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Abstract

Understanding the anatomical structures of the body and brain, and their influence
on human health throughout the lifespan is of significant research and clinical interest.
Tracking of structural changes can provide insights into the physiological and patho-
logical integrity of body organs during aging; thus, they may serve as early markers
for disease detection. A common method to study the body’s internal organs in-vivo
is by extracting morphometric estimates from non-invasive medical images, such as
magnetic resonance imaging (MRI). However, before translating imaging data into
interpretable image-derived quantitative markers that can be used for downstream
analysis, the structures of interest must be segmented in the image, either manually or
automatically.

Manual segmentation of images is labor-intensive and expensive when large amounts
of data need to be analyzed (i.e., large cohort imaging studies). Therefore, automated
segmentation techniques are required. Achieving accurate segmentation of any body
structures is challenging due to inherent complexities such as large anatomical varia-
tions across subjects, partial volume effects, inhomogeneous signals, and the presence
of artifacts. Recent advances in machine learning, particularly deep learning-based
methods, have enabled reliable and accurate segmentation of multiple structures (e.g.,
brain structures, eye vessels, vertebrae, etc.). Despite these advances, there is still a
lack of reliable and thoroughly validated automated methods for many anatomical
structures. Examples include the abdominal adipose tissue, olfactory bulbs, and hy-
pothalamic sub-structures, which are of interest in the Rhineland Study, an ongoing
large population-based cohort study upon which this thesis will be based.

In this work, we fill this gap by introducing three novel open-source deep learning-
based tools for segmenting and quantifying the structures of interest. Each pipeline
is tailored to a specific segmentation task, as each task presents unique characteristics
and challenges. Firstly, we introduced FatSegNet, a novel pipeline designed for the
automated localization and segmentation of adipose tissue on abdominal Dixon MRI
scans. The proposed pipeline improves segmentation performance compared to tradi-
tional fully convolutional neural networks (F-CNNs) by enhancing feature selectivity
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within the network through the incorporation of competitive learning. Furthermore, the
pipeline presents a novel data-driven approach for multi-view prediction aggregation
for scans with anisotropic resolution. Next, we implemented the first tool for the auto-
mated segmentation of olfactory bulb tissue in high-resolution (HiRes)/sub-millimeter
T2-weighted whole-brain MR images. Our tool improves the detection of fine-grained
structures, such as the olfactory bulb, by employing a novel design that removes
redundant information and suitably introduces self-attention layers to competitive
F-CNNs, improving performance by boosting the network’s attention to spatial context.
Lastly, we introduced HypVINN, the first tool for automated sub-segmentation of the
hypothalamus and adjacent structures on isotropic T1-weighted (T1w) and T2-weighted
(T2w) brain MR images. HypVINN extends the capabilities of competitive F-CNNs
for the segmentation task by enabling input flexibility. Our proposed model builds
on the concept of embedding the input modalities into a shared latent space that can
be computed at inference time independently of the available modalities. Therefore,
HypVINN can generate accurate segmentations of the hypothalamic structures even if
only one input modality (T1w or T2w) is available (i.e., hetero-modal segmentation).

All our proposed tools were extensively validated in terms of segmentation accuracy,
generalizability to in-domain and out-of-domain scenarios, test-retest reliability, and
sensitivity to replicate known volumetric effects from the structures of interest. We
showed the proof-of-concept of our novel pipelines in the Rhineland Study, where our
segmentation pipelines have already been integrated into the study’s automated image
analysis framework. To date, the tools have processed MRI scans from about 8000
participants of the Rhineland Study – demonstrating the versatility of deep-learning
methods in solving the desired semantic segmentation tasks in a population-based
scenario. Our tools are publicly available (https://github.com/Deep-MI), enabling
other studies to benefit from our solutions. Our work will directly impact the research
community by enabling the reliable assessment of imaging-derived phenotypes for
structures that previously lacked robust automated tools for their evaluation.
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Zusammenfassung

Das Verständnis der anatomischen Merkmale des Körpers und des Gehirns und ihres
Einflusses auf die menschliche Gesundheit während der gesamten Lebensspanne ist
von großem Interesse für Forschung und Klinik. Diese Merkmale können Einblicke
in die physiologische und pathologische Integrit.t der Körperorgane während des
Alterns geben und somit als frühe Marker für die Erkennung von Krankheiten dienen.
Eine gängige Methode, um Einblicke in die inneren Organe des Körpers in-vivo
zu gewinnen, ist die Extraktion von Phänotypen aus nicht-invasiven medizinischen
Bildern, wie der Magnetresonanztomographie (MRT). Bevor jedoch Bildgebungsdaten /
bildgebende Daten in interpretierbare Phänotypen übersetzt werden können, die auch
für nachgelagerte Analysen verwendbar sind, müssen die relevanten Strukturen im
Bild segmentiert werden, entweder manuell oder automatisch.

Wenn große Datenmengen analysiert werden müssen (z. B. bei großen Kohorten-
Bildgebungsstudien), ist eine manuelle Segmentierung von Bildern arbeitsintensiv und
unpraktikabel. Daher sind automatische Segmentierungsverfahren zu bevorzugen.
Eine genaue Segmentierung jeglicher Körperstrukturen ist aufgrund einiger inhärenter
Komplexitäten eine Herausforderung, wie beispielsweise der großen anatomischen
Unterschiede zwischen den Probanden, partieller Volumeneffekte, inhomogener Sig-
nale und des Vorhandenseins von Artefakten. Jüngste Fortschritte im Bereich des
maschinellen Lernens, insbesondere auf bei Methoden die auf Deep-Learning basieren,
ermöglichen eine zuverlässige und genaue Segmentierung verschiedener Strukturen
(z. B. Gehirnstrukturen, Augengefäße, Wirbel usw.). Trotz dieser Fortschritte gibt es
für einige Körperstrukturen immer noch keine zuverlässigen automatisierten Metho-
den. Im Kontext der Forschungsinteressen der Rheinland Studie, einer laufenden groß
angelegten bevölkerungsbasierten Kohortenstudie, auf der diese Dissertation basiert,
fehlen zuverlässige automatisierte Segmentierungstools für einige Strukturen, wie das
abdominale Fettgewebe, die Riechkolben und die hypothalamischen Substrukturen.

In dieser Arbeit schließen wir eine Lücke im Repertoire existierender Bildgebungsver-
fahren, indem wir drei neuartige Open-Source Deep-Learning-basierte Tools für die
Segmentierung und Quantifizierung der relevanten Strukturen vorstellen. Jede Pipeline
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ist auf eine bestimmte Segmentierungsaufgabe zugeschnitten, da sie einzigartige Merk-
male und Herausforderungen aufweist. Zunächst haben wir FatSegNet, eine neuartige
Pipeline, die für die automatische Lokalisierung und Segmentierung von Fettgewebe
auf abdominalen Dixon-MRT-Scans, entwickelt. Als Nächstes haben wir das erste Tool
für die automatische Segmentierung des Gewebes des Riechkolbens in hochauflösenden
(HiRes)/sub-Millimeter T2w-Ganzhirn-MR-Bildern implementiert. Schließlich haben
wir HypVINN eingeführt, das erste Tool zur automatischen Subsegmentierung des
Hypothalamus und angrenzender Strukturen auf isotropen T1w- und T2w-MR-Bildern
des Gehirns, das robust gegenüber fehlenden Modalitäten ist. Die vorgeschlagenen
Tools nutzen modernste Deep-Learning-Techniken und bieten damit eine effiziente und
skalierbare Lösung für die Quantifizierung und Beurteilung von aus der Bildgebung
abgeleiteten Phänotypen der relevanten Strukturen. Alle von uns vorgeschlagenen Tools
wurden hinsichtlich der Segmentierungsgenauigkeit, der Verallgemeinerbarkeit, der
Test-Retest-Reliabilität und der Sensitivität bei der Replikation bekannter volumetrischer
Effekte von interessierenden Strukturen umfassend validiert. Wir konnten den prak-
tischen Nutzen unserer neuartigen Pipelines in der Rheinland Studie demonstrieren,
wo unsere Segmentierungspipelines bereits in das automatisierte Bildanalysesystem
der Studie integriert wurden. Aktuell wurden mit den Tools MRT-Scans von etwa
8000 Teilnehmern der Rheinland Studie verarbeitet — dies veranschaulicht die Vielseit-
igkeit von Deep-Learning-Methoden bei der Lösung der gewünschten semantischen
Segmentierungsaufgaben in einem bevölkerungsbasierten Kontext. Unsere Tools sind
öffentlich zugänglich (https://github.com/Deep-MI), so dass auch andere Studien
von unseren Lösungen profitieren können. Unsere Arbeit wird einen direkten Ein-
fluss auf die Forschungsgemeinschaft haben, da sie eine zuverlässige Bewertung von
bildgebungsbasierten Phänotypen ermöglicht aus Geweben, für die es bisher keine
zuverlässigen automatisierten Werkzeuge gab.
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Chapter 1.

Introduction

1.1. Motivation

Noninvasive medical imaging has allowed the visualization of the body’s internal
organs in-vivo, quickly and without the need for invasive surgical procedures. Due
to the advantages of the noninvasive acquisition component, this type of medical
imaging has not only become a standard diagnostic tool, but also an important research
resource. Over the past decades, noninvasive imaging studies have provided deeper
insights into anatomical structures of the body and the brain and their relationship
with physiological, behavioral, and cognitive phenotypes. These insights into how
structural and functional integrity of body organs influences human health are crucial,
for example, in generating markers for early disease diagnosis, identifying risk factors
for disease progression, and understanding age-related changes.

Traditionally, imaging studies first translate the imaging data into interpretable
image-derived phenotypes (e.g., volume, area, thickness of a region of interest) that can
be used for downstream statistical analysis. However, a prerequisite for the assessment
and quantification of any image-derived phenotype from a region or structure of interest
lies in its detection and segmentation within medical images. Given the extensive scale
of contemporary imaging studies, manual processing of medical images is impractical
due to the nature of manual annotations, which are very time-consuming and heavily
depend on the expertise of the user.

In recent years, a myriad of automatic and semi-automatic methods have been
proposed in the literature to address various medical segmentation challenges. Despite
the amount of methods proposed, applying them to existing imaging studies is not
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Chapter 1. Introduction

always possible to several reasons: i) lack of publicly available methods and datasets,
particularly access to a method’s manual annotations, ii) methods do not generalize
well to scans different from the training ones or require extensive fine-tuning of
hyperparameters for their implementation, iii) not all structures of the human body are
visible in all types of imaging, iv) significant differences exist in acquisition parameters
across different datasets, and v) substantial anatomical variations exist across subjects.
Consequently, some structures in the human body still lack a reliable high-throughput
automatic imaging tool for their analysis.

In the context of the research interest of the Rhineland Study, an ongoing large
population-based cohort study upon which this thesis will be based, some of the
structures missing a reliable automated segmentation tool are abdominal adipose
tissue, olfactory bulbs, and hypothalamic sub-structures [1, 2, 3]. These structures
pose different challenges that have impeded the widespread implementation of post-
processing solutions based on traditional automatic and semi-automatic techniques,
such as multi-atlas-based methods or intensity and shape feature approaches (e.g.,
fuzzy clustering, k-means clustering, graph cut, active contour methods, and statistical
shape models).

Supervised learning using deep learning, more precisely fully convolutional neural
networks (F-CNNs) [4, 5], has become the preferred method in the medical computer
vision community for solving semantic segmentation problems, as they often outper-
form other traditional methods [6, 7, 8, 9, 10, 11, 12, 13]. F-CNNs have the capability
to automatically extract intrinsic features and integrate global context to resolve local
ambiguities in an end-to-end fashion, consequently enhancing the outcomes of the
predicted models [5]. Additionally, F-CNNs can significantly accelerate computation
time by utilizing graphical processing units (GPUs). In this work, we propose employ-
ing deep learning to address the three distinct semantic segmentation tasks of interest
within the Rhineland Study, as it offers a more scalable, reliable, and efficient solution.

1.2. Objectives

Based on the research interests of the Rhineland Study, in this thesis, we focused on
three different semantic segmentation tasks: abdominal adipose tissue segmentation,
olfactory bulbs segmentation, and sub-segmentation of the hypothalamus and adjacent
structures. We describe the challenges, design, development, and implementation of
automated deep learning-based solutions for these tasks in a population-based scenario.
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Chapter 1. Introduction

1.3. Contributions

The major contribution of this thesis is the design, implementation and extensive
validation of three distinct automated open-source deep learning-based pipelines for
the segmentation of abdominal adipose tissue, olfactory bulbs, and sub-segmentation
of the hypothalamus and adjacent structures. Until now, these three structures lacked
robust automated tools for their analysis. Therefore, our work fills this gap and will
directly impact researchers from the Rhineland Study and other studies interested in
these structures.

Each pipeline is tailored to a specific segmentation task and includes components
that improve segmentation performance and extend the capabilities of traditional deep
learning methods. The main contributions per pipeline are as follows:

• Abdominal adipose tissue segmentation pipeline: we introduced FatSegNet for
the automated localization and segmentation of adipose tissue on abdominal
anisotropic Dixon MRI scans. The main methodological contribution of our
FatSegNet pipeline is the inclusion of a novel competitive 2D fully convolutional
neural network termed CDFNet. CDFNet is a UNet-like architecture that promotes
feature selectivity within a network by incorporating competitive learning through
maxout activation units. The CDFNet replaces the traditional concatenation
units used for information aggregation within F-CNNs with maxout units. The
inclusion of maxout showcased improved segmentation performance compared
to other UNet-like architectures that rely on concatenation units. Furthermore,
to improve performance on the anisotropic scans from the Rhineland study,
we included a novel multi-view aggregation scheme that learns to weigh the
prediction maps from three independent CDFNets working on different anatomical
views (axial, coronal, and sagittal). Unlike standard hard-coded schemes that
globally weigh each view, our proposed approach learns to weigh each view
differently at the voxel level.

• Olfactory bulb segmentation pipeline: we implemented the first tool for the
automated segmentation of the olfactory bulb (OB) tissue in high-resolution
(HiRes) sub-millimeter T2w whole-brain MR images. The contributions of our
OB tool include the design of an efficient segmentation pipeline that first removes
unnecessary background information from whole-brain T2w scans by automati-
cally localizing and cropping a smaller region (approximately one-third of the
original size) containing the OBs of both hemispheres. This step reduces the
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Chapter 1. Introduction

spatial exploratory span and forces the remainder of the pipeline to focus only
on the important information surrounding the OBs. Afterwards, the cropped
region is segmented by our novel 2D AttFastSurferCNN – a competitive UNet-like
architecture with a self-attention mechanism that enhances attention to spatial
information by improving the modeling of local and global-range dependencies,
thereby boosting the learning of fine-grained structures such as the OB. Our
proposed model recovers the OB significantly better than traditional 2D and 3D
deep learning variants without attention mechanisms.

• Hypothalamus sub-segmentation pipeline: we implemented the first tool for
automated sub-segmentation of the hypothalamus and adjacent structures on
high-resolutional brain MRI that is robust to missing modalities (i.e., hetero-
modal segmentation). The contributions of this work are the following: Firstly, we
introduced a new hypothalamic labeling protocol adapted to the higher spatial
resolution offered by 3T 0.8 mm isotropic MR images. The proposed protocol
presents a more fine-grained parcellation of the hypothalamus and neighbouring
structures. Secondly, we presented HypVINN, a novel automated hypothalamic
parcellation tool with a novel hetero-modal VINN (HM-VINN) architecture at
its core. HM-VINN is based on our voxel-size independent network (VINN),
which allows for multi-resolution segmentation. We extend the input-flexibility
capabilities of the VINN architecture to accommodate hetero-modal segmentation
in a single model. HM-VINN accomplishes this by first translating the input
modalities into independent latent spaces. Afterwards, the modalities’ embedded
information is merged into a shared latent representation within the network. The
shared latent space is then forwarded through the remaining network to solve the
desired task. During inference, the shared representation is computed from the
available modalities, making our model robust to all input-modality combinations
included in training. Even with the added capability to accept flexible inputs, our
model matches or exceeds the performance of state-of-the-art methods with fixed
inputs.

Another significant contribution of our work is the extensive validation we conducted
to ensure that our tools are accurate, robust, and reliable for use by the scientific
community. We thoroughly validated all the proposed tools in terms of four key
performance properties: accuracy, generalizability, reliability, and sensitivity. The
proof-of-concept for the proposed deep learning solutions was presented in three
peer-reviewed publications, which form the basis of the results presented in this thesis.
The included publications are:
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• Santiago Estrada, Ran Lu, Sailesh Conjeti, Ximena Orozco-Ruiz, Joana Panos-
Willuhn, Monique M.B. Breteler, & Martin Reuter (2020). "FatSegNet: A fully
automated deep learning pipeline for adipose tissue segmentation on abdominal dixon
MRI". Magnetic Resonance in Medicine, 83 (4), 1471 - 1483.
DOI: 10.1002/mrm.28022

• Santiago Estrada, Ran Lu, Kersten Diers, Weiyi Zeng, Philipp Ehses, Tony Stöcker,
Monique M.B Breteler, & Martin Reuter (2021). "Automated olfactory bulb segmenta-
tion on high resolutional T2-weighted MRI". NeuroImage, 242, 118464.
DOI: 10.1016/j.neuroimage.2021.118464

• Santiago Estrada, David Kügler, Emad Bahrami, Peng Xu, Dilshad Mousa,
Monique M.B. Breteler, N.Ahmad Aziz, & Martin Reuter (2023). "FastSurfer-
HypVINN: Automated sub-segmentation of the hypothalamus and adjacent structures on
high-resolutional brain MRI". Imaging Neuroscience.
DOI: 10.1162/imag_a_00034

Furthermore, the author contributed to other publications which, however, are not
part of this thesis:

• Leonie Henschel, Sailesh Conjeti, Santiago Estrada, Kesten Diers, Bruce Fischl, &
Martin Reuter (2020). "Fastsurfer-a fast and accurate deep learning based neuroimaging
pipeline". NeuroImage, 219, 117012.
DOI: 10.1016/j.neuroimage.2020.117012

• Tong Wu, Santiago Estrada, Renza van Gils, Ruisheng Su, Vincent WV Jaddoe, Ed-
win HG Oei, & Stefan Klein (2023). "Automated Deep Learning–Based Segmentation
of Abdominal Adipose Tissue on Dixon MRI in Adolescents: A Prospective Population-
Based Study". American Journal of Roentgenology, 1-12.
DOI: 10.2214/AJR.23.29570

• Alexandra Koch, Rüdiger Stirnberg, Santiago Estrada, Weiyi Zeng, Valerie Lohner,
Mohammad Shahid, Phillip Ehses, Eberhard Pracht, Martin Reuter, Tony Stöcker
& Monique M.B. Breteler (2023). "Versatile MRI acquisition and processing protocol
for population-based neuroimaging". Nature Protocols (Under review).

• Rika Etteldorf, Annabell Coors, Santiago Estrada, Monique Breteler, & Ulrich
Ettinger (2023). "Regional Brain Structure Mediates Age-Related Decline in Oculomotor
Control". Neurobiology of Aging (Under review).
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• Peng Xu, Santiago Estrada, Rika Etteldorf, Dan Liu, Mohammad Shahid, Weiyi
Zeng, Deborah Früh, Martin Reuter, Monique M.B. Breteler & N.Ahmad Aziz
(2024). "Hypothalamic integrity is associated with age, sex and cognitive function across
lifespan: A comparative analysis of two large population-based cohort studies". Nature
Communications (Submitted).
DOI: 10.1101/2024.04.29.24306537

• Konstantinos Melas, Valentina Talevi, Rika Etteldorf, Santiago Estrada, Dennis M.
Krüger, N.Ahmad Aziz, Andre Fischer & Monique M.B. Breteler (2024). "Circulat-
ing microRNAs are related to cognitive domains in the general population". Alzheimer’s
& Dementia: The Journal of the Alzheimer’s Association (Submitted).
DOI: 10.1101/2024.05.07.24306994

• Xingwang Yang, Santiago Estrada, Monique M.B. Breteler & N.Ahmad Aziz
(2024). "Association between brain structure and fine motor function: Findings from the
population-based Rhineland Study". Neurology (Submitted).

• Weiyi Zeng, Konstantinos Melas, Santiago Estrada, N.Ahmad Aziz, & Monique
M.B. Breteler (2024). "Olfactory bulb volume reflects olfactory network organization
and odor dysfunction". Brain (Submitted).

1.4. Organization

This thesis is divided into the following five sections:

• Chapter 2 presents an overview of the principles of MRI imaging used in popula-
tion studies, particularly focusing on the Rhineland Study. It also introduces the
technical background necessary for understanding the methodological concepts
addressed in this thesis.

• Chapter 3 presents a summary of our publication "FatSegNet: A fully automated
deep learning pipeline for adipose tissue segmentation on abdominal dixon
MRI" [1].

• Chapter 4 presents a summary of our publication "FastSurfer-OB: Automated
olfactory bulb segmentation on high resolutional T2-weighted MRI" [2].

• Chapter 5 presents a summary of our publication "FastSurfer-HypVINN: Auto-
mated sub-segmentation of the hypothalamus and adjacent structures on high-
resolutional brain MRI" [3].

• Chapter 6 concludes this thesis by discussing the impact of the presented methods
and providing an outlook of potential future directions.
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Chapter 2.

Background

2.1. The Rhineland Study

This work mainly uses imaging data from the Rhineland Study (www.rheinland-
studie.de). The Rhineland Study is designed to investigate the etiology and predic-
tors/risk factors of age-related diseases, as well as physiological and pathophysiological
changes that occur with aging as ilustrated in Figure 2.1. This prospective cohort study,
located in Bonn, Germany, includes participants aged 30 to 100 years at baseline from
the general population, with re-examinations every 3 to 4 years. The study emphasizes
deep phenotyping, covering cardiovascular health, physical activity, lifestyle, mental
health, diet, brain and abdominal imaging, cognition/neurology, anthropometry, bio-
material, vision, olfaction, medical history and medication, and multi-omics analyses
(e.g., metabolomics, proteomics, transcriptomics, microbiomics, immunophenotyping,
epigenomics, and genomics). The study protocol was approved by the ethics committee
of the University of Bonn Medical Faculty and is conducted according to the Inter-
national Conference on Harmonization Good Clinical Practice standards (ICH-GCP),
with written informed consent obtained in accordance with the Declaration of Helsinki.
Currently, data from more than 10,000 participants at baseline are already available,
with second round examinations and recruitment of new participants ongoing.

During the Rhineland Study examinations, participants undergo a 1-hour brain
imaging protocol, including the following MRI contrasts: T1-weighted (T1w), T2-
weighted (T2w), Fluid-attenuated inversion recovery (FLAIR), diffusion-weighted,
susceptibility-weighted, resting-state functional, and abdominal Dixon MRI, with a
total net scan time of around 45 minutes. Furthermore, an optional extra acquisition
time (maximum 10 minutes) is available for a free protocol. An illustration of the
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● Prospective cohort study
● Goal: More than 20,000 people
● Aged >30 years at baseline
● Re-examinations every 3 to 4 

years
● Follow-up for 30+ years
● Bonn, Germany

~8-hour deep phenotyping assessment

Cardiovascular:
Blood pressure, 
microcirculation, resting ECG

Physical activity:
Muscle strength, res/activity 
cycles

Questionnaire:
Personal data, lifestyle, 
personality, stress

Nutrition:
Dietary habits, Food frequency 
questionnaires

Cognition:
Attention, memory, executive 
functions

Brain Imaging:
Structural, diffusion, resting 
state fMRI

Anthropometry:
Height, weight, body 
composition

Biomaterials:
Blood, Urine, stool, hair

Ophthalmology:
Retinal imaging, vision, 
examination of the anterior 
segment of the eye

Medical history:
Past and present illnesses, 
medication

Etiology of 
diseases

Risk prediction,
Ageing

Novel
interventions

and treatments

Prevention of 
disease

Figure 2.1.: The Rhineland Study. A prospective community-based cohort study lo-
cated in Bonn, Germany, which started in 2016. The study aims to contribute
to the prevention, early detection and treatment of neurodegenerative and
other age-related diseases. Participants undergo approximately 8-hour deep
phenotyping assessment, including detailed brain imaging. Image created
with BioRender.com.

acquired sequences is presented in Figure 2.2. MR scans were collected at two different
sites using identical 3 Telsa (3T) Siemens MAGNETOM Prisma MRI scanners equipped
with 64-channel head-neck coils. In the next sections, a more detailed introduction to
the T1w, T2w, and Dixon MRI contrasts will be presented, as these are images used
during this work.

2.2. Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a widely utilized noninvasive imaging modality.
In the medical field, MRI is mostly used as it provides unique soft tissue contrast,
allowing for the visualization of organs, muscles, nerves, and other structures with gen-
erally superior contrast compared to other non-invasive modalities such as computed
tomography (CT). Furthermore, unlike X-rays or CT scans, MRI does not use ionizing
radiation, making it a preferred choice when long or repeated acquisitions are required
(e.g., multiple contrast acquisitions in imaging studies or longitudinal studies) [15, 16].

MRI operates by utilizing the behavior of a nuclear spin when exposed to a strong
external magnetic field. The primary nucleus involved in MRI is the proton found
in hydrogen, which, when interacting with the external field, causes the proton spin
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Figure 2.2.: Rhineland Study MRI protocol. Examples of the unprocessed MRI data
collected in the Rhineland Study. Top row: T1- and T2-weighted images,
FLAIR, and one example of the sequences acquired in the free protocol
(high-resolution hippocampal subfields imaging). Middle row: The resting
state-fMRI data and a b = 0 scan without diffusion weighting and diffusion-
weighted images for b = 1000, 3000 and 6000 s/mm2. Bottom row: The
T2∗/susceptibility weighted and Dixon imaging data (Fat and Water image).
Adapted with permission from [14].

to precess around the field direction. The frequency at which the proton precess is
determine by the Larmor frequency:

ω0 = −γB0 (2.1)

where ω0 is the angular frequency, B0 is the magnitude of the applied magnetic
field and γ is the gyro-magnetic ratio of the particle of interest. The Larmor frequency
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is crucial for determining the resonance conditions required for the detection and
manipulation of nuclear spins [15, 16]. The ability to manipulate and subsequently
detect the combined precession of hydrogen spins in water, fat, and other organic
molecules allows for the generation of images as illustrated in Figure 2.3. A summary
of the basic steps performed by an MR scan for generating an image is as follows:

(A) Normal, random 
atoms' spins

(B) Atoms' spins 
align due to 

magnetic field

(C) Radio frequency 
pulse change spins 

direction

(D) Spins recover to (B), 
how quickly depending 

on tissue type

(E) Reconstructed 
image from recovery 
time in (D) and pulse 

sequence

RF

Figure 2.3.: Schematic of how magnetic resonance imaging (MRI) works. Protons
within brain and body atoms continuously spin, each with its spin oriented
differently. Through the application of a strong magnet, these spins can
align and orient in the same direction. Subsequently, a radiofrequency
pulse is applied, causing the spins of all atoms to tilt, while still maintain-
ing alignment. However, with time, these spins gradually revert to their
original positions. The rate at which this occurs varies depending on the
characteristics of the atoms, with some returning more rapidly than others.
Image created with BioRender.com.

1. Alignment in the Magnetic Field: When a patient enters the MRI scanner, their
body is exposed to a strong magnetic field. This magnetic field causes the protons
in the body’s hydrogen atoms to align with the magnetic field.

2. Radiofrequency (RF) Pulse: After alignment, a short burst of RF energy on the
precession frequency of hydrogen nuclei (protons) is applied to the body. This
pulse temporarily disrupts the alignment of the protons, causing them to flip
their alignment.

3. Relaxation: When the RF pulse is turned off, the protons begin to realign with
the magnetic field. As they do so, they emit energy, which is detected by the MRI
scanner.
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4. Signal Detection: The emitted energy is captured by receiver coils in the MRI
scanner.

5. Image Reconstruction: The detected signals are processed by a computer to
reconstruct images of the scanned area.

Different tissues in the body emit signals at various rates, enabling the MRI scan to
generate images with differing levels of contrast among different tissue types. Tissues
can be characterized by two distinct relaxation times — T1 (longitudinal relaxation
time) and T2 (transverse relaxation time) (see Figure 2.4). T1 represents the time
constant determining the rate at which excited protons return to equilibrium, while
T2 represents the time constant determining the rate at which excited protons reach
equilibrium or become out of phase with each other [15, 16]. Different MRI images
(i.e., MRI modalities) are created by varying the sequence of RF pulses applied and by
collecting the relaxation times of the different tissues [17]. Each modality is designed
to enhance the visualization of particular tissues. In this work, particular interest is
given to Dixon MRI for the quantification of adipose tissue, T2-weighted images for
the detection of the olfactory bulb, and both T1-weighted and T2-weighted images for
hypothalamus sub-segmentation.

a) T1 relaxation b) T2 relaxation

In phase Out of phase

Re-alignment Dephasing
Time

Si
gn

al
 In

te
ns

ity

CSF

White matter lesions

White matter 
Gray matter 

c) T2 relaxation times by tissue type

Figure 2.4.: MRI relaxation times. a) T1 relaxation: there is loss of energy that causes
the spinning atoms to realign with the main magnetic field; b) T2 relaxation:
there is a loss energy due to the loss of precessional phase across atom
(dephasing); c) T2 relaxation by tissue: different tissues in the body have
distinct relaxation times. Image created with BioRender.com and based on
the figure from [18].

2.2.1. T1-weighted and T2-weighted images

The most common MRI sequences are T1-weighted (T1w) and T2-weighted (T2w) scans.
T1w images are generated using short time to echo (TE) and repetition time (TR). TR
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Figure 2.5.: Comparison of brain T1-Weighted (A) and T2-Weighted images (B). A)
T1-weighted (T1w) images are characterized by the low signal intensity
(dark) of the cerebrospinal fluid (CSF) and by the light and gray contrast
of white matter (WM) and gray matter (GM), respectively. B) T2-weighted
(T2w) images are characterized by the high signal intensity (bright) of the
CSF and by the dark and light gray contrast of WM and GM, respectively.
Third column: T2w images allow for better visibility of the olfactory bulb
(OB) compared to the T1 counterpart; however, hypothalamic structures are
easier to identify on T1w images .

is the amount of time between successive pulse sequences applied to the same slice,
while TE is the time between the delivery of the RF pulse and the receipt of the echo
signal. The contrast and brightness of the T1w image are predominantly determined by
the T1 properties of the tissue. T1w images are part of most MRI acquisition protocols
as they have good anatomical resolution. Furthermore, it is the primary input modality
for most structural neuroimaging toolboxes such as FreeSurfer [19], BrainSuite [20],
SPM [21], ANTs [22], or FSL [23]. On the other hand, T2w images are generated using
longer TE and TR times, with the contrast and brightness predominantly determined
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by the T2 properties of the tissue. T2w images have a lower anatomical resolution
compared to their T1 counterpart; however, pathological tissues are more visible as
they appear hyperintense (bright areas) on T2 [18]. T2w images are usually acquired
paired with the T1w image, rather than as a standalone modality. Generally, whole
brain T1w and T2w images can be easily distinguished by observing the cerebrospinal
fluid (CSF), which appears dark on T1w images and bright on T2w images, as shown
in Figure 2.5.

2.2.2. Dixon MRI

In-phase (IN) image = Water ⊕ Fat  Opposed-phase (OP) image = Water ⊖ Fat

Water image = ½ (IN ⊕ OP) Fat image = ½ (IN ⊖ OP) 
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Figure 2.6.: Abdominal Dixon MR images. Diagram of a two point Dixon technique,
where the red arrow represent a water signal and the blue arrow a fat signal
for creating the four different images – In-phase, Opposed-phase, Fat and
Water.

The Dixon technique is an MRI sequence based on chemical shift and designed
to uniformly suppress the signal of fat. Fat-suppressed images (water image) are
particularly useful for musculoskeletal imaging as they provide better visibility for
structures such as muscle, joint fluids, etc. [24]. Moreover, the Dixon technique also
allows the simultaneous generation of non-fat suppressed images (fat image), which
can be used for adipose quantification. The Dixon method generates fat and water
images by exploiting the property that water and fat molecules precess at different
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rates [25]. Consequently, they alternate between being in-phase and opposed-phase
over time. Simultaneously acquiring both in-phase and opposed-phase signals enables
the generation of fat and water images by mathematically combining the fat and water
signals at the different phases, as illustrated in Figure 2.6 This technique in reality
generates a total of four images (in-phase, opposed-phase, fat only and water only). In
this work, we only used fat and water images for the detection and quantification of
abdominal adipose tissue.

2.3. Medical image segmentation

Medical image segmentation is the process of assigning a class to every pixel or voxel
in a medical image (e.g., X-rays, CT, MRI, ultrasound, etc.). Image segmentation is
performed with the aim of simplifying or transforming the representation of an image
into a form that is easier to analyze or from which information can be extracted (e.g.,
shape, volume, area, etc.) [26]. Image segmentation can be carried out manually, and
it is considered the gold standard in the medical community for any segmentation
task. However, this process is very time-consuming, prone to errors, and requires
specialized expertise, especially with medical data, where a medical background is
essential. These limitations, combined with the growing size of acquired medical
images, make manual annotations not a practical post-processing pipeline. Therefore,
automated segmentation methods are preferable as they allow for the faster processing
of large amounts of data, thus offering a more scalable solution.

Automatic segmentation of medical images is a difficult task due to inherent com-
plexities such as large anatomical differences across subjects, partial volume effects,
inhomogeneous signals, and the presence of artifacts [27]. So far, these limitations have
limited the implementation and widely adoption of automatic and semi-automatic
methods that rely on a priori hand-crafted features (e.g., intensity and shape features) [9,
1, 27]. A solution to these limitations has been atlas-guided techniques, which include
prior knowledge to help improve the segmentation task [28]. Atlas approaches create
prior knowledge by extracting information from a reference image, often called the
atlas. To improve the representation of anatomical structures, particularly the variability
across subjects, population-based or statistical atlases are created as they contain infor-
mation from multiple subjects. Atlas based methods work by first registering the input
image (target) with the atlas (reference); then, the anatomical prior knowledge from
the manual annotations is transferred to the target [29]. Even though multi-atlas-based
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techniques are widely used in medical imaging, they are computationally demanding,
and segmentation accuracy is highly dependent on the registration of the atlas with the
input image.

Lately, deep learning methods based on fully convolutional neural networks (F-
CNNs) [4, 5] have been shown to outperform standard segmentation methods, including
atlas-based approaches. F-CNNs don’t require the computation of pre-defined hand-
crafted features or computationally expensive pre-processing pipelines (e.g., registering
images) for their use. F-CNNs can automatically extract complex features and integrate
both local and global contextual information. Furthermore, these networks can also
learn hierarchical features through multiple layers, enabling them to capture intricate
patterns and relationships within the data. F-CNN techniques not only achieve better
segmentation performance but also have the added advantage of utilizing graphical
processing units (GPUs), significantly accelerating computational time compared to
techniques that run on central processing units (CPUs). These characteristics have
made deep learning the preferred choice in the medical computer vision community
for addressing semantic segmentation tasks when sufficient training data is available [7,
8, 9, 10, 11, 12, 13, 1, 2, 3, 30, 31, 32, 33, 34]. The following section will explain deep
learning for semantic segmentation in more detail.

2.3.1. Semantic segmentation using Deep Learning

Deep learning is a machine learning method that employs artificial neural networks
with many layers (hence "deep") to model and understand complex patterns and
representations in data [35, 36]. The primary advantage of deep learning, compared
to traditional machine learning methods that rely on the extraction of discriminative
heuristic features, is its ability to automatically extract, learn, and optimize the best
features for solving the task of interest (e.g., object detection, semantic segmentation, or
image classification) directly from the data itself.

Artificial neural networks (ANNs) are information processing systems inspired by
how the nervous system processes information. The key element is the large number of
connecting elements (neurons) working together to solve specific problems. An artificial
neuron consists of several inputs, which are multiplied by weights that quantify the
importance of the information reaching the neuron [36]. The sum of the weighted
inputs is computed, and the signal is processed by a non-linear activation function (e.g.,
ReLU, tanh, sigmoid)(see Figure 2.7 A). For a neuron with N inputs, the output signal
can be formulated as such:
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Figure 2.7.: Artificial neural networks (ANNs): A) An artificial neuron is the basis of
ANNs. Artificial neurons compute the dot product of their weights with
the input, followed by an activation function. B) Fully-connected neural
networks are created by stacking multiple ’neurons’ in a feed-forward
fashion and connecting all neurons from a given layer with the neurons
of the following layers. This network has the following distinct layers: i)
Input layers: the first layer that receives the raw data; ii) Hidden layers:
intermediate layers that transform the input into something the output layer
can use – these can be numerous, forming a ’deep’ network; iii) Output
layers: produces the final result, such as a classification or regression
outcome. Image created with BioRender.com.

f (x) = σ

(
N

∑
i=0

wixi + b

)
(2.2)

where the input is weighted by a weight vector w, a bias b, and σ is the activation
function. In other words, a single neuron is able to process input data to generate a
prediction. A neural network is constructed by connecting many simple “neurons,” so
that the output of one can be the input of another (see Figure 2.7 B). The information
flows through the network without receiving any feedback until the last layer; thus,
these networks are termed feed-forward networks. Neurons that are not in the input or
output layer are commonly referred to as hidden units. The hidden layers can be seen
as transforming the input in a non-linear way so that the problem can be solved in a
linear manner by the end of the network. Without non-linearities, a neural network
would be capable of only linear classification [36].
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Training ANNs involves adjusting the network parameters (i.e., weights and biases)
to minimize a loss function, which measures the difference between the predicted
output and the actual target. The network parameters are typically adjusted using a
process called backpropagation [37] combined with an optimization algorithm such
as stochastic gradient descent (SGD) [35]. The ANNs training process consists of first
feeding the input data into the neural network and generating the predicted output
(forward pass). Afterwards, the prediction error is computed through the loss function.
Using the backpropagation algorithm [37], the calculated error is then propagated
backward through the network (backward pass), layer by layer, to assess how much
each weight contributed to the global error. The computed gradient error is then used
to adjust the weights in a direction that minimizes the prediction error. The forward
and backward passes are done iteratively until the network converges. This learning
process allows the network to gradually learn the best weights to produce more accurate
outputs for a given set of inputs.

Training fully connected neural networks for image segmentation requires multiple
pairs of raw-intensity images and corresponding manual annotations (ground truth).
However, this type of network architecture for the segmentation task has the problem
of not being robust to variations in object positions, as it does not include spatial
context. Furthermore, for full-size input images, the number of learnable parameters is
extremely large, increasing the complexity of the model. To obtain local information
(for instance, from neighboring pixels in an image) and reduce the overall complexity
of the model in terms of the number of parameters, a new type of network termed
convolutional neural network (CNN) was introduced [35].

Convolutional Neural Network

A convolutional neural network (CNN) is a state-of-the-art neural network architecture
that replaces the classic linear transforms from neural networks with a convolutional
kernel [36]. CNN architectures are usually defined for structures that have more than
one dimension (e.g., images in 2D or volumes in 3D) because they allow for spatial
information to be included. The concept of CNNs is based on the understanding
that distinct local patterns are formed by groups of highly correlated values that
are not confined to specific local areas [35]. In other words, if a distinctive feature
can appear in one part of the image, it can occur anywhere. CNN architectures
are built from multiple sequences of layers, where each layer transforms a input
through a differentiable function (see Figure 2.8), with the goal of learning to recognize
hierarchical features [38]. The main layers in a CNN are:
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Figure 2.8.: Convolutional neural networks (CNNs): The structure of a CNN consists
of convolutional, pooling, and fully-connected layers. The convolution and
pooling layers are for extracting features, while the fully connected layers
are responsible for generating the final prediction. Image created with
BioRender.com.

• Convolutional layers: Convolutional layers are the core of a CNN and are where
most of the computational work is done. In these layers, the learnable parameters
are defined by the convolution of the input with a set of weights, called a filter or
a kernel. The filter is usually smaller than the input data; therefore, each filter
slides across the input, and the dot products between the entries of the filter and a
filter-sized input patch are computed to generate the feature maps (Figure 2.9-A).
Convolutional layers create multiple feature maps by applying different sets of
filters, each designed to detect various features like edges, and textures. Typically,
convolutional layers are followed by a non-linear activation function, such as
ReLU (Rectified Linear Unit) [39, 40], to introduce non-linearity into the model.
This non-linearity enables the network to learn more complex functions and
representations. The units of the feature maps can only connect to a small region
of the input, called the receptive field [36]. By stacking consecutive convolutional
layers, the receptive field can be increased, thus allowing the filters to cover a
larger area of the input and better capture spatial dependencies (Figure 2.9-B).
During training, these filters learn to recognize specific data patterns. Moreover,
convolutional layers support a hierarchical representation of the data. Early layers
might learn to detect simple patterns like edges and textures, while deeper layers
can combine these simple features to recognize more complex structures, such
as objects and shapes [38]. This hierarchical learning process is essential for the
network’s ability to generalize from the training data to unseen inputs.

18



Chapter 2. Background

B) Schematic diagram of consecutive convolutional layers
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Figure 2.9.: CNN components: A) Schematic diagram of the convolution and pooling
process. The convolution layer applies element-by-element multiplication
between the corresponding elements of the input matrix and the filter. Then,
the results of this multiplication are summed into a single number. Due
to zero padding along the borders, the size of all feature maps is equal to
the corresponding input. The pooling layers reduce the size of the feature
map with the goal of merging similar features into one. One of the most
common operations is max pooling, which selects the maximum value in
each window as a representative of that region. B) The receptive field in a
convolutional neural network with three 3x3 convolutional (conv) layers.
In the 1st conv layer, every pixel has a 3x3 field of view, also known as the
receptive field. By applying two consecutive 3x3 conv layers, the receptive
field increases to 5x5 and 7x7 for the 2nd and 3rd conv layers, respectively.
The increase in the receptive field enables the network to create filters that
range from finer to coarser. Image created with BioRender.com.
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An important advantage of convolutional layers is the reduction in the number
of learnable parameters. This is because all units in a feature map share the
same weights (filters), which significantly lowers the computational complexity
compared to fully connected layers. The reusability of weights improves the ability
to detect the same feature, regardless of its location in the inputs. Consequently,
the network learns filters that activate when they see a similar input pattern [36].

• Pooling Layer: It is common to insert a pooling layer after successive convolu-
tional layers. A typical pooling unit computes the maximum or average value
within a local region of a single feature map (or in a few feature maps). This local
region is typically defined by a window, such as a 2x2 or 3x3 grid, that moves
across the feature map. Adjacent pooling units receive inputs from regions that
are separated by a predefined stride, meaning the window moves by more than
one row or column at a time. This stride reduces the spatial dimensions of the
feature maps, effectively downsampling the input representation (Figure 2.9-A).
By reducing the feature map size, pooling helps to decrease the computational
load and the number of parameters in the subsequent layers, while still retaining
the most important information. Furthermore, pooling introduces spatial varia-
tions that improve the CNN’s robustness against small translations of the input
(i.e., translation invariance). Invariance to translation is a very useful property, as
it ensures that small shifts or distortions in the input do not significantly affect
the pooled outputs. In other words, features can be recognized independently
of their location. Consequently, pooling layers play a crucial role in making the
convolutional neural network more efficient and robust.

• Fully connected layer: Fully connected layers (FC) refer to the concept of con-
necting every unit between two adjacent layers [36]. FC layers are typically found
towards the end of a neural network architecture and are responsible for pro-
ducing the final output predictions. In other words, they provide a dense and
comprehensive connection between features and outputs, enabling the network
to make informed predictions based on the learned representations.

Typical CNN architectures are composed of stacking multiple stages (more than 2)
of convolutional, non-linearity, and pooling layers, followed by more convolutional
and fully-connected layers (Figure 2.8). This design facilitates the hierarchical extrac-
tion of features from input data, allowing the network to learn increasingly abstract
representations as information flows through successive layers. Training these types
of architectures follows the same principles as traditional neural networks [35, 37].
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However, for image segmentation, this type of CNN architecture is very inefficient, as
pixel/voxel-wise classification needs to be carried out one pixel/voxel at a time. This
can be especially problematic for high-resolution images with pixels/voxels in the range
of thousands, such as medical images. To address this challenge, fully convolutional
neural networks (F-CNNs) were proposed. They can handle the semantic segmentation
of images in a pixel-to-pixel manner (i.e., the size of the generated prediction is the
same as the size of the provided input image) [4, 5].

Fully Convolutional Neural Network

Fully convolutional neural networks (F-CNNs) are increasingly being adopted for the
semantic segmentation of images. The main idea behind F-CNNs is that, in a single
model, the network not only learns feature extraction but also learns to map low-
resolution feature maps to full input resolution feature maps, allowing for pixel/voxel-
wise classification. By combining these two tasks in one model, the training process is
simplified, as it allows for the simultaneous optimization of the network parameters
in an end-to-end fashion. Furthermore, it enhances the model’s capability to capture
fine-grained details and spatial hierarchies [4, 5].

In practice, pixel-to-pixel learning is achieved by upsampling the created downsam-
pled feature maps back to the shape of the input image (Figure 2.10). The upsampling
layers in a CNN are implemented using techniques such as transposed convolutions
(also known as deconvolutions) or unpooling layers. Transposed convolutions essen-
tially reverse the downsampling process by increasing the spatial dimensions of the
feature maps [5]. Unpooling layers, often coupled with indices from the pooling layers,
help in reconstructing the spatial structure of the original image [4]. F-CNNs typically
follow a structure where layers responsible for feature extraction (encoder) precede
those responsible for feature mapping (decoder). The encoder and decoder are set in a
dumbbell-like shape, where the narrow middle part represents the lowest resolution
feature maps (bottleneck), and the wider ends correspond to the high-resolution input
and output [4], as illustrated in Figure 2.10 (bottom). Subsequently, the flat fully con-
nected layers from traditional CNN architectures are replaced with 1 × 1 convolutional
blocks. These blocks are crucial as they allow the network to retain spatial information
while performing the classification at each pixel. Moreover, the 1 × 1 convolutions also
act as a dimensionality reduction tool, reducing the depth of the feature maps to match
the number of desired output classes.
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Fully-Convolutional Neural Network (F-CNN)

F-CNN encoder-decoder architecture
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Figure 2.10.: Fully-Convolutional neural networks (F-CNNs): Fully convolutional neu-
ral networks can efficiently learn to make dense predictions for per-pixel
tasks like semantic segmentation. F-CNNs can be trained and gener-
ate inferences in an end-to-end, pixel-to-pixel fashion. One of the most
common F-CNN architectures for segmentation is the encoder-decoder
architecture. This architecture replaces the single upsampling step in tra-
ditional F-CNNs (top) with a series of convolutions and unpooling layers
(bottom). The encoder-decoder architecture therefore learns to extract the
most important features while jointly performing feature reconstruction
for pixel-wise classification. Image created with BioRender.com.

One of the primary architectural advancements in F-CNNs has been the incorporation
of connectivity both among and within the encoder and decoder blocks, resulting in
improved parameter optimization and gradient flow. Connectivity within an F-CNN can
be broadly categorized into two types: long-range and short-range connections. Long-
range connections, which are the skip connections between the encoder and decoder
blocks, have been shown to reduce information loss from the downsampling stages and
enhance gradient flow [10]. Conversely, short-range connections are found as residual
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connections between convolutional layers operating at the same resolution level [41].
The introduction of these connections has proven to improve learning by alleviating
the issues of vanishing gradients, encouraging feature reusability, and strengthening
information propagation throughout the network [41, 42]. In the computational graph,
the information aggregation by these connections is usually done through concatenating
future maps (see Figure 2.11).
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Figure 2.11.: UNet type architecture layout: The encoder and decoder blocks are placed
in a U-shaped scheme, thus the name UNet. The UNet designs are charac-
terized by incorporating long-range skip connections between all encoder
and decoder blocks of the same spatial resolution. Furthermore, this
layout can also include short-range skip connections as residual connec-
tions between same resolution convolutional layers. The inclusion of these
connections improves gradient flow, spatial information recovery, and
alleviates vanishing gradients. Image created with BioRender.com.
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The encoder and decoder layout with multi-level connectivity, commonly referred to
as a UNet type architecture, has become the base design for many new architectures in
the computer vision community [43] (Figure 2.11). The UNet architecture is character-
ized by its ability to effectively capture and utilize spatial context through its more or
less symmetric contracting and expansive paths, making it particularly well-suited for
various image segmentation tasks. In this work, we build on top of the UNet layout to
address the three segmentation tasks of interest: abdominal adipose tissue segmenta-
tion (Chapter 3), olfactory bulb segmentation (Chapter 4), and sub-segmentation of the
hypothalamus and adjacent structures (Chapter 5).
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Chapter 3.

FatSegNet: A fully automated deep learning
pipeline for adipose tissue segmentation on
abdominal dixon MRI

This chapter is based on the peer-reviewed publication by Estrada et al. [1], which
introduces a novel deep learning pipeline for the semantic segmentation of abdominal
adipose tissue.

FatSegNet: A fully automated deep learning pipeline for adipose tissue seg-
mentation on abdominal dixon MRI.
Authors: Santiago Estrada, Ran Lu, Sailesh Conjeti, Ximena Orozco-Ruiz, Joana
Panos-Willuhn, Monique M. B. Breteler, and Martin Reuter.
Published in: Magnetic Resonance in Medicine (2020); 83 (4): 1471 - 1483.
DOI: 10.1002/mrm.28022
Github: Deep-MI/FatSegNet

3.1. Summary

3.1.1. Motivation

Abdominal adipose tissue (AAT), composed of subcutaneous and visceral adipose
tissue (SAT and VAT), is a well known risk factor for metabolic disorders [44, 45, 46, 47,
48]. Therefore, the reliable quantification of VAT and SAT volumes is of highly relevant
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Chapter 3. Abdominal adipose tissue segmentation using Deep Learning

clinical and research interest. The current gold standard for measuring VAT and SAT
volumes is the segmentation of abdominal fat images from Dixon magnetic resonance
(MR) scans. However, achieving reliable automated segmentation of AAT structures in
a heterogeneous population is challenging due to several reasons (Figure 3.1):

Subject 1 [VAT: 0.96L, SAT: 3.29L] Subject 2 [VAT: 0.75L, SAT: 2.07L] Subject 3 [VAT: 1.52L, SAT: 3.36L]

Subject 4 [VAT: 1.58L, SAT: 2.52L] Subject 5 [VAT: 0.97L, SAT: 2.97L] Subject 6 [VAT: 1.36L, SAT: 3.42L]

B) Example of fat images from Rhinelandy Study participants with the same BMI

A) Example of fat images from the Rhineland Study Dixon MRI protocol 

i) ii) iii) iv)

Figure 3.1.: MRI Dixon images from the Rhineland Study. A) Examples of axial fat
images from four participants presenting different characteristics of the
abdominal Dixon MR protocol: i) inhomogeneous signals, ii) low-intensity
contrast between adipose tissue, and iii - iv) location of the arms close to
the abdomen. B) Examples of anatomical abdominal differences across
subjects: subjects with the same BMI can present significant differences in
fat deposits (blue: SAT, green: VAT, orange: bone).

• Significant anatomical differences across subjects.

• There is a wide variety of shapes of VAT and SAT in the abdominal cavity, as well
as the presence of SAT deposits in the arms, which are not adipose compartments
of interest.

• The inherent properties of Dixon images include low-intensity contrast between
adipose tissue classes, inhomogeneous signals, and potential motion artifacts (e.g.,
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breathing artifacts).

To address these challenges, we developed FatSegNet, a fully automated deep learning
pipeline designed to accurately identify, segment, and quantify VAT and SAT within
a consistently defined abdominal region on abdominal Dixon MRI scans from the
Rhineland Study.

3.1.2. FatSegNet segmentation pipeline

The FatSegNet pipeline (Figure 3.2) is based on our competitive dense fully convolutional
network (CDFNet, Figure 3.3). To localize and segment VAT and SAT, the proposed
pipeline consists of three stages:

Localization of abdominal region (ROI)

CDFNet
Sagittal

CDFNet
Coronal

Volume Crop
Around ROI 

CDFNet
Sagittal

CDFNet
Axial

CDFNet
Coronal

Adipose Tissue Segmentation

View
Aggregation
3D Network

Figure 3.2.: FatSegNet pipeline for segmenting abdominal adipose tissue (AAT).
The pipeline is divided into three stages: First, localization of abdominal
region. Then, tissue segmentation on the abdominal region and finally,
view-aggregation.

1. Localization of the abdominal region using a semantic segmentation approach
by implementing CDFNet models on sagittal and coronal planes; we use the
vertebrae positions (from lower bound of twelfth thoracic vertebra (Th12) to the
lower bound of L5) as reference points for selecting the region of interest.

2. Segmentation of VAT and SAT within the abdominal region on three planes
(axial, coronal, and sagittal) by independent CDFNets.
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3. A view-aggregation stage where the previous generated label maps are combined
by a F-CNN to generate a final 3D segmentation.

Batch  NormalizationConv 5X5 Conv 1X1 ReLU

CDB

CDB

CDB

CDB

Bottleneck Block

CDB
CUB

CDB

CDB

CDB

Competitive Dense Block (CDB)

CDB

Max-Pooling Up-Sampling Maxout Concatenation

Competitive Unpool Block (CUB)

CUB

CUB

CUB

Softmax

Long-Range Skip Connections

Figure 3.3.: Competitive Dense Fully Convolutional Network (CDFNet) architecture.
CDFNet is a UNet like network with four competitive dense blocks (CDB)
on each encoder and decoder path and four competitive unpool blocks
(CUB) between them. The bottleneck consists of a 2D convolutional layer
followed by a Batch Normalization. Finally, the output filters for all con-
volutional layers in CUB, CDB, and Bottleneck were standardized to 64
channels. The proposed network improves feature selectivity and, thus,
boosts the learning of fine-grained anatomies without increasing the num-
ber of learned parameters.

Our pipeline introduces two significant methodological contributions to semantic
segmentation tasks using deep learning. Firstly, the CDFNet architecture is proposed,
which is a 2D encoder-decoder F-CNN designed to enhance feature selectivity within a
network by incorporating competitive learning through a maxout activation unit [49,
50]. The proposed model suitably integrates competitive layers (maxout activation,
Figure 3.4) instead of concatenation layers for information aggregation. Utilizing
maxout also results in the added benefit of reducing the number of training parameters.
In the context of current segmentation tasks, the proposed FatSegNet’s CDFNet performs
as well as other state-of-the-art segmentation F-CNNs (UNet [10] and Dense-UNet [7]) for
localizing the region of interest. For SAT and VAT segmentation, CDFNet outperforms
the comparative baselines, especially in VAT, which is a more fine-grained compartment
with considerable shape variation. These results are achieved despite CDFNet having

28



Chapter 3. Abdominal adipose tissue segmentation using Deep Learning

substantially fewer parameters (CDFNet: ≈ 2.5M; UNet: ≈ 20M; Dense-UNet: ≈ 3.3M),
thereby demonstrating that the proposed architecture enhances feature selectivity and
learns more efficiently. Additionally, subsequent publications have further shown the
advantages of incorporating competition within a CNN for the semantic segmentation
task [2, 3, 30, 31, 32, 33].

0.9

maxout
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0.4
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0.8
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0.2

0.4

Figure 3.4.: Maxout activation unit: The maxout is a simple feed-forward activation
function that chooses the maximum value from its inputs. Within a CNN, a
maxout feature map is constructed by taking the maximum across multiple
input feature maps. This is a more selective fusion operation than concate-
nation (concat) and results in a lower dimensional feature space. Image
adapted from [50]

The second contribution is the FatSegNet’s view-aggregation scheme. The predicted
probability label maps from the three single-view adipose segmentation networks
(axial, coronal, sagittal) are merged through a single-level 3D F-CNN. The proposed
network consists of two sequential 3D convolutional layers. Unlike standard hard-
coded schemes that globally weigh each view, our proposed approach learns to weigh
each view differently at the voxel level. The implemented multi-view scheme is
designed to improve the segmentation of structures that are not clearly visible due
to the anisotropic resolution (2.0 mm × 2.0 mm × 5.0 mm) of the Dixon scans from the
Rhineland Study. Our proposed view-aggregation scheme increases the Dice Score
performance by 0.5% for SAT and 3% for VAT compared to the single-view networks.
Furthermore, it also outperforms the two benchmarked hard-coded methods: one with
equally balanced weights for all views, and the other with axial focus weights (where
axial = 0.5, coronal = 0.25, sagittal = 0.25).
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3.1.3. Proof of concept

To showcase the robustness of the proposed pipeline, we extensively validated it in
terms of segmentation accuracy, test-retest reliability, and generalizability to randomly
selected manually re-edited cases. Additionally, we evaluated the sensitivity of Fat-
SegNet to replicate known SAT and VAT volume effects with respect to age and sex in
a subset of participants from the Rhineland Study (N = 587). This validation scheme
allowed us to assess the quality of the predicted segmentation and the reliability and
sensitivity of the estimated adipose volumes, which are the desired image-derived
phenotypes for downstream statistical analysis.

FatSegNet produces highly accurate segmentation results (Dice Scores) for SAT
compared to inter-rater variability (0.975 vs. 0.982) and outperforms manual raters
on the more challenging task of VAT segmentation (0.850 vs. 0.788). The pipeline
demonstrates excellent agreement for both test-retest reliability (ICC: VAT 0.998 and
SAT 0.996) and manual re-editing (ICC: VAT 0.999 and SAT 0.999). Finally, FatSegNet
generalizes well to different body shapes and sensitively replicates known VAT and
SAT volume effects with respect to age and sex.

3.1.4. Conclusion

In summary, we introduced a fully automated deep learning pipeline (referred to as
FatSegNet) that can reliably segment SAT and VAT on abdominal Dixon MRI scans.
FatSegNet is open-source (https://github.com/Deep-MI/FatSegNet), and it can analyze
a 3D Dixon MRI in approximately 1 minute using GPU, providing an efficient and
validated pipeline for abdominal adipose tissue analysis in the Rhineland Study but
also other studies with a similar Dixon MR protocol. As of now, our pipeline has
processed 7488 participants in the Rhineland Study, and only 2.41% of the predicted
segmentations (N = 181) have been excluded after visual quality assessment. Further-
more, the extracted abdominal adipose MR phenotypes have been utilized in follow-up
publications [51, 52]. Even though our pipeline was only trained and evaluated as
a proof-of-concept on abdominal images from the Rheinland Study, it has shown re-
markable generalizability to other cohorts with different population distributions and
MR Scans [53, 54, 55, 56]. These results affirm the robustness of our pipeline and the
feasibility of using our deep-learning tool as a pragmatic and scalable solution for MRI
adipose analysis.
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3.2. Author Contributions

In this publication, Santiago Estrada designed the project in collaboration with Ran
Lu, Sailesh Conjeti, Monique M.B. Breteler, and Martin Reuter. He further developed
and implemented all stages of the FatSegNet pipeline. He supported Ran Lu and
Joana Panos-Willuhn in MRI data curation and conducted experiments to validate the
pipeline. Santiago also assisted Ran Lu and Ximena Orozco-Ruiz in analyzing data for
the SAT and VAT volume effects in the Rhineland Study. Together with Martin Reuter,
Santiago wrote the first and final drafts, including reviewing and editing. Finally,
Santiago deployed the open-source tool.
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Chapter 4.

Automated olfactory bulb segmentation on
high resolutional T2-weighted MRI

This chapter is based on the peer-reviewed publication by Estrada et al. [2] and expands
the capabilities of deep learning methods for the semantic segmentation task, specifically
focusing on the automated segmentation of the olfactory bulb (OB). In contrast to the
abdominal adipose structures discussed in Chapter 3, which have a large volume in the
range of liters, the OB is a small brain structure with an approximate size of 54 mm3 [57,
58, 59], thus presenting a different set of challenges.

Automated olfactory bulb segmentation on high resolutional T2-weighted
MRI.
Authors: Santiago Estrada, Ran Lu, Kersten Diers, Weiyi Zeng, Philipp Ehses,
Tony Stöcker, Monique M.B Breteler, and Martin Reuter.
Published in: NeuroImage (2021); 242: 118464.
DOI: 10.1016/j.neuroimage.2021.118464
Github: Deep-MI/olf-bulb-segmentation

4.1. Summary

4.1.1. Motivation

The olfactory bulb (OB) serves as the primary relay station in the odor pathway,
integrating both peripheral and central olfactory information. Consequently, gaining
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insights into the OB is crucial for understanding the olfactory pathway in vivo. Recent
advances in MRI acquisition techniques and high-resolution images have allowed
researchers to generate more reliable manual annotations of the OB [57] (Figure 4.1).
Despite the availability of manual annotations of the OB, automated segmentation
methods are lacking. The absence of accurate OB segmentation tools can be attributed
to the small size of the OB, along with other challenges such as: (i) low contrast on
T1-weighted (T1w) scans, (ii) low boundary contrast on T2-weighted (T2w) images
(partial volume effects), (iii) high sensitivity to noise due to its proximity to the nostrils
(e.g., breathing artifacts), (iv) not visible in all subjects [60], and (v) high dependence
on age [61, 62, 63]. We have tackled these challenges and bridged the neuroimage
analysis gap by introducing a novel, rapid, and fully automated deep learning pipeline
for accurately segmenting OB tissue in high-resolution (HiRes)/sub-millimeter T2w
whole-brain MR images.

(A) (B)

(A) (B)

Figure 4.1.: Manual annotation of the OB on HiRes T2-weighted images from the
Rhineland Study. Manual annotations from two subjects where the red
square represents the zoom-in region. A) Sagittal view and labels (blue: left
OB, red: right OB). B) Coronal view and labels. Adapted with permission
from Estrada et al. [2].
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4.1.2. Olfactory bulb segmentation pipeline

The proposed pipeline has a three-stage design (Figure 4.2) to increase the attention to
the OB tissue as follows:

Volume Crop
Around ROI 

Centroid

OB Tissue Segmentation

Localization of a region containing both OBs (ROI)

FastSurferCNN

Sagittal Axial Coronal

Ensemble

AttFastSurferCNN x4

Figure 4.2.: Proposed pipeline for OB segmentation. The pipeline is divided into three
stages: First, localization of a region of interest containing the left and right
OB. Then, OB tissue segmentation within the localized volume, and finally,
an ensemble of predicted label maps. Reprinted with permission from
Estrada et al. [2].

1. Localization of a region containing both OBs using our previously introduced
FastSurferCNN [30] – an updated and more efficient version of the CDFNet
architecture used in Chapter 3. The localization stage is solely employed to crop
a smaller volume around the OB, aiming to focus the spatial information on
only the region near the OBs. Additionally, by reducing the spatial size, it also
mitigates the class imbalance between foreground and background (≈ 1 : 106) and
reduces computational and memory requirements during training and inference.

2. Segmentation of OB tissue within the cropped volume through four independent
AttFastSurferCNN – a novel deep learning architecture with a self- attention
mechanism to improve modeling of contextual information (Figure 4.3).

3. Ensemble stage where the previously generated label maps are averaged to form
a consensual final segmentation.
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To the best of our knowledge, our proposed pipeline is the first framework to
tackle the automatic segmentation of the OB in a large cohort dataset. The pipeline’s
major methodological contribution is the introduction of AttFastSurferCNN. In brief,
AttFastSurferCNN is a multi-network approach consisting of three 2D F-CNNs operating
on different anatomical views (coronal, sagittal, and axial). Each individual F-CNN is
implemented by suitably incorporating the self-attention mechanism proposed by [64]
into the FastSurferCNN [30] architecture (Figure 4.3). The introduction of the self-
attention module has the benefit of promoting attention to spatial information by
improving the modeling of local and global-range dependencies [64, 65].

To demonstrate the effectiveness of our proposed AttFastSurferCNN, we conducted a
benchmark comparison against state-of-the-art 2D and 3D F-CNNs commonly utilized
in neuroimaging segmentation. For 2D models, we included FastSurferCNN [30],
UNet [10], and QuickNat [7]. For 3D models, we considered 3D-UNet [66] and 3D-
FastSurferCNN. Our proposed model outperforms all other benchmark networks in
all used comparative metrics (Dice: dice score, AVD: average Hausdorff distance,
and VS: volume similarity). AttFastSurferCNN especially shows better segmentation
performance compared to the 3D models, with improvements of approximately 4% in
Dice, 2.5% in VS, and 4% in AVD. This result showcases that AttFastSurferCNN recovers
OB significantly better than other traditional deep learning variants used for semantic
segmentation. Furthermore, increasing the understanding of the spatial context within
an F-CNN through a self-attention layer can boost the learning of fine-grained structures
such as the OB.

4.1.3. Proof of concept

We extensively validated our pipeline by first evaluating segmentation accuracy against
manual rater variability. After confirming segmentation accuracy, we tested the sound-
ness of the proposed pipeline using the 0.8 mm isotropic MRI data from the Rhineland
Study with respect to: i) replicating known associated effects of the OB volume (e.g.,
age), ii) assessing the stability of volume estimates across variations in T2w sequences
from the Study, and iii) evaluating robustness to scans without an apparent OB – based
on the size of our in-house dataset, occurring with an approximate prevalence of 2%.
Additionally, we assessed generalizability to an unseen externally labeled dataset of 30
subjects from the publicly available Human Connectome Project (HCP) dataset [67] – a
cohort with different characteristics and acquisition parameters but also with HiRes
T2w MR images.
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Figure 4.3.: Network architecture in AttFastSurferCNN: AttFastSurferCNN consists
of four competitive dense blocks (CDB) in the encoder and decoder part,
separated by a CDB block as the bottleneck layer. After each CDB the self-
attention layer (ATT) is added and the output filters for all convolutional
layers are standardized to 64 channels. The implemented self-attention map
learns first to focus on the local information which is an easier task and
gradually increases the importance of non-local dependencies which is a
harder task. Finally, AttFastSurferCNN is a multi-network approach of three
2D F-CNNs with multi-slice [30] input operating on different anatomical
views (coronal, sagittal and, axial).

The OB pipeline exhibits segmentation performance within the range of manual
rater variability (Dice: 0.852 vs. 0.839, VS: 0.910 vs. 0.956, and AVD: 0.215 mm vs.
0.227 mm). Furthermore, it successfully replicates the negative association between
age and OB volumes reported in previous studies [61, 62, 63], which is also present
in the manual annotations from our testing set (N = 203). Moreover, our pipeline
demonstrates an excellent agreement of volume estimates between the different T2w
sequences of the Rhineland Study (ICC: 0.897 [0.845 - 0.931]). Additionally, the pipeline
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exhibits robustness in handling cases without an apparent OB by either not segmenting
the structure at all or segmenting only a few voxels (<10 mm3). Lastly, it generalizes
well to the unseen HCP scans at the default 0.8 mm pipeline resolution (Dice: 0.782, VS:
0.858, and AVD: 0.268 mm).

4.1.4. Conclusion

We introduced the first automated segmentation pipeline designed to accurately seg-
ment the olfactory bulb (OB) on HiRes T2w whole-brain MR images. Our method
employs deep learning components tailored to segment fine-grained structures such
as the OB. Furthermore, the pipeline can analyze a 3D volume in less than a minute
on a GPU, providing a validated, efficient, and scalable solution for automatically
segmenting and quantifying OB volumes in both small and large cohort studies. Our
pipeline underwent meticulous validation, addressing not only segmentation accuracy
but also robustness and reliability in handling scenarios encountered in a general
population, such as subjects without an apparent OB or a decrease in OB size due to
aging.

To date, our pipeline has processed 7610 participants in the Rhineland Study, with
only 0.85% of the predicted segmentations (N = 65) excluded after visual quality
assessment. Furthermore, the extracted OB volumes have been utilized in follow-up
publications [68, 69, 70]. These results demonstrate the feasibility of segmenting the
OB on HiRes isotropic T2w MR images and reaffirm the use of deep learning as a
reliable and robust solution for segmentation tasks in a large population. Finally, other
methods for OB segmentation using deep learning have emerged after the release of
our pipeline [71, 72]. However, they are not fully publicly available like ours, which is
an open-source tool (https://github.com/Deep-MI/olf-bulb-segmentation).

4.2. Author Contributions

In this publication, Santiago Estrada designed the project in collaboration with Ran Lu,
Monique M.B. Breteler, and Martin Reuter. He further developed and implemented
all stages of the segmentation pipeline and conducted all experiments to validate the
pipeline. Kersten Diers supported Santiago in selecting appropriate statistical tests to
perform. Santiago wrote the first draft and, together with Martin Reuter, finalized the
drafts through review and editing. Finally, Santiago deployed the open-source tool.
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Chapter 5.

FastSurfer-HypVINN: Automated
sub-segmentation of the hypothalamus and
adjacent structures on high-resolutional
brain MRI

This chapter is based on the peer-reviewed publication by Estrada et al. [3] and presents
a novel method using deep learning for the sub-segmentation of the hypothalamus on
brain MRI. This segmentation task differs from the tasks already presented in Chapter 3
and Chapter 4, as it involves the use of multi-modal information. Current multi-modal
models require all input modalities to be always available. However, simultaneous
access to all images is not always possible due to constraints in scanning time or poor
image quality in one of the modalities. Therefore, multi-modal segmentation introduces
the challenge of dealing with missing modalities. This challenge is particularly critical
in deep learning, as the absence of any modality introduces a computational bias that
the F-CNN model is not trained to handle.

FastSurfer-HypVINN: Automated sub-segmentation of the hypothalamus and
adjacent structures on high-resolutional brain MRI.
Authors: Santiago Estrada, David Kügler, Emad Bahrami, Peng Xu, Dilshad
Mousa, Monique M. B. Breteler, N.Ahmad Aziz, and Martin Reuter.
Published in: Imaging Neuroscience (2023); 1: 1-32.
DOI: 10.1162/imag_a_00034
Github: Deep-MI/FastSurfer
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5.1. Summary
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Figure 5.1.: Hypothalamus parcellation. A) Hypothalamus nuclei anatomy and rep-
resentation of our manual annotation protocol for sub-segmentation of
the hypothalamus. B) T1-weighted (T1w), ground truth (GT), and 3D hy-
pothalamic visualization from one participant from the Rhineland study.
The proposed manual segmentation scheme is composed of eleven hy-
pothalamic sub-structures and thirteen adjacent structures for a total of
twenty-four structures divided into three major regions: 1) hypothalamic
(anterior, middle, and posterior), 2) optic, and 3) others. Image created with
BioRender.com

5.1.1. Motivation

The hypothalamus consists of a group of interconnected neuronal nuclei located at
the base of the brain [73](Figure 5.1 A). It plays a crucial role in regulating a broad
range of physiological, behavioral, and cognitive functions. Despite its role, only a few
small-scale neuroimaging studies have investigated its substructures, primarily due
to the lack of fully automated segmentation tools to address manual segmentation’s
scalability and reproducibility issues – similar challenges highlighted in Chapter 3 and
Chapter 4. While a prior attempt to automatically sub-segment the hypothalamus with
a neural network showed promise for 1.0 mm isotropic T1-weighted MRI [9], there
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is a need for an automated tool to sub-segment also high-resolutional (HiRes) MR
scans, as they are becoming widely available and include structural detail also from
multi-modal MRI. To address this gap, we proposed HypVINN, a novel fully automated
deep learning method for the sub-segmentation of the hypothalamus (Figure 5.1 B)
and its adjacent structures on 0.8 mm isotropic T1-weighted (T1w) and T2-weighted
(T2w) brain MR images. Importantly, HypVINN is designed to be robust to missing
modalities, enabling hetero-modal segmentation.

5.1.2. Hypothalamus sub-segmentation pipeline

To the best of our knowledge, we are the first to address automated hetero-modal
sub-segmentation of the hypothalamus and adjacent structures on HiRes brain MRI.
The contributions of our pipeline are as follows:

• Firstly, we introduce a novel hypothalamic labeling protocol tailored to the
higher spatial resolution offered by 3T 0.8 mm isotropic MR images. This protocol
provides a more detailed parcellation of the hypothalamus and adjacent structures,
encompassing typically overlooked brain structures such as the hypophysis,
epiphysis, optic nerve, optic chiasm, and optic tract.

• Secondly, we introduce HypVINN, a novel automated hypothalamic parcellation
tool with a new hetero-modal VINN (HM-VINN) architecture at its core (Figure 5.2).
This innovative approach addresses the challenges of multi-resolution and missing
modalities within a single model. The design of HM-VINN draws upon the VINN
architecture [33], a resolution-independent continuation of the successful multi-
network approach FastSurferCNN [2, 30, 31]. HM-VINN is a 2.5 D approach;
therefore, it aggregates predictions from three 2D F-CNNs, one per anatomical
view, with multi-slice input [30]. The HM-VINN architecture addresses the
challenge of missing modalities by initially processing T1w and T2w images
independently of each other with modality-specific competitive-dense blocks
(CDB) (Figure 5.2, e.g., T1-CDB* and T2-CDB*). Afterwards, the modality-specific
information is embedded into a shared latent space by a fusion module and fed
into the remaining of the network. The HM-VINN fusion module comprises
a learnable weighted sum that weighs and merges the feature maps from the
T1 and T2 branches based on the best available information. If one modality is
more informative, its feature maps will have a higher weight. Moreover, since
the output of the fusion module is normalized, missing one modality can be
addressed by assigning zero to its respective weight.
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Figure 5.2.: Hetero-Modal VINN (HM-VINN) architecture in HypVINN. Input modal-
ities are first independently processed by modality-specific competitive
dense blocks (T1-CDB* and T2-CDB*). Afterward, modality-specific feature
maps are merged inside the network by our proposed fusion module (dark
green) to create a shared latent space. During inference time, the shared
latent space can be computed over the available modalities and fed into the
remaining network. Furthermore, HM-VINN incorporates flexible transi-
tions in the first and last scale transition by utilizing the network-integrated
resolution-normalization (light blue). Each CDB is composed of four se-
quences of parametric rectified linear unit (PReLU), convolution (Conv),
and batch normalization (BN). In the modality-specific CDBs and second
encoder block (CBD*), the first PReLU is replaced with a BN to normalize
the inputs. Reprinted with permission from Estrada et al. [3].

To showcase the flexibility and accuracy of our proposed hetero-modal model
(HypVINN), we benchmarked it against modality-specific methods (i.e., training modal-
ities need to be available at inference). For this purpose, we used three classic VINN
models trained with different input conditions: i) only T1w, ii) only T2w, and iii) T1w &
T2w. Additionally, we compared our HypVINN against the only other method proposed
for hypothalamic sub-segmentation – a 3D-UNet with extensive data augmentation
on T1w images [9]. HypVINN performs comparably to the modality-specific models.
Our approach yields the best results when a T1w/T2w image pair is available and the
lowest when only a T2w image is used. These outcomes align with the performance
of the modality-specific models, notably with the T2w specialized network having the
worst segmentation results from the comparison baselines. Lastly, HypVINN variants
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with an accessible T1w image during inference (T1 and multi-modal testing scenario)
outperform the T1 3D-UNet in our segmentation task.

The presented results demonstrate that enabling input flexibility in F-CNNs doesn’t
have to compromise accuracy, as HypVINN matches or even exceeds the performance
of state-of-the-art methods with fixed inputs. Nonetheless, hetero-modal segmentation
still has the drawback of segmentation performance being higher when the primary
modality is available [74, 75, 76]. For the hypothalamic segmentation task, an available
T1w scan is more important than a T2w scan. The difference in contribution between
T1- and T2-derived information can be quantifiable in the modality weights from the
fusion module, with the weight of the T1-block tripling that of the T2-block. Even
though performance is mainly driven by the T1-derived information, including a T2
can still be beneficial for some structures, as models with multi-modal information
generally yield better segmentation performance.

5.1.3. Proof of concept

With the aim of thoroughly validating our model, we conducted four analyses evalu-
ating four different performance properties: accuracy, generalizability, reliability, and
sensitivity. We initially evaluated the segmentation accuracy of HypVINN’s predictions
against manual rater variability. Subsequently, we assessed the generalizability of
our method to 1.0 mm isotropic MRI scans – HypVINN was only trained with 0.8 mm
(HiRes) data from the Rhineland Study. Additionally, we tested the reliability of the
predicted volumes in a within-session test-retest scenario. Finally, we measured the
sensitivity of the proposed pipeline to replicate known hypothalamic volume effects
with respect to age and sex on subsets of the 0.8 mm Rhineland Study (RS, n = 463)
and the 1.0 mm UK Biobank (UKB, n = 535) [77, 78] – an independent dataset never
encountered during training, with different acquisition parameters and demographics.

HypVINN exhibits segmentation performance within the range of manual rater
intra-variability for both standalone T1w images and T1w/T2w image pairs (Intra:
Dice = 0.821, VS = 0.910, HD95 = 1.128 mm; HypVINN with T1 input: Dice = 0.791,
VS = 0.898, HD95 = 1.110 mm; HypVINN with MM input: Dice = 0.795, VS = 0.901,
HD95 = 1.086 mm). The proposed method can generalize remarkably well to 1.0 mm
T1w scans from the UKB (Dice = 0.707, VS = 0.846, HD95 = 1.718 mm). Additionally,
HypVINN has an excellent test-retest reliability (ICC(A,1) > 0.95 and VS > 0.95)
between in-session volume estimates. Finally, for the sensitivity analysis, the global
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hypothalamic volume estimates and most sub-structures are negatively associated with
age in both the RS and UKB subsets. Moreover, men have larger hypothalamic volumes
than women, even after correction for head size. These findings align with previous
studies [79, 80, 81].

5.1.4. Conclusion

HypVINN is the first hetero-modal deep learning method for hypothalamic sub-
segmentation. In contrast to the only other contemporary automated method [9],
our tool offers a more detailed parcellation of the hypothalamus, including adjacent
structures such as the hypophysis, epiphysis, and major structures of the central optic
system. Furthermore, it generates accurate segmentations at isotropic resolutions of
0.8 mm or 1.0 mm, regardless of whether both T1w and T2w images are available or
just a single T1w image. However, utilizing both modalities results in slightly improved
segmentation outcomes.

Our tool has processed 7,618 participants in the Rhineland Study, with only 0.86% of
the predicted segmentations (N = 66) excluded after visual quality assessment. For the
UK Biobank, 51,169 MRI scans have been segmented, with 2.3% excluded due to poor
segmentation performance (N = 1,176). The generated hypothalamic imaging-derived
phenotype will be part of a concurrent publication [82]. The performance on the large
populations of the HiRes Rhineland Study and UK Biobank demonstrate the robustness
and reliability of our tool. Finally, to improve the usability of HypVINN for the
neuroimaging community, the tool will be integrated into the FastSurfer neuroimaging
software suite (https://github.com/Deep-MI/FastSurfer), providing a user-friendly
alternative for the reliable assessment of hypothalamic imaging-derived phenotypes.

5.2. Author Contributions

In this publication, Santiago Estrada designed the project in collaboration with David
Kügler, Emad Bahrami, Monique M.B. Breteler, Martin Reuter, and N. Ahmad Aziz.
He further developed the hetero-modal implementation of the VINN architecture and
designed HypVINN. David and Emad supported Santiago with the implementation of
the comparison baselines. Santiago conducted all experiments to validate the HypVINN
tool with David’s support. With the collaboration of Martin Reuter, David Kügler, and
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N. Ahmad Aziz, Santiago wrote the first draft and generated the final drafts, including
reviewing and editing. Finally, Santiago and David deployed the HypVINN integration
into the FastSurfer neuroimaging software.
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Summary and Outlook

The principal contribution of this thesis is the development, implementation, validation,
and distribution of three distinct open-source tools tailored for the segmentation and
quantification of three different sets of body structures, each presenting unique charac-
teristics and challenges. Firstly, we introduced FatSegNet, a novel pipeline designed for
the automated localization and segmentation of adipose tissue on abdominal Dixon MRI
scans (Chapter 3). Subsequently, we implemented the first tool for the automated seg-
mentation of the olfactory bulb (OB) tissue in high-resolution (HiRes)/sub-millimeter
T2w whole-brain MR images (Chapter 4). Lastly, we introduced HypVINN, the first
tool for automated sub-segmentation of the hypothalamus and adjacent structures on
isotropic T1w and T2w brain MR images that is robust to missing modalities (Chap-
ter 5). The proposed tools build on state-of-the-art deep learning techniques, thereby
providing an efficient and scalable solution for evaluating imaging-derived phenotypes
from the structures of interest.

For adipose tissue, the task involves segmenting different adipose tissue types (vis-
ceral and subcutaneous) within an anatomically defined region of interest from an
anisotropic Dixon MRI scans. Therefore, we designed a deep learning pipeline termed
FatSegNet, which first localizes the region of interest using a semantic segmentation
approach. In the localized region, the pipeline segments the adipose tissue in three
different planes using our competitive dense fully convolutional network (CDFNet):
a novel 2D F-CNN architecture that successfully integrates competitive learning by
replacing the conventional concatenation layers used for information aggregation with a
maxout activation unit [49, 50]. We demonstrated that utilizing maxout improves CNN
performance by enhancing feature selectivity and reducing overall network complexity
through a reduction in the number of learnable parameters. This improvement is
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reflected in increased segmentation accuracy of the abdominal adipose tissues, particu-
larly for visceral adipose tissue, which is a fine-grained compartment with significant
shape variation. Furthermore, subsequent publications have highlighted the benefits
of integrating competition within a CNN for semantic segmentation tasks [2, 3, 30, 31,
32, 33]. Finally, to improve segmentation in the anisotropic scenario (i.e., combining
the spatial information from the finer (within-plane) and coarser (across slice) reso-
lutions), FatSegNet includes a view-aggregation stage that learns to weigh each view
differently on a voxel level. Our approach has the benefit of flexibly adapting weights
to individual situations and even spatial locations, which is not possible if hard-coded
view-aggregation schemes are used.

While many challenges of adipose tissue can be translated to the olfactory bulb (OB)
task, the OB changes the scale of the structure size from liters to cubic millimeters. Thus,
an accurate understanding of the spatial context is of tremendous importance when
segmenting smaller structures, as local representation differences between pixels/vox-
els of the same structure introduce inter-class inconsistencies and affect recognition
accuracy [65]. To improve the learning of the spatial context and focus on the OB, we de-
signed a segmentation pipeline that first removes unnecessary background information
from whole brain T2w scans by localizing and cropping a smaller region (approximately
three times smaller) containing the OBs of both hemispheres. This step enables focusing
only on the tissue surrounding the OB, helps alleviate the high-class imbalance between
foreground and background, and, by default, has the added benefit of decreasing the
computational and memory requirements during training and inference.

After the localized volume containing the OB is created, the OB tissue is segmented
within this cropped region by our novel AttFastSurferCNN – a 2.5D CNN that enhances
attention to spatial information by improving the modeling of local and global-range
dependencies, thereby boosting the learning of fine-grained structures such as the
OB. AttFastSurferCNN was developed by integrating the self-attention mechanism
proposed in [64] into FastSurferCNN [30] – an updated and efficient version of the
CDFNet architecture. We demonstrated that AttFastSurferCNN recovers OB significantly
better than traditional deep learning variants used for semantic segmentation. Despite
achieving improved accuracy, AttFastSurferCNN is computationally expensive due to
the generation of attention maps. Each competitive-dense block in AttFastSurferCNN is
followed by one attention map, each with a size of N × N, where N (width × height)
represents the number of pixels at each layer. In total, AttFastSurferCNN includes
nine attention maps, significantly increasing the network’s size and GPU memory
requirements. Hence, incorporating self-attention layers may not be an efficient or
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scalable solution for 3D networks or structures requiring a large field of view. For
example, in tasks such as the segmentation of the hypothalamus and adjacent structures,
where the region of interest extends from the midbrain to the optic region (i.e., outside
the brain).

For hypothalamic sub-segmentation and segmentation of other adjacent structures,
the task involves extracting information from T1w and T2w images (multi-modal).
Currently, multi-modal models require all input modalities to be constantly available.
However, this requirement limits the deployment of multi-modal tools in large pop-
ulations because simultaneous access to all modalities is not always feasible due to
constraints on acquisition time or a decrease in image quality in one of the modalities
(e.g., extreme motion artifacts). As a result, multi-modal segmentation presents the
challenge of addressing absent modalities, which is particularly crucial in deep learning,
as the absence of any modality introduces an out-of-distribution scenario that the CNN
is not trained to handle.

To address the issue of missing modalities, we introduced HypVINN – an automated
hypothalamic parcellation tool with a novel hetero-modal VINN (HM-VINN) archi-
tecture at its core. HM-VINN is a 2.5D multi-network approach, similar to the ones
mentioned before. However, it also includes the capability of resolution independence
as it is based on the VINN design [33]. The VINN approach enables training and infer-
ence using images at multiple resolutions within a single network. HM-VINN extends
the VINN architecture to incorporate input flexibility by first processing each modality
independently. Subsequently, the embedded information from each modality is merged
inside the network into a shared latent representation. This shared latent space is then
fed into the rest of the network. During inference, missing modalities can be addressed
by computing the shared representation from the available modalities, thus ensuring
robustness to all input-modality combinations (i.e., hetero-modal) encountered during
training. Therefore, HM-VINN provides a solution for both multi-resolution and miss-
ing modality challenges within a single model. The proposed method demonstrates
excellent segmentation performance for both standalone T1w images and T1w/T2w
image pairs. Even with the additional capability to accept flexible inputs, our model
matches or exceeds the performance of state-of-the-art methods with fixed inputs (i.e.,
uni-modal and multi-modal models). Furthermore, we demonstrate that our method
can accurately segment 0.8 mm (HiRes) MR scans as well as 1.0 mm ones.

All our proposed tools demonstrated the versatility of deep-learning methods in solv-
ing the desired semantic segmentation task. However, another important contribution
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of our work is the extensive validation that we conducted with the goal of ensuring
an accurate, robust, and reliable tool that can be used by the scientific community.
Therefore, we thoroughly validated all the proposed tools with regard to four different
performance properties: accuracy, generalizability, reliability, and sensitivity, as follows:

• Accuracy: Segmentation accuracy allows to assess the similarity between the
predicted label maps and manual annotations. In this work, we benchmarked
our proposed methods not only against other state-of-the-art techniques but also
against manual rater variability. Manual annotations are considered the gold
standard. As our approaches are based on supervised learning, its performance
is limited by the quality of the manual annotations. Therefore, manual rater
variability scores provide context for the results that a method should achieve,
where inter-rater scores can be seen as the lower bound of performance and
intra-rater scores as the ideal performance. All our tools reported performance
within the ranges of the manual intra- and inter-rater variability.

• Generalizability: It is well known that automated methods often struggle to
generalize to data sources that differ from the training set (i.e., out-of-distribution
scenarios). In our case, all methods were trained using only data from the
Rhineland Study. Therefore, testing the robustness of our methods to data from a
different domain than the training one is of critical importance when developing
and releasing an open-source tool for the scientific community. In this work, we
reported segmentation performance metrics for both the olfactory bulb pipeline
and hypothalamus pipeline against unseen cohorts with different acquisition
parameters and demographics. The evaluated tools generalize remarkably well to
external datasets. However, as expected, there was a performance drop compared
to the results obtained on unseen testing scans from the Rhineland Study (i.e.,
same domain as training data). For the adipose tissue task, performance against
other datasets was not possible due to the lack of publicly available datasets with
abdominal Dixon MRI scans. Nonetheless, our FatSegNet tool has been utilized in
other studies, showing promising results [53, 54, 55, 56].

We additionally evaluated the generalizability of our tools to realistic scenarios
that they will encounter when applied to a large, heterogeneous population. In
the adipose tissue task, we examined our tool’s performance across different
BMI ranges to ensure it remains effective across diverse body types and avoids
biases, as better segmentation performance can be achieved on subjects with
high content of abdominal adipose tissue compared to lean subjects [83, 84]. In
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the olfactory bulb task, we evaluated the automated method’s robustness to an
extreme scenario: subjects without an apparent olfactory bulb. This condition
had been reported previously [60] and based on the Rhineland Study testing set
occur with an approximate prevalence of 2%. Lastly, in the hypothalamic sub-
segmentation task, we tested the robustness to 1.0 mm isotropic MRI scans, which
differ from the training resolution of 0.8 mm isotropic. Generalizing to 1.0 mm
MRI scans is particularly important for this task as previous studies have shown
that hypothalamic parcellation is feasible at this resolution [9]. Furthermore, it
enables the tool’s deployment in a broader range of datasets.

• Reliability: Assuming that drastic anatomical changes do not occur within
the same MR session, a reliable method should generate consistent (or similar)
volume estimates from repeated in-session scans acquired under comparable
conditions (e.g., machine, acquisition protocol, region of interest). Therefore,
we evaluated the reliability of our proposed tools by computing volume-based
metrics between predictions of the structures of interest across in-session scans.
We chose volume-based metrics because they do not require the registration of
scans, thus avoiding the introduction of new sources of variance in addition
to the inherent ones (e.g., motion artifacts, non-linearities based on different
positioning) due to registration inaccuracies and interpolation artifacts. All of our
tools showed excellent agreement of volume estimates between in-session scans.

• Sensitivity: The aim of our tools is to generate imaging-based biomarkers for
downstream analysis. Therefore, evaluating the robustness of the generated
outcomes is an essential part of the validation pipeline. However, the method-
developing community often overlooks this validation, focusing solely on evaluat-
ing segmentation performance. With this in mind, we evaluated the sensitivity of
our methods to replicate previously known volumetric findings of the structures
of interest with respect to age and sex in a general population – representing
a feasible scenario in which our methods’ outcomes will be used. Ideally, the
automated methods should not modify the direction of associations. We demon-
strated that our tools generated volume estimates replicate previous age and sex
effects on large unseen subsets of the Rhineland Study and the UK Biobank (only
evaluated in the hypothalamic pipeline). These results corroborate the stability
and sensitivity of our segmentation pipelines.

Although we have demonstrated the robustness and reliability of our tools through
meticulous validation, it is not recommended to use them blindly in any imaging dataset.
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Segmentation errors can occur, especially when using the tools in aging populations and
clinical cohorts (i.e., participants with diseases or out-of-distribution cases). Therefore,
quality control of data is an important aspect before any downstream analysis. However,
one advantage of automated segmentation techniques is the possibility of processing a
large amount of data, along with the additional benefit of deep learning, which can
speed up the processing from hours to minutes. Consequently, manual visual inspection
of all predictions is not scalable, especially in large cohorts like the Rhineland Study
or the UK Biobank, with thousands of participants. Therefore, future work should
focus on developing robust automated quality control tools to alleviate researchers’
burden during the data assurance process. Furthermore, identifying failing cases
is beneficial for deep learning-based methods, as boosting the robustness to these
cases can potentially be achieved by retraining with manual annotations created for
participants with low segmentation quality.

Future work should also focus on extending the input flexibility of our tools to
broader scenarios, such as incorporating input scans with different resolutions (mixed
resolutions) or scans acquired at 7 Tesla (7T). Mixed-resolution learning will be particu-
larly beneficial in datasets where high-resolution data is unavailable in all modalities.
Additionally, models that support both 3T and 7T scans could enhance segmenta-
tion performance by integrating the additional information from the finer resolutions
achievable at 7T. Furthermore, newer techniques should explore the integration of
multiple segmentation tasks in a single model instead of relying on task-specific mod-
els. Developing a multiple-task model for medical semantic segmentation poses the
significant challenge of data harmonization between training datasets (i.e., multiple
manual datasets with different resolutions, modalities, and acquisition scans, plus
the additional challenge of combining overlapping structures between annotations).
Moreover, access to manual labels is very difficult as open-source annotations are not
widely available.

In conclusion, we have successfully developed and deployed automated pipelines for
segmenting three tissue types: abdominal adipose tissue, olfactory bulbs, and hypotha-
lamic sub-structures. Our proposed tools will directly impact the research community
as they enable the assessment of imaging-derived phenotypes from structures that
previously lacked reliable automated tools for their evaluation. The implemented tools
are based on deep learning, offering an efficient and scalable solution, as they can
accurately segment a whole MRI scan (either brain or abdomen, depending on the tool
used) in approximately one minute using a GPU. We showed the proof-of-concept of
our novel pipelines in the population-based Rhineland Study, where our segmentation
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pipelines have already been integrated into the study’s automated image analysis
framework. To date, the tools have processed MRI scans from about 8000 participants
of the Rhineland Study, and the generated outcomes have been used in recent publica-
tions [51, 52, 70, 82]. Even though our tools were only trained using Rhineland Study
data, we have validated them against other datasets and ensured their public availabil-
ity (https://github.com/Deep-MI). Consequently, other studies can benefit from our
solutions if they have access to the same MRI imaging modalities as those employed
in this work. Thus far, other researchers have used our methods, showing promising
results [53, 54, 55, 56, 68, 69]. To increase the impact of the imaging tools developed
in the Rhineland Study and facilitate the replication of findings, we have concurrently
made the Rhineland Study neuroimaging acquisition and processing protocol publicly
available [14]. Overall, this work has provided the scientific community with three
efficient, thoroughly validated, and robust deep learning-based segmentation pipelines.
These pipelines are dedicated and precisely tailored to specific tissues, targeting either
delicate brain sub-structures or large adipose compartments in the human body’s ab-
domen. Our proposed pipelines, therefore, provide an novel alternative for the reliable
assessment of imaging-derived phenotypes from these structures of interest.
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Purpose: Introduce and validate a novel, fast, and fully automated deep learning 
pipeline (FatSegNet) to accurately identify, segment, and quantify visceral and sub-
cutaneous adipose tissue (VAT and SAT) within a consistent, anatomically defined 
abdominal region on Dixon MRI scans.
Methods: FatSegNet is composed of three stages: (a) Consistent localization of the 
abdominal region using two 2D‐Competitive Dense Fully Convolutional Networks 
(CDFNet), (b) Segmentation of adipose tissue on three views by independent 
CDFNets, and (c) View aggregation. FatSegNet is validated by: (1) comparison of 
segmentation accuracy (sixfold cross‐validation), (2) test–retest reliability, (3) gen-
eralizability to randomly selected manually re‐edited cases, and (4) replication of 
age and sex effects in the Rhineland Study—a large prospective population cohort.
Results: The CDFNet demonstrates increased accuracy and robustness compared 
to traditional deep learning networks. FatSegNet Dice score outperforms manual 
raters on VAT (0.850 vs. 0.788) and produces comparable results on SAT (0.975 vs. 
0.982). The pipeline has excellent agreement for both test–retest (ICC VAT 0.998 
and SAT 0.996) and manual re‐editing (ICC VAT 0.999 and SAT 0.999).
Conclusions: FatSegNet generalizes well to different body shapes, sensitively rep-
licates known VAT and SAT volume effects in a large cohort study and permits 
localized analysis of fat compartments. Furthermore, it can reliably analyze a 3D 
Dixon MRI in ∼1 minute, providing an efficient and validated pipeline for abdominal 
adipose tissue analysis in the Rhineland Study.
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1 |  INTRODUCTION
The excess of body fat depots is an increasing major public 
health issue worldwide and an important risk factor for the 
development of metabolic disorders and reduced quality of 
life.1,2 While the body mass index (BMI) is a widely used in-
dicator of adipose tissue accumulation in the body, it does not 
provide information on fat distribution3 neither with respect 
to different fat tissue types nor with respect to deposit loca-
tion. Different compartments of adipose tissue are associated 
with different physiopathological effects.4,5 Abdominal adi-
pose tissue (AAT), composed of subcutaneous and visceral 
adipose tissue (SAT and VAT), has long been associated with 
an increased risk of chronic cardiovascular diseases, glucose 
impairment, and dyslipidemia.6,7 Recently, several studies 
have indicated a stronger relation between the accumulation 
of VAT with an adverse metabolic and inflammatory profile 
compared to SAT.8,9 Therefore, an accurate and independent 
measurement of VAT and SAT volumes (VAT‐V and SAT‐V) 
is of significant clinical and research interest.

Currently, the gold standard for measuring VAT‐V 
and SAT‐V is the manual segmentation of abdominal fat 
images from Dixon magnetic resonance (MR) scans—a very 
expensive and time‐consuming process. Thus, especially for 
large studies, automatic segmentation methods are required. 
However, achieving good accuracy is challenging due to 
complex AAT structures, a wide variety of VAT shapes, large 
anatomical differences across subjects, and the inherent prop-
erties of the Dixon images: low intensity contrast between 
adipose tissue classes, inhomogeneous signals, and potential 
organ motion. So far, those limitations impeded the wide‐
spread implementation of automatic and semi‐automatic 
techniques based on intensity and shape features, such as 
fuzzy‐clustering,10 k‐means clustering,11 graph cut12,13 active 
contour methods,14 and statistical shape models.15

Recently, fully convolutional neural networks (F‐CNNs)16,17  
have been widely adopted in the computer vision commu-
nity for pixel/voxel‐wise image segmentation in an end‐to‐
end fashion to overcome above‐mentioned challenges. With 
these methods there is no need to extract manual features, 
divide images into patches, or implement sliding window 
techniques. F‐CNNs can automatically extract intrinsic 
features and integrate global context to resolve local ambi-
guities thereby improving the results of the predicted mod-
els.17 Langer et al18 proposed a three‐channel UNet for AAT 
segmentation, which is a conventional architecture for 2D 
medical image segmentation.19 While this method showed 
promising results, we demonstrate that our network architec-
ture outperforms the traditional UNet for segmenting AAT on 
our images with a wide range of anatomical variation. More 
recent architectures such as the SD‐Net20 and Dense‐UNet, 
a densely connected network,21 have the potential to im-
prove generalizability and robustness by encouraging feature 

re‐usability and strengthening information propagation across 
the network.21 In prior work, we introduced a competitive 
dense fully convolutional network (CDFNet)22 as a new 2D 
F‐CNN architecture that promotes feature selectivity within a 
network by introducing maximum attention through a maxout  
activation unit.23 The maxout boosts performance by allow-
ing the creation of specialized sub‐networks that target a 
specific structure during training.24 Therefore, this approach 
facilitates the learning of more complex structures22,24 with 
the added benefit of reducing the number of training parame-
ters relative to the aforementioned networks.

In this paper, we propose FatSegNet, a novel fully auto-
mated deep learning pipeline based on our CDFNet archi-
tecture to localize and segment VAT and SAT on abdominal 
Dixon MR images from the Rhineland Study, an ongoing 
large population‐based cohort study.25,26 To constrain AAT 
segmentations to a consistent anatomically defined region, 
the proposed pipeline consists of three stages:

1. Localization of the abdominal region using a semantic 
segmentation approach by implementing CDFNet mod-
els on sagittal and coronal planes; we use the lumbar 
vertebrae positions as reference points for selecting the 
region of interest.

2. Segmentation of VAT and SAT within the abdominal re-
gion through 2D CDFNet models on three different planes 
(axial, sagittal, and coronal).

3. A view aggregation stage where the previous gener-
ated label maps are combined to generate a final 3D 
segmentation.

We initially evaluate and compare the individual stages of the 
pipeline with other deep learning approaches in a sixfold cross‐
validation. We show that the proposed network architecture 
(CDFNet) improves segmentation performance and simulta-
neously reduces the number of required training parameters in 
step 1 and 2. After asserting segmentation accuracy, we evalu-
ate the whole pipeline (FatSegNet) with respect to robustness 
and reliability against two independent test sets: a manually 
edited and a test–retest set. Finally, we present a case study on 
unseen data comparing the VAT‐V and SAT‐V calculated from 
the FatSegNet segmentations against BMI to replicate age and 
sex effects on these volumes in a large cohort.

2 |  METHODS

2.1 | Data

2.1.1 | MR imaging acquisition
MR image acquisition was performed at two different sites 
both with identical 3T Siemens MAGNETOM Prisma 
MR scanners (Siemens Healthcare, Erlangen, Germany).  
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The body coil was used for signal reception of a three‐ 
dimensional two‐point Dixon sequence (acquisition time = 
12 s, echo time TE1 = 1.23 ms, TE2 = 2.46 ms, repetition 
time TR = 4.12 ms, axial field of view = 500 mm × 437 mm, 
flip angle = 6◦, left‐right readout bandwidth = 750 Hz/pixel, 
partial Fourier factor 6/8 × 5/8). Based on a preceding  
moving‐table abdominal localizer, the field‐of‐view was cen-
tered on the middle of the third lumbar vertebra (L, L3). Data 
were acquired during a single breath‐hold in supine posi-
tion with arms placed at the sides. The image resolution was 
finally interpolated from 2.0 mm × 2.7 mm × 10.0 mm to 
2.0 mm × 2.0 mm × 5.0 mm (matrix size = 256 × 224 × 72).

2.1.2 | Datasets
The Rhineland Study is an ongoing population‐based pro-
spective cohort (https ://www.rhein land-studie.de/) which 
enrolls participants aged 30 years and above at baseline 
from Bonn, Germany. The study is carried out in accordance 
with the recommendations of the International Council for 
Harmonisation (ICH) Good Clinical Practice (GCP) stand-
ards (ICH‐GCP). Written informed consent was obtained 
from all participants in accordance with the Declaration of 
Helsinki.

The first 641 subjects from the Rhineland Study with BMI 
and abdominal MR Dixon scans are included. The sample 
presents a mean age of 54.2 years (range 30 to 95) and 55.2% 
of the subjects are women. The BMI of the participants ranges 
from 17.2 to 47.7 kg/m2 with a mean of 25.2 kg/m2. Subjects 
were stratified into two subsets: 38 scans were manually an-
notated for training and testing; the remaining 603 subjects 
were segmented using the proposed pipeline. After visual 
inspection, 16 subjects were excluded due to poor image 
quality or extreme motion artifacts (e.g. potentially caused 
by breathing). Thus, 587 participants were used for the case 
study analysis and a subset of 50 subjects were randomly 

selected for manual corrections of the predicted label maps. 
This manually edited set and an independent test–retest set of 
17 healthy young volunteers were used to assess reliability of 
the automated segmentation and volume estimates.

Ground truth data
38 subjects were randomly selected from sex and BMI 
strata to ensure a balanced population distribution. These 
scans were manually annotated by two trained raters with-
out any semi‐automated support such as thresholding, 
which can reduce accuracy in the ground truth and lead to 
overestimation of the performance of the proposed auto-
mated method.

Specific label schemes were created for each individual 
task of the pipeline. For localizing the abdominal region, 
raters divided the scans into three different blocks defined 
by the location of the vertebrae as follows: the abdomi-
nal region (from lower bound of twelfth thoracic vertebra 
(Th12) to the lower bound of L5), the thoracic region (all 
above the lower bound of Th12), and the pelvic region (ev-
erything below the lower bound of L5), as illustrated in 
Figure 1E). For AAT segmentation, 60 slices per subject 
were manually labeled into three classes: SAT, VAT, and 
bone with neighbouring tissues. The bone was labeled to 
prevent bone marrow from being misclassified as adipose 
tissue. In order to improve spatial context and prevent mis-
classification of the arms, the dataset was complemented 
by a synthetic class defined as “other tissue” that was com-
posed of any soft tissue inside the abdomen cavity that is 
not VAT or SAT. The manual annotations are illustrated in 
Figure 1B,C. Furthermore, four subjects were labeled by 
both raters to evaluate the inter‐rater variability.

Test–retest data
17 additional subjects were recruited with the exclusive 
purpose of measuring the acquisition protocol reliability. 

F I G U R E  1  MR Dixon images and ground truth from two subjects with different BMI (obese (upper), normal (lower). A, Fat images: axial 
plane. B, Initial manual segmentation (blue: SAT, green: VAT, orange: bone and surrounding structures). C, Ground truth with additional synthetic 
class (red: other‐tissue) and filled‐in bone structures (orange). D, Fat images: coronal plane. E, Ground truth for localization of region of interest 
(red: thoracic region, white: abdominal region (region of interest), blue: pelvic region)

(A) (B) (C) (D) (E)
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The group presents a mean age of 25.5 years (range: 20 
to 31) and 65.0% of the participants are women; all of 
them have a normal BMI (BMI <25 kg/m2). Subjects were 
scanned in two consecutive sessions. Before starting the 
second session, subjects were removed from the scanner 
and re‐positioned.

2.2 | FatSegNet pipeline
The FatSegNet is to be deployed as a post‐processing adipose 
analysis pipeline for the abdominal Dixon MR images ac-
quired in the Rhineland Study. Therefore, it should meet the 
following requirements: (1) be fully automated, (2) segment 
the different adipose tissue types within the anatomically 
defined abdominal region, and (3) be robust to body type 
variations and generalizable in presence of high population 
heterogeneity. Following the prior conditions, we designed 
FatSegNet as a fully automated deep learning pipeline for 
adipose segmentation (Figure 2).

The proposed pipeline consists of three stages: (1) the ab-
dominal region is localized by averaging bounding boxes from 
two abdominal segmentation maps generated by CDFNets on 
the sagittal and coronal view. For each view a bounding box 
is set to the full image width. The height is extracted by lo-
calizing the highest and lowest slice with at least 85% of none 
background voxels classified as abdominal region. Highest 
and lowest slice position are averaged across the views. (2) 
Afterward, adipose tissue is segmented within the abdominal 
region by three CDFNets on different views (axial, coronal, 
and sagittal) with standardized input sizes (zero padding). 
(3) Finally, a view aggregation network merges the predicted 
label maps from the previous stage into a final segmentation; 
the implemented multi‐view scheme is designed to improve 
segmentation of structures that are not clearly visible due to 

poor lateral resolution. This 2.5D strategy produces a fully 
automated pipeline to accurately segment adipose tissue in-
side a consistent anatomically defined abdominal region.

2.2.1 | Pipeline components
Competitive dense fully convolutional network (CDFNet)
For the segmentation task, we introduce the CDFNet archi-
tecture due to its robustness and generalizability properties. 
The proposed network improves feature selectivity and, 
thus, boosts the learning of fine‐grained anatomies without 
increasing the number of learned parameters.22 We imple-
mented the CDFNet by suitably adopting the Dense‐UNet 
architecture proposed by Roy et al27 and extending it toward 
competitive learning via maxout activations.24

The Dense‐UNet proposed in27 follows the usual dumb‐
bell like architecture with four dense‐block encoders, four 
dense‐block decoders and one bottleneck layer. Each dense‐
block is based on short‐range skip connections between con-
volutional layers as introduced for densely connected neural 
networks28; the dense connection approach stacks multiple 
convolutional layers in sequence and the input of a layer is 
iteratively concatenated with the outputs of the previous lay-
ers. This type of connectivity improves feature reusability, 
increases information propagation, and alleviates vanishing 
gradients.28 The architecture additionally incorporates the 
traditional long‐range skip connections between all encoder 
and decoder blocks of the same spatial resolution as intro-
duced by Ronnenberger et al19 which improves gradient flow 
and spatial information recovery.

Within the Dense‐UNet, the information aggregation 
through these connections is performed by concatenation lay-
ers. Such a design increases the size of the output feature map 
along the feature channels, which in turn results in the need to 

F I G U R E  2  Proposed FatSegNet Pipeline for segmenting AAT. The pipeline is divided into three stages: First, localization of abdominal 
region. Then, tissue segmentation on the abdominal region and finally, view aggregation. Both local and global volume estimates of individual 
structures are calculated on the final prediction
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learn filters with a higher number of parameters. Goodfellow 
et al introduced the idea of competitive learning through max-
out activations,23 which was adapted by Liao and Carneiro24 
for competitive pooling of multi‐scale filter outputs. Both23 
and24 proved that the use of maxout competitive units boosts 
performance by creating a large number of dedicated sub‐ 
networks within a network that learns to target specific  
sub‐tasks and reduces the number of required parameters sig-
nificantly, which in turn can prevent over‐fitting.

The maxout is a simple feed‐forward activation function 
that chooses the maximum value from its inputs.23 Within 
a CNN, a maxout feature map is constructed by taking the 
maximum across multiple input feature maps for a particular 
spatial location. The proposed CDFNet uses competitive lay-
ers (maxout activation) instead of concatenation layers. Our 
preliminary results22 demonstrate that these competitive units 
promote the formation of dedicated local sub‐networks in 
each of the densely connected blocks within the encoder and 
the decoder paths. This encourages sub‐modularity through 
a network‐in‐network design that can learn more efficiently. 
Toward this, we propose two novel architectural elements tar-
geted at introducing competition within the short‐ and long‐
range connections, as follows:

1. Local Competition—Competitive Dense Block (CDB): 
By introducing maxout activations within the short‐range 
skip connections of each of the densely connected con-
volutional layers (at the same resolution), we encour-
age local competition during learning of filters. The 
multiple convolution layers in each block prevent filter 
co‐adaptation.

2. Global Competition—Competitive Un‐pooling Block 
(CUB): We introduce a maxout activation between a long‐
range skip connection from the encoder and the features 
up‐sampled from the prior lower resolution decoder block. 
This promotes competition between finer feature maps with 
smaller receptive fields (skip connections) and coarser fea-
ture maps from the decoder path that spans much wider re-
ceptive fields encompassing higher contextual information.

In brief, the proposed CDFNet comprises a sequence of four 
CDBs, constituting the encoder path (down‐sampling block), 
and four CDBs constituting the decoder path (up‐sampling 
block), which is joined via a bottleneck layer. The bottleneck 
consists of a 2D convolutional layer followed by a Batch 
Normalization. The skip‐connections from each of the encoder 
blocks feed into the CUB that subsequently forward features 
into the corresponding decoder block of the same resolution as 
illustrated in Figure 3.

View aggregation network
The proposed view aggregation network is designed to regular-
ize the prediction for a given voxel by considering spatial infor-
mation from the coronal, axial, and sagittal view. The network, 
therefore, merges the probability maps of the three different 
CDFNets from the previous stage by applying a (3 × 3 × 3) 
3D‐convolution (30 filters) followed by a Batch Normalization. 
Then a (1 × 1 × 1) 3D‐convolution is employed to reduce the 
feature maps to the desired number of classes (n = 5). The final 
prediction probabilities are obtained via a concluding softmax 
layer (as illustrated in Supporting Information Figure S1). 
Our approach learns to weigh each view differently on a voxel 

F I G U R E  3  Proposed network architecture: Competitive Dense Fully Convolutional Network (CDFNet), with 4 competitive dense blocks 
(CDB) on each encoder and decoder path and 4 competitive unpool blocks (CUB) between them. CDB and CUB induce local and global 
competition within the network. Note—the output filters for all convolutional layers in CUB, CDB, and Bottleneck were standardized to 64 
channels
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level, compared to standard hard‐coded global view aggre-
gation schemes. Such hard‐coded weighting schemes can be 
suboptimal when working with anisotropic voxels sizes (e.g., 
here 2  mm × 2  mm × 5  mm) as resolution differences im-
pose a challenge when combining the spatial information from 
the finer (within‐plane) and coarser (across slice) resolutions. 
Additionally, in the presence of high variance, abdominal body 
shapes across subjects segmentation benefit from data‐driven 
approaches that can flexibly adopt weights to individual situa-
tions and even spatial locations, which are not possible if hard‐
coded global weights are being used.

2.3 | Experimental setup
For training and testing the pipeline, we perform a sixfold 
cross‐validation subject‐space split on the ground truth data-
set. For each fold, 32 subjects are used for training and 6 
held out for testing; the test sets splits are approximately bal-
anced based on their BMI classification (underweight [BMI 
<18.5 kg/m2], normal [18.5 ≤ BMI <25 kg/m2], overweight 
[25 ≤ BMI <30 kg/m2], and obese [BMI ≥ 30 kg/m2]). This 
selection process ensures that all BMI categories are used for 
bench‐marking the cross‐validation models. Additionally, 
a final model is implemented using 33 subjects for training 
holding out 5 subjects spanning different BMI levels for a 
final performance sanity check (visual quality check and sta-
bility of Dice score). Given the limited ground truth data, for 
all models a validation set to assets convergence during train-
ing was created by randomly separating 15% of the slices from 
the corresponding training set. This allows evaluating perfor-
mance and generalizability on a completely separate test set.

2.3.1 | Baselines and comparative methods
We validate the FatSegNet by comparing the performance of 
each stage of the pipeline against the cross‐validation test sets 
using Dice score index (DSC) to measure similarity between 
the prediction and the ground truth. Let M (ground truth) 
and P (prediction) denote the labels binary segmentation, the 
Dice score index is defined as 

where |M| and |P| represents the number of elements in each 
segmentation and |M ∩ P| the number of common elements. 
Therefore, the DSC ranges from 0 to 1 and a higher DSC rep-
resents a better agreement between segmentations.

Additionally, we benchmark the proposed CDFNet mod-
els for abdominal region localization and AAT delineation 
with state‐of‐the‐art segmentation F‐CNNs such as UNet,19 
SD‐Net,20 and Dense‐UNet.27 We use the probability maps 
generated from the aforementioned networks to train the view 
aggregation model and measure performance with and without 

view aggregation. The proposed view aggregation performance 
for each FCNNs is compared against two non‐data‐driven 
(hard‐coded) methods: equally balanced weights for all views 
and axial focus weights (accounting for higher in‐plane reso-
lution, axial = 0.5, coronal = 0.25, sagittal = 0.25). Finally, to 
permit a fair comparison, all benchmark networks follow the 
same architecture of four encoder blocks, four decoders blocks, 
and one bottleneck layer as illustrated in Figure 3 with an input 
image size of 224 × 256. Note, significant differences between 
our proposed methods and comparative baselines are evaluated 
by a Wilcoxon signed‐rank test29 after multiple comparisons 
correction using a one‐sided adaptive FDR.30

The aforementioned models are implemented in Keras31 
with a TensorFlow back‐end using an NVIDIA Titan Xp GPU 
with 12 GB RAM and the following parameters: batch size of 
8, momentum set to 0.9, constant weight decay of 10−06, and 
an initial learning rate of 0.01 decreased by a order of 10 every 
20 epochs. The models are trained for 60 epochs with an early‐
stopping criterion (no relevant changes on the validation loss 
after the last 8 epochs—convergence was observed around 
50 epochs). A composite loss function of median frequency 
balanced logistic loss and Dice loss20 is used. This loss func-
tion emphasizes the boundaries between classes and supports 
learning of unbalanced classes such as VAT. Finally, online 
data augmentation (translation, rotation and global scaling) is 
performed to increase training set size and improve the net-
works generalizability. Note, the FatSegNet implementation is 
available at https ://github.com/reuter-lab/FatSe gNet.

2.3.2 | Pipeline reliability
We assess the FatSegNet reliability by comparing the differ-
ence of VAT‐V and SAT‐V across sessions for each subject 
of the test–retest and manually edited set. Given a predicted 
label map and Ni(l) the number of voxels classified as l (VAT 
or SAT) in session i (test–retest, or manual–automated), the 
absolute percent difference (APD(l)) of a label volume meas-
ures variability across sessions. It is defined as 

Additionally, we calculate the agreement of total VAT‐V 
and SAT‐V between sessions by an intra‐class correlation 
(ICC) using a two‐way fixed, absolute agreement and single 
measures ICC(A,1).32

2.3.3 | Case study analysis on the 
Rhineland study
We compare the volumes of abdominal adipose tissue 
(AAT‐V, SAT‐V, and VAT‐V) generated from FatSegNet 
with BMI on the unseen dataset. A fast quality control is 

(1)DSC= 2 ⋅ |M∩P|
|M|+ |P|

(2)APD(l)= 2 ⋅ ||N1(l)−N2(l)||
N1(l)+N2(l) ⋅100
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performed to identify drastic failure cases. The differences 
among BMI groups are evaluated with a one‐way analysis of 
variance (ANOVA) with subsequent Tukey’s honest signifi-
cant difference (HSD) post hoc comparisons. The associa-
tions of volumes of abdominal adipose tissue and BMI are 
assessed using partial correlation and linear regression after 
accounting for age, sex, and height of the abdominal region. 
Separate linear regression analyses are performed to explore 
the effect of age on SAT‐V and VAT‐V in men and women. 
All the statistical analyses are performed in R.33

3 |  RESULTS

3.1 | Method validation

3.1.1 | Localization of abdominal region
For assessing the performance of abdominal region detection 
after creation of an average bounding box from the coronal 
and sagittal views the average Dice overlap (sixfold cross‐
validation) was calculated, as illustrated on the Supporting 
Information Figure S2. We observe that all models perform 
extremely well on the relatively easy task of localizing the 
desired abdominal region (DSC >0.96). There is no signif-
icant difference between the models; however, we use our 
CDFNet because it requires substantially less parameters (see 
Table 1) compared to the UNet and Dense‐UNet.

3.1.2 | Segmentation of AAT
In Table 1, we present the average Dice score (sixfold cross‐
validation) for VAT and SAT for each individual view as 
well as for the view aggregation model. Here, we observe 
that all methods work extremely well for SAT segmentation. 
Nevertheless, our proposed CDFNet outperforms the UNet 
and SD‐Net on all single‐view models and, when compared 
with the Dense‐UNet, there is significant improvement in the 
sagittal and coronal views. For the more challenging task of 
VAT recognition, which is a more fine‐grained compartment 
with large shape variation, the proposed CDFNet outperforms 
the SD‐Net on all single planes; when compared with Dense‐
UNet and U‐Net, there is only significant improvement in the 
axial and coronal plane. Nonetheless, CDFNet achieves this 
performance with ∼30% (Dense‐UNet) and ∼80% (UNet) 
less parameters, demonstrating that the proposed architecture 
improves feature selectivity and simplifies network learn-
ing. Furthermore, fewer parameters can help decrease over‐ 
fitting error, especially when training with limited annotated 
data, and thus improve generalizability.

Note, that Dice scores increase and difference of pairwise 
comparisons is slightly reduced after the view aggregation 
(Table 1), showing that this steps helps all individual net-
works to reach a better performance by introducing spatial TA
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information from multiple views and regularizing the pre-
diction maps. The proposed data‐driven aggregation scheme 
outperforms (DSC) the hard‐coded models for SAT and 
with statistically significance for VAT as shown in Table 2. 
Furthermore, learned weights are spatially varying and can 
adjust to subject‐specific anatomy, which in turn can improve 
generalizability. We empirically observe that the aggregation 
model smoothes the label maps slightly, resulting in visually 
more appealing boundaries. It also significantly reduces the 
arms from being misclassified as adipose tissue which can 
otherwise be observed in different views, especially on over-
weight and obese subjects, where arms are located closer to the 
abdominal cavity, as seen Supporting Information Figure S3.

Finally it should be highlighted, that all single‐view and 
the view aggregation models achieve similarly excellent 
results on the SAT segmentation compared to inter‐rater 
variability and outperform the manual raters for the more 
challenging VAT segmentation by a margin.

3.1.3 | FatSegNet reliability
Table 3 presents the reliability metrics evaluated on the test–
retest and the manually edited test set. The proposed pipe-
line presents only a small absolute percent volume difference 
(APD) for VAT and SAT, and excellent agreement between 
the predicted and corrected segmentation maps. It must be 
noted, that APD is larger for both tissue types in the test– 
retest setting as it also includes variance from acquisition 
noise (e.g. motion artefacts, non‐linearities based on different 
positioning) in addition to potential variances of the process-
ing pipelines. Nevertheless, we observe excellent agreement 

(ICC) between sessions for the test–retest dataset for both 
adipose tissue types.

3.2 | Case study: Analysis of Rhineland 
study data

3.2.1 | The characteristics of the 
study population
After visual quality inspection, 16 scans were flagged due 
to image artefacts, such as motion or low contrast (see  
Figure 4C,D for two examples). The characteristics of the 
remaining 587 participants with valid data on BMI and vol-
umes of abdominal adipose tissue are presented in Supporting 
Information Table S1. The mean (SD) age of the subjects is 
54.2 (13.3) years, and 54.7% are women. 311 (53.0%) sub-
jects are normal weight, 209 (35.6%) overweight, and 67 
(11.4%) obese. We observed a BMI increase with age (β = 
0.03, P =  .007) and a borderline significance of age differ-
ence among BMI groups (P = .052, ANOVA). Obvious dif-
ferences are observed in AAT‐V, VAT‐V, and SAT‐V across 
BMI groups (P <  .001, ANOVA). VAT‐V to SAT‐V ratio 
is higher in overweight and obese participants compared to 
those with normal weight (P < .001), but there is no differ-
ence between overweight and obese (P = .505).

3.2.2 | The association between abdominal 
adipose tissue volumes and BMI
BMI shows a strong positive correlation with AAT‐V and 
SAT‐V (AAT‐V: r = .88, P < .001; SAT‐V: r = .85, P < .001), 

T A B L E  2  Mean (and standard deviation) Dice scores (cross‐validation) of hard‐coded balanced weights, hard‐coded axial focus weights, and 
the proposed view aggregation for abdominal adipose tissue segmentation

Subcutaneous (SAT) Visceral (VAT)

Single‐view model Balanced Axial focus Proposed Balanced Axial focus Proposed
UNet 0.970 (0.026) 0.970 (0.026) 0.972 (0.019) 0.830 (0.098)a 0.829 (0.099)a 0.837 (0.095)
SD‐Net 0.970 (0.026)a 0.972 (0.025)a 0.972 (0.020) 0.839 (0.084)a 0.838 (0.085)a 0.843 (0.082)
Dense‐UNet 0.973 (0.025) 0.974 (0.024)a 0.975 (0.019) 0.841 (0.081)a 0.840 (0.082)a 0.847 (0.080)
CDFNet 0.972 (0.025)a 0.973 (0.024) 0.975 (0.018) 0.844 (0.077)a 0.841 (0.080)a 0.850 (0.076)

Note: We show FDR corrected significance indicators of Wilcoxon signed‐rank test29 comparing the proposed data‐driven aggregation scheme vs. each hard‐coded 
method.
aStatistical difference using a one‐sided adaptive FDR multiple comparison correction30 at a level of 0.05. 

T A B L E  3  Mean absolute percent difference (APD) and interclass correlation agreement (ICC(A,1)) for the volumes estimates of VAT and 
SAT across sessions of the manually edited and test–retest set

Manually edited set Test–retest set

Metric SAT‐V VAT‐V SAT‐V VAT‐V
ICC [95% CI] 0.999 [0.999‐1.000] 0.999 [0.994‐0.999] 0.996 [0.986‐0.999] 0.998 [0.995‐0.999]
APD (SD) 0.149% (0.424) 1.398% (0.963) 3.254% (2.524) 2.957% (2.600)
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but only a moderate correlation with VAT‐V (r  =  0.65, 
P <  .001) after adjusting for age, sex, and abdominal region 
height. As illustrated in Figure 5, both SAT‐V and VAT‐V are 
positively associated with BMI after accounting for age, sex, 
and abdominal region height (P < .001). The accumulation of 
SAT‐V is higher than VAT‐V as BMI increases.

3.2.3 | Influence of age and sex on 
VAT‐V and SAT‐V
The influence of age and sex on VAT‐V and SAT‐V follows 
different patterns (as illustrated in Figure 6). Men tend to have 
lower SAT and higher VAT compared to women (P < .001). 
VAT‐V significantly increase with age in both men and women. 
Conversely, SAT‐V is weakly associated with age in women  
(β = 0.02, P = .012), but not in men (β = −0.01, P = .337).

4 |  DISCUSSION

In our study, we established, validated, and implemented 
a novel deep learning pipeline to segment and quantify the 
components of abdominal adipose tissue, namely, VAT‐V, 
SAT‐V, and AAT‐V on a fast acquisition abdominal Dixon 
MR protocol for subjects from the Rhineland Study, a large 
population‐based cohort. The proposed pipeline is fully au-
tomated and requires approximately 1 minute for analyzing 
a subject’s whole volume. Moreover, since the pipeline is 
based on deep learning models, it can be easily updated and 
retrained as the study progresses and new manual data are 
generated—which can further improve overall pipeline ro-
bustness and generalizability, providing a pragmatic solution 
for a population‐based study.

The proposed pipeline, termed FatSegNet implements 
a three‐stage design with the CDFNet architecture at the 
core for localizing the abdominal region and segmenting 

the AAT. The introduction of our CDFNet inside the pipe-
line boosts the competition among filters to improve fea-
ture selectivity within the networks. CDFNet introduces 
competition at a local scale by substituting concatena-
tion layers with maxout activations that prevent filter co‐ 
adaptation and reduce the overall network complexity. It 
also induces competition at a global scale through com-
petitive unpooling. This network design, in turn, can learn 
more efficiently.

For the first stage of the pipeline, i.e. localization of the 
abdominal region, all FCNNs can successfully determine the 
upper and lower limit of the abdominal region from a seg-
mentation prediction map. However, our CDFNet requires 
significantly fewer parameters compared to the traditional 
UNet and Dense‐UNet. Furthermore, the localization block 
is able to identify the abdominal region correctly even in 
cases with scoliosis (curved spine) as illustrated in Figure 7F.  
For the more challenging task of segmenting AAT, we 
demonstrate that CDFNet recovers VAT significantly bet-
ter than traditional deep learning variants that rely on 

F I G U R E  4  Examples of FatSegNet predictions and excluded cases on the Rhineland Study. (A, B) Subjects with different body shapes and 
accurate segmentations. (C, D) Excluded subjects from the case study due to extreme motion noise (C), or low image contrast quality (D).

(A) (B) (C) (D)

F I G U R E  5  Association of BMI with SAT‐Volume and VAT‐
Volume
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1480 |   ESTRADA ET AL.

concatenation layers. Additionally, each individual CDFNet 
view model outperforms manual raters for segmenting the 
complex VAT and accomplishes equivalent results on SAT. 
The selection of an inhomogeneous BMI testing set ensures 
that our method is evaluated for different body types and 
avoids biases, as better segmentation performance can be 
achieved on subjects with high content of AAT compared to 
lean subjects.34,35 Moreover, images from individuals with 
high AAT could be accompanied by other types of issues, 

such as fat shadowing (Figure 7D), or arms located in close 
proximity to the abdominal cavity (Figure 7A,D,E). These 
issues are mitigated by our view aggregation model that reg-
ularizes the predicted segmentation by combining the spatial 
context from different views ultimately improving segmenta-
tion of tissue boundaries. Moreover, this approach automat-
ically prevents misclassification of arms whereas previous 
deep learning AAT segmentation methods required manual 
removal of the upper extremities in a pre‐processing step.18 

F I G U R E  6  The association between 
age and SAT‐Volume and VAT‐Volume in 
men and women

F I G U R E  7  Examples of FatSegNet 
predictions on the Rhineland Study. (A‐F) 
Accurate automatic segmentation of 
different body shapes. Extreme cases: A, 
arms are in front of the abdominal cavity, 
and F, deviated spine

(A) (B) (C)

(F)(E)(D)
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Note, that we prefer the 2D over a full 3D approach in this 
work. A full 3D network architecture has more parameters, 
requiring significantly more expert annotated training data 
(full 3D cases) and/or artificial data augmentation, which 
could increase the chance of overfitting—in addition to in-
creased GPU memory requirements.

As demonstrated on the Rhineland Study data, the pro-
posed pipeline exhibits high robustness and generalizabil-
ity across a wide range of age, BMI, and a variety of body 
shapes as seen in Figures 7 and 4A,B. FatSegNet successfully 
identifies the AAT in different abdomen morphologies, spine 
curvatures, adipose shadowing, arms positioning, or inten-
sity inhomogeneities. Furthermore, the pipeline has a high 
test–retest reliability between the calculated volumes of VAT 
and SAT without the need of any image pre‐processing (bias‐ 
correction, image registration, etc.) or manual selection 
of a slice or region. Furthermore, the manually edited test 
set demonstrates a high similarity of automated and man-
ual labels and excellent agreement of volume estimates. 
However, as is usual with any automated method, segmen-
tation reliability decreases when input images have low 
quality as illustrated in Figure 4C,D where the scans present 
severe motion/breathing artifacts or very low‐image contrast. 
In order to detect these problematic images in large studies, 
an automated or manual quality control protocol should be 
implemented before passing images to automated pipelines.

In accordance with previous studies on smaller data 
sets,13,36 our data showed a lower correlation of BMI with 
VAT‐V than with AAT‐V and SAT‐V. We also observed a 
sex difference of the SAT‐V and VAT‐V accumulation as 
previously reported37,38: men were more likely to have higher 
VAT‐V and lower SAT‐V compared to women. Moreover, 
we further explored the association between age with SAT‐V 
and VAT‐V and found an obvious age effect on the accumu-
lation of VAT‐V in both men and women, and a weak age 
effect on SAT‐V in women but not in men. This discrepancy 
was previously observed by Machann et al,37 who assessed 
the body composition using MRI in 150 healthy volunteers 
aged 19 to 69 years. They reported a strong correlation  
between VAT‐V and age both in men and women, whereas 
SAT‐V only slightly increased with age in women. The fact 
that our results replicate these previous findings on a large 
unseen dataset corroborates stability and sensitivity of our 
pipeline.

In conclusion, we have developed a fully automated post‐
processing pipeline for adipose tissue segmentation on ab-
dominal Dixon MRI based on deep learning methods. While 
reducing the number of required parameters, the pipeline out-
performs other deep learning architectures and demonstrates 
high reliability. Furthermore, the proposed method was suc-
cessfully deployed in a large population‐based cohort, where 
it replicated well known SAT‐V and VAT‐V age and sex as-
sociations and demonstrated generalizability across a large 

range of anatomical differences, both with respect to body 
shape and fat distribution.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 View aggregation Network. The proposed net-
work is composed of a initial 3D convolution layer with 30 
channels, followed by a batch normalization and a 3D con-
volutional layer for reducing the feature map dimensionality 
into the number of classes(n = 5)
FIGURE S2 Step 1: Abdominal region localization. Dice scores 
box‐plot: Average Dice score (cross‐validation) of the abdominal 
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region detection comparing the Proposed CDFNet vs. other 
FCNN architectures. The Dice scores are calculated on the 
average abdominal region generated from the average bounding 
boxes of the sagittal and coronal model. There is no significant 
difference between models, nonetheless, the proposed method 
achieves the same performance with ∼30% and ∼80% less 
parameters compared to Dense‐UNet and UNet, respectively
FIGURE S3 Comparison of single view model (left) vs. view 
aggregation (right): AAT predictions of two unseen subjects: A, 
normal subject, B, obese subject. View aggregation avoids arm‐
misclassification (red boxes) and improves SAT (purple box)

TABLE S1 Case study analysis on the Rhineland Study data. 
Characteristics of the participants (n = 587) showing mean 
(SD) for continuous and counts (PCT) for categorical variables

How to cite this article: Estrada S, Lu R, Conjeti S, 
et al. FatSegNet: A fully automated deep learning 
pipeline for adipose tissue segmentation on abdominal 
dixon MRI. Magn Reson Med. 2020;83:1471–1483. 
https ://doi.org/10.1002/mrm.28022 
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SUPPLEMENTARY INFORMATION FOR FATSEGNET 1
SU P P L E M E N TA R Y IN F O R M AT I O N
This document supplies expanded material for the FatSegNet: A Fully Automated Deep Learning Pipeline for Adipose
Tissue Segmentation on Abdominal Dixon MRI work.

F I G U R E S 1 View-aggregation Network The proposed network is composed of a initial 3D convolution layer with
30 channels, followed by a batch normalization and a 3D convolutional layer for reducing the feature map
dimensionality into the number of classes(n=5).
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F I G U R E S 2 Step 1: Abdominal region localization. Dice scores box-plot: Average Dice score (cross-validation) of
the abdominal region detection comparing the Proposed CDFNet vs. other FCNN architectures. The Dice scores are
calculated on the average abdominal region generated from the average bounding boxes of the sagittal and coronal
model. There is no significant difference between models, nonetheless, the proposed method achieves the same
performance with ⇠30 % and ⇠80 % less parameters compared to Dense-UNet and UNet, respectively.



2 SUPPLEMENTARY INFORMATION FOR FATSEGNET

F I G U R E S 3 Comparison of single view model (left) vs. view-aggregation (right): AAT predictions of two unseen
subjects: a) normal subject, b) obese subject. View-aggregation avoids arm-misclassification (red boxes) and improves
SAT (purple box).

TA B L E S 1 Case study analysis on the Rhineland Study data . Characteristics of the participants (n=587) showing
mean (SD) for continuous and counts (PCT) for categorical variables

Characteristic Normal weight Overweight Obesity
n 311 209 67
Age in years 53.1 (13.2) 55.1 (13.5) 56.9 (12.4)
Women, n (%) 202 (65.0) 76 (36.4) 43 (64.2)
BMI in kg/m2 22.4 (1.6) 27.0 (1.4) 33.3 (3.4)
AAT-V in liters 4.24 (1.42) 7.29 (1.64) 10.59 (2.27)
VAT-V in liters 1.44 (0.93) 3.06 (1.40) 3.99 (1.71)
SAT-V in liters 2.80 (0.80) 4.23 (0.94) 6.60 (2.04)
VAT-V to SAT-V ratio 0.52 (0.32) 0.76 (0.40) 0.70 (0.47)

BMI, body mass index; AAT-V, abdominal adipose tissue volume; SAT-V, subcutaneous adi-
pose tissue volume; VAT-V, visceral adipose tissue volume.
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The neuroimage analysis community has neglected the automated segmentation of the olfactory bulb (OB) despite 
its crucial role in olfactory function. The lack of an automatic processing method for the OB can be explained by 
its challenging properties (small size, location, and poor visibility on traditional MRI scans). Nonetheless, recent 
advances in MRI acquisition techniques and resolution have allowed raters to generate more reliable manual an- 
notations. Furthermore, the high accuracy of deep learning methods for solving semantic segmentation problems 
provides us with an option to reliably assess even small structures. In this work, we introduce a novel, fast, and 
fully automated deep learning pipeline to accurately segment OB tissue on sub-millimeter T2-weighted (T2w) 
whole-brain MR images. To this end, we designed a three-stage pipeline: (1) Localization of a region containing 
both OBs using FastSurferCNN , (2) Segmentation of OB tissue within the localized region through four indepen- 
dent AttFastSurferCNN - a novel deep learning architecture with a self-attention mechanism to improve modeling 
of contextual information, and (3) Ensemble of the predicted label maps. For this work, both OBs were man- 
ually annotated in a total of 620 T2w images for training (n = 357) and testing. The OB pipeline exhibits high 
performance in terms of boundary delineation, OB localization, and volume estimation across a wide range of 
ages in 203 participants of the Rhineland Study (Dice Score (Dice): 0.852, Volume Similarity (VS): 0.910, and 
Average Hausdorff Distance (AVD): 0.215 𝑚𝑚 ). Moreover, it also generalizes to scans of an independent dataset 
never encountered during training, the Human Connectome Project (HCP), with different acquisition parame- 
ters and demographics, evaluated in 30 cases at the native 0.7 𝑚𝑚 HCP resolution (Dice: 0.738, VS: 0.790, and 
AVD: 0.340 𝑚𝑚 ), and the default 0.8 𝑚𝑚 pipeline resolution (Dice: 0.782, VS: 0.858, and AVD: 0.268 𝑚𝑚 ). We 
extensively validated our pipeline not only with respect to segmentation accuracy but also to known OB volume 
effects, where it can sensitively replicate age effects ( 𝛽 = −0 . 232 , 𝑝 < . 01 ). Furthermore, our method can analyze 
a 3D volume in less than a minute (GPU) in an end-to-end fashion, providing a validated, efficient, and scalable 
solution for automatically assessing OB volumes. 

1. Introduction 

1.1. Motivation 

Over the past decades, there has been an increasing awareness to 
odor function not only as a quality of life indicator ( Croy et al. (2014) ) 
but also as a potential biomarker in population studies. Olfac- 
tory dysfunction is among the earliest signs of many neurode- 
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generative disorders, including Alzheimer’s and Parkinson’s dis- 
ease ( Attems et al. (2014) ; Doty (2017) ; Roberts et al. (2016) ). There- 
fore, it is of major interest to gain insights into the anatomical basis of 
the olfactory pathway in vivo. 

New developments in magnetic resonance imaging (MRI) (e.g. 
field strength, accelerated acquisition schemes, etc.) have allowed 
the acquisition of high-resolutional (High-Res) MR images, provid- 
ing an option for reliable assessment of odor-related brain struc- 
tures, including olfactory bulb (OB). The OB is considered the 

https://doi.org/10.1016/j.neuroimage.2021.118464 . 
Received 19 April 2021; Received in revised form 9 July 2021; Accepted 9 August 2021 
Available online 10 August 2021. 
1053-8119/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 



S. Estrada, R. Lu, K. Diers et al. NeuroImage 242 (2021) 118464 

most important relay station in the odor pathway, integrating pe- 
ripheral and central olfactory information. Moreover, OB volume 
has been associated with olfactory dysfunction in clinical set- 
tings ( Hummel et al. (2011) ; Mazal et al. (2016) ). However, compared 
to its central counterparts, i.e. prefrontal cortex, hippocampus, and in- 
sular cortex ( Dintica et al. (2019) ; Vassilaki et al. (2017) ), OB remains 
relatively poorly studied, especially in the general population. One rea- 
son for that could be the lack of a fully automated segmentation tool for 
this structure. 

Currently, the gold standard for measuring OB volumes is the man- 
ual segmentation of T2 weighted (T2w) images –a very expensive and 
time-consuming process that greatly relies on the raters’ expertise. 
Thus, especially for large population-based studies, automatic segmen- 
tation methods are required. However, achieving good accuracy on 
this small structure is challenging due to its inherent properties: (i) 
low contrast on T1w scans, (ii) low boundary contrast on T2w im- 
ages (partial volume effects), (iii) highly sensitivity to noise due to 
its proximity to the nostrils (e.g. breathing artefacts), (iv) not visi- 
ble in all subjects ( Weiss et al. (2020) ), and (v) highly dependent of 
age ( Buschhüter et al. (2008) ; Hummel et al. (2011, 2015) ). So far, those 
limitations have impeded the wide implementation of any automatic or 
semi-automatic techniques. Therefore, the introduction of an accurate 
automated method for segmenting OB is of significant clinical and re- 
search interest. 

1.2. Olfactory bulb segmentation 

Despite the fact, that many studies have analyzed the OB, there 
is a lack of accurate automatic processing methods for this struc- 
ture which has been overlooked by many of the standard neuroim- 
age processing frameworks, such as FreeSurfer ( Fischl et al. (2002) ), 
BrainSuite ( Shattuck and Leahy (2002) ), SPM ( Friston (2003) ), 
ANTs ( Avants et al. (2009) ), or FSL ( Jenkinson et al. (2012) ). To 
date, manual delineation is still the predominant approach for accu- 
rate quantification of OB volumes. Most groups approximate OB vol- 
umes from 1.5T T2w MR scans with a relative low resolution (of 
1.5 𝑚𝑚 to 2 𝑚𝑚 isotropic) ( Buschhüter et al. (2008) ; Hummel et al. 
(2011, 2015) ; Seubert et al. (2012) ). Recent studies ( Joshi et al. (2020) ; 
Weiss et al. (2020) ) on 3T high-resolutional T2w MRI have focused on 
developing semi-automatic techniques to reduce manual annotations 
workload but cannot automatically segment the OB. Concurrently to 
our work, Noothout et al. (2021) proposed an automatic pipeline us- 
ing fully convolutional neural networks (F-CNNs) to segment the OB on 
coronal T2w images with an in-plane resolution of 0.47 𝑚𝑚 × 0.47 𝑚𝑚 

and 1 𝑚𝑚 thickness. While this method, which is not publicly available 
at this time, shows promising results in a small dataset (n = 21), it is 
reported to be sensitive to motion artefacts and unseen scenarios (i.e. 
cases with no apparent OB). 

Recently, supervised learning using F-CNNs ( Badrinarayanan 
et al. (2017) ; Long et al. (2015) ) has become the preferred stan- 
dard in the medical computer vision community for solving seman- 
tic segmentation problems when sufficient training data is avail- 
able ( Billot et al. (2020) ; Dong et al. (2017) ; Estrada et al. (2020) ; 
Henschel et al. (2020) ; Kamnitsas et al. (2017b) ; Milletari et al. (2016) ; 
Noothout et al. (2021) ; Ronneberger et al. (2015) ; Roy et al. (2019b, 
2018) ). F-CNNs often outperform other traditional methods, as they 
can learn intrinsic features and integrate global context to resolve lo- 
cal ambiguities in an end-to-end fashion. The most frequently employed 
network layout for semantic segmentation is the encoder-decoder ar- 
chitecture, i.e. the UNet ( Ronneberger et al. (2015) ). The accuracy of 
this architecture, however, decreases when segmenting smaller struc- 
tures ( Billot et al. (2020) ; Estrada et al. (2018) ; Roy et al. (2018) ). 
This can be due to the more complex shapes (i.e. thinner, irregular 
boundaries) and visual appearance characteristics in medical images 
(i.e. less visible and partly occluded). Nonetheless, some of the fault 
can be attributed to the encoder-decoder layout as it can lead to a 

redundant use of information and insufficient encoding of the global 
contextual information ( Fu et al. (2019) ; Sinha and Dolz (2020) ). An 
accurate understanding of the spatial context is of tremendous impor- 
tance when segmenting smaller structures as local representation dif- 
ferences between pixels/voxels of a same structure introduce inter-class 
inconsistencies and affect the recognition accuracy ( Fu et al. (2019) ). 
To solve this issue, attention modules have been introduced to im- 
prove the understanding of long-range dependencies, not only for se- 
mantic segmentation ( Fu et al. (2019) ; Roy et al. (2018) ; Sinha and 
Dolz (2020) ) but also for other computer vision tasks ( Lin et al. (2016, 
2017) ; Vaswani et al. (2017) ; Zhang et al. (2019) ). 

In this work, we modify our FastSurferCNN ( Henschel et al. (2020) ) 
for whole-brain segmentation to focus on the OB. To improve FastSurfer- 

CNN’s performance for small structures, we suitably included the self- 
attention mechanism proposed in Zhang et al. (2019) into FastSurfer- 

CNN ; the new deep-learning architecture is termed AttFastSurferCNN. 

AttFastSurferCNN promotes attention to spatial information by improv- 
ing the modeling of local and global-range dependencies. Overall, to 
segment the OB on high-resolutional T2w whole-brain MRI in a fully 
automatic fashion, we introduce a deep learning pipeline consisting of 
three stages: 

1. Localization of a region of interest (ROI) containing the OBs of both 
hemispheres using a semantic segmentation approach by implement- 
ing FastSurferCNN ; we use the centroid of the predicted region as a 
center point for cropping a localized volume. 

2. Segmentation of OB tissue within the localized volume through four 
AttFastSurferCNN with different training condition (four data-splits 
and data initialization). 

3. Ensemble stage where the previously generated label maps are aver- 
aged and view-aggregated to form a consensual final segmentation. 

The presented networks were trained with manual annotations of 
357 T2w scans from the Rhineland Study, an ongoing large population- 
based cohort study ( Breteler et al. (2014) ; Stöcker (2016) ). We ex- 
tensively validated the quality of the individual stages of the pipeline 
through assessment of segmentation accuracy in an independent un- 
seen heterogeneous in-house dataset ( 𝑛 = 203 ). We showed that our 
previously introduced FastSurferCNN can precisely localize the region 
containing both OBs and that the proposed AttFastSurferCNN can accu- 
rately segment the OBs, outperforming other establish F-CNNs and ac- 
complishing equivalent results as manual raters. After asserting segmen- 
tation accuracy, we validated the soundness of the proposed pipeline in 
the Rhineland Study with respect to: i) replication of known OB vol- 
ume effects (e.g. age), ii) stability of volume estimates among varia- 
tions of the study’s T2w sequences, and iii) robustness to scans with- 
out an apparent OB. We further assessed generalizability to an un- 
seen externally labeled dataset of 30 subjects from a cohort with dif- 
ferent characteristics and acquisition parameters. To the best of our 
knowledge, our pipeline is the first framework capable of automat- 
ically segmenting the OB in a large cohort dataset with high accu- 
racy and reliability. Furthermore, we demonstrated that our method 
can generalize to different T2w scans with 0.8 𝑚𝑚 isotropic resolu- 
tion. The proposed method is available as an open-source project at: 
https://github.com/Deep- MI/olf- bulb- segmentation . 

2. Methodology 

2.1. Manual reference standard 

Our manual reference standard is based on the annotation of high- 
resolutional (0.8 𝑚𝑚 isotropic) T2w MRI from the Rhineland Study. The 
Rhineland Study ( www.rheinland-studie.de ) is an ongoing study that 
enrolls participants aged 30 years and above at baseline from Bonn, Ger- 
many. The study is carried out in accordance with the recommendations 
of the International Council for Harmonisation (ICH) Good Clinical Prac- 
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Fig. 1. T2-weighted images and ground truth from two subjects. The red square represents the zoom-in region. A) Sagittal view and labels (blue: left OB, red: right 
OB, purple: ROI label). B) Coronal view and labels. C) ROI distance map around the centroid of the OB labels. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

tice (GCP) standards (ICH-GCP). Written informed consent was obtained 
from all participants in accordance with the Declaration of Helsinki. 

Manual annotations of the left and right OB were performed by an 
experienced rater in (unprocessed) T2w images using Freeview - a vi- 
sualization tool of FreeSurfer ( Fischl (2012) ; Fischl et al. (2002) ). OB 

is defined as a mostly almond- or spindle-shaped structure symmetri- 
cally located at the base of the forebrain ( Rombaux et al. (2009) ) as 
seen in Fig. 1 , which can be demarcated based on surrounding cere- 
brospinal fluid and the underlying cribriform plate. The abrupt changes 
in diameter at the beginning of the olfactory tract in the axial and sagit- 
tal views were used as a posterior ending landmark ( Wang et al. (2011) ; 
Yousem et al. (1998) ). In addition, to avoid bias, labeling was blind to 
participant metadata, e.g. outcomes of the olfactory function and demo- 
graphics. 

For the localization task, we solve a semantic segmentation problem 

with the goal to segment the forebrain region containing the OBs from 

both hemispheres (referred to as “region of interest (ROI) ”). The ROI la- 
bel generation is achieved by the following steps: (1) Localization of the 
mid-point between left and right OB by calculating the centroid ( 𝐶) of 
the manual labels. (2) Generation of a distance map by applying a Gaus- 
sian distribution around 𝐶 on a down-sampled 1.6 𝑚𝑚 isotropic image, 
the distance map is defined as : 𝑓 ( 𝑥, 𝑦, 𝑧 ) =  ( 𝜇 = 𝐶, 𝛿 = 10) where x,y 
and z are voxel coordinates in the down-sampled image. (3) A binary 
cutoff at 𝑓 ( 𝑥, 𝑦, 𝑧 )∕ max ( 𝑓 ( 𝑥, 𝑦, 𝑧 )) > = 0 . 8 separates ROI and background. 
The Resulting distance maps and labels are illustrated in Fig. 1 . 

2.2. Olfactory bulb pipeline 

Our proposed deep learning method is aimed at segmenting the OB 

on high-resolutional T2w whole-brain MRI. This task presents the chal- 
lenge of a high-class imbalance between foreground and background 
( ≈ 1 ∶ 10 6 ). A reduction in the spatial size of the input can partially al- 
leviate the problem by cropping the background and by focusing the 
background information on relevant regions in close proximity to the 
OBs. This, furthermore, reduces computational and memory require- 
ments during training and inference. Following this direction, we de- 
signed a fully automated pipeline for OB tissue segmentation as depicted 
in Fig. 2 . 

The proposed pipeline consists of three stages: (1) In order to re- 
move most of the unnecessary background we first train FastSurfer- 

CNN ( Henschel et al. (2020) ) with a down-sampled 1.6 𝑚𝑚 isotropic 
image to provide a quick segmentation of the forebrain region contain- 

ing both OBs (localization network). This segmentation is only used to 
compute a centroid coordinate of the region of interest. A final localized 
volume (at 0.8 𝑚𝑚 isotropic, 96 × 96 × 96 voxels), centered at this co- 
ordinate, is cropped or resampled from the input image. By default the 
pipeline resamples deviating resolutions to 0.8 𝑚𝑚 isotropic, unless the 
user specifies to use the native resolution instead. (2) Afterwards, the OB 

tissue is segmented within this cropped volume by four AttFastSurferC- 

NNs with different training conditions (four data-splits and data initial- 
ization). (3) Finally, the ensemble segmentation is composed by averag- 
ing the predicted label maps; the implemented ensemble approach en- 
sures that only voxels with high agreement among models are selected 
and also reduces variance due to network initialization. Furthermore, 
since right and left OB were combined as one structure during segmen- 
tation, they are split retrospectively in an independent post-processing 
step. 

2.2.1. Region of interest (ROI) localization network - FastSurferCNN 

To localize the ROI as a semantic segmentation task, we employ Fast- 

SurferCNN ( Henschel et al. (2020) ) as it outperformed other commonly 
used encoder-decoder architectures, i.e. SDNet ( Roy et al. (2017) ) and 
QuickNat ( Roy et al. (2019b) ), on the difficult task of whole-brain seg- 
mentation. FastSurferCNN consists of three 2D F-CNNs operating on dif- 
ferent anatomical views (coronal, axial, and sagittal) and a final view- 
aggregation stage. In brief, all F-CNNs follow the same layout of four 
competitive-dense blocks (CDB) for the encoder and decoder path sep- 
arated by a bottleneck block. The use of CDB reduces the number of 
learnable parameters by replacing the typical concatenation units inside 
dense-connections with maxout activations ( Goodfellow et al. (2013) ; 
Huang et al. (2017) ). The maxout activation induces competition be- 
tween feature maps by computing the maximum at each spatial loca- 
tion, thus improving the feature selectivity ( Liao and Carneiro (2017) ) 
and boosting the learning of fine-grained structures ( Estrada et al. 
(2018, 2020) ). Furthermore, FastSurferCNN utilizes a multi-slice input 
approach by stacking preceding slices, current, and succeeding slices 
for segmenting only the middle slice, which in turn increases the spa- 
tial information aggregation in a 2D network by improving the local 
neighborhood awareness ( Henschel et al. (2020) ). 

In this work, we slightly modified FastSurferCNN by adjusting the 
view-aggregation step to a normal unweighted average. Since the ROI 
label is not lateralized, there is no need to increase attention to any par- 
ticular anatomical view. Furthermore, the prior downsampling of the 
input scan (to isotropic 1.6 𝑚𝑚 ) allows a reduction of the multi-slice in- 
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Fig. 2. Proposed pipeline for OB segmentation. The pipeline is divided into three stages: First, localization of a region of interest containing the left and right OB. 
Then, OB tissue segmentation within the localized volume, and finally, an ensemble of predicted label maps. 

Fig. 3. Competitive Dense Blocks (CDB) configuration. Each block is composed 
of three sequences of parametric rectified linear unit (PReLU), convolution 
(Conv) and batch normalization (BN) (bottom) with exception of the very first 
encoder block (top). In the first block, the PReLU is replaced with a BN to nor- 
malize the raw inputs. 

put image from 7 to 3 consecutive slices while retaining approximately 
the same field of view. In terms of the CDB blocks, the three configura- 
tion sequences of a parametric rectified linear unit (PReLU), convolution 
(Conv)(64 filters), and batch normalization (BN) are maintained ( Fig. 3 
top) as well as the exception for the very first encoder block. In the first 
block, the first PReLU is replaced with a BN to normalize the raw inputs 
( Fig. 3 bottom). 

2.2.2. OB Segmentation network - AttFastSurferCNN 

To accurately segment the OB, we introduce AttFastSurferCNN a new 

deep learning architecture that boosts the attention to spatial informa- 
tion. We implemented AttFastSurferCNN by suitably including the self- 
attention mechanism proposed by Zhang et al. (2019) into FastSurfer- 

CNN ( Henschel et al. (2020) ). The self-attention module was included 
after each competitive-dense block (CDB), as shown in Fig. 4 , thus im- 
proving the modeling of contextual information. Furthermore, in order 
to take full advantage of the multi-scale attention maps ( Fu et al. (2019) ; 
Sinha and Dolz (2020) ) and to prevent information loss from the unpool- 
ing layers ( Estrada et al. (2018) ), we replaced the maxout activation 

units between the finer feature maps from long-range skip connections 
and the coarser feature maps from the unpooling path with an element- 
wise sum. 

The implemented self-attention layer is illustrated in Fig. 5 . Let us 
denote the CDB output feature map as 𝐹 𝐶𝐷𝐵 𝜖 ℝ 

𝐶×𝐻×𝑊 , where 𝐶, 𝐻, 𝑊 

represent the channel, height, and width dimensions respectively. First, 
the 𝐹 𝐶𝐷𝐵 is fit into two 1 × 1 convolutional layers to reshape the chan- 
nels to a size of 𝐶∕8 and create two new features maps ( 𝐹 𝑎 and 𝐹 𝑏 ). 
Reducing the number of channels drastically diminishes memory re- 
quirements without a significant performance loss ( Zhang et al. (2019) ). 
Subsequently, the feature maps are flattened to a shape of ( 𝐶∕8) × ( 𝑁) , 
where 𝑁 = 𝐻 ×𝑊 are the number of pixels. Afterwards, an attention 
map ( S ) is created by applying a softmax layer into the output of a matrix 
multiplication between 𝐹 ⊤𝑎 and 𝐹 𝑏 . Thus S 𝜖 ℝ 

𝑁×𝑁 is defined as: 

𝑠 𝑗,𝑖 = 𝑒𝑥𝑝 
(
𝐹 ⊤𝑎𝑖 ⋅ 𝐹 𝑏𝑗 

)
∕ 
∑𝑁 

𝑖 =1 𝑒𝑥𝑝 
(
𝐹 ⊤𝑎𝑖 ⋅ 𝐹 𝑏𝑗 

)
(1) 

where 𝑠 𝑗,𝑖 indicates the extend to which the 𝑖 𝑡ℎ position impacts the 𝑗 𝑡ℎ 
position. Before applying S , the 𝐹 𝐶𝐷𝐵 features are fed into a 1 × 1 con- 
volutional layer and a new feature map 𝐹 𝑐 𝜖 ℝ 

𝐶×𝐻×𝑊 is generated and 
reshaped to ℝ 

𝐶×𝑁 . Afterwards, a matrix multiplication is performed be- 
tween the transpose of S and 𝐹 𝑐 and the results reshaped to the original 
size ℝ 

𝐶×𝐻×𝑊 . Finally, the self-attention output ( 𝐹 𝑎𝑡𝑡 ) is formulated as 
follows: 

𝐹 𝑎𝑡𝑡 = 𝛼( S ⊤ ⋅ 𝐹 𝑐 ) + 𝐹 𝐶𝐷𝐵 (2) 

where 𝛼 is a learnable scalar parameter initialized with 0. The intro- 
duction of 𝛼 allows the network to first focus on the local information 
which is an easier task and gradually increases the importance of non- 
local dependencies which is a harder task ( Zhang et al. (2019) ). We 
additionally normalize 𝐹 𝑎𝑡𝑡 thus guaranteeing a normalized input to the 
other CDB blocks. A normalized input improves convergence ( Liao and 
Carneiro (2016) ) and increases the exploratory span of the created sub- 
networks when using a maxout activation ( Liao and Carneiro (2017) ). In 
summary, the implemented spatial attention module improves the mod- 
elling of local and global-range dependencies, which in turn increases 
semantic consistency. 

In brief, AttFastSurferCNN is a multi-network approach of three 
2D F-CNNs operating on different anatomical views (coronal, sagit- 
tal and, axial). All three F-CNNs contain the self-attention layers fol- 
lowing the aforementioned layout ( Fig. 4 ). Within AttFastSurferCNN 

the CDB blocks maintain the configuration from Section 2.2.1 except 
for the 5 × 5 convolutions that are modified to a smaller kernel size 
of 3 × 3 . Furthermore, the multi-slice input approach from FastSurfer- 

CNN ( Henschel et al. (2020) ) is maintained and a stack of three consec- 
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Fig. 4. AttFastSurferCNN network architecture. The network consists of four competitive dense blocks (CDB) in the encoder and decoder part, separated by a 
bottleneck layer. After each CDB a self-attention module is added. The CDB configuration is illustrated in Fig. 3 . 

Fig. 5. Implemented Self-Attention module within AttFastSurferCNN . 

utive slices are passed as input. In the following section, the ensemble 
of different segmentation predictions will be explained in detail. 

2.2.3. OB Segmentation ensemble 

One widely used method to assess the optimal model of CNNs trained 
with different data-splits is cross-validation. Cross-validation jointly 
evaluates performance on different data-splits and the model with the 
maximal test-set performance is selected as the winner. This approach, 
however, can limit generalizability as the data-splits used for training 
the best performer can be biased towards the selected test-set. Recently, 
the combination of different CNN model outputs has been shown to im- 
prove the prediction performance and reduce the CNN’s intrinsic vari- 
ance ( Ju et al. (2018) ). As a consequence, we propose to ensemble the 
prediction of four AttFastSurferCNNs trained with different data-splits, 
ensuring that only OB voxels with a high inter-model agreement are 
segmented, and thus reducing the bias to any particular data division. 
To ensure that all networks have a comparable OB knowledge: i) train- 
ing was done under the same learning conditions (i.e. number of epochs, 
batch size, loss function, a learning rate scheduler, etc.), ii) training data 
was divided into four data-splits balanced for age and sex, and iii) the 
data-splits were treated in a leave-one-out fashion. Finally, the ensemble 
is constructed by an unweighted average as the output of models with 
comparable performance is merged ( He et al. (2016) ; Ju et al. (2018) ; 
Kamnitsas et al. (2017a) ; Szegedy et al. (2015) ). Intuitively, the pro- 
posed ensemble approach can be seen as four different raters with sim- 
ilar experience taught by the same instructor and the consensus among 
the raters gives the final decision. It is important to note, that in our 
specific approach the final ensemble prediction is created by averag- 
ing twelve different models as each AttFastSurferCNN contains three 2D 

F-CNNs for the three different anatomical views (axial, coronal and, 
sagittal). Therefore, our ensemble approach also includes the advan- 

tages of view-aggregation where a voxel prediction is regularized by 
considering spatial information from multi-views ( Estrada et al. (2020) ; 
Henschel et al. (2020) ; Roy et al. (2019b) ). We furthermore analyzed the 
impact of the ensemble approach by comparing directly with standalone 
data-splits. 

2.2.4. Model learning 

All F-CNN models for localization and segmentation were im- 
plemented in PyTorch ( Paszke et al. (2017) ) using a docker con- 
tainer ( Merkel (2014) ). Independent models for axial, coronal, and 
sagittal views were trained for 40 epochs with a batch size of 16 
using two NVIDIA Tesla V100 GPU with 32 GB RAM, and a Adam 

optimizer ( Kingma and Ba (2015) ) with a step decay scheduler that 
decreases the learning rate (lr) by 95% every 5 epochs (initial lr = 

0.01, constant weight decay = 10 −04 ( Loshchilov and Hutter (2019) ), 
betas = (0.9, 0.999), eps =10 −08 ). The networks were trained by optimiz- 
ing a composed loss function of focal loss ( Lin et al. (2017) ) and dice 
loss ( Milletari et al. (2016) ). The focal loss addresses the class imbalance 
by modifying the standard cross-entropy loss such that lower importance 
is given to the well-classified pixels. On the other hand, the dice loss is 
a more robust loss to handle data imbalance ( Sudre et al. (2017b) ) as it 
is based on the Dice score, an overlay similarity index that reflects both 
size and localization agreement. Therefore, our proposed composed loss 
function is formulated as: 

𝐿𝑜𝑠𝑠 = − 

∑
𝑥 

𝑤 ( 𝑥 )(1 − 𝑝 𝑙 ( 𝑥 )) 𝛾 𝑔 𝑙 ( 𝑥 ) 𝑙𝑜𝑔( 𝑝 𝑙 ( 𝑥 )) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Weighted Focal Loss 

− 

2 
∑

𝑥 𝑝 𝑙 ( 𝑥 ) 𝑔 𝑙 ( 𝑥 )) ∑
𝑥 𝑝 

2 
𝑙 ( 𝑥 ) + 

∑
𝑥 𝑔 

2 
𝑙 ( 𝑥 ) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Dice Loss 

(3) 

where 𝑝 𝑙 ( 𝑥 ) is the predicted probability at pixel 𝑥 to belong to a class 
𝑙, and 𝑔 𝑙 ( 𝑥 ) is the pixel ground truth class. For the weighted focal 
loss, 𝛾 was set to 2 and the pixel weight scheme ( 𝑤 ( 𝑥 ) ) proposed 
by Roy et al. (2019b) was used to improve segmentation performance 
along anatomical boundaries. We additionally included online data aug- 
mentation to address two challenges: 1) spatial variations due to head 
position and image cropping, and 2) intensity inhomogeneities due to 
scan parameters and movement artefacts (e.g. eyes and breathing). The 
first problem was tackled by applying random spatial transformations 
(translation, rotation, and global scaling) on the input images. It is im- 
portant to notice that spatial augmentations were done in a full image 
for the segmentation models before cropping, therefore eliminating the 
intrinsic padding noise when interpolating cropped images. For the sec- 
ond issue, we improved the network’s robustness to intensity variations 
by performing random bias field ( Sudre et al. (2017a) ) and blur transfor- 
mations. To maintain consistency between neighboring slices, intensity 
transformations were performed on a subject level (whole volume) using 
TorchIO ( Pérez-García et al. (2020) ). 
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Table 1 

Summary of the datasets, number of subjects, T2 protocol and usage for each of the validation experiments. 

Usage Dataset Name T2 protocol Subjects Cohort 

Manual annotation 
reproducibility (E1) 

In-house train-set 𝑇 2 𝑤 

𝑎 31 Rhineland Study 
In-house test-set 19 

Pipeline performance 
(E2) 

In-house train-set 𝑇 2 𝑤 

𝑎 357 

In-house test-set 203 
Age and sex effect 
sensitivity (E3) 

In-house test-set 𝑇 2 𝑤 

𝑎 203 

No apparent OB (E4) No-OB set 𝑇 2 𝑤 

𝑎 12 
Sequence Stability (E5) Stability set 𝑇 2 𝑤 

𝑎 , 𝑇 2 𝑤 

𝑏 109 
Generalizability (E6) HCP dataset 𝑇 2 𝑤 

hcp 30 Human Connectome Project(HCP) 

2.3. MRI Data 

MRI scans from the Rhineland Study were collected at two dif- 
ferent sites both with identical 3T Siemens MAGNETOM Prisma MRI 
scanners (Siemens Healthcare, Erlangen, Germany) equipped with 64- 
channel head-neck coils. The 0.8 𝑚𝑚 isotropic T2-weighted 3D Turbo- 
Spin-Echo (TSE) sequence uses variable flip angles ( Busse et al. (2008) ) 
as well as elliptical sampling ( Mugler III (2014) ) and parallel imag- 
ing (PI) ( Griswold et al. (2002) ) for faster imaging. For this work, 
two T2w sequences from the Rhineland Study were considered (re- 
ferred to as 𝑇 2 𝑤 

𝑎 (original protocol) and 𝑇 2 𝑤 

𝑏 ). Common sequence 
parameters are as follows: repetition time (TR) = 2800 𝑚𝑠 , echo 
time (TE) = 4405 𝑚𝑠 , phase-encoding direction: Anterior > Poste- 
rior, matrix size = 320 × 320 × 224 . The following parameters differ 
between protocols: PI acceleration factor: a) 3x1; b) 2x1, PI refer- 
ence scan: a) integrated; b) external, acquisition time: a) 3:57 𝑚𝑖𝑛 ; 
b) 4:47 𝑚𝑖𝑛 . Note, care was taken to preserve the image contrast between 
versions. 

For the training and testing of our pipeline, data from the first 
572 participants from the Rhineland Study with a T2w scan was used 
(referred to as ”in-house dataset ”). All 572 MRI scans were manually 
annotated following Section 2.1 . During the creation of the in-house 
dataset, a group of 12 subjects was separated into another subset (re- 
ferred to as ”no-OB dataset ”) as these cases were flagged with no vis- 
ible OB. Subjects without an apparent OB had been reported previ- 
ously ( Weiss et al. (2020) ). Consequently, the no-OB cases were used 
to evaluate the automated method’s robustness to an unseen extreme 
scenario. The remaining sample (n = 560) presents a mean age of 53.83 
years (range 30 to 87), a mean OB volume of 54.05 𝑚𝑚 

3 (range 12.80 
to 111.10 𝑚𝑚 

3 ), and 56.8% of subjects are women. We initially divided 
the in-house dataset into a training (n = 357) and testing (n = 203) set. For 
each subset subjects were randomly selected from sex and age strata to 
ensure a balanced population distribution. Training data was further 
split into four groups with the same stratification scheme as before. For 
a detailed description of the population characteristics of all the afore- 
mentioned subsets see Appendix Table 1 . 

Additionally, another subset of the Rhineland Study was selected to 
evaluate the prediction stability across T2w sequences, as the proposed 
pipeline was trained only with 𝑇 2 𝑤 

𝑎 scans. As part of the quality as- 
surance workflow in the Rhineland Study before updating a sequence, 
new incoming subjects are scanned in the same session with both ver- 
sions for a period of time. After the acquisition reliability is assured the 
study protocol is updated. Therefore, we selected a group of subjects 
containing both 𝑇 2 𝑤 

𝑎 and 𝑇 2 𝑤 

𝑏 scans (referred to as ”stability dataset ”, 
n = 109). 

Finally, we used the publicly available Human Connectome Project 
(HCP) dataset ( Van Essen et al. (2012) ) to test the generalizability of 
our method as it contains high-resolutional T2w MR images. A sub- 
set of 30 random subjects equally distributed between age categories 
(22–25, 26–30, and 31–35) was selected. The HCP scans were resam- 
pled from isotropic 0.7 𝑚𝑚 native resolution to 0.8 𝑚𝑚 network in- 
put resolution. Finally, manual labels were created for both resolu- 

tions using the protocol previously described. HCP data is available at: 
https://www.humanconnectome.org/study/hcp-young-adult . 

2.4. Evaluation metrics 

For assessing the segmentation similarity between the predicted la- 
bel maps and the ground truth, we computed metrics aimed at eval- 
uating different properties: spatial overlap, spatial distance, and vol- 
ume similarity. We first assessed the spatial overlap as it provides both 
size and localization consensus by computing the Dice similarity coef- 
ficient (Dice), which is a common metric used for validating semantic 
segmentation performance. Let G (ground truth) and P (prediction) de- 
note binary label maps; the Dice similarity coefficient is mathematically 
expressed as 

𝐷 𝑖𝑐𝑒 = 

2 ⋅|𝐺 ∩𝑃 |
|𝐺 |+ |𝑃 | (4) 

where |𝐺| and |𝑃 | represent the number of elements in each label map, 
and |𝐺 ∩ 𝑃 | the number of common elements, therefore, the Dice ranges 
from 0 to 1 and a higher Dice represents a better agreement. However, 
Dice scores can be drastically affected by small spatial shifts when evalu- 
ating small and elongated structures such as the OB ( Billot et al. (2020) ; 
Taha and Hanbury (2015) ). Spatial distance-based metrics such as Haus- 
dorff Distance (HD) are widely used for assessing performance in small 
structures as they evaluate the quality of segmentation boundaries. In 
this work, we used the Average Hausdorff Distance (AVD), an HD vari- 
ation less sensitive to outliers. AVD is defined as 

𝐴𝑉 𝐷( 𝐺, 𝑃 ) = max ( 1 |𝐺|
∑

𝑔∈𝐺 min 𝑝 ∈𝑃 𝑑 ( 𝑔, 𝑝 ) , 
1 
|𝑃 |

∑
𝑝 ∈𝑃 min 𝑔∈𝐺 𝑑 ( 𝑝, 𝑔)) (5) 

where 𝑑 is the Euclidean distance. In contrast to the Dice, AVD is a 
dissimilarity measurement so a smaller AVD indicates a better bound- 
ary delineation with a value of zero being the minimum (perfect align- 
ment). Furthermore, as the OB volumes are usually the desired marker 
for downstream analysis, we computed a volume-based metric, the vol- 
ume similarity (VS ( Taha and Hanbury (2015) ), defined as 

𝑉 𝑆 = 1 − 

||𝐺|− |𝑃 ||
|𝐺|+ |𝑃 | . (6) 

While VS is similar to Dice, it does not take into account segmentations 
overlap and can have its maximum value even when the overlap is zero. 
In consequence, VS is not used for the localization marker and replaced 
with localization distance ( 𝑅 ), a metric more suitable to assess the ac- 
curacy of the centroid coordinate created in this stage. Let 𝑝 and 𝑔 be 
the centroid coordinates of the predicted and ground truth label maps, 
respectively. The localization distance ( 𝑅 ) is calculated as follows 

𝑅 ( 𝑝, 𝑞) = 

√ 

( 𝑝 𝑥 − 𝑔 𝑥 ) 2 + ( 𝑝 𝑦 − 𝑔 𝑦 ) 2 + ( 𝑝 𝑧 − 𝑔 𝑧 ) 2 . (7) 

Similar to AVD, a smaller distance indicates improved localization accu- 
racy. Finally, to benchmark performance of various F-CNN models we 
first ranked the models performance for each metric individually and 
then computed an overall rank as the geometric mean of the model’s 
rankings. 

6 



S. Estrada, R. Lu, K. Diers et al. NeuroImage 242 (2021) 118464 

3. Experiments and results 

In this section, we present six experiments with the aim to thor- 
oughly validate our OB tissue segmentation pipeline. To properly assess 
the pipeline’s performance as a whole, input images to the segmenta- 
tion stage were pre-processed by the localization stage. Additionally, 
to ensure that all experiments were carried out under the same testing 
conditions: All inference analyses were evaluated in a docker container 
with a 12 GB NVIDIA Titan V GPU (a widely available consumer card). 
It is important to note, that the pipeline can also run on the CPU. 

(E1) We evaluated the OB manual annotations reliability by an inter 
and intra-rater reproducibility analysis. (E2) We evaluated the perfor- 
mance of each stage of the pipeline against an unseen test-set. We addi- 
tionally benchmarked the proposed AttFastSurferCNN with state-of-the- 
art F-CNNs and compared the accuracy of one AttFastSurferCNN against 
the proposed ensemble approach of merging four AttFastSurferCNN with 
different training-data conditions. (E3) We assessed the sensitivity of the 
proposed pipeline to replicate known OB volume effects with respect to 
age and sex on the test-set against manual labels and benchmark net- 
works. (E4) We evaluated the robustness of the automated method to 
an extreme and real scenario of cases without an apparent OB. (E5) We 
tested the stability of the proposed pipeline to variations in acquisition 
parameters of a T2w sequence. Finally (E6), we accessed the generaliz- 
ability of our method to different population demographics on the pub- 
licly available HCP dataset ( Van Essen et al. (2012) ). A summary of the 
data needed for each of the experiments is presented in Table 1 . 

3.1. Manual annotation reproducibility (E1) 

To the best of our knowledge, there is no automatic method for de- 
tecting and delineating the OB. Therefore, manually annotations are 
considered the gold standard. As our approach is based on supervised 
learning, its performance is limited by the quality of the manual anno- 
tations. As a consequence, to assess the consistency of the labels created 
by our main rater, we conducted intra-rater and inter-rater variability 
experiments. 

Fifty random subjects from the in-house dataset were selected. Af- 
terwards cases were manually annotated twice (see Section 2.1 ), once 
by our main rater who had already segmented the cases and once by a 
second rater trained by our main rater. To remove bias and avoid over- 
estimating performance, raters were blind to the scans’ identification; 
furthermore, the main rater’s second segmentations were done with a 
time gap of two months, and finally, the scans used for training the sec- 
ond rater were not included in the experiment. We assessed intra-rater 
variability by computing the similarity between the two sets of seg- 
mentations of the main rater. Inter-rater variability was estimated by 
comparing the segmentation agreement between the main rater’s first 
annotations and second rater’s annotations. 

In Fig. 6 , we present the similarity scores for total OB (left and 
right combined) in the fifty subjects used for this experiment as well 
as significance level indicators (paired two-sided Wilcoxon signed-rank 
test ( Wilcoxon (1992) )). We observed that our main rater has a high 
agreement between labeling sessions (Average : 𝐷𝑖𝑐𝑒 = 0 . 9399 , 𝑉 𝑆 = 

0 . 9811 , 𝐴𝑉 𝐷 = 0 . 0976 𝑚𝑚 ). Inter-rater scores (Average : 𝐷𝑖𝑐𝑒 = 0 . 8211 , 
𝑉 𝑆 = 0 . 9497 , 𝐴𝑉 𝐷 = 0 . 2446 𝑚𝑚 ) are significantly lower, however, still 
yield comparable results with other small brain structures inter-rater- 
scores ( Billot et al. (2020) ). These similarity scores put the results of 
the next section into context where the inter-rater-scores can be seen 
as the lower-bound of performance and intra-rater-scores as the ideal 
performance of the automated method. 

3.2. Pipeline performance (E2) 

In this section, we benchmarked and evaluated the accuracy of 
each stage of the pipeline in a completely separate unseen test-set. All 
implemented networks were trained using the scheme mentioned in 

Fig. 6. Segmentation similarity scores for total OB comparing intra-rater vs. 
inter-rater variability, as well as significance level indicators (paired two-sided 
Wilcoxon signed-rank). Significance: ∗∗∗ p < 0 . 001 . 

Section 2.2.4 and data-splits introduced in Section 2.3 were treated in 
a leave-one-out fashion (e.g. model 1: splits 2, 3, and 4 were used for 
training, and split 1 was used for validation). 

3.2.1. ROI Localization 

For evaluating the ability of FastSurferCNN to localize the OB ROI 
in a down-sampled whole-brain image, we trained FastSurferCNN from 

scratch using the four data-splits from the in-house train-set in a leave- 
one-out cross-validation approach. To ensure good performance and re- 
duce initialization variance, each data-split was trained four times, and 
the best weights per split were chosen based on the performance in the 
validation-set. Finally, the model with the highest overall rank of the 
three evaluation metrics (Dice, AVD, R) in the test-set was selected and 
incorporated into the pipeline’s localization stage. 

We observed that all FastSurferCNN models have comparable results 
when segmenting the ROI (Average : 𝐷𝑖𝑐𝑒 ≈ 0 . 83 , 𝐴𝑉 𝐷 ≈ 0 . 4 𝑚𝑚 ) with 
model 4 outperforming models 2 and 3 with statistical significance as il- 
lustrated in Appendix Fig. A1 . However, the small shifts on the predicted 
label maps did not affect the coordinates from the computed centroid as 
all models have similar performance ( 𝑅 ≈ 2 . 08 𝑚𝑚 ); hence, any of the 
trained FastSurferCNNs could be used for localizing the ROI for cropping. 
However, we selected the FastSurferCNN trained with data from splits 
1, 2, and 3 (model 4) as it has the highest overall rank and outperforms 
the other versions. 

3.2.2. OB Tissue segmentation 

To show a proof-of-concept for our proposed AttFastSurferCNN in 
the more difficult task of OB tissue segmentation, we benchmarked 
our network against state-of-the-art segmentation 2D F-CNNs used 
for neuro-imaging such as FastSurferCNN ( Henschel et al. (2020) ), 
UNet ( Ronneberger et al. (2015) ), and QuickNat ( Roy et al. (2019b) ). 
Additionally, we compared our AttFastSurferCNN against 3D networks 
such as 3D-UNet ( Çiçek et al. (2016) ) and 3D-FastSurferCNN , a naive 
3D implementation of FastSurferCNN by replacing 2D operations for 3D 

ones. To permit a fair comparison, all benchmark networks followed 
the same architecture of four encoder blocks, four decoders blocks, and 
one bottleneck block as illustrated in Fig. 4 . Each block contained the 
same number of convolutional operations (see Fig. 3 ) and parameters 
configuration. All networks were trained in 3 anatomical views (axial, 
coronal, and sagittal) from scratch with the same training data-scheme; 
each data-configuration was carried out four different times, and the 
best weights were selected based on performance in the validation set. 
Furthermore, the 2D models were implemented with the same multi- 
slice input method, and 3D models were trained in different anatomical 
views by permuting the axis from the input volumes just like their 2D 

counterparts. Finally, all comparative models were implemented with 
the above-mentioned ensemble approach (see Section 2.2.3 ), and seg- 
mentation performance on the unseen test set was evaluated by comput- 
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Table 2 

Mean (and standard deviation) of segmentation performance metrics of the F-CNN models. Models were ranked ascendingly by individual metrics and the overall 
rank (geometric mean of the metric rankings). We show significance indicators of the paired Wilcoxon signed-rank test comparing the proposed AttFastSurferCNN 

vs. benchmarked F-CNNs. Note FastSurferCNN is abbreviated to FSCNN and AttFastSurferCNN to AttFSCNN. 

Dice VS AVD (mm) 

Mean (SD) Rank Mean (SD) Rank Mean (SD) Rank Overall Rank 

AttFSCNN 0.8525 6 0.9104 6 0.2154 5 5.65 
0.0561 0.0634 0.1530 

FSCNN 0.8506 5 ∗ 0.9081 4 0.2134 6 4.93 
0.0577 0.0658 0.1488 

QuickNat 0.8506 5 ∗ 0.9084 5 ∗ 0.2174 4 ∗ 4.64 
0.0555 0.0635 0.1469 

UNet 0.8473 3 ∗ ∗ 0.9071 3 ∗ 0.2218 3 ∗ ∗ 3.00 
0.0610 0.0670 0.1567 

FSCNN3D 0.8163 2 ∗ ∗ 0.8794 1 ∗ ∗ 0.2510 2 ∗ ∗ 1.59 
0.0944 0.1109 0.1821 

UNet3D 0.8038 1 ∗ ∗ 0.8878 2 ∗ ∗ 0.2549 1 ∗ ∗ 1.26 
0.0820 0.0950 0.1582 

Significance: ∗ p < 0 . 05 , ∗∗ p < 0 . 01 

Fig. 7. Segmentation similarity scores for total OB comparing AttFastSurferCNN 

(AttFSCNN) vs. manual raters (intra- and inter-rater scores), as well as signif- 
icance level indicators (paired two-sided Wilcoxon signed-rank). Significance: 
∗∗∗ p < 0 . 001 , ∗∗ p < 0 . 01 , ns : p ≥ 0 . 05 . 

ing three similarity metrics (Dice, AVD, and VS) between the predicted 
maps and manuals labels. 

In Table 2 we present the similarity scores for OB tissue segmenta- 
tion of all evaluation metrics as well as individual and overall ascending 
rankings and significance indicators of the two-sided Wilcoxon signed- 
rank test comparing the proposed AttFastSurferCNN vs. benchmarked 
F-CNNs. Here, we observed that our proposed AttFastSurferCNN has the 
highest overall ranking. Additionally, AttFastSurferCNN outperforms all 
other benchmark networks in all comparative metrics with statistical 
significance ( 𝑝 < . 05 ) except for FastSurferCNN. FastSurferCNN outranks 
our proposed method in AVD, however, there is no statistical difference 
between them. On the other hand, AttFastSurferCNN outperforms Fast- 

SurferCNN in Dice and VS with a statistical significance ( 𝑝 < . 05 ) in Dice. 
Finally, it is important to note that all 2D approaches drastically outper- 
form the 3D models with up to 3% improvement of the Dice, 2.7% of 
VS and 4% of AVD between UNet (the lowest rank 2D model) and 3D- 

FastSurferCNN (the highest rank 3D model). 
Finally, to put the AttFastSurferCNN results into context, we com- 

pared the performance against the inter and intra-rater variability scores 
obtained in the manual annotation reproducibility experiment. For a 
fair comparison, this analysis is exclusively done in 19 cases that are 
also part of the test-set. Fig. 7 presents box plots for the three accuracy 
metrics as well as statistical significance indicators (paired two-sided 
Wilcoxon signed-rank test). We observed that AttFastSurferCNN results 
are significantly lower than the intra-rater scores. However, this was 
expected as we used the main-rater labels to train our F-CNNs and the 

intra-rater scores are usually very difficult to reach for an automated 
method. Moreover, the proposed network outperforms the inter-rater 
scores (Dice: 0.8566 vs. 0.8386, and AVD: 0.1745 𝑚𝑚 vs. 0.2264 𝑚𝑚 ) 
in localizing the OB tissue and recognizing its boundaries, even if no 
statistical significance can be inferred from the statistical test. On the 
other hand, for VS, the inter-rater results are significantly better (VS: 
0.9115 vs. 0.9555 ); nevertheless, there is an average VS difference of 
only 0.04 between label maps translating to a small volume discrepancy 
of around 0.020 𝑚𝑚 

3 by every segmented voxel. 

3.2.3. Ensemble 

In this section, we tested our ensemble approach of combining the 
output of four AttFastSurferCNN against each individual AttFastSurfer- 

CNN trained in the previous section. We observed that all standalone 
models have comparable results in the three similarity metrics (Dice, 
VS, and AVD) as shown in Table 3 . Thus OB segmentation knowledge is 
not driven by any particular data-subset, and all AttFastSurferCNNs out- 
perform the inter-rater scores for Dice (0.8386) and AVD (0.2264 𝑚𝑚 ). 
Furthermore, the proposed ensemble model significantly outperforms 
all standalone (non-ensembled) models with respect to Dice and AVD 

( 𝑝 < . 05 , paired two-sided Wilcoxon signed-rank test). We observed no 
statistical difference between models in VS except for AttFastSurferCNN- 

4 where the proposed merged method has better results. Finally, we 
empirically observed that the ensemble model smoothes the label maps 
slightly, resulting in visually more appealing boundaries as illustrated 
in Fig. 8 . 

3.3. Age and sex effects sensitivity (E3) 

OB volumes obtained from manual segmentations of 
T2w images have shown to be negatively correlated with 
age ( Buschhüter et al. (2008) ; Hummel et al. (2011, 2015) ). Therefore, 
any automated method that intends to detect this small structure should 
be able to replicate these effects. As a consequence, we evaluated the 
sensitivity of our proposed pipeline to replicate ground truth age depen- 
dencies in the in-house unseen test-set ( 𝑛 = 203 ) which has a comparable 
size to other manually annotated OB datasets ( Buschhüter et al. (2008) ; 
Hummel et al. (2015) ) used for volume correlations. Furthermore, 
we compared our results with the F-CNNs used in the benchmark 
(see Section 3.2.2 ). The association of OB volumes (OBV) and age 
was assessed using a linear regression after accounting for sex 
and head-size (estimated total intracranial volume, eTIV) (Model: 
𝑂𝐵 𝑉 ∼ 𝑎𝑔 𝑒 + 𝑠𝑒𝑥 + 𝑒𝑇 𝐼𝑉 ). All statistical analyses were performed in 
R ( R Core Team (2020) ) and eTIV estimations were computed using 
FreeSurfer ( Buckner et al. (2004) ; Fischl (2012) ; Fischl et al. (2002) ). 
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Table 3 

Mean (and standard deviation) of segmentation performance metrics of the proposed ensemble approach and single AttFastSurferCNN (AttFSCNN) models. Models 
were ranked ascendingly by individual metrics and the overall rank (geometric mean of the metric rankings). We show significance indicators of the paired Wilcoxon 
signed-rank test comparing the proposed ensemble AttFastSurferCNN vs. single AttFastSurferCNN . 

Dice VS AVD (mm) 

Model Mean(SD) Rank Mean(SD) Rank Mean(SD) Rank Overall Rank 

Ensemble 
AttFSCNN 

0.8525 5 0.9104 3 0.2154 5 4.22 
0.0561 0.0634 0.1530 

AttFSCNN 
3 

0.8482 4 ∗ ∗ 0.9112 4 0.2225 4 ∗ 4.00 
0.0589 0.0659 0.1706 

AttFSCNN 
2 

0.8477 3 ∗ ∗ 0.9096 2 0.2234 2 ∗ ∗ 2.29 
0.0578 0.0646 0.1614 

AttFSCNN 
1 

0.8476 2 ∗ ∗ 0.9115 5 0.2276 1 ∗ ∗ 2.15 
0.0552 0.0625 0.1749 

AttFSCNN 
4 

0.8469 1 ∗ ∗ 0.9077 1 ∗ 0.2230 3 ∗ ∗ 1.44 
0.0580 0.0666 0.1491 

Significance: ∗∗∗ p < 0 . 001 , ∗∗ p < 0 . 01 , ∗ p < 0 . 05 

Fig. 8. Comparison of the manual ground truth vs. predictions of the right OB from two subjects on sagittal T2-weighted MRI of the in-house test-set. Purple arrows 
indicate where the proposed ensemble AttFastSurferCNN improves the segmentation over a standalone AttFastSurferCNN . 

Table 4 

Association of OB volumes (OBV) and age after accounting for sex and head-size (eTIV) on the in-house test-set for the manual labels (ground truth) and benchmark 
networks. Linear regression model : 𝑂𝐵 𝑉 ∼ 𝑎𝑔 𝑒 + 𝑠𝑒𝑥 + 𝑒𝑇 𝐼𝑉 . Note FastSurferCNN is abbreviated to FSCNN and AttFastSurferCNN to AttFSCNN. 

Ground Truth AttFSCNN FSCNN QuickNat UNet FSCNN3D UNet3D 

(Intercept) 53.292 ∗ ∗ ∗ 55.517 ∗ ∗ ∗ 54.774 ∗ ∗ ∗ 56.038 ∗ ∗ ∗ 55.330 ∗ ∗ ∗ 45.714 ∗ ∗ ∗ 47.186 ∗ ∗ ∗ 

(1.953) (1.636) (1.620) (1.642) (1.638) (1.535) (1.501) 
Age -0.319 ∗ ∗ ∗ -0.232 ∗ ∗ -0.204 ∗ ∗ -0.213 ∗ ∗ -0.211 ∗ ∗ -0.225 ∗ ∗ -0.241 ∗ ∗ ∗ 

(0.092) (0.077) (0.076) (0.077) (0.077) (0.072) (0.070) 
Sex: 
m/f 

5.940 3.150 2.612 3.409 3.017 1.980 2.897 
(3.463) (2.900) (2.871) (2.910) (2.903) (2.721) (2.660) 

eTIV 14.286 32.189 ∗ ∗ ∗ 32.297 ∗ ∗ ∗ 31.713 ∗ ∗ ∗ 32.590 ∗ ∗ ∗ 25.022 ∗ ∗ 21.116 ∗ ∗ 

(10.238) (8.577) (8.490) (8.605) (8.586) (8.047) (7.867) 
R-squared 0.124 0.205 0.193 0.199 0.199 0.157 0.156 
N 203 203 203 203 0.203 0.203 203 

Significance: ∗∗∗ p < 0 . 001 , ∗∗ p < 0 . 01 , ∗ p < 0 . 05 

All predicted OB volumes significantly decreased with age as can 
be seen in Table 4 , which in turn follows the behavior of the manual 
data and other studies ( Buschhüter et al. (2008) ; Hummel et al. (2011, 
2015) ). We found an improvement in the modeling ( 𝑅 

2 ) of the age ef- 
fects in the AttFastSurferCNN compared to the ground truth and the other 
comparative networks. Finally, we did not find a sex difference for any 
of the models, and, as expected, the inferred OBV are positively associ- 
ated with eTIV (see Table 4 ). 

3.4. E4: No apparent olfactory bulb (E4) 

As the proposed pipeline is to be deployed as a post-processing OB 

analysis pipeline for the T2w MRI of the Rhineland Study, it should be 
robust to cases without an apparent OB that - based on the size of our 
in-house dataset - occur with an approximate prevalence of 2%. In this 
section, we processed the 12 flagged cases with no apparent OB and 
evaluated the OB volume estimates. Note, all cases used for training our 
AttFastSurferCNN have a visible OB. 

The automated method agreed with the main-rater in 50% percent 
of these cases as illustrated in Fig. 9 B) and shown in Appendix Fig. A2 . 
For the remaining cases: three had a total predicted volume smaller than 

2.5 𝑚𝑚 

3 and the other three between 7 𝑚𝑚 

3 to 10.2 𝑚𝑚 

3 . We addition- 
ally observed that there is hemisphere asymmetry where the maximum 

predicted volume by any hemisphere was 8.7 𝑚𝑚 

3 translating in a detec- 
tion of only 17 voxels. After visually inspecting the predicted label maps 
by two different raters, we observed that with the current resolution our 
raters cannot reliably assess the predicted segmentation of an individ- 
ual olfactory bulb with a size smaller than 10 𝑚𝑚 

3 as seen in Fig. 9 C) 
and D) where the in-plane segmentation is only a few voxels. For this 
reason, we additionally evaluated the effects of OB size on the segmen- 
tation accuracy of the automated method for the test-set. We observed 
that segmentation performance decreases in subjects with a total OB 

smaller than 20 𝑚𝑚 

3 . Furthermore, OB volumes are positive correlated 
with similarity metrics (Dice: 𝑅 = 0 . 39 , 𝑝 < . 001 , VS: 𝑅 = 0 . 23 , 𝑝 < . 001 ) 
and negative correlated with AVD ( 𝑅 = −0 . 39 , 𝑝 < . 001 ), a dissimilarity 
metric. For more detailed information see Appendix Fig. A3 . 

3.5. Sequence stability (E5) 

In this section, we processed all 𝑇 2 𝑤 

𝑎 and 𝑇 2 𝑤 

𝑏 scans from the sta- 
bility dataset with the proposed pipeline. Afterwards, we assessed the 
pipeline stability by comparing the similarity of total OB volume across 
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Fig. 9. A-D) Sagittal T2-weighted MR images and predictions on cases from the 
Rhineland Study. A) Normal subject from the in-house dataset with a visible 
OB, B) Subject without an apparent OB where the pipeline also agrees with our 
main rater. C-D) Subjects flagged with no visible OB by our main rater, however, 
the pipeline still predicts some voxels as OB (total volume < 10 . 2 𝑚𝑚 

3 ) due to 
the current resolution our raters cannot reliably assess the predicted segmenta- 
tion. Note, red indicates Right OB and blue left OB (purple arrow indicate the 
segmented voxel). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

sequences by volume similarity (VS) as described in the metric eval- 
uation section. Additionally, we calculated the agreement of total OB 

volume between sequences by an intra-class correlation (ICC) using a 
two-way fixed, absolute agreement and single measures with a 95% con- 
fidence interval (ICC(A,1) ( McGraw and Wong (1996) ). To further com- 
pare the agreement between sequences, three random subjects from the 
stability dataset were selected and both T2w sequences were manually 
annotated. Subsequently, segmentation performance metrics (Dice, VS, 
AVD) between the manual and predicted label maps were computed. It 
is important to note that we did not compute overlap segmentation per- 
formance metrics (Dice and AVD) across different sequence label maps 
of the same subject as this would require registering the scans. It would 
not only include inherent variance from acquisition noise (e.g. motion 
artefacts, non-linearities based on different positioning) but also vari- 
ance due to registration inaccuracies and interpolation artefacts. 

After visual quality inspection, a total of 7 scans were excluded from 

this analysis due to image artefacts such as motion or low contrast (see 
Appendix Fig. A4 for two examples). For the remaining cases (n = 102), 
we observed a good agreement between the 𝑇 2 𝑤 

𝑎 and 𝑇 2 𝑤 

𝑏 sequences 
(ICC: 0.897 [0.845 - 0.931]) and a volume similarity (VS: 0.889 (0.090)) 
comparable to the one described in previous sections. However, we ob- 
served a statistical difference between volume estimates ( 𝑝 < . 01 , paired 
two-sided Wilcoxon signed-rank test). Furthermore, to give more con- 
text on how variations in a T2w sequence affect the pipeline’s predic- 

tions, we analyzed the segmentation similarity on the manually anno- 
tated subset. As expected, the result on the 𝑇 2 𝑤 

𝑎 (training) sequence 
outperforms the 𝑇 2 𝑤 

𝑏 segmentation results (Dice: 0.8622 vs. 0.8597, 
VS: 0.9343 vs. 0.9066 and AVD: 0.1816 𝑚𝑚 vs. 0.1965 𝑚𝑚 ). Neverthe- 
less, the segmentation performance in both sequences is in the range 
of intra-rater scores (Dice: 0.8386, VS: 0.9555, and AVD: 0.2264 𝑚𝑚 ). 
Demonstrating that systematic sequence improvements can be beneficial 
in an ongoing population study without diminishing the performance of 
the proposed method. Even though our pipeline showed volume stability 
across sequences and that segmentation performance was not affected, 
it is still important to control for MRI sequence in any downstream sta- 
tistical analysis when including data from multiple MRI sequences. 

3.6. Generalizability (E6) 

The lack of MR hardware heterogeneity (i.e. scanners, field strength, 
and acquisition parameters) in our training set can limit the ability of 
the neural network to generalize to unseen T2w images acquired under 
different conditions. In order to quantify the robustness of our pipeline, 
we tested it on 30 subjects of the HCP dataset, acquired with a different 
resolution with isotropic 0.7 𝑚𝑚 voxels. In addition to sequence differ- 
ences, HCP images are de-faced. In order to analyze our method at the 
native 0.7 𝑚𝑚 HCP resolution as well as at the default 0.8 𝑚𝑚 network 
resolution, we constructed manual annotations twice per subject, one 
for each resolution. 

We perform three experiments: A) Input images were resampled to 
the default network resolution (isotropic 0.8 𝑚𝑚 ), resulting label maps 
were upsampled to the original 0.7 𝑚𝑚 resolution and compared to the 
manual reference there. B) Images were processed directly at the native 
resolution of 0.7 𝑚𝑚 and compared to the 0.7 𝑚𝑚 manual reference, 
thus, evaluating the networks’ generalizability to segment inputs at a 
slightly higher and unseen resolution directly. C) Same as A) but instead 
of upsampling final labels they are compared with the manual reference 
delineated at 0.8 𝑚𝑚 , avoiding the final upsampling step. This permits 
quantifying the accuracy for the default behaviour of the network, if 
final segmentations at 0.8 𝑚𝑚 are sufficient for the user. 

Fig. 10 clearly indicates that option A (orange) provides the lowest 
performance, most likely due to the fact that it includes interpolation 
artefacts from upsampling the final labels. Resampling label maps is 
often problematic and should be avoided. If final results are required 
at the original (here 0.7 𝑚𝑚 ) resolution it is indeed better to directly 
segment these images at the native resolution (option B, blue boxes). 
Even though the network has not been trained on this resolution, it can 
generalize remarkably well. Option C demonstrates that best results can 
be obtained at the default network resolution of 0.8 𝑚𝑚 , which is the 
recommended approach. 

As expected, overall performance on HCP data is slightly lower than 
the results obtained on our in-house dataset (see Section 3.2.2 ). The HCP 
dataset, however, consists of de-faced scans (never encountered during 
training) from a younger age distribution, and was acquired with dif- 
ferent acquisition parameters. Due to these differences, segmentation 
scores are not directly comparable. Nevertheless, the proposed pipeline 
generalizes quite well across age-categories, especially when evaluated 
at the original training resolution as metrics remained relatively stable 
with an overall good performance (Dice: 0.7816, VS: 0.8583, and AVD: 
0.2683 𝑚𝑚 , red boxes). Additionally, we observe that segmentation ac- 
curacy decreases slightly for ages outside the training range (namely 22 
to 25, training data started at age 30). Yet the overall high accuracy 
shows that our proposed pipeline can robustly generalize to the unseen 
HCP data. Examples of OB segmentations for both the in-house as well 
as the HCP dataset can be found in Fig. 11 . 

4. Discussion 

In this work, we established, validated, and implemented a novel 
deep learning pipeline to segment and quantify the olfactory bulb on 

10 



S. Estrada, R. Lu, K. Diers et al. NeuroImage 242 (2021) 118464 

0.4

0.6

0.8

1.0

22−25 26−30 31−35

Age

Dice

�

�

�

�

�

��

0.4

0.6

0.8

1.0

22−25 26−30 31−35

Age

VS

�

�

0.25

0.50

0.75

22−25 26−30 31−35

Age

AVD (mm)

Experiment

0.8 evaluated at 0.7

0.7 evaluated at 0.7

0.8 evaluated at 0.8

Fig. 10. Segmentation similarity scores of total OB for the 30 labelled cases from the HCP dataset stratified by age category, as well as comparison of the pipeline’s 
performance at native HCP resolution (0.7 𝑚𝑚 isotropic, with upsampling: orange, directly: blue) and at the networks original training resolution (0.8 𝑚𝑚 isotropic, 
red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Comparison of the ground truth vs. predictions on coronal (A-H) and sagittal (I-J) T2w MRI from subjects of the Rhineland Study (A-E) and HCP (F-J) 
dataset at 0.8 𝑚𝑚 . A-J) Accurate automatic segmentation of total OB on a heterogeneous population. Note, blue: left OB and red: right OB. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

high resolutional T2-weighted MR scans. The proposed pipeline is fully 
automatic and can analyze a 3D volume in less than a minute in an 
end-to-end fashion, even though it implements a three-stage design. The 
use of deep learning components for localizing and segmenting the OB 

enables the pipeline to accurately and quickly quantify the OB volume, 
providing a robust and reliable solution for assessing OB volumes in a 
large cohort study. 

Segmenting the OB in T2w scans is a challenging task due to 
size, sensitivity to artefacts, age effects, and visibility on MR im- 
ages (partial volume effects). Despite all these challenges, we demon- 
strate the feasibility of segmenting the OB on high resolutional 
isotropic T2w MR images. Our main rater’s manual annotations ex- 
hibit a high intra-rater reliability in terms of boundary delineation, 
OB localization, and volume estimation. Furthermore, we verified 
the reproducibility of our labeling protocol with inter-rater reliabil- 
ity similar to the one reported in other manually annotated medical 
datasets ( Billot et al. (2020) ; Estrada et al. (2020) ). We cannot directly 
compare the segmentation performance with other studies that manu- 
ally labeled the OB on T2w MR images as they only report the volume 
difference for repeated measurements by a single observer or across ob- 
servers ( Hummel et al. (2011) ; Joshi et al. (2020) ; Mueller et al. (2005) ; 
Yousem et al. (1997) ). Nonetheless, the volume similarity for both inter 
and intra-rater variability yields comparable or even better results than 

the OB studies mentioned above. These results demonstrate the quality 
of the manual annotations and soundness of developing an automated 
method for segmenting the OB using a supervised learning technique. 

For the first stage of the pipeline, i.e. localization of the OB in a 
whole-brain image, all four implemented FastSurferCNNs can success- 
fully localize a forebrain region containing the OBs from both hemi- 
spheres (region of interest) and determine a cropping coordinate based 
on the centroid from a segmentation prediction map. However, for our 
final localization model, we chose the FastSurferCNN model 4 as it out- 
ranked all other models in all evaluation metrics (Dice, VS, and R). The 
implemented localization block is able to identify the region of inter- 
est in a low-resolution image even when the input scans are defaced as 
in the HCP dataset or have motion artefacts as illustrated in Appendix 
Fig. A4 . 

For the more challenging task of segmenting OB, we contribute a 
deep learning architecture ( AttFastSurferCNN ) by incorporating a self- 
attention module inside our FastSurferCNN . The introduction of a self- 
attention mechanism improves the network’s modeling of global depen- 
dencies ( Fu et al. (2019) ; Zhang et al. (2019) ), thus increasing the at- 
tention to spatial information and boosting the learning of such a fine- 
grained structure as the OB. We demonstrate that AttFastSurferCNN re- 
covers OB significantly better than the standard FastSurferCNN and other 
traditional deep learning variants used for semantic segmentation. It is 
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also important to note that our proposed method shows an improvement 
when evaluating volume associations in a large cohort despite the slight 
changes at the image metric level. Additionally, each of the four indi- 
vidual AttFastSurferCNN s that compos the ensemble model outperforms 
manual inter-rater scores for segmenting and delineating the OB. Even 
though the volume similarity from the proposed method is lower than 
the one from the manual raters, the mean volume difference ( ≈ 9% ) is 
still in the 10% acceptable difference used as selection criteria by other 
studies for including the OB volumes of a subject with multiple manual 
annotations ( Joshi et al. (2020) ). Moreover, the implemented assemble 
approach regularizes the predicted segmentation by combining the spa- 
tial context from different views and models, ultimately improving the 
segmentation of the OB boundaries and reducing the variance due to net- 
works initialization. Furthermore, the predicted probability maps from 

all individual AttFastSurferCNNs can be used to compute the pipeline 
uncertainty ( Kendall and Gal (2017) ; Roy et al. (2019a) ), a potential 
quality control marker for flagging problematic cases. 

The 2.5D approach used for all 2D benchmark networks of multi- 
network view-aggregation and multi-slice input drastically outperforms 
the comparative 3D models. Showing that 3D methods are not always 
the best method and that 2D models can yield better results when strate- 
gies to increase the spatial information are included as the one used in 
this work. Moreover, reducing the scope of the local neighbourhood 
when segmenting a small structure like the OB is beneficial as it reduces 
the amount of redundant information and increases the attention to the 
spatial information surrounding the OB. To improve attention in a 3D 

network towards OB, a naive solution would be to include the proposed 
self-attention layer. However, the computation of an attention map of 
size 𝑁 𝑥𝑁 , where 𝑁 are the number of voxels, will considerably increase 
the GPU memory requirements and 3D networks are inherently memory 
expensive to train. Therefore, a self-attention layer is not an efficient and 
scalable solution for this type of networks. More efficient techniques are 
being studied, but they are outside the scope of this paper. 

As demonstrated in the Rhineland data, the proposed pipeline suc- 
cessfully identifies the OB on a T2w scan as seen in Fig. 11 A) to E). The 
pipeline also replicates the negative correlation of OB volumes with age 
reported in previous studies ( Buschhüter et al. (2008) ; Hummel et al. 
(2011, 2015) ) and also visible in our manual annotations. We, further- 
more, detected no sex difference after accounting for head size, however, 
estimates from AttFastSurferCNN and all comparative networks are pos- 
itively correlated with head size - a result that is also detected in the 
manual segmentations - as expected - but with a lower significance and 
magnitude. All automated methods show stronger and less variable eTIV 

effect across subjects (see Table 4 ), explaining the significance discrep- 
ancy. The difference in effect magnitudes can be attributed to the F- 
CNN’s ability to learn consistent information across subjects exhibiting 
stability to random noise and thus generating smoother segmentations 
than manual raters. Furthermore, our proposed pipeline efficiently han- 
dles cases without an apparent OB by not segmenting the structure at 
all or only a few voxels ( < 10 𝑚𝑚 

3 ) as seen in Fig. 9 B), C), and D). Addi- 
tionally, the sequence stability dataset demonstrates a good agreement 
of volume estimates between sequences. It must be noted that the dif- 
ference in volume estimates includes not only potential variances of the 
processing pipelines but also variance from acquisition noise (e.g. mo- 
tion artefacts, non-linearities based on different head positions). There- 
fore we recommend controlling for MRI sequence in follow-up statistical 
analysis when pooling input data. As consistent changes in a sequence 
can reflect a consistent change in measured OB size. Nonetheless, seg- 
mentation performance in all sequences yields comparable results to 
the manual inter-rater scores. The fact that our results in the Rhineland 
Study data (i) replicate known OB volume effects, (ii) properly identify 
scans without an apparent OB, and (iii) demonstrate a good agreement 
of volume estimates among variations of the study’s T2w sequence cor- 
roborates robustness and stability of our pipeline. Nevertheless, due to 
current image resolution and based on quality assessment of all the pre- 
dicted label maps generated in this work, we recommend visually in- 

spect cases with an OB volume smaller than 20 𝑚𝑚 

3 before including 
them in any analysis. 

Our automated method not only exhibits generalizability across a 
wide range of ages from the Rhineland Study but can also extend to an- 
other population distribution (HCP dataset) with different acquisition 
parameters. The pipeline presents optimal results when the input images 
have the default training resolution of 0.8 𝑚𝑚 isotropic. Nonetheless, re- 
sults at a different resolution (HCP native resolution of 0.7 𝑚𝑚 ) still yield 
a good performance even with all the various other differences, e.g. dif- 
ferent distribution, de-faced image, acquisition parameters, and image 
resolution. Even though our method shows robustness to de-facing pre- 
processing steps in HCP, de-facing or skull stripping can be problematic 
due to the proximity of the OB region to the cropped mask, in the worst 
case scenario - depending on the method - resulting in accidentally crop- 
ping into the OB. Therefore, full head T2w scans are the recommended 
input to our pipeline. Additionally, T2w scans with a different resolution 
from the ones presented in this work can also be analyzed by running 
the pipeline with the default behaviour (resampling inputs to 0.8 𝑚𝑚 ) or 
by processing inputs directly at the native image resolution, if it is close 
to 0.8 𝑚𝑚 isotropic. In these cases is highly recommended, however, 
that segmentation quality is assessed by the user. Generally, since the 
pipeline is based on deep learning, the model can easily be fine-tuned to 
another desired resolution by retraining or by more aggressive scaling 
augmentation techniques. 

In conclusion, we have developed a fully automated post-processing 
pipeline for OB segmentation on sub-millimeter T2-weighted MRI based 
on advanced deep learning methods. To the best of our knowledge, the 
presented pipeline is the first to accurately segment the OB in a large 
cohort and is meticulously validated not only against segmentation ac- 
curacy but also with respect to known OB volume effects (e.g. age). 
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Fig. A1. Similarity metrics scores for ROI localization comparing all trained FastSurferCNN models. Models were ranked ascendingly by individual metrics (box- 
plot color) and the overall rank (geometric mean of the metric rankings). We show significance level indicators of the paired Wilconox signed-rank test comparing 
FastSurferCNN-4 (M4, model with best overall rank) against the other FastSurferCNNs (M1,M2,M3). Significance: ∗∗∗ p < 0 . 001 , ∗∗ p < 0 . 01 , ∗ p < 0 . 05 , ns : p ≥ 0 . 05 . 
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article.) 
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Table A1 

OB demographics for the total in-house dataset and for the training and testing subsets. Descriptive data were expressed as mean (SD) or count (percentage) for 
continuous or categorical variables, respectively. Inter group differences were compared with the Student’s t -test for continuous variables and with the Pearson’s 
chi-square test for categorical variables. 

Trainset Testset 
(N = 203) 

Total 
(N = 560) 

p 
value 

Split_1 (N = 90) Split_2 (N = 89) Split_3 (N = 89) Split_4 (N = 89) 

Sex 0.996 
Female 52 (57.8%) 52 (58.4%) 50 (56.2%) 50 (56.2%) 114 (56.2%) 318 (56.8%) 
Male 38 (42.2%) 37 (41.6%) 39 (43.8%) 39 (43.8%) 89 (43.8%) 242 (43.2%) 
Age 0.992 
Mean (SD) 53.900 (12.986) 53.360 (13.487) 53.708 (13.345) 54.348 (12.763) 53.837 (13.540) 53.832 (13.247) 
Range 30.000 - 81.000 31.000 - 85.000 30.000 - 82.000 31.000 - 83.000 30.000 - 87.000 30.000 - 87.000 
OB Volume( 𝑚𝑚 3 ) 0.126 
Mean (SD) 52.173 (14.623) 53.064 (15.814) 55.342 (13.353) 51.424 (13.629) 55.896 (18.576) 54.049 (16.085) 
Range 19.456 - 84.480 24.576 - 88.064 29.696 - 84.992 21.504 - 84.480 12.800 - 111.104 12.800 - 111.104 

Fig. A3. Scatterplots of OB volume estimates and segmentation similarity metrics on the in-house test-set as well as the Pearson correlation coefficient and linear 
regression. We observed that segmentation performance decreased with OB size. Especially in subjects with a total OB volume smaller than 20 𝑚𝑚 

3 . 

Fig. A4. Sagittal and Coronal T2-weighted MR images and predictions from the localization stage (purple) on two cases from the Rhineland Study. A-B) Present 
subjects excluded from the volume estimates sequence stability analysis (E5) due to severe motion artefact. Nonetheless, the localization stage still can detect a 
region containing both OBs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ABSTRACT
The hypothalamus plays a crucial role in the regulation of a broad range of physiological, behavioral, and cognitive 
functions. However, despite its importance, only a few small- scale neuroimaging studies have investigated its sub-
structures, likely due to the lack of fully automated segmentation tools to address scalability and reproducibility issues 
of manual segmentation. While the only previous attempt to automatically sub- segment the hypothalamus with a 
neural network showed promise for 1.0 mm isotropic T1- weighted (T1w) magnetic resonance imaging (MRI), there is 
a need for an automated tool to sub- segment also high- resolutional (HiRes) MR scans, as they are becoming widely 
available, and include structural detail also from multi- modal MRI. We, therefore, introduce a novel, fast, and fully 
automated deep- learning method named HypVINN for sub- segmentation of the hypothalamus and adjacent struc-
tures on 0.8 mm isotropic T1w and T2w brain MR images that is robust to missing modalities. We extensively validate 
our model with respect to segmentation accuracy, generalizability, in- session test- retest reliability, and sensitivity to 
replicate hypothalamic volume effects (e.g., sex differences). The proposed method exhibits high segmentation per-
formance both for standalone T1w images as well as for T1w/T2w image pairs. Even with the additional capability to 
accept flexible inputs, our model matches or exceeds the performance of state- of- the- art methods with fixed inputs. 
We, further, demonstrate the generalizability of our method in experiments with 1.0 mm MR scans from both the 
Rhineland Study and the UK Biobank— an independent dataset never encountered during training with different 
acquisition parameters and demographics. Finally, HypVINN can perform the segmentation in less than a minute 
(graphical processing unit [GPU]) and will be available in the open source FastSurfer neuroimaging software suite, 
offering a validated, efficient, and scalable solution for evaluating imaging- derived phenotypes of the hypothalamus.

Keywords: hypothalamic sub- segmentation, deep learning, hetero- modal, high- resolution, structural MRI
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1. INTRODUCTION

1.1. Motivation

The hypothalamus consists of a group of interconnected 
neuronal nuclei located at the base of the brain ( Saper  & 

 Lowell,  2014). It is the body’s principal homeostatic cen-
ter and plays a crucial role in the regulation of a broad 
range of physiological, behavioral, and cognitive func-
tions, both through direct control of endocrine and  
autonomic nervous system outflow, as well as through 
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extensive projections to cortical and limbic regions ( Saper 
 &  Lowell,  2014). Neuropathological studies have demon-
strated extensive involvement of the hypothalamus in a 
range of neurodegenerative diseases, including Alzhei-
mer’s disease ( Liguori  et al.,  2014;  Roh  et al.,  2014), Par-
kinson’s disease ( Fronczek  et  al.,  2007), Huntington’s 
disease ( van  Wamelen  &  Aziz,  2021), frontotemporal 
dementia, and amyotrophic lateral sclerosis ( Ahmed 
 et al.,  2021;  Bocchetta  et al.,  2015). However, the associ-
ation between hypothalamic integrity and physiological, 
behavioral, and cognitive outcomes has not been studied 
in large clinical or population- based studies for lack of a 
reliable high- throughput automatic imaging procedure.

The majority of studies on hypothalamic imaging- 
derived phenotypes use manual annotations of mag-
netic resonance imaging (MRI) scans as the gold 
standard. Manual segmentation of the hypothalamus 
and its substructures is commonly done on T1- weighted 
images ( Makris  et  al.,  2013;  Schindler  et  al.,  2013). 
Nonetheless, the use of multi- modal structural informa-
tion during the manual annotation process has also 
been proposed to increase especially the visibility of 
the lateral hypothalamus boundaries ( Baroncini  et  al., 
 2012;  Bocchetta  et al.,  2015). These multi- modal proto-
cols recommend segmenting the hypothalamus using 
simultaneous visualization of registered T1- weighted 
(T1w) and T2- weighted (T2w) MR images. Manual delin-
eation of the hypothalamus, however, is a very time- 
consuming process that relies highly on the user’s 
expertise due to the small size and low boundary MR 
contrast in the hypothalamus region, regardless of the 
available MRI modalities.

Automated methods have been proposed to segment 
the whole hypothalamus ( Greve  et al.,  2021;  Orbes- Arteaga 
 et al.,  2015;  Rodrigues  et al.,  2020,  2022;  Thomas  et al., 
 2019) and its sub- regions ( Billot,  Bocchetta,  et al.,  2020) 
quickly and reliably. However, even though automated 
tools are available, they only focus on segmenting 1.0 mm 
isotropic T1w scans, ignoring the detailed structural infor-
mation available in sub- millimeter resolution datasets. 
High- resolutional (HiRes) MR scans are becoming more 
common across studies (even in clinical settings) due to 
rapid advancements in MR technology (e.g., accelerated 
acquisition schemes) and are increasingly employed as 
the new standard for large studies (e.g., the Rhineland 
Study ( Breteler  et al.,  2014;  Stöcker,  2016), Human Con-
nectome Project (HCP) datasets ( Bookheimer  et al.,  2019; 
 Harms  et al.,  2018;  Van  Essen  et al.,  2012), Autism Brain 
Imaging Data Exchange II (ABIDE- II) ( Di  Martino  et  al., 
 2017), and TRACK- PD ( Wolters  et  al.,  2020)). Thus, the 

need for neuroimaging tools that can handle sub- millimeter 
resolutions (e.g., 0.8 mm isotropic) has increased.

Moreover, current automated hypothalamic segmenta-
tion methods have neglected the inclusion of multi- modal 
structural information. One reason for this is that simulta-
neous access to T1w and T2w images is not always pos-
sible due to constraints in scanning time or poor image 
quality in one of the modalities due to reduced image res-
olution or acquisition artifacts. Therefore, the introduction 
of an accurate automated method for segmenting hypo-
thalamic structures on high- resolutional T1w and T2w MRI 
scans, which is also robust to handle missing modalities, 
is of significant interest to clinicians and researchers.

1.2. Related work

Automated hypothalamic segmentation methods utilizing 
multi- atlas- based techniques ( Orbes- Arteaga  et  al., 
 2015;  Thomas  et al.,  2019) were initially proposed. How-
ever, these methods are slow and demand considerable 
computational resources. Newer techniques such as fully 
convolutional neural networks (F- CNNs) can tremen-
dously speed up computation time by utilizing graphical 
processing units (GPUs) and have become the preferred 
method for solving supervised semantic segmentation 
problems in the medical computer vision community 
( Estrada  et al.,  2020,  2021;  Faber  et al.,  2022;  Henschel 
 et al.,  2020;  Kamnitsas  et al.,  2017;  Milletari  et al.,  2016; 
 Ronneberger  et al.,  2015;  Roy  et al.,  2019).

Hypothalamus segmentation using F- CNNs has mainly 
focused on identifying the hypothalamus as one whole 
structure in the brain ( Greve  et al.,  2021;  Rodrigues  et al., 
 2020,  2022). Recently,  Billot,  Bocchetta,  et al.  (2020) pro-
posed a method to segment five sub- regions of the hypo-
thalamus using an encoder- decoder 3D F- CNN with 
extensive data augmentation. They followed the hypotha-
lamic parcellation protocol introduced by  Makris  et  al. 
 (2013) on standard 1.0  mm isotropic resolution T1w 
images. Their proposed method illustrates the capabilities 
of F- CNNs to segment hypothalamic compartments with 
promising results on datasets acquired at 1.0 mm isotropic 
resolution ( Billot,  Bocchetta,  et  al.,  2020;  Shapiro  et  al., 
 2022). However, F- CNNs are known to have issues gener-
alizing to resolutions that differ from the training one 
( Estrada  et al.,  2021;  Henschel  et al.,  2022;  Iglesias  et al., 
 2021), rendering HiRes images out- of- distribution and 
unsuitable for methods designed for lower resolutions. A 
common approach for this problem is to down- sample the 
input image to the desired lower resolution in a pre- 
processing step ( Billot,  Bocchetta,  et  al.,  2020;  Greve 
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 et al.,  2021;  Henschel  et al.,  2020). This process, however, 
reduces image details and information, forfeiting the 
investment already made when acquiring the higher reso-
lution in the first place. Furthermore, HiRes information 
could help address inter- class inconsistencies between 
voxels at a local and global level and alleviate the partial 
volume effect problem ( Glasser  et al.,  2013).

HiRes segmentation of brain structures has mostly 
been tackled by training with manual annotations created 
at the desired resolution ( Beliveau  et al.,  2021;  Estrada 
 et  al.,  2021;  Kamnitsas  et  al.,  2017;  Rushmore  et  al., 
 2022) or training models using 1.0 mm data with scale 
augmentations— an established deep- learning technique 
to improve the generalizability of a model. Recently, mod-
els capable of segmenting scans at different resolutions 
have been introduced.  Billot,  Colin,  et  al.  (2023) and 
 Billot,  Greve,  et  al.  (2023) proposed SynthSeg, a tech-
nique for generating segmentations at a fixed resolution 
(1.0 mm), regardless of the resolution of the input scan, 
which are interpolated to the fixed resolution as a pre- 
processing step. During training, SynthSeg relies on a 
generative model that produces “unrealistic synthetic 
images” ( Billot,  Greve,  et  al.,  2023). These synthetic 
images are created from ground truth label maps at the 
pre- defined fixed resolution. This approach simulates 
domain variability by incorporating multiple random 
parameters for the generator, such as spatial, intensity, 
contrast, and resolution variability. While providing input 
flexibility, the model’s output resolution, however, remains 
confined to the fixed resolution.

Before SynthSeg, we introduced the Voxel- Size Inde-
pendent Neural Network (VINN) for resolution- independent 
segmentation tasks ( Henschel  et  al.,  2022). The VINN 
approach enables training and inference using images at 
multiple resolutions within a single network. In brief, 
instead of interpolating input images, VINN integrates the 
resolution change into the network, replacing a regular 
scale transition with an interpolation layer that maps the 
latent space at native input resolution to a pre- defined 
internal resolution at lower layers of the network and vice 
versa. As a result, rich HiRes information is retained with-
out image or label interpolation, and segmentations are 
provided at the desired native input resolution.

Finally, as has already been shown in manual segmen-
tation of hypothalamic structures, exclusively utilizing 
T1w images as input forfeits the significant potential pre-
sented by the inclusion of multi- modal information (T1w 
and T2w) ( Baroncini  et al.,  2012;  Bocchetta  et al.,  2015). 
Common multi- modal F- CNN architectures, however, 
require all input modalities to always be present. The 

absence of any modality introduces a computational bias 
that the network is not trained to handle. To overcome 
missing modalities, proposed solutions include training a 
specific network for each of the input combinations or 
providing the segmentation model with a synthesized 
version of unavailable modalities ( Hofmann  et al.,  2008; 
 Van  Tulder  &  de  Bruijne,  2015). Alternatively, training net-
works with synthetic image contrast has also been sug-
gested ( Billot,  Greve,  et  al.,  2020,  2023). Even though 
these techniques have shown promising results, a more 
suitable model should be capable of extracting the most 
salient information for solving the given task from the 
available modalities without the need for artificial images 
or multiple modality- specific networks. With this in mind, 
shared latent space models were introduced on the chal-
lenging task of multi- modal brain tumor segmentation 
( Dorent  et al.,  2019;  Havaei  et al.,  2016;  Varsavsky  et al., 
 2018). This approach first translates modalities into inde-
pendent latent spaces; afterwards, the modalities’ 
embedded information is merged inside the network into 
a shared latent representation. The shared latent space is 
then forwarded to the remaining network to solve the 
desired task. At inference time, the shared representation 
is computed from the available modalities, thus being 
robust to all input- modality combinations (i.e., hetero- 
modal) included in training.

To address the missing modalities challenge in an 
HiRes scenario, we suitably include the shared latent 
space concept into our voxel- size independent network 
(VINN). Hetero- modal VINN (HM- VINN) introduces a 
fusion module that linearly combines the modalities 
inside the network. After passing the available scans 
through a separate modality- specific convolutional block, 
the network weighs and merges the feature maps based 
on the best available information using a learnable 
weighted sum. As the output of the fusion module is nor-
malized, missing one modality can be tackled by assign-
ing zero to its respective weight.

1.3. Contribution

To our knowledge, we are the first to tackle automated 
hetero- modal sub- segmentation of the hypothalamus and 
adjacent structures on high- resolutional brain MRI. The 
contributions of this work are the following: Firstly, we 
introduce a new hypothalamic labeling protocol adapted 
to the higher spatial resolution offered by 3 T 0.8 mm iso-
tropic MR images. The proposed protocol presents a more 
fine- grained parcellation of the hypothalamus and includes 
usually ignored brain structures, such as hypophysis, 
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epiphysis, the optic nerve, optic chiasm, and optic tract, 
as illustrated in Figure 1. Secondly, we present HypVINN, a 
novel automated hypothalamic parcellation tool with a 
novel hetero- modal VINN (HM- VINN) architecture at its 
core, providing a solution to the multi- resolution and the 
missing modality challenge in a single model. We exten-
sively show that the model’s input flexibility does not  
compromise performance compared to state- of- the- art 
methods with fixed inputs in terms of segmentation accu-
racy, test- retest reliability, and generalizability. Moreover, 
our method replicates hypothalamic volume effects (e.g., 
age and sex) on subsets of the 0.8 mm (HiRes) Rhineland 
Study (n  =  463) and the 1.0  mm UK Biobank (n  =  535) 
( Alfaro- Almagro  et al.,  2018;  Miller  et al.,  2016). Last but 
not least, and to the benefit of the research community, we 
will integrate the HypVINN tool into the user- friendly, open 

source FastSurfer framework ( Henschel  et al.,  2020) avail-
able at: https://github . com / Deep - MI / FastSurfer (code will 
be released upon acceptance).

2. METHODS

2.1. Datasets

We used MR images from two population studies, namely 
the Rhineland Study (RS) ( Breteler  et  al.,  2014;  Stöcker, 
 2016) and the UK Biobank (UKB) ( Alfaro- Almagro  et  al., 
 2018;  Miller  et al.,  2016), with resolutions of 0.8 mm (HiRes) 
and 1.0 mm, respectively. Participants from both studies 
gave written informed consent in accordance with the  
ethical guidelines of the individual studies. Furthermore, 
ethics approval and regulations can be accessed on their 

Fig. 1. T1- weighted (T1w) and T2- weighted (T2w) images and ground truth (GT) from two participants. The proposed 
manual segmentation scheme is composed of twenty- four structures divided into three major regions: 1) hypothalamic 
(anterior, middle, and posterior), 2) optic, and 3) others. The color lookup table* for all structures is presented on the left, 
and a detailed overview of the three regions is presented in Table 1. *Structures are not visible in the presented snapshots.
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respective webpages. For this work, we compiled four dis-
tinct datasets from the population studies: a manually 
annotated dataset (from RS), a generalizability dataset 
(from RS and UKB), a test- retest dataset (from RS), and a 
case- study dataset (from RS and UKB). The manually 
annotated dataset (referred to as ”in- house dataset”) was 
initially split into two non- overlapping sets, one for training 
and validation, and the other for testing. The remaining 
datasets were exclusively used for evaluations to assess 
different aspects of our hetero- modal method.

The Rhineland Study is an ongoing population- based 
cohort study located in Bonn, Germany, which enrolls 
participants aged 30  years and above (www . rheinland 
- studie . de). MR scans were collected at two different sites 
using identical 3  T Siemens MAGNETOM Prisma MRI 
scanners equipped with 64- channel head- neck coils. The 
core MRI acquisition protocol for every participant in the 
Rhineland Study includes the following MR contrast: T1w, 
T2w, FLAIR, diffusion- weighted, susceptibility- weighted, 
resting- state functional, and abdominal Dixon MRI with a 
total net scan time of around 45 minutes. Furthermore, an 
optional extra acquisition time (maximum 10 minutes) is 
available for a free protocol.

This paper utilized the 0.8 mm isotropic T1w and T2w 
MR scans. The T1 protocol consists of a multi- echo mag-
netization prepared rapid gradient echo (MPRAGE) 
sequence ( van  der  Kouwe  et al.,  2008) with 2D accelera-
tion ( Brenner  et al.,  2014), while the T2 protocol uses a 3D 
Turbo- Spin- Echo (TSE) sequence with variable flip angles 
( Busse  et al.,  2008). Both sequences also utilize elliptical 
sampling ( Mugler  III,  2014) and parallel imaging (PI) 
( Griswold  et al.,  2002) to expedite the imaging process. 
For this work, all protocol versions from the Rhineland 
Study were considered, and sequence parameters are 
presented in Appendix Table A1.

We compiled the Rhineland Study datasets by first 
randomly selecting a subset (n  =  534) of participants 
with available T1w and T2w scans from sex and age 
strata to ensure a balanced population distribution. The 
sample presents a mean age of 54.9 years (range 30 to 
95), and 59.4% were women. We then further assigned 
participants to the in- house dataset and all its subse-
quent splits adhering to the age and sex- stratification 
scheme. All T2w scans were registered to their corre-
sponding T1w scan using FreeSurfer’s mri_robust_regis-
ter tool ( Reuter  et al.,  2010).

Table 1. Summary of the hypothalamic sub- regions and adjacent structures included in the proposed labeling scheme 
with its corresponding name, anatomical designation, and region.

Hypothalamic sub- regions Adjacent structures

Label name
Anatomical  
designation

Region  
group Label name

Anatomical  
designation

Region  
group

L- Ant- Hypothalamus Anterior Hypothalamus (lh),  
Supraoptic Nucleus (lh)

Anterior

3rd- Ventricle 3rd- Ventricle, 
Superior- Border

L- Fornix Fornix (lh)
R- Ant- Hypothalamus Anterior Hypothalamus (rh),  

Supraoptic Nucleus (rh)
R- Fornix Fornix (rh)

Epiphysis Epiphysis Others
L- Med- Hypothalamus Medial Hypothalamus* (lh) Hypophysis Hypophysis,  

Neurohypophysis
R- Med- Hypothalamus Medial Hypothalamus* (rh)

Middle

Infundibulum Infundibulum
L- Lat- Hypothalamus Lateral- Hypothalamus (lh) Ant- Commisure Anterior Commisure

R- Lat- Hypothalamus Lateral- Hypothalamus (rh) L- N- Opticus Optic Nerve (lh)
Tuberal- region Median- eminence,  

Tuberomammillary Region,  
and Arcuate- nucleus

R- N- Opticus Optic Nerve (rh)

Optic
L- Chiasma- Opticus Optic Chiasm (lh)
R- Chiasma- Opticus Optic Chiasm (lh)

L- Post- Hypothalamus Posterior Hypothalamus (lh)

Posterior

L- Optic- tract Optic Tract (lh)
R- Post- Hypothalamus Posterior Hypothalamus (rh) R- Optic- tract Optic Tract (rh)
L- C- Mammilare Corpus Mammillare (lh)
R- C- Mammilare Corpus Mammillare (rh)

*Including the Paraventricular Nucleus (PVN), the Ventromedial Nucleus (VMN), and the Dorsomedial Nucleus (DMN).
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MRI scans of the in- house training and testing dataset 
(n = 50) were manually annotated by an experienced rater 
and split into training/validation (n = 44) and testing (n = 6) 
sets. Training data were further split into four groups for 
cross- validation. Finally, the testing data were manually 
annotated for a second time by our main rater to evaluate 
intra- rater variability. The rater was blind to the scans’ iden-
tification to avoid bias and overestimating performance.

For evaluating within- session test- retest reliability, we 
utilized the RS subset (n = 21) with two in- session T1w 
scans. The additional scan for this participant was 
acquired during the time slot allocated for a free protocol 
inside the Rhineland study’s MRI acquisition protocol. 
Due to the time constraint of the free protocol, a second 
T2w scan could not be acquired. Before starting the free 
protocol, participants were asked to move their head 
inside the head- neck coil. It is important to note that T1w 
scans were not acquired back- to- back, but with a time 
gap of almost 30 minutes.

The MRI scans of the remaining participants (n = 463) 
were compiled into the RS case- study dataset to evaluate 
the sensitivity to known hypothalamic volume effects 
(e.g., age and sex). For a detailed description of the pop-
ulation characteristics of all the aforementioned RS sub-
sets, see Appendix Tables A2 and A3.

We used data from the UK Biobank study to test the 
generalizability of our method to isotropic 1.0 mm scans 
from an unseen cohort with different acquisition parame-
ters. An initial subset (n  =  544) of random participants 
was selected from sex and age strata to ensure a bal-
anced population distribution. The chosen sample pres-
ents a mean age of 58.7 years (range 45 to 82), consisting 
of 52.6% women. Subsequently, the scans of nine ran-
dom participants were manually labeled by our expert 
rater to evaluate segmentation accuracy at 1.0 mm (gen-
eralizability dataset). The remaining UKB participants 
(n = 535, UKB case- study dataset) were also used in the 
hypothalamic volumes effects sensitivity analysis. A sum-
mary of the population characteristic of the UKB subsets 
is presented in Appendix Table A4.

2.2. Manual reference standard

An experienced rater manually annotated the sub- regions 
of the hypothalamus and adjacent structures on regis-
tered T1w and T2w images, except for the UK Biobank 
cases where only T1w scans were available. The annota-
tion was performed using Freeview, a visualization tool of 
FreeSurfer ( Fischl,  2012;  Fischl  et  al.,  2002), which 
allowed simultaneous viewing of the available modalities. 

Summarizing the labeling process, the borders of the  
unilateral hypothalamus were defined as follows ( Makris 
 et al.,  2013): a) anteriorly: coronal plane passing through 
the most rostral tip of the anterior commissure and con-
taining the optic chiasm, b) posteriorly: coronal plane 
through the most caudal tip of the mammillary bodies, c) 
superiorly: third ventricle with the diencephalic fissure, d) 
inferiorly: junction to the optic chiasm rostrally and the 
hemispheric margin more caudally, e) medially: wall of the 
third ventricle and the interhemispheric fissure, and f) lat-
erally: rostrally at the medial border of the optic tract and 
more caudally at the internal capsule, globus pallidus, 
and cereberal penduncle. A detailed definition of the seg-
mentation procedure for all different substructures is pro-
vided in Appendix C. Adjacent small hypothalamic nuclei 
were grouped into subunits according to Table  1. An 
example of the manual segmentation scheme is illus-
trated in Figure 1, and an overview of all twenty- four seg-
mented structures is presented in Table 1.

2.3. Hypothalamic hetero- modal segmentation tool— HypVINN

2.3.1. Hetero- modal segmentation network— HM- VINN

To accurately segment the hypothalamic sub- regions and 
adjacent structures, we employ VINN ( Henschel  et  al., 
 2022) as the foundation for our network design. VINN is a 
resolution- independent extension of the successful multi- 
network approach FastSurferCNN ( Estrada  et  al.,  2021; 
 Faber  et al.,  2022;  Henschel  et al.,  2020). Both methods 
are 2.5D approaches, that is, they agg regate predictions 
of three 2D F- CNNs (one per anatomical view) with multi- 
slice input ( Henschel  et al.,  2020). The F- CNNs follow a 
UNet- type layout with an encoder and decoder arm of five 
competitive- dense blocks (CDB) separated by an addi-
tional bottleneck CDB (see Fig. 2). In FastSurferCNN, all 
scale transitions between the CDBs are implemented via 
fixed- scale down-  or up- sampling operations (i.e., (un)
pooling). VINN, on the other hand, replaces the first and 
last scale transition with a flexible network- integrated 
resolution- normalization. Here, the native image resolu-
tion is explicitly integrated into the network and utilized to 
interpolate the feature maps to a common pre- defined 
network base resolution (1.0 mm). In turn, network capac-
ity in the inner layers is available for the segmentation task 
while retaining voxel size- dependent information outside 
of it. Lastly, the view- aggregation step ensembles the 
resulting probabilities maps through a weighted average 
(axial = 0.4, coronal = 0.4, and sagittal = 0.2). The weights 
of the sagittal predictions are reduced compared to  
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the other predictions, as structures with left and right  
hemispheres labels are unified into one due to missing 
lateralization information in the sagittal view ( Henschel 
 et al.,  2020). For the current segmentation task, we also 
unify lateralized structure labels into one for the sagittal 
view, consequently reducing the number of classes in the 
sagittal F- CNN from 24 to 15. Therefore, the VINN view- 
aggregation weighting scheme is also suitable for our 
application.

In this work, we extend VINN into a hetero- modal seg-
mentation scenario (referred to as HM- VINN) by embed-
ding the input modalities into a shared latent space 
( Dorent  et al.,  2019;  Havaei  et al.,  2016;  Varsavsky  et al., 
 2018). Following this direction, we modify the standard 
F- CNNs from VINN to initially process T1w and T2w 
images independently of each other by replacing the first 
encoder CDB with modality- specific CDBs (Fig. 2, e.g., 
T1- CDB* and T2- CDB*). After the independent stage, fea-
ture maps are merged inside the network by a fusion 
module and fed into the following convolutional pipeline.

The implemented fusion module weights and merges the 
feature maps from the T1 and T2 branches based on the 
best available information using a learnable weighted sum. 
Let us denote the output feature map from the T1- CDB* as 
FT1 ε R

C×H×W and the T2- CDB* output as FT 2  ε R
C×H×W, 

where C,H,W  represent the channel, height, and width 

dimensions, respectively. Then, the output of fusion module 
Ffused is

 Ffused =
WT1

WT1 + WT 2
× FT1+

WT 2

WT1 + WT 2
× FT 2,  (1)

where WT1 and WT 2 are global learnable scalar parame-
ters initialized both at 0.5. The introduction of WT1 and 
WT 2 allows the network to gradually learn the importance 
of each modality. If a modality is more informative, its fea-
ture maps will have a higher weight. Additionally, as the 
output of the fusion module is normalized, missing one 
modality can be tackled by assigning zero to its respec-
tive weight. Thus, the fusion features are identical to the 
encoder block output of the existing modality.

In detail, all three F- CNNs followed the abovemen-
tioned layout (see Fig. 2). Within F- CNNs, the CDB lay-
out is kept mostly the same as the one from VINN, where 
the CDB consists of four layers of parametric rectified 
linear unit (PReLU), convolution (Conv -  kernel size of 
3× 3), and batch normalization (BN) except for the first 
two encoders blocks. In the first two encoder blocks 
from VINN, the first PReLU is replaced with a BN to nor-
malize the inputs (see Fig. 2, CBD*). The modified CBD 
construction is also utilized for modality- specific CDBs 
as they are our initial first encoder CDB. To keep the 

Fig. 2. Hetero- Modal VINN (HM- VINN) architecture in HypVINN. Input modalities are first independently processed 
by modality- specific competitive dense blocks (T1- CDB* and T2- CDB*). Afterward, modality- specific feature maps are 
merged inside the network by our proposed fusion module (dark green) to create a shared latent space. During inference 
time, the shared latent space can be computed over the available modalities and fed into the remaining network. 
Furthermore, HM- VINN incorporates flexible transitions in the first and last scale transition by utilizing the network- 
integrated resolution- normalization (light blue). Each CDB is composed of four sequences of parametric rectified linear 
unit (PReLU), convolution (Conv), and batch normalization (BN). In the modality- specific CDBs and second encoder block 
(CBD*), the first PReLU is replaced with a BN to normalize the inputs.
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comparison fair in light of an effective parameter count 
of approximately 4.5  M parameters (three dedicated, 
modality- specific models with approx. 1.5  M parame-
ters each), we increase the number of channels (fea-
tures) of all layers from 64 to 80 inside CDBs, and from 
32 to 64 in the first and last CDB blocks (i.e., the first 
scale level). This change raises the parameter count to 
approximately 2.6 M, which is still significantly less than 
three (≈ 4.5 M parameters) or even two (≈ 3.0 M) dedi-
cated, modality- specific networks.

2.3.2. Hetero- modal training procedure

Introducing additional variations by data augmentation 
during training helps neural networks to be more robust. 
Here, we make HM- VINN robust to missing modalities by 
sometimes randomly dropping either the T1w or T2w 
image for a given training example with a uniform distribu-
tion between all input combinations (modality dropout). 
The modality weights in the fusion module are adjusted as 
follows: i) When the two modalities are available, the net-
work automatically assigns the weights (see Eq. 1). ii) If a 
modality is dropped, its corresponding fusion weight is set 
to zero as described in the previous section. By starting 
this modality dropout procedure only after 10 epochs, the 
proposed training procedure first establishes general seg-
mentation capabilities (with all modalities available) before 
pivoting to more difficult scenarios with different combina-
tions and missing modalities.

2.3.3. Model learning

All F- CNN are implemented in PyTorch ( Paszke  et  al., 
 2017) using a docker container ( Merkel,  2014). Indepen-
dent models for axial, coronal, and sagittal views are 
trained for 100 epochs with a batch size of 16 using two 
NVIDIA Tesla V100 GPU with 32 GB RAM. We use the 
AdamW ( Kingma  &  Ba,  2015;  Loshchilov  &  Hutter,  2019) 
optimizer with a weight decay of 10−4 and an initial learn-
ing rate of 0.05, which is decreased to 0.005 after 70 
epochs. The networks are trained by optimizing a com-
bined loss function of a median frequency- weighted 
cross- entropy loss and Dice loss ( Roy  et al.,  2019). This 
loss function encourages correct segmentation along 
anatomical boundaries and counters class imbalances 
by increasing the weights of less frequent classes.

To increase the generalizability of our model, we apply 
several spatial and intensity data augmentations during 
training. Spatial augmentations on the inputs images are 
limited to random affine transformations such as transla-

tion (range: from −15 mm to 15 mm), rotation (range: from 
−10° to 10°), and uniform scaling (factor: from 0.85 to 
1.15) ( Pérez- García  et al.,  2020). Furthermore, we include 
internal scale augmentations of the feature maps as 
introduced by FastSurferVINN to improve the segmenta-
tion performance ( Henschel  et al.,  2022).

Intensity augmentations are carried out to address two 
challenges: 1) intensity inhomogeneities due to scan 
parameters ( Pérez- García  et  al.,  2020) and 2) artefacts 
introduced by defacing algorithms in regions of interest 
(e.g., optic region). The first problem is tackled by apply-
ing a random bias field ( Sudre  et al.,  2017;  Van  Leemput 
 et al.,  1999) transformation on the input images (coeffi-
cients range: from - 0.5 to 0.5). For the second issue, we 
improve the network’s robustness to handle defaced 
scans by including scans with or without face features as 
part of the training set. For creating the modified scans, 
three common open- source algorithms are used 
(PyDeface ( Gulban  et  al.,  2019), MiDeFace from Free-
Surfer ( Fischl,  2012), and HCP face masking ( Milchenko 
 &  Marcus,  2013)). In contrast to all above- mentioned 
transformations, defacing is performed statically before 
training (”offline”) due to the high computation time to 
deface a scan (more than 1 minute per method).

2.4. Evaluation metrics

We compute three standard segmentation metrics (dice 
similarity coefficient, volume similarity, and Hausdorff dis-
tance) to assess the similarity between the predicted label 
maps and manual annotations ( Taha  &  Hanbury,  2015). We 
first evaluate the dice similarity coefficient (Dice) ( Dice, 
 1945;  Sorensen,  1948) as it provides spatial overlap con-
sensus. Let M (manual annotations) and P (prediction) 
denote binary label maps, then Dice is defined as:

 Dice = 2 ⋅ M∩P
M + P  (2)

where M∩P  represent the number of common elements 
(intersection) and M  and P  the number of elements in 
each label map; therefore, Dice values range from 0 to 1, 
and a higher Dice represents a better segmentation 
agreement. Afterwards, we compute volume similarity 
(VS) as volume measurements are usually the desired 
image- derived phenotype for downstream statistical 
analysis. VS is defined as:

 VS = 1−
M − P

M + P
.  (3)
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VS has the same range as Dice; however, it can have its 
maximum value even when the spatial overlap is zero, as 
this metric does not consider spatial localization informa-
tion. Additionally, a spatial distance- based metric is used 
to evaluate the quality of segmentation boundary delin-
eation (contour). Here, we use the 95% Hausdorff dis-
tance (HD95), a Hausdorff distance (HD) as it is less 
sensitive to outliers ( Huttenlocher  et al.,  1993). HD95 is 
considered as the 95th percentile of the ordered distance 
measures, and it is defined as:

 

d95 M,P( ) = 95m∈M
th min 

p∈P
d m,p( )⎛

⎝⎜
⎞
⎠⎟

dHD95 M,P( ) =max d95 M,P( ),d95 P,M( )( )  (4)

where d  is the Euclidean distance. In contrast to the 
Dice and VS, HD95 is a dissimilarity metric so a smaller 
value indicates a better boundary delineation with a value 
of zero being the minimum (perfect match).

Finally, statistical significant differences in segmenta-
tion performance are confirmed throughout this work by 
a non- parametric paired two- sided Wilcoxon signed- rank 
test ( Wilcoxon,  1992) after correcting for multiple testing 
using Bonferroni correction (referred to as corrected p).

For accessing the test- retest reliability of predicted 
volume measurements between two repeated scans of 
the same participant, we use the intra- class correlation 
(ICC). The ICC is a commonly used metric to assess the 
degree of agreement and correlation between measure-
ments. The ICC values range from 0 to 1, with higher val-
ues representing better reliability. Here, we compute a 
two- way fixed, absolute agreement and single measures 
with a 95% confidence interval (ICC(A,1)) ( McGraw  & 
 Wong,  1996).

3. EXPERIMENTS AND RESULTS

This section is divided into four parts with the aim to thor-
oughly validate our hetero- modal method for hypotha-
lamic sub- regions and adjacent structures segmentation 
(referred to as HypVINN). The HypVINN model is com-
posed of the HM- VINN architecture and learning strate-
gies introduced in Sections 2.3.2 and 2.3.3. i) Initially, we 
evaluate the segmentation accuracy of HypVINN’s pre-
dictions against manual annotations. For this purpose, 
we benchmark the network based on the performance in 
the unseen test- set against multi-  and uni- modal models, 
including the only other contemporary method for hypo-
thalamus parcellation (Section  3.1.1), and manual rater 
variability (Section 3.1.2). ii) We assess the generalizabil-

ity of our method to a different image resolution— 1.0 mm 
isotropic MRI scans (Section 3.2). iii) We test the reliabil-
ity of the predicted volumes in a within- session test- 
retest scenario (Section 3.3). iv) Finally, we measure the 
sensitivity of the proposed pipeline to replicate known 
hypothalamic volume effects with respect to age and 
sex. In order to ensure that all experiments are carried out 
under the same testing conditions, all inference analyses 
are evaluated in a Docker container with a 12 GB NVIDIA 
Titan V GPU. Model inference can also run on the CPU at 
reduced speeds.

3.1. Accuracy

In this section, we benchmark and evaluate the accuracy 
of the hetero- modal HypVINN. All implemented networks 
are trained using the scheme mentioned in Section 2.3.3.

To show a proof- of- concept for our proposed HypVINN 
in segmenting hypothalamic sub- regions and adjacent 
structures with missing input modalities, we benchmark 
our method against segmentation scenarios where all 
modalities are always available (i.e., uni- modal and multi- 
modal models). For this purpose, we implement the clas-
sic VINN with three different inputs: i) only T1w (T1- VINN), 
ii) only T2w (T2- VINN), and iii) T1w & T2w (multi- modal 
(MM)- VINN). For the multi- modal model, the input passed 
to the network consists of a multi- channel image created 
by stacking T1w and T2w image slices on top of each 
other. Additionally, we compare our HypVINN against the 
method proposed by  Billot,  Bocchetta,  et  al.  (2020)— a 
3D- UNet with extensive data augmentation for hypotha-
lamic sub- segmentation on T1w images. Direct compari-
son of our predicted outcomes with the results from the 
already trained model from Billot et al. is not possible as 
our annotation protocol segments more structures and 
uses a different hypothalamic parcellation. Therefore, we 
utilize the implementation provided by the authors to 
retrain their T1w model from scratch with our manual 
annotations. It is important to notice that we do not fine- 
tune the implementation from Billot et al., and any optimi-
zation of their tool is outside this paper’s scope. 
Furthermore, all comparative VINN baselines follow the 
same 2.5D scheme as mentioned in Section 2.3.1, and 
inference in HypVINN is done per input combination. The 
difference between results in the following two sections is 
in the data used for training: For Section 3.1.1 and Table 2, 
all networks are trained in a 4- fold cross- validation 
scheme to also generate validation performance on the 
holdout validation split (see Appendix B for ablation 
results). For all other results, we used the full training set 
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(n = 44). Finally, performance is assessed on the unseen 
test- set by the three metrics (Dice, HD95, and VS).

3.1.1. Comparison with the state- of- the- art

In Table 2, we present the similarity scores for the global 
segmentation performance of all evaluation metrics as well 
as significance indicators (corrected p < 0.05). Here, we 
observe that HypVINN performs as well as the modality- 
specific models. In the T1w- only inference scenario, the 
T1- VINN outperforms HypVINN in Dice and HD95; how-
ever, there is no statistical difference between them. On 
the other hand, when T1w and T2w are available, HypVINN 
outperforms the multi- modal model in all evaluation met-
rics with statistical significance in VS. Furthermore, input-
ting only a T2w yields the lowest segmentation results 
from all benchmark models, and the T2w specialized net-
work outranks the HypVINN with statistical significance. 
Additionally, we observe that for HypVINN the inclusion of 
both modalities improves segmentation performance 
compared to its single modality counterparts with statisti-
cal significance for all metrics in T2w and for T1w only in 
Dice. For the modality- specific models, MM- VINN and T1- 
VINN perform equally well with no statistical significance 
between them. Finally, our models (both T1 and multi- 
modal variants) outperform the T1 3D- UNet in our seg-
mentation task with statistical significance.

We additionally observe that the global results are not 
driven by any particular structure, as the per- structure 
results from HypVINN and the comparison models align 

with their respective global outcomes. Furthermore, 
using a T2w scan as the only source for inferring informa-
tion is consistently underperforming, at both the global 
and per- structure levels. For detailed per- structure per-
formance results, see Appendix Figure A1.

Moreover, the contribution of T2- derived features can 
also be visualized in HypVINN’s learned global fusion 
weights where the T2- block weight (≈ 0.25) has a much 
lower value than the T1- block weight (≈ 0.75) starting 
already in early stages of training in all implemented net-
works as shown in Appendix Figure A2. Thus, perfor-
mance is mainly driven by the T1- derived information, 
with T2w being only a support modality. For this reason, 
in the remaining experiments, we only use a T2w image in 
combination with a T1w image and not as a standalone 
modality.

3.1.2. Intra- rater reproducibility

In this section, we compare the performance of the auto-
mated methods against our main rater variability (i.e., 
intra- rater variability). The intra- rater variability puts the 
accuracy results into context, where it can be seen as the 
ideal automated method performance. We assess this 
variability by computing the similarity between the two 
sets of manual segmentations of the main rater in the in- 
house test- set. Note, in contrast to Section 3.1, all mod-
els are retrained on the full training dataset. It is important 
to note that the testing- set is still unseen for these mod-
els and is only used for final performance. These “final” 

Table 2. Mean (and standard deviation) segmentation performance of the cross- validated F- CNN models on the unseen 
test- set.

Experimental setup Dice↑ VS↑ HD95 (mm)↓

Model Mean (SD) Signif. Mean (SD) Signif. Mean (SD) Signif.

Only T1w input
a: T1- VINN ( Henschel  et al.,  2022) 0.7937 (0.0926) c,d,e 0.9030 (0.0785) c,e 1.1262 (0.5443) c,d,e

b: HypVINN (Ours) 0.7905 (0.0968) c,d,e 0.9053 (0.0757) c,d,e 1.1312 (0.5683) c,d,e

c: 3D- UNET ( Billot,  Bocchetta,   
et al.,  2020)

0.7481 (0.1516) d,e 0.8753 (0.1325) e 1.4088 (2.235) e

Only T2w input
d: T2- VINN ( Henschel  et al.,  2022) 0.7457 (0.1059) e 0.8967 (0.0877) c,e 1.2275 (0.5525) e

e: HypVINN (Ours) 0.7224 (0.1120) 0.8683 (0.1074) 1.4315 (1.7678)

Multi- modal (MM) input (T1w & T2w)
f: MM- VINN ( Henschel  et al.,  2022) 0.7918 (0.0924) c,d,e 0.9033 (0.0774) c,e 1.1350 (0.5819) c,d,e

g: HypVINN (Ours) 0.7936 (0.0956) b,c,d,e 0.9068 (0.0743) c,d,e,f 1.1207 (0.5563) c,d,e

The proposed hetero- modal HypVINN performs as well as the modality- specific models. Furthermore, HypVINN with multi- modal and 
standalone T1w input outperforms the 3D- UNet proposed by  Billot,  Bocchetta,  et al.  (2020)— the only other contemporary method for 
hypothalamus parcellation. Note: the statistical significance column (Signif.) indicates which other models the model outperforms (paired 
Wilcoxon signed- rank test, corrected p < 0.05 ).
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HD95 = 1.1638 mm; MM- VINN: Dice = 0.7937, VS = 0.9036, 
HD95 = 1.0723 mm; HypVINN with T1 input: Dice = 0.7905, 
VS = 0.8980, HD95 = 1.1103 mm; HypVINN with MM input: 
Dice = 0.7950, VS = 0.9008, HD95 = 1.0857 mm). Addi-
tionally, the 3D- UNet presents the lowest segmentation 
performance from all final models (Global →  Dice = 
0.7435, VS = 0.8763, HD95 = 1.2347 mm).

The intra- rater scores outperform all the implemented 
automated methods in Dice and VS, with significant sta-
tistical differences present in the hypothalamic region 
structures (corrected p < 0.01). Moreover, the HD95 
inter- rater hypothalamic region results are significantly 
better than the ones of the 3D model. On the other hand, 
MM- VINN and HypVINN outperform the intra- rater results 
in recognizing tissue boundaries (HD95), even if no statis-
tical significance can be inferred from the statistical test. 
We additionally observe that manually replicating the 
boundary outline in the structures from the others and 
optic regions is more challenging. Furthermore, we visu-
ally notice that all automated methods generate similar 
predictions to the manual ones, with the most consider-
able discrepancies in identifying the hypothalamus con-
tour (outside boundaries), as illustrated in Figure  4. 
Moreover, the 3D model generates the noisiest hypotha-
lamic edges from all implemented methods.

Finally, when comparing accuracy results between 
2.5D automated methods, statistically significant differ-
ences are only present in Dice and VS for the optic region 
between HypVINN inference setups (corrected p < 0.05 ) 
with the multi- modal input variation having a better per-
formance (Dice: 0.8329 vs. 0.8238 and VS: 0.9119 vs. 
9021). Nonetheless, we also observe improvements with-
out statistical significance in hypothalamic region local-
ization (Dice) and boundary detection (HD95) in structures 
from the others and optic regions. These results follow 
the previous section (Section  3.1.1), where HypVINN 
shows better segmentation results when all modalities 
are available. Moreover, the T1 and multi- modal 2.5D 
counterparts outperform the 3D model, aligning with pre-
vious findings.

3.2. Generalizability

In this section, we evaluate the robustness of the pro-
posed hetero- modal model (HypVINN) to generalize to 
brain MRI scans with a different image resolution 
(1.0 mm isotropic) than the training one (0.8 mm isotro-
pic). For this purpose, we utilize the MRI scans from the 
Rhineland Study (RS) in- house test- set (n  =  6) and a 
random subset (n = 9) of the UK Biobank (UKB) dataset 

models are additionally used for the generalizability (Sec-
tion  3.2), reliability (Section  3.3), and sensitivity (Sec-
tion 3.4) analyses.

In Figure 3, we present box plots for the three accuracy 
metrics (Dice, VS, and HD95) in the test- set for the three 
major regions (hypothalamic, optic, and others, see Sec-
tion 2.2). We observe that our main rater has an overall 
good intra- rater agreement between annotation sessions 
(Global → Dice = 0.8210, VS = 0.9100, HD95 = 1.1277 mm). 
Furthermore, all automated 2.5D methods perform equally 
well (Global →  T1- VINN: Dice  =  0.7869, VS = 0.9017, 

Fig. 3. Segmentation performance comparison on the 
in- house test- set between manual intra- rater scores 
vs. our proposed HypVINN and benchmark F- CNNs. 
HypVINN (dark red and dark blue) produces comparable 
results to the manual intra- rater agreement (gray). Note: 
similarity scores are presented for the hypothalamic, 
others, and optic regions. Additionally, a letter directly on 
top of a box plot indicates which other models the model 
significantly outperforms (paired Wilcoxon signed- rank 
test, corrected p < 0.05).

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00034/2182290/imag_a_00034.pdf by guest on 22 November 2023



12

S. Estrada, D. Kügler, E. Bahrami et al. Imaging Neuroscience, Volume 1, 2023

that is manually annotated (see Section  2.1). For the 
Rhineland Study, as the MR scans and respective 
ground truth are at 0.8  mm isotropic resolution, we 
down- sample the pre- registered T1w and T2w scans 
from their native resolution to the desired 1.0 mm iso-
tropic resolution. After the 1 mm scans are processed 
by the segmentation model, the resulting probability 
maps (i.e., soft- labels) are up- sampled to the original 
0.8  mm resolution. Thereafter, hard labels are gener-
ated. This strategy prevents the down- sampling of 
manual labels to 1.0 mm, which introduces interpola-
tion artefacts that could potentially decrease accuracy 
along boundaries, thereby impacting the analysis. On 
the other hand, no re- sampling is needed for the UK 
Biobank scans as this dataset is acquired and labeled 
at 1.0 mm resolution. However, multi- modal evaluation 
is not done for this dataset as T2w scans are not avail-
able. Therefore, we limit the generalizability analysis in 
the UK Biobank dataset to the performance of the 
standalone T1w input models. Finally, generalizability 
performance is assessed by the three similarity metrics 
(Dice, HD95, and VS) at the native resolution of the cor-
responding manual reference, except for volume simi-
larity (VS) in the 1.0 mm Rhineland Study predictions. 
VS does not require spatial overlap between label 

maps; thus, it can be computed without the need for 
re- sampling to the same resolution.

 Henschel  et al.  (2022) demonstrated generalizability 
of VINN, HM- VINN’s parent architecture, to unseen res-
olutions. Their results, however, were achieved training 
with multi- resolution data, which is a different scenario 
to ours, where only 0.8 mm data is available. Therefore, 
here we further compare generalizability of our HM- 
VINN architecture to segment 1.0  mm MR scans to 
F- CNNs without resolution- independence mechanisms 
(HM- CNN). In HM- CNN, we replace the flexible network- 
integrated resolution- normalization step inside HM- 
VINN with a fixed scale transition. Furthermore, to 
isolate the contributions of the proposed resolution- 
independence scheme, we train both HM- VINN and 
HM- CNN with and without external scale augmentation 
(exSA). It is important to note that the HM- VINN +exSA 
(proposed HypVINN) used in this analysis is the one 
trained in Section 3.1.2. Therefore, to ensure a fair com-
parison, all benchmarked networks are trained using the 
same procedure. We limited this analysis to only T1 
input models as T1 is the primary MRI sequence for our 
segmentation task. Finally, in order to validate the 
robustness of HypVINN in both inference scenarios, we 
compare our method against the modality- specific 

Fig. 4. Comparison of the ground truth vs. predictions from the proposed HypVINN and comparison baselines for four 
participants of the in- house test- set. (A- D) All automated methods generate similar segmentation to the manual ones. 
However, differences are observed in the delineation of the hypothalamic contour. Furthermore, the 3D- UNet presents 
the least smooth transitions between hypothalamic structures from all automated methods (red arrows). Note: each row 
represents a different participant with corresponding MRI modalities (T1- weighted (T1w) and T2w- weighted (T2w)), manual 
ground truth (GT), and automated generated segmentations on the coronal view. The color scheme for the visible structures 
is presented on the right.
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model from the previous section (i.e., T1- VINN, MM- 
VINN, and 3D- UNet).

In Figures 5 and 6, we present the generalizability results 
for the segmentation evaluation metrics in the hypotha-
lamic, optic, and others regions for both datasets. For the 
first comparison analysis (Fig. 5), the inclusion during train-
ing of exSA in both HM- VINN (proposed HypVINN, Fig. 5 
blue) and HM- CNN (Fig. 5 green) architectures shows bet-
ter segmentation performance compared to their respec-
tive comparative baseline without exSA (Fig. 5 orange and 
purple). Furthermore, we observe that the proposed 
HypVINN (HM- VINN +exSA) yields the best segmentation 
scores among all benchmark networks across different 
regions and metrics for both datasets, except for HD95 in 
the optic and hypothalamic structures for UKB. However, 
the differences in HD95 performance between our HypVINN 
and the HM- VINN (optic region) and HM- CNN +exSA 
(hypothalamic region) baselines in the UKB dataset are  
not statistically significant (corrected p > 0.1). Lastly, as 
expected, the vanilla HM- CNN (no exSA or resolution- 
independence) fails in both datasets for all regions, show-
casing the expected generalizability issues of a standalone 
F- CNN to out- of- distribution resolutions.

Analyzing the generalizability results between input 
modalities, we observed that even though models have 
not been trained at 1.0 mm resolution, they can general-
ize remarkably well, as illustrated in Figures 6 and 7. For 
RS, no significant differences are found between 2.5D 
models except for the optic area where both multi- modal 
models outperform the T1- input HypVINN with statistical 
significance (corrected p < 0.02 ; metric significance: 
Dice and VS both methods, and HD95 only MM- VINN). In 
UKB scans, the T1- input HypVINN outperforms the T1- 
specialized model in all metrics for the hypothalamic 
region. On the other hand, T1- VINN outranks our hetero- 
modal model in the others and optic regions. However, 
none of the above differences are statistically significant 
(corrected p > 0.1). Finally, when comparing against the 
3D- UNet (which has been trained with external scale 
augmentation), the 2.5D models show in RS significantly 
better Dice scores for the hypothalamic and optic regions 
(corrected p < 0.02 ). For UKB, the 2.5D models signifi-
cantly outperform the 3D- UNet in Dice and HD95 for the 
hypothalamic and others regions (corrected p < 0.01).

3.3. Test- retest reliability

Assuming that brain anatomy does not change within the 
same MR session, a reliable method should generate the 
same (or very similar) volume estimates from repeated 

in- session scans acquired under the same conditions 
(e.g., machine, acquisition protocol, region of interest). 
Here, we benchmark and evaluate the reliability of our 
proposed hetero- modal F- CNN to predict hypothalamic 
sub- regions and adjacent structure volumes in a test- rest 
scenario. For this purpose, we process the T1w and T2w 
scans from the test- retest dataset (n = 21) not only with 
HypVINN but also with the benchmark models used in 
the previous sections (see Sections 3.1.2 and 3.2) except 
for the 3D- UNet as it is the model with the lowest seg-
mentation accuracy results. Since the test- retest dataset 
includes two T1w scans per participant and only a single 
T2w scan, the T2w is independently registered two times, 
each time using a different T1w as reference. Afterwards, 
we assess the reliability of the methods by computing 
volume similarity (VS) and intra- class correlation (ICC) 
between volume predictions across sequences. Finally, 
we compare the methods’ volume similarity performance 
with a paired two- sided Wilcoxon signed- rank test.

All methods have an excellent agreement (ICC(A,1) 
> 0.95) between volume predictions across sequences for 
all regions, as can be seen in Appendix Table A5. Further-
more, all implemented methods perform equally well for 
VS in all regions (VS > 0.98 ). Finally, we observe a statisti-
cally significant difference in the structures from the others 
region between HypVINN with multi- modal input and T1- 
VINN (VS: 0.9960 vs. 9927, corrected p < 0.05 ).

3.4. Sensitivity to age and sex effects

Previous studies have shown that men have a larger 
hypothalamus volume than women not only at a global 
level ( Isıklar  et  al.,  2022) but also at a sub- unit level 
( Makris  et al.,  2013;  Thomas  et al.,  2019). Therefore, in 
this section, we aim to use the automated hypothalamic 
volume estimates to replicate these findings and explore 
volume- age correlations in a general population, repre-
senting a feasible scenario in which our method will be 
used as the post- processing analysis pipeline. To this 
end, we process the T1w scans from the Rhineland Study 
(n = 463) and UK Biobank (n = 535) case- study datasets 
(see Section 2.1) with our proposed HypVINN. To further 
evaluate the robustness of our hetero- modal model to 
handle different modalities, we also assess the effects in 
the Rhineland cases when both pre- registered T1w and 
T2w scans are available at inference. Ideally, the direction 
of the effects should not be modified by the input scenar-
ios (only T1w or T1w & T2w). We note that joint T1w & 
T2w analysis in the UK Biobank is not possible due to the 
absence of T2w scans.
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All generated predictions are visually inspected by an 
experienced rater. A total of 6 participants (1.29%) from 
the Rhineland Study (RS) and 15 participants (2.80%) from 
the UK Biobank (UKB) are excluded from the analysis 
sample due to segmentation errors (see, e.g., Appendix 
Fig. A3). For the remaining participants (RS: n = 457, UKB: 
n = 520), bias field correction is performed for all T1w and 

T2w scans as a pre- processing step, and structure volume 
estimates are compensated for partial volume effects 
using FastSurfer’s optimized Python re- implementation of 
FreeSurfer’s mri_segstats command (segstats.py). Finally, 
for the total hypothalamus as well as for each of the hypo-
thalamic sub- regions, we calculate the association per 
dataset of age and sex with the respective volumes using 

Fig. 6. Segmentation performance comparison between 
our proposed HypVINN, with multi- modal input (MM) and 
uni- modal T1 input (T1), vs. modality- specific models 
for segmenting 1.0 mm MR scans from the Rhineland 
Study and UK Biobank. HypVINN (dark red and dark 
blue) can generalize remarkably well to 1.0 mm MR scans 
independent of the provided MRI input. Note: similarity 
scores are presented for the hypothalamic, others, and 
optic regions. Additionally, a letter directly on top of a box 
plot indicates which other models the model significantly 
outperforms (paired Wilcoxon signed- rank test, corrected 
p < 0.05 ).

Fig. 5. Retrospectively benchmarking of single resolution 
(0.8 mm) trained networks to segment 1.0 mm T1w MR 
scans from the Rhineland Study and UK Biobank. Our 
proposed approach (HypVINN) consisting of the HM- VINN 
architecture plus external scale augmentation (+exSA, blue) 
outperforms other comparison baselines in both manually 
labeled datasets. Note: similarity scores are presented for 
the hypothalamic, others, and optic regions. Additionally, 
a letter directly on top of a box plot indicates which 
other models the model significantly outperforms (paired 
Wilcoxon signed- rank test, corrected p < 0.05 ).
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independent multi- variable linear regression models. All 
models are further adjusted for head- size (estimated total 
intracranial volume, eTIV), and RS models are also cor-
rected for the T1w sequence version (T1seq) and T2w 
sequence version (T2seq). Furthermore, de- meaned ver-
sions of age (aĝe) and eTIV (eTÎV ) are used in the associa-
tion analysis (UKB- Model: Volume ~ aĝe + sex + eTÎV , 
RS- Model: Volume ~ aĝe + sex + eTÎV +T1seq +T2seq ). All 
statistical analyses are performed in R ( R  Core  Team, 
 2020), and eTIV estimations are computed using Free-
Surfer ( Buckner  et al.,  2004). It is important to note that 
automated segmentations can be carried out without 
needing bias field corrected scans. Here, we correct the 
bias field in a pre- processing step primarily for the partial 
volume estimation, which is a post- processing step to the 
segmentation.

The predicted volumes for the total hypothalamus follow 
the results from smaller studies ( Bocchetta  et  al.,  2015; 
 Chen  et  al.,  2019;  Makris  et  al.,  2013;  Rodrigues  et  al., 

Fig. 7. Segmentation examples on the coronal view from our proposed HypVINN with T1 input and manual ground truth 
(GT) for one labeled 1.0 mm scan from the UKBiobank (a) and one 1.0 mm scan from the Rhineland Study unseen test-
set (b). Even though our proposed method is not trained with 1.0 mm scans, it can generate accurate predictions at this 
resolution. Note: the color scheme for the visible structures is presented on the right.

 2022;  Schindler  et al.,  2013) with a similar global anatomi-
cal definition (from 910 mm3 to 1580 mm3 ) as can be seen 
in Figure 8a. For the sub- regions, we observe that the tubu-
lar region is the smallest segmented hypothalamic struc-
ture ( ±45.9 mm3) and the posterior hypothalamus the 
biggest one (±379.3 mm3). However, a direct comparison 
in size of our hypothalamic sub- regions with other studies 
is not possible due to the different segmentation protocols.

For both RS and UKB subsets, the total hypothalamus 
volumes significantly decreased ( p < 0.001) with age (see 
Fig. 8b). This negative association is also observed in the 
sub- regions except for the middle structures (e.g., 
tuberal- region, medial and lateral hypothalamus), where 
the volumes are positively correlated with age. However, 
this positive correlation in all middle structures is not 
observed in the UKB, where a significant increase is not 
found for the lateral hypothalamus. Furthermore, all struc-
tures independent of the dataset, except for the medial 
hypothalamus in UKB, show statistically significant sex 
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differences ( p < 0.05) even after correcting for head- size, 
with men having larger hypothalamic volumes than women 
(see Fig. 8 c). These results are in line with previous find-
ings ( Isıklar  et al.,  2022;  Makris  et al.,  2013;  Thomas  et al., 
 2019). Moreover, as expected, all inferred volumes are 
positively associated with eTIV ( p < 0.01).

Independent of the provided MRI input, age and sex 
effects on hypothalamic volume estimates in the 
Rhineland Study using our HypVINN exhibit the same 
directional trends. Moreover, even though HypVINN is 
trained with all RS sequence versions, we observe dif-
ferences between sequences; however, none of them 
are significant (p > 0.05 ). Nevertheless, controlling for 
MRI sequences in any downstream statistical analysis 
is recommended when including image biomarkers 
obtained from multiple MRI sequences.

Fig. 8. Hypothalamic volumes estimates (a) and volume associations with age (b) and sex (c) in participants from 
the Rhineland Study (n = 457) and UK Biobank (N = 520) for HypVINN. Age and sex effects on hypothalamic volume 
estimates in the Rhineland Study from HypVINN, independent of the provided MRI input, follow the same direction trend. 
Furthermore, our model replicates previous sex findings in both datasets corroborating the stability and sensitivity of our 
method. Note: *Effects are obtained after accounting for head- size (eTIV) and modality sequence (only Rhineland Study).

From the visual quality assessment, we observe that our 
tool performed very well in two different datasets; exam-
ples of correct segmentations for four random male partic-
ipants with different ages can be observed in Figure 9. For 
the failing cases, we note that segmentation errors are 
mainly present when there is an unclear boundary of the 
hypothalamus due to severe enlargements of the third ven-
tricle as illustrated in Appendix Figure A3.

4. DISCUSSION

In this paper, we present the first hetero- modal model for 
automated sub- segmentation of the hypothalamus and 
adjacent structures on T1w and T2w brain MRI at isotro-
pic 0.8  mm or 1  mm resolutions. The proposed model 
can generate accurate segmentations of the 24 different 

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00034/2182290/imag_a_00034.pdf by guest on 22 November 2023



17

S. Estrada, D. Kügler, E. Bahrami et al. Imaging Neuroscience, Volume 1, 2023

Fig. 9. Examples of correct predictions in the Rhineland Study (a- b) and Uk Biobank (c- d) from our proposed HypVINN 
with multi- modal [MM] or T1w only [T1] input for four unseen random male participants with different ages. Note: for 
each participant, T1w, T2w (only Rhineland Study participants), and HypVINN outcomes are presented. Furthermore, in 
each participant’s row, the first three images display the different hypothalamic structures on the coronal view, and the 
remaining three images show all remaining structures on the axial view. The color lookup table for all visible structures is 
presented on the right.
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structures in less than a minute from a standalone T1w 
image or by including an additional co- registered T2w 
image, without requiring multiple input- specific models, 
thus providing a robust, quick, and reliable solution for 
assessing hypothalamic volumes in small and large 
cohorts.

Firstly, we introduce a different segmentation protocol 
of the hypothalamus compared to the one proposed  
by  Makris  et  al.  (2013). Therefore, we re- train the only 
other contemporary method for hypothalamus sub- 
segmentation of 1  mm T1w images ( Billot,  Bocchetta, 
 et al.,  2020). The parcellation method of Makris et al. was 
developed for in- vivo semi- automatic hypothalamic seg-
mentation using 1.5  T isotropic 1  mm MR images and 
was therefore necessarily less detailed than the one pre-
sented in this work. In general, we define the boundaries 
of the hypothalamus as a whole according to the same 
anatomical definitions and landmarks used by them. Yet, 
for sub- segmentation of the different hypothalamic sub-
regions, we use a more fine- grained approach to take 
optimal advantage of the higher spatial resolution offered 
by the available 3 T 0.8 mm isotropic MR images. Conse-
quently, our approach results in the sub- segmentation of 
more hypothalamic structures as detailed in Table 1. For 
example, whereas both the posterior hypothalamus and 
mammillary bodies were included under the label “poste-
rior hypothalamus” in the parcellation scheme of Makris 
et al., our method provides separate volumetric estimates 
for each of these structures, which is of clinical relevance 
given that these structures operate in a functionally inde-
pendent manner. Another noteworthy difference between 
the two parcellation schemes concerns the subdivision of 
the medial part of the hypothalamus: in contrast to Makris 
et al. who subdivided this region into a superior and an 
inferior tuberal region, we follow the more conventional 
neuroanatomical subdivision of this region into the medial 
and the lateral hypothalamus— using the fornix as the 
boundary between these two structures— and tubular 
region. For the tubular region, we group the tuberomam-
millary region, the median eminence, and the arcuate 
nucleus. Again, we opt for this approach to gain more 
detailed anatomical information about the various sub-
structures of the hypothalamus. In addition, our method 
also provides automatic segmentation of several other 
important structures in the vicinity of the hypothalamus, 
for which, until now, no automated segmentation proce-
dure has been available. Notably, these adjacent hypo-
thalamic structures include the hypophysis (i.e., the 
pituitary gland), which is the body’s principal and most 
versatile endocrine gland responsible for the central 

regulation of most other endocrine tissues throughout 
the body; the epiphysis, the site where the “sleep hor-
mone” melatonin is synthesized; as well as all major 
structures of the central optic system, including the optic 
nerves, the optic chiasm, and the optic tracts.

Despite the small size of different sub- structures and 
low contrast on MR images, our novel deep- learning 
technique (HypVINN) can accurately segment all 24 
structures even when input modalities are missing at 
inference time. HypVINN performs as well as state- of- 
the- art modality- specific F- CNNs. Passing a T2w scan as 
standalone input to HypVINN or to a specialized T2w 
model generates the lowest performance from all input 
variations (see Section  3.1.1). For our hetero- modal 
model, the difference in contribution between T1-  and 
T2- derived information is quantifiable in the modality 
weights from the fusion module, with the weight of the 
T1- block (WT1 ) tripling the T2 one. Thus, an available 
T1w scan is more important for the current segmentation 
task than a T2w scan. Nonetheless, we demonstrate that 
including a T2 can still be beneficial for some structures 
as models with multi- modal information yield generally 
better segmentation performance.

Unequal performance between inference setups (i.e., 
available input modalities) was also reported in other 
hetero- modal deep- learning segmentation tasks, with 
higher results achieved when the primary modality was 
available ( Dorent  et  al.,  2019;  Havaei  et  al.,  2016; 
 Varsavsky  et al.,  2018). In our case, preference for the T1 
modality could be explained by the inherent modality 
bias from the manual annotation process. Our labeling 
protocol is mainly performed on the T1w scans, and the 
T2w scans are only used as a support modality as most 
anatomical boundaries are visible in T1. Hence, evaluat-
ing segmentation performance with the current manual 
labels is not entirely neutral across the various inference 
configurations. A more fair evaluation will require training 
and validation using manual annotations explicitly tai-
lored to a structure’s visible anatomical characteristics  
in each input combination. However, generating 2m −1 
manual labels per participant, where m represents the 
number of modalities, is not feasible as creating manual 
annotations for a single configuration is already expen-
sive and time- consuming. Therefore, based on our find-
ings, we recommend utilizing a T2w scan accompanied 
by a T1w scan (i.e., multi- modal input) and not as a 
standalone input for the current segmentation task.

Our hetero- modal model, when including a T1w 
image, exhibits segmentation performance in the range 
of the main rater variability (see Section  3.1.2). The 
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intra- rater variability can be seen as the ideal performance 
of the automated method as we use manually annotated 
labels from the main rater to train our F- CNNs. Therefore, 
it is challenging for an automated approach to outperform 
the intra- rater scores. Considering this, the accuracy in 
the hypothalamic region of our hetero- modal model and 
all benchmark methods is lower than the intra- rater agree-
ment on all evaluation metrics. Yet, the underperformance 
in this region can also be attributed to the low MR con-
trast between neighboring structures, especially for the 
medial and lateral hypothalamus. Nonetheless, the seg-
mentation results are en- par with other deep- learning 
techniques on similar brain segmentation tasks (i.e., small 
size and low contrast across anatomical boundaries) 
( Billot,  Bocchetta,  et al.,  2020;  Estrada  et al.,  2021).

HypVINN not only performs well on segmenting isotro-
pic 0.8 mm T1w and T2w MR scans, but it also exhibits 
generalizability to isotropic 1  mm MR scans from the 
Rhineland Study and UK Biobank dataset (see Sec-
tion  3.2). We demonstrate that utilizing the resolution- 
independence mechanism performs as well as external 
scale augmentations to handle unseen resolution when 
training with a single (0.8  mm) resolution. Furthermore, 
we show that resolution- independence combined with 
external scale augmentations (proposed) outperforms all 
other comparative baselines.

Furthermore, HypVINN performs equally well as 
modality- specific models in both 1  mm datasets. As 
expected, performance on the Rhineland Study data is 
higher than on the UK Biobank. The UK Biobank dataset 
consists of scans from a different cohort and is acquired 
with a different MRI acquisition protocol. Due to these 
dissimilarities, segmentation performance is not directly 
comparable. Nevertheless, the proposed HypVINN gen-
eralizes quite well to this external dataset. Finally, even 
though our model supports both 0.8 mm and 1 mm reso-
lutions, we recommend to process 0.8 mm MR scans at 
their native resolution to obtain more detailed and precise 
predictions by leveraging the additional information pres-
ent in the higher resolution. Note, our proposed model 
also shows promising results in the high- resolutional MRI 
scans from the Human Connectome Project (HCP) young 
adult and lifespan pilot project datasets ( Bookheimer 
 et al.,  2019;  Harms  et al.,  2018;  Van  Essen  et al.,  2012); 
see Appendix Figure A4 for prediction examples of our 
tool in HCP scans.

Throughout this work, we compare our HypVINN 
against the re- trained version of the 3D- UNet with exten-
sive data augmentations proposed by Billot, Bocchetta, 
et al. (2020a) for hypothalamus sub- segmentation. Our 

results demonstrate that our method not only outper-
forms the 3D- UNet in terms of segmentation accuracy 
(see Sections  3.1.1 and 3.1.2) but also exhibits better 
generalizability across both comparative datasets (see 
Section  3.2). Additionally, the training process for the 
3D- UNet using the authors’ released implementation 
and recommended training parameters takes approxi-
mately 100  hours per model using the GPU setup 
described in Section  2.3.3. In contrast, back- to- back 
training of the three F- CNNs that compose our HypVINN 
takes around 19  hours (roughly 6  hours per F- CNN). 
Therefore, besides outperforming the contemporary 
method, our approach can be (re)trained more efficiently 
with a lower carbon footprint.

As demonstrated in the Rhineland Study data, all 
automated methods exhibit excellent test- retest agree-
ment between in- session volume estimates (see Sec-
tion  3.3). Additionally, our HypVINN shows high 
robustness and generalizability across the general popu-
lation of the Rhineland Study and UK Biobank case- study 
datasets, with only 21 cases (2.10%) between the two 
datasets being excluded from the age and sex analysis 
due to segmentation errors (see Section 3.4). The most 
common factor for our pipeline to fail is a severe defor-
mation of the third ventricle (i.e., out- of- distribution 
cases), which generates unclear hypothalamic boundar-
ies, as illustrated in Appendix Figure A3. Therefore, care-
ful inspection is recommended when using our tool in 
aging populations and clinical cohorts, as the prevalence 
of large ventricles increases with age and certain dis-
eases (e.g., Alzheimer’s disease, Parkinson’s disease, 
etc.). We recommend visually inspecting the predictions 
from scans with pathological changes and from volumet-
ric outliers within the cohort before including them in any 
downstream analysis, particularly outliers from the third 
ventricle and medial/lateral hypothalamus. Although vol-
umetric outlier detection can help identify predictions 
with significant failures, more robust quality control tools 
are desirable. However, developing these tools is outside 
this paper’s scope and will be future work.

In line with previous studies on smaller datasets 
( Isıklar  et  al.,  2022;  Makris  et  al.,  2013;  Thomas  et  al., 
 2019), we also find that the volume of the total hypothal-
amus is larger in men compared to women. However, our 
analyses in two substantially larger population- based 
cohorts revealed that the volumes of virtually all hypo-
thalamic substructures are significantly larger in men 
independent of head size. Our findings thus warrant 
 further detailed association studies to investigate the 
clinical relevance of these pronounced sex differences in 
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the human hypothalamus. On the other hand, the derived 
age effects from small- scale studies present inconsis-
tent results for the different hypothalamic substructures, 
except for the total hypothalamus whose total volume 
decreases with age ( Billot,  Bocchetta,  et  al.,  2020; 
 Bocchetta  et al.,  2015;  Isıklar  et al.,  2022;  Makris  et al., 
 2013). Our method’s total hypothalamic volume esti-
mates also replicate this negative correlation with age. 
Furthermore, although most hypothalamic regions atro-
phy with increasing age, the volume of the middle/tuberal 
region of the hypothalamus significantly increases with 
age. This finding is novel and could imply that specific 
hypothalamus regions could be resistant to age- 
associated atrophy. Indeed, the paraventricular nucleus 
contained within the medial hypothalamic region exhib-
its a striking stability in terms of neuronal numbers, both 
with age and in the context of common neurodegenera-
tive diseases such as Alzheimer’s disease ( Lucassen 
 et al.,  1994). These findings thus underscore the need for 
further large- scale studies into the differential effects of 
age on different hypothalamic substructures.

In conclusion, we demonstrate that HypVINN can suc-
cessfully identify the desired structures with similar or bet-
ter performance than state- of- the- art modality- specific 
models regarding segmentation accuracy, generalizability, 
and test- retest reliability. Furthermore, the fact that 
HypVINN replicates previous age and sex findings on large 
unseen subsets of the Rhineland Study and the UK Bio-
bank corroborates the stability and sensitivity of our 
method. Moreover, our hypothalamic sub- segmentation 
tool generates accurate segmentations regardless of 
whether both T1w and T2w images are available or just a 
single T1w image. However, utilizing both modalities 
results in slightly improved segmentation outcomes.

Future work will focus on supporting a wider range of 
resolution by training our HypVINN with multi- resolution, 
thus fully exploiting the advantages of using a voxel- size 
independent F- CNN (VINN) ( Henschel  et al.,  2022). More-
over, we will also focus on improving the robustness of 
our tool to out- of- distribution cases (e.g,. severe defor-
mation of the third ventricle). Since HypVINN is based on 
deep learning, boosting the robustness to these cases 
can potentially be achieved by retraining with manual 
annotations created on participants with low segmenta-
tion quality or by applying realistic non- linear deforma-
tions as an additional data augmentation during the 
training process ( Faber  et  al.,  2022). Finally, extending 
the input flexibility of our tool to scenarios where input 
scans are at different resolutions (mixed resolutions) is 
also of interest, as it could allow the deployment of our 

tool in more scenarios where HighRes data are unavail-
able in all modalities.

Overall, we introduce HypVINN— the first hetero- modal 
deep- learning method for hypothalamic sub- segmentation 
and segmentation of other adjacent structures, such as the 
hypophysis, epiphysis, and major structures of the central 
optic system. The proposed method offers a more detailed 
parcellation of the hypothalamus compared to the only 
other contemporary automated method ( Billot,  Bocchetta, 
 et  al.,  2020). Additionally, it can generate accurate seg-
mentations from T1w and T2w MR images at isotropic 
0.8 mm or 1 mm resolutions. Finally, HypVINN will be incor-
porated into the FastSurfer neuroimaging software suite, 
thus providing an easy- to- use alternative for more reliable 
assessment of hypothalamic imaging- derived phenotypes.
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Appendix Table A2. Demographics of the Rhineland Study participants for all different datasets.

Case study Test- retest In- house Total

p- value(N = 463) (N = 21) (N = 50) (N = 534)

Sex 0.801
Women 276 (59.6%) 11 (52.4%) 30 (60.0%) 317 (59.4%)
Men 187 (40.4%) 6 (47.6%) 20 (40.0%) 217 (40.6%)
Age 0.805
Mean (SD) 54.9 (14.2) 56.4 (9.3) 54.0 (15.2) 54.9 (14.1)
Range 30.0 -  95.0 40.0 -  74.0 31.0 -  79.0 30.0 -  95.0
T1w version 0.061
a 71 (15.3%) 0 (0.0%) 4 (8.0%) 75 (14.0%)
b 392 (84.7%) 21 (100.0%) 46 (92.0%) 459 (86.0%)
T2w version < 0.001
a 71 (15.3%) 0 (0.0%) 4 (8.0%) 75 (14.0%)
b 14 (3.0%) 0 (0.0%) 2 (4.0%) 16 (3.0%)
c 269 (58.1%) 0 (0.0%) 27 (54.0%) 296 (55.4%)
d 109 (23.5%) 21 (100.0%) 17 (34.0%) 147 (27.5%)

Descriptive data were expressed as mean (SD) or count (percentage) for continuous or categorical variables, respectively. Inter- group 
differences were compared with the Student’s t- test for continuous variables and with the Pearson’s chi- square test for categorical variables.

Appendix Table A1. Sequence parameters for the T1- weighted and T2- weighted versions in the Rhineland Study.

T1w sequence T2w sequence

Version Version

Parameters T1wa T1wb Parameters T2wa T2wb T2wc T2wd

Repetion time (TR) 2560 ms Repetion  
time (TR)

2800 ms

Inversion time (TI) 1100 ms Echo time (TE) 405 ms
Flip angle 7 ! Matrix size 320 × 320 ×224
Matrix size 320 × 320 ×224 Phase- encoding 

direc.++

A>P R>L A>P A>P

PI acc. Factor 1×3 1×2 PI acc. factor 3×1 2×1 1×2+

Readout bandwith 240 Hz/pixel 740 Hz pixel PI ref. scan Integrated External
Echo time (TE) 2.94 ms* 1.68 ms to 

6.51 ms**

Acquisition  
time (TA)

3:57 minutes 4:30 minutes 4:47 minutes

Acquisition time (TA) 3:43 minutes 6:35 minutes

To date, there have been two versions of the T1w sequence (T1wa−b) and four versions of the T2w sequence (T2wa−d )— care was taken 
to preserve the image contrast between versions for both sequences.
*1 echo, **4 echoes combined to 1.
+with one CAIPIRINHA shift ( Breuer  et al.,  2006), ++ A: anterior, P: posterior, R: right, and L: Left.
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Appendix Table A3. Demographics for the training and testing in- house dataset.

Trainset Testset Total

p- value
Split_1  
(N = 11)

Split_2  
(N = 11)

Split_3  
(N = 11)

Split_4 
(N = 11) (N = 6) (N = 50)

Sex 0.857
Women 6 (54.5%) 7 (63.6%) 8 (72.7%) 6 (54.5%) 3 (50.0%) 30 (60.0%)
Men 5 (45.5%) 4 (36.4%) 3 (27.3%) 5 (45.5%) 3 (50.0%) 20 (40.0%)
Age 0.439
Mean (SD) 46.7 (14.8) 53.5 (16.0) 56.5 (15.3) 58.5 (15.0) 55.2 (14.9) 54.0 (15.2)
Range 31.0 -  69.0 31.0 -  77.0 32.0 -  79.0 35.0 -  76.0 35.0 -  71.0 31.0 -  79.0

Descriptive data were expressed as mean (SD) or count (percentage) for continuous or categorical variables, respectively. Inter- group 
differences were compared with the Student’s t- test for continuous variables and with the Pearson’s chi- square test for categorical 
variables.

Appendix Table A4. Demographics for the UK Biobank participants for all different datasets.

Case Study Generalizability Total

p- value(N = 535) (N = 9) (N = 544)

Sex 0.857
Women 281 (52.5%) 5 (55.6%) 286 (52.6%)
Men 254 (47.5%) 4 (44.4%) 258 (47.4%)
Age 0.050
Mean (SD) 63.9 (7.7) 58.7 (11.3) 63.8 (7.8)
Range 46.0 -  82.0 45.0 -  77.0 45.0 -  82.0

Descriptive data were expressed as mean (SD) or count (percentage) for continuous or categorical variables, respectively. Inter- group 
differences were compared with the Student’s t- test for continuous variables and with the Pearson’s chi- square test for categorical 
variables.

Appendix Table A5. Test- retest reliability: Intra- class correlation (ICC) with a 95% confidence interval and volume 
similarity (VS) between volume estimates across sequences in a test- retest scenario for the 21 cases of the test- retest 
dataset.

Model

Hypothalamic Others Optic

ICC(A,1) VS ICC(A,1) VS ICC(A,1) VS

ICC [95% CI]
Mean 
(SD) Signif. ICC [95% CI]

Mean 
(SD) Signif. ICC [95% CI]

Mean 
(SD) Signif.

Only T1w input
a: T1- VINN 0.984  

[0.959 -  0.994]
0.990 
(0.011)

0.997  
[0.993 -  0.999]

0.993 
(0.006)

0.982  
[0.953 -  0.993]

0.994 
(0.005)

b: HypVINN 
(Ours)

0.982  
[0.953 -  0.993]

0.987 
(0.025)

0.999  
[0.997 -  1.000]

0.996 
(0.003)

0.985  
[0.955 -  0.994]

0.994 
(0.005)

Multi- modal (MM) input (T1w & T2w)
c: MM- VINN 0.990  

[0.975 -  0.996]
0.990 
(0.010)

0.998  
[0.995 -  0.999]

0.994 
(0.006)

0.972  
[0.879 -  0.990]

0.992 
(0.006)

d: HypVINN 
(Ours)

0.984  
[0.957 -  0.994]

0.989 
(0.015)

0.999  
[0.998 -  1.000]

0.996 
(0.003)

 a 0.986  
[0.955 -  0.995]

0.994 
(0.004)

All automated methods exhibit excellent test- retest agreement between in- session volume estimates. Note: the statistical significance 
column (Signif.) indicates which other models the model outperforms (Wilcoxon signed- rank test, corrected p < 0.05).
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Appendix Fig. A1. Per structure segmentation performance of the F- CNN models on the unseen in- house test- set. We 
observe that models with a T1w image as part of its input have comparable results in all structures to the global ones. 
However, there is a slight decrease in Dice performance in the medial and lateral hypothalamus (Dice < 0.75) compared 
to the other hypothalamic structures for the 2.5D models. For the 3D model, a similar trend is also observed in the 
medial hypothalamus; however, in the lateral hypothalamus, performance drastically diminishes in all evaluation metrics 
(Dice < 0.5, VS < 0.8, and HD95 > 1.2 mm). Furthermore, for the adjacent hypothalamic structures, all 2.5D models present 
difficulties in localizing the epiphysis and recognizing its boundaries (Dice ≤ 0.75, VS ≤ 0.8, and HD95 ≥ 2 mm). Moreover, 
the epiphysis is the only structure from the 24 segmented ones where the 3D model outperforms the T1 and multi- modal 
comparative baselines (Dice = 0.7558, VS = 0.8571, and HD95 = 1.6386 mm). Finally, using a T2w scan as the only source 
for inferring information is consistently underperforming in all structures, especially in the optic region (e.g., optic nerve) 
and middle hypothalamic region (e.g., medial and lateral hypothalamus and tubular region). Nonetheless, the inclusion of 
T2w into the current segmentation task appears to be beneficial as HypVINN with multi- modal input outperforms its T1w- 
only counterpart in most structures (Dice: 16/24, VS: 14/24, and HD95: 18/24).
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Appendix Fig. A2. T1- Block learnable modality weight during training. The T1- block has a much higher value (≈ 0.75)  
than the T2- block weight (≈ 0.25) in HypVINN’s fusion module, starting in the early training steps in all four cross- validation 
training splits (i.e., S1, S2, S3, and S4). Thus, performance is mainly driven by the T1- derived information, with T2w being 
only a support modality.

Appendix Fig. A3. Examples of excluded cases from the Rhineland Study (RS) and UK Biobank (UKB) after visual quality 
assessment. (A- E) Unclear boundary of the hypothalamus due to severe enlargements of the third ventricle (i.e., out- of- 
distribution cases) producing segmentation errors. Note: each row represents a different participant with corresponding 
MRI modalities (T1- weighted (T1w) and T2w- weighted (T2w)— if available), and automated generated segmentations on 
the coronal view. The color scheme for the visible structures is presented on the right.
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Appendix Fig. A4. Examples of correct predictions in the Human Connectome Project (HCP) young adults (HCP- 
YA, A- C) and HCP lifespan pilot project (HCP- LPP, D- E) datasets ( Bookheimer  et al.,  2019;  Harms  et al.,  2018;  Van 
 Essen  et al.,  2012) from our proposed HypVINN with multi- modal input (MM) for six random participants. We observe 
that our tool shows promising results in both available HCP resolutions (0.7 mm and 0.8 mm). Furthermore, our tool 
seems to generalize well across age categories inside the training age range (training data started at age 30). However, 
all the above observations are only qualitative, and no accuracy segmentation metrics can be computed as manual 
annotations are unavailable for this dataset. Note: T1w, T2w, and HypVINN outcomes are presented for each participant. 
Furthermore, in each participant’s row, the first three images display the different hypothalamic structures on the coronal 
view, and the remaining images show the structures on the axial view. The color lookup table for all visible structures is 
presented on the right.
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APPENDIX B. ABLATION ANALYSIS

We execute ablation analysis to optimize the fusion mod-
ule weighting scheme inside the HM- VINN architecture 
by training the model with global and per- channel modal-
ity weights. First, all networks are trained from scratch 
using the four data- splits from the in- house training- set in 
a leave- one- out cross- validation approach. Afterwards, 
the best model is chosen based on the cross- validation 
performance in the hold- out validation- sets. The three 
evaluation metrics (Dice, VS, HD95) are computed per 
input modality combination (i.e., only T1w or only T2w, or 

both) between the predicted maps after view aggregation 
and manuals labels. Finally, improvements in segmenta-
tion performance are confirmed by statistical testing (cor-
rected p < 0.05 ).

We observe that utilizing global weights outperforms 
per- channel weights in all comparative metrics and all 
inference scenarios with statistical significance for the 
standalone T2w input in all three metrics and for the T1w 
& T2w input only in Dice, as presented in Appendix Table 
B1. Therefore, we utilize the global weighting scheme as 
the fusion module configuration for this work.

Appendix Table B1. Fusion module weighting scheme optimization: Mean (and standard deviation) of segmentation 
performance metrics per input modality of the ablative hetero- modal VINN (HM- VINN) architectures on the validation set.

Only T1w input

Experimental setup Dice↑ VS↑ HD95 (mm)↓

Model Weighting Scheme Mean (SD) Signif. Mean (SD) Signif. Mean (SD) Signif.

a: HM- VINN Global 0.8068 (0.0841) 0.9164 (0.0748) 1.0916 (0.8579)
b: HM- VINN Per Channel 0.8042 (0.0864) 0.9160 (0.0753) 1.0953 (0.7277)

Only T2w input

Experimental setup Dice↑ VS↑ HD95 (mm)↓

Model Weighting scheme Mean (SD) Signif. Mean (SD) Signif. Mean (SD) Signif.

a: HM- VINN Global 0.7354 (0.1115)  b 0.8753 (0.1166)  b 1.4154 (1.3291)  b

b: HM- VINN Per Channel 0.7119 (0.1236) 0.8424 (0.1424) 1.700 (2.3105)

T1w & T2w input

Experimental Setup Dice↑ VS↑ HD95 (mm)↓

Model Weighting scheme Mean (SD) Signif. Mean (SD) Signif. Mean (SD) Signif.

a: HM- VINN Global 0.8128 (0.0814)  b 0.9202 (0.0706) 1.0508 (0.6965)
b: HM- VINN Per Channel 0.8079 (0.0869) 0.9187 (0.0754) 1.0678 (0.7445)

Global weights outperform per-channel weights in all comparative metrics and all inference scenarios. Note: the statistical significance 
column (Signif.) indicates which other models the model outperforms (Wilcoxon signed rank test, corrected p < 0.05), and bold values 
represent the best model per input modality combination.

APPENDIX C. CRITERIA FOR MANUAL ANNOTATION  

OF HYPOTHALAMIC ADJACENT STRUCTURES

In Appendix Tables C1 and C2, we present the criteria 

for manual annotation of hypothalamic adjacent struc-

tures and sub- regions in T1w and T2w images. The sup-

port of a T2w image was omitted for segmenting UK 
Biobank data as these data were unavailable. Further-
more, no protocol modification was carried out due to 
the differences in data resolution— Rhineland Study 
0.8 mm isotropic resolution and UK Biobank 1 mm iso-
tropic resolution.
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Appendix Table C1. Criteria for manual annotation of hypothalamic adjacent structures.

Structure Bilateral* Labeling** Note

Optic system Yes The optic system is composed of the optic 
nerves, tracts, and chiasms. The optic  
chiasm was separated from the optic nerves 
and tracts at an angle orthogonal to the 
chiasm at the optic nerve– chiasm and optic 
tract– chiasm junctions, respectively ( Avery 
 et al.,  2016).

Using axial T1- weighted  
images.

Anterior commissure No A thick fiber bundle above the 3rd ventricle 
and underneath the anterior horns of the 
lateral ventricles. It can easily be identified 
using the brain ventricles and optic tracts as 
landmarks ( Güngör  et al.,  2017).

Labeling on coronal sections in 
the rostro- caudal direction on 
T1- weighted images.

Fornices Yes Thick white matter fiber bundles that were 
labeled in the area where they touch the 
anterior commissure rostrally and merge 
with the mammillary bodies caudally; this 
part of the fornix is generally referred to as 
the “columna fornicis.”

Using coronal sections of  
T1- weighted sequences.

Hypophysis (i.e.,  
the pituitary gland)

No A relatively round structure inferior to the 
3rd ventricle and rostral to the brain stem, 
occupying the sella turcica.

Using sagittal, axial, and 
coronal sections of T1-  and T2- 
weighted images.

Infundibulum (i.e., 
the pituitary stalk)

No The stalk- like structure that connects the 
hypophysis to the hypothalamus.

Epiphysis (i.e.,  
the pineal gland)

No A low- intensity (on T1- weighted images), 
pine- shaped unpaired midline brain  
structure that lies between the caudal  
recess of the third ventricle and the  
quadrigeminal cistern ( Park  et al.,  2020).

Labeling was done on coronal 
sections by moving caudally 
from the posterior commissure, 
with its contours demarcated 
by its pine- like shape and the 
surrounding cerebrospinal fluid.

3rd ventricle No Anterior border: lamina terminalis. Using sagittal, axial, and 
coronal sections of T1-  and T2- 
weighted images.

Lateral border: hypothalamus and thalamus.
Superior border: the roof of the third ventri-
cle starts anteriorly at the foramen of Monro 
and ends posteriorly in the suprapineal 
recess.
Posterior border: the posterior commissure, 
the pineal body, the habenular commissure, 
and the suprapineal recess above ( Patel 
 et al.,  2012).
Inferior border: formed from anterior to  
posterior by the optic recess, the  
infundibular recess, the tuber cinereum,  
the mammillary bodies, and the  
posterior perforated substance  
( Chaichana  &  Quinones- Hinojosa,  2019).

*Bilateral structures were defined as those regions that could be separated into a (non- contiguous) left and right half with respect to the 
mid- sagittal plane.
**Labeling was mainly done using T1- weighted images, unless specified otherwise.
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Appendix Table C2. Criteria for manual annotation of hypothalamic sub- regions.

Structure Bilateral* Labeling** Note

Anterior  
hypothalamus

Yes Medial border: 3rd ventricle. The supraoptic 
nuclei were 
included in this  
region and were 
not labeled 
separately as 
the spatial  
resolution 
was too low 
for accurate 
segmentation 
of these small 
structures.

Lateral border: lateral border of the optic tract and the other adjacent white 
matter tracts ( Lemaire  et al.,  2011).
Anterior border: lamina terminalis attached to the optic chiasm.
Posterior border: vanishment of the anterior commissure on coronal 
sections in the rostro- caudal direction (coinciding with the coronal plane 
through the posterior border of the anterior commissure and the anterior tip 
of the infundibulum).
Superior border: horizontal plane through the anterior commissure.
Inferior border: optic chiasm and infundibulum ( Dudás,  2021).

Medial  
hypothalamus

Yes Medial border: 3rd ventricle.
Lateral border: fornices.
Anterior border: vanishment of the anterior commissure on coronal sections 
in the rostro- caudal direction.
Posterior border: appearance of the mammillary bodies on coronal sections 
in the rostro- caudal direction.
Superior border: the diencephalic fissure.
Inferior border: the boundaries of the tuberal region underneath ( Makris 
 et al.,  2013).

Lateral  
hypothalamus

Yes Medial border: fornices.
Lateral border: optic tract and the other adjacent white matter tracts.
Anterior border: vanishment of the anterior commissure on coronal sections 
in the rostro- caudal direction.
Posterior border: appearance of the mammillary bodies on coronal sections 
in the rostro- caudal direction.
Superior border: the diencephalic fissure.
Inferior border: the boundaries of the tuberal region and basal cistern 
underneath.

Posterior  
hypothalamus

Yes Medial border: 3rd ventricle.
Lateral border: white matter tracts.
Anterior border: appearance of the mammillary bodies on coronal sections 
in the rostro- caudal direction.
Posterior border: vanishment of the mammillary bodies on coronal sections 
in the rostro- caudal direction.
Superior border: horizontal plane through the diencephalic fissure.
Inferior border: boundaries with the mammillary bodies below.

Tubular region No The area was defined as the region underneath the 3rd ventricle and en-
closed by the mammillary bodies caudally and the anterior hypothalamus 
rostrally, with its superior and inferior borders on each side defined by the 
horizontal planes going through the superior border of the floor of the third 
ventricle and the interpeduncular cistern, respectively.
Median eminence: the protuberant region between the unpaired infundib-
ular nucleus and the mammillary bodies that had a low intensity on the 
sagittal view on T2- weighted sequences.
Infundibular nucleus: dorsocaudal to the junction of the infundibulum (i.e., 
the pituitary stalk) and the hypothalamus, and was labeled on the sagittal 
view using T1 (high- intensity) and T2 (low- intensity) weighted images.
Tubero- mammillary nucleus: the remaining areas in the tuberal region.

Mammillary 
bodies

Yes Two small, rounded structures at the caudal end of the 3rd ventricle. These 
structures were labeled using both coronal sections in the rostro- caudal direc-
tion and axial sections in the dorso- medial direction on T1- weighted images.

*Bilateral structures were defined as those regions that could be separated into a (non- contiguous) left and right half with respect to the 
mid- sagittal plane.
**Labeling was mainly done using T1- weighted images, unless specified otherwise.
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2.5. Comparison of brain T1-Weighted (A) and T2-Weighted images (B). A)
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(dark) of the cerebrospinal fluid (CSF) and by the light and gray contrast
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2.7. Artificial neural networks (ANNs): A) An artificial neuron is the basis
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with the input, followed by an activation function. B) Fully-connected
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forward fashion and connecting all neurons from a given layer with the
neurons of the following layers. This network has the following distinct
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layers: intermediate layers that transform the input into something the
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iii) Output layers: produces the final result, such as a classification or
regression outcome. Image created with BioRender.com. . . . . . . . . . 16

2.8. Convolutional neural networks (CNNs): The structure of a CNN con-
sists of convolutional, pooling, and fully-connected layers. The con-
volution and pooling layers are for extracting features, while the fully
connected layers are responsible for generating the final prediction. Im-
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2.9. CNN components: A) Schematic diagram of the convolution and pooling
process. The convolution layer applies element-by-element multiplication
between the corresponding elements of the input matrix and the filter.
Then, the results of this multiplication are summed into a single number.
Due to zero padding along the borders, the size of all feature maps is
equal to the corresponding input. The pooling layers reduce the size
of the feature map with the goal of merging similar features into one.
One of the most common operations is max pooling, which selects the
maximum value in each window as a representative of that region. B)
The receptive field in a convolutional neural network with three 3x3
convolutional (conv) layers. In the 1st conv layer, every pixel has a
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7x7 for the 2nd and 3rd conv layers, respectively. The increase in the
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to coarser. Image created with BioRender.com. . . . . . . . . . . . . . . . 19

2.10. Fully-Convolutional neural networks (F-CNNs): Fully convolutional
neural networks can efficiently learn to make dense predictions for per-
pixel tasks like semantic segmentation. F-CNNs can be trained and
generate inferences in an end-to-end, pixel-to-pixel fashion. One of the
most common F-CNN architectures for segmentation is the encoder-
decoder architecture. This architecture replaces the single upsampling
step in traditional F-CNNs (top) with a series of convolutions and un-
pooling layers (bottom). The encoder-decoder architecture therefore
learns to extract the most important features while jointly performing
feature reconstruction for pixel-wise classification. Image created with
BioRender.com. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.11. UNet type architecture layout: The encoder and decoder blocks are
placed in a U-shaped scheme, thus the name UNet. The UNet designs are
characterized by incorporating long-range skip connections between all
encoder and decoder blocks of the same spatial resolution. Furthermore,
this layout can also include short-range skip connections as residual
connections between same resolution convolutional layers. The inclusion
of these connections improves gradient flow, spatial information recovery,
and alleviates vanishing gradients. Image created with BioRender.com. 23
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3.1. MRI Dixon images from the Rhineland Study. A) Examples of axial
fat images from four participants presenting different characteristics
of the abdominal Dixon MR protocol: i) inhomogeneous signals, ii)
low-intensity contrast between adipose tissue, and iii - iv) location of
the arms close to the abdomen. B) Examples of anatomical abdominal
differences across subjects: subjects with the same BMI can present
significant differences in fat deposits (blue: SAT, green: VAT, orange: bone). 26
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standardized to 64 channels. The proposed network improves feature se-
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3.4. Maxout activation unit: The maxout is a simple feed-forward activation
function that chooses the maximum value from its inputs. Within a
CNN, a maxout feature map is constructed by taking the maximum
across multiple input feature maps. This is a more selective fusion
operation than concatenation (concat) and results in a lower dimensional
feature space. Image adapted from [50] . . . . . . . . . . . . . . . . . . . 29

4.1. Manual annotation of the OB on HiRes T2-weighted images from the
Rhineland Study. Manual annotations from two subjects where the
red square represents the zoom-in region. A) Sagittal view and labels
(blue: left OB, red: right OB). B) Coronal view and labels. Adapted with
permission from Estrada et al. [2]. . . . . . . . . . . . . . . . . . . . . . . . 33

4.2. Proposed pipeline for OB segmentation. The pipeline is divided into
three stages: First, localization of a region of interest containing the
left and right OB. Then, OB tissue segmentation within the localized
volume, and finally, an ensemble of predicted label maps. Reprinted
with permission from Estrada et al. [2]. . . . . . . . . . . . . . . . . . . . . 34
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4.3. Network architecture in AttFastSurferCNN: AttFastSurferCNN consists
of four competitive dense blocks (CDB) in the encoder and decoder part,
separated by a CDB block as the bottleneck layer. After each CDB the self-
attention layer (ATT) is added and the output filters for all convolutional
layers are standardized to 64 channels. The implemented self-attention
map learns first to focus on the local information which is an easier task
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is a harder task. Finally, AttFastSurferCNN is a multi-network approach
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5.1. Hypothalamus parcellation. A) Hypothalamus nuclei anatomy and
representation of our manual annotation protocol for sub-segmentation
of the hypothalamus. B) T1-weighted (T1w), ground truth (GT), and
3D hypothalamic visualization from one participant from the Rhineland
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with BioRender.com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2. Hetero-Modal VINN (HM-VINN) architecture in HypVINN. Input modal-
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