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CHAPTER 1

Introduction

Physics is the study of nature. It studies how nature works and in particular the dynamics of matter
and energy and their interactions. One of the most fundamental questions that physics tries to answer
is the question of what nature is made of. What is the building block of all matter that constitutes our
universe?

The idea that all matter is made of some fundamental building blocks, can be traced back to the
ancient Greeks around 500 BC, when Leucippus of Miletus and Democritus of Abdera (and later
Epicurus) founded the atomist school [1]. In a purely philosophical endeavor, without any experimental
evidence, they proposed that all matter is made of indivisible and indestructible atoms. This idea was
rejected by Aristotle and the school of Athens in favour of a continuous theory of matter, since the
former required a void between atoms which could not be explained at the time.

The concept of matter being made of tiny particles made a resurgence in the 17th century when in
1687 Newton showed that Boyle’s law (product of pressure and volume of a gas is constant at constant
temperature) could only be explained if one assumes that gas is made of tiny particles [2]. A major
theoretical breakthrough followed in 1808 when Dalton proposed that all elements consist of identical
atoms [3] and in 1811 when Avogadro suggested that smallest parts of matter may consist of two or
more atoms stuck together, which he called molecules [4]. By the end of the 19th century, a lot of
progress had been made in the atomic and molecular theory of matter.

Atomic and molecular theory, however, did not answer all questions about the nature of matter. one
in particular was the existence of positive and negatively charged matter, which Faraday termed as
ions [5]. The existence of something more fundamental than atoms was first found by Thomson in
1897 when he discovered the electron [6]. He found that these charge carrying particles were about
1400 times lighter than the lightest atom. This discovery led him to propose a model of the atom as a
positively charged sphere with electrons embedded in it, which he called the plum pudding model.
The next big leap in understanding atomic structure came in 1911 when Rutherford discovered the
nucleus with his famous gold foil experiment [7]. This resulted in Rutherford’s model of the atom
where the atom consists of a small, heavy and positively charged nucleus surrounded by a cloud of
negatively charged electrons. This followed the atomic model of Bohr in 1913 by proposing quantized
shells which explained the stable orbit of electrons around the nucleus [8]. Future formulation of
quantum mechanics provided a strong theoretical foundation for the atomic model.

On the other hand, the question of most fundamental building block at the time meant understanding
the nucleus itself. Although protons were already observed in 1898 by Wien and in 1910 by Thomson,
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it was Rutherford who in 1919 first identified the hydrogen nucleus as an elementary particle and
named it proton [9]. While this solved the problem of charge neutrality of the atom, it raised more
questions about the nature of the nucleus. One major question was that the next lightest atom (Helium)
had a mass 4 times that of hydrogen, while containing only 2 electrons (which meant 2 protons). The
problem compounded as one moved to heavier elements. This was solved by the discovery of the
neutron by Chadwick in 1932 [10]. The neutron was found to be a neutral particle with mass similar
to that of the proton.

The discovery of the proton and neutron as building blocks of the nucleus led to further questions.
Chiefly among them were the questions of what binds the protons and neutrons together in the nucleus
and what is the structure of the protons and neutrons themselves. The answer to the first question was
first proposed by Yukawa in 1935 who suggested the existence of a new short-range force mediated by
massive particles which he called mesons [11]. This answer was confirmed by the discovery of the
pion in 1947 [12, 13]. The following decade saw the discovery of many different particles, which
led to the development of the eight-fold way by Gell-Mann and Ne’eman in 1961 [14, 15]. This
described the newly discovered mesons and baryons in terms of multiplets of flavour SU(3). This was
the first step towards answering the second question of the structure of protons and neutrons. By 1964,
Gell-Mann and Zweig independently proposed the quark model of hadrons [16, 17] which proposed
that mesons are bound states of a quark-antiquark pair and baryons are bound states of three quarks.
The original quark model could not explain existence of particles such as the A™"(1232) which has a
symmetric structure of three up quarks, which can not be allowed for fermions. This was solved by the
introduction of a new quantum number called color by Greenberg in 1964 [18]. Setting the number of
different colors to 3, the quark model was able to explain all the observed hadrons. This led to the
foundation of Quantum Chromodynamics (QCD) which is the theory that governs the dynamics and
interactions of all particles with color charge.

Figure 1.1: Deep inelastic scattering of an electron off a proton. The figure is taken from [19].

Experimental investigation of internal structure of nucleons began as early as the 1950s with the
determination of finite size of the proton [20, 21]. In the 1960s, the first experimental evidence of
quarks within nucleons was found from the deep inelastic scattering events observed at the Stanford
Linear Accelerator Center (SLAC) [22]. In this electron-proton scattering (e(l) + p(P) — e(I’) + X)
experiment, as sketched in Figure 1.1, the momentum of the scattered electron / " is observed, which

then defines the momentum transfer g = [ — . Assuming Q = —q2 > 1/R, where R is the radius of



the proton, DIS provides a short-distance probe of the nucleon structure. Also, since the effective size
of the collision is ~ O(1/Q) < R, the cross-section of the process is dominated by the scattering of a
single point-like particle, as the probability of scattering n particles is suppressed by ~ O(1/(Q"R")).
If we denote the momentum of this point-like particle as k =~ £€P ~ Q in terms of the momentum
fraction £, the cross-section can be factorized into a hard scattering partonic cross-section and a parton
distribution function (PDF). Let f;,, (&) denote the PDF, which is a probability distribution of finding
a type i point-like particle inside the proton carrying a momentum fraction £. The DIS cross-section
can then be expressed as [19]

ep—)eX Z/dé:fl/p(f)E ep—>eX

‘Z { 1+(1—y)uf/p(x)
y

where E'd&, p—ex 18 the partonic cross-section, @ = e’ /4n is the fine structure constant, s = (P + l)2
is the center of mass energy squared, y = P - g/P - [ is the inelasticity of the process, and e; is
the fractional charge of the particle type i. x = 0%/(2P - q) is the Bjorken variable. This is the
factorization of the DIS cross-section in terms of the partonic model as proposed by Feynman in
1969 [23].

Since the PDF averages over all degrees of freedom except the longitudinal momentum fraction,
it provides a one-dimensional (1-D) picture of the nucleon structure. There are certain important
aspects of the nucleon structure that require a three-dimensional (3-D) picture. One such aspect is the
so-called "spin puzzle", which describes the discrepancy of the quark contribution to the nucleon spin
as measured in polarized deep inelastic scattering and predictions from the quark model. This was
first discovered by the European Muon Collaboration (EMC) in 1988 [24]. Later experiments showed
that a large contribution comes from the angular momentum of the partons [25]. A full understanding
of the orbital angular motion of partons inside nucleons can only be obtained by studying the 3-D
structure of the nucleon.

(1.1)

The most general way to describe the nuclear structure is through the Wigner distributions
p(x,k,b ). These are 5-dimensional functions that depend on the longitudinal momentum fraction
X, transverse momentum component k ; and the transverse position b, of the partons inside the
nucleon. Since these depend on both k| and b, simultaneously, there exists no observable that can
provide a direct experimental measurement of these distributions. So to arrive at some measurable
quantities, one has to integrate over one these degrees of freedom. Integrating over the transverse
momentum leads to the generalized parton distributions (GPDs), and integrating over the transverse
position leads to the transverse momentum dependent distributions (TMDs). These are the two most
general distribution functions that encode the 3-D structure of the nucleon. In Figure 1.2, we show the
relation between the different parton distribution functions.

In inclusive DIS experiments, the momentum transfer Q > 1/R is so large that the hard probe is
not very sensitive to the physics at the scale of Agcp ~ 1/R which includes the confined transverse
motion (both in k , and b ) of the partons [19]. For a 3-D understanding of the nucleon structure,
one needs another soft momentum scale O such that O, < Q. One possibility of such a scale is the
transverse momentum P, of the final state hadron that is observed in semi-inclusive DIS (SIDIS)
experiments (e(!) + p(P) — e(I) + h(P},) + X). The process is sketched in Figure 1.3. The SIDIS
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Wigner distribution
p(ﬂi, kTa bT) >D

fdfk,./ [,
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Figure 1.2: Experimental access to the 3D structure via GPDs and TMDs and their relation to form factors and
PDFs. The figure is taken from [26].

Figure 1.3: Semi-inclusive deep inelastic scattering of an electron off a proton. The figure is taken from [19].

cross-section can be factorized as [19]

’ do—e —ehX ~

hm ~f,®Dy, ®F (1.2)
where f; (&, k | ) are the transverse momentum dependent parton distribution functions (TMDPDFs) and
Dy, (¢, k' ) are the transverse momentum dependent fragmentation functions (TMDFFs). TMDFFs
describe the hadronization of a quark of flavour ¢ into the final observed hadron 4 carrying a
momentum fraction £ of the fragmenting quark momentum. Similar to collinear PDFs, TMDPDFs
describe the probability of finding a parton with a longitudinal momentum fraction £ and a transverse
momentum k | inside the nucleon. Based on the polarization of the quark and the colliding nucleon,
there are 8 possible TMDPDFs. These are summarized in Figure 1.4. TMDPDFs can also be extracted
from Drell-Yan (DY) processes, however it is more difficult to disentangle the different TMDs as listed



in Figure 1.4 from DY processes alone.
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Figure 1.4: Leading power spin dependent quark TMDPDFs. The figure is taken from [19].

TMDPDFs can be obtained through phenomenological studies using data from experiments such
as HERMES [27] and COMPASS [28]. In recent years, there have been several studies that have
extracted TMDPDFs from global fits to existing data [29-33]. However the results from these studies
have notable discrepancies between them despite using a similar dataset. The precision of these
extractions are also not as good as in the case of collinear PDFs. This is expected to improve with
future data from existing experiments and in particular the future Electron-Ion Collider (EIC) [34]. A
theoretical calculation of TMDPDFs will provide a crucial input to future global fit studies for a more
precise determination of the internal structure of nucleons.

A direct theoretical determination of TMDPDFs however is a challenging task. The internal strong
dynamics of QCD takes place at the scale of 1/R ~ 200 MeV ~ Aqgcp. At such large distances, QCD is
strongly nonperturbative. Hence for a calculation of TMDPDFs in QCD, one needs a nonperturbative
approach. Historically, the most successful nonperturbative approach to QCD has been lattice QCD.
This was first proposed by Wilson in 1974 [35] and has since then been used to calculate many
properties of hadrons. A brief overview of lattice QCD is given in Chapter 2. However, all kinds
of parton distributions have been inaccessible in lattice QCD due to the correlators being defined
on the light-cone. For a long time most lattice QCD studies of parton physics were limited to {x"*)
weighted Mellin moments of the PDFs. And for TMDPDFs, they were limited to ratios of moments of
TMDPDFs [36-38]. Over the years, various approaches have been proposed and investigated to tackle
this problem [39—45]. In the last decade, the development of the large momentum effective theory
(LaMET) [46, 47] has resulted in a new wave of studies to calculate partonic physics observables on
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the lattice through the quasi-PDF approach. This has also stimulated other approaches such as the
pseudo-PDFs [48, 49], the hadronic tensor method [40, 50], good lattice cross sections method [51,
52] etc.

In recent years, there have been several theoretical developments that have provided a framework
for calculating TMDPDFs on the lattice using LaMET [53—-61]. Under the LaMET framework, the
TMDPDFs can be calculated by first computing the quasi-TMDPDFs on the lattice and then matching
them to the physical TMDPDFs using perturbation theory. The matching takes the following form [62]

4 2

FTMD (o f) = Hf(% e—ln(?)K(b,#) Sr%(b,u) FG.b . 2,)+0 (AQCD’ M 2’ 21 )
H ¢z (P)” b¢ z

(1.3)

This equation will be discussed in more detail in Chapter 3. The key componets are the light-cone

TMDPDF f TMD (y p, i, &) (in position space), the quasi-TMDPDF £ (x, b, u, ¢ ), the Collins-Soper

kernel K (b, p), the soft function S, (b, 1) and the hard kernel H (¢, / ,uz). The aim of this work is

the calculation of the right hand side of the above equation in order to obtain f ™D Only the hard
kernel can be calculated perturbatively. The quasi-TMDPDF, the Collins-Soper kernel and the soft
function have to be calculated nonperturbatively on the lattice. In recent years, there have been several
calculations of soft function [63—65] and the Collins-Soper kernel [55, 57, 66-71]. And only very
recently, a first calculation of the full TMDPDF on the lattice has been presented [72]. In this work,
we present an exploratory calculation of the unpolarized TMDPDFs by calculating the individual
components of the matching equation, i.e. the quasi-TMDPDF, the Collins-Soper kernel and the
soft function, and perform a 1-loop matching to the light-cone TMDPDF. The renormalization of
these observables, which contain a staple-shaped Wilson line, is also more involved than the straight
Wilson line in the case of quasi-PDFs. Several studies have been performed for the nonperturbative
renormalization of the staple-shaped Wilson line on the lattice [66, 73]. In this work, we also perform
a study of the renormalization of the staple-shaped Wilson line, which has been published in [74].
The dissertation is organized as follows. In Chapter 2 we briefly describe the lattice QCD formalism.
In Chapter 3 we derive a simple definition of unpolarized TMDPDFs from the SIDIS process. We
also describe the LaMET framework and the calculation of the TMDPDFs using this framework. In
Chapter 4 we describe the nonperturbative renormalization of the quasi-TMDPDFs. In Chapter 5 we
describe the lattice ensembles used in this work and all the technical details of calculating the required
observables on the lattice. In Chapter 6 we present the results of our calculation and compare them to
the existing literature. In Chapter 7 we summarize our work and give an outlook for future work.



CHAPTER 2

Lattice QCD

In this chapter, we will briefly discuss the concepts of Lattice QCD. This chapter is based on a similar
chapter from the master thesis of the author [75] which in turn followed the formulation by Gattringer
and Lang [76].

2.1 Continuum QCD

2.1.1 The QCD Action

Quantum Chromodynamics is the theory of strong interactions. A theory of fermionic fields that carry
a color charge. These fermions are called quarks. Since we observe N,. = 3 color charges, QCD is an
SU(3) gauge theory. The corresponding gauge bosons are called gluons. These are defined via the 8
generators of SU(3), namely the Gell-Mann matrices. Assuming that the reader is familiar with the
quantum field theoretical approach, we define the QCD action as

SQCD [W? ‘r/_/’A] = SF [w9 lr/_/aA] +SG [A] s (21)

where S is the fermionic part of the action, and S is the pure gauge action. The field ¢ denotes
the fermion field. The conjugate field is defined as ¢ = cﬂyo, where 7, is the time-related Dirac
gamma matrix. Conventions used for these gamma matrices are given in Appendix A. The fermions
are described as Dirac-4 spinors (ﬁ(f ) (x) «. x denotes the spacetime position of the field. =0, 1,2,3
are the Dirac spinor indices. a =0, 1,2 §ives the color index. We will be denoting the Dirac indices
with Greek letters and color indices with Roman letters. The fermion also carries a flavor index f,
which corresponds to one of the 6 flavors of quarks - up, down, strange, charm, bottom and top. Quite
often we work with only the light quarks, and hence only consider N, < 6 flavors. The fields A, (x)..4
are the gauge fields with a Lorentz index y and two color indices. As mentioned earlier, A, (x) are
generators of SU(3), and hence are traceless, hermitian 3 X 3 matrix at each spacetime point x and
Lorentz component pu.
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The fermionic part of the QCD action is defined as

Ny
Se |w. v, A] = Z / d*x g (x) (yﬂ(aﬂ +iA,(x)) + mf) v (x)
f=1
(2.2)

Ny
=) / 53 ()0 (0 apGcady +14,(0ea) +m D6 o56.4) 4 ().
f=1

Einstein summation convention is assumed for expressions with explicit indices. The mass term m)
is the mass of the quark flavor f. The y,, are the Dirac gamma matrices. We can define the covariant
derivative as

D, (x) =0, +iA,(x). (2.3)

In terms of the covariant derivative, one can define the field strength tensor F),,, (x) of the gluons as
Fo,(x)==i[D,(x),D,(x)] =8,A,(x) - 8,A,(x)+i[A,(x),A,x)]. (2.4)

Since SU(3) is non-abelian, the last term on the right hand side does not vanish. From the field
strength tensor, we can write down the pure gauge action as

S [A] = %‘,2‘/ d*x tr [F’”(x)Fm,(x)] , (2.5)

where g is the QCD coupling constant.

2.1.2 Gauge Invariance of the QCD Action

Gauge invariance is a fundamental symmetry of QCD. Since QCD has N, = 3 colors, we observe
SU(3) gauge symmetry. For this symmetry to hold, the QCD action must be invariant under SU(3)
transformations. For any general Q(x) € SU(3), the fermion fields transform as

Y(x) = ¥ (x) = QU (x) , § = ¥ (x) = P (0)Q(x)". (2.6)

Assuming that the gauge field transforms as A , (x) — A;; (x), we find the fermionic part of the QCD
action transforms to

Sy [w. 0. A" = / dx §(0)Qx)" (yf‘(aﬂ +iAl (X)) + m) Q)Y (x). 2.7)
Now, for gauge invariance, we require

Sp v o' A" =Sk [v.0.A]. (2.8)
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Comparing equation 2.2 and 2.7, we see that the mass term does not change. But the covariant
derivative term implies

8, +iA,(x) = Q) (aﬂ + iA;,(x)) Qx)

(2.9)
=9, +Q(x)"(0,Q(x)) +iQ(x) A}, (N)Q(x).
For the equality to hold, the gauge field must transform as
A, (x) = AL (x) = Q) A, (0)Qx) " +i(9,2(x0))Q(x)". (2.10)

We notice that since A;l (x) is also hermitian and traceless, it satisfies the properties for the gauge field.
The transformation of the field strength tensor then takes the following form,

F,,(x) = Fl,(x) = Q) F,, (x)Qx)". (2.11)

It is straightforward to show that the gauge action as shown in equation 2.5 is invariant under the given
transformation of F,,.

2.1.3 Path Integral Formalism

To introduce the path integral formalism as is used in the field theory, let us first consider a simple
quantum mechanical system with the transition matrix

o x, 1) = (e HE 0 |y, 2.12)

where H is the hamiltonian of the system. Now if we divide the time interval (' —¢) into n + 1
equal parts of length € then using completeness relation / dx; |x;,1;)(x;,1;| = 1, we can write the
transition matrix as

&' x,t) = nh_rgo l_[ / dx; (X 1stjelx; 1) (2.13)
i,j=0
Let us assume that the Hamiltonian H has the simple form
e
H= —1v(x), (2.14)
2m

where p is the momentum operator and V (x) is the potential. Using the completeness relation for the

dp; . .
momentum ( f % |p;){p;| = 1), we obtain for a short interval €

i oatio) = Cgle™ M) = Ol = iel)l; ) + O(€%)

. 2.1
:/%eip,uj—x,_]>—ieH<p,,x,~_1)+0(62)_ @.15)
T
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Substituting this back into equation 2.13, we get

n n+l dp- n+l
Wby = tim [ (] T | [ TT52 Jew]i o0s0 =300 = HOpyxy )
j=1 j=1 j=1
n n+l (x‘_x'_ )2m
= N lim [ e |exp iZ(%—V(xj_l) (2.16)
j=1 j=1

t .2
:N/Z)x exp (z/ dt ()%—V(x))):N‘/Dx exp(iS[x]),

dp . 2
where we have used / % exp (i(ij.x - %)) = 272 exp (A)zim) and we have defined Dx =

[1;dx;. And finally, N is a normalization constant.

Generaizing this to more degrees of freedom, and in particular to infinite degrees of freedom, we
reach the field theory equivalent. The derivation follows accordingly. For a field ¢, we have the
completenenss relation as f Dole){(¢p| = 1. And then analogous to the simple quantum mechanical
case, we obtain the transition matrix

@ilo0) =N [ Do explisio. @17)
With this formalism, the expectation of any physical observable O, can be written as
J D¢ Ol¢] exp(iS[¢])
[ D¢ exp(iS[g])

where the denominator is called the partition function and is denoted by Z. The state |Q2) here denotes
the vacuum. In order to calculate correlators, we also need the idea of generating functionals. This is
created from the partition function, by adding an external source J(x).

(0) =(Q|o|Q) =

(2.18)

W[J] = / D¢ exp (iS[gb] +i / d*x J(x)¢(x)) . (2.19)
Then the expectation of the field ¢(x) is given by
| OW[J
@iot)i) = 23] 2.20)
J=0

This idea can be extended for 2-point, 3-point functions and so on depending on the number of fields
under consideration. The path integral formalism plays an important role for quantizing the fields
on the lattice. The concepts discussed in this section can be used directly on the lattice. The only
difference being that one works with Euclidean spacetime on the lattice. And hence one must use
Euclidean path integral.

10
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2.2 QCD on the Lattice

2.2.1 Discretizing the Action

For a lattice formulation of the continuum QCD, we need to introduce a 4D lattice. We usually work
with hypercubic lattices. We discretize a 4D box by dividing the spatial coordinates into N discrete
points and the time coordinate into N;-. Then the lattice A can be defined as

A={n=(n,nynyny) | nynyny=0,1,...,N—-1;n,=0,1,..., Ny — 1} . (2.21)

The vectors n € A label the space-time point on the lattice. We ensure that the separation between
these lattice points is a constant in all direction. This constant (usually denoted as ’a’) is called the
lattice spacing. The fermion fields can be defined on these lattice points as

¥ (n), ¥(n), n €A. (2.22)

The fields carry the spin, color and flavor indices similar to the continuum. In order to discretize the
action, we also need to define the covariant derivative on the lattice. First, let us discretize the simple
partial derivative with a symmetric expression

G000 = 5 W+ )=y (n = ). 2.23)

where /i is the unit vector in the u-direction. Now to get to the covariant derivative, we first need to
define the gauge fields on the lattice. This can be easily derived from the idea of gauge invariance. In
equation 2.6, the transformation of the fermion fields under a SU(3) rotation were defined. On the
lattice, it takes an exactly similar form. If we consider a Q(n) € SU(3) defined at each lattice site n,
then the fermion fields transform as

Y(n) = ¢ (n) =Qmy(n),  §(n) - ¢ (n) = §(m)Qn)". (2.24)

One immediate observation is that a term like ¢ (n)y (n + 1) is not gauge invariant under such
transformation. Since the derivative term on the lattice is non-local, we have to ensure that such terms
are gauge invariant. However, such non-local terms are also not gauge invariant in the continuum
formulation, since

G () = & (Y () = F(0)Q ()Y (). (2.25)

But in the continuum, we already know how to make such a term gauge invariant. We introduce a
factor known as the Schwinger line integral, which is defined by [77]

U(_x,y) = gi/xy dZ#A#(Z)‘ (226)
On the lattice then, one can use a similar idea, and discretize this factor as

Ulx,x +¢€) = e €A, (2.27)

11



Chapter 2 Lattice QCD

Now, we can define a link variable U, (n) that connects the point 7 and n + [, as
U, (n) = &4, (2.28)
where A, (n) are the lattice gauge fields. Under SU(3) rotation, the links transform as
U,(n) = U, (n) = QmU,(m)Q(n + ). (2.29)
Link variables are also directional, and we can define U_, (n) as
U_,(n)=U,(n-p)'. (2.30)

This directionality is explained in Figure 2.1. Note that since A , is an element of the lie algebra, U,

n—s——n+f n —e—— n+/f

Uy () Uu(n)'

Figure 2.1: Directionality of the link variables.

is an element of SU(3). With this definition of the link variables, we can (naively) discretize the
fermion action as

3 . .
Sp [l/l,l,l_/, U] _ a4 Z l/_/(n) Z’yﬂ U,u(f’l)'/’(l/l+,u) 2aU—,u(7’l)¢’(n Q) + my(n) 2.31)

neA =0

It is quite straightforward to show the gauge invariance of this action. To get the gauge action, one
needs to define a quantity called plaquette (U,,,) as

U,(n)=U,(mU, (n+)U_,(n+a+9)U_,(n+7)

2.32
= U, (U, (n+ @)U, (n+'U,(n)". (2:32)

The plaquette is the shortest, nontrivial closed loop on the lattice. Figure 2.2 shows a diagrammatic
representation of the plaquette. Using the Taylor expansion of the link variables, we find that

U,,(n) =exp (iasz,(n) + O(a3)) . (2.33)

The pure gauge action can then be defined following the continuum action as

SglU] = % Z Z Retr []l - U#V(n)] . (2.34)

8 neA u<v

This is known as the Wilson gauge action [35].

12



2.2 QCD on the Lattice

i
n+v U,(n+79) n+f+7v
U,(n)' Y A U, (n+ )
n n+

U, (n) :

Figure 2.2: Diagrammatic representation of the plaquette U, (n).

2.2.2 The Doubling Problem and Wilson Fermion

Let us look at the fermion action that was naively discretized in equation 2.31. Since it is a bilinear in
 and y, one can write

Sp w9, U] = a* Z Z Y (n) a D (nlm) ey (m) s, (2.35)

n,meA a,b,a,f

where the naive Dirac operator D is given by

3
|
D (nlm) op = Z(«yﬂ)aﬁZ (UH (M)t Orss o — U_M(n)abdn_ﬁ,m) £ M OO (236)
u=0

Considering only the trivial gauge (U, = 1 Vn € A), we find the Fourier transform of the Dirac
operator as

. 1 . .
Bplg) = > ¢ 7D (nlm)e' 1™

|A| n,meA
3 iq,a —iq,a
1 (o e'In? — ¢7tn (2.37)
— (p-q)-na
=X Z e Z Yu 7 +ml
neA n=0
=6(p—q)D(p),
where X
- i .
D(p) :m]l+—Z'yﬂ sin(p,,a). (2.38)
als
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Chapter 2 Lattice QCD

In order to calculate the quark propagator D~ !(n|m), one needs to invert D( p) and do an inverse
fourier transform. D! (p) can be calculated as [76]

=1 .
< _m]l—za 2 Yy sin(p,a)
b p) = m*+a*y sinz(p a) ' (239
7 H

And finally, performing the inverse Fourier transformation gives,
_ 1 ~_ ip-(n—
D ](n|m) = W Z D ](p)e’p (n m)a‘ (240)
peA

If we consider only the case of the massless fermions (m = 0), for a fixed p, we can show that the
lattice propagator goes to the correct continuum limit

. 1 . .
—la Z/J 7’# Sln(pya) a—0 1 Zy yMpﬂ
a™? 2 sinz(p#a) p2 .

D™ (P) ey = (241)

The last expression has a pole at p = (0, 0, 0, 0), as is expected for a massless fermion in the continuum.
On the lattice however, a pole is found whenever all the momentum components are either p,, = 0 or
Pu=m /a. And therefore one gets 15 unphysical poles at

p=(n/a,0,0,0),(0,7/a,0,0),...,(r/a,n/a,n]/a,n]a). (2.42)

These are the so-called fermion doublers. In order to remove them, Wilson suggested a solution by
adding an extra term to the momentum space Dirac operator as

.3 3
D(p) =ml + él;)yﬂ sin(p,a) + Ilé #Z::‘)(] —cos(p,a)). (2.43)

This extra term is called the Wilson term. For components with p, = 0, it simply vanishes. For each
component with p,, = 7/a, it provides a contribution of 2/a. Hence it essentially acts as an additional
mass term, and the total mass of the doublers become m + 2£ /a, where £ is the number of momentum
components with p,, = /a. In the continuum limit @ — 0, the doublers become very heavy and
decouple from the theory. This removes the unwanted poles from the propagator. With this extra term,
we can write the Wilson’s complete Dirac operator in a compact form

4 1 &
DY) (n|m) s = (m<f '+ —) SapBatOnm = 5= D, (1=, apUu (M) apOpspm (2.44)
ab a 2a (=20

where we introduce y_, = —y,,. This concludes the Wilson’s formulation of Lattice QCD. However,
Wilson fermion is not the widely used regualrization in lattice QCD today. The main reason being that
the extra term proposed by Wilson, breaks chiral symmetry even in the massless limit. For a long time,
this seemed to be the ultimate limitation of QCD on the lattice. Eventually, it was found that exact
chiral symmetry can be observed on the lattice if the Dirac operator satisfied the Ginsparg-Wilson
relation [78]. This immediately followed formulations such as overlap fermions [79] and fixed point
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2.2 QCD on the Lattice

Dirac operators [80]. For a more detailed discussion, the reader is referred to chapter 7 of Gattringer
and Lang [76]. There have been several other formulations for fermions on the lattice, most of which
have been based on solving the chiral symmetry problem. Some examples are staggered fermions [81],
domain wall fermion [82]. In this thesis, we exclusively work with the twisted mass formalism [83].

2.2.3 Twisted Mass Fermions

Twisted mass Lattice QCD (tmLQCD) is a formulation of QCD with two mass-degenerate quark
flavors of Wilson fermions. The Dirac operator is similar to Wilson fermions but with an additional
mass term that has a non-trivial isospin structure. This additional mass is the twisted mass term. This
is used as an infrared regulator and also this term produces automatic O(a) improvement.

The lattice fermion action for tmLQCD is written as

S e Ul =a' Y o) (Dulm) 1y +ipysts,,) x(m), (2.45)

n,men

where D (n|m) is the Wilson Dirac operator as defined in equation 2.44, albeit for a single flavor. The
last term § ﬂ75T3 is the additional mass term, with y being the twisted mass and 7> is the third Pauli
matrix acting on the isospin space. The fermion fields y and y are two-component spinors.

For a non-vanishing m (bare mass in Dirac operator) and the twisted mass u, one defines the polar
mass M and the twist angle « as

M=+m*+4%  a=tan" (ﬁ) (2.46)
m

Then, the two mass terms in the tmLQCD formulation can be combined as

. 3
mly +iuyst® = Me' ™" with m = Mcos(e) and u = M sin(a). (2.47)

The case @ = /2 implies m = 0, and is referred to as the maximal twist. Similarly, the case @ =0
corresponds to zero twist.

The fermion fields, y and y, in the twisted basis can be transformed back to the physical basis by
defining the rotation

W =R(a)y, &=iR(@  where R(a)=e "2 (2.48)

Then one can define the fermion action for tmLQCD in this physical basis as

Se w9, U] =a* > §(n) (D" (nlm) + M15,, ,,) y(n), (2.49)

n,men

where the twisted Dirac operator D' is now a 2-flavor operator and is given as

+3

tm _ 4 —ia757'3 —i(t)/57'3
D™ (nlm) = ~e Sum=5- > e Y, ) U () (2.50)
u==0

We observe that only the Wilson term is rotated, which anyway vanishes in the naive continuum limit
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Chapter 2 Lattice QCD

(a — 0).
This completes a very short introduction to the twisted mass formulation. For a much more detailed
discussion, the reader is referred to [84].

O(a) improvements

Automatic O(a) improvement is a very useful property of tmLQCD. At maximal twist, the discretization
effects of O(a) vanish, and we are left with leading corrections of O(az). For the free case, this can
be quite easily shown. Consider the Dirac operator in the momentum space [76]

i . 1 s 3
- ; Y, sin(p,a) + - ; (1 - cos(p”a)) + M cos(a@) +iM sin(a@)ys7°. (2.51)

The propagator (which is the inverse of this matrix) is found to be
—L 3 yusin(p,a) + 1 3, (1 - cos(p,a)) + M cos(a) — iM sin(a)yst’

L %, sin(pa) + (5 %, (1 = cos(p,a)) + Mcos(a))2 + M2 sin%(a)

(2.52)

One finds the two poles at

e
ipy = J_q/p2+M2¢acos(a)—+O(az)- (2.53)
2\/1)2 +M?

If we now set @ = /2 (i.e., maximal twist), the O(a) term vanishes, due to the factor cos(a), and
only corrections of O(az) are left. In order to establish this improvement for the full tmLQCD, one
can perform the Symanzik improvement program. To have maximal twist in the renormalized theory,
one also needs to tune the bare mass parameter m to its critical value m ., which is obtained by finding
the point of vanishing PCAC quark mass.

The O(a) improved effective action for tmLQCD is defined as

ST =8y + 8 +...+0(dd), (2.54)
where 3
So = Z X () (D +ipyst)x(x), S = Z X(X) csw Oy, Fpy X (x). (2.55)

Here ¢y, 0, F),,, 1s the well known clover term, with ¢y, being the Sheikoleslami-Wohlert improve-

ment coeflicient [85].

Nf =2+ 1 +1 lattice action

So far we have only talked about mass degenerate light quark doublet (u d)". However, one can add
mass nondegenerate heavy quarks to the tmLQCD formulation. In a similar manner to the light quark
doublet, one defines a bare heavy quark mass m,, and a corresponding twisted mass .. In the usual
case, it is a mass nondegenerate heavy quark doublet (s c)T with the strange and the charm quark. For
this, we also need to add an extra term of the form p 571, where 7' is the first Pauli matrix, acting in the
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flavor space. This term ensures that the required mass splitting between strange and charm is obtained,
with the help of us. This defines the N = 2+ 1 + 1 formulation of tmLQCD. This is of importance to
us, since the gauge ensembles we use for our calculation are Ny =2 + 1 + 1 Wilson-clover twisted
mass gauge ensemble. The lattice action for such a simulation is [86]

S = Sg +Sim+ St (2.56)
where S, is the Iwasaki improved gauge action given by
B
5¢=3 D (b0 D {1 = ReTr(U,,, ()} + by ) {1 = ReTr(U,,, (1))} |, (2.57)
X u<v LY

with 8 = 6/gé, b, =—0.331 and b, = 1 — 8b,. The fermion action with the light quark doublet is of

the form
Sim = Z /\_/l (x)
X

where y; = (u d)T. Here Dy, is the massless Wilson Dirac operator. Similarly for the mass
nondegenerate heavy quark doublets, we have

i . 3
Dy, (U) + ZCSWO'MVFW(U) +my+iuysT

Xi(x), (2.58)

_ i :
Stm = D () | Dy (U) + 7esw0 Fyy (U) +my, = gt + 1#07573] @, (259
X

where x;, = (s ¢)”. One tunes the bare parameters, such that m n = m; = m,. This ensures that all
physical observables are automatically O(a) improved.

2.2.4 Correlators on the Lattice

The way to calculate physical quantities in lattice QCD is through correlators. For an operator O, a
correlator is usually defined as )
C(n,m) =(0(n)0O(m)). (2.60)

The location m is often called the source and 7 is called the sink. In practice we set the source at
origin and the correlator depends on only one coordinate

C(n) = (0(n)0(0)). (2.61)

The operator O can be simple quarks like u, d, s..., or interpolators for mesons or baryons. In this
work, we will require both nucleon and pion correlators of different form. In this chapter, we look at
the simple meson 2-point correlator. A typical meson interpolator is of the form

0y = lﬁ(fﬂ rl//(fz) (2.62)

where I" can take different Dirac structure depending on the meson that we want to study (see Table 2.1
for examples). To calculate the meson correlators, we first need to define the quark propagator. The
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’ State r ‘ Particles ‘

Scalar L, Josags Kpys -
Pseudoscalar | ys,yoys | 75, 7%, 0, K, K", ...

Vector Y YoV u 0%, 0% w, K", 8, ...
Axial Vector Yu?s ag, fi» .-

Tensor YuYy hy,by,...
Table 2.1: Different forms of I" for different mesons [76]

fermion action is ususally of the form (ignore the factors of a for now)

Sely. v, U] =y Dy, (2.63)

where D is the Dirac operator, which can have different forms based on the discretization. The
generating functional for such an action is given as

W2l = [ DUDG exp (-4 DU +ix+2w). (2.64)
Performing a simple transformation of variables, ' =y — D™' y andy’ = — y D™, we obtain
Wi 7] = / DY DY’ exp (-5’ Dy’ exp (7D x). (2.65)
Now using the Matthews-Salam formula, which states
/ Dy Dy exp (¥ D) = det[D], (2.66)
one gets for the generating functional
Wiy ¢l = det[ D' exp (7D~ ). (2.67)

where D’ = —D. Then it is straightforward to show that

_ 1 9 0 _
W) p = Z_G_FW[X’X]
FOx0x v, =0 (2.68)
=p!

where (...)r denotes the fermionic part of the expectation and Z, = f Dy DY exp(—Sy) is the
fermionic part of the partition function. To obtain the total expectation, one "averages" over all
available gauge configuratons.

Hence the inverse of the Dirac operator is known as the quark propagator. On the lattice, it can be
denoted as a line connecting the source and the sink. Now going back to the meson correlators, if we
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consider the simple iso-triplet operator of the form O = dl'u, we can show that
(07 (m)O07(0))F = (d(n)Tu(n)ia(0)Ld(0))

=Tap T, <J(n) o (1), #(0) 22 d(O), >F

=Ty Loy, <u(n)ﬁl 12(0)a2> <d(0)ﬁ2 d(n) al> (2.69)
< Cy F < 1 F

= _Falﬁl I

@

-1 -1
Du (n|0)51"2 Dd (0|n)ﬁ2“1
01(32 "~ C

ceq

=—tr [FD;I(n|O)FD;1(O|”)] )

where we have performed fermion contractions according to the Wick’s theorem. Since we work
in twisted mass, the up and down quarks are mass degenerate. And so for our purpose, we can set
D, =D, = D. One final step is the momentum projection. We want the hadrons to be in definite
momentum eigenstates. Hence, the fourier transformation is performed as [76]

é(nz’p) =

1 .
D O, mpe™ "2, (2.70)
\ |A3| nei;

where Aj; is the spatial part of the lattice with spatial components n. One usually only momentum
projects the interpolator at sink, and the one at source is left in real space. Therefore the final form of
the Euclidean hadron correlators is

C(n,, p) = <O~(I’lt,p)0_(0)>. (2.71)

In a similar manner, one can calculate the nucleon correlators. Nucleons consist of 3 quarks and for
the simplest case of proton and neutron, they form an isospin doublet. In terms of quark fields then,
the proton takes the form p = uud and the neutron n = udd. Considering only the case of I, = +1/2
(the proton), the nucleon interpolator is of the form

O = e ul (uf (Cys)p,ds). 2.72)

which satisfies the correct quantum numbers of the proton. The term in the parantheses is called a
diquark, which combines an up and a down quark using the charge conjugation matrix C and ys. The
diquark has both isospin I = 0 and spin J = 0. Thus the full interpolator has / = 1/2,I, = +1/2 and
J = 1/2. The final quantum number is parity which in the case of proton is P = +1. Under parity, the
nucleon interpolator transforms as

0,7\),(110, n) — y,0y(ny, —n). (2.73)
To take this into account, one can define the parity projected nucleon interpolator as

On, = EabCPJ_r”?x (”ZT(Cys)ﬁyd;) ) (2.74)
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where the parity projector is defined as
1
P, = 5(1 +Yp)- (2.75)

Here O, is the interpolator for the proton and O is the negative parity partner N(1535). In a
similar way, one can define the interpolators for other spin-1/2 baryons as [76]

OZi = €abe

A T+B
P.I"u, (ubF sc),

Oz =e€,,,P.I"s, (sZFBuC), (2.76)

abc

O\, = abCPiFA (2sa (MZFBdc) +d, (uZFBSC) -u, (dZFBsC)) .

Here three possible choices for the gamma matrices are (r4,r?) = (1, Cys), (vs5, C) or (1,iyyCrys),
all of which give rise to J P_ 1/2* baryons. In this work, we will need nucleon 2-point and 3-point
correlators, which are more involved, since they contain more quark fields, which results in more
possible Wick contractions. We also work with non-local operators, as will be discussed in the next
chapter. This makes the contractions non-trivial. The correlators necessary for this work will be
discussed in detail in Chapter 5.
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CHAPTER 3

Transverse Momentum Dependent Parton
Distribution Functions

The first discussion of the partonic transverse momentum started as early as the 1970s [87-89],
shortly after the birth of the parton model. The first analysis showing that transverse momentum
is also generated by the radiation of gluons was done in 1979 [90]. A first formal study that put
together the perturbative and nonperturbative components of TMDs was done by Collins and Soper in
1981 [91]. Several other studies in the 1980s formalized the TMD factorization to understand the DY
processes [92-96]. This was later generalized to the SIDIS processes in [97, 98]. All these various
approaches for TMD factorization were reconciled and the modern definition of TMDPDFs can be
found in [99-101].

A complete formulation of the TMDPDFs through the TMD factorization of DY and SIDIS
processes is beyond the scope of this thesis. In this chapter we will provide a brief overview of the
relation between unpolarized TMDPDFs and the SIDIS cross section. We will start with the inclusive
DIS and formulate the unpolarized PDF through a collinear factorization. We will then follow a
similar procedure for the SIDIS process and formulate the TMDPDF. This formulation closely follows
a lecture note by Bacchetta [102]. The reader is referred to this lecture note and also the book by
Collins [103] for a significantly more detailed discussion on TMDs.

We will also briefly discuss the LaMET formalism. Then we will discuss the matching between
the quasi-TMDPDF and the light-cone TMDPDF, followed by the description of the individual
components necessary for the full calculation of the unpolarized TMDPDF.

3.1 Deep inelastic scattering (DIS)

We first consider the deep inelastic scattering (DIS) process, which is the most general method of
probing hadron structures by scattering leptons off of nucleons. In inclusive DIS, only the lepton in
the final state is observed. Hence the general form of such a process can be written as

() +N(P) = ¢(I') + x. 3.1)

Here ¢ denotes the lepton and N the nucleon, with [ and P being the corresponding momenta. ¢’ is
the final state lepton that is observed and y represents the final state hadrons that are not observed by
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the detector. Depending on the lepton, the interaction can be mediated by either a photon or a W or Z
boson. For simplicity, we only consider the case of an electron-proton scattering here, in which case
the interacting boson is a photon. The photon carries a momentum g = [ — [,

Figure 3.1: Feynman diagram (left) of a deep inelastic scattering process and the corresponding handbag
diagram (right) for the hadronic tensor.

The cross-section of such a scattering process can in general be written as a contraction between a

leptonic tensor, L ,,, and a hadronic tensor, WHY as

o o’

dxgdydds — 2sx ,0°

Ly (1,1, 2,2MW* (¢, P, ). (3.2)

2

Here, a = - is the electromagnetic fine structure constant, [ = (/ + P)2 is the square of the center of
. 2 2 . . . .
mass energy. 0% = —qz, y = % = % and xz = 2%_-51’ which is known as the Bjorken scale. S is

the spin vector of the target proton and A, is the helicity of the electron beam. ¢ is the azimuthal
angle between the outgoing hadron and the spin of the target, which is defined according to the Trento
conventions [104]. M is the proton mass, compared to which the electron mass can be neglected.
The leptonic tensor can be calculated perturbatively using QED. In the massless limit, it can be
written as
Loy = D @, )yl 4)) @1, 4,)y,u(l, 4,))
A (3.3)

2 ’ ’ . 10
=-078, + 2(l'ulv + l'ulv) +2id °re.

eE,quO'

The information about the hadronic target is contained in the hadronic tensor W*”. W*” can not be
calculated perturbatively in a similar manner to L,,,,, since it contains a nonperturbative hadronization
process and we do not know the photon-proton vertex. If we consider the hadronization of the
photon-proton interaction into all possible final hadron states y with momentum P, , we can write the
hadronic tensor as

3
, 1 d'pP y
2MW"(q. P.S) = o~ > / —(2ﬂ)32*P0 en)*6W(q+P-POH"(P,S,P,),  (34)
X X

where
H*(P,S,P,) = (P,S[J*(0) [x) (x| J"(0) |P,S) . (3.5)
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3.1 Deep inelastic scattering (DIS)

Here J* is the electromagnetic current. The integration over P ' 18 possible, since in inclusive DIS the
final state is undetected.

We can parametrize the hadronic tensor in terms of structure functions. Since this interaction only
depends on the momentum transfer ¢ and the proton momentum P, we can decompose the hadronic
tensor in terms of all possible Lorentz invariant structures with ¢ and P. For the electromagnetic
current the most general form of the hadronic tensor can be written as

v v 4
2MWH = 2M | Ag"” + Bghq” + CP”I; +pPa +2q”P , (3.6)
M M

Other possible combinations of P and g can be eliminated using symetries. For example, the term

ieﬂvp‘TPp q7 is excluded by parity invariance. One final constraint is the electromagnetic current
conservation, which requires that
q,W" =q, W =0. 3.7
From this condition, we find
P P M?
p=-Ip  c=-Fp+ A (3.8)
q q q

So finally, the hadronic tensor can be expressed in terms of two independent structure functions as
follows

1 "
DMWH (g, P, S) = — [—gﬁvFT(xB,QZ)H PF, (x509], (3.9)
XB
where
. 2 P oM
o *B (Pp_ zqqﬂ)’ y = QXB. (3.10)
04/1+7° 1

For a partonic approximation, we consider the limit Q2 — oo. Under this condition, the hadronic
tensor is light-cone dominated [105]. Hence it is useful to define the momenta in the light-cone
coordinates as

M?
P* =Ptk 4 2P+n.t_t’ (3.11)
0?
M= x Pt — —=—n". 3.12
q B + 2XBP+ ( )

where nfr' =(1,0,0,1)/ V2 and n* = (1,0,0,-1)/ V2 are the light-cone vectors. In general, for any

given vector v/ = (vo, vV, v3), the light-cone components are defined as

V= (v vh), (3.13)

where

1 1
vE= — (000, v = —

V2 V2

At sufficiently high QZ, one can assume that the scattering of the electron occurs with a point
like quark of mass m inside the proton. The final state y in Eq. (3.4), can be split into a quark with

(v0 - v3), vt = (vl, vz). (3.19)
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momentum k and all possible hadron states X with momentum Py. Considering the electron quark
interaction at tree level, the hadronic tensor can be written as

2MW“V:iZezz/ d’Py / &k sW(P+q—k-Py)
e L) 2Py o (2n) 240 (3.15)

X (P, S|4;(0) |X) (X[ r;(0) [P, S) vy (K +m)yyy;.

The subscript g denotes the quark flavor and e, is the fractional charge of the quark. Using the on-shell

condition X

d’k

/_0_> d4k5(k2 —mz)H(kO —m), (3.16)
2k

and performing the Fourier transform of the Dirac delta function

6(4)(P+q—k—PX):/(;Z€): e & (Pra=k=Px) (3.17)

the hadronic tesnor can be rewritten as

2MWHY (g, P, S) = Z Z/(zd)szp /d4k6((p+q)2—mz)H(p0+q0—m)
X

<[ AE (£ P-2-PO (P, 5151(0) 1X) (X1, (0) |P.S) Yl (p+ ¢ + ) i
(21)

(3.18)

where we have introduced the momentum p = k — g. Finally, performing the translation of the field
operators and using the completeness relation, to eliminate X, we find

2MW'“V(q,P,S)=Ze§/d4p6((p+q)2—mz)Q(p0+q0—m)
q

(3.19)
X Tr [@(p, P, S)y" (p + ¢ +m)y”]
where we have introduced the quark-quark correlation function ® as
©;i(p.P.S) = —— [ d*&e™ P (P. S|, (£ (0) |P,S)
(27)
(3.20)

&P i
= ;/ m<P,Sl¢/i(0) | X) <X|¢j(()) |P’S>5(4)(P_p_PX)‘

This factorization can be understood from the handbag diagram for the hadronic tensor, as shown in
Figure 3.1. The correlation function, in general depends on the quark flavor ¢ and is denoted as ®7. If
we parametrize the quark momentum p in the follwoing way

pH (3.21)

+
x+p IpTI,T’
2xP*
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3.1 Deep inelastic scattering (DIS)

assuming that the quark momentum is soft compared to the hadron momentum, we see that the only
relevant component is xP*. Neglecting terms that are 1/Q supressed, we obtain the hadronic tensor as

+

P

2 (q.P.) = Y€} [ Eprdp”dssp—ot=xp)
q

X Tr [ @7 (p, P.SYYH(p+g+m)y”| (3.22)

~ Ze T (@7 (x5, )y y*y"].
Here ®(x, S) now denotes the integrated correlation function

% (x,S) = /dzprdp_q)"(P,P’S)

pt=xp*

dE (3.23)
- [ L siienionrs)
£7=&,=0
Again, considering the simple unpolarized case, ® can be decomposed into
A v
®7(p, P) —MA11+A2P+A3p+ —0, JPEpY, (3.24)

where A; = A;(p - P, p?) are real scalar functions. Again, using the parametrization of p given in
Eq. (3.21) and keeping only leading terms in 1/P" , we obtain

O (p, P) ~ P*(Ay + xA)jh, + P o [m,m]
:\fl(x)¢+/2,

(3.25)

where we have introduced the integrated parton distribution function flq (x). This is the so-called
unpolarized parton distribution function (PDF) and is often denoted simply as ¢g(x). The collinear
PDF can be obtained from the integrated correlated function through the projection

fil(x) = %Tr [®7 (x)y*]. (3.26)

Using the definition from Eq. (3.20), we obtain the hadronic matrix element of the PDF as

dé™ _
ff’(x)=/%e“f"’Tr [P, S|g?(&)y*y?(0) P, S)] ) (3.27)
§+:fT:O

This definition, however, is not gauge invariant, since the non-local operator 7 (¢)y ¢ (0) is not
invariant under the gauge transformation

U(E) — e, gE) - pE)e ). (3.28)

The solution to this problem is to include a gauge link or Wilson line connecting the two quarks as
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Chapter 3 Transverse Momentum Dependent Parton Distribution Functions

follows JE
i = [ eS8y W, .00 ) 1P, S>]' . 629
V4 £7=0
where the gauge link is defined as
&
W, (£,+00) = Pexp [—ig / i dn_A+(n‘,O,0T)]. (3.30)

3.2 Semi-inclusive deep inealstic scattering (SIDIS)

A semi-inclusive DIS process also involves the detection of a hadron in the final state. The general
form of such a process can be written as

€(1) + N(P) = £(I') + h(P},) + x. (3.31)

where all the definitions remain identical as before, with the addition of % being the detected hadron
carrying momentum P,,. In the case that the hadron polarization is not detected, we can define P, | as
the transverse part of P; with respect to the virtual photon momentum g. The cross section for this
one-particle inclusive electron-nucleon scattering process can be written as

2E,d° 2
T = L (LI A)2MWRY (¢, P S, Py). (3.32)
d’Pdxgdydp, 2sxgQ

Following an identical procedure as in the inclusive case, the hadronic tensor can be decomposed as

QMW (q,P,S,P}) = > e} / &*pd* k6™ (p+q - k) Tr (©(p, P, YAk, Pp)y"),  (3.33)
q

where @ is the quark-quark correlation function defined in Eq. (3.20) and A is the quark-fragmentation
function, which describes the hadronization of a quark with momentum k into a hadron with momentum
P;,. This factorization follows from the handbag diagram shown in Figure 3.2.

We focus on the correlation function ®. Unlike the inclusive case, we can not obtain an integrated
correlation function for the SIDIS process. We can only define an "unintegrated" or "transverse
momentum dependent” correlation function, which in leading twist (upto O(1/Q)) can be expressed
by the 8 leading quark TMDPDFs (as shown in Figure 1.4) [106-109]

@(x, pr, S) =/dp—<1>,;,~(p,P,S)

1 —Mvpo : 1p ;:
1 e € ynlp, S
_2 1 1T M

PSSt 1) s
+(SL81+ i g1T)7 Ity (3.34)

. 5 Upv MV
10,y ny P, + LT Pry
M 'om

S
thygic,, Y nl Sy + (SthL +2 LTth)

In this work, we are interested in calculating f| (x, py), which is the unpolarized TMDPDF.
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3.3 Large momentum effective theory (LaMET)

Figure 3.2: Feynman diagram (left) of a semi-inclusive deep inelastic scattering process and the corresponding
handbag diagram (right) for the hadronic tensor.

f1(x, p7) has a similar hadronic matrix element definition as the collinear PDF. The difference is in
the gauge invariant definition, in particular the shape of the gauge link connecting the non-local quark
fields. The gauge invariant definition now takes the form [103]

dé™d* , _
ficrn = [ %e"f"fn (PLIEW, (&,+00)y" W, (+0,00(0) [P)]. (335

The gauge links here are defined as
W, (€,400) =W, (§7,00757) Wr(€7p, 003 007), (3.36)

where W, is the Wilson line along the minus direction and W is the Wilson line along the transverse
direction,

e

W, (§7,007;&7) =Pexp [—ig/_ dn_A+(n_,§T)], (3.37)
) ér .

Wr(€r,007;007) = Pexp [—ig/ dnp A (o0 JIT)]- (3.33)

This gives rise to a staple shaped Wilson line as shown in Figure 3.3.

3.3 Large momentum effective theory (LaMET)

One main feature of the definitions of PDFs and TMDPDF:s is that they are defined as light-cone
correlation functions. This makes a first principle calculation with lattice QCD nearly impossible.
Since Wilson’s formulation of lattice QCD is Euclidean, one needs to get rid of the real-time
dependence. Over the years, there have been many different approaches to tackle this problem [39-45].
One of the most successful methods, in recent years, have been the development of the large momentum
effective theory (LaMET) [46, 47].

The basic idea behind LaMET is to define a relation between an Euclidean observable f defined
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Chapter 3 Transverse Momentum Dependent Parton Distribution Functions

nr

ér

Figure 3.3: Staple shaped Wilson line in the defintion of the gauge invariant TMDPDF.

at a large momenta P° and its physical counterpart f (ﬂz) which exists on the light cone. Usign
the asymptotic freedom and assuming that P* >> Agcp» one can systematically expand the P?
dependence of f as [46]

(.2 pz Ydy (x u 2 2 p\2 g2 (p7\2
f(x,,u P ) :/ —Z(—,—Z)f(y,,u )+0(A /(P9)?. M?/(P?) ) (3.39)
x Yy \y P

This expansion is similar to the case of heavy quark effective theory (HQET) [110], where one
does a similar expansion in terms of a heavy quark mass. With this Ji argues that the parton model as
formulated by Feynman could be an effective theory of the hadron moving at large momentum. And
the most important point is that the expansion will converge at large enough P* which then enables us
to access observables at infinite P° by calculating them at large but finite P°. The matching factor
Z is calculable in perturbation theory. f is usually called the quasi-observable. In case of f being
the TMDPDF, f would be the quasi-TMDPDF. And this quasi-observable defined at finite P* can be
calculated on the lattice.

The momentum dependence of the quasi-observable can be studied through renormalization group

as _
af(P°)
O0ln P?

where the anomalous dimension is defined as

= (@) f(P) +0 (Pi) , 3.40)

1 07

- 3.41
Z 0ln P? ( )

y(ay) =

This is the standard setup for effective theory expansion similar to HQET.
The formulation of LaMET then provides us with a recipe for studying parton physics in lattice
QCD as follows [47]:

1. Start with a ligh-cone parton observable f.
2. Construct an Euclidean observable f, which converges to f under an infinite Lorenzt boost.
3. Calculate the lattice matrix element f for a hadron with large momentum P*.

4. Use Eq. (3.39) to extract the parton observable f.
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3.4 TMDPDFs on the lattice

The exact expansion of LaMET depends on the observable of interest and has been studied for different
kinds of partonic observables. For a more detailed discussion, the reader is referred to the review by Ji
et. al. [62].

3.4 TMDPDFs on the lattice

Under LaMET, the matching of the TMDPDFs takes the following form [62, 111]

Z, 2
S (e, 0) = H (5 e RO sh b ) b +0 (AQCD, - ) .
" & (P b

(3.42)

Here f ™D (x, b, u, ) is the rapidity-independent physical TMDPDF, defined on the position space,

with b being the transverse distance. S, is the reduced soft function, K is the Collins-Soper kernel and

H is the hard kernel for TMDPDFs. ¢ and , are the Collins-Soper scales for the physical TMDPDF
and the quasi-TMDPDF respectively.

The rapidity regularization is necessary for controlling the divergences from light-like Wilson
lines in the definition of TMDPDFs. This effectively introduces a rapidity cutoff which depends on
the rapifity scale ¢ = 2(xP+)ze2y 7, where y, is the rapidity regulator. Several proposals have been
made for this rapidity regulator. The most established physics motivated definition [99, 100, 112]
is the physical TMDPDF defined here, which turns out to be rapidity regularization independent.
Another important part of the LaMET matching is the presence of the soft contribution [53-56]
arising from the soft gluon exchange between the Wilson lines. This has to be subtracted in the
final factorization formula. This is acheived by the soft function S, which under the same rapidity
regularization scheme as the quasi-TMDPDF, makes the physical TMDPDF scheme independent. On
the lattice one calculates a rapidity independent reduced soft function S, [58], which is related to S
as [103]

S(b. i 8. 0) = e HEIKE G (), (3.43)

The final piece of the puzzle is the Collins-Soper kernel K (b, i), which governs the rapidity
scale evolution of TMDPDFs [91]. On the lattice, we need to calculate the quasi-TMDPDF f , the
Collins-Soper kernel K and the reduced soft function S,.. The quasi-TMDPDF is defined at a rapidity
scale £, = (2ZPZ)2, where P° is the large but finite boost applied to the quasi-observable. With these
3 quanitites calculated perturbatively, they can be matched to the physical TMDPDF, using the hard
matching kernel H ¢, which is calculated perturbatively as [59]

2
H, (%) —1- Z—SCF 44 % +21n (%) — In? (%) +0 (aﬁ) . (3.44)

H d H H

The TMDPDF defined on Eq. (3.35) can be obtained from f ™D through a Fourier transform,

b
[ propd) = / We’b"’TfTMD(x,b,u,é’)- (3.45)

In literature, the transverse separation b is often denoted as b4 or b, however we drop the subscript
for simplicity and also to avoid confusion with the impact parameter &, of GPDs.
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Chapter 3 Transverse Momentum Dependent Parton Distribution Functions

3.4.1 Quasi-TMDPDF

The quasi-TMDPDF is the main component of the TMD factorization on lattice. It is the quasi-
observable f defined in Eq. (3.39). So it has a very similar hadronic matrix element definition as the
TMDPDF in Eq. (3.35). It is defined as

5 +00 PZd . 2
f(x,b,u,g“z)=/ 7%’”" B (z, b, u, PY), (3.46)

where B(z, b, u, P°) is the so-called quasi-beam function. It contains the fully spatial hadronic matrix

element
(m(P9)

0r(0,0.b,1,2)| H (P?))

B (z,b, u, P*) = Z(p, P%) llim (3.47)

Zg (2|1, 1b1)

Here, H(P?) is the hadron state with large momentum P* and OF(O,_O), b,1,z) is the non-local
staple-shaped Wilson line quark bilinear operator (will be referred to as the staple-shaped operator).

Z .

Or(t,x,b,1,2) = G (t,x T by + Enz) T Wogpre (%, b,1,2)q (t,x - %ﬁz) . (3.48)

Here W, (x,b,1,2) is the staple-shaped Wilson line connecting the two quark fields.

taple

Z .,

Wige (6. b,1,2) = W [ + by + Sl - %) W (x+ L, b) W (x - S %) . (349)

N

The staple-shaped Wilson line is illustrated in Figure 3.4. The major difference from the physical
TMDPDF defined in Eq. (3.35) being that the staple in the beam function has a finite length / in the
direction of the momentum. This is why the limit of / — oo is taken in Eq. (3.47), however, as we will
show in Section 6, the beam function is independent of / for large enough /.

X + Dby +17, x +1n,
A Z/\
X +bir+ 31, Y
—Zp
x — 3,

Figure 3.4: Staple-shaped Wilson line defined on the lattice.

The factor Z(2|l|, |b|) in the denominator of Eq. (3.47) is a rectangular Wilson loop defined in the
plane containing the boost P* and the transverse separation b.

1 . . t
Zg (ry.ra) = N <Wz (0.7y) Wy (rya, 1) WY (raitg,ry) Wi (0, ”2)>- (3.50)

c
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3.4 TMDPDFs on the lattice

This factor is necessary for canceling the divergences associated to the Wilson lines of the staple-shaped
operator. The factor Z(u, P*) is a renormalization factor. Both of these will be discussed in more
detail in the following chapter.

3.4.2 Soft function

The soft function is necessary to cancel the soft gluon divergences in the TMDPDFs [58]. Using
LaMET, the reduced soft function can be calculated as a ratio of meson form factor and TMD wave
function (TMDWF) [58, 62].

Fr (b, P, P, ,u)

Hp, (b, P, P )

S, (b.p) = (3.51)

The four-point meson form factor contains 2 local currents separated by a transverse separation b
inserted between pion external states boosted to momenta P and P’.

Fr (b, P, P, ) = (7 (P) |32(b)Tq5(b)g, (0)Tq, (0)| w(P)) . (3.52)

The denominator in Eq. (3.51) contains the quasi-TMDWF .
7‘(Fr (b, P, P p) = /_Oo dx /_oo dx'HFF (x,x", P, P, ) ‘i’;q (x", b, u, P') li’qq(x,b,,u,P). (3.53)
where the quasi-TMDWF in the momentum space is obtained from the spatial quasi-observable i,

¥ (b l,.0) = /m %e"“‘l/”z”z&- (z, b, u, PY) (3.54)
qq b b b Z’ Z o 27_[ qq b b b . .

Y/ contains a hadronic matrix element similar to the quasi-beam function, except the staple-shaped
operator is now inserted between the vacuum and a pion external state with a boost of P*.

(900,70, b,1,2) |x(P))
Z (2111,15]) '

Uaq (@b, 1, PP) = Zp(u, PY) Jim (3.55)
The definitions of the operator and the Wilson loop are identical to the quasi-beam function. Z- is the

renormalization factor and will be discussed in the next chapter. And finally, H F- is the hard kernel
for the TMDWEF, which is calculated in perturbation theory to be [113]

a x’
H PP ) =1+ =2 It on? 12_’_—-
FF (X,X, 5 ,#) +47'[CF h0+ T+ 1In |x| Fiel|l +
1—x 16]x|[1 = x| x| |1 = x| (P?)*
(1
Il_xl 4 K
u

(3.56)
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Chapter 3 Transverse Momentum Dependent Parton Distribution Functions

3.4.3 Collins-Soper kernel

The Collins-Soper kernel is the rapidity scale evolution kernel for TMDPDFs. Inverting Eq. (3.42) for
the Collins-Soper kernel we get

d - 1
K(b,p) = QE In f(x, b, 1, ) + G L, 1) + O (g_) (3.57)

where G is a rapidity dependent perturbative function. Therefore we can extract the Collins-Soper
kernel by considering the quasi-TMDPDF at two different rapidity scales. Since the TMDWF
has a similar matching formula to that of the TMDPDF, one can use a similar approach with the
quasi-TMDWEF as well. The Collins-Soper kernel can then be defined as [69]
¥, (x b, .0 ) F
I oL £.,0,8.8
K(b,p) = In| 2 LT 4—ln(M Fdin

~ : +0(al)

Cr S
U

202,
(3.58)
where ( 2 and ¢ ., are the two different rapidity scales corresponding to two different momentum boosts

P{ and Pj respectively. The other rapidity scale £, = (2(1 — x)P%)? where (1 — x) is the momentum
fraction of the incoming antiquark.
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CHAPTER 4

Renormalization

This chapter closely resembles our publication [74] on the non-perturbative renormalization of the
staple-shaped operator.

The lattice quasi-observables defined in the previous chapter need to be renormalized non-
perturbatively and matched to MS through perturbative matching. The renormalization of the meson
four point form factor is trivial, since it contains only local currents separated by a transverse distance.

Hence it can be renormalized multiplicatively with the factors Zg/ﬁ, /v, 4 depending on the I'-structure
of the currents under consideration. These factors are scheme- and scale-independent and are calculated
on the lattice for a given action and lattice spacing. The case for b = 0 is however non-trivial since it
contains a contact term and one needs to consider the mixing of a local four-quark operators. But for
the purpose of this study, b = 0 case is ill-defined and we will not consider it further.

The renormalization of the quasi-TMDPDF and quasi-TMDWF is more involved. Both the matrix
elements under consideration contain the same staple-shaped Wilson line quark bilinear operator. The
renormalization of this operator is more complex compared to the straight Wilson line in the case of
the quasi-PDF. In particular, the staple-shaped Wilson line has three types of divergences, namely

1. linear divergence coming from the Wilson line, which connects the quark fields and which
depends on the length of the staple- shaped link,

2. logarithmic divergence coming from the endpoints of the staple link which is similar to the case
of the straight gauge links,

3. logarithmic divergences coming from the presence of cusps in the staple.

Moreover, in the case of infinite staple length /, which is the case of interest, pinch-pole singularities
arise as positive powers of [, which comes from the gluon exchange between the transverse segments
of the staple. Also, operators of different Dirac structures can and will mix on the lattice among
certain groups when chiral symmetry is broken. This needs to be studied using discrete symmetries.
And as we will show, the mixing pattern of operators can be significantly more involved than in the
case of the straight Wilson line.

A first study within lattice perturbation theory to one-loop for the case of the symmetric staple [114]
(z = 0 in the defintion of the staple) showed mixing between specific pairs of Dirac structures. This
mixing cannot be avoided when one is interested in matching bare lattice Green’s functions to the
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Chapter 4 Renormalization

MS scheme (directly or indirectly through an intermediate scheme). The mixing depended solely
on the direction of the staple link entering the endpoints of the staple, regardless of the shape of the
staple. This implies that the same mixing pattern occurs also for asymmetric staple shapes (which
is the case under consideration). In Ref. [115], the mixing pattern of these staple-shaped operators
has been studied using symmetry considerations. It was found that more mixing is present than
observed in Ref. [114]. This demonstrates that one-loop perturbation theory cannot fully reveal the
mixing of the staple-shaped operators, unlike the case of straight Wilson-line operators [116], and
a higher-loop computation is needed to confirm the additional mixing patterns found by symmetry
arguments. The authors of Refs. [63, 66, 73] consider a maximal RI-type prescription, in which all 16
independent non-local Wilson-line quark bilinear operators are chosen to mix to eliminate all possible
mixing effects. While Ref. [66] identified nonzero contributions in several off-diagonal elements of
the renormalization matrix, Refs. [63, 73] found negligible contributions, at least at small transverse
separations, by setting specific momentum components to be zero. However, we emphasize that
not all contributions are necessary for addressing the "unavoidable" mixing among the asymmetric
staple-shaped operators on the lattice. Most off-diagonal elements in the 16 X 16 renormalization
matrix are nonzero due to the non-minimal choice of renormalization conditions and not due to
the unavoidable mixing. In this sense, it is preferable to construct a minimal intermediate scheme,
keeping only the mixing sets that are needed for matching the bare lattice Green’s functions to the
corresponding MS-renormalized Green’s functions (as obtained in dimensional regularization). In
our study, we consider such a minimal scheme by using symmetry arguments to restrict the operators
allowed to mix.

Improving renormalization schemes on the lattice eliminates finite lattice spacing errors, which can
come from different Dirac structures in Green’s functions under consideration. A way of removing
artifacts from all Dirac structures is to consider a wider mixing pattern, where higher dimensional
operators multiplied by the appropriate power of the lattice spacing can also mix with the operators
under study. This mixing is only present for finite values of the lattice spacing, while it vanishes when
taking the continuum limit. The higher-dimensional operators will be higher twist since (by Lorentz
invariance) they must have the same spin (with the operators under study), but their dimension will be
higher. The unwanted effects of finite lattice spacing errors and higher-twist contributions are however
not considered in the current work.

On the other hand, it has been shown [117] that the linear divergence in the lattice spacing a is not
fully eliminated when the RI/MOM scheme is used to renormalize a straight Wilson line of length
z. Ref. [73] has shown that this residual linear divergence remains in the case of the staple-shaped
operator. In this scenario, an alternative approach that one can adopt is the so-called ratio scheme as
proposed for the quasi-PDF case [48, 49, 118]. In this approach, one subtracts the Ultra-Violet (UV)
divergences by taking the ratio with a suitable object at a fixed short distance, where perturbation
theory applies. Different choices of suitable objects to be used in the ratio have been proposed in
Ref. [119]. The authors of Refs. [73, 120] use ratios of the matrix elements of the operator under study.
As the divergences of the staple-shaped operator are independent of the longitudinal momentum of
the state, one can use the matrix elements computed at different values of the momentum in order to
cancel the divergences. Usually, matrix elements at zero momentum are chosen for the denominator,
and such scheme has been named [120] short distance ratio (SDR) scheme.

As for the remaining divergences associated with the asymmetric staple-shaped link, one can
cancel them by taking an appropriate ratio with the vacuum expectation value of a rectangular Wilson
loop [59]. However, we would like to stress that the SDR scheme is valid when operator mixing is
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4.1 Operator mixing through symmetry

absent or negligible. We check that in the case under study the mixing is indeed negligible and thus,
one can employ the ratio scheme. Another option, as proposed in Ref. [115], is to employ RI/MOM in
the spirit of the SDR scheme by fixing the dimensions of the staple at a short perturbative range (we
will call this scheme RI-short).

In this work, we firstly study the mixing of the staple-shaped operator with other operators of same
dimension and find the minimal set of operators that are allowed to mix using symmetry arguments.
We then proceed with the standard RI/MOM renormalization considering this set of operators and
see the effect of mixing. Finding that the mixing is negligible (as will be shown in Chapter 6), we
proceed with the SDR and RI-short scheme and compare their results. In the following sections we
discuss the operator mixing and then the 3 different renormalization procedures.

4.1 Operator mixing through symmetry

In order to use symmetry arguments to determine which operators mix, we first organize the staple-
shaped operator using all possible ways to connect the fermion fields. We show in Fig. 4.1 all the
distinct possibilities of connecting a quark and an antiquark field located at a spatial separation of
(0, b, z), using an asymmetric staple-shaped Wilson line. Since we build the staples only in the
yz-plane, in the following discussion and in Fig. 4.1, we denote the coordinate space (¢, x, y, z) as only
(v, z). Without loss of generality, we can fix the quark field (¢) at (0, 0). Then, the only possibilities
for the position of the antiquark field (¢) are (b, z), (b, —2z), (=b,z) and (-b,—z). Here, b and z
are strictly non-negative. We define the staple-shaped Wilson line connecting ¢ at (0,0) and g at
(b,z) as O (I"). The two plus signs denote the direction of separation of § from g. The first sign is
for the transverse (y) and the second sign for the longitudinal (Z) axes. The I" denotes the insertion
gamma matrix as defined in Eq. 3.47. In a similar fashion, the staple-shaped operator in the cases
of ¢ being located at (b, —z), (=b, z) and (—b, —z) can be defined as O~ (I'), 0" *(I') and O~ (I)
respectively. A visual representation of these operators is shown in Fig. 4.1 in black. Due to the
asymmetric nature of the staple-shaped Wilson line, there are four more operators that are obtained
from the charge conjugation of the above defined four. These are also shown in Fig. 4.1, but in red,
with the charge-conjugated version of O**(I") denoted by O>*(I") and quark/antiquark fields having
exchanged positions. For the symmetric case (z = 0), the charge-conjugated operators are redundant,
since

“4.1)

We analyze the symmetry properties using generalized parity (7),1;(2[) and time reversal (7}1&2)
transformations with discrete flavor rotation, as well as charge conjugation (C), for the fermion fields
in the twisted mass basis, y(x,.,X), and with the gauge link, U(x,,X; @), in some direction «.The

fermion fields in the physical basis, ¢ are obtained through the rotation

¥ =exp (iw75T3/2))(, W = yexp (iwySTS/Z). 4.2)
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Figure 4.1: All distinct possibilities for an asymmetric staple-shaped Wilson line connecting a quark and an
antiquark field spatially separated by by and +zZ (b, z > 0).

The standard parity transformation ¥ is defined as

U(xy,x;0) — U(xy, —x;0),

U(xg.x:k € {1,2,3}) = U (xg, —x —ak; k € {1,2,3}),
X (x0,%) = yox (xp, —X),

X (xg, %) = J(xg, =%) ¥y,

4.3)

with U(x,,x; @) the gauge link defined in some direction . In the twisted basis, this is only a
symmetry under a discrete flavour rotation 12 [84],

(4.4)

g2 X0 =iy
) = =it ).

The generalized parity in the a-direction combined with discrete flavor rotation [84] is then given by

U(x,,x;a) > U(x,, —X;a),
U(xg, % B # @) = U (x4, —x = af; B),
X('xa’ X) - iy(le,ZX(xa’ _X)’

X (Xg5X) = =i (Xy, =X)T| 2V 0>

1,2
P

1.2 (4.5)

where the "standard" parity is the one with @ = 0, and the 3-vector x is what remains from the 4-vector
x after removing x,,. 7y , are the Pauli spin matrices in flavor space. Similarly, the generalized time
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4.1 Operator mixing through symmetry

reversal combined with discrete flavor rotation is given by

Ux,.X;a) = U_l(—xa —-a,X;a),
U(x, x;B8#a) > U(—x,,x;B),
X (XgrX) = 1Y Y5T) 2 X (=X 4, X),
X (X g X) = =i (X4, X)T1 2Y5V o

1,2
T

Fa (4.6)

Finally, the charge conjugation transformation is given by

Ux) — (U (x)",
C:ix(x) - 'x7, 4.7)
x(x) - —x(x)'cC.

The operators O**(I"), O=*(T") do not have definite properties with respect to the symmetries of
the lattice action. Instead, one needs to consider their linear combinations, defined by

(ijkD).=i- 0" +j-07" +k-0" +1-0 " +c-(i-OF+j-0." +k-0"+1-07), (48)

with i, j, k,/ = £1 denoting the signs of O™, 077,0",0 ", and ¢ = +1 representing the relative
sign of the charge-conjugated versions of O**.

The only combinations that have definite symmetry properties are:
(+ 4+ = (- = =),
(+=+), = (=4 =),
(h+ =) = (= = +4),
(= =4 = (= ++-),

i.e. the combinations with all signs i, j, k, [ reversed are equivalent from the point of view of symmetry
transformations, with irrelevant global phase.

As an example, we look at the symmetry properties of y, and y,y; given in Tables 4.1 and 4.2,
respectively, restricting ourselves here to the flavor non-singlet case, u — d (73 matrix in flavor space).
The combinations of operators that mix are those which have all signs equal in the nine rows of
Tables 4.1 and 4.2. For example, the symmetry properties of (+ + ++). for I' = y, (second column
of Table 4.1) are identical to the ones of the combination (+ — —+)_. for I' = y,y; (last column of
Table 4.2). Thus, we conclude that the following mixings occur:

(++++),. with (+-—4).,
(+—+-), with (++--).,
(++-——), with (+—-+-)_,

(+——+). with (++++),,
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Chapter 4 Renormalization

where the first combination in a pair pertains to I" = y, and the second one to I" = y,,y;. Additional
mixings appear with I' = y,y, and I' = 5y, thus forming a quadruple of operators that mix,

{7’0> YoY2>Y0Y3,Vs5V1 }

(+ + ++)c (+ - +_)c (+ + __)c (+ - _+)c

o) e o ()
Pro - + - +
P 11,12 + - + -
P 11922 + + - -
P ;32 + - - +
7;162 + + + +
Tos + + .
Tei - . + +

C c c c c

Table 4.1: Symmetry properties of operators with I' = . The + sign for P /7 transformations denotes
that a given combination of staple-shaped operators is symmetric/antisymmetric with respect to the symmetry
transformation given in the first column. The last row indicates symmetry properties with respect to charge
conjugation, which depend on the sign ¢, i.e. (- - --), combinations are symmetric and (- - --)_ antisymmetric
with respect to C in this case.

(+ + ++)c (+ - +_)c (+ + __)c (+ - _+)c

(== (+=H (—=+), (—++0),
P ;02 + - + -
P ;12 - + - +
P 11;22 - - + +
P }32 + - - +
7}162 + + + +
T - + + :
T+ + : :

C c c c c

Table 4.2: Symmetry properties of operators with I' = y,y;. See the caption of Fig. 4.1 for explanation.

For the general case, the symmetry properties for all I"’s are summarized in Table 4.3. They imply
that the possible mixing is between I" and {Fyz, Iys, Fy2y3} in the asymmetric staples case. In turn,
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4.1 Operator mixing through symmetry

symmetric staples restrict the mixing by eliminating always one member of the mixing quadruple, i.e.
I' = yy,;,5 mix with Iy, and Iy, while I = y, 5 form a triple {72’ V3s 72)/3} of operators that mix.

%0 Y1 Y2 73 1 Ys Y5Y0 YsY1
P}’Oz —+—+ | +—+— | +—+— | +—+— | —F+—+ |+ —F+— | +—+— | —+—+
7)}712 +—+— | —+—+ [ +—F+— | +—F+— | —+—+ | +—+— | =+ —+ | +—+—
P},; tt—— |+t —— | =+ |+t —— | — =+ |+ —— | — =+ | ——++
7’1]732 +——+ | +——+ | +——+ | =+ | —++— | +——+ | —++— | —++—
7'F1’2 ++++ |- —— | | === | — === | ++H++ | = | ++++
VA e I e el I I B e e I
7'F12’2 —t+4+— | —F++— |+ | —F+— | —++— |+ =+ | +——+ | +——+
7}13’2 ——tt+ | — =+ | — =+ |+t | = |+t —— | ++—— | ++——

C c c c c —c —c —c —c
Y52 Ys5V3 YoY1 YoY2 YoY3 Y172 Y17Y3 Y2Y3
7’;’02 —+—+ | —+—+ |+ | +—+— | +—+— | -+ —+ | —+—+ | —+—+
P},]Z —+—+ | —+—+ |+ | -+ | -+ | =+ | +—F+— | —+—+
7’11,22 ++—— | — =+ | — =+ | ++—— | — =+ | ++—— | — =+ | ++——
P},; — = |+ ==+ | =+ | =+ |+ | —F+— | +——+ | +——+
7}1’2 +4+++ | A+ | | b | | | | == ——
71;11’2 +4++ |ttt | | = | ———— | 4+ | b+ | - ——
71;12’2 — = |+t | =+ | +——+ | —F+— | ==+ | —++— | +——+
71;13’2 ++—— | — =+ | — =+ | — =+ | ++—— | — =+ | ++—— | ++—

C —C —C c c c c c c

Table 4.3: General symmetry properties of all possible Dirac structures. The first sign of each entry reflects
the symmetry properties (+/— — symmetric/antisymmetric) of the combination (+ + ++),. (or its equivalent
(=—--).), the second sign concerns (+—+-),. (or (—+—+),), the third (++—--),. (or (——++),) and the fourth
(+ — —+), (or (= ++—).). The last row indicates the symmetry properties with respect to charge conjugation
that depend on the sign ¢ and are common to all combinations. The combinations that mix have the same signs
in a given column (see e.g. the first column of y,, the second column of y,y,, the third column of y57y, and the
fourth column of yy;, representing the quadruple {yo, YoY2:Y0Y3» ysyl} of operators that mix relevant to this
work; note that the mixing with 5y, involves the combination (+ + ——)__. with opposite relative sign in front
of the charge-conjugated operators).

Based on the symmetry properties, we provide all the mixing sets of asymmetric (z # 0) staple-
shaped operators with different Dirac structures I, as dictated by the generalized C, P, T symmetries
of Egs. (4.5 —4.7), in explicit form:

° {1’ 72’ ')/3’ 72')/3}’
* {¥5.¥5Y2, ¥5Y3 YY1 1>

* {70-Y0Y2: Y073, Y571}
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Chapter 4 Renormalization

* v 7173 vsvol-
In the case of symmetric staple-shaped operators (z = 0), the mixing sets are reduced to:

* {72, 73 7273}
* {¥s5:¥5Y2, Y573}
* {Y0:Y0Y2: Y073}

¢ {71,71)/2,7173},

while the remaining operators, involving the Dirac structures 1, vy, ¥s¥1, ¥s¥o are multiplicatively
renormalizable.

We point out that different mixing patterns have been considered in recent studies, including mixing
among all 16 operators of different Dirac structures [66], or at least mixing in pairs (I', I'y3) [115]. In
our work, we choose to consider the minimal set of staple-shaped operators (of the same dimension)
that are allowed to mix by the above-mentioned C, P, and T symmetries. We have not considered
mixing with higher-dimensional operators allowed by Lorentz symmetry (see, e.g., Ref. [121] for the
straight Wilson-line case), since it is power suppressed and not relevant when one takes the continuum
limit @ — 0. Also, in contrast to Ref. [115], in our analysis, the staple line has been chosen to be in a
2D, and not 3D, plane in Euclidean space formed by the transverse () and longitudinal (Z) directions.
In this respect, we end up with a basis of 8 (instead of 16) operators, which are eigenstates of C, P and
T transformations. We also note that calculations in one-loop lattice perturbation theory [114] show a
smaller mixing pattern compared to the symmetries; however, this cannot guarantee a reduced mixing
in higher loops.

4.2 RI/MOM

The RI/MOM scheme [122] was first adapted for non-local operators employed in the quasi-distribution
approach in Refs. [116, 123]. Since the defintion of the beam function in Eq. (3.47) already contains
the rectangular Wilson loop factor Z, which cancels the divergence arising from the staple-shaped
Wilson line, we define an unsubtracted beam function for the purpose of this renormalization study,

Byr (b,1,z,P%) = (H (P%)|Or(b,1,2)|H (P7)). (4.9)

The subscript O indicates that the beam function is unsubtracted, and any subsequent functions with
this subscript will signify the same. The RI/MOM renormalization constants ZSI are defined by the
condition

Z% (b1, 2, pp: 1/a) 1Az 1/a)r" » @10)
ZqRI(,Uo; 1/a) 12 P EHipLb P:/-lo_ ’ ‘
where Ag is defined in terms of the amputated Green’s function
Ay(b. 1.z, pi1/a) =S, G (b,1,z,p: 1/a)S," (4.11)
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4.3 Short distance ratio

with S, the off-shell quark propagator. The Green’s function is calculated as

G"(b,1,z,p;1/a) = (q(p)|O" (b, 1,2, p; 1/a)lq(p)) . (4.12)

Because G', and thus Ag , have the same divergences as B, -, all the divergences, in principle, cancel
in the renormalization procedure. ZEI is the quark wave function renormalization defined as

1 -
Zi i V@) = 5 T | (S, (i /)™ 2| | (“.13)
p*=Hj
and the corresponding renormalized beam function is then
BE' (@b P¥) = 7 250 (b, 2o 1 @B o (b 12, P31 ). (4.14)

r

Note that the renormalized beam function is independent of /, because the divergence associated
to [ gets cancelled by llf;, and the beam function converges for large enough /, as will be shown in
Chapter 6.

In principle, one could consider the subtracted beam function (By-) for this study, but then one needs
to do the similar subtraction for the Green’s function. But since it gets inverted in the renormalization
factor and the operators in the bare beam function and the renormalization factor have exactly the
same shape of the Wilson line, the Wilson loop subtraction would cancel in the end. For this reason,
we have considered the unsubtracted beam function in this section.

4.3 Short distance ratio

As we will show in Chapter 6, the effect of mixing under RI/MOM is negligible. Also RI'MOM
produces some residual divergences, which make it difficult to renormalize especially at large distances.
Therefore, since mixing has no effect, we can adapt a multiplicative renormalization scheme. Here we
follow the approach taken in Refs. [73, 120], which they name as the Short Distance Ratio (SDR)
scheme.

We first take note of the vacuum expectation value of a rectangular Wilson loop Z with sides 2/
and b,

Zp (21.b) = Ni (W, (.20 Wy (21, b) W] (2 + biy, 20) WE (i, b)) . (415)
(&

In Figure 4.2, we show the diagrammatic representation of the Wilson loop Z, on the left. On
the right, we show the loop divided in two parts. The top part in black corresponds exactly to the
staple-shaped Wilson link as shown in Figure 3.4. The bottom part in red is identical in shape to the
top part, but reflected with respect to the origin. Therefore, by construction, the rectangular loop is a
product of the staple shaped link and its reflection, and hence contains twice the divergence associated
with the staple-shaped link. Therefore, \/Z must cancel the divergences from the staple-shaped
link. In particular, it should cancel the pinch-pole singularity associated with the length [ of the
staple, as well as the divergences associated with the cusps. Furthermore, as the sides of Z are also
dependent on the longitudinal displacement z, the exponential divergence associated with z present
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1-2/2

1+ 2z/2

21 21

1+ 2/2

1-2/2

b b

Figure 4.2: Rectangular Wilson loop (left) and the loop as a product of 2 staple-shaped links (right).

in the staple-shaped link must also be cancelled if an appropriated ratio is taken, namely the one
proposed in Refs. [58, 73]:

B,r(b,l,z,P*;1/a
Br(z,b,P;1/a) = lim or( /a) (4.16)

—e  \[Z.(21,b;1/a)

After dividing the beam function by the square root of Z, the only remaining divergences are the
UV divergences associated with the quark field and its end-points connecting to the gauge links. As
such, they can be cancelled by taking ratios, as they have a multiplicative nature [57, 124]. Hence, one
can define

ByPR (2,20, b, by, P) = Z5PR (24, by: 1/a) Bp(z, b, P*;1/a) (4.17)

where,
1

Br(z =2zy,b = by, P° =0;1/a) '

Because the remaining divergences are independent of the length of the Wilson line, one is free to
choose z;, and b,. In order to connect these quantities to the MS scheme via a perturbative scheme
conversion, z, and b should be small enough for perturbation theory to be valid. However, the use
of small values for both z, and b, can introduce sizable discretization errors in the renormalization
factors, which can affect the validity of the SDR scheme. To address this issue, different approaches
can be employed in order to reduce finite lattice-spacing errors from the non-perturbative data for
all values of the staple lengths b/a and z/a. Ideally, the elimination of discretization errors requires
calculations of physical matrix elements at different finite values of the lattice spacing a and an
extrapolation a — 0. When data for multiple values of a are not available, a number of different
approaches can be employed in order to reduce discretization errors at each lattice spacing. A standard

Z5PR (70, by: 1/a) = (4.18)
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4.4 RI-short

method is to apply an improved discretization, in both the action and the operators under study, using
the Symanzik-improvement program [125, 126]. Another way to reduce this kind of systematic error
from a lattice calculation is to subtract one-loop artifacts employing lattice perturbation theory to all
orders in a, from the non-perturbative vertex functions calculated in lattice simulations. Our group has
successfully applied this method to the renormalization of local quark bilinear operators [127-129], and
more recently to the renormalization of non-local straight Wilson-line operators for quasi-PDFs [130].
These studies have provided a useful feedback on the effectiveness of artifacts in the renormalization
factors for different ranges of the scales entering the renormalization procedure. Since this is our
first non-perturbative study considering non-local staple-shaped operators we do not consider finite-a
errors, but we intend to apply the method of subtracting one-loop artifacts in a future extension of our
study.

The renormalized matrix elements are converted to the MS scheme using perturbation theory. We
have computed the vertex, sail, and tadpole one-loop diagrams for external quark states with a general
momentum p*. For p* — 0, the conversion factor is given by [131]

ZVSSPR( oy oy BEE (L 3 Mﬂz ~ 2% retan 2 (4.19)
0- 70770 2 (272 420 Ty by |’ ‘
which agrees with Eq. (6) of Ref. [73]. Note that this factor equals B%TS(Z =20.b = by, P* =0, ).
Details of this calculation for a general external momentum are presented in Ref. [131]. The
renormalized beam function in the MS scheme is then given by

BYS (2, b, P?) = ZM (20, by, 1tg) BEPR (2, 2, b, by, P7). (4.20)

4.4 Rl-short

As will be shown in Chapter 6, the usual RI scheme may be problematic at large z and b as the
magnitude of the Z®! factors grows exponentially. Also, as shown in Refs. [73, 117], the usual RI
scheme may still contain a residual linear divergence, which may not be properly canceled. On the
other hand, as discussed in Section 4.3, the \/Z factor cancels all divergences in z and b present in
the staple. Hence, we can define a vertex function that is free of such divergences,

Ay (z,b, p; 1/a)
VZp 2l b 1]a)

Because the divergences related to the lengths of the Wilson line have been removed, we can compute
the renormalization factors as in Section 4.3 at some fixed z, b, [115]

A" (z,b,p; 1/a) = 4.21)

A(z,b, p; 1/a)T
eipzzﬂ'pr_

Z3 " (2, bo. o3 1/a)
Zy' (no: 1/a) 12

=1. (4.22)

P=Hy,2=20,b=b;

The ZR"™"" factor defined at fixed 2o and by, is used to renormalize the bare B,, defined at arbitrary
values of z and b. We have labeled this procedure as RI-short. In principle, the vertex function in the
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standard RI/MOM could also be modified by taking its ratio with \/Z . This would reduce the growth
of the Z-factors with increasing b. However, when combining ZR! with the bare B, . the \/Z factors
cancel each other, and therefore \/Z has no effect on the renormalized matrix elements. On the other
hand, the \/Z factor appearing in the vertex function of the RI-short scheme is defined at fixed values
of z and b, contrary to the \/Z factor appearing in the bare B, . Hence the cancellation of the Z
factors do not happen in the RI-short scheme.

As in Section 4.3, we choose the pair z, b to be in the perturbative region in order to make the
perturbative conversion to the MS scheme reliable. Moreover, the study of possible lattice artifacts
associated with the use of small values of z,/a and b,/a will be considered in future extensions of
our study by using one-loop lattice perturbation theory.

The corresponding renormalized beam function in this scheme is then given by

BIIEI—short(Z, 200 b, bO’:uO’ PZ) — Z [Z(R)I—short(zo’ bo,llo§ l/a)]rr’ Br, (z, b, P*; 1/a). 4.23)
I_‘I

RI-short

Finally, we can convert B to the MS scheme using one-loop perturbation theory,

BYS (2, b, ptg, PY) = | [zgs’“—shm(zo, b, uo)] L B?‘Short(z, 20: b b, 1o, PY) . (4.24)
r/

. . MS.RI-short - . . . . . .
The conversion matrix Z OS’ S0 §s calculated in dimensional regularization for arbitrary values of

the momentum scale y,. Explicit expressions for all I, " are given in Ref. [131]. Similar perturbative
studies can be found in Refs. [57, 114].
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Lattice setup

5.1 Lattice ensemble

For the lattice calculation, we use N f = 2+ 1 + 1 lattice ensembles generated by the Extended Twisted
Mass Collaboration (ETMC). The ensembles are generated using the Iwasaki gauge action and the
twisted mass fermion action with a clover term. In this work we have used 3 lattice ensembles namely,
cA211.53.24, cA211.30.32 and cB211.072.64 [86]. The details of the ensembles are given in Table 5.1.
cA211.53.24 and cA211.30.32 have similar lattice spacing but different volume and sea pion masses.
cB211.072.64 is at a smaller lattice spacing and is at the physical point. This combination of lattices
allows us to explore discretization effects, finite volume effects and pion mass dependence. However,
in this exploratory work, we will only compare the results from the different lattices qualitatively and
a more systematic study will be done in the future.

name L*xT/a* [alfm] | ay, | M, [MeV]| ML| N,/
CA211.53.24 | 24°x 48 | 0.093 | 0.0053 350 4 600
cA211.3032 | 32°x64 | 0.091 | 0.0030 260 4 400
cB211.072.64 | 64> x 128 | 0.08 | 0.00072 130 36 | 250

Table 5.1: Details of the lattice ensembles used in this work. The columns give the names, lattice volume, lattice
spacing, light quark mass, pion mass and the number of gauge configurations used.

For the quasi-TMDPDF, we will show results from all the ensembles. The quasi-TMDWF and the
meson form factor have been calculated on the cA211.53.24 and cA211.30.32 ensembles. Accordingly
the soft function, the Collins-Soper kernel and finally the physical TMDPDF have been calculated on
these 2 ensembles. The full calculation on the cB211.072.64 ensemble is currently in progress and
will soon appear in a future publication.
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5.2 Matrix elements on the lattice

5.2.1 Quasi-TMDPDF

The quasi-TMDPDF and in turn the quasi-beam function contains a matrix element of the form
(N(P%)|Or(b,1,2) IN(PY)). (5.1)

where N(P?) is a nucleon interpolator boosted to momentum P* in the z-direction. Op(b, [, z) is the
staple-shaped operator as defined in Eq. (3.48). On the lattice, one can extract this matrix element
from the ratio of a 3-point and a 2-point correlator defined as

CP!(1,7,0,P7) = P 75N, (1, X)Or (7,3, b, 1, )N (0, 0)),

x’y
. _ (5.2)
C*P' (1,0, P) = Py Z e XN, (1,2)N4(0,0)).
X

Here, N, (x) is the nucleon interpolating operator, which in case of the proton, takes the form

Ny () = eul(x) (df" (1) (Cys)pyus () (5.3)

and similarly for the neutron,

N, (x) = €74 (x) (uZT(x)(CyS)Byd; (x)) : (5.4)
where u and d are up and down quark fields respectively. C is the charge conjugation matrix and e“be
is the Levi-Civita symbol. This form of the nucleon interpolator comes from taking into account the
different quantum numbers of a nucleon. The proton and neutron are isospin doublets with I° = +1/2
and I° = —1/2 respectively. They also are spin J = 1/2 states. The u and d combination inside the
parenthesis forms a diquark with spin J = 0 and isospin / = 0. The full nucleon interpolator then has
the correct quantum numbers. Summing the color indices with the Levi-Civita symbol makes the
interpolator color singlet and therefore gauge invariant. A final quantum number is the parity. Using
the parity projector #, the interpolator can be projected to definite parity states P = 1. Here we are
interested in the unpolarized TMDPDF, therefore we use the parity projector as

1
P:§(1+70). (5.5)

The time coordinate ¢ (¢, ) is the source-sink separation for the 2-point (3-point) correlator and 7 is the
time slice at which the operator insertion is performed.

The operator is the staple-shaped operator as defined in Eq. (3.48). In practice, we calculate the
flavour non-singlet combination u — d, and hence one inserts a 75 in the flavour space in the definition
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of the operator. The 3-point correlator therefore takes the explicit form
CP(t,,7,0,P*; b, 1,7)

=P Y e AN (1, 00 (7, y + by +
x’y

~ Z. _
nz) TWeapte (9, 0,1, 2) 739 (T,y - Enz) N(0,0)).

(5.6)
Here, g defines the standard up and down quark doublet. The definition of TMDPDF in Eq. (3.35)
contains y* = (yo + 73 )/ V2. Therefore on the lattice, the insertion Dirac matrix I" can be either Y3 Or
Yo Or in general, a combination of both. For the quasi-PDF case it was found that 7y, does not mix
with any other operator, while y; mixes with the scalar operator [116]. This made the choice of y, as
the insertion operator quite trivial for the case of quasi-PDF. Here, however, as we have already shown
in Sec. 4.1, no such advantage exists in this case. We therefore chose y,, since we observe significantly
better signal-to-noise ratio compared to 5.

N[ 2

Now, we look at the exact form of the correlators at the quark level and how we can build them
using individual quark propagators. Firstly, we consider the 2-point correlator.

C*P'(x,0) = Pap(No (ON(0))

= _Paﬁ <Nﬁ (X)N(z (0))

_ abc _a'b’'c’ Ja _pT _c

= e VP (QIA4(0) (Cys) Ty (0)i(0)

’ T N
us (x) o, (%) (Cs) g ugy (x) 1)

— _8abcga b'c (C'yS)a/ﬁ (C’}/S)(I,ﬂl P,yy/

<Q d‘a 0 _pT _c a’ b'T ¢
SO O (0, (1) 4T (x)ufy (9] 2

= Sabcaa be (C)/S)(IIB (C’ys)a/ﬁ’ P‘yy,Sd (x, O)I;/‘;

. ma'b .mcc _ . mc'b . mac
[Su (08 S, (10055 — S, (0058 S,, (1206

(5.7)

where S, (x) is the quark propagator for the quark g. So, the 2-point correlator can be obtained by
calculating point-to-all quark propagators for the up and down quarks.

The 3-point correlator is more involved. Since it involves a non-local current insertion, there are
more contractions to consider. The actual operator under consideration is quite complex, hence for
simplicity, we consider a general operator insertion O of the form

O(x) = 1% (X)X Squg(x) — da(x)Xapdg (x). (5.8)

Q,

In the case of the staple-shaped operator, X would contain the Dirac matrix and the staple-shaped
Wilson line. Since the internal structure of X does not change the contraction indices, we can use this
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generalized approach. The 3-point correlator can then be written as
CP" (3, 3) =P (Rl uy (x) (¢ (¥)Cysu” ()
x| () Xt () = ] () X,pt] ()] (5.9)
x g@t'e (J“' (0) (Cys) zzh'T(O)) 5 (0)]9)

Note that for ease of reading, we have only written the open Dirac indices explicitly. Taking all
possible Wick contractions into account, we find that the 3-point correlator can be split into 2 parts,

C¥" (x,y) = U(x;y) = D(x;y). (5.10)

We call them the up-part and down-part based on which current insertion is considered. Both these
terms contain fully connected as well as disconnected diagrams. However, due to isospin symmetry,
the disconnected parts are identical in U and D. Therefore, they cancel out in the 3-point correlator,
and we are left with only the connected parts. The connected part of D is given by

1yt ba'
Do (5:3) = 876 [ (Cs) " S4(6: XS4 (1 0(Cy3)|

(5.11)
X P {5,(3:0)55, (33 0055y = 5,03 00155, (x: 005 |
One can construct a similar albeit longer expression for the up-part as well. The existence of S;(x;y)
in the expression suggests that one would need to calculate all-to-all propagators for the 3-point
function. This is not feasible computationally. We will show an alternative method in section 5.3.3.
One finally obtains the unsubtracted quasi-beam function by taking the ratio of the 3-point and
2-point functions as [72]

CSPt(tS, t) - BO,F + Cz(e_AEl + e_AE(lS

P (1) 1+c e A ’

AEt

_t)) +cze

(5.12)

where Byr = Bo,r(b’ l,z, P%), AE is the mass gap between the ground state and the excited state, and
c¢; are parameters that depend on the excited state contamination.

5.2.2 Quasi-TMDWF
The unsubtracted quasi-TMDWF takes the form
Yor(b, 1,2, PY) = (Q|Op(x,b,1,2) |n(P%)). (5.13)

Here O is again the staple-shaped operator as defined in Eq. (3.48) and 7(P*) is the pion interpolator
with momentum P? in the z-direction. In order to extract this matrix element, we need to construct
the following 2-point correlator

CP (b1, 2,1, P7) = ) e (O (x,b,1,2) 04 (0, PF)). (5.14)

X
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5.2 Matrix elements on the lattice

Here, Or is the staple-shaped operator as defined in the case of quasi-TMDPDF and O, is pion
interpolator defined as
O (t, P%) = Y i, x)ysd(1, y)e'P (5.15)
x.y
These can be calculated from coulomb-gauge-fixed wall sources at fixed time slices. Each of the 2
quarks carry half the momenta (P*/2). The exact contraction of the propagators takes the following

form

Z .

1 pz .
2 _ Px, i - .0- ,
C.P(b,1,z,t, P%) E Ex e 2 Tr [Su(t,x+bnr+§nz,0, -P*/2)T

(5.16)
Wopapre (8,5, 1,208, (1% = 20,50:P2/2)|

Similar to the case of the quasi-TMDPDEF, the insertion operator I" can be either 5y, or y5y3, which
approaches the y5y™ in the light-cone limit. The deviation between the two is power-suppressed and
one can choose the combination (ysy, + ¥5¥3)/2 to minimize power corrections [69]. But it was
demonstrated in [69] that the corrections are of the order of 5%. Therefore, in this work, we only
consider the y5y, case.

Finally, the unsubtracted quasi-TMDWF is related to the 2-point correlator as [64, 69]

A, (P%) .

CP' (b1, 7,1, P%) = °F For(b,1,z, PYe ' [1 +co(b, 1, z, P)e ], (5.17)

where A,,(P°) is the overlap amplitude of the pion operator and ¢, contains the excited state
contributions. Taking a ratio with the ultra-local case, the overlap operator gets cancelled and the
quasi-TMDWF can be extracted as

2

C:P'(b,1,z,t, P%)
2

C;r'(0,0,0,t, P%)

~ or(b 1,2, P)[1 +co(b, 1,7, PY)e "], (5.18)

5.2.3 Meson form factor

The 3-point correlator required to extract the meson form factor can be directly derived from the
hadronic matrix element as

C3P!(1,1,, b, P%) = Z e 2P X (0,,(t;, —PY)i(t,x +bap)Tu(t,x +biz)d(t,x)T'd(t,x) 0L (0, P%)).
X

(5.19)
The pion operator O, is the same as defined in the quasi-TMDWF case. The wick contractions are
straight-forward and the 3-point correlator can be written as

1 - pz
CP'(t,,7,b, P*) = = e [Sl(rs,x + bity; 0; =PY)TS,, (1,x;0; P)ST (15, %50, PYTS 4 (1,3 0; —P%) | .
P

(5.20)
At large time limit (0 < t < ¢,), we can extract the meson form factor from the ratio [65]
ClP'(t,,7,b, PY) L L (en 8 4 g AR
2pi 5 = F(b,P7) TG (5.21)
2[C2P'(0,0,0,1,/2, P9)] 1+ cye2E/
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Chapter 5 Lattice setup

Ref. [64] showed that one can use a Fierz rearrangement of the four-quark operators to reduce higher
twist effects and Ref. [65] showed that the combination 1 — 5 has additional UV divergences whereas
the combination y, + y5y, does not. Hence, in this work we have focused on the latter combination
for the form factor.

5.3 Propagators

In the previous section we showed how matrix elements can be extracted from 2-point and 3-point
correlators in Euclidean field theory. The basic building block of all these correlators are quark
propagators. The propagator provides the probability amplitude for a quark to propagate from one
point to another. In path integral formalism, it is simply the inverse of the Dirac operator.

% (x;y) = D™V (63 y) = (QIUE(NTL(x) Q) . (5.22)

However, calculating the most general quark propagator (Vx, y) is computationally infeasible. Since,
if the Dirac spinor has

n = V[lattice volume] X 4[spin] X 3[colour] X 2[complex] (5.23)

degrees of freedom, then the Dirac matrix has n?. Even for the smallest lattice under discussion
(24% x 48), this results in a system with 107 unknowns. Many different methods have been developed
to tackle this problem. In the following sections, we will discuss the methods used in this work.

5.3.1 Point-to-all propagators

The simplest method is to use the translational invariance and fix the source of the propagator at fixed
spacetime point x. This reduces the task of computing the entire inverse of the Dirac matrix to only
solving 12 inversions (4 spin X 3 color). The 12 linear systems to be solved are of the following form

D DY (plz vl =£)alz ¥ s (5.24)
y

where £(x) is the point source defined at x with the property
E@)&lz.y, ] =60 (x = 264,04 (5.25)
The point-to-all propagator is then the inversion ¢ (= D_lf ),

S y)as = o()glx. @.al. (5.26)

To reduce statistical uncertainty, one needs to use multiple source positions for each gauge configuration
and average over them.

5.3.2 Timeslice-to-all propagators

Another way of calculating propagators is to use a timeslice source instead of a point source. In this
case one fixes the source at a single timeslice #, instead of a spacetime x. So the propagator can be
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5.3 Propagators

calculated from any point x on the timeslice #, to any other point y on the lattice. The linear system to
be solved is

D DG y)agw (gLl = €5 L], (5.27)
y
where £ (x) is the timeslice source defined at ¢, as

E(x)glto] = 6(xg — 10)n(x)g. (5.28)

Here, i are vectors of random number that satisfy the property

E |n' 00anp| = 6% (x = 98056 (5.29)

Here E denotes the stochastic expectation. A simple choice for 7 could be p € Z, (i.e. +1) or
ne€Z,X7Z,(ie. (£l i)/ V2). These choices satisfy the given condition. Hence, one can define a
number of time-slice sources for each gauge configuration and average over them to reduce statistical
uncertainty.

5.3.3 Sequential propagators

The propagators discussed above are enough for building the 2-point correlators, and also the 3-point
function for the form factor. However, the 3-point function necessary for the quasi-TMDPDF is more
complex. Due to the momentum projection, we have a sum over all sink (x) and insertion (y) points
and involves propagators like S,/ ;(x; y). It seems one needs to calculate all-to-all propagators for this
case. One solution for this is to use what are called sequential propagators [132].

The basic idea is to consider two propagators which are connected at a single spatial point which is
summed over, for example

D S TS(y;2). (5.30)
y

This volume sum can then be carried over through an inversion of the Dirac operator by constructing
an appropriate sequential source using the point-to-all propagator. For example we consider the dXd
insertion in the 3-point correlator for the quasi-TMDPDF. This corresponds to the down-part as shown
in Eq. (5.11). Doing some algebra, we can rewrite the down-part as a product of 2 terms.

D UXS4(y: 000 S 4 (xs y)ote T P(x; 0)2L (5.31)
xy

where ,
. mba _ abc _a'b’'c’ . T cb . mac’
P(X, O)KV _Paﬂg & (CyS)Su(x’O)(C’YS) v Su(x’o)aﬂ

, (5.32)

cc’ T ab

- (€798, 0)] 5 [ Sut:0(Cy9)" | b
av
Using vy hermiticity, we get
.mdad’ — db . ab’ _ip.x
D XS4 00 [ysSa(sn]e, [ysP(r0)] 5 e, (5.33)
xy
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We can define the sequential source as

£ = [ysP(x;0)] wabl iPx (5.34)

e
KV

Inverting the Dirac operator on this source, we get the sequential propagator

Sseq(y;o) = Z Su(y;x)f(x) = Z Su(y;x) [75P(X;0)]* eiP-x‘

, . P (5.35)
= [1585eq 301" = ) [158,(3:0] y5P(x; 0)e ™.
X
This matches with what we have in Eq. (5.33). The down-part can then be computed as
ZTY [XS4(3:0) {75804 (v:0)] '} . (5.36)
y

One can follow a similar procedure for the iz Xu insertion as well. One important aspect of this method
is that the sequential source depends on the sink x and the momentum p. Therefore, by construction,
the momentum p and the time slice of the sink 7, gets fixed after the inversion. To vary either of these
parameters, one needs to construct a new sequential source and invert the Dirac operator again. But
the advantage of this method is that the sequential source does not depend on the insertion matrix X.
This means, one does not need to repeat the inversion for each shape of the staple under calculation.
This makes it possible to calculate a single sequential propagator and use it for all the different shapes
of the staple.

5.4 Smearing

Smearing is a standard practice in lattice QCD to improve the signal-to-noise ratio in correlators.
There are many different smearing techniques available. They are used to optimize the overlap of
the interpolating operator with the ground state and reduce excited state contamination. In this work,
we use APE smearing on the gauge links and Wuppertal smearing at the source and sink of quark
propagators. We also use momentum smearing on the propagators to improve signal quality at large
boost. Stout smearing is used on the gauge links entering into the construction of the staple shaped
link to reduce power divergences usually present in the non-local operators.

5.4.1 APE smearing

APE smearing [133] is one of earliest introduced smearing techniques in lattice QCD. This reduces
excited state effects in the correlators. In this method, the gauge links are scaled by the average of the
staples connecting the same endpoints. The APE smearing step replaces the link as

U, (x) = U, (x) + aspg Z Cp (5.37)
V#EU
where
Coy = U, (U, (x + MU, (x+ @) + U, (x = 0)'U,(x =9)U, (x = 9+ o). (5.38)
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5.4 Smearing

a4 pg 18 the smearing parameter. After every smearing step, the link is projected back to SU(3). In
this work, we perform 50 steps of APE smearing with a4 p = 0.5 for all point-to-all propagators.

5.4.2 Wuppertal smearing

For correlators built from point sources, it is difficult to suppress excited state contaminations at
moderate time separations. However, going to larger time slices, we encounter poor signal-to-noise
ratio, which is especially a problem for the nucleon correlation functions. A standard method in lattice
QCD to suppress excited states in point-to-all propagators, is to use Wuppertal smearing [134].

In this method, the point source is smeared as follows

Ean (%) = D F(x, 3 UM)E(L, ), (5.39)
y

where
F(x,y:U(D) =6 (x — ) + ayy pH(x,y: U(1)). (5.40)

Here, ayy;p is the smearing parameter and H is the hopping matrix

3
Hee,y:U@) = Y 0,08 (5= e+ @) + U (nx - 8PV = - )| . (5.41)
p=1

For the quark field ¢ (x), this corresponds to the transformation

+3

1 5
q(x) — T — q(x) + awyp 1‘=Zil U;(x)g(x+])]|. (5.42)

This smearing is applied to both source and sink of the propagator. We apply 50 steps of Wuppertal
smearing with ay;p = 4.

5.4.3 Stout smearing

Stout smearing [135] is applied to the gauge links entering into the construction of the staple-shaped
link. This is an analytic smearing technique constructed by taking the weighted sum of staples of the
original link, as

Cu) = Py [Uv(x)U#(x F UL (x + ) + Ul (x = DU, (x = 9)U, (x = 9 + ,1)] L (543)
V#EU

Py are real valued smearing parameters. The matrix Q, (x) is then constructed as

0,(x) = % (QL x) -Q, (x)) - ﬁ Tr (QL x) -Q, (x)) : (5.44)
where
Q,(x) = C,(x)U; (x). (5.45)
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By construction, Q,(x) is traceless and Hermitian, therefore ¢'24™) is an element of SU (3). The
smearing step of the gauge links then are given by

U,(x) > U, (x). (5.46)

Due the property just mentioned, the new link is also in SU(3) and hence no further projection is
necessary. The most common choice for the smearing parameter is

Puv = Pstout- (5.47)

In case of purely spatial smearing, the parameters in the time direction are set to zero, i.e.

Puo = Poy = 0. (5.48)

Previous work [64] found that 5 steps of stout smearing is an optimal setup for the staple-shaped links.
We use the same setup with p = 0.129.

5.4.4 Momentum smearing

Any calculation of partonic distributions require computing matrix elements at large momentum
boosts. But larger boosts lead to worse signal-to-noise ratio in the correlators. To improve the signal
quality at large boosts, a novel technique was proposed in [136]. This method is known as momentum
smearing. This is essentially an extension of Wuppertal smearing that takes the momentum into
account. The smearing applied to the quark field takes the form

+3 . .
q(x) — q(x) +a Z Uf(x)e_ifP']q(x +7)]- (5.49)

1+ 6a .
j==1

P is the hadron momentum. ¢ is the smearing parameter.

This technique has been quite successful for the quasi-PDF case and previous work on this [137]
found an optimal setup of & = 0.6 for the nucleon. We use the same setup for the quasi-TMDPDF
calculation.

5.5 Computation of the staple-shaped link

The key part of TMDPDF:s is the staple-shaped link which connects the quarks in the non-local operator
that defines the quasi-TMDPDF and quasi-TMDWEF. The shape of this staple depends on 3 parameters
I, b and z. The staple-shape is a result of a product of 3 straight gauge links of length / — z/2 in the
longitudinal direction, b in the transverse direction and / + z/2 in the opposite longitudinal direction
respectively. The straight line on the lattice is just a product of the gauge links connecting the 2 lattice

sites.
-1

W, (x,1) = ]—[ U, (x +i2), (5.50)
i=0

where u can be any particular direction.
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5.5 Computation of the staple-shaped link

So, for any given value of /, b and z, the staple-shaped link has a length of 2/ + b + z. Therefore,
to construct such a staple, one needs to perform 2/ + b + z products of SU(3) fields defined on the
whole lattice. If we want to calculate different shapes of the staple corresponding to / =0, 1,2, .0 ...
b=0,1,2,..b,,and z=0,1,2,. we need to perform

+~Zmax>
max T 1) % bmax(brnax + 1) x Zrnax(zmax + 1) (551)

2 2 2

Lnax (1

max (

such multiplications. In general, constructing N different staple shapes would result in

staple
O(N2,, pie) Products of SU(3) fields, if we build each staple from scratch. This is computationally
expensive. Especially as we go to larger lattices, the expense increases exponentially.

One solution is to calculate the staple-shaped link once and store it in memory. This is possible
since the staple does not depend on the momentum, source or sink positions. So the stored staple
can be used repeatedly as long as the longitudinal and transverse directions don’t change. However,
even for the smallest lattice of size 24> x 48, a single staple-shaped link would require ~ 80 MB of
memory. Considering that we need hundreds of different staple shapes (not even considering different
directions of the boost and transverse directions) for each gauge configuration, this is certainly not
feasible in terms of available storage bandwidth. Moreover, if we take into account the bottleneck of
loading and unloading these staples from and to disk, this method is not practical.

As a part of this thesis, I have developed an algorithm to solve this problem. The basic idea is to
divide the staple into 3 parts, which are the straight Wilson lines as already mentioned, and build them
individually step by step. The algorithm goes as follows. (For clarity, we use the notation z’ to denote

z/2)

(i) Iterate over values of [ from O to /. For every increment of /, multiply the next link in the
longitudinal direction to the existing line.

(ii) For every value of /, iterate over values of z’ from 0 to z,,,,. For every increment of z’, build 2
longitudinal lines one of length [ — 7" and the other of length [ + 7.

(iii) For every value of [ and 7/, iterate over values of b from 0 to b,,,,. For every increment of b,
multiply the next link in the transverse direction to one of the longitudinal line.

(iv) Shift the other longitudinal line in the transverse direction by b and multiply it to the existing
L-shaped line to get the staple shape.

Of course, one has to be careful with the direction of these individual steps and need to be consistent
to form the correct staple shape. The algorithm steps are illustrated in Figure 5.1. A pseudo-code for
the algorithm is described in Algorithm 1.

Following this algorithm, we need to do 1 product for each step of /, 2 products for each step of
z and b. This results in a total of 4 - [, - Z0. * binax Products of SU(3) fields. And in general, for
computing Ny, , ;. different staple shapes, the total number of products required is now O (N4 ie)-
This is a significant reduction in the number of products and the effect can be easily observed in the
computation time. In Figure 5.2, we show the performance of this optimized algorithm compared to
the unoptimized one (where each staple is built from scratch). We show the time taken to build all
the staple shapes using one gauge configuration from the ensembles cA211.53.24 and cB211.072.64,

setting / bk and 7., to half of the corresponding spatial lattice extent. The "v1" in the figure

max> ¥ max
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Figure 5.1: Illustration of the algorithm to construct the staple-shaped link. The algorithm is divided into 4
steps (i) Multiply the next link in the longitudinal direction, (ii) Build 2 longitudinal lines, (iii) Multiply the next
link in the transverse direction and (iv) Shift the other longitudinal line in the transverse direction and multiply
it to the existing L-shaped line.

is the algorithm presently described and "v2" is also using the current algorithm but building the
transverse line in both the transverse directions (7, and ﬁy in case the boost is along 71,) at the same
time. The time there is scaled by a factor of 0.5 to account for the fact that the total number of staples
built is double.

Using this algorithm, for a fixed momentum and source-sink separation, we build the staples for
positive and negative /, positive and negative b for both the transverse directions and positive and
negative 7. We then repeat this by taking the boost along both positive and negative 7, , A, and 71,
directions. All of this is averaged over for each gauge configuration to reduce statistical uncertainty.
This results in a total of

C

Neong X Ny X 6[directions of boost] x 2[+/] x 4[+b] X 2[+7'] (5.52)

measurements, where N, . is the number of source positions used for each gauge configuration.
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5.5 Computation of the staple-shaped link

Algorithm 1 Algorithm to construct the staple-shaped link
Wi(x) =1
for(=0,1,2,...0,,, do
Wi(x) « W (x) x U, (x +17,)
Wy(x) — W, (x)
Ws(x) « W, (x)
for7 =0,1,2,...2,,,, do
Wy (x) « W, (x) X Ul (x +2'A,)
W (x) = W5 (x) X Ul (x = (2 + 1)i,)
Wy (x) Wy (x)
forb=0,1,2,...b,,, do
Wy(x) « Wy(x) X Up(x + i, + biiy)
W5 (x) « Ws(x —iiy)
thaple (X) — W4(x) X W3(X)

end for
end for
end for
cA211.53.24 cB211.072.64
N I
B
n 8 L]
87 = unoptimized Si =
optimized v1 B -
—~0 —~
0 A optimized v2 no
N—r ™ \./o -
[ORToRs o N
e e | = unoptimized
= < . = o optimized v1
. ™ o . A optimized v2
o~ | a
a
o “ a a a a | 4
T T T T T T T T T T T T T
0 5 10 15 20 10 20 30 40 50 60 70 80
# of gpus # of gpus

Figure 5.2: Comparison of the performance of the unoptimized and optimized staple building code. Note that in

the right plot, the y-axis is made logarithmic in order to better visualize the scaling of the optimized code with
number of GPUs.
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CHAPTER O

Results

In this chapter we will present the results obtained for the different observables on the lattice as
discussed previously. We will start with the quasi-TMDPDF. Then we will discuss the renormalization
of the staple-shaped operator and show the results for the three different approaches mentioned in
Chapter 4. The results for the quasi-TMDWF will follow that. We will also discuss the results for the
Collins-Soper kernel and the reduced soft function. Finally, we will perform the matching and show
the results for the physical TMDPDEF.

For all the computations presented in this work, we have built code for contractions using the library
PLEGNMA [138] (private repository maintained by the University of Cyprus and The Cyprus Institute),
which is a GPU-enabled, memory distributed software package for lattice QCD calculations. For
the propagator calculations, PLEGMA uses the MG solver implemented in the QUDA library [139-142].
Most of the computations were performed on the QBiG gpu cluster at Helmholtz Institut fiir Strahlen-
und Kernphysik (HISKP) at the University of Bonn. A part of the production for the cA211.30.32
ensemble was performed in the scalable gpu partition of the Marvin cluster at the High Performance
Computing Center of University of Bonn and at the Cyclone cluster of The Cyprus Institute under
the project p146. The computation for the physical point ensemble (cB211.072.64) has been done
at the Booster partition of the Juwels supercomputer at the Jiilich Supercomputing Centre (JSC)
under the project id TMDPDF 1.

The post-production analysis has been done mainly using R [143] with the help of the hadron [144]
library. For part of the analysis Julia [145] and Python [146] have also been used.

6.1 quasi-TMDPDF

% 1 . A 2
fTMDan%§>=Hﬂ£§e‘m@W”hmshhu»ﬂLb4hg>+o( oco M 1)
u

L T (PHY b,
6.1)
6.1.1 Bare quasi-beam function

The main ingredient in the calculation of the TMDPDF is the quasi-TMDPDF, which is obtained from
the quasi-beam function calculated on the lattice. As a quick reminder, the "unsubtracted" quasi-beam
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function can be extracted from the ratio of a 3-point and a 2-point nucleon correlator.

C3pt(ts, t,0,P%;b,1,7) Bo’r(b, l,z, P*) + cz(e_AEt + e_AE(tS_’)) + c3e_AE[S

C*P'(1,,0, P%) 1+c e Es

(6.2)

In Figure 6.1 we show the real and imaginary parts of such a ratio for 2 different staple shapes for the
cA211.53.24 ensemble. In principle, one can perform a 2-state fit according to Eq. (6.2) to extract
the bare quasi-beam function. But for large enough time separation (0 << t << t,), we expect the
excited state contamination to be negligible. We do observe a plateau in the ratio for the time slices
(t —1ty/2)/a € [-2,2] and therefore perform a constant fit in this range to extract By, (b, [, z, P%).
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Figure 6.1: Real (left) and imaginary (right) parts of the ratio of 3-point and 2-point nucleon correlator for
staple parameters b = 2a = 0.18 fm,/ = 8@ = 0.72 fm, z = 4a = 0.36 fm (top) and b = 4a = 0.36fm, [ = 6a =
0.54fm, z = 2a = 0.18 fm (bottom) for P* = 67/24a = 1.7GeV and T = y, on the cA211.53.24 ensemble.
The colored bands correspond to the fitted plateau.

In Figure 6.2 we show the real and imaginary parts of the ratio for a particular staple shape, for
3 different source sink separations, namely 7, = 8a, 10a and 12a, which correspond to a physical
separation of 0.72fm,0.93 fm and 1.11 fm respectively. We observe that in our chosen range of
(t—1,/2)/a € [-2,2], the ratios for different source-sink separation are consistent with each other.
For the imaginary case, there is a noticable excited state effect for z, = 8a. It is possible that 8a is not
large enough to suppress the excited state contamination. Going to larger time separations, however,
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result in larger noise. Therefore, we choose ¢, = 10a as our source-sink separation for the rest of this
work.
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Figure 6.2: Real (left) and imaginary (right) parts of the ratio of 3-point and 2-point nucleon correlator for staple
parameters b = 2a = 0.18fm, / = 8a = 0.72 fm, z = 2a = 0.18 fm for source-sink separations ¢, = 8a, 10a and
12a for P* = 47/24a = 1.1 GeV and I' = y,, on the cA211.53.24 ensemble. Note that the points for different 7,
are slightly shifted horizontally for better visibility.

In Figure 6.3 we show the real and imaginary parts of the bare quasi-beam function B - for 2
different values of b and for [ = 6a, 8a and 10a for P* = 67r/24a = 1.7 GeV. In this work, we set
I' = y,. These results are obtained by averaging over all positive and negative directions of /, b and z
using the following identities.

B(b,l,z,P*) =B'(b,1,z,-P%),  B(b,l,z,P*) = B'(b,1, -z, P?),

. (6.3)
B(b,l,z,P*) = B'(b, -1, z, P%), B(b,l,z,P*) = B(-b, 1, z, P%).

Following this identity, we observe the real part to be symmetric and the imaginary part to be
anti-symmetric in z. As expected from theory [62], we observe the quasi-beam function to decay with
las~ e '. The square root of the rectangular Wilson loop Z in Eq. (3.47) is expected to cancel this
divergence. In the next section, we will show that such a cancellation indeed happens.

A similar behaviour of ~ ¢~ is also expected for the transverse separation. In Figure 6.4 we show
the real and imaginary parts of the quasi-beam function for different values of b for fixed / = 8a and
observe this decay.

6.1.2 Renormalization

In Chapter 4, we discussed 3 different methods of nonperturbative renormalization of the staple-shaped
operator. Here we present the results for the individual methods and compare the final renormalized
quasi-beam function.

Starting with RI/MOM, the renormalization factors ZF;, are calculated using Eq. (4.10). For this,
we have used Ny = 4 (4 mass degenerate quark flavours) landau gauge fixed configurations with
the same lattice parameters as the cA211.53.24 ensemble. We have used 40 such configurations for
this calculation at the sea pion mass of 350 MeV. Sine we want to renormalize the staple-shaped
operator for I' = vy,, following the discussion in Section 4.1, we consider the set of operators
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Figure 6.4: Real (left) and imaginary (right) parts of the bare quasi-beam function at / = 8a = 0.72 fm.

Y0 Y0Y2> Yo¥3,¥s5Y1}- We set the renormalization scale y, to 27 (6+})'5 , %, %, %), where T = 48

and L = 24 are the temporal and spatial extents of the lattice respectively. Antiperiodic boundary
conditions are used in the temporal direction. We have chosen an isotropic momentum in the spatial
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directions and a "democratic" momentum which satisfies the condition

. 4
sin(ap,/2)
—_— < 0.3, (6.4)
.2
p (sm (app/Z))
P=Hy
in order to reduce Lorentz-noninvariant contributions in the vertex function.
o
3 ° o
Ay
A
S
= o |=6a a ! .
= A l=8a = o |l=6a
W T o A |=8a
& |=10a EJN
¥ ¥ I=10a
¥ s g
- o
[32]
I
&
. ey
o @ & %
T T T T T T T T
5 10 15 20 5 10 15 20
z/a z/a
o
& © BT
&
o | 0 4 4
& o |=6a
§ o A l=8a § % b
& 87 |=10a 8 . o |=6a
2 o < T A |=8a
¥ 81 ¥ -
3 =1 E $ B |=10a
8 7 A "‘Nj B
A ]
a &
olé & & & o % ]
T T T T T T T T
0 5 10 15 20 0 5 10 15 20
z/a z/a

Figure 6.5: Real (left) and imaginary (right) parts of the diagonal RI/MOM renormalization factors for b = la
(top) and b = 3a bottom.

In Figure 6.5 we show the renormalization factors for the diagonal part. In Figure 6.6 we show
the contribution of the off-diagonal factors in the RI matrix normalized with respect to the diagonal
factor at every staple shape. It is also interesting to see the renormalization factors at large transverse
separations, since we are interested in the long distance nonperturbative regime. In Figure 6.7 we
show the values of the RI/MOM factors with increasing values of b at a fixed length of / and z. The
contribution of the off-diagonal elements which contribute to overall mixing seems quite negligible.
Even at large distances the off-diagonal factors are < 7% of the corresponding diagonal one. Although
the contribution for y5y, is significantly larger compared to 7y, and y,y3 and seems to be increasing
with b, it is still well within 10%. We notice that the authors of Ref. [66] considered the entire set of
Dirac structures for the operator mixing, and observe similar results to ours, if we take from Ref. [66]
only the results from the operators that are allowed to mix with y,, according to our symmetry
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Figure 6.6: Contribution of the off-diagonal renormalization factors (yyy, (top left), y,y5 (top right) and y5y,
(bottom)) compared to the diagonal one at / = 10a.

arguments. For example, their result for the contribution from 57y, is much larger than that of y,y,
and vy, and there is a steady increase going to larger b values. For the values of b we use in this
work, the magnitude of mixing for these operators found in Ref. [66] is also comparable to our findings.

Considering the diagonal contribution, however, we observe that the RI/MOM factors explode at
large distances for both b and z. This makes the renormalization signficantly difficult at these larger
shapes of the staple, since the quasi-beam function also decays exponentially with ». This exponential
increase of the RI/MOM factors observed here could also be due to some residual divergences. This
behaviour of the RI/MOM factors is also observed in Ref. [73].

In Figure 6.8 we show the RI/MOM renormalized quasi-beam function for b = 1a. We observe
that there is no residual / dependence. So RI/MOM does indeed cancel the divergence associated to
[, which is expected since the vertex function and the quasi-beam function contain the exact same
shape of the staple. The error, however, increases significantly with z. This is due to the exponential
increase of the RI/MOM factors with z as shown in Figure 6.5. In Figure 6.9 we observe the effect of
mixing. The red points correspond to the full RI/MOM procedure where we consider the set of 4
operators that are allowed to mix. The blue points correspond to the case where we only consider
the diagonal element in the renormalization matrix and set the off-diagonal elements to zero. We
observe that these points are identical within errors. With this result, we can conclude that the mixing
is negligible for the staple-shaped operator.
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Since mixing is negligible, we can consider the other two renormalization methods discussed in
Chapter 4. Firstly, we use the rectangular Wilson-loop to cancel the pinch-pole singularitiy associated
with the length [ of the staple, as well as the divergences associated with the cusps. To illustrate this
point, in Figure 6.10 we show the unsubtracted quasi-beam function and the quasi-beam function
after taking a ratio with \/Z for different values of /. We observe that after taking the ratio, the
quasi-beam function reaches a plateau at / > 6a. This is a clear indication that the rectangular Wilson
loop completely cancels the divergence associated with /.

The remaining UV divergences can be cancelled by using an appropriate multiplicative renormal-
ization factor. The two methods we consider are SDR (see Sec. 4.3) and RI-short (see Sec. 4.4). The
corresponding renormalization factors are

1

Z = 6.5
SR BF(Z:ZO’b:b07PZ:0) (©)
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and

RI
ZRl—short = ZyOyO(ZOs b07 lv /Jo) X VZE(zl’ bO)-
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Note that the By in Zgpg already contains the /Z factor, whereas in Zg 0. since the vertex
function used in the RI/MOM procedure also includes the staple-shaped operator and the associated
divergences, one needs to multiply the rectangular loop \/Z separately. The choice of b, and z,
must be such that we are in a perturbative regime in order to make the conversion to MS scheme
reliable. Assuming that we are at a short enough distance, the final result in the MS scheme should
be independent of the values of b, and z,. In Figure 6.11, we compare the renormalization factor
in the MS scheme using the SDR and RI-short methods for different combinations of by € {la,2a}
and z, € {0,2a}. We observe that the real part of the factors from the two different schemes are
comparable but not identical. This difference could be due to considerable O(af) corrections. We
also note that the factors at z, = 0 and z, = 2a are consistent at b, = 1a but the difference increases at
by = 2a. This indicates a limitation in the perturbative conversion to MS at a transverse separation as
low as b = 2a. We also observe that the imaginary part is zero for SDR and non-zero for RI-short.
This is by construction, since the SDR factor is computed at zero momentum whereas the RI-short is
obtained from vertex functions at non-zero momentum. At z, = 0, the imaginary part for the RI-short
factors are closest to zero and increase significantly at z, = 2a. Taking these observations into account,
we choose b, = 1la and z; = 0 for both SDR and RI-short renormalization schemes.
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Figure 6.11: Real (left) and imaginary (right) parts of the renormalization factors in the MS scheme using the
SDR and RI-short methods for different combinations of b, € {la,2a} and z, € {0, 2a}.

In Figure 6.12, we compare the renormalized quasi-beam function using the 3 different methods.
Considering the real part, we observe that at short distances, the results are comparable. But as
z increases, the RI/MOM deviates from the other two methods. This could be due to the residual
divergences present in the RI/MOM procedure [73]. The SDR and RI-short methods, on the other
hand, are much more consistent and agree remarcably well for zP* > 5. For the imaginary part, we
observe a similar behaviour, only the deviation of RI/MOM from the other two methods is even more
pronounced. We also note that the errors at large z are significantly more under control for the SDR
and RI-short methods compared to the RI/MOM method. These results suggest that both the SDR
and RI-short methods are more reliable for the nonperturbative renormalization of the staple-shaped
operator.

Finally, we perform a conversion to MS using Eq. (4.19) and in Figure 6.13 we show the renormalized
quasi-beam function in the MS scheme using both the SDR and the RI-short method. For more details
on the computation of the conversion factors for the perturbative matching to MS, see [131]. We
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Figure 6.13: Real (left) and imaginary (right) parts of the quasi-beam function in the MS scheme using the SDR
and RI-short method at b = la (top) and b = 3a (bottom).

observe a similar behaviour as before. The real part has some tension between the two methods at
small values of z. At large distances, however, they agree very well. The imaginary part is consistent
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between the two methods for all values of z.
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Figure 6.14: Real (left) and imaginary (right) parts of the quasi-beam function for the cB211.072.64 ensemble
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At this point we can also show the current status of the TMDPDF calculation on the physical
ensemble cB211.072.64. In Figure 6.14 we show the SDR renormalized quasi-beam function at
b = la and b = 2a for the physical ensemble at P* ~ 1.2 GeV. We observe again that the / dependence
is completely cancelled by the rectangular Wilson loop. The results are significantly more noisy
compared to the cA211.53.24 ensemble, which is expected. Since building longer staples is more
expensive computationally and is also more noisy, we can set [ = 8a in future calculation and probe
further in the transverse separation b.

Since the SDR and RI-short methods are consistent with each other, in the rest of this work, we use
the SDR method for renormalization of the staple-shaped operator.

6.1.3 Renormalized quasi-TMDPDF

The quasi-TMDPDF is defined in the momentum space by performing a Fourier transform of the
quasi-beam function.

B +o0 PZdZ ix z
f (x,b,u,fz) =/ 76 P p (z,b,,u,PZ) . (6.7)
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We perform a discrete Fourier transform on the quasi-beam function to obtain the quasi-TMDPDF. On
the lattice, this results in a sum

Z FZmax . 2
Flebop )= o > "B (2, b, 4, PY), (6.8)
Z="Zmax

which introduces a cutoff in z. Since the construction of the staple-shape also imposes a cutoff in z,
namely z,,,, = (I — 1)2/a, for any given staple length /, we study the effect of this cutoff using that.
In Figure 6.15 we show the quasi-TMDPDF for different values of / where z,,,, is set accordingly.
We observe that at small value of b, the quasi-TMDPDF is consistent for all different values of / and
correspondingly z,..... At b = 3a however, we observe small deviations especially at very small and
large values of x. In particular we observe more oscillations for larger / and larger cutoff in z. This is
expected since the data is more noisy at larger shapes of the staple-shaped operator. The results are
still quite consistent with each other. One way to take into account the effect of the cutoff would be to
follow [147] and extract the deviation into systematic errors. In this exploratory work, we fix / = 8a
and use the result for z,.,, = 14a for the rest of the calculations.
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Figure 6.15: quasi-TMDPDF in the momentum space for different values of [ for b = la (left) and b = 3a
(right).

In Figure 6.16 we show the quasi-TMDPDF for b upto 4a ~ 0.36fm. The quasi-TMDPDF is
calculated at P* = 1.7 GeV for both the lattice ensembles. All the functions at different b go smoothly
to zero at large and small x. We observe that the peak increases with increasing b and also shifts
slightly to larger x. This increment could partly be cancelled by the soft function and the Collins-Soper
kernel and we expect to find a more consistent TMDPDF at larger transverse separations after we
perform the matching.

6.2 Collins-Soper kernel

é’z —1In i K (b, ) % £ A
FTMD (3 by, l) = Hf(? e (r) " 82(b, 1) f(x,b,,u,fz)+0( Z (PZ)Z’ bzé}
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Figure 6.16: quasi-TMDPDF in the momentum space for different values of b for [ = 8a for cA211.53.24 (left)
and cA211.30.32 (right).

We obtain the Coliins-Soper kernel by taking a ratio of the quasi-TMDWF at different rapidity
(momentum boost) as defined in Eq. (3.58).

(Bl 2
K(b,u) = In

- - (6.10)
%ln(gm) qu (x,b,u,{zz,gzz)

Z,

where { 2 and ¢ ,, are the two different rapidities. ¥ is the quasi-TMDWF in the momentum space. As
discussed in Section 5.2.2, we obtain the quasi-TMDWF from a two-point function between a pion
and the staple-shaped operator. By taking a ratio of the two-point function with the ultra-local case,
we extract the quasi-TMDWF as follows

2

C;P'(b,1,z,t, PY)
2

C;r'(0,0,0,t, P%)

~ Jor(b 1,2, P)[1 +co(b, 1,2, PP)e ] 6.11)

In Figure 6.17 we show the aforementioned ratio at two different shapes of the staple. As we expect, a
plateau is observed at large enough time separation. We obtain the quasi-TMDWF by fitting the ratio
to a constant. The fitting range is set dynamically for different operators, depending on how quickly
the plateu is reached.

Since the quasi-TMDWF has exactly the same operator as the quasi-beam function, the same
arguments for renormalization (as discussed in previous section) apply. Therefore we use the
rectangular Wilson loop to cancel the divergence associated with the length of the staple and the
SDR method for the renormalization. In Figure 6.18 we show the renormalized quasi-TMDWF at
two different momenta 87/24a ~ 2.2 GeV and 127 /24a ~ 3.4 GeV. We observe that in this case both
the real and imaginary parts are symmetric with z. The imaginary part increases with increasing
transverse separation. These observations are consistent with previous studies [65, 69, 70].

In a similar manner to the quasi-TMDPDF, we perform a discrete Fourier transform to obtain the
quasi-TMDWF in the momentum space. In Figure 6.19 we show the quasi-TMDWF in the momentum
space for P° = 87 /24a. We observe a symmetric real part around x = 0.5. Since the imaginary part
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Figure 6.17: Extraction of the bare unsubtracted quasi-TMDWF for two different staple shapes. The bands
indicate the fitted plateau and the range of the fit.
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Figure 6.18: Real (left) and imaginary (right) parts of the quasi-TMDWF in the MS scheme using the SDR
renormalization method at P* = 87/24a ~ 2.2 GeV (top) and P* = 121 /24a ~ 3.4 GeV (bottom).

is symmetric, we see similar behaviour in the momentum space as well.
For Collins-Soper kernel, we take the ratio of the quasi-TMDWF at two different rapidities. In
Figure 6.20 we show the ratio of the quasi-TMDWF at P* = 127/24a and 87 /24a. We expect this
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Figure 6.19: Real (left) and imaginary (right) parts of the quasi-TMDWF in the momentum space for
P* =8n/24a ~ 2.2GeV at b = la (red) and b = 3a (blue).

ratio to be independent of x and we observe a fairly constant behaviour for a large range of x. We fit a
constant in the range x € [0.1,0.9] to extract the value of this ratio. In principle, this ratio should
be purely real. However, since the imaginary part of the quasi-TMDWEF increases with b, we also
observe a small imaginary part of the ratio at large . Although it is much smaller than real part, it is
still definitely non-zero. The authors of [69] also observed this and they included the imaginary part
into their systematic uncertainties. In this work, we do not consider the imaginary part.
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Figure 6.20: Real (left) and imaginary (right) parts of the ratio of quasi-TMDWFs in the momentum space.

Finally, we obtain the Collins-Soper kernel and also perform perturbative corrections upto 2-loop
order using [148]
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In Figure 6.21 we show the Collins-Soper kernel calculated in this work and compare it to previous
lattice studies. We observe that our results are consistent with the other studies. Our results at 2
different ensembles are also consistent with each other and completely agree at large enough b. A
publication with these results is currently in preparation [148].
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Figure 6.21: Our results for the Collins-Soper kernel compared with previous lattice calculations presented in
LPC 22 [69], ASWZ 24 [71] and SVZES 21 [67].
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Figure 6.22: Pion 3-point correlators for y, (top left), y, (top right), ysy, (bottom left) and y5y, (bottom right)
at b = 3a and P* = 2.2 GeV. The shaded region indicates the fitted plateau from which the form factor is
extracted.

Soft function takes the form of the following ratio

(7 (P')|3,(b)Tq5(b)G,(0)Tq, (0)| m(P))
f_o; dx f_o:o dx'HFF (x,x", P, P', ) ‘i‘gq (x', b, u, P') ‘i’qq(x, b,u, P)

S, (b, ) = (6.14)
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where the matching hard kernel H_is given by [113]

’

x
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11— x| ut ‘
(6.15)
where
ho=h)>=4,h)* =h}" ==8,hy =h]> =-2,h]* = h]"* = 1. (6.16)

In Figure 6.22 we show the 3-point correlator from which we can extract the meson form factor in the
numerator of Eq. (6.14) for different Dirac I insertions at » = 3a and P* = 87/24a ~ 2.2 GeV. For the
soft function, we build the combination y, +ysYy, , since this cancels the higher twist contributions [64].
In Figure 6.23 we show the soft function calculated in this work and compare it to previous lattice
calculation by LPC [65]. We observe that our results are comparable to the LPC calculation and have
a similar behaviour with b. Our results for 2 different ensembles are also consistent with each other.
A publication with these results is currently in preparation [148].
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Figure 6.23: Our results for the reduced soft function compared with previous lattice calculation in [65].
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Now that we have calculated all the ingredients on the right hand side, we can perform the matching

to obtain the light-cone TMDPDEF. The perturbative matching kernel H ; is given by [62]

2
Hf(g ):1_ﬁcF —4+%+21n(%)—1n2(%) 0 (a) (6.18)

Z
)
7 an 7 7

where C. = 4/3. However, since the Collins-Soper kernel and the reduced soft function also contain
perturbative corrections, in order to perform a matching consistent upto O(«a,), we need to include all
the necessary corrections. The final expression for the physical TMDPDF perturbatively matched up
to 1-loop order is [148]

FMP by, &) = f(x b, ) exp (=In (£, /8) Ko (by )

) _
x{l—ﬁcF —4+”—+21n(‘(—;)—1n2(%)—1n(§) (4—1%%):%)
4 6 u u e u
(6.19)
+0(a§)}
where . -
JI:/ dx¥ (x, b, P*) J2:/ dx¥ (x,b, P*) In |x|
13:/ dx¥ (x,b, P*)In|1 - x| J4=/ dx‘i‘(x,b,Pz)lnzlx| (6.20)

JS:/ dx¥ (x, b, P*) In* |1 - x|

(o)

Here f(x, b, u, ¢ .) is the quasi-TMDPDF, K; (b, u1) is the leading order Collins-Soper kernel which
1

is obtained from the first term of Eq. (6.12), and Sf’ Lo 1s the reduced soft function also at leading
order which is obtained by setting H = 1 in Eq. (6.14). The colors in Eq. (6.19) indicate which part the
different corrections belong to. The red part comes from the matching kernel of the quasi-TMDPDF
and TMDPDF. The blue part comes from the Collins-Soper kernel which is identical to the 1-loop part
in Eq. (6.12). The green part comes from the reduced soft function. This part is different compared to
the Eq. (6.15). This particular form of the matching is obtained by taking the matching kernel out of
the integral over x and x". One then obtains the matching in terms of the 5 integrals J;. The correction
coming from the Collins-Soper kernel includes an "unphysical" imaginary part. We expect this to
AéCD M 1

Z (P2 bzgz

be cancelled by power mass corrections O ( . In the present calculation, we have
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ignored this imaginary part.

In Figure 6.24 we show the physical TMDPDF matched upto O(«) for transverse separations upto
b =4a ~ 0.36 fm. We perform the matching at { = ,u2 = 4GeV>. We observe that the TMDPDF is
consistent for all values of b especially for x > 0.4.
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Figure 6.24: Physical TMDPDF matched upto O(«,) for lattice ensembles cA211.53.24 (left) and cA211.30.32
(right). Both calculated at the same physical rapidity and matched to { = ,u2 =4GeV?.
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Figure 6.25: Comparison of our result to [72] at b = 0.36fm. The background plot is taken from Figure
19 of [72] where they compare their results to global fits performed in ART23 [29], BHLSVZ22 [30],
MAPTMD?22 [31], SV19 [32], and PV17 [33].

We compare our result to the recently published first calculation of the unpolarized TMDPDF on
the lattice [72] for a comparable transverse separation in Figure 6.25. We must note that the LPC
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calculation is much more involved. The authors of [72] performed their calculation on a physical
point ensemble. They also used different heavier valence pion masses and different momenta and
did an extrapolation to the physical pion mass and infinite momentum. They also did an estimate of
the systematic uncertatities. It is still interesting how well our exploratory calculation agrees with
their result. We also observe that our result from the 2 ensembles completely agree with each other.
However, a more systematic study is needed to understand the pion mass dependence and finite volume
effects. These results for the matching along with the full matching for the physical point ensemble
will appear in a forthcoming publication [149].
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Summary and outlook

The main objective of this thesis was the calculation of the unpolarized transverse momentum
dependent parton distribution functions for the nucleon in first principle using lattice QCD. For
that purpose, we have calculated the quasi-TMDPDF, the Collins-Soper kernel and the reduced soft
function nonperturbatively. We have systematically studied the renormalization of the underlying
staple-shaped Wilson line quark bilinear operators and have shown that mixing from other operators is
negligible. We have studied an already proposed alternative renormlization procedure called SDR
and proposed a similar method using the RI/MOM scheme called RI-short. We found the results
from the two different schemes to be compatible especially at large distances. We also found our
calculation of the Collins-Soper kernel and the soft function to be comparable to previous lattice
calculations. Finally, we performed a consistent matching to the light-cone TMDPDF up to 1-loop
order in perturbation theory. We compared our result to a recently published calculation and found
them to be consistent. Given the exploratory nature of this work, we find the results to be promising.
We have also developed a more efficient method for computation of the staples which reduces the
computational cost exponentially and would be useful for future calculations on larger lattice sizes.

These first results are not yet at the point to be useful for future extractions of TMDPDFs from
experimental data. However, we believe that with the ongoing calculations on the physical pion mass
ensemble and the upcoming work on the continuum extrapolation, we will be able to provide results
that are useful for the global fits of TMDPDFs. We also intend to perform a thorough study of the
systematic uncertainties in the future.
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APPENDIX A

Conventions

In this work, the Dirac gamma matrices are defined according to the chiral representation, where

0 e,
Y=\ o (A.1)
7
with e,, being the 2 X 2 matrices

where o, are the Pauli matrices

0 1 0 —i 10
‘712(1 0)’ 0-2:(1' ol)’ “3=(0 —1) (A-3)

In this definition, one gets

Yu =Y {yprv} =26, (A4)
One also defines
1 0
Ys=YoY2¥s = V5= (A.5)
with the properties
ys=vi  v5=1 (A.6)
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