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Abstract

Compound potency prediction is a major task in computational drug dis-
covery. Regression models based on machine learning (ML) approaches have
become popular for small molecule potency predictions. Recently, deep learn-
ing (DL) methods have introduced novel architectures and data representations
that have been applied to molecular potency predictions. Upon introducing a
new computational approach, initial performance assessment is carried out us-
ing benchmark studies. Conventional benchmark calculations use compound
potency data against a specific target divided into training sets for model gen-
eration and test sets for performance assessment over several rounds of cross-
validation. Under these conditions, performance differences between prediction
models are often negligible and do not translate into a successful application
in prospective tasks. The mechanisms underlying these small performance dif-
ferences are yet to be determined. This dissertation investigates the intrinsic
limitations of current benchmark settings for compound potency predictions
using ML models. The first study compares traditional ML, DL and control
models’ performance under different test conditions for several compound activ-
ity classes. Next, potency predictions are extended to a wide range of activity
classes using ML and control models. The impact of data composition and po-
tency ranges on prediction accuracy is determined based on different data set
generation strategies. At this stage, limitations associated with potency pre-
diction benchmarks, such as limited differences between predictive ML/DL and
control models are uncovered. Furthermore, ML/DL and control models are
derived with original and modified training sets of increasing compound sizes.
Prediction performance is determined over several potency sub-ranges to ratio-
nalize the unveiled benchmark limitations. Moreover, the impact of structural
analogs on prediction models is determined using a newly designed compound
pair-based evaluation scheme to monitor performance over increasing compound
potency differences. Additionally, a novel DL method for compound potency
predictions is introduced and compared to state-of-the-art ML models for the
prediction of potent compounds. Finally, alternative evaluation schemes are
explored and possible future steps toward better benchmark systems for ML
potency predictions are discussed. Taken together, this thesis uncovers cur-
rent limitations of benchmark systems for comparing ML models and offers



alternative approaches to better determine compound potency prediction per-
formance.
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Chapter 1

Introduction

1.1 Drug discovery

Small molecule drug discovery is an expensive, time-consuming and complex
process with the main objective of identifying molecules that could potentially
treat a pathological condition. A drug discovery program involves investigating
proteins or genes and intracellular processes associated with a disease condi-
tion for the identification of potential therapeutic targets.1 In the next step,
further validation ensures the association between the target protein and the
corresponding molecular mechanisms underlying the disease.2 This stage is fol-
lowed by hit identification, where compounds are tested for activity against the
validated target. During the hit identification stage, high-throughput screening
techniques, powered by automated robotics, are employed to screen for potential
active compounds in large chemical libraries.1,3 Next, in the hit-to-lead stage,
hit compounds are subject to re-evaluation (in vitro) and exploratory analysis of
associated compound series. Lead compounds are subsequently selected based
on desired properties. Exemplary properties include compound activity against
the protein target of interest, the absorption, distribution, metabolism, excre-
tion, toxicity (ADMET) profile and other physicochemical properties. In the
lead optimization phase, lead compounds are subject to property optimization
by chemical modification. Additionally, pharmacokinetic/pharmacodynamic
and dose-response studies are carried out using in vitro and in vivo assays.4

After these research stages, a preclinical candidate is selected to obtain regu-
latory authorization to advance to clinical trials. Following a successful trial
outcome, regulatory agencies can approve the clinical compound allowing the
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drug to enter the market. Pharmacovigilance studies will continue following
market introduction to monitor, detect and prevent potential safety risks.5 The
described pipeline of drug discovery is an uncertain, costly and long process.
It has been estimated that bringing a novel drug to the market might cost up
to 4.5 billion dollars, depending on the therapeutic area and type of drug.6 A
large proportion of the costs is associated with compounds that fail along the
drug discovery pipeline.

1.1.1 Computational-aided compound design in drug
discovery

As the costs to bring a novel drug to market have steadily risen over the
years, pharmaceutical companies have looked into the design and implemen-
tation of new strategies that improve and speed up the entire development
pipeline.7,8 One of the main areas that has further advanced research and de-
velopment in small-molecule drug discovery is computational-aided drug design
(CADD). CADD has been effectively applied to speed up processes while re-
ducing experimental costs.9,10 Here, computational approaches have been used
to complement the various steps in the drug discovery pipeline.9 For instance,
during the “hit" stage, in silico screening of compound libraries prior to high-
throughput screening can narrow down the number of compounds that require
screening. Additionally, CADD tools can aid in lead compound identification
efforts throughout the hit-to-lead stage by, for example, predicting the physio-
chemical characteristics and ADMET profiles.11

1.1.2 Molecular potency prediction

In computational medicinal chemistry, molecular property prediction is a
major task during several drug development stages (hit-to-lead and lead opti-
mization).12,13 Commonly, quantitative structure-property relationship (QSPR)
approaches are used to predict molecular physicochemical (e.g., aqueous solu-
bility) and physiological (e.g., ADME) properties based on numerical descrip-
tions of molecular structure. In addition to these properties, compound bio-
logical activity against a given target (often a protein) can be modeled using
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quantitative structure-activity relationship (QSAR) methods.14–16 For example,
standard QSAR approaches employ simple linear regression models derived for
series of analogs. These linear models are applied to predict the potency of
newly generated compounds for the corresponding compound series. Hence,
linear QSAR calculations constitute a methodology in ligand-based drug de-
sign that is limited to the prediction of compounds with similar structures.
Conversely, in structure-based drug design, prediction methods aim to estimate
compound affinities based on modeled or experimental three-dimensional struc-
tures of ligand-protein complexes. For instance, molecular docking calculations
aim to correctly predict ligand conformations and poses within modeled bind-
ing sites. Here, a multitude of scoring functions are used to approximate ligand
binding affinities that are commonly either force-field-based, knowledge-based,
or empirical principles.17–19 These approaches are widely applied for hit identi-
fication, lead optimization and structure-based virtual screening.17,20 For these
applications, docking scores are mainly used to rank ligand binding conforma-
tions, however, they only provide rough approximations of compound binding
energies.17

On the other hand, at a more advanced level, free energy methods try to es-
timate binding free energies for ligand-protein complexes using thermodynamic
cycles.21 Therefore, free energy perturbation calculations can be performed to
determine relative binding affinities between similar compounds. Relative free
energy calculations are more computationally demanding than scoring function-
based estimations. Furthermore, approaches that combine quantum mechanics
with molecular mechanics are used to estimate relative compound binding en-
ergies and potency values.22 Here, the target binding site and corresponding
ligand are modeled using quantum mechanical calculations. At the same time,
the remainder of the complex is kept stable to reduce computational time.23,24

Non-linear machine learning (ML) models are mainstream in computational
drug discovery for ligand-based potency predictions. The ability of ML meth-
ods to model structurally diverse compound data, where non-linear structure-
activity relationships (SARs) are present, sets them apart from structure-based
approaches and standard QSAR.14 In recent years, deep learning (DL) ap-
proaches have gained popularity for property/potency predictions due to in-
creasing computational resources, data availability and model versatility.14,25
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Together, these approaches pave a new way to tackle challenges faced during
the drug discovery process.

1.2 Molecular representations

The chemical representation of molecules in a human and computer-readable
format is crucial for drug discovery and chemoinformatics. Several molecular
representations have been introduced for ML applications to improve computa-
tional efficiency, storage and performance.26 For instance, the Simplified Molec-
ular Input Line Entry System (SMILES)27 is one of the most popular molecu-
lar linear representations, due to easy interpretability and computational effi-
ciency.26 SMILES can encode atoms/bond types, charge and stereochemistry,
among others, in a string-format notation. Commonly, the direct application of
SMILES strings for ML models requires a conversion into a machine-readable
form (tokenization).28 On the other hand, molecules can be represented using
molecular graphs. In graph representations, a graph is defined as G = (V , E),
where V represents the nodes and E the edges.29 For small molecules, atoms
correspond to the nodes and the bonds to the edges.

Based on these representations, one-dimensional (1D), two-dimensional
(2D) and three-dimensional (3D) numerical descriptors can be derived. For
1D numerical descriptors, simple molecular properties such as atom and bond
counts or molecular weight are calculated from the molecular formula. In addi-
tion, 2D numerical descriptors are derived from molecular graphs that encode
topological features and physicochemical properties, such as the octanol-water
partition coefficient (logP), are approximated from the graphs using compu-
tational models.30 Compounds can also be represented using 2D fingerprints
(FPs), which encode molecular structural information as a binary vector in-
dicating the absence (0) or presence (1) of specific structural features, as de-
scribed in Figure 1.31 Among different FP types, substructure key-based and
topological-based FPs are widely used for chemoinformatics tasks. For sub-
structure key-based FPs, molecules are encoded using a predefined substruc-
ture dictionary, where each bit position corresponds to a single structural key.
The Molecular ACCess System (MACCS)32 is one of the most popular keyed
FPs. The publicly available version of MACCS is based on 166 different struc-
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tural patterns. Alternatively, topological-based FPs are characterized by en-
coding structural features using a hashing function. For instance, extended-
connectivity FPs (ECFPs),33 based on the Morgan algorithm,34 encode circular
atom environments within a specified diameter. Commonly, hashed encodings
of atom environments up to a radius of 2 are used to generate ECFPs of a fixed
size of 1024 or 2048 bits.

Additionally, 3D representations of molecules extend 2D structural infor-
mation by incorporating 3D properties, such as molecular conformation and
topology.35,36 However, the need for conformation estimation, whether through
experimentation or computation approaches, together with the molecular con-
formation variability, limits their use in large-scale ML calculations.37

Figure 1: 2D molecular fingerprints. An exemplary keyed substructure FP (left) and a
topological FP (right) are illustrated. For the keyed FP, if a substructure is present the bit
is set to 1 (shades of purple) or if absent the bit is set to 0 (white). For the topological FP,
a local atom environment of radius 2 is illustrated. Here, the environment for each diameter
corresponds to an FP present feature in shades of blue (1), while absent features are depicted
in white (0).

5



1.3 Molecular similarity

Molecular similarity is an essential concept in chemoinformatics and also
of high importance in drug design.38,39 In medicinal chemistry, the principle
of similarity-property states that structurally similar compounds may display
similar properties.40 Many computational approaches, such as QSAR modeling
or ligand-based virtual screening rely on this assumption.41,42 Various similarity
coefficients and compound representations are employed to quantify molecular
similarity.

1.3.1 Fingerprint similarity

Two-dimensional molecular FPs combined with the Tanimoto coefficient
(Tc),43 also referred to as the Jaccard index, are very popular for compound
similarity calculations.44,45 The Tc measures the percentage of common sub-
structures between two molecules and is defined as:

Tc (A,B) =
c

a+ b− c

where a and b represent the number of features present in compounds A and
B, respectively, and c represents the number of features common to compounds
A and B.

Therefore, Tc values vary from zero to one indicating either no feature over-
lap or a perfect match between molecular FPs, respectively. Moreover, different
FPs often display different similarity value distributions for the same set of com-
pounds. For example, ECFP value distributions tend to be more narrow and
shifted towards smaller Tc values (0.0 - 0.2), compared to MACCS distribution
values which display a wider spread and are centered around higher Tc values
(0.4 - 0.5) for random non-related small molecules.45,46 However, this type of
similarity assessment also carries its limitations. For instance, the inability to
efficiently distinguish between active and inactive compounds based on simi-
larity to active reference molecules alone, for large-scale ligand-based virtual
screening.47
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1.3.2 Matched molecular pairs

Matched molecular pairs (MMPs) are defined as pairs of compounds that
share a common structure termed the MMP core (scaffold) and have a chemical
change at a single site.48 For MMPs, single-site substitutions result in a chemical
transformation, as illustrated in Figure 2a.49 The MMP concept is important
for assessing molecular similarity and guiding compound design during the lead
optimization stage.50

For a given library of molecules, the computational enumeration of these
compound pairs can be achieved using fragmentation algorithms. According
to Hussain and Rea, a suitable method for MMP extraction requires computa-
tionally efficiency in order to be applied to large compound data sets.48 Such
a method should have the ability to enumerate all MMPs present in a given
database.48 Traditionally, efficient MMP generation is based on the systematic
fragmentation of exocyclic single bonds.48 Another popular approach for MMP
extraction relies on searching for the maximum common subgraph (MCS).51

Here, the objective is to identify the largest common substructure between
compound pairs, corresponding to the compound core structure.52 However, as
a result of their combinatorial nature, these approaches can have the disadvan-
tage of being computationally expensive when applied to ultra-large compound
sets. Furthermore, MMP extraction can be performed using a retrosynthetic
combinatorial analysis procedure (RECAP).53 The RECAP fragmentation al-
gorithm employs a set of retrosynthetic rules corresponding to 11 original bond
cleavage options that generate more chemically accessible RECAP-MMPs.53,54

The resulting MMP compounds sharing a common core structure can be com-
bined into a matching molecular series (MMS). An MMS is defined as a set
of (two or more) compounds sharing a common core distinguished by different
substituents at a single substitution site.55

MMP compounds derived from these approaches can be used for the identi-
fication of activity cliffs (ACs). ACs are defined as pairs of structurally similar
compounds (analogs) with large potency differences.56,57 A commonly applied
threshold of a 100-fold change in potency is used to identify ACs.58,59 Conse-
quently, MMP compounds characterized by these activity differences are des-
ignated as MMP-cliffs,60 as illustrated by Figure 2b. For QSAR modeling,
the prediction of ACs/MMP-cliffs continues to be a challenging task, as pre-
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diction models display difficulties in correctly capturing the structure-activity
landscape for these compounds.57,61,62

Figure 2: Exemplary MMP and MMP-cliff. A representation of an MMP (a) and
MMP-cliff (b) is shown. For each MMP compound an exemplary activity value is provided
in nanomolar. Substitution sites are highlighted (red). Marvin was used for drawing and
displaying chemical structures.63

1.3.3 Analog series

In contrast to an MMS, an analog series (AS) consists of compounds that
are characterized by the same core structure containing one or multiple substi-
tution sites with different R-groups (substituents), as shown in Figure 3. The
exploration of ASs and the design of new analogs is a central aspect during hit-
to-lead and lead optimization stages to find and prioritize potential candidate
compounds.64 Traditionally, R-group tables are used to monitor the evolution
of ASs.65 Moreover, computational approaches such as linear and non-linear
QSAR analysis have been applied to support the design analogs by predicting
the potency of new analogs.14 Systematic identification and analysis of mul-
tiple AS can be a challenging task, especially for large compound libraries.66

Computational approaches that identify and extract AS from such databases
are available. Analogs can be obtained using the MMP concept to generate AS
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comprising of single substitutions (MMS), as discussed above. Moreover, AS
with multiple substitution sites can be identified using computational methods
such as the compound-core relationship (CCR) algorithm. The CCR method
defines AS by performing a systematic compound fragmentation at one or mul-
tiple substitution sites generating unique core structures and corresponding
R-groups substituents.67 Ideally, generated AS core structures and substituents
can be displayed in R-group tables. Additionally, AS can be used to assess
QSAR prediction ability on novel compound series.

Figure 3: Analog series. An AS comprising three structurally analogous compounds and
corresponding core structure is shown. In this case, analogs correspond to ASs with two
substitution sites (R1 and R2) outlined in red and blue, respectively. Marvin was used for
drawing and displaying chemical structures.63

1.4 Benchmark calculations

For compound potency predictions, the performance of novel ML models
is assessed using benchmark calculations. In benchmark studies, ML models
of different complexity depending on sets of (hyper-)parameters are generated
using curated compound data partitions for training and test sets, over several
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rounds of cross-validation, as illustrated in Figure 4. For each cross-validation
iteration, parameter optimization is performed using the training sets. To this
end, training sets are sub-divided into internal training and test sets multiple
times using different parameter settings; models are trained on the internal
training sets and evaluated on the remaining data (internal test sets). Optimal
parameters are determined by averaging the results of internal test sets for
each parameter setting and selecting the best. Final models are derived using
original training sets and the optimal parameters. Thereafter, the resulting
models are evaluated using various performance metrics analyzing prediction
performance over the different test sets. Benchmark calculations include a large
number of variables such as the partitioning strategy, selected algorithms and
data curation process. These variables are discussed below in more detail.

Figure 4: Conventional benchmark scheme. An exemplary benchmark system is shown
for compound potency predictions. Activity data is partitioned into external training (blue)
and test (orange). Parameter optimization is performed by dividing the training set into
several internal training (cyan) and test (red) sets in order to determine optimal parameters.
The final model is derived using the best parameters and original training (blue) set. Model
evaluation is carried out by calculating the appropriate regression metrics for the external
test (orange) set predictions.

1.4.1 Activity data

For benchmark studies, the availability of highly curated compound activity
data for a target is required. Such data can be obtained either from proprietary
sources of large pharmaceutical companies or, as is common in the academic
world, be extracted from public data sources. As described above, activity data
originate from biological assays measured as potency, which is characterized by
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the compound concentration required to produce an effect of a given magni-
tude.68 Several potency measures such as IC50, Ki and Kd are often used for
QSAR modeling.69 For example, Ki and Kd describe the inhibition and dis-
sociation constants, respectively. They represent assay-independent measure-
ments. On the other hand, IC50 the half maximal inhibitory concentration, is
an assay-dependent measure that corresponds to the compound concentration
required to reduce the activity of a protein by half. Typically, potency values
in molar concentration are recorded as negative decadic logarithmic (-log) po-
tency values (pIC50, pKi, pKd).69 Activity data can be extracted from publicly
available repositories like, for example, ChEMBL.70 The ChEMBL database
comprises manually curated bioactivity information for drug-like compounds
based on more than 1.6 million assays. Its major activity data source is the
medicinal chemistry literature, covering assays at different stages of compound
development reported in publications.70

The design of a high-confidence activity data set from the ChEMBL
database requires some crucial curation steps. Therefore, compounds with a
molecular mass of less than 1000 daltons (small molecules) are selected. Only
single human protein assays are retrieved with the highest ChEMBL assay con-
fidence score, ensuring an activity annotation against a single direct protein
(excluding homologs) in a binding assay, and a numerical activity value (e.g.,
Ki, Kd, IC50). Compounds with potency values higher than 10 M or below 10
pM are typically removed, as relevant activity ranges from a -logIC50 value of 5
(micromolar) to 11 (nanomolar). Additionally, if multiple potency annotations
are available for a compound and a specific protein, the annotations are only
considered if they fall within one order of magnitude (10-fold), in which case the
values are averaged, otherwise, the annotations are discarded. Subsequently,
the removal of pharmaceutical anti-targets is performed. In drug discovery, an
anti-target is described as a protein (receptor, enzyme) vital for the organism’s
function inhibition of which causes unwanted and adverse effects.71 Therefore,
protein targets such as cytochrome P450, UDP-glucuronosyltransferase, hERG,
P-glycoprotein and albumin are disregarded. This step is followed by the re-
moval of compounds known for potentially interfering with biological assays.
This task is performed using publicly available filters such as Eli Lilly Medic-
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inal Chemistry Rules,72 Pan Assay Interference Compounds (PAINS),73 and
colloidal aggregators.74

The resulting high-confidence data set can be used for ML purposes. Here,
the curated data ensures only relevant molecular data is applied to ML methods
and the noise in the data is reduced to a minimum.

1.4.2 Compound data partitions

Compound data partitions for ML models can greatly impact prediction per-
formance during benchmark calculations. Several cross-validation techniques
are available, such as random-, analog/scaffold- and temporal splits. Random
data splits aim to create training and test sets sampled from the same data dis-
tribution. However, this approach tends to overestimate ML performance, due
to the presence of similar compounds, often analogs, in training and test sets.
Therefore, it is not providing a realistic evaluation, given that most prospec-
tive applications of ML models focus on exploring novel chemical space. In
contrast, analog/scaffold data partitions generate training and test sets com-
prising unique AS for each set, hence, removing the structural bias present in
random splitting.42 Additionally, temporal-based data partitioning provides a
useful evaluation for prospective applications. Here, data splits are based on
compound activity measurement dates. Thus, training sets are generated us-
ing data collected up to a certain point in time with the remaining data used
for model validation. However, this methodology is generally not applicable to
publicly available data sets.75

1.4.3 Performance metrics

In a regression setting, model prediction performance is usually assessed
using the mean absolute error (MAE), root mean squared error (RMSE) and
the coefficient of determination (R2). For MAE and RMSE the lower the value
the higher is prediction performance. Compared to MAE, the RMSE strongly
penalizes larger prediction errors and, therefore, is more sensitive to outliers.
For both metrics, interpretation should be accompanied by the specific do-
main knowledge, due to the metrics dependency on the modeled data distri-
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bution. Furthermore, R2 provides a relative error measure compared to MAE
and RMSE. An R2 value of 0 or negative shows that model accuracy is similar
to or worse than predicting the mean of the dataset for every test instance.
Meanwhile, an R2 value of 1 (maximum) indicates a perfect prediction model.
MAE, RMSE and R2 are defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (2)

R2 = 1 −
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
(3)

where yi and ŷi are the observed and predicted values, for instance, i, respec-
tively, and n is the total number of instances. For R2, ȳ is the mean observed
value for the modeled data set.

1.4.4 Control calculations

In benchmark ML studies, simple control calculations are essential to set
minimum performance requirements for predictive models. Two common base-
line techniques are y-randomization76 and central tendency regression. The
method of y-randomization consists of shuffling the instance labels (y) for the
data set, followed by model retraining and cross-evaluation. In central tendency
regression, baseline models are based on assigning, for example, the median
(MR) or mean training set value to each test instance. In the case of potency
prediction, y-randomization generates random structurepotency relationships
within dataset compounds, whereas MR models assign the median potency
value of training compounds to each test compound.
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1.4.5 Statistical testing

For benchmark calculations, statistical testing should be carried out to as-
sess claims of a model’s superior performance compared to other established
approaches. Statistical tests are employed in hypothesis testing to determine
differences between two or more populations.77 The test generates a probability
value (p-value) used to assess the statistical significance of possible performance
differences. Several statistical tests are available in the literature, ranging from
parametric (e.g., Students t-test78) to non-parametric (e.g., Wilcoxon signed-
rank79), which can be selected based on whether certain data assumptions are
known or unknown. Moreover, when performing multiple comparisons, p-values
need to be adjusted to reduce the chance of one model being randomly picked
as superior compared to another. Hence, p-value adjustments can be performed
using corrections, such as the Bonferroni or Holms methods.80 Here, it is im-
portant to distinguish between statistical significance and functional relevance
of the difference between two populations. For example, statistical significance
does not always translate to better methodological performance in prospective
applications, especially in drug discovery.

1.5 Machine learning

Over the years, a variety of ML methods have been applied to molecular
property predictions, in drug discovery.81,82 For example, traditional ML models
such as support vector machines (SVMs)83 or random forests (RFs),84 employ
fixed molecular representations including MACCS32 or ECFP33 as input fea-
tures that are mapped to the corresponding property values. Most recently,
a surge in computational resources enabled DL architectures to be derived for
quantitative molecular property predictions. Among these approaches, graph
neural networks (GNNs) and transformer models have gained popularity to ad-
dress these tasks.85,86 The following section will further describe some of these
state-of-the-art methods in more detail.

14



1.5.1 k-nearest neighbor

The objective of k-nearest neighbor (k-NN) algorithm is to find the closest
(most similar) n samples to the query instance, as illustrated in Figure 5. This
method can be used for classification and regression tasks.87,88 For regression
problems, the predicted test value is the average of the values from the closest
n-training samples. As the choice of the number of nearest neighbors influences
the approach’s performance, the best number k of nearest neighbors should
be always explored using parameter optimization techniques. For compound
potency predictions, k-NN is considered a control model, due to its simplicity.
In chemoinformatics, k-NN models have been applied in a variety of tasks, from
virtual screening89 to molecular property predictions.90

Figure 5: k-nearest neighbor algorithm. A k-NN algorithm employing three nearest
neighbors (orange) for the prediction of a numerical property of a query instance (blue) label.
The final prediction is given by the average value of the corresponding nearest neighbors.

1.5.2 Support vector machines

For chemical data, SVMs have been the model of choice for several ap-
plications including compound classification, ranking and multi-target activity
prediction.91 SVMs are supervised ML models that map training data to a de-
fined feature space using kernel functions.92 The “kernel trick" describes the use
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of non-linear kernels if linear separation is not feasible in the original feature
space. The model objective is to find the best hyperplane that separates the
majority of training instances. Support vector regression (SVR) is an adap-
tation of the SVM methodology for numerical value predictions, as shown in
Figure 6.83 For SVR, the regression hyperplane is defined by (4), which aims
to approximate the training instances to the observed labels during the model
optimization.

y = < w, x > + b (4)

where, w corresponds to a weight vector, x to a data instance, < ., . > to
the scalar product and b to the bias.

Figure 6: Support vector regression algorithm. For SVR, a decision function is gen-
erated based on training instances (orange). Support vectors (training instances with black
outlines) are illustrated outside the ε-tube. The test instances are represented with blue
circles.

SVR employs an ε-insensitive tube93 in which the tube width determines
the maximum tolerated error between the input and output values. Moreover,
training instances present outside of the ε-tube represent the support vectors.
For chemical data, diverse kernel functions can be employed, such as linear,
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polynomial, radial basis function and the most popular for molecular FPs, the
Tanimoto kernel.94

1.5.3 Random forest

An RF is a supervised ML method based on an ensemble of decision trees
(DT).84 During the training process, each tree is generated using a bagging
procedure, where samples are randomly selected with replacement from the
training set. Moreover, at each node split in the tree, the best split is determined
by randomly sampling a subset of the available features. These procedures
introduce variability among trees while reducing inter-tree correlation.95 For
regression tasks, the final prediction corresponds to the average output of all
the trees in the forest, as illustrated in Figure 7. RFs have been widely applied
in many chemoinformatic-related prediction tasks.96

Figure 7: Random forest regression. Shown is a schematic representation of an RF
algorithm generated using an ensemble of DTs for a regression task. The predicted value for
each DT is derived from the root to the tree leaf node, highlighted using orange circles. The
final predicted value is determined as the average value of all trees in the forest.

1.5.4 Deep neural networks

A feedforward deep neural network (DNN) is a DL method that derives a
non-linear relationship between input values and corresponding output values
(y) by repeatedly applying parameterized mathematical functions to interme-
diate outcomes that represent the layers of the DNN.97,98 A typical DNN ar-
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chitecture comprises several layers of computational neurons, consisting of an
input layer, multiple connected hidden layers and an output layer, as illustrated
in Figure 8.97 Each network neuron is defined by the mathematical function
in (5). During training, the networks input weights (wi) and biases (b) for
each neuron y according to equation (5) are continuously adjusted to minimize
errors between the predicted and observed labels. Here, the xi are the values
of the previous layer (or the input layer in the case of the first hidden layer)
and f represents the fixed activation function. This optimization is performed
via backpropagation,99 which involves propagating the gradients of the cost
function backward through the network to update the weights and biases.

y = f

(∑
i

wixi + b

)
(5)

In computational medicinal chemistry, DNN architectures have been suc-
cessfully applied in many prediction tasks, such as QSAR modeling,100 multi-
task ADMET101 and chemical image recognition.102

Figure 8: Deep neural network. A feedforward DNN architecture consisting of one input
layer (blue nodes), three hidden layers (gray nodes) and one output layer (black node) is
illustrated. Each network node is denoted as a circle and represents a neuron. In binary
classification and regression tasks, the output layer consists of a single neuron.

1.5.5 Graph neural networks

Graph neural networks (GNNs) are DL methods used to learn from molec-
ular graph representations.103 For example, graph convolutional networks
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(GCNs) employ a convolutional process to derive generalized atom environ-
ment representations similar to the Morgan algorithm used in circular FPs or
ECFPs.33,34,104 The GCN’s main architecture consists of graph convolutional,
pooling, gathering and fully connected dense layers, depicted in Figure 9.
Through the input layer, molecular graphs are submitted to a graph convo-
lutional layer where convolutional operations extract node representations by
considering the weighted average values for each atom and neighborhood atom
features. This process is repeated using several convolutional layers, while pool-
ing operations (e.g., max or sum pooling) are performed to aggregate the re-
sulting node and edge representations into a unified graph-level representation.
Next, a gathering layer generates the neural FP by summing the generated
atom feature vectors. Finally, the molecular FP vectors are mapped to the
corresponding labels using a DNN model.105 Hence, molecular graph convolu-
tions present an excellent alternative to traditional FP descriptors for molecular
prediction tasks. In chemistry, representation learning using GNNs has been
evolving and has been used in multiple applications including molecular prop-
erty predictions,106 drug-target interactions,107 ADMET prediction108 and de
novo drug design.109

Figure 9: Graph convolutional network. Shown is a schematic illustration of a GCN
architecture including convolutional, pooling, gathering and dense layers. Node (atom) and
edge (bond) information are represented by orange and blue numerical vectors, respectively.
The node and edge representations are concatenated to generate a neural FP. This fingerprint
is used as an input sample for a feedforward DNN to generate the predicted output.
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1.5.6 Variational autoencoders

A variational autoencoder (VAE) is a probabilistic DL model that can gen-
erate new samples based on a learned data distribution.110 The VAE archi-
tecture comprises a recognition network (probabilistic encoder), mapping the
high-dimensional input values into a low-dimensional continuous latent space
(z). The decoder network reconstructs latent space samples into the origi-
nal data dimension. During training, the encoder and decoder are optimized
by maximizing the evidence lower bound,111,112 by minimizing Kullback-Leibler
divergence113 between the input and latent distributions and the reconstruction
loss. A variety of VAE architectures have been explored in the literature.114 For
instance, conditional VAEs (CVAEs) apply input labels that condition (c) the
latent space generation and the corresponding output. Thus, CVAEs use non-
random sampling compared to VAEs to generate new instances, as illustrated in
Figure 10.115 In recent years, VAEs have been applied in many chemical tasks
including generative compound design,116 compound property predictions117

and chemical reaction design.118

Figure 10: Conditional variational autoencoder. A scheme of the CVAE algorithm
consisting of an input layer, followed by the encoder module, a latent space layer (z), a
decoder module and an output layer. Here, and are the mean and standard deviation of a
Gaussian distribution (N (0,1)).

1.5.7 Model explanations

The interpretation of learning characteristics for ML predictions is crucial
in pharmaceutical research. Over the years, several methods have been devel-
oped to explain model predictions ranging from global to local explanation ap-
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proaches.119 For example, the Shapley value (SV) formalism, derived from game
theory,120 has been widely explored to explain ML models. In the context of
ML, SVs quantify the individual contributions of present and absent features for
a given test instance. While this approach is feasible for smaller feature sets, SV
calculations can become computationally infeasible for larger feature sets due to
their combinatorial nature. Therefore, approximation approaches such as Shap-
ley Addictive exPlanations (SHAP)121 are typically employed. SHAP values are
based on a local model for a given instances feature space. In chemoinformatics,
SV/SHAP values have been used to explain compound activity predictions,122

multi-target activity and compound potency predictions.123

1.6 Thesis outline

This dissertation aims to provide a better understanding of the general
limitations of benchmarking compound potency predictions using state-of-the-
art ML models. The dissertation is divided into eight chapters. Chapters 2
to Chapter 7 consist of six original publications representing the core of this
thesis.

• Chapter 2 reports benchmarking of ML and control models for compound
potency predictions. Therefore, activity classes comprising active com-
pounds against different pharmaceutical targets are generated. Subse-
quently, predictions under different interpolative and extrapolative test
conditions are compared.

• In Chapter 3, compound potency prediction benchmark calculations are
extended to a large number of activity classes. Here, specific data set
modifications are designed to evaluate the influence of potency ranges and
data composition in prediction performance for ML and control models.

• Chapter 4 rationalizes the limitations of compound potency prediction
benchmark calculations, uncovered in previous chapters. The prediction
performance of ML and control models is monitored across different po-
tency sub-ranges for several activity classes. Moreover, it is investigated
if the data distributions across compound potency sub-ranges influence
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model predictions by generating training sets of increasing compound
sizes.

• In Chapter 5, the effect of structural analogs in compound potency pre-
dictions is investigated. A compound pair-based test system is designed
to evaluate compound predictions over increasing potency differences. In
addition, ML predictions are rationalized using an explainable artificial
intelligence (AI) method.

• Chapter 6 introduces a novel DL-based methodology for compound po-
tency prediction. Therefore, this new approach is compared against state-
of-the-art ML models across different activity classes. Additionally, the
ability of models to correctly predict the most potent test compounds is
assessed.

• In Chapter 7, a review of the current limitations of compound potency
predictions is presented. Multiple fundamental limitations unveiled in
the previous chapters are described. Furthermore, a potential alternative
benchmark system to compare potency prediction models is introduced.
Finally, future directions on how to better assess prediction performance
in practical applications are discussed.

• Finally, Chapter 8 summarizes the main findings of this dissertation and
addresses their impact on small-molecule drug discovery.
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Chapter 2

Simple Nearest-Neighbour Analysis
Meets the Accuracy of Compound
Potency Predictions Using Complex
Machine Learning Models

The following chapter summarizes the research published as
Janela, T.; Bajorath, J. Simple Nearest-Neighbour Analysis Meets the Ac-
curacy of Compound Potency Predictions Using Complex Machine Learning
Models. Nat. Mach. Intell. 2022, 4, 1246-1255. DOI: 10.1038/s42256-022-
00581-6

The publication reprint is available in Appendix A. Reprinted with permission
from “Janela, T.; Bajorath, J. Nat. Mach. Intell. 2022, 4, 1246-1255”.
Copyright 2022 Springer Nature.

Author contributions: Tiago Janela: Methodology, Data, Code, Investi-
gation, Analysis, Writing - review and editing. Jürgen Bajorath: Concep-
tualization, Methodology, Analysis, Writing - original draft, Writing - review
and editing.
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2.1 Summary

In CADD, compound potency prediction is of the highest interest. For
this task, several approaches can be employed, from structure- to ligand-based
methodologies,15,124 often based on state-of-the-art ML algorithms.81 As the
development of new AI applications increases, the use of complex model
architectures for molecular property predictions has also surged, attempting
to improve current state-of-the-art performance.82,125 In compound potency
prediction, ligand-based approaches frequently aim to extract nonlinear rela-
tionships between compound structure descriptors and corresponding activity.
For this purpose, ML models are built using a set of active compounds against
a specific protein with the intent to subsequently predict the potency of novel
chemical entities. To evaluate new predictive methods, benchmark calculations
are carried out using active compounds, partitioned into training and test sets,
for the derivation and evaluation of ML models respectively, over several rounds
of cross-validation. In this chapter, benchmark calculations for ML models,
including RF regression (RFR), SVR, DNN and GCN, concerning potency
prediction are reported. A variety of data sets are evaluated. Additionally,
baseline calculations are performed using k-NN, MR and random regression.
Furthermore, the ability of these models to extrapolate beyond the data upon
which they were trained is assessed through the use of specifically designed
data sets.

For compound potency prediction, benchmark calculations were performed
for 10 randomly selected activity classes comprising highly curated compound
activity data extracted from the ChEMBL database. Therefore, original (com-
plete) sets were created corresponding to the entire data set for each activity
class. The data sets were used to derive and evaluate ML models over multi-
ple independent prediction trials. Model performance was assessed using MAE
and RMSE for all prediction experiments. For the complete sets, accurate ML
models showed very similar performance (∼0.5 MAE), yet SVR slightly outper-
formed RFR, DNN and GCN models based on statistical analysis. These trends
were shown to be consistent across the different activity classes. Furthermore,
simple k-NN models reached or even surpassed the accuracy of complex ML
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models. Moreover, MR control models achieved an accuracy of ∼0.8-1.0 MAE,
across tested activity classes. Thereafter, to assess the effect of data sparse-
ness on model learning, size-diverse training sets consisting of compounds with
higher chemical diversity and random equally sized-reduced sets were gener-
ated for all activity classes. For sized-reduced training sets, prediction errors
slightly increased with increasing performance differences between k-NN/SVR
and DNN/GCN. Furthermore, for diverse sets, similar trends were observed
for k-NN and SVR. DNN and GCN models approached MR performance for
some activity classes. Furthermore, compound data sets were divided into AS
to assess the performance of complex ML and k-NN models in a prospective
scenario. For this purpose, hold-out sets comprising the largest AS from the
original set were generated for each class. Subsequently, models were derived
using the remaining AS, and single prediction trials were performed on the hold-
out sets. For the majority of the tested classes, similar performance was again
observed across all prediction models. Additionally, the ability of each model to
extrapolate was tested. For each class, the 10% most potent compounds were
selected and used as a test set. The remaining compounds were used for model
derivation and predictions were performed on the potent test sets. Again, k-
NN prediction accuracy rivaled complex ML models under these conditions.
Furthermore, randomized predictions were explored. Accordingly, k-NN and
SVR models were generated by randomly assigning potency values to training
and test compounds. For MR and random predictions (k-NN/SVR), predic-
tion accuracy differences of ∼0.5 MAE compared to original ML models were
observed. This analysis demonstrated that k-NN models showed similar per-
formance compared to complex ML models. This prediction performance could
be attributed to similar compounds often having similar potency values. Addi-
tionally, prediction performance for k-NN and ML models (∼0.5) compared to
MR and randomized models (∼0.9) was separated only by small error margins.
Based on these findings, current benchmarking calculations for compound po-
tency predictions require further evaluation. The use of simple k-NN models as
a reference method is recommended, together with model evaluation on highly
potent and structurally unique compounds set not used in model building. The
following chapter extends the compound potency prediction benchmark to a
larger set of activity classes.
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Chapter 3

Large-Scale Predictions of Compound
Potency with Original and Modified
Activity Classes Reveal General
Prediction Characteristics and
Intrinsic Limitations of Conventional
Benchmarking Calculations

The following chapter summarizes the research published as
Janela, T.; Bajorath, J. Large-Scale Predictions of Compound Potency with
Original and Modified Activity Classes Reveal General Prediction Character-
istics and Intrinsic Limitations of Conventional Benchmarking Calculations.
Pharmaceuticals 2023, 16, 530. DOI: 10.3390/ph16040530

The publication reprint is available in Appendix B. Reprinted with permission
from “Janela, T.; Bajorath, J. Pharmaceuticals 2023, 16, 530”. Copyright
2023 Multidisciplinary Digital Publishing Institute.

Author contributions: Tiago Janela: Methodology, Software, Formal anal-
ysis, Investigation, Writing - original draft preparation, Writing - review and
editing. Jürgen Bajorath: Conceptualization, Methodology, Formal analy-
sis, Writing - original draft preparation, Writing - review and editing.
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3.1 Summary

As shown in the previous chapter, complex ML and simple k-NN models
achieved similar accuracies in compound potency predictions. Additionally,
the analysis showed no advantage in using DL models (DNN/GCN) compared
to traditional ML (SVR/RFR) and k-NN models. Moreover, MR and random
regression models displayed prediction accuracies of ∼0.9 MAE compared
to the performance of accurate ML models of ∼0.5. In this chapter, the
previous potency prediction analysis was extended to evaluate the distribution
of potency prediction accuracies across a large range of activity classes.
Moreover, it was investigated if activity classes’ potency ranges and respective
compositions may be affecting and thus limiting the relevance of current
benchmark calculations.

To further expand the previous analysis (Chapter 2 ), high-confidence data
for 376 activity classes comprising at least 50 active compounds was extracted
from ChEMBL database. Based on this data, ML (SVR) and control mod-
els (1-NN, k-NN, MR) were derived over multiple independent trials and MAE
was calculated to assess the corresponding model performance. For the selected
activity classes, similar prediction accuracies were observed between SVR, 1-
NN and k-NN models with overall errors within one order of magnitude (MAE
< 1), in line with the observations from Chapter 2. In addition, for the 45
largest activity classes, the effect of different data partition sizes on prediction
performance was investigated. Therefore, SVR, 1-NN, k-NN and MR models
were implemented using training and test sets with two different size splits
(80/20% and 50/50%). For both partition sizes, meaningful and stable com-
pound predictions were obtained with, again, relatively similar performance.
Thus, predictions were not significantly affected by varying training set sizes.
Considering these results, the data sets for all 45 activity classes were selectively
modified to assess possible differences in prediction performance between SVR
and controls. The first data set modification was focused on activity class po-
tency distributions. In medicinal chemistry, most potency distributions have a
higher prevalence of lowly potent compounds (micromolar) compared to highly
potent (nanomolar), resulting in skewed distributions. The predominance of
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micromolar potency values might explain the performance of k-NN and MR in
comparison to SVR. For this purpose, data sets with balanced potency distri-
butions were generated by evenly populating potency sub-ranges with available
compounds. Hence, the tendency of potency datasets to show a skewed dis-
tribution towards low micromolar potency values was eliminated. Considering
that the balancing procedure reduced the size of the original sets, as a control,
identical-size data sets were created with original potency distributions. All
models were built with these newly created balanced sets and prediction per-
formance was evaluated. As expected, the median potency values for training
sets increased, inevitably slightly increasing MR prediction errors. Neverthe-
less, SVR performance continued to be comparable to 1-NN and k-NN models.
The second modification was designed to examine the effect of removing nearest
neighbor compounds on the ability of models to accurately predict compound
potency by generating data sets with a reduced number of close neighbors. To
account for data set size, a control set was derived by randomly sampling 50%
of compounds from the original set. For all models, prediction error increased
for decreasing numbers of close neighbors. Notably, the performance of 1-NN
and k-NN was still comparable to SVR models across activity classes. Consid-
ering the previous findings, AS splitting was explored as another type of data
set modification. Training and test sets composed of compounds with unique
core structures were derived, resulting in no scaffold overlap among sets. For
this setup, errors increased compared to the control sets of the same size. Nev-
ertheless, differences in performance between 1-NN and k-NN and SVR models
remained similar. Taken together, this chapter reflects previous observations on
a larger scale that prediction performance for different methodologies cannot be
realistically assessed by using conventional benchmark settings. Models tested
based on these modified data sets showed notably increased prediction errors
associated with more difficult test conditions. However, compound predictions
were stable and relatively insensitive to the modifications, given that SVR and
k-NN demonstrated similar prediction differences. Therefore, the development
of meaningful benchmark schemes required further consideration. In the fol-
lowing chapter, the current limitations of compound potency predictions under
benchmark scenarios are uncovered and rationalized.
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Chapter 4

Rationalizing General Limitations in
Assessing and Comparing Methods for
Compound Potency Prediction.

The following chapter summarizes the research published as
Janela, T.; Bajorath, J. Rationalizing General Limitations in Assessing and
Comparing Methods for Compound Potency Prediction. Sci. Rep. 2023, 13,
17816. DOI: 10.1038/s41598-023-45086-3

The publication reprint is available in Appendix C. Reprinted with permission
from “Janela, T.; Bajorath, J. Sci. Rep. 2023, 13, 17816”. Copyright 2023
Springer Nature.

Author contributions: Tiago Janela: Study design and conduction, Formal
analysis, Manuscript preparation. Jürgen Bajorath: Study design and
conduction, Formal analysis, Manuscript preparation.
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4.1 Summary

In Chapter 3, benchmark calculations of compound potency prediction were
further extended to a large number of activity classes using various ML methods
and controls. Thereby, a broader yet detailed overview of model performance
was obtained. The results were in line with the findings described in previous
chapters. The impact of activity class composition and respective potency value
distribution was investigated as a possible cause for the observed limitations.
Thus, several activity class modifications were performed comprising balancing
data sets according to potency ranges, removal of compound nearest neighbors
and analog partitioning for training and test sets. Accordingly, activity classes
were benchmarked with modified data sets. Even though prediction accuracy
decreased, error margins between methodologies were still very similar. Based
on these findings, the benchmark limitations of compound potency predictions
needed to be further explored. In this chapter, different ML methods were used
to explore the limiting factors behind benchmarking for potency predictions by
focusing on the impact of potency sub-ranges and respective value distributions.

To investigate the influence of potency value distributions and potency sub-
ranges on compound potency predictions, 8 activity classes were used to derive
traditional ML (SVR, RFR) and control (1-NN, 3-NN and MR) models for in-
dependent trials. Model prediction performance was evaluated based on MAE,
RMSE and squared Pearson correlation coefficient. In line with previous find-
ings (Chapters 2 and 3 ), ML, 1-NN and 3-NN had comparable accuracy across
the entire potency range (-logIC50: 5 - 11) in contrast to MR models for all
activity classes. Overall, SVR slightly outperformed RFR, 1-NN and 3-NN
models based on statistical testing. Subsequently, predictions were assessed
using a more detailed view by dividing test compounds into the respective ex-
perimentally defined potency sub-ranges (5 - 7, 7 - 9 and 9 - 11). For weakly
(5 - 7) and highly potent (9 - 11) sub-ranges, slightly larger prediction errors
were observed for ML, 1-NN and 3-NN models, possibly due to increased data
sparseness. Meanwhile, MR displayed a significant increase in prediction errors,
associated with the increase in distance to median potency values for all activ-
ity classes. On the other hand, compounds falling in the potency sub-range (7
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- 9) showed a decrease in prediction errors relative to the global accuracy (5 -
11) and were similarly close to MR controls. In order to investigate underlying
learning characteristics for each potency sub-range, training sets of increasing
size were generated by uniform sampling of compounds for each sub-range. For
three activity classes with sufficient numbers of highly potent compounds in
the range 9 - 11, nine balanced training sets of increasing size were created.
The remaining compounds were used to assemble test sets with balanced po-
tency sub-ranges. For low and high potency sub-ranges (5 - 7 and 9 - 11),
small training sets comprising 6-18 compounds were shown to be insufficient
for ML models to predict compound potency accurately. Here, significantly
reduced prediction performance was observed compared to models trained on
larger training sets. Notably, prediction performance remained stable for the
median potency range (7 - 9) across training sets of increasing sizes. For this
sub-range, the prediction error was relatively small for SVR and RFR models
approaching the median potency values of the training sets. Fundamentally,
ML models were not required to learn in order to correctly predict compound
potency. Furthermore, for the sub-range 7 - 9, ML models and MR achieved
the best accuracy compared to 1-NN and 3-NN predictions. Calculations were
repeated for imbalanced training sets producing comparable results. These
observations showed that global prediction accuracy (5 - 11) was mainly de-
termined by compounds falling into the intermediate potency sub-range (7 - 9)
for different methodologies regardless of the differences in potency distributions
within activity classes. In contrast, different characteristics were observed for
highly and weakly potency sub-ranges where larger prediction errors were con-
sistently detected. Therefore, the low prediction errors systematically recorded
for the intermediate potency sub-range (7 - 9) originated the negligible per-
formance differences observed for the different prediction methods (ML and
controls) on the global potency range (5 - 11). Taken together, these findings
provided a clear rationale why traditional benchmark calculations were unable
to assess compound potency prediction methods in a meaningful way. In the
next chapter, compound potency predictions are evaluated in the presence of
structural analogs.
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Chapter 5

Anatomy of Potency Predictions
Focusing on Structural Analogues with
Increasing Potency Differences
Including Activity Cliffs

The following chapter summarizes the research published as
Janela, T.; Bajorath, J. Anatomy of Potency Predictions Focusing on Struc-
tural Analogues with Increasing Potency Differences Including Activity Cliffs.
J. Chem. Inf. Model. 2023, 63, 7032-7044. DOI: 10.1021/acs.jcim.3c01530

The publication reprint is available in Appendix D. Reprinted with permission
from “Janela, T.; Bajorath, J. J. Chem. Inf. Model. 2023, 63, 7032-7044”.
Copyright 2023 American Chemical Society.

Author contributions: Tiago Janela: Methodology, Software, Formal anal-
ysis, Investigation, Writing - original draft preparation, Writing - review and
editing. Jürgen Bajorath: Conceptualization, Methodology, Formal analy-
sis, Writing - original draft preparation, Writing - review and editing.
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5.1 Summary

In the previous chapter, the limitations and challenges of potency bench-
marks were discussed. In this chapter, the goal was to find an alternative
evaluation methodology to compare prediction models. The new test system
was designed to systematically evaluate the prediction accuracy of ML and
control models for potency difference intervals assigned to individual MMPs,
including ACs. Furthermore, an explainable AI methodology was used to gain
a better understanding of the ML model predictions.

To investigate potency predictions over increasing potency difference inter-
vals between close analogs, 10 activity classes selected from high-confidence data
were used for MMP extraction and modeling. To this end, MMS with diverse
potency value ranges were identified using the CCR algorithm.67 Consequently,
MMP training and test sets were built for all activity classes using stratified
and random data splits. For stratified partitioning, each MMP compound was
assigned to either the training or test set. Alternatively, for random partition-
ing MMP compounds were randomly selected and assigned to either training
or test sets. Based on the MMP data sets, compound potency predictions were
performed using ML models (SVR, RFR) and controls (1-NN, k-NN, MR) over
independent trials. Prediction performance was subsequently evaluated using
MAE and subject to statistical significance testing. The analysis for global
compound predictions showed that ML, 1-NN and k-NN displayed very simi-
lar accuracies resulting in meaningful predictions for different activity classes.
Moreover, MR controls yielded higher prediction errors across compound classes
consistent with results from previous chapters (2, 3 and 4 ). Overall, stratified
MMP-splitting showed slightly higher accuracy compared to random partition-
ing, possibly due to the guaranteed presence of close analogs (MMPs) between
training and test sets. This initial assessment of the global prediction perfor-
mance provided a baseline for the evaluation of prediction accuracy based on
MMP potency differences. In order to design a novel MMP-based evaluation
system, test compound distributions were generated over increasing MMP po-
tency difference intervals (e.g., [0, 0.5], (0.5, 1.0]). For the selected activity
classes, test sets showed comparable compound distributions. For most test
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compounds, very small potency differences were observed compared to the cor-
responding MMP partner. With increasing potency differences the number of
test compounds decreased rapidly, resulting in very small numbers of AC com-
pounds. For all activity classes, similar results were observed for stratified and
random MMP splits based on this evaluation scheme. For test compounds,
prediction accuracy decreased with increased MMP potency differences. For
test ACs large prediction errors were detected, demonstrating the failure of ML
models and controls to correctly predict AC compound potency. To study
which features might be determining the MMP predictions, cumulative SV
(SVR)126 and SHAP (RFR)127 values across all MMP test compounds were
determined. Therefore, four groups of features were considered including fea-
tures present and absent in both MMP compounds, present in one compound
or absent in only one MMP compound. Based on this feature analysis, MMP
compound predictions were mainly determined by the positive contribution
of shared MMP features and the negative contribution of absent features in
the corresponding compounds. These findings provided additional evidence for
the similarity of potency predictions for MMP compounds. Taken together,
the newly introduced MMP-based evaluation system allowed the monitoring of
prediction performance over increasing MMP potency difference intervals. Ini-
tial performance assessment across multiple activity classes and MMP data sets
showed that compound predictions made by ML models and controls produced
similar results, consistent with previous findings. However, when combining
MMP-based analysis with stratified partitioning it was revealed that prediction
accuracy decreased with increasing potency differences. This indicated that
the ML models had a notable tendency to predict potency from close analog
compounds in training sets. From this analysis, it is recommended that model
accuracy for compound potency predictions should be monitored based on the
similarity between training and test compounds. In the following chapter, a
new compound potency prediction methodology using a structure-activity FP
coupled with a DL approach is introduced.
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Conditional Variational Autoencoder
Based upon a New Structure-Potency
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6.1 Summary

In the previous chapters, the general limitations associated with benchmark
calculations for compound potency predictions were uncovered using ML and
control models. Under current benchmark conditions, ML and DL models such
as SVR, RFR, DNN and GCN were very competitive, however, the introduc-
tion of novel approaches for compound potency prediction continued to be of
interest. In this chapter, a new methodology for compound potency predictions
was developed by using a novel FP, named the structure-potency FP (SPFP),
which was combined with a CVAE. The SPFP was designed to combine potency
information with compound structure as a unique representation. The design
of SPFP consists of a combination of an extended connectivity FP (structure
module) and a potency module comprising a cumulative range encoding of
the potency values. A CVAE was trained with SPFP to predict the potency
module of test compounds based on the structural module. The ability of
SPFP-CVAE for potency prediction was investigated by comparing prediction
performance against state-of-the-art models (SVR, RFR, DNN) and respective
k-NN, mean regression control models. In addition, traditional ML and DL
models were evaluated in the ability to predict the most potent test compounds.

Therefore, high-confidence activity data was extracted from ChEMBL
database, followed by the random selection of 10 activity classes used for model
generation, optimization and evaluation. To design the SPFP potency module,
various bit schemes (e.g., single value, value range, or cumulative) were initially
explored to encode potency values into a relevant potency interval correspond-
ing to the -logIC50 range from 5 to 11. Among all tested approaches, cumulative
potency encoding displayed the best prediction stability across different activity
classes. Additionally, different bit sizes (100, 500, 1000) were tested to assess
potential resolution limits for the potency module. For the different bit sizes,
prediction performance was very similar among the evaluated potency modules.
Based on these results, the final potency module size was set to a minimum of
100 bits combined with a cumulative encoding scheme. For this potency mod-
ule size, each bit position represented 0.06 log units which inherently restricted
potency predictions to 6% of a log unit. This resolution was considered appro-
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priate for the methodology since it matched the general interval of experimen-
tal accuracy limits. The final SPFP size comprised 2148 bits positions (2048
+ 100). Subsequently, for each activity class, SPFP-CVAE, SVR, RFR, DNN
and control (k-NN, mean regression) models were generated and prediction
performance was evaluated using MAE and RMSE over multiple independent
prediction trials. As an additional control, SPFP-CVAE randomized models
were built using randomly shuffled compound potency values for each activity
class. For traditional ML, DL and simple k-NN models, similar and meaningful
prediction accuracies were observed for different activity classes. SVR models
displayed slightly higher accuracy compared to SPFP-CVAE and the remain-
ing ML models, confirmed by significance statistical analysis. Consistent with
the findings from previous chapters, no performance advantage between DL
and ML models was detected. Furthermore, mean regression and randomized
SPFP-CVAE models showed higher prediction errors compared to the accurate
prediction models for these activity classes. These two control models provided
an upper prediction performance limit for model comparisons. Since predic-
tions of highly potent compounds were most challenging ML, DL and k-NN
models were trained on original sets and evaluated for their ability to predict
the 10% most potent compounds present in the test sets. Here, the prediction
error for the most potent compounds was higher than for the corresponding
global predictions. However, similar prediction performance was observed for
SVR, RFR, SPFP-CVAE and k-NN models. Taken together, SPFP-CVAE was
introduced as a novel framework for compound potency predictions, rivaling
the performance of state-of-the-art ML (SVR, RFR) and DL (DNN) models
under the current benchmark conditions. This prediction framework provides
a possible alternative to the current supervised ML methods. The proposed
approach can be further explored and extended to other molecular property
prediction tasks. The next chapter summarizes the current limitations of com-
pound potency predictions under benchmark settings and discusses alternative
evaluation schemes.
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7.1 Summary

In the previous chapters, limitations of compound potency benchmarks us-
ing ML, DL and control models were investigated across many activity classes.
These studies revealed general limitations preventing a reliable comparison
of potency prediction models. As a consequence, alternative benchmark
calculations should be explored. In this chapter, the general limitations of
compound potency prediction benchmarks are described and summarized.
In addition, an alternative benchmark scheme yielding a more reasonable
evaluation of state-of-the-art prediction models is introduced. Finally, this
chapter includes future directions for improving compound potency predictions.

Based on the results of the previous chapters, several critical observations
were made in the analysis of compound potency prediction benchmark calcu-
lations. The first observation was that k-NN models approached or reached
the prediction performance of complex ML and DL models (Chapter 2 ). For
several of the studied activity classes, accurate prediction models achieved, on
average, MAE values of ∼0.5 and approaching experimental limits (∼0.3).69,128

Moreover, observed differences in prediction accuracies between ML, DL and
k-NN models were only ∼0.1-0.2 MAE. SVR displayed slightly higher accuracy
compared to k-NN, RFR, DNN and GCN models. These findings were further
explored in Chapter 3 and similar trends were observed for a much larger set
of activity classes. Second, random regression models produced errors of ∼0.9
MAE for several activity classes, in contrast to ∼0.5 from the original predic-
tion models. Hence, only small error differences separated randomized models
and ML/DL models, as described in Chapter 2. Next, ML models predictions
were shown to be biased toward median potency values associated with com-
pound potency value distributions. Prediction performance was assessed across
different potency intervals, as detailed in Chapter 4. Larger ML prediction er-
rors were observed for potency sub-ranges 5 - 7 and 9 - 11. In contrast, the
intermediate potency sub-range 7 - 9 yielded the lowest prediction errors similar
to the MR control. Prediction accuracy for the potency sub-range 7 - 9 was
similar to the global prediction accuracy (5 - 11), given that the majority of
the compounds were present in this potency interval. Finally, ML predictions
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were found to be biased by the presence of structural analogs. As described in
Chapter 5, a test system based on MMP compounds was created to determine
the effects of the presence of analogs in training and test sets. This analysis
exposed the tendency of ML models to predict test compound potency based
on the potency values from closest training analogs. Therefore, the presence of
close analogs should be limited and can be achieved using AS-based data parti-
tioning. Based on these previous findings, alternative benchmark systems must
be explored to further improve method comparisons. As a proof-of-concept, a
new test system was introduced by generating ML models in the presence of
inactive compounds (with -logIC50 set to 0). These ML models were derived
for training sets with an increasing number of inactive compounds using two
different inactive selection strategies. Inactive compounds were either selected
randomly selecting compounds from different activity classes (random selec-
tion) or from a single activity class (homogeneous selection). For the studied
activity classes, prediction performance for active compounds decreased with
increasing numbers of inactive compounds. In addition, increasing differences
between ML and control models were observed. DNN models displayed larger
prediction errors compared to SVR and RFR models. Moreover, prediction
models trained with randomly selected inactive compounds achieved lower pre-
diction accuracy compared to homogeneous models because this first selection
method increased the training compound diversity. In contrast, simple k-NN
calculations were less affected by the addiction of inactive training compounds,
given that this addition did not substantially replace nearest neighbors of active
training compounds. Therefore, benchmark calculations with the addition of
inactive training compounds resulted in larger differences between prediction
models compared to conventional benchmark systems. Finally, with the in-
troduction of novel benchmark concepts for model comparison, computational
approaches should be more closely combined with experimentation. Prospective
prediction of experimentally confirmed potent compounds provides an ultimate
measure for the relevance of ML models and enables more realistic methodolog-
ical comparisons.
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Chapter 8

Conclusion

Compound potency prediction is of major importance in computational
medicinal chemistry. Over the years, an increasing number of novel predic-
tion methodologies have been introduced following the introduction of DL ar-
chitectures in pharmaceutical research. Together with the increase in avail-
able high-quality data, these approaches aim to reduce experimental cost and
time requirements. Typically, new prediction methods are evaluated and com-
pared to state-of-the-art models using conventional benchmark calculations.
These comparison schemes usually rely on highly curated data partitioned into
training and test sets for model building and evaluation over multiple rounds
of cross-validation. Model performance is evaluated with commonly used re-
gression metrics and statistical significance analysis. ML models of increasing
complexity often display only very small performance differences compared to
simpler control models under these conditions. Reasons for these observations
were unknown. Thus, to accurately assess the quality of existing and novel pre-
dictive approaches, further exploration of benchmark calculations was required.
Without properly defined benchmark conditions and clearly stated limitations,
obtaining a reliable assessment of state-of-the-art prediction models is impossi-
ble. The quality of compound data sets used for benchmark calculations must
be carefully determined. Furthermore, it must be analyzed how the presence
or absence of closely related compounds in training and test sets might affect
predictions. Therefore, limitations of conventional compound potency bench-
mark predictions are investigated in detail and from different perspectives. In
the first study (Chapter 2 ), compound potency predictions were performed
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using ML, DL and simple control models and evaluated under different bench-
mark conditions. For 10 activity classes, ML (SVR, RFR) and DL (DNN,
GCN) approaches achieved accurate predictions. However, DL models did not
significantly increase the prediction accuracy of other ML models. Overall,
SVR achieved slightly better performance compared to RFR, DNN and GCN
models. Notably, simple k-NN models reached or surpassed the performance
of increasingly complex ML and DL models, under these evaluation conditions.
Furthermore, MR and random regression control calculations showed prediction
accuracy approaching ML and DL performance, within less than 0.5 orders of
magnitude. Furthermore, for test sets of structurally unique and highly potent
compounds, ML, DL and simple k-NN displayed similar prediction accuracy,
followed by MR models for the majority of activity classes. Based on these find-
ings, further evaluation of benchmark calculations for compound potency pre-
dictions was required. In Chapter 3, compound potency prediction analysis was
further extended to 376 activity classes using SVR and control models. SVR,
1-NN and k-NN models displayed similar prediction performance across all ac-
tivity classes. In addition, the influence of training and test set sizes on model
performance was investigated. SVR, 1-NN and k-NN models were derived for
the largest 45 activity classes using differently sized training and test partitions
(80/20% and 50/50%). Under these conditions, differences between prediction
methods were negligible, indicating little influence of varying training set sizes
in model performance. Furthermore, the effects of activity class composition
and potency range distribution as potentially limiting factors in benchmark
calculations were investigated. SVR, 1-NN and k-NN models were developed
for data sets with a reduced number of close neighbors and balanced potency
distributions. For these two data set modifications, prediction errors increased,
however, differences in performance between SVR, 1-NN and k-NN remained
minimal. This large-scale analysis showed that conventional benchmark cal-
culations for comparing predictive models had general limitations, reinforcing
the need for further investigations. In the third study (Chapter 4 ), the impact
of potency value distributions and corresponding sub-ranges on compound po-
tency prediction was investigated. ML and control models were generated for 8
suitable activity classes and predictive performance was assessed for the entire
potency range (-logIC50: 5 - 11). Overall, SVR, RFR, 1-NN and 3-NN mod-
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els achieved similar prediction accuracy, consistent with previous observations.
Moreover, test compounds were grouped in potency sub-ranges (5 - 7, 7 - 9, 9
- 11) and prediction performance was re-evaluated for each potency sub-range.
For weakly (5 - 7) and highly (9 - 11) potent compounds, larger prediction
errors were observed compared to the intermediate potency sub-range (7 - 9),
which displayed consistently high accuracy similar to the entire potency range
(5 - 11). Moreover, performance differences largely increased between MR and
remaining ML models, for the outer potency sub-ranges (5 - 7 and 9 - 11) com-
pared to the 7 - 9 sub-range where ML and MR control models closely matched
prediction performance. Furthermore, training sets of increasing size were gen-
erated to analyze the learning characteristics of each potency sub-range. ML
and control models were developed using these training sets and prediction per-
formance was evaluated for each potency sub-range individually. SVR, RFR,
1-NN and 3-NN models showed an incremental increase in prediction accuracy
for the potency sub-ranges 5 - 7 and 9 - 11, together with increasing performance
differences compared to MR models when training set sizes were augmented.
Surprisingly, for potency sub-range 7 - 9, the performance of SVR and RFR
models remained stable and close to the median training value for increasing
training set sizes. Thus, no learning was required for ML models to correctly
predict compound potency in the intermediate sub-range. These findings pro-
vided a clear explanation as to why compound potency predictions could not
be adequately evaluated using standard benchmark calculations. Therefore,
in the next study (Chapter 5 ), a new test scheme for monitoring model per-
formance over potency difference intervals of MMP compounds was explored.
Accordingly, ML and control models were derived using MMP-based data sets
using different MMP data partitions. Similar to previous observations, SVR,
RFR, 1-NN and k-NN models showed comparable prediction accuracy for ran-
dom and stratified data partitions on all activity classes. Moreover, for MMP
compounds, prediction errors increased with increasing potency for SVR, RFR,
1-NN, k-NN and MR control models. Additionally, the models’ inability to
correctly predict the potency of AC compounds was highlighted. Thereafter,
SV/SHAP formalism was employed to identify features driving MMP com-
pound predictions of SVR and RFR models. ML feature analysis showed that
MMP potency predictions were determined by positive contributions of fea-
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tures shared between MMP compounds and negative contributions of absent
features in MMP compounds independent of their potency differences. These
observations provided an additional rationale for prediction errors over increas-
ing potency difference intervals. In Chapter 6, a novel DL-based methodology
was introduced for compound potency prediction based on an FP design encod-
ing both compound structure and potency (SPFP) information in combination
with a CVAE model (termed SPFP-CVAE). In contrast to learning relation-
ships between compound structures and potency values, SPFP-CVAE provided
a framework for the prediction of specific bit settings in the potency module
from settings in a corresponding structural module. Thus, potency module pre-
dictions were derived by sampling from the CVAE decoder architecture using
the FP structural module. Therefore, SPFP-CVAE’s ability to predict com-
pound potency was compared to state-of-the-art ML, DL and control models.
The SPFP-CVAE methodology performed similarly to SVR, RFR, k-NN and
DNN models across all studied activity classes. In light of benchmark limita-
tions, the prediction of highly potent compounds was of particularly high inter-
est. Therefore, SPFP-CVAE was further evaluated and compared to other ML
models. Prediction accuracy for the most potent compounds was comparable
for SPFP-CVAE, SVR, k-NN and DNN models. Finally, Chapter 7 summarized
the general limitations of conventional benchmark calculations for compound
potency predictions uncovered in the previous chapters. Importantly, k-NN
models reached or surpassed the performance of more complex ML models and
only confined accuracy differences were observed for ML and control models
compared to randomized models (Chapters 2 and 3 ). Furthermore, ML predic-
tions were biased by median potency values (Chapter 4 ) and available structural
analogs (Chapter 5 ). Moreover, a novel proof-of-concept regression benchmark
system was introduced (Chapter 6 ). ML and control models were derived in
the presence of inactive training compounds and the performance of active test
compounds was evaluated. Increasing the number of inactive training com-
pounds increased prediction errors for all approaches and larger performance
differences were consistently observed for SVR, RFR, DNN and k-NN control
models. Finally, future directions for compound potency predictions were dis-
cussed. These included the need for novel approaches for model performance
assessment and experimental evaluation of predicted potent compounds. In
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conclusion, this dissertation explored the current state of conventional bench-
mark calculations for compound potency predictions using ML models. As
chemical libraries increase in size, the use of ML methods will further increase.
Consequently, rigorous benchmarking of proposed state-of-the-art methods is
essential. Conventional benchmark calculations are currently insufficient to as-
sess the performance of ML methods in potency prediction in a meaningful way.
The limitations unveiled herein emphasize the need for novel benchmark sys-
tems capable of reliably comparing different models, especially for their ability
to predict potent compounds in prospective applications. Assessing the ability
of ML models to correctly detect potent compounds should outweigh statistical
analysis of benchmark performance. In addition, the availability of highly cu-
rated and standardized data sets for ML will be essential for the field to further
progress. This especially applies to academia, which mainly relies on publicly
available data.
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Simple nearest-neighbour analysis meets the 
accuracy of compound potency predictions 
using complex machine learning models

Tiago Janela & Jürgen Bajorath     

Compound potency prediction is a popular application of machine learning 
in drug discovery, for which increasingly complex models are employed. 
The general aim is the identification of new chemical entities that are 
highly potent against a given target. The relative performance of potency 
prediction models and their accuracy limitations continue to be debated 
in the field, and it remains unclear whether deep learning can further 
advance potency prediction. We have analysed and compared approaches 
of varying computational complexity for potency prediction and shown 
that simple nearest-neighbour analysis consistently meets or exceeds 
the accuracy of machine learning methods regarded as the state of the 
art in the field. Moreover, completely random predictions using different 
models were shown to reproduce experimental values within an order of 
magnitude, resulting from the potency value distributions in commonly 
used compound data sets. Taken together, these findings have important 
implications for typical benchmark calculations to evaluate machine 
learning performance. Simple controls such as nearest-neighbour analysis 
should generally be included in model evaluation. Furthermore, the narrow 
margin separating the best and completely random potency predictions is 
unrealistic and requires the consideration of alternative benchmark criteria, 
as discussed herein.

In cheminformatics and medicinal chemistry, the prediction of com-
pound potency or other molecular properties plays a central role. 
For potency prediction, ligand- and structure-based approaches are 
applied1–5, many of which employ machine learning (ML)5. As in other 
areas where artificial intelligence has become a focal point, complex 
deep learning architectures are increasingly used for potency/property 
prediction, in both structure- and ligand-based modelling5–12. How-
ever, despite apparent advances, some of these predictions are also 
controversially viewed13–15.

Ligand-based potency prediction accounting for nonlinear struc-
ture–activity relationships is a mainstay in cheminformatics. To this 
end, supervised ML models are derived on the basis of sets of known 

active compounds to predict the potency of new molecules. While 
prospective applications to identify novel active compounds represent 
the ultimate goal, model performance is initially assessed via bench-
marking, which is a prerequisite for reporting new computational 
approaches. In typical benchmark settings, compound data sets with 
activity against a particular target (often termed activity classes) are 
divided into training and test sets and predictions are evaluated using 
cross-validation protocols. This route is conventionally followed when 
reporting new methods and prediction models.

In our in-house efforts to develop computational approaches 
for the identification of novel active compounds and prediction of 
their potency, we have investigated hundreds of activity classes with 
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ML models
For each activity class, we generated SVR, RFR, DNN and GCN potency 
prediction models using standard protocols for the complete data set 
and size-reduced sets of random composition or increased diversity 
(Methods). As a control, kNN predictions were carried out in which 
the potency value of the one, two or three most similar training com-
pounds was assigned to each test compound (averaged if necessary; 
Methods). As an additional control, a ‘median regressor’ (MR) was 
applied that assigned the median potency value of a given training set 
to each test compound.

Both kNN and MR calculations provided reference points for 
predictions with ML models of increasing complexity. Independent 
potency prediction trials using different models were evaluated on 
the basis of the mean absolute error (MAE) and root mean square error 
(RMSE), as shown in Fig. 2 and Extended Data Fig. 2, respectively. For 
both measures, the same trends were observed, with a further increase 
of RMSE compared with MAE values by ~0.1–0.2 log units.

For the randomly selected activity classes, very similar results were 
obtained. The MAE/RMSE distributions were generally narrow, except 
for DNN/GCN and some of the size-reduced training sets, indicating 
stable predictions over independent trials. As expected, differences 
between the value distributions in boxplots were at least moderately 
statistically significant in the majority of cases (Supplementary Table 1), 
However, for original training sets (comprising 80% of the compounds 
per class, Methods), prediction accuracy of ~0.5 MAE was observed for 
all activity classes. The prediction accuracy of SVR was overall slightly 
superior to that of RFR, DNN and GCN. Importantly, the accuracy of the 
simple kNN predictions was very similar to or better than the accuracy 
of the ML models. For the baseline MR predictions assigning a constant 
median potency value to all test compounds, a class-dependent accu-
racy of ~0.8–1.0 MAE was obtained.

For nine of the ten activity classes, independent GCN predictions 
were reported in a large-scale study by Sakai et al.12. The GCN results 
are compared in Table 1 (right-hand side). Sakai et al. used many more 
active compounds for modelling because these investigators did not 
apply specific data confidence criteria as in our analysis (Methods). 
Nonetheless, the accuracy of the independent GCN predictions was 
encouragingly similar. However, kNN calculations were overall more 
accurate than GCN predictions (Table 1).

We also derived models for training sets of reduced size to 
investigate the potential influence of data sparseness on learning.  

methods of greatly varying complexity. In these studies, we have fre-
quently observed that methodological complexity does not scale 
with prediction accuracy. Herein, we report representative potency 
predictions demonstrating that a simplistic k-nearest-neighbour (kNN) 
approach consistently meets or exceeds the accuracy of advanced ML 
methods, including support vector regression (SVR), a widely applied 
standard in the field, random forest regression (RFR), deep neural 
network (DNN) and graph convolutional neural network (GCN) with 
representation learning. DNN and GCN represent increasingly popular 
deep learning methods for molecular potency/property prediction. 
Furthermore, we also report different control calculations to determine 
the intrinsic accuracy limitations of compound potency predictions 
based on available activity data, yielding some surprising results. Taken 
together, these findings also suggest that conventional benchmark 
criteria to assess the predictive performance of ML models require 
careful reconsideration.

Results
Compound data sets and potency value distributions
From ChEMBL16, we randomly selected ten activity classes compris-
ing at least 1,000 compounds meeting predefined data confidence 
criteria (Methods). Large activity classes were selected to ensure the 
availability of reasonably sized training sets for deep learning. Table 
1 (left-hand side) summarizes the composition of these compound 
classes. As expected for large activity classes originating from medicinal 
chemistry, the compounds were active against popular pharmaceuti-
cal targets.

Figure 1a compares the potency (pIC50) value distributions of the 
ten randomly selected classes, for which a lower potency threshold of 
10 µM was applied, and Fig. 1b shows the potency value distribution 
of each class. As typically observed for compounds from medicinal 
chemistry sources, there was substantial overlap between potency 
values in the micromolar to high-nanomolar range, but there were also 
large class-dependent differences (Fig. 1a). Median potency values fell 
into the pIC50 range 6–8 (Fig. 1b).

Extended Data Fig. 1 shows structural similarity versus potency 
difference plots for the activity classes, revealing the presence of many 
structurally diverse compounds with varying potency differences 
and decreasing numbers of structurally similar compounds per class. 
As a general trend, increasing structural similarity corresponded to 
decreasing potency differences (with exceptions), as expected.

Table 1 | Activity classes and performance comparison

ChEMBL target 
ID

Target name Present study Sakai et al.12

Number of 
compounds

kNN (MAE) GCN (MAE) Number of 
compounds

GCN (MAE)

220 Acetylcholinesterase 1,699 0.49 ± 0.019 0.53 ± 0.045 9,737 0.57 ± 0.019

230 Cyclooxygenase-2 1,166 0.43 ± 0.033 0.49 ± 0.036 5,085 0.68 ± 0.031

260 MAP kinase p38 alpha 1,351 0.45 ± 0.018 0.52 ± 0.03 4,518 0.54 ± 0.017

262 Glycogen synthase kinase-3 beta 1,000 0.52 ± 0.023 0.58 ± 0.031 2,702 0.67 ± 0.022

279 Vascular endothelial growth factor 
receptor 2

2,273 0.56 ± 0.018 0.63 ± 0.05 8,936 0.55 ± 0.012

284 Dipeptidyl peptidase IV 1,316 0.48 ± 0.026 0.55 ± 0.035 4,517 0.58 ± 0.010

1865 Histone deacetylase 6 1,034 0.49 ± 0.020 0.50 ± 0.027 2,725 0.47 ± 0.023

2409 Epoxide hydratase 1,227 0.63 ± 0.028 0.59 ± 0.024 — —

4005 PI3-kinase p110-alpha subunit 1,262 0.47 ± 0.028 0.53 ± 0.063 5,699 0.48 ± 0.012

4822 Beta-secretase 1 1,116 0.44 ± 0.023 0.47 ± 0.033 7,554 0.57 ± 0.028

Mean value — 0.48 ± 0.023 0.53 ± 0.039 — 0.57 ± 0.019

Activity classes investigated in our study are reported. For nine of these ten classes, potency value predictions using GCN were also carried out in an independent study12. For these classes, 
the GCN predictions are compared. In addition, the results of kNN calculations are reported. For all predictions, s.d. values are provided. Mean performance values are calculated for the nine 
common classes.
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For randomly selected size-reduced training sets (20% of the com-
pounds, Methods), a gradual increase in MAE/RMSE values was 
observed, as expected (Fig. 2). Here, the gap between the prediction 
accuracy of kNN/SVR on the one hand and DNN/GCN on the other 
widened. Moreover, we generated structurally diverse training sets of 
the same size (20% of the compounds) through dissimilarity selection 
(Methods). For diverse training sets, the same trends were observed. In 
this case, DNN approached and GCN partly exceeded the MAE level of 
MR. However, even for diverse sets, which were designed to principally 
disfavour kNN, the accuracy of kNN calculations remained closely 
similar to SVR, with 0.6–0.8 MAE (Fig. 2).

Predictions for unique and highly potent compounds
As another control for kNN predictions, each activity class was parti-
tioned into analogue series (Methods), representing a form of cluster-
ing sensitive to medicinal chemistry applications (compounds from 
analogue series share the same core structure), and the largest analogue 
series was removed as a hold-out set from each class. Then, models 
were derived on the basis of all remaining compounds and used to 
predict the potency of the hold-out set in an individual trial. The pre-
dictions were evaluated on the basis of the MAE and RMSE, as shown 
in Fig. 3 and Extended Data Fig. 3, respectively. With the exception of 
two activity classes (target IDs 2409 and 4822) where kNN prediction 
accuracy decreased to ~1.5 MAE, similar prediction accuracy was again 
observed for all models.

Furthermore, extrapolative predictions were attempted after 
removing the most potent 10% of compounds from each activity class 
as a hold-out set, training models on the remaining (less potent) com-
pounds, and predicting the potency of the hold-out sets. Figure 4 and 
Extended Data Fig. 4 show the results evaluated on the basis of MAE 
and RMSE, respectively. Naturally, under extrapolative conditions, the 
simple MR would be expected to yield the largest errors, as observed. In 
addition, for two of ten activity classes (target IDs 230 and 4822), DNN 
achieved best performance by a margin of ~0.5 MAE. In these two cases, 
the most potent training compounds were overpredicted, resulting 
in more accurate predictions of structurally analogous highly potent 
test compounds. In the remaining cases, the performance of methods 
including kNN was again very similar, with MAE ranging from ~1 to 2, 
depending on the activity class.

Randomized models
Given that the baseline MR approach reached an accuracy of ~1.0 
MAE, that is, within one order of magnitude (tenfold) of experimental 

potency values, we also investigated completely random prediction 
models for kNN and SVR that were obtained by random shuffling of 
potency values across training and test sets. The potency value of each 
compound was randomly assigned to another, thus generating ran-
dom structure–potency relationships for training. These randomizing 
models were applied to predict a randomized test set. Figure 5 shows 
the results obtained for fully randomized kNN and SVR predictions 
compared with MR (which remained constant). Very similar results were 
obtained when models derived from randomized training sets were 
applied to original test sets. Strikingly, random models yielded ~0.8–1.0 
MAE across all data sets. MAE values for kNN slightly increased relative 
to SVR and MR, which were very similar across all activity classes. Thus, 
best predictions obtained for complete data sets and random predic-
tions were only separated by ~0.5 MAE.

Discussion
Prediction of compound potency and other molecular properties is 
one of the major applications of ML in cheminformatics, medicinal 
chemistry and drug design. In the artificial intelligence era, complex 
computational methods are often employed for this purpose. Thus, 
while SVR is a widely recognized standard for potency prediction 
in the field, predictions using various DNN/GCN architectures are 
increasingly reported. The initial evaluation of new computational 
approaches typically relies on compound activity classes and con-
ventional benchmark settings.

The results reported herein point to two critical issues in com-
pound potency predictions that are currently little considered. First, 
our analysis shows that there is little, if any benefit in using complex 
ML models for potency predictions compared with simple kNN calcu-
lations. Second, best-performing ML models and completely random 
predictions are only distinguished by a small MAE margin correspond-
ing to a less than tenfold difference in potency relative to experimental 
observations. Both of these issues require further consideration.

kNN analysis has been successfully used previously in chemical 
similarity searching and compound classification. The underlying prin-
ciple is commonplace in medicinal chemistry: many similar compounds 
(such as structural analogues) have similar potencies. Notable excep-
tions are activity cliffs (that is, structural analogues with large potency 
differences)17. However, since only ~5% of bioactive compounds partici-
pate in the formation of activity cliffs across different activity classes17, 
their influence on potency prediction accuracy on the basis of statisti-
cal modelling is for the most part negligible. This is especially the case 
for large data sets that are dominated by compounds falling into the 
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Fig. 1 | Potency value distributions of activity classes. a, The distributions  
of ten randomly selected activity classes are compared in a density plot,  
in which the data distribution is determined by a kernel density estimation.  
b, Violin plots report the potency value distribution of each class. In a violin plot, 
a value distribution is represented by its maximum value (upper thin line),  

upper quartile (upper thick line), median value (white dot), lower quartile  
(lower thick line) and minimum value (lower thin line). On each side, a density 
plot is shown. The number of samples used to generate the violin plots is 
reported in Table 1 (n, number of compounds).



Nature Machine Intelligence | Volume 4 | December 2022 | 1246–1255 1249

Article https://doi.org/10.1038/s42256-022-00581-6

0.4

0.6

0.8

1.0

1.2

1.4

M
AE

Target ID: 220 Target ID: 230

0.4

0.6

0.8

1.0

1.2

1.4

M
AE

Target ID: 260 Target ID: 262

0.4

0.6

0.8

1.0

1.2

1.4

M
AE

Target ID: 279 Target ID: 284

0.4

0.6

0.8

1.0

1.2

1.4

M
AE

Target ID: 1865 Target ID: 2409

Complete set Random set Diverse set
 

0.4

0.6

0.8

1.0

1.2

1.4

M
AE

Target ID: 4005

Complete set Random set Diverse set
 

Target ID: 4822

kNN SVR RFR DNN GCN MR

Fig. 2 | Prediction accuracy. Boxplots report the distribution of MAE values 
for ten independent potency prediction trials on different activity classes 
(identified by ChEMBL target IDs according to Table 1) using different models 
(kNN, SVR, RFR, DNN, GCN and MR). Results of predictions are reported for 
complete training sets (complete set) and size-reduced training sets (random 
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micro- to high-nanomolar range, which is typically the case for activity 
classes available for benchmarking. Clearly, simple approaches such 
as kNN calculations should generally be used as a reference for the 
evaluation of new computational approaches for compound potency/
property predictions. The results presented herein indicate that it 
might be difficult to firmly establish advantages of ML methods over 
these simple predictions. For size-reduced and structurally diverse 
training sets, kNN rivalled SVR and performed better than DNN/GCN, 
despite the use of large numbers of compounds for learning12. Even for 
hold-out sets of structurally unique or most potent compounds overall 
similar performance was observed for potency prediction models of 
different complexities.

Furthermore, the small margin separating best and random predic-
tions revealed a major shortcoming of conventional benchmarking. 
Simply assigning the median potency value of a training set to any test 
compound (MR) produced an MAE of 0.8–1.0. Notably, this error range 
was closely matched by completely random predictions. These findings 
are a direct consequence of the potency value distributions of activity 
classes from medicinal chemistry, as also shown herein. In practical 
applications, consistently predicting the potency of new compounds 
within one order of magnitude (tenfold) would be a considerable suc-
cess. However, in benchmark settings, random predictions artificially 
yield this level of ‘pseudoaccuracy’. Hence, under these conditions, it 
is very difficult, if not impossible, to assess the ‘true’ performance of 
computational methods.

Consequently, we might preferentially concentrate on prospective 
applications to predict and experimentally verify the potency of novel 
compounds. However, in the virtual screening literature, a frequent 
misconception is that a computational approach is ‘validated’ if one or 
more new active compounds are identified. However, this is not the case 
unless it is conclusively shown that simpler methods do not identify the 
same or similar compounds. In prospective potency prediction, this 
would also require the use of reference methods such as kNN.

There are other challenging prediction tasks that require special con-
sideration. For example, late-stage lead optimization data from medicinal 
chemistry typically contain many very similar compounds with compara-
ble (often relatively high) potencies and only a few ‘outliers’ representing 
activity cliffs. From a statistical point of view, the prevalence of such 
structure–potency relationships also favours simple kNN predictions, but 
they are not applicable to search for the most interesting analogues form-
ing activity cliffs. This leaves much room for methods that are capable of 
quantitatively accounting for statistically underrepresented instances of 
high discontinuity in structure–potency relationships.

In conclusion, in light of the findings reported herein, it is evi-
dent that benchmark settings for computational potency predic-
tions and the apparent performance of complex ML models require 
re-evaluation. An incremental step forward might be focusing meth-
odological assessment on the prediction of hold-out sets containing 
structurally unique and highly potent compounds not considered 
during model derivation. This would at least alleviate some of the 
limitations caused by global potency value distributions and com-
pound similarity relationships in benchmark data sets and address the 
most important practical goal of computational potency prediction. 
Furthermore, benchmark data sets might be designed to equally popu-
late binned potency intervals with compounds from different series. 
Together with the use of kNN as a general reference method, more 
meaningful benchmark settings would help to avoid overestimation 
of potency prediction models and provide a more realistic assessment 
of their potential for practical applications.

Methods
Compounds and activity data
Activity classes were extracted from ChEMBL (version 30)16. Bioactive 
compounds for which direct interactions with a human target protein 
were reported at the highest level of confidence (target confidence 

score 9) and with a numerically specified potency (IC50) value (standard 
relation ‘=’) were selected (IC50 values were recorded as the negative 
decadic logarithm, pIC50). Only compounds with a molecular weight 
of less than 1,000 Da and pIC50 values falling into the range of 5–11 
were retained. Furthermore, compounds designated as ‘potential 
transcription error’, ‘inconclusive’ or ‘not active’ were omitted. Finally, 
potential assay interference compounds were removed using public 
filters18–20. On the basis of these criteria, ten activity classes containing 
a minimum of 1,000 qualifying compounds were randomly selected, 
yielding a total of 13,444 compounds.

Data set design
For each activity class, training sets of different compositions and size 
were randomly selected, including ‘original’ training sets comprising 
80% of the compounds per class (see below), size-reduced sets with 
20% of the compounds and equally sized sets (20%) with increased 
chemical diversity. These diverse sets were generated using the MaxMin 
dissimilarity algorithm21. Initially, pairwise compound similarity was 
systematically calculated using the Tanimoto coefficient22 and a seed 
compound was randomly selected. Then, another compound was 
selected on the basis of the maximum Tanimoto distance to the seed, 
followed by the next compound with largest distance to a compound 
present in the evolving set. Distance-based compound selection was 
repeated until the set contained a predefined number of compounds 
corresponding to 20% of the activity class. For independent models 
and prediction trials, multiple sets were generated on the basis of dif-
ferent seed compounds.

Machine learning
For compound potency prediction, different ML models were 
generated.

Support vector regression. SVR is a variant of support vector 
machines that minimizes the error between predicted and observed 
values by deriving an epsilon-insensitive tube (ε-tube) based on the 
training instances23,24. During training, the samples are projected into 
a higher-dimensional feature space using kernel functions. The width 
of the ε-tube determines the error margin and penalizes samples falling 
outside the tube24. During model optimization, the ε-tube margin is 
adjusted by varying the cost parameter (C) that regulates the trade-off 
between the training errors and margin size.

The regularization hyperparameter C was optimized with the 
values of 0.001, 0.01, 0.1, 1, 10, 100 and 1,000. SVR models with the 
Tanimoto kernel25 were generated using scikit-learn26.

Random forest regression. RFR is a supervised ML method based on 
an ensemble of decision trees. During training, each tree is generated 
by node splitting using randomly selected training samples with boot-
strapping27. The final predictions are derived as the mean value across 
all trees in the forest. The number of decision trees (25, 100, 200), the 
minimal number of samples for a leaf node (1, 2, 5) and the minimal 
number of samples for a split (2, 3, 5) were used as search parameters. 
RFR models were optimized and generated using scikit-learn26.

Deep neural network. A feedforward DNN is a deep learning method 
that maps an input value to its output value by employing a nonlinear 
activation function f(x). The basic DNN architecture consists of an input 
layer, multiple fully connected hidden layers with a variable number of 
neurons, and an output layer. Computational neurons are defined using 
the following equation: y = f(∑ixiwi + b) (refs. 28,29). During training, the 
neuron-associated weights (wi) and biases (b) are iteratively updated 
to minimize the deviation between the predicted and observed output 
values. This optimization process involves calculation of the gradient 
of the cost function and backpropagation through the network until 
a minimal error is obtained.
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For the DNN models, several architectures were evaluated by vary-
ing the number of hidden layers (2 or 3) and the number of neurons per 
layer (100–500) and testing different learning rates (0.1, 0.01, 0.001). 
The Adam30 optimizer was employed for network training, the hyper-
bolic tangent (tanh) and rectified linear unit (ReLU) were tested as acti-
vation functions and the batch size was set to 32. Hyperparameters were 
optimized on the basis of internal validation with 80% and 20% training 
data split. Models were derived over 200 epochs and the early-stopping 
criterion was applied to minimize potential overfitting. All DNN models 
were implemented using TensorFlow31 and Keras (https://keras.io/).

Graph convolutional neural network. GCN is a DNN variant that learns 
object representations directly from graphs32,33, defined as G = (V, E), 
with V and E being a set of vertices (nodes) and edges, respectively. In 
molecular graphs, nodes correspond to atoms and edges to bonds. 
Learned features comprise local neighbourhoods of atoms annotated 
with properties (for example, atom type, valence and aromaticity) that 
are obtained by graph message passing through convolutional layers 
and assembled by a graph-pooling layer. The representation format 
is a neural fingerprint that is generated by combining all node-level 
feature vectors. The terminal GCN output layer generates the predicted 
property value associated with a learned molecular graph representa-
tion. Similarly to the DNN optimization procedure, the training error 
is minimized through a cost function.

The channel width of graph convolutional layers was determined 
using value settings of (64, 64), (256, 256), (512, 512) and (1,024, 1,024). 
For the atom-level dense layer, the number of channels was optimized 
(64, 256, 512 or 1,024). Furthermore, different learning rates (0.01, 
0.001) and dropout values (0, 0.25, 0.5) were investigated. As for DNNs, 
Adam was used as the optimization method. ReLU and tanh were used 
as activation functions for the convolutional and graph-pooling layers, 
respectively. The GNN architecture for potency prediction included 
two convolutional layers. GCN parameters were optimized using an 
80:20 training data split. Training was carried out with batch normali-
zation for a maximum of 200 epochs with early-stopping option. GCN 
models were built using DeepChem (https://deepchem.io/).

k-nearest neighbour. kNN is a non-parametric regression method that 
predicts test instances based on the shortest distance (highest similar-
ity) to training samples34. For example, for 1-NN, the potency value of 
the most similar training compounds is assigned to a test compound; 
for 3-NN, the average potency of the top-three most similar compounds 
is predicted for the test compound.

For kNN predictions, the one, three and five most similar com-
pounds were evaluated to identify the best-performing k value. kNN 
calculations were carried out using scikit-learn.

Median regression. As a control, random predictions were carried 
out by assigning the median potency value of a given data set to each 
test compound from this set. Hence, all compounds were predicted to 
have the same (median) potency.

Random predictions. As another control, randomized predictions were 
carried out by random shuffling of potency values across compounds 
of each training set, which is often referred to as y randomization35.

Calculation protocol. For all supervised ML models, a uniform calcula-
tion protocol was used. For original randomly selected training sets, 
the remaining 20% of the compounds per class were used as test sets. 
For size-reduced training sets, 5% of the compounds per class were 
randomly selected as test sets (ensuring constant training-to-test 
set ratios). Hyperparameters were optimized using tenfold internal 
cross-validation via grid search to minimize the model error. For each 
data set and method, ten individual prediction trials with indepen-
dently derived models were carried out.

Molecular representations, similarity calculations and 
analogue series
For kNN, SVR and DNN, compounds were represented using the stand-
ard extended connectivity fingerprint with diameter 4 (ECFP4)36. The 
folded 2,048-bit version was generated using RDKit (http://www.rdkit.
org/). For kNN, Tanimoto similarity22 was calculated on the basis of 
ECFP4. For GCN models, compounds were transformed into a binary 
vector comprising 75 atom features using DeepChem. For each activity 
class, analogue series were systematically identified using the com-
pound–core relationship algorithm37.

Performance measures
To assess model performance, MAE and RMSE were calculated to com-
pare predicted and observed potency values:

MAE (y, ŷ) = 1
n

n
∑
i=1

|yi − ŷi| (1)

RMSE (y, ŷ) =
√√√
√

n
∑
i=1

(yi − ŷi)
2

n . (2)

Here y is the experimental and ̂y the predicted potency value.
For the complete compound sets, statistical significance assess-

ment of value distributions from predictions was based on MAE values 
using the non-parametric Wilcoxon test38. The alpha threshold was set 
to 0.05. The P values were compared with alpha (P ≤ 0.05) and the null 
hypothesis was rejected/accepted.

Data availability
Publicly available compounds and activity data including com-
pound activity classes and sets of analogue series extracted from 
these classes were obtained from ChEMBL using the data selection 
and calculation protocols provided in Compounds and activity data 
and Molecular representations, similarity calculations and analogue 
series. In addition, all data sets used for the calculations reported 
herein are freely via the following link: https://github.com/TiagoJanela/
ML-for-compound-potency-prediction. Source data are provided with 
this paper.

Code availability
All calculations were carried out using public domain programs and 
computational tools.
Additional code used for our calculations is freely available via the  
following link: https://github.com/TiagoJanela/ML-for-compound- 
potency-prediction. The code is also available at https://doi.
org/10.5281/zenodo.7238586 (ref. 39).
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Abstract: Predicting compound potency is a major task in computational medicinal chemistry, for
which machine learning is often applied. This study systematically predicted compound potency
values for 367 target-based compound activity classes from medicinal chemistry using a preferred
machine learning approach and simple control methods. The predictions produced unexpectedly
similar results for different classes and comparably high accuracy for machine learning and simple
control models. Based on these findings, the influence of different data set modifications on relative
prediction accuracies was explored, including potency range balancing, removal of nearest neighbors,
and analog series-based compound partitioning. The predictions were surprisingly resistant to
these modifications, leading to only small error margin increases. These findings also show that
conventional benchmark settings are unsuitable for directly comparing potency prediction methods.

Keywords: compound potency predictions; activity classes; machine learning; nearest neighbor
controls; benchmark calculations

1. Introduction

Compound potency prediction is of major interest in medicinal chemistry and drug
design. Many different computational methods have been introduced for potency pre-
dictions based on structures of ligand-target complexes or small molecules [1–11]. These
approaches have different computational complexity and sophistication. Traditionally,
quantitative structure–activity relationship (QSAR) methods have played a major role in
medicinal chemistry [1]. Classical QSAR models are based on two-dimensional representa-
tions of small molecules, typically employ numerical descriptors of molecular structure
and chemical properties, and represent linear regression models to predict the potency
of newly designed compounds to extend analog series. Thus, QSAR only applies to con-
generic compounds if linear structure–activity relationships (SARs) exist [1]. In addition,
for the estimation of interaction energies from experimental or modeled protein–ligand
complexes, a variety of scoring functions were developed that are, for the most part, based
on force fields from molecular mechanics [2]. Estimating interaction energies using scoring
functions of different designs and complexity is used as a rough approximation of binding
(free) energies and relative potencies of other ligands (without calculating exact potency
values). Scoring functions apply to diverse compounds and are critically important to pri-
oritize putative ligands from structure-based virtual screening, despite their approximate
nature [2]. At a higher level of sophistication, free energy methods attempt to calculate
exact binding free energy values from protein–ligand complexes based on thermodynamic
principles [3]. Particularly popular in medicinal chemistry and drug design are free energy
perturbation methods to calculate relative binding free energies of congeneric compounds
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based on molecular dynamics simulations by “alchemically” transforming one analog
into another. Compared to force field calculations, relative free energy calculations are
computationally very expensive. Although free energy methods have been available for
three or four decades, they have been increasingly applied in recent years in drug discovery
due to advances in computational power and conformational sampling procedures [3].

Furthermore, in structure-based design, binding energy, and compound potency
values can also be calculated using methods that combine molecular mechanics (MM)
treatment of protein–ligand complexes with quantum mechanical (QM) representations
of narrowly defined ligand binding sites (termed QM/MM approaches) [4]. The under-
lying idea is achieving accurate energy calculations in binding sites through quantum
mechanics while reducing computational costs for the remainder of complexes to render
the calculations feasible. For ligand-based potency prediction, machine learning (ML)
methods play a major role [5–7]. Therefore, suitable ML methods must be applicable for
regression. Compared to QSAR, the major attraction of computationally more complex
ML approaches is their ability to account for non-linear SARs and predict potency values
of structurally diverse compounds. Non-linear SARs are typically observed in medicinal
chemistry when optimizing compound series, which intrinsically limits the applicability
domain of classical QSAR. Accordingly, ML regression models have become very popular
for compound potency prediction. The majority of approaches include ML mainstay meth-
ods such as random forest regression [6] or support vector regression (SVR) [7,8]. Over
the years, SVR has become the probably most frequently used ML approach for numerical
potency prediction and a standard in the field. Recently, deep neural networks (DNNs)
have also been increasingly applied for this task [9–11]. Many different DNN architectures
can be adapted for numerical property predictions, including compound potency. This
methodological versatility is a major attraction of DNNs [9–11]. Moreover, DNNs enable
the evaluation of new concepts for potency prediction. For example, convolutional neural
networks can predict numerical properties from voxel representations of ligand binding
sites. For chemical applications, graph neural networks have become increasingly popular,
and they have also been adapted for ligand affinity predictions. Therefore, graph represen-
tations of molecular interactions are extracted from structures of protein–ligand complexes
and used as input for deep graph neural networks to predict the affinity of small molecular
ligands. Exploring novel concepts for potency predictions is still in its early stages (and
some findings are controversial). Hence, it will take time until these approaches mature.
While DNN calculations are computationally much more expensive compared to other
ML approaches, they are not necessarily superior for potency prediction [12], as further
discussed below.

The prediction of compound potency (and other biological or physico-chemical molec-
ular properties) is carried out to benchmark or calibrate computational approaches and, in
addition, prospectively predict novel active compounds. While prospective applications
are naturally most interesting in medicinal chemistry and drug discovery, benchmarking is
essential for the initial evaluation of predictive models but insufficient to ensure successful
applications. Typical benchmark conditions for numerical potency prediction involve using
sets of specific active compounds (often termed activity classes) with varying potency
divided into training sets for model derivation and test sets for evaluation, usually with
cross-validation on the basis of multiple independent prediction trials. Analogous bench-
mark settings are applied to assess compound classification models (derived, for example,
to distinguish between active and inactive compounds).

Recently, we have shown that potency prediction methods of varying computational
complexity display similar predictive performance [12]. Specifically, k-nearest neighbor
(kNN) analysis was found to reproduce experimental potency values of test compounds
within an order of magnitude comparable to increasingly complex ML methods, including
DNNs. In 1-NN analysis, test compounds are compared to training set compounds via
similarity calculations, and the potency value of the most similar training compound is
assigned to a given test compound. For 10 different activity classes, there was no advantage
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of DNNs over SVR and kNN calculations, with SVR achieving the overall best performance,
albeit by only small margins [12]. Hence, simple predictions were often as accurate as
increasingly complex ML methods. Furthermore, assigning the median potency value
of a training set to any test compound, corresponding to median regression (MR), often
approached the accuracy of ML models. Moreover, randomized prediction models often
reproduced experimental potency values within an order of magnitude, and there was only
a confined prediction error interval into which random and ML predictions fell.

Questions raised by these observations included whether these findings might gen-
eralize across large numbers of activity classes and whether their composition and/or
potency ranges might limit benchmarking evaluations. Therefore, in this study, we have
systematically investigated compound potency predictions on an unprecedentedly large
scale and designed specific data set modifications to investigate their influence on the
prediction accuracy of different reference methods. Potency predictions were surprisingly
stable across hundreds of compound classes, and relative method performance was largely
resistant to specific data set modifications. Furthermore, predictions using ML and sim-
ple control models were only distinguished by small error margins, revealing intrinsic
limitations of conventional benchmark calculations.

2. Results
2.1. Study Concept

First, we aimed to obtain a global view of potency prediction characteristics and
relative accuracies of selected methods. Therefore, we carried out systematic potency value
predictions on 376 qualifying activity classes from medicinal chemistry sources [13] using
SVR and controls, including 1-NN, additional kNN, and MR calculations (see Methods).
The activity classes were curated, ensuring high-confidence potency data were available
for all compounds. SVR was selected as the overall preferred ML approach in our previous
comparison [12]. Second, based on the obtained results, we then investigated the influence
of specific data set modifications on relative prediction accuracies.

2.2. Large-Scale Predictions

Predictions were assessed by calculating the mean absolute error (MAE) for predicted
and experimental logarithmic potency values (see Section 4). Given the very large number
of activity classes and calculations, all results are made available in a data deposition
via the following link: https://uni-bonn.sciebo.de/s/vU5vnG5wjQPTpd1 (accessed on
28 March 2023)). In addition, for representative subsets of activity classes, results are
reported in the following and as Supplementary Materials.

For the 376 activity classes, the results of the predictions were surprisingly similar.
While MAE values varied moderately across different classes, it was generally observed
that 1-NN/kNN predictions approached or met SVR performance, consistent with our
earlier observations for 10 activity classes [12]. In addition, most predictions produced
meaningful results, with median MAE values over multiple independent trials falling
within one order of magnitude, corresponding to less than 10-fold prediction error. Notably,
for best predictions, MAE values of 1 or larger were not observed for any activity class.
Supplementary Figure S1 shows the results for the 45 largest activity classes that were
representative of all 376 activity classes. Hence, only limited class-dependent differences
were detected.

Supplementary Figure S1a,b compare predictions for the 45 activity classes based upon
80/20% and 50/50% training/test compound splits, respectively. Again, these predictions
yielded very similar results. Hence, different training set sizes had little influence on
the predictions. Thus, the predictions were stable, as indicated by narrow MAE value
distributions across different trials.

Figure 1 shows exemplary compounds from eight of the 45 activity classes (and reports
their targets) used in the following to illustrate results obtained for the 45 largest classes.
In addition, Figure 2 shows the results of the original predictions for the eight activity
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classes and 80/20% splits, illustrating trends commonly observed for all classes. Although
SVR mostly achieved the highest accuracy (lowest MAE values), followed by kNN/1-NN,
the differences between median values were typically only very small, ~0.1 MAE or even
less. Statistically significant differences were only observed for about half of the classes
(Wilcoxon test, p-value < 0.005; see Section 4). Even the simplistic MR prediction, assigning
the constant median potency value of the training set to all test compounds, typically
yielded prediction accuracies close to 1.0 MAE. Thus, these findings revealed that (i) even
simple control predictions generally produced fairly accurate results and that (ii) there
was no sufficient separation between SVR and kNN or MR controls to enable a realistic
assessment of ML potency prediction methods. Across as many as 376 different activity
classes, essentially no cases were detected where prediction accuracy was low and simple
controls failed compared to SVR.
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Figure 2. Prediction accuracy. Boxplots report the distribution of MAE values for potency predictions
over 10 independent trials on the eight activity classes in Figure 1 using 1NN, kNN, SVR, and MR
models (applying a training/test set compound split of 80:20%). In boxplots, the upper and lower
whiskers indicate maximum and minimum values, the boundaries of the box represent the upper
and lower quartiles, values classified as statistical outliers are shown as diamonds, and the median
value is indicated by a horizontal line.

These findings raised the question of whether the activity classes could be modified in
specific ways to increase the prediction accuracy separation of SVR and the kNN controls
and hence obtain an improved basis for methodological comparisons. These modifications
altered the original composition of activity classes by design, thus producing model data
sets. The predictions were then repeated on the resulting variants of the 45 largest activity
classes. The following shows representative results for the subset of eight activity classes.

2.3. Potency Range Balancing

We first determined the potency value distributions across the largest activity classes.
As shown in Supplementary Figure S2a, potency distributions in activity classes from
medicinal chemistry are not uniform but skewed because most compounds are gener-
ally active in the low micromolar range. Therefore, we reasoned that the dominance of
compounds with micromolar potency values might explain the strong performance of
kNN and MR relative to SVM. Consequently, we generated activity class variants with
balanced potency distributions (see Section 4), as shown in Supplementary Figure S2b. In
the modified data sets, most potency sub-ranges were evenly populated (except sub-ranges
containing limited numbers of most potent compounds). Thus, balancing eliminated the
bias of potency value distributions towards the low micromolar range. We then repeated
the predictions on the balanced activity class variants. Since balancing inevitably led to a
reduction in data set size, we also generated equally sized data sets with original potency
distribution as a control (50/50% training/test compound splits). Figure 3 reports the
results for the predictions on balanced data sets that were similar to those of the original
predictions. As a consequence of potency balancing, the median potency values of the
training set increased, which also increased the MAE of MR in several cases. However, the
performance of kNN/1-NN compared to SVR essentially remained constant.
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Figure 3. Prediction accuracy for activity classes with balanced potency value distributions. Boxplots
report the distribution of MAE values over 10 independent trials for the eight activity classes after
balancing their potency value distributions. As a control, results are reported for the original data
sets that were reduced by random compound removal to the same size as the balanced sets. In
boxplots, the upper and lower whiskers indicate maximum and minimum values, the boundaries of
the box represent the upper and lower quartiles, values classified as statistical outliers are shown as
diamonds, and the median value is indicated by a horizontal line.

2.4. Removal of Nearest Neighbors

In light of these findings, we systematically removed nearest neighbors from the
original activity classes. Therefore, exhaustive pairwise compound similarity calculations
were carried out for each class; compounds were ranked according to highest similarity
to nearest neighbors, and the top 50% of compounds from the ranking were removed
from the data sets. As a size control, data sets containing half of the original compounds
were randomly selected. Figure 4 shows the results of predictions after nearest neighbor
removal and equally sized control data sets (all 45 activity classes produced equivalent
results). Nearest neighbor removal generally increased median MAE values for all methods
by ~0.1–0.2 and slightly broadened value distributions (such that the predictions became
again more similar to MR). However, even the removal of 50% of most similar compounds
was insufficient to significantly reduce the performance of kNN/1-NN relative to SVR, an
unexpected finding.

2.5. Analog Series-Based Data Partitioning

Another structural data set modification was carried out by extracting all analog series
from each activity class, then partitioning the complete series into training and test sets (to
obtain ~80/20% compound splits). Accordingly, there was no analog overlap between the
sets. Accordingly, training and test compounds had distinct core structures. Because most
compounds from medicinal chemistry belong to analog series (resulting from chemical
optimization efforts), analog series-based partitioning was generally applicable to activity
classes. Figure 5 shows the results of predictions for these activity class variants and
equally sized subsets of the original data sets used as a control (equivalent results were
again obtained for all 45 activity classes). Under these conditions, median MAE values also
increased by ~0.1–0.2 relative to the controls. The value distributions generally broadened
(as one might expect for independent trials using training and test sets of unique analog
series composition). Broader distributions are indicative of more variable (less stable)
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predictions, which complicates the comparison of different methods. However, despite
analog series partitioning, the predictive performance of SVR and kNN/1-NN remained
very similar.
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Figure 4. Prediction accuracy after removal of nearest neighbor relationships. Boxplots report the
distribution of MAE values over 10 independent trials for the eight activity classes after removal of
50% of nearest neighbors and control data sets after random removal of 50% of the compounds. In
boxplots, the upper and lower whiskers indicate maximum and minimum values, the boundaries of
the box represent the upper and lower quartiles, values classified as statistical outliers are shown as
diamonds, and the median value is indicated by a horizontal line.
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Figure 5. Prediction accuracy after analog series partitioning. Boxplots report the distribution of MAE
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maximum and minimum values, the boundaries of the box represent the upper and lower quartiles,
values classified as statistical outliers are shown as diamonds, and the median value is indicated by a
horizontal line.



Pharmaceuticals 2023, 16, 530 8 of 11

3. Discussion

Our current study was designed in light of previous observations that simple 1-NN
calculations often approached or met the accuracy of increasingly complex ML methods
in compound potency predictions. To better understand these prediction characteristics
and explore consequences for benchmark comparisons of different methods, we have
carried out systematic potency value predictions on 376 activity classes with sufficient
numbers of compounds using a preferred ML approach and simple controls, including
kNN and MR calculations. Activity classes were curated to ensure that high-confidence
activity measurements were available for all compounds, thus avoiding potential bias
of predictions due to limited data quality. Our calculations most likely represent one of
the largest (if not the largest) compound potency prediction campaigns reported to date.
The results of the global predictions were surprisingly similar across a large number of
activity classes from three points of view. First, there were only little activity class-specific
differences in prediction patterns and accuracy; second, most predictions had limited error
margins falling well within an order of magnitude; third, in accordance with our earlier
observations, kNN calculations consistently rivaled SVR performance, and there was only
a small error range separating prediction accuracy including MR, the most control. Thus,
global potency predictions were surprisingly stable and accurate for methods of different
complexity. These findings implied that calculations on activity classes from medicinal
chemistry might generally produce predictions that are too similar for a realistic assessment
and comparison of different potency prediction methods. Accordingly, the results also call
the relevance of conventional benchmark settings into question. Benchmark calculations
are essential for assessing basic method performance but must also reliably quantify rel-
ative differences in the accuracy of alternative approaches. Therefore, we then explored
(i) possible reasons for the success of simple potency prediction approaches and (ii) ways in
which activity classes and calculation conditions might be modified to increase the difficulty
and sensitivity of benchmarking using model data sets. Specifically, we balanced potency
distributions in activity classes, removed large numbers of nearest neighbors from them,
and trained and tested models on structurally distinct compound sets obtained by analog
series partitioning. Predictions on model data sets were again unexpectedly robust. No-
tably, while minor increases in prediction errors were observed for modifications rendering
the predictions more challenging, none of these operations led to a significant difference
in relative performance between SVR and kNN. The observed stability and robustness of
the predictions on original and modified activity classes can be positively viewed because
promising predictions are obviously possible with rather different approaches and using
data set variants of varying composition. However, for conventional benchmarking, the
implications are profound. Based on the findings reported herein, benchmark calculations
on activity classes from medicinal chemistry, even if specifically modified to increase predic-
tion challenges, do not enable sound comparisons of different methods because alternative
predictions, including simple controls, are only differentiated by small error margins. A
potential reason for this might include the prevalence of structurally related compounds
with similar potency in activity classes (originating from chemical optimization efforts)
or the under-representation of highly potent compounds in data sets (representing the
most attractive prediction targets). As shown herein, however, predictions were resistant to
substantial structural modifications of activity classes. Thus, from this point of view, our
study should raise awareness of these issues and trigger attempts to develop fundamentally
different concepts for evaluating and comparing potency prediction methods, providing
opportunities for future investigations.

4. Materials and Methods
4.1. Compound Activity Data

From ChEMBL release 30 [13], bioactive compounds of less than 1000 Da with standard
potency measurements (IC50) and a numerical specified potency value (standard relation
‘=’) were retrieved. Potency values were recorded as the negative decadic logarithm. Only
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compounds with direct interactions (target relationship type: “D”) against human proteins
at the highest confidence level (target confidence score: 9) and pIC50 values ranging from
5 to 11 were considered. Additionally, measurements labeled “potential transcription
error” and “potential author error” were removed. In addition, potential assay interference
compounds were removed using public filters and tools [14–16].

Based on these selection criteria, 91,733 compounds belonging to 376 activity classes
containing at least 50 compounds were obtained for the analysis. The largest 45 activity
classes consisted of at least 500 compounds each (yielding 40,440).

4.2. Compound Sets with Balanced Potency Distribution

The 45 largest activity classes were balanced to obtain an even potency value distribu-
tion across the entire potency range, yielding reduced data sets of 50% of the original size.
These balanced data sets were generated by dividing the potency range of each class into a
maximum of six equally sized bins (for logarithmic potency values of 5–6, 6–7, 7–8, 8–9,
9–10, and 10–11). The average number of compounds per bin was calculated by dividing
the number of available compounds by the number of bins. The bins were subsequently
populated with compounds until the number was equal to the calculated average. For
bins representing highest potency values, the number of available compounds was often
insufficient to satisfy this criterion. In this case, other potency bins for which compounds
were still available were uniformly populated until the final size of the balanced set was
equal to 50% of the original compound set.

4.3. Model Building and Implementation

For model building and evaluation, training and test sets were generated using random
and analog series-based compound partitioning. For each activity class, compounds were
randomly partitioned to obtain 80/20% and 50/50% training/test compound splits. In
addition, analog series comprising at least two compounds were systematically extracted
from activity classes using the compound–core relationship algorithm [17]. Remaining
singletons were discarded. The analog series were then partitioned into training and test
sets corresponding to ~80/20% training/test compound splits such that both sets consisted
of unique analog series with no analog overlap between sets.

4.3.1. Support Vector Regression

SVR is an extension of the support vector machine algorithm for supervised learning
that derives a regression function through the generation of an ε-insensitive tube using
training data. If a linear data separation is not feasible in the original feature space, a
kernel function is employed to project the data to a high-dimensional space where linear
separation might become possible [7,8]. For SVR, the regularization hyper-parameter C
was determined by testing (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10, 100, and 10,000) values.
SVR models were derived using the Tanimoto kernel [18].

4.3.2. k-Nearest Neighbor Regression

kNN is a non-parametric supervised learning method that ranks training compounds
based on increasing molecular similarity (decreasing distance). For a test compound, the
potency is then determined based on the potency values of the k top-ranked compounds
from the training set [19]. For kNN, the best-performing k values were determined for
one, three, and five top-ranked compounds by averaging potency values for three and
five compounds. In addition to applying optimized kNN values, 1-NN predictions were
consistently reported for all activity classes. For compound comparison, Tanimoto similarity
was calculated using the folded 2048-bit version of the extended connectivity fingerprint
with bond diameter 4 (ECFP4) [20] generated with RDKit [21].
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4.3.3. Median Regression

The MR control calculation uniformly assigns the median potency value of the training
set to each test set compound. This approach was employed as a control calculation.

4.3.4. Hyperparameter Optimization

For parameter optimization, kNN and SVR were submitted to a grid search with 5-fold
internal cross-validation implemented using scikit-learn [22].

4.4. Molecular Representation

For modeling, compounds were represented using the folded 2048-bit version of
ECFP4 generated using RDKit.

4.5. Performance Metric

To evaluate model performance, the mean absolute error (MAE) was calculated by
comparing predicted and experimental test compound potency values. The calculations
were carried out using scikit-learn. MAE is defined as

MAE(y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi| (1)

where n is the number of compounds, and y and ŷ are the experimental and predicted
potency values, respectively.

Increasing MAE values indicate decreasing prediction accuracy and vice versa.

4.6. Statistical Significance Testing

Statistical significance evaluation of differences between MAE value distributions was
carried out using the Wilcoxon test [23]. The alpha value with Bonferroni correction (n = 10)
was set to 0.005 and compared to the respective p-value (p < 0.005).

5. Conclusions

In this work, we have systematically investigated compound potency predictions on
nearly 400 different activity classes using ML and simple control models. In accord with
earlier observations, methods of different complexity produced overall similar prediction
accuracy differentiated by only small error margins, as demonstrated now on a very
large scale. Moreover, relative method performance remained stable despite specific
potency range and structural data set modifications designed to increase the difficulty of
the calculations. Taken together, our findings clearly indicate that conventional benchmark
calculations are not a realistic indicator of differences in the predictive performance of
alternative computational methods. Therefore, future research in this area should focus on
exploring and devising new concepts for benchmarking potency prediction methods.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ph16040530/s1, Figure S1: Prediction accuracy, Figure S2:
Potency value distributions.
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Rationalizing general limitations 
in assessing and comparing 
methods for compound potency 
prediction
Tiago Janela  & Jürgen Bajorath *

Compound potency predictions play a major role in computational drug discovery. Predictive methods 
are typically evaluated and compared in benchmark calculations that are widely applied. Previous 
studies have revealed intrinsic limitations of potency prediction benchmarks including very similar 
performance of increasingly complex machine learning methods and simple controls and narrow 
error margins separating machine learning from randomized predictions. However, origins of these 
limitations are currently unknown. We have carried out an in-depth analysis of potential reasons 
leading to artificial outcomes of potency predictions using different methods. Potency predictions 
on activity classes typically used in benchmark settings were found to be determined by compounds 
with intermediate potency close to median values of the compound data sets. The potency of 
these compounds was consistently predicted with high accuracy, without the need for learning, 
which dominated the results of benchmark calculations, regardless of the activity classes used. 
Taken together, our findings provide a clear rationale for general limitations of compound potency 
benchmark predictions and a basis for the design of alternative test systems for methodological 
comparisons.

In computer-aided drug discovery, the prediction of compounds that are active against given targets and the pre-
diction of compound potency are central  tasks1, 2. For the quantitative prediction of compound potency, methods 
of greatly varying complexity have been introduced, ranging from linear regression techniques to deep machine 
 learning3–8. For modeling of non-linear structure-activity relationships and potency prediction, machine learn-
ing has generally become the prevalent approach, for which a variety of algorithms are  available1, 5. Despite the 
increasing popularity of deep neural  networks7, 8, mainstay approaches such as random forest regression (RFR)9 
or support vector regression (SVR)10 continue to be widely used.

Computational methods for qualitative compound activity or quantitative potency predictions must generally 
be evaluated in benchmark settings using known active compounds. For activity prediction, classification models 
are often trained to separate sets of compounds that are active against different targets, termed activity classes, 
from randomly assembled compounds. Hence, activity classes represent target-based compound data sets (target 
sets). For potency prediction, regression models are derived for individual activity classes to predict potency 
values of test sets extracted from these classes. Care should be taken to limit model derivation and evaluation 
to compounds for which well-defined potency measurements of the same type are available that can be directly 
compared. Hence, data curation plays an important role.

Although benchmarking is not a reliable indicator for the success or failure of alternative approaches in 
practical applications, it represents an essential first step in performance evaluation and comparison of different 
methods. However, for compound potency prediction, principal limitations of benchmark calculations were 
recently  uncovered11. Specifically, it was shown that (i) different machine learning methods including deep 
neural networks produced very similar potency predictions on different activity classes; (ii) simple k-nearest 
neighbor (kNN) assignments, carried out as a control, correctly predicted potency values within an order of 
magnitude, comparable to increasingly complex machine learning methods; (iii) random predictions often also 
reproduced experimental potency values within an order of magnitude; (iv) prediction errors of all methods 
fell into a small  interval11. Overall, SVR predictions were slightly more accurate than those obtained with other 
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methods including deep neural networks, but observed differences were only  marginal11. Hence, typical bench-
mark calculations yielded predictions of comparable accuracy using distinct methods of varying computational 
complexity as well as random predictions. It follows that standard benchmark calculations are not suitable for 
assessing the predictive performance of machine learning methods in a meaningful way. The generality of these 
unexpected findings was further investigated by systematic potency predictions using machine learning methods 
and controls on 367 activity classes covering all pharmaceutical target classes including, among others, diverse 
enzymes, different types of receptors, and ion channels, for which qualifying potency measurements were avail-
able, which yielded very similar  results12. Taken together, these findings suggested that the intrinsic limitations of 
benchmark potency predictions might be a consequence of the composition of activity classes originating from 
medicinal chemistry sources and their potency value distributions. Therefore, activity classes were modified in 
different ways including removal of nearest neighbors, partitioning of compounds into training and test sets 
based on analogue series (thereby avoiding “data leakage”, that is, the use of analogous compounds for training 
and testing), and balancing of compound numbers across different potency  levels12. Then benchmark calcula-
tions were repeated with modified activity classes. However, the predictions were surprisingly stable and largely 
insensitive to these data set modifications, leading to only small increases in error margins that were very similar 
for different  methods12. Thus, reasons for the very similar performance of different methods and simple controls 
in compound potency predictions remained elusive.

Therefore, we have further investigated potential reasons for the limitations of compound potency predic-
tions. Since the predictions were essentially insensitive to structural modifications of activity classes, we have 
conducted an in-depth analysis of the influence of potency value distributions and potency sub-ranges in activity 
classes on compound potency predictions using different approaches, as reported herein.

Methods
Compounds and activity data
From ChEMBL (version 30)13, compounds with reported direct interactions (target relationship type: “D”) with 
human targets at the highest confidence level (target confidence score: 9), a molecular mass of at most 1000 Da, 
and available numeric  IC50 values (recorded as negative decadic logarithmic  pIC50 values) in the range of 5–11 
were extracted. Compounds with measurements flagged as “potential transcription error” or “potential author 
error’’ were discarded as well as compounds with assay interference potential detected using available  filters14–16. 
We searched for activity classes for which at least 75 compounds falling into each of the three potency  pIC50 sub-
ranges 5–6.9, 7–8.9, and 9–11 were available, leading to the identification of eight classes comprising a total of 
9301 compounds. In the following, for simplicity, these sub-ranges are referred to as 5–7, 7–9, and 9–11. Figure 1 
shows exemplary compounds for each class and specifies the target names.

Training and test sets
For each activity class, training and test sets for 10 independent prediction trials were obtained by random 
compound partitioning into 50% training and 50% test data. Hence these training and test sets were not bal-
anced across the three potency sub-ranges. Supplementary Table S1 reports the proportions of compounds fall-
ing into each potency sub-range for all activity classes. For the three activity classes with the largest number of 
compounds in the potency sub-range 9–11 (highly potent compounds), nine training sets of increasing size were 
generated (for 10 independent trials) by uniformly sampling compounds for each potency sub-range. Smallest 
training sets consisted of only six compounds (two from each potency sub-range), followed by training sets with 
12 compounds (four per potency sub-range), 18, 30, 48, 78, 126, 204, and 330 compounds. After building the 
largest training set (330 compounds), the remaining compounds, were used to build the test set with balanced 
potency sub-ranges (with respect to sub-range 9–11, containing the smallest number of compounds per sub-
range for the three activity classes).

For comparison, corresponding predictions were also carried out for imbalanced training sets of increasing 
size and imbalanced test sets.

Molecular representation
For machine learning, compounds were represented using the folded 2048-bit version of the extended connectiv-
ity fingerprint with bond diameter 4 (ECFP4)17 generated with  RDKit18.

Machine learning models
Given that potency prediction results were very similar using methods of different complexity and sim-
ple  controls11, machine learning models were built using SVR, the overall preferred approach, and RFR for 
comparison.

Hyperparameter optimization
For hyperparameter optimization, a grid search with 3-split cross-validation was performed using scikit-learn19 
based on training data. Therefore, training sets were divided into 50% training and 50% validation data. For 
balanced training sets, the splits were stratified by potency range.

Support vector regression
SVR is a variant of the support vector machine algorithm for supervised learning that derives a hyperplane 
based on training instances to reduce the error between observed and predicted values. A kernel function is 
used to project samples from the original dimension into a higher-dimensional feature  space10, 20. For SVR, the 
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cost parameter C was optimized with the values of 1, 10, 100, and 1000. Models with the Tanimoto  kernel21 were 
built using scikit-learn.

Random forest regression
RFR is a machine learning method employing an ensemble of decision trees. Each tree model was built by ran-
domly sampling a subset of training compound using  bootstrapping9, 22. Numerical values were predicted as the 
average value of all individual trees. For RFR, the number of trees (50, 100, 200), minimum number of samples 
per split (2, 3, 5, 10), minimum sample per leaf (1, 2, 5, 10), and maximal number of features for achieving the 
best split (sqrt, log2) were optimized.

Controls
Nearest neighbor calculations
k-NN is a regression technique that selects for each test instance the k nearest neighbors from the training set 
and assigns the potency value of the most similar training compound to the test instance (1-NN) or averages 
the potency values for the k (> 1) most similar training  compounds23. For comparing test and training set com-
pounds, Tanimoto  similarity24 was calculated based on ECFP4. 1-NN and 3-NN calculations were carried out 
with scikit-learn.

Median regression
Median regression (MR), the simplest possible control, assigns the median potency value of the training set to 
each test compound as the predicted value.

Performance metrics
Prediction accuracy was evaluated using the mean absolute error (MAE), root mean squared error (RMSE), and 
squared Pearson correlation coefficient  (r2). Training of machine learning models was guided by MAE values or, 
as a control,  R2 (coefficient of determination).

Figure 1.  Activity classes. For each of the eight activity classes (target sets), the target name and ChEMBL 
target ID (in parentheses) are provided and exemplary structurally diverse compounds are shown. For each 
compound, the  pIC50 value is reported.
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For MAE and RMSE, n is the number of compounds, and y and ŷ are the experimental and predicted potency 
values, respectively. For  r2, mx is the mean of vector x and my the mean of vector y.

Statistical significance testing
The Wilcoxon signed-rank  test25 was used to assess the statistical significance of observed differences between 
MAE, RMSE and  r2 value distributions. The p-value (p < α) was compared to an alpha value of 0.005 with Bon-
ferroni correction (n = 10).

Results
Compound potency value distributions
We first determined the potency value distributions of the activity classes, as shown in Fig. 2a and Fig. 2b for 
the three classes with largest numbers of compounds in potency  (pIC50) sub-range 9–11 and Supplementary 
Fig. S1a and Fig. S1b for all classes. The center of the entire potency range 5–11 corresponding to compounds 
with intermediate potency contained the majority of compounds in all classes. In each case, the median potency 
of all classes fell into the  pIC50 interval 7–8. However, there were clear activity class-dependent differences in 
potency value distributions, with different peaks in the distributions.

Pairwise similarity was then separately calculated for all compounds falling into each of the potency sub-
ranges 5–7, 7–9, and 9–11. Figure 2c and Supplementary Fig. S1c show that the resulting similarity value distri-
butions were comparable for all activity classes and also comparable for each class across the different potency 
sub-ranges. As expected, some activity classes were structurally more homogeneous than others in individual 
sub-ranges (such as class 203 in Fig. 2), but large differences in compound similarity value distributions across 
different potency sub-ranges were not observed. Hence, there was no apparent relationship between intra-class 
compound similarity and differences in potency value distributions between the activity classes.

Compound potency predictions
For the eight activity classes, potency predictions were carried out using the SVR, RFR, 1-NN, 3-NN, and MR 
approaches. Prediction accuracy was assessed on the basis of MAE, RMSE, and  r2 calculations. Figure 3 shows 
the results for the three activity classes with the largest numbers of highly potent compounds and Supplemen-
tary Fig. S2 compares the results for all activity classes based on MAE (Fig. S2a), RMSE (Fig. S2b), and  r2 values 
(Fig. S2c). Consistent with earlier  observations11, 12, the performance of all methods across the entire potency 
range was comparable for all activity classes and varying training and test set ratios. The predictions were stable, 
as indicated by very narrow error distributions over independent trials, and reached reasonable accuracy, with 
MAE and RMSE values generally smaller than 0.8 and 1.0, respectively (except for MR, as further discussed 
below). Hence, the different methods generally predicted potency values well within an order of magnitude 
(tenfold). Lowest prediction errors detected were ~ 0.4 and ~ 0.5 for MAE and RMSE, respectively. SVR predic-
tions were overall slightly more accurate than RFR and 1-/3-NN calculations. As a control, the machine learning 
models were also retrained using  R2 as a cost function and the predictions using these models were assessed 
based on MAE values. As shown in Supplementary Fig. S2a and Fig. S2d, the results obtained for alternatively 
trained models using MAE or  R2 for alternatively trained models were nearly identical.

Importantly, while the majority of differences between MAE and RMSE value distributions for all pairwise 
comparisons of methods were statistically significant, as shown in Supplementary Fig. S3a and S3b, respectively, 
differences in mean prediction errors of all methods were confined to ~ 0.1 units and thus essentially negligible. 
These results were stable for varying training and test set ratios. In addition, Supplementary Fig. S3c shows that 
most differences between  r2 values for potency ranges 5–7 and 9–11 were not statistically significant, hence 
indicating the presence of strong correlation.

The predictions were then separately compared for all test compounds falling into each of the three potency 
sub-ranges, as also shown in Fig. 3 and Supplementary Fig. S2, which provided a more differentiated view of the 
results. For weakly potent (sub-range 5–7) and highly potent (9–11) compounds, prediction errors increased 
by up to ~ 0.2 units for SVR, RFR, and 1-/3-NN. For MR, MAE/RMSE values up to 2.0 were observed because 
the median potency value of all activity classes fell into the  pIC50 range of 7–8 (see above). By contrast, for test 
compounds in potency sub-range 7–9, prediction errors further decreased for all methods by ~ 0.1 units com-
pared to the global accuracy (potency range 5–11) and was closely matched by MR. The comparison in Fig. 3 
indicated that the global prediction accuracy of all methods was essentially determined by the similarly low 
prediction error observed for all methods in intermediate potency sub-range 7–9 where all compound potency 
values tended to be close to the median.

(1)MAE
(

y, ŷ
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Furthermore, as shown in Fig. 3, calculation of  r2 for predicted and experimental potency values revealed 
positive correlation across the entire potency range for SVR, RFR and 1-/3-NN predictions (as anticipated, given 
the low prediction errors and large sample sizes). For the three potency sub-ranges, correlation was significantly 
lower, which was at least in part attributable to the small sample sizes for the low and high potency sub-ranges. 
Largest correlation was observed for the mid sub-range (7–9), consistent with the low prediction errors in this 
range. Importantly,  r2 calculations did not lead to a larger separation between the performance of different mod-
els. Thus, correlation analysis mirrored the observed prediction characteristics discussed above.

Figure 2.  Potency value and pairwise molecular similarity distributions. For the three activity classes with the 
largest numbers of compounds in potency sub-range 9–11, (a) violin plots report the potency value distributions 
across the three potency sub-ranges (5–7, 7–9, 9–11). In a violin plot, a value distribution is represented by its 
maximum value (upper thin line), upper quartile (upper thick line), median value (white dot), lower quartile 
(lower thick line) and minimum value (lower thin line). On each side of the vertical line, a density plot is 
shown. In (b), density plots obtained by kernel density estimation compare the potency distributions across the 
entire potency range. In (c), density plots report the distributions of pairwise Tanimoto similarity values for 
compounds populating the three potency sub-ranges.
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Potency value sub-range dependence of predictions
To further investigate the apparent dependence of the predictions on the compound potency sub-ranges of 
the activity classes, we generated training sets with balanced sub-range populations of increasing size for the 
three activity classes for which sufficient numbers of highly potent compounds (see Methods) were available 
and repeated the predictions for each sub-range. Size variation of training sets was introduced to examine data 
requirements for the predictions and learning characteristics of the methods. Figure 4 shows the results of sub-
range based potency predictions.

For weakly potent (sub-range 5–7) and highly potent (9–11) compounds, smallest training sets of 6–18 
compounds produced median MAE values of ~ 2.0 (corresponding to ~ 100-fold potency prediction errors) for 
all methods and yielded broad MAE value distributions, indicating unstable predictions that were often com-
parable MR. As expected, very small training sets were insufficient for machine learning and a median MAE 
of ~ 2.0 essentially represented the upper limit of prediction errors observed under these conditions. When the 
size of training sets further increased, the predictions for weakly and highly potent compounds became more 
stable and accurate for SVR, RFR, and 1-/3-NN, as indicated by increasing separation from the MR values, and 
approached the accuracy level observed in the global predictions (Fig. 3). Hence, for weakly and highly potent 
test compounds, prediction accuracy clearly increased with the size of training sets with balanced potency sub-
ranges, as expected. Notably, the relative performance of the different methods remained comparable as training 
set sizes and prediction accuracy increased.

By contrast, distinct prediction characteristics were observed for test compounds in potency sub-range 7–9. 
Here, the prediction errors were constantly small, independent of training set size, and the accuracy achieved 
by SVR and RFR was very close to the median potency values of the training sets. Thus, in this case, essentially 
no learning was required and prediction accuracy was constantly high for MR across all training sets. Whereas 
1-/3-NN closely matched SVR/RFR predictions for highly and weakly potent compounds, NN calculations 
mostly yielded larger errors in the intermediate potency sub-range, especially 1-NN. However, most of these 
NN calculation errors were comparable to the best predictions achieved with all methods for highly and weakly 
potent test compounds based on largest training sets. Moreover, SVR, RFR, and MR predictions in the potency 
sub-range 7–9 were consistently the by far most accurate predictions that were obtained. As an additional control, 

Figure 3.  Prediction accuracy. Boxplots report the distribution of MAE (left), RMSE (middle), and  r2 values 
(right) for potency predictions over 10 independent trials with constantly sized (imbalanced) training sets 
using 1-NN, 3-NN, SVR, RFR, and MR for three activity classes. In each case, predictions are reported for the 
entire potency range (5–11) and test compounds with experimental potency falling into the three sub-ranges. 
In boxplots, the upper and lower whiskers indicate maximum and minimum values, the boundaries of the box 
represent the upper and lower quartiles, values classified as statistical outliers are shown as diamonds, and the 
median value is indicated by a horizontal line.
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we also repeated the potency sub-range predictions with imbalanced training sets of increasing size, as shown 
in Supplementary Fig. S4, yielding the same trends.

The analysis of the potency sub-range dependence of the predictions clearly demonstrated that they were 
largely determined by compounds falling into the intermediate potency range. Here, predictions for machine 
learning models were consistently most accurate. However, there was essentially no learning required because the 
predictions were independent of training set sizes and closely matched the median potency values of the training 
sets. Hence, in the intermediate potency sub-range, predictions yielded artificially low errors, due to narrow local 
potency value distributions around the median. In original activity classes, the majority of compounds fell into 
the intermediate potency range, which  strongly dominated global potency predictions.

Figure 4.  Prediction accuracy for training sets of increasing size. Boxplots report the distribution of MAE 
values for potency predictions over 10 independent trials with potency sub-ranged balanced training sets of 
increasing size using 1-NN, 3-NN, SVR, RFR, and MR for three activity classes. The predictions were separately 
carried out for each potency sub-range.
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Conclusion
Compound potency predictions play an important role in computer-aided drug discovery. Benchmark calcula-
tions are essential and widely applied for an initial assessment and comparison of predictive methods, prior to 
practical applications. However, previous studies have revealed general limitations of benchmark evaluation of 
potency prediction methods. Increasingly complex machine learning methods and simple control calculations 
displayed similar performance in test calculations on many different activity classes, and even random predictions 
were only separated from machine learning results by small error margins. As a consequence, benchmarking can 
currently not reliably assess the predictive performance and relative differences between alternative methods; 
a conundrum for method development and evaluation. Since the performance of distinct potency prediction 
approaches was comparable for many different activity classes (as also shown herein), these observations must in 
principle be attributable to intrinsic features of activity classes such as structural composition or potency value 
distributions, as we have reasoned. However, origins of apparent artifacts in benchmarking potency prediction 
methods have remained unknown so far, presenting a substantial problem for the field. Therefore, we have 
designed test calculations to directly investigate the influence of potency value distributions and sub-range effects 
on compound potency predictions. Although potency value distributions of activity classes differed, predictions 
were largely determined by very low errors consistently detected in the intermediate potency  (pIC50) sub-range 
7–9 into which median potency values of different activity classes fell. These prediction characteristics funda-
mentally differed from those observed for weakly and highly potent compounds. Machine learning predictions 
in the intermediate potency sub-range consistently and closely matched median potency values of training sets 
even under learning conditions where predictions of weakly and highly potent compounds essentially failed. The 
dominance of very low errors in the intermediate potency sub-range led to closely comparable results of different 
approaches in global potency predictions and provided a clear rationale for the artificial outcome of benchmark 
calculations including the low error margins hindering methodological comparisons. Taken together, the results 
of our analysis explain in detail why conventional benchmark settings do not provide a realistic assessment of 
compound potency prediction methods and provide a basis for future work investigating alternative approaches 
for more reliable methodological comparisons.

Data availability
Calculations were carried out using publicly available software and compound data. Code used for this analysis 
and the curated activity classes are freely available via the following links: https:// github. com/ Tiago Janela/ Limit 
ations- compo und- poten cy- predi ctions and https:// zenodo. org/ badge/ lates tdoi/ 66310 7456.
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ABSTRACT: Potency predictions are popular in compound design and optimization but are complicated by intrinsic limitations.
Moreover, even for nonlinear methods, activity cliffs (ACs, formed by structural analogues with large potency differences) represent
challenging test cases for compound potency predictions. We have devised a new test system for potency predictions, including AC
compounds, that is based on partitioned matched molecular pairs (MMP) and makes it possible to monitor prediction accuracy at
the level of analogue pairs with increasing potency differences. The results of systematic predictions using different machine learning
and control methods on MMP-based data sets revealed increasing prediction errors when potency differences between
corresponding training and test compounds increased, including large prediction errors for AC compounds. At the global level, these
prediction errors were not apparent due to the statistical dominance of analogue pairs with small potency differences. Test
compounds from such pairs were accurately predicted and determined the observed global prediction accuracy. Shapley value
analysis, an explainable artificial intelligence approach, was applied to identify structural features determining potency predictions
using different methods. The analysis revealed that numerical predictions of different regression models were determined by features
that were shared by MMP partner compounds or absent in these compounds, with opposing effects. These findings provided another
rationale for accurate predictions of similar potency values for structural analogues and failures in predicting the potency of AC
compounds.

■ INTRODUCTION
Compound potency predictions play a central role in drug
design. Widely used potency prediction approaches range from
linear quantitative structure−activity relationship (QSAR)
methods and scoring functions for quantifying ligand−target
interactions to complex free-energy (perturbation) and differ-
ent machine learning (ML) methods for nonlinear regression
modeling.1−8 While standard QSAR and free-energy perturba-
tion approaches are typically limited to predictions of
congeneric compounds, appropriately trained ML models can
also be applied to predict the potency of structurally diverse
compounds. Popular ML methods for regression modeling and
prediction of numerical potency values include support vector
regression (SVR),9 random forest regression (RFR),10 and
various deep neural network (DNN) architectures that have
recently gained in popularity.7,8,11−14

The initial assessment and comparison of computational
methods for predicting compound potency (and molecular
properties in general) typically require benchmark calculations,

in which models are derived and evaluated based on labeled
data such as compounds with known activity against given
targets and available experimentally determined potency
values. While such benchmark calculations are generally
important for assessing model performance prior to practical
(prospective) applications, benchmarking of potency predic-
tion methods has intrinsic limitations.15,16 For example, the
assignment of potency values of nearest neighbors in training
sets to test compounds (k-nearest neighbor (k-NN, kNN)
analysis or the even simpler assignment of training set median
potency values to test compounds (median regression) often
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approaches the predictive performance of increasingly complex
ML models.15 Furthermore, ML-based and randomized
potency value predictions are often only separated by narrow
error margins of 1 to 2 orders of magnitude,15 which leads to
artificially favorable predictions in benchmark settings. At least
in part, these limitations result from compound potency and
similarity distributions in target-based compound sets (often
termed activity classes) that are commonly used for
benchmarking.15,16 As a possible alternative, potency pre-
dictions might be focused on identifying highly potent
compounds,17 taking into account that it might be difficult
to precisely predict their potency values, given that their
magnitude is statistically underrepresented in activity classes.
Moreover, there are other principal limitations associated

with compound potency predictions that are a direct
consequence of varying compound structure−activity relation-
ship (SAR) characteristics. For example, standard QSAR
methods rely on the presence of continuous SARs in
compound sets, where small chemical modifications of
congeneric compounds lead to gradual changes in potency.18

By contrast, SAR discontinuity, where a small chemical
modification leads to changes in potency of different
magnitudes,18 falls outside the applicability domain of QSAR
methods. The presence of SAR discontinuity typically requires
the application of nonlinear ML models for potency prediction.
However, such ML models often also strike their limits when
encountering activity cliffs (ACs), representing the pinnacle of
SAR discontinuity. ACs are defined as pairs or groups of
structurally similar compounds (structural analogues) with
large differences in potency.19,20 Because ACs capture extreme
SAR discontinuity, they present particularly challenging test
cases for QSAR and ML predictions. Accordingly, QSAR
models typically produce significant prediction errors for AC
compounds.19−22 However, in most activity classes, only ∼5%
of pairs of structural analogues represent ACs with an at least
100-fold difference in compound potency.23,24 Thus, ACs are
generally rare in compound data sets, and their prediction
errors might therefore often not significantly affect the overall
prediction accuracy observed in potency benchmarks. ACs can
be identified on the basis of pairwise molecular similarity
calculations or by enumerating pairs of structural analogues
and comparing their potency.20,23 For the computational
detection of structural analogues, the matched molecular pair
(MMP) concept25 is readily applicable. MMPs are defined as
pairs of compounds that are only distinguished by a chemical
modification at a single site,25 which provides a sound basis for
defining ACs because potency changes can consistently be
attributed to the replacement of an individual substituent.
Accordingly, MMPs capturing an at least 100-fold difference in
analogue potency, so-called MMP-cliffs,26 have become a
widely used AC definition in the field.23

Beginning in 2012, various attempts have been made to
predict ACs.27−38 Most of these studies have attempted to
predict compound pairs forming ACs (often applying the
MMP-cliff definition) and distinguish them from pairs of
compounds with small potency differences.27,29−35 For these
purposes, ML classification models were used, often producing
high accuracy in distinguishing ACs from other pairs of similar
compounds. Recently, DNN variants have been used to predict
ACs from molecular images32,33 or graphs using representation
learning.34,35 By contrast, only few attempts have thus far been
made to predict the actual potency value of AC compounds
using ML regression models and/or DNNs of varying

complexity.22,36−38 The results of the currently most
comprehensive study have confirmed the challenges in
accurately predicting the potency of AC compounds and
have shown that standard ML regression models yielded
overall better performance than DNNs.38

Given the limitations of potency benchmark calculations and
challenges for potency predictions as a consequence of SAR
discontinuity, it is meaningful to consider alternative
evaluation criteria and system set-ups. We have conceived a
new test system to systematically determine the accuracy of
potency predictions for structural analogues with increasing
potency differences, including ACs. The approach enabled the
assessment of prediction accuracy for increasingly challenging
test compounds. In addition, we have adapted an explainable
artificial intelligence (XAI) approach to better understand how
predictions obtained using different ML regression models
were determined.

■ METHODS
Compounds and Activity Data. From ChEMBL (release

33),39 activity classes comprising compounds with a molecular
mass of less than 1000 Da were extracted. Undesired targets
such as drug-metabolizing cytochrome P450 isoforms, hERG,
and serum-albumin were not considered. Compounds flagged
as “not active”, “inactive”, “inconclusive”, “potential author
error”, or “potential transcription error” were disregarded. In
addition, only compounds with direct target interactions
(target relationship type: “D”) tested in a single-protein
assay with the highest ChEMBL assay confidence score of 9
were retained. Furthermore, for each compound, the
availability of an IC50 potency measurement with a specific
value (“=”) of at least 10 μM and at most 10 pM was required
(recorded as a pIC50 value). Hence, active compounds fell into
the pIC50 range of 5 to 11. Of note, for our current analysis,
preference was given to IC50 values over other measurements
(including equilibrium constants) because large numbers of
qualifying compounds were required and IC50 values were by
far the most frequently available measurement. In addition, in
potency prediction studies, the use of different types of
potency measurements that cannot be directly compared
should be avoided. Therefore, IC50 values were exclusively
used herein (although equilibrium constants are, in principle,
assay-independent). If multiple IC50 value measurements were
available for a given compound, they were averaged to yield the
final potency annotation if all values fell into the same order of
magnitude (or if all remaining values fell into the same order of
magnitude after the largest or smallest value was removed as a
likely outlier). Finally, activity classes were screened for
potential assay interference compounds using Lilly medicinal
chemistry rules40 and filters for pan-assay interference
compounds41 and aggregators.42 After these compound
selection and data curation criteria were applied, the 10 largest
activity classes were retained for the systematic extraction of
MMP and regression modeling. Table 1 summarizes the
composition of these activity classes after data curation prior to
MMP analysis.
Reported are the activity classes used to derive MMP-based

data sets for compound potency prediction.
Matched Molecular Pairs. From each activity class,

MMPs were extracted using the compound−core relationship
(CCR) algorithm.43 The CCR method systematically identifies
analogue series with single or multiple substitution sites in
compound data sets and was applied here to identify all
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matching molecular series (MMSs),44 that is, analogue series
with a single substitution site. MMS were obtained using the
CCR approach by systematically fragmenting all combinations
of exocyclic bonds in compounds according to retrosynthetic
rules,43 yielding core structures and substituents. The core
structure was required to be at least twice as large as a
substituent fragment that was permitted to consist of a
maximum of 13 non-hydrogen atoms. To prevent potential
compound overlap between different MMSs, the compound
with the smallest number of non-hydrogen atoms was omitted
from each series. For each MMS, compound pairs representing
MMPs were enumerated such that each compound occurred in
only a single MMP (hence avoiding compound overlap
between MMPs). For each activity class, this MMS-based
sampling procedure was conducted 10 times, thus generating
10 different MMP data sets per class in which a given
compound appeared in only a single MMP. Each of these data
sets was used to derive 10 independent training and test sets
for regression modeling, as described in the following, hence
ensuring that there was no compound overlap between training
and test sets in independent trials.
Following the MMP-cliff definition,26 MMPs analyzed

herein were considered ACs if the two MMP compounds
had an at least 100-fold difference in potency against their
target protein. Figure 1 shows exemplary MMP, including an
MMP-cliff.
Training and Test Sets. For MMP data sets from each

activity class, training and test sets were assembled by using
stratified and random data partitioning for the generation of
MMP-based regression models and control calculations. For
stratified splitting, the compounds forming each MMP were
assigned to the training and test sets, respectively. In other
words, each MMP was divided into training and test
compounds. Thus, stratified sampling ensured that for each
training compound, at least one close structural analogue was

present in the test set and vice versa. As a control, a random
split was carried out by pooling all MMP compounds, followed
by random sampling of compounds for training and test sets.
In both cases, a training/test data ratio of 50/50% was
consistently applied to generate data sets for 10 independent
prediction trials.
Random Forest Regression. RFR is a supervised ML

algorithm that derives an ensemble of decision trees by
randomly sampling training instances using bootstrapping.10

Test compound predictions are obtained as the average value
over all decision trees. For RFR, the number of trees (50, 100,
200), maximal number of features for achieving the best split
(sqrt, log2), minimum number of samples per split (2, 3, 5,
10), and minimum sample per leaf (1, 2, 5, 10) were used for
optimization. Models were implemented using scikit-learn.45

Support Vector Regression. SVR is a nonlinear learning
method that maps training instances into a higher-dimensional
feature space using kernel functions.9 Herein, the Tanimoto
kernel46 was used, and SVR models were built with scikit-learn.
The C parameter, which determines the trade-off between the
regularization term and the loss function, was optimized with
the values of 0.001, 0.1, 1, 10, 100, 1000, and 10,000.
Molecular Representation. For ML models, the folded

2048-bit version of the extended connectivity fingerprint with
bond diameter 4 (ECFP4),47 calculated with RDKit,48 was
used to represent MMP compounds.
Hyperparameter Optimization. For hyperparameter

optimization, grid search and 5-fold internal cross-validation
were performed using scikit-learn. Preferred parameters were
selected based on the average error across all optimization
trials.
Control Calculations. Nearest Neighbor Calculations. k-

NN predicts the potency values for test compounds by
searching for the respective potency values of the k nearest
neighbors. For 1-NN, the prediction corresponds to the
potency value of the closest (most similar) training compound.
For k-NN (k > 1), the final prediction is obtained by averaging
the potency values of the k most similar training compounds.49

For NN assessment, Tanimoto similarity50 was calculated
based on ECFP4. In the case of k-NN (kNN), for k, the better
performing value of 3 or 5 was used, as determined with scikit-
learn. Notably, 1-NN and kNN assignments are not influenced
by learning from MMPs or ACs and hence represent a
meaningful control for ML regression models.

Median Regression. MR was used as a control calculation.
In MR, the value predicted for each test compound
corresponds to the median potency value of the training set.

Model Explanation. To explain predictions of ML models,
the Shapley value (SV) formalism originating from game

Table 1. Activity Classes

target name target ID # compounds
epidermal growth factor receptor erbB1 203 1586
acetylcholinesterase 220 1898
MAP kinase p38 alpha 260 1495
vascular endothelial growth factor receptor 2 279 2475
dipeptidyl peptidase IV 284 1359
histone deacetylase 1 325 1990
histone deacetylase 6 1865 1494
epoxide hydratase 2409 1410
hepatocyte growth factor receptor 3717 1288
PI3-kinase p110-alpha subunit 4005 1534

Figure 1. Exemplary MMPs and AC. Exemplary MMPs are shown using the core structure and respective substituents of the paired compounds.
The MMP on the right represents an MMP-cliff. Substitution sites are encircled (red). For each compound, the pIC50 value is reported.
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theory51 was applied. In ML, SVs quantify the contribution of
features that are present or absent in compounds to predictions
of individual test instances. In potency prediction, the expected
value, which would be predicted if no features were available,
corresponds to the mean of the potency value distribution of
the training set. For each test compound, the expected value
and the sum of all individual feature contributions quantified
using SVs yield the predicted potency value. Given the
exponential computational time requirements for increasing
numbers of features, exhaustive SV calculations become
infeasible for most ML predictions. Therefore, the Shapley
Addictive exPlanations (SHAP) approach52 is typically applied
that approximates SVs as SHAP values by deriving a local
model in feature space in the vicinity of a given test instance.
Currently, the calculation of exact SV values is feasible only for
a few ML methods. For SVR using the Tanimoto kernel and
binary (present/absent) features, exact SVs can be calculated
using the SVETA algorithm.53 Furthermore, for decision tree
methods, TreeExplainer54 applies the SHAP formalism based
on decision tree paths that do not depend on missing features
to calculate feature importance values that correspond to exact
SVs. For our SVR and RFR predictions, exact SVs and SHAP
values were calculated using SVETA or TreeExplainer with
“interventional” feature perturbation,54 respectively. For each
compound in a randomly selected test set of an activity class,
instance-based cumulative SVs and SHAP values were
calculated as the sum of all individual contributions of the
present or absent features for the visualization of feature
contributions.
Performance Metric. Model performance was evaluated

using the conventional mean absolute error (MAE) defined as

y y
n

y yMAE( , )
1

i

n

i i
1

= | |
= (1)

In this equation, n represents the number of compounds,
and y and ŷ are the experimental and predicted potency values,
respectively.
Statistical Significance Testing. The Wilcoxon signed-

rank55 test was used to evaluate the statistical significance of
observed differences between MAE value distributions. The
alpha value was set to 0.05 and compared to the p-value (p <
α).

■ RESULTS AND DISCUSSION
Study Concept. We aimed to analyze compound potency

predictions over increasing potency difference intervals
between structural analogues, including ACs. Therefore, from
different activity classes, compound data sets were extracted
that exclusively consisted of pairs of structural analogues
(MMPs) with varying potency values. Stratified partitioning of
MMP compounds principally ensured that training and test
sets corresponded to structural analogues. These MMP-based

data sets were then used for deriving and evaluating different
ML models and controls. Initially, global potency predictions
were carried out using these data sets to provide a reference
point for the subsequent assessment of prediction accuracy for
MMP subsets of corresponding training and test compounds
with increasing potency differences. Therefore, potency
difference intervals were consistently defined for MMP subsets,
ranging from compound pairs having the same or very similar
potency to ACs with the largest potency differences. To
rationalize prediction characteristics of different regression
models, XAI analysis was carried out, including systematic
feature importance assessment for test sets and feature
mapping for individual test set compounds. Figure 2
summarizes the analysis scheme.
Global Prediction Accuracy. For the MMP-based data

sets derived from 10 large activity classes, systematic
compound potency predictions were carried out using SVR
and RFR models and 1-NN, k-NN, and MR controls. There
was no need to include more complex (DNN) models in the
comparison since the performance of such models was at best
comparable to but mostly worse than SVR or RFR in previous
potency prediction studies.15,38 The results of our calculations
are reported in Figure 3. The ML regression models and
controls displayed very similar prediction accuracy across all
activity classes. Overall, SVR achieved the best performance,
closely followed by RFR, 1-NN, and k-NN, typically with low
MAE values ranging from 0.4 to 0.6. Even MR yielded potency
values for test compounds with MAE values of mostly 0.8 to
0.9. The results obtained for our MMP-based data sets were
fully consistent with previous potency predictions using
unmodified activity classes.15 Figure 3 also shows that the
predictions were generally stable, given the narrow MAE value
distributions over independent trials. While differences
between distributions obtained using different methods were
in most cases statistically significant (p < 0.05), absolute
differences between predicted values and their medians were
only minute, typically within a 0.1 MAE. Thus, prediction
accuracy was generally well within 1 order of magnitude (10-
fold), reflecting consistently meaningful predictions, with only
small activity-class-dependent variations. Moreover, the results
were also very similar for stratified and random sampling of
training and test compounds from MMPs, with stratified
sampling yielding overall slightly lower MAE values, as further
illustrated in Figure 4. Thus, while stratified sampling ensured
that each individual MMP was split between the training and
test sets, very similar results were obtained when MMP
training and test compounds were randomly sampled, also
reflecting the general stability of the predictions.
Compound Distribution. We next determined the

distribution of test compounds over the MMP-based potency
difference ranges. Therefore, the potency difference between
compounds forming each MMP was determined; the observed
potency differences were divided into equally sized bins, and all

Figure 2. Analysis workflow. This flowchart summarizes the different stages of the analysis, from the generation of MMP data sets (see also Figure
1) and compound pair-based partitioning for assembling training and test sets to potency predictions monitored across subsequent potency
difference intervals and their explanation.
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Figure 3. Global prediction accuracy. For each activity class (identified using its Target ID), boxplots report the distribution of MAE values over 10
independent trials for potency predictions based on random (left) or stratified (right) partitioning of MMP compounds. Five different methods are
applied (color-coded according to the legend). In boxplots, the lower and upper whiskers indicate minimum and maximum values; the boundaries
of the box represent the lower and upper quartiles; values classified as statistical outliers are shown as diamonds, and the median value is indicated
by a horizontal line.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c01530
J. Chem. Inf. Model. 2023, 63, 7032−7044

7036



MMPs were assigned to the corresponding bin. Then, each test
compound was mapped to the potency difference bin
containing the MMP from which it originated. The results
are shown in Figure 5. For all activity classes, similar
distributions of test compounds over potency difference
intervals were observed. The majority of test compounds had
MMP partners with closely similar potencies, falling within 0.5
orders of magnitude. The number of test compounds then
rapidly declined over potency difference intervals at increasing
potency. Following the MMP-cliff definition applied herein,
the AC range began at a potency difference of 2 orders of
magnitude (100-fold). Figure 5 shows that all activity classes
contained only small numbers of AC test compounds, mostly
on the order of 10−20. In a few instances, MMP-cliffs captured
compound pairs with more than 1000- and up to 10,000-fold
differences in potency. Overall, test compounds having MMP
partners with small potency differences within 1 order of
magnitude clearly dominated the distribution.
Prediction Accuracy Across Increasing Potency

Difference Intervals. The potency-difference-based organ-
ization of MMPs enabled us to monitor prediction accuracy
across increasing potency difference ranges, thereby generating
a detailed view of these predictions as an alternative to the
assessment of global potency prediction accuracy. For all
activity classes, the prediction accuracy of test compounds
falling into different MMP-based potency difference ranges is
shown in Figure 6a,b. Closely corresponding trends were
observed for all activity classes and stratified vs random
compound partitioning. For test compounds having MMP
partners with very similar potency, the predictions were
accurate, regardless of the absolute potency values, with
median MAEs consistently close to 0.5. For test compounds
from MMPs capturing larger potency differences, the
prediction accuracy gradually decreased. Due to the rapidly
decreasing sample size over increasing potency difference
intervals, the distributions capturing independent trials notably
widened. For the confined numbers of AC compounds, large
prediction errors of 2 to 3 or even 4 orders of magnitude were
frequently observed, reflecting a general failure in reliably
predicting the potency of AC compounds.

Taken together, the findings in Figure 6 clearly indicate that
the predictions were largely determined by the presence of
structural analogues of test compounds in training sets.
Regardless of the methodology, values close to the potency
of these training compounds were assigned to corresponding
test compounds. For most of the test compounds, structural
analogues had very similar potency (Figure 5), leading to
accurate predictions that dominated global prediction accuracy
(Figure 3), yielding very similar results for the different activity
classes. This prediction phenotype also explained the success
of k-NN potency value assignments compared to ML
regression models.
Given the strong tendency of essentially all approaches to

extrapolate from close structural analogue(s) in training sets
and assign similar potency values to corresponding test
compounds, prediction errors consistently increased across
increasing potency difference intervals. In Figure 6, most
differences between the MAE value distributions for the small
samples of AC compounds were not statistically significant (p
< 0.05), owing to the presence of generally large errors.
Because AC compounds represented only a very small
proportion of the test compounds in the different activity
classes, their prediction errors did not notably affect global
prediction accuracy (Figure 3), which was clearly dominated
by structural analogues having similar potency.
Features Determining Predictions. We further analyzed

the potency predictions by using SV/SHAP calculations for the
SVR and RFR regression models. Figure 7 shows the results of
test-compound-based cumulative SV (SVR) and SHAP value
(RFR) analysis across all activity classes. For MMPs from
which the test compounds originated, four different categories
of representation (fingerprint) features were distinguished
including features that were present in both MMP training and
test compounds (red distributions in Figure 7), absent in both
compounds (blue), present in only one of the MMP
compounds (green), or absent in one compound (magenta).
Hence, the two latter categories represent MMP compound-
specific features. In Figure 7, red cumulative feature
distributions capture highest positive SV/SHAP values
compared to other distributions meaning that features present
in both training and test compounds increased the expected

Figure 4. Stratified versus random sampling. The scatter plot compares the median MAE values after stratified or random partitioning of training
and test compounds for the calculations reported in Figure 3. Activity classes are represented by different symbols that are color-coded by
prediction methods according to the inset on the right.
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value of the predictions. By contrast, blue cumulative feature
distributions result from features that were absent in both

training and test compounds. These distributions captured
mostly negative SV/SHAP values and thus decreased the

Figure 5. Distribution of test compounds over increasing MMP potency difference intervals. For each activity class, the barplot represents the mean
distribution of test set compounds after random or stratified partitioning over increasing MMP potency difference intervals (x-axis: MMP (Δ)
potency). Each MMP was divided into a training and test compound, and the test compound was assigned to the potency difference interval into
which its MMP fell. For example, [0, 0.5] means that the potency difference between the MMP training and test compound was at most 0.5 orders
of magnitude, and (4, 4.5) means that the potency difference was between 4 and 4.5 orders of magnitude. The AC range begins with the (2, 2.5]
interval. The average number of test compounds per MMP-based potency interval is reported at the top of each bar.
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Figure 6. Prediction accuracy over increasing MMP potency difference intervals. Boxplots report the distribution of MAE values for test
compounds falling into increasing MMP potency difference intervals according to Figure 5 after random (left) or stratified (right) partitioning. The
representation corresponds to Figure 3. In panels (a) and (b), results for five activity classes are shown.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c01530
J. Chem. Inf. Model. 2023, 63, 7032−7044

7039



Figure 7. Distribution of Shapley feature contributions for test compounds. For each activity class, boxplots report the cumulative SV (for SVR)
and SHAP value (for RFR) contributions for different feature subsets and (a) correctly (residual ≤0.5) and (b) incorrectly (residual >0.5)
predicted test compounds over 10 independent trials. Boxplots are color-coded by feature subsets accounting for features that were present or
absent in both compounds forming an MMP (present/common or absent/common) or only present or absent in one of the MMP partners
(present/distinct or absent/distinct).
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expected values of the predictions. Cumulative contributions of
zero had no influence on the predictions. Rather unexpectedly,
for MMP compounds, essentially the same feature contribution
trends were consistently detected (with some variation in value
magnitudes), regardless of the regression model, sampling
strategy, or activity class (Figure 7). Hence, fingerprint features
shared by MMP compounds made positive contributions to
the potency value predictions of test compounds, whereas
features absent in both compounds made negative contribu-
tions. By contrast, present or absent features that were unique
to an MMP compound had only very little or no influence on
the predictions (with cumulative contributions close to zero,
except for outliers of the distributions).
Accordingly, predictions of test compounds were consis-

tently driven by features shared with training compounds in
the same way, that is, by balancing the positive contributions of
features present in both compounds with the negative
contributions of features absent in both compounds. Since
the sum of the expected value and the positive and negative
cumulative feature contributions corresponded to the
predicted numerical value of a compound in the SV/SHAP
explanation of regression models, these feature contributions
resulted in similar potency values for the corresponding
training and test compounds (as rigorously determined by
stratified partitioning of MMP), regardless of their potency
differences. For the majority of test compounds, this tendency
led to accurate predictions. However, for AC compounds, this
inevitably led to prediction errors of increasing magnitude.
Thus, the SV/SHAP value analysis provided another intuitive
explanation for the observed prediction characteristics over
increasing potency difference intervals, as discussed above.
Feature Mapping. Feature contributions to the prediction

of individual test instances can be visualized by mapping of
structural features that are present in test compounds (but not
absent) and color-coding their effects. Figure 8 compares
feature contributions for test compounds that were correctly
predicted using the SVR and RFR models (Figure 8a) or
incorrectly predicted (Figure 8b). Features that increased or
decreased the expected value of the predictions had positive or
negative SV/SHAP values, respectively (and are colored red
and blue, respectively). Their sum resulted in the cumulative
contribution. Notably, feature mapping takes all present
features into account, including those that are shared by
MMP compounds and unique to test compounds. The
comparison of feature contributions of individual test
compounds for SVR and RFR models revealed some model-
dependent differences, as one would expect, but also closely
corresponding feature contributions, both for correctly and
incorrectly predicted compounds. The comparison also
showed that different model-dependent feature contributions
could yield the same predicted potency values. It is also evident
that many contributing features mapped to the core structures
of test compounds that are shared in MMPs, rather than the
substituents unique to test compounds. For accurate
predictions of AC compounds, the distinguishing substituents
would principally be required to make strong contributions,
hence pointing at another possible origin of prediction errors
associated with AC compounds.

■ CONCLUSIONS
In this study, we carried out an in-depth analysis of potency
value predictions using ML models and controls that are
affected by limitations originating from potency value

Figure 8. Atom-based feature mapping. SVs (SVR) and SHAP values
(RFR) of features present in test compounds (a) correctly and (b)
incorrectly predicted using SVR (left) and RFR (right) models were

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c01530
J. Chem. Inf. Model. 2023, 63, 7032−7044

7041



distributions in compound data sets and the presence of ACs.
For the analysis, a new MMP-based compound test system was
designed that made it possible to monitor the prediction
accuracy across increasing MMP-dependent potency difference
intervals. The analysis was complemented with SV/SHAP-
based quantification of cumulative instance-based feature
contributions to further rationalize the predictions. Potency
predictions using the MMP-based data sets, regression models,
and controls produced very similar results for different activity
classes, consistent with previous observations made for
unmodified compound data sets. A key finding of the MMP-
based analysis in combination with stratified compound
partitioning was that all methods displayed a strong tendency
to predict similar potency values for corresponding training
and test compounds representing close structural analogues.
Given the statistical dominance of analogue pairs with the
same or similar potency, this tendency consistently led to
promising global prediction accuracy, camouflaging smaller
numbers of problematic predictions. However, potency-
interval-dependent evaluation of the MMP-based predictions
clearly revealed that prediction errors steadily increased with
increasing potency differences between corresponding training
and test compounds, culminating in 100- to 1000-fold errors
frequently observed for AC compounds. Moreover, quantita-
tive assessment of cumulative feature contributions using the
SV/SHAP formalism revealed that predictions of MMP
compounds were overall consistently determined by positive
contributions of features shared by MMP compounds and
negative contributions of features absent in these compounds,
regardless of their potency differences. These observations
provided another rationale for the prediction of similar potency
values for the corresponding compounds.
Taken together, the picture emerging from these findings is

very clear. If test compounds have close structural analogues in
training sets, then ML models tend to predict the training set
value for the test instance. Increasing potency differences
between structural analogues then leads to prediction errors of
increasing magnitude, ultimately resulting in the inability of
ML models to predict the potency of (statistically under-
represented) AC compounds in any meaningful way. If
compound data sets used for potency prediction exercises
are rich in structural analogues having comparable potency,
which is usually the case for activity classes originating from
compound optimization efforts in medicinal chemistry, the
assessment of global potency prediction accuracy using
different models tends to produce similar results and
overestimates the accuracy of the calculations. Hence,
prediction accuracy should best be separately monitored for
structurally similar training and test compounds with
increasing potency differences, as well as for test compounds

with no structural counterparts in training sets. Focusing
predictions on test instances that are distinct from training
compounds provides meaningful opportunities for follow-up
investigations.
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Abstract: Prediction of the potency of bioactive compounds generally relies on linear or nonlinear
quantitative structure–activity relationship (QSAR) models. Nonlinear models are generated using
machine learning methods. We introduce a novel approach for potency prediction that depends
on a newly designed molecular fingerprint (FP) representation. This structure–potency fingerprint
(SPFP) combines different modules accounting for the structural features of active compounds and
their potency values in a single bit string, hence unifying structure and potency representation. This
encoding enables the derivation of a conditional variational autoencoder (CVAE) using SPFPs of
training compounds and apply the model to predict the SPFP potency module of test compounds
using only their structure module as input. The SPFP–CVAE approach correctly predicts the potency
values of compounds belonging to different activity classes with an accuracy comparable to support
vector regression (SVR), representing the state-of-the-art in the field. In addition, highly potent
compounds are predicted with very similar accuracy as SVR and deep neural networks.

Keywords: bioactive compounds; potency prediction; fingerprints; machine learning; conditional
variational autoencoder

1. Introduction

Compound potency prediction is a major task in chemoinformatics and computational
medicinal chemistry. For potency prediction, both structure- and ligand-based approaches
are available. Structure-based methods attempt to predict small molecule (ligand) potency
on the basis of experimental (or modeled) three-dimensional (3D) structures of ligand–target
complexes. Ideally, such predictions aim to calculate the free energy of binding [1,2], for
example, by applying alchemical free energy perturbation methods [2]. These calculations
are challenging due to their high computational costs and the need to achieve consistent
accuracy across different targets and compound classes [1]. Alternatively, scoring functions
of different levels of sophistication are used to approximate ligand binding energies [3–6].

At the other end of the methodological spectrum reside classical ligand-based ap-
proaches for 2D and 3D quantitative structure–activity relationship (QSAR) modeling,
which derive linear descriptor-based models for predicting potency values of congeneric
compounds (structural analogues) [7,8]. Furthermore, for ligand-based modeling of
non-linear SARs and potency prediction, random forest (RF) regression [9] and, in par-
ticular, support vector regression (SVR) have become preferred machine learning ap-
proaches [10,11]. While SVR typically produces statistically sound prediction models, it
also displays a tendency to under-predict the individual most potent compounds because
they are often algorithmically classified as outliers [12].

The increasing popularity of deep machine learning in pharmaceutical research [13–17]
is also influencing structure- and ligand-based potency prediction. One of the attractions
of deep learning is the ability to derive new object representations from input data such
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as molecular graphs, thereby alleviating the need to use pre-conceived molecular descrip-
tors for prediction tasks. Suitable deep neural network (DNN) architectures have been
adapted for developing scoring functions [6,7] or deriving ligand–target binding energy
models [18–21]. Despite their apparent success, such models are in part controversially
viewed due to the observed strong dependence of their performance on varying training
set composition [22,23], resulting from the memorization of training data leading to appar-
ently accurate predictions that do not depend on correctly accounting for ligand–target
interactions [22–24]. Similar observations have also been made for deep compound classifi-
cation models with limited generalization ability [25]. In addition to studying ligand–target
interactions, DNNs are also intensely investigated for ligand-based molecular property pre-
dictions including potency [26–29]. To these ends, various DNN architectures and learning
strategies have been adapted. However, on data sets from medicinal chemistry, which are
often limited in size, DNN-based property prediction models often do often exceed—or
even meet—the performance of simpler models [29,30]. Hence, for both compound prop-
erty and potency prediction, no firm conclusion can currently be drawn concerning the
potential superiority of DNNs over standard approaches. We have recently shown that
k-nearest neighbor (kNN) analysis meets the accuracy of other ML methods in potency
prediction [31]. Moreover, randomized predictions typically reproduce experimental po-
tency values within an order of magnitude, which is a direct consequence of potency value
distributions in compound activity classes commonly used for benchmarking [31]. Hence,
the best ML models and random predictions are only distinguished by a small margin of
maximally one order of magnitude, representing a general limitation associated with the
benchmarking of potency prediction methods. This needs to be taken into consideration
when evaluating these methods, calling for the inclusion of simple controls such as kNN.

In this work, we introduce a novel concept for compound potency prediction that
combines a special fingerprint (FP), termed structure–potency FP (SPFP), with a deep
learning approach. FPs accounting for chemical structure and topology are a mainstay
for chemical similarity searching [32,33]. SPFP is the first FP representation specifically
designed to combine compound structure and potency information in a modular format.
Using SPFP, a conditional variational autoencoder (CVAE) [34,35] is trained to predict
potency from chemical structure using the structural module of test compounds as input.
Given the uniform structure–potency bit string encoding, SPFP–CVAE models do not
depend on class labels or associated variables for learning.

2. Materials and Methods
2.1. Compound Activity Classes

Bioactive compounds were extracted from ChEMBL (version 28) [36]. The compounds
with a reported direct target interaction (target confidence score: 9) and a numerically
specified potency (pIC50) value (standard relation: “=”) were initially retrieved. Then,
the compounds with a molecular weight less than 1000 Da and potency values falling
into the pIC50 range from 5 to 11 were selected. All the compounds with interactions
labeled as “inactive”, “not active”, “inconclusive”, “potential transcription error”, or “pan
assay interference compounds” (PAINS) [37] were discarded. Furthermore, the PAINS
filter from RDKit, a filter based on liability rules from medicinal chemistry [38], and
the aggregation advisor [39] were applied to remove compounds with potential assay
interference characteristics. On the basis of these criteria, 132,175 unique compounds
were obtained with activity against 1315 human targets. The qualifying compounds were
organized into target-based activity classes (pharmaceutical anti-targets were omitted).
A set of 10 activity classes was randomly selected from the large pool, comprising 18,231
unique compounds (Table 1) and used for activity class-based model building, hyper-
parameter optimization, and model evaluation.
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Table 1. Activity classes. Ten activity classes used for deriving and evaluating activity class-based
prediction models are reported.

Target Name Target ID # Compounds

Beta-secretase 1 4822 2270
11-beta-hydroxysteroid dehydrogenase 1 4235 2232

Phosphodiesterase 10A 4409 2109
Acetyl-CoA carboxylase 2 4829 1811
Dipeptidyl peptidase IV 284 1709

Sodium channel protein type IX alpha subunit 4296 1703
Tyrosine-protein kinase SYK 2599 1616

Vascular endothelial growth factor receptor 2 279 1614
Epidermal growth factor receptor erbB1 203 1606

Vanilloid receptor 4794 1562

2.2. Model Building and Evaluation

For each activity class, training and test sets were randomly assembled to yield a
constant 90:10 compound partition. Across all models, the predictive performance was
evaluated over 10 independent trials using different performance measures. For 80:20
compound data partitions used as a control, nearly identical results were obtained.

2.2.1. Conditional Variational Autoencoder

CVAE [40] is an adaptation of the variational autoencoder (VAE) [41], a supervised
deep learning algorithm for generative modeling that constructs a conditioned data repre-
sentation into a continuous latent variable (z). The probabilistic encoder q(z|X, c) (recogni-
tion network) uses a condition vector (c) to map the input data to a Gaussian distribution,
p(z|c)∼N(0, I) (prior network) into the latent space. The decoder p(X|z, c) then reconstructs
data samples from the conditioned latent space to obtain the original input representation
(dimensionality). The encoder and decoder are trained with the objective of optimizing the
evidence lower bound (ELBO) of the input data [42,43]. During training, the conditioned
encoder learns to approximate a latent variable distribution by minimizing the Kullback–
Leibler (KL) divergence [44] between data distributions in the original and latent space.
The decoder is trained to minimize the reconstruction error of the data representation.

The CVAE encoder and decoder networks consisted of three hidden layers, with 512,
256, and 128 neurons, respectively. For hyper-parameter optimization, a grid search proto-
col was applied to determine the number of neurons for the latent layer (16, 32, and 64).
Different learning rates (0.1, 0.01, and 0.001), dropout rates (0 and 0.5), and batch sizes
(16, 32, and 64) were evaluated. Network training was performed with Adam [45] optimizer
and the hyperbolic tangent (tanh) was used as the activation function. The parameters
β (1 and 2) and σ (0.01, 0.1, and 1) were tested. The learning rate was steadily reduced, dur-
ing training, to improve learning, and the models were run for a maximum of 150 epochs
or until convergence was reached with the early stopping option to avoid network over-
fitting. The CVAE cost function was computed as the mean of the reconstruction (binary
cross-entropy) loss and KL divergence loss.

2.2.2. Support Vector Regression

The support vector regression (SVR) is a variant of the supervised support vector
machine algorithm that derives an ε-insensitive tube based on the training data for the
prediction of numerical values, with the maximum permitted error provided by the width
of the ε tube [10,11].

For SVR, the cost hyper-parameter C was optimized by testing (0.001, 0.005, 0.01, 0.05, 0.1,
0.5, 1, 10, 100, and 10000) values. The SVR models were built using the Tanimoto kernel [46].



Biomolecules 2023, 13, 393 4 of 13

2.2.3. Random Forest Regression

Random forest regression (RFR) is a machine-learning algorithm based on an ensemble
of decision trees. During model training, each tree is created by splitting the respective
node and bootstrapping aggregation is used to randomly select the training instances. The
mean value across all decision trees is used to determine the final prediction [47].

In RFR parameter optimization, the number of decision trees (50, 100, and 200), the
minimal number of samples for a split (2, 3, 5, and 10), and the minimum number of
leaf-node samples (1, 2, 5, and 10) were used as the search parameter space.

2.2.4. Deep Neural Network

DNN is a deep learning method capable of mathematically modeling data using a non-
linear activation function through the neurons of the network’s fully connected layers. The
network learning process consists of interactively determining the difference between the
observed and predicted values, using a stochastic gradient descent algorithm to minimize
the loss function until it converges to a specific minimum value [48,49].

The DNN models were trained using several network architectures by varying the
different numbers of hidden layers (2 and 3) with hyperbolic tangent (tanh) activation, and
the network neurons (100–500). Grid searches were performed for different batch sizes
(16 and 64), dropout (0 and 0.5), and learning rates (0.1, 0.01, and 0.001). The networks were
trained using an Adam optimizer for a maximum of 200 epochs with early termination.

2.2.5. k-Nearest Neighbor Ranking

kNN is a supervised learning method that ranks the training compounds based on
increasing the fingerprint similarity (shortest distance). For the final prediction, the k-top
training compounds potency value is accessed (e.g., 1-NN—potency value, and 3-NN—
average potency) and assigned to the test compound [50]. For kNN optimization, the
optimal k values were evaluated with 1, 3, and 5 top-rated compounds.

2.2.6. Mean Regression

The mean regressor (MR) approach is based on assigning the mean potency value of
the training set to each compound present in the test set. This method was used as a control
calculation to generate the random predictions.

2.2.7. Random Predictions

A y-randomization control was performed by the random reassignment of potency
values across the compounds from each activity class (random shuffling) [51].

2.2.8. Hyperparamters and Implementation

The kNN, SVR, RF, and SPFP–CVAE model hyperparameters were optimized us-
ing an internal five-fold cross-validation, whereas the DNN parameter optimization was
performed with an internal 90:10 training–validation split. The SVR, RFR, kNN, and
MR models were generated using scikit-learn [52]. The CVAE and DNN models were
implemented with Keras [53] and Tensorflow [54].

2.2.9. Evaluation Metrics

The performances of all the models were evaluated by calculating the mean absolute
error (MAE) and root mean squared error (RMSE) for predicted and experimental test
compound potency values using scikit-learn.

MAE(y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi| (1)
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RMSE(y, ŷ) =

√√√√ n

∑
i=1

(yi − ŷi)
2

n
(2)

where n is the number of compounds, and y and ŷ are the experimental and predicted
potency values, respectively.

An assessment of the statistical significance was performed for the value distributions
from predictions based on MAE and RMSE values using the nonparametric Wilcoxon
test [55]. The null hypothesis was either rejected or accepted, by setting alpha to 0.05 and
comparing it to the respective p-value (p ≤ 0.05).

2.3. Molecular Representation

The compounds were represented using a folded version of the extended connectivity
fingerprint with bond diameter 4 (ECFP4) [56], which is a generally preferred topological de-
scriptor for many chemoinformatics applications, consisting of layered atom environments,
consisting of 2048 bits. The ECFP4 fingerprint was generated using RDKit [57].

The scripts for the reported calculations and the curated activity classes are available
from the authors upon request.

3. Results and Discussion
3.1. Concept of Potency Prediction Based on Fingerprint-Based Potency Encoding

The introduction of a structure–potency fingerprint (SPFP) provided the basis for a new
approach in potency prediction. The underlying idea was to unify structural and potency
encodings in a modular fingerprint representation of a constant format such that the potency
module representing a numerical value could be predicted from the structural module
of test compounds using deep learning. This unified and intuitive modular encoding of
compound structure and potency enabled the derivation of a chemical language model
such as a CVAE using SPFPs of training compounds to predict the potency module of test
compounds using only their structure module as input.

An extended connectivity fingerprint with a constant size of 2048 bits represented the
structure module of SPFP that was combined with a newly designed potency module for
representing compound potency values. We defined two principal requirements for the
potency module. Hence, it was required to, first, represent the biologically relevant large
(negative decadic logarithmic) potency range from 5 to 11 and, second, encode the potency
values at a meaningful resolution such that accurate predictions could in principle be
obtained. Therefore, alternative single value, value range, and cumulative coding schemes
suitable for bit string representations were initially investigated and cumulative value
range encoding was found to be the most robust approach (that is, yielding the most stable
predictions across independent trials). Accordingly, contiguous segments of increasing
numbers of bits were used to represent increasingly potent compounds populating the
entire logarithmic potency range from 5 to 11. For example, Figure 1a,b show how a
potency value of 5.2 and 8.0 was encoded by setting on the first four and 51 bits in the
potency module, respectively. To meet the second requirement stated above, we set the
size of the potency module to a minimum of 100-bit positions such that each individual
bit position accounted for 0.06 log units via cumulative potency encoding. Accordingly,
the resolution of the potency predictions was intrinsically limited to 6% of a log unit. This
level was deemed acceptable for the approach because it fell within the typical range of
experimental accuracy limitations. Smaller bit numbers for the potency module would
lead to larger resolution limits while larger numbers would further increase the resolution.
Therefore, we also tested larger versions of the potency module using the SPFP–CVAE
models comprising 500 and 1000 bits, as reported in Figure 2. These control calculations
produced very similar results to those obtained for the 100-bit potency module, hence
showing that the prediction accuracy could not be further increased by decreasing the
resolution limit of the potency encoding and supporting the choice of 100-bit positions for
the potency module. Furthermore, for potency predictions using CVAE sampling, a bit
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module with a constant format and meaningful size was required to assess the predictions
in a meaningful way (see below).
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Figure 2. Prediction accuracy for SPSF with differently sized potency modules. Boxplots report mean
absolute error (MAE) values of SPFP–CVAE models using alternative SPFP versions with potency
modules comprising 100, 500, or 1000 bits evaluated across all activity classes according to Table 1. In
boxplots, the upper and lower whiskers indicate maximum and minimum values, the boundaries of
the box represent the upper and lower quartiles, values classified as statistical outliers are shown as
diamonds, and the median value is indicated by a horizontal line.

3.2. Learning and Prediction Strategy

The CVAE model architecture used here consists of an encoder, latent space layer, and
decoder, as illustrated in Figure 3.
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Figure 3. Architecture of the conditional variational autoencoder. The encoder network transforms
the potency module (PFP), conditioned by the structure module (c), into a distribution of latent
variables (z). The decoder samples a conditioned latent vector from a Gaussian distribution and
reconstructs the potency module.

For each compound activity class, a CVAE model was trained to reproduce the com-
plete bit patterns of the potency module, conditioned by the structure module, as illustrated
in Figure 4a. Each CVAE model was then used to predict the bit settings of the potency
module (PFP). Therefore, the potency values of the test compound were predicted by
submitting the structure module (c) to the CVAE decoder to generate the corresponding
potency module, as illustrated in Figure 4b. Since the CVAE predictions depended on the
sampling of potency modules in latent space, the evaluation criteria for potency module
variants were defined. Accordingly, for a given test compound, a sampled potency module
was classified as valid if it contained a contiguous bit string in which all bits were set on. If
this criterion was met, the predicted potency value was assigned to the center of the respec-
tive potency interval (e.g., 5.03 for the [5.0–5.06] interval), resulting in a constant standard
deviation of ±0.03 log units for all predictions. By contrast, if the output bits were not
contiguous, that is, if they were not consistent with the cumulative encoding of the potency
module, the prediction was classified as invalid and the sampling was continued until a valid
prediction was obtained, given a maximal number of permitted sampling steps.
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Figure 4. Conditional variational autoencoder modeling. In (a,b), the CVAE training and prediction
strategies are illustrated, as discussed in the text.

3.3. Potency Predictions

For 10 randomly selected compound activity classes, different ML models were gen-
erated. Figure 5 shows that the compound potency value distributions of the activity
classes were overlapping yet distinct, mostly yielding median potency values in the high
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nanomolar range. The comparison also shows that logarithmic potency values below 5
(approaching experimental accuracy limitations) and above 10 (sub-nanomolar potency)
were generally sparse.
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Figure 5. Potency value distribution of activity classes. Kernel density estimation plots (left) and
boxplots (right) compare the potency values distributions of the 10 activity classes. Coloring of
boxplots is arbitrary. The horizontal line indicates the median of the value distribution and diamond
symbols represent statistical outliers.

Activity class-dependent potency prediction models were then generated for SPFP–
CVAE, k-nearest neighbor (kNN) analysis, SVR, RFR, and DNN. These ML approaches
currently represent the state of the art in compound potency prediction [31]. In addition, a
mean regressor (MR) was applied as a control, which simply assigned the mean potency
value of an activity class to all test compounds. The results are reported in Figure 6.
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Overall, similar prediction accuracy was observed for the different ML models, re-
gardless of their complexity, mostly with median MAE and RMSE of ~0.4–0.5 and ~0.6–0.7,
respectively. As observed before [31], simple kNN-based potency assignments approached
or exceeded the prediction accuracy of ML models and there was no advantage of deep
learning approaches over other ML methods. Moreover, the MR yielded median MAE
and RMSE values of ~0.8–0.9 and ~1.0–1.1, respectively. The performance of randomized
SPFP–CVAE models was only slightly worse than MR, mostly with a median MAE value
of ~1.0–1.2, owing to the dominance of compounds with potency values between 6 and 8
across all activity classes, as reported in Figure 5. These artificial predictions using MR or
randomized models reproduced experimental values within about one order of magnitude,
providing a limit for prediction accuracy, while most accurate ML models typically achieved
mean MAE value of ~0.4. Hence, there was only a relatively small margin between best
and artificial predictions, defining a window of less than one order of magnitude in which
model performance must be evaluated [31]. In the previous study, equally curated versions
of three activity classes (279, 284, 4822) from a different ChEMBL release were investigated
using ML methods with different calculation protocols, yielding prediction accuracies very
similar to the values reported herein [31].

Many of the small performance differences observed in Figure 6 were not statistically
significant, as reported in Figure 7, while differences between SPFP–CVAE, SVR, and RFR
were statistically significant for about half of the activity classes. However, the prediction
accuracy of these three approaches was very similar, which was also reflected by the
respective p-values. Overall, SVR was the preferred approach, but only by a very small
margin compared to SPFP–CVAE and other ML methods. For example, the differences in
the median MAE between SPFP–CVAE and SVR ranged max. ~0.01–0.02, depending on
the activity class, which was marginal at most and would be considered irrelevant for all
practical purposes.
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Figure 7. Statistical significance assessment. Statistical significant (Wilcoxon signed-rank) tests based
on (a) MAE and (b) RMSE values were carried out for the performance differences observed between
SPFP–CVAE and all other ML models (kNN, SVR, RFR, and DNN). Red cells indicate p-values above
α = 0.05 (no statistical significance) and green cells p-values below α = 0.05 (statistical significance).
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3.4. Predicting Highly Potent Compounds

We then investigated the ability of the different ML methods to predict the 10% most
potent compounds in a test set (typically amounting to ~15–20 compounds) using models
derived based on the original sets. The results for models derived from original training sets
are shown in Figure 8. Due to the small test sample size of these predictions, the MAE and
RMSE value distributions were broader than for the global predictions reported in Figure 6.
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Compared to the global predictions, the median MAE and RMSE value for most potent
compounds increased to ~0.6 and ~0.8 or greater, respectively, for about half of the activity
classes while the prediction accuracy remained similar to before for the remaining classes.
However, the performance of the different ML methods including kNN continued to be
comparable (MR was omitted here because of the naturally large deviations for the small
number of the most potent compounds). Overall, SVR, SPFP–CVAE, and DNN yielded
best predictions with only small (and activity class-dependent) differences between these
methods. The predictions for the exemplary compounds are shown in Figure 9.
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4. Conclusions

Compound potency prediction is an important task in chemoinformatics and medicinal
chemistry. For structure- and ligand-based predictions, different methods have been
introduced. QSAR techniques including non-linear modeling using machine learning
continue to play an important role. Herein, we have introduced a new methodological
concept for compound potency prediction that depends on the newly designed SPFP
format for structure–potency encoding and CVAE learning. The SPFP–CVAE concept
was devised to enable the prediction of bit settings in SPFP potency modules from input
structure modules, without learning correlations between structural representations and
potency values used as a dependent variable. In activity class-dependent predictions, the
SPFP–CVAE approach essentially met SVR performance, representing the current state of
the art in the field. Given the general limitations associated with the potency predictions in
benchmark settings, we consider the prediction of most potent compounds a particularly
meaningful exercise. In this case, SVR, SPFP–CVAE, and DNN achieved comparable
accuracy. Taken together, our results indicate that the SPFP–CVAE concept introduced
herein provides a new methodological framework for compound potency prediction that
can be further explored in various ways. Importantly, FP-based structure–potency encoding,
as introduced herein, can be easily modified for different applications, providing a versatile
input format for ML.
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Perspective

Uncovering and tackling fundamental limitations
of compound potency predictions
using machine learning models

Tiago Janela1 and Jürgen Bajorath1,2,3,*

SUMMARY

Molecular property predictions play a central role in computer-aided
drug discovery. Although a variety of physicochemical (e.g., solubil-
ity or chemical reactivity) or physiological properties (e.g.,metabolic
stability or toxicity) can be predicted, biological activity is by far the
most frequently investigated compound feature. Activity predic-
tions are carried out in a qualitative (target-based activity, through
compound classification) or quantitative (compound potency or
ligand-target affinity, through regression modeling) manner. Many
studies have evaluated and compared different machine learning
methods for activity and potency predictions, recently with a focus
on deep learning. Regardless of the methods used, these studies
generally rely on conventional benchmark settings. Recent work
has shown that potency prediction benchmarks have severe general
limitations that have long been unnoticed but prevent a reliable
assessment of different methods and their relative performance.
In this perspective, we outline general limitations of benchmark
settings for compound potency predictions, introduce potential al-
ternatives enabling a more realistic assessment of state-of-the-art
predictive models, and discuss future directions for elucidating pre-
dictions and further increasing their impact.

INTRODUCTION

Compound potency predictions play a central role in computer-aided drug discov-

ery.1–3 Over the years, various ligand- and target structure-based potency prediction

methods have been introduced, at different levels of computational sophistication.

Since the early 1960s,4 quantitative structure-activity relationship (QSAR) analysis

methods have become a foundation of computer-aided drug discovery and

continue to be widely applied in the practice of medicinal chemistry, especially dur-

ing compound optimization.5,6 The complexity of QSAR-type methods greatly

varies, ranging from simplistic multiple linear regression to machine learning (ML)

models.4–6 Standard QSAR techniques relate physicochemical properties of com-

pounds, accounted for through the use of numerical descriptors, to biological activ-

ity via linear models. Once calibrated for an evolving compound series, these

models are applied to predict the potency of structural analogs in the search of

increasingly potent compounds. As such, QSAR predictions are typically confined

to congeneric compounds and carried out for one series at a time. For potency pre-

dictions on structurally more diverse compounds, ML regression models are

derived, as further discussed below. Hence, contemporary QSAR approaches

include both linear and non-linear (ML) models.6
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In structure-based compound design, different types of energy calculations are car-

ried out to approximate ligand affinities. For example, ligand docking calculations

(that is, placing compounds into target binding sites in a chemically and sterically

complementary manner) are carried out for structure-based virtual screening as

well as compound optimization.7 These calculations make use of a variety of scoring

functions and energy calculations that are mostly based on molecular mechanics

force fields or statistics of ligand-target interactions (such as potentials of mean

force).7–9 Irrespective of how docking scores are designated in the literature (often

as energy values), they generally represent rough estimates of ligand-target interac-

tion energies and are primarily used to rank hypothetical binding modes of docked

compounds on a relative scale. At a higher level of sophistication, relative binding

free energy perturbation calculations are more accurate and best applied to X-ray

structures of ligand-target complexes.10,11 Similar to QSAR predictions, free energy

perturbation calculations are essentially restricted to congeneric compounds and

used to calculate affinity/potency differences between structural analogs. Free en-

ergy calculations following the quantum mechanics/molecular mechanics (QM/

MM) approach represent a further advance where a ligand and its immediate protein

environment are treated quantum mechanically, while the remainder of the target is

treated using molecular mechanics functions.12,13 In general, free energy calcula-

tions have high computational demands and are difficult to generalize across

different targets and compound series.

Although structure-based potency predictions and conventional QSAR analysis are

conceptually distinct, these approaches have in common that they are generally limited

to individual compound series consisting of structural analogs. Therefore, to enable po-

tency predictions based on larger datasets containing structurally diverse compounds,

regressionmodels using differentML algorithms have become amainstay in computer-

aided drug discovery.14 For example, random forest regression (RFR)15 or support vec-

tor regression (SVR)16 models are, by today’s standards, computationally inexpensive

and usually straightforward to derive for given target-dependent sets of active com-

pounds (termed activity classes). In contrast to standard QSAR-type modeling, these

methods have the principal advantage that they are able to capture non-linear struc-

ture-activity relationships (SARs) and thus applicable to structurally diverse compounds.

SVR was first applied in drug discovery in the late 1990s and evolved to be a standard

for non-linear potency prediction (non-linear QSAR) over time. Furthermore, in recent

years, deep neural network (DNN) architectures such as deep feedforward, recurrent,

and graph neural networks or transformers have increasingly been used for quantitative

molecular property predictions.14,17–20 Figure 1 shows a schematic representation of

the SVR, RFR, and exemplary DNN approaches, and Figure 2 illustrates compound po-

tency prediction using an ML model.

Although promising potency predictions were reported for different DNNs, im-

provements in accuracy over standard ML methods such as RFR or SVR were often

marginal at best for different molecular representations.17–19,24,25 These findings

were at least in part attributable to the situation that datasets of active

compounds from early-phase drug discovery are small (on the order of hundreds

to thousands of compounds) compared to datasets from other fields such as natural

language processing or image analysis that were substantially advanced through

DNNs. Compound activity data mostly result from compound (hit-to-lead or lead)

optimization projects in medicinal chemistry, which explains data sparseness.

Furthermore, compound predictions do not depend on representation learning (in

contrast to, for example, image analysis based on pixel data), given the availability
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of a wealth of pre-defined structural and molecular property descriptors. Clearly,

compound data spareness and the use of high-resolution molecular representations

do not play into the strengths of deep learning.

Moreover, there are also potential methodological caveats. For instance, as a new

approach for structure-based affinity calculations, graph neural networks (GNNs)

have been used to predict compound potency values from ligand-target interaction

graphs extracted from X-ray structures.26 Significant correlation between predicted

and experimental values was frequently reported.26 However, these predictions

were found to be largely determined artificially by ligand memorization of GNNs

and thus did not depend on learning ligand-target interactions.26,27 Given that

similar active compounds often tend to have similar potency, memorizing training

compounds that are structurally related to test compounds and assigning the po-

tency of these training samples to test compounds causes these effects.

In general, however, the absence of significant performance increases for potency

predictions using computational methods of increasing complexity has fundamental

reasons and consequences, as discussed in this perspective.

Figure 1. Schematic representation of different machine learning methods

Illustrated are the support vector regression (SVR), random forest regression (RFR), deep feedforward neural network (DNN), and graph neural network

(GNN) methods. For SVR, blue circles represent training instances, and light blue support vectors are used to generate the tube around the derived

function (hyperplane). For SVR and DNN methods, red circles illustrate test instances. For RFR, DT stands for decision tree, and the tree path from the

root to the tree leaf is highlighted using gray circles. Different from the other methods, RFR is an ensemble approach relying on independently derived

DTmodels. RFR and SVR represent adaptations of original classification algorithms for predicting numerical values. DNNs and GNNs employ non-linear

activation functions to map an input value to the respective output across computational neuron layers. For GNNs, the input data are a molecular graph.

Further methodological details of the RFR, SVR, DNN, and GNN methods are provided in Breiman,15 Drucker et al.,16 Khamparia and Singh,21 and

Scarselli et al.,22 respectively.
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In the following sections, we detail intrinsic limitations of potency prediction bench-

mark calculations, put them into scientific context, and deliberate alternatives for the

evaluation of predictive models that might be more informative. Finally, we discuss

future directions for the field including the need for novel methodological concepts

and approaches integrating computation and experiment.

Uncovering general limitations

For potency prediction using ML models, the performance of computational methods

typically relies onbenchmark systems and calculations. Benchmarking is of critical impor-

tance for the prospective use of novel methodologies. Benchmark studies require reli-

able compound activity data extracted from, for example, the ChEMBL28 database,

the major public repository of literature and patent data from medicinal chemistry.

Like data from any larger compound repository, ChEMBL data are heterogeneous since

they originate from different assays carried out in different laboratories and contain in-

accuracies due to experimental variance, measurement errors, or ambiguous target

assignments.23 However, ChEMBL is manually curated, actively maintained and

expanded, and remains the source of choice for publicly available compounds fromme-

dicinal chemistry and associated activity data. Once activity classes have been obtained,

the compounds and activity data are partitioned into training and test sets for MLmodel

derivation and evaluation, respectively, conventionally via multiple independent cross-

validation iterations using different performance measures. Such benchmark settings

are generally applied for the evaluation and comparison of the prediction accuracy of

different ML methods, both in compound classification and regression modeling. Clas-

sification typically aims at distinguishing between compounds from an activity class for a

given target and other randomly selected compounds assumed to be inactive against

this target, while regression aims at the prediction of numerical potency value for test

compounds from a given activity class. Because activity classes originate from com-

pound optimization efforts, they mostly cover a wide range from high micromolar to

Figure 2. Compound potency predictions with an ML model

The model is derived using training compounds to predict the potency of test instances for a given activity class. These calculations are vulnerable to

typically observed potency value distributions in compound datasets from medicinal chemistry and varying structural relationships between training

and test instances, as further discussed in the text. IC50 represents the half-maximal inhibitory concentration of a compound inhibiting a biological

target,23 providing an assay-dependent measure of potency. pIC50 stands for the negative logarithmic IC50 value in molar (M) concentration.
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low nanomolar (or sub-nanomolar) potency. Thus, properly derived regression models

should be capable of predicting compound potency across the entire range for typically

sized activity classes, including weakly and highly potent test compounds. For classifica-

tion models, a variety of performance metrics are applied to assess prediction accu-

racy29; for regression models, the mean absolute error (MAE) or root-mean-squared er-

ror are primarily used.29 Benchmark publications typically report high prediction

accuracy of different models and activity classes, often proposing superiority of new

models based on an increase in prediction accuracy of only a few percent.

Given the increasing use of deep learning models in computer-aided drug discov-

ery, potency prediction benchmarks were systematically carried out for ML methods

of increasing complexity including RFR, SVR, DNN, and a graph convolutional

network (GCN), a GNN variant with representation learning compared to simple

controls and randomized regression models.30–32 As controls for baseline perfor-

mance, k-nearest neighbor (k-NN) and median regression (MR) calculations were

carried out, which do not require learning. In k-NN calculations, the potency as-

signed to a test compound was averaged over the k most similar training com-

pounds. In MR, the median potency value of the training set was assigned to each

test compound. Thus, all test compounds were predicted to have the same median

potency. Furthermore, in random regression (RR), models were trained after

randomly reassigning (shuffling) potency values across compounds. Thus, in RR,

SARs, the presence of which provides the basis for learning, were eliminated. Fig-

ure 3 shows the results of representative potency predictions.30–32

In these potency predictions, several key observations were made.

� k-NN reached or surpassed the accuracy of increasingly complex ML models

In independent trials, stable potency predictions were observed for essentially all

models, and differences between alternative models were marginal at best. All

observed differences fell well within an order of magnitude. On average, predictions

reachedMAE values of�0.5 relative to the experimental data, corresponding to�3-

fold differences in potency, which are often not biologically relevant and approach

experimental accuracy limits of �0.3 log units (corresponding to �2-fold differences

in potency).23,33 Based on these considerations, the predictions were generally ac-

curate. Furthermore, predictions using different models were only separated by

�0.1–0.2 MAE (except MR). Overall, SVR reached slightly higher performance

than DNN/GNNmodels and k-NN calculations (Figure 3A).30 However, while the dif-

ferences between model performance distributions had moderate statistical signif-

icance,30 differences between predictions with alternative models essentially fell

within experimental accuracy limitations. In large-scale predictions over hundreds

of different activity classes covering current pharmaceutical targets, these trends

were consistently observed, confirming their generality.31

� Only small error margins separated ML models and controls from random pre-

dictions

For RRmodels, prediction yieldedmeanMAE values of�0.9 (<10-fold) across different

activity classes (Figure 3B), compared to�0.5 for the original models. Thus, the perfor-

manceofMLmodelswas separated from randomizedpredictionsby only smallmargins

of maximally �0.5 MAE (corresponding to �3-fold differences in potency).30

� Predictions of ML models were biased by median potency values
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To further investigate the findings discussed above, predictions using different

models were monitored for compounds falling into different potency intervals,32

as shown in Figure 3C. For low and high potency intervals of 5–7 and 9–11, MAE

values were largest for all models andMR, with MAE values up to�1 and 1.5, respec-

tively (low and high potency values depart from the median). By contrast, for the po-

tency interval 7–9, into which median values (�8) fell, MAEs were lowest for ML

models andMR (�0.5) and very similar. Furthermore, prediction accuracy of different

models in the potency interval 7–9 mirrored global prediction accuracy, as also

shown in Figure 3A. This was the case because the majority of compounds in this

and the other activity classes had micromolar to high nanomolar potency and thus

Figure 3. Representative potency predictions for exemplary activity classes

As a measure of prediction accuracy, mean absolute error (MAE) values for logarithmic potencies are reported for (A) different ML models trained on

two individual activity classes for targets PI3-kinase p110-alpha subunit (left) and beta-secretase 1 (right),30,31 (B) corresponding randomized models for

these two activity classes,30,31 and (C) predictions on an exemplary activity class (epoxide hydratase) monitored across potency intervals.32 ML methods

are designated according to Figure 2. In addition, kNN and GCN abbreviate k-nearest neighbor and graph convolutional network, respectively. The

results of multiple independent predictions are reported in boxplots. In boxplots, the box defines upper and lower quantile and the horizontal line the

median value of the distribution. Upper and lower whiskers represent the maximum and minimum value, respectively. Diamond symbols mark statistical

outliers. Activity classes in (A) and (B) consisted of 1262 and 1116 compounds, respectively, and 80% vs. 20% training/test data partitions were

generated. The activity class in (C) comprised 1227 compounds. In this case, 50% vs. 50% training/test data partitions were generated. The results shown

here are representative of all studied activity classes.30–32
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fell into this interval,32 which is typical for compound activity classes from medicinal

chemistry.32 Thus, data concentration aroundmedian values determined global pre-

diction accuracy and biased predictions of ML models.

� Predictions of ML models were biased by structural analogs

We also examined consequences of the presence of structural analogs in training

and test sets of MLmodels on potency predictions.34 Therefore, a molecular test sys-

tem was designed comprising pairs of analogs with increasing potency differences

that were divided into training and test compounds. Analog pairs were systemati-

cally extracted from different activity classes following the matched molecular pair

(MMP) formalism.35 An MMP is defined as a pair of compounds that are only distin-

guished by a chemical change at a single site (here an R-group replacement).35 Using

this system setup, all ML models showed a clear tendency to predict values close to

the potency of training compounds for structural analogs in test sets.34 Accordingly,

the larger the potency differences between analogs were, the less accurate were the

predictions. These findings also rationalized notorious difficulties of ML models to

predict activity cliffs36 observed in different studies. Activity cliffs were introduced

as pairs of very similar compounds with large potency differences36 (e.g., >100-

fold) and hence represent the pinnacle of SAR non-linearity (discontinuity). However,

since activity cliffs occur only infrequently and most structural analogs have compa-

rable potency, ML predictions for the MMP-based test system were accurate for

many analogs pairs falling into mid-potency range (logarithmic potency interval

7–9).

However, to avoid potential analog bias (‘‘data leakage’’) in potency predictions,

leading to over-optimistic prediction outcomes, the presence of structural analogs

in training and test sets should best be avoided. This can be accomplished by scaf-

fold- or analog-series-based partitioning of training and test data (instead of random

splitting), as exemplified by the test system discussed above. Although series-based

partitioning also is an approach of choice to derive models for prospective applica-

tions, it is not (yet) common practice in molecular ML.

Taken together, these key findings showed that potency predictions using different

ML methods and k-NN calculations displayed similarly accurate performance largely

determined by compounds in the mid-potency range and separated from random-

ized predictions by only confined margins. It follows that predictions using conven-

tional benchmark settings cannot discriminate between ML methods of different

complexity and do not provide a realistic picture of the predictive performance of

these approaches.

Accordingly, conclusions drawn from conventional potency prediction benchmarks

are questionable at best.

Alternative calculation schemes

The intrinsic limitations of potency benchmark calculations discussed above have

long gone unnoticed but present a substantial problem for molecular ML and com-

puter-aideddrug discovery. Since the performance of increasingly complexmethods

was similar for hundreds of activity classes, leading to only little relative differences

between prediction accuracy, and only separated from random predictions by small

margins, these limitations obviously did not depend on compound classes and their

chemical characteristics or specific (target-based) activities. Instead, they largely re-

sulted from potency value distributions commonly observed in activity classes from
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medicinal chemistry used for benchmarking, as discussed above. As illustrated in Fig-

ure 3C, a characteristic feature of these distributions was the dominance of com-

pound potency values in the micromolar to high nanomolar range (logarithmic po-

tency interval 7–9), which included the median potency value of most activity

classes and largely determined global prediction accuracy.

Although the design and evaluation of alternative benchmark schemes is still in its early

stages, based on these insights, we can at least point at possible directions for

improving the basis of methodological comparisons. For example, the presence of

structural analogs in training and test sets of ML models should be avoided. Further-

more, the evaluation of potency predictions should preferentially focus on potent com-

pounds in test sets with significant deviations from the median potency value. For all

practical purposes, highly potent compounds represent the most important prediction

tasks. As shown above, for highly potent compounds, global prediction accuracy

decreased, and performance differences between alternative methods increased,

albeit only slightly (Figure 3C). However, such modifications of typical benchmarking

will likely not suffice to substantially improve the basis for method evaluation. Instead,

new benchmark concepts must be developed, which is not a trivial task. In principle,

system setups are required that yield more variable prediction outcomes and that in-

crease the separation of alternative ML methods, simple controls, and random predic-

tion accuracy. Currently, such test systems are unavailable but can be conceived. For

example, we have derived potency prediction models for a given activity class in the

presence of increasing proportions of presumed inactive compounds, that is, com-

pounds from other classes with an assigned potency value of 0 for that activity class.

Models were built for training sets with 0%–100% of inactive compounds (added in in-

crements of 10%), with 100% corresponding to the size of the original training set of

active compounds. Inactive compounds were either randomly selected from only one

other activity class (termed ‘‘homogeneous’’ selection) or different activity classes

(random selection). Importantly, inactive training instances expanded the potency

range for learning by several orders of magnitude. Figure 4 shows the results of predic-

tions for three exemplary activity classes using models derived in the presence of

increasing proportions of inactive training instances.

Compared to the original models, in the presence of increasing proportions of inac-

tive training compounds, the distributions of independent prediction trials widened,

prediction accuracy decreased, and the separation betweenMLmodels and controls

increased. These effects were much stronger for randomly selected inactive training

compounds than compounds from homogeneous selection because randomly

selected samples further increased the diversity of training sets, which provided

additional challenges for ML models. Notably, k-NN prediction accuracy was less

affected than other models by the addition of diverse inactive compounds to the

training set because of the low probability that nearest active neighbors of test com-

pounds were replaced by random training samples. By contrast, large prediction er-

rors were observed for the DNN models, which adapted worse than other ML

methods to the presence of increasing numbers of inactive training instances.

Exploring reasons for this apparent vulnerability should be of interest.

Hence, the inclusion of inactive compounds in model derivation alters benchmark

settings for the evaluation of potency predictions in a meaningful way.

Forward-looking viewpoints

While qualitative compound activity and quantitative potency predictions have already

played a central role in computer-aided drug discovery formany years, the relevance of

ll
OPEN ACCESS

8 Cell Reports Physical Science 5, 101988, June 19, 2024

Perspective



such predictions will most likely further increase in the artificial intelligence (AI) era. For

example, as chemical source libraries are becoming ultra-large, there will be a need to

tightly control the magnitude of biological screening efforts and experimental costs.

Although it is known that the accuracy of activity and potency prediction methods

observed in benchmark settings is not a reliable indicator of their performance in prac-

tical drug discovery applications, reasons for this discrepancy have only been little

explored until recently. Going forward, raising further awareness of the limitations of

such predictions and conventional benchmark systems will be particularly relevant as

demands and expectations will grow. Importantly, intrinsic limitations of potency pre-

dictions highlighted herein cannot be compensated for by using prediction models

of increasing computational complexity, which is a trend in the AI era. Rather, new con-

cepts for amoremeaningful assessmentof computational approachesmustbedevised.

For instance, it should be realized and further emphasized that the ultimate goal of such

computational efforts is the identificationof potent compounds inprospectivedrugdis-

covery applications. Clearly, this calls for a stronger focus on such applications, comple-

menting and further extending efforts to develop second-generation benchmark

schemes enabling more informative methodological comparisons and more reliable

performance estimates. However, given that many computational groups driving

method development are not able to regularly interface with experiments, especially

in academia, prospective applications are not straightforward to implement. Therefore,

Figure 4. Prediction accuracy of models built in the presence of inactive compounds

Boxplots report the distribution of MAE values for active test compounds using different models derived in the presence of increasing proportions of

inactive training compounds (via homogeneous or random selection). Results of pilot calculations are shown for three exemplary previously studied

publicly available compound activity classes.32,34 For the studied activity classes (from left to right), dataset sizes corresponded to 1586, 797, and 1410

active compounds, respectively. In each case, 50% vs. 50% training/test data partitions were generated. For each class, the target name is provided.

ll
OPEN ACCESS

Cell Reports Physical Science 5, 101988, June 19, 2024 9

Perspective



interdisciplinary drug discovery environments are challenged to contribute more

strongly to advancing the field. In particular, computationally driven case studies with

seamless experimental evaluation of predictions in discovery projects are expected

to receivewideattention,providepractically relevant results, andbalanceexpectations,

especially as the complexity of computational approaches increases. Studies priori-

tizing small numbers of compounds for experimental evaluation are thought to be

more important for advancing the field than the statistical assessment and

comparison of global prediction accuracy on different compound classes, provided

these studies are rigorously reported to the scientific community. This will require

increasing orientation toward open science in traditionally conservative drug discovery

environments, but the benefits will be mutual. In any event, it is hoped that increasing

awareness of computational limitations of benchmark predictionswill lead tomore pro-

spective applications accompanying the development of new computational concepts.
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