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Abstract

When atoms in solids have unfilled 𝑑- or 𝑓 -orbitals, local Coulomb interaction often becomes
non-negligible due to the strongly localized nature of those orbitals. A hallmark effect of such systems
is the formation of a set of localized states at the Fermi energy due to the local nature of the Kondo
effect. If the so-formed Kondo singlets become lattice coherent, a heavy Fermi liquid is formed. A
long-standing open question is the fate of individual crystal (electric) field (CEF) states involved in this
process. Lattice coherence of different CEF states could, in principle, occur at different temperatures
and extents.

This is the case in YbRh2Si2, for which scanning tunneling microscopy (STM) revealed a puzzling
picture. The Kondo effect leads to a dip in the STM spectrum. Below temperatures where the dip was
already clearly pronounced, a peak close to the minimum of the dip arose, which was attributed to the
formation of lattice coherence. Simultaneously, additional peaks at the CEF energies arose, hinting
towards lattice coherence in all states.

In this thesis, I present a comprehensive overview of lattice coherence in heavy fermion systems,
from the basics of quantum particles in periodic potentials to methods for interacting systems and how
to modify them to include CEF states and methods for solving such systems with quantum field theory
and numerically. I construct a minimalistic model for YbRh2Si2, including all four CEF states of the
Yb3+ 4 𝑓 13 configuration. With this, I present results confirming the observed behavior qualitatively.
The Kondo dip and the coherence peak are reproduced faithfully. The first excited CEF level shows
clear signs of lattice coherence, and higher excited CEF states show weaker signs of coherence.

The non-Fermi liquid behavior in two-channel Kondo heavy-fermion systems is explored as a second
topic. Intriguingly, such behavior was experimentally observed in PrV2Al20, whereas PrTi2Al20
showed regular heavy Fermi liquid behavior. It was proposed that the former sits closer to a putative
quantum-critical point. While this could explain the observed behavior, another possible explanation
can be formulated. The two-channel Kondo effect gives rise to a local non-Fermi liquid behavior. If
this picture translates to the lattice case, it could fully explain the experimentally observed scaling.

This option is explored as the second main subject of this thesis. I present a model incorporating
the relevant CEF states of the Pr3+ 4 𝑓 2 configuration and using ab initio band structure data. While
including only the CEF ground state already leads to non-Fermi liquid behavior in the lattice model, the
stark deviation from the experimentally observed magnetic susceptibility necessitates the inclusion of
the first excited CEF state as well. This is shown to improve the scale of the onset of non-Fermi liquid
behavior and reproduce the qualitatively correct scaling of the magnetic susceptibility, confirming the
alternative explanation for the experimentally observed behavior.
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CHAPTER 1

Preface

Condensed matter physics has played an integral role in understanding the physics of naturally
observable phenomena. From its early inception as a connection between the chemistry of solids
and physical phenomena like optical reflectivity (color) and electric conductivity to modern-day
superconductivity, topological insulators, semi-metals, and Majorana fermions, only naming a few, it
has always been at the forefront of innovation on a fundamental level.

Historically, the quantum theory of solids seemed to have reached an insurmountable barrier: The
non-negligible Coulomb interaction and the seemingly non-applicability of the theory of free Fermi
gases to electrons in solids. In contrast, experimental data seemingly confirmed the applicability of
the aforementioned theory. This conundrum was solved by Landau’s Fermi liquid theory [1], in which
he was able to attribute (free) particle-like behavior to excitations close to the Fermi energy in an
interacting system, just with a renormalized mass 𝑚

∗, which could be many times larger than the
electron mass 𝑚𝑒.

Prototypical interacting systems are those with partially filled 𝑑- or 𝑓 -orbitals. Typically, such
electrons are tightly bound to the ion. Due to the strong localization of such orbitals, the Coulomb
repulsion between occupying electrons is strong and often non-negligible. This leads to a strong
exchange coupling in which the spins of localized electrons are effectively coupled to itinerant electrons
via a simple spin exchange. In the simplest case, often realized in Cerium materials, a single electron
in the 𝑓 -shell is the system’s ground state. If the interaction is strong enough to effectively remove the
double occupancy from the dynamics and the temperature is low enough, the 𝑓 -electron will act like
a localized spin. The exchange interaction gives rise to a coherent spin-scattering of localized- and
itinerant electrons, resulting in the formation of spin-singlets in the antiferromagnetic case. This effect
was first described by Kondo in 1964 [2], in which only a single localized spin was considered. If a
material contains a large concentration of such localized spins, a Kondo lattice in the extreme case,
the local singlets can be considered the ground state to which the hopping of the itinerant electrons
acts as a perturbation. Since the large Coulomb interaction gives rise to the singlet formation, the
perturbation of de-localization can be considered small. This leads to a Fermi liquid of quasiparticles,
which are mostly localized and only perturbatively de-localized. Their dispersion is flat compared to
the itinerant electrons. Consequently, their effective mass is very large, resulting in a heavy Fermi liquid.

A prominent example of a localizing effect is the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [3–5], which is a long-range interaction stemming from a second-order process in the
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Chapter 1 Preface

local exchange coupling including an intermediate itinerant electron. This interaction can lead to
magnetic order, effectively localizing the spins. Hence, it directly competes with the Kondo effect,
which was shown to give rise to Fermi liquid behavior. The resulting phase diagram was pioneered by
Doniach [6] in 1977. A strong local spin interaction favors the heavy Fermi liquid phase, whereas a
weak coupling favors long-range order.

It is this competition between two effects stemming from the same interaction that makes this
problem so intriguing. The dynamical generation of lattice coherence in a temperature-dependent
way is another interesting, open question. Originating in the (local) Kondo effect, it is not clear if
lattice coherence of the heavy band is generated on the same scale, the Kondo temperature, or if it can
be controlled by other parameters [7–11]. It seems that one can influence the two scales by external
parameters such that they separate. A simple method is just controlling the chemical potential and, by
that, the band filling [11].

Theoretical investigations in the matter were so far limited to the standard formulations of the Kondo
lattice model or the periodic Anderson model. The ground state of such systems in the strong-coupling
parameter regime is already known to be a heavy Fermi liquid. If one is interested in comparing
involved temperature scales and crossover regimes, a model that is still valid on those scales has to be
used. While the difference between the Kondo- and Anderson models will likely not influence the
intermediate temperature results much, another scale enters the picture, which, in some cases, can be
crucial in describing the physics of intermediate temperatures: crystal field splitting.

Ions in lattices are not in a fully rotationally invariant environment. The discrete lattice structure
imposes a discrete rotational symmetry on each localized ion. As such, the atomic orbitals of
each ion, after being treated by 𝐿𝑆-coupling and split by the spin-orbit interaction, are further
split into eigenstates of the discrete rotational symmetry. This splitting is typically of the order
Δ/𝑘𝐵 ≈ O(10 − 100 K). Hence, the discussion of materials at temperatures compatible with the
crystal (electric) field (CEF) splitting should not be limited to the CEF ground state.

In this thesis, the matter of lattice coherence of different CEF states is discussed in the context
of YbRh2Si2, where experimental data [12] suggest individual lattice-coherent heavy bands stemming
from the Yb3+ CEF states. A theoretical description in terms of a minimalistic model and a numerical
treatment via dynamical mean-field theory and the non-crossing approximation reveal fascinating
(theoretical) scale separations between the coherence of different CEF states.

Another aspect of the competition between localization and de-localization in Kondo materials
is the emergence of a quantum critical point separating the RKKY-induced magnetically ordered
phase and the Kondo-effect-induced heavy Fermi liquid phase at zero temperature. Phase transitions
are usually associated with diverging thermal fluctuations near the phase boundary. Here, the abrupt
change of ground state depending on the strength of the local spin interaction leads to a phase transition
driven by quantum fluctuations, which persist down to absolute zero temperature. The phase boundary
of such a quantum phase transition narrows down to a single point, the quantum critical point (QCP).
At finite temperatures, the behavior of a material near this QCP will be of a non-Fermi liquid type,
where thermodynamic properties are governed by unconventional power-law behavior.

Typically, stoichiometric materials under normal conditions do not sit close to such a QCP, and
reaching the NFL region can only be achieved by tuning external parameters like doping, pressure,
or magnetic field. The emergence of non-Fermi liquid behavior in the 1-2-20 material PrV2Al20, in
contrast to the Fermi liquid behavior of PrTi2Al20, has led to the conclusion that the former sits close
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to a QCP [13]. There is a subtlety to both materials in that they host an unconventional quadrupolar
two-channel Kondo effect. There, two independent conduction-electron baths compete to screen the
same impurity degree of freedom. In this case, the electronic spin acts as a conserved scattering
channel to screen a twofold quadrupole moment. Hence, the Doniach phase diagram [6] of the
aforementioned competition between Kondo and RKKY has to be modified to incorporate quadrupolar
ordering.

Several experimental results support the hypothesis of proximity to a QCP. Both materials show
quadrupolar order at low temperatures, where the ordering temperature is lower, and the effective mass
of the heavy band is larger in PrV2Al20 compared to PrTi2Al20. This indicates a weaker hybridization
in PrV2Al20. Consequently, extrapolating the ordering temperature and assuming a QCP at the
vanishing point of the phase, indeed PrV2Al20 would sit closer to this QCP than PrTi2Al20.

Alternatively, the observed non-Fermi liquid behavior could be attributed to the two-channel
Kondo effect alone. In dilute two-channel Kondo systems, a local non-Fermi liquid arises due to the
degeneracy of the ground state—the singlet can be formed in either channel. Although the lattice
extension of this has not been exactly solved so far, it can be expected that the NFL behavior carries
over to the lattice case in the same way as the Fermi-liquid behavior carries over in “conventional”
Kondo systems. If so, the NFL behavior in PrV2Al20 could be explained with the two-channel Kondo
effect alone. Compatibility of the scaling of different thermodynamic quantities with the known results
for dilute two-channel Kondo systems strengthens this alternative hypothesis.

As a second main part of this thesis, the non-Fermi liquid behavior arising from the two-channel
Kondo effect alone is explored in terms of a dynamical mean-field theory calculation with underlying
ab initio band structure provided by Fei Gao and Andriy H. Nevidomskyy. In addition to the persisting
non-Fermi liquid behavior in the lattice, the addition of the first excited crystal field state for the
faithful description of the magnetic susceptibility is also discussed.

The structure of the thesis is as follows. In Chapter 2, the basics of quantum particles in peri-
odic lattices are presented, along with a discussion of the resonant-level model and a two-band
hybridization model. Motivated by the strongly interacting nature of localized electrons in atomic
𝑑- and 𝑓 orbitals, Chapter 3 introduces models that incorporate such interactions, including the
Hubbard model, 𝑠-𝑑 model, single-impurity Anderson model, and periodic Anderson impurity model.
Chapter 4 addresses how such models can be constructed respecting the reduced rotational symmetry
of realistic materials. This is done in terms of group theory, and the resulting states are represented by
Hubbard operators. Chapter 5 details treating strongly interacting models via auxiliary particles, the
non-crossing approximation, and dynamical mean-field theory. Utilizing these concepts, Chapter 6
discusses lattice coherence in YbRh2Si2. Lastly, a reduced DFT+DMFT treatment of the two-channel
Kondo effect in PrV2Al20, with an emphasis on the emerging non-Fermi liquid behavior, is presented
in Chapter 7.

I often set ℏ = 𝑘B = 1 throughout the thesis unless stated otherwise. It will be clear from the
context when this is not the case.
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CHAPTER 2

Atomic Lattices and Lattice Coherence

Solving the many-body Schrödinger equation exactly for atoms more complex than isolated hydrogen
is an insurmountable task. Bringing multiple such atoms close enough that the Coulomb interaction is
non-negligible is an even more challenging, impossible-to-solve theory puzzle.

Conveniently, real-life matter often, yet not always, tends to arrange itself in either a diffuse
statistical arrangement (typical gases under normal conditions) or a stiff (semi-)periodic arrangement
(crystalline matter). When arranging atoms in a rigid and repetitive pattern forming a lattice, an
immediate simplification comes to mind: discrete translational symmetry and, by Fourier-transform,
the well-defined lattice momentum. Finite-sized lattices lead to discretized lattice-momentum, which
becomes continuous in infinitely large lattices1. Each atom in such a lattice can be viewed as a
two-component object: the nucleus and the electrons. The large energy scales involved in the intrinsic
physics of nuclei place the internal degrees of freedom firmly outside the scope of most real-world
applications. Additionally, nuclei are orders of magnitude heavier than electrons, leaving them
spatially mostly unaffected under interaction with the light electrons. A reasonable approximation is,
therefore, leaving the heavy nuclei fixed (and mostly out of the picture of dynamics) to concentrate on
the much lighter electrons with their less localized wave functions. They tend to become de-localized
in the lattice, giving rise to a series of electronic states that are now a feature of the lattice and not the
localized atoms only.

Those states form bands with typical bandwidths of order eV. Due to Pauli’s exclusion principle, low-
lying bands are completely filled with electrons, which is illustrated in Fig. 2.1. At zero temperature,
this is true up to the Fermi-energy 𝐸F. For an excitation of energy 𝐸 to happen, there must be a pair
of an occupied and an unoccupied state with energy difference 𝐸 available in the material (orange
arrows in Fig. 2.1). Since all low-lying bands are filled, the chance of finding such a pair significantly
increases around the Fermi energy.

At finite temperature 𝑇 , this is softened up in a region of width 𝑘B𝑇 around 𝐸F. Close to room
temperature O(𝑘B𝑇) = 10 meV, which is typically much smaller than the bandwidth.

The following sections will explore the rich landscape that opens up from these concepts, starting
with a general theoretical description of delocalized states in lattices, followed by the Hubbard model

1 For an example, see Appendix A. This is different from, and should not be confused with, the discretization of the
reciprocal lattice.
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Chapter 2 Atomic Lattices and Lattice Coherence

Figure 2.1: Illustration of the filling of bands. The shaded area represents the Fermi distribution function, gray
areas are fully filled, white areas are unfilled. Full horizontal lines represent bands, the dashed horizontal line
indicates the Fermi energy. Blue circles illustrate states in bands, filled blue circles signal an occupied state.
The vertical distance between bands represents excitation energies. Orange arrows highlight a selection of
possible transitions.

for s-orbitals and the extension to other orbitals via Hubbard operators. This is followed by a discussion
of the group-theoretical aspects of angular momenta, which is then used in the following sections
about the coupling of angular momenta and the reduced rotational symmetry imposed by the presence
of crystal fields. The mostly empirical rules for determining the ground-state electron configuration in
atoms considering 𝐿𝑆-coupling are used in both sections to determine relevant states that can later be
used to set up minimalistic yet faithful models.

The chemical potential is often omitted in the following.
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2.1 Particles in Periodic Potentials

2.1 Particles in Periodic Potentials

Whenever a particle is subject to a periodic potential of the form 𝑉 (®𝑥 + 𝑛 · ®𝑎) = 𝑉 (®𝑥), where 𝑛 ∈ Z,
Bloch’s theorem applies [14, 15]2. It states that the wavefunction of a particle in a periodic potential
is given by

𝜓
𝑛®𝑘 (®𝑟) = 𝑢

𝑛®𝑘 (®𝑟) · exp(𝑖®𝑘 · ®𝑟), (2.1)

where 𝑛 is a band index, 𝑢
𝑛®𝑘 (®𝑟) has the same spatial periodicity as the potential, and the exponential

is a plane wave. This form originates from the definition of the discrete translation operator in terms
of its generators, where ®𝑘 is a momentum associated with the discrete translations by lattice vectors.

Typically, real-life solids are three-dimensional arrangements of atoms3. Their crystalline structure
allows for the definition of lattice vectors ®𝑎𝑖, 𝑖 ∈ {1, 2, 3}, such that an offset of the lattice potential
𝑉 (®𝑟) by any integer combination of those vectors remains invariant:

𝑉 (®𝑟 + 𝑢1 ®𝑎1 + 𝑢2 ®𝑎2 + 𝑢3 ®𝑎3) = 𝑉 (®𝑟) | 𝑢𝑖 ∈ Z : 𝑖 ∈ {1, 2, 3}. (2.2)

If any two equivalent4 points can be mapped onto each other by this translation, the vectors ®𝑎𝑖 are
called primitive lattice vectors. The smallest building block of a lattice, the primitive unit cell, is
defined via those vectors. The whole lattice can be filled without gaps by starting at any lattice point
and filling space with such cells only shifted by a lattice vector ®𝑅 =

∑
𝑖 𝑢𝑖 ®𝑎𝑖. Larger unit cells are

sometimes used if that choice more easily visualizes a specific symmetry. Due to their convenience,
those cells are usually called conventional unit cells.

The periodic nature of the potential naturally calls for Fourier analysis. A periodic function in
real-space 𝑓 (®𝑟) = 𝑓 (®𝑟 + ®𝑅), with ®𝑅 defined above, has the following Fourier representation:

𝑓 (®𝑟) =
∑︁
®𝐺

𝑓 ®𝐺 𝑒
𝑖 ®𝐺 · ®𝑟

=
∑︁
®𝐺

𝑓 ®𝐺 𝑒
𝑖 ®𝐺 · ( ®𝑟+ ®𝑅)

= 𝑓 (®𝑟 + ®𝑅), (2.3)

⇒ 𝑒
𝑖 ®𝐺 · ®𝑅

= 1 ⇒ ®𝐺 · ®𝑅 = 2𝜋𝑛, (2.4)

where 𝑛 ∈ Z. The vector ®𝐺 is called reciprocal lattice vector. Using the definition of ®𝑅 via ®𝑎𝑖 , one can
define ®𝐺 in terms of reciprocal vectors ®𝑏𝑖 that satisfy ®𝑏𝑖 · ®𝑎𝑖 = 2𝜋𝛿𝑖 𝑗 as ®𝐺 =

∑
𝑖 𝑣𝑖

®𝑏𝑖, where 𝑣𝑖 ∈ Z.
The Fourier modes are therefore countable, hence the sum instead of an integral in Eq. (2.3). The
primitive unit cell5 of the reciprocal lattice is called the first Brillouin zone. Due to its periodic nature,
it is sufficient to address the physics within this zone.

Returning to the problem at hand, the Schrödinger equation of a particle in a periodic potential
itself is not necessarily periodic in the same way. The kinetic energy term is continuous in Fourier
space, whereas the potential term was shown to be discrete. Hence, one would not expect the solution
to have the periodicity of the lattice. Let’s construct a minimal example closely following [15] to

2 I will closely follow Kittel’s book [15] in the following since it is modern standard literature and the notation convenient.
I will however, inspired by [16], replace the lattice-vector ®𝑇 by ®𝑅 and the Wannier functions 𝑤

𝑛®𝑘 by 𝜙
𝑛®𝑘 for convenience.

3 Not going into detail about the different possible crystal structures, which are especially well addressed and explained in
the standard literature by Ashcroft and Mermin [17], the generalized picture suffices for this section.

4 Equivalent means that the infinite lattice looks identical from both points.
5 It is actually the primitive Wigner-Seitz-Cell, but that does not matter here.
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Chapter 2 Atomic Lattices and Lattice Coherence

understand the steps that need to be taken. A minimal, stationary, 1D Schrödinger equation is(
− 1

2𝑚
d2

d𝑥2 +𝑉 (𝑥) − 𝐸

)
𝜓(𝑥) = 0 , (2.5)

where we assume 𝑉 (𝑥) = 𝑉 (𝑥 + 𝑅) as discussed before. We can now express 𝜓(𝑥) and the potential
in terms of their Fourier components, where its Fourier representation is discrete due to the exact
periodicity of the potential.

𝜓(𝑥) =
∫

d𝑘 𝑒
𝑖𝑘𝑥

𝐶 (𝑘) , 𝑉 (𝑥) =
∑︁
𝐺

𝑉𝐺𝑒
𝑖𝐺𝑥 (2.6)

⇒ 0 =

(
− 1

2𝑚
d2

d𝑥2 +
∑︁
𝐺

𝑉𝐺𝑒
𝑖𝐺𝑥 − 𝐸

) ∫
d𝑘 𝑒

𝑖𝑘𝑥
𝐶 (𝑘) (2.7)

=

∫
d𝑘

(
1

2𝑚
𝑘

2 +
∑︁
𝐺

𝑉𝐺𝑒
𝑖𝐺𝑥 − 𝐸

)
𝑒
𝑖𝑘𝑥

𝐶 (𝑘) (2.8)

=

∫
d𝑘

(
1

2𝑚
𝑘

2
𝑒
𝑖𝑘𝑥

𝐶 (𝑘) +
∑︁
𝐺

𝑉𝐺𝑒
𝑖 (𝐺+𝑘 )𝑥

𝐶 (𝑘) − 𝐸𝑒
𝑖𝑘𝑥

𝐶 (𝑘)
)

(2.9)

By analyzing the different coefficients of the plane waves, one can see that(
𝑘

2

2𝑚
− 𝐸

)
𝐶 (𝑘) +

∑︁
𝐺

𝑉𝐺𝐶 (𝑘 − 𝐺) = 0 . (2.10)

So, for any fixed 𝑘 , one only needs to solve for a discrete (yet infinite) set of coefficients 𝐶 (𝑘 − 𝐺).

From Eq. (2.10), it can also be seen that—in principle—multiple 𝑘-dependent solutions are
possible. The associated energy eigenvalues are labeled by 𝑛. If the energy eigenvalues are smoothly
parametrized by 𝑘 , they are called a band. Of course, multiple bands are generally possible, and
crossings can occur.

We can now also re-write the Fourier transform (2.6) of the wave function in terms of the first
Brillouin zone and a sum over reciprocal lattice vectors 𝐺6

𝜓𝑛 (𝑥) =
∫

d𝑘 𝑒
𝑖𝑘𝑥

𝐶𝑛 (𝑘) =
∫

BZ
d𝑘

∑︁
𝐺

𝑒
𝑖 (𝑘−𝐺)𝑥

𝐶𝑛 (𝑘 − 𝐺) (2.11)

=

∫
BZ

d𝑘 𝑒
𝑖𝑘𝑥

∑︁
𝐺

𝑒
−𝑖𝐺𝑥

𝐶𝑛 (𝑘 − 𝐺) =
∫

BZ
d𝑘 𝜓𝑛𝑘 (𝑥) . (2.12)

Since the sum over 𝐺 is infinite, this is exact. The term in the sum is invariant under translations by a
lattice vector since it only depends on position via exp(𝑖𝐺𝑥). We can therefore identify the function

6 I want to express my gratitude towards Prof. Föll for addressing this matter very concisely in his online lecture notes
about Semiconductors [18].
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2.1 Particles in Periodic Potentials

𝑢𝑛𝑘 (𝑥) in Eq. (2.1) as

𝑢𝑛𝑘 (𝑥) =
∑︁
𝐺

𝑒
−𝑖𝐺𝑥

𝐶𝑛 (𝑘 − 𝐺) . (2.13)

After all of this, what have we gained? We started from the Schrödinger equation of a particle in a
periodic potential (2.5) and represented it in Fourier-space via Eq. (2.6). For each momentum 𝑘 , we
derived equation (2.10) for the Fourier-coefficient 𝐶 (𝑘) in terms of all other 𝐶 (𝑘 −𝐺) that are shifted
by a reciprocal lattice vector. This is a closed set of equations for all 𝐶 (𝑘 − 𝐺) ∀𝐺. By partitioning
the Fourier integral in a suitable way, we were able to express the position-space wave function of
a given band in terms of an integral over a plane wave exp(𝑖𝑘𝑥) times a lattice-periodic function
𝑢𝑛𝑘 (𝑥). This process was beneficial in two ways. First, we understood a lot about the structure of a
wave function describing a particle in a periodic potential. Second, we reduced the complexity from
solving the full Schrödinger equation to solving a much simpler, algebraic equation (2.10) for each 𝑘 .
The corresponding Hamiltonian in the eigenvalue equation for the periodic function is called Bloch
Hamiltonian.

Density of States

A convenient concept in this context is the density of states (DOS), which provides information about
the number of states available at any given energy. It is, therefore, used to describe the ability of a
system to absorb or emit a given portion of energy, which is crucial for calculations of macroscopic
observables. Consequently, the DOS provides an interface between microscopic band theory and
larger-scale observables such as electrical resistivity, photon absorption and emission, and specific
heat.

The DOS is defined as

𝜌(𝐸) =
∑︁
𝑛

∫
d𝑑𝑘
(2𝜋)𝑑

𝛿(𝐸 − 𝐸
𝑛®𝑘), (2.14)

where 𝛿 is the Dirac delta-distribution. Alternatively, the discrete version (without normalization to
the volume) is often used:

𝜌(𝐸) =
∑︁
𝑛, ®𝑘

𝛿(𝐸 − 𝐸
𝑛®𝑘) . (2.15)

The density of states can be used to transform a high-dimensional momentum integral of objects that
only depend on momentum via the dispersion into a one-dimensional energy integral.

2.1.1 Electronic Bands and Their Connection to Electrical Conductivity

It is worth taking a physical detour before moving on to another theoretical construction. In real-world
solids, the aforementioned framework of bands and Bloch wavefunctions is used to describe electrons
in the ionic potential of a lattice that forms a solid. Electrons are naturally spin-1/2 particles and—as
such—obey Pauli’s exclusion principle. At zero temperature, their distribution function is a Heaviside
step function in energy. All bands are filled up to a threshold energy—the Fermi energy 𝐸F.
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Chapter 2 Atomic Lattices and Lattice Coherence

One possibility is that 𝐸F crosses one or more bands. If an electric field is applied, it causes the
electrons to drift by applying a force proportional to the applied electric field. To realize this transition,
an electron needs to be in a state that has an unoccupied state close by (in terms of momentum and
energy). This is not possible within a fully filled band. Fully filled bands below 𝐸F are called valence
bands; partially filled or empty bands are called conduction bands.

If this leads to a situation where no band crosses 𝐸F, all bands below are completely filled, whereas
all bands above are completely empty. In this case, the solid will be an insulator. If the chemical
potential resides in the gap, exchanging particles with the system is not possible due to the lack of
unoccupied states available at the corresponding energy. As an example, the situation illustrated in
Fig. 2.1 would lead to an insulator at an appropriately low temperature. If one or more bands would
get tilted to cross the Fermi energy, it would lead to a metal.

2.1.2 Wannier Functions

Despite the Bloch wavefunctions being a perfect choice for solving the Schrödinger equation in
a periodic potential, switching from a de-localized wavefunction to a localized one is sometimes
desirable. This feat is achieved by Wannier functions [19], which, for a given band 𝑛, form an
orthonormal basis in ®𝑅 in the same way that Bloch wavefunctions form an orthonormal basis in ®𝑘 .
They are given by

𝜙
𝑛 ®𝑅 (®𝑟) =

1
(2𝜋)𝑑

∫
BZ

d𝑑𝑘 𝑒
−𝑖 ®𝑘 ®𝑅

𝜓
𝑛®𝑘 (®𝑟) , (2.16)

where the integral is over the first Brillouin zone. Although this looks like a Fourier transform, it is
not conventional since we originally used a phase-factor 𝑒𝑖 ®𝑘®𝑟 to transform from real- to reciprocal
space. Here, we used the conjugate factor for the same conceptual “direction”. The reason becomes
clear when inspecting the integrand:

𝜙
𝑛 ®𝑅 (®𝑟) =

1
(2𝜋)𝑑

∫
BZ

d𝑑𝑘 𝑒
−𝑖 ®𝑘 ®𝑅

𝑢
𝑛®𝑘 (®𝑟)𝑒

𝑖 ®𝑘®𝑟 (2.17)

=
1

(2𝜋)𝑑

∫
BZ

d𝑑𝑘 𝑒
𝑖 ®𝑘 ( ®𝑟− ®𝑅)

∑︁
®𝐺

𝑒
−𝑖 ®𝐺®𝑟

𝐶 ( ®𝑘 − ®𝐺) (2.18)

By shifting ®𝑟 → ®𝑟 + ®𝑅′ one gets

𝜙
𝑛 ®𝑅 (®𝑟 + ®𝑅′) = 1

(2𝜋)𝑑

∫
BZ

d𝑑𝑘 𝑒
𝑖 ®𝑘 ( ®𝑟+ ®𝑅′− ®𝑅)

∑︁
®𝐺

𝑒
−𝑖 ®𝐺 ( ®𝑟+ ®𝑅′ )

𝐶 ( ®𝑘 − ®𝐺) (2.19)

The second exponential is—by construction—invariant under any lattice translation ®𝑅′. The only
difference is, therefore, in the first exponential. If we now also shift ®𝑅 by the same vector ®𝑅′, the shift
exactly cancels in the first exponential, and we get

𝜙
𝑛 ®𝑅 (®𝑟) = 𝜙

𝑛( ®𝑅+ ®𝑅′ ) (®𝑟 + ®𝑅′) , (2.20)
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2.1 Particles in Periodic Potentials

i.e. Wannier functions are invariant under simultaneous translations by a lattice vector in both their
arguments. Hence, they can only depend on the difference ®𝑟 − ®𝑅. This is a highly desirable feature.
Determining the Wannier functions inside a single unit cell is sufficient to get the behavior throughout
the full lattice. We can now also analyze the physical significance of those functions.

Wannier functions can be understood as the equivalent of local atomic wavefunctions in a lattice.
They are localized at each lattice site (each ion in the lattice) and have a spatial dependence relative
to the ion’s position. This dependence can stretch to neighboring ions and—in principle—have an
overlap with Wannier functions on remote sites, which naturally leads to the tight-binding model [20].

The Bloch wavefunctions are given in terms of Wannier functions as

𝜓
𝑛®𝑘 (®𝑟) =

∑︁
®𝑅

𝑒
𝑖 ®𝑘 ®𝑅

𝜙
𝑛 ®𝑅 (®𝑟) . (2.21)

2.1.3 Uniqueness of Wannier Functions / Lattice Coherence

Bloch wavefunctions are eigenfunctions of a hermitian operator �̂� ®𝑘 and, as such, are only defined up
to a global phase.

�̂� ®𝑘 𝑒
𝑖𝜑

𝑛 ®𝑘𝜓
𝑛®𝑘 (®𝑟) = 𝐸

𝑛®𝑘 𝑒
𝑖𝜑 ®𝑘𝜓

𝑛®𝑘 (®𝑟) (2.22)

The phase 𝜑
𝑛®𝑘 heavily influences the Wannier functions, since it nontrivially enters the Fourier

transform that connects Wannier functions and Bloch functions.

𝜙
𝑛 ®𝑅 (®𝑟) =

∑︁
®𝑘

𝑒
−𝑖 ®𝑘 ®𝑅

𝑒
𝑖𝜑 ®𝑘𝜓

𝑛®𝑘 (®𝑟) (2.23)

Therefore, Wannier functions are not unique, and fitting them from Bloch wavefunctions can be tedious.
Once the phase of the Bloch functions is fixed, the Wannier functions have a known, fixed phase relation
dictated by their periodicity, c.f. Eq. (2.20). So if lattice-momentum ®𝑘 is a good quantum number of the
Hamiltonian, the Wannier functions obtain a fixed phase relation. If position ®𝑅 is a good quantum num-
ber, working in Bloch basis does not make sense, which would be maximally degenerate in the worst
case (fully localized states). Therefore, individual local wavefunctions are a good description of the
system. Their phase relation is not fixed by a periodicity condition. Hence, they are not lattice coherent.

One could, therefore, define lattice coherence in the following way:

Definition: Lattice coherence

If parts of a system with discrete translational invariance can be described fully by only a set of
fully localized Hamiltonians, the respective eigenstates are localized and have independently
undetermined phases, so they show no lattice-coherence.
If this is not the case and the eigenstates are therefore not fully localized, de-localized Bloch
states are eigenstates of the Hamiltonian which imprint a fixed phase-relation onto the localized
Wannier states, so they show lattice-coherence.
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Chapter 2 Atomic Lattices and Lattice Coherence

2.1.4 Heavy Quasiparticles and Itinerant Electrons

It is often beneficial to use the concept of quasiparticles instead of physical particles. They are
particle-like excitations of an (interacting) system. This will be especially relevant in the context of
heavy-fermion materials, which are the focus of this thesis. Being a particle-like collective excitation
of the system, a quasiparticle can be assigned a mass that is not restricted to the physical mass of the
physical, real particles. The definition of this mass is not unique and depends on the context.

Canonically, the mass is proportional to the inverse of the curvature (𝜕2
𝜀/𝜕𝑘2) of the dispersion. In

terms of band structure, we can understand this as a straight band (weakly ®𝑘-dependent) corresponding
to a large mass and a curvy (strongly ®𝑘-dependent, higher order polynomial) band corresponding to a
light mass.

Additionally, an effective quasiparticle velocity can be assigned, which is proportional to the slope
of the dispersion (𝜕𝜀/𝜕𝑘). A perfectly flat band, therefore, describes infinitely heavy, spatially static
(standing-wave) particles, whereas a strongly ®𝑘-dependent band describes—relatively—light, itinerant
particles.

2.1.5 Understanding Localization in Lattices from the Kronig-Penney Model

If we look at a single, perfectly localized state, its Fourier transform will be fully momentum-
independent. Its energy therefore has no notion of spatial extend so that the dispersion will appear as a
perfectly flat band in the spectrum. This is still true for a periodic set of perfectly localized states, as
can be seen from the Kronig-Penney model [21] with delta-potentials, arranged equally spaced with
distance 𝑎 on an 2𝑁 + 1-site, 1D chain, i.e. from 𝑥min = −𝑎 · 𝑁 to 𝑥max = 𝑎 · 𝑁 . The potential is

𝑉 (𝑥) =
𝑁∑︁

𝑛=−𝑁
−𝑉0 𝛿(𝑥 − 𝑛 · 𝑎) . (2.24)

The basis vector of the reciprocal lattice, defined just below Eq. (2.4), is 𝑏 = 2𝜋/𝑎. The Fourier
representation of the potential is

𝑉𝐺 =
1
V

∫
d𝑥 𝑒

−𝑖𝐺𝑥
𝑉 (𝑥) = −

𝑉0
V

𝑁∑︁
𝑛=−𝑁

𝑒
−𝑖𝐺𝑥

𝛿(𝑥 − 𝑛 · 𝑎)) (2.25)

= −
𝑉0
V

𝑁∑︁
𝑛=−𝑁

𝑒
−𝑖𝑛𝐺 ·𝑎

= −
𝑉0
V

𝑁∑︁
𝑛=−𝑁

(2.26)

= −
𝑉0
𝑎

, (2.27)

with the volume V = 2𝑁 · 𝑎. This is no longer 𝑁-dependent, so the limit 𝑁 → ∞ is well defined.
Inserting this into Equation (2.10) leads to

𝐸𝐶 (𝑘) = 𝑘
2

2𝑚
𝐶 (𝑘) −

𝑉0
𝑎

∑︁
𝐺

𝐶 (𝑘 − 𝐺) (2.28)
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2.1 Particles in Periodic Potentials

Making the Ansatz 𝐶 (𝑘) = 𝐶 ≠ 0 and using
∑
𝐺 = 2𝜋/V for one dimension, we get

𝐸 =
𝑘

2

2𝑚
− 2𝜋

𝑉0
𝑎V . (2.29)

Since 𝑘 is limited to the first Brillouin zone, the energy 𝐸 will be less 𝑘-dependent the larger 𝑉0
becomes. In the limit 𝑉0 → ∞, 𝐸 becomes practically constant. The wave function for a bound state
in a single delta-potential of infinite depth 𝑉0 is infinitely localized on the position of the potential.
The periodic part of the wavefunction is

𝑢𝑛𝑘 =
∑︁
𝐺

𝑒
−𝑖𝐺𝑥

𝐶 =
∑︁
𝑛

𝑒
−𝑖 2𝜋𝑚𝑥

𝑎 𝐶 = 𝐶
2𝜋
V

∑︁
𝑛

𝛿

(
2𝜋𝑥
𝑎

− 2𝜋𝑛
)

(2.30)

= 𝐶
2𝜋
V

𝑎

2𝜋

∑︁
𝑛

𝛿 (𝑥 − 𝑛 · 𝑎) , (2.31)

where 𝐶 can now be used to fix the normalization. Therefore, the full wave function is a plane-
wave times a series of delta-distributions located at each site. The infinitely bound case leads to a
superposition of perfectly localized wavefunctions and a flat dispersion.

The other limit is 𝑉0 → 0, resulting in the free-electron dispersion 𝐸 (𝑘) = 𝑘
2/2𝑚, for which we

know the solutions are just plane waves in real space. They extend throughout the whole volume of
the system and, as such, are perfectly non-local. The dispersion wraps around at the band edges and
creates a gapless band structure, shown in Fig. 2.2. Although the lattice constant 𝑎 is kept here, it will
be effectively set to unity 𝑎 = 1. Also, note that the choice of 𝑎 is somewhat arbitrary in the case of a
vanishing potential.

Figure 2.2: Dispersion of a free particle folded into the first Brillouin zone.
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2.2 The Resonant-Level Model

Picking up the discussion of Section 2.1.4, we can now construct a minimal model that describes a
localized state (at site 𝑖 = 0) embedded in a host of itinerant electrons, i.e. with a dispersive band.

𝐻RLM =
∑︁
®𝑘,𝜎

𝜀
𝑐
®𝑘𝑐

†
®𝑘𝜎

𝑐 ®𝑘𝜎
+

∑︁
𝜎

𝜀
𝑑
𝑑
†
𝜎𝑑𝜎 +

∑︁
𝜎

(
𝑉𝑐

†
𝑖=0,𝜎𝑑𝜎 + ℎ.𝑐.

)
(2.32)

=
∑︁
®𝑘,𝜎

𝜀
𝑐
®𝑘𝑐

†
®𝑘𝜎

𝑐 ®𝑘𝜎
+

∑︁
𝜎

𝜀
𝑑
𝑑
†
𝜎𝑑𝜎 +

∑︁
®𝑘,𝜎

(
𝑉𝑐

†
®𝑘𝜎

𝑑𝜎 + ℎ.𝑐.

)
(2.33)

This is a simple version of the “resonant-level model” in arbitrary dimensions, which is a model
describing the potential scattering of itinerant electrons with an impurity. It is a quadratic model
and can, therefore, be solved exactly. The problem can be approached in many different ways, but in
anticipation of later chapters, I will use a matrix representation of the Hamiltonian, which can then be
diagonalized exactly.

𝐻RLM =
∑︁
𝜎

(
𝑑
†
𝜎 𝒄†𝜎

) [
𝜀
𝑑 𝑽†

𝑽 𝜺𝑐

] (
𝑑𝜎
𝒄𝜎

)
(2.34)

𝑽 =

(
𝑉, 𝑉, 𝑉, . . .

)T
(2.35)

𝒄𝜎 =

(
𝑐 ®𝑘1𝜎

, 𝑐 ®𝑘2𝜎
, . . .

)T
(2.36)

𝜺𝑐 =


𝜀
𝑐
®𝑘1

0 0
0 𝜀

𝑐
®𝑘2

0 . . .

0 0 𝜀
𝑐
®𝑘3

...
. . .


(2.37)

I will refer to this representation as the flavor-representation7 in which the nature of the particles, i.e.
itinerant 𝑐 or local 𝑑, is the “flavor”. Note that the matrices 𝑽 and 𝒄 are 𝑁 × 1 matrices, where 𝑁

enumerates the momentum. Additionally, conduction electrons have a momentum quantum number,
so the matrix elements are two momenta and two spins. Since spin is conserved at each point, its
quantum number can be dropped in the description. This would ideally be diagonalized to find the
eigenenergies.

2.2.1 Block-Matrix Inversion in the Context of Green Functions

A more general formulation of the problem is useful at this point so that the solution can be utilized
at a later point in this thesis. Let’s consider the matrices 𝑨, 𝑩,𝑪 of size {𝑁 × 𝑁}, {𝑁 × 𝑀}, and

7 People often use the name “Nambu representation” or “Nambu space”, which is mathematically probably even correct but
physically heavily dressed with expectations of Superconductivity or Majorana physics. Similarly, transformations in this
space are sometimes called Bogoliubov-like transformations. Again, this is heavily dressed, and neither shall be used in
this thesis for an unbiased and clear picture.
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2.2 The Resonant-Level Model

{𝑀 × 𝑀}, where we assume that 𝑨 and 𝑫 are invertible. The block matrix of interest is

M =

[
𝑨 𝑩

𝑩† 𝑪

]
. (2.38)

The problem can—in principle—be made even more general, but it’s not necessary in the context of
this thesis. Generally, block-diagonalization is a challenging problem; not much can be done without
assumptions. However, constructing the inverse Green function can be done exactly. The Green
function is the operator-inverse of the Schrödinger operator 𝑖𝜕𝑡 − 𝐻. In the language of quantum field
theory, it is an appropriately constructed expectation value of two field operators, details of which are
not important here but can be found in any standard textbook.

Using the equations of motion for frequency-dependent equilibrium Green functions [22] as the
solution of the inverse Hamiltonian in operator space (i.e. the flavor-representation from before)

𝐺 (𝜔) [𝜔1 − 𝐻] = 1 . (2.39)

This equation can be used for Matsubara-, retarded- or advanced Green functions equally by substitution
of 𝜔 by 𝑖𝜔𝑛 or 𝜔 ± 𝑖𝜂 and 𝜂 → 0+ respectively. The frequency part 𝜔1 can be absorbed in 𝑨 and 𝑪,
assuming the resulting matrices remain invertible. This is specifically true in the cases of interest;
their inverses are just the free Green functions. The inverse is then[

𝑨 𝑩

𝑩† 𝑪

]−1

=

[ (
𝑨 − 𝑩𝑪−1𝑩†)−1 0

0
(
𝑪 − 𝑩†𝑨−1𝑩

)−1

] [
1 −𝑩𝑪−1

−𝑩†𝑨−1
1

]
. (2.40)

Most quantities of interest (like the density of states) involve tracing over flavor space, elevating the
importance of the diagonal elements.

2.2.2 Solutions via Self-Energies and 𝑻-Matrices

Combining equations (2.34) and (2.40) we can now immediately write down the Green functions for
the flavors 𝑑 and 𝑐 as

[𝐺𝑑]−1
𝜎 (𝜔) = 𝜔 − 𝜀

𝑑 −
∑︁
®𝑘

|𝑉 |2

𝜔 − 𝜀
𝑐
®𝑘
, and (2.41)

[𝐺𝑐]−1
®𝑘 ®𝑘′𝜎 (𝜔) = (𝜔 − 𝜀

𝑐
®𝑘)𝛿 ®𝑘, ®𝑘′ −

|𝑉 |2

𝜔 − 𝜀
𝑑
, (2.42)

where the last part of the second equation is independent of ®𝑘 and ®𝑘 ′ and is therefore maximally filled
in lattice-momentum space. This makes the first equation simply diagonalizable, whereas the second
is much more challenging. The mixture of the non-local part (𝜀𝑐®𝑘) and the singular local hybridization,
breaking translation invariance, makes neither position nor lattice-momentum a good quantum number.
Physically, the problem lies in mixing itinerant electrons with a singular localized state, creating a
distinct point in the lattice that differs from the rest. In contrast, the lattice has non-local elements in
the Hamiltonian, making the electrons itinerant. One should note that, since the off-diagonal Green
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Chapter 2 Atomic Lattices and Lattice Coherence

functions are non-zero, the diagonal Green functions are not representing the Green functions of the
flavor-mixed field operators that solve the system, i.e. diagonalize the matrix Hamiltonian. The trace
of the Green functions, on the other hand, is the physical solution to the system. It is independent of
the chosen base and contains the spectral information required to describe the behavior of the system.

Utilizing the free Green functions

𝐺
𝑑 (0)
𝜎 (𝜔) =

(
𝜔 − 𝜀

𝑑
)−1

, 𝐺
𝑐 (0)
®𝑘𝜎

(𝜔) =
(
𝜔 − 𝜀

𝑐
®𝑘

)−1
, and 𝐺

𝑐 (0)
loc,𝜎 (𝜔) =

∑︁
®𝑘

𝐺
𝑐 (0)
®𝑘𝜎

(𝜔) , (2.43)

the full Green functions (with the argument 𝜔 suppressed for readability) are[
𝐺
𝑑
]−1
𝜎

=
[
𝐺
𝑑 (0) ]−1

𝜎
− |𝑉 |2 𝐺𝑐 (0)loc,𝜎 , and (2.44)[

𝐺
𝑐
]−1
®𝑘 ®𝑘′𝜎 =

[
𝐺
𝑐 (0) ]−1

®𝑘𝜎𝛿 ®𝑘, ®𝑘′ − |𝑉 |2 𝐺𝑑 (0)
𝜎 . (2.45)

Multiplying from the left with the respective free Green function and from the right with the respective
full Green function yields Dyson equations, where the self-energies are not proper self-energies in the
sense that they stem from quadratic parts in the Hamiltonian.

𝐺
𝑑
𝜎 = 𝐺

𝑑 (0)
𝜎 + 𝐺

𝑑 (0)
𝜎 |𝑉 |2 𝐺𝑐 (0)loc,𝜎 𝐺

𝑑
𝜎 (2.46)

𝐺
𝑐
®𝑘 ®𝑘′𝜎 = 𝐺

𝑐 (0)
®𝑘𝜎

𝛿 ®𝑘, ®𝑘′ +
∑︁
®𝑘′′

𝐺
𝑐 (0)
®𝑘𝜎

|𝑉 |2 𝐺𝑑 (0)
𝜎 𝐺

𝑐
®𝑘′′ ®𝑘′𝜎 (2.47)

Simultaneous iteration of both equations to infinite order transforms them into the 𝑇-matrix equations

𝐺
𝑑
𝜎 = 𝐺

𝑑 (0)
𝜎 + 𝐺

𝑑 (0)
𝜎 |𝑉 |2 𝐺𝑐loc,𝜎 𝐺

𝑑 (0)
𝜎 , and (2.48)

𝐺
𝑐
®𝑘 ®𝑘′𝜎 = 𝐺

𝑐 (0)
®𝑘𝜎

+ 𝐺
𝑐 (0)
®𝑘𝜎

|𝑉 |2 𝐺𝑑𝜎 𝐺
𝑐 (0)
®𝑘′𝜎

, (2.49)

with 𝐺
𝑐
loc(𝜔), the conduction-electron Green function at the position of the resonant level. It is readily

calculated using the Fourier-transform of the lattice-momentum dependent Green function

𝐺
𝑐
𝑖 𝑗 (𝜔) =

∑︁
®𝑘, ®𝑘′

𝑒
−𝑖 ®𝑘®𝑟𝑖𝐺𝑐®𝑘 ®𝑘′ (𝜔)𝑒

𝑖 ®𝑘′ ®𝑟 𝑗 =
∑︁
®𝑘, ®𝑘′

𝑒
𝑖 ( ®𝑘′ ®𝑟 𝑗− ®𝑘®𝑟𝑖 )𝐺𝑐®𝑘 ®𝑘′ (𝜔) , (2.50)

⇒ 𝐺
𝑐
00(𝜔) = 𝐺

𝑐
loc(𝜔) =

∑︁
®𝑘, ®𝑘′

𝐺
𝑐
®𝑘 ®𝑘′ (𝜔) . (2.51)

To proceed, we have to choose a representation of the Green functions since so far 𝜔 was just a
placeholder. A convenient choice is 𝜔 → 𝜔 − 𝑖𝜂, i.e. advanced Green functions. Free Green functions
can be described then by the same general formulation using the Sokhotski–Plemelj theorem under
𝜂 → 0+,

𝐺
(0) (𝜔 − 𝑖𝜂, 𝜀) = 1

𝜔 − 𝜀 − 𝑖𝜂

𝜂→0+
−−−−−→ p.v.

1
𝜔 − 𝜀

+ 𝑖𝜋𝛿(𝜔 − 𝜀) = 𝐺
(0) ,𝐴(𝜔 − 𝜀), (2.52)
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2.2 The Resonant-Level Model

where p.v. denotes the Cauchy principal value. From this, we can define

𝐺
𝑑 (0) ,𝐴
𝜎 (𝜔) = 𝐺

(0) ,𝐴(𝜔 − 𝜀
𝑑) , (2.53)

𝐺
𝑐 (0) ,𝐴
®𝑘𝜎

(𝜔) = 𝐺
(0) ,𝐴(𝜔 − 𝜀

𝑐
®𝑘), (2.54)

where—in this case—both functions are spin-degenerate. From here on, I will drop the superscript 𝐴
in favor of readability unless it is necessary for context.

As can be seen from comparing Eq. (2.48) to Eq. (2.44), directly inverting Dyson’s equation is
much preferable for the resonant-level part. The conduction electrons, on the other hand, are much
better described by the 𝑇-matrix equation (Eq. 2.49) due to the lattice-momentum independence of
their “self-energy” resulting in a fully filled matrix form, where each entry has identical values8. Due
to the full spin-degeneracy of the solution, the subscript 𝜎 is dropped in the following.

There are a couple of objects that are now of interest:

1. The impurity density of states (DOS) 𝜌𝑑 (𝜔) = Im𝐺
𝑑 (𝜔)/𝜋.

2. The local conduction-electron DOS at the impurity site 𝜌
𝑐
loc(𝜔) =

∑
®𝑘, ®𝑘′ Im𝐺

𝑐
®𝑘 ®𝑘′ (𝜔)/𝜋.

3. The trace of the conduction-electron spectrum, which can be seen as the proper lattice
conduction-electron DOS 𝜌

𝑐
0 (𝜔) =

∑
®𝑘 Im𝐺

𝑐
®𝑘 ®𝑘 (𝜔)/𝜋.

4. The lattice-momentum dependent spectrum.

2.2.3 Local Density of States

(a) Dispersion (b) DOS

Figure 2.3: Dispersion and DOS of a 1D tight-binding lattice.

Although the largest part of the following will be fully general, I will discuss the case of a constant
conduction-electron density of states and present results for the case of a 1-dimensional lattice with
lattice spacing 𝑎 in the tight-binding approximation. All energies in the example system are given
in units of the half-bandwidth 𝐷, and lattice-momenta ®𝑘 are given in units of 1/𝑎, making the first
Brillouin zone for ®𝑘 range from −𝜋 to 𝜋. The dispersion is then just 𝜀𝑐®𝑘 = − cos(𝑘), c.f. Fig. 2.3(a).

8 The problem persists and becomes arguably even worse for a lattice-momentum dependent hybridization.
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Chapter 2 Atomic Lattices and Lattice Coherence

Figure 2.4: Occupation of the resonant level for 𝑇 = 0 according to Eq. (2.57).

The density of states is flat around the band center and has van-Hove singularities at the band edges,
c.f. Fig. 2.3(b). It can be calculated analytically (c.f. app. C.3) and is

𝜌
𝑐 (0)
1D =

1
𝜋

Θ(1 − |𝜔 |)√︁
1 − 𝜔

2
. (2.55)

Its Hilbert transform is 0 ∀ |𝜔 | < 1 [23]. The band edges will often be neglected in further discussions
when they are not essential for a physical understanding.

The first quantity we shall investigate is the resonant-level density of states. In the textbook-example
of a flat conduction-electron DOS 𝜌

𝑐 (0) (𝜔) = 𝜌
𝑐 (0) , the impurity DOS is analytically computable.

This is a good approximation when the resonant-level position is well within the band, and the
hybridization strength is small compared to the bandwidth. The imaginary part of the conduction-
electron Green function is then just a constant, resulting in a vanishing real part via the Kramers-Kronig
relation. By defining Γ(𝜔) = 𝜋 |𝑉 |2𝜌𝑐 (0) (𝜔) = 𝜋 |𝑉 |2𝜌𝑐 (0) the resonant-level DOS is

𝜌
𝑑 (𝜔) = 1

𝜋

Γ

(𝜔 − 𝜀
𝑑)2 + Γ

2 , (2.56)

as can be easily derived from Eq. (2.44) by expanding the fraction with the complex conjugate of the
denominator. The resonant-level spectrum thus picks up a width Γ and produces a Lorentzian line
shape. The zero-temperature occupation of the resonant level (using Eq. (C.7) in Appendix C.1) is
thus

𝑛
𝑑
𝑇=0 = 1 − 2

𝜋
arctan

(
𝜀
𝑑

Γ

)
, (2.57)

where the overall factor of 2 is due to spin degeneracy. The occupation is plotted in Fig. 2.4.
In the case of arbitrary conduction-electron DOS, the resonant-level DOS is

𝜌
𝑑 (𝜔) = 1

𝜋

Γ(𝜔)
[𝜔 − 𝜀

𝑑 − |𝑉 |2Re𝐺𝑐 (0)loc (𝜔)]2 + [Γ(𝜔)]2
, (2.58)

where Re𝐺𝑐 (0)0 (𝜔) can be calculated via the Kramers-Kronig relation using only the free conduction-
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2.2 The Resonant-Level Model

Figure 2.5: Resonant-level density of states.

electron density of states. In general, the peak position will thus also get renormalized. For 𝜀𝑑 well
inside the band and a smooth c-electron DOS around it, the shape of the resonance can be expected
Lorentzian-like around 𝜀

𝑑 and ∝ Γ(𝜔)/𝜔2 far away. The results for a 1D lattice of conduction
electrons are shown in Fig. 2.5. Since the real part also vanishes in this case, and due to the almost flat
DOS for 𝜀𝑑 << 𝐷, the Lorentzian line shape can be well approximated by a constant Γ(𝜔) = Γ(𝜀𝑑)
for conservative choices of parameters. The peak height is precisely 1/(𝜋Γ(𝜀𝑑)).

The local conduction-electron DOS can be calculated by Fourier-transforming the lattice-momentum-
dependent Green function in Eq. (2.50) and (2.51).

𝐺
𝑐
𝑖 𝑗 (𝜔) =

∑︁
®𝑘, ®𝑘′

𝑒
−𝑖 ®𝑘®𝑟𝑖𝐺𝑐®𝑘 ®𝑘′ (𝜔)𝑒

𝑖 ®𝑘′ ®𝑟 𝑗 =
∑︁
®𝑘, ®𝑘′

𝑒
𝑖 ( ®𝑘′ ®𝑟 𝑗− ®𝑘®𝑟𝑖 )𝐺𝑐®𝑘 ®𝑘′ (𝜔)

⇒ 𝐺
𝑐
00(𝜔) = 𝐺

𝑐
loc(𝜔) =

∑︁
®𝑘, ®𝑘′

𝐺
𝑐
®𝑘 ®𝑘′ (𝜔)

Using the 𝑇-matrix equation (2.49) it evaluates to

𝐺
𝑐
loc(𝜔) =

∑︁
®𝑘, ®𝑘′

(
𝐺
𝑐 (0)
®𝑘

(𝜔)𝛿 ®𝑘, ®𝑘′ + 𝐺
𝑐 (0)
®𝑘

(𝜔) |𝑉 |2 𝐺𝑑 (𝜔)𝐺𝑐 (0)®𝑘′
(𝜔)

)
(2.59)

=
∑︁
®𝑘

𝐺
𝑐 (0)
®𝑘

(𝜔) + |𝑉 |2𝐺𝑑 (𝜔) ©­«
∑︁
®𝑘

𝐺
𝑐 (0)
®𝑘

(𝜔)ª®¬
2

(2.60)

= 𝐺
𝑐 (0)
loc (𝜔) + |𝑉 |2𝐺𝑑 (𝜔)

(
𝐺
𝑐 (0)
loc (𝜔)

)2
, (2.61)

𝜌
𝑐
loc(𝜔) = Im𝐺

𝑐
loc(𝜔)/𝜋 . (2.62)
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(a) Local c-electron DOS. (b) Total DOS compared to free c-electron DOS.

Figure 2.6: Local DOS of a 1D tight-binding lattice.

For a flat c-band again, the expression reduces to

𝜌
𝑐
loc(𝜔) = 𝜌

𝑐 (0)
(
1 − 𝜋Γ 𝜌

𝑑 (𝜔)
)
= 𝜌

𝑐 (0)
(
1 − Γ

2

(𝜔 − 𝜀
𝑑)2 + Γ

2

)
, (2.63)

which exactly vanishes at 𝜔 = 𝜀
𝑑 . Results for the 1D system are shown in Fig. 2.6.

2.2.4 Spectrum of the Green Function Trace / Lattice Density of States

Another quantity used to get the canonical definition of the density of states of a system is the trace of
the imaginary part of the Green function. Since the trace is just a sum, it commutes with the projection
onto the imaginary axis. The trace of the Green function is∑︁

®𝑘

𝐺
𝑐
®𝑘 ®𝑘 (𝜔) =

∑︁
®𝑘

(
𝐺
𝑐 (0)
®𝑘

(𝜔) + 𝐺
𝑐 (0)
®𝑘

(𝜔) |𝑉 |2 𝐺𝑑 (𝜔)𝐺𝑐 (0)®𝑘
(𝜔)

)
(2.64)

= 𝐺
𝑐 (0)
loc (𝜔) + |𝑉 |2𝐺𝑑 (𝜔)

∑︁
®𝑘

(
𝐺
𝑐 (0)
®𝑘

(𝜔)
)2

(2.65)

= 𝐺
𝑐 (0)
loc (𝜔) + |𝑉 |2𝐺𝑑 (𝜔)

∫ ∞

−∞
d𝜀 𝜌

𝑐 (0) (𝜀)
(
𝐺
𝑐 (0) (𝜔 − 𝜀)

)2
, (2.66)

Tr𝐺 (𝜔) =
∑︁
®𝑘

𝐺
𝑐
®𝑘 ®𝑘 (𝜔) + 𝐺

𝑑 (𝜔) = 𝐺
𝑐 (0)
loc (𝜔) + Δ𝐺

𝑐 (𝜔) . (2.67)

The second part of Eq. (2.66) is notoriously hard to evaluate numerically if the c-electron DOS is not
smooth enough. Analytically, it needs some massaging to allow for insight. Let’s calculate the change
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2.2 The Resonant-Level Model

in the trace of the total Green function Δ𝐺
𝑐 via a trick [24].

𝜕

𝜕𝜔
ln ©­«𝜔 − 𝜀

𝑑 − |𝑉 |2
∑︁
®𝑘

𝐺
𝑐 (0)
®𝑘

(𝜔)ª®¬ (2.68)

= 𝐺
𝑑 (𝜔) − 𝐺

𝑑 (𝜔) · |𝑉 |2
∑︁
®𝑘

(
𝜕

𝜕𝜔
𝐺
𝑐 (0)
®𝑘

(𝜔)
)
= Δ𝐺

𝑐 (𝜔) (2.69)

The derivative can be calculated by analyzing the function for finite width 𝜂 before sending it to zero.

𝜕

𝜕𝜔
𝐺
𝑐 (0)
®𝑘

(𝜔 − 𝑖𝜂) = 𝜕

𝜕𝜔

1
𝜔 − 𝜀

𝑐
®𝑘 − 𝑖𝜂

= − 1
(𝜔 − 𝜀

𝑐
®𝑘 − 𝑖𝜂)2

= −
(
𝐺
𝑐 (0)
®𝑘

(𝜔 − 𝑖𝜂)
)2 𝜂→0+

−−−−−→ −
(
𝐺
𝑐 (0) ,𝐴
®𝑘

(𝜔)
)2

(2.70)

Therefore,

Δ𝐺
𝑐 (𝜔) = 𝐺

𝑑 (𝜔) + 𝐺
𝑑 (𝜔) · |𝑉 |2

∑︁
®𝑘

(
𝐺
𝑐 (0)
®𝑘

(𝜔)
)2

, (2.71)

which proves this substitution via a series of identities. Investigating Eq. (2.69) more thoroughly as

Δ𝐺
𝑐 (𝜔) − 𝐺

𝑑 (𝜔) = 𝐺
𝑑 (𝜔) · |𝑉 |2

∫ ∞

−∞
d𝜀 𝜌

𝑐 (0) (𝜀)
(
𝜕

𝜕𝜔
𝐺
𝑐 (0) (𝜔 − 𝜀)

)
(2.72)

= 𝐺
𝑑 (𝜔) · |𝑉 |2 𝜕

𝜕𝜔

∫ ∞

−∞
d𝜀 𝜌

𝑐 (0) (𝜀)𝐺𝑐 (0) (𝜔 − 𝜀) | 𝜀 = 𝜔 − 𝜀 (2.73)

= 𝐺
𝑑 (𝜔) · |𝑉 |2 𝜕

𝜕𝜔

∫ ∞

−∞
d𝜀 𝜌

𝑐 (0) (𝜔 − 𝜀)𝐺𝑐 (0) (𝜀) (2.74)

= 𝐺
𝑑 (𝜔) · |𝑉 |2

∫ ∞

−∞
d𝜀

(
𝜕

𝜕𝜔
𝜌
𝑐 (0) (𝜔 − 𝜀)

)
𝐺
𝑐 (0) (𝜀) , (2.75)

which works under the restrictions of the Leibniz integral rule. Therefore, it is not applicable for a
highly singular 𝐺𝑐 (0) . We can, however, circumvent this by sticking to the finite but small width
𝜂, ensuring the regularity of all functions (and their derivative) under the integral. This expression
exactly vanishes for a constant c-electron density of states. In this case, the (lattice) density of states is
just the original one, plus the local resonant-level DOS. Results for the 1D lattice are shown in Fig. 2.7.

Just as in the case of the local DOS, this still holds approximately true for a resonant-level well
within the conduction band |𝜀𝑑 | << 𝐷, obtaining a small width Γ << 𝐷. First, since we are interested
in the imaginary part of the expression, we note that only cross-terms of the complex product of
𝐺
𝑑 and 𝐺

𝑐 (0) contribute. One term is ∼ Im𝐺
𝑑 (𝜔)Re𝐺𝑐 (0) (𝜔 − 𝜀), which we shall analyze in the

intermediate result of Eq. (2.73). The real part of 𝐺𝑐 (0) gives a principal-value integral

p.v.
∫ 1

−1
d𝜀

𝜌
𝑐 (0) (𝜀)
𝜔 − 𝜀

, (2.76)
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Chapter 2 Atomic Lattices and Lattice Coherence

(a) Trace of the c-electron DOS. (b) Total trace of DOS compared to the total local DOS.

Figure 2.7: Trace of the DOS of a 1D tight-binding lattice.

which is just the negative real part of the free conduction-electron Green function −𝜋Re𝐺𝑐 (0) (𝜔). For
a flat enough conduction band in a region of width Γ around 𝜀

𝑑 , this is just a constant, so the frequency
derivative vanishes. Outside of that region, Im𝐺

𝑑 (𝜔) is very small, suppressing the contribution from
the other term. In our 1D example, the only case where this can not be argued is the band edges due to
the van-Hove singularities. There, this correction is dwarfed by the divergence in 𝜌

𝑐 (0) , making it
negligible.

The second contribution is the term is ∼ Re𝐺𝑑 (𝜔)Im𝐺
𝑐 (0) (𝜔 − 𝜀), where the integral collapses

to the value 𝜀 = 𝜔 due to the delta distribution in the imaginary part of 𝐺𝑐 (0) . The contribution,
therefore, reduces to

𝜋Re𝐺𝑑 (𝜔) · |𝑉 |2 𝜕

𝜕𝜔
𝜌
𝑐 (0) (𝜔) . (2.77)

This again exactly vanishes if 𝜌
𝑐 (0) is flat. Since Re𝐺𝑑 (𝜔) ∼ 𝜔

−1 for 𝜔 >> Γ (in contrast to
Im𝐺

𝑑 (𝜔) ∼ 𝜔
−2), the contribution might be larger but also vanishes in the flat-band limit. Further-

more, the contribution will be slowly varying in the other case considered above.

Overall, it can be seen that the total (lattice) density of states, defined as the imaginary part of the
trace of the full Green function, is mostly just the sum of the free conduction-electron DOS 𝜌

𝑐 (0)

and the renormalized, local resonant-level DOS 𝜌
𝑑 (𝜔). This is a crucial observation in that the local

level only weakly, if at all, influences the conduction electron density of states when averaged over
the whole lattice. This is obviously due to volume effects since the local level is a singular point in a
much larger lattice. Locally, as seen in the previous section, the situation is much different.

2.2.5 The Problem of a Lattice-Momentum Dependent Spectrum

Finally, to wrap the discussion back around to the picture of lattice coherence, we would like to look
at the lattice-momentum dependent spectra. Concretely, the momentum-diagonal elements of the full
Green function. We can use the Dyson equation (Eq. (2.44)) for the resonant-level spectrum and the
T-matrix equation (Eq. (2.49)) for the conduction electrons. Since the spectra are plotted in the basis
of a bad quantum number, they do not reproduce the shape of Bloch bands. Instead, the resonant
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2.2 The Resonant-Level Model

Figure 2.8: Illustration of a resonant-level model’s expected lattice-momentum dependent spectrum. The
resonant-level density of states is exactly reproduced at each momentum since it is perfectly localized. As
discussed in the text, the conduction-electron band is modeled as just the free band. The free band was
approximated by a Lorentzian of width 𝜂/𝐷 = 10−3. The color corresponds approximately to strength, but the
normalization is not meaningful due to the problems discussed in the text. The color bar, therefore, remains
unlabeled. Here, 𝑘 is dimensionless via the lattice constant 𝑎 = 1.

level obtains a finite width, which can be deduced from Fig. 2.5 paired with the fact that this picture
is reproduced for each value of ®𝑘 maintaining normalization. The main problem is evaluating the
𝑇-matrix equation for the conduction electrons. Here, the occurrence of the free Green function poses
a problem of being only defined under an integral, c.f. equation (2.52), i.e.

𝐺
(0) (𝜔 − 𝑖𝜂, 𝜀) = 1

𝜔 − 𝜀 − 𝑖𝜂

𝜂→0+
−−−−−→ p.v.

1
𝜔 − 𝜀

+ 𝑖𝜋𝛿(𝜔 − 𝜀) = 𝐺
(0) ,𝐴(𝜔 − 𝜀) .

The goal of plotting the exact spectrum is, therefore, unachievable. If we think of the local scattering
as introducing a phase shift to the conduction electrons, combined with the above definition of the
free conduction-electron Green function, it becomes clear why we can not faithfully visualize the
spectrum. An attempt at simplifying the equations, breaking them down to the product of 𝐺𝑐 (0) and an
analytically calculable object depending on 𝐺𝑑 and the derivative of the free, local conduction-electron
Green function 𝐺

𝑐 (0)
loc is presented in Appendix B.

We can, however, estimate how a spectrum would look like if measured. There, the conduction
electrons will be influenced minimally by the resonant level, mostly via a phase shift, which will be
reflected in the shift of weight within the band. Disregarding this redistribution of weight, an expected
spectrum is shown in Fig. 2.8.
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Chapter 2 Atomic Lattices and Lattice Coherence

2.3 The Two-Band Hybridization Model

A fundamental “problem” of the resonant-level model is the broken discrete translation symmetry,
resulting in momentum being a bad quantum number. The model is justified for dilute, localized
resonant levels embedded in a metal. Increasing the concentration of the resonant levels will ultimately
lead to one level at each lattice site, at which point the model is a periodic resonant-level model9

𝐻𝑃𝑅𝐿𝑀 =
∑︁
®𝑘,𝜎

𝜀
𝑐
®𝑘𝑐

†
®𝑘𝜎

𝑐 ®𝑘𝜎
+

∑︁
𝑖,𝜎

𝜀
𝑑
𝑑
†
𝑖𝜎
𝑑
𝑖𝜎

+
∑︁
𝑖,𝜎

(
𝑉𝑐

†
𝑖𝜎
𝑑
𝑖𝜎

+ ℎ.𝑐.

)
. (2.78)

This is the flat-band local hybridization limit of a two-band hybridization model

𝐻2BHM =
∑︁
®𝑘,𝜎

𝜀
𝑐
®𝑘𝑐

†
®𝑘𝜎

𝑐 ®𝑘𝜎
+

∑︁
®𝑘𝜎

𝜀
𝑑
®𝑘 𝑑

†
®𝑘𝜎

𝑑 ®𝑘𝜎
+

∑︁
®𝑘𝜎

(
𝑉®𝑘𝑐

†
®𝑘𝜎

𝑑 ®𝑘𝜎
+ ℎ.𝑐.

)
. (2.79)

Momentum is a good quantum number for this model, and the Hamiltonian becomes block-diagonal
in ®𝑘-space with each block being a matrix in flavor-space.

𝐻2BHM =
∑︁
®𝑘,𝜎

(
𝑑
†
®𝑘𝜎

𝑐
†
®𝑘𝜎

) [𝜀𝑑®𝑘 𝑉
∗
®𝑘

𝑉®𝑘 𝜀
𝑐
®𝑘

] (
𝑑 ®𝑘𝜎
𝑐 ®𝑘𝜎

)
(2.80)

The system is solved by block-diagonalization of the Hamiltonian. As shown above, each block is a
hermitian 2 × 2 matrix. The eigenenergies are

𝐸 ®𝑘,1/2 =
1
2

[
𝜀
𝑐
®𝑘 + 𝜀

𝑑
®𝑘 ±

√︂(
𝜀
𝑐
®𝑘 − 𝜀

𝑑
®𝑘

)2
+ 4|𝑉 |2

]
. (2.81)

The eigenvectors are

®𝑣 ®𝑘,1 =

(
𝑒
𝑖𝜙 ®𝑘 cos(Θ®𝑘/2)

sin(Θ®𝑘/2)

)
, ®𝑣 ®𝑘,2 =

(
𝑒
−𝑖𝜙 ®𝑘 sin(Θ®𝑘/2)

cos(Θ®𝑘/2)

)
, (2.82)

where 𝜙 ®𝑘 is defined via 𝑉®𝑘 = |𝑉®𝑘 | · exp(𝑖𝜙 ®𝑘) and Θ®𝑘 = arccos(𝜀𝑐®𝑘 − 𝜀
𝑑
®𝑘 )/(𝐸 ®𝑘,1 − 𝐸 ®𝑘,2). Note that this

decouples exactly for 𝑉 = 0, which remains throughout the following discussion. The energies are
finite for finite parameters and finite bandwidth of 𝜀𝑐®𝑘 and 𝜀

𝑑
®𝑘 . Depending on the parameters, a gap can

appear. This will be explored in the next section.

Results for the lattice-momentum dependent spectra for a 1D system with parameters 𝜀𝑑®𝑘 = 𝜀
𝑑
= −0.3,

𝑉
2
®𝑘 = 𝑉

2
= 0.05 and 𝑉

2
®𝑘 = 𝑉

2
= 0.2 are shown in Fig. 2.9. The tendency of hybridizing bands to

avoid points of degeneracy is well visible. This concept is known as avoided crossing. It will play an
essential role in gauging the degree of lattice coherence in systems where localization competes with
de-localization.

9 The name is an analogy to the periodic Anderson model, which will be discussed later in the thesis.
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2.3 The Two-Band Hybridization Model

(a) 𝑉 = 0.05 (b) 𝑉 = 0.2

Figure 2.9: Spectral function of the 1D two-band hybridization model for two different 𝑉 , where 𝜀
𝑐
𝑘 = − cos(𝑘)

and 𝜀
𝑑
= −0.3. The coloring represents the flavor of the eigenvector in terms of 𝑐- and 𝑑 electrons. Here, 𝑘 is

dimensionless via the lattice constant 𝑎 = 1.

2.3.1 Band Gap

At this point, not much can be done without assuming details of the model. In an effort to restrict the
validity of results as little as possible while still reducing the complexity enough to allow for analytical
results, the assumption 𝜀

𝑑
®𝑘 = 𝜀

𝑑
0 + 𝜅 · 𝜀𝑐®𝑘 is made, where 𝜅 is a real number. This includes the flat-band

case 𝜅 = 0. The parameter 𝜅 can be restricted to |𝜅 | ≤ 1 without loss of generality. If |𝜅 | > 1 the role
of 𝑐- and 𝑑-electrons is just reversed and taking the 𝜀

𝑑
®𝑘 as the reference, i.e. 𝜀𝑐®𝑘 = 𝜀

𝑐
0 + 𝜅 · 𝜀𝑑®𝑘 leads to

identical equations with a new |𝜅 | ≤ 1 and 𝑐 ↔ 𝑑. This can also be done in the more general case,
where one would then use the 𝑑-electron DOS to replace the momentum sum and write 𝜀

𝑐
®𝑘 = 𝜀

𝑐 (𝜀𝑑®𝑘 ).
Furthermore, the parameter |𝑉 | is assumed ®𝑘-independent and finite.

Under this assumption, the eigenenergies take the shape

𝐸 ®𝑘,1/2 =
1
2

[
𝜀
𝑑
0 + (1 + 𝜅)𝜀𝑐®𝑘 ±

√︂(
(1 − 𝜅) · 𝜀𝑐®𝑘 − 𝜀

𝑑
0

)2
+ 4|𝑉 |2

]
, (2.83)

⇒ 𝐸1/2(𝜀) =
1
2

[
𝜀
𝑑
0 + (1 + 𝜅)𝜀 ±

√︂(
(1 − 𝜅) · 𝜀 − 𝜀

𝑑
0

)2
+ 4|𝑉 |2

]
. (2.84)

Three values of 𝜅 are of special interest: 𝜅 = −1, 0, 1. Specifically, one wants to determine whether
there is an energy gap Δ = min

[
𝐸 ®𝑘,1

]
− max

[
𝐸 ®𝑘,2

]
in the system.

• For 𝜅 = 0, the eigenenergies are

𝐸
𝜅=0
®𝑘,1/2

=
1
2

[
𝜀
𝑑
0 + 𝜀

𝑐
®𝑘 ±

√︂(
𝜀
𝑐
®𝑘 − 𝜀

𝑑
0

)2
+ 4|𝑉 |2

]
, (2.85)

⇒ Δ =
1
2

(√︃
(𝐷 + 𝜀

𝑑
0 )

2 + 4|𝑉 |2 +
√︃
(𝐷 − 𝜀

𝑑
0 )

2 + 4|𝑉 |2
)
− 𝐷 ≥ 0 , (2.86)

which results in a gap for |𝑉 | > 0. Typically, and especially for generic cubic lattices, this gap is
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(a) 𝜅 = 0.5, 𝑉 = 0.05 𝐷 (b) 𝜅 = −1, 𝑉 = 0.2 𝐷

Figure 2.10: Spectral function of the two-band hybridization model for two sets of parameters 𝑎 and 𝑉 , where
𝜀
𝑐
𝑘 = − cos(𝑘), 𝜀𝑑®𝑘 = 𝜅 · 𝜀𝑐®𝑘 + 𝜀

𝑑
0 , and 𝜀

𝑑
0 = −0.3 𝐷. The coloring represents the flavor of the eigenvector in

terms of 𝑐- and 𝑑 electrons. The grey dashed lines in (b) are at the predicted gap edges 𝜔 = ±|𝑉 |. Here, 𝑘 is
dimensionless via the lattice constant 𝑎 = 1.

indirect. Often, |𝜀𝑑0 |, |𝑉 | << 𝐷, leading to a small gap size. This can be nicely seen in Fig. 2.9
including the avoided crossing.

• The case 𝜅 = 1 gives

𝐸
𝜅=1
®𝑘,1/2

=
1
2

[
𝜀
𝑑
0 + 2𝜀𝑐®𝑘 ±

√︂(
𝜀
𝑑
0

)2
+ 4|𝑉 |2

]
(2.87)

= 𝜀
𝑐
®𝑘 +

1
2

[
𝜀
𝑑
0 ±

√︂(
𝜀
𝑑
0

)2
+ 4|𝑉 |2

]
, (2.88)

⇒ Δ =

√︂(
𝜀
𝑑
0

)2
+ 4|𝑉 |2 − 2𝐷 . (2.89)

The bands are, therefore, just the original 𝑐-electron band shifted by a constant. If this shift is
large enough to separate the bands, the system will be gapped. This requires (𝜀𝑑0 )

2+4|𝑉 |2 ≤ 4𝐷2.
Typically, the conduction-electron bandwidth is the largest scale in such microscopic models;
the case 𝜅 = 1 is, therefore, typically non-gapped. An example is shown in Fig. 2.10(a). Avoided
crossing can also be seen around 𝑘/𝜋 ≈ ±0.5, where the touching points get repelled. Due to
the identical sign of slope, this does not lead to a gap.

• Finally, 𝜅 = −1 yields

𝐸
𝜅=−1
®𝑘,1/2

=
1
2

[
𝜀
𝑑
0 + ±

√︂(
2𝜀𝑐®𝑘 − 𝜀

𝑑
0

)2
+ 4|𝑉 |2

]
(2.90)

⇒ Δ = 2|𝑉 | . (2.91)

This case, therefore, leads to a gapped system with a gap size 2|𝑉 |. An example is shown in
Fig. 2.10(b). The avoided crossing is nicely visible and leads to a clear gap.
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2.3 The Two-Band Hybridization Model

2.3.2 Density of States

The lattice density of states, which is also the local density of states due to translational invariance,
can be calculated using the canonical definition

𝜌(𝜔) =
∑︁
®𝑘

𝛿(𝜔 − 𝜀 ®𝑘) , (2.92)

replacing the dispersion 𝜀 ®𝑘 by the eigenenergies 𝐸 ®𝑘,𝑖 for 𝑖 = 1, 2. This is—in general—still a
demanding calculation. For the more specific case 𝜀

𝑑
®𝑘 = 𝜀

𝑑 (𝜀𝑐®𝑘) the momentum sum can be replaced
by an integral over the conduction-electron dispersion via their free DOS. The resulting expression is

𝜌𝑖 (𝜔) =
∑︁
®𝑘

𝛿(𝜔 − 𝐸 ®𝑘,𝑖) (2.93)

=

∫
d𝜀 𝜌

𝑐 (𝜀) 𝛿
(
𝜔 − 𝐸𝑖 (𝜀)

)
(2.94)

=

∫
d𝜀 𝜌

𝑐 (𝜀)
∑︁
𝑗

𝛿(𝜀 − 𝜈 𝑗)
|𝐸 ′
𝑖 (𝜈 𝑗) |

(2.95)

=
∑︁
𝑗

𝜌
𝑐 (𝜈 𝑗)

|𝐸 ′
𝑖 (𝜈 𝑗) |

, (2.96)

where 𝜈 𝑗 are the roots of 𝜔 − 𝐸𝑖 (𝜀) in 𝜀 and 𝐸
′
𝑖 (𝜈 𝑗) is the derivative 𝜕𝐸𝑖 (𝜀)/𝜕𝜀 at 𝜀 = 𝜈𝑖 . Typically,

the bands are of finite bandwidth; therefore, the eigenenergies 𝐸𝑖 are finite, leading to 𝜌𝑖 (𝜔) also
being of finite bandwidth. Within the approximation 𝜀

𝑑
®𝑘 = 𝜀

𝑑
0 + 𝑎 · 𝜀𝑐®𝑘 , as defined in the previous

section, the roots of 𝜔 − 𝐸𝑖 (𝜀) can be determined exactly. First, we can evaluate the derivative

𝜕𝐸1/2(𝜀)
𝜕𝜀

=
1
2

[
1 ± (𝜀 − 𝜀

𝑑)/
√︂(

𝜀 − 𝜀
𝑑
)2

+ 4|𝑉 |2
]

(2.97)

For 𝑎 = 0, the solution is simply

𝜈
𝑎=0
1/2 =

(
𝜔 − |𝑉 |2

𝜔 − 𝜀
𝑑
0

)
Θ

(
±(𝜔 − 𝜀

𝑑
0 )

) ���
𝜔≠𝜀

𝑑
0
. (2.98)

The theta-function is necessary since the solution produces a term like ±
√︁
𝑥

2
= ±|𝑥 |, which is only a

solution to the problem if the sign in front of the square-root is identical to the sign of 𝑥. This solution
produces a gap around 𝜔 = 𝜀

𝑑
0 , which can be seen in Fig. 2.11 for the same parameters as in Fig. 2.9.

The avoided crossing leads to singularities at the gap boundaries.

The other cases are much harder to solve for arbitrary parameters. The significantly increased
complexity of this calculation is disproportionate to the physical insight gained. Thus, it is omitted in
this discussion. Generally speaking, calculating the density of states is straightforward and efficient if
one knows the roots of 𝜔 − 𝐸𝑖 (𝜀) either analytically or numerically.
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(a) 𝑉 = 0.05 (b) 𝑉 = 0.2

Figure 2.11: Density of states of the 1D two-band hybridization model for two different 𝑉 , where 𝜀𝑐𝑘 = − cos(𝑘)
and 𝜀

𝑑
= −0.3.

2.3.3 Green Functions

Equivalently, the system could have been solved using the Green function equation of motion technique,
just as in the case of the resonant lattice model. Due to translational symmetry, full Green functions
are diagonal in ®𝑘-space. The Dyson equations (with the argument 𝜔 suppressed for readability) are[

𝐺
𝑑
]−1
®𝑘𝜎 =

[
𝐺
𝑑 (0) ]−1

®𝑘𝜎 − |𝑉®𝑘 |
2
𝐺
𝑐 (0)
®𝑘,𝜎

, and (2.99)[
𝐺
𝑐
]−1
®𝑘𝜎 =

[
𝐺
𝑐 (0) ]−1

®𝑘𝜎 − |𝑉®𝑘 |
2
𝐺
𝑑 (0)
®𝑘𝜎

. (2.100)

Iteration to infinite order yields the 𝑇-matrix equations

𝐺
𝑑
®𝑘𝜎 = 𝐺

𝑑 (0)
®𝑘𝜎

+ 𝐺
𝑑 (0)
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|𝑉®𝑘 |
2
𝐺
𝑐
®𝑘𝜎 𝐺

𝑑 (0)
®𝑘𝜎

, and (2.101)

𝐺
𝑐
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®𝑘𝜎

+ 𝐺
𝑐 (0)
®𝑘𝜎

|𝑉®𝑘 |
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𝐺
𝑑
®𝑘𝜎 𝐺

𝑐 (0)
®𝑘𝜎

. (2.102)

The self-energy equations are most useful here since they are diagonal in all quantum numbers,
are numerically more stable, and maintain analyticity. Again, as with the resonant-level model,
the problem of using free Green functions is also present here. It is, therefore, much preferred to
diagonalize the Hamiltonian, if possible.
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CHAPTER 3

Heavy Fermions and Interacting Models

Despite the simplicity of the models discussed in the previous chapter they already allowed for deep
physical insight into the competition between itinerant and localized electrons and, more generally,
the interplay of non-orthogonal bands. The next logical step is to include the Coulomb interaction
between two or more electrons. This adds higher-order terms to the Hamiltonian, prohibiting an exact
solution except in special cases. With this, multiple different models arise.

As a first step, one can consider the local interaction of itinerant electrons in the Hubbard model,
which brings about another realization of the competition between localization and de-localization.
Prototypical examples for more localized electrons are systems of 𝑑- or 𝑓 -orbital electrons, which are
typically confined to the vicinity of the host ion in contrast to 𝑠- or 𝑝-orbital electrons that tend to
become de-localized throughout the lattice. Specifically, for strongly localized electrons, the overlap
between electrons on neighboring sites is small, while the density of such electrons on the same
site overlaps strongly, resulting in a large Coulomb interaction. This is the narrow-band limit of the
Hubbard model.

The Anderson impurity model, on the other hand, incorporates the hybridization of localized,
interacting electrons with itinerant, typically non-interacting electrons into the picture, leading to yet
another realization of the aforementioned competition by attributing the two extremes of localization
to different particles. The low-energy limit of the Anderson impurity model in the local moment
regime (impurity occupation pinned to one) is the Kondo model, in which the interaction is reduced
to a local Heisenberg-like spin interaction between itinerant and localized electrons. The hallmark
feature of the Kondo effect is the screening of this localized spin by the conduction electrons for
antiferromagnetic coupling below the so-called Kondo temperature 𝑇𝐾 . At first glance, the singlet
ground state appears to be a strongly localized object but turns out to lead to an extended region of
screening, the Kondo cloud. The finite energy (𝑘𝐵𝑇𝐾 ) required to break up the singlet leads to a
characteristic time scale over which the electrons can move while still participating in the screening,
leading to the aforementioned effect. Surprisingly, the low-energy state is locally describable with a
Fermi liquid, where the ground state is the local singlet, and conduction-electron hopping is considered
a weak perturbation to this state.

Extending those local models to the lattice case opens up the possibility for a much richer phase
space. The local Fermi-liquid picture can be immediately extended to the lattice case, leading to
heavy quasiparticles at the Fermi energy. These heavy quasiparticles are the defining feature of a
whole class of materials known as heavy-fermion metals, which exhibit unique electronic properties

29



Chapter 3 Heavy Fermions and Interacting Models

Figure 3.1: Resistivity measurement on Ce𝑥 La1−𝑥 Cu6 with varying Cerium concentration, extracted from [25].
The lines are of increasing Ce concentration from top to bottom. A low concentration leads to the expected
results for dilute magnetic impurities, whereas a large concentration leads to Fermi liquid behavior.

and complex magnetic behaviors. Most notably, resistivity in the single-impurity case was found to
increase when approaching 𝑇𝐾 and reach a plateau at temperatures well below, whereas the formation
of a Fermi liquid leads to a vanishing resistivity. The transition from localized to itinerant physics has
been observed several times by now, of which an early example is shown in Fig. 3.1. Additionally,
magnetic ordering can occur via long-distance conduction-electron-mediated spin interaction. Since
both originate from the same local spin interaction, their competition is an ongoing field of research.
One of the most intriguing features of this competition is the appearance of a quantum-critical point
between the magnetically ordered phase and the heavy Fermi liquid.

This chapter explores the physics of such interacting systems with competition between localization
and de-localization. Starting with the Hubbard model for interacting electrons in 𝑠-orbitals, which
allows investigation of the transition from metallic to insulating behavior in narrow-band systems
and still proves a formidable challenge until today. This is followed up by an extensive discussion of
the 𝑠-𝑑 model and Kondo’s treatment of the single-spin version (the Kondo model) focusing on the
energy scales, electrical resistivity, and magnetic susceptibility. Although one might be tempted to
consider Kondo’s model to be much different from Hubbard’s model, there is a connecting link, which
is discussed immediately after: the Anderson impurity model. There, a local impurity is modeled by
an interacting theory in the same way as the interaction in the Hubbard model was modeled. This
impurity is coupled to a free conduction-electron sea and leads to a much more promising description
of local impurities than just the resonant-level model. Finally, the extension to the lattice case of the
two local models is presented.
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3.1 Hubbard’s Model for Electrons in 𝒔-Orbitals

While the previously discussed models in chapter 2 allow for a deep insight into simple metals
at high temperatures, the fermionic nature of the conduction electrons paired with the Coulomb
interaction between charged particles allows for a straightforward and seemingly simple extension
of free electronic bands that can describe a broader range of systems at lower temperatures. This is
achieved by the Hubbard model [26, 27], which was originally designed for 𝑠-orbital bands but can
also describe other bands in the case of sufficiently large Coulomb repulsion.

The restrictions to 𝑠-orbitals stem from the problem of representing fermionic many-body states with
field operators. This will be explored more in the next section. For now, let’s restrict the discussion to
𝑠-orbitals as Hubbard originally did. The bands are described by a usual quadratic Hamiltonian as
before, which, in real space, is typically well approximated by a tight-binding model. The Coulomb
repulsion, in the lowest non-vanishing order, will act locally when two electrons reside on the same
site (but with different spin).

𝐻HM =
∑︁
𝑖, 𝑗 ,𝜎

(𝑇𝑖− 𝑗 − 𝜇𝛿𝑖 𝑗)𝑐
†
𝑖𝜎
𝑐
𝑗 𝜎

+𝑈
∑︁
𝑖

𝑐
†
𝑖↑𝑐𝑖↑𝑐

†
𝑖↓𝑐𝑖↓ (3.1)

=
∑︁
®𝑘,𝜎

(𝜀𝑐®𝑘 − 𝜇)𝑐†®𝑘𝜎𝑐 ®𝑘𝜎 +𝑈
∑︁
𝑖

�̂�𝑖↑�̂�𝑖↓ (3.2)

𝑈 =

∬
R𝑑⊗R𝑑

d𝑑𝑟 d𝑑𝑟 ′ 𝜙∗(®𝑟)𝜙∗(®𝑟 ′) 𝑒
2

|®𝑟 − ®𝑟 ′ |
𝜙 (®𝑟 ′)𝜙 (®𝑟) (3.3)

Here, 𝜙(®𝑟) are the Wannier functions of the conduction electrons. The chemical potential is now
included, which was unaccounted for in the previous sections. The hopping term 𝑇 de-localizes the
electrons, whereas 𝑈 acts locally and emphasizes local effects. The interaction term brings about
a rich field of phases. Most notably, when 𝑈 → ∞ and 𝜇 < 𝐷, where 𝐷 is the bandwidth, the
system potentially undergoes a phase transition to a Mott insulator. This phase is characterized by the
restriction

∑
𝜎 ⟨�̂�𝑖𝜎⟩ = 1 ∀𝑖. For finite 𝑈, this can happen at a finite temperature but depends a lot on

the details of the system. Inherently, the competition between (non-commuting) non-local and local
terms is of great importance to the phase diagram of any given Hubbard model.

Free electrons are naturally paramagnetic; interactions can, however, lead to a more intricate
magnetism. According to Stoner [28], a system of itinerant electrons with exchange interaction can
develop a spin-polarized state. Exchange interactions are naturally present in fermionic systems, where
Coulomb interaction is considered, e.g. the Hubbard model. Pauli’s principle does not allow for double
occupation of the same spin at any given site. Therefore, Coulomb repulsion between electrons of the
same spin orientation is much reduced since they are kept apart. Opposite orientations are, however,
not influenced by the exclusion principle, and therefore, the Coulomb interaction between different
spins is, on average, much larger. Therefore, from this perspective, it is energetically favorable to
spin-polarize the system, leading to ferromagnetism. Although this argument is only exactly correct for
𝑇 = 0 (mean-field Hubbard model), it is an excellent example of how interactions influence fermionic
systems.

Depending on the band filling, the large-𝑈 limit can be shown to lead to the 𝑡-𝐽-model [29] or the
Heisenberg model [30], emphasizing the importance of exchange interaction in interacting models.

For completeness, attractive interaction leads to BCS-superconductivity.
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Chapter 3 Heavy Fermions and Interacting Models

3.2 Hubbard Operators

Although originally designed for atomic 𝑠-orbitals exclusively, the Hubbard model has since been
applied to more realistic cases in which bands contain combinations of multiple orbitals. Considering
𝑠-orbitals enables focusing on the electronic spin as the only local quantum number. This makes the
model nice and simple to write down. Degeneracies are often broken in real-world solids since exact
degeneracy typically needs to be protected by a strong symmetry to survive through higher-order
approximations. It is, therefore, not too far-fetched to use the Hubbard model for Bloch bands in
solids. However, the cases where symmetries are not broken need a bit more treatment than the
original Hubbard model. In his second paper about this subject [27], Hubbard discussed extensions to
degenerate models, specifically addressing atomic orbitals with 𝐿 > 0. Electrons in such orbitals can
be characterized by the field operators 𝑐𝑚𝜎 , where 𝑚 represents the orbital quantum number and 𝜎

spin. The quadratic part of the Hamiltonian is now generalized straightforwardly, typically maintaining
diagonality in all quantum numbers. The interaction term, though, even when only considering the
lowest (quartic) order, now includes all allowed combinations of 𝑚 and 𝜎

𝐻HM2 =
∑︁
®𝑘,𝑚,𝜎

(𝜀𝑐
𝑚, ®𝑘 − 𝜇)𝑐†®𝑘𝑚𝜎𝑐 ®𝑘𝑚𝜎 +𝑈

∑︁
𝑖

∑︁
𝑚,𝑚

′

𝜎,𝜎
′

(1 − 𝛿𝑚𝑚′𝛿𝜎𝜎′)�̂�𝑖𝑚𝜎 �̂�𝑖𝑚′
𝜎

′ . (3.4)

The field theory for such a model now includes many different combinations of field operators due to
the highly mixed interaction term. This inspired Hubbard to group field operators together such that
𝑋𝑎𝑏 = 𝑐

†
𝜎1

. . . 𝑐
†
𝜎𝑛

𝑐𝜎1
. . . 𝑐𝜎𝑚

≡ |𝑎⟩ ⟨𝑏 | connects two many-body states. A direct consequence of this
definition is 𝑋𝑎𝑏𝑋𝑐𝑑 = 𝛿𝑏,𝑐𝑋𝑎𝑑 , from which the Hubbard-operator superalgebra[

𝑋𝑎𝑏, 𝑋𝑐𝑑
]
± = 𝛿𝑏,𝑑𝑋𝑎𝑑 ± 𝛿𝑎,𝑑𝑋𝑏𝑐 (3.5)

directly follows. Despite the advantages, working with such operators in a field-theoretical context is
impractical since Wick’s theorem does not hold due to the non-canonical (anti-)commutation relation.

Despite the apparent impracticality, Hubbard operators have been quite useful in special cases. Most
notably, they allow for a faithful representation of the 𝑈 → ∞ case, in which the Hubbard term can be
discarded, and only empty and singly-occupied Hubbard operators remain in the model1. Another
case is back-engineering models for systems of highly localized electrons and crystal field splitting
(c.f. Section 4.3) in which a single valence configuration is split into several multiplets. Such states
can not be straightforwardly represented with fermionic field operators.

1 Although I am not aware of any papers explicitly using Hubbard operators for this case, the slave-boson approach by
Kotliar and Ruckenstein [31] implicitly relies on that picture.
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3.3 Anderson’s Single-Impurity Model

In an effort to describe the physics of dilute localized magnetic moments in metals (c.f. [32]), Anderson
argued that a description that only includes potential scattering is not well motivated for cases where
the magnetic moments stem from inner-shell electrons. The standard example at that time was
the 𝑠 − 𝑑 case, where conduction electrons of the metallic host were modeled as itinerant 𝑠-orbital
electrons, and local moments were attributed to strongly localized 𝑑-shell electrons. A description in
terms of single-particle models (c.f. the resonant-level model in Section 2.2) would always lead to a
de-localization of the originally localized state. The description is also oblivious to spin structure,
leading to incompatibility with the experimentally observed temperature dependence of local magnetic
moments. Anderson argued that the coulomb interaction of the strongly localized atomic 𝑑-shell states
is non-negligible and, therefore, must be included in a faithful description.

In 1961 [32], he thus proposed a model for a single magnetic impurity embedded in a dilute metallic
host. The model Hamiltonian is comparably simplistic but surprises by providing rich physics. Its
base is a free conduction-electron theory

𝐻𝑐 =
∑︁
®𝑘,𝜎

(
𝜖
𝑐
®𝑘 − 𝜇

)
𝑐
†
®𝑘𝜎

𝑐 ®𝑘𝜎
, (3.6)

which could, for example, be a tight-binding model with nearest-neighbor hopping in combination
with a chemical potential. The impurity is modeled by a single localized level like in the resonant-level
model of Section 2.2 but with an additional term accounting for the non-negligible Coulomb interaction
on-site

𝐻𝑑 =
∑︁
𝜎

(
𝜖
𝑑 − 𝜇

)
𝑑
†
𝜎𝑑𝜎 +𝑈𝑛

𝑑
↑ 𝑛
𝑑
↓ , (3.7)

where 𝑛
𝑑
𝜎 = 𝑑

†
𝜎𝑑𝜎 is the density operator of the impurity electron with spin 𝜎. Here, 𝑈 is defined in

the same way as in Eq. (3.3) just for the Wannier functions of the impurity instead of the conduction
electrons2. This is, again, an idealized picture. Those impurity states typically are 𝑑- or 𝑓 -shell
electrons with potentially complex structures. Let’s stick to this original version for now, though. The
two species of electrons hybridize via

𝐻hyb =
∑︁
®𝑘,𝜎

(
𝑉®𝑘𝑐

†
®𝑘𝜎

𝑑𝜎 + ℎ.𝑐.

)
, (3.8)

𝑉®𝑘 =
∑︁
𝑖

𝑒
𝑖 ®𝑘 ®𝑅𝑖 ⟨𝜙𝑑 | 𝐻 |𝜙𝑐𝑖 ⟩ , (3.9)

where ⟨𝜙𝑑 | is the localized impurity state, 𝐻 the Hamiltonian, and |𝜙𝑐𝑖 ⟩ the conduction-electron state
at site 𝑖 (centered at position ®𝑅𝑖). Alternatively, with Wannier functions, the hybridization prefactor is

𝑉®𝑘 =
∑︁
𝑖

𝑒
𝑖 ®𝑘 ®𝑅𝑖

∬
R𝑑⊗R𝑑

d𝑑𝑟 d𝑑𝑟 ′ 𝜙★𝑑 (®𝑟) ⟨®𝑟 | 𝐻 |®𝑟 ′⟩ 𝜙𝑐 ( ®𝑅𝑖 , ®𝑟
′) (3.10)

2 I want to clarify here that, despite the Hubbard model being briefly discussed before the Anderson impurity model in this
thesis, the latter was proposed in 1961 [32], whereas the Hubbard model came to life two years later, in 1963 [26].
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Chapter 3 Heavy Fermions and Interacting Models

The Hamiltonian can—in principle—contain terms of kinetic energy, impurity potential, Coulomb
potential, spin-orbit interaction, and coupling to external fields.

Anderson argued that the overlap should be minimal—if not zero—on-site due to the orthogonality
of orbital wave functions on the same atom. It turns out that the approximation 𝑉®𝑘 = 𝑉0 is often
justified either due to high (almost spherical) symmetry or when one is interested in low-energy
physics. As we will see later, the details of the conduction electrons and hybridization will not be
important for the low-energy sector, which is typically the region of interest.

The full Hamiltonian is the sum of all three,

𝐻SIAM = 𝐻𝑐 + 𝐻𝑑 + 𝐻hyb (3.11)
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This is known as the single-impurity Anderson model (SIAM). In the most interesting regime (local
moment regime, c.f. next section), the parameters are 𝜀

𝑑
< 𝐸𝐹 , 𝑉 < 𝐷/10, 𝑈 > |𝜀𝑑 |, and 𝑈 ≳ 𝐷,

where 𝐸𝐹 is the Fermi energy and 𝐷 the half bandwidth of the conduction electrons. Single-particle
energies are usually defined in reference to the Fermi energy, a convention I will adhere to in the
following except where explicitly stated otherwise.

Although the following discussion was composed by myself, it is—of course—not unique. Many
people have analyzed the SIAM and came to similar or identical conclusions. I want to highlight an,
in my eyes, outstanding review of the topic by Antoine Georges [33].

3.3.1 Spectrum of the SIAM I

Analyzing the impurity part of Eq. (3.12) we can estimate the shape of the spectrum. First, the
spectral function is the imaginary part of the advanced Green function. If we write this in the
Lehmann-representation [34]

𝐴𝜎 (𝜔) =
1
Z

∑︁
𝑛,𝑚

𝛿
(
𝜔 − (𝐸𝑛 − 𝐸𝑚)

) (
𝑒
−𝛽𝐸𝑚 + 𝑒

−𝛽𝐸𝑛

) ��⟨𝑚 | 𝑑𝜎 |𝑛⟩
��2 (3.13)

we can identify the individual single-particle processes that will lead to peaks. The local impurity
state has three different valence configurations: empty, singly occupied, and doubly occupied. The
three states have respective energy 0, 𝜀𝑑 − 𝜇, and 2(𝜀𝑑 − 𝜇) +𝑈. An illustration of this level scheme
is plotted in Fig. 3.2 for three different cases.

We can now systematically go through those states, reducing the particle number by one.

• First, the transition from doubly- to singly occupied. The energy difference is𝐸𝑛−𝐸𝑚 = 𝜀
𝑑−𝜇+𝑈.

This will lead to a peak above the Fermi energy for cases (a) and (b) in Fig. 3.2.

• The transition from singly- to unoccupied. The energy difference is 𝐸𝑛 − 𝐸𝑚 = 𝜀
𝑑 − 𝜇. This

will lead to a peak below the Fermi energy for cases (a) and (b) in Fig. 3.2.

This spectrum is sketched in Fig. 3.3, where the peaks are just Lorentzians of a given width
Γ(𝜔) = 𝜋 |𝑉 |2𝜌𝑐 (𝜔) at the appropriate positions. The broadening of peaks works in the same way as
for the resonant-level model (c.f. Eq. (2.56)). In this context, Γ(𝜔) is often called the hybridization
function and plays an essential role in the physics of impurity systems.
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3.3 Anderson’s Single-Impurity Model

(a) Empty impurity regime 2𝜀𝑑 +𝑈 >

𝜀
𝑑
> 0.

(b) Local-moment regime 2𝜀𝑑 +𝑈 >

0 > 𝜀
𝑑 .

(c) Filled-impurity regime 0 > 𝜀
𝑑
>

2𝜀𝑑 +𝑈.

Figure 3.2: Illustration of the impurity level-scheme in the SIAM. The corresponding energies are the
level-energies, not the single-particle excitations. Energies are given in reference to the Fermi energy.

Figure 3.3: Sketch of the impurity spectral function in the single-impurity Anderson model with Γ/𝐷 = 0.1,
𝜀
𝑑/𝐷 = −0.2, and 𝑈/𝐷 = 0.6.

3.3.2 Parameter Regimes of the SIAM

A significant advantage of the model is the ability to describe impurity physics over a range of
electronic valence. For this, let’s assume Γ to be constant, which includes the Γ = 0 case of a
decoupled impurity.

Let’s restrict the discussion to the ordering 𝜀
𝑑 − 𝜇 ≤ 𝜀

𝑑 − 𝜇 +𝑈, with the empty state being pinned
to the Fermi energy, i.e. 𝐸 = 0. If the order is reversed, the discussion can be re-formulated in terms
of electron holes; the assumption, therefore, does not restrict the generality of the results. The average
occupation of the impurity in the context of the previous discussion and the above assumption of a
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Chapter 3 Heavy Fermions and Interacting Models

Figure 3.4: Exemplary 𝑇 = 0 and Γ/𝐷 = 1 impurity occupation according to Eq. (3.14) with 𝑈/𝐷 = 10. Thick
dashed lines represent the positions of the two Lorentzian peaks in the spectrum; thin dashed lines are a guide
to the eye.

constant Γ is (c.f. Eq (2.57))
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where 𝑛𝐹 (𝜔,𝑇) is the Fermi-Dirac distribution function at temperature 𝑇 . The parameter regimes can
be classified by the average occupation of which an exemplary parameter scan is shown in Fig. 3.4.

I. Empty impurity: If 𝜀𝑑 − 𝜇 > 0 and 𝜀
𝑑 − 𝜇 +𝑈 > 0, since the empty state is pinned to the Fermi

energy, the occupation will be close to zero. This corresponds to the third sector

II. Local moment: The case 𝜀𝑑 − 𝜇 < 0 and and 𝜀
𝑑 − 𝜇 +𝑈 > 0 leads to an average occupation of

approximately unity.

III. Filled impurity: For 𝜀𝑑 − 𝜇 < 0 and 𝜀
𝑑 − 𝜇 +𝑈 < 0 the impurity occupation will be close to

two.

• Mixed valence: The above occupations become exactly zero, one, and two for 𝑇 = 0 and Γ = 0.
In reality, either of the two parameters induces a finite crossover between the regimes in which
the occupation is non-integer. Those regions are of mixed valence.

Notably, the local-moment case is also exactly realized for a particle-hole symmetric model of finite
Γ. Another case is the 𝑈 = 0 limit, in which the model reduces to the resonant-level model of
Section 2.2. Despite looking deceivingly similar, the major difference is the second term of the
right-hand side of Eq. (3.14) now being identical to the first one, resulting in the collapse of the
picture in Fig. 3.4 to the picture in Fig. 2.4 with the absence of the local-moment regime (apart from
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3.3 Anderson’s Single-Impurity Model

the—unlikely—particle-hole symmetric case). This is ultimately why the Hubbard-𝑈 term is often
needed to describe impure metals.

3.3.3 Spectrum of the SIAM II

The discussion was so far only concerned with simple single-particle effects, which turns out to be
incomplete. The strong-coupling limit, which favors the local-moment regime, leads an enhanced
exchange coupling, which is an effect already discussed in the context of the Hubbard model
in Section 3.1. For low temperatures, the occupation of the impurity is pinned to unity, but is
spin-degenerate. The local moment can, therefore, fluctuate.

Let’s investigate the level scheme of the strong-coupling limit, illustrated in Fig. 3.2. An electron
on the impurity with spin 𝜎 can only change its spin orientation via an intermediate state. Due to the
large energy of the doubly occupied state, the best option is via the empty state. At finite temperatures,
the corresponding first-order particle exchange is energetically allowed, and the intermediate state is
thermally occupied. At zero temperature, the impurity spends no time in the empty state and must be
occupied instantly. Due to spin degeneracy, the “new” electron can have an opposite spin, resulting in
a spin-flip of the impurity. This is mediated via conduction electrons such that, due to the intermediate
state being virtual, there is a simultaneous spin flip of conduction- and impurity electrons. In an
idealized picture (Γ → 0), this process has an excitation energy of 𝜔 → 0, so it will reside precisely at
the Fermi edge. In reality, the excitation energy is not restricted to exactly zero due to the broadening
of the single-particle peak, which is the peak of the spectrum corresponding to the single occupation.

If the resulting spin exchange is energetically attractive, i.e. an effective antiferromagnetic spin-
coupling arises, the ground state will be a stable spin-singlet between conduction- and impurity
electrons. We now need to remember that this purely arises from the local Coulomb interaction, as
discussed in the previous section. It should, therefore, be reflected in the impurity self-energy Σ(𝜔) as
a local minimum due to the stability of the singlet state. This minimum must be temperature-dependent
due to the aforementioned temperature-dependent transition from a single-particle process to a

Figure 3.5: Sketch of the impurity spectral function in the single-impurity Anderson model with Γ/𝐷 = 0.1,
𝜀
𝑑/𝐷 = −0.2, and 𝑈/𝐷 = 0.6 including the Kondo peak.
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Figure 3.6: Sketch of one component of the localized spin singlet in the Kondo model. The conduction-electron
hopping in this picture is assumed to be between nearest neighbors.

two-particle process. The development of an attractive singlet state leads to a peak in the spectrum,
the so-called Abrikosov-Suhl resonance [35–37], or Kondo peak, due to its origin in the Kondo effect,
which will be discussed in the next section. A sketch of the low-temperature spectrum is shown in
Fig. 3.5.

A local Fermi-liquid description can also be made to explain the appearance of this feature in the
spectrum [38, 39], which is the famous Noziéres Fermi liquid. There, the hopping of conduction
electrons is considered a perturbation to the local singlet state, c.f. Fig. 3.6.

Another important observation can be made in the absence of particle-hole symmetry. Then, one of
the peaks will be closer to the Kondo resonance than the other, resulting in a level repulsion effect,
where the Kondo peak is shifted either above or below the Fermi energy.

Finally, Schrieffer and Wolff in 1966 [40] were able to construct an effective low-energy model of
the SIAM via a unitary transformation. This Schrieffer-Wolff transformation connected Anderson’s
model from 1961 to the famous 𝑠-𝑑 model (or Kondo model), with which Kondo was able to explain
the resistance minimum in impure metals [2] in 1964. Thus ending the debate about the sign of the
spin-interaction (ferromagnetic or antiferromagnetic) in favor of antiferromagnetic coupling since the
other case would not lead to the observed behavior of a resistance minimum.
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Figure 3.7: Measured resistance of various gold-wire samples by W.J. De Haas and G.H. Van Den Berg in 1936.
Plots taken from [41].

3.4 The 𝒔-𝒅 Model and Kondo’s Treatment

A particular interest in the physics of impure metals arose in the 1930s due to the unexpected
measurements of resistance minima in metals at low temperatures, an example of which is shown in
Fig. 3.7. Early explorations of possible explanations were focused on potential scattering, pioneered
by Friedel [42]. Despite giving rise to the concept of virtual bound states, which would become vital
in the understanding of involved physics, potential scattering ultimately did not explain the minimum.
Only when the 𝑠-𝑑-model was outlined by Zener [43] and refined by Kasuya [4] and Yosida [5] in
the 1950s spin-interactions were brought into focus which lead to the explanation of the resistance
minimum by Kondo [2] in 1964.

The most concise form of the 𝑠-𝑑-model is the one that was put forward by Kasuya [4]3,

𝐻𝑠−𝑑 =
∑︁
®𝑘,𝜎

𝜀
𝑐
®𝑘𝑐

†
®𝑘𝜎

𝑐 ®𝑘𝜎
+

∑︁
®𝑞
𝐽 ( ®𝑞) ®𝑆 ®𝑞 · ®𝑠− ®𝑞 , (3.15)

®𝑆 ®𝑞 =
∑︁
𝑛

𝑒
𝑖 ®𝑞 ®𝑅𝑛 ®𝑆𝑛 , (3.16)

®𝑠 ®𝑞 =
∑︁
𝑖

𝑒
𝑖 ®𝑞®𝑟𝑖 ®𝑠𝑖 , (3.17)

®𝑠𝑖 =
1
2

∑︁
𝜏,𝜏

′
𝑐
†
𝑖𝜏
®𝜎𝜏𝜏′𝑐𝑖𝜏′ =

∑︁
®𝑘, ®𝑘′

𝑒
𝑖 ( ®𝑘′− ®𝑘 ) ®𝑟𝑖𝑐†®𝑘𝜏

®𝜎𝜏𝜏′𝑐 ®𝑘′𝜏′ , (3.18)

3 The sign convention of the spin interaction varies strongly between the different treatments. I will consistently use the
sign so that a positive 𝐽 leads to antiferromagnetic coupling.
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where ®𝑆𝑛 is the localized spin at the lattice vector ®𝑅𝑛 and ®𝑠𝑖 is the conduction-electron spin at position
®𝑟𝑖 .

The model is, in principle, a lattice model but can also describe dilute impurity systems by
considering a reduced localized-spin concentration. If the concentration is low enough such that
impurities are far apart, the physics of this system should be dominated by local contributions, leading
to a simpler model

𝐻Kondo =
∑︁
®𝑘,𝜎

𝜀
𝑐
®𝑘𝑐

†
®𝑘𝜎

𝑐 ®𝑘𝜎
+ 𝐽 ®𝑆 · ®𝑠 , (3.19)

with only a single impurity spin at position ®𝑅 = 0. It is often useful to write the spin-scattering term
in the original 𝑠-𝑑-model formulation

𝐽 ®𝑆 · ®𝑠 = +
∑︁
®𝑘, ®𝑘′

𝐽

(
𝑆
+
𝑐
†
®𝑘 ↓
𝑐 ®𝑘′ ↑

+ 𝑆
−
𝑐
†
®𝑘 ↑
𝑐 ®𝑘′ ↓

+ 𝑆𝑧

[
𝑐
†
®𝑘 ↑
𝑐 ®𝑘′ ↑

− 𝑐
†
®𝑘 ↓
𝑐 ®𝑘′ ↓

] )
, (3.20)

where 𝑆
± are the impurity-spin ladder operators. The model can then be extended to the dilute case

with a given impurity concentration, assuming a random orientation of the local moments such that
each occurring sum over impurities can be replaced by a concentration-weighted single-impurity
quantity, which is what Kondo used in his seminal paper. For completeness, this model is lacking the
potential-scattering term [24]

𝐻pot. =
∑︁

®𝑘, ®𝑘′ ,𝜎

⟨®𝑘 |𝑉eff
imp | ®𝑘

′⟩ 𝑐†®𝑘𝜎𝑐 ®𝑘′𝜎 , (3.21)

where 𝑉
eff
imp is the effective impurity potential. In a system where an impurity atom substitutes a

host-metal atom, this potential can be seen as the additional (usually Coulomb-) potential generated
by the locally increased or reduced charge. In any case, it is a single-particle term and thus only
renormalizes the free conduction-electron spectrum in a straightforward way (c.f. resonant-level model
in Sec. 2.2).

For completeness, linking this section back to the previously discussed single-impurity Anderson
model, the parameter 𝐽 of Eq. (3.20) can be expressed in terms of the parameters of the SIAM
(Eq. (3.12)) via the Schrieffer-Wolff transformation [40] as

𝐽®𝑘 ®𝑘′ = −2𝑉∗
®𝑘𝑉®𝑘′

{
1

𝜀
𝑑 − 𝜀

𝑐
®𝑘

− 1
𝜀
𝑑 − 𝜀

𝑐
®𝑘′ +𝑈

}
, (3.22)

⇒ 𝐽®𝑘𝐹 ®𝑘𝐹
= −2

���𝑉®𝑘𝐹

���2 {
1
𝜀
𝑑
− 1
𝜀
𝑑 +𝑈

}
= −

���𝑉®𝑘𝐹

���2 2𝑈
(𝜀𝑑 +𝑈)𝜀𝑑

. (3.23)

The Fermi energy is zero here since both 𝜀
𝑑 and 𝜀

𝑐 are expressed with respect to the Fermi energy,
making 𝜀

𝑐
®𝑘𝐹

= 0. It can also be seen that the sign of 𝐽®𝑘𝐹 ®𝑘𝐹
in the local moment regime (𝜀𝑑 < 0 and

𝜀 +𝑈 > 0) is positive, resulting in an antiferromagnetic coupling. Additionally, this connects the
hybridization function Γ(𝜔) = 𝜋 |𝑉 |2𝜌 (0) (𝜔) used in the context of the SIAM to the Kondo coupling
𝐽, emphasizing the importance of this quantity.
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Although the Kondo model itself is not the central subject of this thesis, I will discuss the
derivation of the resistance minimum for completeness, following [24] with minor modifications and
simplifications.

3.4.1 Resistivity and Conductivity via Boltzmann’s Equation

The Boltzmann equation describes the total time-derivative of an effective distribution function
𝑓𝐸 of particles in an ensemble in terms of contributions from an external force, diffusion, and
collisions. Closely following [44], I will lay out the derivation of the equation, following up with the
relaxation-time approximation following [24]. Let’s start from

d 𝑓𝐸 (®𝑟, ®𝑝, 𝑡)
d𝑡

=

(
𝜕 𝑓𝐸

𝜕𝑡

)
force

+
(
𝜕 𝑓𝐸

𝜕𝑡

)
diff

+
(
𝜕 𝑓𝐸

𝜕𝑡

)
coll

. (3.24)

The function 𝑓𝐸 depends on position ®𝑟 , momentum ®𝑝 and time 𝑡. Without collisions, the phase-space is
incompressible. Particles within a given phase-space volume are therefore moving uniformly according
to their momentum ®𝑟 → ®𝑟 + ®𝑝Δ𝑡/𝑚 and the acceleration due to the external field ®𝑝 → ®𝑝 + ®𝐹Δ𝑡. In
other words, the particle density in a given phase-space volume remains stationary. Due to their
many-body nature, collisions modify the particle density in phase space. Comparing both statements
results in the conclusion that the total time-derivative d 𝑓𝐸/d𝑡 is equal to just the collision contribution
(𝜕 𝑓𝐸/𝜕𝑡)coll. On the other hand, by expanding the total differential in the variation of its dependencies,
one gets

d 𝑓𝐸 =

(
®∇®𝑟 𝑓𝐸

)
d®𝑟 +

(
®∇ ®𝑝 𝑓𝐸

)
d ®𝑝 + 𝜕 𝑓𝐸

𝜕𝑡
d𝑡 (3.25)

=

(
®∇®𝑟 𝑓𝐸

)
®𝑣 d𝑡 +

(
®∇ ®𝑝 𝑓𝐸

)
®𝐹 d𝑡 + 𝜕 𝑓𝐸

𝜕𝑡
d𝑡 (3.26)

⇒ d 𝑓𝐸
d𝑡

=

(
®∇®𝑟 𝑓𝐸

)
®𝑣 +

(
®∇ ®𝑝 𝑓𝐸

)
®𝐹 + 𝜕 𝑓𝐸

𝜕𝑡
(3.27)

=

(
®∇®𝑟 𝑓𝐸

) ®𝑝
𝑚

+
(
®∇ ®𝑝 𝑓𝐸

)
®𝐹 + 𝜕 𝑓𝐸

𝜕𝑡
=

(
𝜕 𝑓𝐸

𝜕𝑡

)
coll

. (3.28)

Assuming a uniform equilibrium distribution, the Boltzmann equation reads

𝜕 𝑓𝐸

𝜕𝑡
=

(
𝜕 𝑓𝐸

𝜕𝑡

)
coll

− ®∇ ®𝑝 𝑓𝐸 ®𝐹 . (3.29)

If the field is switched off, the distribution 𝑓𝐸 will return to the equilibrium distribution 𝑓0 by
collisions. The characteristic time scale for this is the relaxation rate 𝜏1( ®𝑘) by(

𝜕 𝑓𝐸 ( ®𝑘)
𝜕𝑡

)
coll

= −
𝑓𝐸 ( ®𝑘) − 𝑓0( ®𝑘)

𝜏1( ®𝑘)
=

(
d 𝑓𝐸 ( ®𝑘)

d𝑡

)
, (3.30)

where time- and position arguments are suppressed. By demanding the partial derivative w.r.t. time
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vanishing and identifying the Lorentz force ®𝐹 = −𝑒 ®𝐸 (and realizing that ®𝑝 = ®𝑘 for ℏ = 1) we get

−
𝑓𝐸 ( ®𝑘) − 𝑓0( ®𝑘)

𝜏1( ®𝑘)
= −𝑞 ®∇®𝑘 𝑓𝐸 ( ®𝑘) ®𝐸 . (3.31)

Finally, expanding 𝑓𝐸 on the right in ®𝐸 and keeping only terms that are overall linear in ®𝐸 , i.e. 𝑓𝐸 is
replaced by 𝑓0, we arrive at

𝑓𝐸 ( ®𝑘) = 𝑓0( ®𝑘) + 𝑒 𝜏1( ®𝑘) ®𝐸 · ®∇®𝑘 𝑓0( ®𝑘) (3.32)

= 𝑓0( ®𝑘) + 𝑒 𝜏1( ®𝑘) ®𝐸 ·
(
®∇®𝑘𝜀

𝑐
®𝑘

) 𝜕 𝑓0(𝜀
𝑐
®𝑘)

𝜕𝜀
𝑐
®𝑘

. (3.33)

This is related to the current by using the average velocity ®𝑣 ®𝑘 via ®𝑗 = −𝑒®𝑣 ®𝑘 . It can be calculated from
the distribution function replacing the velocity by momentum via 𝑚®𝑣 = ®𝑘 such that

®𝑗 = −2𝑒
∫
R3

d3
𝑘

(2𝜋)3 𝑓𝐸 ( ®𝑘)
®𝑘
𝑚

, (3.34)

where the factor 2 is from the spin degeneracy of 𝑓𝐸 . Inserting Eq. (3.32) and realizing that the
equilibrium current at vanishing field is zero and assuming the electron dispersion to be the free,
quadratic dispersion, the remainder is

®𝑗 = −2𝑒
∫
R3

d3
𝑘

(2𝜋)3 𝜏1( ®𝑘)
®𝑘
𝑚

®𝐸 · ®𝑘
𝑚

𝜕 𝑓0
𝜕𝜀

𝑐
®𝑘
. (3.35)

Assuming isotropy, the Drude relation is simply ®𝑗 = 𝜎(𝑇) ®𝐸 and the angular integrals in Eq. (3.35)
can be performed explicitly. The conductivity

𝜎(𝑇) = −2𝑒2

3

∫ ∞

0

d3
𝑘

(2𝜋)3
𝜏1(𝑘)𝑘

2

𝑚
2

𝜕 𝑓0
𝜕𝜀

𝑐
𝑘

(3.36)

can be explicitly evaluated at 𝑇 = 0 under the given assumptions, where the integral collapses to

𝜎(𝑇 = 0) = 𝑘
3
𝐹

3𝜋2
𝑒

2
𝜏1(𝑘𝐹)
𝑚

=
𝑛 𝑒

2
𝜏1(𝑘𝐹)
𝑚

(3.37)

where 𝑛 is the number of conduction electrons per unit volume. This is identical to the transport
theory predictions in the Drude model, with 𝜏1(𝑘𝐹) being interpreted as the transport lifetime.

The last step is now calculating the relaxation time from the 𝑇-matrix of scattering theory. The
scattering rate 𝑊®𝑘′ ®𝑘 from ®𝑘 to ®𝑘 ′ can be extracted from the 𝑇-matrix via the analogous equation to
Fermi’s golden rule

𝑊®𝑘′ ®𝑘 = 2𝜋
��𝑇®𝑘′ ®𝑘

��2 𝛿(𝜀 ®𝑘 − 𝜀 ®𝑘′) . (3.38)

Details of the derivation of this equation can be found in [24]. To get the rate of change of 𝑓𝐸 ( ®𝑘)
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due to collisions, the scattering rate into the state ®𝑘 , 𝑊®𝑘 ®𝑘′ , must be multiplied by the probability of ®𝑘
being unoccupied and ®𝑘 ′ being occupied and then averaged over all possible ®𝑘 ′. The reverse process
contributes with a relative sign. If the 𝑇-matrix is calculated from a local approximation (dilute limit),
the rate must be additionally multiplied by the impurity concentration.(

𝜕 𝑓𝐸

𝜕𝑡

)
coll

= −2𝜋𝑐imp

∫
R3

d3
𝑘

(2𝜋)3 𝛿(𝜀 ®𝑘 − 𝜀 ®𝑘′)
[ ��𝑇®𝑘 ®𝑘′

��2 𝑓𝐸 ( ®𝑘) (1 − 𝑓𝐸 ( ®𝑘
′))

−
��𝑇®𝑘′ ®𝑘

��2 𝑓𝐸 ( ®𝑘
′) (1 − 𝑓𝐸 ( ®𝑘))

]
(3.39)

= −2𝜋𝑐imp

∫
R3

d3
𝑘

(2𝜋)3 𝛿(𝜀 ®𝑘 − 𝜀 ®𝑘′)
��𝑇®𝑘 ®𝑘′

��2 [
𝑓𝐸 ( ®𝑘) − 𝑓𝐸 ( ®𝑘

′)
]
(1 − 𝑓𝐸 ( ®𝑘

′)) (3.40)

= −𝑒 ®𝐸 · ®∇®𝑘 𝑓𝐸 ( ®𝑘) (3.41)

Here, the symmetric nature of the 𝑇-matrix was used in the second line, and an intermediate result
derived above was used in the last line. Being an integro-differential equation, it is typically hard to
solve. Using Eq. (3.32) though gives an equation for 𝜏1( ®𝑘), assuming that the 𝑇-matrix only depends
on the angle 𝜃 between ®𝑘 and ®𝑘 ′:

1
𝜏1( ®𝑘)

= 2𝜋𝑐imp

∫
d®𝑘 ′

(2𝜋)3 𝛿(𝜀 ®𝑘 − 𝜀 ®𝑘′) |𝑇®𝑘, ®𝑘′ |
2(1 − cos 𝜃′) (3.42)

𝜎 =
1
𝑅

=
𝑘

3
𝐹

3𝜋2
𝑒

2
𝜏1(𝑘𝐹)
𝑚

(3.43)

⇔ 𝑅 =
1

𝜏1(𝑘𝐹)
3𝜋2

𝑚

𝑘
3
𝐹𝑒

2 =
1

𝜏1(𝑘𝐹)
𝑚

𝑛 𝑒
2 (3.44)

Here, 𝑛 = 𝑘
3
𝐹/3𝜋2 is the conduction-electron density of the metal. We can now proceed to calculate

the 𝑇-matrix in the next section.

3.4.2 𝑻-Matrix Perturbation Theory in 𝑱

The Kondo-Hamiltonian describes the spin-scattering of an impurity. As such, it is natural to use a
perturbation theory in the spin-scattering, for which the 𝑇-matrix formalism is ideal since it contains
an increasing number of scattering vertices 𝑉 that are connected via free conduction electrons

𝑇 = 𝑉 +𝑉𝐺0𝑉 +𝑉𝐺0𝑉𝐺0𝑉 + . . . = 𝑇
(1) + 𝑇

(2) + 𝑇
(3) + . . . . (3.45)

Using Eq. (3.20), the matrix elements of 𝑇 in terms of conduction-electron states, and to first order in
𝐽 are

⟨®𝑘 ′, ↑| 𝑇 (1) (𝜀 + 𝑖𝜂) | ®𝑘, ↑⟩ = 𝐽𝑆𝑧 = − ⟨®𝑘 ′, ↓| 𝑇 (1) (𝜀 + 𝑖𝜂) | ®𝑘, ↓⟩ , (3.46)

⟨®𝑘 ′, ↓/↑| 𝑇 (1) (𝜀 + 𝑖𝜂) | ®𝑘, ↑/↓⟩ = 𝐽𝑆
±
. (3.47)
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Inserting this in Eq. (3.42) gives

1
𝜏1( ®𝑘)

=
3𝜋𝑛 𝑐imp 𝐽

2
𝑆(𝑆 + 1)

2𝜀𝐹
(3.48)

⇒ 𝑅imp =
3𝜋𝑚 𝑐imp 𝐽

2
𝑆(𝑆 + 1)

2𝑒2
𝜀𝐹

, (3.49)

where 𝑆(𝑆 + 1) = 2𝑆2
𝑧 + 𝑆

+
𝑆
− + 𝑆−𝑆+. It is constant in temperature and very similar to the contribution

from potential scattering in the first Born approximation, where 𝐽
2
𝑆(𝑆 + 1) would be 𝑉2. The next

order thus has to be taken into account:

⟨®𝑘 ′, 𝜎′ | 𝑇 (2) (𝜀 + 𝑖𝜂) | ®𝑘, 𝜎⟩ = ⟨®𝑘 ′, 𝜎′ | 𝐻s−d𝐺
𝑅
0 (𝜀)𝐻s−d | ®𝑘, 𝜎⟩ , (3.50)

where 𝐺𝑅
0 is the retarded, free Green function and 𝐻s−d the term in equation (3.20). Exemplary, the

𝜎 = 𝜎
′
=↑ component of the second order term of the T-matrix expansion with intermediate spin flips

is the sum of

𝐽
2

𝑁
2
𝑠

∑︁
®𝑘1,

®𝑘′1

∑︁
®𝑘2,

®𝑘′2

⟨®𝑘 ′, ↑| 𝑆−𝑐†®𝑘1 ↑
𝑐 ®𝑘′1 ↓

(
𝜀 + 𝑖𝜂 − 𝐻𝑐

)−1
𝑆
+
𝑐
†
®𝑘2 ↓

𝑐 ®𝑘′2 ↑
| ®𝑘, ↑⟩ (3.51)

=
𝐽

2

𝑁
2
𝑠

∑︁
®𝑘2

𝑆
−
𝑆
+

1 − 𝑓 (𝜀 ®𝑘2
)

𝜀 + 𝑖𝜂 − 𝜀 ®𝑘2

(3.52)

and

𝐽
2

𝑁
2
𝑠

∑︁
®𝑘1,

®𝑘′1, ®𝑘2,
®𝑘′2

⟨®𝑘 ′, ↑| 𝑆+𝑐†®𝑘2 ↓
𝑐 ®𝑘′2 ↑

(
𝜀 + 𝑖𝜂 − 𝐻0

)−1
𝑆
−
𝑐
†
®𝑘1 ↑

𝑐 ®𝑘′1 ↓
| ®𝑘, ↑⟩ (3.53)

=
𝐽

2

𝑁
2
𝑠

∑︁
®𝑘2

𝑆
+
𝑆
−

𝑓 (𝜀 ®𝑘2
)

𝜀 + 𝑖𝜂 − 𝜀 ®𝑘2

, (3.54)

where 𝐻𝑐 is the free conduction-electron Hamiltonian, and the anticommutation relation of the
fermionic particles was used to exchange positions of the creation and annihilation operators in the
process of evaluating the expression. Using [𝑆+, 𝑆−] = 2𝑆𝑧 and 𝑆

2
= 𝑆

2
𝑧 + 𝑆𝑧 + 𝑆

−
𝑆
+, this term can be

re-written and summed up with similarly derived terms for the processes without intermediate spin
flips. The result is

⟨®𝑘 ′, ↑| 𝑇 (2) (𝜀 + 𝑖𝜂) | ®𝑘, ↑⟩ = 𝑆𝑧
𝐽

𝑁𝑠
(1 − 2𝐽𝑔(𝜀)) , (3.55)

with

𝑔(𝜀) = 1
𝑁𝑠

∑︁
®𝑘

𝑓 (𝜀 ®𝑘)
𝜀 ®𝑘 − 𝜀 − 𝑖𝜂

. (3.56)
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3.4 The 𝑠-𝑑 Model and Kondo’s Treatment

Summing up all the contributing terms up to order 𝐽3 results in4

1
𝜏( ®𝑘)

=
3𝑛 𝑐imp 𝐽

2
𝑆(𝑆 + 1)

2𝑒2
𝜀𝐹

(
1 − 4𝐽 Re 𝑔(𝜀 ®𝑘)

)
. (3.57)

The real part of 𝑔(𝜀) has to be calculated via a Cauchy principal value integral (details in [24]). It
gives rise to a logarithmic contribution of 𝜌(𝜀𝐹) log

(
𝑘𝐵𝑇

𝐷

)
, with an energy cutoff parameter 𝐷 ≫ 𝜀𝐹 .

From eq. (3.43), the contribution to the resistivity is given by

𝑅
spin
imp =

3𝜋𝑚 𝑐imp 𝐽
2
𝑆(𝑆 + 1)

2𝑒2
𝜀𝐹

(
1 − 4𝐽𝜌(𝜀𝐹) log

(
𝑘𝐵𝑇

𝐷

))
, (3.58)

which results in a total resistivity of

𝑅(𝑇) = 𝑐imp𝑅0 − 𝑐imp𝑅1 log
(
𝑘𝐵𝑇

𝐷

)
+ 𝑅

phonon(𝑇), (3.59)

where 𝑅0 and 𝑅1 are constants and we are taking the contribution of phonons into account, which will
vanish like 𝑇5 at low temperatures. With this, Kondo was able to describe the logarithmic increase at
low 𝑇 and, therefore, the experimentally observed resistance minimum. The logarithmic divergence
due to impurity scattering is the famous Kondo effect, and the associated temperature scale at which
the perturbation becomes as large as the static contribution (c.f. Eq. (3.58)) is the Kondo temperature.
Since 𝑅1 ∼ 𝐽

3, Kondo was also able to settle the debate on the sign of 𝐽 by comparing his results
to experiments. In Eq. (3.19), 𝐽 > 0 describes the experiment and leads to an antiferromagnetic
coupling.

3.4.3 The Kondo Temperature

Just a year after Kondo, Abrikosov approached the problem with field theory by describing the
spin operators by fermionic fields, the so-called Abrikosov pseudofermions [37]. This makes the
linear-response calculation for the magnetic susceptibility feasible and leads to

𝜒imp =
(𝑔𝜇𝐵)

2
𝑆(𝑆 + 1)

3𝑘𝐵𝑇

(
1 −

2𝐽𝜌0
1 + 2𝐽𝜌0 log(𝑘𝐵𝑇/𝐷) + 𝑐2(2𝐽𝜌0)

2
)
, (3.60)

where 𝜌0 is the conduction-electron DOS at the Fermi energy. The logarithmic divergence is now in
the denominator due to a geometric series summation. The logarithmic term diverges at a temperature

1 = −2𝐽𝜌0 log(𝑘𝐵𝑇𝑘/𝐷) (3.61)

⇔ 𝑘𝐵𝑇𝐾 = 𝐷𝑒
− 1

2𝐽𝜌0 , (3.62)

which is, once again, the famous Kondo temperature. Notably, 𝜒imp ∼ 1/𝑇 for 𝑇 >> 𝑇𝐾 and
𝜒imp ∼ 1/𝑙𝑜𝑔(𝑇) for 𝑇 − 𝑇𝐾 → 0+. The antiferromagnetic case (𝐽 > 0, c.f. Eq. (3.19)) results in an

4 The first correction was 𝐽
2 because the T-matrix 𝑇 was first order in 𝐽, and it enters as |𝑇 |2. When expanding 𝑇 to

𝑇 = O(𝐽) + O(𝐽2), the next order of |𝑇 |2 in 𝐽 is 𝐽3.
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Chapter 3 Heavy Fermions and Interacting Models

exponentially small Kondo temperature.
Another approach that allows for an extraction of this temperature is the perturbative renormalization

group for the Kondo problem, Anderson’s “poor man’s scaling” [45]. There are multiple ways of
defining the Kondo temperature, and since the Kondo effect is universal, it is the universal energy scale
for this effect - independent of description. Albeit the universality, it can be defined with different
numerical prefactors depending on the calculation. A good definition, especially when considering the
dynamical mean-field theory for the Anderson model, is in terms of the half width at half maximum
of the Kondo peak [38, 46–49].

3.4.4 Screening of Local Moments and the Kondo Cloud

The diverging antiferromagnetic coupling leads to a local singlet formation between conduction
electrons and the impurity, which was already discussed in Section 3.3. We can now understand that
forming a stable Kondo singlet leads to a screening of the impurity spin. Despite the spin scattering
happening locally, the local singlet will have a finite spatial extent due to it not being a sharp bound
state of the system (the resonance is broadened, c.f. the discussion is Section 3.3).

• The characteristic energy scale of this stable singlet is the Kondo temperature of Eq. (3.61),
which is often around 10−4

𝐷 to 10−3
𝐷. The inverse of 𝑇𝐾 gives the characteristic time scale

for fluctuations of the singlet state.

• The formation of those singlets happens at the Fermi energy; conduction electrons participating
in the singlet formation will thus move with the Fermi velocity.

• The characteristic length scale of the singlet formation is thus 𝜉𝐾 ∼ 𝑣𝐹/𝑇𝐾 (with ℏ = 𝑘𝐵 = 1).

This length scale defines the Kondo cloud, a region around the impurity that participates in the
screening. The cloud size is surprisingly large with a typical size of 𝜉𝐾 ∼ 1 µm. This cloud has not
yet been directly measured in experiments.

3.5 Impurity Lattice Models

For systems with large impurity concentrations, like alloys of atoms with strongly localized valence
electrons (rare-earth elements, actinides, transition metals, partially filled 𝑑- or 𝑓 -shell) with good
metals (mostly 𝑠- and 𝑝-shell, weakly localized electrons) the physics can drastically change compared
to the dilute case. Analogous to the discussion about the two-band hybridization model in Section 2.3,
the admixture of periodically arranged localized states can lead to the development of a true gap
(Kondo insulator) or the enhancement of the DOS at the Fermi energy (heavy Fermi liquid). Localized
impurity states can become lattice-coherent via second-order hopping processes and potentially
form long-range ordered states via the same mechanism. This long-range interaction is the famous
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [3–5]. This poses a challenging competition
between the localized Kondo effect and the long-range magnetic order, both originating from the same
spin interaction. Some heavy-fermion materials are unconventional superconductors with varying
paring mechanisms and critical temperatures [50].

The first heavy Fermi liquid metal was discovered by Andres, Graebner, and Ott in 1975 [51],
marking the onset of a whole new field of physics that continues to fascinate and surprise still today.
The first heavy-fermion superconductor was found by Steglich et al. in 1979 [52].
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3.5 Impurity Lattice Models

Figure 3.8: Modernized sketch of the Doniach phase diagram [6] inspired by its renditions in [49] and [53].
The blue curve is the critical temperature of magnetic ordering via RKKY-interaction; the blue region below it
shows the magnetically ordered (MO) phase. The orange curve is the Kondo temperature for the crossover to
the heavy Fermi liquid, which is the colored region below it. The regions are separated by a quantum-critical
point (QCP), denoted by a dashed gray line.

On the theoretical side, Doniach pioneered the study of Kondo lattices in 1977 [6] and derived
the famous Doniach phase diagram [54], sketched in a modernized version in Fig. 3.8, in which
he compared antiferromagnetic order due to the RKKY interaction with the tendency to form a
heavy Fermi liquid in terms of the respective low-energy scales5. This is an example of a quantum
phase transition, i.e. a phase transition that is driven by quantum fluctuations instead of thermal
fluctuations. heavy-fermion superconductivity was first understood in terms of spin-mediated pairing
mechanisms [56, 57]. Unfortunately, heavy-fermion superconductivity is not within the scope of this
thesis, and we shall, from now on, focus on the other aspect mentioned above.

3.5.1 The Kondo Lattice Model and the Large-𝑵 Limit

The Kondo model of Eq. (3.19) is straightforwardly generalized to the lattice case

𝐻Kondo =
∑︁
®𝑘,𝜎

𝜀
𝑐
®𝑘𝑐

†
®𝑘𝜎

𝑐 ®𝑘𝜎
− 𝐽

∑︁
𝑖

®𝑆𝑖 · ®𝑠𝑖 , (3.63)

where the spins now are localized on each lattice site 𝑖. Disregarding RKKY, the ground-state is still a
heavy Fermi liquid, as argued by Noziéres, but not restricted locally due to the lattice translational
symmetry. In 1983, Piers Coleman was able to perform a 1/𝑁 expansion, 𝑁 being the degeneracy of
the impurity spin, which is often large due to a large orbital degree of freedom6. His approach was
based on Abrikosov’s pseudofermion technique [37], which will be discussed later in this thesis. He
5 The idea itself was already formulated by Mott in 1974 [55], but it was only discussed in a heuristic manner.
6 There is an argument to be had that typically, since spin-orbit coupling and the crystal-field effect lead to distinct ground

states with reduced degeneracy, the picture of a large 𝑁 breaks down for low enough temperatures. This was pioneered by
Noziéres and Blandin in 1980 [58] and will also be discussed later in the thesis.
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derived the local-model Kondo temperature (setting 𝑘𝐵 = 1 and neglecting a factor 𝑒)

𝑇
latt
𝐾 ≈ 𝐷

(
𝑁𝐽𝜌0

) 1
𝑁 𝑒

− 1
𝑁𝐽𝜌0 , (3.64)

where 𝐷 is the conduction-electron half bandwidth and 𝜌0 is the free conduction-electron density of
states at the Fermi energy. He then further argued that the situation is not expected to change drastically
in the lattice case, which is still an active and not fully resolved area of research today. Assuming
this hypothesis holds, all the extension to a lattice does is introduce a second-order in 𝐽, long-range
interaction between distant impurities via itinerant conduction electrons, the aforementioned RKKY
interaction. Coleman derived the critical (Néel) temperature of magnetic ordering due to RKKY in
the absence of a competition with the Kondo effect to be

𝑇
RKKY
𝑁 ≈ 𝐷 (𝐽𝜌0)

2
. (3.65)

Originally, he considered a re-scaled Kondo coupling 𝐽 = 𝑁𝐽, which he kept fixed in the limit 𝑁 → ∞
such that the limit is defined in terms of his expansion. In this case, the RKKY term vanishes as 1/𝑁2

in contrast to the Kondo temperature, which approaches the constant 𝐷 exp(−1/𝐽𝜌0). He, therefore,
argued that the large-𝑁 Kondo lattice model would have a suppressed magnetic ordering in favor of a
heavy Fermi liquid.

3.5.2 The Fate of the Fermi Surface

In the heavy Fermi state of a periodic Kondo model, a characteristic enhancement of the Fermi surface
can be observed, with which the behavior of many observables can be easily understood. As laid out
earlier, the local spin-singlets appear as composite quasiparticles that obtain a large effective mass
due to their localized nature only being perturbed by the itinerant nature of the conduction electrons.
This is genuinely a lattice effect; a single impurity always leads to a spatially confined singlet. In
the lattice case, this picture is periodically repeated, and the quasiparticles can form a Bloch band.
They, therefore, contribute to the Fermi surface, which is, according to Luttinger and Ward [59, 60],
enhanced due to the additional fermions. This can also be understood by investigating the result of the
two-band hybridization model, assuming the Kondo peak can be modeled by a resonant level slightly
above the Fermi energy7, which is illustrated in Fig. 3.9. The original Fermi momentum 𝑘𝐹,0 (gray
dashed line) gets enhanced to 𝑘𝐹,1 (green dashed line) due to the bending down of the band. This
configuration is the large Fermi-surface case.

If the Kondo peak sits at precisely the Fermi energy, as is the case for particle-hole symmetric
systems, the notion of a Fermi surface would break down due to the formation of a (pseudo-) gap.
This configuration is the Kondo-insulator case. In reality, the finite width of the Kondo resonance
relaxes the strict need for particle-hole symmetry. Only slightly, though, since the width of the Kondo
peak is of the order 𝑇𝐾 , which is small compared to the electronic bandwidth. Another condition for
the formation of a Kondo insulator is an even number of conduction- and impurity electrons combined
per unit cell, allowing for the exact filling of bands below the gap and the complete depletion of bands
above the gap.

A different situation arises when the local moments order due to RKKY. Then, the Kondo effect is

7 The Kondo peak can–of course—not be faithfully modeled by a resonant level at the Fermi energy. The picture is still
helpful in understanding the physics.
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3.5 Impurity Lattice Models

Figure 3.9: Two-band hybridization model from Section 2.3 with (𝜀𝑑 − 𝐸𝐹)/𝐷 = 0.05 and 𝑉/𝐷 = 0.1. The
free conduction-electron dispersion is shown as an orange dashed-dotted line, the dotted gray line is the Fermi
energy, and the gray and green dashed lines correspond to the free and renormalized Fermi momenta.

suppressed, and the impurities remain fully localized due to the suppressed local coupling to itinerant
conduction electrons. As such, they don’t contribute to the conduction band and are missing from
the Fermi surface. This configuration is the small Fermi-surface case. Notably, a transition from the
ordered state to the heavy Fermi state was observed experimentally by Shishido et al. [61], in which
a sudden increase of the Fermi surface of CeRhIn5 was seen above a critical pressure at which the
system undergoes a phase transition from magnetically ordered to heavy Fermi liquid.

3.5.3 The Periodic Anderson Impurity Model

As already established, the Kondo model is the low-energy effective model of Anderson’s impurity
model. The same relation can be expected between the Kondo lattice model and the Anderson
(impurity8) model of a lattice of impurities9, often called the periodic Anderson (impurity) model
(PAM) or the Anderson (impurity) lattice model (ALM).

𝐻PAM =
∑︁
®𝑘,𝜎

(
𝜀
𝑐
®𝑘 − 𝜇

)
𝑐
†
®𝑘𝜎

𝑐 ®𝑘𝜎
+

∑︁
®𝑘,𝜎

(
𝜀
𝑑
®𝑘 − 𝜇

)
𝑑
†
®𝑘𝜎

𝑑 ®𝑘𝜎
+𝑈

∑︁
𝑖

𝑛
𝑑
𝑖↑𝑛

𝑑
𝑖↓ +

∑︁
®𝑘, ®𝑘′ ,𝜎

(
𝑉®𝑘 ®𝑘′𝑐

†
®𝑘𝜎

𝑑 ®𝑘′𝜎
+ ℎ.𝑐.

)
.

(3.66)

As in the single-impurity case, this model can extend the discussion of Kondo lattices to a broader
range of parameters and applications. It is especially useful for systems with a more complex intrinsic
impurity structure, which will become clear in a later chapter. Typically, the impurities are so strongly
localized that the spatial overlap of neighboring sites vanishes, in which case their dispersion 𝜀

𝑑
®𝑘 = 𝜀

𝑑

8 Anderson is also famous for his model of localization in disordered systems, the Anderson model. I have added parentheses
to clarify which model is being discussed to avoid confusion. However, the context often makes it clear, and it will always
be the impurity model in this thesis.

9 To the best of my knowledge, it was first discussed by Leder and Mühlschlegel in 1978 [62].
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is exactly flat. Hence, a local description on the impurity site is justified

𝐻PAM →
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®𝑘,𝜎
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)
𝑐
†
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)
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𝑛
𝑑
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𝑑
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𝑉®𝑘𝑖𝑐

†
®𝑘𝜎

𝑑
𝑖𝜎

+ ℎ.𝑐.

)
.

(3.67)

The parameter regimes are—at first glance—the same as for the single-impurity case. There are more
phases to arise, though, as we have seen in the previous section. Essentially, a weakly hybridizing
system will become magnetically ordered, whereas a strongly hybridizing system will tend towards
a heavy Fermi liquid. The 𝑈 → ∞ limit of this model will be heavily utilized in this thesis and
discussed throughout the following chapters.
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CHAPTER 4

Modeling Realistic Materials

The derivation of models discussed in the previous chapters relies on breaking down the physics to
the bare minimum, respecting and utilizing symmetries of the systems at hand, and exploiting scale
separation. The Kondo model (Sec. 3.4) relies on modeling a local impurity by just its spin. In the
derivation of the regular single-impurity Anderson model (Sec. 3.3), the electronic 𝑑- or 𝑓 -orbital
states are reduced to a single, twofold degenerate state, such that the impurity Hamiltonian is of a
simple spin-1/2 fermion form.

This seems odd at first, but it can be justified by a series of arguments that will successively reduce
the degeneracy of the atomic orbital, often leading to a twofold, symmetry protected degeneracy of
the ground state. Hence proving that the previously derived models are physically sound.

Being interested mostly in the physics of matter from around room temperature down to the lowest
temperatures, or even the ground state, level splittings larger than 𝑘𝐵 ·300 K ≈ 30 meV can be considered
infinite. Typically, in the 𝑑- or 𝑓 -orbital impurity hosts, spin-orbit interaction induces a splitting of
O(100 meV) or larger and the crystal-field effect a further splitting of O(10 meV − 100 meV). Low
energy physics is, therefore, well described by only considering the impurity ground state. Excited
states can, however, sometimes be relevant for intermediate temperatures. This will be crucial in the
discussion of PrV2Al20.

In order to fully understand and appreciate the unification of complexity and simplicity, the following
discussions will highlight the group-theory aspect of angular momenta in general and atomic orbitals in
particular. The case of spinful particles necessitates the coupling of angular momenta and a discussion
of the expected spin-orbit coupled ground state via Hund’s rules. Finally, the crystal-field effect and
its implications are discussed.
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4.1 Orbital Angular Momentum

In quantum mechanics, a (continuous) transformation of a state must be unitary due to the conservation
of probability. A continuous transformation is an operator �̂� (𝛼) whose action on a state is defined in
terms of its expansion for an infinitesimal parameter 𝛿 such that �̂� (𝛼) = [�̂� (𝛿)]𝛼/𝛿 . For simplicity,
let’s assume 𝛼 dimensionless. Since 𝛿 is infinitesimal, the expansion of �̂� contains only the terms of
order zero and one

�̂� (𝛿) = 1 + 𝑖𝛿�̂� , (4.1)

where �̂� is a hermitian operator called the generator of the transformation �̂�. The prefactor of 𝑖 is
needed for unitarity. The next step would be taking the limit 𝛿 → 0 for a transformation of finite 𝛼.
This is done best by defining a slicing of the parameter 𝛼 into 𝑛 parts such that �̂� (𝛼) = [�̂� (𝛼/𝑛)]𝑛
and then sending 𝑛 → ∞. If 𝑛 is large enough, we can use Eq. (4.1) to obtain

�̂� (𝛼) = lim
𝛿→0

[
1 + 𝑖𝛿�̂�

] 𝛼
𝛿 = exp

(
𝑖𝛼�̂�

)
. (4.2)

A particular, well-known continuous transformation is the time translation via the time-evolution
operator. There, the generator is the Hamiltonian. Invariance under a continuous transformation can,
therefore, be broken down to the commutator [�̂�, �̂�] = 0. This immediately defines �̂� as a symmetry
of the system described by �̂�. Consequently, eigenstates of �̂� will continue to be eigenstates of the
same eigenvalue under time evolution.

Among the large class of possible transformations, the class of rotational transformations is of
particular interest. From Noether’s theorem in classical (and quantum-) physics, we know that a
continuous symmetry of a system results in a conserved quantity. If we think of angular momentum as
the conserved quantity arising from rotational invariance, it is easy to see that the generator of the
continuous rotation transformation must be the angular momentum operator.

The eigenstates of a fully rotationally invariant system can, therefore, be expressed in terms of
angular momentum eigenstates, whose wavefunctions are the spherical harmonics. The angular
momentum eigenvalues are classified by the quantum number 𝑙, which can, just from the solution of
the eigenvalue equation, be half-integer or integer. Real-space rotations lead only to integer angular
momenta 𝑙 (including zero) due to the condition of full invariance under a full rotation. Such real-space
arguments hold for electronic orbitals. Half-integer angular momenta describe the spin of fermionic
particles. They obtain a phase under a full rotation. Bringing the two concepts together will be the
topic of the next section.

4.2 Spin-Orbit Interaction and Hund’s Rules

As established above, orbital angular momentum is of integer quantum number 𝑙, whereas spin can be
of half-integer quantum number 𝑠. Spin is an intrinsic (relativistic) property of particles and must be
added ad-hoc to nonrelativistic quantum mechanics. It has all the qualities of an angular momentum,
and—as such—can be treated on equal footing as the orbital angular momentum. If we are interested
in the angular momentum of a particle with both spin and orbital angular momentum, the two need to
be added to a total spin 𝐽 = �̂� + 𝑆 on the operator level to describe systems in which the Hamiltonian
contains terms that connect �̂� and 𝑆. The operator hats will be omitted from now on. The textbook
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example for a Hamiltonian that requires this addition of angular momenta is spin-orbit coupling, which,
in simple words, describes the dipole interaction of the intrinsic magnetic dipole and the induced
dipole of a charged particle on a circular trajectory (plus corrections).

4.2.1 The Addition of Angular Momenta

Angular momentum operators 𝐿𝑖, where 𝑖 labels a spatial axis, satisfy the algebra [𝐿𝑖 , 𝐿 𝑗] =

𝑖
∑
𝑘 𝜀𝑖 𝑗𝑘𝐿𝑘 , where 𝑖, 𝑗 , 𝑘 ∈ {𝑥, 𝑦, 𝑧} and 𝜀 is the Levi-Civita symbol1. From this [ ®𝐿2

, 𝐿𝑖] = 0 follows.
Angular momentum eigenstates are therefore not only characterized by their quantum number 𝑙 (via
the eigenvalue 𝑙 (𝑙 + 1) of ®𝐿2) but also the eigenvalue 𝑚 of one component 𝐿𝑖, which is usually
chosen to be the 𝑧-axis. If the two added angular momenta are independent, their operators commute
[𝐿𝑖 , 𝑆 𝑗] = 0, and a common eigenbasis {𝑙, 𝑚𝑙, 𝑠, 𝑚𝑠} can be found. The total angular momentum also
satisfies the angular momentum algebra, and its eigenstates can, therefore, be characterized by two
quantum numbers { 𝑗 , 𝑚 𝑗} and expressed in the aforementioned common eigenbasis of 𝐿 and 𝑆. In
order to derive the possible quantum numbers 𝑗 in terms of 𝑙 and 𝑠 the square of ®𝐽 has to be reforged
into the form

®𝐽2
= ®𝐿2 + ®𝑆2 + 𝐿

+
𝑆
− + 𝐿

−
𝑆
+ + 2𝐿𝑧𝑆𝑧 , (4.3)

where 𝐿
± and 𝑆

± are ladder operators of the respective angular momenta, changing the 𝑧-component
by one. It is easily seen that the state with 𝑚𝑙 = 𝑙 and 𝑚𝑠 = 𝑠 is an eigenstate of ®𝐽2 with quantum
number 𝑗max = 𝑙 + 𝑠. Simultaneously, the state is an eigenstate of 𝐽𝑧 with 𝑚 𝑗 = 𝑗 . All other 𝑚 𝑗 can
then be constructed using the ladder operators for 𝐽, 𝐽± = 𝐿

± + 𝑆
±.

When this is done, the next quantum number 𝑗max − 1 can be generated from knowing that
𝐽𝑧 = 𝐿𝑧 + 𝑆𝑧 , so 𝑚 𝑗 = 𝑚𝑙 + 𝑚𝑠 always. Therefore, knowing the 𝑚 𝑗 = 𝑗max − 1 state for 𝑗 = 𝑗max we
can construct the 𝑗 = 𝑗max − 1 and 𝑚 𝑗 = 𝑗max − 1 state by summing up all states with the correct 𝑚
quantum numbers demanding the resulting state to be orthogonal

⟨ 𝑗 , 𝑚 | 𝑗 − 1, 𝑚⟩ = 0 . (4.4)

Once this is done, we can again use ladder operators to generate all 𝑚 𝑗 and finally repeat the whole
process until we reach the minimal 𝑚 𝑗 ,min = −(𝑙 + 𝑠). The coefficients appearing in the construction
of { 𝑗 , 𝑚 𝑗} states from {𝑙, 𝑚𝑙, 𝑠, 𝑚𝑠} states are the matrix elements of the basis transformation and
known by the name Clebsch-Gordan coefficients.

Notably, the minimal 𝑗 can be found by finding the combination with the smallest number of 𝑚 𝑗

states. Since |𝑚 𝑗 | ≤ 𝑗 and the smallest modulus |𝑚 𝑗 | is |𝑙 − 𝑠 | the minimal 𝑗 is 𝑗min = |𝑙 − 𝑠 |. So
|𝑙 − 𝑠 | ≤ 𝑗 ≤ 𝑙 + 𝑠.

This scheme can also be used to add angular momenta of multiple particles via successive coupling in
pairs. First, the 𝐿𝑆-coupled 𝐽 for each particle is determined. Then the resulting 𝐽

𝑖 angular momenta,
where 𝑖 labels the particles, are added either successively pairwise or all at once. The order can be
reversed, leading to the same result. Depending on the circumstances, one or the other method might
be beneficial.
1 The Levi-Civita symbol 𝜀𝑖 𝑗𝑘 gives a minus sign if the permutation 𝑖 𝑗 𝑘 is odd and unity if even. It vanishes if any index

appears doubly.
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4.2.2 Hund’s Rules

Determining the ground state of a spin-orbit coupled system involving multiple particles is a
tremendously challenging task. Friedrich Hund, working on molecular spectra in the 1920s, proposed
a set of rules based on quantum-mechanical (partially heuristic) considerations to address this challenge
for atoms with exactly one partially filled atomic shell. Hund’s rules systematically find the ground state
by first determining the energetically optimal total spin (𝑆), then the total orbital angular momentum
(𝐿), and finally the total angular momentum (𝐽) through the energetically optimized coupling of 𝑆 and
𝐿.

Hund’s rules can be understood through arguments based on Pauli’s exclusion principle, electronic
exchange interaction, and phase space volume. They allow for the prediction of the correct ground
state in an overwhelming majority of cases, extending the knowledge about the electronic structure of
atoms beyond the Aufbau principle. This section will discuss the three rules in a concise form without
proof2 and give three examples.

1. The simple case of a Ce3+ atom with only a single electron in the 𝑓 -shell to illustrate the
procedure.

2. The case of an Yb3+ atom, which is the hole-analogue to the first case and involves many more
terms.

3. The slightly harder case of Pr3+ with two electrons in the 𝑓 -shell as a pedagogical next step but
also in anticipation of the discussion of PrV2Al20.

The first step in determining the ground state is analyzing the electron configuration of the atom at
hand. Typically, in a solid, electrons are “lost” from individual atomic shells to bonding mechanisms
between the atoms. This is called oxidization, and expected oxidization configurations are often listed
in periodic tables of elements or the accompanying texts. The electron configuration in the oxidized
state can be estimated in terms of localization of different orbitals. Less localized electrons are more
likely to contribute to bonding between atoms than those that are more localized on the atom. The
unfilled shells of the oxidized ion determine their electrical valence states, i.e. the occupation number
of the unfilled shell. For a single unfilled shell of any number of electrons, Hund’s rules are as follows.

1. Hund’s first rule is to maximize the multiplicity of the spin 𝑆, which means aligning all available
spins in the orbital until the shell is filled. Each additional spin must be of opposite orientation,
reducing the possible 𝑆tot. Effectively, this rule states that it is energetically attractive to fill any
given 𝑚𝑙 orbital only once, if possible.

2. The second rule is to maximize the orbital angular momentum 𝐿 via a selection of 𝑚𝑙 such that
𝐿tot is maximized. The first rule filled the shells with a single electron, if possible, but did
not specify the 𝑚𝑙 quantum number. The second rule, therefore, fills the 𝑚𝑙 quantum number
from large to small modulus. Notably, although it does not matter if one starts from 𝑚𝑙 = −𝑙 or
𝑚𝑙 = 𝑙, the filling has to be in order, and one should not fill only by modulus since this will
reduce the multiplicity of the resulting possible 𝐿tot. The rule can be understood as minimizing
the Coulomb repulsion between the electrons.

2 There is no general proof for Hund’s rules as of now. They might be “unprovable” due to their heuristic nature.
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3. Lastly, the third rule is to minimize the coupled angular momentum 𝐽 (remembering |𝐿 − 𝑆 | ≤
𝐽 ≤ |𝐿 + 𝑆 | from above) for the two previously determined 𝑆tot and 𝐿tot in the case of a shell
that is half-filled or less. If it is more than half filled, the largest possible value of 𝐽 will be the
lowest in energy. The origin of this rule can be traced back to the expected splitting induced by
spin-orbit coupling.

Example 1: Ce3+

Let’s first consider a simple example, Ce3+, a prototypical 4 𝑓 -shell ion. The electron configuration of
charge-neutral Cerium is [Xe] 4 𝑓 1 5𝑑1 6𝑠2, which means it has the filled-shell configuration of the
noble-gas Xenon and four electrons in partially filled shells. A common oxidization state of Cerium
is Ce3+, whose electron configuration is [Xe] 4 𝑓 1 from losing its less localized electrons to bonds
between atoms. Hund’s rules are then applied straightforwardly:

1. 𝑆 = 1/2

2. 𝐿 = 3

3. 𝐽min = 5/2

The ground state is, therefore, 2𝐽 + 1 = 6-fold degenerate and of half-integer spin.

Example 2: Yb3+

The next example is the electronic hole analogue of the previous case. The electron configuration of
charge-neutral Ytterbium is [Xe] 4 𝑓 14 6𝑠2, leading to the configuration [Xe] 4 𝑓 13 in Yb3+. The ion,
therefore, has an 𝑓 -shell with only a single vacancy. Hund’s rules now need some more consideration
but are still straightforward:

1. The 𝑓 -shell has 2𝐿 + 1 = 7 orbitals, and we have 13 electrons, so the spins align in a way that
fixes 𝑆 = 7 · 1/2 − 6 · 1/2 = 1/2.

2. Since we now filled all orbitals, except for one, with two electrons, the total angular momentum
is 𝐿 = 2 · (3 + 2 + 1 + 0 − 1 − 2) − 3 = 3.

3. 𝐽max = 7/2

The ground state is, therefore, 2𝐽 + 1 = 8-fold degenerate and of half-integer spin. This looks
surprisingly similar to the Ce3+ case, which is due to the particle-hole analogy between the two. We
could have made the derivation in terms of electron holes, where Yb3+ would have a single 𝑓 -shell hole.
Hund’s rules almost work in the same way there, just the spin-orbit coupling part of the third rule has
a reversed argument now due to the sign-change of the coupling under a particle-hole transformation.
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Example 3: Pr3+

The final example is the next larger 𝑓 -shell occupation 4 𝑓 2, which is realized in Pr3+. Charge-neutral
Praseodymium has [Xe] 4 𝑓 3 6𝑠2 and Pr3+ has [Xe] 4 𝑓 2. For this case, Hund’s rules are:

1. 𝑆 = 1/2 + 1/2 = 1

2. 𝐿 = 3 + 2 = 5

3. 𝐽min = 4

The ground state is, therefore, 2𝐽 + 1 = 9-fold degenerate and of integer spin. This illustrates nicely
how the ground state of an even-number occupation will typically lead to a bosonic state.

4.3 Crystal Fields and Group Theory

So far, the discussion of angular momenta was only concerned with fully spherically symmetric
systems and the coupling of internal angular momentum (spin 𝑆) to orbital angular momentum (𝐿).
Crystalline solids lack this full rotational invariance due to the arrangement of atoms on periodically
repeating lattice sites. The Coulomb-potential at any given site is, therefore, the sum of the regular
ionic potential 𝑉0(®𝑟) and the sum of potentials from other sites in the lattice 𝑉CF(®𝑟) often called
crystal-(electric-)field (CF/CEF) potential3. Here,𝑉0(®𝑟) has full rotational invariance,𝑉CF(®𝑟) however
is only invariant under discrete rotations that map lattice-sites onto lattice-sites. This discrete rotational
symmetry leads to a reduced symmetry of the local energy-eigenfunctions and, in the same way as
spin-orbit coupling lifts the individual 𝐿 − 𝑆 degeneracy in terms of the coupled 𝐽, crystal fields
further lift the 𝐽 degeneracy by inducing a splitting in energy, the so-called crystal-field splitting. It is
at this point that group theory becomes a most useful tool. Continuous rotational transformations
form a continuous (i.e. Lie-) group. Discrete rotations form discrete groups that map points in real
space onto each other, hence they are called point-groups.

Since we are going from a full, continuous symmetry to a discrete symmetry, the change of the
basis will be more drastic the lower the final symmetry is. Consequently, the CEF splitting is also
expected to become larger in this case. Additionally, the splitting originally stems from the Coulomb
interaction with remote ions, so farther away contributions will give smaller contributions. Combining
these two arguments, looking at the closest neighbors of any given local atom is usually enough to
determine the dominant point-group symmetry and the splitting.

Assuming we know the point group of the crystal-field symmetry, what can we do with it? Knowing
the spin-orbit-coupled ground state, we have to break down the degenerate eigenstates of the given 𝐽

into the eigenbasis of the reduced symmetry. The methods and prerequisites for this will be discussed
in the following section. For most parts, I will closely follow [63].

3 Historically, many texts talk about ligand fields, which is the combination of crystal fields and molecular theory of bonds.
Often, also throughout this thesis, the term crystal electric field (CEF) is used interchangeably with crystal field (CF).
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4.3.1 Representations of Groups and their Character

A group is a non-empty set 𝐺 which is closed under a binary operation (, ·, ), i.e. 𝑎 · 𝑏 ∈ 𝐺, ∀𝑎, 𝑏 ∈ 𝐺,
for which the following axioms hold:

1. Associativity: (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐) ∀ 𝑎, 𝑏, 𝑐 ∈ 𝐺.

2. Identity: ∃1 ∈ 𝐺 : 1 · 𝑎 = 𝑎 · 1 = 𝑎, ∀𝑎 ∈ 𝐺.

3. Inverse: ∀𝑎 ∈ 𝐺 ∃ 𝑏 ∈ 𝐺 : 𝑏 · 𝑎 = 𝑎 · 𝑏 = 1; 𝑏 = 𝑎
−1.

Two elements 𝑎, 𝑏 ∈ 𝐺 are conjugate if ∃𝑔 ∈ 𝐺 : 𝑔𝑏𝑔
−1

= 𝑏. Closed sets of 𝑎, 𝑏 form the conjugacy
classes 𝐶𝑘 of a group. A closed set �̃� within a group 𝐺 that itself forms a group is called subgroup of
𝐺.

A prominent example of a group is the special orthogonal group in three dimensions 𝑆𝑂 (3),
which describes rotations in three-dimensional Euclidean space via orthogonal 3 × 3 matrices of unit
determinant. The group operation, in this case, is simply the matrix multiplication. The 𝑆𝑂 (3) is a
Lie-group, which is a group that is also a differentiable manifold. Therefore, one can consider it a
continuous group. This makes sense in the context of rotations; there are three Euler angles, which are
parameters in R and, as such, are taken from a continuum. Elements of the 𝑆𝑂 (3) can be generated
via its Lie-algebra 𝔰𝔬(3), which is the group of all exponents in the mapping 𝔤 → exp(𝑖𝔤) ∈ 𝑆𝑂 (3),
where 𝔤 ∈ 𝔰𝔬(3), c.f. Sec. 4.1.

This group is most useful in situations where there is full rotational symmetry. In regular lattices,
the spatial symmetry of ionic potentials in any given fixed ion’s environment is discrete. In such cases,
one must determine the symmetry’s point group. Point groups contain only symmetry operations with
a fixed point in common, the origin of a suitable coordinate system. An example would be the cyclic
groups 𝐶𝑛, 𝑛 ∈ N, which contains 𝑛-fold rotations around a single rotation axis. As an example, 𝐶3
contains the rotations by 2𝜋/3, 4𝜋/3, and 6𝜋/3 = 2𝜋 around a given axis. It is a subgroup of 𝑆𝑂 (3).

As explained above, reducing the full rotational symmetry to a discrete one will (partially) lift the
degeneracy of full-rotation eigenstates. For this, we need the concept of representation and character
of a group.

Representations of a Group

It is often desirable to link the (abstract) symmetry to the (quantum-) states of the system. For this,
a (matrix-) representation Γ has to be constructed. Such a representation must preserve the group
axioms, it must not only form a group itself but the representation itself must be a mapping 𝐷Γ from 𝐺

to Γ such that all properties of 𝐺 transfer directly to Γ. This is achieved if the representation respects

𝐷Γ (𝑎 · 𝑏) = 𝐷Γ (𝑎) · 𝐷Γ (𝑏) . (4.5)

Since group elements of Γ are matrices, the group operation is the matrix multiplication. In technical
terms, representations are group homomorphisms from a group 𝐺 to the general linear group 𝐺𝐿.

A given group has infinitely many representations, but only a limited number4 of irreducible
representations (irreps). A representation is reducible if we can bring all of its elements (i.e. all
4 The number of irreps is identical to the number of conjugacy classes of the group, which is not proven here, but a proof

can be found in any standard textbook, e.g. [63].
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matrices of the representation) into an upper-triangular block form via the same transformation 𝑇 . If
the transformation brings all elements into a block-diagonal form, the representation is decomposable
into smaller representations. The smallest possible representations generated by this method, i.e.
representations that can not be brought into an upper-triangular block form via transformation with
the same 𝑇 , are the irreducible representations. Since there is a limited number of irreps, they are
labeled by an integer index 𝑖 as Γ𝑖 .

An example for representations are the spherical harmonics 𝑌𝑙𝑚, which are irreps of 𝑆𝑂 (3). For any
given angular-momentum quantum number 𝑙, a set of spherical harmonics labeled by 𝑚 can be defined
which are closed under rotations, i.e. any rotation of a given spherical harmonic 𝑌𝑙𝑚 will result in a
linear combination of spherical harmonics with the same 𝑙 but potentially different 𝑚.

An irrep of a group describing a symmetry of a given system will commute with the Hamiltonian.
State within this irrep are therefore energetically degenerate. Knowing the eigenstates of the ion under
full rotational symmetry, it is therefore highly desirable to decompose those states into the eigenstates
of the discrete rotational symmetry, which are simultaneous eigenstates of the Hamiltonian. Due
to point groups being subgroups of 𝑆𝑂 (3), irreps of 𝑆𝑂 (3) can be decomposed into irreps of the
subgroup 𝐺. For this, the concept of character can be used.

Character of a Representation

As seen above, irreducible representations are the essential components of interest when investigating
the lifting of degeneracy due to a reduction in symmetry. Since there is a set of different irreps, a way
of distinguishing clearly between them is necessary. For this, the concept of character is used. The
character 𝜒 (Γ𝑖 ) (𝑎) of an element 𝑎 ∈ Γ𝑖 is the trace of the corresponding matrix

𝜒
(Γ𝑖 ) (𝑎) = Tr

(
𝐷 (Γ𝑖 ) (𝑎)

)
. (4.6)

Since conjugacy (see definition above) becomes a similarity transform under the representation
mapping, and due to the invariance of the trace under similarity transformations, the character of each
element within a conjugacy class is identical. Also, since the identity trivially forms a conjugacy class
of only one element, its character is the (matrix-)dimension of the irrep. Furthermore, there is always
the trivial irrep, which maps every group element onto the same scalar. This irrep has character 1 in
every conjugacy class.

There are two orthogonality theorems related to the character of irreps:∑︁
𝑘

𝜒
(Γ𝑖 ) (𝐶𝑘)

[
𝜒
(Γ 𝑗 ) (𝐶𝑘)

]∗
𝑁𝑘 = ℎ 𝛿Γ𝑖 ,Γ 𝑗

(4.7)

𝑁𝑘

∑︁
𝑖

𝜒
(Γ𝑖 ) (𝐶𝑘)

[
𝜒
(Γ𝑖 ) (𝐶𝑘′)

]∗
= ℎ 𝛿𝑘,𝑘′ (4.8)

Here, ℎ is the order of the group (the number of elements), and 𝑁𝑘 is the number of elements in
conjugacy class 𝐶𝑘 .

With this combined, the irreducible representations of a given group can be presented appropriately
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via a table, the character table5. An example for the group𝐶4 is given in Tab. 4.1. The first orthogonality

C4 𝐸 𝐶4 𝐶2 (𝐶4)
3

Γ1 +1 +1 +1 +1
Γ2 +1 −1 +1 −1
Γ3 +1 +𝑖 −1 −𝑖
Γ4 +1 −𝑖 −1 +𝑖

Table 4.1: Character table of the point group 𝐶4. Top left is the group designation, the rest of the first row are
the conjugacy classes, and the rest of the first column are the irreducible representations.

relation can be interpreted as orthogonality between rows, the second one as orthogonality between
columns. With this, a simple way of decomposing reducible representations into irreducible
representations is possible. A good example is the tensor product of two irreps. A given product of
irreps can be decomposed into the direct sum of individual irreps. The product is simply reducible.
Another application is the aforementioned reduction of symmetry. The fact that the reduced-symmetry
group �̃� is a subgroup of the full-symmetry group 𝐺 makes it possible to compare character between
the two. Any conjugacy class of �̃� must be a conjugacy (sub-)class of 𝐺, and as such, the character of
any given irrep of 𝐺 in �̃� can be calculated. Equation (4.7) can then be used to decompose the irrep
of 𝐺 into a direct sum of irreps of �̃�, which works in a very analogous way to decomposing vectors of
a given basis into a new basis.

Character of 𝑺𝑶(3) Irreducible Representations

In order to determine the character of the irreps of 𝑆𝑂 (3), one can resort to the definition of spherical
harmonics 𝑌𝑙𝑚. The transformations that will be of interest in this context can be decomposed into
inversions 𝐼 and rotations by an angle 𝛼 around the 𝑧-axis 𝐶𝛼. Both can be handled in an elegant way
when considering spherical harmonics, which depend only on the two angles Θ and 𝜑, where Θ is the
angle to the 𝑧-axis and 𝜑 is the angle of rotation around the 𝑧-axis.

First, for inversions, one gets

𝐼 𝑌𝑙𝑙 (Θ, 𝜑) = 𝑌𝑙𝑙 (𝜋 − Θ, 𝜑 + 𝜋) = 𝑐 · 𝑒𝑖𝑙 (𝜑+𝜋 ) sin𝑙 (𝜋 − Θ) = (−1)𝑙𝑌𝑙𝑙 (Θ, 𝜑) , (4.9)

where 𝑐 is a complex constant that depends on the definition of 𝑌𝑙𝑚. Since [ ®̂𝐿, 𝐼] = 0, also [�̂�−, 𝐼] = 0
and, since the coefficient 𝑐(𝑚) in 𝐿− |𝑙, 𝑚⟩ = 𝑐(𝑚) |𝑙, 𝑚 − 1⟩ does not depend on 𝑙, the symmetry of
all 𝑚 states is the same. Hence

𝜒
(Γ𝑙 ) (𝐼) = (−1)𝑙

𝑙∑︁
𝑚=−𝑙

1 = (−1)𝑙 (2𝑙 + 1) . (4.10)

Next, rotations by an angle 𝛼 around the 𝑧-axis are just given by the transformation 𝜑 → 𝜑 + 𝛼 and,

5 A good source for character tables and much more is the Bilbao crystallographic server [64]. A standard textbook
tabulating everything about point groups is from 1969 by Koster [65]. The book is known to have a non-negligible
number of typos, though.

59



Chapter 4 Modeling Realistic Materials

since spherical harmonics depend on 𝜑 only by an exponential,

𝑌𝑙𝑚(Θ, 𝜑 + 𝛼) = 𝑒
−𝑖𝑚𝛼

𝑌𝑙𝑚(Θ, 𝜑) , (4.11)

⇒ 𝜒
(Γ𝑙 ) (𝐶𝛼) =

𝑙∑︁
𝑚=−𝑙

𝑒
−𝑖𝑚𝛼

=

2𝑙∑︁
𝑚

′
=0

𝑒
−𝑖 (𝑚′−𝑙)𝛼

= 𝑒
𝑖𝑙𝛼

2𝑙∑︁
𝑚

′
=0

𝑒
−𝑖𝑚′

𝛼 (4.12)

= 𝑒
𝑖𝑙𝛼 𝑒

−𝑖 (2𝑙+1)𝛼 − 1
𝑒
−𝑖𝛼 − 1

=
𝑒
−𝑖(𝑙+ 1

2 )𝛼 − 𝑒
𝑖(𝑙+ 1

2 )𝛼

𝑒
−𝑖 𝛼2 − 𝑒

𝑖 𝛼2
(4.13)

=

sin
[(
𝑙 + 1

2

)
𝛼

]
sin

[
𝛼
2
] , (4.14)

where the sum was evaluated using the formula for an incomplete geometric series. The character for
discrete rotations 𝐶𝑛 can be read-off via 𝛼 = 2𝜋/𝑛.

Half-Integer 𝑱: Double Groups

In order to describe particles with half-integer spin or total angular momentum 𝐽, an extension to
the point groups is needed. A rotation by 2𝜋 is not the identity in this case, which can be seen from
Eq. (4.14) for half-integer 𝑗 . In this case, the point groups have to be extended via an additional
operation R, rotation by 2𝜋, which acts as the identity on integer 𝐽 but is sign-changing for half-integer
𝐽. By comparing any point group 𝐺 with its double group 𝐺

′, a series of rules apply [63]:

1. A set of operations {𝑔𝐾 } that forms a conjugacy class in 𝐺 also forms a conjugacy class in 𝐺
′

and the set {R𝑔𝐾 } forms a different class in 𝐺
′, except in the case discussed in 2. below.

2. For classes 𝐶2 of rotation by 𝜋 around an axis, if there exists another axis of twofold rotations
that is orthogonal to the aforementioned one, then 𝐶2 and R𝐶2 are in the same class.

3. Any irreducible representation of 𝐺 is also an irreducible representation of 𝐺′ with the same
set of characters 𝜒

(Γ𝑖 ) (R 𝐶𝑘) = 𝜒
(Γ𝑖 ) (𝐶𝑘).

4. In addition to the irreducible representations of 𝐺, there must be additional ones to match the
number of classes. The characters of these classes are 𝜒

Γ
′
(R 𝐶𝑘) = −𝜒Γ

′
(𝐶𝑘). If the condition

in 2. applies, the character must vanish for a group containing 𝐶𝑘 and R 𝐶𝑘 .

Often, the application of R is denoted by a bar, e.g. R 𝐶𝑘 = 𝐶𝑘 .

4.3.2 Examples for the Reduction of Symmetry

An example that will be useful later in the thesis is the case of the splitting of 𝐽 = 5/2, 4, 9/2 states into
irreps of the double-group 𝑇

′
𝑑 . For this, we need the character table of 𝑇 ′

𝑑 , which is given in Tab. 4.2.
The character of the 𝐽 irreps can be calculated using Eq. (4.10) and Eq. (4.14). Additionally,

𝑆𝑛 = 𝐶𝑛 ⊗ 𝜎ℎ, where 𝜎ℎ represents reflection in a horizontal plane, i.e. a plane that is perpendicular
to the axis of highest symmetry, and 𝜎𝑑 = 𝐶2 ⊗ 𝐼. Since character is multiplicative, the character can
be immediately read off. Results for this are listed in Tab. 4.3. Using the orthogonality relation in
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T′
d 𝐸 𝐸 8𝐶3 8𝐶3

3𝐶2
3𝐶2

6𝑆4 6𝑆4
6𝜎𝑑
6𝜎𝑑

Γ1 1 1 1 1 1 1 1 1
Γ2 1 1 1 1 1 −1 −1 −1
Γ3 2 2 −1 −1 2 0 0 0
Γ4 3 3 0 0 −1 1 1 −1
Γ5 3 3 0 0 −1 −1 −1 1

Γ6 2 −2 1 −1 0
√

2 −
√

2 0
Γ7 2 −2 1 −1 0 −

√
2

√
2 0

Γ8 4 −4 −1 1 0 0 0 0

Table 4.2: Character table for the 𝑇 ′
𝑑 double group. Integers in front of classes label the number of members

in a class. The last three classes are additions to the point group 𝑇𝑑 . The classes of 𝑇𝑑 are: the identity 𝐸 ,
threefold rotations 𝐶3, twofold rotations 𝐶2, improper fourfold rotations 𝑆4 (rotation followed by a reflection in
a perpendicular plane), and the reflection in a diagonal plane 𝜎𝑑 (the plane parallel to the symmetry axis but
arranged in a specific way, which is not relevant to us here).

𝐸 𝐸 8𝐶3 8𝐶3
3𝐶2
3𝐶2

6𝑆4 6𝑆4 6𝜎𝑑 6𝜎𝑑

Γ𝐽=5/2 6 −6 0 0 0 −
√

2
√

2 1 −1
Γ𝐽=4 9 9 0 0 1 1 1 1 1
Γ𝐽=9/2 10 10 −1 1 0

√
2 −

√
2 1 −1

Table 4.3: Character of irreducible representations of 𝑆𝑂 (3) under the classes of 𝑇 ′
𝑑 . Although 𝜎𝑑 and 𝜎𝑑 are

conjugate in 𝑇
′
𝑑 , they lead to different character for some irreps of 𝑆𝑂 (3), so they have to be split up for the

orthogonality.

Eq. (4.7) pairwise, the reduction of the given 𝑆𝑂 (3) irreps in terms of 𝑇 ′
𝑑 irreps is

Γ𝐽=5/2 = Γ7 ⊕ Γ8 (4.15)

Γ𝐽=4 = Γ1 ⊕ Γ3 ⊕ Γ4 ⊕ Γ5 (4.16)
Γ𝐽=9/2 = Γ6 ⊕ 2Γ8 . (4.17)

Also, products of irreps can then be easily calculated6. For example, the products of some of the 𝑇 ′
𝑑

irreps are

Γ6 ⊗ Γ3 = Γ8 (4.18)
Γ6 ⊗ Γ5 = Γ8 ⊕ Γ7 . (4.19)

6 They are, of course, also tabulated in [65].
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4.3.3 Clebsch-Gordan Coefficients for Point Groups

Once the product of two irreps has been taken, we would like to construct a product basis in the
new representations, e.g. we have the basis Γ6 and Γ5 of 𝑇 ′

𝑑 and want to compute the corresponding
product-basis of Γ8 (or Γ7). In some cases, the products can be traced back to Clebsch-Gordan (CG)
coefficients of known angular momenta, c.f. Sec. 4.2.1. A more general rule is necessary, though,
which can be derived using the representation of classes [66].

Given the basis |Γ𝑎, 𝛼⟩ of a representation Γ𝑎 and |Γ𝑏, 𝛽⟩, where 𝛼 and 𝛽 are indices for the basis
elements, we want to get the Clebsch-Gordan coefficients (matrix elements of unitary transformation)
for the transformation from the product basis to a third basis |Γ𝑐, 𝛾⟩, for which Γ𝑐 ∈ Γ𝑎 ⊗ Γ𝑏. This
transformation block-diagonalizes the product basis. The coefficients are orthogonal and complete:∑︁

𝛼,𝛽

𝐶
∗ (
Γ𝑎𝛼, Γ𝑏𝛽; Γ𝑐𝛾

)
𝐶

(
Γ𝑎𝛼, Γ𝑏𝛽; Γ𝑐′𝛾

′)
= 𝛿𝑐,𝑐′𝛿𝛾,𝛾′ (4.20)∑︁

𝑐,𝛾

𝐶
∗ (
Γ𝑎𝛼, Γ𝑏𝛽; Γ𝑐𝛾

)
𝐶

(
Γ𝑎𝛼

′
, Γ𝑏𝛽

′; Γ𝑐𝛾
)
= 𝛿𝛼,𝛼′𝛿𝛽,𝛽′ (4.21)

Having the block-diagonal form 𝑀 of the direct product of all irreps Γ𝑐 contained in Γ𝑎 ⊗ Γ𝑏, the
transformation 𝑈 produces the tensor-product basis of Γ𝑎 ⊗ Γ𝑏 via 𝑈 𝑀𝑈

†. This translates to

𝐷Γ𝑎
(𝑔)𝛼𝛼′ 𝐷Γ𝑏

(𝑔)𝛽𝛽′ =
∑︁
𝑐,𝛾,𝛾

′
𝐶

(
Γ𝑎𝛼, Γ𝑏𝛽; Γ𝑐𝛾

)
𝐷Γ𝑐

(𝑔)𝛾𝛾′ 𝐶
∗ (
Γ𝑎𝛼

′
, Γ𝑏𝛽

′; Γ𝑐𝛾
′)

. (4.22)

We also need the orthogonality theorems for irreducible representations

ℎ∑︁
𝑖

𝐷Γ𝑎
(𝑔𝑖)

∗
𝛼𝛼

′𝐷Γ𝑏
(𝑔𝑖)𝛽𝛽′ = 𝛿𝑎,𝑏 ∀𝛼, 𝛼

′
, 𝛽, 𝛽

′ (4.23)

𝑛𝑎

ℎ

ℎ∑︁
𝑖

𝐷Γ𝑎
(𝑔𝑖)

∗
𝛼𝛼

′𝐷Γ𝑎
(𝑔𝑖) �̃��̃�′ = 𝛿𝛼, �̃�𝛿𝛼′

, �̃�
′ (4.24)

where 𝑛𝑎 is the dimensionality of Γ𝑎, i.e. the identity character of the irrep, and ℎ is the order of
the group, i.e. the number of elements. Using Eq. (4.22) and this, the triple product of irreps can be
written as

𝑛𝑐

ℎ

ℎ∑︁
𝑖

𝐷Γ𝑎
(𝑔𝑖)𝛼𝛼′𝐷Γ𝑏

(𝑔𝑖)𝛽𝛽′𝐷
∗
Γ𝑐
(𝑔𝑖)𝛾𝛾′

=
∑︁
�̃�,�̃�,�̃�

′
𝐶

(
Γ𝑎𝛼, Γ𝑏𝛽; Γ�̃� �̃�

)
𝐶
∗ (
Γ𝑎𝛼

′
, Γ𝑏𝛽

′; Γ�̃�′ �̃�
′) 𝑛𝑐

ℎ

ℎ∑︁
𝑖

𝐷
∗
Γ𝑐
(𝑔𝑖)𝛾𝛾′𝐷Γ�̃�

(𝑔𝑖)�̃��̃�′ (4.25)

=
∑︁
�̃�,�̃�,�̃�

′
𝐶

(
Γ𝑎𝛼, Γ𝑏𝛽; Γ�̃� �̃�

)
𝐶
∗ (
Γ𝑎𝛼

′
, Γ𝑏𝛽

′; Γ�̃�′ �̃�
′) 𝑛𝑐

ℎ
𝛿𝑐,�̃�𝛿𝛾�̃�𝛿𝛾′ �̃�′ (4.26)

= 𝐶
(
Γ𝑎𝛼, Γ𝑏𝛽; Γ𝑐𝛾

)
𝐶
∗ (
Γ𝑎𝛼

′
, Γ𝑏𝛽

′; Γ𝑐𝛾
′)

. (4.27)
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Choosing 𝛼 = 𝛼
′
= 𝛼0, 𝛽 = 𝛽

′
= 𝛽0, and 𝛾 = 𝛾

′
= 𝛾0 gives

𝐶
(
Γ𝑎𝛼0, Γ𝑏𝛽0; Γ𝑐𝛾0

)
= 𝑒

𝑖𝜙

√√√
𝑛𝑐

ℎ

ℎ∑︁
𝑖

𝐷Γ𝑎
(𝑔𝑖)𝛼0𝛼0

𝐷Γ𝑏
(𝑔𝑖)𝛽0𝛽0

𝐷
∗
Γ𝑐
(𝑔𝑖)𝛾0𝛾0

, (4.28)

where 𝑒
𝑖𝜙 is undetermined due to the modulus of 𝐶 appearing in the derivation. It is often chosen

such that 𝐶
(
Γ𝑎𝛼0, Γ𝑏𝛽0; Γ𝑐𝛾0

)
> 0. From this, one can then generate all other CG coefficients via

𝐶
(
Γ𝑎𝛼, Γ𝑏𝛽; Γ𝑐𝛾

)
=

𝑛𝑐
ℎ

∑ℎ
𝑖 𝐷Γ𝑎

(𝑔𝑖)𝛼𝛼0
𝐷Γ𝑏

(𝑔𝑖)𝛽𝛽0
𝐷

∗
Γ𝑐
(𝑔𝑖)𝛾𝛾0

𝐶
(
Γ𝑎𝛼0, Γ𝑏𝛽0; Γ𝑐𝛾0

) . (4.29)

When a product basis contains an irrep more than once, additional steps have to be taken, which is
omitted here but can be found in [66]. The matrix representations are tabulated in [64].

4.3.4 Crystal-Field States in Quantum Field Theory

Once the relevant CEF states have been identified, they can be incorporated into our models. This
is not necessarily straightforward, though, and depends on details. Let’s assume we want to write
down a Hamiltonian describing the dominant physics of the 𝑓 -orbital on Ce3+. Without any more
information, we can assume 4 𝑓 1 to be the ground state configuration. The two closest-in-energy states
will be the 4 𝑓 0 and 4 𝑓 2. A simple case would be just 𝐻 =

∑
𝜎 𝜀𝑑

†
𝜎𝑑𝜎 . The operator 𝑑†𝜎 creates a

particle and, by that, describes the transition from a state of 𝑛 particles to a state of 𝑛 + 1 particles, i.e.
a transition between electronic valence configurations. We can associate a negative energy 𝜀 to adding
a particle because we know that 4 𝑓 1 should be the ground state. If we now add a second particle, the
same (negative) energy is added to the system; the energy difference between valence configurations
is therefore assumed to be equidistant. This can be addressed by attaching an additional energy to the
operator of double occupation. This must necessarily be a product of two single-particle operators,
and we immediately arrive at the construction of the Hubbard model. The creation operator in our
lowest-order approximation would take care of the transition from the 4 𝑓 0 CEF ground state to the
4 𝑓 1 ground state and, on repeated application, from 4 𝑓 1 to the 4 𝑓 2 CEF ground state.

A problem arises when we want to add 4 𝑓 3 now, to which a solution was already presented in
Section 3.2 in Hubbard operators. One essentially goes back from using field operators to projectors
onto individual states. Similarly, if we have the situation of a small crystal-field splitting (usually of
the order of the temperature we want to investigate), it can be beneficial to also take the first excited
CEF state of the 4 𝑓 1 configuration into account. This will be the dominant correction beyond taking
only CEF ground states into account. The electronic ground state 4 𝑓 1 will be fully thermally occupied,
and the excited states 4 𝑓 0 and 4 𝑓 2 depleted at temperatures where the splitting between the 4 𝑓 1 CEF
states is not yet thermally resolved (c.f. scale comparison in this chapter’s introduction). Adding
additional CEF states also necessitates the use of Hubbard operators. Finally, the same can be said if
states are removed from the discussion, as would be the case for a 𝑈 → ∞ Hubbard- or Anderson
impurity model.

Hubbard operators have non-canonical commutation relations, and treating them in quantum field
theory is, therefore, especially tedious due to the inapplicability of Wick’s theorem. This will be
resolved by introducing auxiliary particles in the next chapter.
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CHAPTER 5

Methods and Approximations

In the previous chapters, interacting models for the description of heavy fermion physics have been
discussed. Generally, large interactions are problematic for the naturally perturbative approach of
quantum field theory. Hubbard operators were already presented as a first step towards treating
strongly interacting systems. They came at the cost of losing the applicability of Wick’s theorem,
seriously hindering their usefulness. In this chapter, a method of addressing this problem via the
introduction of auxiliary particles [67, 68] is presented. There, each Hubbard operator is represented
by a combination of artificial auxiliary fields. This enhances the Hilbert space and a projection down
to the physical sector is needed.

Once the model of interest is re-written in terms of auxiliary particles, it can be solved via
mean-field theory or more intricate methods. One of those methods is the non-crossing approximation
(NCA), summing up an infinite number of self-energy diagrams without crossing lines [69–71]. This
approximations is able to capture many aspects of the Anderson impurity model and proves to be
extremely versatile and controlled.

The extension to the lattice case is then presented in dynamical mean-field theory (DMFT). There,
the impurity interaction is assumed to be local, which becomes exact in infinite dimensions. For finite
dimensions, it is often a surprisingly good approximation. From the derivation it will become clear
that DMFT and NCA go well together in that both are diagrammatic methods concerned with local
quantities.
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5.1 Auxiliary Particles

The discussion in Chapter 4 revealed the necessity for Hubbard operators beyond their original
designation. While greatly enhancing our ability to construct more realistic and/or tunable models,
they hinder our ability to solve them via efficient quantum field theory methods. Their non-canonical
commutation relations disallow the application of Wick’s theorem, which is the backbone for
perturbation expansions in small parameters, allowing us to break complex expectation values down to
products of much simpler, quadratic expectation values. The following paragraphs will give a historical
overview. Each approach had its strengths and weaknesses, which were later remedied by improved
approaches. The—to date—correct approach will be presented in the following Section 5.1.1.

Ideally, we would want to replace the non-canonically commuting objects with canonically
commuting ones, a bold ask at first glance. There is, however, a way of achieving this. A similar
problem was faced by Abrikosov [37] when he tried to apply field-theoretical methods to the Kondo
model. Spin operators obey the spin-algebra, which is incompatible with the canonical commutation
relations of field operators. The conduction-electron spin can readily be substituted by conduction-
electron fields of appropriate combinations (c.f. Eq 3.18), but the same can not be done easily for the
impurity spin. In essence, if no conduction electron exists at any given site, the conduction-electron
spin also vanishes. The impurity spin, on the other hand, is pinned to a specific site and must
always exist; it can only change orientation. Abrikosov proposed an elegant solution to the problem,
introducing local auxiliary particles, or “virtual fields”, 𝑎𝜎 that describe the impurity spin in the
same way as the conduction-electron fields describe their respective spin operator. Realizing that this
extends the Hilbert space by adding unphysical states, he proposed a method of fixing the expectation
values via the addition of an artificial fugacity 𝑒

𝛽𝜆 to states of occupation two, sending 𝜆 → ∞. Fouble
occupation would be shifted to infinite energy and single-occupation, which is the physically correct
state, would be untouched. The sector of no auxiliary particle were disregarded because expectation
values of interest tend to annihilate this sector. Abrikosov partially addressed that summation over
fields would give a wrong normalization, which would have to be fixed by an additional prefactor.

More than two decades later, Barnes [67, 68] picked up Abrikosov’s idea and applied it to a more
general case, the single-impurity Anderson model (c.f. Sec. 3.3). Here, the impurity is modeled via a
full local fermion with a quadratic term and a Hubbard-𝑈 term. The reason for introducing auxiliary
particles here was not due to commutation relations—they are canonical for the impurity field—but
rather due to problems in the large-𝑈 case, where perturbation theory in 𝑈 is non-converging. The
original Hamiltonian can be re-written in terms of Hubbard operators for the impurity states

𝐻SIAM =
∑︁
®𝑘,𝜎

(
𝜀
𝑐
®𝑘 − 𝜇

)
𝑐
†
®𝑘𝜎

𝑐 ®𝑘𝜎
+

∑︁
𝜎

(
𝜀
𝑑 − 𝜇

)
|𝑑;𝜎⟩ ⟨𝑑;𝜎 | +𝑈 |𝑑; 2⟩ ⟨𝑑; 2|

+
∑︁
®𝑘,𝜎

(
𝑉®𝑘𝑐

†
®𝑘𝜎

( |𝑑; 0⟩ ⟨𝑑;𝜎 | + |𝑑; �̃�⟩ ⟨𝑑; 2|) + ℎ.𝑐.

)
, (5.1)

where �̃� is the conjugate spin, i.e. −𝜎 for spin-1/2. Barnes introduced four auxiliary particles,
one for each involved state. Two fermions 𝑎

†
𝜎 |vac⟩ = |𝑑;𝜎⟩ and two bosons 𝑏

†
0 |vac⟩ = |𝑑; 0⟩

and 𝑏
†
↑↓ |vac⟩ = |𝑑; 2⟩. He specifically chose bosons for the latter two cases such that vertices of

hybridization would conserve the fermion number. He also interpreted the condition of total auxiliary
particle occupation being equal to unity as a projection onto the physical Hilbert space. Implementing
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this using a chemical potential 𝜆 as 𝜆
(
⟨�̂�𝑎⟩ − 1

)
and 𝜆 → ∞ in the spirit of Abrikosov’s approach

gave a clear physical interpretation to the previously used projection.

5.1.1 Constructing Auxiliary-Particle Representations

So, how does one go about constructing an auxiliary particle representation? First, all many-body
states of a given system need to be collected. For example, this could be the 𝑠-shell of an atom, which
has three different valence states. Each of those states should be representable by a combination of
single-particle operators acting on the vacuum. Enumerating all the states can be quite tedious due to
the increasing number of possible combinations. The states are

|0⟩ = |vac⟩phys , |𝑠1;↑⟩ = 𝑐
†
↑ |0⟩ ,

|𝑠2⟩ = 𝑐
†
↑𝑐

†
↓ |0⟩ , |𝑠1;↓⟩ = 𝑐

†
↓ |0⟩ ,

where the order of operators constructing | 𝑓 2⟩ is arbitrarily chosen. The vacuum has a subscript to
denote that this is the physical, real vacuum. The doubly occupied state is automatically the singlet
state due to Pauli’s exclusion principle and the canonical commutation relation of the 𝑐 operators1.

The next step is to define the auxiliary particles that create each individual state

|0⟩ = 𝑏
† |vac⟩ , |𝑠1;↑⟩ = 𝑓

† |vac⟩ ,
|𝑠2⟩ = 𝑎

† |vac⟩ , |𝑠1;↓⟩ = 𝑔
† |vac⟩ ,

with a new vacuum |vac⟩. At this point, we can leave the statistics of the auxiliary particles open. The
enlarged Hilbert space can be quantified by the auxiliary particle occupation number

�̂� = 𝑏
†
𝑏 + 𝑓

†
𝑓 + 𝑔

†
𝑔 + 𝑎

†
𝑎 (5.2)

Its eigenvalues are positive integers, of which the case ⟨�̂�⟩ = 𝑄 = 1 is the physical. The Hamiltonian,
which we want to express in terms of auxiliary particles, must commute with �̂�, conserving 𝑄. This
allows the implementation of a constraint 𝑄 = 1 on the operator level (�̂� = 1) via a chemical potential,
which is sent to infinity. This method will be discussed in detail in Section 5.1.2. For now, let’s assume
that �̂� = 1 is fixed.

Statistics of Auxiliary Particles

In order to have a faithful representation of the states, the superalgebra of Hubbard operators
𝑋𝛼𝛽 = |𝛼⟩ ⟨𝛽 | constructed from those states must be respected. If the particle number difference
|𝑛𝛼 −𝑛𝛽 | is odd, the operator is of fermionic type. If it is even, it is of bosonic type. Their superalgebra
is

[𝑋𝛼,𝛽 , 𝑋𝛾, 𝛿]± = 𝑋𝛼,𝛿𝛿𝛽,𝛾 ± 𝑋𝛾,𝛽𝛿𝛿,𝛼 , (5.3)

1 In an 𝑠-shell, one can not construct a triplet state without additional quantum numbers to distinguish the particles.
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where the sign is positive if both Hubbard operators are of a fermionic type. Replacing the Hubbard
operators by auxiliary fields in a most general way

𝑋𝛼𝛽 = |𝛼⟩ ⟨𝛽 | = 𝛼
† |vac⟩ ⟨vac| 𝛽 �̂�=1

= 𝛼
†
𝛽 . (5.4)

The condition �̂� = 1 ensures that the in-between state is always the vacuum, so the projector onto it
can be dropped. If 𝑋𝛼𝛽 is fermionic, the two auxiliary particles must have different statistics, i.e. one
must be fermionic, the other one bosonic. From this, we can see that if the particle numbers of two
states differ by an odd number, the auxiliary particles of those states must be of different statistics.
Consequently, if the particle number differs by an even number, the particles must be of the same
statistics.

The situation is more delicate if 𝑋𝛼𝛽 is bosonic. Trivially, if 𝛼 = 𝛽, the operator is just a number
operator, which is known to be bosonic. The case 𝛼 ≠ 𝛽 demands a quick calculation.

[𝑋0,2, 𝑋2,0]− = 𝑋0,0𝛿2,2 − 𝑋2,2𝛿0,0 = 𝑋0,0 − 𝑋2,2 (5.5)

= [𝑏†𝑎, 𝑎†𝑏] = 𝑏
†
𝑎𝑎

†
𝑏 − 𝑎

†
𝑏𝑏

†
𝑎 (5.6)

= 𝑏
†
𝑏 (1 ± 𝑎

†
𝑎) − (1 ± 𝑏

†
𝑏)𝑎†𝑎 = 𝑏

†
𝑏 − 𝑎

†
𝑎 = 𝑋0,0 − 𝑋2,2 , (5.7)

where plus is for both particles being bosons and minus for both being fermions. This equation holds
true as long as both particles are of the same statistic. The argument directly translates to arbitrary
bosonic Hubbard operators.

This proves that there is a freedom of choice in auxiliary particle statistics. Typically, the physical
vacuum state is defined as a boson, resulting in even-number occupations being described by bosonic
operators and odd-number occupations being described by fermions. This is the most natural definition
since it assures fermion number conservation in the auxiliary particle Hamiltonian works as expected.
Under this choice, the two particles 𝑓 and 𝑔 can be assigned the same letter but with a subscript of
spin, i.e. 𝑓 → 𝑓↑ and 𝑔 → 𝑓↓. This notation was avoided above as the statistics were not fixed, and it
might appear wrong to see a spin-1/2 attached to a boson. In the context of auxiliary particles, this
concept is, however, not problematic.

Historically, the fermionic auxiliary particles are called pseudofermions, whereas the bosonic ones
are called slave-bosons.

Constructing (Effective) Physical Particle-Operators from Auxiliary Particles

In the 𝑠-shell case presented above, creation- and annihilation operators of the physical electrons can
be expressed fully through a linear combination of auxiliary particles by analyzing the action of 𝑐 on
the individual states.

𝑐𝜎 |𝑠0⟩ = 0 (5.8)

𝑐𝜎 |𝑠1;𝜎′⟩ = 𝛿𝜎𝜎′ |0⟩ (5.9)

𝑐↑ |𝑠
2⟩ = 𝑐↑𝑐

†
↑𝑐

†
↓ |0⟩ = 𝑐

†
↓𝑐↑𝑐

†
↑ |0⟩ = |𝑠1;↓⟩ (5.10)

𝑐↓ |𝑠
2⟩ = 𝑐↓𝑐

†
↑𝑐

†
↓ |0⟩ = −𝑐†↑𝑐↓𝑐

†
↓ |0⟩ = − |𝑠1;↑⟩ (5.11)
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When acting on the doubly occupied state, 𝑐↓ produces a negative sign due to the fixed (but arbitrarily
chosen) order of creation operators in the definition of |2⟩. We can, therefore, conclude

𝑐𝜎 = 𝑏
†
𝑓𝜎 + sgn(𝜎) · 𝑓 †

�̃�
𝑎 , (5.12)

where �̃� is the conjugate spin, i.e. −𝜎 in this case. It can also be derived by demanding the linear
superposition of auxiliary particles respect the canonical commutation relations of 𝑐. The diagonal
elements directly lead to �̂� = 1, whereas the off-diagonal elements fix the sign of the double-occupancy
term.

Let’s investigate the slightly more complex case of 𝑝-shell states with occupancy 𝑝
1, 𝑝2 and 𝑝

3.
In anticipation of structures used later in the thesis, let’s assume we have identified the lowest-lying
states of each configuration and determined those to be a Kramers doublet2 for 𝑝1 and 𝑝

3 each and a
spin-singlet with twofold orbital degree of freedom for 𝑝2. Let’s assume that those states in terms of
𝑐𝜎,𝑚𝑙

are given by

|𝑝1;𝜎⟩ = 𝑐
†
𝜎,0 |0⟩ , (5.13)

|𝑝2;𝛼⟩ = 𝑐
†
↑,𝛼𝑐

†
↓,𝛼 |0⟩ , (5.14)

|𝑝3;𝜎⟩ = 𝑐
†
𝜎,0

1
√

2

(
𝑐
†
↑,1𝑐

†
↓,1 − 𝑐

†
↑,−1𝑐

†
↓,−1

)
|0⟩ , (5.15)

where 𝛼 = ±1. We can construct an effective fermionic operator for this set of states. Due to Pauli’s
principle, only sets of states that have 𝑛max − 𝑛min = 2 can be represented by a fermionic operator3.
Let’s define auxiliary particles, this time representing odd occupations with bosons4

|𝑝1;𝜎⟩ = 𝑏
†
𝜎 |vac⟩ , (5.16)

|𝑝2;𝛼⟩ = 𝑓
†
𝛼 |vac⟩ , (5.17)

|𝑝3;𝜎⟩ = 𝑎
†
𝜎 |vac⟩ . (5.18)

A fermionic operator describing the set of states must generally be of the form

𝑑𝜎,𝛼 = 𝛽𝜎,𝛼𝑏
†
𝜎 𝑓𝛼 + 𝛾𝜎,𝛼 𝑓

†
�̃�
𝑎𝜎 . (5.19)

This is a unique form since it incorporates two quantum numbers that each individually appear in
initial and final states. Unfortunately, we can not use the same simple construction as above. The states
𝑑 is describing are constructed in a non-trivial way from 𝑐 operators. Hence, the anti-commutation
relation must be used.

[𝑑𝜎,𝛼, 𝑑
†
𝜎

′
,𝛼

′]+
!
= 𝛿𝜎,𝜎′𝛿𝛼,𝛼′ . (5.20)

2 A Kramers doublet’s degeneracy is time-reversal symmetry protected [72, 73].
3 An interesting case will be presented later, where due to sending one state to infinite energies, the physical fermionic

operator is faithfully represented by only two different adjacent particle numbers, leading to a couple of interesting,
seemingly non-physical properties.

4 Again, this has no real consequence and is just done for convenience to connect it to the aforementioned case relevant
later in the thesis.
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Chapter 5 Methods and Approximations

This results in a set of non-trivial constraints, which is why constructing an effective, fermionic
operator for such a set of states should be avoided, if possible.

5.1.2 Fixing the Operator Constraint �̂� = 1

In order to control the operator constraint �̂� = 1, a chemical potential −𝜆 is implemented via adding
𝜆(�̂� − 1) to the Hamiltonian. As mentioned above, this trick was originally introduced by Abrikosov
and later refined by Barnes [37, 67, 68]. The associated grand-canonical (w.r.t. 𝜆) density matrix is

�̂�𝐺 =
1
𝑍𝐺

𝑒
−𝛽 (�̂�+𝜆(�̂�−1) )

. (5.21)

Expectation values are thus given by the usual trace over the operator of interest and �̂�𝐺 , where the
trace can be subdivided into the different sectors of positive-integer �̂� eigenvalues

⟨�̂�⟩ = 1
𝑍𝐺

Tr
(
�̂�𝑒

−𝛽 (�̂�+𝜆(�̂�−1) )
)

(5.22)

=
1
𝑍𝐺

[
𝑒
𝛽𝜆Tr

(
�̂�𝑒

−𝛽�̂�
)
𝑄=0

+ 𝑒
0Tr

(
�̂�𝑒

−𝛽�̂�
)
𝑄=1

+ 𝑒
−𝛽𝜆Tr

(
�̂�𝑒

−𝛽�̂�
)
𝑄=2

+ . . .

]
. (5.23)

All observables of interest annihilate the 𝑄 = 0 sub-space (non-existence of an impurity), so the first
term vanishes. By sending 𝜆 to infinity, all 𝑄 > 2 are exponentially suppressed, and one ends up with
the expectation value in the 𝑄 = 1 sub-space. The only problem left is the grand-canonical partition
function, which still takes the 𝑄 = 0 sub-space into account. To avoid this, expectation values must be
divided by ⟨�̂�⟩𝐺 .

lim
𝜆→∞

⟨�̂�⟩𝐺
⟨�̂�⟩𝐺

= lim
𝜆→∞

1
𝑍𝐺

[
𝑒
𝛽𝜆Tr

(
�̂�𝑒

−𝛽�̂�
)
𝑄=0

+ 𝑒
0Tr

(
�̂�𝑒

−𝛽�̂�
)
𝑄=1

+ 𝑒
−𝛽𝜆Tr

(
�̂�𝑒

−𝛽�̂�
)
𝑄=2

+ . . .

]
1
𝑍𝐺

[
𝑒
𝛽𝜆Tr

(
�̂�𝑒

−𝛽�̂�
)
𝑄=0

+ 𝑒
0Tr

(
�̂�𝑒

−𝛽�̂�
)
𝑄=1

+ 𝑒
−𝛽𝜆Tr

(
�̂�𝑒

−𝛽�̂�
)
𝑄=2

+ . . .

]
=

Tr
(
�̂�𝑒

−𝛽�̂�
)
𝑄=1

Tr
(
�̂�𝑒

−𝛽�̂�
)
𝑄=1

=

Tr
(
�̂�𝑒

−𝛽�̂�
)
𝑄=1

Tr
(
𝑒
−𝛽�̂�

)
𝑄=1

=

Tr
(
�̂�𝑒

−𝛽�̂�
)
𝑄=1

𝑍𝐶,𝑄=1
= ⟨�̂�⟩𝐶,𝑄=1 (5.24)

Utilizing the fact that the trace over all 𝑄 = 1 states is in an eigenbasis of �̂�, the operator is replaced
by the eigenvalue in the second step of the last line. The trace in the denominator is nothing else than
the canonical partition function in the 𝑄 = 1 sub-space so that the whole expression is identical to the
canonical expectation value in this sub-space, which is the physical expectation value.

Fixing the Constraint for Path Integrals

The same can be elegantly achieved for path integrals. Using the Fourier representation of the Dirac
delta-distribution

𝛿(𝑄 − 1) =
∫ ∞

−∞
d𝜆 𝑒

𝑖 (𝑄−1)𝜆 (5.25)
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5.2 The Luttinger-Ward Functional

any given path-integral with physical field 𝜓, . . . and auxiliary fields 𝑏, . . . can be extended by this
condition via∫

D[𝜓, �̄�, 𝑏, �̄�, . . . ]𝑒−𝑆 [𝜓,�̄�,𝑏,�̄�,... ] →
∫

D[𝜓, �̄�, 𝜆, . . . ]𝑒−𝑆 [𝜓,�̄�,𝑏,�̄�,... ]−𝑆Q−1 [𝑏,�̄�,𝜆,... ] , (5.26)

𝑆Q−1 [𝑏, �̄�, 𝜆, . . . ] =
∫ 𝛽

0
d𝜏 𝜆 ·

(
𝑄 [𝑏, �̄�, . . . ] − 1

)
. (5.27)

5.1.3 The Single-Impurity Anderson Model with Auxiliary Particles

We can now construct an auxiliary-particle representation for the single-impurity Anderson model
with Hubbard operators (Eq. (5.1)) via

|𝑑0⟩ = 𝑏
† |vac⟩ , (5.28)

|𝑑1;𝜎⟩ = 𝑓
†
𝜎 |vac⟩ , (5.29)

|𝑑2⟩ = 𝑎
† |vac⟩ , (5.30)

and with 𝑑𝜎 = 𝑏
†
𝑓𝜎 + sgn(𝜎) · 𝑓 †

�̃�
𝑎 (c.f. Eq. (5.12)). The Hamiltonian, in terms of auxiliary particles,

is

𝐻SIAM =
∑︁
®𝑘,𝜎

(
𝜀
𝑐
®𝑘 − 𝜇

)
𝑐
†
®𝑘𝜎

𝑐 ®𝑘𝜎
+

∑︁
𝜎

(
𝜀
𝑑 − 𝜇 + 𝜆

)
𝑓
†
𝜎 𝑓𝜎 + 𝜆𝑏

†
𝑏 +

(
𝜀
𝑎 − 2𝜇 + 𝜆

)
𝑎
†
𝑎

+
∑︁
®𝑘,𝜎

(
𝑉®𝑘𝑐

†
®𝑘𝜎

𝑏
†
𝑓𝜎 +𝑉®𝑘 sgn(𝜎)𝑐†®𝑘𝜎 𝑓

†
�̃�
𝑎 + ℎ.𝑐.

)
− 𝜆 , (5.31)

with 𝜀
𝑎
= 𝑈 + 2𝜀𝑑 . The interacting (quartic) part of the Hamiltonian is transformed into a quadratic

part at the cost of adding two bosons, which can be treated with field-theoretical methods. In contrast
to expansion in 𝑈, this model is suitable for an expansion in 𝑉 , allowing for a simultaneously faithful
description of the strongly interacting and the weakly interacting regime.

Remarkably, the 𝑈 → ∞ limit can now also be taken in a controlled way, effectively removing the
double-occupation boson 𝑎 from the Hamiltonian. This would have posed a great complication in
the original Hamiltonian, where a large 𝑈 leads to problems in perturbation theory. A description in
terms of Hubbard operators would have been necessary, which is problematic due to the non-canonical
commutation relations. The auxiliary-particle representation5 is a clever way of dealing with exactly
this situation. A method of solving this model is presented in the next section.

5.2 The Luttinger-Ward Functional

Field theoretical approximations often expand self-energies in contributions from free Green functions
alone. While being beneficial in only using the free Green function, which is typically exactly
known, incomplete expansions can lead to broken conservation laws. Alternatively, a conserving
approximation can be pursued with infinite summations of specific classes of diagrams. Such

5 The representation used by Barnes is especially tailored to the SIAM and works best in the strongly interacting limit.
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Chapter 5 Methods and Approximations

Figure 5.1: Illustration of the variation of a Green function in terms of Feynman diagrams, taken from [74]. The
missing line comes from the factoring out of the variation 𝛿𝐺.

approximations can be efficiently generated from the Luttinger-Ward functional (LW) [59]. Deriving
this function exactly is a tedious procedure and not essential in the context of this thesis. I will,
therefore, present a heuristic derivation without proofs6, closely following [74].

The Luttinger-Ward functional Φ[𝑮] can be understood as an object assigning a number to a Green
function via a summation over all closed, connected, two-particle irreducible (2PI) skeleton diagrams
of the full Green functions. In other words, the diagrams have no external lines, they don’t factorize,
they don’t fall apart by cutting two lines, no Green function contains self-energy insertions, only bare
vertices are considered, and all appearing lines are full Green functions, i.e. they are renormalized by
their full self-energy. Each diagram in the sum is multiplied by a factor −1/𝑆, where 𝑆 is the symmetry
of the individual diagrams. It is a combinatorial factor counting the ways how a diagram can be
constructed by permitting and relabeling vertices and propagators. This removes double counting
from the construction.

Self-energies, on the other hand, are generated by connected single-particle irreducible (1PI)
skeleton diagrams with a single entry- and a single exit point. Hence, just by comparing the definitions,
the structure of a self-energy diagram can be obtained from the Luttinger-Ward functional by cutting a
single line and using the resulting stumps as entry- and exit points. Due to the LW being a functional
of Green functions, derivatives with respect to the same are well defined. Diagrammatically, this can
be understood as cutting a Green function line, as illustrated in Fig. 5.1. The figure shows how the
differentiation works in terms of diagrams by taking the difference between a diagram of 𝑮 + 𝛿𝑮 and
the same diagram of 𝑮. Due to such a diagram representing the product of Green functions, the lowest
order in 𝛿𝑮 can be represented as removing a line from the diagram, summing up all possible choices.

Variation with respect to a function replaces the respective function in the functional by delta
functions of each quantum number, e.g 𝛿Φ/𝛿𝑮𝑎,𝑏 (𝑖𝜔𝑛) = Σ𝑏,𝑎 (𝑖𝜔𝑛). The indices need to be switched
under differentiation, which can be easily understood from the directionality of Green function lines;
𝑮𝑎,𝑏 links 𝑏 to 𝑎, hence 𝑏 is the exit of a vertex and 𝑎 the entry point, necessitating the structure
Σ𝑏,𝑎. Within the Matsubara Green function technique, each sum over a Matsubara frequency is
accompanied by a factor 1/𝛽. The differentiation fixes the Matsubara frequency, resolving the sum
but leaving the prefactor behind. Lastly, the factor −1/𝑆 cancels the degeneracy in which line to cut

6 For a nice discussion of the two-particle irreducible effective action from which this can be derived, see [75].
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5.2 The Luttinger-Ward Functional

under differentiation and the minus sign accounts for the reduced number of Fermion loops when
cutting a Fermion line. This results in the relation

𝛿Φ[𝑮]
𝛿𝐺𝑎,𝑏 (𝑖𝜔𝑛)

= ± 1
𝛽
Σ𝑏,𝑎 (𝑖𝜔𝑛), (5.32)

where the plus sign is for fermions7.

7 This is not contradictory to what was argued before due to an overall minus sign in the definition of the functional.
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5.3 The Non-Crossing Approximation

Now that the Hamiltonian (Eq. (5.31)) is set up, a diagrammatic expansion of the field theory can be
constructed [69–71]. It contains four different particle species, connected via two types of three-point
hybridization vertices (c.f. Fig, 5.2). Each vertex preserves momentum, spin and Matsubara frequency,
each line represents a (full) Green function. Following [76], a perturbation series in terms of𝑉/𝐷 ≪ 1
is calculated to lowest order, with 𝐷 being the bandwidth of the conduction-electron band. Logarithmic
divergences in the perturbation series are circumvented by selection and summation of the most
relevant terms. This is done in the framework of a conserving approximation from a Luttinger-Ward
functional Φ [77], represented as the diagram in Fig. 5.3. Auxiliary-particle self-energies Σ𝑏/ 𝑓 /𝑎 are
then given by functional derivatives of Φ w.r.t. the respective propagators, where Φ evaluates to

Φ = − 1
𝛽

2

∑︁
𝑖𝜈𝑛
𝑖𝜇𝑚

∑︁
𝜎,𝜎

′

∑︁
®𝑘, ®𝑘′

𝑉®𝑘𝑉
∗
®𝑘′ 𝐺

𝑐

𝜎
′
𝜎
(𝑖𝜈𝑛; ®𝑘 ′, ®𝑘)

[
𝐺
𝑓

𝜎𝜎
′ (𝑖𝜇𝑚 + 𝑖𝜈𝑛)𝐺

𝑏 (𝑖𝜇𝑚)

− 𝐺
𝑓

−𝜎′
,−𝜎 (𝑖𝜇𝑚 − 𝑖𝜈𝑛)𝐺

𝑎 (𝑖𝜇𝑚)
]
. (5.33)

The relative minus sign comes from the lack of fermion loops in the second diagram. Here and
henceforth, fermionic Matsubara frequencies have a subscript 𝑛 and bosonic ones a subscript 𝑚. In a
diagrammatic representation, taking derivatives is represented by cutting the respective propagator
line. All diagrams that appear show no crossing lines, hence the name "non-crossing approximation"
(NCA).

Gc

Gb

Gf

Ga

V V ∗ V V ∗

Figure 5.2: Simplified Feynman rules for the single-impurity Anderson model with auxiliary particles, c.f.
Eq. (5.31).

iµm

iµm + iνn; σ σ′

iνn; ~k
′ ~k; σ′ σ

V~k V ∗
~k′ +

iµm

iµm − iνn; −σ′,−σ

iνn; ~k
′ ~k; σ′ σ

V~k V ∗
~k′

Figure 5.3: Diagrammatic representation of the Luttinger-Ward functional for the SIAM in terms of auxiliary
particles with the convention of quantum numbers associated with the creation operator appearing first, those
associated with the annihilation operator second.
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5.3 The Non-Crossing Approximation

5.3.1 Conduction-Electron Self-Energy

The conduction electron self-energy in Fig. 5.4 is to be calculated first since it will give rise to a
great simplification of the following calculations. In order to evaluate the Matsubara sum, a contour
integral in complex frequency space over the Green functions times the Bose distribution function 𝑛𝑏
is used [49].

iωn; ~k; σ

iµm + iωn; σ
′, σ

iµm

iωn; σ
′; ~k′

+
iωn; ~k; σ

iµm

iµm − iωn; −σ′,−σ

iωn; σ
′; ~k′

Figure 5.4: Diagrammatic representation of the conduction electron self-energy. The incoming and outgoing
lines are just shown for bookmarking of the conserved quantities.

Utilizing a matrix notation in spin-space (bold objects are matrices), the first diagram evaluates to

𝚺𝑐
1; ®𝑘′ ®𝑘 (𝑖𝜔𝑛) = −𝑉®𝑘𝑉

∗
®𝑘′

1
𝛽

∑︁
𝑖𝜇𝑚

G 𝑓 (𝑖𝜇𝑚 + 𝑖𝜔𝑛)𝐺
𝑏 (𝑖𝜇𝑚) (5.34)

= −𝑉®𝑘𝑉
∗
®𝑘′

∮
d𝑧
2𝜋𝑖

𝑛𝐵 (𝑧) G 𝑓 (𝑧 + 𝑖𝜔𝑛)𝐺
𝑏 (𝑧) (5.35)

= −𝑉®𝑘𝑉
∗
®𝑘′

∫ ∞

−∞

d𝜀
2𝜋𝑖

{
𝑛𝐵 (𝜀) G 𝑓 (𝜀 + 𝑖𝜔𝑛)

[
𝐺
𝑏 (𝜀 + 𝑖𝜂) − 𝐺

𝑏 (𝜀 − 𝑖𝜂)
]

+ 𝑛𝐵 (𝜀 − 𝑖𝜔𝑛)
[
G 𝑓 (𝜀 + 𝑖𝜂) − G 𝑓 (𝜀 − 𝑖𝜂)

]
𝐺
𝑏 (𝜀 − 𝑖𝜔𝑛)

}
, (5.36)

where 𝜂 > 0 is an infinitesimal number. The contour for evaluating the Matsubara sum is shown in
Fig. 5.5. The shifted Bose function 𝑛𝐵 (𝜀 − 𝑖𝜔𝑛) is just the negative Fermi function, which can be
shown via 𝑒

𝑖𝜔𝑛 = −1 (fermionic Matsubara frequency):

𝑛𝐹/𝐵 (𝜀 − 𝑖𝜔𝑛) =
(
𝑒
𝛽 (𝜀−𝑖𝜔𝑛 ) ± 1

)−1
=

(
𝑒
𝛽𝜀

𝑒
−𝑖𝜔𝑛𝛽 ± 1

)−1
(5.37)

=

(
−𝑒𝛽𝜀 ± 1

)−1
= −𝑛𝐵/𝐹 (𝜀). (5.38)

By identifying 𝐺 (𝜀 ± 𝑖𝜂) = 𝐺
𝑅/𝐴(𝜀), the advanced and retarded Green functions, the Spectral function

can be substituted via

𝐺
𝑅 (𝜀) − 𝐺

𝐴(𝜀) = 2𝑖 Im𝐺
𝑅 (𝜀) = −2𝜋𝑖 𝐴(𝜀). (5.39)

Carrying out the substitution, the diagram evaluates to

𝚺𝑐1 (𝑖𝜔𝑛) = 𝑉®𝑘𝑉
∗
®𝑘′

∫ ∞

−∞
d𝜀

{
𝑛𝐵 (𝜀) G 𝑓 (𝜀 + 𝑖𝜔𝑛) 𝐴

𝑏 (𝜀) − 𝑛𝐹 (𝜀) A 𝑓 (𝜀)𝐺𝑏 (𝜀 − 𝑖𝜔𝑛)
}
. (5.40)
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Re z

Im z

Gb/a

Gf

Figure 5.5: Contour for evaluating the Matsubara-sum in the conduction-electron self-energy. Curly lines
visualize the branch cuts of the respective Green functions. Bosonic Matsubara frequencies are shown as blue
dots.

In order to take the limit 𝜆 → ∞, all explicit 𝜆-dependencies should be treated. Since 𝜆 is a chemical
potential for the auxiliary particles, it appears only as an energy shift, which can be removed explicitly
via 𝜔 → 𝜔

′
= 𝜔 − 𝜆 such that

𝐺
𝑓 (𝜔) = 1

𝜔 − 𝜆 − (𝜀𝑑 − 𝜇) − Σ
𝑓 (𝜎, 𝜔)

⇒ 𝐺
𝑓 (𝜔′) = 1

𝜔
′ − (𝜀𝑑 − 𝜇) − Σ

𝑓 (𝜎, 𝜔′ + 𝜆)
, (5.41)

𝐺
𝑎 (𝜔) = 1

𝜔 − 𝜆 − (𝜀𝑎 − 2𝜇) − Σ
𝑎 (𝜔)

⇒ 𝐺
𝑎 (𝜔′) = 1

𝜔
′ − (𝜀𝑎 − 2𝜇) − Σ

𝑎 (𝜔′ + 𝜆)
, (5.42)

𝐺
𝑏 (𝜔) = 1

𝜔 − 𝜆 − Σ
𝑏 (𝜔)

⇒ 𝐺
𝑏 (𝜔′) = 1

𝜔
′ − Σ

𝑏 (𝜔′ + 𝜆)
, (5.43)

with 𝜀
𝑎
= 𝑈 + 2𝜀𝑑 as defined in the Hamiltonian (Eq. (5.31)). The quantum numbers have been

intentionally omitted, and fractions have to be understood as matrix-inversion in the most general case.
This construction redefines the energy argument to be in the reference frame with respect to 𝜆. The
dependency in the conduction-electron self-energy can thus be removed by applying 𝜀 → 𝜀

′
= 𝜀 − 𝜆

in the integrals:

𝚺𝑐1 (𝑖𝜔𝑛) = 𝑉®𝑘𝑉
∗
®𝑘′

∫ ∞

−∞
d𝜀′

{
𝑛𝐵 (𝜀

′ + 𝜆) G 𝑓 (𝜀′ + 𝜆 + 𝑖𝜔𝑛) 𝐴
𝑏 (𝜀′ + 𝜆)

− 𝑛𝐹 (𝜀
′ + 𝜆) A 𝑓 (𝜀′ + 𝜆)𝐺𝑏 (𝜀′ + 𝜆 − 𝑖𝜔𝑛)

}
. (5.44)

The only remaining 𝜆-dependence is in the distribution functions. Upon taking the infinity limit, both
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vanish exponentially:

𝑛𝐹/𝐵 (𝜀
′ + 𝜆) =

(
𝑒
𝛽𝜀

′
𝑒
𝛽𝜆 ± 1

)−1
(5.45)

= 𝑒
−𝛽𝜆

(
𝑒
𝛽𝜀

′
± 𝑒

−𝛽𝜆
)−1 𝜆≫1−−−→ 𝑒

−𝛽𝜆
𝑒
−𝛽𝜀′ 𝜆→∞−−−−→ 0. (5.46)

For the second diagram, in order to use the same matrix notation, we need to define a spin-flipped
matrix-Green-function (

Ḡ
)
𝜎

′
𝜎
=

(
G

)
−𝜎′

,−𝜎
. (5.47)

The second diagram can then be evaluated to

𝚺𝑐2 (𝑖𝜔𝑛) = 𝑉®𝑘𝑉
∗
®𝑘′

1
𝛽

∑︁
𝑖𝜇𝑚

Ḡ 𝑓 (𝑖𝜇𝑚 − 𝑖𝜔𝑛)𝐺
𝑎 (𝑖𝜇𝑚) (5.48)

= 𝑉®𝑘𝑉
∗
®𝑘′

∮
d𝑧
2𝜋𝑖

𝑛𝐵 (𝑧) Ḡ 𝑓 (𝑧 − 𝑖𝜔𝑛)𝐺
𝑎 (𝑧) (5.49)

= 𝑉®𝑘𝑉
∗
®𝑘′

∫ ∞

−∞

d𝜀
2𝜋𝑖

{
𝑛𝐵 (𝜀) Ḡ 𝑓 (𝜀 − 𝑖𝜔𝑛)

[
𝐺
𝑎 (𝜀 + 𝑖𝜂) − 𝐺

𝑎 (𝜀 − 𝑖𝜂)
]

+ 𝑛𝐵 (𝜀 + 𝑖𝜔𝑛)
[
Ḡ 𝑓 (𝜀 + 𝑖𝜂) − Ḡ 𝑓 (𝜀 − 𝑖𝜂)

]
𝐺
𝑎 (𝜀 + 𝑖𝜔𝑛)

}
. (5.50)

Following the same steps as before, one gets

𝚺𝑐
2; ®𝑘′ ®𝑘 (𝑖𝜔𝑛) = −𝑉®𝑘𝑉

∗
®𝑘′

∫ ∞

−∞
d𝜀′

{
𝑛𝐵 (𝜀

′ + 𝜆) Ḡ 𝑓 (𝜀′ + 𝜆 − 𝑖𝜔𝑛) 𝐴
𝑎 (𝜀′ + 𝜆)

− 𝑛𝐹 (𝜀
′ + 𝜆) Ā 𝑓 (𝜀′ + 𝜆)𝐺𝑎 (𝜀′ + 𝜆 + 𝑖𝜔𝑛)

}
. (5.51)

This vanishes under 𝜆 → ∞ for the same reasons as 𝚺𝑐1 .
In any grand-canonical calculation (w.r.t. 𝜆), conduction electron Green functions can, therefore,

be replaced by free conduction-electron Green functions, greatly simplifying the complexity of the
following calculations.
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5.3.2 Impurity Green Function

Although vanishing in the limit 𝜆 → ∞, the previous calculations can be recycled for the conduction-
electron 𝑇-matrix. Already defined in the context of previously discussed models (c.f. Eq (2.102)), the
𝑇-matrix for the conduction electrons is the full impurity Green function with hybridization-vertices
attached on both sides

G𝑐
®𝑘′ ®𝑘 (𝜔) = 𝛿 ®𝑘′ , ®𝑘G

𝑐 (0)
®𝑘

(𝜔) + G𝑐 (0)
®𝑘′

(𝜔) 𝑉®𝑘′G
𝑑 (𝜔)𝑉®𝑘 G𝑐 (0)

®𝑘
(𝜔) (5.52)

= 𝛿 ®𝑘′ , ®𝑘G
𝑐 (0)
®𝑘

(𝜔) + G𝑐 (0)
®𝑘′

(𝜔) T𝑑®𝑘′ ®𝑘 (𝜔) G𝑐 (0)
®𝑘

(𝜔) . (5.53)

The diagram describing the 𝑇-matrix is exactly the same as for the conduction-electron self-energy
from before (Fig. 5.4) with the difference that it should be evaluated in the canonical ensemble, as
discussed ins Sec. 5.1.2. It therefore must be divided by ⟨𝑄⟩𝐺 , which is

⟨�̂�⟩𝐺 =

∫ ∞

−∞
d𝜀

[
𝑛𝐵 (𝜀)

(
𝐴
𝑏 (𝜀) + 𝐴

𝑎 (𝜀)
)
+ 𝑛𝐹 (𝜀)

∑︁
𝜎

𝐴
𝑓
𝜎𝜎 (𝜀)

]
(5.54)

=

∫ ∞

−∞
d𝜀′

[
𝑛𝐵 (𝜀

′ + 𝜆)
(
𝐴
𝑏 (𝜀′ + 𝜆) + 𝐴

𝑎 (𝜀′ + 𝜆)
)
+ 𝑛𝐹 (𝜀

′ + 𝜆)
∑︁
𝜎

𝐴
𝑓
𝜎𝜎 (𝜀

′ + 𝜆)
]

(5.55)

= 𝑒
−𝛽𝜆

∫ ∞

−∞
d𝜀′

[
𝐴
𝑏 (𝜀′ + 𝜆) + 𝐴

𝑎 (𝜀′ + 𝜆)
𝑒
𝛽𝜀

′
− 𝑒

−𝛽𝜆
+

∑
𝜎 𝐴

𝑓
𝜎𝜎 (𝜀

′ + 𝜆)
𝑒
𝛽𝜀

′
+ 𝑒

−𝛽𝜆

]
. (5.56)

The reduction of all distribution functions to the Boltzmann factor highlights the irrelevancy of the
choice of auxiliary-particle statistics. The prefactor 𝑒−𝛽𝜆 exactly cancels the corresponding term that
appears in the previously derived equations, resulting in a non-vanishing expression for the 𝑇-matrix

G𝑑
1 (𝑖𝜔𝑛) = lim

𝜆→∞

𝑒
−𝛽𝜆 ∫ ∞

−∞d𝜀′
{

G 𝑓 (𝜀′+𝑖𝜔𝑛+𝜆) 𝐴
𝑏 (𝜀′+𝜆)

𝑒
𝛽𝜀

′
−𝑒−𝛽𝜆

− A 𝑓 (𝜀′+𝜆) 𝐺𝑏 (𝜀′−𝑖𝜔𝑛+𝜆)
𝑒
𝛽𝜀

′
+𝑒−𝛽𝜆

}
𝑒
−𝛽𝜆 ∫ ∞

−∞d𝜀′
[
𝐴
𝑏 (𝜀′+𝜆) + 𝐴𝑎 (𝜀′+𝜆)

𝑒
𝛽𝜀

′
−𝑒−𝛽𝜆

+
∑

𝜎 𝐴
𝑓
𝜎𝜎 (𝜀′+𝜆)

𝑒
𝛽𝜀

′
+𝑒−𝛽𝜆

] (5.57)

=

∫ ∞
−∞d𝜀′ 𝑒−𝛽𝜀

′ {
G 𝑓 (𝜀′ + 𝑖𝜔𝑛) 𝐴

𝑏 (𝜀′) − A 𝑓
𝜎𝜎 (𝜀

′)𝐺𝑏 (𝜀′ − 𝑖𝜔𝑛)
}

∫ ∞
−∞d𝜀′ 𝑒−𝛽𝜀

′ [
𝐴
𝑏 (𝜀′) + 𝐴

𝑎 (𝜀′) + ∑
𝜎 𝐴

𝑓
𝜎𝜎 (𝜀

′)
] , (5.58)

where the Green functions and spectral functions in the last step have been replaced by the reference-
energy 𝜆 ones from above. In order to calculate the (advanced) Green function8 in physical frequency
space, 𝑖𝜔𝑛 is replaced by 𝜔 − 𝑖𝜂 and the imaginary part is taken

Im G𝑑 𝐴
1 (𝜔) = 𝜋

∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
{
A 𝑓 (𝜀 + 𝜔) 𝐴𝑏 (𝜀) + A 𝑓 (𝜀) 𝐴𝑏 (𝜀 − 𝜔)

}
∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
[
𝐴
𝑏 (𝜀) + 𝐴

𝑎 (𝜀) + ∑
𝜎 𝐴

𝑓
𝜎𝜎 (𝜀)

] . (5.59)

8 The reason for taking the advanced one is that imaginary parts are often strictly positive. The choice is just for convenience;
we could have taken the retarded ones equally well.
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5.3 The Non-Crossing Approximation

Note that the sign change in the second term arises from the fact that in the slave-boson Green function,
the external frequency 𝑖𝜔𝑛 enters with a negative sign. Thus, 𝐺𝑏 is the retarded function if 𝐺𝑑 is
chosen to be advanced since the sign of the infinitesimal imaginary offset is reversed. A substitution
of 𝜀′ = 𝜀 − 𝜔 in the second term and relabeling 𝜀

′ → 𝜀 gives

Im G𝑑 𝐴
1 (𝜔) = 𝜋

∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
(
1 + 𝑒

−𝛽𝜔
)
A 𝑓 (𝜀 + 𝜔) 𝐴𝑏 (𝜀)∫ ∞

−∞d𝜀 𝑒
−𝛽𝜀

[
𝐴
𝑏 (𝜀) + 𝐴

𝑎 (𝜀) + ∑
𝜎 𝐴

𝑓
𝜎𝜎 (𝜀)

] . (5.60)

Equivalently, the second term is

Im G𝑑 𝐴
2 (𝜔) = 𝜋

∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
{
Ā 𝑓 (𝜀 − 𝜔) 𝐴𝑎 (𝜀) + Ā 𝑓 (𝜀) 𝐴𝑎 (𝜀 + 𝜔)

}
∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
[
𝐴
𝑏 (𝜀) + 𝐴

𝑎 (𝜀) + ∑
𝜎 𝐴

𝑓
𝜎𝜎 (𝜀)

] (5.61)

= 𝜋

∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
(
1 + 𝑒

𝛽𝜔
)
Ā 𝑓 (𝜀 − 𝜔) 𝐴𝑎 (𝜀)∫ ∞

−∞d𝜀 𝑒
−𝛽𝜀

[
𝐴
𝑏 (𝜀) + 𝐴

𝑎 (𝜀) + ∑
𝜎 𝐴

𝑓
𝜎𝜎 (𝜀)

] . (5.62)

The real part can then be obtained from the Kramers-Kronig relation [78, 79] and the full Green
function is the sum G𝑑

= G1 + G2.
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5.3.3 Auxiliary-Particle Self-Energies

The auxiliary-particle self-energies need to be evaluated in the grand-canonical ensemble but under
𝜆 → ∞. It was already shown above that, in this case, the conduction-electron Green function reduces
to the free one. Due to Matsubara sums of two Green functions with one being shifted by an external,
fixed Matsubara frequency, two terms always appear. This was already the case for the calculations
above. The projection will suppress one of two terms in the self-energy diagrams to zero, reducing the
complexity further.

The full self-energies of the auxiliary particles, therefore, depend on the free conduction-electron
Green function and full Green functions of different auxiliary-particle flavor. The final result will
consequently be a self-consistent set of equations of only auxiliary particles. Each self-energy is
derived in detail below.

Pseudofermion 𝒇 Self-Energy

The Feynman diagrams representing the pseudofermion self-energy are shown in Fig. 5.6.

iωn; σ

iµm

iωn − iµm; ~k~k; σ′σ

iωn; σ
′

+
iωn; σ

iµm

iµm − iωn; ~k~k; −σ,−σ′

iωn; σ
′

Figure 5.6: Diagrammatic representation of the pseudofermion self-energy.

Following the same steps as before, the first diagram evaluates to

𝚺 𝑓1 (𝑖𝜔𝑛) = − 1
𝛽

∑︁
𝑖𝜇𝑚

∑︁
®𝑘

|𝑉®𝑘 |
2G𝑐

®𝑘 ®𝑘 (𝑖𝜔𝑛 − 𝑖𝜇𝑚)𝐺
𝑏 (𝑖𝜇𝑚) (5.63)

= −
∮

d𝑧
2𝜋𝑖

𝑛𝐵 (𝑧)
∑︁
®𝑘

|𝑉®𝑘 |
2G𝑐

®𝑘 ®𝑘 (𝑖𝜔𝑛 − 𝑧)𝐺𝑏 (𝑧) (5.64)

= −
∫ ∞

−∞

d𝜀
2𝜋𝑖

∑︁
®𝑘

|𝑉®𝑘 |
2
{
𝑛𝐵 (𝜀) G𝑐

®𝑘 ®𝑘 (𝑖𝜔𝑛 − 𝜀)
[
𝐺
𝑏 (𝜀 + 𝑖𝜂) − 𝐺

𝑏 (𝜀 − 𝑖𝜂)
]

− 𝑛𝐵 (𝑖𝜔𝑛 − 𝜀)
[
G𝑐

®𝑘 ®𝑘 (𝜀 + 𝑖𝜂) − G𝑐
®𝑘 ®𝑘 (𝜀 − 𝑖𝜂)

]
𝐺
𝑏 (𝑖𝜔𝑛 − 𝜀)

}
(5.65)

=

∫ ∞

−∞
d𝜀

∑︁
®𝑘

|𝑉®𝑘 |
2
{
𝑛𝐵 (𝜀) G𝑐

®𝑘 ®𝑘 (𝑖𝜔𝑛 − 𝜀) 𝐴𝑏 (𝜀) + 𝑛𝐹 (−𝜀) A𝑐®𝑘 ®𝑘 (𝜀)𝐺
𝑏 (𝑖𝜔𝑛 − 𝜀)

}
. (5.66)

The negative sign in the second term stems from the integration over 𝜀 = 𝑖𝜔𝑛 − 𝑧 ⇔ 𝑧 = 𝑖𝜔𝑛 − 𝜀,
which introduces a jacobian of −1 to the integral9. The integration contour used in the second line is
shown in Fig. 5.7. In order to extract the 𝜆-dependence, the external frequency needs to be shifted
9 This can also be understood as the contour being traversed in opposite direction in this case.
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Re z

Im z

Gb/a

Gc

Figure 5.7: Contour for evaluating the Matsubara-sum in the pseudofermion self-energy. Curly lines visualize
branch cuts of the respective Green functions. Bosonic Matsubara frequencies are shown as blue dots.

𝑖𝜔𝑛 → 𝑖𝜔
′
𝑛 = 𝑖𝜔𝑛 − 𝜆 such that

𝚺 𝑓1 (𝑖𝜔
′
𝑛 + 𝜆) =

∫ ∞

−∞
d𝜀

∑︁
®𝑘

|𝑉®𝑘 |
2
{
𝑛𝐵 (𝜀) G𝑐

®𝑘 ®𝑘 (𝑖𝜔
′
𝑛 + 𝜆 − 𝜀) 𝐴𝑏 (𝜀)

+ 𝑛𝐹 (−𝜀) A𝑐®𝑘 ®𝑘 (𝜀)𝐺
𝑏 (𝑖𝜔′

𝑛 + 𝜆 − 𝜀)
}
. (5.67)

Note that the external frequency now exactly matches the one in equation (5.41) and the argument of
𝐺
𝑏 in the second line is compatible with Eq. (5.43). Before we can take the limit, though, the first

term needs to be modified to shift 𝜆 from the conduction electron to the slave-bosons. This is achieved
by shifting the internal energy 𝜀 via 𝜀 → 𝜀

′
= 𝜀 − 𝜆 such that

𝚺 𝑓1 (𝑖𝜔
′
𝑛 + 𝜆) =

∑︁
®𝑘

|𝑉®𝑘 |
2
{ ∫ ∞

−∞
d𝜀′ 𝑛𝐵 (𝜀

′ + 𝜆) 𝐴𝑏 (𝜀′ + 𝜆) G𝑐
®𝑘 ®𝑘 (𝑖𝜔

′
𝑛 − 𝜀

′)

+
∫ ∞

−∞
d𝜀 𝑛𝐹 (−𝜀)𝐺

𝑏 (𝑖𝜔′
𝑛 + 𝜆 − 𝜀) A𝑐®𝑘 ®𝑘 (𝜀)

}
. (5.68)

Using

𝑛𝐹 (−𝜀) =
1

𝑒
−𝛽𝜀 + 1

=
𝑒
𝛽𝜀

1 + 𝑒
𝛽𝜀

(5.69)

=
𝑒
𝛽𝜀 + 1 − 1
𝑒
𝛽𝜀 + 1

= 1 − 1
𝑒
𝛽𝜀 + 1

= 1 − 𝑛𝐹 (𝜀), (5.70)
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the expression can be re-written as

𝚺 𝑓1 (𝑖𝜔
′
𝑛 + 𝜆) =

∑︁
®𝑘

|𝑉®𝑘 |
2
{ ∫ ∞

−∞
d𝜀′ 𝑛𝐵 (𝜀

′ + 𝜆) 𝐴𝑏 (𝜀′ + 𝜆) G𝑐
®𝑘 ®𝑘 (𝑖𝜔

′
𝑛 − 𝜀

′)

+
∫ ∞

−∞
d𝜀

(
1 − 𝑛𝐹 (𝜀)

)
𝐺
𝑏 (𝑖𝜔′

𝑛 + 𝜆 − 𝜀) A𝑐®𝑘 ®𝑘 (𝜀)
}
. (5.71)

Upon taking the limit 𝜆 → ∞, 𝑛𝐵 (𝜀
′ + 𝜆) → 0 exponentially, as shown before. Furthermore, the

conduction-electron density of states reduces to the free one. The final expression reads

𝚺 𝑓1 (𝑖𝜔
′
𝑛 + 𝜆) =

∫ ∞

−∞
d𝜀

(
1 − 𝑛𝐹 (𝜀)

)
𝐺
𝑏 (𝑖𝜔𝑛 − 𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2A𝑐 (0)®𝑘 ®𝑘

(𝜀), (5.72)

where the slave-boson Green function and the self-energy have been replaced by the reference-frame
𝜆 ones, allowing for dropping the explicit 𝜆 in the arguments, as well as the prime in 𝑖𝜔

′
𝑛. Taking the

imaginary part of the advanced self-energy yields

Im𝚺 𝑓 𝐴1 (𝜔) = 𝜋

∫ ∞

−∞
d𝜀

(
1 − 𝑛𝐹 (𝜀)

)
𝐴
𝑏 (𝜔 − 𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 A𝑐 (0)®𝑘 ®𝑘

(𝜀) (5.73)

The same must now also be done for the second diagram

𝚺 𝑓2 (𝑖𝜔𝑛) =
1
𝛽

∑︁
𝑖𝜇𝑚

∑︁
®𝑘

|𝑉®𝑘 |
2Ḡ𝑐

®𝑘 ®𝑘 (𝑖𝜇𝑚 − 𝑖𝜔𝑛)𝐺
𝑎 (𝑖𝜇𝑚) (5.74)

=

∮
d𝑧
2𝜋𝑖

𝑛𝐵 (𝑧)
∑︁
®𝑘

|𝑉®𝑘 |
2Ḡ𝑐

®𝑘 ®𝑘 (𝑧 − 𝑖𝜔𝑛)𝐺
𝑎 (𝑧) (5.75)

=

∫ ∞

−∞

d𝜀
2𝜋𝑖

∑︁
®𝑘

|𝑉®𝑘 |
2
{
𝑛𝐵 (𝜀) Ḡ𝑐

®𝑘 ®𝑘 (𝜀 − 𝑖𝜔𝑛)
[
𝐺
𝑎 (𝜀 + 𝑖𝜂) − 𝐺

𝑎 (𝜀 − 𝑖𝜂)
]

+ 𝑛𝐵 (𝜀 + 𝑖𝜔𝑛)
[
Ḡ𝑐

®𝑘 ®𝑘 (𝜀 + 𝑖𝜂) − Ḡ𝑐
®𝑘 ®𝑘 (𝜀 − 𝑖𝜂)

]
𝐺
𝑎 (𝜀 + 𝑖𝜔𝑛)

}
(5.76)

=

∫ ∞

−∞
d𝜀

∑︁
®𝑘

|𝑉®𝑘 |
2
{
− 𝑛𝐵 (𝜀) Ḡ𝑐

®𝑘 ®𝑘 (𝜀 − 𝑖𝜔𝑛) 𝐴
𝑎 (𝜀) + 𝑛𝐹 (𝜀) Ā𝑐®𝑘 ®𝑘 (𝜀)𝐺

𝑎 (𝜀 + 𝑖𝜔𝑛)
}
.

(5.77)

Taking the same steps as above, i.e. 𝑖𝜔𝑛 = 𝜔 + 𝑖𝜂 + 𝜆, substituting 𝜀
′
= 𝜀 − 𝜆 in the first term, sending

𝜆 → ∞ and finally relabeling for convenience results in

Im𝚺 𝑓 𝐴2 (𝜔) = 𝜋

∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀) 𝐴

𝑎 (𝜀 + 𝜔)
∑︁
®𝑘

|𝑉®𝑘 |
2 Ā𝑐 (0)®𝑘 ®𝑘

(𝜀) . (5.78)
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Slave-Boson 𝒃 Self-Energy

The Feynman diagram representing the self-energy of the slave-boson 𝑏 is shown in Fig. 5.8.

iωm

iωm + iνn; σσ
′

iνn; ~k~k, σ
′σ

iωm

Figure 5.8: Diagrammatic representation of the slave-boson 𝑏 self-energy.

Again, following the same steps as for the other diagrams:

Σ
𝑏 (𝑖𝜔𝑚) = + 1

𝛽

∑︁
𝑖𝜈𝑛

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
G𝑐

®𝑘 ®𝑘 (𝑖𝜈𝑛) G 𝑓 (𝑖𝜔𝑚 + 𝑖𝜈𝑛)
}

(5.79)

= −
∮

d𝑧
2𝜋𝑖

𝑛𝐹 (𝑧)
∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
G𝑐

®𝑘 ®𝑘 (𝑧) G 𝑓 (𝑖𝜔𝑚 + 𝑧)
}

(5.80)

= −
∫ ∞

−∞

d𝜀
2𝜋𝑖

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
𝑛𝐹 (𝜀)

[
G𝑐

®𝑘 ®𝑘 (𝜀 + 𝑖𝜂) − G𝑐
®𝑘 ®𝑘 (𝜀 − 𝑖𝜂)

]
G 𝑓 (𝜀 + 𝑖𝜔𝑚)

+ 𝑛𝐹 (𝜀 − 𝑖𝜔𝑚) G𝑐
®𝑘 ®𝑘 (𝜀 − 𝑖𝜔𝑚)

[
G 𝑓 (𝜀 + 𝑖𝜂) − G 𝑓 (𝜀 − 𝑖𝜂)

] }
(5.81)

=

∫ ∞

−∞
d𝜀

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
𝑛𝐹 (𝜀) A𝑐®𝑘 ®𝑘 (𝜀) G 𝑓 (𝜀 + 𝑖𝜔𝑚) + 𝑛𝐹 (𝜀) G𝑐

®𝑘 ®𝑘 (𝜀 − 𝑖𝜔𝑚) A 𝑓 (𝜀)
}
,

(5.82)

where the major difference is a missing minus sign in the first line from the definition through the
Luttinger-Ward functional (i.e. missing fermion loop) and the appearance of a minus sign in the second
line due to the replacement of fermionic Matsubara frequencies by a contour integral. There is no
relative sign between the two expressions since 𝑒

𝑖𝜔𝑚 = 1 for bosonic Matsubara frequencies. The
integration contour for evaluating the Matsubara sum is shown in Fig. 5.9. As before, the first step is
shifting the external frequency 𝑖𝜔𝑚 → 𝑖𝜔

′
𝑚 = 𝑖𝜔𝑚 − 𝜆, c.f. Eq (5.43) and Eq (5.41).

Σ
𝑏 (𝑖𝜔′

𝑚 + 𝜆) =
∫ ∞

−∞
d𝜀

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
𝑛𝐹 (𝜀) A𝑐®𝑘 ®𝑘 (𝜀) G 𝑓 (𝜀 + 𝑖𝜔

′
𝑚 + 𝜆)

+ 𝑛𝐹 (𝜀) G𝑐 (𝜀 − 𝑖𝜔
′
𝑚 − 𝜆) A 𝑓 (𝜀)

}
(5.83)
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Re z

Im z

Gb/a

Gc

Figure 5.9: Contour for evaluating the Matsubara sum in the slave-boson self-energy. Curly lines visualize
branch cuts of the respective Green functions. Fermionic Matsubara frequencies are shown as red dots.

The internal energy 𝜀 has to be shifted in the second term via 𝜀 → 𝜀
′
= 𝜀 − 𝜆.

Σ
𝑏 (𝑖𝜔′

𝑚 + 𝜆) =
∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{ ∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀) A𝑐®𝑘 ®𝑘 (𝜀) G 𝑓 (𝜀 + 𝑖𝜔

′
𝑚 + 𝜆)

+
∫ ∞

−∞
d𝜀′ 𝑛𝐹 (𝜀

′ + 𝜆) G𝑐
®𝑘 ®𝑘 (𝜀

′ − 𝑖𝜔
′
𝑚) A 𝑓 (𝜀′ + 𝜆)

}
(5.84)

After relabeling 𝜀
′ to 𝜀, the expression reads

Σ
𝑏 (𝑖𝜔′

𝑚 + 𝜆) =
∫ ∞

−∞
d𝜀

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
𝑛𝐹 (𝜀) A𝑐®𝑘 ®𝑘 (𝜀) G 𝑓 (𝜀 + 𝑖𝜔

′
𝑚 + 𝜆)

+ 𝑛𝐹 (𝜀 + 𝜆) G𝑐
®𝑘 ®𝑘 (𝜀 − 𝑖𝜔

′
𝑚) A 𝑓 (𝜀 + 𝜆)

}
(5.85)

Taking the limit 𝜆 → ∞ will suppress the second term exponentially, just as for the pseudofermion
self-energy. The final expression with 𝐺

𝑓 and Σ
𝑏 being replaced by the expressions in the reference

frame of 𝜆 reads

Σ
𝑏 (𝑖𝜔𝑚) =

∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
A𝑐 (0)®𝑘 ®𝑘

(𝜀) G 𝑓 (𝜀 + 𝑖𝜔𝑚)
}
. (5.86)

The imaginary part of the advanced self-energy is then

ImΣ
𝑏 𝐴(𝜔) = 𝜋

∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
A𝑐 (0)®𝑘 ®𝑘

(𝜀) A 𝑓 (𝜀 + 𝜔)
}
. (5.87)
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5.3 The Non-Crossing Approximation

In the spin-diagonal and degenerate case, the trace gives a factor 𝑁 of the associated 𝑆𝑈 (𝑁) symmetry.

Slave-Boson 𝒂 Self-Energy

The Feynman diagram representing the self-energy of the slave-boson 𝑎 is shown in Fig. 5.10. Utilizing

iωm

iωm − iνn; −σ′,−σ

iνn; ~k~k, σ
′σ

iωm

Figure 5.10: Diagrammatic representation of the slave-boson 𝑎 self-energy.

the transposed spin-flipped matrix-Green-function Ḡ𝑇

𝜎𝜎
′ = 𝐺−𝜎′

,−𝜎 , the diagram evaluates to

Σ
𝑎 (𝑖𝜔𝑚) = − 1

𝛽

∑︁
𝑖𝜈𝑛

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
G𝑐

®𝑘 ®𝑘 (𝑖𝜈𝑛) Ḡ 𝑓 𝑇 (𝑖𝜔𝑚 − 𝑖𝜈𝑛)
}

(5.88)

= +
∮

d𝑧
2𝜋𝑖

𝑛𝐹 (𝑧)
∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
G𝑐

®𝑘 ®𝑘 (𝑧) Ḡ 𝑓 𝑇 (𝑖𝜔𝑚 − 𝑧)
}

(5.89)

=

∫ ∞

−∞

d𝜀
2𝜋𝑖

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
𝑛𝐹 (𝜀)

[
G𝑐

®𝑘 ®𝑘 (𝜀 + 𝑖𝜂) − G𝑐
®𝑘 ®𝑘 (𝜀 − 𝑖𝜂)

]
Ḡ 𝑓 𝑇 (𝑖𝜔𝑚 − 𝜀)

− 𝑛𝐹 (𝑖𝜔𝑚 − 𝜀) G𝑐
®𝑘 ®𝑘 (𝑖𝜔𝑚 − 𝜀)

[
Ḡ 𝑓 𝑇 (𝜀 + 𝑖𝜂) − Ḡ 𝑓 𝑇 (𝜀 − 𝑖𝜂)

] }
(5.90)

=

∫ ∞

−∞
d𝜀

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
− 𝑛𝐹 (𝜀) A𝑐®𝑘 ®𝑘 (𝜀) Ḡ 𝑓 𝑇 (𝑖𝜔𝑚 − 𝜀)

+ 𝑛𝐹 (−𝜀) G𝑐
®𝑘 ®𝑘 (𝑖𝜔𝑚 − 𝜀) A 𝑓 𝑇 (𝜀)

}
. (5.91)

where the contour as in the 𝑏-case (c.f. Fig. 5.9) can be used. Note that there is an overall sign from
the lack of a fermion loop compared to the 𝑏-case and the relative sign due to the Jacobian from
𝜀 = 𝑖𝜔𝑚 − 𝑧, as explained before. We can now replace 𝑖𝜔′

𝑛 = 𝑖𝜔𝑛 − 𝜆 to get

Σ
𝑎 (𝑖𝜔′

𝑚 + 𝜆) =
∫ ∞

−∞
d𝜀

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
− 𝑛𝐹 (𝜀) A𝑐®𝑘 ®𝑘 (𝜀) Ḡ 𝑓 𝑇 (𝑖𝜔′

𝑚 + 𝜆 − 𝜀)

+ 𝑛𝐹 (−𝜀) G𝑐
®𝑘 ®𝑘 (𝑖𝜔

′
𝑚 + 𝜆 − 𝜀) A 𝑓 𝑇 (𝜀)

}
. (5.92)
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In the second term, shifting 𝜀
′
= 𝜀 − 𝜆 and relabeling 𝜀

′ → 𝜀 gives

Σ
𝑎 (𝑖𝜔′

𝑚 + 𝜆) =
∫ ∞

−∞
d𝜀

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
− 𝑛𝐹 (𝜀) A𝑐®𝑘 ®𝑘 (𝜀) Ḡ 𝑓 𝑇 (𝑖𝜔′

𝑚 + 𝜆 − 𝜀)

+ 𝑛𝐹 (−(𝜀 + 𝜆)) G𝑐
®𝑘 ®𝑘 (𝑖𝜔

′
𝑚 − 𝜀) A 𝑓 𝑇 (𝜀 + 𝜆)

}
. (5.93)

The Fermi function now needs to be replaced by 𝑛𝐹 (−(𝜀 + 𝜆)) = 1 − 𝑛𝐹 (𝜀 + 𝜆) in order to take the
limit. Relabeling in the same way as for 𝑏, the result is

Σ
𝑎 (𝑖𝜔𝑚) =

∫ ∞

−∞
d𝜀

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
− 𝑛𝐹 (𝜀) A𝑐 (0)®𝑘 ®𝑘

(𝜀) Ḡ 𝑓 𝑇 (𝑖𝜔𝑚 − 𝜀)

+ G𝑐 (0)
®𝑘 ®𝑘

(𝑖𝜔𝑚 − 𝜀) A 𝑓 𝑇 (𝜀)
}
. (5.94)

We can now take the imaginary part of the advanced self-energy to get

ImΣ
𝑎 𝐴(𝜔) =

∫ ∞

−∞
d𝜀

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
− 𝑛𝐹 (𝜀) A𝑐 (0)®𝑘 ®𝑘

(𝜀) Ā 𝑓 𝑇 (𝜔 − 𝜀)

+ A𝑐 (0)®𝑘 ®𝑘
(𝜔 − 𝜀) A 𝑓 𝑇 (𝜀)

}
. (5.95)

The last step is to substitute 𝜀
′
= 𝜔 − 𝜀 in the second term and then relabeling 𝜀

′ → 𝜀 to combine the
two into

ImΣ
𝑎 𝐴(𝜔) =

∫ ∞

−∞
d𝜀

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{(
1 − 𝑛𝐹 (𝜀)

)
A𝑐 (0)®𝑘 ®𝑘

(𝜀) Ā 𝑓 𝑇 (𝜔 − 𝜀)
}

(5.96)

=

∫ ∞

−∞
d𝜀 𝑛𝐹 (−𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
A𝑐 (0)®𝑘 ®𝑘

(𝜀) Ā 𝑓 𝑇 (𝜔 − 𝜀)
}
. (5.97)

Similar to the previous case, the trace gives a factor 𝑁 of the associated 𝑆𝑈 (𝑁) symmetry in the
spin-diagonal and degenerate case.
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5.3.4 Fixing the Auxiliary-Particle Energy Scale

Introducing auxiliary particles in the Hamiltonian leads to an additional, artificial 𝑈 (1) symmetry due
to auxiliary particles always appearing in pairs of creation- and annihilation operators. This gauge
degree of freedom is addressed by 𝜆 but not fixed by sending it to infinity, as will become clear later.
Let’s first explicitly prove the invariance of 𝐺𝑑 w.r.t. shifts in auxiliary-particle energy by 𝜆

′.

Im G𝑑 𝐴
1 (𝜔) shift→ 𝜋

∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
{
A 𝑓 (𝜀 + 𝜔 + 𝜆

′) 𝐴𝑏 (𝜀 + 𝜆
′) + A 𝑓 (𝜀 + 𝜆

′) 𝐴𝑏 (𝜀 − 𝜔 + 𝜆
′)
}

∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
[
𝐴
𝑏 (𝜀 + 𝜆

′) + 𝐴
𝑎 (𝜀 + 𝜆

′) + ∑
𝜎 𝐴

𝑓
𝜎𝜎 (𝜀 + 𝜆

′)
] (5.98)

𝜀
′
=𝜀+𝜆′
= 𝜋

∫ ∞
−∞d𝜀′ 𝑒−𝛽 (𝜀

′−𝜆)
{
A 𝑓 (𝜀′ + 𝜔) 𝐴𝑏 (𝜀′) + A 𝑓 (𝜀′) 𝐴𝑏 (𝜀′ − 𝜔)

}
∫ ∞
−∞d𝜀′ 𝑒−𝛽 (𝜀

′−𝜆)
[
𝐴
𝑏 (𝜀′) + 𝐴

𝑎 (𝜀′) + ∑
𝜎 𝐴

𝑓
𝜎𝜎 (𝜀

′)
] (5.99)

= 𝜋

𝑒
𝛽𝜆

′ ∫ ∞
−∞d𝜀′ 𝑒−𝛽𝜀

′ {
A 𝑓 (𝜀′ + 𝜔) 𝐴𝑏 (𝜀′) + A 𝑓 (𝜀′) 𝐴𝑏 (𝜀′ − 𝜔)

}
𝑒
𝛽𝜆

′ ∫ ∞
−∞d𝜀′ 𝑒−𝛽𝜀

′ [
𝐴
𝑏 (𝜀′) + 𝐴

𝑎 (𝜀′) + ∑
𝜎 𝐴

𝑓
𝜎𝜎 (𝜀

′)
] (5.100)

= Im G𝑑 𝐴
1 (𝜔) 𝑒

𝛽𝜆
′

𝑒
𝛽𝜆

′ = Im G𝑑 𝐴
1 (𝜔) (5.101)

The second term Im G𝑑 𝐴
2 has the same structure, and its invariance can be shown using the same

procedure.
All auxiliary-particle functions are in the reference frame of 𝜆 such that taking the limit 𝜆 → ∞ is

well-defined. This does not fix the gauge in the co-moving frame. We therefore have to split 𝜆 = 𝜆0+𝜆1,
send 𝜆1 → ∞, and use 𝜆0 to fix the gauge in this reference frame. A natural choice is adjusting 𝜆0 such
that ⟨𝑄⟩ = 1. It seems to be an odd choice since the projection is supposed to already enforce this. In
reality, the auxiliary-particle equations derived above are still in the grand-canonical ensemble, we
have just removed diagrams that would not contribute under the projection to the canonical ensemble,
i.e. enforcing the operator constraint �̂� = 1. In the co-moving frame, the expectation value ⟨𝑄⟩ is not
fixed and, due to the grand-canonical nature of the theory, the associated chemical potential 𝜆0 must
be adjusted dynamically to enforce constraints on expectation values. This can be done in many ways
and typically improves the stability of NCA significantly.

Enforcing ⟨𝑄⟩ = 1 is indeed not crucial in solving the theory, as physical observables become
independent of ⟨𝑄⟩ by construction (c.f. Eq (5.24)). Another possibility for fixing the gauge is to adjust
the peak positions of auxiliary-particle spectra during calculations. In fact, the numerical stability can
be greatly increased by this method. In order to calculate the appropriate 𝜆0 for this method, one has
to look at the definition of a full Green function in the co-moving frame (c.f. Eq. (5.41)-(5.42))

𝐺 (𝜔) =
(
𝜔 − 𝜀 − 𝜆0 − ReΣ(𝜔) − 𝑖 ImΣ(𝜔)

)−1
. (5.102)

Disregarding ImΣ, the poles of such a Green function will be at 𝜔 − 𝜀 − 𝜆0 − ReΣ(𝜔) = 0. We can
now shift the pole to 𝜔 = 0 via

𝜆0 = min [𝜀 − ReΣ(0)] , (5.103)
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where the minimum is with respect to the auxiliary-particle flavor, ensuring that the leftmost pole over
all auxiliary-particle Green functions will be fixed to zero. In reality, this does not fully work due to
the frequency structure of ImΣ; it is, however, stable, precisely defined, numerically fast, and, in fact,
leads to better convergence of the dynamical mean-field theory, which will be discussed later.

5.3.5 Addressing the Diverging Boltzmann Factor via Tilde Functions

For low temperatures, auxiliary-particle spectral functions develop a sharp asymmetry around their
main peak. Furthermore, the Boltzmann factor in the equation for 𝐺𝑑 poses numerical challenges
due to its strongly increasing values for 𝜔 < 0 combined with the strongly decreasing values in
auxiliary-particle spectra, counteracting the divergent behavior of 𝑒−𝛽𝜔 to guarantee a finite result in
Eq. (5.60) and (5.62).

In order to address this, a simple transformation can be utilized to reduce the asymmetry and remove
the Boltzmann factor at the same time [76]

𝑓 (𝜔) = 𝑛𝐹 (−𝜔) 𝑓 (𝜔) =
[
1 − 𝑛𝐹 (𝜔)

]
𝑓 (𝜔) . (5.104)

The functions 𝑓 are colloquially called tilde functions. The identification above is numerically
non-invertible due to the same problems as discussed above when the Fermi function approaches zero.
We can, however, replace all auxiliary-particle spectral functions and self-energies with their tilde
version and form a closed set of equations for tilde functions. For this, a series of identities prove
useful. First, the Fermi function can be expressed via a hyperbolic tangent

𝑛𝐹 (𝜀) =
1

𝑒
𝛽𝜀 + 1

=
1
2

(
𝑒
𝛽𝜀 + 1 − 𝑒

𝛽𝜀 − 1
𝑒
𝛽𝜀 + 1

)
=

1
2

(
1 − 𝑒

𝛽𝜀 − 1
𝑒
𝛽𝜀 + 1

)
=

1
2

(
1 − 𝑒

𝛽𝜀/2 − 𝑒
−𝛽𝜀/2

𝑒
𝛽𝜀/2 + 𝑒

−𝛽𝜀/2

)
=

1
2

(
1 − tanh

𝛽𝜀

2

)
. (5.105)

Products of Fermi distribution functions appear in the expressions for tilde functions, which can be
efficiently recast using the above equation. They are

𝑛𝐹 (𝜀)𝑛𝐹 (−𝜀 − 𝜔)
𝑛𝐹 (−𝜔)

= 𝑛𝐹 (𝜀)
𝑒
−𝛽𝜔 + 1

𝑒
−𝛽 (𝜔+𝜀) + 1

= 𝑛𝐹 (𝜀)
𝑒
𝛽𝜀 + 𝑒

𝛽 (𝜔+𝜀)

𝑒
𝛽 (𝜔+𝜀) + 1

= 𝑛𝐹 (𝜀)
𝑒
𝛽𝜀 + 𝑒

𝛽 (𝜔+𝜀) + 1 − 1
𝑒
𝛽 (𝜔+𝜀) + 1

= 𝑛𝐹 (𝜀) + 𝑛𝐹 (𝜔 + 𝜀) 𝑒
𝛽𝜀 − 1
𝑒
𝛽𝜀 + 1

= 𝑛𝐹 (𝜀) + 𝑛𝐹 (𝜔 + 𝜀) tanh
𝛽𝜀

2

=
1
2

(
1 − tanh

𝛽𝜀

2

)
+ 𝑛𝐹 (𝜔 + 𝜀) tanh

𝛽𝜀

2
=

1
2
+ tanh

𝛽𝜀

2

(
𝑛𝐹 (𝜔 + 𝜀) − 1

2

)
=

1
2

(
1 − tanh

𝛽𝜀

2
tanh

𝛽(𝜔 + 𝜀)
2

)
, (5.106)

and similarly

𝑛𝐹 (−𝜀)𝑛𝐹 (−𝜔 + 𝜀)
𝑛𝐹 (−𝜔)

=
1
2

(
1 + tanh

𝛽𝜀

2
tanh

𝛽(𝜔 − 𝜀)
2

)
. (5.107)
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First, let’s express the self-energies in terms of tilde functions, leaving the conduction-electron Green
function unaltered.

Im𝚺 𝑓 𝐴1 (𝜔) = 𝑛𝐹 (−𝜔) Im �̃� 𝑓 𝐴1 (𝜔) (5.108)

= 𝜋

∫ ∞

−∞
d𝜀

(
1 − 𝑛𝐹 (𝜀)

)
𝑛𝐹 (−𝜔 + 𝜀) �̃�𝑏 (𝜔 − 𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2Ā𝑐 (0)®𝑘 ®𝑘

(𝜀) (5.109)

⇔ Im �̃� 𝑓 𝐴1 (𝜔) = 𝜋

∫ ∞

−∞
d𝜀

𝑛𝐹 (−𝜀)𝑛𝐹 (−𝜔 + 𝜀)
𝑛𝐹 (−𝜔)

�̃�
𝑏 (𝜔 − 𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2Ā𝑐 (0)®𝑘 ®𝑘

(𝜀) (5.110)

= 𝜋

∫ ∞

−∞
d𝜀

1
2

(
1 + tanh

𝛽𝜀

2
tanh

𝛽(𝜔 − 𝜀)
2

)
�̃�
𝑏 (𝜔 − 𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2Ā𝑐 (0)®𝑘 ®𝑘

(𝜀) (5.111)

Im𝚺 𝑓 𝐴2 (𝜔) = 𝑛𝐹 (−𝜔) Im �̃� 𝑓 𝐴2 (𝜔) (5.112)

= 𝜋

∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀) 𝑛𝐹 (−𝜀 − 𝜔) �̃�𝑎 (𝜀 + 𝜔)

∑︁
®𝑘

|𝑉®𝑘 |
2 Ā𝑐®𝑘 ®𝑘 (𝜀) (5.113)

⇔ Im �̃� 𝑓 𝐴2 (𝜔) = 𝜋

∫ ∞

−∞
d𝜀

1
2

(
1 − tanh

𝛽𝜀

2
tanh

𝛽(𝜔 + 𝜀)
2

)
�̃�
𝑎 (𝜀 + 𝜔)

∑︁
®𝑘

|𝑉®𝑘 |
2 Ā𝑐®𝑘 ®𝑘 (𝜀) (5.114)

ImΣ
𝑏 𝐴(𝜔) = 𝑛𝐹 (−𝜔) Im Σ̃

𝑏 𝐴(𝜔) (5.115)

= 𝜋

∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀) 𝑛𝐹 (−𝜀 − 𝜔)

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
Ã 𝑓 (𝜀 + 𝜔) A𝑐 (0) (𝜀)

}
(5.116)

⇔ Im Σ̃
𝑏 𝐴(𝜔) = 𝜋

∫ ∞

−∞
d𝜀

1
2

(
1 − tanh

𝛽𝜀

2
tanh

𝛽(𝜔 + 𝜀)
2

) ∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
Ã 𝑓 (𝜀 + 𝜔) A𝑐 (0) (𝜀)

}
(5.117)

ImΣ
𝑎 𝐴(𝜔) = 𝑛𝐹 (−𝜔) Im Σ̃

𝑎 𝐴(𝜔) (5.118)

=

∫ ∞

−∞
d𝜀 𝑛𝐹 (−𝜀) 𝑛𝐹 (−𝜔 + 𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
A𝑐®𝑘 ®𝑘 (−𝜀)

˜̄A 𝑓 𝑇 (𝜔 − 𝜀)
}

(5.119)

⇔ Im Σ̃
𝑎 𝐴(𝜔) =

∫ ∞

−∞
d𝜀

1
2

(
1 + tanh

𝛽𝜀

2
tanh

𝛽(𝜔 − 𝜀)
2

) ∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
A𝑐®𝑘 ®𝑘 (−𝜀)

˜̄A 𝑓 𝑇 (𝜔 − 𝜀)
}

(5.120)

Next, we can express ⟨𝑄⟩ in terms of tilde functions.

⟨𝑄⟩ =
∫ ∞

−∞
d𝜀 𝑒

−𝛽𝜀
[
𝐴
𝑏 (𝜀) + 𝐴

𝑎 (𝜀) + Tr A 𝑓 (𝜀)
]

(5.121)

=

∫ ∞

−∞
d𝜀 𝑒

−𝛽𝜀
𝑛𝐹 (−𝜀)

[
�̃�
𝑏 (𝜀) + �̃�

𝑎 (𝜀) + Tr Ã 𝑓 (𝜀)
]

(5.122)

=

∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀)

[
�̃�
𝑏 (𝜀) + �̃�

𝑎 (𝜀) + Tr Ã 𝑓 (𝜀)
]

(5.123)
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This also holds for each individual expectation value, i.e.

⟨�̂�𝛼⟩ =
∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀) �̃�

𝛼 (𝜀) (5.124)

for each auxiliary particle 𝛼.

Lastly, 𝐺𝑑 can be expressed using only tilde functions as

Im G𝑑 𝐴
1 (𝜔) = 𝜋

∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
(
1 + 𝑒

−𝛽𝜔
)
𝑛𝐹

(
− (𝜀 + 𝜔)

)
𝑛𝐹 (−𝜀) Ã 𝑓 (𝜀 + 𝜔) �̃�𝑏 (𝜀)∫ ∞

−∞d𝜀 𝑛𝐹 (𝜀)
[
�̃�
𝑏 (𝜀) + �̃�

𝑎 (𝜀) + Tr Ã 𝑓 (𝜀)
] (5.125)

= 𝜋

∫ ∞
−∞d𝜀 𝑛𝐹 (−𝜔−𝜀) 𝑛𝐹 (𝜀)

𝑛𝐹 (−𝜔) Ã 𝑓 (𝜀 + 𝜔) �̃�𝑏 (𝜀)∫ ∞
−∞d𝜀 𝑛𝐹 (𝜀)

[
�̃�
𝑏 (𝜀) + �̃�

𝑎 (𝜀) + Tr Ã 𝑓 (𝜀)
] (5.126)

= 𝜋

∫ ∞
−∞d𝜀 1

2

(
1 − tanh 𝛽𝜀

2 tanh 𝛽 (𝜔+𝜀)
2

)
Ã 𝑓 (𝜀 + 𝜔) �̃�𝑏 (𝜀)∫ ∞

−∞d𝜀 𝑛𝐹 (𝜀)
[
�̃�
𝑏 (𝜀) + �̃�

𝑎 (𝜀) + Tr Ã 𝑓 (𝜀)
] , (5.127)

and

Im G𝑑 𝐴
2 (𝜔) = 𝜋

∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
(
1 + 𝑒

𝛽𝜔
)
𝑛𝐹 (−𝜀 + 𝜔) 𝑛𝐹 (−𝜀)Ã

𝑓 (𝜀 − 𝜔) �̃�𝑎 (𝜀)∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
[
𝐴
𝑏 (𝜀) + 𝐴

𝑎 (𝜀) + Tr Ã 𝑓 (𝜀)
] (5.128)

= 𝜋

∫ ∞
−∞d𝜀 𝑛𝐹 (𝜀)𝑛𝐹 (−𝜀+𝜔)

𝑛𝐹 (𝜔) Ã 𝑓 (𝜀 − 𝜔) �̃�𝑎 (𝜀)∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
[
𝐴
𝑏 (𝜀) + 𝐴

𝑎 (𝜀) + Tr Ã 𝑓 (𝜀)
] (5.129)

= 𝜋

∫ ∞
−∞d𝜀 1

2

(
1 + tanh 𝛽𝜀

2 tanh 𝛽 (𝜔−𝜀)
2

)
Ã 𝑓 (𝜀 − 𝜔) �̃�𝑎 (𝜀)∫ ∞

−∞d𝜀 𝑒
−𝛽𝜀

[
𝐴
𝑏 (𝜀) + 𝐴

𝑎 (𝜀) + Tr Ã 𝑓 (𝜀)
] . (5.130)

Evaluating the self-energies has thus become harder, but extracting 𝐺
𝑑 has become simpler. In any

way, there are no numerical problems due to diverging functions anymore.

There are some more caveats when working with tilde functions. Advanced (retarded) Green
functions are analytic in the lower (upper) complex half-plane. Due to the periodic pole-structure
of the Fermi function, analyticity is broken, and Kramers-Kronig does not apply to tilde functions.
Furthermore, since dividing by a Fermi function is numerically unstable, we can not transform regular
functions into tilde functions; we can only do it the other way round. This implies a slightly more
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complex structure for extracting a spectral function using self-energies:

𝑛𝐹 (−𝜔) �̃�(𝜔) = Im
1

𝜔 − 𝜀 − Σ(𝜔) = Im
𝜔 − 𝜀 − Σ

∗(𝜔)
|𝜔 − 𝜀 − Σ(𝜔) |2

(5.131)

=
ImΣ(𝜔)

(𝜔 − 𝜀 − ReΣ(𝜔))2 + (ImΣ(𝜔))2 =
𝑛𝐹 (−𝜔) Im Σ̃(𝜔)

(𝜔 − 𝜀 − ReΣ(𝜔))2 + (ImΣ(𝜔))2 (5.132)

⇔ �̃�(𝜔) = 𝑛𝐹 (−𝜔) Im Σ̃(𝜔)
(𝜔 − 𝜀 − ReΣ(𝜔))2 + (ImΣ(𝜔))2 . (5.133)

This is only straightforward for scalars. For matrices, one has to keep track of the Fermi functions
while inverting matrices. An algorithm for this can be found in Appendix C.2.

5.3.6 The NCA Loop

Having collected all the ingredients, we can solve the NCA. Since self-energies depend on full auxiliary-
particle Green functions and those depend on the self-energies again, one gets a self-consistent loop.
One can, therefore, either solve for Green functions or for self-energies. Since auxiliary-particle
spectra can become very sharp, indeed diverge for 𝑇 = 0 [80], solving for self-energies is often a good
idea. They tend to be finite and controlled. This also has the benefit of maintaining normalization
and analyticity. We can also use the NCA equations exclusively for imaginary parts, which have
a much better scaling for large |𝜔 | (1/𝜔2 in contrast to 1/𝜔). The loop for this case is as follows:

(0.) Initial guess for auxiliary-particle Im Σ̃.

1. Generate ReΣ via Kramers-Kronig on ImΣ, which is generated
from the tilde-function definition.

2. Determine 𝜆0 via ReΣ.

3. Generate spectral functions using Im Σ̃, ImΣ and ReΣ.

4. Generate Im Σ̃ from the spectral functions of step 3 and the free
conduction-electron spectrum.

(5.) Go back to step 1 and repeat until converged.

In reality, just looping the equations is very unstable. The output of step 4 is mixed to a small
percentage with the previous guess to change the values slowly. This helps avoid overshooting minima
in configuration space, i.e. staying in valleys of attraction that lead to solutions. A more sophisticated
yet still stable method utilizing longer histories can be used to accelerate and stabilize this process.
The method used for all results presented in this thesis is the Anderson mixing10 [81].

10 The last name being identical to Phil W. Anderson’s is a coincidence. The numerical method goes back to Donald G.
Anderson.
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5.3.7 Two Limits: Infinite 𝑼 and Infinite 𝜺𝒅

Having fully discussed the simple yet powerful method that is NCA, we can now utilize it to solve
problems that are typically hard—if not impossible—to solve with regular quantum-field theory of the
original model (c.f. Sec. 5.1.3).

The first that comes to mind is the large-𝑈 limit, which is a useful approximation for many 𝑓 -electron
systems, where the local Coulomb interaction can be much larger than the single-particle energy
(c.f. Sec. 3.3.2). In this case, the impurity-occupation is strictly 𝑛𝑑 ≤ 1. Taking the limit 𝑈 → ∞
effectively removes the slave-boson 𝑎 from the dynamics of the system. In Eq. (5.42), taking the limit
as mentioned above is achieved by 𝜀

𝑎 → ∞, which shifts the peak of the spectrum to infinite positive
energy. The self-energy vanishes under this limit (c.f. Eq. (5.96) for 𝜔 → ∞) resulting in 𝐴

𝑎 (𝜔)
approaching 𝛿(𝜔 − 𝜀

𝑎). Consequently, the contribution to 𝐺
𝑑 in Eq. (5.62) will vanish, except for a

region around 𝜔 = 𝜀
𝑎. This can be seen from the numerator 𝐺𝑑

Im G𝑑 𝐴
2 (𝜔) ·

⟨𝑄⟩𝜆→∞
𝜋

=

∫ ∞

−∞
d𝜀 𝑒

−𝛽𝜀
(
1 + 𝑒

𝛽𝜔
)
Ā 𝑓 (𝜀 − 𝜔) 𝐴𝑎 (𝜀) (5.134)

=

∫ ∞

−∞
d𝜀

(
𝑒
−𝛽𝜀 + 𝑒

𝛽 (𝜔−𝜀)
)
Ā 𝑓 (𝜀 − 𝜔) 𝛿(𝜀 − 𝜀

𝑎) (5.135)

=

(
𝑒
−𝛽𝜀𝑎 + 𝑒

𝛽 (𝜔−𝜀𝑎 )
)
Ā 𝑓 (𝜀𝑎 − 𝜔) (5.136)

𝜔=𝜀
𝑎+𝛿
=

(
𝑒
−𝛽𝜀𝑎 + 𝑒

𝛽 (𝛿 )
)
Ā 𝑓 (−𝛿) (5.137)

𝜀
𝑎→∞→ 𝑒

𝛽𝛿Ā 𝑓 (−𝛿) (5.138)

= 𝑒
𝛽 (𝛿 )

𝑛𝐹 (𝛿) ˜̄A 𝑓 (−𝛿) = 𝑛𝐹 (−𝛿) ˜̄A 𝑓 (−𝛿) . (5.139)

Using Eq. (5.124), the integral of this can be identified as the occupation number of the spin-flipped
pseudofermions. If the 𝑎 bosons are omitted, because they only contribute at 𝜀𝑎 → ∞ energies, the
impurity spectrum of spin 𝜎 will be normalized to 1 − ⟨𝑛 𝑓−𝜎⟩. This is not problematic due to the clear
separation of energy scales. It just needs to be respected when testing the norm of spectral functions
in the infinite-𝑈 case.

In this case, a positive side-effect is the improvement of the NCA Kondo temperature. The finite-𝑈
NCA drastically underestimates the Kondo temperature by generating a Kondo coupling of 𝐽/2 instead
of 𝐽 such that the Kondo temperature is the square of the correct value [82]. This stems from an
asymmetry in treating the two virtual fluctuations via the unoccupied and doubly occupied state, which
is not the case for 𝑈 → ∞ since only one of those terms remains.

The second case is the reverse of the above, namely fixing 𝜀
𝑎 and sending 𝜀

𝑑 → −∞. This limits the
occupation to 2 ≥ 𝑛𝑑 ≥ 1, which can be relevant for hole-like 𝑓 -orbital systems, e.g. Yb3+ with a
single hole in the 𝑓 -shell. In order to take this limit faithfully, we first need to use the 𝑈 (1) symmetry
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to shift energies via 𝜆 → 𝜆 + 2𝜇 − 𝜀
𝑎 such that 𝑎 is of energy 𝜆

𝐻SIAM =
∑︁
®𝑘,𝜎

(
𝜀
𝑐
®𝑘 − 𝜇

)
𝑐
†
®𝑘𝜎

𝑐 ®𝑘𝜎
+

∑︁
𝜎

(
𝜀
𝑑 + 𝜇 − 𝜀

𝑎 + 𝜆

)
𝑓
†
𝜎 𝑓𝜎 +

(
𝜆 + 2𝜇 − 𝜀

𝑎)
𝑏
†
𝑏 + (𝜆) 𝑎†𝑎

(5.140)

+
∑︁
®𝑘,𝜎

(
𝑉®𝑘𝑐

†
®𝑘𝜎

𝑏
†
𝑓𝜎 +𝑉®𝑘 sgn(𝜎)𝑐†®𝑘𝜎 𝑓

†
�̃�
𝑎 + ℎ.𝑐.

)
− 𝜆 . (5.141)

Re-defining 𝜀
𝑑 − 𝜀

𝑎
= 𝜀

𝑎, the energy associated with 𝑏 is proportional to 𝜀
𝑎 − 𝜀

𝑑
=: 𝜀𝑏, which goes

to infinity under 𝜀𝑑 → −∞ while keeping 𝜀
𝑎 constant. Similar to the previous case, we can, therefore,

remove 𝑏 from the theory because it will not contribute to the dynamics. Doing so will send the
numerator of the first term of 𝐺𝑑 from Eq. (5.60) under 𝜔 = 𝛿 + 𝜀

𝑑 to

Im G𝑑 𝐴
1 (𝜔) ·

⟨𝑄⟩𝜆→∞
𝜋

=

∫ ∞

−∞
d𝜀 𝑒

−𝛽𝜀
(
1 + 𝑒

−𝛽𝜔
)
A 𝑓 (𝜀 + 𝜔) 𝐴𝑏 (𝜀) (5.142)

𝜀
𝑑→−∞→ 𝑒

−𝛽𝛿A 𝑓 (𝛿) = 𝑛𝐹 (𝛿)Ã
𝑓 (𝛿) . (5.143)

In this case, upon removing 𝑏, the spectrum is given by the contribution from the spin-flipped part in
G𝑑 𝐴

2 and is normalized to 1 − ⟨𝑛 𝑓𝜎⟩.
How the NCA equations of this case can be mapped onto the 𝑈 → ∞ case is discussed in detail in

Appendix D.
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5.4 Dynamical Mean-Field Theory

One of the more recent advances in the theory of correlated systems is the dynamical mean-field
theory [83] developed by Antoine Georges and Gabriel Kotliar in 1992. Motivated by the work
of Walter Metzner and Dieter Vollhardt in 1989 [84], where they showed that self-energies tend to
become local in infinite dimensions, Georges and Kotliar mapped an interacting lattice model onto a
local single-impurity Anderson model in an effective bath of electrons. With this, the local impurity
self-energy could be identified as the local self-energy in the lattice model, reducing the complexity
of solving lattice models enormously. Since this construction is a local mapping, which is in the
spirit of the Weiss mean-field theory [85] but constructing a local model that captures the full local
dynamics (it is still the full, interacting local model), they named this mapping “dynamical mean-field
theory” (DMFT). I will lay out the ideas involved in deriving DMFT in infinite dimensions closely
following [86] and [87].

5.4.1 Electrons in Infinite Dimensions / Suppression of Non-Local Self-Energies

Interacting electrons in high dimensions tend to have local self-energies, which can be qualitatively
understood from the fact that by averaging over neighboring sites, each individual contribution will
become less and less important until averaging over neighbors results in an entirely local description.
For simplicity, we shall investigate this behavior in the Fermi-Hubbard model on a hypercubic lattice
of dimension 𝑑 with nearest-neighbor hopping.

𝐻 =
∑︁
𝑖, 𝑗 ,𝜎

𝑡𝑖 𝑗𝑐
†
𝑖𝜎
𝑐
𝑗 𝜎

+𝑈
∑︁
𝑖

𝑛𝑖,↑𝑛𝑖,↓ where 𝑡𝑖 𝑗 =

{
−𝑡 ®𝑅𝑖 − ®𝑅 𝑗 = ±®𝑒𝑛
0 else

, (5.144)

and the unit-cell basis vectors ®𝑒𝑛. This gives rise to the dispersion 𝜖 ®𝑘 = −2𝑡
∑
𝑖 cos 𝑘𝑖. The kinetic

energy per site poses a problem under the limit 𝑑 → ∞ in that it diverges, which can be seen from

𝐸
0
kin,𝑖 = −𝑡

∑︁
𝜎

∑︁
𝑗 NN of 𝑖︸  ︷︷  ︸
∼2𝑑

⟨𝑐†
𝑖,𝜎

𝑐
𝑗 ,𝜎

⟩0︸        ︷︷        ︸
∼1/

√
2𝑑

. (5.145)

The expectation value under the sum is the hopping amplitude, which is the square root of the hopping
probability. Assuming isotropy, this is just one over the number of nearest neighbors 2𝑑. The sum
over nearest neighbors then just gives 2𝑑, resulting in an overall scaling of 𝐸0

kin,𝑖 ∼
√

2𝑑. This can be
fixed via re-scaling 𝑡 = 𝑡∗/

√
2𝑑 keeping 𝑡∗ fixed under the limit. This directly gives rise to a Gaussian

as the density of states of a hypercubic lattice in infinite dimensions, which is derived in App. C.3.
The re-scaling has an implication on self-energy diagrams.

As discussed in Section 5.2, self-energy diagrams are 1PI skeleton diagrams with an entry point 𝑖
and an exit point 𝑗 , e.g. in real space. All Green functions in a given diagram contribute 1/

√
2𝑑, and

sums over intermediate positions give 2𝑑 due to the nearest-neighbor nature of the model. Analyzing
the possible paths connecting two points illustrated in Fig. 5.11 gives additional insight into the scaling
of self-energy diagrams. Since any meaningful (interaction) vertex must be at least a three-vertex, this
will serve as the minimal example. First, if only one line connects the two points, the diagram would
be 1-particle reducible by definition (first diagram in the figure). For two lines, all remaining lines
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ai a j ai

Σ

a j ai a j ai a j

Figure 5.11: Different schematic Feynman diagrams for the non-local self-energy discussion. Diagrams no.
3 and 4 are valid self-energy diagrams, whereas 1 and 2 are not. Lines represent full Green functions; blobs
represent diagram insertions.

(if any) must be of a self-energy type and, hence, lead to a prohibited self-energy insertion (second
diagram). If only a single line directly connects the two points but the other lines connect indirectly,
the resulting diagram is a valid self-energy diagram (third diagram). The same is true if all three
lines directly connect both points (fourth diagram). Combining this with the aforementioned scaling
of Green functions and sums, all non-local self-energy diagrams must vanish at least as 1/

√
2𝑑 for

𝑑 → ∞:

Σ𝑖 𝑗 𝜎 (𝜔) = 𝛿𝑖, 𝑗Σ𝑖 𝑗 𝜎 (𝜔) + O
(

1
√

2𝑑

)
⇒ Σ®𝑘𝜎 (𝜔) = Σ𝜎 (𝜔) . (5.146)

The local lattice-Green-function is therefore

𝐺𝜎 (𝜔) =
∫

d𝑑𝑘
(2𝜋)𝑑

1
𝜔 + 𝜇 − 𝜖 ®𝑘 − Σ𝜎 (𝜔)

=

∫ ∞

−∞
d𝜖

𝜌(𝜖)
𝜔 + 𝜇 − 𝜖 − Σ𝜎 (𝜔)

. (5.147)

This can be used to find an exact mapping of an infinite-dimensional lattice system onto a local system
with a renormalized background via dynamical mean-field theory, which will be discussed in the next
section.

5.4.2 Dynamical Mean-Field Theory for the Periodic Anderson Model

Assuming a local self-energy, a mapping can be found from the lattice model to the local model [88].
Although being only exact in infinite dimensions, DMFT was successfully used in the past11. Although
historically derived for the Hubbard model, a derivation for the periodic Anderson model is not only
possible but, in fact, simpler and seemingly close to reality for low-dimensional lattices, i.e. real-world
materials.

When extending the single-impurity Anderson model to a lattice case, an NCA would generate
an infinite number of coupled self-consistent integral equations. A way of dealing with this extension
is applying a slave-boson mean-field theory [92]. Typically, this results in a reduction to a local
problem, where all non-local effects are absorbed in the mean field. In order to capture dynamical
effects, the mean-field theory has to include self-energies or T-matrices, such that finite lifetime effects
of quasi-particles are generated in the calculations. To set up the discussion, let’s remember the

11 For an overview, see [89–91].
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Hamiltonian of the periodic Anderson model in Eq. (3.67)

𝐻PAM →
∑︁
®𝑘,𝜎

(
𝜀
𝑐
®𝑘 − 𝜇

)
𝑐
†
®𝑘𝜎

𝑐 ®𝑘𝜎
+

∑︁
𝑖,𝜎

(
𝜀
𝑑 − 𝜇

)
𝑑
†
𝑖𝜎
𝑑
𝑖𝜎

+𝑈
∑︁
𝑖

𝑛
𝑑
𝑖,↑𝑛

𝑑
𝑖,↓ +

∑︁
®𝑘,𝑖,𝜎

(
𝑉®𝑘,𝑖𝑐

†
®𝑘𝜎

𝑑
𝑖𝜎

+ ℎ.𝑐.

)
.

Reducing the lattice problem to a local problem can be done via the cavity construction, which
singles out a specific lattice site, canonically chosen as 𝑖 = 0. Historically, DMFT was derived using
the path-integral formalism. We will follow a different path here, working with the equation of motion
definition of the Green function, c.f. Sec. 2.2.1. For this, we shall separate the hybridization with the
local impurity 𝐻

𝑐𝑑
loc =

∑
®𝑘,𝜎 𝑉®𝑘,0𝑐

†
®𝑘𝜎

𝑑0𝜎 + ℎ.𝑐. from the rest of the Hamiltonian 𝐻rest. In the course
of deriving the DMFT equations, we will use G for full Green functions and Gø for Green functions
with the local hybridization removed. When indices are not given, the objects should be understood as
matrices. The full Green function is defined via

1 = [𝑖𝜔𝑛1 − H]G (5.148)

⇔ 1 =

[
𝑖𝜔𝑛1 − 𝐻rest − 𝐻

𝑐𝑑
loc

]
G (5.149)

⇔
[
𝑖𝜔𝑛1 − 𝐻rest

]
G = 1 + 𝐻

𝑐𝑑
locG (5.150)

⇔
(

1
𝑖𝜔𝑛1 − 𝐻rest

)
︸             ︷︷             ︸

=:Gø

[
𝑖𝜔𝑛1 − 𝐻rest

]
G =

(
1

𝑖𝜔𝑛1 − 𝐻rest

) [
1 + 𝐻

𝑐𝑑
loc G

]
(5.151)

⇔ G = Gø + Gø
𝐻
𝑐𝑑
loc G . (5.152)

Fixing the position to be at the cavity site 𝑖 = 𝑗 = 0 we get for G𝑖=0, 𝑗=0 = Gloc, in flavor-space (c.f.
Sec. 2.2.1)(

G𝑐 G𝑐𝑑

G𝑑𝑐 G𝑑
)

loc
=

(
G𝑐 ø 0

0 G𝑑 ø

)
loc

+
[(

G𝑐 ø 0
0 G𝑑 ø

) (
0 V

V† 0

) (
G𝑐 G𝑐𝑑

G𝑐𝑑 G𝑐
)]

loc
, (5.153)

Each Green function is still to be understood as a matrix in other quantum numbers, e.g. spin. The
local cavity Green function Gø

loc is flavor-diagonal due to the local hybridization being exactly factored
out from the definition. Iterating this Dyson equation once decouples the diagonal and off-diagonal
Green functions.(

G𝑐 G𝑐𝑑

G𝑐𝑑 G𝑑
)

loc
=

(
G𝑐 ø 0

0 G𝑑 ø

)
loc

+
(

0 G𝑐 ø V G𝑑 ø

G𝑑 ø V† G𝑐 ø 0

)
loc

(5.154)

+
[(

G𝑐 ø 0
0 G𝑑 ø

) (
0 V

V† 0

) (
G𝑐 ø 0

0 G𝑑 ø

) (
0 V

V† 0

)
︸                                    ︷︷                                    ︸

=:𝚫

(
G𝑐 G𝑐𝑑

G𝑐𝑑 G𝑑
)]

loc

(5.155)

𝚫 =

(
V G𝑑 ø V† 0

0 V† G𝑐 ø V

)
=

(
𝚫𝑐 0
0 𝚫𝑑

)
(5.156)

The hybridization V is local only in 𝑑, so 𝚫𝑑 involves an internal sum over momenta but is still local.
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In contrast, 𝚫𝑐 has external momenta ®𝑘 and ®𝑘 ′ with ®𝑘 = ®𝑘 ′ due to translation symmetry. Details of
this are discussed later and are not relevant right now. The diagonal parts of the Dyson equation can
be read-off from above:

G𝑐 = G𝑐 ø + G𝑐 ø 𝚫𝑐 G𝑐 with 𝚫𝑐 = V†G𝑑 øV (5.157)

G𝑑 = G𝑑 ø + G𝑑 ø 𝚫𝑑 G𝑑 with 𝚫𝑑 = V G𝑐 øV† (5.158)

Since we split off the local hybridization, the local impurity is decoupled from the rest of the system
and only couples to the rest via the local Dyson equation. This is also a consequence of the self-energy
locality DMFT assumption. If the impurity self-energy obtains non-local contributions, the cavity
impurity electron will obtain a non-locality that allows for a conversion to 𝑐-electrons on remote sites
even without local hybridization. In this case, the flavor-diagonal approximation of the local Gø would
break down.

In Section 3.3, a full solution of the Hamiltonian was not presented. It is, however, very similar
to the resonant-level model if we assume to have access to the local self-energy. The solution for
the impurity can be taken from Eq. (2.44) replacing the free resonant-level Green-function 𝐺

𝑑 (0)

by the local, interacting cavity Green-function and the free hybridization function |𝑉 |2𝐺𝑐 (0) by the
hybridized cavity Green-function

G𝑑 ø(𝜔) =
( [
𝜔 − 𝜀

𝑑 − 𝜇

]
1 − 𝚺𝑑 (𝜔)

)−1
⇒ G𝑑loc(𝜔) =

( [
𝜔 − 𝜀

𝑑 − 𝜇

]
1 − 𝚫𝑑 (𝜔) − 𝚺𝑑 (𝜔)

)−1
.

(5.159)

The local model is, therefore, just an SIAM with the effective, local conduction-electron Green function
𝚫𝑑 (𝜔) and hybridization 1, implicitly defining the renormalized conduction-electron background.
It is important to emphasize this since the hybridization can not always be decoupled from the
conduction-electron Green function. Still, we can always solve for 𝚫𝑑 (𝜔) within DMFT. In the
case of a fully local hybridization, the conduction-electron cavity Green function becomes local via
𝚫𝑑 = Vloc G𝑐 ø

loc V†
loc allowing for an interpretation of G𝑐 ø

loc as the effective, local conduction-electron
background12.

Since this can be solved via a local impurity solver—NCA in our case—we are left with relating the
local quantity to the lattice Green function. In order to form a self-consistent set of equations, we
need an equation Δ

𝑑 in terms of known or computable quantities. The first step towards achieving
this is realizing that, once the local impurity self-energy is known, we can solve the system in the
same way as we did in the two-band hybridization model (c.f. Sec. 2.3), now allowing for intrinsic
structure by promoting objects in flavor-space to matrices of e.g. spin and replacing G𝑑 0

®𝑘 by G𝑑 ø from
equation (5.159). The solution for the conduction-electron part is just

G𝑐®𝑘 =

( [
𝜔 − 𝜀

𝑐
®𝑘 − 𝜇

]
1 − 𝚫𝑐®𝑘

)−1
=

( [
𝜔 − 𝜀

𝑐
®𝑘 − 𝜇

]
1 − V†

®𝑘
G𝑑 ø

loc V®𝑘

)−1
, (5.160)

where the ®𝑘-diagonality is guaranteed by lattice translational symmetry and thus explicitly used here.
The cavity Green function G𝑑 ø

loc can be computed using Eq. (5.158). The quantity 𝚫𝑐®𝑘 is often called

12 The term background is unfortunately not used consistently in literature. Sometimes, the background is defined as the
contributions from the full system with the full site 𝑖 = 0 removed, sometimes—especially in the case of the PAM—it
refers to the local cavity Green function. Both are also sometimes called the Weiss field of DMFT.
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the conduction-electron self-energy. A few remarks have to be made here. First, it can not be a
proper self-energy, which can be immediately seen from the fact that it is non-local, which should not
be allowed in our approximation. Stemming from a quadratic term in the Hamiltonian, it could be
called the 𝑐-electron hybridization function. It does, however, contain interactions indirectly via the
local G𝑑 ø

loc , which does contain the local impurity self-energy. Therefore, the 𝑐-electron hybridization
function is also a self-energy, containing processes from interactions of the hybridized particles. The
interactions purely contributing in the local part and the non-locality stemming from the quadratic
part justifies the non-locality of 𝚫𝑐®𝑘 despite the DMFT assumption.

Finally, let’s multiply Eq. (5.160) with the local hybridization from left and right and sum over ®𝑘 to
get ∑︁

®𝑘

V®𝑘 G
𝑐
®𝑘 V†

®𝑘
=

∑︁
®𝑘

V®𝑘

( [
𝜔 − 𝜀

𝑐
®𝑘 − 𝜇

]
1 − 𝚫𝑐®𝑘

)−1
V†

®𝑘
, (5.161)

which is a local quantity (VG𝑐 V†)loc. Extending Eq. (5.157) in the same way gives(
VG𝑐 V†

)
loc

=

(
V G𝑐 ø V†

)
loc

+
(
V G𝑐 ø V† G𝑑 ø VG𝑐 V†

)
loc

(5.162)

= 𝚫𝑑 + 𝚫𝑑 G𝑑 ø
loc

(
VG𝑐 V†

)
loc

(5.163)

⇔ 𝚫𝑑 =

(
VG𝑐 V†

)
loc

·
[
1 + G𝑑 ø

loc

(
VG𝑐 V†

)
loc

]−1
, (5.164)

closing the self-consistent loop13.

The DMFT Loop

Collecting all results from above, the DMFT loop is:

(0.) Initial guess for Δ𝑑loc

1. G𝑑loc [Δ
𝑑
loc] via a SIAM solver

2. G𝑑 ø
loc = G𝑑 (1 + Δ

𝑑G𝑑)−1

3. Δ
𝑐
®𝑘 = V®𝑘 G𝑑 ø

loc V†
®𝑘

4. (V† G𝑐 V)loc =
∑

®𝑘 V†
®𝑘

( [
𝜔 − 𝜀

𝑐
®𝑘 − 𝜇

]
1 − 𝚫𝑐®𝑘

)−1
V®𝑘

5. 𝚫𝑑 =

(
V† G𝑐 V

)
loc

·
[
1 + G𝑑 ø

loc

(
V† G𝑐 V

)
loc

]−1

(6.) Go back to step 1. and repeat until converged.

13 All of the above equations can be simplified substantially in the case of a local, scalar hybridization V®𝑘 → 𝑉0.
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After convergence, the momentum-dependent conduction-electron density of states is just given by
Eq. (5.160), and the local density of states is its momentum sum. For the impurities, we can again
re-use the 𝑇-matrix results from the two-band hybridization model (c.f. Sec. 2.3) just as we did in
Eq. (5.160) above, replacing G𝑑 (0)

®𝑘
by G𝑑 ø

loc and respecting the matrix structure in all quantities to

get14

G𝑑®𝑘 = G𝑑 ø
loc + G𝑑 ø

loc V†
®𝑘
G V®𝑘 G𝑑 ø

loc . (5.165)

The momentum-dependence is thus purely generated from the conduction electrons. Summing over ®𝑘
and reshaping this into the Dyson-equation (c.f. Appendix C.4) gives precisely Eq. (5.158).

14 This is allowed since the self-energy is local, restricting the interacting, unhybridized impurity Green function to the be
local. Everything else works in an identical way.
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CHAPTER 6

Lattice Coherence of CEF States in YbRh2Si2

The formation of lattice-coherence in the context of heavy-fermion systems continues to be a topic
of interest in strongly correlated systems since its inception in 1975 [51]. As discussed earlier in
this thesis (c.f. Sec. 3.5), there is an aspect of competition between localization and de-localization
inherent to the topic of Kondo lattices and, therefore, in lattices with localized states, e.g. 𝑓 -shell. A
prototypical example of such a heavy-fermion system is YbRh2Si2, in which the Yb3+ ground state
configuration is [Xe]4 𝑓 13, leaving a single hole in the 𝑓 -shell.

Experiments have revealed many interesting phenomena in YbRh2Si2; most prominently, it is a
heavy-fermion material. The first Kondo temperature1 was estimated to𝑇𝐾,1 ≈ 80−100 K [93] and the
Yb 4 𝑓 13 crystal-field energy difference to the CEF ground state to Δ ≈ 17, 25, 43 meV [94]. Below
𝑇coh ≈ 30 K, which is also the CEF ground-state Kondo temperature 𝑇𝐾,0 =: 𝑇𝐾 , lattice coherence can
be observed [12]. Around 𝑇𝑁 ≈ 65 mK a phase transition to an antiferromagnetic state was found [93].
This phase is unstable against external magnetic fields and is destroyed at 𝐵𝐶 ≈ 60 mT [93].

In this thesis, I will focus on the lattice coherence and attempt to explain the seemingly odd
temperature-dependence of CEF contribution in the scanning tunneling microscopy (STM) spectra
in [12].

6.1 Experimental observation of lattice coherence

When investigating heavy-fermion materials with STM, depending on the surface configuration, the
voltage- and temperature-dependent differential conductance 𝑔(𝑉,𝑇) depends in a non-trivial way
on the Green functions of the system under observation. To a first approximation, it is given by the
conduction-electron spectrum [12]. Under hybridization between the interacting impurity states with
the free conduction electrons, one would typically expect avoided crossing (c.f. e.g. Sec. 2.3) leading to
a reduction of itinerant-electron states around crossing points of the impurity- and conduction-electron
spectra in momentum space. For low enough temperatures, the Kondo effect generates spectral weight
of impurity states around the Fermi energy. Consequently, a dip in the local conduction-electron
density of states around the Fermi energy will form in a temperature-dependent way. This was
investigated by Ernst et al. in 2011 [12]; the measured differential conductance is shown in Fig. 6.1

1 In Systems with small CEF splitting, A crossover from a collective Kondo effect of the CEF states to a CEF-resolved
Kondo effect can be observed.
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Figure 6.1: STM differential conductance of YbRh2Si2 for different temperatures, taken from Fig.2 in [12],
cropped, panel label removed. The arrows indicate the expected CEF energies; the dashed line highlights the
coherence peak.

(more temperatures are shown in Fig.6.2(a)). First, a clear dip can be seen as the highest temperature
in the picture is already much below 𝑇𝐾,1. For lower temperatures, a peak at 𝐸𝐶 ≈ −6 mV arises next
to the dip minimum, which the authors attribute to the formation of lattice coherence. At the same
time, additional peaks appear at precisely the negative expected CEF energies of Yb 4 𝑓 13. A series of
potential conflicts arise from those observations.

First, if the development of a Kondo peak in the impurity spectrum results in a dip in the conduction-
electron spectrum, why should the additional CEF peaks in the impurity spectrum result in peaks, not
dips?

Second, what is the relation between the coherence peak at 𝐸𝐶 ≈ −6 mV and the CEF peaks?
The temperature dependence of the coherence peak appears to be fundamentally different from the
temperature dependence of the dip at zero bias (Fig. 6.2(b)) and the CEF peaks, which can be seen
from Fig. 6.2(c). Although the scaling is vastly different, both features emerge at the same temperature.
Notably, the Kondo dip at zero bias behaves approximately logarithmic with a tendency to settle at the
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Figure 6.2: Temperature-dependent features of the STM differential conductance of YbRh2Si2, taken from Fig.2
in [12], cropped, parts removed.
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6.2 Minimalistic Microscopic Model

lowest temperatures. In contrast, the coherence peak continues to grow at the lowest temperatures.
In the following sections, I will discuss both questions stated above. First, a minimalistic, microscopic

model is constructed to describe the system at hand faithfully. The numerical results, using DMFT
with NCA as the impurity solver, are discussed and connected to the experimental results.

6.2 Minimalistic Microscopic Model

In order to construct a faithful model, we first need to determine the states involved in the dynamics.
According to Hund’s rules, the ground state of the 4 𝑓 13 configuration is 𝐽 = 7/2 (c.f. Sec. 4.2.2). The
crystal-field splitting is governed by the tetragonal 𝐷4ℎ symmetry [93]. Using the analysis discussed
in Section 4.3, the ground-state configurations can be identified as four Kramers-doublets. From those
arguments, a regular spin-1/2 model with CEF states will suffice to give the correct physics. The CEF
ground-states of 4 𝑓 12 and 4 𝑓 14 are expected to be spin-singlets.

Therefore, the periodic Anderson model with CEF states can be used to construct a faithful minimal
model for the heavy-fermion physics in the non-ordered phases of YbRh2Si2. In terms of Hubbard
operators, it is

𝐻
YbRh2Si2
PAM = 𝐻𝑐 +

∑︁
𝑖,𝑛,𝜎

(
𝜀
𝑑 + Δ𝑛

)
|𝑖; 𝑓 13; 𝑛, 𝜎⟩ ⟨𝑖; 𝑓 13; 𝑛, 𝜎 |

+ 𝜀
𝑏
∑︁
𝑖

|𝑖; 𝑓 12⟩ ⟨𝑖; 𝑓 12 | + 𝜀
𝑎
∑︁
𝑖

|𝑖; 𝑓 14⟩ ⟨𝑖; 𝑓 14 |

+
∑︁
𝑖,𝑛,𝜎

𝑐
†
𝑖𝜎

(
𝑉

(𝑏)
𝑛 sgn(𝜎) |𝑖; 𝑓 12⟩ ⟨𝑖; 𝑓 13; 𝑛, −𝜎 |

+𝑉 (𝑎)
𝑛 sgn(𝜎) |𝑖; 𝑓 13; 𝑛, −𝜎⟩ ⟨𝑖; 𝑓 14 | + ℎ.𝑐.

)
, (6.1)

where Δ𝑛 is the microscopic crystal-field splitting of the excited CEF state number 𝑛 ∈ {1, 2, 3}
and the multiplication with sgn(𝜎) is due to the singlet nature of the excited states2. Additionally,
the energy difference between the 4 𝑓 13 and the two excited states, 4 𝑓 12 and 4 𝑓 14, was estimated to
𝐸13→12 ≈ 2.5 eV and 𝐸13→14 ≈ 1.4 eV using a local-density approximation with local interactions
(LDA+U) [95]. We can, therefore, safely apply the 𝜀𝑑 → −∞ approximation discussed in Section 5.3.7
to the model above. Under this approximation, the Hamiltonian, in terms of auxiliary particles, is

𝐻
YbRh2Si2
PAM = 𝐻𝑐 −

∑︁
𝑖,𝑛,𝜎

(
𝜀
𝑑 + Δ𝑛 + 𝜆

)
𝑓
†
𝑖, 𝑛 𝜎

𝑓
𝑖, 𝑛 𝜎

+ (𝜀𝑎 + 𝜆)
∑︁
𝑖

𝑎
†
𝑖
𝑎
𝑖

+
∑︁
𝑖,𝑛,𝜎

(
𝑉

(𝑎)
𝑛 sgn(𝜎) 𝑐†

𝑖𝜎
𝑓
†
𝑖, 𝑛,−𝜎𝑎𝑖 + ℎ.𝑐.

)
, (6.2)

where the additional constant −𝜆 has been dropped. Utilizing the 𝑈 (1) symmetry to shift the energy

2 Technically, a factor of 1/
√

2 must be included to reproduce the correct Clebsch-Gordan coefficients. It can be absorbed
into the hybridization strength.
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Chapter 6 Lattice Coherence of CEF States in YbRh2Si2

(a) Free conduction-electron Green function. (b) Fano 𝑞-factor 𝑞 (0) = Re𝐺𝑐 (0)/Im𝐺
𝑐 (0) .

Figure 6.3: Free, model conduction-electron Green function according to Eq. (6.4) using the Kramers-Kronig
relation to generate the real part and the 𝑞-factor of Eq. (6.6). The presented data is for 𝑠 = 2/𝐷.

𝜀
𝑎 from the boson to the Fermion, the final expression reads

𝐻
YbRh2Si2
PAM = 𝐻𝑐 −

∑︁
𝑖,𝑛,𝜎

(
𝜀
𝑑 + Δ𝑛 + 𝜆

)
𝑓
†
𝑖, 𝑛 𝜎

𝑓
𝑖, 𝑛 𝜎

+ 𝜆
∑︁
𝑖

𝑎
†
𝑖
𝑎
𝑖

+
∑︁
𝑖,𝑛,𝜎

𝑉
(𝑎)
𝑛 sgn(𝜎) 𝑐†

𝑖𝜎
𝑓
†
𝑖, 𝑛,−𝜎 𝑎

𝑖
+ ℎ.𝑐.

)
, (6.3)

where 𝜀
𝑑
= 𝜀

𝑑 − 𝜀
𝑎
= 𝐸13→14 ≈ 1.4 eV.

The free conduction-electron density of states is approximated by a box of width 2𝐷 with smooth
edges

𝜌
𝑐 (0) (𝜔, 𝑠) = {tanh[𝑠(𝜔 + 𝐷)] − tanh[𝑠(𝜔 − 𝐷)]} /4𝐷 , (6.4)

where 𝑠 controls the sharpness of the flanks in the same way as the inverse temperature 𝛽 does in
the Fermi-Dirac distribution. It is plotted in Fig. 6.3(a) This choice of free DOS is beneficial for
investigating the questions mentioned above due to its featureless shape in the region of interest.

The Hamiltonian presented above does not explicitly contain the chemical potential. We can define
an effective chemical potential that suffices for the model calculation, coupling directly and exclusively
to 𝑐, allowing for modeling the filling of the band while keeping the impurity parameters untouched.
This filling is only model-related and does not reflect the actual filling of conduction-electron bands.
Here, it is used exclusively to control the phase between Im𝐺

𝑐 (𝜔) and Re𝐺𝑐 (𝜔), as will be discussed
in the next section.

Extension of DMFT and NCA for CEF States

Solving this model requires extending the previously derived DMFT and NCA equations by the
additional CEF states. The NCA was formulated with a matrix structure in spin-space in mind. It
can, therefore, be straightforwardly extended to multiple Kramers-doublet CEF levels. The matrix
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structure, as it was used before, still describes spin. Spin flip and transposition work in spin space.
Superimposed on that is a CEF-level matrix structure to which those operations don’t apply. In fact,
since the CEF level only appears in the 𝑓 -electron, the grand sum3 over the CEF index 𝑛 has to
be taken in Eq. (5.120) for the Boson self-energy. Additionally, Eq. (5.130) for 𝐺𝑑 then has to be
understood as the impurity part of the 𝑇-matrix and the object used to generate the impurity spectrum.
It is meaningful in the same sense as Hubbard operators generate correct 𝑇-matrices and spectra.
But since we can not generate canonically commuting effective fields in this framework, one should
be careful with interpretation and terminology. Most things work as expected, but the objects don’t
describe the impurity electron, but rather the impurity states.

Lastly, the conduction electrons don’t have the same quantum numbers as the local impurity states
and are, therefore, oblivious to this quantum number. In the same way that makes local scattering
fully off-diagonal in ®𝑘-space, the hybridization will make the pseudo-fermion 𝑓 fully off-diagonal
in 𝑛 while maintaining the 𝜎 structure, which is typically diagonal. An argument can be made that
different CEF multiplets should not mix if the hybridization does not break CEF symmetry, which is
what I assume for this model calculation. This has the benefit of reducing the level-repulsion between
CEF states, relating the final splittings more closely to the model parameters.

It is generally unclear how much of this off-diagonality should be allowed. Technically, one
would need to analyze the different wavefunctions of the CEF eigenstates and calculate the proper
®𝑘-dependent overlap of those with the conduction-electron Wannier functions, resulting in a set of
different ®𝑘-dependent hybridizations 𝑉𝑛 ( ®𝑘). The local problem utilizes the (matrix) hybridization
function 𝚫𝑑

𝑛𝑛
′ (𝜔) =

∑
®𝑘 ®𝑘′ V𝑛 ( ®𝑘) G𝑐 (0)

®𝑘 ®𝑘′
(𝜔) V†

𝑛
′ ( ®𝑘 ′), which could lead to much smaller off-diagonals

in 𝑛, if not to full diagonality.

6.3 The Fano-Lineshape in the Conduction-Electron Density of States

When measuring differential conductance with STM in the presence of a magnetic impurity, the
spectrum obtains a Fano-lineshape from phase-shift effects due to the scattering [96]. Although being
discussed first in the context of single magnetic impurities, the concept can be extended to the lattice
case [97]. This is a general feature of local 𝑇-matrix equations, where the correction to the free DOS
is, to first order, given by a Fano-lineshape if the imaginary part of the 𝑇-matrix has a sharp feature at
the energy of interest. Since this is typically the case in Kondo systems, we can apply it to the situation
at hand. The change of the conduction-electron DOS is given by [96]

𝛿𝜌
𝑐 (𝜔) ∝

[
𝜌
𝑐 (0) (𝜔)

]2 2𝑞𝜖 + 𝑞
2 − 1

𝜖
2 + 1

, (6.5)

where 𝜖 = (𝜔−𝜀𝐾 )/𝑇𝐾 with the position of the Kondo peak 𝜀𝐾 and 𝑞 = Re𝐺𝑐 (0) 𝐴(𝜀𝐾 )/Im𝐺
𝑐 (0) 𝐴(𝜀𝐾 ).

The correction is strictly negative for 𝑞 = 0, i.e. results in a dip in 𝜌
𝑐 (𝜔) = 𝜌

𝑐 (0) (𝜔) + 𝛿𝜌
𝑐 (𝜔). The

case of 𝑞 < 0 (𝑞 > 0) results in a peak-dip (dip-peak) structure that eventually turns fully into a peak
for |𝑞 | → ∞. A few examples are shown in Fig. 6.4.

This concept can be extended to broader peaks in the 𝑇-matrix, although the validity of the
approximation is reduced the broader the peak. In this case, one can define a continuous 𝑞 → 𝑞(𝜔) in

3 The grand sum is the sum over all matrix elements, i.e.
∑
𝑖 𝑗 𝑀𝑖 𝑗 .
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Figure 6.4: Fano lineshape depending on the Fano structure factor 𝑞 as by the second term in Eq. (6.5).

energy. The primary role of 𝜇 in the model is, thus, controlling the 𝑞-factor by adjusting the Fermi
energy, c.f. Fig. 6.3(b).

Another crucial observation is that this holds in local 𝑇-matrix equations. In the context of DMFT,
the local 𝑇-matrix equation (c.f. Eq. (2.49))

G𝑐
loc(𝜔) = G𝑐 (0)

loc (𝜔) + G𝑐 (0)
loc (𝜔) Tloc(𝜔) G𝑐 (0)

loc (𝜔) (6.6)

is just

G𝑐
loc(𝜔) = G𝑐 ø

loc (𝜔) + G𝑐 ø
loc (𝜔) 𝚫

𝑐
loc(𝜔) G𝑐 ø

loc (𝜔) . (6.7)

The relevant 𝑞-factor for determining the lineshape in the context of DMFT is thus given by
𝑞(𝜔) = Re𝐺𝑐 ø 𝐴(𝜔)/Im𝐺

𝑐 ø 𝐴(𝜔), which is dynamically generated by the self-consistency loop4.
The free 𝑞-factor is plotted in Fig. 6.3(b).

6.4 Numerical Results and Interpretation

In the model calculation, all four CEF states have been taken into account with equal hybridization
strength. The parameters of Eq. (6.3) are given in Tab. 6.1.

𝐷 𝜇 𝑠 𝜀
𝑑

Δ1 Δ2 Δ3 𝑉
2/𝐷

2 eV −1.2 eV 10 eV−1 −1.4 eV 17 meV 25 meV 43 meV 0.074
Table 6.1: Model parameters of Eq. (6.3) used in the numerical calculations.

4 This might ultimately be how DMFT generates lattice-coherence and develops Fermi-liquid behavior—a thought to be
investigated in future work.
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(a) Impurity DOS. (b) Conduction-electron self-energy.

Figure 6.5: Impurity density of states for the YbRh2Si2 model and the conduction-electron self-energy Δ
𝑐 for

different temperatures. Vertical gray lines mark the renormalized CEF energies, c.f. Fig. 6.6(b).

6.4.1 Density of States

The temperature-dependent impurity DOS is shown in Fig. 6.5(a), the 𝑇 = 10 K DOS in Fig. 6.6. Each
individual CEF contribution gives a peak at exactly the expected energy below the Fermi energy. From
multi-orbital (or multi CEF-state) systems, one would expect Kondo peaks to appear at all positive
and negative crystal field splittings [98, 99]. As illustrated in Fig. 6.7, virtual transitions starting from
the CEF ground state will prevail at zero temperature, thus leading to a Kondo effect. The green, full
lines in Fig. 6.7(a) correspond to the second-order process, giving rise to the Kondo effect with an
energy difference of zero. The other transition, although also of zero energy, is thermally suppressed
due to the depletion of the excited CEF state. Equally, the transition marked with dashed brown lines
in Fig. 6.7(b) produces a peak above the Fermi energy, which is thermally suppressed. The full orange
lines in Fig. 6.7(b) represent an allowed process, generating a Kondo side-peak below the Fermi
energy. Although the energy difference is positive, the spectrum of a system takes energy differences

(a) Impurity DOS. (b) Impurity DOS by CEF contribution.

Figure 6.6: Impurity density of states for the YbRh2Si2 model at a fixed temperature 𝑇 = 10 K. Vertical gray
lines mark the renormalized CEF energies.
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(a) CEF-state diagonal processes. (b) CEF-state off-diagonal processes.

Figure 6.7: Reduced level structure of an Yb3+ ion, considering the excited 4 𝑓 12 configuration and two CEF
states of the 4 𝑓 13 valence ground state. Full, colored lines represent contributions to the Kondo effect; dashed
lines represent thermally forbidden transitions at zero temperature.

under the removal of a particle. Additions of particles enter with the negative energy5. Consequently,
peaks below the Fermi energy are additional Kondo peaks due to the presence of excited CEF states.
Their temperature dependence decreases below the Kondo temperature, whereas the main Kondo peak
still develops. Peaks above the Fermi energy are strongly suppressed for this set of parameters.

Unfortunately, the individual character of the two lowest-lying CEF states (Fig. 6.6(b)) gets lost in
the trace over the contributions, which can be seen in Fig. 6.6(a). Those two contributions merge
into a single, larger, and broader peak. In the conduction-electron self-energy (Fig. 6.5(b)), this
contribution seems to get disentangled though. Consequently, the conduction electrons get influenced
by the individual crystal field states, although not sharply separated.

6.4.2 Conduction-Electron Density of States and 𝒒-Factor

The hallmark feature of the experiment lies in the conduction-electron density of states. The numerical
results for the density of states at different temperatures are shown in Fig. 6.8. A guide to the eye
was added by subtracting a Lorentzian from the free DOS to fit both the dip-depth and the large-|𝜔 |
behavior at the lowest temperature shown. The appearance of a coherence peak is nicely visible, and
the overall shape matches the experimental data, although some quantitative differences are observable.

First, the first Kondo temperature does match the expected result; the DOS suppression is, however,
much stronger than in the experiment. There, the DOS is flat at room temperature and only below
around 𝑇 ≈ 100 K a broad dip develops, c.f. Fig. 6.2(a). Here, at 𝑇 = 300 K, the suppression is already
substantial. Second, the coherence peak is very pronounced and starts developing at much larger
temperatures. The coherence-peak and Kondo dip positions are offset to the right by approx. 8 meV,
their difference is approx. 12 meV, which is double the experimental value of 6 meV. Third, the CEF
peak positions are shifted. The first peak is approximately at the correct position; the other two peaks
are at lower energies than expected.

In order to investigate the structure further, the peak positions have to be analyzed in the context of
5 The same concept but with reversed energies applies to particle-like systems [99].
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Figure 6.8: Conduction-electron density of states for the YbRh2Si2 model for different temperatures. The gray
dashed line is a guide to the eye generated from subtracting a Lorentzian from the free conduction-electron
density of states. Vertical gray lines mark the renormalized CEF energies, c.f. Fig. 6.6(b).

renormalized CEF states. This can be best seen in the side-by-side comparison in Fig. 6.9. Let’s go
from right to left. There is a clear asymmetry in the conduction-electron DOS at the position of the
first (main) Kondo peak in the impurity DOS. It is, however, not exactly antisymmetric and cannot
be directly attributed to a Fano resonance. The origin of this will be discussed in detail in the next
section. The first feature generated by an excited CEF state is a clear peak precisely at the position of
the first CEF state in the impurity spectrum. Both results are compatible with the experiment.

Next, there is neither a clear peak nor a clear dip in the conduction-electron DOS at the positions of
the next two CEF contributions to the impurity DOS. The shown features can possibly be explained by
the Fano-lineshape, for which we need to investigate the 𝑞-factor, shown in Fig. 6.10(a). Although
it does vary largely over the small energy scale of interest, just 𝑞 alone does not suffice for an
analysis. According to Eq. (6.5), the correction is weighted by the conduction-electron DOS, which is
the local cavity conduction-electron in DMFT. It was defined as 𝐺𝑐 ø

loc = G𝑐 ø
loc/(1 + Δ

𝑐
locG

𝑐 ø
loc ) and is

shown in Fig. 6.10(b). By combining both 𝑞-factor and effective DOS and comparing them to the
Fano-lineshapes of Fig. 6.4, each individual energy section can be analyzed.

From right to left, we first get a strong peak in the local effective DOS combined with a weakly
negative 𝑞-factor, resulting in a dip-like structure. Closer to the Fermi energy, the effective DOS
approaches a local minimum, and the 𝑞-factor approaches 𝑞 = −3, resulting in an increase in the full
local DOS, roughly following the lineshape of 𝜌𝑐 ø

loc. This continues up to a local maximum of the
DOS below the Fermi energy, which, coupled with an increase of the 𝑞-factor to 𝑞 = −0.5 results in
a peak-dip contribution, broadening and deforming the coherence peak in the full local DOS when
compared to the effective cavity DOS.

Below the energy of the coherence peak, the 𝑞-factor varies slowly and is approximately 𝑞 = −1
such that the CEF state contributions get shifted to smaller energies, which explains the discrepancy
between the experiment and the presented model calculation. A more intricate modeling of the free
conduction-electron DOS or even a ®𝑘-dependent hybridization might be able to remedy this.
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Figure 6.9: Top: Impurity density of states in total and by CEF contribution. Bottom: Conduction-electron
density of states for the YbRh2Si2 model for 𝑇 = 10 K. The gray dashed line is a guide to the eye generated
from subtracting a Lorentzian from the free conduction-electron density of states. Both: Vertical gray lines
mark the renormalized CEF energies, c.f. Fig. 6.6(b).

(a) DMFT effective local conduction-electron 𝑞-factor. (b) DMFT effective local conduction-electron DOS.

Figure 6.10: DMFT local-model 𝑞-factor and density of states of an effective conduction-electron background.
The Green function is defined via 𝐺𝑐 ø

loc = G𝑐 ø
loc/(1 + Δ

𝑐
loc G

𝑐 ø
loc ). Vertical gray lines mark the renormalized CEF

energies.
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6.4.3 Dip Depth and Peak Heights

(a) Depth of the Kondo dip according to Eq. (6.8).
(b) Coherence peak and first excited CEF peak via subtrac-
tion of a linear background.

Figure 6.11: Kondo dip and two peak heights of Fig. 6.8. The Kondo temperature 𝑇𝐾 = 32 K was estimated via
the half width at half maximum of the CEF ground-state Kondo peak.

A central feature of the experimental results is the temperature dependence of the different peaks
compared to the temperature dependence of the Kondo dip. The latter is shown in Fig. 6.11(a).
The data points were extracted from the numerically generated data using the minimum of the
conduction-electron DOS in the region [−30 meV, 10 meV], 𝜌𝑐 (𝜔0) and the free DOS value at the
peak 𝜌

𝑐 (0) (𝜔0). The shown data is

[𝜌𝑐 (𝜔0, 𝑇) − 𝜌
𝑐 (0) (𝜔0)]/𝜌

𝑐 (0) (𝜔0) . (6.8)

The dip shows a small region of logarithmic increase around 5𝑇𝐾 and banks off around 𝑇𝐾 , slightly
decreasing below. This behavior is not quite as in the experiment and could stem from the much
broader coherence peak influencing the value at the minimum.

Comparing the temperature dependence of the coherence peak and the CEF peak to this is now
essential to understanding the underlying physics. For this, a temperature-dependent background has
to be subtracted in order to confidently generate peak heights. The method used in [12] can not be used
here due to the strong asymmetry. Although a possible alternative, the subtraction of a Lorentzian
turns out to be too uncontrolled for a proper analysis. A much simpler but also more robust method
is fitting a straight line connecting the flanks of each peak. The peak height is then estimated by
subtracting this straight line from the data in the region and taking the maximum The coherence peak
and the first excited CEF peak data extracted in this way are shown in Fig. 6.11(b).

The coherence peak has a much larger total value and grows stronger than the first CEF peak. The
latter still grows for small temperatures but with a small slope. The general behavior is compatible
with the experiment. However, the experimental data only shows the highest excited CEF peak, which
we can not faithfully compare here due to the previously mentioned differences between the model
and the experiment.
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6.4.4 Spectral Function and Orbitally Selective Lattice Coherence

Figure 6.12: Spectral function for the YbRh2Si2 model at 𝑇 = 10 K (𝑇 ≈ 𝑇𝐾/3) plotted against the excitation
energy and the dispersion 𝜀. The energy is relative to the Fermi energy, including chemical potential. Upper
panel: Total spectral function, i.e. Tr Im𝐺 (𝜔, 𝜀). Lower panel: Impurity contribution to the upper panel on a
different color-code scale to visualize the structure away from the Fermi energy.

Having discussed the similarities and differences between the experiment and the minimalistic model,
the question of orbitally-selective lattice coherence can be addressed. For this, let’s take a look at the
spectral function, i.e. the ®𝑘-dependent spectral density. The model discussed above does not contain
information about momenta, only the free density of states. We can, therefore, not investigate the true
momentum dependence. Equivalently, one can plot the spectral function not against ®𝑘 but against
𝜀, which can be translated to momentum via the dispersion. This has the benefit of breaking down
the structure to energetics and allowing for an investigation of spectra without knowing the exact
®𝑘-dependence. The spectrum over a wide range of energies is shown in Fig. 6.12.

First, the overall avoided crossing around the Fermi energy can be seen very well. Second, the
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impurity contribution shows a clear curvature in parts of its structure, indicating lattice coherence.
There is, however, a part that is bent and a part that appears still perfectly flat. This can be further
investigated by looking at a small region around the Fermi energy, which is shown in Fig. 6.13. Here,

Figure 6.13: Spectral function for the YbRh2Si2 model at 𝑇 = 10 K (𝑇 ≈ 𝑇𝐾/3) plotted against the excitation
energy and the dispersion 𝜀 in a narrow region around the Fermi energy. The energy is relative to the Fermi
energy, including chemical potential. Upper panel: Conduction-electron contribution to the spectral function.
The dashed-dotted line is the free band. Lower panel: Impurity contribution to the spectral function.

we can find several signatures of lattice coherence. First, the aforementioned avoided crossing, leading
to the Kondo dip. Second, a heavy band appears in the conduction electrons and the impurities
simultaneously, giving rise to the coherence peak in the conduction-electron DOS. Localized impurities
would have a flat band6—the dominant contribution here is however a heavy, but curved band around
the Fermi energy. The small peak above −20 meV in the DOS of Fig. 6.8 can be seen very weakly
here in the form of a feint partial band.

6 For this, compare Fig. 2.8 of the resonant-level model and Fig. 2.9 of the two-band hybridization model.

113



Chapter 6 Lattice Coherence of CEF States in YbRh2Si2

(a) CEF ground-state contribution. (b) First excited CEF state contribution.

(c) Second excited CEF state contribution. (d) Third excited CEF state contribution.

Figure 6.14: Individual Pr 4 𝑓 CEF-state contribution to the spectral function for the YbRh2Si2 model at
𝑇 = 10 K (𝑇 ≈ 𝑇𝐾/3) plotted against the excitation energy and the dispersion 𝜀 in a narrow region around the
Fermi energy. The energy is relative to the Fermi energy, including chemical potential. The color-code scale in
(b)-(c) differs from the scale in (a) and other Figures to enhance visibility.

Additionally, there is a reduction of conduction-electron spectral weight just below −20 meV
alongside a flat band in the impurity spectrum. This can be attributed to the second excited CEF state.
Below that, around −35 meV, an increase of spectral weight in the conduction-electron spectrum is
encircled by impurity bands. This can be seen as a weak signature of lattice coherence. The final
contribution is the lowest-lying, weakly curved band in the conduction electrons and a feint but clearly
curved band in the impurities, which can be attributed to the highest excited CEF state.

In order to get a better overview of lattice coherence of different CEF states, each individual
contribution is shown in Fig. 6.14. The CEF ground state shows a clear, curved band structure. The
first excited state merges with the ground state to extend the band. Hence, the additional peak of this
contribution to the DOS in Fig. 6.6(b). The other two contributions show partial traces of lattice
coherence, although the band-like structure and curvature are much less pronounced.
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6.5 Conclusion

The origin of the experimentally observed peaks inside the broad Kondo dip can be explained by the
lattice coherence of individual CEF states in a minimalistic model.

The CEF ground state shows clear lattice coherence, hence a strong coherence peak arises in the
local conduction-electron DOS. The first excited CEF state (𝑛 = 2) merges with the ground-state
heavy band, showing a weaker yet clear sign of lattice coherence, resulting in a small peak in the
conduction-electron DOS.

The second and third excited CEF states show weak signs of lattice coherence, the contribution
to the central heavy band decreasing from 𝑛 = 2 to 𝑛 = 4. The influence on the conduction-electron
DOS can be understood more from a Fano-lineshape perspective.

Overall, it appears that the formation of lattice coherence within the DMFT description gives rise
to strong fluctuations in the local 𝑞-factor of the Fano-lineshape. This phenomenon is worth further
investigation and could lead to a deeper understanding of how lattice coherence dynamically forms in
heavy-fermion systems.

Despite the quantitative differences between the minimal model and experimental data, there are many
qualitative similarities. From here, two routes could be taken. Either improving the fit, which is likely
not possible without increasing the complexity, or tuning the parameters away from the experimental
values and investigating a more basic, fundamental model.
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CHAPTER 7

The non-Fermi liquid behavior in PrV2Al20

The discussion so far was concerned with materials that show heavy Fermi liquid (HFL) behavior at low
enough temperatures. The main antagonist to this was the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction, leading to a magnetically ordered state and destroying the HFL phase. Remembering the
shape of the Doniach phase diagram in Fig. 3.8, non-Fermi liquid (NFL) behavior at low temperatures
would either mean proximity to the quantum-critical point (QCP) or magnetic ordering. When not in
the ordered phase, such an NFL shows an unconventional power-law behavior in electrical resistivity,
specific heat, magnetic susceptibility, and other thermodynamic and transport quantities. Such a
behavior defines the class of strange metals.

Although not unheard of (𝛽-YbAlB4 [100]), stoichiometric materials under normal conditions are
typically not close enough to a QCP to show a solid NFL phase. This phase is usually accessed by
traversing the horizontal axis of the Doniach phase diagram via pressure, doping, or magnetic field,
tuning closer to a quantum critical point [100–104]. Enhanced quantum fluctuations were also shown
to suppress the Fermi liquid phase, resulting in NFL behavior [105–107].

About a decade ago, indications of two-channel Kondo physics and competing phases were
discovered in the so-called 1-2-20 materials1, mainly PrT2Al20 (T=Ti, V). They are special in that
they host an exotic quadrupolar Kondo effect [109, 110], in which the ground state of the Pr3+ 4 𝑓 2

state is a non-Kramers doublet with vanishing dipole moment but nonzero quadrupole [110, 111] (and
octupole [111, 112]) moment. Here, the twofold quadrupole moment is screened instead of a spin-1/2.

The low-temperature behavior varies immensely between the two mentioned materials. While
PrTi2Al20 shows clear signs of heavy Fermi liquid behavior followed by quadrupole ordering and
unconventional superconductivity, PrV2Al20 shows non-Fermi liquid behavior, quadrupole order, and
superconductivity [113–115], c.f. Fig. 7.1; the latter two at lower temperatures than its counterpart
PrTi2Al20. Experimental estimation of the quasiparticle masses in both materials gave 𝑚

∗/𝑚𝑒 ∼ 20
in PrTi2Al20, and ∼ 120 in PrV2Al20 [13]. Additionally, the appearance of a Kondo peak has been
directly observed in photoemission experiments [116].

Gathering all the presented evidence, it might appear that PrTi2Al20 sits firmly in the Fermi liquid
region of a modified Doniach phase diagram (c.f. Fig.3.8), whereas PrV2Al20 would host a weaker
coupling (larger effective mass, smaller ordering temperature) and hence would sit closer to a QCP
defined by the extrapolated vanishing of the quadrupole-ordered phase. Whilst following from a sound

1 For a review of 1-2-20 materials, see [108].
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Figure 7.1: Experimentally measured resistivity for PrV2Al20 and PrTi2Al20 represented by points. The lines
illustrate the respective scaling behavior. Taken from [113]; modified (removed text panels and insets)

analysis, it would certainly be a realization of a very rare case, as discussed above. The persistence
of the NFL phase over a large temperature range might, however, give hints towards a different
interpretation in which the NFL behavior stems from the two-channel Kondo effect.

Following up on the discussion of the quadrupolar Kondo effect, virtual fluctuations with the
Kramers doublet ground states of 4 𝑓 1 and 4 𝑓 3 conserve the conduction-electron spin, leading to a
realization of the two-channel Kondo model in which the two spins act as two individually conserved
screening channels for the quadrupole moment (c.f. Fig. 7.2). The notion of a two-channel Kondo
effect was pioneered by Nozières and Blandin [58], in which two conduction-electron reservoirs
screen the same impurity spin via independently conserved scattering channels. The singlet formation
can happen in either channel and, in the case of energetical degeneracy, leads to a twice-degenerate
ground state. In contrast to the Nozières Fermi liquid [38], this shows textbook non-Fermi liquid
behavior in thermodynamic quantities, like specific heat 𝐶imp/𝑇 ∝ − ln(𝑇/𝑇𝐾 ), resistivity 𝜌 ∝

√
𝑇 ,

magnetic susceptibility 𝜒imp ∝ − ln(𝑇/𝑇𝐾 ), predicted by exact solutions via Bethe-Ansatz [117, 118],
conformal field-theory [119], and renormalization group [120]. Similarly to the Fermi liquid case, the
impurity self-energy vanishes at the Fermi energy, indicating the formation of a bound state. The
difference is in the scaling, which is quadratic in temperature and frequency in the Fermi liquid case,
and of square-root behavior in the two-channel case.

Similar to the regular Kondo lattice, the two-channel Kondo lattice is not yet exactly solved,
and theoretical insight was only gathered in specific cases or under approximations. An intriguing
feature of the Kondo lattice is the competition between the Kondo effect, with the tendency to form a
heavy Fermi liquid, and the RKKY interaction, with the tendency to induce magnetic order on the
impurities. In the two-channel case, the expected non-Fermi liquid behavior and channel order [121,
122] (sometimes called hastatic order) are added to the picture.

Hence, the non-Fermi liquid behavior of PrV2Al20 could be attributed to the two-channel Kondo
effect in the lattice [123].
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Figure 7.2: Illustration of the two-channel Kondo model. Conduction electrons are represented by gray balls
and their spin by blue arrows. The orange ball represents the impurity, with its spin being the orange arrow.
The tight-binding nearest neighbor hopping 𝑡 and the local Kondo coupling 𝐽 are illustrated via black arrows.
Compared to Fig. 3.6, pair formation is degenerate between the two scattering channels. Both possible options
are illustrated by green dashed lines.

In this chapter, all the necessary details for setting up an effective model for the Kondo effect in
PrV2Al20 are presented, supported by DFT results by A. H. Nevidomskyy and F. Gao from Rice
University, Houston TX. First, a discussion of the underlying level structure of the Pr3+ ion and
coupling constants between involved states, including conduction-electrons, is presented. This is
followed by a recipe for constructing an effective model for the quadrupolar (two-channel) Kondo effect
in terms of a periodic Anderson impurity model with Hubbard operators. Extensions of the previously
discussed dynamical mean-field theory and non-crossing approximation are briefly mentioned. Lastly,
the numerical results are discussed, and an outlook on future projects is given.
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7.1 Crystal Field States of Pr3+ in PrV2Al20

The Kondo effect in PrV2Al20 will be dominated by the 4 𝑓 electrons of the Pr3+ ion, whose valence
ground state is the 4 𝑓 2 configuration. From there, fluctuations can either happen with the 4 𝑓 1 or 4 𝑓 3

configurations. As already established in Sec. 4.2.2, the spin-orbit coupled ground state of the 4 𝑓 2

configuration is 𝐽 = 4; the ground state for 4 𝑓 1 is 𝐽 = 5/2, and for 4 𝑓 3
𝐽 = 9/2. The crystal field point

group is 𝑇𝑑 , whose double group 𝑇
′
𝑑 can be used to determine the possible CEF states in each valence

configuration. They are listed in Eq. (4.15), (4.16), and (4.17). As a reminder, they were

Γ𝐽=5/2 = Γ7 ⊕ Γ8

Γ𝐽=4 = Γ1 ⊕ Γ3 ⊕ Γ4 ⊕ Γ5

Γ𝐽=9/2 = Γ6 ⊕ 2Γ8 .

The irreps can be interpreted as singlets or triplets in either spin, orbital, or both to gain physical
insight. Most importantly, Γ6 and Γ7 behave like spin-1/2 states due to their Kramers doublet nature.
The non-Kramers Γ3 doublet, missing a dipole moment, can be understood as a dipole-singlet with a
twofold orbital quantum number. Both Γ4 and Γ5 behave like dipole-triplets, effectively spin-1 states.
The difference between them is the combination of comprising orbitals. Lastly, Γ1 is a singlet in all
possible quantum numbers, and Γ8 can be understood as a combination of Γ3 and Γ6 or Γ7, which is
exact in the group theoretical sense since Γ3 ⊗ Γ6/7 = Γ8. The interpretation in terms of spins and
orbitals is not fully true, though, since 𝐿𝑆-coupling mixes both quantities into a combined 𝐽. Yet, the
physical behavior is described correctly.

Determining the CEF ground state is a non-trivial matter. Luckily, the 4 𝑓 2 level scheme is approxi-
mately known from a comparison of inelastic neutron scattering spectroscopy on PrTi2Al20 [124],
which has the same symmetry and a level scheme of Γ3 − Γ4 − Γ5 − Γ1 in ascending energy. For
PrV2Al20, the ground state must also be the Γ3 state due to the quadrupolar ordering (Γ4 and Γ5 are
dipole-like, Γ1 is a singlet). From the appearance of a Schottky anomaly in the specific heat, the
energy difference to the first excited CEF state is estimated to Δ/𝑘𝐵 ≈ 40 K. This state must be either
Γ4 with a magnetic moment of 0.4𝜇𝐵 or Γ5 with 2𝜇𝐵 [113]. There is evidence promoting Γ5 as
the best candidate due to the larger effective magnetic moment of the high-temperature Curie-Weiss
behavior of PrV2Al20, though it has not been confirmed by direct measurements so far.

Figure 7.3: Crystal field states involved in the hybridization process of the Pr3+ ion in PrV2Al20. The arrow
connecting Γ3 and Γ5 indicates the CEF splitting, the arrow connecting the left side to the right side indicates
the valence fluctuation to Γ6 via Γ8-projected conduction electrons. As indicated by the broken line, vertical
position is in correct order but not to scale.
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For the other two cases, symmetry arguments will typically favor the doublets Γ7 for 4 𝑓 1 and Γ6 for
4 𝑓 3 as the respective ground states. In previous treatments, the dominant valence fluctuation was
often assumed to be between 4 𝑓 2 ↔ 4 𝑓 1. A DFT analysis for PrV2Al20 has revealed 4 𝑓 2 ↔ 4 𝑓 3 as
the dominant fluctuation with an energy difference of Δ𝐸2↔3 = 𝐸4 𝑓 3 − 𝐸4 𝑓 2 ≈ 2.2 eV compared to
Δ𝐸2↔1 ≈ 3.8 eV. Consequently, we shall focus on the 4 𝑓 2 ↔ 4 𝑓 3 fluctuation2. This also necessitates
using the hole-like NCA as discussed for YbRh2Si2 and in Sec. 5.3.7.

A hybridization between Γ3 and Γ6 must be of Γ3 ⊗ Γ6 = Γ8 symmetry. Hence, the conduction
electrons of an effective model must be projected onto the local Γ8 state—this is discussed in more
detail in the next section. If we also take Γ5 into account, the conduction-electron states must be
Γ5 ⊗ Γ6 = Γ8 ⊕ Γ7. For simplicity, we will restrict the model to only Γ8 electrons. The results will
qualitatively show the same behavior, which will be discussed at a later point as well.

A particular choice of Clebsch-Gordan coefficients for the 4 𝑓 2 and 4 𝑓 1 states in terms of total
angular momentum 𝐽 states can be found in Appendix E.1.

7.2 An Effective Periodic Anderson Model for PrV2Al20

The knowledge gathered in the previous section is enough to map out an effective model for the Kondo
effect in the alloy. In the simplest case where only the Γ3 CEF ground state of the Pr 4 𝑓 2 configuration
and the Γ6 doublet in the excited valence configuration 4 𝑓 3 are considered, the impurity part of the
Hamiltonian in terms of Hubbard operators is

𝐻
Γ3
imp = 𝐸4 𝑓 2

∑︁
𝑗 ,𝛼

| 𝑗 ; 4 𝑓 2
Γ3, 𝛼⟩ ⟨ 𝑗 ; 4 𝑓 2

Γ3, 𝛼 | + 𝐸4 𝑓 3

∑︁
𝑗 ,𝜇

| 𝑗 ; 4 𝑓 3
Γ6, 𝜇⟩ ⟨ 𝑗 ; 4 𝑓 3

Γ6, 𝜇 | , (7.1)

where 𝑗 labels Pr sites, 𝛼 the quadrupolar quantum number of the non-Kramers doublet Γ3 and 𝜇 the
spin (channel) quantum number of the Kramers doublet Γ6. Energies are taken with respect to the
Fermi energy, as always. Conduction electrons are projected onto local Γ8 states; the hybridization
term is, therefore,

𝐻
Γ3
hyb =

𝑉0√
2

∑︁
𝑗 𝛼𝜇

sgn(𝛼) | 𝑗 ; 4 𝑓 3
Γ6, 𝜇⟩ ⟨ 𝑗 ; 4 𝑓 2

Γ3, 𝛼 | ⟨ 𝑗 ; 𝑐 Γ8, �̃�, 𝜇 | + ℎ.𝑐. , (7.2)

where �̃� represents the conjugate pseudospin often also denoted as −𝛼. The prefactors of 1/
√

2 and
sgn(𝛼) stem from the Clebsch-Gordan coefficients, the latter of which is a matter of definition and
could be gauged away. Note that the hybridization in this form conserves both spin 𝜇 and pseudospin
𝛼 at the vertex. The sgn(𝛼) signals a singlet structure in the pseudospin 𝛼. This does not contradict
the formulation in [123]; it is a freedom of choice when defining the basis for each individual irrep3.
For details about the couplings, see Appendix E.2.

2 Note that this choice does not qualitatively influence the behavior at the lowest temperatures; the low-energy effective
model is the same Kondo model with a different numerical value of 𝐽 but the same structure.

3 This comment refers to the sgn(𝛼) factor. The hybridization in the first arXiv version of [123] is wrongly missing the
minus sign in the Γ8 pseudospin.
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If the additional Γ5 CEF state is taken into account, the model must be extended by

𝐻
Γ5
imp = (𝐸4 𝑓 2 + Δ)

∑︁
𝑗 ,𝑚

| 𝑗 ; 4 𝑓 2
Γ5, 𝑚⟩ ⟨ 𝑗 ; 4 𝑓 2

Γ5, 𝑚 | . (7.3)

and the appropriate hybridization terms

𝐻
Γ3
hyb = 𝑉1

∑︁
𝑗 𝛼𝑚𝜇𝜇

′
Ξ𝑚𝜇;𝛼𝜇′ | 𝑗 ; 4 𝑓 3

Γ6, 𝜇⟩ ⟨ 𝑗 ; 4 𝑓 2
Γ5, 𝑚 | ⟨ 𝑗 ; 𝑐 Γ8, 𝛼, 𝜇

′ | + ℎ.𝑐. . (7.4)

The factor Ξ contains the non-trivial hybridization structure via Clebsch-Gordan coefficients of the
CEF irreps, details of which can be found in Appendix E.2. Essentially, the vertex should conserve
dipole moments, and Γ5 is like a spin-triplet of total spin 𝑆 = 1. The combinations of 𝑚, 𝜇 and 𝜇

′

must be chosen such that 𝜇 = 𝑚 + 𝜇
′. Additionally, since Γ5 does not carry the pseudospin 𝛼, an

appropriate combination must be taken. Here, a simple average over 𝛼 suffices. If Γ4 is added as well,
a more detailed analysis using coupling-constant tables for the 𝑇 ′

𝑑 group needs to be taken into account.
The impurity states can be represented by auxiliary particles via

𝑎
†
𝑗 ,𝜇

|0⟩ = | 𝑗 ; 4 𝑓 3
Γ6, 𝜇⟩ , (7.5)

𝑓
†
𝑗 ,𝛼

|0⟩ = | 𝑗 ; 4 𝑓 2
Γ3, 𝛼⟩ , 𝑑

†
𝑗 ,𝑚

|0⟩ = | 𝑗 ; 4 𝑓 2
Γ5, 𝑚⟩ , (7.6)

�̂� 𝑗 =
∑︁
𝛼

𝑓
†
𝑗 ,𝛼

𝑓
𝑗 ,𝛼

+
∑︁
𝑚

𝑑
†
𝑗 ,𝑚

𝑑
𝑗 ,𝑚

+
∑︁
𝜇

𝑎
†
𝑗 ,𝜇

𝑎
𝑗 ,𝜇

. (7.7)

Local projected conduction electrons can be represented by ordinary fermionic operators

𝜓 𝑗 ,𝛼𝜇 =
∑︁
®𝑘

∑︁
𝑎𝜎

𝑒
𝑖 ®𝑘 ·R 𝑗 Φ

𝑎
𝛼𝜇;𝜎 ( ®𝑘) 𝑐

𝑎
𝜎 ( ®𝑘) , (7.8)

with the transformation matrix Φ and orbitally projected conduction-electrons 𝑐𝑎𝜎 ( ®𝑘), details of which
will be the subject of the next section.

For completeness, the Hamiltonian (without the pure conduction-electron part) is then the sum of

𝐻
Γ3
imp = 𝐸4 𝑓 2

∑︁
𝑗 ,𝛼

𝑓
†
𝑗 ,𝛼

𝑓
𝑗 ,𝛼

+ 𝐸4 𝑓 3

∑︁
𝑗 ,𝜇

𝑎
†
𝑗 ,𝜇

𝑎
𝑗 ,𝜇

, (7.9)

𝐻
Γ3
hyb =

𝑉0√
2

∑︁
𝑗 𝛼𝜇

sgn(𝜇)𝑎†
𝑗 ,𝜇

𝑓
𝑗 ,𝛼

𝜓
𝑗 ,−𝛼𝜇 + ℎ.𝑐. , (7.10)

𝐻
Γ5
imp = (𝐸4 𝑓 2 + Δ)

∑︁
𝑗 ,𝑚

𝑑
†
𝑗 ,𝑚

𝑑
𝑗 ,𝑚

, (7.11)

𝐻
Γ5
hyb = 𝑉1

∑︁
𝑗 𝛼𝑚𝜇𝜇

′
Ξ𝑚𝜇;𝛼𝜇′𝑎

†
𝑗 ,𝜇

𝑑
𝑗 ,𝑚

𝜓
𝑗 ,𝛼𝜇

′ + ℎ.𝑐. , (7.12)

and the chemical potential for the auxiliary particles at each site∑︁
𝑗

𝜆 𝑗 (�̂� 𝑗 − 1) . (7.13)
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Figure 7.4: Density of states (left) and band structure (right) of the full “open core” ab-initio calculation for
PrV2Al20 with “frozen” Pr 4 𝑓 2 configuration, effectively removing it from the picture.

7.3 Conduction Electrons in the Effective Model

For weakly interacting materials, a faithful band structure can be calculated using ab initio techniques,
like the density functional theory4 (DFT). Theoretically, knowing the full band structure of a material
can be considered beneficial. However, realistic (complex) alloys tend to have a complex band
structure. The DFT “open core”5 band structure of PrV2Al20 is shown in Fig. 7.4; this type of plot
is often called spaghetti plot for obvious reasons. Many bands cross the Fermi energy, supporting
the observation of metallic behavior. The bands shown here each contain a non-trivial mixture of
the electronic orbitals of each ion. Due to the necessity of projecting each band onto the local Γ8
quartet of the Pr ion, the spatial wavefunction of each band must be known in order to calculate the
®𝑘-dependent projection matrix (c.f. Fig. 7.3). Although a tedious process, this can be technically done.
Within a dynamical mean-field calculation, though, the inverse transformation has to be applied, and
the full set of O(100) bands would have to be renormalized, each with an individual combination of
®𝑘-dependent transformation matrices. This is numerically not feasible, but luckily, a series of good
approximations can be made.
In Kondo systems, only the strongest contribution to the coupling between conduction electrons and
impurities determines the ground state. The temperature region in which this is still true depends on
the difference in strength. For the local impurity, this is contained in the hybridization function Γ(𝜔).
Finding the dominant contribution to this quantity will allow for the construction of a model with
qualitatively correct features but with a much-simplified structure.

First, conduction electrons in the region of interest (down to ∼ −4 eV) will mostly stem from V
𝑝-orbitals and Al d-orbitals. The crystal structure is such that the hybridization with Al seems to be

4 For a review, see [125]. I will use DFT results in the following, but the method will not be explained in detail since it was
not part of my own work, and it’s not essential to the physical context of this thesis.

5 Wanting to add a DMFT on top of the DFT later on, the impurity part has to be removed from the dynamics in order to
not double-count its contribution. This can be achieved by “freezing” the Pr3+ ion to be in the [Xe]4 𝑓 2 configuration.
More details can be found in section III A of the supplemental material of [123].
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(a) Crystal structure (conventional unit cell, coordination
number 𝑍 = 8) of the 1-2-20 materials taken from [108].
Here, red balls represent Pr, blue balls represent 𝑇 ∈ {V,Ti}
and gray balls represent Ti. The cells indicated by orange
planes connecting Al sites are Frank-Casper cages [126] of
16 Al-atoms surrounding the Pr ion.

(b) Projected density of states (DOS) of V 𝑑 orbitals and Al
𝑝 orbitals normalized to the number of Pr neighbors instead
of the number of atoms in a unit cell.

dominant due to their large number and close proximity to Pr. This was mainly considered in earlier
works [127–129] and often argued to be dominant due to geometrical reasons. We have taken another
approach in comparing the density of states at the Fermi energy, which is the main conduction-electron
attribute entering the Kondo effect at low temperatures. For this, it has to be understood that V
atoms form four distinct sets of fcc-lattices and are arranged in a regular way around each Pr atom.
Viewed from any given Pr site, the discrete rotational transformation mapping V atoms of identical
distance onto each other also includes atoms from neighboring unit cells. Counting the contributions
with appropriate weighting factors results in a much larger (orbitally) projected density of states,
which is illustrated in Fig. 7.5(b). Hence, we identify the V orbitals as the main contribution to the
hybridization function.

The 𝑑-orbitals on each V atom are split by the local 𝐷3𝑑 point-group symmetry into three irreps:
the singlet (ignoring spin) Γ+

1 irrep6 consisting of a 𝑑
𝑧

2 orbital, and two Γ
+
3 doublets {d𝑥𝑦 , d𝑥2−𝑦2}

and {d𝑥𝑧 , d𝑥2−𝑧2}. The projection onto those states is done on a Green function level with projection
weights 𝑤 given by the DFT

𝐺
𝑐 (0)
eff (𝜔, ®𝑘) =

∑︁
𝑛

𝑤
𝑎
𝑛 ( ®𝑘)𝐺

𝑐 (0)
𝑛 (𝜔, ®𝑘) , (7.14)

where 𝑛 is the band index, and 𝑎 is the orbital quantum number; spin has been omitted for readability.
This Green function is then projected onto the local Pr Γ8 states, which is the orbital contribution to
the (ground state, i.e. Γ3) hybridization function

𝚪0(𝜔) = |𝑉0 |
2
∑︁
𝑘𝑎

𝚽
𝑎 ( ®𝑘) Im{G𝑐 (0)

eff }(𝜔, ®𝑘)𝚽†𝑎 ( ®𝑘) (7.15)

up to a prefactor |𝑉0 |
2 that is identical between the different contributions but was not calculated

within this framework. Details about the transformation matrix (or structure factor) Φ can be found
in Appendix E.3. The resulting contribution of each irrep is plotted in Fig. 7.6. The hybridization

6 The notation here is extended by a superscript plus, denoting even behavior under inversion; odd behavior is denoted by a
superscript minus.
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Figure 7.6: Contribution of individual irreps of V 𝑑 orbitals under 𝐷3𝑑 symmetry to the hybridization function
normalized such that the {d𝑥𝑦 , d𝑥2−𝑦2 } integrates to one, maintaining the relative strengths.

function is dominated by the {d𝑥𝑦 , d𝑥2−𝑦2} orbital, allowing for an approximation only including this
specific irrep in the model.

7.4 Dynamical Mean-Field Theory and Non-Crossing Approximation
for the Model

Having established the full model, the extension of both DMFT and NCA should be briefly discussed.
The free conduction electron part of the model is governed by 𝐺

𝑐 (0)
eff (𝜔, ®𝑘) and can therefore not be

represented in a Hamiltonian formalism. For the DMFT, one can either replicate the full derivation in
the path integral formalism (see e.g. [89]) or treat the inverse free Green function as a Schrödinger
operator (𝜔 − 𝐻) without going down to the individual field-operator level, which is compatible with
the derivation in Sec. 5.4.2. The DMFT equations can then be concisely written as

G𝑐 (𝑖𝜔𝑛) =
∑︁
®𝑘

1{
G𝑐 (0)

eff (𝑖𝜔𝑛, ®𝑘)
}−1

− 𝚫𝑐 (𝑖𝜔𝑛, ®𝑘)
, (7.16)

Gimp(𝑖𝜔𝑛) =
1

𝑖𝜔𝑛 − 𝜖
imp − 𝚫imp(𝑖𝜔𝑛) − 𝚺(𝑖𝜔𝑛)

, (7.17)

with

𝜖
imp

= 𝜀1Γ3⊗Γ6
⊕ (𝜀 + Δ)1Γ5⊗Γ6

, (7.18)

𝜀 = 𝐸4 𝑓 2 − 𝐸4 𝑓 3 , (7.19)

𝚫𝑐 (𝑖𝜔𝑛, ®𝑘) = V( ®𝑘)† 1
𝑖𝜔𝑛 − 𝜖

imp − 𝚺(𝑖𝜔𝑛)
V( ®𝑘) , (7.20)
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V( ®𝑘) =
(
𝑉01Γ3⊗Γ6

, 𝑉1𝚵
)𝑇

𝚽( ®𝑘) , (7.21)

𝚫imp(𝑖𝜔𝑛, ®𝑘) =
∑︁
®𝑘

V( ®𝑘) G𝑐 (0)
eff (𝑖𝜔𝑛, ®𝑘) V†( ®𝑘) , (7.22)

where bold quantities are to be understood as matrices in the respective conduction-electron or impurity
quantum numbers. Note that the hybridization matrix V( ®𝑘) is a 10×2 matrix at each ®𝑘-point, mapping
from effective conduction-electron space (i.e. projected onto a specific set of V d-orbitals) to the
impurity space.

The extension of NCA is also straightforward. The new NCA self-energies for the two pseudofermi-
ons are

Im𝚺 𝑓 𝐴
𝛼𝛼

′ (𝜔) = 𝜋

∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀)

∑︁
𝜇𝜇

′
𝐴
𝑎

𝜇𝜇
′ (𝜀 + 𝜔) Γ0

𝛼𝜇
′
,𝛼

′
𝜇
(𝜀) , (7.23)
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Here, off-diagonal elements between the two pseudofermions are allowed. The expressions for the
respective hybridization functions Γ are trivially constructed by attaching Ξ to the left or right of
Γ

0 and multiplying with 𝑉1/𝑉0. Also, the spin-reflection is absorbed into the definition of Γ, which
can further be absorbed into the projection onto Γ8 states for the Γ3 hybridization and must then be
respected in the additional structure factor Ξ for the Γ5 hybridization.

The slave-boson self-energy is
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Finally, the impurity spectrum and, equally, the local part of the 𝑇-matrix is
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Chapter 7 The non-Fermi liquid behavior in PrV2Al20

Figure 7.7: Spectrum of the single CEF-state effective model for PrV2Al20. Panel (a) shows the total DOS for
two different temperatures, for which the spectrum along a path in ®𝑘-space close to the Γ point is shown in
panels (b) and (c).

7.5 Results for the Single CEF-State Model

The expected two-channel behavior should be observable in a model containing only the hybridization
with the CEF ground state Γ3. Hence, let’s first consider the previously discussed model with only
taking Γ3 into account. This model only has a single tunable parameter 𝑉0, which was set such that
|𝑉0 |

2
= 3.4 eV2, where |𝑉0 |

2
= 3.0 eV2 was used just for the magnetic susceptibility7. The spectrum of

this model for two different temperatures is shown in Fig. 7.7. The figure shows a small region around
the Γ-point, where the effect of the hybridization is most pronounced. Due to the small energy range,
orders of magnitude smaller than the bandwidth, the projected conduction bands8 appear as vertical
lines despite their dispersion. The emergence of a heavy band and avoided crossing around the Fermi
energy can be clearly observed. Furthermore, the density of states in panel (a) shows first signs of a
coherence peak, as discussed in the section about YbRh2Si2. The model successfully achieves the
first step: reproducing heavy fermion behavior.

Next, the results must be tested for Fermi liquid or non-Fermi liquid behavior. This can be seen
best in the scaling of the local impurity self-energy. If its imaginary part behaves like ∼ 𝜔

2 it would
be a clear indication of Fermi liquid behavior, whereas ∼ sgn(𝜔)

√︁
|𝜔| is a clear indication of the

two-channel Kondo non-Fermi liquid. As can be seen from Fig. 7.8(a) and Fig. 7.8(b), the behavior is
that of a non-Fermi liquid which starts to develop around 𝑇 = 15 K. A few remarks should be made
at this point. Although NCA produces the correct low-energy scaling, frequency dependence, and
infrared exponents for a two-channel situation [130], the potential scattering is overestimated, resulting

7 Due to the strong hybridization in this model, the numerical calculation of the magnetic susceptibility became uncontrolled
and a model with weaker hybridization had to be considered for just this quantity. All other quantities look qualitatively
similar between the two models, just with more pronounced non-Fermi liquid behavior in the model with stronger
hybridization.

8 The figure shows only the spectral weight of the parts considered in the model. The full conduction-electron density of
states is much larger. Plotting the full system would not be advisable in the context of our approximations due to a strong
underestimation of the impurity influence on the system—all omitted hybridizations for the minimal model are effectively
set to zero at the cost of needing adjusted parameters for a faithful description of the material.
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7.5 Results for the Single CEF-State Model

(a) Impurity self-energy of the single CEF-state effective
model for PrV2Al20 for different temperatures.

(b) Impurity self-energy of the single CEF-state effective
model for PrV2Al20 for different temperatures plotted against
the expected square-root scaling function. Here, �̃� = 𝜔−𝜔0,
where 𝜔0 is the frequency of the local minimum. The inset
shows the value at the minimum in meV against the expected
square-root temperature scaling.

Figure 7.8: Impurity self-energy of the single CEF-state effective model for PrV2Al20.

in an offset of the value at the local minimum 𝜔0. There is also a small offset of the minimum 𝜔0 due
to strong particle-hole asymmetry, which additionally induces an asymmetric shape. The asymmetry
can also be seen in the exact results mentioned above. Additionally, the square-root scaling behavior
is strictly true only in a region of order 𝑇𝐾 around 𝜔 = 0; outside that region, deviations are to be
expected and in accordance with exact results. Lastly, at finite temperatures, the region |𝜔 | < 𝑘𝐵𝑇

is not guaranteed to show the correct scaling behavior. The constant offset is substantial here, and
the non-Fermi liquid behavior sets in at much smaller temperatures than expected. This could be
improved by increasing the hybridization prefactor in the model at the cost of numerical stability.

Having established the non-Fermi liquid behavior of PrV2Al20 in the context of our model, a
comparison of the model’s magnetic susceptibility to experimental data reveals a large discrepancy.
Details about the numerical treatment of the susceptibility can be found in Appendix E.4. The
experimental data, taken from [113], is shown in Fig. 7.9(a). The expected magnetic susceptibility of
a two-channel Kondo model is a logarithmic divergence. The numerical data presented in Fig. 7.9(b)
shows a weak logarithmic dependence, which crosses over to a different behavior below 3 K. Due
to the numerical instability of the susceptibility in this specific case, the hybridization had to be
reduced as discussed above. The observed crossover could be a numerical artifact, this possibility was,
however, not further investigated due to the clear incompatibility between the model susceptibility and
the experiment. The experimental data has a much more complex structure in that it shows the onset of
(potentially) logarithmic behavior in the region of 𝑇 ≈ 300 K to 𝑇 ≈ 20 K and then changes behavior
below 20 K, possibly crossing over to a logarithm of different slope9. The quadrupole ordering
temperature in PrV2Al20 is 𝑇𝑂 ≈ 2 K, close to the leftmost point shown in this graph10. Virtually all
previous works have interpreted the behavior below 35 K as a 𝜒 ∼ 1 −

√
𝑇 behavior stemming from

9 For this, compare also to Fig. 7.12(b).
10 Intriguingly, the logarithmic behavior seems to persist below the ordering temperature, just with yet another slope, which

was shown in a more recent measurement in [131] reproduced in Fig. 7.9(a). This region is not accessible within our
approach and, hence, is not discussed further in this thesis.
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(a) Experimentally measured impurity susceptibility of
PrTi2Al20 and PrV2Al20 on a logarithmic scale, taken
from [113]; modified (removed text panels, rescaled text).

(b) Impurity magnetic susceptibility of the single CEF-state
effective model for PrV2Al20 for different temperatures.

Figure 7.9: Impurity magnetic susceptibility of the single CEF-state model compared to the original experimental
data.

the van Vleck susceptibility of the Γ3 doublet. This is based on the work by Cox and Makivic [132] in
which the van Vleck contribution arises from virtual fluctuations between the CEF states Γ3 and Γ4 in
U4+ materials. This provides justification for including the first excited CEF state in the model, which
is discussed in the next section.

7.6 Results for the Two CEF-State Model

In the last section, the discussion and comparison with the experiment highlighted the need to include
the first excited CEF state in the model. This is furthermore supported by a comparison of scales.
Experimentally, non-Fermi liquid behavior is observed below approximately 20 K, where a crossover
can be seen in the magnetic susceptibility. The expected crystal field splitting Δ/𝑘𝐵 ≈ 40 K introduces
a similar temperature scale. Additionally, the intention to compare the magnetic susceptibility in a
temperature range comparable to the CEF splitting certainly necessitates the inclusion of this state
into the model.

The full model including Γ5 has three adjustable parameters: 𝑉0, 𝑉1, and the microscopic splitting
Δ. For simplicity, 𝑉1 = 𝑉0 = 1.5 eV2 under the use of the coupling coefficients in Eq. (E.13) in the
appendix. As briefly mentioned there, this leads to a strongly enhanced splitting. One might be able to
explain this by possible shortcomings of the methods used; this is not further investigated in this thesis.
In order to produce the correct final CEF splitting of approximately 40 K, the microscopic parameter
must be Δ/𝑘𝐵 = −695 K. This can be avoided by choosing a suitable 𝑉1 ≈ 𝑉0

√︁
3/2, adjusting the free

hybridization functions to have the same strength. The results for this alternative case are qualitatively
identical.

As before, the first quantity of interest is the spectrum. It is again shown for two different
temperatures in Fig. 7.10. The two individual crystal field states are clearly visible but not well
separated in 𝑘-space. Despite this, lattice coherence can still be identified in the 𝑘-dependent spectrum
by signs of avoided crossing, as well as in the density of states by the splitting of peaks. Additionally,
the excited CEF peaks produce a side-peak below the Fermi energy, similar to the previously discussed
case of YbRh2Si2. Two distinct temperature scales can now be identified from the density of states.
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Figure 7.10: Spectrum of the effective model for PrV2Al20 including two CEF states. Panel (a) and (b) show the
total (model) spectrum along a path in 𝑘-space close to the Γ point for 𝑇 = 3 K and 𝑇 = 300 K. Panel (c) shows
the total DOS for the same two temperatures.

At temperatures larger than the CEF splitting, only a single broad Kondo peak appears. The onset
of this peak at around 𝑇𝐾,1 ≈ 50 K marks the first Kondo temperature, which is the relevant energy
scale for the onset of the Kondo effect in this model. The individual CEF contributions become
discernible below around 20 K. Lastly, the ground-state Kondo temperature can be estimated to be
around 𝑇𝐾,0 ≈ 5 K. Due to the crossover-like nature of the Kondo effect, first signs of it are usually
visible already at higher temperatures.

Next, the Γ3 component of the impurity self-energy, shown in Fig. 7.11, shows a clear non-Fermi
liquid

√
𝜔 behavior qualitatively matching exact results for a local two-channel Anderson impurity

model [120]. The same discussion as before applies here. This time, the constant offset is much
smaller and the square-root behavior more pronounced. Although already visible at the largest shown
temperature, the scaling behavior converges below 𝑇𝐾,0 ≈ 5 K.

Finally, the magnetic susceptibility is displayed in Fig. 7.12(a), calculated using the same method as
before (c.f. Appendix E.4). The contribution is twofold here. One is the direct contribution from Γ6;
the other is the direct contribution from Γ5. Since Γ6 is the excited state and only virtually occupied,
its contribution is small and was enhanced in the figure to increase visibility. The—by far—dominant
contribution is from Γ5 directly. At temperatures above the CEF splitting, it actively contributes to
the magnetic susceptibility due to the direct coupling of the spin-triplet to the magnetic field. This
gives rise to the characteristic logarithmic shape of the perturbative onset of the Kondo effect. The
dynamics get frozen out below the CEF splitting at a similar temperature scale mentioned in the
context of the DOS above. In our model, the susceptibility reaches a local maximum at around 15 K,
below which a local minimum just above 10 K is reached. The behavior then shows a crossover to
a rising susceptibility, which must be the logarithmic divergence of the ground-state Kondo effect.
Unfortunately, the numerical calculation becomes uncontrolled below this point.

Despite the apparent differences between theory and experiment, the overall behavior is reproduced,
and bringing it more in line with the experiment would require tuning each individual parameter. This
is a time-consuming procedure due to the non-linear cross-dependencies between the parameters, even
though only three free parameters are involved.

131



Chapter 7 The non-Fermi liquid behavior in PrV2Al20

Figure 7.11: Impurity ground-state (Γ3) self-energy of the effective model for PrV2Al20 including two CEF
states for different temperatures plotted against the expected square-root scaling function. Here, �̃� = 𝜔 − 𝜔0,
where 𝜔0 is the frequency of the local minimum. The inset shows the value at the minimum in meV against the
expected square-root temperature scaling.

(a) Temperature-dependent impurity susceptibility of the
effective PrV2Al20 model including two CEF states.

(b) Temperature-dependent experimentally measured impu-
rity susceptibility; the gray dashed line marks the quadrupole
ordering temperature. Reproduced from [131].

Figure 7.12: Impurity magnetic susceptibility including the excited CEF state in comparison to most recent
experimental data.
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7.7 Conclusion

The question of whether the non-Fermi liquid behavior of PrV2Al20 can be solely attributed to the
two-channel Kondo effect was answered affirmatively. A clear non-Fermi liquid behavior can be seen in
the local impurity self-energy below a temperature comparable to the experimentally determined onset
of NFL behavior in electrical resistivity. Comparing the magnetic susceptibility to the experiment
necessitated the inclusion of the first excited CEF state, the Γ5 triplet, which behaves like a spin-1. Its
direct coupling to the magnetic field was shown to give the—by far—dominant contribution to the
impurity susceptibility. The excited Γ6 state alone, although producing a logarithmic divergence due to
the two-channel Kondo effect, cannot reproduce the complex structure of the temperature-dependent
susceptibility. The inclusion of Γ5 did not change the non-Fermi liquid behavior of the self-energy
qualitatively, as expected.

Despite the apparent differences between the model susceptibility and the experimental results,
important features are qualitatively reproduced at comparable temperatures. The temperature
dependence of the observed susceptibility was explained by the crossover between two different
logarithmic regimes, in contrast to the previously reported 1 −

√
𝑇 van Vleck behavior.

Although improving the quantitative similarity between model and experiment would be desirable,
the highly non-linear coupling between the involved parameters makes this a time-consuming task.
The lack of additional physical insight gained from this procedure starkly contrasts the significant time
investment required. Therefore, it is unclear if this will be pursued in future work.
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CHAPTER 8

Summary and Outlook

In this thesis, I have presented a comprehensive picture of dynamical effects in heavy-fermion systems
in the context of lattice coherence and the non-Fermi liquid behavior of two-channel periodic Anderson
lattices.

Beginning with the fundamentals, the quantum theory of particles in periodic potentials was presented
in Chapter 2 with special emphasis on the characteristics of localized and de-localized particles.
From there, simple models promoting the competition between localization and de-localization were
discussed: the resonant-level model and a two-band hybridization model.

In Chapter 3, I extended the physical picture of electrons in periodic lattices by discussing the
consequences of non-negligible local Coulomb interaction. For this, the electronic Hubbard model
was motivated. Strong local interactions and the Pauli principle were argued to increase the spin
exchange interaction, directly leading to the 𝑠-𝑑 model of localized spins coupled to itinerant electrons.
In this, the Kondo effect was discussed, which successfully explained the experimentally observed
resistance minimum in impure metals for the first time. From there, the more general single-impurity
Anderson Impurity model (SIAM) was motivated, and its expected spectrum was analyzed. At this
point, the dynamical generation of a Kondo peak at the Fermi energy was discussed, giving rise to the
dynamical, temperature-dependent generation of a local Noziéres Fermi liquid. The chapter concluded
by extending the SIAM to the lattice case, resulting in a periodic Anderson model (PAM). Its phase
diagram in terms of competing local interactions from the Kondo effect and non-local interactions
from the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, the Doniach phase diagram, was
presented, and the emergence of a quantum critical point (QCP) discussed.

Chapter 4 was devoted to bringing the previously discussed models closer to a realistic description
of complex matter. There, I presented how a reduction of rotational symmetry leads to the splitting of
previously degenerate states. First, the method of coupling angular momenta was laid out in terms of
𝐿𝑆-coupling, which is the appropriate description in spin-orbit coupled systems. This was followed up
by the presentation of Hund’s rules as a way of determining the spin-orbit coupled ground state of a
given set of electronic states in atoms. Lastly, further reduction of spherical symmetry via the discrete
rotational symmetry of the ionic potentials in crystals was discussed in detail. For this, an excursion
into group theory led to a series of useful rules for determining the crystal (electric) field (CEF) states
of a given ion in a lattice using the irreducible representations of the local point-group symmetry.

Equipped with the tools for constructing realistic models in strongly interacting matter, Chapter 5
explored feasible approaches for solving such models. Although strong interactions are typically
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problematic for standard field-theoretical methods, a two-stage process of treating such systems was
presented. First, all electronic states were replaced by Hubbard operators, shifting the problem from
non-converging perturbation theory to calculating the physical properties of objects with non-canonical
commutation relations. This was treated in the second step by introducing auxiliary particles, fixing
the commutation relations but extending the Hilbert space to include non-physical states. A solution
to this was presented in the projection onto the physical Hilbert space via an auxiliary particle
chemical potential. I then proceeded to discuss the non-crossing approximation (NCA) as a conserving
approximation for the SIAM with auxiliary particles. Although exact methods for precisely this model
exist, NCA is numerically stable, controlled, and can be easily extended to include additional CEF
states and multiple scattering channels. It was discussed in detail, owing to the fact that it is the main
method used for generating the results presented in this thesis. Finally, the mapping of interacting
lattice models onto a local SIAM with a normalized conduction-electron background in the dynamical
mean-field theory was motivated and derived, emphasizing the importance of the local impurity solver.

In Chapter 6, the first main result of this thesis was presented: an analysis of the lattice coher-
ence of the Yb3+ crystal field states in YbRh2Si2. Experimental scanning tunneling microscopy (STM)
data for this material intriguingly suggested that a clear scale separation between the perturbative
onset of the Kondo effect and lattice coherence of the heavy band can be observed. In addition to the
appearance of a coherence peak close to the Fermi energy and inside the Kondo dip in conduction
electrons, three additional peaks developed at precisely the expected CEF splitting energies. I
presented a “minimalistic” periodic Anderson model with a featureless conduction-electron density
of states and including all four CEF states of the Yb3+ 4 𝑓 13 configuration. I proceeded to present
the model’s numerically calculated spectra and compare them to the experimental results. There,
the temperature dependence of the Kondo dip and the coherence peak was qualitatively correctly
reproduced. Additionally, the degree of lattice coherence appeared to be decreasing for increasingly
large CEF energy, resulting in the first excited CEF state producing a peak at the splitting energy.
Higher excited states showed a less clear structure. I discussed potential next steps for this project,
where either an improvement in the reproduction of experimental data or more abstraction to aid in
understanding the underlying physics can be pursued.

Chapter 7 contained the second main result: the non-Fermi liquid behavior in the quadrupolar-
Kondo material PrV2Al20. In the 1-2-20 materials, clear Fermi liquid behavior was experimentally
observed for PrTi2Al20, contrasting the non-Fermi liquid behavior and strongly enhanced effective
mass observed in PrV2Al20. This led to the proposal of close proximity to a quantum critical point
in the spirit of the Doniach phase diagram, now with quadrupole- instead of magnetic order. In
contrast to this, I presented arguments for an alternative explanation, suggesting that the two-channel
nature of the Kondo effect could lead to a non-Fermi liquid phase without the need for proximity to
a quantum critical point (QCP). Due to the ground-state degeneracy, single-impurity two-channel
systems give rise to a local non-Fermi liquid governed by unconventional power-law behavior of
thermodynamic quantities. Assuming this to still hold for the lattice case similar to how Noziéres’
Fermi liquid extends to the lattice model, I argued that the observed behavior could be explained by
only the two-channel Kondo nature of PrV2Al20. A more intricate model, including DFT data for
the conduction electrons, was set up to explore this possibility. Including only the Γ3 non-Kramers
CEF ground state of the Pr3+ 4 𝑓 2 configuration was shown to give the desired non-Fermi liquid
behavior. However, the magnetic susceptibility and experimentally observed energy scales were not
correctly reproduced. To remedy this, an extension of the model via the first excited CEF state, the
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Γ5 triplet, was motivated mainly by the observed energy scales in the magnetic susceptibility. The
numerical data for this system showed the same non-Fermi liquid behavior but allowed for a better
comparison between experimentally observed and theoretically calculated magnetic susceptibility. As
in the previous case, the two possible routes for continuing this project in improving the quantitative
compatibility with experimental data or abstraction for a more general physical understanding were
presented. The former could be hard to achieve and will likely not provide additional physical insight.

The results presented in this thesis open up several options for future work. The two-channel
Kondo effect in lattices is a freshly revived topic due to the observation of “hidden” order in various
materials, which may be attributed to higher-order moment ordering. Despite the non-Fermi liquid
behavior in PrV2Al20 being shown to be explainable by the two-channel Kondo effect in lattices, it is
not clear how the Fermi liquid behavior in “PrTi2Al20” is to be interpreted in this context. A further
analysis of the phase space of two-channel Kondo lattices would be able to provide hints as to which
explanation for the observed behavior is more likely. For this, a closer investigation of the strengths
and weaknesses of DMFT for such systems would be beneficial.

Combining the two main topics, lattice coherence in two-channel Kondo systems (including CEF
states) could be a possible clue in resolving the open questions of 1-2-20 material in special and
potentially quadrupolar hidden-order systems in general and might be worth further investigation.
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APPENDIX A

Lattice-Momentum Discretization

Macroscopic samples are usually effectively of infinite size when considering bulk physics. For
illustration, consider one spatial dimension. Let’s assume we have a one-dimensional lattice with
𝑁 atoms equally spaced with lattice spacing 𝛿𝑟 = 1 Å. The lattice momentum is 𝑝 = ℎ𝑘/2𝜋, where
𝑘 is the lattice wave vector. Probing matter with photons allows for high precision, so we compare
the lattice momentum to the photon momentum 𝑝 = ℎ/𝜆, where ℎ is Planck’s constant and 𝜆 is
the wavelength. Gamma-rays are the highest-energy photons we can produce and typically have
𝜆 = 10−12 m, so 𝑝 = ℎ · 1012 m−1. Matching the two, we get 𝑘 = 2𝜋/𝜆 ≈ 1013 m−1. This is the
smallest momentum we can resolve. Therefore, if the discretization is smaller than this, the lattice
momentum is effectively continuous. The discretization of 𝑘 is 𝛿𝑘 = 𝑁/𝛿𝑟 ∝ 𝑁Å−1

= 𝑁1010 m−1, so
𝑁 = 103 lattice sites are already enough in this case. That would correspond to a 10 nm sample size.
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APPENDIX B

Simplifying the 𝑻-Matrix Equation of the
Resonant-Level Model

Let’s analyze the 𝑇-matrix equation for 𝐺𝑐®𝑘 ®𝑘 in terms of advanced Green functions, remembering
equation (2.52)

𝐺
(0) (𝜔 − 𝑖𝜂, 𝜀) = 1

𝜔 − 𝜀 − 𝑖𝜂

𝜂→0+
−−−−−→ p.v.

1
𝜔 − 𝜀

+ 𝑖𝜋𝛿(𝜔 − 𝜀) = 𝐺
(0) ,𝐴(𝜔 − 𝜀) ,

where 𝜀 = 𝜀
𝑐
®𝑘 . The𝑇-matrix equation in terms of real- and imaginary parts, suppressing the superscript

𝐴, is

Im𝐺
𝑐
®𝑘 ®𝑘 = Im𝐺

𝑐 (0)
®𝑘

(
1 + |𝑉 |2

[
2Re𝐺𝑐 (0)®𝑘

Re𝐺𝑑 − Im𝐺
𝑐 (0)
®𝑘

Im𝐺
𝑑
] )

(B.1)

+ |𝑉 |2Re𝐺𝑐 (0)®𝑘
Im𝐺

𝑑 Re𝐺𝑐 (0)®𝑘

The obvious problem is analyzing products of free Green functions’ real- and imaginary parts since
they are not smooth functions but only strictly defined as a distribution. We can, therefore, work with
identities for distributions. Using the identity from Eq. (2.70) one can then argue∫ ∞

−∞
d𝜔 𝐺

𝑑 (𝜔)
(
𝐺
𝑐 (0) (𝜔)

)2
= −

∫ ∞

−∞
d𝜔 𝐺

𝑑 (𝜔) d𝐺𝑐 (0) (𝜔)
d𝜔

(B.2)

=

∫ ∞

−∞
d𝜔

d𝐺𝑑 (𝜔)
d𝜔

𝐺
𝑐 (0) (𝜔) , (B.3)

⇒ 𝐺
𝑑 (𝜔)

(
𝐺
𝑐 (0) (𝜔)

)2
=

d𝐺𝑑 (𝜔)
d𝜔

𝐺
𝑐 (0) (𝜔) . (B.4)

The 𝑇-matrix equation can be expressed linearly in terms of the free ®𝑘-dependent Green function

𝐺
𝑐
®𝑘 ®𝑘 (𝜔) = 𝐺

𝑐 (0)
®𝑘

(𝜔)
(
1 + |𝑉 |2 d𝐺𝑑 (𝜔)

d𝜔

)
, (B.5)
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with which the norm of the spectral function can be computed straightforwardly.∫ ∞

−∞
d𝜔 Im𝐺

𝑐
®𝑘 ®𝑘 =

∫ ∞

−∞
d𝜔

(
Im𝐺

𝑐 (0)
®𝑘

(𝜔) + |𝑉 |2Im𝐺
𝑐 (0)
®𝑘

(𝜔) d
d𝜔

Re𝐺𝑑 (𝜔)

+ |𝑉 |2Re𝐺𝑐 (0)®𝑘
(𝜔) d

d𝜔
Im𝐺

𝑑 (𝜔)
)

(B.6)

∫ ∞

−∞
d𝜔 Im𝐺

𝑐 (0)
®𝑘

(𝜔) =
∫ ∞

−∞
d𝜔 𝜋𝛿(𝜔 − 𝜀

𝑐
®𝑘) = 𝜋 (B.7)

∫ ∞

−∞
d𝜔 Im𝐺

𝑐 (0)
®𝑘

(𝜔) d
d𝜔

Re𝐺𝑑 (𝜔) =
∫ ∞

−∞
d𝜔 𝜋𝛿(𝜔 − 𝜀

𝑑
®𝑘 )

d
d𝜔

1
𝜋

p.v.
∫ ∞

−∞
d𝜈

Im𝐺
𝑑 (𝜈)

𝜔 − 𝜈
(B.8)

=
d

d𝜔
p.v.

∫ ∞

−∞
d𝜈

Im𝐺
𝑑 (𝜈)

𝜔 − 𝜈

���
𝜔=𝜀

𝑑
®𝑘

(B.9)

=
d

d𝜀𝑐®𝑘
p.v.

∫ ∞

−∞
d𝜈

Im𝐺
𝑑 (𝜈)

𝜀
𝑐
®𝑘 − 𝜈

(B.10)

∫ ∞

−∞
d𝜔 Re𝐺𝑐 (0)®𝑘

(𝜔) d
d𝜔

Im𝐺
𝑑 (𝜔) = p.v.

∫ ∞

−∞
d𝜔

1
𝜔 − 𝜀

𝑐
®𝑘

d
d𝜔

Im𝐺
𝑑 (𝜔) (B.11)

= −p.v.
∫ ∞

−∞
d𝜔

(
d

d𝜔
1

𝜔 − 𝜀
𝑐
®𝑘

)
Im𝐺

𝑑 (𝜔) (B.12)

= − d
d𝜀𝑐®𝑘

p.v.
∫ ∞

−∞
d𝜔

Im𝐺
𝑑 (𝜔)

𝜔 − 𝜀
𝑐
®𝑘

(B.13)

The two 𝑇-matrix terms exactly cancel, and we are left with the spectral function being normalized to
unity, since Im𝐺

𝑐 (0)
®𝑘

(𝜔) is normalized to 𝜋.

Despite all the massaging and analyzing, computing the ®𝑘-dependent spectral function is numerically
not robust. It might appear that employing a finite width 𝜂 as in Eq. (2.52) should do the trick. The
second term in the 𝑇-matrix equation does, however, lead to negative values in the spectral function,
which is not physical (for fermions). This is even true when breaking down Eq. (B.5) even further.
The derivative of 𝐺𝑑 (𝜔) is

d
d𝜔

1

𝜔 − 𝜀
𝑑 − |𝑉 |2𝐺𝑐 (0)loc (𝜔)

= −
(
1 − |𝑉 |2

d𝐺𝑐 (0)loc (𝜔)
d𝜔

) (
𝐺
𝑑 (𝜔)

)2
. (B.14)
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The final expression for the ®𝑘-dependent Green function is therefore

𝐺
𝑐
®𝑘 ®𝑘 (𝜔) = 𝐺

𝑐 (0)
®𝑘

(𝜔)
[
1 − |𝑉 |2

(
𝐺
𝑑 (𝜔)

)2
(
1 − |𝑉 |2

d𝐺𝑐 (0)loc (𝜔)
d𝜔

)]
, (B.15)

which can be calculated fully analytically (apart from 𝐺
𝑐 (0) ) for the 1𝐷 cubic case.

This, unfortunately, still does not help the numerics. The problem might be the negligence of
system size. In an infinite system, the single site should not strongly influence de-localized (lattice-)
quantities. This can be reflected in scaling the hybridization 𝑉 → 𝑉/𝑁𝑠, where 𝑁𝑠 is the number of
sites. In this case, the local level will not influence the infinite-size system. Only in spatially restricted
regions will the influence appear. Another approach, which turns out to be very fruitful, is restricting
the discussion to the scattering phase shift of the conduction electrons, which will not be discussed
here. For the sake of argument, let’s still look at the numerical result for the 𝑇-matrix equation in a
1𝐷-system, which is shown in Fig B.1.

(a) 𝜂 = 10−1
𝐷 (b) 𝜂 = 10−2

𝐷 (c) 𝜂 = 10−3
𝐷 (d)

Figure B.1: Conduction-electron spectral function normalized to the free peak height 1/𝜂. Values above 1 and
below −1 are cut off for increased visibility.
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APPENDIX C

Transformations, Tricks, and Algorithms

C.1 Integrals over Lorentzians

The normalized Lorentzian of width Γ and position 𝜔0 is

𝑓 (𝜔) = 1
𝜋

Γ

(𝜔 − 𝜔0)
2 + Γ

2 . (C.1)

Its integral can be calculated using a trigonometric substitution:∫ 𝑏

𝑎

d𝜔 𝑓 (𝜔) =
∫ 𝑏

𝑎

d𝜔
1
𝜋

Γ

(𝜔 − 𝜔0)
2 + Γ

2 =
1
Γ𝜋

∫ 𝑏

𝑎

d𝜔
1( 𝜔−𝜔0

Γ

)2 + 1

��� �̃� =
𝜔 − 𝜔0

Γ

(C.2)

=
1
Γ𝜋

∫ 𝑏−𝜔0
Γ

𝑎−𝜔0
Γ

d�̃� Γ
1

�̃�
2 + 1

����̃� = tan(𝑥)

(C.3)

=
1
𝜋

∫ arctan
(
𝑏−𝜔0

Γ

)
arctan

(
𝑎−𝜔0

Γ

) d𝑥
1

cos2(𝑥)
1

tan2(𝑥) + 1
(C.4)

=
1
𝜋

∫ arctan
(
𝑏−𝜔0

Γ

)
arctan

(
𝑎−𝜔0

Γ

) d𝑥
1

cos2(𝑥) + sin2(𝑥)
(C.5)

=
1
𝜋

∫ arctan
(
𝑏−𝜔0

Γ

)
arctan

(
𝑎−𝜔0

Γ

) d𝑥 (C.6)∫ 𝑏

𝑎

d𝜔
1
𝜋

Γ

(𝜔 − 𝜔0)
2 + Γ

2 =
1
𝜋

[
arctan

(
𝑏 − 𝜔0

Γ

)
− arctan

(𝑎 − 𝜔0
Γ

)]
(C.7)
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C.2 Inversion of Tilde Green-Function Matrices

For the so-called tilde representation, generating the inverse Green functions with the correct order in
𝑓 (−𝜔) right away is mandatory since dividing by the Fermi function is not advisable in numerics.

Im𝐺 (𝜔) = Im (𝜔 −H − Σ(𝜔))−1
=

ImΣ(𝜔)
(𝜔 −H − ReΣ(𝜔))2 + (ImΣ(𝜔))2 (C.8)

⇒ Im �̃� (𝜔) = Im Σ̃(𝜔)
(𝜔 −H − ReΣ(𝜔))2 + (ImΣ(𝜔))2 (C.9)

This method is not easily generalized to matrix Green functions. For this case, the Gauß-Jordan
algorithm can be modified to incorporate the correct order in 𝑓 (−𝜔) at every step1. The core of this
algorithm is applying elementary operations to a matrix 𝑀 to transform it to the identity matrix 1
while also applying the same operations to another matrix 𝑊 , which is just the identity matrix in the
beginning. When 𝑀 becomes the identity, the auxiliary matrix 𝑊 becomes the inverse of the original
𝑀 . The algorithm is divided into two parts. First, we want to bring 𝑀 into an upper triangular shape
with the main diagonal only containing ones. All off-diagonal entries can be easily eliminated from
this form in a second part. The first part, starting with 𝑘 = 1, is as follows:

1. Normalize the entry 𝑀𝑘𝑘 to one by dividing the whole row by 𝑀𝑘𝑘 .

2. For all lines 𝑖 below 𝑘 , subtract the 𝑘-th line multiplied with 𝑀𝑘𝑖 from this line.

3. Go to the next 𝑘 .

The second part, starting with 𝑘 = 𝑁 , is then:

1. for all lines 𝑖 above 𝑘 , subtract the 𝑘-th line multiplied with 𝑀𝑖𝑘 .

2. Go the the next 𝑘

When all steps are also applied to the matrix 𝑊 , where the multiplication weights are still those of the
𝑀-matrix, one can extract the imaginary part of the Green function as Im𝑊 . To extend this to the tilde
representation, one has to keep the imaginary part of both matrices always in the tilde representation.
For example, let’s look at the first step of the first part. The first entry we want to normalize to
one is 𝑀11 = Re 𝑀11 + 𝑖Im �̃�11, which would initially be [𝐺−1

0 (𝜔)]11 − 𝑓 (−𝜔)Σ̃11(𝜔) − 𝑖Im Σ̃11(𝜔).
Note how the real part is in the regular representation, whereas the imaginary part is in the tilde
representation. The inverse of a complex number 𝑧 is the complex conjugate divided by the modulus
squared 𝑧

−1
= 𝑧

∗/|𝑧 |2. But here, we also have the constraint that only the imaginary part should be
in the tilde representation. In a simplified notation, with 𝑎, 𝑏 ∈ R and 𝑓

−
= 𝑓 (−𝜔), this is how one

preserves the structure:

(𝑎 + 𝑖 𝑓
−
�̃�) (𝑎 − 𝑖 𝑓

−
�̃�)

𝑎
2 + ( 𝑓 − �̃�)2 =

𝑎
2 + ( 𝑓 − �̃�)2 + 𝑖 𝑓

− (�̃�𝑎 − 𝑎�̃�)
𝑎

2 + ( 𝑓 − �̃�)2 = 1 (C.10)

1 I have developed the following algorithm together with Michael Kajan based on the idea of our thesis advisor, Prof.
Johann Kroha.
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For the other multiplications, it will be

𝑎 + 𝑖 𝑓
−
�̃� = (𝑐 + 𝑖 𝑓

−
𝑑) (𝑔 + 𝑖 𝑓

−
ℎ̃) = 𝑐𝑔 − ( 𝑓 −)2

𝑑ℎ̃ + 𝑖 𝑓
− (

𝑐ℎ̃ + 𝑑𝑔
)
, (C.11)

⇒ 𝑎 = 𝑐𝑔 − ( 𝑓 −)2
𝑑ℎ̃ & �̃� = 𝑐ℎ̃ + 𝑑𝑔 . (C.12)

Applying this makes it possible to maintain the tilde structure in the imaginary parts always.

C.3 Efficient Calculation of the Cubic Density of States in Arbitrary
Dimensions

The density of states is defined as 𝜌(𝜀) = ∑
®𝑘 𝛿(𝜀 − 𝜀 ®𝑘). Utilizing the continuous version of this

relation, the Fourier transform of the density of states can be calculated in an integral representation as

Φ(𝑠) =
∫ ∞

−∞
d𝜀 𝑒

𝑖𝑠𝜀
𝜌(𝜀) =

∫ ∞

−∞
d𝜀 𝑒

𝑖𝑠𝜀

∫ 𝜋

−𝜋

d𝑑𝑘
(2𝜋)𝑑

𝛿(𝜀 − 𝜀 ®𝑘) (C.13)

=

∫ 𝜋

−𝜋

d𝑑𝑘
(2𝜋)𝑑

𝑒
−𝑖𝑠2𝑡 ∑𝑑

𝑖=1 cos 𝑘𝑖 =

[∫ 𝜋

−𝜋

d𝑘
2𝜋

𝑒
−𝑖𝑠2𝑡 cos 𝑘

]𝑑
(C.14)

=

[
2
∫ 𝜋

0

d𝑘
2𝜋

𝑒
−𝑖𝑠2𝑡 cos 𝑘

]𝑑
=

[
𝐽0(𝑠2𝑡)

]𝑑 (C.15)

=

[
𝐽0

(
𝑠2𝑡∗√

2𝑑

)]𝑑
, (C.16)

with the Bessel function of the first kind 𝐽0. Here, 𝑡 = 𝑡∗/
√

2𝑑 in the spirit of Section 5.4.1. In the
third line, the symmetry in 𝑘 is used. The power series of the Bessel function can now be utilized
together with (1 + 𝑥/𝑑)𝑑 → 𝑒

𝑥 for 𝑑 → ∞ to relate this expression to a Gaussian curve in Fourier
space, which gives a Gaussian density of states in energy space when transformed back:

Φ(𝑠) =
[
1 −

(
𝑠2𝑡∗

2
√

2𝑑

)
+ O

(
1
𝑑

2

)]𝑑
(C.17)

=

[
1 + 𝑠

2
𝑡
2
∗

2𝑑
+ O

(
1
𝑑

2

)]𝑑
𝑑→∞−−−−→ 𝑒

− 𝑠
2
𝑡
2
∗

2 (C.18)

𝜌(𝜀) =
∫ ∞

−∞

d𝜀
2𝜋

𝑒
−𝑖𝑠𝜀

Φ(𝑠) = 1
2𝜋 |𝑡∗ |

𝑒
− 𝜀

2

2𝑡2
∗ . (C.19)

Equation (C.15) is also useful for numerically calculating the cubic density of states in arbitrary
dimensions. For example, the 1𝐷 case has a nice, closed-form solution

𝜌
𝑐 (0)
1D =

1
𝜋

Θ(1 − |𝜔/𝐷 |)√︃
1 − (𝜔/𝐷)2

, (C.20)

where 𝐷 = 2𝑡 is the half-bandwidth.
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C.4 Transforming Between Local 𝑻-Matrices and Self-Energies

Assume we have a full Green function that is either given by a local Dyson equation

𝐺 = 𝐺
0 + 𝐺

0
Σ𝐺 (C.21)

and, equivalently, a local T-matrix equation

𝐺 = 𝐺
0 + 𝐺

0
𝑇 𝐺

0
. (C.22)

The relation between the two is

Σ𝐺 = 𝑇 𝐺
0 (C.23)

⇔ Σ

(
𝐺

0 + 𝐺
0
𝑇 𝐺

0
)
= 𝑇 𝐺

0 (C.24)

⇔ Σ

(
1 + 𝐺

0
𝑇

)
𝐺

0
= 𝑇 𝐺

0 (C.25)

⇔ Σ = 𝑇 ·
(
1 + 𝐺

0
𝑇

)−1
. (C.26)

Alternatively, continuing on Eq. (C.25),

Σ

(
1 + 𝐺

0
𝑇

)
𝐺

0
= 𝑇 𝐺

0 (C.27)

⇔ Σ =

(
1 − Σ𝐺

0
)
𝑇 (C.28)

⇔ 𝑇 =

(
1 − Σ𝐺

0
)−1

Σ . (C.29)
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APPENDIX D

Expressing 𝜺𝒂 → ∞ NCA Equations via 𝑼 → ∞

Equations

By modifying the input to the NCA loop (𝐺𝑐 (0) ), the cases 𝜀𝑎 → ∞ and 𝑈 → ∞ can be solved by the
same set of functions, where the output of the converged NCA (𝐺𝑑) must be transformed in a simple
way to give the appropriate functions. Explicitly, let’s first look at the pseudofermion self-energy
contributions from Eq. (5.73)

Im𝚺 𝑓 𝐴1 (𝜔) = 𝜋

∫ ∞

−∞
d𝜀

(
1 − 𝑛𝐹 (𝜀)

)
𝐴
𝑏 (𝜔 − 𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 A𝑐 (0)®𝑘 ®𝑘

(𝜀) ,

and from Eq. (5.78)

Im𝚺 𝑓 𝐴2 (𝜔) = 𝜋

∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀) 𝐴

𝑎 (𝜀 + 𝜔)
∑︁
®𝑘

|𝑉®𝑘 |
2 Ā𝑐 (0)®𝑘 ®𝑘

(𝜀) .

The 𝑈 → ∞ NCA only has Im𝚺 𝑓 𝐴1 , the 𝜀
𝑑 → −∞ case only Im𝚺 𝑓 𝐴2 . If we send 𝜀 → −𝜀 in the

second equation, we get

Im𝚺 𝑓 𝐴2 (𝜔) = 𝜋

∫ ∞

−∞
d𝜀

(
1 − 𝑛𝐹 (𝜀)

)
𝐴
𝑎 (𝜔 − 𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 Ā𝑐 (0)®𝑘 ®𝑘

(−𝜀) (D.1)

= 𝜋

∫ ∞

−∞
d𝜀

(
1 − 𝑛𝐹 (𝜀)

)
𝐴
𝑎 (𝜔 − 𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 Aeff

®𝑘 ®𝑘 (𝜀) , (D.2)

where Aeff
®𝑘 ®𝑘 (𝜀) = Ā𝑐 (0)®𝑘 ®𝑘

(−𝜀). Comparing this to the equation for Im𝚺 𝑓 𝐴1 they are of identical structure.

Next, the self-energies for the slave bosons are (Eq. (5.87))

ImΣ
𝑏 𝐴(𝜔) = 𝜋

∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
A𝑐 (0)®𝑘 ®𝑘

(𝜀) A 𝑓 (𝜀 + 𝜔)
}
,
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𝑎 → ∞ NCA Equations via 𝑈 → ∞ Equations

and (Eq. (5.96))

ImΣ
𝑎 𝐴(𝜔) =

∫ ∞

−∞
d𝜀 𝑛𝐹 (−𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
A𝑐 (0)®𝑘 ®𝑘

(𝜀) Ā 𝑓 𝑇 (𝜔 − 𝜀)
}
.

Sending 𝜀 → −𝜀 in the second equation gives

ImΣ
𝑎 𝐴(𝜔) =

∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
A𝑐 (0)®𝑘 ®𝑘

(−𝜀) Ā 𝑓 𝑇 (𝜀 + 𝜔)
}

(D.3)

=

∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
Ā𝑐 (0)®𝑘 ®𝑘

(−𝜀) A 𝑓 𝑇 (𝜀 + 𝜔)
}

(D.4)

=

∫ ∞

−∞
d𝜀 𝑛𝐹 (𝜀)

∑︁
®𝑘

|𝑉®𝑘 |
2 Tr

{
Aeff

®𝑘 ®𝑘 (𝜀) A 𝑓 𝑇 (𝜀 + 𝜔)
}
, (D.5)

with the same definition for Aeff
®𝑘 ®𝑘 (𝜀) from and in the second line, the identity

∑︁
𝜎𝜎

′
𝐴𝜎′

𝜎𝐵−𝜎′
,−𝜎

�̃�=−𝜎
�̃�

′
=−𝜎′
=

∑︁
�̃� �̃�

′
𝐴− �̃�′

,− �̃�𝐵�̃�′
�̃� (D.6)

⇒ Tr
{
A𝑐 (0)®𝑘 ®𝑘

(−𝜀) Ā 𝑓 𝑇 (𝜀 + 𝜔)
}
= Tr

{
Ā𝑐 (0)®𝑘 ®𝑘

(−𝜀) A 𝑓 𝑇 (𝜀 + 𝜔)
}

(D.7)

was used. The transposed could also be transferred to the other side if desired. This is identical to the
equation for ImΣ

𝑏 𝐴(𝜔) apart from taking the transpose of the pseudofermion matrix.

Lastly, the impurity Green function contributions from Eq. (5.60) and (5.62) are

Im G𝑑 𝐴
1 (𝜔) = 𝜋

∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
(
1 + 𝑒

−𝛽𝜔
)
A 𝑓 (𝜀 + 𝜔) 𝐴𝑏 (𝜀)∫ ∞

−∞d𝜀 𝑒
−𝛽𝜀

[
𝐴
𝑏 (𝜀) + 𝐴

𝑎 (𝜀) + ∑
𝜎 𝐴

𝑓
𝜎𝜎 (𝜀)

] ,
and

Im G𝑑 𝐴
2 (𝜔) = 𝜋

∫ ∞
−∞d𝜀 𝑒

−𝛽𝜀
(
1 + 𝑒

𝛽𝜔
)
Ā 𝑓 (𝜀 − 𝜔) 𝐴𝑎 (𝜀)∫ ∞

−∞d𝜀 𝑒
−𝛽𝜀

[
𝐴
𝑏 (𝜀) + 𝐴

𝑎 (𝜀) + ∑
𝜎 𝐴

𝑓
𝜎𝜎 (𝜀)

] .

Since the matrix structure stems directly from the pseudofermions, the equation for Im Ḡ𝑑 𝐴
2 (−𝜔) is

identical to the equation for Im G𝑑 𝐴
1 (𝜔) with just 𝑎 being replaced by 𝑏.

Before finalizing the set of operations necessary for using the same equations, we must identify the
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parameters that enter the Hamiltonian. For this, we take Eq. (5.140) and substitute �̃� = −𝜇 such that

𝐻
𝜀
𝑏→∞

SIAM =
∑︁
®𝑘,𝜎

(
𝜀
𝑐
®𝑘 − �̃�

)
𝑐
†
®𝑘𝜎

𝑐 ®𝑘𝜎
+

∑︁
𝜎

(
𝜀
𝑎 − �̃� + 𝜆

)
𝑓
†
𝜎 𝑓𝜎 + (𝜆) 𝑎†𝑎

+
∑︁
®𝑘,𝜎

(
𝑉®𝑘 sgn(𝜎)𝑐†®𝑘𝜎 𝑓

†
�̃�
𝑎 + ℎ.𝑐.

)
− 𝜆 . (D.8)

We, therefore, have a microscopic parameter 𝜀𝑎 for the double-occupation peak position and �̃� as the
chemical potential, which acts with a different sign in the conduction electrons. It can be understood
as controlling the hole-filling like the regular chemical potential controls the particle-filling. To avoid
confusion, we shall define all quantities explicitly with the chemical potential.

The following recipe can, therefore, be used to solve the case of omitting 𝑏 with equations of the
case where 𝑎 is omitted:

1. Start with the set of equations for the 𝑈 → ∞ case, i.e. without 𝑎.

2. Instead of using 𝜀
𝑑 − 𝜇, use 𝜀

𝑎 − �̃�.

3. Explicitly including the chemical potential, Instead of using A𝑐 (0)®𝑘 ®𝑘
(𝜀 − 𝜇) in the self-energy

equations, use the spin-flipped energy-mirrored Aeff
®𝑘 ®𝑘 (𝜀 + �̃�) = Ā𝑐 (0)®𝑘 ®𝑘

(−(𝜀 − �̃�)).

4. In the slave-boson self-energy, instead of using A 𝑓 (𝜀 + 𝜔), use the transpose A 𝑓 𝑇 (𝜀 + 𝜔).

5. After convergence, calculate Im G𝑑 𝐴(𝜔), flip the spin and invert the energy Im Ḡ𝑑 𝐴(−𝜔). The
result is the impurity spectrum for the 𝜀

𝑏 → ∞ case.
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APPENDIX E

Details of the PrV2Al20 Model

E.1 Representation of Selected CEF States in Total Angular
Momentum States for PrV2Al20

This is reproduced from section VI of the supplemental material of [123] with minor modifications.

The experimentally determined CEF ground state of the Pr2+ ion is the Γ3 doublet of the cubic 𝑇𝑑
point group. Hund’s rules for the 4 𝑓 2 configuration state that the spin-orbit coupled ground state is a
𝐽 = 4 state, whose 𝑚𝐽 states provide a basis in which the CEF states can be expressed [133].

The index 𝛼 = ±, dubbed isospin, enumerates the non-Kramers |4 𝑓 2
, Γ3𝛼⟩ states:

|Γ3−⟩ =
1
√

2
( |+2⟩ + |−2⟩) (E.1)

|Γ3+⟩ =
1

2
√

6

(√
7 [|+4⟩ + |−4⟩] −

√
10 |0⟩

)
. (E.2)

Additionally, first excited CEF state is the Γ5 triplet, whose states |4 𝑓 2
Γ5, 𝑚⟩ with 𝑚 ∈ {−1, 0, 1} are

|Γ5,±⟩ = ± 1
4
√

2

(√
7 |±3⟩ − |∓1⟩

)
(E.3)

|Γ5, 0⟩ =
1
√

2

(
|+2⟩ − |−2⟩

)
. (E.4)

In the same manner, the 4 𝑓 1 states mediating the valence fluctuations can be expressed in their
Hund’s rule ground state of 𝐽 = 5/2. Here, we only consider The Γ8 quartet, which is given by

|Γ+ ↑/↓

8 ⟩ = 1
√

6

(√
5 |±5/2⟩ + |∓3/2⟩

)
(E.5)

|Γ− ↑/↓

8 ⟩ = |±1/2⟩ . (E.6)
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Appendix E Details of the PrV2Al20 Model

E.2 CEF Multiplet Hybridization Matrix Elements

This is reproduced from section VII of the supplemental material of [123] with minor modifications.
The CEF ground state of the 4 𝑓 2 transforms as Γ3, the ground state of 4 𝑓 3 likely as Γ6 irreps of the

𝑇𝑑 group. A hybridization term connecting 4 𝑓 2 and 4 𝑓 3 should, therefore, transform as Γ6 ⊗ Γ3 = Γ8.
Conduction electrons mediating this transition are to be projected onto the local Γ8 quartet. Excited
CEF levels of 4 𝑓 2 will be frozen out exponentially at low temperatures. One expects this hybridization
to be most important for the discussion of the two-channel quadrupolar Kondo physics in PrV2Al20. As
discussed in section 7.6, however, we also need to include the first excited 4 𝑓 2 CEF level to investigate
the magnetic susceptibility faithfully. The associated irrep is Γ5 and transforms like a spin-triplet,
labeled by the index 𝑚. The corresponding hybridization term transforms as Γ6 ⊗ Γ5 = Γ7 ⊕ Γ8,
requiring an additional Γ7 doublet on the conduction-electron side. By choosing a basis for Γ8 that
trivializes the hybridization with Γ3 we get a non-trivial hybridization with Γ5. This could be mitigated
by choosing an appropriate Γ7 ⊕ Γ8 basis for this hybridization separately at the cost of having two
different projected conduction-electron fields: 𝜓 in Eq. (7.8) and 𝜓

′ given by a modified ®𝑘-dependent
structure factor. This increases the DMFT complexity and numerical cost significantly, which is why
we chose to stay in the original basis.

In an effort to simplify the model and in the context of the main interest of this thesis, we take the
conduction electrons to transform as the Γ8 quartet, neglecting the Γ7 part on the right-hand side of
Γ6 ⊗ Γ5 = Γ7 ⊕ Γ8. Since we describe the symmetries of the local Pr 4f orbitals faithfully, this does
not change any of our conclusions.

Once additional CEF levels are taken into account, one needs to consider relative phases and
hybridization strengths carefully. The matrix elements we use are calculated from dipole-moment
conservation and an appropriate combination of states using Clebsch-Gordan coefficients. For the
Γ3 ground state, we have local hybridization terms of the structure 𝑓

†
𝛼𝑎𝜇𝜓

†
𝛼
′
𝜇
′ . If we take 𝑓

†
𝛼 as the

target state, we first need to particle-hole-transform with spin- and quadrupole-moment flipped in the
conduction electrons 𝜓†

𝛼𝜇 → 𝜁−𝛼−𝜇, resulting in a hybridization 𝑓
†
𝛼𝑎𝜇𝜁𝛼′

𝜇
′ . Since 𝛼 is conserved in

the scattering, we immediately get 𝛼 = 𝛼
′. The dipole moment must vanish in order for it to transform

as a scalar, indicating that conduction-electron holes and slave bosons must form a spin singlet. We
therefore get

𝐻
Γ3
hyb,loc = 𝑉0

∑︁
𝛼

𝑓
†
𝛼

1
√

2

(
𝑎↑𝜁𝛼↓ − 𝑎↓𝜁𝛼↑

)
+ ℎ.𝑐. (E.7)

=
𝑉0√

2

∑︁
𝛼

sgn(𝜇) 𝑓 †𝛼𝑎𝜇𝜁𝛼−𝜇 + ℎ.𝑐. (E.8)

=
𝑉0√

2

∑︁
𝛼

sgn(𝜇) 𝑓 †𝛼𝑎𝜇𝜓
†
−𝛼𝜇 + ℎ.𝑐. (E.9)

The conjugation (spin- and quadrupole flip) of quantum numbers in the particle-hole transformation was
necessary to make sure the Hamiltonian conserves spin and quadrupole moment in both representations.
This is needed since we only transform the conduction electrons and not the whole Hamiltonian.

For the excited state, which transforms like a spin-triplet, we have to apply the same logic. First, the
hybridization term is 𝑑†𝑚𝑎𝜇𝜓

†
𝛼𝜇

′ → 𝑑
†
𝑚𝑎𝜇𝜁𝛼𝜇′

with 𝜓
†
𝛼𝜇 → 𝜁−𝛼−𝜇 as before. Here, 𝑚 ∈ {−1, 0, 1}.

We need to combine the spins of 𝑎 and 𝜁 to a triplet. The local hybridization contribution of Γ5 to the
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Hamiltonian is therefore

𝐻
Γ5
hyb,loc = 𝑉1

∑︁
𝛼

𝜂𝛼

[
𝑑
†
0

1
√

2

(
𝑎↑𝜁𝛼↓ + 𝑎↓𝜁𝛼↑

)
+ 𝑑

†
+1𝑎↑𝜁𝛼↑ + 𝑑

†
−1𝑎↓𝜁𝛼↓

]
+ ℎ.𝑐. (E.10)

The factor 𝜂𝛼 has to be determined to match the right-side quadrupole moment with the quadrupole
moment of Γ5. This will generally lead to a superposition. Since it really is a superposition and not a
combination of quadrupole moments of two particles, a reasonable approach would be to define 𝜂𝛼
such that

∑
𝛼 |𝜂𝛼 |

2
= 1. The simplest choice is 𝜂+ = 𝜂−, with which we get 𝜂𝛼 = 1/

√
2, resulting in

𝐻
Γ5
hyb,loc =

𝑉1√
2

∑︁
𝛼

[
𝑑
†
0

1
√

2

(
𝑎↑𝜁𝛼↓ + 𝑎↓𝜁𝛼↑

)
+ 𝑑

†
+1𝑎↑𝜁𝛼↑ + 𝑑

†
−1𝑎↓𝜁𝛼↓

]
+ ℎ.𝑐. (E.11)

With this choice of prefactors, setting𝑉1 = 𝑉0 results in identical local hybridization function strengths
for Γ3 and Γ5.

Additionally to what was discussed before, one can also modify the prefactors such that the
hybridization transforms like a scalar, which can be achieved by understanding the operators 𝜉 and 𝑎

combined as a spin-1 operator 𝜁 , combining 𝑑 and the 𝜁 -hole (with flipped spin) 𝜁 to a total spin zero
such that

𝐻
Γ5
hyb,loc =

𝑉1√
6

∑︁
𝛼

𝜂𝛼

(
𝑑
†
+1𝜁

†
𝛼,−1 + 𝑑

†
−1𝜁

†
𝛼,+1 − 𝑑

†
0𝜁

†
𝛼,0

)
+ ℎ.𝑐., (E.12)

or, substituting everything back,

𝐻
Γ5
hyb,loc =

𝑉1√
3

∑︁
𝛼

𝜂𝛼

[
𝑑
†
+1𝑎↑𝜓

†
𝛼↓ + 𝑑

†
−1𝑎↓𝜓

†
𝛼↑

− 𝑑
†
0

1
√

2

(
𝑎↑𝜓

†
𝛼↑ + 𝑎↓𝜓

†
𝛼↓

) ]
+ ℎ.𝑐.. (E.13)

When setting 𝑉1 = 𝑉0
√︁

3/2, this is identical to the previous case with the exception of a minus sign
in front of the 𝑚 = 0 term, which turns out to be insignificant in our calculation. We found that
numerically, an imbalance between the two induces a much larger CEF splitting than the experimental
results [113] suggest. This has to be mitigated via a modified bare splitting in the Hamiltonian.

Generally, we could also have an imbalance between the two quadrupole momenta, e.g. 𝜂− = 0.
This is reflected by the fact that Γ6 ⊗ Γ8 = Γ3 ⊕ Γ4 ⊕ Γ5. Forming a dipole singlet on the left side
leaves a quadrupole moment unpaired, resulting in the Γ3 doublet. When forming a spin triplet on
the other hand, the quadrupole moment is still not paired. Now, the right-hand side needs to have a
threefold spin-1 quantum number in addition to the twofold quadrupole orientation. One can imagine
the most extreme case in which each quadrupole moment orientation is individually attached to a
triplet, resulting in two potentially different triplets, which is reflected in the appearance of the Γ4 and
Γ5 triplets on the right. Only considering one of the triplets potentially induces an imbalance between
the two quadrupole moments, resulting in a splitting at all temperatures. Since this is unphysical, we
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Appendix E Details of the PrV2Al20 Model

stick to an 𝛼-symmetric Γ5 coupling. One could remedy this by also considering Γ4, which is beyond
the scope of this thesis.

E.3 Details of the Structure factor

This is reproduced from section II of the supplemental material of [123] with minor modifications.
The effective conduction electrons in our model are given by a projection of all bands onto V 𝑑

orbitals. The hybridization is, however, mediated by those electrons projected onto Γ8 states at the
location of the Pr atom. For this, the overlap of the orbital Wannier functions at each V site has to be
calculated, resulting in a ®𝑘-dependent structure factor 𝚽( ®𝑘).

The real-space hybridization structure factor is

Φ
𝑎
𝛼𝜇;𝜎 (R 𝑗 − r𝑖) = ⟨Pr Γ8; 𝑗𝛼𝜇 |V; 𝑖𝑎𝜎⟩ . (E.14)

Here, 𝑗 labels the Pr position R 𝑗 and 𝑖 the V position r𝑖. Additionally, 𝛼 = ± and 𝜇 =↑, ↓ are the Γ8
quantum numbers, 𝑎 and 𝜎 represent V orbital and spin quantum numbers. Note that the structure
factor only depends on the distance R 𝑗 − r𝑖 and it’s Fourier transform is diagonal in momentum space.
The structure factor in ®𝑘-space,

Φ
𝑎
𝛼𝜇;𝜎 ( ®𝑘) =

∑︁
𝑖, 𝑗

𝑒
−𝑖 ®𝑘 (R 𝑗−r 𝑗 )Φ𝑎𝛼𝜇;𝜎 (R 𝑗 − r𝑖) , (E.15)

does not depend on R 𝑗 anymore. The Pr position is, however explicitly treated in the projection, which
reads,

𝜓 𝑗 ,𝛼𝜇 =
∑︁
𝑖

∑︁
𝑎,𝜎

Φ
𝑎
𝛼𝜇;𝜎 (R 𝑗 − r𝑖)𝑐

𝑎
𝜎 (r𝑖) (E.16)

=
∑︁
®𝑘, ®𝑘′ ,𝑖

∑︁
𝑎,𝜎

𝑒
𝑖 ®𝑘 (R 𝑗−r𝑖 )Φ𝑎𝛼𝜇;𝜎 ( ®𝑘)𝑒

𝑖 ®𝑘′r𝑖𝑐𝑎𝜎 ( ®𝑘
′) (E.17)

=
∑︁
®𝑘

∑︁
𝑎,𝜎

𝑒
𝑖 ®𝑘R 𝑗Φ

𝑎
𝛼𝜇;𝜎 ( ®𝑘)𝑐

𝑎
𝜎 ( ®𝑘). (E.18)

For convenience, we define a matrix 𝚽𝑎
𝑗 ( ®𝑘) as[

𝚽𝑎
𝑗 ( ®𝑘)

]
𝛼𝜇;𝜎

:= Φ
𝑎
𝑗𝛼𝜇;𝜎 ( ®𝑘) := 𝑒

𝑖 ®𝑘R 𝑗Φ
𝑎
𝛼𝜇;𝜎 ( ®𝑘). (E.19)

Only two orbitals 𝑎 ∈ {d𝑥𝑦 , d𝑥2−𝑦2} =: D are considered, as discussed in section 7.3. Due to the local
nature of DMFT, we only need to consider R 𝑗 in a single unit cell, and due to the two Pr atoms being
crystallographically identical, we only take one of them (R1) into account. Additionally, we are unable
to resolve the two degenerate orbitals and the individual V sub-lattices within DFT and, therefore, sum
over them. In order to numerically calculate this ®𝑘-dependent structure factor, the position vectors of
all structure-factor relevant atoms are needed.

156



E.3 Details of the Structure factor

There are 4 V atoms per primitive unit cell. The lattice basis vectors are

a1 =
1
2

©­«
0
𝑎

𝑎

ª®¬ , a2 =
1
2

©­«
𝑎

0
𝑎

ª®¬ , a3 =
1
2

©­«
𝑎

𝑎

0

ª®¬ . (E.20)

In the basis of those, the coordinates of V atoms are

vred =
1
2

©­«
0
1
1

ª®¬ , vgreen =
1
2

©­«
1
0
1

ª®¬ ,
vblue =

1
2

©­«
1
1
0

ª®¬ , vyellow =
1
2

©­«
1
1
1

ª®¬ ,
and those of the two Pr atoms are

R1 =
1
8

©­«
1
1
1

ª®¬ , R2 =
1
8

©­«
7
7
7

ª®¬ .
As explained before, we only take the Pr atom at R1 into account. It has 12 neighboring V atoms, three
V atoms for each fcc sub-lattice 𝑙 ∈ {1, 2, 3, 4} or equivalently {Red,Green,Blue,Yellow}. Each of
those three V atoms is then labeled by 𝑙𝑠 ∈ {1, 2, 3}. Their position vectors r𝑙,𝑙𝑠 are listed below.
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We only consider the contribution of those 12 atoms, them being the nearest neighbors of Pr.

Collecting everything above, the final expression for the structure factor reads,[
𝚽 𝑗 ( ®𝑘)

]
𝛼𝜇;𝜎

= 𝑒
𝑖 ®𝑘R 𝑗

∑︁
𝑎∈D

Φ
𝑎
𝛼𝜇;𝜎 ( ®𝑘), (E.21)

Φ
𝑎
𝛼𝜇;𝜎 ( ®𝑘) =

∑︁
𝑙,𝑙𝑠

𝑒
−𝑖 ®𝑘 (R1−r𝑙,𝑙𝑠 )Φ𝑎𝛼𝜇;𝜎 (R 𝑗 − r𝑙,𝑙𝑠 ), (E.22)
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which is the structure factor used in the numerical calculations. Note that the second line is just the
Fourier transform in the reduced set of contributing V atoms, projected onto a single Pr atom.

E.4 Details about the Numerical Treatment of the Magnetic
Susceptibility

In order to extract the magnetic susceptibility, a magnetic field is coupled to the model via a Zeeman
term in all dipole-bearing quantities

𝐻mag = 𝑔𝑐𝐵
∑︁
𝑛,𝜎, ®𝑘

sgn(𝜎) 𝑐†𝑛,𝜎 ( ®𝑘)𝑐𝑛,𝜎 ( ®𝑘)

+ 𝑔𝑑𝐵
∑︁
𝑗 ,𝑚

𝑚 𝑑
†
𝑗 ,𝑚

𝑑
𝑗 ,𝑚

+ 𝑔𝑎𝐵
∑︁
𝑗 ,𝜇

sgn(𝜇) 𝑎†
𝑗 ,𝜇

𝑎
𝑗 ,𝜇

. (E.23)

The relative coupling constants are given by the Landé factors, which can be extracted for the CEF
states via a simple calculation [133]. They are

𝑔𝑐 = 2 , (E.24)
𝑔𝑑 = 2 , (E.25)
𝑔𝑎 = −5/2 . (E.26)

Only coupling of linear orders in the external magnetic field 𝐵 is taken into account. Hence, Γ3 does
not couple directly. From this, the magnetization of each particle species (locally) is proportional
to the occupation number imbalance 𝑛+ − 𝑛−, where plus and minus refer to the dipole moment
orientation. This method automatically includes all vertex corrections induced by the field and is,
therefore, preferable to the diagrammatic evaluation of linear-response theory.

The external magnetic field is chosen to be small enough to sit firmly in the linear response regime,
smaller than the Kondo temperature, and large enough not to have the data dominated by numerical
noise. Due to the increased numerical complexity and necessary precision, susceptibility calculations
with this method tend to converge worse than the bare models.

More details, including a comparison of the parameter dependence of the susceptibility, can be
found in section IX of the supplemental material of [123].
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