L2 regularization
do not necessarily lead to similar formulations. In the case of SGD, they only differ
by a factor which is the learning rate. But in the case of adaptive optimizers, the
two methods are not equivalent since gradients are rescaled according to their first
and second moments which leads to a tight coupling with weight decay. The au-
thors argue that because of this discrepancy, the desired effect of L2 regularization
in combatting overfitting is weakened when adaptive optimizers from online frame-
works have been used. In other words, the perceived higher performance of SGD in
some experiments is not attributed to the use of the non-adaptive optimizer, rather
to the more effective regularization taking place in the online implementations that
combine weight decay with the respective optimizer.

Wang et al., 2020 convert images X into the frequency domain then reconstruct
them back into two sets. The first one is generated using the low frequency com-
ponents Xl , and the second one using the high frequency components Xh. A model
is then trained on the original images and evaluated on Xl and Xh. A second set
of experiments trains models on only the low-frequency or only the high-frequency
reconstructions. They show that low-frequency information exhibits better general-
izability, and that models which have captured more of the high-frequency informa-
tion during training is more susceptible to adversarial attacks and noisy labels. They
repeat these experiments with different variations in the training pipeline including
optimizers such as SGD, ADAM, and others. They find that the high frequency in-
formation is more prevalent in the model trained with SGD compared to others. This
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further supports our finding that training with adaptive methods and for a shorter
number of epochs is beneficial for domain generalization.

1.8 Active Learning

Deep segmentation models often require to be trained on large training sets. This
allows them to better capture the distribution of data and the variety of features that
share the same semantic class. Annotating a large number of pixels is tedious how-
ever, and sometimes even requires expert knowledge that is not readily available,
as is the case with medical images. Reducing this effort is thus desirable and active
learning is one way to address that.

The aim in active learning is to actively select a smaller subset of the data to be
annotated such that when the model is trained on this subset, it shows a similar
performance to that had it been trained on the whole dataset. A typical process
would start with a small labeled subset of the data, train the model on it, then run
several rounds where certain criteria are used to filter the remaining unlabeled data,
ask for those to be annotated, retrain the model and repeat those last steps until the
model performance is satisfactory or the training budget has been consumed.

The question then becomes, how would one choose these samples in an intelli-
gent way rather than just randomly sampling some of the unlabeled data in each
round? Ideally these samples should be representative of the training set, diverse
enough to capture the underlying distribution, and show different characteristics to
what the model has already seen.

Surveys of active learning methods can be found in (Ren et al., 2021; Budd et al.,
2021). We summarize next some of the common techniques. The first category of
traditional active learning queries favors those samples with high prediction uncer-
tainty. In the case of segmentation, this could simply be those samples where the
average maximum probability is low. Another popular approach is to select those
images with the highest average entropy. If the number of classes is larger than two,
one could also choose those where the difference between the most probable class
and the second most probable class is small, which would indicate that the model is
not able to highly discriminate between the correct class and the other ones for the
particular image.

Uncertainty can also be estimated through bootstrapping (Yang et al., 2017),
where data is sampled from the training set with replacement to create multiple sub-
sets. These are then used to train multiple models and the discrepancy between these
models serves as an uncertainty measure to select samples for annotation. Monte-
Carlo dropout is another popular method for this criteria. Models are trained with
dropout, then at inference time rather than disabling it, dropout is used to gener-
ate multiple variants of the model. With each forward pass, a different instance of
prediction is obtained for each input. The entropy of the average predictions is then
used to determine which samples to annotate. Compared to training an ensemble
of models, MC dropout is preferred because it is computationally less expensive.
Beluch et al., 2018 argue however that ensembling might still be a better option be-
cause of the reduced capacity of the MC model.

In addition to using MC dropout, Gal et al., 2017 also take into account the mu-
tual information between the predictions and the model weights. Having multiple
models obtained through MC dropout, they compute the difference between the
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entropy of the average prediction and the average of each individual prediction en-
tropy. The goal is to pick samples where the model is not only uncertain about but
also this uncertainty drops when some of the weights are changed.

Another type of queries focuses on how representative the unlabeled samples
are. Sener and Savarese, 2017b use clustering to group the data, then iteratively
pick for annotation those samples with the largest distance to their nearest cluster
center. Yang et al., 2017 compute the cosine similarity between each pair of unlabeled
samples and choose those with the highest average similarity to all the others.

Naturally a combination of these methods can also be used. Smailagic et al.,
2018 for example, exploit the richer features that CNNs are able to learn. Starting
with a small annotated subset, a network is trained on those samples. The unlabeled
data is passed through the network and those with highest entropy proceed to the
second stage of selection. The embedded features extracted from the network are
then examined to find the next candidate for annotation. This is done by computing
the pairwise distance between the samples features and choosing the one with the
highest average distance.

The methods defined so far rely on pre-defined heuristics for what kind of in-
formation the model might benefit form: uncertainty, diversity, representativeness,
etc. A different paradigm frames data selection as a learning problem, e.g. using re-
inforcement learning. In (Woodward and Finn, 2017), samples are presented to the
network and the model has to decide whether to produce a prediction or to request
for more annotated data. As is typical in reinforcement training, the model would
get back feedback in the form of negative rewards (penalties) for annotation requests
and for wrong predictions and positive rewards for correct predictions.

Our work introduces several strategies to select samples for annotation. They are
based on choosing samples that might have the biggest impact on the model param-
eters. These strategies rely on having first pseudo-labels which we generate by clus-
tering the RGB values of images. Looking at a single image, a human annotator then
selects those clusters that show vegetation. This results in foreground-background
segmentation that we use as pseudo-labels for the subsequent step. Our first strategy
of selection uses the loss between the model prediction and the pseudo-groundtruth
as a measure of how well the model is performing on the unlabeled samples. Those
with the highest loss are candidates for annotation. Rather than simply picking those
at the top, however, we use a log-scale to encourage the diversity of the selected
samples. The second strategy computes the weights gradients of the model using
the loss described above. Those samples with the largest norm of the gradients are
chosen for annotation, again using a log-scale approach. The last strategy also uses
the computed gradients but relies on a different method to encourage the diversity
of samples. The sample with the highest gradient norm is first selected. Then the
gradient of each unlabeled sample is projected onto that of the first one. This is then
subtracted from the original gradient resulting in a residual gradient that reflects
how much the weights would change after taking into account the already selected
samples.

We next present recent works for active learning and mention common charac-
teristics with our work if they exist.

These works build on traditional ideas presented at the beginning of the section
and extend them further. For the task of cell-counting, Wang and Yin, 2021 train sev-
eral models and compute the uncertainty among them and the uncertainty among
different epochs to rank samples for annotation. To ensure that the samples are di-
verse, their features in the latent space are classified into a predefined number of
clusters. The samples are further filtered by ensuring that they have a high cosine
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similarity with the unlabeled samples in their own cluster and a low cosine similar-
ity with already labeled samples.

Active learning can also be leveraged for annotating 3D medical images. In (Wu
et al., 2022), a single slice from each 3D image is annotated, then the labels are prop-
agated to the rest of the volume. To pick the most representative 2D slice, the cosine
similarity measure is computed between each slice and all the other slices and the
one with the largest score is picked for annotation.

Similarly to our work, Nath et al., 2022 first generate pseudo-labels for unlabeled
data. The authors threshold the images and refine the output by running it through
the connected components analysis and using the resulting labels. A model is sub-
sequently trained on the images and their pseudo-labels. Dropout is then used at
inference to generate an uncertainty measure for each volume. Those with high un-
certainty measure are then picked to be annotated next.

Bai et al., 2022 leverage the information obtained through Grad-CAM to create
pseudo-labels. These are thresholded at different levels and used to train several
models, with the discrepancy between the models used as a guidance to select sam-
ples for the next annotation iteration.

One of our strategies uses weight gradients. Dai et al., 2020 also use gradients
but those of the input space instead. A VAE is first trained on the dataset to learn a
latent space. A separate segmentation model is next trained for a few epochs using a
small subset of labeled data. The gradients of the loss with respect to the input image
are then back propagated and the images are perturbed using these gradients. These
new images are passed through the VAE and their encodings are used to search for
unlabeled images with similar encodings. These are then suggested for annotation.

Parvaneh et al., 2022 select labels for annotation by investigating how consistent
their labels are when their CNN features are interpolated with those of two labeled
samples. If the model produces different predictions, they join a pool of candidate
samples that will be later filtered by clustering them into diverse samples. They
show that these samples often lie at the borders between different classes, so choos-
ing them for annotation helps improve the discriminative power of the model.

After deciding on which images to annotate, some works (Siddiqui et al., 2020;
Cai et al., 2021) suggest using superpixels for annotation rather than pixels to further
reduce the annotation work.

Finally, one should consider how the model will be trained given the new an-
notated samples. Options include retraining from scratch, freezing some layers and
fine-tuning on the new samples. The optimal choice will depend on how computa-
tionally expensive it is to retrain the model, and whether the original labeled data is
still available, which might not be the case for scenarios where models are trained on
private hospital data for example, and the model has to be adapted to data acquired
at a different site.

Munjal et al., 2022 argue that rather than relying on the initial hyperparameters
optimized on the small labeled set and keeping them fixed, one should optimize
them at every active learning round. As the labeled set grows larger and larger,
hyperparameters such as the learning rate and weight decay should be tuned since
the distribution of training data has most likely changed as more and more data is
annotated and added to the set.
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1.9 Unsupervised Domain Adaptation

Adversarial learning is often used in domain adaptation, e.g. through CycleGAN
(Zhu et al., 2017), to transfer the style of source images to target images or the other
way around. This helps reduce the difference in the distribution of input images
from different domains, thereby enabling the model to produce better predictions
when switching from one domain to another. This technique is used by Sun et al.,
2022, who employ several steps to adapt the model to target data. Source input
images are first transformed using an adversarial loss to have a similar appearance
to that of the target images. An encoder is then trained to extract features which
are then split into domain-invariant and domain-dependent features. A classifier
is trained on the domain-specific features to distinguish between the two domains.
The domain-invariant features are propagated into a segmentation module that pro-
duces pixel-wise predictions. At inference-time, the cosine similarity measure is ap-
plied to adjacent slices to ensure consistent predictions.

A similar approach is followed by Lee et al., 2023, where they use an auxiliary
task to help the model adapt to unseen data. The model is trained on source data
to produce segmentation maps via a segmentation loss and also to generate images
similar to the input via an adversarial loss. The network components involved in the
generation part are then fine-tuned on the target data. The aim is to separate seman-
tic information relevant to the segmentation task and is common between different
domains, from the characteristics that are specific to a domain and contribute to the
gap in the model’s performance on source and target data.

Koch et al., 2022 transfer the style of images without using adversarial train-
ing. Singular Value Decomposition (SVD) is used to decompose source and target
images. The first k components from the source data are then combined with the
trailing ones from the target images, and the resulting reconstructions are used for
training. The argument is that the semantic content is contained in the leading com-
ponents whereas the remaining ones can be treated as noise that cause the perfor-
mance to degrade when applying a trained model on a different domain. By mixing
both sets of components and reconstructing images, they qualitatively show that the
style of target images has been transferred to source images, which they can then
use for domain adaptation.

Multiple works incorporated a classifier in the pipeline in order to train the
model to learn the domain directly. Lin et al., 2023 use the classifier’s features to
generate domain-specific prompts which are fused with the segmentation encoder
features before propagating them to the decoder. The goal is to learn and explicitly
incorporate information that distinguishes one domain from another. The authors
use both source and target data along with their labels to train the model, but the
method could also be adapted to work in the unsupervised setting by relying on a
discriminator to distinguish domain-specific features.

Feng et al., 2022 argue that domain adaptation should also take into account the
distribution shift between classes in different domains. They add to the loss reg-
ularization terms for classes within the source domain, within the target domain,
and across the two domains. Representative features are created for each class and
the distance between those of the source and target domains is minimized. These
prototype features are also used to encourage the source domain to produce similar
class features for each sample by penalizing the difference between them and the
representative features. On the target domain, a consistency loss is added to push
the model to produce similar class predictions for the original images and their aug-
mented variants. An adversarial term is also added to the loss to encourage the
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network to align the distributions of edges and segmentations.
Contrastive loss has also been used for unsupervised domain adaptation. Go-

mariz et al., 2022 train their model on the source data with a segmentation loss, and
on the source and target with a contrastive loss. To use contrastive learning, bottle-
neck features of the U-Net model are projected into a vector. The loss then tries to
minimize the distance between pairs of positive and negative examples. Positive ex-
amples are generated through sampling from adjacent slices in the 3D volume and
then applying augmentation transformation to them. Negative examples are those
that arise from different domains. The authors show that this method not only im-
proves the adaptation performance on unlabeled target data but it also positively
influences the performance on the labeled source data.

A student-teacher learning paradigm is used by Xu et al., 2023 to segment un-
labeled fetal images based on atlas annotations. Since the appearance can vary be-
tween the two domains, they employ several steps to align the different features.
Using Fourier transform and its inverse, low-frequency components of the source
and target data are swapped. The student model is then optimized to produce simi-
lar segmentations. The weights of the teacher model are adapted using Exponential
Moving Average (EMA) of the student’s weights. A consistency loss encourages
both models to produce similar outputs for the the source and target data. The au-
thors also use a form of mixup augmentation where blocks of two images are com-
bined. The same procedure is applied to their teacher predictions which are then
used as pseudo-labels for the student model.

Hu et al., 2022b combine several of the previously mentioned techniques. A clas-
sifier is trained to learn the domain of source and target images in addition to a new
domain constructed from augmented source images, where the low-frequency com-
ponents are swapped with those from other source or target images. The domain
predictor is then used to generate features specific to a domain, and a decoder is
added to produce segmentation maps.

The use of pseudo-labels for domain adaptation has also been used in (Gham-
sarian et al., 2023). Self-training with pseudo-labels generated from predictions on
target data suffers however from the risk that the pseudo-labels are incorrect which
would negatively influence what the network learns. The authors propose applying
intensity transformations to target images and comparing afterwards the model’s
predictions using the set of original and transformed images. Predictions with high
confidence values are then used as pseudo-labels to train the network on target data
along with labeled source data. The motivation being that those pixels, where the
model shows robustness to transformations, are more likely to have correct predic-
tions which would mitigate the risk of training with incorrect labels.

In our work, we also make use of pseudo-labels for self-training to adapt the
model to a new domain. We add an early segmentation head just before the first
down-sampling operation. The model now produces two segmentation maps, the
usual one at the end of the network and a rough one at the beginning. The seg-
mentations at the end act as pseudo-labels for the early predictions, and we adapt
the early feature maps of the network using the loss between the two predictions.
As the updated activations are propagated through the network, this also produces
better final segmentations which again can be used for refinement. Since we do
not binarize the pseudo-labels and instead keep their probabilistic values to guide
the early rough segmentations, in addition to only refining a subset of weights, we
manage to better adapt to the target data while reducing the risk of using wrong
predictions for adaptation.
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Chapter 2

Feature Preserving Smoothing
Provides Simple and Effective Data
Augmentation for Medical Image
Segmentation

2.1 Summary

Augmenting training data with transformed images is a simple way to increase the
diversity of images that the model will see during training, thereby allowing it to
better generalize to unseen data. We augment our data with Total Variation (TV)
smoothing which discards noisy information while preserving shapes in images.
Geirhos et al., 2019 ran a set of experiments where they mixed texture and shape
information from different images. An example would be an image of a cat with the
texture changed to be that of an elephant through style transfer. They found that
CNNs trained on ImageNet favour texture whereas humans favor shape, therefore
the constructed image mentioned previously would still be classified as a cat by hu-
mans. This inspired us to use an augmentation that focuses on shape information, so
that models are encouraged to output the same class even in the presence of domain
shift.

Denoising images with Total Variation (TV) creates images with piece-wise con-
stant regions. It smoothes images while preserving edges, which is a useful property
for segmentation tasks as classes can still be delineated while noisy information is
reduced. We apply this smoothing to our training set and use the smoothed images
along with the original ones to train our model.

Our network follows the U-Net architecture with encoder and decoder blocks
and skip connections in-between, and we train it using the dice loss. We evaluate our
method on the Spinal Cord Grey Matter (SCGM) dataset (Prados et al., 2017), Brain
Tumor Segmentation Challenge (BraTS) dataset (Menze et al., 2014; Bakas et al., 2017;
Bakas et al., 2018), and the White Matter Hyperintensity Challenge (WMH) dataset
(Kuijf et al., 2019). All of these datasets contain images collected from different sites
and exhibit domain shift when training on one site and evaluating on another.

The SCGM dataset consists of MR images of the Spinal Cord and the task is to
segment the Grey Matter in these images. The data is collected from four sites. We
train our model on one site and evaluate on the test sets of all sites. Since this dataset
was annotated by four annotators, we conduct two sets of experiments. In the first
one, the model is trained on annotations from the first rater, and in the second one,
the model is trained on annotations from all raters. In the second case, each image
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along with three other copies of it are presented to the network, each time with a
different annotation mask.

We compare TV smoothing to other filters such as the guided filter, the bilateral
filter, and the Gaussian filter, as well as the common augmentations for medical
datasets such as flipping, rotation, and elastic deformation. A side effect of JPEG
compression is that it smoothes images so we also compare it to our method. Our
results show that TV augmentation leads to the best performance in most of the
different settings we tested it.

We also evaluated the effect of varying the strength of TV smoothing, and found
that the positive improvement in performance is robust to this parameter. An addi-
tional benefit is gained when these are combined so that the model is presented with
images smoothed at different strengths.

The second dataset that we evaluate our model on is the BraTS 2019 dataset. We
split the data depending on its origin into four groups and test the effect of TV aug-
mentation in the presence and absence of domain shift. We segment the whole tumor
using FLAIR as the input modality. We observe an improvement in performance in
three out of four groups when the training data is augmented with TV smoothing.

The third dataset used for evaluation is the WMH dataset from the correspond-
ing challenge. After training the model with TV augmented data, we evaluate it on
held-out test sets that we generated when splitting the data before training, and we
also upload our model to the official challenge page so that it is evaluated on the
official test set. In both cases, our augmentation improves the performance.

In the context of this dissertation, the work presented in this chapter suggests an
inexpensive method to increase the robustness of deep learning models for the task
of semantic segmentation. Models are trained with different transformations of the
same data tend to generalize better since the augmentations encourage the model to
focus on the semantic content of images and the relationship between that and the
ground-truth classes. Feature-preserving smoothing such as Total Variation denois-
ing discards information which does not contribute to the segmentation task, and
might even negatively affect the performance when models are evaluated on dif-
ferent domains than what they were trained on. Other traditional methods such as
Gaussian blurring also smooth images but they run the risk of smoothing out edges,
thereby losing boundaries of classes. TV smoothing on the other hand, creates piece-
wise constant regions and preserves edges, which makes it a suitable candidate to
increase the robustness of segmentation models against domain shift.
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(A) (B) (C) (D) (E)

FIGURE 2.1: Sample image (A) and the results of smoothing with To-
tal Variation (B), Gaussian (C), bilateral (D), and guided filters (E).

2.2 Abstract

CNNs represent the current state of the art for image classification, as well as for im-
age segmentation. Recent work suggests that CNNs for image classification suffer
from a bias towards texture, and that reducing it can increase the network’s accu-
racy. We hypothesize that CNNs for medical image segmentation might suffer from
a similar bias. We propose to reduce it by augmenting the training data with feature
preserving smoothing, which reduces noise and high-frequency textural features,
while preserving semantically meaningful boundaries. Experiments on multiple
medical image segmentation tasks confirm that, especially when limited training
data is available or a domain shift is involved, feature preserving smoothing can
indeed serve as a simple and effective augmentation technique.

2.3 Introduction

Image segmentation is a key problem in medical image analysis. Convolutional neu-
ral networks (CNNs) often achieve high accuracy, but only if trained on a sufficient
amount of annotated data. In medical applications, the number of images that are
available for a given task is often limited, and the time of experts who can provide
reliable labels is often scarce and expensive. Therefore, data augmentation is widely
used to increase the ability to generalize from limited training data, and it is often
indispensable for achieving state-of-the-art results.

Augmentation generates artificial virtual training samples by applying certain
transformations to the original training images. Many of these transformations re-
flect variations that are expected in test images. Examples are geometric transfor-
mations such as image flipping, rotations, translations, elastic deformations (Ron-
neberger et al., 2015), or cropping, but also intensity or color space transformations,
which can be used to simulate changes in illumination or acquisition device char-
acteristics (Shorten and Khoshgoftaar, 2019; Billot et al., 2020). More complex aug-
mentation has been performed via data-driven generative models that either gener-
ate images for augmentation directly (Bowles et al., 2018; Sandfort et al., 2019), or
generate spatial and appearance transformations (Chaitanya et al., 2019; Zhao et al.,
2019). However, implementing and training these approaches requires a relatively
high effort.

In this work, we demonstrate that feature preserving smoothing provides a novel,
simple, and effective data augmentation approach for CNN-based semantic segmen-
tation. In particular, we demonstrate the benefit of augmenting the original training
images with copies that have been processed with total variation (TV) based de-
noising (Rudin et al., 1992). As shown in Figure 2.1 (b), TV regularization creates
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piecewise constant images, in which high frequency noise and textural features are
removed, but sharp outlines of larger regions are preserved.

Unlike the above-mentioned augmentation techniques, ours does not attempt to
generate realistic training samples. Rather, it is inspired by the use of neural style
transfer for augmentation. Neural style transfer combines two images with the goal
of preserving the semantic contents of one, but the style of the other (Gatys et al.,
2016). It is often used for artistic purposes, but has also been found to be effective
as an augmentation technique when training CNNs for image classification (Jackson
et al., 2019). To explain this, Geirhos et al., 2019 perform experiments for which they
generated images with conflicting shape and texture cues. When interpreting such
images, ImageNet-trained CNNs were found to favor texture, while humans favor
shape. Since shape is more robust than texture against many image distortions, this
might be one factor that allows human vision to generalize better than CNNs.

Our work is based on the hypothesis that CNNs for image segmentation suffer
from a similar bias towards texture, and will generalize better when increasing the
relative impact of shape. Augmenting with TV regularized images should contribute
to this, since it preserves shapes, but smoothes out high frequency textural features.
In a similar spirit, Zhang et al., 2019 use superpixelization for augmentation, and
Ma et al., 2019 use lossy image compression. Both argue that the respective trans-
formations discard information that is less relevant to human perception, and thus
might prevent the CNN from relying on features that are irrelevant for human inter-
pretation. However, Ma et al. only evaluate JPEG augmentation in one specialized
application, the segmentation of sheep in natural images. As part of our experi-
ments, we verify that their idea, which has a similar motivation as ours, carries over
to medical image segmentation.

2.4 Materials and Methods

2.4.1 Selection of Datasets

We selected datasets that allow us to test whether feature preserving smoothing
would be an effective data augmentation technique when dealing with limited train-
ing data in medical image segmentation. Moreover, we hypothesized that this aug-
mentation might reduce the drop in segmentation accuracy that is frequently associ-
ated with domain shifts, such as changes in scanners. If differences in noise levels or
textural appearance contribute to those problems, increasing a network’s robustness
towards them by augmenting with smoothed data should lead to better generaliza-
tion.

As the primary dataset for our experiments, we selected the Spinal Cord Grey
Matter Segmentation Challenge (Prados et al., 2017), because it includes images that
differ with respect to scanners and measurement protocols, and provides detailed
information about those differences. To verify that our results carry over to other
medical image segmentation tasks, we additionally present experiments on the well-
known Brain Tumor Segmentation Challenge (Menze et al., 2014; Bakas et al., 2017;
Bakas et al., 2018), as well as the White Matter Hyperintensity Segmentation Chal-
lenge (Kuijf et al., 2019).

2.4.2 CNN Architecture

We selected the U-Net architecture (Ronneberger et al., 2015) for our experiments,
since it is widely used for medical image segmentation. In particular, our model
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is based on a variant by Perone et al., 2019, who train it with the Adam optimizer,
dropout for regularization, and the dice loss

dice =
2 ∑ pg

∑ p2 + ∑ g2 , (2.1)

where p is the predicted probability map and g is the ground-truth mask. Our model
is trained to learn 2D segmentation masks from 2D slices. The initial learning rate is
0.001, the dropout rate is 0.5, betas for the Adam optimizer are 0.9 and 0.999, and we
train the model for 50, 30, and 100 epochs for the SCGM, BraTS, and WMH datasets
respectively. The number of epochs is chosen using cross-validation, the others are
the default settings of the framework we use.

2.4.3 Feature-Preserving Smoothing

We mainly focus on Total Variation based denoising (Rudin et al., 1992), which we
consider to be a natural match for augmentation in image segmentation problems
due to its piecewise constant, segmentation-like output. The TV regularized version
of an n-dimensional image f : D ⊂ Rn → R, with smoothing parameter α, can be
defined as the function u : D → R that minimizes

E(u; α, f ) :=
∫

D

(
1
2
(u − f )2 + α∥∇u∥

)
dV, (2.2)

where the integration is performed over the n-dimensional image domain D. Nu-
merically, we find u by introducing an artificial time parameter t ∈ [0, ∞), setting
u(x, t = 0) = f , and evolving it under the Total Variation flow (Andreu et al., 2001)

∂u
∂t

= div
(

∇xu
∥∇xu∥

)
, (2.3)

using an additive operator splitting scheme (Weickert et al., 1998). The resulting
image u(x, t) at time t approximates a TV regularized version of f with parameter
α = t. We apply TV smoothing to all images in the training set, and train on the
union of both sets, randomly shuffling all images before each epoch. We did not
observe a clear difference between this basic strategy and a stratified sampling which
ensured that half of the images in each batch were TV smoothed.

For comparison, we also consider two alternative feature preserving filters, the
bilateral filter (Aurich and Weule, 1995) and the guided filter (He et al., 2010), as well
as standard, non feature preserving Gaussian smoothing. We hypothesized that fea-
ture preserving filters other than TV regularization might also be effective for aug-
mentation, even though maybe not as much, since they do not create a segmentation-
like output to the same extent as TV. We expected that Gaussian smoothing would
not be helpful, because it does not preserve sharp edges, and therefore does not pro-
vide clear shape cues to the network. Moreover, it can be expressed using a simple
convolution which, if useful, could easily be learned by the CNN itself.

2.5 Experiments

2.5.1 Spinal Cord Grey Matter

This challenge dataset consists of spinal cord MR images of healthy subjects acquired
from four different sites with different scanners and acquisition parameters. The
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FIGURE 2.2: Spinal cord image and segmentation masks from Site 2.

TABLE 2.1: Dice scores for the model trained on Site 2 using annota-
tions from the first rater, and evaluated by comparing the predictions
to annotations made by the same rater (top rows) and annotations

made by all raters (bottom rows).

Original TV Flip Rotate Elastic Gauss Bilateral Guided JPEG
Site 1 0.5930 0.7332 0.5148 0.4842 0.6484 0.4670 0.5530 0.6050 0.5674
Site 2 0.8337 0.8610 0.8254 0.8289 0.8258 0.8341 0.8356 0.8262 0.8567
Site 3 0.5950 0.6466 0.5952 0.6260 0.6260 0.6397 0.6323 0.6207 0.6605
Site 4 0.7978 0.8395 0.7896 0.8011 0.7960 0.8021 0.8006 0.7909 0.8233

Site 1 0.5695 0.7044 0.4934 0.4599 0.6344 0.4533 0.5392 0.5714 0.5366
Site 2 0.8185 0.8483 0.8129 0.8158 0.8218 0.8209 0.8245 0.8104 0.8435
Site 3 0.6707 0.7475 0.6664 0.7012 0.7109 0.7182 0.7090 0.6960 0.7582
Site 4 0.7776 0.8184 0.7751 0.7798 0.7843 0.7813 0.7840 0.7708 0.8046

task of the challenge is to segment the grey matter in those images. The publicly
available training data includes MR images of 10 subjects per site for a total of 40
subjects. Each MR image was annotated by four raters. A sample image from site 2
and its four masks are shown in Figure 2.2.

Setup The data was split into 80% training and 20% test sets. To evaluate the
effect of TV augmentation under domain shift, we train on data from only one site
(Montreal) and report results on the test sets from all sites. Since the four sites have
different slice resolutions (0.5 mm, 0.5 mm, 0.25 mm, 0.3 mm), we resample images
to the highest resolution. We also standardize intensities.

We consider it unusual that each image in this dataset has annotations from four
raters. In many other cases, only a single annotation would be available per train-
ing image, due to the high cost of creating annotations. We expected that training
with multiple annotations per image would provide an additional regularization.
To investigate how it interacts with data augmentation, we conducted two sets of
experiments. In the first, we train using annotations from the first rater only. In the
second, we use annotations from all raters. To facilitate a direct comparison between
both, we evaluate each model twice, first by comparing its predictions to annotations
from rater one, second by using those from all raters.

Other Augmentation Techniques We compare TV augmentation to random
flipping, rotation with a random angle between [-10,10] degrees, and elastic de-
formations. We also compare against augmentation with Gaussian, bilateral, and
guided filters, as well as JPEG compression (Ma et al., 2019). We chose filter param-
eters visually, so that they result in a smoothed image while not distorting the gray
matter shape. Examples are shown in Figure 2.1.

Results Table 2.1 shows the average dice score of each site’s test subjects when
training using annotations from the first rater. The top rows compare the predictions
to annotations made by the same rater, the bottom rows show the average dice across
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TABLE 2.2: Dice scores for the model trained on Site 2 using annota-
tions from all raters, and evaluated by comparing the predictions to
annotations made by the first rater (top rows) and annotations from

all raters (bottom rows).

Original TV Flip Rotate Elastic Gauss Bilateral Guided JPEG
Site 1 0.7936 0.8254 0.8227 0.7875 0.7823 0.8238 0.8084 0.8057 0.8236
Site 2 0.8710 0.8819 0.8771 0.8729 0.8453 0.8758 0.8786 0.8756 0.8674
Site 3 0.6507 0.6511 0.6582 0.6632 0.6501 0.6620 0.6680 0.6546 0.6585
Site 4 0.8480 0.8572 0.8535 0.8486 0.8487 0.8583 0.8544 0.8562 0.8610

Site 1 0.7827 0.8303 0.8083 0.7617 0.7754 0.8096 0.8000 0.7912 0.8048
Site 2 0.8786 0.8956 0.8869 0.8750 0.8554 0.8866 0.8846 0.8796 0.8790
Site 3 0.7672 0.7651 0.7734 0.7768 0.7617 0.7763 0.7790 0.7689 0.7761
Site 4 0.8430 0.8562 0.8510 0.8424 0.8445 0.8549 0.8497 0.8494 0.8561

(A) (B) (C) (D) (E) (F)

FIGURE 2.3: Sample image from Site 1 (A), its ground truth (B), the
prediction of a model trained with no augmentation (C), or with bi-
lateral (D), jpeg (E), and TV augmentation (F), respectively. White,
red, and blue colors indicate TP, FN, and FP, respectively. Quantita-

tive performance is shown in Table 2.1.

all four raters.
In Table 2.2, we train using annotations from all four raters. At training time,

each input image is replicated four times with a different mask for each input. We
again evaluate the results by comparing the predictions to the annotations provided
by the first rater (top) and annotations from all raters (bottom).

Discussion TV augmentation improved results almost always, by a substantial
margin in some of the cases that involved a domain shift. We show qualitative re-
sults of a challenging image from Site 1 in Figure 2.3. Most of the time, TV performed
better than any other augmentation technique. In the few cases where it did not, the
conceptually similar bilateral or JPEG augmentation worked best. As expected, aug-
mentation with Gaussian smoothing did not lead to competitive results. For Site 3,
we observed that TV sometimes smoothes out very fine details in the spinal cord
structure. This might explain why JPEG augmentation produced slightly higher
dice scores than TV on that site.

Traditional augmentation techniques such as flipping, rotation, and elastic defor-
mation did not show a clear benefit in this specific task. Even though it is possible
to combine them with TV augmentation, our results suggest that it is unlikely to
benefit this particular task. It is thus left for future work.

Comparing Table 2.2 to Table 2.1, we can see the largest benefits when annota-
tions by only one rater are available at training time. This agrees with our intuition
that repeated annotations provide a form of regularization. Despite this, we con-
tinue seeing a benefit from data augmentation.

Impact of smoothing parameter and multi scale augmentation The effect of the
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(A) α = 0 (B) α = 5 (C) α = 10 (D) α = 15

FIGURE 2.4: Sample image and the results of different TV smoothing
parameters.

TABLE 2.3: Results with varying smoothing parameters suggest that
TV augmentation is robust to its choice, and combining multiple
scales is a feasible strategy. Dice scores on the left are from the same

rater, on the right from all raters.

α = 5 α = 10 α = 15 Combined
Site 1 0.7332 0.7423 0.7573 0.8187
Site 2 0.8610 0.8653 0.8599 0.8757
Site 3 0.6466 0.6581 0.6579 0.6487
Site 4 0.8395 0.8457 0.8428 0.8525

α = 5 α = 10 α = 15 Combined
Site 1 0.7044 0.7130 0.7305 0.7848
Site 2 0.8483 0.8530 0.8536 0.8749
Site 3 0.7475 0.7576 0.7574 0.7633
Site 4 0.8184 0.8217 0.8215 0.8378

TV smoothing parameter α that was discussed in Section 2.4.3 is illustrated in Figure
2.4. Previous experiments used α = 5. Table 2.3 studies how sensitive TV augmenta-
tion is with respect to this parameter. Again, training was on Site 2 using annotations
from the first rater, and evaluation compared the predictions to annotations made by
the same rater (left) and annotations made by all raters (right). All scales perform
quite well, and combining different ones, as shown in the last column, yields the
best dice score in nearly all cases.

2.5.2 BraTS 2019

This challenge data consists of brain MRI scans with high- and low-grade gliomas,
collected at different institutions. The publicly available training data includes 3D
scans of 335 subjects.

Setup We again aimed for an evaluation that would separately assess the benefit
with or without a domain shift. Although there was no explicit mapping of individ-
ual subjects to their respective institutions, we could identify four groups based on
the challenge data description and the filenames: Brats2013 (30 subjects), CBICA
(129 subjects), TCGA (167 subjects), and TMC (9 subjects).

We split each group’s data into 80% training and 20% test sets. We train on data
from only one group (TMC) and report results on the test sets from all groups. An
example image with the ground truth and the smoothed augmentation is shown in
Figure 2.5.

As input we use the FLAIR modality and train the model to learn the Whole Tu-
mor label. We follow the preprocessing steps of (Isensee et al., 2017) and standardize
intensities to zero mean and unit variance.
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FIGURE 2.5: BraTS (TMC) training image, ground truth, and the TV
smoothed image.

TABLE 2.4: Dice Score on held-out test sets of different subsets of
BraTS 19.

Br13 CBICA TCGA TMC
Original 0.8088 0.7933 0.7929 0.7894
TV Smoothed 0.8570 0.8152 0.7885 0.8233

Results As shown in Table 2.4, TV augmentation increased segmentation accu-
racy in three out of the four groups. The largest benefit was observed in the group
Br13. This involved a domain shift, as the model was only trained on TMC. On
the group where the performance slightly decreases (TCGA), we found that the pre-
dicted segmentation sometimes misses some of the finer tumor details. Such fine
structures might be more difficult to discern after TV smoothing.

2.5.3 White Matter Hyperintensity

The publicly available data from the WMH challenge is acquired with different scan-
ners from 3 institutions. 2D FLAIR and T1 MR images and segmentation masks are
provided for 60 subjects, 20 from each institution.

Setup The data is split into 80% training and 20% test sets. We combined the
training data from all three sites, and report results on the test sets we held out
ourselves, as well as on the official test sets, by submitting to the challenge website.
To avoid creating a large number of submissions, we do not investigate the impact of
training on one compared to all sites in this case. We follow the preprocessing steps
of (Li et al., 2018) and standardize intensities. An example image with the ground
truth and TV smoothed augmentation is shown in Figure 2.6.

Results Table 2.5 shows that TV augmentation improved segmentation accuracy
on the held-out data in all three sites. Table 2.6 shows a clear improvement also on

FIGURE 2.6: WMH site 1 training image, ground-truth, and the TV
smoothed image.
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TABLE 2.5: Dice Score on held-out test sets of WMH challenge

Site 1 Site 2 Site 3
Original 0.6879 0.8348 0.7170
TV Smoothed 0.7329 0.8480 0.7685

TABLE 2.6: Results on the official test set of the challenge. Higher
values for DSC, Recall, F1 are better, and lower values for H95, AVD

are better.

DSC H95 AVD Recall F1
Original 0.74 9.05 29.73 0.65 0.64
TV Smoothed 0.77 7.42 24.97 0.76 0.67

the official test set. The evaluation criteria in this challenge are Dice Score (DSC),
Hausdorff distance (H95), Average Volume Difference (AVD), Recall for individual
lesions, and F1 score for individual lesions.

Discussion Results on both the held-out test set and the official test set show
that TV smoothing improves the segmentation performance, in some cases by a sub-
stantial margin. TV-smoothing performs better with respect to all evaluation criteria
in the detailed official results. The most pronounced improvement is in the number
of lesions that the model detects (recall).

2.6 Conclusion

Our results indicate a clear benefit from using feature preserving smoothing for data
augmentation when training CNN-based medical image segmentation on limited
data. Advantages were especially pronounced when using TV smoothing, which
creates a piecewise constant, segmentation-like output. TV augmentation also helped
when a domain shift between training and test data was involved. Consequently, we
propose that TV smoothing can be used as a relatively simple and inexpensive data
augmentation method for medical image segmentation.

In the future, we hope to better characterize the exact conditions under which the
different augmentation techniques that have been proposed for semantic segmenta-
tion work well, and when it makes sense to combine them. We expect that factors
such as the nature of differences between training and test images will play a role,
as well as characteristics of the images (e.g., noise), and the structures that should be
segmented (e.g., presence of fine details).
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Chapter 3

Adaptive Optimization with Fewer
Epochs Improves Across-Scanner
Generalization of U-Net based
Medical Image Segmentation

3.1 Summary

There are many design choices that go into building strong deep learning models
that perform well. We investigate in this work two of those choices: the type of op-
timizer and how long the model is trained for. The popular nnUNet (Isensee et al.,
2021) framework uses the SGD optimizer and trains models for 1000 epochs. We hy-
pothesized that reducing this large number of epochs might be helpful for general-
ization across domains. Recent work (Savarese et al., 2021) has shown that adaptive
optimizers can have a superior performance to non-adaptive ones provided that that
their hyperparameters are properly tuned. We therefore also look into how the per-
formance in presence of domain shift changes when adaptive optimizers are used.

To evaluate our approach, we use two datasets. The first one is the Calgary
Campinas dataset (Souza et al., 2018), which consists of brain MR images obtained
with several scanner types and field strengths, resulting in six domains. The task is
to output skull-stripped segmentation masks of the brain. The second dataset we
evaluate on is the Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Seg-
mentation (M&Ms) dataset (Campello et al., 2021). It contains cardiac MR images
obtained with different scanners translating into four domains. The task is to seg-
ment the left ventricle cavity, right ventricle cavity, and left ventricle myocardium.

We use the nnUNet (Isensee et al., 2021) as our segmentation framework. The
network is trained with a combination of the dice loss and the cross-entropy loss.
We evaluate the performance using the Surface Dice score (Nikolov et al., 2018) for
the Calgary Campinas dataset and the usual Dice score for the M&Ms dataset.

In addition to SGD and Adam as optimizers, we use AvaGrad (Savarese et al.,
2021), which is an adaptive optimizer that decouples the learning rate from the
adaptability parameter. This is desirable because it simplifies the hyperparameter
search for the learning rate in comparison to the Adam optimizer.

We trained models with the different optimizers and for a varying number of
epochs, and found that on the Calgary Campinas dataset and on the M&Ms dataset,
models generalize better to target domains when combining adaptive optimizers
with training for a smaller number of epochs compared to the default settings of
nnUNet which uses SGD and trains for 1000 epochs.
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When investigating the average weight update for each layer of the network, we
found that they are comparable for AvaGrad whereas there is a larger variance in
case of SGD. This might be a reason why training for a smaller number of epochs
with SGD does not produce the same improvement as with AvaGrad since those
layers that learn more slowly will be negatively affected by early stopping.

Since augmentations reduce overfitting and help models generalize, we ran an
ablation study where we disable augmentations to see what effect that will have on
models trained for a small number of epochs. The results we obtained show that
a larger drop in performance occurs in case of SGD compared to AvaGrad when
training with no augmentations and with early stopping.

We also ran experiments with the SpotTUnet (Zakazov et al., 2021), which de-
fines a policy that automatically decides which layers will stay fixed and which ones
will be fine-tuned with data from the target domain. We first trained a base model
using the framework defined in their work and observe a similar pattern where Av-
aGrad performs better than SGD. We then fine-tuned on the target domain, once
with a small number of slices, and then with a larger number of slices, similar to the
approach Zakazov et al., 2021 followed in their work, and found that the policies
regarding which layers are fine-tuned differ with the change of the optimizer.

The work presented in this chapter is related to the robustness aspect of segmen-
tation models in the presence of domain shift, that we address in this dissertation. It
is highly desirable that models are trained to be generalizable in the first place and
not overfit on the source domain. We show that the default settings of the popular
nnUNet framework regarding the optimizer and number of epochs might not be op-
timal if domain shift is present, and argue instead for the use of adaptive optimizers
in combination with early stopping.
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3.2 Abstract

The U-Net architecture is widely used for medical image segmentation. However,
accuracy has been observed to drop, sometimes dramatically, when U-Nets are trained
on images that have been acquired with a specific scanner, and are applied to images
from another scanner. This indicates an overfitting to image characteristics that are
irrelevant to the semantic contents, and is usually mitigated with data augmentation.
We argue that early stopping additionally improves across-scanner generalization,
while greatly reducing training times. For this, we first observe that the widely used
stochastic gradient descent (SGD) trains different U-Net layers at different speeds,
and demonstrate that this problem is reduced by switching to AvaGrad, a recently

https://doi.org/10.1007/978-3-031-16852-9_12
https://doi.org/10.1007/978-3-031-16852-9_12
https://doi.org/10.1007/978-3-031-16852-9_12
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proposed adaptive optimizer. On two different datasets, this allows us to match ac-
curacies from nnUNets with default settings, 1000 epochs of SGD, by training for
only 50 epochs with AvaGrad, and to exceed their results in the across-scanner set-
ting. This benefit is specific to combining adaptive optimization and early stopping,
since it can be matched neither by SGD with a low number of epochs, nor by Av-
agrad with many epochs. Finally, we demonstrate that the choice of optimizer can
have important implications for domain adaptation. In particular, the SpotTUnet,
which was recently proposed to automatically select layers for fine-tuning, arrives
at very different policies depending on the optimizer.

3.3 Introduction

The U-Net architecture (Ronneberger et al., 2015) has achieved state-of-the-art re-
sults for many different medical image segmentation tasks. However, its ability to
generalize to images that have been acquired with a different scanner than the im-
ages it was trained on is often limited. In practice, generalization depends on many
factors, including the network’s architecture, how the input data is pre-processed,
and the learning scheme. Our work investigates two of these factors, the type of
optimizer and the stopping time. We suggest that widely used settings for them are
not optimal with respect to across-scanner generalization, and that this has impor-
tant implications for domain adaptation techniques.

The nnU-Net framework (Isensee et al., 2021) automatically configures itself for
different segmentation tasks (Kavur et al., 2021; Heller et al., 2021). Some of the de-
sign choices in the framework are adapted to the dataset that the model is trained
on, whereas others were found to work well in different challenges and are fixed.
These include having SGD as the optimizer with a learning rate of 0.01, and training
for a long time, namely, 1000 epochs. Our work is based on the intuition that stop-
ping earlier, which is widely used as a way of regularizing deep networks, should
reduce overfitting and therefore improve across-scanner generalization. However,
we found that SGD with few epochs does not sufficiently train all U-Net layers, due
to a very different effective speed at which different layers are trained. To mitigate
this problem, we investigate adaptive optimization.

Adam and SGD are two of the most commonly used methods in the optimiza-
tion of a network’s parameters during training. For vision tasks with convolutional
networks (Chen et al., 2018; Isensee et al., 2021), non-adaptive optimizers, such as
SGD, are frequently used with the belief that they generalize better to unseen data
(Wilson et al., 2017). However, recent work (Choi et al., 2019; Savarese et al., 2021)
has shown that adaptive methods can actually outperform non-adaptive ones if they
are properly tuned. AvaGrad (Savarese et al., 2021) is a recently published adaptive
optimizer. It is similar in principle to Adam, where running averages of the gradi-
ents and their squared values are used to update the network’s weights. However,
it is different in that it decouples the effective learning rate and the adaptability pa-
rameter ϵ. If ϵ is large enough, the only parameter left to tune is the learning rate,
which makes the cost of the hyperparameter search similar to that with SGD.

In our experiments, we replace SGD with AvaGrad, fix the learning rate and
ϵ, and train for a relatively short number of epochs. We test the performance of the
trained models on two datasets that exhibit a domain shift between source and target
domains, and observe an improvement in performance on both of them. We also
show that the choice of optimizer has a great influence on the fine-tuning policies
learned by Zakazov et al., 2021.
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3.4 Materials and Methods

3.4.1 Datasets

We selected two public datasets for our experiments, the Calgary-Campinas-359
(CC-359) dataset (Souza et al., 2018) and the Multi-Centre, Multi-Vendor and Multi-
Disease Cardiac Image Segmentation (M&Ms) dataset (Campello et al., 2021). They
both provide MR images that have been acquired with different scanners, which we
can use as the separate domains in our experiments. The CC-359 dataset consists of
359 3D brain MR images collected from sites with scanners that differ in their type
and field strength, resulting in 6 domains: GE 15, GE 3, Philips 15, Philips 3, Siemens
15, and Siemens 3. We use GE 3 as our source domain and the others as the target
domains. The groundtruth for this dataset corresponds to skull-stripping segmen-
tation masks. The M&Ms dataset consists of cardiac MR images from 345 subjects.
These were collected from sites with different scanners: Siemens (A), Philips (B), GE
(C), and Canon (D). We use domain B as our source domain and the others as the
target domains. The segmented regions in this dataset are the left ventricle cavity
(LV), the right ventricle cavity (RV), and the left ventricle myocardium (MYO).

3.4.2 Segmentation Framework

We use the well-known and established nnUNet (Isensee et al., 2021) as our seg-
mentation pipeline. Its backbone is based on the U-Net (Ronneberger et al., 2015)
architecture with an encoder and decoder-like structure and skip connections in be-
tween. The depth of the network. i.e. number of down/upsampling operations
is adaptive and depends on the dataset median image size. As a preprocessing
step, the images are normalized to follow a standard distribution. Training data is
augmented with various transformations including rotation, scaling, Gaussian blur-
ring, and Gamma augmentation among others. The network is trained with the
SGD optimizer with a poly learning rate scheduler, and it uses both the dice and
cross-entropy as the loss function. In our experiments we focus on the 2D variant of
nnUNet. To evaluate the performance, we use the Dice score for the M&Ms dataset,
Dice = 2(∑ ŷy)/(∑ ŷ + ∑ y), where ŷ and y are the predicted and true labels re-
spectively. For the CC-359 dataset, we follow (Shirokikh et al., 2020) and use the
surface Dice score (Nikolov et al., 2018) instead. This score computes how much
of the predicted and ground-truth surfaces overlap within a given distance toler-
ance. Since the segmentation task for this dataset is skull-stripping, this measure is
deemed more informative because of the larger focus on the brain contour.

3.4.3 AvaGrad Optimizer

Similar to the Adam optimizer, AvaGrad is an adaptive method where the effective
learning rate for each parameter (e.g. network weights) is adapted according to the
running averages of the corresponding gradients. Differently however, AvaGrad
decouples the adaptability parameter ϵ from the learning rate. This is achieved by
normalizing the learning rate vectors before using them to update the parameters. In
our experiments, for both datasets we use the values 10 for the learning rate and 0.1
for ϵ. These were found using a separate validation set from domain B of the M&Ms
dataset. We show below the relevant equations from (Savarese et al., 2021), where
wt and gt denote the parameter to be updated and its gradient, mt and vt denote the
running averages of the gradient and the gradient squared, d is the dimension of ηt,
and finally αt and ϵ are the learning rate and the adaptability parameter.
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TABLE 3.1: Surface Dice performance on the Calgary-Campinas
dataset. Largest means in each row are bold, statistical significance
between S-1000 and the other columns is indicated with an asterisk.

Domain S-1000 S-25 S-50 A-25 A-50 AG-25 AG-50 AG-1000
GE15 0.9068 0.8345* 0.8782* 0.8970* 0.9076 0.9152* 0.9214* 0.8181*
Philips 15 0.9407 0.9102* 0.9330* 0.9421 0.9472* 0.9484* 0.9480* 0.8009*
Philips 3 0.8685 0.7252* 0.7773* 0.8570 0.8345* 0.8848* 0.9032* 0.7135*
Siemens 15 0.9176 0.8409* 0.8841* 0.9206 0.9219* 0.9324* 0.9344* 0.7734*
Siemens 3 0.8191 0.8449* 0.8579* 0.9037* 0.9029* 0.9061* 0.8932* 0.8398
GE 3 Test 0.9645 0.9594 0.9629 0.9622 0.9646 0.9650 0.9641 0.9324*

mt = β1,tmt−1 + (1 − β1,t)gt, ηt =
1√

vt−1+ϵ ,

wt+1 = wt − αt
ηt

∥ηt/
√

d∥2
⊙ mt, vt = β2,tvt−1 + (1 − β2,t)g2

t

3.4.4 SpotTUNet

If we have annotated data from target domains, we can fine-tune the source-domain
model on each target. Zakazov et al., 2021 proposed the SpotTUnet, where an addi-
tional ResNet-34 is employed to automatically choose which layers should be fine-
tuned. For that, we extract the input features, which get reduced to a 2 × 32 di-
mensional output. Each of the 64 output logits is passed through a Gumbel-Softmax
(Jang et al., 2016) which would then be mapped to a probability for a UNet layer
to be chosen for fine-tuning or to remain frozen. The original SpotTune also pro-
posed a regularization constraint for the global policy aimed at consolidating the
global fine-tuning policy. The SpotTUNet loss with added penalty term is defined
as L = Lsegm + λ ∑64

l=1(1 − Il(x)), where Il(x) is the binary indicator for the l-th
frozen layer based on the image input x. We evaluate the SpotTune performance for
7 and 800 target domain slices available for fine-tuning.

3.5 Experiments

3.5.1 Baseline Performance and Early-Stopping

We show in Tables 3.1 and 3.2 the baseline performance with nnUNet in the first col-
umn. We refer to this experiment as S-1000 since the default configuration of nnUnet
uses the SGD optimizer and trains for 1000 epochs. We next show the performance
of the adaptive optimizers, Adam (A) and AvaGrad (AG), with fewer epochs. For
comparison, we also train with SGD for the same number of epochs, and with Av-
aGrad for 1000 epochs. No labels from the target domains were used. On the CC
dataset, AvaGrad with few epochs achieves the highest mean scores on all domains.
According to a Bonferroni corrected Wilcoxon signed-rank test, all differences be-
tween S-1000 and AG-50, which we propose as an improved default, are statistically
significant. This improvement is achieved at greatly reduced computational cost,
due to a much smaller number of epochs.

Similarly, on the M&Ms dataset (Table 3.2), we either observe a benefit or a com-
parable performance from using AvaGrad with few epochs. Qualitative results from
both datasets can be found in Figure 3.1. The Supplementary Material also includes
violin plots that show the distribution of results across the different subjects on both
datasets.
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TABLE 3.2: Volumetric Dice performance on the M&Ms dataset.
Largest means in each row are bold, statistical significance between

S-1000 and the other columns is indicated with an asterisk.

Class1 (LV)
Domain S-1000 S-25 S-50 A-25 A-50 AG-25 AG-50 AG-1000
A 0.6065 0.6957 0.6663 0.7131 0.7506* 0.7524* 0.7845* 0.7355*
C 0.8700 0.8660 0.8693 0.8784 0.8758 0.8862* 0.8754 0.8734
D 0.8805 0.8833 0.8829 0.8767 0.8745 0.8919 0.8866 0.8912
B Test 0.8850 0.8977 0.8932 0.9019 0.9024 0.8988 0.9063 0.8937

Class2 (MYO)
Domain S-1000 S-25 S-50 A-25 A-50 AG-25 AG-50 AG-1000
A 0.5335 0.5697 0.5468 0.5785 0.6261 0.6200* 0.6644* 0.6400*
C 0.8064 0.7994 0.8015 0.8091 0.8010 0.8170 0.8143 0.8143
D 0.8127 0.8031 0.8084 0.8126 0.8121 0.8112 0.8134 0.8163
B Test 0.8463 0.8461 0.8468 0.8569 0.8561 0.8537 0.8625 0.8510

Class3 (RV)
Domain S-1000 S-25 S-50 A-25 A-50 AG-25 AG-50 AG-1000
A 0.5000 0.5578 0.5058 0.5821 0.6392* 0.6187 0.6973* 0.6582*
C 0.8093 0.8196 0.8179 0.8045 0.8241 0.8311 0.8451 0.8305
D 0.8028 0.7682* 0.7645* 0.7766 0.8007 0.8027 0.8041 0.8454
B Test 0.8635 0.8535 0.8534 0.8535 0.8570 0.8619 0.8714 0.8627

FIGURE 3.1: Qualitative results on the M&Ms dataset on the left
(yellow: RV, blue: LV, green: MYO), and on the Calgary-Campinas

dataset on the right.
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FIGURE 3.2: Average weight update for SGD on the left and AvaGrad
on the right.

We note that, throughout this work, we use the term early stopping to simply de-
note training for much fewer epochs than the nnUNet default. Introducing a mecha-
nism that fine-tunes the number of epochs for optimal generalization across multiple
target domains seems difficult, given that results in Tables 3.1 and 3.2 indicate that
the perfect stopping time depends on the specific target domain. Moreover, in prac-
tice, the target domain might not even be known while training the original model.

3.5.2 Training Speed of U-Net Layers

We plot in Figure 3.2 the average magnitude of weight updates per layer for the
SGD and AvaGrad optimizers, grouped by the type of convolution defined by the
nnUNet. context denotes those convolutions in the encoder part of the model, whereas
transpose refers to the transposed convolutions in the decoder part of the model. lo-
calization denotes the convolutions that follow the concatenation of feature maps,
and finally segmentation refers to the convolutions that produce the segmentation
maps at different levels of the network. We observe that particularly in the case of
SGD, the U-Net layers train at different speeds. This could explain why reducing
the number of epochs when training with SGD often works less well, since it might
not sufficiently train the low-resolution layers, which learn more slowly. When us-
ing the AvaGrad optimizer, the layers are trained at rather comparable speed. We
believe that this allows early stopping to reduce overfitting to the source domain,
while still mitigating the risk of underfitting individual layers.

3.5.3 No Augmentation

The nnUNet augments the training data with transformations that simulate plausi-
ble differences between scanners. We investigate the relative benefits from augmen-
tation and early stopping through an ablation study that deactivates those augmen-
tations. Table 3.3 summarizes these results for the Calgary-Campinas dataset. The
corresponding table for the M&Ms dataset can be found in the Supplementary Mate-
rial. Compared to Tables 3.1 and 3.2, we observe that across-scanner generalization
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TABLE 3.3: Surface dice performance on the CC dataset when train-
ing with no augmentations

Domain S-1000-noAug S-25-noAug A-25-noAug AG-25-noAug
GE15 0.66380 0.76537 0.83760 0.81029
Philips 15 0.85827 0.87022 0.89176 0.91129
Philips 3 0.69653 0.62460 0.65254 0.80440
Siemens 15 0.80643 0.80820 0.85617 0.88390
Siemens 3 0.63098 0.70149 0.57215 0.63266
GE 3 Test 0.92995 0.94423 0.94547 0.95422

suffers drastically from this when training for 1000 epochs. This effect is much re-
duced when training with AvaGrad and early stopping. Best results are obtained
when combining both types of regularization.

3.5.4 SpotTUNet

We evaluate the differences between SGD and AvaGrad under several SpotTUNet
settings. For direct comparison, we retain the same architecture and experimental
setup as provided by Zakazov et al., 20211, where the baseline model was trained
for 60 epochs and the spottuned model for 100 epochs. Figure 3.3 shows that using
the surface dice as metric and the SGD as an optimizer, we can spottune the Tar-
get Domains (TDs) individually to increase the average target domain performance.
Changing the optimizer to AvaGrad immediately achieves an increase of 28.1% sur-
face dice across the TDs. Like with SGD, spottuning with AvaGrad further improves
the surface dice. We plot the corresponding SpotTUNet policy visualizations in Fig-
ures 3.5a and 3.5b. For SGD, they agree with the finding of Zakazov et al., 2021 in
that early encoder layers get fine-tuned. This pattern changes with AvaGrad, where
fine-tuning focuses on the lowest-resolution layers.

FIGURE 3.3: SpotTUNet performance on the Calgary-Campinas
dataset.

To spottune on the M&Ms dataset, we use B as the source domain and fine-tune
the other domains as targets. Again, changing to AvaGrad increases the baseline
performance on the TDs. However, due to the comparatively smaller number of an-
notated training slices and stronger inhomogeneity between the domains, the mod-
els overfit and degenerate for both SGD and AvaGrad using only 7 slices (Figure 3.4).
That is further highlighted by the policy visualization in Figure 3.5c as both SGD and
AvaGrad (7 slices) fine-tune layers across the whole model. Refinement with few

1https://github.com/neuro-ml/domain_shift_anatomy
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FIGURE 3.4: SpotTUNet performance on the M&Ms dataset.

slices introduces a risk of overfitting. We believe that, with the current Spottuning
method, this sometimes outweighs the benefit of introducing domain-specific infor-
mation. On the other hand, when providing 800 annotated slices for spottuning, we
achieve higher average dice scores across all TDs, while AvaGrad still outperforms
SGD. The corresponding Tables for both datasets can be found in the Supplementary
Material.

3.6 Conclusion

In this work, we argue that a widely used training strategy for U-Nets, SGD with
a large number of epochs, is not optimal with respect to generalization to other
domains. In particular, we demonstrate that the use of adaptive optimizers to-
gether with early stopping improves generalization across scanners on two differ-
ent datasets. An additional advantage of early stopping is computational efficiency.
This is especially beneficial in cases which involve frequent re-training, such as en-
sembling or automated configuration. Finally, we show that the choice of optimizer
influences the policies that are used to fine-tune models when annotated target data
is available.

3.7 Supplementary Material

3.7.1 No Augmentation

We show in Table 3.4 the effect of adding no augmentations when training nnUNet
models on the M&Ms dataset for a small number of epochs with different optimiz-
ers.

3.7.2 Performance with Early Stopping

We show in Figures 3.6 and 3.7 the distribution of the dice and surface dice results
for different models trained on each dataset.
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(A) CC SGD SpotTUNet (B) CC AvaGrad SpotTUNet

(C) M&Ms SGD SpotTUNet (D) M&Ms AvaGrad SpotTUNet

FIGURE 3.5: Visualization of the learned SpotTUnet policy for the CC
and M&Ms dataset.

TABLE 3.4: Dice performance on the M&Ms dataset when training
with no augmentations

Class1 (LV) Class2 (MYO)
Domain S-1000 S-25 A-25 AG-25 S-1000 S-25 A-25 AG-25
A 0.57821 0.63325 0.67412 0.65944 0.52726 0.41326 0.55698 0.50166
C 0.81005 0.79042 0.81621 0.82020 0.75339 0.69092 0.73445 0.74761
D 0.86613 0.84345 0.85194 0.87133 0.79136 0.71048 0.77167 0.78518
B Test 0.88666 0.86221 0.87382 0.87754 0.83076 0.79325 0.81404 0.82278

Class3 (RV)
Domain S-1000 S-25 A-25 AG-25
A 0.55301 0.43433 0.50285 0.58287
C 0.71715 0.64833 0.66497 0.70351
D 0.78822 0.65803 0.69090 0.78279
B Test 0.82888 0.80085 0.81276 0.84376

3.7.3 SpotTUNet

We show in Tables 3.5 and 3.6 the quantitative performance of the SpotTUNet mod-
els.
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FIGURE 3.6: Performance of SGD and AvaGrad at different epochs on
the Calgary-Campinas dataset.

FIGURE 3.7: Performance of SGD and AvaGrad at different epochs on
the M&Ms dataset.

TABLE 3.5: Comparing SGD and AvaGrad on CC using SpotTUNet

GE3 SDice
SpotTUNet

TD
slices

Sms1.5 Sms3 GE1.5 Phi1.5 Phi3 Avg. SDice-∆

SGD Baseline - 0.640 0.726 0.358 0.513 0.352 0.517 -

SGD
SpotTune

7 0.750 0.771 0.712 0.830 0.711 0.754 +0.237
800 0.794 0.789 0.700 0.870 0.689 0.768 +0.250

AvaGrad Baseline - 0.858 0.873 0.706 0.896 0.661 0.798 -

AvaGrad
Spottune

7 0.816 0.825 0.856 0.907 0.828 0.846 +0.048
800 0.890 0.855 0.878 0.916 0.830 0.874 +0.075
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TABLE 3.6: Comparing SGD and AvaGrad on M&Ms using Spot-
TUNet

SGD SpotTUNet - Dice

Class1
(LV)

Class2
(MYO)

Class3
(RV)

Class1
(LV)

Class2
(MYO)

Class3
(RV)

Class1
(LV)

Class2
(MYO)

Class3
(RV)

Domain SGD-50-Base SpotTUnet-7 Slices SpotTUnet-800 Slices

A 0.527 0.472 0.422 0.518 0.465 0.458 0.717 0.600 0.569
C 0.611 0.552 0.556 0.635 0.599 0.560 0.823 0.704 0.693
D 0.655 0.596 0.621 0.627 0.609 0.548 0.770 0.735 0.775

AvaGrad SpotTUNet - Dice

Class1
(LV)

Class2
(MYO)

Class3
(RV)

Class1
(LV)

Class2
(MYO)

Class3
(RV)

Class1
(LV)

Class2
(MYO)

Class3
(RV)

Domain AvaGrad-50-Base SpotTUnet-7 Slices SpotTUnet-800 Slices

A 0.658 0.589 0.635 0.531 0.501 0.492 0.754 0.662 0.625
C 0.718 0.676 0.710 0.659 0.622 0.661 0.835 0.729 0.721
D 0.746 0.704 0.746 0.558 0.702 0.272 0.765 0.739 0.783
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Chapter 4

Gradient and Log-based Active
Learning for Semantic
Segmentation of Crop and Weed
for Agricultural Robots

4.1 Summary

Deep learning models that were trained for the task of semantic segmentation might
perform well on data similar to what they were trained on but not generalize as
well to other data with different characteristics. Our target application in this work
is agricultural robots that should distinguish between crop and weed in order to
eliminate weed plants. Image data captured from different agricultural fields will
exhibit variations in their appearance due to location-dependent soil and weather
conditions. The statistics of the semantic classes might also be different. These are
some of the reasons that make it difficult for trained models to perform similarly
on source and target data. A straightforward solution would be to annotate data
from new domains and retrain the model on them. Annotating data is however
tedious, therefore our goal in this work was to reduce the amount of data needed for
annotation by selecting those that the model might most benefit from.

To pick samples for annotation, we compare the model’s predictions to pseudo-
groundtruth labels. To generate the latter, we run k-means on the RGB images to ob-
tain clusters that only require weak supervision to be transformed into foreground-
background segmentation. We found that this simple clustering is already enough
to get reasonable segmentation that we can use for active learning. We then devised
three methods to choose which samples should be annotated. The first computes the
contribution of each sample to the network loss. Those with the highest loss indicate
a large discrepancy between their pseudo-groundtruth and the model’s prediction.
Choosing only the samples with the highest loss, however, runs the risk of picking
samples that might be too similar to each other. We therefore sort the losses of sam-
ples in a descending order then select samples on a logarithmic scale. This encour-
ages diversity of the samples while still favoring those that the model is struggling
with.

Our second and third methods compute the gradients of the network and makes
use of them in selecting samples. The intuition behind that is that samples with
a large norm of gradients might have a larger influence on the network’s weights.
In our second method, once gradients are computed, their norm is sorted in a de-
scending order, and again the samples are selected on a logarithmic scale. We use
a different technique to encourage diversity in our third method. The first sample
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selected is the one with the largest gradient norm. The gradient of each candidate
sample is projected onto that of the already selected samples, then subtracted from
the original gradient. The sample with the highest residual gradient norm is cho-
sen next. This encourages the selection of samples that are different from what has
already been picked for annotation.

The neural network model we use follows an encoder-decoder architecture with
residual blocks and ReLU as the non-linearity activation. To train and evaluate our
model, we used imaging data acquired by agricultural robots in three fields: Bonn
and Stuttgart in Germany and Zurich in Switzerland. The datasets exhibit different
crop and weed statistics and also have different appearances. We train our model
on the Bonn dataset then refine it on the two other datasets (separately) by picking
10 samples for annotation in each round and subsequently refining the model using
these samples. The focal loss was used to train the network. To evaluate the per-
formance, we use two measures. The first one is pixel-wise mean Intersection over
Union (mIoU). The second one is driven by the particular application here which is
weeding, therefore the object-wise accuracy of objects larger than 50 pixels is com-
puted. In comparison to the baselines, we obtain favorable results, especially when
only a small numbers of samples can be annotated.

As mentioned in Chapter 1, the goal of this dissertation is to tackle domain shift
from two angles. The work presented in this chapter falls under one of those where
models trained on one domain are adapted to another domain that exhibits different
characteristics. With no adaptation, the model does not generalize as well to target
data due to domain shift. Given a small budget for annotating data, we show how
we can leverage information deduced from the model and unlabeled target data, to
pick samples for annotation and refine the model. Our methods for sample selection
enable us to select samples which the model is performing poorly on or might have
the largest impact on the weights. This allows us to introduce a new domain to the
model to be refined on, so existing models can be reused and the cost for annotating
new data is reduced.

The content of this chapter is published as:

© 2020 IEEE. Reprinted, with permission, from Rasha Sheikh et al. (2020). “Gradient
and Log-based Active Learning for Semantic Segmentation of Crop and Weed for
Agricultural Robots”. In: 2020 IEEE International Conference on Robotics and Automa-
tion, ICRA 2020, Paris, France, May 31 - August 31, 2020. IEEE, pp. 1350–1356. DOI:
10.1109/ICRA40945.2020.9196722. URL: https://doi.org/10.1109/ICRA40945.
2020.9196722.

Contribution of the thesis author: Conceptualization, Methodology, Software, Vali-
dation, Investigation, Writing - Original Draft, Visualization.

4.2 Abstract

Annotated datasets are essential for supervised learning. However, annotating large
datasets is a tedious and time-intensive task. This paper addresses active learning
in the context of semantic segmentation with the goal of reducing the human la-
beling effort. Our application is agricultural robotics and we focus on the task of
distinguishing between crop and weed plants from image data. A key challenge in
this application is the transfer of an existing semantic segmentation CNN to a new

https://doi.org/10.1109/ICRA40945.2020.9196722
https://doi.org/10.1109/ICRA40945.2020.9196722
https://doi.org/10.1109/ICRA40945.2020.9196722
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field, in which growth stage, weeds, soil, and weather conditions differ. We pro-
pose a novel approach that, given a trained model on one field together with rough
foreground segmentation, refines the network on a substantially different field pro-
viding an effective method of selecting samples to annotate for supporting the trans-
fer. We evaluated our approach on two challenging datasets from the agricultural
robotics domain and show that we achieve a higher accuracy with a smaller number
of samples compared to random sampling as well as entropy based sampling, which
consequently reduces the required human labeling effort.

4.3 Introduction

The ability to interpret the scene in front of a robot is key for intelligent behavior
in several applications. For example, precision farming robots need to know which
type of plant they perceive or autonomous cars need to know which object in their
surroundings is a car, a pedestrian, or a cyclist. These classification or semantic seg-
mentation tasks are typically tackled using convolutional neural networks (CNNs)
operating on image data. In order to perform well, neural networks need to be
trained with appropriately annotated datasets.

The performance of most supervised learning approaches and especially deep
learning systems is related to the quality and quantity of training data. Annotated
training data, however, has a high cost as often a larger number of labeled training
data is required. In this work, we focus on optimizing the training set generation for
semantic segmentation of image data obtained from a mobile robot. Semantic seg-
mentation refers to the task of computing a pixel-wise labeling of the images. More
concretely, we address the agricultural robotics application in which robots should
perform automated weed control. For the semantic segmentation, this means that
we need to compute the semantic label “crop”, “weed”, or “misc” for each pixel in
the image. This task is particularly challenging as the field conditions often change
substantially between years, regions, weather, and soil conditions as can be seen in
Figure 4.1.

One solution to adapt and refine existing semantic segmentation systems to new
field conditions is through additional labeled data from the new field. As these new
annotations need to be executed at the end-users site, one is interested in keeping
this effort as low as possible. Given annotated data on one agricultural field and a
CNN that was trained on it, we address the problem of transferring this knowledge
to new fields with minimum effort. Datasets from different fields reveal different
crop and weed statistics. They often differ by soil type, weather condition, or various
small objects that can be found on the ground, such as stones, dried vegetation,
or marks from agricultural machines, i.e., patterns that are neither crop nor weed.
Additionally, the robot can acquire images of plants at a certain growth stage in one
field, while the growth state on the target field is different. Lastly, artifacts such
as contrast changes can be found in the camera images captured from the various
locations. As illustrated by (Lottes et al., 2018a; Lottes and Stachniss, 2017), these
conditions make it difficult to simply reuse a previously trained network from one
field and infer the labels on another.

The contribution of this work is to introduce and compare three active learning
strategies that intelligently pick images taken under new conditions to re-train an
existing network: The first one picks samples based on a log-space ranking of their
loss with respect to pseudo labels. The second and third approaches select train-
ing samples that are expected to have a maximum effect on the network weights.
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FIGURE 4.1: Sample images from the Bonn, Stuttgart, and Zurich
sugar beet datasets in the first, second, and third column, respectively.
The first row shows the RGB images and the second row shows their
annotations (green denotes crop while red denotes weed). As can be

seen, the appearance differs substantially.

Even though similar ideas have been explored for active learning in other applica-
tion contexts, it is non trivial to apply them for semantic segmentation. An impor-
tant technical novelty in our work is to exploit a pseudo ground truth, which we
obtain with very weakly supervised segmentation. Our approach selects samples in
batches, each time refining the network, then computing a new ranking of the un-
labeled data. The best samples are then selected and the network is re-trained. To
compute the real gradients, corresponding ground truth data is needed. Thus, in our
approach, we approximate the ground truth as the result of unsupervised segmen-
tation to estimate the gradient. We evaluated our framework using three distinctive
sugar beet datasets (Chebrolu et al., 2017) that have different characteristics. Our
results indicate that our method produces a higher accuracy on the datasets with a
fewer number of samples compared to random sampling for annotation as well as
entropy based sampling.

4.4 Related Work

Several works focusing on the elimination or reduction of herbicide use, through the
incorporation of autonomous ground robots in crop fields, have been introduced to
the community in the last years (Duckett et al., 2018; Liebisch et al., 2016; McCool
et al., 2018). A key component of each of these unmanned platforms is a core percep-
tion system that has the ability to accurately distinguish crops from weeds in order
to effectively and selectively apply the desired individual treatment (Lottes et al.,
2018b; McCool et al., 2017; Milioto et al., 2017; Milioto et al., 2018; Sa et al., 2018).
These systems allow autonomous robots to perform actuation in the fields without
human supervision, treating each plant individually. All of the works referenced,
however, are based on supervised learning approaches which take large amounts
of pixel-accurate hand-labeled images for training. Accordingly, one of the main
bottlenecks of these visual processing pipelines is the amount of expensive labeled
training data required to deploy them in real agricultural fields, which often limits
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their applicability. In order to tackle this data starvation problem, we propose an
active learning based solution.

Numerous works on general active learning have been presented in the commu-
nity (Settles, 2009; Guyon et al., 2011; Holub et al., 2008; Yoo and Kweon, 2019).
The most common measures for selecting samples are based on the uncertainty
of the network (Zhou et al., 2017; Yang et al., 2017; Gal et al., 2017; Wang et al.,
2017) and diversity (Zhou et al., 2017; Dutt Jain and Grauman, 2016; Käding et al.,
2016). (Sener and Savarese, 2017a) assert based on the experiments they performed
that uncertainty based approaches are not effective for active learning with CNNs.
They hypothesize that this is not due to the inaccurate estimate of uncertainty by
the network, rather to the ineffectiveness of uncertainty based approaches to cover
the space of image features. The Expected Model Output Change Principle (EMOC)
developed by (Freytag et al., 2014) tries to avoid selecting samples that are redun-
dant and (Käding et al., 2016) follow this approach with deep neural networks. This
principle measures how a model would perform with and without the candidate
sample. Given that the labels are unknown, a marginalization over the possible la-
bels is needed. Uncertainty estimation for active learning can be performed using
Monte-Carlo dropout as in (Gal et al., 2017) or with an ensemble of deep networks.
(Beluch et al., 2018) compare both of these approaches on different datasets. They
found that an ensemble of deep classifiers has a superior performance even with a
smaller number of models. They conclude that Monte-Carlo dropout approaches
suffer from a lower diversity and a smaller model capacity.

Weakly supervised segmentation is an active research topic (Wei et al., 2018;
Acuna et al., 2018; Tang et al., 2018; Kwak et al., 2017). In the context of self-learning,
(Zhang et al., 2018b) use labels obtained with K-means graph cuts as ground truth
for their network. The predictions produced by the model are then used as the target
labels for the next iteration of the process.

The works mentioned previously and the current state-of-the-art methods for
active learning including (Gal et al., 2017; Beluch et al., 2018; Sener and Savarese,
2017b; Yoo and Kweon, 2019) are either more suitable for tasks other than pixel-wise
semantic segmentation of images with CNNs and/or are memory and computa-
tionally expensive. Differently, we experiment with approaches that directly mea-
sure how annotated samples can affect the gradients. We use labels obtained with
very weak supervision as pseudo ground truth and compute the gradients w.r.t the
weights. We then refine a pre-trained network with the newly annotated samples
in an iterative manner. Our intuition for using gradients is driven by the observa-
tion that the greater the mismatch is between the predicted segmentation and the
ground truth, the larger the change is to the weights. This is in contrast to most of
the approaches mentioned earlier that rely on the confidence of the network which
may not be the best indication of the best samples to choose for annotation, as the
network output might actually be correct although the network is uncertain about
it.

Previous work, such as the Expected Gradient Length (EGL) (Huang et al., 2016;
Settles et al., 2008), has explored how changes in model parameters can be exploited
for sample selection. However, it computes the expectation of the gradient norm
over all possible annotations, which would be prohibitively expensive for pixel-wise
semantic segmentation of images. We instead compute gradients from rough fore-
ground/background segmentation. (Du et al., 2018) use gradient similarity to de-
termine when an auxiliary task is helpful for transfer learning to the main task and
when it can be hurtful. Although in our work, the weakly supervised setting can be
seen as an auxiliary task, we only use the gradients computed there as a guidance to
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FIGURE 4.2: Overview of our approach. The key idea is that we first
perform a very weakly supervised segmentation to obtain pseudo
ground truth. Given the labels and different ranking measures ob-
tained from the network, we rank the unlabeled samples and pick
them accordingly for annotation. Those samples are then used to re-

fine the entire network.

choose samples for annotations. These gradients are not used to measure similarity
with those of the main task nor are the parameters of the main task updated with
those gradients.

4.5 Our Approach to Effective Sample Selection

Figure 4.2 shows an overview of our framework. The key idea of our approach is
to perform a very weakly supervised segmentation to obtain pseudo ground truth.
Given the labels and different measures produced by the network, we rank the un-
labeled samples and pick them accordingly for annotation. These are then used to
refine the entire network.

Our CNN for semantic segmentation relies on Bonnet (Milioto and Stachniss,
2019). The used network is based on SegNet (Badrinarayanan et al., 2017) and
ENet (Paszke et al., 2016). It has an encoder-decoder structure with a total of 25
[5x5] convolutional layers. It uses batch normalization, residual connections, ReLU
as the non-linearity layer, and the focal loss function (Lin et al., 2017). As input to
our network, we only use the standard RGB channels of a camera.

In order to perform the semantic segmentation in sugar beet field for agricultural
robotics tasks, we train our model on the Bonn sugar beet dataset (Chebrolu et al.,
2017). We then refine the trained model on other datasets by incrementally selecting
batches of samples. The datasets differ in their crop/weed statistics and the images
acquired with the cameras also differ in their illumination. Therefore, simply run-
ning the trained model to segment the vegetation in other fields does not work.
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FIGURE 4.3: Very weakly supervised segmentation used as pseudo
ground truth by our approach. Left: Input image. Middle: Ground
truth semantic segmentation; Right: Foreground segmentation of
vegetation provided by k-means clustering. Note that only such a
rough segmentation as pseudo ground truth is enough for our ap-

proach.

We compare three different approaches to sample selection for active learning.
Our main technical contribution is the generation of a pseudo ground truth (Sec-
tion 4.5.2) and its use for loss-based (Section 4.5.3), as well as two gradient-based
approaches for sample selection (Section 4.5.4 and Section 4.5.5).

4.5.1 Setup

We evaluate our different approaches by first training a network on the Bonn sugar
beet dataset then refining it on the Stuttgart and Zurich datasets separately. To refine
the network we pick unlabeled samples in batches of 10 using one of the methods
described in this section. Once the samples are annotated, they are given to the
network. We repeat this process iteratively, each time refining the network on all of
the newly annotated samples.

4.5.2 Generation and Use of Pseudo Ground Truth

Our three main methods make use of “pseudo ground truth” foreground-background
segmentation masks, which we obtain by clustering the values of the RGB channels.
An example is shown in Figure 4.3. We run k-means to determine 20 cluster rep-
resentatives from 10 randomly selected images. After viewing a single image that
contains all 20 clusters, a human annotator chooses which clusters represent vegeta-
tion. In our experiments, it was enough to select two clusters. Therefore, the human
annotation effort that is required to obtain the pseudo ground truth amounts to a
few seconds for a complete new dataset. In accordance with previously used termi-
nology (Zhang et al., 2018b), we refer to this as very weak supervision. Figure 4.3
shows an image, its ground truth and the foreground segmentation (pseudo ground
truth) provided by clustering. It is an important finding from our experiments that
a rough and easy to compute segmentation is sufficient for the purpose of selecting
images for annotation. This makes our proposed gradient-based approach feasible
in practice.

In order to compute a loss from the network output, which includes three classes,
and the pseudo ground truth, which merely includes two, one might combine crop
and weed into a single foreground class, or treat the foreground class as a specific
type of vegetation (i.e., crop or weed). We tried all three options and found that
treating the foreground from the pseudo ground truth as crop empirically produced
the best result. We emphasize that the pseudo ground truth is only used to select
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training samples that should be annotated; the network weights are updated based
on manual annotations of the selected samples, which include all three classes.

In our agricultural application, the number of true classes (3) is not much higher
than the number of classes (2) in our pseudo-ground truth. Naturally, in a differ-
ent semantic segmentation task, the number of classes could be higher and might
require generating a pseudo-ground truth with a larger number of classes. Our
method here uses a simple clustering mechanism but other unsupervised or weakly
supervised methods can also be used to generate pseudo-labels with a higher num-
ber of classes that can be later used to compute the gradients for sample selection.

4.5.3 Sample Selection Using Loss

The loss of the network is an indication of the segmentation error. Given that train-
ing neural networks with backpropagation is driven by the loss, it also provides a
useful cue as to which samples the network will most benefit from. We compute the
focal loss (Lin et al., 2017) based on the pseudo ground truth.

We found that training only on the images with the highest loss values did not
generalize well. This could indicate that they are not representative enough of the
overall dataset. Therefore, we instead employ a scheme that samples images with
a diverse range of loss values, but prefers those with higher losses. To this end, we
sort the images by their loss in a descending order, and then select them uniformly
on a logarithmic scale. Specifically, we compute index i of the n-th sample as:

i = ⌊|P|n/(|S|−1)⌋ − 1, n ∈ {0, 1, . . . , |S| − 1} (4.1)

where |S| is the number of samples to be selected and |P| is the size of the im-
ages pool. Since the samples are sorted, this approach would more heavily select
those that have higher loss values while not completely discarding images that the
network is performing well on.

4.5.4 Sample Selection Using Norm of Gradients

For this approach and the following one, we pick those samples for annotation that
might have the largest impact on the network weights. The norm of the network
gradients is a measure that is indicative of which samples will affect the weights
more than others. Although the loss and norm of gradients are correlated, there
are instances where the loss could be high for certain samples, yet the gradient is
locally small. This depends on the loss function and the state of the current network
parameters.

As in the previous approach, we use labels from very weakly supervised seg-
mentation as pseudo ground truth. We run the network on the training images for
one epoch (to maintain computational efficiency) and compute the gradients. Again
we note that this step is only used to compute the gradients but the network weights
remain unchanged. Once we have the gradients, we compute the L2 norm of those
in the last two layers of the network (the classifier layer and the one immediately
before it):

ng(x) =
∥∥∥∇w f L(x)

∥∥∥ , (4.2)

where x is the image and w are the weights of the final two layers. The images are
sorted based on this measure in a descending order and again we pick samples on a
log-space scale afterwards as explained earlier.
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4.5.5 Sample Selection Using Gradient Projection

The log-space in the previous approaches was used to ensure there is enough di-
versity among the samples so that the network does not overfit on them and can
generalize to unseen data. Here we use a different method that relies on the space
spanned by the gradients where we project onto the orthogonal complement of the
gradients of the selected samples. For every picked sample, we project the gradi-
ents of all remaining samples onto the selected sample gradient. We then subtract
the projected gradient from the original gradients. The residual we are left with
indicates which samples have the strongest remaining effect on the weights after
accounting for the already selected samples. This can be formulated as:

np(x) =

∥∥∥∥∥gx −
S

∑
i=1

⟨gi, gx⟩
⟨gi, gi⟩

gi

∥∥∥∥∥ , (4.3)

where x is the image, gi is the gradient of the ith sample out of S previously selected
samples, and gx is the gradient of the current sample. We select samples one by
one, each time sorting them according to this measure and choosing the one with
the highest norm of the residual. To pick the first sample, we choose that with the
highest norm of the gradient.

4.6 Experimental Evaluation

In this section, we demonstrate the effectiveness of the approaches we designed
for active learning and evaluate the performance of the different sample selection
methods on different datasets, and compare them to random and entropy based ap-
proaches.

4.6.1 Datasets

The datasets we used were acquired with a Bosch Deepfield Robotics UGV. The robot
was developed to assist in several agricultural applications, including mechanical
weed control and selective herbicide spraying (Chebrolu et al., 2017). It is equipped
with multiple sensors such as cameras, GPS trackers, and 3D laser sensors. For our
experiments we use the RGB data provided by the JAI AD-130GE camera.

The data was captured in three different fields: Bonn and Stuttgart in Germany,
and Zurich in Switzerland. The datasets have weed and crop plants at different
stages of growth. Figure 4.1 shows sample images from the different datasets. The
images vary in their illumination, soil type, and class statistics, hence the need for
transfer learning. The images have been annotated into three classes: weed, crop,
and soil/misc. Table 4.1 shows the number of images in each dataset and the ratio
of foreground pixels. It can be clearly seen that there is a high imbalance of classes
in the data. We follow the approach of (Milioto et al., 2018) and split the new dataset
into three sets: 40% for training, 10% for validation, and 50% for testing. The samples
are picked from the training set. All experiments were conducted on four Nvidia
Titan X GPUs.

4.6.2 Re-Training Performance

The experiments in this section are designed to show how the proposed sample se-
lection strategies impact the performance of the network in the new environment.
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TABLE 4.1: Datasets Statistics of Crop and Weed Plants

Bonn Stuttgart Zurich

Images 8230 2584 2577

Crop pixels 2.0% 1.5% 0.4%

Weed pixels 0.3% 0.7% 0.1%

TABLE 4.2: IoU without any refinement (lower bound) and IoU when
training on the whole dataset (upper bound).

No Refinement Fully supervised

Stuttgart 0.3429 0.7989

Zurich 0.3595 0.7024

For quantifying the performance, we use the mean Intersection over Union (mIoU)
as the performance measure. To provide the lower and upper bounds for the meth-
ods, we list in Table 4.2 the mIoU for each dataset when running the model without
any refinement as well as when training on all of the samples.

Figures 4.4 and 4.5 show the performance on the Stuttgart and Zurich datasets
when selecting samples for annotation with different methods. As baselines we in-
clude random sampling, and selecting samples that have the highest entropy
(Chakraborty et al., 2015; Zhou et al., 2017):

H(x) = − 1
N

N

∑
i=1

∑
c

p(c | xi) log p(c | xi), (4.4)

where xi is pixel i in image x, c is the class and N is the number of pixels in the
image.

A few observations can be made from the figures: the effect of the sampling
method is stronger when only a few images are selected. As the model is trained
on more and more samples, the accuracy plateaus as expected and the variation be-
tween the different methods decreases. It can be noted however that random sam-
pling has a lower performance even with a greater number of images.

The overall performance on the Stuttgart dataset is better than that on the Zurich
dataset. This can be attributed to the different class statistics of the two datasets.
As can be seen in Table 4.1, the Stuttgart dataset has a larger percentage of crop
and weed pixels compared to the Zurich dataset. This allows the model to better
distinguish between the different classes. This observation is also supported by the
fully supervised performance shown in Table 4.2 where a higher IoU can be obtained
on the Stuttgart dataset.

When training the model with only a handful of images, 10 or 20 images, the
methods that take into account the impact of the samples on the weights lead to
better generalization to the rest of the unseen data. In particular, ranking samples by
projecting out gradients results in higher mIoU on both datasets. With 10 samples,
which would amount to roughly 1% of the training dataset size, we can achieve 90%
of the fully supervised performance (Table 4.2) on the Stuttgart dataset, compared to
76% with random selection. On the Zurich dataset, we can achieve 77% of the fully
supervised performance compared to 63% with random selection.
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FIGURE 4.4: Pixel-wise mean IoU on the Stuttgart dataset. Running
the model without any new annotations yields an IoU of 0.34. Run-
ning the model on the whole dataset yields an IoU of 0.79. Gradient-
based approaches can reach 90% of the fully supervised performance

with 10 samples.
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FIGURE 4.5: Pixel-wise mean IoU on the Zurich dataset. Running the
model without any new annotations yields an IoU of 0.36. Running
the model on the whole dataset yields an IoU of 0.70. Gradient-based
approaches can reach 77% of the fully supervised performance with

10 samples.
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TABLE 4.3: Object-wise Performance on the Stuttgart and Zurich
datasets respectively. Each row shows the performance after select-
ing 10 samples with the different methods and refining the network.
Running the model without any new annotations yields an accuracy

of 0.15 on Stuttgart and 0.33 on Zurich.

Samples
No.

Random Entropy Loss
Gradient

Norm
Gradient

Proj.

10 0.6920 0.6890 0.7882 0.8040 0.8196

20 0.7402 0.8050 0.7769 0.8350 0.8404

30 0.8138 0.8300 0.7950 0.8461 0.8470

40 0.8254 0.8463 0.8555 0.8682 0.8252

50 0.8225 0.8405 0.8523 0.8599 0.8278

Samples
No.

Random Entropy Loss
Gradient

Norm
Gradient

Proj.

10 0.7552 0.7879 0.7697 0.8354 0.8025

20 0.7971 0.8212 0.8189 0.8768 0.8170

30 0.8591 0.7884 0.8321 0.8553 0.8299

40 0.8575 0.8711 0.8610 0.8711 0.8479

50 0.8593 0.8688 0.8636 0.8852 0.8784

To further quantify the performance of our approach, we use the object-wise met-
ric defined by (Milioto et al., 2018), where the accuracy is measured for objects larger
than 50 pixels. Since the target application is weeding with agricultural robotics, this
metric is more directly useful than pixel-wise performance. Table 4.3 shows how our
approach performs on the Stuttgart and Zurich datasets. Each row shows the mean
accuracy when selecting n samples with different methods. For comparison, random
and entropy based sampling are shown in the first and second columns respectively.

4.6.3 Comparison to Other Baselines

To gain more insight into what our baselines are, we ran additional experiments with
the results shown in Table 4.4.

In the first row, we ran an experiment where we trained the model with the
pseudo ground truth first and picked samples randomly afterwards. We found that
it performs slightly better than when picking random samples directly (0.64 vs. 0.61)
but still worse than our log and gradient based methods (e.g. 0.64 vs. 0.71 for the
gradient-norm approach). Although pre-training with the pseudo ground truth al-
lows the network to distinguish foreground vegetation from background, the task
at hand is to learn three classes and more importantly distinguish crop from weed.
Therefore for all experiments, we refine the model without pre-training on the fore-
ground masks.

In the second row, we run an "oracle" experiment. We compute the difference
between the parameters of the model without any refinement and the parameters of
the fully supervised model. We then find samples with gradients that align with the
parameters difference. This experiment is not intended for sample selection, rather
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TABLE 4.4: Additional baselines for training with 10 samples on the
Stuttgart dataset. Compare with Figure 4.4.

Method mIoU

Random-pseudo ground truth 0.6448

Align with parameters difference (oracle) 0.7010

to know if the framework had complete knowledge of how the gradients should look
like, would it be able to pick better samples. We found that the oracle performance is
similar to our gradient-based approaches after seeing 10 new samples. This implies
that the gradient-based approaches are bounded by this performance. Substantially
improving upon their performance might require exploiting additional knowledge
from the model, possibly with the aid of unsupervised segmentation.

4.6.4 Inspecting t-SNE of Samples Gradients

To further analyze the ranking methods and inspect potential patterns in the differ-
ent sampling approaches, we plot the t-distributed Stochastic Neighbor Embedding
(t-SNE) of the gradients in Figure 4.6. Each circle denotes the 2-D embedding of the
gradient of a single image before picking the first 10 samples. Samples selected by
each method are shown in different colors. As explained in Section 4.5.4 and 4.5.5,
we combined the idea of gradient-based selection with two alternative approaches
to achieving diversity in the selected images: picking on a log scale, or projecting
out gradients that have been selected previously. In our experiments, both strategies
performed well (see Figure 4.4 and Figure 4.5). When inspecting the gradients of the
samples selected, we found that the strongest gradients cluster together, near the top
left. Additionally, the gradient projection method selects many points at the bound-
ary of the distribution, suggesting that it might be improved further by adding a
mechanism to ensure that selected images are representative of a larger subset in the
overall dataset.

4.6.5 Performance on Weed and Crop Classes

A more detailed breakdown of the methods performance is shown in Table 4.5. The
first table shows the pixel-wise precision and recall on the Stuttgart dataset after
selecting the first 10 samples. Both methods, Gradient Norm and Gradient Projec-
tion have a high recall and precision of the crop class without degrading those of
the weed class. The object-wise performance in the second table further illustrates
the effectiveness of these methods. Gradient Norm and Gradient Projection produce
high precision and recall for both classes. We observed the same behavior on the
Zurich dataset (not included here).

4.7 Conclusion

In this paper, we introduced and compared several active learning approaches that
support the adaptation of semantic segmentation networks to new environments.
Our approaches effectively select samples from the new environment for user an-
notation with the goal of maximizing the benefit from a small number of annotated
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TABLE 4.5: Precision and recall on the Stuttgart dataset after selecting
the first 10 samples. The first table shows the pixel-wise performance
and the second table shows the object-wise performance. The highest

values along a column are in bold and the lowest in italics.

Precision Recall

Weed Crop Weed Crop

Random 0.4095 0.7278 0.4851 0.6946

Entropy 0.4158 0.7334 0.4786 0.5894

Loss Log 0.5331 0.8025 0.6179 0.8112

Gradient Norm 0.5970 0.8259 0.6136 0.8402

Gradient Projection 0.5745 0.8365 0.6564 0.8212

Precision Recall

Weed Crop Weed Crop

Random 0.8723 0.5740 0.6587 0.6474

Entropy 0.8851 0.5238 0.6122 0.7399

Loss Log 0.9005 0.6898 0.7811 0.7351

Gradient Norm 0.9090 0.7390 0.7970 0.7536

Gradient Projection 0.9030 0.7308 0.8289 0.7375
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FIGURE 4.6: t-SNE of the images gradients on the Stuttgart dataset.
Each point represents the 2-D embedding of the gradient vector. The
first 10 samples selected by each method are shown in different colors.
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examples. We applied sample selection strategies to the task of crop/weed classi-
fication for agricultural robots, as the appearance between agricultural fields often
changes substantially such that re-training is needed. We compute pseudo ground
truth labels using very weakly supervised segmentation and use those labels to esti-
mate how new, unlabeled samples will affect the weights of the CNN if selected for
training. We select the training samples for user annotation based on the estimated
effect on the weights and use them to refine the network.

We evaluated the performance gain of our gradient-based and log-based ap-
proaches on two agricultural datasets for weed detection. The datasets reveal dif-
ferent characteristics from the dataset on which the network was pretrained. Our
results show the effectiveness of our method as it produces higher semantic seg-
mentation accuracies with a small number of training samples, compared to random
sampling as well as entropy based sampling. As a result of that, the effort in human
annotation is reduced without compromising performance.
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Chapter 5

Unsupervised Domain Adaptation
for Medical Image Segmentation
via Self-Training of Early Features

5.1 Summary

One of the challenges with building and using models in the medical field, is that
data acquired at different sites will have different properties, such as slice thickness
and in-plane resolution, in addition to showing different intensity levels and possi-
ble acquisition artifacts. This makes it challenging to reuse a model trained on data
generated at one hospital for example to data generated at another. When no target
annotated data is available, Unsupervised Domain Adaptation (UDA) can be used
to transfer the knowledge from one domain to another. Our approach to UDA in-
volves the application of self-training with pseudo-labels that we generate from the
target data.

Our model follows the U-Net architecture (Ronneberger et al., 2015) which we
train using the cross-entropy loss. We add another segmentation head to the net-
work just before the first downsampling operation and train this second head on
the source domain with the same cross-entropy loss. The model now produces two
segmentation maps, a rough one after a few convolutional layers, and the usual one
at the end of the network.

Having trained the model on the source domain, we next adapt it to the target
domain without using any target labels. To do so, the final segmentations are used
as pseudo-labels for the early segmentations, therefore the early segmentation head
acts as a student, and the base U-Net as the teacher. We compute the loss between
the two segmentation maps and refine the shared convolutional layers at the begin-
ning of the network. Put differently, the stronger segmentations at the end of the
network act as a self-supervising signal. Exploiting that information to refine the
early convolutions results in improvement in the final segmentations as well since
the refined activations are propagated through the network.

We evaluate our approach on two datasets. The first one is the Calgary-Campinas
dataset (Souza et al., 2018) where the task is to segment out the brain using MR im-
ages as input. The data was generated using a combination of different scanners
and field strengths resulting in six domains. We use one of them as our source do-
main and adapt to each one of the other five target domains. Similar to (Shirokikh
et al., 2020), the Surface Dice score (Nikolov et al., 2018) is used to evaluate the per-
formance on this dataset. Our method for unsupervised adaptation considerably
improves the performance which we observe quantitatively and qualitatively. We
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repeat the experiment using a different domain as our source domain and observe a
similar improvement in performance.

Taking a model refined on target data, we ran an additional experiment to see
if the refined model generalizes to unseen data from the same target domain but
without refining on them again. The results show that the model indeed generalizes
after adaptation. Another set of experiments that we ran looked into whether we
gain a benefit from refining not only the early layers but also deeper ones. We found
a marginal improvement in three out of five domains. We also experimented with
refining only the batch normalization layers (Hu et al., 2021), which resulted in an
improvement over the non-adapted model but it was worse than when refining the
entire convolutional blocks.

The second dataset we evaluate on is the Multi-Centre, Multi-Vendor & Multi-
Disease Cardiac Image Segmentation (M&Ms) dataset (Campello et al., 2021). This
is a multi-class problem where the task is to segment the left ventricle cavity, right
ventricle cavity, and the left ventricle myocardium in cardiac MR images. The data
was generated using four scanner vendors. We choose one as our source domain
and adapt to the other three target domains. For quantitative evaluation, we use the
volumetric dice score and observe an improvement in performance, which is also
reflected qualitatively. Looking at the breakdown of performance on each class in-
dividually, the results show a balanced improvement across all classes. Comparing
our method to (Zou et al., 2018) who also use pseudo-labels, we find that the samples
selected for refinement in their approach are frequently mislabeled which negatively
affects the adaptation performance.

The work presented in this chapter is part of the domain adaptation aspect that
we address in this dissertation. If we have no annotated data from the target domain
or it is costly to acquire, then being able to do domain adaptation in an unsupervised
manner is an appealing choice to adapt models from one domain to another. Our use
of the entire probabilistic label maps as the supervising signal along with limiting the
refinement to early convolutional blocks avoids relying on a small subset of pixels
and reduces the risk of overfitting to the pseudolabels.

The content of this chapter is published as:

Rasha Sheikh and Thomas Schultz (2022). “Unsupervised Domain Adaptation for
Medical Image Segmentation via Self-Training of Early Features”. In: International
Conference on Medical Imaging with Deep Learning, MIDL 2022, 6-8 July 2022, Zurich,
Switzerland. Ed. by Ender Konukoglu et al. Vol. 172. Proceedings of Machine Learn-
ing Research. PMLR, pp. 1096–1107. URL: https://proceedings.mlr.press/v172/
sheikh22a.html.

Contribution of the thesis author: Conceptualization, Methodology, Software, Vali-
dation, Investigation, Writing - Original Draft, Visualization.

5.2 Abstract

U-Net models provide a state-of-the-art approach for medical image segmentation,
but their accuracy is often reduced when training and test images come from differ-
ent domains, such as different scanners. Recent work suggests that, when limited
supervision is available for domain adaptation, early U-Net layers benefit the most

https://proceedings.mlr.press/v172/sheikh22a.html
https://proceedings.mlr.press/v172/sheikh22a.html
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from a refinement. This motivates our proposed approach for self-supervised refine-
ment, which does not require any manual annotations, but instead refines early lay-
ers based on the richer, higher-level information that is derived in later layers of the
U-Net. This is achieved by adding a segmentation head for early features, and using
the final predictions of the network as pseudo-labels for refinement. This strategy
reduces detrimental effects of imperfection in the pseudo-labels, which are unavoid-
able given the domain shift, by retaining their probabilistic nature and restricting the
refinement to early layers. Experiments on two medical image segmentation tasks
confirm the effectiveness of this approach, even in a one-shot setting, and compare
favorably to a baseline method for unsupervised domain adaptation.
Keywords: Unsupervised Domain Adaptation, Segmentation

5.3 Introduction

Annotating medical images to supervise the training of deep neural networks for
segmentation is time-consuming and often requires medical experts. Once trained,
these models perform well on similar data from the same site, but the performance
often drops on data acquired in a different site with another type of scanner for
example. Transfer learning and domain adaptation offer various solutions to this
problem by adapting the model to new data and addressing the domain shift be-
tween source and target domains. Unsupervised domain adaptation attempts to do
so without using any labeled target data.

There are different approaches to unsupervised domain adaptation for the task of
semantic segmentation. Several works use an adversarial scheme to learn domain-
invariant features (Hoffman et al., 2016) or image-to-image translation as in Cycle-
GAN (Zhu et al., 2017) to adapt the segmentation model (Li et al., 2019). Others
perform a layer-wise matching of activations between the domains (Huang et al.,
2018), or aim to minimize the entropy of target predictions (Vu et al., 2019) based on
the observation that source predictions often have higher confidence values.

Our proposed approach follows a self-supervision strategy. Self-supervision ei-
ther makes use of auxiliary tasks (Sun et al., 2019) or losses (Hu et al., 2021) that do
not require supervision, or it refines the network based on its own predictions on the
target domain. An important issue with the latter strategy is to avoid propagating
incorrect predictions. This has been approached by filtering predictions so that only
the most confident ones are used as a training signal (Zou et al., 2018). We propose
to use the predictions differently, inspired by recent work that has observed that the
first layers of U-Net models learn more domain-specific features (Shirokikh et al.,
2020), and benefit most from a refinement when limited training data is available
(Zakazov et al., 2021).

Therefore, we add a segmentation head after the first few convolutional layers
and use final predictions of the network as pseudo-labels to refine only those early
features. Our main finding is that this leads to a stronger improvement of the final
segmentation than a filtered self-training of the whole network. We believe that
this reflects a greatly decreased re-enforcement of incorrect predictions, because our
pseudo-labels retain their probabilistic nature, and because we limit adaptation to
early layers. Our code is publicly available at https://github.com/ferasha/UDAS.

https://github.com/ferasha/UDAS
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FIGURE 5.1: Architecture of the segmentation model.

5.4 Method

5.4.1 Base Model

We first train a segmentation model on a source domain, and later adapt it to a tar-
get domain with unlabeled data. The base model is shown in Figure 5.1. It has a
U-Net (Ronneberger et al., 2015) structure identical to the one used by (Shirokikh
et al., 2020) where images go through a number of convolutional blocks that learn
M feature maps with the same spatial size as the input before proceeding with the
encoder-like part of the architecture. It uses 3 × 3 convolution kernels, ReLU activa-
tion functions, and the skip connections are implemented as convolutions followed
by a sum operation. The model is trained with the cross-entropy loss,

l(x, y)source = − 1
NS

NS

∑
n=1

C

∑
c=1

yn,c log pc(xn), (5.1)

where NS is the number of samples in the source images, pc(xn) is our model’s
predicted probability that pixel n in image x belongs to class c, and yn is a one-
hot-encoding vector of the true label for pixel n. We use the Adam optimizer, no
augmentation, and 0.001 as the learning rate.

5.4.2 Domain Adaptation Through Self-Training

To prepare adapting the base model to the target domain, we first add another seg-
mentation head to it, just before the first downsampling operation. This block is
titled Early Features Segmentor in Figure 5.1. During refinement, this head will act
as a student which is trained by the output of the overall base model, which acts
as a teacher. Because student and teacher share the first few convolutional layers,
refining the student on the target domain also benefits the teacher. While initializing
the student on the source domain, we freeze all weights in the base model, and train
with the same loss as in Equation 5.1, again using the ground-truth segmentation
masks.
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The model now produces two probabilistic segmentation outputs, a weak one p̃c
based on early features, and the final segmentation pc at the end of the network. For
domain adaptation, we feed samples from the target domain through both branches
of the network, and compute a cross-entropy loss between them,

l(x)target = − 1
NT

NT

∑
n=1

C

∑
c=1

pc(xn) log p̃c(xn), (5.2)

where NT is the number of samples in the target images.
We now use the stronger segmentation pc at the end of the network to improve

the weaker early segmentation p̃c. This adapts the early features based on the richer
and higher level information that was learned by the rest of the network. In this
phase, we only update the weights of the early convolutional blocks that are shared
between the two branches, freezing the weights in the early segmentation head itself.
Since we minimize Equation 5.2 only with respect to the early segmentation p̃c, we
do not obtain a gradient in the rest of the U-Net, so weights there remain unaffected
as well. Despite this, the probabilities pc that we use as pseudo ground truth also
change during the refinement process, since they are affected by the updates in the
early layers. Throughout the refinement, we track the Dice score between the early
and final segmentations. We stop when the absolute difference between the Dice in
the current and the previous epoch drops below 0.005.

5.5 Experiments

5.5.1 Calgary-Campinas Dataset

The Calgary-Campinas dataset (Souza et al., 2018) consists of 359 3D volumes of
brain MR images with corresponding skull-stripping segmentation masks. The data
is generated using six scanners which differ in the vendor type and the field strength.
Those scanners represent the different domains in our experiments.

We train on 40 subjects from GE 3 (i.e. source domain) and test on 10 subjects
from each of the other target domains. The only pre-processing is a min-max scaling
of each volume. To evaluate the performance, we follow (Shirokikh et al., 2020) and
use the surface Dice score (Nikolov et al., 2018), which quantifies the fraction of the
predicted and ground truth surfaces that are within a pre-specified distance of each
other. This score is deemed more informative than the usual volumetric Dice in
this context because it focuses on the structure of interest, i.e., the brain contour, as
opposed to the large, but mostly trivial internal volume.

Improvement Over Base Model

Table 5.1 shows the adaptation result on the different domains. Here, the label “base
model” refers to the model that was trained on the source domain, without any
adaptation. Our approach significantly improves upon the base model. Qualitative
results from all targets domains are shown in Figure 5.2.

To further validate our approach, we also treated another domain, Siemens 3, as
our source domain and adapt to the other target domains. These results are shown
in Appendix 5.7.1. Once again, we observe an improvement in the performance.

To illustrate that the refinement works as described above, Appendix 5.7.2 shows
the early and final probabilistic segmentations for an example input, before and after
refinement.
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TABLE 5.1: Surface Dice scores on the Calgary-Campinas dataset. ST
and CBST refer to the self-training and class-balanced self-training

proposed by (Zou et al., 2018).

Base Model ST CBST Ours
GE 1.5 0.55487 0.53042 0.55347 0.75887
Philips 1.5 0.74974 0.72526 0.77563 0.84601
Philips 3 0.65806 0.66237 0.68958 0.85810
Siemens 1.5 0.70478 0.69294 0.75003 0.82457
Siemens 3 0.88651 0.89180 0.88418 0.88740

FIGURE 5.2: Qualitative results from the Calgary-Campinas dataset.
Columns show the input image, ground-truth, and segmentation us-
ing the base and adapted models, respectively. The rows represent

the different domains.
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TABLE 5.2: Surface Dice when refining and testing on one target sub-
ject at a time, averaged over 10 subjects.

Base Model One-Shot Refinement
GE 1.5 0.55487 0.73655
Philips 1.5 0.74974 0.84003
Philips 3 0.65806 0.85312
Siemens 1.5 0.70478 0.82449
Siemens 3 0.88651 0.87900

TABLE 5.3: Surface Dice of the adapted model on a new subset from
the same target domain, without additional refinement.

Base Model Fixed Adapted Model
GE 1.5 0.46892 0.72773
Philips 1.5 0.78818 0.88231
Philips 3 0.55264 0.82302
Siemens 1.5 0.72790 0.82344
Siemens 3 0.88564 0.90815

Comparison to Previous Work

We consider the previous work by (Zou et al., 2018) to be most similar to ours, since
it also uses a segmentation loss towards pseudo-labels to refine the network weights.
Unlike our approach, they filter the predictions of the network to keep those with
higher confidence values and use them as labels to refine the whole network. They
implement two variations of this idea, with and without class-balanced filtering.
These are referred to as Class-Balanced Self-Training (CBST) and Self-Training (ST)
in Table 5.1. On our data, we observe moderate improvements with this approach
and occasionally a drop in performance. For a more direct comparison, we also tried
to restrict the CBST approach to update the same layers as our method. However,
results were worse than when refining the entire model.

One-Shot Domain Adaptation

In the one-shot setting, a single dataset should be segmented, and is the only data
available from the target domain. Running our refinement in that mode, separately
for each subject in our test set, produced results that were almost as accurate as the
refinement on 10 volumes, which was reported above. Table 5.2 shows the resulting
average surface Dice score.

Generalization to Unseen Data

After using our approach to refine the early layers on 10 subjects from the target
domain, we applied the model to further data from the same domain without fur-
ther refinement. Results on a subset of the target domain that was disjoint from the
one used for refinement are shown in Table 5.3. They confirm that the model now
generalizes successfully.

Alternative Modes of Refinement

Given the benefit from refining the first few convolutional layers, it is natural to
try a similar strategy for refining deeper layers as well. Due to the mismatch in
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FIGURE 5.3: Qualitative results from the M&Ms dataset. The rows
represent the different domains. The columns show the input im-
age, ground-truth, segmentation using the base and adapted model

respectively. Yellow: RV, Blue: LV, Green: MYO

image resolution at deeper layers, this requires a resampling of features, predictions,
or labels. Even the variant that worked best in our experiments only provided a
marginal additional benefit when compared to the simpler refinement of the earliest
layers alone.

Moreover, we tried refining only the batch normalization layers, as proposed for
domain adaptation by (Hu et al., 2021). However, refining all weights gave better
results in our case. Experimental results related to these alternatives are discussed
in Appendix 5.7.3.

5.5.2 Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Seg-
mentation (M&Ms) Dataset

We also present results on a more challenging multi-class segmentation task. This
dataset (Campello et al., 2021) consists of four domains corresponding to images
from four scanner vendors. The data from the different sites vary in their in-plane
resolution, slice thickness, number of slices, and number of time frames.

The publicly available data includes cardiac MR scans of 345 subjects. The seg-
mented regions are the left ventricle cavity (LV), the right ventricle cavity (RV), and
the left ventricle myocardium (MYO). The only pre-processing we apply is min-max
scaling.

We train on 75 subjects from the Philips training set (source domain) and test
on the official test sets of the other target domains. We chose Philips as our source
domain because of the large drop in performance when testing on the other domains
(Campello et al., 2021). Exemplary segmentation results are shown in Figure 5.3.
They illustrate differences in image appearance across the domains (rows), and the
benefit of our refinement (final column) compared to the base model with respect to
the ground truth (GT).

To quantify the performance, we use the volumetric Dice score

Dice =
2 ∑ ŷy

∑ ŷ + ∑ y
, (5.3)
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TABLE 5.4: Volumetric Dice scores on the M&Ms Dataset. ST and
CBST again refer to the self-training and class-balanced self-training

proposed by (Zou et al., 2018).

Base Model ST CBST Ours
Siemens 0.61926 0.54632 0.53262 0.68608
GE 0.43403 0.37390 0.38717 0.67550
Canon 0.65464 0.66477 0.68268 0.70576

where ŷ and y are the predicted and true labels respectively. Table 5.4 reports the
corresponding results on the different domains. We again compare the performance
to the self-training approach in (Zou et al., 2018) and also show the baseline perfor-
mance with no adaptation.

We found that on this more challenging dataset, the selection made by ST and
CBST often includes samples that are incorrect despite a high confidence. In our ex-
periments, the accuracy among pixels that were selected for adaptation was some-
times as low as 20%. This explains why the filtering approach was sometimes detri-
mental on this dataset. In contrast to this, our use of probabilistic pseudo-labels from
the full image for early feature refinement still provided a benefit.

Appendix 5.7.4 provides a breakdown of the per-class performance, demonstrat-
ing that all classes benefit from the refinement.

5.6 Conclusion

Domain shift frequently occurs in medical imaging when data generation differs be-
tween sites, e.g., when different scanners are in use. This can severely impact the
performance of segmentation models on test data from a different site. Therefore,
models have to be adapted. Unsupervised domain adaptation is an attractive solu-
tion since it lifts the need for annotating data from the other domain.

We proposed a novel, simple, and efficient strategy for domain adaptation via
self-training and demonstrated clear qualitative and quantitative benefits on seg-
mentation performance on two medical image segmentation tasks. We achieved su-
perior performance compared to the CT and CBST baselines, which can be explained
by reducing detrimental effects of propagating incorrect labels by retaining proba-
bilistic pseudo-labels, and restricting the refinement to early layers. Using pseudo-
labels and having to refine only a subset of weights also leads to fast training times:
Our experiments only required up to five epochs. Compared to unsupervised do-
main adaptation based on adversarial training, our approach is easier to use because
it does not require a careful balancing of the training signals from a generator and
discriminator.

5.7 Appendix

5.7.1 Results With Siemens 3 as the Source Domain

5.7.2 Illustration of Early and Final Segmentations

Figure 5.4 compares segmentations from the base model in the second column to the
refined model in the third column. As expected given the limited receptive field and
complexity of early features, the early segmentations (top row) are much weaker
than the ones at the end of the network (bottom row). The top image in the third
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TABLE 5.5: Surface Dice when using the Siemens 3T domain of the
Calgary-Campinas dataset as the source domain.

Base Model Adapted Model
GE 1.5 0.60650 0.74609
GE 3 0.82829 0.95561
Philips 1.5 0.73747 0.83830
Philips 3 0.56104 0.85981
Siemens 1.5 0.47547 0.82672

FIGURE 5.4: First column shows the input and ground truth. Sec-
ond column shows the early and final segmentations using the base
model. Third column shows the early and final segmentations using

the refined model.
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column shows that early feature refinement improved the early segmentation. The
bottom image shows the final improvement when propagating the refined features
through the remaining network.

5.7.3 Results from Alternative Refinement Strategies

TABLE 5.6: Surface Dice when also refining deeper layers, or only
batch normalization weights

Base Model Refine L1 Refine L1 Refine L1 Refine
then L2 and L2 L1-BN

GE 1.5 0.55487 0.75887 0.75994 0.76352 0.70093
Philips 1.5 0.74974 0.84601 0.84120 0.85202 0.83101
Philips 3 0.65806 0.85810 0.85979 0.86574 0.85083
Siemens 1.5 0.70478 0.82457 0.82176 0.82338 0.81101
Siemens 3 0.88651 0.88740 0.87205 0.87971 0.88291

Table 5.6 compares results from our proposed refinement (“refine L1”) to alternative
refinement strategies. In “refine L1 then L2”, we extended our proposed method
with a second refinement, in which we place an additional early segmentation head
at the second resolution level, just before the second downsampling. We initialized
it in the same way as it is described in Section 5.4.2, and used it to refine the weights
at the second resolution level of the encoder, freezing the weights at the first level,
which had already been refined previously. We resolved the resolution mismatch by
upsampling logits and computing the segmentation losses at the original resolution.
In “refine L1 and L2”, we only used an early segmentation head at the second level,
to update the weights of the first and second layer jointly. Compared to the benefit
from refining the initial layers, the additional benefit from refining deeper layers
with our method was marginal.

“Refine L1-BN” corresponds to our proposed method, but only refines parame-
ters in the batch normalization blocks of the first layer. It did not perform as well as
a full refinement of all weights.

5.7.4 Class-Wise Quantitative Results on M&Ms Dataset

TABLE 5.7: Breakdown of class-specific Dice scores on the M&Ms
Dataset

LV MYO RV
Siemens Base Model 0.71047 0.54531 0.60199

Ours 0.77685 0.62302 0.65838
GE Base Model 0.49160 0.38219 0.42831

Ours 0.74438 0.62778 0.65434
Canon Base Model 0.71849 0.63117 0.61427

Ours 0.77674 0.65661 0.68394
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Conclusion

Deep learning models for the task of semantic segmentation have shown remarkable
accuracies when trained and evaluated on data coming from the same distribution.
In practice however, that is not always the case as data used for inference might show
different characteristics to the data that was collected and used to train the models.
We explored different aspects of this problem in our research and proposed solutions
that improve the robustness of segmentation models and ease the adaptation to new
data. In the next section we summarize our work and contributions and conclude
with an outlook that takes into account recent advances in deep learning.

6.1 Feature Preserving Smoothing

Augmenting the data pool is often used when training neural networks as it in-
creases the training set size without the need to annotate additional data. Deep
learning models benefit from large training sets as that allows the model to better
learn semantic relationships despite variations in the input data. This in turn helps
the model generalize to unseen data.

Different augmentation techniques continue to be popular. Some of them change
the intensity values of images such as changing the brightness of images or adding
Gaussian noise to them. Other augmentations are geometric in nature. These include
resizing the image, rotating it, or flipping it for example. Generative models have
also been used to transfer the style of one set of images to another.

When comparing what CNNs focus on in images compared to humans, it was
found that CNNs give larger importance to high-frequency information such as
texture whereas humans favor shape. This motivated us to apply Total Variation
augmentation to our training images and train our model on the augmented and
original set of images. Total Variation denoising creates piecewise constant regions,
where high frequency noise is suppressed, while still preserving the edges between
regions. This makes it particularly appealing for the task of semantic segmentation
as the boundaries between objects are important to distinguish different classes, and
we can get rid of the noise that does not contribute to the optimization goal.

We ran experiments on multiple datasets and compared our results quantitavely
and qualitatively to other augmentation techniques. We found that using feature
preserving smoothing boosts the segmentation performance. Given the simplicity
of the proposed approach - no change for example in the model architecture or in
the optimization loss - this can be a useful addition to the set of augmentations that
are commonly used to train models.
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6.1.1 Possible Extensions

It would be worthwhile to investigate the effect of combining feature smoothing
augmentation with other types of augmentations, e.g. one could apply TV smooth-
ing then rotate the image. Popular training frameworks now offer augmentation
components that can be attached to the training pipeline. These components, such
as AugRand or Augmix, offer strategies that take care of randomly selecting the
augmentation type, its parameters, and whether it is combined with another trans-
formation. TV smoothing can then be added as another possible choice to pick from
these augmentations. As we show in our experiments, we see an improvement in
performance with different strengths of smoothing. This value could therefore be
a parameter that the augmentation strategy samples from a uniform distribution as
it does with other augmentations (e.g. degree of rotation). This would allow for a
greater variability in the generated images, as each batch might be augmented with
a different smoothing strength.

Domain shift can be caused by different factors. For examples, images acquired
with one scanner might be brighter or noisier. A particular site might have more
pediatric patients leading to smaller structures in images to be identified. It would
be helpful to investigate how to tailor augmentations to the particular domain shift
present. Looking into how activations of the network’s layers differ on source and
target domains can provide useful insights. Test-time augmentation is also a rather
inexpensive tool that could allow us to observe the effect of a particular augmenta-
tion without having to retrain the network.

6.2 Adaptive Optimization with Fewer Epochs

The nnUNet (Isensee et al., 2021) has become a popular framework for the segmenta-
tion of medical images, due to its general applicability and good performance. Some
settings of the framework are dynamically changed according to the dataset prop-
erties. Others such as the optimizer and number of epochs have default values and
are not adapted.

Given the large number of epochs (1000) that the nnUNet trains for, we specu-
lated that in the context of domain generalization, a benefit could arise from lower-
ing that number. Early-stopping is commonly used to prevent overfitting on training
data, so the question is whether that also carries over to the case of having different
domains such as data from scanners.

We found that when combining early stopping with the default optimizer of
the nnUNet (SGD), the different speed at which layers were training meant that
some were not trained long enough given the lower number of epochs. We there-
fore looked into whether adaptive optimizers are more suitable. One of the recently
published adaptive optimizers is AvaGrad (Savarese et al., 2021), where the effective
learning rate and the adaptability parameter ϵ are decoupled. This is appealing be-
cause when ϵ is large enough, the only hyperparameter needed to do a search for is
the learning rate.

We ran experiments on two datasets where each one has multiple domains and
found that using adaptive optimizers along with early stopping improves the gen-
eralization performance on other domains.
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6.2.1 Possible Extensions

A natural question that arises from the insights we had with early stopping and
adaptive optimizers, is how best to find the epoch at which we should stop training.
It is a common practice in machine learning to track the performance of the model
on a validation set. Once the improvement there plateaus or even becomes worse in
case of overfitting, training stops. To have the model generalize to other domains,
we can design a validation set that acts as a proxy for a different domain. The style
for example of target images can be transferred to the source images, through adver-
sarial means or other methods, and the performance on this transformed validation
set can be a better measure of how the model might perform on target data. If there
is no specific target domain that we want to adapt our model to, but we still want
to improve the generalization of the model to other domains, we can generate styles
from different transformations and have those applied only to the validation set and
not the training set, thereby simulating the case of having different domains.

6.3 Gradient and Log-based Active Learning

Deep neural networks usually require large training sets to ensure that they capture
rich features and do not overfit. Annotating such datasets is however a tedious task.
This is exasperated by the problem of domain shift where data properties could
differ from one domain to another. This has the consequence that a trained model
cannot simply be applied to data from another domain. One obvious solution would
be to again annotate data from the new domain and train or refine the model on
them. But doing this for each new domain can be prohibitively expensive.

The task that we tackled was distinguishing between crop and weed plants in
agricultural fields. This would enable autonomous robots to navigate agricultural
fields that share the same crop and perform automatic weeding. The issue described
earlier of not being able to simply reuse trained models shows up here, since im-
ages acquired from different fields can exhibit different statistics due to illumination
changes, different weather conditions, and image acquisition artifacts.

The goal of active learning is to reduce the annotation effort by labeling only a
small subset of the new data and refine the model on it. We create in our work three
active learning strategies to select data for annotation. They work in conjunction
with a proxy task which is a simple foreground/background segmentation of the
images acquired through k-means. This segmentation provides us with pseudo-
labels which we can use to rank samples in terms of how useful they might be for
the model, and therefore will be annotated.

The first strategy computes the loss of each sample’s prediction when compar-
ing it with the pseudo-ground truth. These are then ranked on a log-space scale to
encourage diversity between the samples. The second strategy computes the norm
of the gradients with respect to the loss. The motivation being that larger norms
indicate a larger influence on the weights so the respective samples might be more
important. Using this measure, the samples are again sorted based on a log-space
scale. The third strategy also computes first the norms of gradients and sorts them in
a descending order. Samples are then selected in a sequential manner based on the
norm of the residual gradient, which essentially is what remains from the original
gradient once the gradient contribution of the selected samples is projected out.

We evaluate our strategies on two agricultural datasets that show different im-
age characteristics. We observe an improvement in segmentation performance even
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when only a small number of samples is selected for annotation, and this improve-
ment is higher compared to random or entropy-based sampling. Our method there-
fore fulfills our goal of reducing the human effort needed for annotation.

6.3.1 Possible Extensions

To reduce the annotation effort we experimented with different strategies for active
learning, where a small subset of images are proposed for annotation. To reduce
the effort even further, one could look into proposing only a part of an image for
annotation, or even individual pixels. The simplest approach would be to randomly
sample portions of an image and apply the same strategies that we devised. But this
sampling can also be made smarter by looking at which parts/pixels of an image
are more salient than others. Adding human input to the process would also be
worth investigating. A feedback loop can be generated where human made scribbles
can be an input to the selection strategy and that in turn could propose regions for
annotation.

6.4 Unsupervised Domain Adaptation via Self-Training

Unsupervised Domain Adaptation (UDA) attempts to solve the issue of a model’s
lower performance on a domain different from what it was trained on without rely-
ing on labeled data from the new domain. There are different approaches to UDA.
Some researchers try to match the network responses at different layers between
source and target domains, or use adversarial learning to encourage the network to
learn domain-invariant features. Others use proxy tasks to create pseudo-labels that
can assist in the adaptation.

Our approach to UDA uses self-training to adapt the weights of the network us-
ing target predictions. A common technique has been to keep the most-confident
target predictions and refine the network using them. This runs however the risk
that the network might actually be producing wrong predictions with high confi-
dence. Therefore using these samples will further degrade the performance of the
network instead of improving it.

We make use of the fact that U-NET models, similar to other deep learning ar-
chitectures, successively build richer features going from one layer to the next. We
add a second segmentation head to the model just before the first downsampling
operation. The model now produces two segmentation maps; a rough one at the
beginning of the network and a more refined one at the end of the network. We use
the latter as pseudo-groundtruth for the former. In other words, we compute the
loss between the two sets of segmentations and refine the weights leading up to the
first segmentation head.

Our use of probablistic predictions as guidance for refinement coupled with re-
stricting the update to the early features, reduces the potential negative effect of in-
correct predictions that was described earlier. We ran experiments using our method
on two datasets and compare to a baseline adaptation method. Our results show that
the model is able to better adapt to the new domain and we observe that improve-
ment qualitatively as well.
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6.4.1 Possible Extensions

We use self-training in our work to adapt the model to new domains. Our loss takes
as input rough and refined predictions from the target domain. It would be inter-
esting to see the effect of complementing that with a consistency loss. A common
practice in UDA is to encourage the model to produce similar predictions for dif-
ferent augmentations of the input image. We can use here the feature smoothing
transformation described earlier to push the model to output segmentation maps
that are identical for the original and smoothed images by adding a penalty to the
loss that matches those two sets of predictions.

6.5 Outlook

Fully convolutional networks such as the U-Net (Ronneberger et al., 2015) have been
widely used in the past years for segmentation tasks, and this is the type of models
that we used in our work. Due to the popularity however of transformers (Vaswani
et al., 2017) for Natural Language Processing (NLP), the same attention mechanism
has been lately applied for vision tasks, resulting in models such as the Vision Trans-
former (ViT) (Dosovitskiy et al., 2021). Recent segmentation networks (Hatamizadeh
et al., 2022) combine both convolutional layers and transfomer blocks. The methods
we developed in our work such as those for UDA or active learning can be easily
adapted to these mixed architectures. The improvement in performance will de-
pend on the extent to which domain shift is impacted by the attention mechanism
employed in transformers. In ViT, the attention is computed by comparing small
blocks of the image to one another resulting in features that take into account the
global context. This might reduce the impact of domain shift if for example an ob-
ject’s segmentation is driven by global dependencies within the image.

There have also been several works recently that aim to build so-called foun-
dation models. These are often trained on large datasets that contain a diverse set
of images allowing the model to learn general features that can transfer to other
datasets or downstream tasks.

Ji et al., 2023 create a model that is able to segment 143 organs with CT scans
as input. They start by training a network on a large dataset, namely the TotalSeg-
mentor dataset (Wasserthal et al., 2023). They assume a setting where there is a need
to adapt models to new data without having access to the previous data that it was
trained on. To prevent knowledge forgetting, they freeze the encoder and sequen-
tially train additional decoders on different datasets. To limit the size increase of
the model, the decoders are pruned after being trained in order to reduce the total
number of parameters. A prerequisite of this method is that the first dataset used to
train the model needs to be quite extensive in terms of the number of classes and the
variations in images within each class. This would enable the creation of a strong
encoder with rich features that do not need to be adapted to new datasets, as the
adaptation is left to the respective decoder.

Butoi et al., 2023 also train a model on a large dataset. The model is adapted to
new data without re-training or fine-tuning. It is instead presented at inference time
with a small set of labeled images from the target domain, called a support set, in
addition to the input image that should be segmented. Convolutions between the
test image and the support set enable the knowledge transfer of the new task to the
trained model.
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The Segment Anything Model (SAM) (Kirillov et al., 2023) is a foundation model
that was trained on 11 million images and one billion masks. It encodes images us-
ing transformer-based blocks. Image embeddings are then combined with prompts
to produce segmentation masks. These prompts can for example be bounding boxes
of the desired object to be segmented or can be points indicating what should be
considered foreground or background in an image. It can also operate in a full-
segmentation mode where all objects in an image are segmented. Given the large
size of the dataset it was trained on, the model can be used to segment natural im-
ages acquired in various scenes, alleviating the need to train specific models for dif-
ferent datasets. Several works (Mazurowski et al., 2023; Ma et al., 2024) have looked
into whether this model can also be used for medical images, and found that it un-
derperforms when compared to specialized models that were trained for a particular
task. This can be explained by the fact that medical images exhibit different charac-
teristics compared to natural images when it comes to their appearance and their
semantic content. Ma et al., 2024 fine-tuned SAM on medical images and reported
similar or superior performance to task-specific trained models when the model is
combined with prompts. Although this is encouraging as it facilitates interactive
segmentation, its dependence on bounding box prompts for each 2D image, would
still result in a considerable annotation cost.

Foundation models, examples of which were presented earlier, can reduce the ef-
fect of domain shift on segmentation models. Since these models are pre-trained on
a large number of diverse images, they are less susceptible to overfitting on peculiar-
ities of a single domain. It is still however challenging to train these models. Recent
works (Kirillov et al., 2023) use large transformers to build image encoders, which
makes them costly in terms of hardware requirements and training time. Since these
networks have a large number of parameters, fine-tuning them for specialized tasks
can be prohibitive. Possible solutions include fine-tuning only a subset of the layers,
e.g. those of the decoder, while freezing the others, or to decompose the weights (Hu
et al., 2022a) such that only parts of them need to be replaced for each task.
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