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List of abbreviations 

AI Artificial intelligence 

BCA Body composition analysis 

CNN Convolutional neural network 

CPHM  Cox proportional hazards model 

DL Deep learning 

EAT Epicardial adipose tissue 

HIFU High-intensity focused ultrasound 

ML Machine learning 

TAVR Transcatheter aortic valve replacement 

4



1. Abstract

Artificial intelligence (AI)-based methods are nowadays an integral part of medical 

research and are also applied in radiology, for example, for the automation of quantitative 

image analysis. Automated evaluation tools are of particular interest in the analysis of 

radiological images, as quantitative assessment usually requires the segmentation of 

specific organs and tissues, making manual analysis very time-consuming and therefore 

difficult to integrate into everyday clinical practice. Moreover, automatic analysis facilitates 

large-scale assessment and an opportunistic application, which may contribute to the 

identification of biomarkers that provide new insights into different pathologies. This thesis 

focuses on the development of deep learning (DL) methods in radiological cross-sectional 

imaging and presents three studies dealing with the automation of quantitative 

measurements. 

The first study investigates a DL approach for targeted analysis of uterine volume in T2-

weighted MRI scans from patients with leiomyomas by automatically segmenting uterine 

tissue. This method enables monitoring uterine volume before and after high-intensity 

focused ultrasound (HIFU) treatment to assess the response to therapy. In the second 

work, a dual-center study is conducted to develop an automatic assessment of body 

composition based on CT scans. Body composition is performed on 2D abdominal slices 

at L3/L4 lumbar level, which is why automatic slice extraction is also investigated in the 

pipeline next to tissue segmentation. Additionally, quality control methods are integrated 

to ensure fully automatic application in the clinical routine. Lastly, a DL model is developed 

that directly predicts the survival of patients undergoing transcatheter aortic valve 

replacement (TAVR) based on quantitative image features extracted from abdominal CT 

slices.  

This thesis provides insight into the achievable robustness of DL models for both 

automatic tissue segmentation and direct image-based outcome analysis. To this end, 

several techniques for efficient AI training are employed, such as data augmentation or 

pre-training strategies. The successfully automated quantitative analyses enable 

application in a large-scale setting as well as opportunistic analyses for further 

investigation of quantitative imaging markers in future studies.  

5



2. Introduction and aims with references
2.1 Artificial intelligence in radiology  

The use of AI-based methods in medicine is rapidly increasing and has become an 

essential part of medical research. In radiology, AI approaches are used in a wide range 

of applications, e.g. image reconstruction, computer-aided diagnosis, workflow 

optimization, patient monitoring, or risk modeling (Castiglioni et al., 2021; Hosny et al., 

2018; Thrall et al., 2018). One example of AI-based image reconstruction is the 

AUTOMAP framework presented by Zhu et al. (2018), a deep neural network for image 

reconstruction that addresses multiple problems, such as artifact reduction. In general, AI 

approaches can detect complex patterns from biomedical image data and thus not only 

automate a quantitative image analysis but can also extract new information from the 

biomedical image that may be related to a specific pathology (Gillies et al., 2016; Hosny 

et al., 2018). An important goal of computer-aided diagnosis is to identify image features 

that are associated with a specific disease, thereby enabling a comprehensive 

characterization of the pathological changes. This has already proven successful in the 

diagnosis of intestinal polyps or in mammography (Komeda et al., 2017; Rodríguez-Ruiz 

et al. 2019). AI-based methods thus contribute to data-driven medicine, which enables 

more individualized patient care (Castiglioni et al., 2021; Hosny et al., 2018).  

In 2016, Gillies et al. presented the concept of Radiomics, a classic machine learning (ML) 

method to automate quantitative image analysis that has especially proven itself in 

oncological imaging (Colen et al., 2021; Gillies et al., 2016; Kniep et al., 2019; Limkin et 

al., 2017). In Radiomics analysis, a set of predefined quantitative features, for example, 

based on image texture are extracted from a region of interest in the image and can then 

be used to build classification systems for a certain disease (Gillies et al., 2016). However, 

the main drawback of this method is the need for standardized imaging and the fact that 

the extracted quantitative features are predefined and therefore may not always represent 

the most appropriate characteristics for the underlying research question. Also, feature 

selection and calculation require standardization to enable widespread application (Hosny 

et al., 2018; Limkin et al., 2017). 

In contrast, DL methods are able to autonomously learn abstract data representations and 

automatically select relevant image features depending on the task at hand. When it 

comes to processing image data, the convolutional neural network (CNN) in particular has 
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established itself as a specific DL architecture that can be used to address various tasks 

such as image classification, semantic segmentation, or object detection (Castiglioni et 

al., 2021; Hosny et al., 2018; LeCun et al., 2015). To be able to model complex non-linear 

relationships, DL models require a large amount of data to avoid the risk of overfitting and 

ensure a well-generalized model. As most CNNs are trained in a supervised fashion, this 

aspect is a major weakness of DL models as data annotation is expensive, time-

consuming, and often requires a high level of expertise, especially in the medical domain. 

However, there are various techniques to counteract this weakness, such as the use of 

data augmentation to increase the variation in the training data or the use of transfer 

learning, where a previously trained model is applied to another related task (Castiglioni 

et al., 2021). For this, the data does not necessarily have to come from the same domain, 

e.g. a CNN designed to detect liver cirrhosis from MRI data was successfully pre-trained

on the ImageNet dataset (Nowak et al., 2021; Russakovsky et al., 2015). Furthermore,

data compression methods, such as autoencoders, can be used to prevent overfitting on

high-dimensional medical image data. Autoencoders extract the most essential features

from the input data and restore the original input based on this compressed data

representation. This unsupervised learning method is particularly efficient as no labeled

data is required (Chen et al., 2017; Wolf et al., 2023).

In general, the ability of DL models to independently identify relevant features and

recognize complex patterns in the image may allow the extraction of new biomarkers from

radiological images, i.e., a previously unrecognized quantitative parameter that correlates

with a specific clinical outcome (Hosny et al., 2018; Thrall et al., 2018). They enable,

among other things, the automatic extraction of quantitative information from medical

image data that otherwise might not be used at all. Such quantitative analyses can either

be used in a targeted manner to automatically extract a known quantitative biomarker or

opportunistically, where various parameters are collected without a known association to

a clinical endpoint. Instead of using DL methods for the extraction of specific quantitative

parameters for later outcome analysis, another possibility is to implement direct predictive

models. In this process, a DL model directly extracts quantitative information to predict a

certain clinical outcome, like survival time (Castiglioni et al., 2021).
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2.2 Targeted quantitative analysis  

In targeted quantitative analysis, a specific parameter is collected that is either an already 

known biomarker or is used for the investigation of a specific research question. Manually 

collecting these parameters can be time-consuming, especially if they are to be collected 

on a large scale, and often requires expert knowledge. The collection of image-based 

parameters usually requires the segmentation of specific tissues, which limits quantitative 

analysis in large cohorts. An automatic assessment based on AI methods is therefore 

desirable and may also ensure a more objective, reproducible evaluation.  

One example to be investigated in this work is the measurement of uterine volume in T2-

weighted MRI of patients with uterine fibroids who have undergone HIFU therapy. The 

minimally invasive HIFU treatment of symptomatic fibroids significantly reduces uterine 

volume which leads to an improvement in leiomyoma-associated symptoms (Kim et al., 

2011; Hindley et al., 2004; Marinova et al., 2021). It is thus of great interest to have an 

objective measure of the response to therapy. However, the exact determination of uterine 

volume would require manual outlining of the contours in each axial slice and is therefore 

often only estimated based on diameter measurements using the prolate ellipsoid formula 

(Kung and Chang, 1996; Marinova et al., 2021). Automated segmentation of uterine tissue 

using a DL model has the potential to provide rapid and reproducible evaluation, 

facilitating robust assessment in all patients.  

2.3 Opportunistic quantitative analysis 

AI methods in medicine have also facilitated the automation of opportunistic analyses. 

Such studies intend to acquire information that is generally not evaluated in routine clinical 

practice but that may positively influence patient care. However, to find new biomarkers 

through opportunistic analysis, a survey of large cohorts is essential. One prominent 

example is body composition analysis (BCA), which has proven its prognostic value in 

recent years. Research on oncological diseases has demonstrated an association 

between body composition and both survival and chemotherapy toxicity in cancer patients 

(Faron et al. 2021; Nowak et al., 2024; Prado et al., 2008). In addition, body composition 

markers have been identified as predictive values of several cardiovascular events, 

including heart failure, cardiogenic shock, and severe aortic stenosis (Kenchaiah et al., 

2002; Luetkens et al., 2020; Salam et al., 2023). In the past, BCA was carried out using 
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methods such as hydrostatic weighing or air displacement plethysmography. At present, 

an evaluation based on radiological image data such as CT or MRI has become the gold 

standard, which enables a precise analysis of fat and muscle distribution in the body 

(Biaggi et al., 1999; Borga et al., 2018; Cruz-Jentoft et al. 2010, Fields et al. 2002). Since 

manual BCA takes huge effort due to required tissue segmentation, it is usually not 

performed in the entire dataset but only on specific single-slice images (Borga et al., 2018; 

Faron et al., 2020). Assessing BCA from radiological cross-sectional data also enables 

automatic quantitative image analysis based on automatic tissue segmentation by DL 

approaches (Castiglione et al. 2021; Magudia et al., 2021; Nowak et al., 2020; Weston et 

al., 2019). However, previously proposed methods do not yet allow for a fully automated 

end-to-end analysis that enables opportunistic assessment in routine clinical practice, as 

either manual selection of a single slice at a certain anatomical landmark is required or 

manual quality control is needed to identify cases where the DL approach has failed. To 

achieve this, this dissertation investigates the development of an end-to-end automated 

pipeline for opportunistic BCA with integrated quality control. 

2.4 Direct image-based survival prediction 

The features extracted from the quantitative image analysis are then used to evaluate 

their prognostic value for a specific clinical endpoint. For this purpose, either classical ML 

models or further DL approaches are developed. However, another possibility is to build 

models that directly predict the clinical endpoint from medical image data. Using DL 

models for direct survival prediction based on different clinical and laboratory parameters 

has already been examined and proved to be advantageous compared to other ML 

approaches such as Cox proportional hazards models (CPHM) or random survival forests 

(Katzman et al., 2018, Kim et al., 2019, Vale-Silva and Rohr, 2021).  Moreover, Starke et 

al. (2020) investigated direct image-based prediction of loco-regional tumor control based 

on CT data using 2D and 3D CNNs. However, the direct DL-based survival prediction 

based solely on imaging has not yet been investigated. This thesis presents one 

application example, namely the survival prediction of patients with severe aortic stenosis 

who have undergone TAVR. In this patient group, body composition markers extracted 

from an abdominal slice at the L3/L4 lumbar level were shown to have a predictive value 

for survival prediction (Luetkens et al., 2020). Rather than extracting predefined markers 
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of body composition, this work explores the use of DL models to autonomously identify 

relevant image features for direct image-based survival time prediction from abdominal 

CT slices.  

2.5 Aim 

This thesis aims to investigate the use of DL models to automate quantitative image 

analysis. To this end, a robust model for targeted quantitative assessment of uterine 

volume in patients with uterine fibroids and an end-to-end pipeline for automated BCA, 

allowing for opportunistic analysis in large-scale cohorts, should be developed. Finally, 

the use of DL methods for direct image-based survival prediction should be investigated.  
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Deep learning enables automated 
MRI-based estimation of uterine volume 
also in patients with uterine fibroids undergoing 
high-intensity focused ultrasound therapy
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Markus Essler5, Alexander Mustea4, Ulrike Attenberger1, Milka Marinova1,5† and Alois M. Sprinkart1*†   

Abstract 

Background: High-intensity focused ultrasound (HIFU) is used for the treatment of symptomatic leiomyomas. We 
aim to automate uterine volumetry for tracking changes after therapy with a 3D deep learning approach.

Methods: A 3D nnU-Net model in the default setting and in a modified version including convolutional block atten-
tion modules (CBAMs) was developed on 3D T2-weighted MRI scans. Uterine segmentation was performed in 44 
patients with routine pelvic MRI (standard group) and 56 patients with uterine fibroids undergoing ultrasound-guided 
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formed on 80% of the data with fivefold cross-validation. The remaining data were used as a hold-out test set. Ground 
truth was generated by a board-certified radiologist and a radiology resident. For the assessment of inter-reader 
agreement, all preHIFU examinations were segmented independently by both.

Results: High segmentation performance was already observed for the default 3D nnU-Net (mean Dice 
score = 0.95 ± 0.05) on the validation sets. Since the CBAM nnU-Net showed no significant benefit, the less complex
default model was applied to the hold-out test set, which resulted in accurate uterus segmentation (Dice scores: 
standard group 0.92 ± 0.07; HIFU group 0.96 ± 0.02), which was comparable to the agreement between the two
readers.

Conclusions: This study presents a method for automatic uterus segmentation which allows a fast and consistent 
assessment of uterine volume. Therefore, this method could be used in the clinical setting for objective assessment of 
therapeutic response to HIFU therapy.

†Maike Theis, Tolga Tonguc, Milka Marinova and Alois M. Sprinkart contributed 
equally to this study.

*Correspondence:  sprinkart@uni-bonn.de

1 Department of Diagnostic and Interventional Radiology, University Hospital 
Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
Full list of author information is available at the end of the article

17



Page 2 of 9Theis et al. Insights into Imagingo Imaging            (2023) 14:1 

Key points 

• Deep learning methods enable accurate segmentation of the uterus in T2-weighted MRI.
• Automatic uterine volumetry is possible in patients with and without leiomyomas.
• Automated volumetry enables an objective assessment of response to high-intensity focused ultrasound therapy.

Keywords: Deep learning, Magnetic resonance imaging, Uterus, Leiomyoma

Background
Uterine fibroids, also known as leiomyomas, are the most 
common benign pelvic tumors in women of reproductive 
age. Fibroid-associated symptoms are observed in about 
one-third of affected patients [1]. Major symptoms are 
severe and extended menstrual bleeding (hypermenor-
rhea and dysmenorrhea) that may lead to anemia-asso-
ciated complications. Depending on size and location, 
uterine fibroids can also cause pelvic pressure, urinary 
frequency and even incontinence and can be associated 
with adverse reproductive outcome. Thus, symptomatic 
uterine fibroids have a negative impact on daily living and 
quality of life [2, 3].

Current treatment strategies mainly involve surgical 
interventions as laparoscopic or hysteroscopic myomec-
tomy and laparoscopic hysterectomy [4–6]. Nowadays, 
organ-preserving minimally invasive and noninvasive 
therapies are becoming increasingly important. In recent 
years, high-intensity focused ultrasound (HIFU), guided 
by either ultrasound or magnetic resonance tomography, 
has also emerged as a viable effective and low-risk treat-
ment option for symptomatic uterine fibroids [7–11]. 
During the HIFU procedure, the uterine fibroids are 
thermally ablated by concentrating the ultrasound energy 
inside the fibroid leading to thermal coagulation necro-
sis and additional cavitation damage [9, 12–16]. Previous 
studies have shown that HIFU treatment of sympto-
matic leiomyomas results in a significant reduction in 
uterine fibroid volume and total uterine volume during 
follow-up. In addition, a correlation between improve-
ment in fibroid-associated symptoms and reduction in 
uterine fibroid volume has been demonstrated [7, 10, 11]. 
Therefore, automation of uterine measurements is highly 
desirable in order to be able to assess the response to 
treatment objectively, quickly and reproducibly.

In recent years, the utility of machine learning and, 
in particular, deep learning methods has been demon-
strated for various medical tasks including medical imag-
ing. To date, most deep learning approaches in medical 
imaging use artificial neural networks trained in a super-
vised manner, which means that model development 
requires annotated data with the desired outcome, also 
known as ground truth. One potential application of such 

deep learning models is the automation of quantitative 
image analysis, which would otherwise require tedious 
manual effort. In addition, deep learning methods have 
also shown great potential for detecting and characteriz-
ing pathological findings, which could assist radiologists 
in making the diagnosis [17–21].

Various deep learning methods have also been pro-
posed for volumetry based on medical image segmenta-
tion. A successful neural network for various organ and 
tissue type segmentation is the open-source framework 
nnU-Net, a self-adapting pipeline based on the U-Net 
model introduced by Ronneberger et  al. [22–24]. To 
improve the weighting of the feature map signals, convo-
lutional block attention modules (CBAM) have been sug-
gested, which have led to high performance for various 
classification, object detection, and segmentation tasks, 
also in combination with a U-Net architecture [25–28].

Very recently, various neural networks have been 
proposed for uterine segmentation in MRI and ultra-
sound imaging, where most of them are also based on 
the U-Net architecture [29–32]. However, none of these 
has presented a suitable method for accurate automatic 
volumetry of the uterus, especially when the evalua-
tion of longitudinal data is required to assess treatment 
response, such as in patients with uterine fibroids under-
going HIFU therapy.

Against this backdrop, the aim of this study was to 
develop a 3D deep learning method that allows accu-
rate uterine segmentation of patients with and without 
uterine fibroids and to ensure automatic assessment of 
changes in uterine volume during HIFU therapy. For this 
purpose, two neural networks were trained and com-
pared, a standard 3D U-Net and a modified U-Net using 
additional CBAMs in the encoder, implemented in the 
nnU-Net framework.

Methods
Dataset
This study was approved by the local Ethics Commit-
tees at the Medical Faculty of the Rheinische Frie-
drich-Wilhelms-Universität Bonn (no. 295/19). Data 
of 44 consecutive patients without uterine fibroids who 
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For method development, datasets of both the stand-
ard and the HIFU group were randomly divided into 80% 
training and 20% test cases, where a single patient was 
included completely either in the training or in the test 
set, resulting in 169 training and 38 hold-out test cases 
(see Table 2).

Model
For automatic uterine segmentation, two different deep 
learning architectures were trained for 500 epochs based 
on the 3D nnU-Net framework, one in the default set-
ting and the other with additional CBAMs in the encoder 
[23, 25]. The default nnU-Net architecture is generated 
based on the fingerprint of the training dataset, which 
determines several preferences and parameters, e.g., pre-
processing, network depth and the kernel size of the con-
volutional layers. However, the general architecture of the 
encoder and decoder always consists of two blocks per 
resolution step, where one block consists of a convolu-
tion, an instance normalization and a leaky rectified lin-
ear unit (ReLU) activation [23]. This default architecture 
was compared to a modified version, where the second 
block in the encoder was replaced with a CBAM [25]. A 
CBAM layer returns a weighted feature map, in which 
important signals should be enhanced and unimportant 
ones suppressed. In principle, this should improve the 
focus on the relevant image information and its location 
[15]. The use of CBAM in combination with a nnU-Net 
layer is illustrated in Fig. 1.

Using CBAMs in the nnU-Net encoder increases the 
number of trainable parameters by only 0.12%. This still 
allows for a relatively fair comparison of both architec-
tures. For more details on the two investigated architec-
tures, see Additional file 1: S1.

Evaluation
Both models were trained with fivefold cross-validation; 
thus, the entire training dataset was split into five vali-
dation sets and a single model was trained on each of 
the remaining training data, resulting in five different 

received routine pelvic MRI (standard group, mean age 
38 ± 13  years) and of 56 patients with uterine fibroids
who underwent ultrasound-guided HIFU therapy 
(HIFU group, mean age 43 ± 6  years) were included.
The only inclusion criteria were the availability of an 
axial 3D T2-weighted MRI acquired with a turbo spin 
echo sequence at a 1.5 Tesla scanner (Philips Ingenia) 
with a slice thickness <  = 5  mm and an in-plane voxel
size <  = 1 mm. In the HIFU group three examinations per
patient were considered: An examination prior to HIFU 
intervention (preHIFU, n = 56), the immediate follow-
up examination maximum one day after HIFU therapy 
(postHIFU_1, n = 54), and the last available follow-up
examination (postHIFU_Last, n = 53). In two cases, there
was no early follow-up within one day after HIFU, and in 
three cases, patients received only one follow-up exami-
nation. The mean time interval between HIFU and the 
last available follow-up examination was 420 ± 377  days 
(range: [97; 2007]). Overall, a total of 207 scans from 100 
patients were used for method development. Additional 
information on the dataset and the scanning parameters 
can be found in Table 1.

The ground truth for the preHIFU images was gen-
erated by a board-certified radiologist (O.S., 9  years 
of experience in radiology and 4  years of experience 
in gynecologic imaging) and additionally by a radiol-
ogy resident (T.T., in his fourth year of residency with 
2  years of experience in gynecologic imaging). Con-
tours of the uterus were outlined in all slices using the 
open-source software 3D Slicer [33]. To assist the gen-
eration of the ground truth for the remaining datasets, 
a default 3D nnU-Net was trained on the segmentations 
of the preHIFU dataset from the board-certified radi-
ologist [23]. This early model was applied to all follow-
up examinations of the HIFU group and to the standard 
non-fibroid group, and the predicted segmentations 
were subsequently adapted manually by the radiology 
resident or the board-certified radiologist. The board-
certified radiologist approved all segmentations of the 
resident.

Table 1 Scan and image parameters of the dataset

Mean Median Range

Pixel spacing (mm) 0.39 0.37 [0.33; 0.61]

4.34 4.4 [3.3; 4.95]

3.95 4 [3; 4.5]

1004 1024 [704; 1280]

42 40 [40; 60]

90 90 [90; 90]

Spacing between slices (mm)

Slice thickness (mm)

Matrix size

Number of slices

Echo time (TE) (ms)

Repetition time (TR) (ms) 3922.15 3729.70 [3729.70; 5594.55]

Table 2 Number of datasets in the training and test sets for the 
different groups

Standard 
group

HIFU group

preHIFU postHIFU_1 postHIFU_
Last

Training 36 45 45 43

Test 8 11 9 10

19



Page 4 of 9Theis et al. Insights into Imagingo Imaging            (2023) 14:1

models for each of the two investigated methods. The 
performance of the two architectures was determined 
based on the mean performance of the five validation 
sets.

Agreement to the ground truth was measured in terms 
of Dice score and relative volume difference. The final 
model was evaluated on the hold-out test data ensem-
bling the predictions of the five individual models from 
cross-validation. Inter-reader agreement was determined 
for the preHIFU scans. Model performance was com-
pared to the human inter-reader agreement based on the 
hold-out test samples from that group.

To investigate whether the model is suitable for post-
HIFU treatment follow-up, the automatically determined 
volume difference between before and after HIFU was 
compared with the ground truth. All follow-up scans 
from the HIFU group included in the hold-out test data 
were considered in this analysis. Pearson correlation 
coefficient was determined and a Bland–Altman analysis 
was performed using the Python packages seaborn and 
pyCompare [34, 35]

Results
For both model architectures investigated, an excellent 
uterine segmentation performance was observed in the 
standard and all HIFU groups. Figure 2 shows an example 
for predicted and ground truth uterine segmentation of 
a patient with uterine fibroids prior to HIFU, short after 
and 170 days after HIFU treatment. Figure 3 shows three 
patients of the standard group without uterine fibroids.

The mean performance on each of the five validation 
sets was very similar for the two models, with a mean 
relative volume difference of 3.79% for the default nnU-
Net and 3.70% for the CBAM nnU-Net and a mean 
Dice score of 0.95 for both architectures. Since the use 
of CBAM did not lead to a significant benefit compared 
to the default nnU-Net configuration for the task of 
uterus segmentation, the less complex default architec-
ture was chosen as the final segmentation model which 
was applied to the hold-out test data. A detailed com-
parison of the two architectures can be found in Addi-
tional file 1:  S2.

Fig. 1 Schematic illustration of the used architectures: One layer in the default nnU-Net configuration consists of a convolution followed by an 
instance normalization and a leaky ReLU activation (blue). The modified architecture investigated in this work contains layers with additional CBAMs 
in the encoder (yellow), consisting of a convolution and an instance normalization followed by a channel and a spatial attention module, each 
connected by element-wise multiplication. The output of the first convolutional block and the output of the CBAM are merged by element-wise 
summation and again activated by leaky ReLU activation function
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The ensemble of the fivefold cross-validated 3D nnU-
Net with default settings applied to the hold-out test data 
resulted in a mean Dice score of 0.95 and a mean relative 
volume difference of 4.08% (Table 3).

For the preHIFU dataset, annotated data of both read-
ers were available (n = 56). The inter-reader comparison
between the board-certified radiologist and the radiol-
ogy resident on this dataset showed a mean Dice score of 
0.92 and a mean relative volume difference of 4.03%. The 
comparison of the inter-reader agreement and the agree-
ment of both readers with the final segmentation model 
on the preHIFU test data is listed in Table 4. Comparing 
the predictions of the neural network with the segmenta-
tions of the two readers shows a mean Dice score of 0.91 
and higher, indicating a segmentation performance of the 
neural network similar to human performance.

The agreement between ground truth and automati-
cally determined volume difference before and after 
HIFU treatment was compared using all follow-up data 
of the HIFU group included in the hold-out test (n = 19). 
A strong correlation was observed with a Pearson cor-
relation coefficient of 0.99. The Bland–Altman analysis 
shows a mean difference of -1.08  cm3 (see Fig. 4).

Discussion
This work presents an innovative method for deep 
learning-based 3D segmentation of the uterus for auto-
matic and accurate determination of uterine volume in 
T2-weighted MRI scans with the focus on being appli-
cable in uterine fibroid patients undergoing HIFU treat-
ment. To achieve this, a dataset was used for method 
development and evaluation that included a relevant por-
tion of examinations prior to HIFU therapy and at differ-
ent timepoints thereafter. In order to enrich the dataset 
and to investigate the applicability of uterus segmentation 
to routine MRI scans, standard examinations from clini-
cal routine were also included. The network performed 
very well for both extremes, i.e., patients without fibroids 
and patients with multiple symptomatic fibroids of differ-
ent sizes who were candidates for HIFU ablation. Thus, it 
may be assumed (although not proven in this study) that 
high-quality uterine segmentation can be achieved also 
in patients with smaller, non-symptomatic fibroids. The 
performance in the HIFU group was slightly higher than 
that in the standard group. This may be explained in part 
by the lower absolute uterine volume in patients without 
uterine fibroids, which results in lower Dice scores in 

Fig. 2 Uterine segmentation in a patient undergoing HIFU therapy: before treatment, one day after treatment and 170 days after treatment. 
Automatic segmentation achieved with the default 3D nnU-Net is shown in yellow and ground truth segmentation validated by a board-certified 
radiologist in green

21



Page 6 of 9Theis et al. Insights into Imagingo Imaging            (2023) 14:1

areas where partial volume effects make exact delineation 
of uterine tissue difficult.

In routine clinical practice, the volume of uterus and 
uterine fibroids has been assessed by magnetic resonance 
imaging and is currently measured either from the diam-
eters in the anterior–posterior, cranio-caudal and right–
left directions using the volume formula of a prolate 
ellipsoid [7] or by manually drawing the contours on each 
axial slice [10]. Therefore, an accurate volumetry is very 

The table provides the mean Dice scores and the mean relative volume 
difference

time-consuming, so that automation of the measurement 
is very desirable.

Two different approaches for automatic uterine seg-
mentation were compared in this study: A default 3D 
nnU-Net and a modified version with CBAMs in the 
encoder. The advantage of CBAMs has already been 
shown in various works for classification, object detection 
and segmentation tasks [25–28]. Although the CBAM 
nnU-Net architecture has shown excellent performance 
on the five validation sets, it could not outperform the 

Fig. 3 Predicted uterine segmentation of the default 3D nnU-Net (yellow) and the ground truth segmentation verified by the board-certified 
radiologist (green) of three different patients in the standard group without uterine fibroids

Table 3 Mean Dice scores and mean relative volume difference 
reported for the entire hold-out test data and separately for 
the preHIFU dataset, the early (postHIFU_1) and last follow-up 
(postHIFU_Last) after HIFU treatment, as well as for the non-
fibroid standard group

Dataset Dice score Relative 
volume 
difference

0.95 ± 0.04 4.08% ± 4.86%

0.94 ± 0.02 3.63% ± 2.91%

0.97 ± 0.01 2.15% ± 1.50%

0.97 ± 0.02 3.12% ± 2.93%

All (n = 38)

preHIFU (n = 11)

postHIFU_1 (n = 9)

postHIFU_Last (n = 10)

Standard group (n = 8) 0.92 ± 0.07 8.09% ± 8.61%

Table 4 Comparison of inter-reader agreement between the 
board-certified radiologist (reader 1) and the intensively trained 
radiology resident (reader 2) and the respective agreement of 
these readers with the predicted segmentations of the nnU-Net 
on the preHIFU data in the hold-out test set (n = 11)

Dice score Relative 
volume 
difference

0.92 ± 0.02 3.69% ± 3.54%

0.94 ± 0.02 3.63% ± 2.91%

Reader 1 vs. Reader 2

Reader 1 vs. nnU-Net

Reader 2 vs. nnU-Net 0.91 ± 0.03 4.49% ± 5.26%
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default architecture overall, which may be attributed to 
its already high segmentation performance. It may nev-
ertheless be worthwhile to further investigate the combi-
nation of CBAM and U-Net models for different medical 
segmentation tasks, especially in cases where the perfor-
mance of a standard U-Net is limited.

In order to compare the performance of the nnU-Net 
model with that of human readers, manual segmenta-
tions were generated independently by both annota-
tors and compared to the automatic segmentation on 
a subset of the data. This comparison showed a similar 
level of agreement between the board-certified radiolo-
gist, the intensively trained resident and the automatic 
measurements.

Previous research has already investigated deep learn-
ing methods for uterine segmentation, where most of the 
presented approaches are also based on a U-Net architec-
ture [29–31]. In one of these studies, also based on MRI, 
a 3D U-Net model requiring only minimal user interac-
tion for the segmentation of the uterine cavity and the 
placenta of pregnant women was presented and evalu-
ated in normal pregnant women and also in women with 
suspected placental abnormalities. Mean Dice scores of 
92% and 88% were achieved for uterine cavity segmenta-
tion in the two groups [29].

For ultrasound images, automated segmentation 
approaches have also been proposed using a modified 
2D U-Net architecture for segmentation of the uterus 
[30]. Patients with uterine fibroids were not specifically 
considered in that study and although several models 
were trained at different 2D planes, overall only low Dice 

scores were reported. The authors attribute this to issues 
with slices near the uterine edge, demonstrating the limi-
tation of 2D approaches. To a certain extent, the lower 
segmentation performance may also be explained by 
the quality of the available image data, which essentially 
depends on the sonographic experience of the examiner.

A further approach, also based on MRI, uses a DenseU-
Net for segmentation of the uterus on sagittal slices [31]. 
That work proposed the sharpening of uterine edges in a 
preprocessing step, which was added as additional input 
to the network, leading to a mean Dice score of 87.6%. 
This 2D approach was also not developed in patients with 
uterine fibroids.

In contrast, Zhang et  al. have presented the HIFU-
Net, an encoder–decoder network with a pre-trained 
ResNet101 [36] encoder for segmentation of the uterus, 
uterine fibroids and the spine on 2D sagittal MRI slices. 
This study included only preoperative patients and was 
employed for HIFU therapy planning. Precise segmenta-
tion was reported to be difficult at the margins for patients 
with many fibroids, resulting in a Dice score for uterine 
segmentation of 82.37%. The authors suggest that direct 
3D segmentation may lead to higher segmentation per-
formance [32]. Because post-HIFU image data were not 
included in this study, information on the applicability of 
this method for accurate assessment of treatment-related 
volume changes over time after HIFU ablation is missing. 
However, a clear advantage of the HIFUNet is the simulta-
neous segmentation of individual uterine fibroids, which 
has not been addressed in the current study so far. Direct 
region detection of uterine fibroids after MRI-fused 

Fig. 4 Scatterplot with Pearson correlation coefficient (a) and Bland–Altman plot (b) for agreement analyses between automatic measured volume 
difference and ground truth before and after HIFU therapy
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ultrasound using a combination of split-and-merge and 
multi-seed region growing methods was also considered 
in another work [37]. These studies allow direct segmen-
tation of single fibroids, thus enabling immediate assess-
ment of the treatment response of individual fibroids.

It should be noted that the precise contours, especially 
of small fibroids, are often difficult to delineate from 
adjacent uterine tissue, even for human readers. This 
may also contribute to lower accuracy of segmentation 
of individual fibroids compared to uterine segmentation 
[32, 37]. From a clinical perspective, segmentation of 
the entire uterus may already be a relevant measure for 
therapy response assessment. For example, when mul-
tiple fibroids are treated, the improvement in myoma-
associated symptoms is probably primarily related to the 
reduction in overall uterine volume. Thus, in the post-
interventional course, the uterus may lie differently in the 
pelvic region due to the reduction in its total size, i.e., no 
longer pressing on the urinary bladder or the Fallopian 
tubes. The segmentation of the entire uterus provided 
by our approach is a fast, accurate, and reproducible 
method that can be applied on MRI image data also in 
the post-interventional course, even without knowledge 
of the number and exact location of the treated fibroids. 
In many cases, the latter is only known to the therapist. 
Nevertheless, the presented method may also serve as 
an input for targeted segmentation of single fibroids for 
assessment of treatment response.

Our study has several limitations. First, part of the 
labeled dataset was generated semi-manually, in which 
a network trained on a subset of the data was used for 
deep learning-assisted annotation. However, all data 
used as ground truth were finally validated by a board-
certified radiologist. In addition, the deep learning model 
was specifically trained for axial T2-weighted turbo spin 
echo sequences with explicit specifications regarding the 
spatial resolution. The study was performed in only one 
center from a single MRI scanner. Therefore, the gener-
alizability should be further evaluated in a multicenter 
setting. The use of the algorithm will be enabled for col-
laborative studies on reasonable request.

Conclusion
This study provides a method for automatic segmenta-
tion of the uterus from patients with and without uterine 
fibroids with a performance similar to human readers, 
enabling fast, easy and reproducible assessment of vol-
ume changes in the clinical setting of a HIFU therapy.

Abbreviations
CBAM: Convolutional block attention module; HIFU: High-intensity focused 
ultrasound; ReLU: Rectified linear unit.

Supplementary information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13244- 022- 01342-0.

Additional file 1. S1. Details on method development. S2. Comparison of 
both architectures.

Author contributions
MT was responsible for the method development and was a major contribu-
tor in writing the manuscript. During method development and evaluation, 
she was intensively advised and supported by SN and AMS. TT and OS were 
responsible for the segmentation of all uteri, and TT was the main contribu-
tor in writing the medical section of the manuscript. WB assisted with data 
curation. MM was an expert in the field of HIFU therapy and helped with her 
medical expertise in developing the method and writing the manuscript. FR, 
ME, AM and UA provided additional support to the project with their medical 
expertise. Revision of the manuscript was mainly performed by AMS and MM. 
Concept of the study: AMS, MM, MT. All authors read and approved the final 
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
The datasets analyzed during the current study are not publicly available due 
to data protection laws.

Declarations

Ethics approval and consent to participate
Institutional Review Board approval was obtained by the local Ethics Commit-
tees at the Medical Faculty of the Rheinische Friedrich-Wilhelms-Universität 
Bonn (no. 295/19).

Consent for publication
Written informed consent was waived by the Institutional Review Board 
(University of Bonn).

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Diagnostic and Interventional Radiology, University Hospital 
Bonn, Venusberg-Campus 1, 53127 Bonn, Germany. 2 Department of Radio-
therapy and Radiation Oncology, University Hospital Bonn, Venusberg-Cam-
pus 1, 53127 Bonn, Germany. 3 Department of Neuroradiology, University 
Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany. 4 Department 
of Gynaecology and Gynaecological Oncology, University Hospital Bonn, 
Bonn, Germany. 5 Department of Nuclear Medicine, University Hospital Bonn, 
Bonn, Germany. 

Received: 2 September 2022   Accepted: 2 December 2022

References
 1. Boosz AS, Reimer P, Matzko M, Römer T, Müller A (2014) The conservative 

and interventional treatment of fibroids. Dtsch Arztebl Int 111:877–183
 2. Stewart EA, Cookson CL, Gandolfo RA, Schulze-Rath R (2017) Epidemiol-

ogy of uterine fibroids: a systematic review. BJOG 124:1501–1512
 3. Al-Hendy A, Myers ER, Stewart E (2017) Uterine fibroids: burden and 

unmet medical need. Semin Reprod Med 35:473–480
 4. Donnez J, Dolmans MM (2016) Uterine fibroid management: from the 

present to the future. Hum Reprod Update 22:665–686
 5. Mas A, Tarazona M, Dasí Carrasco J, Estaca G, Cristóbal I, Monleón J (2017) 

Updated approaches for management of uterine fibroids. Int J Womens 
Health 9:607–617

24



Page 9 of 9         (2023) 14:1Theis et al. Insights into Imagingo Imaging   

 6. Gurusamy KS, Vaughan J, Fraser IS, Best LMJ, Richards T (2016) Medical 
therapies for uterine fibroids – a systematic review and network meta-
analysis of randomised controlled trials. PLoS One 11:e0149631

 7. Marinova M, Ghaei S, Recker F et al (2021) Efficacy of ultrasound-guided 
high-intensity focused ultrasound (USgHIFU) for uterine fibroids: an 
observational single-center study. Int J Hyperthermia 38:30–38

 8. Recker F, Thudium M, Strunk H et al (2021) Multidisciplinary manage-
ment to optimize outcome of ultrasound-guided high-intensity focused 
ultrasound (HIFU) in patients with uterine fibroids. Sci Rep 11:22768

 9. Tonguc T, Strunk H, Gonzalez-Carmona MA et al (2021) US-guided high-
intensity focused ultrasound (HIFU) of abdominal tumors: outcome, early 
ablation-related laboratory changes and inflammatory reaction. a single-
center experience from Germany. Int J Hyperthermia 38:65–74

 10. Kim HS, Baik JH, Pham LD, Jacobs MA (2011) MR-guided high-intensity 
focused ultrasound treatment for symptomatic uterine leiomyomata: 
long-term outcomes. Acad Radiol 18:970–976

 11. Hindley J, Gedroyc WM, Regan L et al (2004) MRI guidance of focused 
ultrasound therapy of uterine fibroids: early results. AJR Am J Roentgenol 
183:1713–1719

 12. Wu F, Wang Z-B, Chen W-Z et al (2004) Extracorporeal high intensity 
focused ultrasound ablation in the treatment of 1038 patients with solid 
carcinomas in China: an overview. Ultrason Sonochem 11:149–154

 13. Hahn M, Fugunt R, Schoenfisch B et al (2018) High intensity focused ultra-
sound (HIFU) for the treatment of symptomatic breast fibroadenoma. Int 
J Hyperthermia 35:463–470

 14. Zhang R, Chen J-Y, Zhang L et al (2021) The safety and ablation efficacy 
of ultrasound-guided high-intensity focused ultrasound ablation for 
desmoid tumors. Int J Hyperthermia 38:89–95

 15. Marinova M, Huxold HC, Henseler J et al (2019) Clinical effectiveness and 
potential survival benefit of US-guided high-intensity focused ultrasound 
therapy in patients with advanced-stage pancreatic cancer. Ultraschall 
Med 40:625–637

 16. Marinova M, Wilhelm-Buchstab T, Strunk H (2019) Advanced pancreatic 
cancer: high-intensity focused ultrasound (HIFU) and other local ablative 
therapies. Rofo 191:216–227

 17. Coppola F, Faggioni L, Gabelloni M et al (2021) Human, all too human? 
An all-around appraisal of the “artificial intelligence revolution” in medical 
imaging. Front Psychol 12:710982

 18. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL (2018) 
Artificial intelligence in radiology. Nat Rev Cancer 18:500–510

 19. Yu K-H, Beam AL, Kohane IS (2018) Artificial intelligence in healthcare. Nat 
Biomed Eng 2:719–731

 20. Nowak S, Mesropyan N, Faron A et al (2021) Detection of liver cirrhosis 
in standard T2-weighted MRI using deep transfer learning. Eur Radiol 
31:8807–8815

 21. Luetkens JA, Nowak S, Mesropyan N et al (2022) Deep learning supports 
the differentiation of alcoholic and other-than-alcoholic cirrhosis based 
on MRI. Sci Rep 12:8297

 22. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for 
biomedical image segmentation. Proc MICCAI 2015:234–241

 23. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: 
a self-configuring method for deep learning-based biomedical image 
segmentation. Nat Methods 18:203–211

 24. Nowak S, Theis M, Wichtmann BD et al (2021) End-to-end automated 
body composition analyses with integrated quality control for opportun-
istic assessment of sarcopenia in CT. Eur Radiol. https:// doi. org/ 10. 1007/ 
s00330- 021- 08313-x

 25. Woo S, Park J, Lee J-Y, Kweon IS (2018) CBAM: convolutional block atten-
tion module. Proc ECCV 2018:3–19

 26. Yang J, Xie M, Hu C et al (2021) Deep learning for detecting cerebral 
aneurysms with CT angiography. Radiology 298:155–163

 27. Chen M, Zhao C, Tian X et al (2021) Placental super micro-vessels 
segmentation based on resnext with convolutional block attention and 
U-Net. Proc IEEE EMBC 2021:4015–4018

 28. Trebing K, Staǹczyk T, Mehrkanoon S (2021) SmaAt-UNet: Precipitation 
nowcasting using a small attention-UNet architecture. Pattern Recognit 
Lett 145:178–186

 29. Shahedi M, Spong CY, Dormer JD et al (2021) Deep learning-based 
segmentation of the placenta and uterus on MR images. J Med Imaging 
8:054001

 30. Behboodi B, Rivaz H, Lalondrelle S, Harris E (2021) Automatic 3D 
ultrasound segmentation of uterus using deep learning. Proc IEEE IUS 
2021:1–4

 31. Niu Y, Zhang Y, Ying L et al (2021) Uterine magnetic resonance image 
segmentation based on deep learning. J Phys Conf Ser 1861:012067

 32. Zhang C, Shu H, Yang G et al (2020) HIFUNet: multi-class segmentation of 
uterine regions from MR images using global convolutional networks for 
HIFU surgery planning. IEEE Trans Med Imaging 39:3309–3320

 33. Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D slicer as an image 
computing platform for the quantitative imaging network. Magn Reson 
Imaging 30:1323–1341

 34. Waskom ML (2021) seaborn: statistical data visualization. J Open Source 
Softw 6:3021

 35. jaketmp, & Lee Tirrell. (2021). jaketmp/pyCompare: (v1.5.2). Zenodo. 
https:// doi. org/ 10. 5281/ zenodo. 49266 54

 36. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image 
recognition. Proc IEEE CVPR 2016:770–778

 37. Rundo L, Militello C, Vitabile S et al (2016) Combining split-and-merge 
and multi-seed region growing algorithms for uterine fibroid segmenta-
tion in MRgFUS treatments. Med Biol Eng Comput 54:1071–1084

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

25



3.2. Publication 2: End-to-end automated body composition analyses with integrated 

quality control for opportunistic assessment of sarcopenia in CT 

Nowak S, Theis M, Wichtmann BD, Faron A, Froelich MF, Tollens F, Geißler HL, Block 

W, Luetkens JA, Attenberger UI, Sprinkart AM. End-to-end automated body 
composition analyses with integrated quality control for opportunistic assessment 
of sarcopenia in CT. Eur Radiol 2021; 32(5): 3142-3151 

26



https://doi.org/10.1007/s00330-021-08313-x

IMAGING INFORMATICS AND ARTIFICIAL INTELLIGENCE

End‑to‑end automated body composition analyses with integrated 
quality control for opportunistic assessment of sarcopenia in CT

Sebastian Nowak1 · Maike Theis1 · Barbara D. Wichtmann1 · Anton Faron1 · Matthias F. Froelich2 · Fabian Tollens2 · 
Helena L. Geißler1 · Wolfgang Block1,3,4 · Julian A. Luetkens1 · Ulrike I. Attenberger1 · Alois M. Sprinkart1

Received: 15 April 2021 / Revised: 6 August 2021 / Accepted: 31 August 2021 
© The Author(s) 2021, corrected publication 2022

Abstract
Objectives To develop a pipeline for automated body composition analysis and skeletal muscle assessment with integrated 
quality control for large-scale application in opportunistic imaging.
Methods First, a convolutional neural network for extraction of a single slice at the L3/L4 lumbar level was developed on 
CT scans of 240 patients applying the nnU-Net framework. Second, a 2D competitive dense fully convolutional U-Net for 
segmentation of visceral and subcutaneous adipose tissue (VAT, SAT), skeletal muscle (SM), and subsequent determination 
of fatty muscle fraction (FMF) was developed on single CT slices of 1143 patients. For both steps, automated quality control 
was integrated by a logistic regression model classifying the presence of L3/L4 and a linear regression model predicting the 
segmentation quality in terms of Dice score. To evaluate the performance of the entire pipeline end-to-end, body composi-
tion metrics, and FMF were compared to manual analyses including 364 patients from two centers.
Results Excellent results were observed for slice extraction (z-deviation = 2.46 ± 6.20 mm) and segmentation (Dice score 
for SM = 0.95 ± 0.04, VAT = 0.98 ± 0.02, SAT = 0.97 ± 0.04) on the dual-center test set excluding cases with artifacts due to 
metallic implants. No data were excluded for end-to-end performance analyses. With a restrictive setting of the integrated 
segmentation quality control, 39 of 364 patients were excluded containing 8 cases with metallic implants. This setting ensured 
a high agreement between manual and fully automated analyses with mean relative area deviations of ΔSM = 3.3 ± 4.1%, 
ΔVAT = 3.0 ± 4.7%, ΔSAT = 2.7 ± 4.3%, and ΔFMF = 4.3 ± 4.4%.
Conclusions This study presents an end-to-end automated deep learning pipeline for large-scale opportunistic assessment 
of body composition metrics and sarcopenia biomarkers in clinical routine.
Key Points
• Body composition metrics and skeletal muscle quality can be opportunistically determined from routine abdominal CT

scans.
• A pipeline consisting of two convolutional neural networks allows an end-to-end automated analysis.
• Machine-learning-based quality control ensures high agreement between manual and automatic analysis.

Keywords Body composition · Tomography, X-ray computed · Deep learning · Quality control · Sarcopenia

Abbreviations
CDFNet  Competitive dense fully connected network
CNN  Convolutional neural network
FMF  Fatty muscle fraction
SAT  Subcutaneous adipose tissue

SM  Skeletal muscle
VAT  Visceral adipose tissue

Introduction

Body composition analyses aim to determine the quantity of con-
nective tissue compartments. In addition to quantifying the amount 
of adipose and muscle tissue, recent work proposed methods to 
obtain additional information about a patient’s general condition 
by also determining the quality of skeletal muscle tissue in terms of 
fatty degeneration. Several studies demonstrated that these metrics 
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determined from abdominal imaging provide prognostic implica-
tions in oncologic or cardiovascular diseases [1–8].

The amount of visceral and subcutaneous adipose tissue, as 
well as the amount and quality of muscle tissue, can be reliably 
determined from abdominal CT imaging. An opportunistic 
large-scale assessment in clinical routine has the potential to 
further enhance the understanding of the clinical value of body 
composition analyses in various diseases, e.g., for therapy 
decision and/or outcome prediction. Also, the establishment 
of gender-, age-, and ethnicity-specific norm values is only 
feasible through the widespread application of these analyses.

However, the determination of fat and muscle volume by 
manually annotating the region of interest by a radiologist is 
rather time-consuming, which currently prevents clinical rou-
tine application. Several studies have shown that area measure-
ments of connective tissue compartments on a single slice at 
a certain lumbar level are highly correlated with total volume 
in the abdomen [9–11]. This led to greatly reduced annota-
tion times for manual body composition analysis when apply-
ing a 2D— instead of a 3D approach. In recent years, several 
methods have been proposed for automating the required tissue 
segmentation step. It was a logical consequence that with the 
dominant rise of deep learning for image segmentation the 
previously manually segmented images were used to develop 
methods for automated segmentation by supervised learning 
[12–14]. However, manual interaction was still required for 
extraction of the single slice on which the automatic segmenta-
tion is performed. Only very recent work also includes deep-
learning-based automated slice extraction as the next step for 
truly automated body composition analyses [15–17].

Moreover, to the best of our knowledge, there is currently no 
work that presents integrated quality control for both slice extrac-
tion and tissue segmentation. This still leaves one factor that repre-
sents an additional human effort in opportunistic analysis, namely 
identifying cases where the algorithm fails. Automatic determina-
tion of the predictive uncertainties can help identify cases with 
low-quality analyses and can additionally be used to monitor the 
performance of an autonomous system during deployment, as 
suggested for machine learning operations to manage deep learn-
ing life cycles. This can also help to detect changes in the data and 
to raise a warning in case of domain shifts.

Hence, the aim of this study was to develop an automated 
body composition analysis for abdominal CT with integrated 
quality checks and to evaluate the end-to-end performance of 
the proposed pipeline on dual-center test data.

Material and methods

Overview

Figure 1 shows an overview of the developed pipeline. In the 
first part, a single slice at the L3/L4 lumbar level is extracted 

from a 3D CT scan. In the second part, the extracted 2D 
image is segmented into three compartment classes: visceral 
and subcutaneous adipose tissue (VAT, SAT) and skeletal 
muscle (SM). The fatty muscle fraction (FMF), a quanti-
tative marker for fatty muscle degeneration, is determined 
in a subsequent post-processing step [1, 6]. For both deep-
learning-based slice extraction and segmentation, classical 
machine learning methods were employed for integration of 
quality control steps that capture the predictive uncertainty 
during deployment.

Slice extraction and tissue segmentation were developed 
independently. To evaluate the end-to-end performance of 
the entire pipeline, automatically extracted body composi-
tion metrics and FMF were compared with manual analyses 
on an unselected dual-center test set. Figure 2 provides an 
overview of the data sets used for method development and 
evaluation.

Method development for slice extraction

Dataset

With institutional review board approval, written informed 
patient consent was waived because of the retrospective 
nature of all parts of the study. Retrospectively derived 3D 
CT scans of 240 patients (94 female, mean age 65 ± 14 years) 
referred for diagnostic CT including imaging of the upper 
abdomen acquired at eight different CT scanners were used 
for development of the slice extraction method. Of these 
patients, 43 received CT before undergoing transcatheter 
aortic valve implantation, 91 before transjugular intrahe-
patic portosystemic shunt intervention, and 106 patients 
received CT in the setting of immunotherapy for malignant 
melanoma.

The ground truth was generated by a board-certified radi-
ologist (A.F.) by manually defining the center of the L3/L4 
vertebral disk with an in-house tool (Matlab, Mathworks). 
Data were randomly split into a training set (n = 192, 80%) 
and a hold-out test (n = 48, 20%) set. The method was addi-
tionally tested on dual-center test data (described below).

Model

The extraction of a single slice at L3/L4 lumbar level was 
formulated as a segmentation task. A 3D U-Net architec-
ture was trained using the nnU-Net framework, which has 
achieved high-performance values for various medical 
segmentation tasks and has the advantage of automatically 
adapting to different input sizes [18]. This is a relevant 
feature for the slice extraction task since the input are CT 
scans with a wide variety of scan lengths. The label map for 
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training of the network was generated by applying a Gauss-
ian distribution to the coordinates of the L3/L4 vertebral disk 
and binarizing the resulting probability map by a threshold 
[19]. Further details on image pre-processing, augmentation, 
and experimental design can be found in Supplement S1. For 
training, fivefold cross-validation was used and testing was 
performed with an ensemble of the cross-validated models.

Quality control

After training of the slice extraction method, a logistic 
regression model was built to automatically identify 3D CT 
scans that do not include the L3/L4 lumbar level. To obtain a 
balanced distribution of images with and without the L3/L4 
lumbar level, for each 3D CT scan of the training, hold-out 
and dual-center test set, a cropped version was created. The 
logistic regression model was trained based on the predicted 
volume of all validation cases of the cross-validated slice 
extraction nnU-Net and applied to all test sets. Additional 
information about cropping and feature selection can be 
found in Supplement S2.

Method development for tissue segmentation

Dataset

For the development of the tissue segmentation method 
(VAT, SAT, SM), retrospectively derived single slice images 
at the L3/L4 lumbar level from 1143 patients (559 female, 
mean age 77 ± 11 years) were used. 937 patients underwent 
pre-interventional CT for transcatheter aortic valve implan-
tation and 206 patients underwent diagnostic CT for liver 
cirrhosis with portosystemic shunting. The dataset inten-
tionally included a high number of patients with anasarca 
(19.2%), ascites (9.4%), or both anasarca and ascites (6.5%). 
The ground truth of the segmentation was defined by manual 
drawing and was also used to train a different CNN in a 
previous work, where additional details on the dataset are 
reported [13].

The data for method development were randomly split 
into a training set (n = 972, 85%) and hold-out test (n = 171, 
15%) set. The method was additionally tested on dual-center 
test data (described below).

Fig. 1  Schematic representation of the presented pipeline for auton-
omous body composition analysis. Input of the pipeline is a 3D CT 
scan. In the first part, a 3D convolutional neural network (CNN) was 
employed for slice extraction using nnU-Net. In the second part, a 
competitive dense fully connected CNN (CDFNet) is applied for 
segmentation of the body compartments. Classical machine learning 

methods were employed for integration of quality control steps. For 
the slice extraction part, a logistic regression model was developed 
that classifies the presence of L3/L4 lumbar level in the 3D CT scan. 
For segmentation of the different tissues, a linear regression model 
was established that predicts segmentation quality in terms of the 
Dice score
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Model

A 2D competitive dense fully convolutional network 
(CDFNet), which has shown promising results for body 
composition analysis in magnetic resonance imaging, 
was used for tissue segmentation [20]. This architecture 
is proposed as an extension of the Dense-UNet architec-
ture by max-out activation units. In a CDFNet, feature 
maps are generated by element-wise selection of the 
maximum values of previous feature maps, which has 
been shown to have a positive effect on performance 
and generalizability compared to unselective concatena-
tion [20–22]. Further details on image pre-processing, 
augmentation, experimental design and computation of 
the fatty muscle fraction are provided in Supplement 
S3.

For training, fivefold cross-validation was used and test-
ing was performed with an ensemble of the cross-validated 
models.

Quality control

To assess the predictive uncertainty of the segmentation dur-
ing employment, a linear regression model was developed 
that predicts the segmentation Dice score for the muscle 

class based on the average entropies of the probability 
maps. This metric is proposed by a recent work as a feature 
to estimate quality of medical image segmentation and to 
detect out-of-distribution samples and ambiguous cases [23]. 
Although this method could be applied to all tissue classes, 
we focused on the muscle class because we consider it the 
most important class for the assessment of sarcopenia.

The linear regression model was trained with the pre-
dictions of all validation cases of the cross-validated tissue 
segmentation CDFNet and tested on all test sets.

Dual‑center test data and end‑to‑end evaluation

The entire pipeline was finally evaluated end-to-end, i.e., from 
3D CT scan to extracted body composition metrics. The auto-
matically determined tissue areas and the fatty muscle frac-
tion were compared with the manually determined values. For 
this purpose, 3D CT scans of consecutive patients referred for 
diagnostic CT including imaging of the upper abdomen were 
retrospectively retrieved from two centers.

• Center A: 83 (41 females, mean age 60 ± 15  years)
patients were used as internal test data from the Depart-
ment of Diagnostic and Interventional Radiology, Uni-

Fig. 2  Overview of the data sets used for method development and 
evaluation. The nnU-Net employed for extraction of a single slice at 
L3/L4 level from a 3D CT scan and the CDFNet for tissue segmen-
tation of the 2D CT slices were developed on two different datasets. 
Both methods were fivefold cross-validated and an ensemble of the 
cross-validated models was tested on the hold-out data. The regres-

sion models for integrated quality control (QC) were developed on 
the validation data of the cross-validated models and were also tested 
on the hold-out data. Finally, the entire pipeline of slice extraction, 
tissue segmentation, and quality control was evaluated end-to-end on 
the dual-center test data and compared against manual analyses
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versity Hospital Bonn. Data were acquired at four differ-
ent CT scanners.

• Center B: 281 (111 females, mean age 63 ± 16 years) 
patients were used as external test data from the Depart-
ment of Radiology and Nuclear Medicine, University 
Medical Centre Mannheim. Data were acquired at three 
different CT scanners.

In this data set, 10 patients had metallic implants. How-
ever, in the end-to-end evaluation, these cases were inten-
tionally not excluded. For demonstration of the tissue seg-
mentation quality control, a restrictive setting was applied 
excluding 10% of the cases with lowest predicted Dice score 
of the muscle class. End-to-end performance is reported for 
both included and excluded cases.

The ground truth for slice extraction and tissue segmenta-
tion was labeled by a radiology resident (B.W.) and a board-
certified radiologist (A.F.). All labels of the radiology resi-
dent were validated by the board-certified radiologist.

Additional information on dual-center test data can be 
found in Supplement S5.

Results

A summary of the results can be found in Fig. 3.

Slice extraction

The mean deviations between the predictions of the ensem-
ble of cross-validated slice extraction models and the manu-
ally defined ground truth were Δz = 2.27 ± 7.08 mm for the 
hold-out test data and Δz = 2.46 ± 6.20 mm for the dual-
center test data. Considering an acceptable deviation of up 
to 10 mm, 96% of the extracted slices of the hold-out test 
set and 96% of the dual-center test data were extracted at the 
correct level. The mean deviations are listed separately for 
all test sets in Table 1.

Tissue segmentation

The ensemble of fivefold cross-validated CDFNet models 
achieved excellent Dice scores, both on the hold-out test 
data (SM: 0.96 ± 0.02, VAT: 0.98 ± 0.02, SAT: 0.98 ± 0.01) 
and on the dual-center test data (SM: 0.95 ± 0.04, VAT: 
0.98 ± 0.02, SAT: 0.97 ± 0.04). Table 2 lists the Dice scores 
separately for each test set.

Quality control

Figure 4a shows the logistic regression model developed for 
identifying 3D CT scans that do not contain the L3/L4 level. 
High accuracy was observed for predicting the presence of 

Fig. 3  Summary of results: separate analyses of slice extraction, tis-
sue segmentation, and respective quality control (QC), as well as 
agreement between end-to-end automated and manual area measure-

ments of skeletal muscle (SM), visceral adipose tissue (VAT), sub-
cutaneous adipose tissue (SAT), and the fatty muscle fraction (FMF)
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the L3/L4 level in the original and cropped versions of the 
hold-out test data (100%) and also on the dual-center test 
data (center A: 99%, center B: 98%). Sensitivity and speci-
ficity were 97% and 99% for the dual-center test data.

The linear regression model developed for integrated 
quality control of the tissue segmentation is shown in Fig. 4b. 
Mean differences between the observed and the predicted 
Dice score for the hold-out test data were 0.016 ± 0.016 
(SM), 0.005 ± 0.005 (VAT), and 0.008 ± 0.010 (SAT) and for 
the dual-center 0.016 ± 0.016 (SM), 0.007 ± 0.012 (VAT), 
and 0.010 ± 0.015 (SAT).

End‑to‑end evaluation

Figure 5 shows examples of the end-to-end analyses. Appli-
cation of the logistic regression model to the dual-center test 
data, all of which contained the L3/L4 lumbar level, resulted 
in 14 of 364 3D CT scans with a warning that the scan may 
not contain the L3/L4 level. In three of these cases, the 
patients had implants at the L3/L4 level. For the remaining 
11 cases, the difference between predicted L3/L4 level and 
ground truth was Δz = 6.38 ± 10.77 mm. Except for the three 
patients with implants, none of the patients were excluded 
from further analyses. Subsequently, the linear regression 
model for integrated quality control of the tissue segmenta-
tion was applied. With a restrictive setting, 36 of 361 cases 
were flagged as possibly having limited segmentation qual-
ity with predicted Dice scores of the muscle class ranging 
from 0.861 to 0.924. In 5 of these 36 cases, the patients had 
implants at the L3/L4 level, and 4 patients had a pronounced 
hernia. In the remaining cases, there were various reasons 
for limited segmentation quality, such as parts of the arms 
included in the tissue segmentation or parts of the kidney 
classified as muscle. In total, 8 of 10 cases with metallic 
implants on the L3/L4 level were excluded by the two qual-
ity control steps. For the two cases not excluded by quality 

Table 1  Mean z-deviation (Δz) and slice extraction accuracy for different tolerance margins obtained with the cross-validated nnU-Net ensemble 
for the hold-out test set and for the additional test data from center A and center B

Slice extraction Mean, Δz [mm] Accuracy, Δz = 0 mm Accuracy, Δz <  = 5 mm Accuracy, 
Δz <  = 10 mm

Hold-out 2.27 ± 7.08 0.79 0.96 0.96
Center A 3.35 ± 4.10 0.51 0.88 0.99
Center B 2.19 ± 6.70 0.85 0.96 0.96

Table 2  Dice scores for segmentation of skeletal muscle (SM), vis-
ceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) 
obtained with the cross-validated CDFNet ensemble for the hold-out 
test set and for the additional test data from center A and center B

Tissue segmen-
tation

Dice score, SM Dice score, 
VAT

Dice score, SAT

Hold-out 0.958 ± 0.023 0.981 ± 0.015 0.982 ± 0.012
Center A 0.959 ± 0.021 0.981 ± 0.012 0.979 ± 0.038
Center B 0.944 ± 0.039 0.974 ± 0.027 0.969 ± 0.037

Fig. 4  Models trained for quality control: a Based on the predicted 
volume of the nnU-Net employed for slice extraction, a logistic 
regression model was trained to predict the presence of the slice at 
L3/L4 lumbar level in the 3D CT scan. b For prediction of the tissue 
segmentation quality in terms of the Dice score, a linear regression 

model was trained based on the entropy of the probability map of the 
CDFNet for the muscle class. Both regression models were built on 
features derived from cross-validation data of slice extraction and tis-
sue segmentation, respectively. Gray areas represent the 95% confi-
dence intervals
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control, only minor hardening artifacts were observed, as 
shown in Supplement 4S.

Results of the entire end-to-end evaluation are sum-
marized in Table  3. A high agreement was observed 
for the 325 cases of the dual-center data that passed the 
quality control. Body composition metrics and FMF 
derived from automated and manual analysis showed 

absolute differences in area of ΔSM = 5.0 ± 6.0  cm2, 
ΔVAT = 3.7 ± 5.8  cm2, and ΔSAT = 5.7 ± 10.4  cm2, corre-
sponding to low relative differences of ΔSM = 3.3 ± 4.1%, 
ΔVAT = 3.0 ± 4.7%, and ΔSAT = 2.7 ± 4.3%. Also for 
FMF, low absolute deviations of ΔFMF = 0.014 ± 0.012 
and relative deviations of ΔFMF = 4.3 ± 4.4% were 
observed.

Fig. 5  Compartmental areas of visceral adipose tissue, subcutaneous 
adipose tissue (VAT, SAT), skeletal muscle (SM), and fatty muscle 
fraction (FMF) derived for patients from center A (a) and center B 

(b). Manual analysis is marked in green, while results from the pro-
posed pipeline are marked with a red line
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Discussion

This paper presents a method that allows the application of 
body composition analysis without human interaction, thus 
permitting opportunistic determination of body compart-
ment areas and FMF as a marker for sarcopenia in routine 
clinical practice. For both CNNs applied in the pipeline, the 
trained networks are available on reasonable request (https:// 
qilab. de).

In recent years, a variety of deep learning methods have 
been presented that address the topic of automated body 
composition analysis. Most of these studies focus on the 
segmentation of the tissue compartments in a single slice at 
a certain lumbar level, as it has been demonstrated that 2D 
and 3D measurements for quantification of VAT, SAT, and 
SM show a high correlation [9–14]. Although very recent 
works have also addressed automation of slice extraction, 
routine clinical application additionally requires the integra-
tion of quality control methods for both slice extraction and 
tissue segmentation [15, 16]. For this purpose, two classic 
machine learning models have been developed in this study. 
The developed pipeline therefore provides full automation 
of body composition analysis in abdominal CT, including 
deep-learning-based slice extraction and tissue segmentation 
and integrated application of quality control models.

Compared to previous research in the field of automated 
body composition analyses, we observed similar or supe-
rior performance values for slice extraction task and tissue 
segmentation in our study [12–17]. In previous work, the 
slice extraction task was formulated either as a regression 
problem, a classification task, or, similar to our approach, a 
segmentation problem [15–17]. While the methods proposed 
so far for slice extraction are based on 2D images or require 
the generation of a maximum intensity projection in a pre-
processing step, the use of the nnU-Net framework allows 
the direct input of 3D CT datasets of different sizes. For 
tissue segmentation, different variants of a 2D U-Net archi-
tecture have been used [12, 15–17]. The CDFNet architec-
ture applied in the current study is an extension of a Dense-
UNet architecture with max-out activation units, which has 
recently also been successfully used for body composition 

analyses in magnetic resonance imaging [20]. A detailed 
comparison to previous work can be found in Supplement 
S6.

For the development of the tissue segmentation CNN, 
patient collectives were included that also represent tissue 
alterations, as ascites and anasarca, which are challenging 
for body composition analysis [14]. In addition, segmenta-
tion results from other studies show the disadvantages of 
using only threshold-based pre-processing steps to define 
segmentation ground truth, resulting in misclassification 
of intermuscular fat to one of the abdominal adipose tis-
sue classes (VAT, SAT) [15]. To overcome this limitation, 
intermuscular fat was manually assigned to the muscle class 
in this study, allowing additional analyses of muscle [13].

Several aspects of body composition, such as skeletal 
muscle fat infiltration as an indicator of skeletal muscle 
quality were shown to provide prognostic information in 
patients with cardiovascular and oncologic diseases [1–3]. 
Thereby, FMF was recently proposed as an easy-accessible 
body composition metric which may be considered particu-
larly promising as it additionally integrates information on 
skeletal muscle quality [1, 5]. Previous studies have demon-
strated its prognostic value both as an indicator of frailty in 
patients with planned endovascular aortic valve replacement 
as well as an powerful predictor of outcome in critically ill 
patients receiving extracorporeal membrane oxygenation 
therapy [1, 6].

A recent work on 3D tissue segmentation points out that 
for a truly automated application of body compartment 
analysis, the development of quality assurance procedures 
is warranted to identify patients with metal artifacts [24]. 
The dual-center end-to-end analysis presented in the current 
work demonstrates that the proposed quality control ensures 
a high agreement between manual and automated analyses 
by identifying cases that are unsuitable for body composi-
tion analyses not only due to hardening artifacts but also due 
to other reasons limiting the segmentation quality. Interest-
ingly, end-to-end performance analysis of cases flagged by 
quality control as having limited segmentation quality shows 
that FMF is quite robust to segmentation errors.

Table 3  Evaluation of the end-to-end performance of the body composition analyses

Absolute and relative differences (in parentheses) between the values obtained with the proposed pipeline and the manually determined values 
are listed separately for center A and center B and for all 3D CT scans that were included and excluded by restrictive setting of the tissue seg-
mentation quality control. The excluded cases show markedly lower agreement of muscle area, while FMF agreement is still reasonably good 
(marked in bold)

Center Quality control Fatty muscle fraction Muscle area  (cm2) Visceral fat area  (cm2) Subcutaneous fat area  (cm2)

A Passed, n = 82 0.009 ± 0.008 (3.1% ± 3.5%) 3.7 ± 4.1 (2.7% ± 4.4%) 3.6 ± 4.3 (2.7% ± 3.6%) 5.4 ± 5.3 (2.7% ± 3.0%)
B Passed, n = 243 0.016 ± 0.013 (4.8% ± 4.6%) 5.4 ± 6.4 (3.5% ± 4.0%) 3.8 ± 6.2 (3.1% ± 5.0%) 5.8 ± 11.7 (2.8% ± 4.6%)
A Excluded, n = 1 0.046 (9.3%) 16.0 (16.6%) 2.0 (2.3%) 14.9 (10.8%)
B Excluded, n = 35 0.033 ± 0.036 (6.1% ± 6.6%) 18.6 ± 21.6 (14.1% ± 15.6%) 7.2 ± 10.4 (7.0% ± 8.6%) 18.4 ± 29.5 (7.8% ± 9.5%)
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As a limitation of this study, only the areas of VAT, SAT, 
and SM are determined in a single slice instead of deter-
mining the respective tissue volumes in the entire abdomen. 
However, we are not aware of studies demonstrating that a 
3D approach has significant advantages over the established 
2D measurement for assessment of sarcopenia. Also, refer-
ence values for body compartments have so far only been 
determined in large studies for 2D measurements [15].

Conclusion

This study presents an end-to-end automated deep-learning 
pipeline for large-scale opportunistic assessment of body 
composition metrics and sarcopenia biomarker in clinical 
routine.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00330- 021- 08313-x.

Funding Open Access funding enabled and organized by Projekt 
DEAL. The study was supported by a grant from the BONFOR research 
program of the University of Bonn (application number 2020-2A-04). 
The funders had no influence on conceptualization and design of the 
study, data analysis, and data collection, preparation of the manuscript 
as well as the decision to publish.

Compliance with ethical standards 

Guarantor The scientific guarantor of this publication is PD Dr. Alois 
Martin Sprinkart.

Conflict of interest The authors declare no competing interests.

Statistics and biometry No complex statistical methods were neces-
sary for this paper.

Informed consent Written informed consent was waived by the insti-
tutional review board (the University of Bonn and the University of 
Heidelberg).

Ethical approval This retrospective study was approved by the institu-
tional review board with waiver of written informed consent.

Methodology

retrospective
diagnostic study
performed at two institutions

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 

need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

1. Luetkens JA, Faron A, Geissler HL et al (2020) Opportunistic
computed tomography imaging for the assessment of fatty mus-
cle fraction predicts outcome in patients undergoing transcath-
eter aortic valve replacement. Circulation 141:234–236

2. Faron A, Pieper CC, Schmeel FC et al (2019) Fat-free muscle
area measured by magnetic resonance imaging predicts overall
survival of patients undergoing radioembolization of colorectal
cancer liver metastases. Eur Radiol 29:4709–4717

3. Faron A, Sprinkart AM, Pieper CC, et al (2020) Yttrium-90
radioembolization for hepatocellular carcinoma: outcome pre-
diction with MRI derived fat-free muscle area. Eur J Radiol
125:108889.

4. Faron A, Sprinkart AM, Kuetting DLR et al (2020) Body com-
position analysis using CT and MRI: intra-individual intermodal
comparison of muscle mass and myosteatosis. Sci Rep 10:11765

5. Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised 
European consensus on definition and diagnosis. Age Ageing
48:16–31

6. Faron A, Kreyer S, Sprinkart AM et al (2020) CT fatty muscle
fraction as a new parameter for muscle quality assessment predicts 
outcome in venovenous extracorporeal membrane oxygenation.
Sci Rep 10:22391

7. Lenchik L, Boutin RD (2018) Sarcopenia: beyond muscle atro-
phy and into the new frontiers of opportunistic imaging, precision 
medicine, and machine learning. Semin Musculoskelet Radiol
22:307–322

8. Prado CMM, Lieffers JR, McCargar LJ et al (2008) Prevalence
and clinical implications of sarcopenic obesity in patients with
solid tumours of the respiratory and gastrointestinal tracts: a
population-based study. Lancet Oncol 9:629–635

9. Shen W, Punyanitya M, Wang Z et al (2004) Total body skel-
etal muscle and adipose tissue volumes: estimation from a single
abdominal cross-sectional image. J Appl Physiol 97:2333–2338

 10. Faron A, Luetkens JA, Schmeel FC et al (2019) Quantification
of fat and skeletal muscle tissue at abdominal computed tomog-
raphy: associations between single-slice measurements and total
compartment volumes. Abdom Radiol 44:1907–1916

 11. Irlbeck T, Massaro JM, Bamberg F, O’Donnell CJ, Hoffmann U,
Fox CS (2010) Association between single-slice measurements
of visceral and abdominal subcutaneous adipose tissue with volu-
metric measurements: the Framingham Heart Study. Int J Obes
(Lond) 34:781–787

 12. Weston AD, Korfiatis P, Kline TL et al (2018) Automated abdomi-
nal segmentation of CT scans for body composition analysis using 
deep learning. Radiology 290:669–679

 13. Nowak S, Faron A, Luetkens JA et al (2020) Fully automated seg-
mentation of connective tissue compartments for CT-based body
composition analysis: a deep learning approach. Invest Radiol
55:357–366

 14. Park HJ, Shin Y, Park J et al (2020) Development and validation
of a deep learning system for segmentation of abdominal muscle
and fat on computed tomography. Korean J Radiol 21:88–100

 15. Magudia K, Bridge CP, Bay CP et al (2020) Population-scale CT-
based body composition analysis of a large outpatient population
using deep learning to derive age-, sex-, and race-specific refer-
ence curves. Radiology 298:319–329

3150 European Radiology  (2022) 32:3142–3151

1 3

35

https://doi.org/10.1007/s00330-021-08313-x
http://creativecommons.org/licenses/by/4.0/


 16. Dabiri S, Popuri K, Ma C, et al (2020) Deep learning method for
localization and segmentation of abdominal CT. Comput Med
Imaging Graph 85:101776.

 17. Castiglione J, Somasundaram E, Gilligan LA, Trout AT, Brady
S (2021) Automated segmentation of abdominal skeletal mus-
cle on pediatric ct scans using deep learning. Radiol Artif Intell
3:e200130.

 18. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH
(2021) nnU-Net: a self-configuring method for deep learning-
based biomedical image segmentation. Nat Methods 18:203–211

 19. Yang D, Xiong T, Xu D et al (2017) Deep Image-to-Image Recur-
rent Network with Shape Basis Learning for Automatic Vertebra
Labeling in Large-Scale 3D CT Volumes. Proceedings of MIC-
CAI 2017:498–506

 20. Estrada S, Lu R, Conjeti S et al (2020) FatSegNet: A fully auto-
mated deep learning pipeline for adipose tissue segmentation on
abdominal dixon MRI. Magn Reson Med 83:1471–1483

 21. Estrada S, Conjeti S, Ahmad M, Navab N, Reuter M (2018)
Competition vs. concatenation in skip connections of fully

convolutional networks. Proceedings of international workshop 
on machine Learning in Medical Imaging, pp 214–222.

 22. Goodfellow IJ, Warde-Farley D, Mirza M, Courville A, Bengio Y 
(2013) Maxout networks. Proceedings of International Conference 
on Machine Learning, pp 1319–1327.

 23. Mehrtash A, Wells WM, Tempany CM, Abolmaesumi P, Kapur T 
(2020) Confidence calibration and predictive uncertainty estima-
tion for deep medical image segmentation. IEEE Trans Med Imag 
39:3868–3878

 24. Koitka S, Kroll L, Malamutmann E, Oezcelik A, Nensa F (2021)
Fully automated body composition analysis in routine CT imaging 
using 3D semantic segmentation convolutional neural networks.
Eur Radiol 31:1795–1804

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Sebastian Nowak1 · Maike Theis1 · Barbara D. Wichtmann1 · Anton Faron1 · Matthias F. Froelich2 · Fabian Tollens2 · 
Helena L. Geißler1 · Wolfgang Block1,3,4 · Julian A. Luetkens1 · Ulrike I. Attenberger1 · Alois M. Sprinkart1

1 Department of Diagnostic and Interventional Radiology, 
Quantitative Imaging Lab Bonn (QILaB), University 
Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, 
Germany

2 Department of Radiology and Nuclear Medicine, University 
Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 
68167 Mannheim, Germany

3 Department of Radiotherapy and Radiation Oncology, 
University Hospital Bonn, Venusberg-Campus 1, 
53127 Bonn, Germany

4 Department of Neuroradiology, University Hospital Bonn, 
Venusberg-Campus 1, 53127 Bonn, Germany

3151European Radiology  (2022) 32:3142–3151

1 3

36



3.3. Publication 3: Direct deep learning-based survival prediction from pre-interventional 

CT prior to transcatheter aortic valve replacement 

Theis M, Block W, Luetkens JA, Attenberger UI, Nowak S, Sprinkart AM. Direct deep 
learning-based survival prediction from pre-interventional CT prior to transcatheter 
aortic valve replacement. Eur J Radiol 2023; 168: 111150  

37



European Journal of Radiology 168 (2023) 111150

Available online 11 October 2023
0720-048X/© 2023 Elsevier B.V. All rights reserved.

Direct deep learning-based survival prediction from pre-interventional CT 
prior to transcatheter aortic valve replacement 

Maike Theis a,*, Wolfgang Block a,b,c, Julian A. Luetkens a, Ulrike I. Attenberger a, 
Sebastian Nowak a,1, Alois M. Sprinkart a,1 

a Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, 
Germany 
b Department of Radiotherapy and Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany 
c Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany   
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A B S T R A C T

Purpose: To investigate survival prediction in patients undergoing transcatheter aortic valve replacement (TAVR) 
using deep learning (DL) methods applied directly to pre-interventional CT images and to compare performance 
with survival models based on scalar markers of body composition. 
Method: This retrospective single-center study included 760 patients undergoing TAVR (mean age 81 ± 6 years; 
389 female). As a baseline, a Cox proportional hazards model (CPHM) was trained to predict survival on sex, age, 
and the CT body composition markers fatty muscle fraction (FMF), skeletal muscle radiodensity (SMRD), and 
skeletal muscle area (SMA) derived from paraspinal muscle segmentation of a single slice at L3/L4 level. The 
convolutional neural network (CNN) encoder of the DL model for survival prediction was pre-trained in an 
autoencoder setting with and without a focus on paraspinal muscles. Finally, a combination of DL and CPHM was 
evaluated. Performance was assessed by C-index and area under the receiver operating curve (AUC) for 1-year 
and 2-year survival. All methods were trained with five-fold cross-validation and were evaluated on 152 hold- 
out test cases. 
Results: The CNN for direct image-based survival prediction, pre-trained in a focussed autoencoder scenario, 
outperformed the baseline CPHM (CPHM: C-index = 0.608, 1Y-AUC = 0.606, 2Y-AUC = 0.594 vs. DL: C-index =
0.645, 1Y-AUC = 0.687, 2Y-AUC = 0.692). Combining DL and CPHM led to further improvement (C-index =
0.668, 1Y-AUC = 0.713, 2Y-AUC = 0.696). 
Conclusions: Direct DL-based survival prediction shows potential to improve image feature extraction compared 
to segmentation-based scalar markers of body composition for risk assessment in TAVR patients.   

1. Introduction

Transcatheter aortic valve replacement (TAVR) is frequently
employed in patients with severe aortic valve stenosis and high surgical 
risk. Patients with untreated severe aortic valve stenosis have an 
increased mortality risk, and aortic valve replacement can increase their 
life expectancy [1]. However, surgical aortic valve replacement (SAVR) 
is not an option for every patient because of various conditions such as 

advanced age or left ventricular dysfunction [2]. In addition to the 
assessment of surgical risk factors, overall life expectancy plays an 
important role in the selection of therapy for the treatment of severe 
aortic valve stenosis. For instance, TAVR is preferable to SAVR in pa-
tients with a shorter life expectancy, but it is not recommended in pa-
tients with a life expectancy of less than one year [3]. To evaluate the 
mortality risk of TAVR patients, various clinical parameters or surgical 
risk scores such as the European System for Cardiac Operative Risk 

Abbreviations: (TAVR), transcatheter aortic valve replacement; (DL), deep learning; (CPHM), Cox proportional hazards model; (FMF), fatty muscle fraction; 
(SMRD), skeletal muscle radiodensity; (SMA), skeletal muscle area; (CNN), convolutional neural network; (AUC), area under the curve; (SAVR), surgical aortic valve 
replacement; (EuroSCORE), European System for Cardiac Operative Risk Evaluation; (HR), hazard ratio, (CI), confidence interval; (AI), artificial intelligence. 
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Evaluation (EuroSCORE) II have been applied [4–6]. In addition, pre-
vious studies have shown that patient frailty status is an important risk 
factor for outcome in TAVR patients and a variety of frailty scores have 
been investigated, for example, based on questionnaires and/or physical 
performance tests [6,7]. Recently, human-defined scalar markers of 
body composition have been introduced to assess frailty, sarcopenia or 
myosteatosis. The corresponding measurements are usually performed 
on individual CT slices at L3/L4 lumbar level. The parameters deter-
mined in this way can also be taken into account when modelling the 
mortality risk of TAVR patients [4,8–10]. 

These scalar markers are derived from tissue segmentations and 
summarize an image feature, such as skeletal muscle area (SMA) or al-
terations in tissue density, into a scalar value. To automate the extrac-
tion of scalar markers derived from tissue segmentations, deep learning 
(DL) is typically employed [11,12]. DL methods such as convolutional
neural networks (CNN) can autonomously identify and extract relevant
image features and feature hierarchies. It is therefore a logical step to
use DL not only for automated extraction of human-defined scalar
markers through segmentation, but also to explore direct application on
unprocessed images for survival prediction.

Several studies have already demonstrated an advantage of direct 
DL-based prediction of patient survival over classical methods such as
Cox proportional hazards models (CPHM) [13–17]. In a CPHM, the
patient’s log-risk function is represented as a linear combination of
several predictor variables [18]. To be able to also model non-linear
relationships, Katzman et al. employed a DL method to estimate the
patient’s log-risk function [13]. Such DL-based analysis has already been
successfully applied for survival prediction in patients with oral cancer
based only on clinical parameters [14]. Also, in the field of medical
imaging, CNN-based time-to-event analyses have been successfully
applied to 2D or 3D data and in combination with other relevant in-
formation like gene expression data [15–17]. A direct image-based
prediction of survival time has not been investigated so far.

Therefore, the aim of our study was to investigate the feasibility of 
applying a direct image-based DL model for prediction of survival time 
using a TAVR cohort as an example. The results were compared to 
established CPHMs based on scalar human-defined body composition 
markers derived from image segmentation. 

2. Material and methods

2.1. Dataset

Due to the retrospective nature of this single-center study, written 
informed consent was waived by the institutional review board of the 
Medical Faculty of the University Bonn. The study was conducted in 
accordance with the ethical standards of the 1964 Declaration of Hel-
sinki and its subsequent amendments. The patient cohort consists of 811 
patients who underwent TAVR at the University Hospital Bonn between 
2011 and 2017, with available follow-up data and pre-interventional 

thoracic abdominal CT scans. 34 patients were excluded due to insuffi-
cient image quality caused e.g., by metallic implants. A further 17 pa-
tients were censored before the end of the first year and were therefore 
also excluded from our analyses. Therefore, the final cohort consists of 
760 patients with a mean age of 81 ± 6 years and 389 (51%) female 
patients. Inclusion and exclusion criteria are presented in a flow chart in 
Fig. 1. 54% of the included patients died during follow-up with a median 
survival time of 687 days. For patients with no observed event, median 
follow-up time was 1548 days. Detailed patient characteristics are 
shown in Table 1. 

For each patient, the scalar body composition makers FMF, mean 
skeletal muscle radiodensity (SMRD) and skeletal muscle area (SMA) 
were derived from manual segmentations of the paraspinal musculature 
at L3/L4 lumbar level previously performed by a radiology resident with 
three years of experience in abdominal imaging. Detailed descriptions of 
the extraction of the scalar markers can be found in Appendix A. 

For method development, the datasets were randomly divided into 
80% (n = 608) training and 20% (n = 152) test cases, ensuring a similar 
distribution of deaths, survival times and observation periods in both 
datasets. Training was performed with five-fold cross-validation. A 
detailed description of the procedure for splitting the data can be found 
in Appendix B. 

2.2. Models 

The image pre-processing prior to method development is described 
in Appendix C. 

2.2.1. Cox proportional hazards model 
A traditional approach for survival prediction was applied to obtain a 

Fig. 1. Flow chart to illustrate the inclusion and exclusion criteria.  

Table 1 
Overview of the patient characteristics of the total dataset (n = 760), including 
sex, event (death), follow-up time and survival time, age, fatty muscle fraction 
(FMF), mean skeletal muscle radiodensity (SMRD) and skeletal muscle area 
(SMA). Q1 refers to the 25%, Q2 to the 50%, and Q3 to the 75% quantile.  

Patient characteristics 

Variable Absolute number Relative number (%) 

Sex male / female 371 / 389 48.82% / 51.18% 
Event 0 / 1 348 / 412 45.79% / 54.21%  

Q1 | Q2 | Q3 Range 

Follow-up time; event = 0 (days) 1271 | 1548 | 2129.5 [365, 3603] 
Survival time; event = 1 (days) 204 | 687 | 1367.5 [0, 3459]  

Mean ± Std Range 

Age (years) 81.21 ± 6.05 [57.00, 96.00] 
FMF (%) 62.51 ± 20.10 [9.97, 97.22] 
Mean SMRD (HU) 18.98 ± 10.80 [-11.27, 49.42] 
SMA (cm2) 55.89 ± 10.91 [29.37, 107.03]  

M. Theis et al.
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baseline for model comparison. Therefore, the following CPHMs were 
trained using the Lifelines package in Python (Python 3.9.12, Lifelines 
0.27.0) [19]: First, the prognostic value of each scalar body composition 
marker derived from muscle segmentation (FMF, SMRD and SMA) for 
predicting survival in TAVR patients was assessed by a univariable 
analysis. In addition, patient sex and age were also examined as uni-
variable predictors. Therefore, the categorical variable sex was binar-
ized, where male patients were encoded with a value of 1 and female 
patients with a value of 0. Then, a multivariable CPHM was built using 
only predictors that showed a significant hazard ratio (HR) in the uni-
variable analysis (p-value < 0.05) (CPHMMultivar,sign). Lastly, a second 
multivariable CPHM including all predictors (FMF, SMRD, SMA, sex, 
age) was investigated, independent from its significance in univariable 
analysis (CPHMMultivar,all). 

The univariable CPHMs were developed on the first training set from 
cross-validation, which included 486 cases. Both multivariable CPHMs 
were trained with five-fold cross-validation, and an ensemble of all five 
models was applied to the hold-out test set. A general description of a 
CPHM can be found in Appendix D. 

2.2.2. Deep learning based survival prediction 
As a new approach, a DL model was trained for direct image-based 

survival time prediction. Fig. 2 shows the CNN architecture developed 
for predicting patient survival directly on the unsegmented CT slices at 
L3/L4 lumbar level. In the first part of the network (encoder), relevant 
image features are extracted by using multiple convolutional layers. In 
the second part of the network, the mortality risk is predicted based on 
the encoded image features using fully connected linear layers, which 
finally output the logistic hazard rate as a single scalar value. Lifelines 
0.27.0 was used to assess the probability of survival at a given time point 
based on the predicted log-hazard [19]. The loss function for training the 
CNN-based survival prediction is the negative log Cox partial likelihood 
divided by the number of observed events, which is similar to the loss 
used for training of the CPHMs [13,18]. 

We investigated autoencoder based pre-training of the convolutional 
layers of the CNN encoder to mitigate overfitting. Autoencoder pre- 
training involves connecting a CNN encoder to a CNN decoder via a 
bottleneck. This forces the encoder to learn to compress characteristic 
image features so that the decoder can reconstruct the original image. 
The CNN’s encoder weights for survival prediction are then initialized 
with the corresponding pre-trained autoencoder weights. 

Two different versions of L1-loss for autoencoder-based pre-training 
were examined: First, a standard L1-loss was used that considers all 
image areas equally. Second, a masked L1-loss was used with a focus on 
paraspinal musculature, which forces the encoder to preserve more 
image detail in this specific region containing prognostic information for 
survival prediction [4,8,9,20]. 

Details on the autoencoder pre-training can be found in Appendix E. 
To investigate the benefit of these two autoencoder-based pre-training 
strategies, a further DL model was trained from scratch, i.e., without pre- 
training of the encoder (DLScratch). We refer to the survival prediction 
CNN with and without focus on the paraspinal musculature in pre- 
training as DLMasked and DLUnmasked. For training of DLMasked and DLUn-

masked, the weights of the pre-trained encoder are kept frozen (DLMasked, 

frozen and DLUnmasked,frozen) [21–23]. The best approach of DLMasked,frozen, 
DLUnmasked,frozen and DLScratch was selected by training and evaluating on 
the first validation split and then trained with full five-fold cross-vali-
dation and evaluated on the hold-out test set. To investigate the benefits 
of altering the pre-trained parameters for survival prediction, this best 
frozen model was further trained with unfrozen weights (DLUnfrozen). 

Finally, a combination of the baseline CPHM and the direct image- 
based DL approach was evaluated by implementing a further CPHM 
using the parameters sex, age, and the log-hazard rate of each patient 
predicted by the best DL model as predictor variables (CPHMDL+Sex+Age) 
[16]. 

For all DL methods, a grid search for hyperparameters such as 

learning rate, weight decay, and dropout rate was conducted. For more 
details on the experimental design and grid searches, see Appendix F. 

2.3. Comparison to EuroSCORE 

To evaluate the clinical utility of the DL model also in comparison 
with the surgical risk scores EuroSCORE and EuroSCORE II [24–26], two 
further CPHMs based on age and sex and EuroSCORE (CPHMEuroSCOR-

E+Sex+Age) and EuroSCORE II (CPHMEuroSCOREII+Sex+Age) were evaluated, 
respectively. In 90 of 760 patients, only the original EuroSCORE was 
available, as EuroSCORE II was first introduced in 2012. 

2.4. Statistical evaluation 

As a standard metric for evaluating time-to-event analysis, the C- 
index was calculated for comparison of model performance on the 
validation and hold-out test data [27,28]. The area under the receiver 
operating curve (AUC) for the prediction of 1-year and 2-year survival 
was additionally assessed on the hold-out test set, as this is a more 
intuitive metric for evaluating survival time prediction. All included 
patients had at least 1-year follow-up available. For the calculation of 2- 
year survival AUC, patients without 2-year follow-up data had to be 
excluded (n = 6). To assess significant differences in performance, 95% 
confidence intervals (CI) were calculated for all metrics by boot-
strapping the test set with 1000 resamples. 

Lastly, Kaplan-Meier analyses with log-rank tests for 1-year and 2- 
year survival were conducted on the test data based on the predicted 
log-hazard rate of the best-performing DL model. To stratify patients 
into low- and high-risk groups, the median of all predicted log-hazard 
rates in the five validation cohorts was set as a cut-off value. A p- 
value < 0.05 or non-overlapping 95% CIs were considered statistically 
significant [29]. 

3. Results

3.1. Cox proportional hazards model

The results of the univariable and multivariable CPHM analyses are 
shown in Table 2. In univariable analysis, the scalar markers FMF, 
SMRD, and SMA were observed to be significant predictors. Only SMA 
remained significant in the multivariable CPHM analysis employing 
solely these significant predictors (CPHMMultivar,sign). SMA and sex 
showed significant hazard ratios in the CPHM including all investigated 
variables (CPHMMultivar,all). Poor performance with a C-index of 0.508, 
an AUC for 1- and 2-year survival with 0.496 and 0.457 was observed 
applying an ensemble of all five cross-validated CPHMMultivar,sign to the 
hold-out test set. For CPHMMultivar,all a C-index of 0.608 and AUC values 
for 1- and 2-year survival of 0.606 and 0.594 were observed (see 
Table 4). 

3.2. Deep learning based survival prediction 

The performance values for the three different DL variants (DLScratch, 
DLMasked,frozen, DLUnmasked,frozen) are listed in Table 3. The DLMasked,frozen 
model showed the highest performance with a C-index of 0.636. Results 
of the corresponding hyperparameter optimization are listed in Ap-
pendix G. 

Training of the DLMasked,frozen model on all five folds and testing the 
ensemble on the hold-out test data resulted in a C-index of 0.637 and 
AUC values for 1- and 2-year survival of 0.687 and 0.683 respectively. 
The C-index increased slightly to 0.645 and the 2-year AUC increased to 
0.692 after subsequent training with unfrozen weights of the encoder 
(DLUnfrozen) (see Table 4). Results of the corresponding grid search for 
hyperparameter optimization can be found in Appendix H. 

A significantly higher C-index was achieved for the DLUnfrozen model 
compared to the CPHMMultivar,sign, which only includes the three scalar 
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Fig. 2. Overview of the investigated pre-training strategies for the development of an image-based survival prediction. Two autoencoders were trained, one with and 
one without focusing on paraspinal musculature. Pre-trained weights were afterwards transferred to the deep learning model that predicts patient survival. 
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markers FMF, SMRD and SMA. The performance of the DL approach was 
also higher compared to CPHMMultivar,all, which additionally included 
sex and age (see Table 4). Fig. 3 shows the Kaplan-Meier analysis of the 
log-hazard rate predicted by the DLUnfrozen model. Here, a significant 
difference was found between patients with a high log hazard rate 
(≥0.91) to patients with low hazard rates predicted by the DL model for 
1-year (p = 0.04) and 2-year survival (p < 0.01). When combining the
log-hazard rate predicted by DLUnfrozen in a CPHM together with age and
sex (CPHMDL+Sex+Age) the C-index increased to 0.668 and AUC values
for 1- and 2-year survival increased to 0.713 and 0.696 (see Table 5).

3.3. Comparison to EuroSCORE 

Performance values for the two models developed on the basis of 
EuroSCORE and EuroSCORE II are presented in Table 6. For both 
EuroSCORE models, C-index as well as AUC of 1- and 2-year survival 
was lower compared to the direct image-based DL approach. 

4. Discussion

In this study, we investigated the feasibility of DL for direct image- 
based survival prediction on pre-interventional CT of patients under-
going TAVR. The results were compared to CPHMs based on established 
scalar markers of body composition. The study shows that direct 
application of a thoroughly optimized image-based DL model has the 
potential to improve survival prediction compared to the application of 
scalar body composition markers. 

Until now there are only a few studies that have investigated DL- 
based survival prediction directly on imaging data. In a previous 
study, a similar CNN was developed to predict loco-regional tumour 
control from 2D and 3D CT data [15]. In that study, an improvement was 
observed for the DL model based solely on CT image data in comparison 
to the clinical model developed using CPHM. In another study, DL-based 
prediction of survival time based on CT and PET image data has been 
examined in combination with clinical parameters for predicting sur-
vival time and other time-to-event outcomes in patients with oral cavity 
cancer [16]. Based on the promising results presented in these papers, 
our main concern was to investigate whether important information for 
predicting survival time can be obtained from abdominal CT examina-
tion alone using DL approaches. Furthermore, we investigated how such 
a DL model can be trained most efficiently. This was performed using a 
TAVR cohort as an example. 

The machine learning-based analysis of user-selected scalar features 
or the autonomous selection of relevant image features by DL are two 
different approaches for the development of artificial intelligence (AI) 
models in radiology. However, several studies have reported that the use 
of DL over or in combination with the analysis of hand-crafted features 
can provide improved performance in various tasks [15–17,30]. As an 
example, combining CNN-based information extraction from chest CT 
scans with established quantitative features extracted from lesions of 
patients with lung adenocarcinoma has been shown to improve risk 
assessment [31]. However, the images examined in the present study do 
not show any pathology of primary interest, such as lesions. Instead, an 
abdominal slice from a pre-interventional CT is analysed, for which it 
was shown that scalar body composition markers derived from the 
paraspinal musculature carry prognostic information for various con-
ditions [4,8–10,20]. 

The fact that the DL model directly applied to an abdominal image 
improved the risk assessment in the studied cohort can be attributed to 
the ability of a CNN to identify relevant features and feature hierarchies. 
For a given task, a CNN optimizes its convolution kernels autonomously 
and is therefore not limited to the analysis of human-defined image 
features. This is also an advantage over traditional methods such as 
CPHMs, where fixed and user-defined predictor variables, such as SMA, 
must be defined for method development. An extensive analysis of all 
variables is therefore required to ensure that only relevant predictors are 
considered. Unlike CPHM, the DL approach is also able to model more 
complex non-linear relationships between the hazard rate and the pre-
dictor variables. On the downside, the unconstrained feature explora-
tion also makes the DL method more prone to overfitting to irrelevant 
features of the training data [30]. To address this issue, we investigated 
an autoencoder-based pre-training of the CNN encoder. Interestingly, 
we found that it is useful to incorporate prior knowledge from body 
composition analyses when training the autoencoder model. The use of a 
masked loss that forces focusing on the paraspinal muscles in the pre- 
training step led to a higher performance of the final DL model for the 
prediction of patient risk. 

Table 2 
Results for univariable and multivariable analysis for a Cox proportional hazards 
model (CPHM) trained on the first of five training sets from cross-validation. The 
following predictors were considered: fatty muscle fraction (FMF), mean skeletal 
muscle radiodensity (SMRD), skeletal muscle area (SMA), sex, and age. Hazard 
ratios (HR) are given with 95% confidence intervals and p-values indicating 
significance of the predictors (*: p-value < 0.05). Two multivariable CPHMs 
were investigated, one with only predictors that were significant in univariable 
analysis (CPHMMultivar,sign) and another including all variables (CPHMMultivar,all).   

Univariable 
analysis 

Multivariable analysis 

CPHMMultivar,sign CPHMMultivar,all 

Variables HR p- 
value 

HR p- 
value 

HR p- 
value 

FMF (%) 1.01 
[1.004, 
1.016]  

<0.01* 1.00 
[0.971, 
1.029]  

0.98 1.00 
[0.968, 
1.026]  

0.82 

Mean 
SMRD 
(HU) 

0.98 
[0.971, 
0.992]  

<0.01* 0.98 
[0.931, 
1.033]  

0.46 0.97 
[0.916, 
1.019]  

0.21 

SMA (cm2) 0.99 
[0.976, 
0.999]  

0.03* 0.99 
[0.975, 
0.998]  

0.02* 0.98 
[0.963, 
0.989]  

<0.01* 

Sex 1.16 
[0.909, 
1.474]  

0.23 –  – 1.79 
[1.341, 
2.380]  

<0.01* 

Age (years) 1.02 
[0.998, 
1.042]  

0.08 –  – 1.00 
[0.979, 
1.027]  

0.84  

Table 3 
Comparison of the DL models trained from scratch (DLScratch), pre-trained on the 
masked autoencoder (DLMasked,frozen) and pre-trained on the standard autoen-
coder (DLUnmasked,frozen). The results presented correspond to the best perfor-
mance values for each model after an individual performed parameter tuning. 
The epoch column indicates the number of the epoch in which the lowest vali-
dation loss was observed. The model with the highest performance is marked in 
bold.  

Model Loss Epoch C-index 

DLScratch 4.09 31  0.609 
DLMasked,frozen 4.05 43  0.636 
DLUnmasked,frozen 4.09 29  0.632  

Table 4 
Performance values of all examined methods on the hold-out test set (n = 152) 
together with 95%-confidence intervals in brackets. The model with the highest 
performance is marked in bold.  

Performance on hold-out test 

Model C-index AUC 1Y AUC 2Y 

DLMasked,frozen 0.637 
[0.570, 0.701] 

0.687 
[0.567, 0.792] 

0.683 
[0.583, 0.773] 

DLUnfrozen 0.645 
[0.580, 0.706] 

0.687 
[0.564, 0.792] 

0.692 
[0.594, 0.777] 

CPHMMultivar,sign 0.508 
[0.439, 0.578] 

0.496 
[0.389, 0.614] 

0.457 
[0.349, 0.567] 

CPHMMultivar,all 0.608 
[0.543, 0.676] 

0.606 
[0.493, 0.720] 

0.594 
[0.488, 0.700]  
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Two multivariable CPHMs were developed and evaluated to 
compare the direct DL-based evaluation of images with the established 
analysis of human-defined scalar markers for outcome assessment of 
TAVR patients. Very limited predictive power was found for the first 
multivariable CPHM including FMF, SMRD, and SMA on the hold-out 
test data. By adding sex and age into the multivariable CPHM the per-
formance increased, although no significant hazard ratios were observed 
for these two predictors in univariable analysis. The outcome indicates 
the potential value of including further clinical parameters along with 
scalar markers derived from image segmentation for survival prediction. 
Other studies also included functional and clinical parameters in com-
bination with established body composition markers in a CPHM for 
survival prediction in TAVR patients [4]. Apart from age and sex, no 
other clinical information was included in these CPHM models, as the 
main aim of this proof-of-concept study was to examine potential ben-
efits of DL for direct image-based survival prediction. Nevertheless, we 
also evaluated two additional CPHMs based on sex, age, and the surgical 

risk scores EuroSCORE and EuroSCORE II respectively. Although these 
scores are not primarily developed to estimate the life expectancy of a 
TAVR patient but aim to assess the surgical risk, both models showed 
also predictive value for patient survival. However, the performance was 
lower than the direct image-based DL approach regarding all evaluated 
metrics. Future studies are warranted to investigate the benefit of 
considering more comprehensive clinical information and combining 
this data with multimodal DL architectures to further improve patient 
outcome assessment. 

In this context, the utilization of robust survival prediction models 
for patients undergoing TAVR offers an additional dimension to aid 
cardiologists in making informed therapy decisions. While e.g., the 1- 
year survival prediction has the potential to serve as a valuable 
adjunct, it is imperative to underscore that therapy decisions must be 
made through a comprehensive assessment of various clinical factors. 
The integration of survival prediction models into clinical practice 
represents an evolving area, and its true impact on decision-making 
should be the subject of further scientific investigation. 

A limitation of our work is that the investigated methods were only 
applied to 2D data and thus the extraction of relevant image information 
is limited to this specific slice. However, body composition analysis is 
usually performed on 2D slices at a certain lumbar level, as a high cor-
relation to 3D measurements has been demonstrated [32–34]. The slice 
extraction can also be performed automatically so that no manual input 
is required, and the application of the developed DL method could be 
completely automated end-to-end [11]. Nevertheless, it may be worth-
while to investigate a 3D application of the method and to develop a 
direct image-based DL model for survival prediction on 3D CT data. 
Again, it may be investigated whether a focus on the paraspinal 
musculature is beneficial and automated methods such as the Total-
Segmentator could be used for the 3D segmentation [35]. It should be 
noted, however, that a 3D approach will be much more susceptible to 
overfitting. A further limitation of the DL-based survival prediction is 
that the interpretation of the rationale behind the decision of the CNN is 
not straightforward for humans. However, the aspect of interpretability 
is crucial for gaining confidence in DL prediction and also to identify 
potential new image-based biomarkers that could be specifically tar-
geted. So far, methods of explainable AI are still very limited when it 
comes to bringing more transparency to individual decisions, e.g., by 
providing only rough and unspecific saliency maps [36]. Another limi-
tation of the study is the use of single institution data. Multi-center 
studies with heterogeneous datasets are warranted to demonstrate 

Fig. 3. Kaplan-Meier curves for 1- and 2-year survival. The figure illustrates Kaplan-Meier curves for patients in the hold-out test group (n = 152) stratified by low 
(orange) and high (blue) predicted log-hazard rate from the DLUnfrozen model, whose weights were unfrozen after previous training with frozen pre-trained 
autoencoder weights focusing on the paraspinal muscles. The cut-off value for stratification into low and high log-hazard rates was determined as the median of 
the predicted log-hazard rates from all five validation sets. Censored cases were indicated by a plus sign (+). The log-rank test shows that the probability of survival 
for patients with high predicted log-hazard rates is significantly lower than for patients with low predicted risk for both one-year (p = 0.04) and two-year survival (p 
< 0.01). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 
Performance values on the hold-out test set (n = 152) for the CPHM model 
trained on sex, age, and the predicted log-hazard score from the DLUnfrozen model 
together with 95%-confidence intervals in brackets.  

Combination of CPHM and DLUnfrozen  

C-index AUC 1Y AUC 2Y 

CPHMDL+Sex+Age 0.668 
[0.600, 0.726] 

0.713 
[0.600, 0.815] 

0.696 
[0.611, 0.780]  

Table 6 
Performance values together with 95% confidence intervals for both CPHM 
models trained on sex, age and EuroSCORE or EuroSCORE II, which were 
evaluated on the hold-out test cases.  

Performance on hold-out test 

Model n C-index AUC 1Y AUC 2Y 

CPHMEuroSCORE+Sex+Age 152 0.615 
[0.546, 
0.681] 

0.647 
[0.529, 
0.765] 

0.601 
[0.493, 
0.701] 

CPHMEuroSCOREII+Sex+Age 139 0.609 
[0.542, 
0.676] 

0.647 
[0.514, 
0.767] 

0.599 
[0.485, 
0.702]  
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general applicability, which is also considered a preferred approach to 
validate predictive DL models over the use of explanatory AI methods by 
some researchers [36]. 

5. Conclusions

This study demonstrates the potential of direct image-based outcome
assessment by DL on pre-interventional abdominal CT in patients un-
dergoing TAVR, offering improved image feature extraction compared 
to the assessment of human-defined scalar body composition metrics. 
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4. Discussion with references

4.1 Discussion and conclusion 

This thesis shows three examples of automated quantitative image analysis using DL 

algorithms. The first addresses a targeted quantitative analysis, in which the uterine 

volume is assessed from T2-weighted MRI. To automatically measure uterine volume, a 

CNN based on the nnU-Net framework from Isensee et al. (2021) is developed to segment 

uterine tissue before and after HIFU therapy. This approach enables fast and reliable 

detection of volumetric changes in patients with uterine fibroids after HIFU intervention, 

allowing for an objective assessment of the therapy response. In clinical routine, a 

determination of the uterine volume has so far been either estimated based on diameter 

measurements or determined exactly by laborious manual segmentations. This study is 

thus an example of how a DL approach can enable efficient quantitative analysis in routine 

clinical practice.  

The second work presents an end-to-end approach for an automated BCA. The 

demonstrated pipeline consists of two main steps: The slice extraction at the L3/L4 lumbar 

level and the segmentation of skeletal muscle, visceral adipose tissue, and subcutaneous 

adipose tissue, from which the body composition markers are derived. Due to the 

integrated quality control, this automatic approach enables the extraction of body 

composition metrics directly from CT scans in clinical routine. The use of these 

opportunistically collected quantitative markers is diverse, and the association of body 

composition parameters with various diseases and therapies is still under investigation. 

To date, a significant correlation between body composition and survival time has been 

demonstrated in patients with cardiogenic shock, advanced pancreatic cancer, and in 

patients with severe aortic stenosis undergoing TAVR (Luetkens et al., 2020; Nowak et 

al., 2024; Salam et al., 2023).  

The fact that relevant information for the survival of TAVR patients can be obtained from 

an abdominal CT slice was also addressed in the last publication of this thesis. Here, a 

DL model directly predicts the patient’s survival from pre-interventional abdominal CT. The 

model outperforms the baseline method, which uses different predefined body 

composition markers extracted from the abdominal CT slice. Thus, the study could 

demonstrate that further predictive features can be obtained from radiological image data. 
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The two presented papers on automated targeted and opportunistic quantitative analysis 

are mainly concerned with semantic segmentation tasks, where each voxel in the image 

is assigned to a certain label. In contrast, the last paper presents a direct predictive model 

that outputs a single numerical value representing a patient’s mortality risk based on a 

high-dimensional radiological image. Such a challenge is therefore much more 

susceptible to overfitting problems. In addition to standard approaches, such as data 

augmentation and regularization of the loss function, the third paper therefore investigates 

the use of autoencoder pre-training as an additional technique to counteract overfitting. In 

fact, the transfer of pre-trained autoencoder weights, trained to learn appropriate data 

compression, improves the generalizability of the survival prediction. 

As with the automated BCA described in this thesis, the direct image-based survival 

prediction is also based on 2D abdominal slice images. Unlike the DL model, which 

determines uterine volume from 3D MRI, the extracted quantitative image information for 

outcome analysis is restricted. However, especially in the case of BCA, several studies 

showed the prognostic value of these features extracted from a certain abdominal slice 

(Faron et al., 2021; Luetkens et al., 2020; Nowak et al., 2024; Prado et al., 2008, Salam 

et al., 2023). A recent study has also shown that important information for the prediction 

of survival time in TAVR patients can be obtained from the analysis of cardiac adipose 

tissue on single CT slices (Salam et al., 2024). This study measured the area and density 

of pericardial and epicardial adipose tissue (EAT) at the level of the aortic valve and found 

a significant association between EAT density and 2-year mortality. Only single-slice EAT 

measurements were performed, as a high correlation with the whole cardiac fat 

compartment has been previously demonstrated (Oyama et al., 2011; Vach et al., 2023). 

Regarding the presented DL approach for survival prediction in TAVR patients, where 

feature extraction is restricted to a single abdominal slice, an additional consideration of 

cardiac CT slices may be beneficial for this task. In general, the study by Salam et al. 

(2024) motivates a further extension of the automated opportunistic BCA described in this 

work to the additional assessment of cardiac adipose tissue. This opportunistic 

assessment would allow further investigation of the impact of the cardiac biomarker in 

future studies. Instead of restricting the BCA to certain CT slices, it is also possible to 

determine body composition markers in the entire 3D dataset. By now, there are also DL 
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pipelines that enable automated BCA based on 3D CT data (Haubold et al., 2024; Koitka 

et al., 2021). However, the impact of 2D vs 3D markers on clinical endpoints is still an 

open question. In a very specific cohort of cancer patients treated with anti-angiogenic 

therapy, 3D body composition features provided significant prognostic value for mortality 

prediction, while 2D features extracted at the L3 lumbar level did not (Decazes et al., 

2023). On the other hand, certain tissues, such as EAT, are not robustly measurable over 

the entire volume, as a very high inter-reader variability has been reported (Commandeur 

et al., 2019; Greif et al. 2009). A 2D evaluation of EAT at the level of the aortic valve is 

much more reliable, as this specific slice allows for better delineation from the pericardium 

(Salam et al., 2024). However, a generalized comparison in different cohorts for the 

prognostic value of 2D and 3D quantitative image features remains a future task. 

Additionally, it must be considered that using 3D data for direct DL-based outcome 

prediction would further amplify the problem of overfitting. 

In order to develop precise and valid prediction models, another important point must be 

taken into account, namely the integration of additional non-image-based parameters into 

the DL model. The third study in this thesis shows that direct DL-based survival prediction 

leads to an improvement compared to the sole use of image-based numerical markers. 

However, the study also reveals that image features alone are not sufficient to get an 

accurate prediction of survival. Considering age and sex as additional, non-image-based 

parameters already improves the performance, but the inclusion of further important 

clinical parameters and laboratory values has not yet been investigated in more detail. 

This would require multimodal DL models that combine the information extracted from the 

CT images with the individual parameters. In general, the handling and application of 

multimodal input data is one major challenge in ML (Castiglioni et al., 2021). When 

combining image data with clinical input parameters, different dimensionalities of both 

modalities must be taken into account and the information extracted from the low-

dimensional clinical parameters has to be sufficiently considered. In the presented DL 

approach for survival prediction, age and sex are used as additional input for a CPHM, as 

suggested by Afshar et al. (2020). For the combination with image features, the image-

based log-hazard risk predicted by the direct DL approach is used as an additional low-

dimensional predictor variable. The high-dimensional input image is therefore first mapped 
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by the DL model to a numerical value representing the patient's risk. In future studies, so-

called “Plugin Networks” may be investigated to directly integrate the numerical 

parameters into the DL model (Koperski et al., 2020). In this approach, the base CNN is 

first trained only on the image data. Then the additional knowledge, e.g. certain laboratory 

values, forms the input to a set of fully connected neural networks (plugin layers) attached 

to the backbone of the pre-trained base CNN. In a second training run, only the weights 

of these plugin layers are adapted. This effectively combines different modalities without 

a large increase in computational effort.  

A general difficulty when using DL techniques is the lack of interpretability (Castiglioni et 

al., 2021, Hosny et al., 2018). In the case of the presented direct image-based survival 

prediction model, the extracted image features improve the mortality prediction, but it is 

not straightforward to determine exactly which part of the image is of particular 

importance. Interpretability can be significantly easier when using classic ML algorithms, 

such as decision trees (Castiglioni et al., 2021). However, efforts are also being made to 

increase the explainability of DL algorithms. A well-known method is the use of saliency 

maps aiming to localize the relevant image regions (Selvaraju et al., 2017). However, this 

method has some weaknesses, e.g. a rough localization is not sufficient to fully 

understand the network's decision-making process (Ghassemi et al., 2021). Rombach et 

al. (2020) also argued that interpreting DL models requires considering the model’s 

learned invariances. Therefore, they have presented an approach to recover both the 

model’s semantic concept and its learned invariances. Especially for multimodal models, 

interpretability is crucial to understand which parameters contributed to the algorithm's 

decision and to draw conclusions for clinical application. 

In summary, this work has shown how DL models can be used for fast and robust 

automated quantitative image analysis. This applies to targeted quantitative analyses 

such as uterine volume measurement and opportunistic assessments such as end-to-end 

automated BCA. In addition, a method improving the survival prediction of TAVR patients 

through the development of a direct image-based DL model was presented. However, 

there are still open issues that need to be further investigated, e.g. the development of 

reliable multimodal DL models and the interpretability and explainability of the methods. 
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