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1 Abstract 

Affective and psychotic disorders, such as major depressive disorder (MDD), bipolar 

disorder (BD), and schizophrenia spectrum disorders (SSD), represent complex 

psychiatric conditions with a moderate to high heritability. Throughout the last decade, 

genome-wide association studies (GWAS) have demonstrated the association of many 

common genetic variants with disease risk. However, the pathophysiological mechanisms 

of affective and psychotic disorders are still incompletely understood and it is expected 

that many more disease-associated genetic loci await identification. Moreover, while the 

different affective and psychotic disorders are considered distinct entities by current 

diagnostic systems, they exhibit notable phenotypic overlaps and substantial genetic 

correlations. This suggests that etiological processes may be partially shared between 

diagnostic groups. Against this backdrop, the three studies included in this thesis were 

conducted to improve our understanding of the role of common genetic variation in 

affective and psychotic disorders. In particular, in the first and second study, the 

contribution of common genetic variants to symptom dimensions of acute and lifetime 

psychopathology observed across MDD, BD, and SSD was examined. In the third study, 

the largest GWAS meta-analysis of BD to date was conducted, which revealed novel 

disease-associated loci and provided insights into the underlying pathobiology via a 

plethora of GWAS downstream analyses. Altogether, the results of this research expand 

our knowledge on the complex relationships of common genetic variants with disease 

status and symptom dimensions within and across affective and psychotic disorders. 
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2 Introduction 

According to the Global Burden of Disease 2021 Study (Institute for Health Metrics and 

Evaluation (IHME), 2024), mental disorders are among the top ten leading causes of 

health loss worldwide. Relative to the total number of years lived with disability (YLDs) 

across all causes in 2021, major depressive disorder (MDD) accounted for 5.1 %, 

schizophrenia (SCZ) for 1.7 %, and bipolar disorder (BD) for 0.9 % of total YLDs (Institute 

for Health Metrics and Evaluation (IHME), 2024). The high relevance of mental disorders 

can be explained, amongst others, by their frequent occurrence, with reported lifetime 

prevalences of around 14 % for MDD, around 2 % for BD, and around 0.5 % for SCZ 

(Kessler et al., 2012; McGrath et al., 2008; Merikangas et al., 2011). 

MDD, BD, and SCZ represent types of affective and psychotic disorders, for which 

diagnostic criteria are provided by classification systems such as the Diagnostic and 

Statistical Manual of Mental Disorders, Fifth Edition (DSM-5, American Psychiatric 

Association, 2013). As affective disorders, MDD and BD are characterized by severe 

disturbances in mood that cause substantial impairments in an individual’s occupational 

or social functioning. In MDD, individuals experience one or more major depressive 

episodes, marked by symptoms such as low mood, loss of interest, and changes of 

appetite or sleep (Marx et al., 2023). The main types of BD are characterized by episodes 

of mania, which typically alternate with major depressive episodes, (bipolar I disorder) or 

by hypomania in combination with at least one major depressive episode (bipolar II 

disorder). During manic episodes, individuals experience an abnormally elevated or 

irritable mood, with symptoms such as inflated self-esteem, reduced need for sleep, 

distractibility and excessive activity (Vieta et al., 2018). In SCZ, symptoms of psychosis 

are prevailing, with delusions, hallucinations, disorganized thinking, disorganized or 

abnormal motor behavior, and negative symptoms as the five key symptom domains 

(Kahn et al., 2015).  

The etiology of MDD, BD, and SCZ is multifactorial, with a contribution of both 

environmental and genetic factors. Twin and family studies have estimated a heritability, 

i.e., proportion of phenotypic variance explained by genetic factors, of around 37 % for 

MDD (Sullivan et al., 2000), 60 % to 85 % for BD (Johansson et al., 2019; McGuffin et al., 
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2003), and 73 % to 90 % for SCZ (Sullivan et al., 2003). The underlying genetic 

architecture of these disorders is complex and highly polygenic. Genetic variants across 

the allelic spectrum have been implicated (Kendall et al., 2021; Sullivan et al., 2012). 

Recent large-scale exome sequencing studies have substantiated the role of rare variants 

in MDD, BD, and SCZ (Palmer et al., 2022; Singh et al., 2022; Tian et al., 2024). An 

in-depth discussion of rare-variant studies is, however, beyond the scope of this 

introduction, as the focus of this dissertation lies on common genetic variation. 

Common genetic variants, often defined based on a minor allele frequency above 1 % in 

the general population, and in particular single nucleotide polymorphisms (SNPs), have 

been shown to play an important role in affective and psychotic disorders by means of 

genome-wide association studies (GWAS). As the detection of small effect sizes requires 

large samples to obtain sufficient statistical power, a major breakthrough in understanding 

the contribution of common variants to disease risk could only be achieved through large-

scale GWAS meta-analyses conducted by international consortia such as the Psychiatric 

Genomics Consortium (PGC, Sullivan, 2010; Sullivan et al., 2018). The most recent 

GWAS meta-analyses of affective and psychotic disorders led by the PGC, including the 

GWAS meta-analysis of BD that is part of this dissertation, are listed in Table 1.  

Table 1: Most recent GWAS meta-analyses of affective and psychotic disorders conducted by the PGC 

Disorder Reference # Cases # Controls # GWS SNPs 

MD Adams et al. (2025) 688,808 4,364,225 697 

BD O’Connell et al. (2025) 158,036 2,796,499 337 

SCZ Trubetskoy et al. (2022) 76,755 243,649 342 

BD, bipolar disorder; GWAS, genome-wide association study; GWS SNPs, independent genome-wide 

significant (i.e., association p < 5 × 10−8) single nucleotide polymorphisms; MD, major depression; PGC, 

Psychiatric Genomics Consortium; SCZ, schizophrenia; #, number of. 

Most disease-associated common variants are thought to act in an additive manner. This 

enables the calculation of polygenic risk scores (PRS) based on GWAS findings as 

weighted sums of risk alleles carried by an individual, reflecting part of the susceptibility 

to disease (Lewis, Vassos, 2020). PRS are a widely used research tool for studying the 

association of genetic risk conferred by common variants with various phenotypic and 

biological measures. A clinical utility of PRS in psychiatry has not been reached yet, owing 
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to a limited amount of variance explained as well as a low specificity and sensitivity 

(Andlauer, Nöthen, 2020).  

While the individual affective and psychotic disorders are considered distinct entities in 

current nosology, they exhibit overlaps in clinical presentation and etiological factors. E.g., 

psychotic features are not only a hallmark of SCZ, but can also occur in severe forms of 

MDD or BD. In schizoaffective disorder, which is considered a schizophrenia spectrum 

disorder (SSD), symptoms of SCZ are observed in combination with a mood episode. On 

the genetic level, several loci with pleiotropic effects on multiple disorders have been 

identified (Cross-Disorder Group of the Psychiatric Genomics Consortium, 2019), and 

substantial pairwise genetic correlations between the disorders have been estimated, 

amounting to 68 % between BD and SCZ, 36 % between MDD and SCZ, and 34 % 

between MDD and BD (Grotzinger et al., 2022). Moreover, phenotypic heterogeneity 

exists within diagnostic groups, e.g., there are more than 10,000 unique ways to meet the 

diagnostic criteria for MDD according to DSM-5 (Cai et al., 2020). The issue of unclear 

boundaries and a limited alignment of symptom-based diagnostic categories with 

biomedical research findings has fueled transdiagnostic and dimensional perspectives in 

psychiatric research (e.g., Insel et al., 2010; Kotov et al., 2017), which are ingrained in the 

first two studies included in this dissertation. 

2.1 Aims 

Despite a large body of research investigating different aspects of affective and psychotic 

disorders, their genetic underpinnings remain incompletely understood. Therefore, the 

overarching objective of this doctoral thesis was to enhance the understanding of the 

complex relationships of common genetic variants with disease status and symptom 

dimensions within and across affective and psychotic disorders. To this end, three studies 

were conducted. The first and second study included in this dissertation were based on 

data of the German FOR2107 consortium (Kircher et al., 2019), including individuals with 

a diagnosis of MDD, BD, or SSD. The focus of these studies was on the contribution of 

common genetic variants to psychopathological symptom dimensions observed across 

the diagnostic boundaries of MDD, BD, and SSD, using PRS analyses and exploratory 

GWAS. In particular, the first study (David et al., 2023) represents a genetic follow-up on 
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the factor model of acute psychopathology previously published by Stein et al. (2020). In 

the second study (Krug et al., 2024), a new factor model of lifetime psychopathology was 

described and the brain morphometric and genetic correlates of the three symptom 

dimensions were examined. The latest GWAS meta-analysis of BD by the PGC 

(O’Connell et al., 2025), as mentioned above, constitutes the third study of this 

dissertation. The aim of this study was to identify novel associations of common variants 

with BD disease status by leveraging a considerable increase in sample size compared 

to the previous GWAS meta-analysis (Mullins et al., 2021). Using a plethora of GWAS 

downstream analyses, the study further aimed to enhance and refine our understanding 

of the genetic architecture and biological underpinnings of BD. The findings of all three 

studies included in this dissertation were published in peer-reviewed journals and are 

presented in the following chapter. 

2.2 References 
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3.1 Genetic contributions to transdiagnostic symptom dimensions in patients with major 

depressive disorder, bipolar disorder, and schizophrenia spectrum disorders 
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A R T I C L E  I N F O

Keywords: 
Factor model 
Psychosis 
Affective disorders 
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Polygenic risk scores 

A B S T R A C T

Major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia spectrum disorders (SZ) exhibit 
considerable phenotypic and genetic overlap. However, the contribution of genetic factors to their shared psy-
chopathological symptom dimensions remains unclear. The present exploratory study investigated genetic 
contributions to the symptom dimensions “Depression”, “Negative syndrome”, “Positive formal thought disor-
der”, “Paranoid-hallucinatory syndrome”, and “Increased appetite” in a transdiagnostic subset of the German 
FOR2107 cohort (n = 1042 patients with MDD, BD, or SZ). As replication cohort, a subset of the German/ 
Austrian PsyCourse study (n = 816 patients with MDD, BD, or SZ) was employed. First, the relationship between 
symptom dimensions and common variants associated with MDD, BD, and SZ was investigated via polygenic risk 
score (PRS) association analyses, with disorder-specific PRS as predictors and symptom dimensions as outcomes. 
In the FOR2107 study sample, PRS for BD and SZ were positively associated with “Positive formal thought 
disorder”, the PRS for SZ was positively associated with “Paranoid-hallucinatory syndrome”, and the PRS for BD 
was negatively associated with “Depression”. The effects of PRS for SZ were replicated in PsyCourse. No sig-
nificant associations were observed for the MDD PRS. Second, genome-wide association studies (GWAS) were 
performed for the five symptom dimensions. No genome-wide significant associations and no replicable sug-
gestive associations (p < 1e− 6 in the GWAS) were identified. In summary, our results suggest that, similar to 
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diagnostic categories, transdiagnostic psychiatric symptom dimensions are attributable to polygenic contribu-
tions with small effect sizes. Further studies in larger thoroughly phenotyped psychiatric cohorts are required to 
elucidate the genetic factors that shape psychopathological symptom dimensions.   

1. Introduction

Major depressive disorder (MDD), bipolar disorder (BD), and
schizophrenia spectrum disorders (SZ) such as schizophrenia and 
schizoaffective disorder represent major psychiatric disorders with 
overlapping clinical phenotypes (Kircher et al., 2019). Although 
considered distinct diagnostic groups in clinical practice, these disorders 
have several mood and psychotic features in common. Depressed mood, 
for example, represents the key symptom in patients diagnosed with 
MDD, but also occurs in patients diagnosed with BD and SZ (Cotton 
et al., 2012; Tondo et al., 2017; Upthegrove et al., 2017). Similarly, 
while psychotic features, such as delusions, typically occur in patients 
diagnosed with SZ, they are also observed in patients with a diagnosis of 
BD or MDD (Rosen et al., 2012; Toh et al., 2015; van Bergen et al., 2019; 
Varghese et al., 2011). Therefore, in recent years, several authors have 
proposed that the major psychiatric disorders should be conceptualized 
as a dimensional clinical spectrum, rather than as distinct diagnostic 
categories (Benazzi, 2005; Keshavan et al., 2011; Lynham et al., 2018). 
This has prompted transdiagnostic studies to investigate shared pheno-
typic dimensions and etiological factors. 

1.1. Factor model of transdiagnostic symptoms 

Factor models represent a valuable approach to the dissection of 
latent variables in psychiatric disorders (Baek et al., 2019; Emsley et al., 
2003; Li et al., 2014). Recently, Stein et al. (2020) conducted explor-
atory and confirmatory transdiagnostic factor analyses of psychopath-
ological symptoms in individuals with a DSM-IV diagnosis of MDD, BD, 
or SZ (n = 1182). The study sample consisted of a subset of the German 
FOR2107 cohort, a deeply phenotyped transdiagnostic psychiatric 
cohort that allows for a plethora of analyses (Kircher et al., 2019). Using 
a comprehensive set of psychopathological scales for the rating of acute 
psychopathology (SANS, SAPS, HAMA, HAM-D, YMRS), Stein et al. 
(2020) identified and validated five transdiagnostic symptom di-
mensions, i.e., “Depression”, “Negative syndrome”, “Positive formal 
thought disorder”, “Paranoid-hallucinatory syndrome”, and “Increased 
appetite”. While some symptom dimensions exhibited higher average 
factor scores in specific diagnostic groups, e.g., “Depression” in MDD, 
distributions of factor scores overlapped between diagnoses. This 
concordance of the factor model with the clinical observation of het-
erogeneous phenotypes in the major psychiatric disorders provides a 
sound basis for the further investigation of shared etiological factors. 

1.2. Genetic contributions to major psychiatric disorders 

Research has shown that genetic factors play a substantial role in the 
etiology of the major psychiatric disorders. As demonstrated by twin and 
family studies, each of the disorders has a strong genetic component, 
with heritability estimates ranging from 40 % for MDD to 60–80 % for 
schizophrenia and 60–85 % for BD (Nöthen et al., 2019). For these 
disorders, genome-wide association studies (GWAS) have identified 
multiple risk variants that are common in the general population 
(Mullins et al., 2021; Trubetskoy et al., 2022; Wray et al., 2018). This, in 
turn, has enabled the calculation of polygenic risk scores (PRS), which 
summarize disorder-specific genetic risk at the individual level (And-
lauer and Nöthen, 2020; Lewis and Vassos, 2020). Furthermore, cross- 
disorder studies have demonstrated high genetic correlations between 
the major psychiatric disorders, which supports the hypothesis of shared 
etiological factors (Cross-Disorder Group of the Psychiatric Genomics 
Consortium, 2019). In view of the observed genetic and phenotypic 

overlap between the major psychiatric disorders, the investigation of 
associations between genetic factors and transdiagnostic measures is 
becoming an increasingly valued approach (e.g., Andlauer et al., 2021b; 
Pelin et al., 2021). 

1.3. Present study 

The aim of the present study was to investigate the association of 
common genetic variants with the five transdiagnostic symptom di-
mensions identified by Stein et al. (2020). PRS association analyses were 
performed to determine the impact of genetic liability for MDD, BD, and 
SZ. Further, exploratory GWAS were performed for each of the five 
symptom dimensions. Results were followed up via replication analyses 
in an independent cohort. 

2. Methods

2.1. Sample description and factor scores

All individuals from the German FOR2107 cohort (Kircher et al., 
2019) who had been included in the factor analysis study of Stein et al. 
(2020) were selected for the present analyses. Written informed consent 
was obtained from all participants during the original FOR2107 
recruitment process. Ethical approval was obtained from the local ethics 
committees of the Universities of Marburg and Münster, Germany. The 
sample in Stein et al. (2020) comprised 1182 individuals (465 males/ 
717 females) with a DSM-IV diagnosis of MDD, BD, or SZ. For each of 
these subjects, factor scores for the transdiagnostic symptom dimensions 
“Depression”, “Negative syndrome”, “Positive formal thought disorder”, 
“Paranoid-hallucinatory syndrome”, and “Increased appetite” were 
provided by Stein et al. (2020) for the purposes of the present analyses. 
The individual items contributing to each factor are listed in Supple-
mentary Table 1. 

2.2. Genotyping, quality control, and imputation 

Genotyping, quality control (QC), and imputation were previously 
performed as described elsewhere (Meller et al., 2019; Pelin et al., 2021) 
for the complete FOR2107 cohort, of which the selected sample con-
stitutes a subset. Briefly, genomic DNA was extracted from blood sam-
ples and used for genome-wide genotyping with the Infinium 
PsychArray BeadChip (Illumina, San Diego, CA, USA). After initial QC 
and population substructure analyses in PLINK v1.90 (Chang et al., 
2015), genotype data were imputed to the 1000 Genomes phase 3 
reference panel (Auton et al., 2015) using SHAPEIT and IMPUTE2 
(Delaneau et al., 2011; Howie et al., 2009). Post-imputation QC included 
removal of variants with any of the following characteristics: a minor 
allele frequency < 1 %; a Hardy-Weinberg equilibrium test p < 1e− 6; or 
an INFO metric < 0.8. From the 1182 subjects for which factor scores 
were available, 140 individuals were excluded from the present analyses 
due to: a lack of high-quality genotype data (n = 124); a mismatch be-
tween information on phenotypic and genotypic sex (n = 2); or intra- 
sample relatedness (n = 14) (π̂ ≥ 0.125). In the remaining sample (n 
= 1042), henceforth referred to as FOR2107 study sample, imputed 
genotype probabilities were available for 8565143 common variants. 

2.3. Replication sample 

For replication analyses, an independent subset of the German/ 
Austrian PsyCourse study (Budde et al., 2019) was selected. Genotyping, 
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QC, and imputation were previously performed within the complete 
PsyCourse cohort in the same way as conducted for the FOR2107 cohort. 
The replication sample comprised n = 816 unrelated individuals with a 
DSM-IV diagnosis of MDD, BD, or SZ. Some of the psychopathology 
assessment scales applied in the PsyCourse study differed to those used 
by Stein et al. (2020). However, the respective scales are well correlated 
(e.g., Rush et al., 2006; van Erp et al., 2014), and mapping symptoms 
between correlated scales, e.g. SANS/SAPS and PANSS, is common 
practice in corsortia comprising different study sites, e.g. the ENIGMA 
consortium. Differing scales included the Positive and Negative Syn-
drome Scale (PANSS) (Kay et al., 1987) and the Inventory of Depressive 
Symptoms (IDS-C30) (Rush et al., 1986). To emulate the previously 
established factor model by Stein et al. (2020), single symptoms 
included in the original model were mapped to symptoms of the scales 
used in the replication sample (Supplementary Table 2). For the symp-
tom mapping, equivalent items available in the replication sample were 
sought for each item of the original factor model. In some cases, a 1:1 
mapping of items was not possible, resulting in both 1:n (one-to-many, e. 
g. HAMA4 to IDS-C 1, 2, 3, and 4) and n:1 (many-to-one) mappings (e.g. 
both HAMA6 and HAMD1 to IDS-C 5). For few items (HAMA2, 
HAMD16, SAPS28) that were part of the first four factors in the original 
model, no corresponding item was identified in the replication sample. 
Due to lack of data on appetite behavior, the fifth factor “Increased 
appetite” was not included in the model replication step. Confirmatory 
factor analysis (CFA) in the replication sample was performed in 
accordance with Stein et al. (2020) using MPlus (version 8.4) (Muthén 
and Muthén, 1998-2017). As in Stein et al. (2020), the model was esti-
mated using the MLR method. Goodness of fit was assessed using the chi- 
square significance test, the comparative fit index (CFI) (Bentler, 1990), 
and the root mean square error of approximation (RMSEA) (Browne and 
Cudeck, 1993). Latent standardized factor scores for each patient were 
extracted using MPlus. 

2.4. Polygenic risk score association analyses 

In the complete FOR2107 cohort, disorder-specific PRS for MDD, BD, 
and SZ were calculated using publicly available GWAS summary sta-
tistics (Mullins et al., 2021; Trubetskoy et al., 2022; Wray et al., 2018, 
meta-analysis excluding 23andMe). For PRS calculation, variant weights 
were estimated via the PRS-CS approach (Ge et al., 2019), using multiple 
pre-selected values for the global shrinkage parameter φ (1e− 4, 1e− 3, 
1e− 2). PRS were calculated in R (R Core Team, 2019), as described 
previously (Andlauer et al., 2021a,b). For the FOR2107 study sample, 
linear regression models were then fitted in R with one of the three z- 
scaled disorder-specific PRS as predictor and one of the five symptom 
dimensions as outcome. Due to non-normal distribution of factor scores 
within the symptom dimensions, rank-based inverse normal trans-
formed values (McCaw et al., 2020) were used. Sex, age, and the first 
four ancestry components calculated via multidimensional scaling 
(MDS) were included as covariates (Supplementary Fig. 1). Linear 
models were first fitted for the complete transdiagnostic FOR2107 study 
sample, and then separately for each diagnostic subgroup. Adjustment of 
p values for multiple testing was performed using the Benjamini- 
Hochberg approach (Benjamini and Hochberg, 1995) for 45 tests (5 
symptom dimensions × 3 PRS models × 3 values for φ). Model co-
efficients were considered statistically significant at p < 0.05. The 
variance explained (R2) by each PRS was calculated as the difference 
between R2 of the full model and R2 of the null model containing the 
covariates only. The same analysis was conducted in the PsyCourse 
study sample for the four approximated symptom dimensions. As the 
PsyCourse sample was part of the BD GWAS by Mullins et al. (2021), the 
PRS for BD was calculated in the replication sample using summary 
statistics of the respective leave-one-out GWAS from Mullins et al. 
(2021), in which the PsyCourse sample had been excluded (41670 BD 
cases, 371261 controls). 

2.5. Genome-wide association studies and downstream analyses 

For each of the five symptom dimensions, a GWAS was performed in 
the FOR2107 study sample using the linear regression approach in 
PLINK. Rank-based inverse normal transformed values were used as 
quantitative phenotypes. Sex, age, and the first four ancestry compo-
nents calculated via MDS were included as covariates. To facilitate 
comparisons between symptom dimensions, all variables were z-scaled 
via the ‘standard-beta’ modifier. Clumping of genetic markers was per-
formed using a maximum p value of 1e− 4 for index variants (‘–clump-p1 
1e− 4’); a linkage disequilibrium threshold of 0.1 (‘–clump-r2 0.1’); and 
a window size of 1000 kb (‘–clump-kb 500’). Genetic associations with p 
< 5e− 8 were considered genome-wide significant, and genetic associ-
ations with p < 1e− 6 were considered suggestive of association (e.g., 
Forstner et al., 2021; Risch and Merikangas, 1996). FUMA (Watanabe 
et al., 2017) was used for basic annotation of summary statistics, and 
MAGMA (de Leeuw et al., 2015) as implemented in FUMA was used for 
gene-based analyses. LocusZoom (Pruim et al., 2010) was used to 
generate regional plots. Power calculations were performed in accor-
dance with the formulas provided in Visscher et al. (2017). 

2.6. Replication analysis 

For variants with suggestive evidence of association in the discovery 
GWAS, association testing was performed in the PsyCourse study sample 
using PLINK. Rank-based inverse normal transformed factor scores were 
used as outcomes and sex, age, and the first four ancestry components 
calculated via MDS as covariates. For the examined variants, a sign test 
was performed to evaluate concordance of the directions of effect be-
tween cohorts, and combined effects and p values were calculated using 
inverse variance-weighted meta-analysis in METAL (Willer et al., 2010). 
Since all lead variants of the discovery GWAS with p < 1e− 6 were 
present in the imputed PsyCourse genotype data, no investigation of 
other variants at these loci in linkage disequilibrium with the lead var-
iants was performed. 

3. Results 

The distribution of the FOR2107 study sample (n = 1042 individuals 
post-QC) across diagnostic subgroups is shown in Table 1. The distri-
bution of factor scores and PRS (Fig. 1) demonstrates the transdiagnostic 
nature of the psychopathological symptom dimensions and the re-
lationships between disorder-specific PRS and diagnostic groups. 

Emulation of the factor model of Stein et al. (2020) in the PsyCourse 
replication sample (Table 2) yielded four factors (i.e., “Depression”, 
“Negative syndrome”, “Positive formal thought disorder”, “Paranoid- 
hallucinatory syndrome”) comparable to the first four symptom di-
mensions in Stein et al. (2020). The dimension “Increased appetite” 
could not be approximated. Results of the CFA of the emulated four- 
factor model suggested an acceptable fit: χ2 = 939.24, df = 187, p <
0.0001, CFI = 0.868, RMSEA = 0.058. 

3.1. PRS association analyses 

Associations between disorder-specific PRS for MDD, BD, and SZ and 
the five transdiagnostic symptom dimensions were investigated in the 
FOR2107 study sample (Fig. 2A, Supplementary Table 3) to determine 
whether disorder-specific PRS explain any of the transdiagnostic vari-
ance in disorder-related symptom dimensions. A significant positive 
effect of the PRS for SZ was observed on “Positive formal thought dis-
order” (maximum β = 0.102 at φ = 1e− 3 with R2 = 0.010 and adjusted 
p = 0.0087), and “Paranoid-hallucinatory syndrome” (maximum β =
0.084 at φ = 1e− 3 with R2 = 0.007 and adjusted p = 0.0362). A sig-
nificant negative effect of the PRS for BD was observed on “Depression” 
(minimum β = − 0.084 at φ = 1e− 4 with R2 = 0.007 and adjusted p =
0.0362) as well as a significant positive effect on “Positive formal 
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thought disorder” (maximum β = 0.129 at φ = 1e− 3 with R2 = 0.017 
and adjusted p = 0.0009). For the PRS for MDD, no significant associ-
ations were found with any of the symptom dimensions. In PsyCourse, 
the significant positive effects of the PRS for SZ could be replicated, 
while the PRS for BD did not have a significant effect on either 
“Depression” or “Positive formal thought disorder” (Supplementary 
Fig. 2). 

When regression modeling was conducted in the FOR2107 study 
sample separately for each diagnostic subgroup, heterogeneous effects 

were observed (Fig. 2B). While the positive effect of PRS for SZ on 
“Positive formal thought disorder” and “Paranoid-hallucinatory syn-
drome” reached statistical significance in the total sample, no significant 
signal was present in any of the diagnostic subgroups. Similarly, with 
regard to the significant negative effect of the PRS for BD on the 
“Depression” dimension observed in the total sample, no significant 
signals were found in the analysis of diagnostic subgroups. Interestingly, 
PRS for BD showed some evidence for subgroup-specific effects on 
“Positive formal thought disorder” and “Paranoid-hallucinatory 

Table 1 
Characteristics of the FOR2107 study sample.   

Major 
depressive 
disorder 

Bipolar 
disorder 

Schizophrenia 
spectrum 
disorders 

Total 
sample 

n 783 134 125 1042 
Sex f = 506, m =

277 
f = 70, m 
= 64 

f = 53, m = 72 f = 629, 
m = 413 

Age (SD) 37.1 (13.3) 42.1 
(12.5) 

38.4 (11.5) 37.9 
(13.1) 

Age at onset (SD) 26.2 (12.7) 25.4 
(12.0) 

22.2 (9.1) 25.6 
(12.5) 

Depressive 
episodes (SD) 

4.1 (6.9) 7.7 (8.1) 6.2 (8.2) 4.6 (7.2) 

Manic episodes 
(SD) 

– 5.8 (6.9) 4.7 (9.4) 5.6 (7.4) 

Psychotic 
episodes (SD) 

– – 5.1 (8.2) 5.1 (8.2) 

Antidepressants 
(%) 

471 (60.2 %) 52 (38.8 
%) 

36 (28.8 %) 559 
(53.6 %) 

Antipsychotics 
(%) 

150 (19.2 %) 64 (47.8 
%) 

106 (84.8 %) 320 
(30.7 %) 

Mood stabilizers 
(%) 

36 (4.6 %) 76 (56.7 
%) 

13 (10.4 %) 125 
(12.0 %) 

Inpatient 
treatment (%) 

240 (30.7 %) 37 (27.6 
%) 

58 (46.4 %) 335 
(32.2 %) 

Remission (%) 308 (39.3 %) 47 (35.1 
%) 

37 (29.6 %) 392 
(37.6 %) 

Sample size (n), number of female (f) and male (m) participants, the mean age at 
recruitment and at onset in years as well as selected clinical characteristics are 
shown. The latter includes the mean number of depressive, manic, and psychotic 
episodes where applicable, the number and percentage of participants on 
different groups of medications, the number and percentage of participants 
undergoing inpatient treatment, and the number and percentage of participants 
in remission. SD, standard deviation. 

Fig. 1. Distribution of factor scores and PRS across diagnostic groups. 
(A) The boxplots of factor scores from Stein et al. (2020) demonstrate overlapping distributions between diagnostic groups. Rank-based inverse normal transformed 
factor scores used for statistical analyses are shown. (B) Distributions of PRS for MDD, BD, and SZ at φ = 0.001 after z-scaling (mean = 0, standard deviation = 1) by 
PRS model. BD, bipolar disorder; MDD, major depressive disorder; PRS, polygenic risk score; SZ, schizophrenia spectrum disorders. 

Table 2 
Characteristics of the PsyCourse replication sample.   

Major 
depressive 
disorder 

Bipolar 
disorder 

Schizophrenia 
spectrum 
disorders 

Total 
sample 

n 65 353 398 816 
Sex f = 37, m =

28 
f = 175, 
m = 178 

f = 166, m = 232 f = 378, 
m = 438 

Age (SD) 41.9 (15.2) 45.9 
(13.0) 

41.3 (11.9) 43.3 
(12.8) 

Age at first 
inpatient 
treatment (SD) 

33.2 (13.3) 33.6 
(12.3) 

27.5 (9.9) 30.5 
(11.6) 

Depressive 
episodes (SD) 

4.5 (3.3) 9.0 
(10.8) 

5.2 (6.2) 7.4 (9.3) 

Manic episodes 
(SD) 

– 5.9 (6.8) 3.6 (2.8) 5.5 (6.3) 

Antidepressants 
(%) 

52 (80.0 %) 165 
(46.7 %) 

118 (29.7 %) 335 
(41.1 %) 

Antipsychotics (%) 30 (46.2 %) 238 
(67.4 %) 

382 (96.0 %) 650 
(79.7 %) 

Mood stabilizers 
(%) 

5 (7.7 %) 245 
(69.4 %) 

50 (12.6 %) 300 
(36.8 %) 

Inpatient treatment 
(%) 

34 (52.3 %) 102 
(28.9 %) 

205 (51.5 %) 341 
(41.8 %) 

Remission (%) 8 (12.3 %) 12 (3.4 
%) 

7 (1.8 %) 27 (3.3 
%) 

Sample size (n), number of female (f) and male (m) participants, the mean age at 
recruitment and at first inpatient treatment in years as well as selected clinical 
characteristics are shown. The latter includes the mean number of depressive 
and manic episodes where applicable, the number and percentage of partici-
pants on different groups of medications, the number and percentage of par-
ticipants undergoing inpatient treatment, and the number and percentage of 
participants in remission. SD, standard deviation. 
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syndrome”, albeit non-significant after correction for multiple testing, 
with a tendency towards negative effects in the subgroup of SZ cases and 
towards positive effects in the subgroup of BD cases. 

3.2. Genome-wide association analyses 

In the FOR2107 study sample, GWAS were performed for each of the 
five symptom dimensions. No evidence of genomic inflation was 
observed, with λ values between 0.99 and 1.01. No genome-wide sig-
nificant associations were identified. However, one to three loci per 
symptom dimension showed suggestive evidence of association (p <

1e− 6; Table 3, Supplementary Figs. 3–7). The MAGMA gene analysis 
and gene-set analysis in FUMA yielded no statistically significant results 
for any of the symptom dimensions after correction for multiple testing 
(data not shown). Among the nine loci with association at p < 1e− 6, four 
lead variants were located in introns of protein-coding and noncoding 
genes and five at intergenic positions. Closer examination of the loci 
with suggestive evidence of association (Fig. 3, Supplementary 
Figs. 8–11) revealed that genes at two of the loci have been implicated 
previously in major psychiatric disorders, i.e., RELN and NEFH. 

Depression Negative
syndrome

Positive foff rmal
thought disorder

Paranoid−
hallucinatory

syndrome
Increased
appetite

M
D

D
BD

SZ

−0
.1 0.0 0.1 0.2 −0

.1 0.0 0.1 0.2 −0
.1 0.0 0.1 0.2 −0

.1 0.0 0.1 0.2 −0
.1 0.0 0.1 0.2

1e−04
1e−03
1e−02

1e−04
1e−03
1e−02

1e−04
1e−03
1e−02

Regression coefficient

PR
S

Significance non−significant nominal BH

A

Depression Negative
syndrome

Positive foff rmal
thought disorder

Paranoid−
hallucinatory

syndrome
Increased
appetite

M
D

D
BD

SZ

−0
.2 0.0 0.2 −0

.2 0.0 0.2 −0
.2 0.0 0.2 −0

.4
−0

.2 0.0 0.2 −0
.2 0.0 0.2

1e−04

1e−03

1e−02

1e−04

1e−03

1e−02

1e−04

1e−03

1e−02

Regression coefficient

PR
S

Model Main Subset: MDD Subset: BD Subset: SZ Significance BH nominal non−significant

B

Fig. 2. PRS association analyses. 
(A) Regression coefficients of the disorder-specific PRS for MDD, BD, and SZ at different PRS φ values on the transdiagnostic symptom dimensions are shown with 95 
% confidence intervals for models based on the complete FOR2107 study sample. Model coefficients with p < 0.05 after correction for multiple testing with the 
Benjamini-Hochberg approach are indicated in red, while nominally significant effects (unadjusted p < 0.05) are indicated in black. (B) The regression analysis was 
repeated within each diagnostic subgroup. Regression coefficients of these subset analyses are shown in comparison to the main model presented in (A). BD, bipolar 
disorder; BH, Benjamini-Hochberg; MDD, major depressive disorder; PRS, polygenic risk score; SZ, schizophrenia spectrum disorders. 
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3.3. Replication analysis 

In the replication analysis of variants with p < 1e− 6 in the discovery 
GWAS, none of the eight variants showed a nominally significant asso-
ciation (p < 0.05) with the respective emulated factor dimension in the 
PsyCourse replication sample (Supplementary Table 4). For five of the 
eight evaluated variants, the direction of effect was identical in the 
FOR2107 study sample and the PsyCourse replication sample. In a 
binomial sign test, the null hypothesis of random directions of effect 
could not be rejected (p = 0.36). 

4. Discussion 

Genetic factors play a substantial role in the development of MDD, 
BD, and SZ (Sullivan and Geschwind, 2019). Although multiple studies 
have investigated genetic associations within individual diagnostic 
groups, few studies analyzed genetic associations with transdiagnostic 
measures. Among others, McCoy et al. (2018) conducted GWAS of five 
dimensional phenotypes of psychopathology and successfully identified 
genome-wide significant loci in three dimensions, indicating the merit of 
this approach. In view of the observed genetic and phenotypic overlap 
between the major psychiatric disorders, the present study explored 
genetic contributions to the five transdiagnostic symptom dimensions 
described by Stein et al. (2020), i.e., “Depression”, “Negative syn-
drome”, “Positive formal thought disorder”, “Paranoid-hallucinatory 
syndrome”, and “Increased appetite” via PRS analyses and GWAS. 

As hypothesized by previous authors (e.g. Bipolar Disorder and 
Schizophrenia Working Group of the Psychiatric Genomics Consortium, 
2018; Guzman-Parra et al., 2021), the manifestation of cross-disorder 
symptom dimensions may be shaped by certain sets of genetic risk 
variants. Thus, some associations between genetic factors and symptom 
dimensions may have already been captured by disorder-specific GWAS 
conducted by large international consortia (Mullins et al., 2021; Tru-
betskoy et al., 2022; Wray et al., 2018). For example, the genetic asso-
ciations identified to date by GWAS of SZ may include variants that 
contribute to positive formal thought disorder in all major psychiatric 
disorders, rather than in SZ only. This hypothesis is supported by the 
positive, although non-significant effect of PRS for SZ on “Positive 
formal thought disorder” found in the present subgroup analysis of BD 
cases. However, the opposite direction of effects of the PRS for BD on 
symptom dimensions “Positive formal thought disorder” and “Paranoid- 
hallucinatory syndrome” in the subgroups BD and SZ might point to the 
existence of genetic factors with divergent effects between disorders and 
therefore distinct biological differences between groups. These results 
are consistent with previous work by the Bipolar Disorder and 

Schizophrenia Working Group of the Psychiatric Genomics Consortium 
(2018), who also described genetic factors with both concordant and 
divergent effects in BD and SZ. Thus, while transdiagnostic approaches 
might facilitate the identification of concordant effects due to increase in 
sample size, their value may be limited if effects differ between groups. 

Interestingly, we identified a significant negative effect of PRS for BD 
on “Depression” in the transdiagnostic FOR2107 sample, which was 
most pronounced in the subgroup of BD cases. However, as this associ-
ation was not found in the PsyCourse replication sample, additional 
studies in independent samples are required before definitive conclu-
sions can be drawn about the effect of the PRS for BD on the “Depres-
sion” symptom dimension. 

Surprisingly, no significant effect of the PRS for MDD on the symp-
tom dimension “Depression” was observed in either the total trans-
diagnostic sample or in the MDD subgroup. These findings may reflect 
the lower heritability of MDD compared to the other major psychiatric 
disorders and its high degree of etiological heterogeneity (Cai et al., 
2020; Nöthen et al., 2019). Therefore, the investigation of endopheno-
types in MDD may be valuable to disentangling its genetic etiology 
(Kendall et al., 2021). The question whether the symptom dimension 
“Depression” is impacted by the same genetic risk variants in the 
different diagnostic groups remains to be answered. 

In the present GWAS, two of the loci with suggestive evidence of 
association harbored genes that have been implicated previously in 
major psychiatric disorders. On chromosome 7, the lead variant 
rs12536739, suggestively associated with “Depression”, mapped to an 
intron of RELN. This gene encodes the Reelin protein, which is involved 
in cortex development and synaptic function (Ishii et al., 2016; Jossin, 
2020). Interestingly, Reelin has been associated with several psychiatric 
disorders, including MDD, BD, and SZ (Fatemi et al., 2001; Fatemi et al., 
2000; Lussier et al., 2011). The second gene, NEFH, is located around 25 
kb downstream of the lead variant rs420395 on chromosome 22, sug-
gestively associated with “Positive formal thought disorder”. NEFH en-
codes the neurofilament heavy polypeptide, for which altered protein 
levels have been observed in the dorsolateral prefrontal cortex of SZ 
patients (Pinacho et al., 2016). Notably, none of the present suggestive 
genetic associations achieved replication in the independent PsyCourse 
sample. These suggestive associations should thus be viewed with 
caution until replication is achieved in future studies. 

From a clinical perspective, the present analyses generated support 
for the factor model of Stein et al. (2020) in the independent PsyCourse 
sample, after symptom mapping to take into account differences in the 
applied psychopathological assessment scales. These results point to a 
cross-disorder and cross-scale psychopathological classification into 
four to five factors. In line with current approaches on dimensional 

Table 3 
Lead variants of associated loci (p < 1e− 6) in FOR2107 study sample. Subsequent rows with the same shade represent genetic variants that are 
associated with the same factor. The respective factor for each group of rows is indicated in the first column. 

Factor CHR RSID BP A1/A2 BETA SE P GENE(S)

Depression 7 rs12536739 103387409 C/T 0.2231 0.0451 9.02E-07 RELN

Negative syndrome 1 rs2787876 48948331 A/G 0.5786 0.1091 1.37E-07 SPATA6, AGBL4

4 rs6832060 173985694 A/T -0.3247 0.0657 8.99E-07 GALNTL6, GALNT7

Positive formal thought 

disorder

1 rs74574738 219286141 T/C 0.9628 0.1828 1.70E-07 LYPLAL1-AS1

11 rs11407840 23543893 G/GA -0.5118 0.1008 4.55E-07 MIR8054

22 rs420395 29851183 T/C -0.4079 0.0820 7.72E-07 RFPL1, NEFH

Paranoid-hallucinatory 

syndrome

7 rs4726988 148326035 T/C 0.2151 0.0434 8.24E-07 C7orf33, CUL1

8 rs35831749 69000845 AC/A -0.2330 0.0469 7.81E-07 PREX2

Increased appetite 20 rs193035887 15947060 G/T -1.0856 0.2142 4.76E-07 MACROD2

CHR, chromosome; RSID, reference variant identifier; BP, base pair position (GRCh37); A1, effect allele; A2, other allele; BETA, effect size es-
timate; SE, standard error; P, association p value; GENE(S), nearest gene(s), up- and downstream within 250 kb distance in case of intergenic 
variants. 
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psychiatry (Anderson et al., 2018; Conway et al., 2019; Kaczkurkin 
et al., 2018), this type of approach addresses the issue of cross-diagnostic 
heterogeneity in nosology, and might be a useful framework for studying 
the shared neurobiology of the major psychiatric disorders. 

4.1. Limitations 

The present study had four main limitations. First, since the effect 

sizes of individual risk alleles in complex diseases, such as psychiatric 
disorders, are generally low (Watanabe et al., 2019), the statistical 
power to detect genome-wide associations was limited at the given 
GWAS sample size (Supplementary Fig. 12; Visscher et al., 2017), 
despite the fact that the FOR2107 cohort represents one of the largest 
deeply phenotyped transdiagnostic psychiatric cohorts worldwide. In 
the replication analysis in PsyCourse (n = 816), however, the power to 
detect associations exceeded 90 % at the p value threshold of 0.05 
(Supplementary Table 4). Second, due to the unavailability of some of 
the psychopathology scales used in the original factor model, the 
symptom dimensions were approximated in the PsyCourse sample via 
CFA. Although this resulted in a comparable factor model with reason-
able fit, an identical phenotype definition would have been preferable 
for the genetic replication (Kraft et al., 2009). In future studies, efforts 
should be made to achieve uniform standards in the collection of 
phenotype data across psychiatric studies in order to overcome this 
issue. Third, the sample distribution across diagnostic groups differed 
both within and between the FOR2107 and the PsyCourse sample, with a 
higher percentage of MDD cases (75 %) in FOR2107 and a lower per-
centage (8 %) in PsyCourse. Despite the higher heritability of BD and SZ, 
the power to discover effects driven by BD and SZ cases in the FOR2107 
sample may have been reduced compared to MDD. While we assume 
that the distribution in PsyCourse did not affect the replication of effects 
driven by BD and SZ cases, since they accounted for the majority of cases 
in PsyCourse, it is likely that the power to replicate effects driven by 
MDD cases was reduced. Lastly, the factor model was based on ratings of 
acute symptoms experienced at the time of data collection. However, 
factor scores do not remain stable throughout the patient’s lifetime. The 
power of the present analyses may thus have been reduced, depending 
on the phase of illness that was being experienced by the participants at 
the time of assessment. Despite this limitation, these data can be 
considered as an exploratory starting point for the assessment of genetic 
contributions to transdiagnostic symptom dimensions. To overcome this 
limitation, future work by the present authors will focus on factor 
models that are based on lifetime psychopathological symptom di-
mensions and their genetic underpinnings. 

4.2. Conclusion 

The present study explored genetic contributions to the five trans-
diagnostic symptom dimensions reported by Stein et al. (2020). The PRS 
association analyses generated some degree of evidence for trans-
diagnostic effects of PRS for SZ on the symptom dimensions “Positive 
formal thought disorder” and “Paranoid hallucinatory syndrome”. In 
contrast, no effect on the five symptom dimensions was found for PRS 
for MDD, and the effect of PRS for BD on “Positive formal thought dis-
order” pointed towards opposite effects in BD and SZ. The GWAS 
identified no genome-wide significant associations at the given sample 
size, which suggests that polygenic contributions with small effect sizes 
are implicated in the individual symptom dimensions. While the small 
effect sizes in psychiatric genetics studies of common variants limit the 
immediate clinical utility at this point in time, these studies are never-
theless essential for understanding the biological basis of the major 
psychiatric disorders. Further studies involving larger deeply pheno-
typed cohorts of multiple diagnostic subgroups and the evaluation of 
longitudinally stable measures are required to elucidate the genetic 
factors that impact the manifestation of different psychopathological 
symptom dimensions in the major psychiatric disorders. 
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There is a lack of knowledge regarding the relationship between proneness to dimensional psychopathological syndromes and the
underlying pathogenesis across major psychiatric disorders, i.e., Major Depressive Disorder (MDD), Bipolar Disorder (BD),
Schizoaffective Disorder (SZA), and Schizophrenia (SZ). Lifetime psychopathology was assessed using the OPerational CRITeria
(OPCRIT) system in 1,038 patients meeting DSM-IV-TR criteria for MDD, BD, SZ, or SZA. The cohort was split into two samples for
exploratory and confirmatory factor analyses. All patients were scanned with 3-T MRI, and data was analyzed with the CAT-12
toolbox in SPM12. Psychopathological factor scores were correlated with gray matter volume (GMV) and cortical thickness (CT).
Finally, factor scores were used for exploratory genetic analyses including genome-wide association studies (GWAS) and polygenic
risk score (PRS) association analyses. Three factors (paranoid-hallucinatory syndrome, PHS; mania, MA; depression, DEP) were
identified and cross-validated. PHS was negatively correlated with four GMV clusters comprising parts of the hippocampus,
amygdala, angular, middle occipital, and middle frontal gyri. PHS was also negatively associated with the bilateral superior
temporal, left parietal operculum, and right angular gyrus CT. No significant brain correlates were observed for the two other
psychopathological factors. We identified genome-wide significant associations for MA and DEP. PRS for MDD and SZ showed a
positive effect on PHS, while PRS for BD showed a positive effect on all three factors. This study investigated the relationship of
lifetime psychopathological factors and brain morphometric and genetic markers. Results highlight the need for dimensional
approaches, overcoming the limitations of the current psychiatric nosology.

Translational Psychiatry          (2024) 14:235 ; https://doi.org/10.1038/s41398-024-02936-6

INTRODUCTION
There is a long tradition of investigating the relationship between
psychopathological syndromes and brain structure and function in
patients suffering from schizophrenia (SZ) and schizoaffective
disorder – henceforth referred to as schizophrenia spectrum
disorders (SSD), as well as bipolar disorder (BD), and major
depressive disorder (MDD). Several studies have linked specific
symptoms such as verbal hallucinations to local brain structures,

particularly the bilateral superior temporal gyri [1–3]. However,
these have been either low in statistical power or variance [4], or
limited to a specific diagnosis, such as SZ [5, 6]. This raises the
question of generalizability across diagnostic categories: Since
almost all symptoms can be present in different diagnoses (e.g.,
formal thought disorders are found in SZ, as well as in BD, and in
MDD) [7–9], it is of major interest to study these syndromes
transdiagnostically using dimensional approaches. Moreover, the
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phenotypic overlap between psychiatric disorders is also reflected
at a brain structural [10–13] as well as genetic level [14].
Factor analyses of lifetime psychopathology have mostly been

performed within one categorical disorder. Only a few studies are
available, investigating transdiagnostic symptom dimensions of
lifetime psychopathology across diagnoses: Investigating patients
with DSM-IV diagnosed SZ, BD and delusional disorder, Serretti
and Olgiati found that a five-factor model best described lifetime
symptom dimensions [15]. In a sample consisting of patients with
SZ, BD, MDD, delusional, and psychotic disorder not otherwise
specified, a four-factor solution was obtained, consisting of
excitement, psychotic features (hallucinations and delusions),
depression and disorganization [16]. Studying the factor structure
of the OPerational CRITeria (OPCRIT) system in the SZ spectrum
and BD, Reininghaus and colleagues obtained a bifactor model
with one transdiagnostic psychosis dimension and five specific
factors comprising positive, negative, manic, disorganized and
depressive symptoms [17].
Previously, most structural and functional magnetic resonance

neuroimaging studies focused on categorical comparisons of one
patient group (MDD, BD, or SSD) compared to a healthy control
(HC) group. However, these studies failed to identify structural and
functional brain correlates that separate disorders [18]. In contrast,
studies and meta-analyses indicated common alterations across
diagnoses [11–13, 19, 20]. Transdiagnostic studies of dimensional
psychopathology might thus be more promising regarding
identification of common risk factors and might especially lead
to a more precise treatment of these syndromes on a
transdiagnostic rather than diagnosis-based level. In addition,
they should be able to take into account the heterogeneity of
psychiatric disorders as well as potential comorbidities. This
should also help to identify specific neurobiological markers which
in turn can inform personalized treatment interventions.
Twin and family studies demonstrate that genetic factors

contribute substantially to the development of MDD, BD and SZ,
with heritability estimates of around 60% to 85% for SZ and BD
[21–23] and around 40% for MDD [24]. Recent genome-wide
association studies (GWAS) have identified numerous genome-
wide significant loci for all three psychiatric disorders (e.g., refs.
[25, 26]). Furthermore, transdiagnostic GWAS meta-analyses have
demonstrated an extensive genetic overlap between MDD, BD
and SZ [14]. Byrne et al. provided evidence that only a small
subset of the genome-wide significant variants for SZ and MDD
have disorder-specific effects [27]. One plausible hypothesis,
therefore, is that pleiotropic genetic variants mediate their disease
risk via effects on transdiagnostic symptom dimensions. In
addition, an analysis of polygenic risk scores (PRS), which
summarize the effects of multiple common genetic variants into
an individual genetic risk profile [28], by Ruderfer et al. showed
that the PRS for SZ was significantly increased in BD patients with
psychotic features and SZ patients with prominent negative
symptoms [29]. These results suggest that there are genetic
factors underlying specific symptom dimensions within both
disorders [29].
As symptom presentations can fluctuate within an individual

patient over the course of life and even within a single episode,
the aim of the present study was to i) assess lifetime symptoms in
a transdiagnostic sample to identify underlying symptom factors;
and ii) investigate the relationship of detected factors with local
GMV and CT. Considering that brain structure is less variable
within a short period of time, we hypothesize that this approach
would yield more conclusive results than correlating GMV with
psychopathology present at any given point in time. In addition,
applying both GMV as well as CT measures should render a fuller
picture of underlying mechanisms as we would not assume that
all potential associations would be based on one measure alone.
Finally, iii) it was explored if the detected factor structure can be
linked to common genetic variation. Based on previous brain-

morphometric and genetic studies, we hypothesized findings
from specific DSM-IV diagnostic categories to be present across
diagnoses, too.

MATERIAL AND METHODS
Participants
Patients were recruited as part of the FOR2107 cohort [30]
(www.for2107.de). Patient recruitment took place via the in-patient facilities
of the University hospitals in Marburg and Münster, Germany, through
participating hospitals, and via postings in local newspapers. Written
informed consent was obtained from all patients before participation.
According to the Declaration of Helsinki, all procedures were approved by
the local ethics committees. After study participation, all patients received
financial compensation. After excluding patients with incomplete data,
serious medical illnesses, neurological illnesses, and an IQ < 80, we analyzed
a total of N= 1038 patients (see Table 1a, b, required sample size is based
on [31]) suffering from MDD, BD, and SSD (aged 18–65).

Psychopathological assessment and factor score calculation
The German version of the structured interview SCID-I (DSM-IV-TR [32]) and
the OPCRIT (version 4 [33]) were administered in all patients. Lifetime
psychopathology was assessed as any occurrence of symptoms during the
life span until data acquisition. Trained personnel assessed lifetime
symptoms based on patients’ reports and additional hospital records,
when available. Numerous interview trainings assured data quality.
Interrater-reliability was assessed with the interclass coefficient, achieving
good reliability of r > 0.86. For the present study, only symptomatic items
were included (items 17–77). Following the procedures described in Stein
et al. [34], we separated the total cohort (N= 1038) into two samples using
the “mindiff” [35] package in R [36] accounting for age, sex, and diagnostic
category (i.e., same distribution of categorical diagnoses across both
samples). In the first sample of n= 520, we performed varimax rotated
principal axis factor analyses with bootstrapping (5000 permutations)
using the psych [37] and EFAutilities [38] packages in R (v4.0.5.) for models
with 2–5 factors. Hereof, z-transformed values were used since the data
was differently scaled. For interpretation purposes, items with factor
loadings <0.5 were not considered in the analysis [34]. Cronbach’s alpha
coefficients [39] were used to test the internal consistency of the
explorative factors. Using the second sample of n= 518, we cross-
validated the explorative models using confirmatory factor analysis in
Mplus (version 8.4 [40]). Confirmatory model estimation was performed
using the maximum-likelihood-method (MLM) since this estimator is
robust to standard errors and is one of the most common estimators [41].
The following fit indices were used: chi-square significance test,
comparative fit index (CFI [42]) and Root Mean Square Error of
Approximation (RMSEA [43]). Based on these fit indices, we evaluated
the different models and selected the one with best fit. After cross-
validating the explorative model in the second sample, we tested the
model for the whole sample (N= 1038).
As the DSM-IV-TR diagnostic groups were unequally distributed, we

wanted to rule out potential confounding effects of formal diagnosis.
Therefore, we tested the selected factorial model in an age- and sex-
matched sample with an equal diagnosis distribution (each n= 108 of
MDD, BD, SSD, total n= 324) (see supplement eTable1). Matching was
performed using the “MatchIt” package [44] in R [36]. Furthermore, the
factorial model was also tested within each of the three diagnostic
categories and factor loadings were compared between DSM diagnosis
using non-parametric Kruskal–Wallis tests (see supplement).

MRI assessment and preprocessing
Subjects were scanned with a 3-T MRI at the Department of Psychiatry and
Psychotherapy in Marburg (Tim Trio, Siemens, Erlangen, Germany; 12-channel
head coil) and the Institute for Translational Psychiatry in Münster (Prisma,
Siemens, Erlangen, Germany; 20-channel head coil). MRI data were acquired
according to an extensive quality assurance protocol [45]. A fast gradient echo
MP-RAGE sequence with a slice thickness of 1.0mm consisting of 176 sagittal
orientated slices in Marburg and 192 in Münster and a FOV of 256mm was
used to acquire T1 weighted images. Parameters differed across sites:
Marburg: TR= 1.9 s, TE= 2.26ms, TI= 900ms, flip angle= 9°; Münster:
TR= 2.13 s, TE= 2.28ms, TI= 900ms, flip angle= 8°.
For a detailed description of the preprocessing of MRI data please see refs.

[31, 46]. In short, both voxel-based-morphometry GMV and cortical thickness
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(CT) data were preprocessed using the default parameters as implemented in
the CAT12-Toolbox (Computation Anatomy Toolbox for SPM, build 1184,
Structural Brain Mapping group, Jena University Hospital, Germany) building
on SPM12 (Statistical Parametric Mapping, Institute of Neurology, London, UK).
We opted for GMV and CT over other MRI-derived metrics for two primary
reasons. Firstly, volume and thickness measures, commonly employed in
large-scale analyses such as those by the ENIGMA consortium, were selected
to facilitate result comparisons. Second, recent neuroimaging research has
underscored the complementary nature of GMV and CT measurements. GMV
provides insight into overall gray matter volume, which can reflect global
brain atrophy or neurodevelopmental factors. In contrast, CT offers
information about the thickness of the cortical mantle, allowing for the
detection of localized changes. By analyzing both GMV and CT, we aimed to
capture both global and local structural alterations in the context of these
psychiatric disorders [47, 48]. Images were spatially registered, segmented [49]
and normalized [50]. CT preprocessing included fully-automated methods
projecting local maxima to other GM voxels using a neighbor relationship
described by the white matter distance [51]. Quality control of processed data
was performed as implemented in CAT12. For GMV data, a Gaussian kernel of
8mm FWHM was used for smoothing. For CT data, a Gaussian kernel of
20mm FWHM was used.

Statistical analyses: gray matter volume and cortical thickness
For both GMV and CT analyses, we used separate linear regression models
for each factor using CAT12 and SPM12. The following nuisance variables
were included in brain structural analyses: age, sex, and two dummy-coded
variables accounting for the different MRI scanners and a body coil
exchange in Marburg (Marburg pre body coil: yes/no, Marburg post body
coil: yes/no, Münster as reference category [30, 45]). To control for
potential medication effects, we used three dummy coded (yes/no)
covariates accounting for the current medication with antidepressants,
mood stabilizers and antipsychotics. For GMV analyses total intracranial
volume was additionally accounted as covariate of no interest and
absolute threshold masking with a threshold value of 0.1 was used.
To further test confounding effects of unequally distributed diagnostic

categories, we performed multiple regression analyses in the age and sex
matched sample (n= 324) with same n per diagnosis, again. Besides this
whole brain analysis, we additionally performed ROI analyses of the detected
clusters from the total sample in the matched sub-sample (see supplement).
In addition to multiple regression analyses, we performed full factorial

ANCOVA whole brain interaction analyses (factor x diagnosis) for each of
the three factors to test whether transdiagnostic brain correlates were

driven by single DSM-IV-TR diagnostic categories for both the total and the
matched sample with same n per diagnosis. Moreover, post hoc
interaction analyses (factor x diagnosis) were performed specifically within
each detected cluster of the total sample using the “lm-function” in R.
Cluster labeling was applied using the dartel space Neuromorpho-

metrics atlas (http://www.neuromorphometrics.com/) for GMV analyses
and for CT analyses using the Desikan–Killiany atlas [52]. Results were
suggested significant at p < 0.05 peak-level, family wise error (FWE)
corrected, cluster extend k= 35 voxels in the total and matched sample.

GWAS and PRS association analysis
DNA extraction, genome-wide genotyping, quality control and imputation
were carried out as previously described [53] in the full FOR2107 cohort.
Briefly, genotyping was performed using genomic DNA from blood
samples and the Infinium PsychArray BeadChip (Illumina, San Diego, CA,
USA). Pre-imputation quality control (QC) was performed in GenomeStu-
dio, PLINK v1.9 [54], and R [36], with removal of genetic variants and
individuals according to standard filter criteria. Genotype data were
imputed to the 1000 Genomes phase 3 reference panel [55] using SHAPEIT
[56] and IMPUTE2 [57]. In post-imputation QC, variants with a minor allele
frequency <1%, Hardy-Weinberg equilibrium p < 1e−6, and an INFO metric
<0.8 were removed. From the total sample of the present study (N= 1038),
high-quality genotype data were available for 951 individuals. From these,
13 individuals were excluded due to intra-sample relatedness (π ̂ > 0.125),
resulting in a sample of n= 938 individuals used for genetic analyses.
For each of the three factors, GWAS, which should be considered

exploratory at the given sample size, were conducted via linear regression
in PLINK with rank-based inverse normal transformed values [58] as
quantitative phenotypes due to the non-normal distribution of factor
scores. Sex, age and the first four multidimensional scaling (MDS)
components were included as covariates. All variables were z-scaled via
the ‘standard-beta’ modifier for better comparability between factor
dimensions. We performed clumping of genetic markers in the GWAS
results using a maximum p value of 1e−4 for index variants (‘--clump-p1 1e
−4’), an LD threshold of 0.1 (‘--clump-r2 0.1’), and a window size of 1000 kb
(‘--clump-kb 500’). We considered genetic associations with p < 5e−8 to be
genome-wide significant and with p < 1e−6 to be suggestive. We
performed gene-based and gene-set analyses with MAGMA [59] as
implemented in FUMA [60]. The resulting p values were corrected for
multiple testing using the Bonferroni method taking into account the
number of tested genes (n= 18,846) or gene sets (n= 10,678). We used
LocusZoom [61] to generate regional plots.

Table 1. a: Characteristics of the explorative sample n= 520. b: Characteristics of the confirmatory sample n= 518.

Major depressive
disorder (n= 402)

Bipolar disorder
(n= 64)

Schizophrenia spectrum
disorders (n= 54)

Group comparison (F/Chi-
values in brackets)

a

Age 36.53 (13.45) 41.05 (11.96) 37.46 (11.75) p= 0.005a (5.34)

Sex m= 140 f= 262 m= 30 f= 34 m= 28 f= 26 p= 0.016 (8.15)

Years of
education

13.25 (2.68) 13.5 (2.79) 12.54 (2.45) p= 0.213 (1.55)

Age of onset 26.14 (12.64) 21.97 (10.66) 22.54 (10.26) p= 0.034b (3.4)

TIV 1563.7 (160.75) 1578.16 (149.26) 1580.85 (152.16) p= 0.685 (0.38)

Major depressive
disorder (n= 401)

Bipolar disorder
(n= 63)

Schizophrenia spectrums
disorders (n= 54)

Group comparison (F/Chi-
values in brackets)

b

Age 36.53 (12.84) 41.03 (12.31) 37.48 (11.27) p= 0.023a (3.8)

Sex m= 140 f= 261 m= 30 f= 33 m= 29 f= 25 p= 0.008 (9.67)

Years of
education

13.25 (2.79) 14.47 (2.8) 12.51 (2.84) p= 0.001b (1.55)

Age of onset 25.52 (12.28) 26.0 (11.18) 22.89 (8.27) p= 0.23 (1.48)

TIV 1558.8 (148.18) 1596.85 (134.22) 1584.76 (206.19) p= 0.193 (1.65)

TIV total intracranial volume.
aMDD < BD.
bMDD < BD; SSD < BD.
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PRS for MDD, BD and SZ were calculated based on publicly available
summary statistics from three studies [25, 26, 62]. Variant weights for PRS
calculation were estimated with PRS-CS [63] using default parameters and
a set of pre-defined values for the global shrinkage parameter φ (1e−4, 1e
−3, 1e−2). PRS were subsequently calculated in R [36] as described
previously [64]. Linear additive models with rank-based inverse normal
transformed factor scores as outcome, one of the z-scaled disorder-specific
PRS as predictor and sex, age and the first four MDS components as
covariates were fitted in R. The PRS association analysis was conducted for
both the complete set of n= 938 individuals as well as for each diagnostic
subgroup separately. Adjustment of p values for multiple testing was
performed with the Benjamini–Hochberg approach [65] within each set of
27 tests (3 factor dimensions * 3 PRS models * 3 values for φ). Model
coefficients were considered to be statistically significant at p < 0.05. We
calculated the variance explained (R2) by each PRS as the difference
between R2 of the full model and R2 of the null model containing only the
covariates.

RESULTS
Exploratory and confirmatory factor analyses
We tested explorative models ranging from 2-5 factors. Results of
these models can be found in Supplementary eTables 2a–d. In a
next step, we evaluated the four explorative models using
confirmatory analyses in the second sample. Model fits were as
follows: a) 2 factors: χ2= 393.645, df= 224, p < 0.001, CFI= 0.903,
RMSEA= 0.038; b) 3 factors: χ2= 543.005, df= 316, p < 0.001,
CFI= 0.904, RMSEA= 0.037; c) 4 factors: χ2= 588.773, df= 314,
p < 0.001, CFI= 0.875, RMSEA= 0.042; d) 5 factors: χ2= 748.705,
df= 391, p < 0.001, CFI= 0.884, RMSEA= 0.041. Based on the fit
indices, we decided to use model b) with 3 factors (Table 2) for

further analyses as this model outperformed the other ones.
Moreover, a 3-factor model is also in line with the Scree Plot
(Supplementary eFigure 1). The model included the factors
paranoid-hallucinatory syndrome (PHS) (explaining 14% of total
variance), mania (MA) (explaining 11% of total variance), and
depression (DEP) (explaining 5% of total variance). Furthermore,
we performed a confirmatory factor analysis in the whole sample
(N= 1038) showing a good fit χ2= 605.667, df= 316, p < 0.0001,
CFI= 0.932, RMSEA= 0.03. Results of the confirmatory analyses of
the matched sample and within each diagnostic category are
presented in the supplement (Supplementary eResults1 and 2).
We investigated differences of the factor loadings between
diagnostic categories using a non-parametric ANOVA
(Kruskal–Wallis). Diagnostic groups differed significantly in all
three factors identified (Supplementary eResults3 and Supple-
mentary eFigure 2).

Brain morphometric correlates of life-time psychopathology
Results of the multiple regression analyses of the total sample are
displayed in Table 3 (GMV) and 4 (CT). For the paranoid-
hallucinatory syndrome (PHS), negative GMV correlations were
observed in the bilateral hippocampus, amygdala, and right
angular gyrus (see Fig. 1). CT was negatively correlated with the
paranoid-hallucinatory syndrome (PHS) comprising left supramari-
ginal, bilateral superior temporal, and right lateral occipital clusters
(see Fig. 2). Whole-brain interaction analyses revealed no
significant interaction of psychopathological factor and DSM-IV-
TR diagnosis for both GMV and CT. Post hoc interaction analyses
on the significant clusters in Tables 3 and 4 revealed no significant

Table 2. Explorative factor model of sample 1, n= 520.

Factor Item Symptom Loading Cronbach´s Alpha

1 (PHS) Opcrit61 Delusions of passivity 0.711 0.910

Opcrit64 Delusions and hallucinations last for one week 0.700

Opcrit68 Thought broadcast 0.697

Opcrit66 Thought insertion 0.681

Opcrit58 Delusions of influence 0.681

Opcrit62 Primary delusional perception 0.657

Opcrit55 Well organized delusions 0.650

Opcrit60 Widespread delusions 0.621

Opcrit54 Persecutory delusions 0.620

Opcrit74 Running commentary voices 0.602

Opcrit73 Third person auditory hallucinations 0.571

Opcrit59 Bizarre delusions 0.552

Opcrit67 Thought withdrawal 0.549

Opcrit63 Other primary delusions 0.543

Opcrit77 Non-affective hallucination in any modality 0.522

2 (MA) Opcrit35 Elevated mood 0.890 0.921

Opcrit19 Excessive activity 0.829

Opcrit30 Pressured speech 0.804

Opcrit56 Increased self esteem 0.795

Opcrit20 Reckless activity 0.765

Opcrit22 Reduced need for sleep 0.760

Opcrit31 Thoughts racing 0.732

Opcrit21 Distractibility 0.525

3 (DEP) Opcrit39 Loss of pleasure 0.678 0.736

Opcrit25 Loss of energy/tiredness 0.635

Opcrit37 Dysphoria 0.603

Opcrit41 Lack of concentration 0.507
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interactions of factor x diagnosis (all ps > 0.05, see Supplementary
eResults4 and Supplementary eFig. 3–10 for details). Results of the
GMV and CT analyses in the matched sample are presented in
the supplement (Supplementary eResults 5, Supplementary
eTables 3 and 4). Here, results from the total sample could be
replicated. We did not find any associations with the DEP and MA
factors for both GMV and CT.

Genetic correlates of life-time psychopathology
Our exploratory GWAS revealed genome-wide significant associa-
tions for MA and DEP (Fig. 3, Supplementary eFigs. 11–13,
Supplementary eTable 5), with intronic lead variants rs10062519
(p= 1.10e−8) located in ADAMTS19 for MA and rs11131155
(p= 4.12e−8) located in RAD18 for DEP. In the MAGMA gene
analysis, a genome-wide significant association was identified for
SYTL1 (DEP, p= 1.79e−6). The MAGMA gene-set analysis yielded
no statistically significant results for any of the three factors after
correction for multiple testing (data not shown).

In the PRS association analysis of the complete sample (Fig. 4),
we detected a positive effect of PRS for BD on all three factors
(PHS: maximum β= 0.13 at φ= 1e−3 with R2= 0.021 and
adjusted p= 5.48e−5; MA: maximum β= 0.18 at φ= 1e−3 with
R2= 0.031 and adjusted p= 1.17e−6; DEP: maximum β= 0.08 at
φ= 1e−4 with R2= 0.006 and adjusted p= 0.038). Further, a
positive effect on PHS was observed for the PRS for MDD
(maximum β= 0.07 at φ= 1e−2 with R2= 0.006 and adjusted
p= 0.038) and SZ (maximum β= 0.13 at φ= 1e−3 with R2= 0.020
and adjusted p= 7.06e−5). In the subset analysis of each
diagnostic group, none of the effects observed in the complete
transdiagnostic sample reached statistical significance (Supple-
mentary eFig. 14).

DISCUSSION
In the present study, exploratory and confirmatory factor analyses
of lifetime psychopathology revealed a three-factor model with

Fig. 1 Local GMV correlates of the lifetime paranoid-hallucinatory syndrome (PHS). Negative association of factor 1 paranoid-hallucinatory
syndrome (PHS) and gray matter volume (GMV) comprising parts of the bilateral hippocampus, amygdala, and right angular gyrus across
patients with major depressive disorder, bipolar disorder, and schizophrenia spectrum disorders. Clusters are shown at p < 0.05 peak-level,
family-wise error-corrected.

Table 3. Results of the lifetime paranoid-hallucinatory syndrome (PHS) and its local gray matter (GMV) correlates.

MNI coordinates

Anatomical region H X Y Z t-value Cluster size

Factor I: Paranoid-hallucinatory syndrome: gray matter volume

Entorhinal area, hippocampus, amygdala, parahippocampal gyrus, fusiform gyrus,
temporal pole

L −27 −8 −27 5.53 560

Angular gyrus, middle occipital gyrus R 57 −64.5 22.5 5.13 150

Amygdala, hippocampus, entorhinal area R 25.5 −4.5 −27 5.00 83

Medial frontal cerebrum R 3 57 −10.5 4.81 64

Only negative correlations are reported as no positive correlations were detected.
H hemisphere, L left, R right.

Fig. 2 CT correlates of the paranoid-hallucinatory syndrome (PHS). Negative association of factor 1 paranoid-hallucinatory syndrome (PHS)
and cortical thickness (CT) comprising parts of left supramariginal, bilateral superior temporal, and right lateral occipital clusters across
patients with major depressive disorder, bipolar disorder, and schizophrenia spectrum disorders. Clusters are shown at p < 0.05 peak-level,
family-wise error-corrected.
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superior fit properties compared to models with less or more
factors. Factors were the paranoid-hallucinatory syndrome (PHS),
mania (MA) and depression (DEP). In addition, several associations
with both brain morphometry and genetics were reported. This

study represents a successful advancement of previous research
by Stein et al. [34] and David et al. [66] all of them part of the
FOR2107 cohort, wherein five factors of acute psychopathology
were described and genetically investigated.

Table 4. Results of the lifetime paranoid-hallucinatory syndrome (PHS) and its cortical thickness correlates.

MNI Coordinates

Anatomical region H X Y Z t-value Cluster size

Factor I: Paranoid-hallucinatory syndrome: Cortical thickness

Superior temporal cortex L −48.3 −3.62 −12.1 5.07 657

Supramarginal cortex L −48.3 −38.5 25.9 4.34 777

Superior temporal cortex R 48.6 15.6 −22.6 4.11 236

Lateral occipital cortex R 44.6 −71.7 3.1 4.00 47

Only negative correlations are reported as no positive correlations were detected.
H hemisphere, L left, R right.

Fig. 3 Genetic loci with genome-wide significant association. Regional plots with a window size of 500 kb are shown for the genome-wide
significant associations with MA “mania” (A), and DEP “depression” (B). The respective lead variants rs10062519 and rs11131155 are depicted as
linkage disequilibrium reference variants (purple diamonds). cM centimorgan, LD Ref Var, linkage disequilibrium reference variant, Mb megabase.

Fig. 4 PRS association analysis. Regression of the three factors on the PRS for MDD, BD, and SZ shows significant effects of PRS for MDD, BD,
and SZ on PHS “paranoid-hallucinatory syndrome” and of PRS for BD on MA “mania” and DEP “depression” in the full transdiagnostic sample.
BD bipolar disorder, BH Benjamini–Hochberg, MDD major depressive disorder, SZ schizophrenia.
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Compared to previous factor analytical research in the three
diagnoses included in our study, utilizing the OPCRIT, the
present factor solution features three factors, while other
studies showed an additional negative factor, which was not
present in our study. Nevertheless, an overlap exists as previous
models also comprised a depression factor and a mania factor
(e.g., refs. [15, 67]). The often-reported factors positive and
negative symptoms are split into all three factors in the present
results while disorganization best fits the present second
factor MA.
The derived lifetime psychopathological factors were used to

investigate underlying GMV and CT correlates. We were able to
detect numerous associations between the PHS and both GMV
and CT in both temporal and frontal regions. We did not detect
any interactions for both factor x diagnosis on a whole-brain
level, nor in post hoc analyses of the significant clusters. These
findings do not exclude that the severity of both brain structural
alterations and psychopathological syndromes may vary by
diagnosis. Our study aligns with previous studies proposing
overlaps in acute psychopathology, brain structure as well as
genetics across MDD, BD and SSD [11–13, 68]. Combining a
data-driven approach to psychopathology with studying neu-
roanatomical and genetic correlates may help elucidate the
biological underpinnings of complex syndromes in psychiatric
disorders. Approaches such as those applied in the present
study can reveal intra- and inter-disorder heterogeneity and
thus could support the establishment of treatments specific to
symptom or syndrome in the next step.
When comparing our results to previous dimensional studies,

a recent study also identified subcortical volume reductions
associated with hallucinations as well as delusions [69], but
reductions of superior temporal areas have also been well
established in SSD [1, 3, 70, 71]. The present findings are also in
line with a recent investigation where psychotic symptoms
were negatively correlated with CT in a large sample of SSD
patients, relatives and healthy controls [72]. Consistent with
previous studies in SSD, we found cortical thinning in the
bilateral STG to be correlated with the PHS factor [73],
indicating this brain structure to be a core feature of positive
symptomatology.
Exploratory GWAS and PRS analyses suggest a contribution of

common genetic variants to all three factor dimensions, support-
ing the hypothesis that symptoms observed in different diagnostic
groups may be influenced by the same genetic variants across
diagnostic boundaries [14, 29]. Interestingly, the genome-wide
significant loci of our GWAS implicated protein-coding genes that
both might be linked to psychiatric disorders. ADAMTS19 is a
member of the ADAMTS (a disintegrin and metalloproteinase with
thrombospondin motif) family [74], which might be involved in
neuroplasticity [75]. The RAD18 gene encodes for a DNA damage
repair protein [74, 76]. Notably, a study by Alsulami and colleagues
provided evidence that RAD18 interacts with SETD1A [76], which
has previously been associated with SSD at the rare variant level
[77, 78]. As it is known that genome-wide significant lead variants
do not necessarily exert their effects through the nearest genes
(e.g., ref. [79]), the above discussed functional interpretations
should be viewed with caution, as further bioinformatic and
functional analyses are needed to identify the gene(s) relevant at
the identified loci.
Finally, despite the associations at the genetic level, we did not

detect an association between the MA or DEP factor and brain
morphology. This suggests that even though aspects of lifetime
psychopathology might at least be partially influenced by genetic
factors, this might not necessarily be detectable on a neural level.
It could thus be argued that a dimensional approach is even more
important than a narrow nosology as these associations might be
subtle and implications for translation into treatment options are
not as clear, yet.

Limitations
There are several limitations to be considered: First, as lifetime
psychopathology was assessed only at one point in this study, a
bias may arise in favor of symptoms that have occurred recently or
are currently present, as they could be more salient in the
individual’s memory. This bias could lead to an overemphasis on
these symptoms during the assessment process [80]. As a result,
symptoms that occurred in the past may be underreported or
forgotten entirely. We tried to circumvent these biases by carefully
examining every hospital record available for each patient, but
these were not available for all patients included here. In addition,
the used psychopathological scale did not include the full
symptomatic spectrum, which restricted the identification of
psychopathological factors.
Second, sample sizes of each diagnostic category were unequal.

The aim of the present study was to investigate syndrome-brain
structure and syndrome-genetic associations dimensionally rather
than within categorical diagnoses. The presence of psychotic and
manic symptoms in the MDD group might be limited, which may
result in restricted variance found for the PHS factor. While results
can be considered as diagnosis-shared, severity may be differing
across diagnoses.
Third, MRI techniques in general might not be able to detect

subtle differences in locations of effects if these occurs in close
proximity. In addition, true effects between groups might be
mapped onto the same neural circuit while in fact there are
differences on the underlying cellular level [81].
Fourth, pharmacological treatment was considered as three

dummy coded variables to account for the current intake of
antidepressants, antipsychotics, and mood stabilizers. This
approach does not take into account both the dosage and
lifetime cumulative intake of psychotropic medication, which
might have influenced our results.
Finally, the available sample size represents a limitation for the

genetic analyses, as the robust detection of genetic associations with
small effect sizes usually requires meta-analytical efforts involving
multiple cohorts [82]. Thus, the exploratory nature of the presented
GWAS should be considered in the interpretation of our findings.

CONCLUSION
This study comprehensively investigated the association of
lifetime psychopathological dimensions and brain morphometric
markers as well as underlying genetic factors. At the level of brain
imaging, GMV and CT reductions in temporal, occipital, and limbic
structures were found to be correlated with paranoid-
hallucinatory symptoms in a transdiagnostic sample. On the
genetic level, we identified genome-wide significant loci for MA
and DEP factors, as well as positive effects of specific PRS on
different factors. These findings suggest that genetic factors
contribute to the identified factor dimensions. The results
presented in this study highlight the importance of i) dimensional
modeling and ii) transdiagnostic research gaining a better
understanding of pathophysiological mechanisms underlying
MDD, BD and SSD.
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The data and code supporting the findings of this study can be accessed by
contacting the corresponding author (FS).

REFERENCES
1. Modinos G, Costafreda SG, van Tol M-J, McGuire PK, Aleman A, Allen P. Neu-

roanatomy of auditory verbal hallucinations in schizophrenia: A quantitative
meta-analysis of voxel-based morphometry studies. Cortex. 2013;49:1046–55.

2. Wong TY, Radua J, Pomarol-Clotet E, Salvador R, Albajes-Eizagirre A, Solanes A
et al. An overlapping pattern of cerebral cortical thinning is associated with both

A. Krug et al.

7

Translational Psychiatry          (2024) 14:235 

3  Publications 34



positive symptoms and aggression in schizophrenia via the ENIGMA consortium.
Psychol Med. 2020;50:2034–45.

3. Palaniyappan L, Balain V, Radua J, Liddle PF. Structural correlates of auditory
hallucinations in schizophrenia: A meta-analysis. Schizophr Res. 2012;137:169–73.

4. Kim GW, Kim YH, Jeong GW. Whole brain volume changes and its correlation with
clinical symptom severity in patients with schizophrenia: A DARTEL-based VBM
study. PLoS One. 2017;12. https://doi.org/10.1371/journal.pone.0177251.

5. Kircher T, Markov V, Krug A, Eggermann T, Zerres K, Nöthen MM, et al. Association
of the DTNBP1 genotype with cognition and personality traits in healthy subjects.
Psychol Med. 2009;39:1657–65.

6. Nenadic I, Sauer H, Gaser C. Distinct pattern of brain structural deficits in sub-
syndromes of schizophrenia delineated by psychopathology. Neuroimage.
2010;49:1153–60.

7. Kircher T, Krug A, Stratmann M, Ghazi S, Schales C, Frauenheim M, et al. A rating
scale for the assessment of objective and subjective formal thought and lan-
guage disorder (TALD). Schizophr Res. 2014;160:216–21.

8. Andreasen NC, Grove WM. Thought, language, and communication in schizo-
phrenia: diagnosis and prognosis. Schizophr Bull. 1986;12:348–59.

9. Stein F, Buckenmayer E, Brosch K, Meller T, Schmitt S, Ringwald KG et al.
Dimensions of Formal Thought Disorder and Their Relation to Gray- and White
Matter Brain Structure in Affective and Psychotic Disorders. Schizophr Bull. 2022.
https://doi.org/10.1093/SCHBUL/SBAC002.

10. Patel Y, Parker N, Shin J, Howard D, French L, Thomopoulos SI et al. Virtual
Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Dis-
orders. JAMA Psychiatry. 2020. https://doi.org/10.1001/jamapsychiatry.2020.2694.

11. Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, et al.
Identification of a Common Neurobiological Substrate for Mental Illness. JAMA
Psychiatry. 2015;72:305.

12. Brosch K, Stein F, Schmitt S, Pfarr JK, Ringwald KG, Thomas-Odenthal F et al.
Reduced hippocampal gray matter volume is a common feature of patients with
major depression, bipolar disorder, and schizophrenia spectrum disorders. Mol
Psychiatry. 2022;27. https://doi.org/10.1038/S41380-022-01687-4.

13. Repple J, Gruber M, Mauritz M, de Lange SC, Winter NR, Opel N et al. Shared and
specific patterns of structural brain connectivity across affective and psychotic
disorders. Biol Psychiatry. 2022. https://doi.org/10.1016/J.BIOPSYCH.2022.05.031.

14. Lee PH, Anttila V, Won H, Feng YCA, Rosenthal J, Zhu Z, et al. Genomic Rela-
tionships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Dis-
orders. Cell. 2019;179:1469–82.e11.

15. Serretti A, Olgiati P. Dimensions of major psychoses: A confirmatory factor ana-
lysis of six competing models. Psychiatry Res. 2004;127:101–9.

16. Serretti A, Rietschel M, Lattuada E, Krauss H, Schulze TG, Müller DJ, et al. Major
psychoses symptomatology: Factor analysis of 2241 psychotic subjects. Eur Arch
Psychiatry Clin Neurosci. 2001;251:193–8.

17. Reininghaus U, Böhnke JR, Hosang G, Farmer A, Burns T, McGuffin P, et al. Eva-
luation of the validity and utility of a transdiagnostic psychosis dimension
encompassing schizophrenia and bipolar disorder. Br J Psychiatry.
2016;209:107–13.

18. Lalousis PA, Wood SJ, Schmaal L, Chisholm K, Griffiths SL, Reniers RLEP et al.
Heterogeneity and Classification of Recent Onset Psychosis and Depression: A
Multimodal Machine Learning Approach. Schizophr Bull. 2021. https://doi.org/
10.1093/schbul/sbaa185.

19. Chang M, Womer FY, Edmiston EK, Bai C, Zhou Q, Jiang X, et al. Neurobiological
Commonalities and Distinctions Among Three Major Psychiatric Diagnostic
Categories: A Structural MRI Study. Schizophr Bull. 2018;44:65–74.

20. Koutsouleris N, Meisenzahl EM, Borgwardt S, Riecher-Rössler A, Frodl T, Kambeitz
J, et al. Individualized differential diagnosis of schizophrenia and mood disorders
using neuroanatomical biomarkers. Brain. 2015;138:2059–73.

21. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a Complex Trait: Evidence
from a Meta-analysis of Twin Studies. Arch Gen Psychiatry. 2003;60:1187–92.

22. Lichtenstein P, Yip BH, Björk C, Pawitan Y. Common genetic influences for schi-
zophrenia and bipolar disorder: A population-based study of 2 million nuclear
families. Lancet; 2009;373. https://doi.org/10.1016/S0140-6736(09)60072-6.

23. Bienvenu OJ, Davydow DS, Kendler KS. Psychiatric diseases versus behavioral
disorders and degree of genetic influence. Psychol Med. 2011;41:33–40.

24. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression:
Review and meta-analysis. Am J Psychiatry. 2000;157:1552–62.

25. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-
wide association study identifies 30 loci associated with bipolar disorder. Nat
Genet. 2019;51:793–803.

26. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al.
Genome-wide association analyses identify 44 risk variants and refine the genetic
architecture of major depression. Nat Genet. 2018;50:668–81.

27. Byrne EM, Zhu Z, Qi T, Skene NG, Bryois J, Pardinas AF et al. Conditional GWAS
analysis to identify disorder-specific SNPs for psychiatric disorders. Mol Psy-
chiatry. 2020. https://doi.org/10.1038/s41380-020-0705-9.

28. Lewis CM, Vassos E. Polygenic risk scores: From research tools to clinical instru-
ments. Genome Med. 2020;12. https://doi.org/10.1186/s13073-020-00742-5.

29. Ruderfer DM, Ripke S, McQuillin A, Boocock J, Stahl EA, Pavlides JMW, et al.
Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Sub-
phenotypes. Cell. 2018;173:1705–1715.e16.

30. Kircher T, Wöhr M, Nenadic I, Schwarting R, Schratt G, Alferink J, et al. Neu-
robiology of the major psychoses: a translational perspective on brain struc-
ture and function-the FOR2107 consortium. Eur Arch Psychiatry Clin Neurosci.
2018;1:3.

31. Stein F, Meller T, Brosch K, Schmitt S, Ringwald K, Pfarr JK et al. Psychopatholo-
gical Syndromes Across Affective and Psychotic Disorders Correlate With Gray
Matter Volumes. Schizophr Bull. 2021;47:1740–0.

32. Wittchen HU, Wunderlich U, Gruschwitz S, Zaudig M. SKID I. Strukturiertes Kli-
nisches Interview für DSM-IV. Achse I: Psychische Störungen. Interviewheft und
Beurteilungsheft. Eine deutschsprachige, erweiterte Bearb. d. amerikanischen
Originalversion des SKID I. 1997. Göttingen: Hogrefe.

33. McGuffin P, Farmer A, Harvey I. A polydiagnostic application of operational cri-
teria in studies of psychotic illness: Development and reliability of the OPCRIT
system. Arch Gen Psychiatry. 1991;48:764–70.

34. Stein F, Lemmer G, Schmitt S, Brosch K, Meller T, Fischer E, et al. Factor analyses of
multidimensional symptoms in a large group of patients with major depressive
disorder, bipolar disorder, schizoaffective disorder and schizophrenia. Schizophr
Res. 2020;218:38–47.

35. Papenberg M. minDiff: Minimize Differences Between Groups (R package version
0.01-3) 2019. [Computer software]. Available online at: https://github.com/m-Py/
minDiff.

36. R Core Team. R: A language and environment for statistical computing. R
Foundation for Statistical Computing. 2021. Vienna, Austria. https://www.R-
project.org/.

37. Revelle W. psych: Procedures for Psychological, Psychometric, and Personality
Research. 2022. https://cran.r-project.org/web/packages/psych/citation.html.
Accessed 16 Mar 2023.

38. Luo L, Arizmendi C, Gates KM. Exploratory Factor Analysis (EFA) Programs in R.
Multidiscipl J. 2019;26:819–26.

39. Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika.
1951;16:234–97.

40. Muthén LK, Muthén BO. Mplus User’s Guide. Eighth Edition. (1998-2017) Los
Angeles, CA: Muthén & Muthén.

41. Maydeu-Olivares A. Maximum Likelihood Estimation of Structural Equation
Models for Continuous Data: Standard Errors and Goodness of Fit. Struct Equ
Model. 2017;24:383–94.

42. Bentler PM. Comparative Fit Indexes in Structural Models. Psychol Bull.
1990;107:238–46.

43. Steiger JH. Structural Model Evaluation and Modification: An Interval Estimation
Approach. Multivar Behav Res. 1990;25:173–80.

44. Ho D, Kosuke I, King G, Stuart E. Matchit: Nonparametric Preprocessing for
Parametric Causal Inference. J Stat Softw. 2011;42:1–28.

45. Vogelbacher C, Möbius TWD, Sommer J, Schuster V, Dannlowski U, Kircher T, et al.
The Marburg-Münster Affective Disorders Cohort Study (MACS): A quality assur-
ance protocol for MR neuroimaging data. Neuroimage. 2018;172:450–60.

46. Brosch K, Stein F, Meller T, Schmitt S, Yuksel D, Ringwald KG et al. DLPFC volume
is a neural correlate of resilience in healthy high-risk individuals with both
childhood maltreatment and familial risk for depression. Psychol Med.
2022;52:4139–45.

47. Rimol LM, Hartberg CB, Nesvåg R, Fennema-Notestine C, Hagler DJ, Pung CJ, et al.
Cortical Thickness and Subcortical Volumes in Schizophrenia and Bipolar Dis-
order. Biol Psychiatry. 2010;68:41–50.

48. Hibar DP, Westlye LT, Van Erp TGM, Rasmussen J, Leonardo CD, Faskowitz J, et al.
Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry.
2016;21:1710–6.

49. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26:839–51.
50. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage.

2007;38:95–113.
51. Dahnke R, Yotter RA, Gaser C. Cortical thickness and central surface estimation.

Neuroimage. 2013;65:336–48.
52. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An

automated labeling system for subdividing the human cerebral cortex on MRI
scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

53. Meller T, Schmitt S, Stein F, Brosch K, Mosebach J, Yüksel D et al. Associations of
schizophrenia risk genes ZNF804A and CACNA1C with schizotypy and modula-
tion of attention in healthy subjects. Schizophr Res. 2019;208. https://doi.org/
10.1016/j.schres.2019.04.018.

54. Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-
generation PLINK: Rising to the challenge of larger and richer datasets. Giga-
science. 2015;4. https://doi.org/10.1186/s13742-015-0047-8.

A. Krug et al.

8

Translational Psychiatry          (2024) 14:235 

3  Publications 35

https://doi.org/10.1371/journal.pone.0177251
https://doi.org/10.1371/journal.pone.0177251
https://doi.org/10.1093/SCHBUL/SBAC002
https://doi.org/10.1093/SCHBUL/SBAC002
https://doi.org/10.1001/jamapsychiatry.2020.2694
https://doi.org/10.1001/jamapsychiatry.2020.2694
https://doi.org/10.1038/S41380-022-01687-4
https://doi.org/10.1038/S41380-022-01687-4
https://doi.org/10.1016/J.BIOPSYCH.2022.05.031
https://doi.org/10.1016/J.BIOPSYCH.2022.05.031
https://doi.org/10.1093/schbul/sbaa185
https://doi.org/10.1093/schbul/sbaa185
https://doi.org/10.1093/schbul/sbaa185
https://doi.org/10.1093/schbul/sbaa185
https://doi.org/10.1016/S0140-6736(09)60072-6
https://doi.org/10.1016/S0140-6736(09)60072-6
https://doi.org/10.1038/s41380-020-0705-9
https://doi.org/10.1038/s41380-020-0705-9
https://doi.org/10.1186/s13073-020-00742-5
https://doi.org/10.1186/s13073-020-00742-5
https://github.com/m-Py/minDiff
https://github.com/m-Py/minDiff
https://github.com/m-Py/minDiff
https://github.com/m-Py/minDiff
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://cran.r-project.org/web/packages/psych/citation.html
https://cran.r-project.org/web/packages/psych/citation.html
https://doi.org/10.1016/j.schres.2019.04.018
https://doi.org/10.1016/j.schres.2019.04.018
https://doi.org/10.1016/j.schres.2019.04.018
https://doi.org/10.1016/j.schres.2019.04.018
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s13742-015-0047-8


55. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et al. A
global reference for human genetic variation. Nature. 2015;526:68–74.

56. Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for
thousands of genomes. Nat Methods. 2012;9:179–81.

57. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation
method for the next generation of genome-wide association studies. PLoS Genet.
2009;5. https://doi.org/10.1371/journal.pgen.1000529.

58. McCaw ZR, Lane JM, Saxena R, Redline S, Lin X. Operating characteristics of the
rank-based inverse normal transformation for quantitative trait analysis in
genome-wide association studies. Biometrics. 2020;76:1262–72.

59. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized Gene-Set
Analysis of GWAS Data. PLoS Comput Biol. 2015;11:1–19.

60. Watanabe K, Taskesen E, Van Bochoven A, Posthuma D. Functional mapping and
annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826 https://
doi.org/10.1038/s41467-017-01261-5.

61. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom:
regional visualization of genome-wide association scan results. Bioinformatics
Appl Note. 2010;26:2336–7.

62. Ripke S, Neale BM, Corvin A, Walters JTR, Farh KH, Holmans PA, et al. Biological
insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

63. Ge T, Chen CY, Ni Y, Feng YCA, Smoller JW. Polygenic prediction via Bayesian
regression and continuous shrinkage priors. Nat Commun. 2019;10:1–10.

64. Andlauer TFM, Guzman-Parra J, Streit F, Strohmaier J, González MJ, Gil Flores S,
et al. Bipolar multiplex families have an increased burden of common risk var-
iants for psychiatric disorders. Mol Psychiatry. 2021;26:1286–98.

65. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society:
Series B (Methodological). 1995;57:289-300. https://doi.org/10.1111/j.2517-
6161.1995.tb02031.x1995.

66. David FS, Stein F, Andlauer TFM, Streit F, Witt SH, Herms S, et al. Genetic con-
tributions to transdiagnostic symptom dimensions in patients with major
depressive disorder, bipolar disorder, and schizophrenia spectrum disorders.
Schizophr Res. 2023;252:161–71.

67. Reininghaus U, Böhnke JR, Chavez-Baldini U, Gibbons R, Ivleva E, Clementz BA,
et al. Transdiagnostic dimensions of psychosis in the Bipolar-Schizophrenia
Network on Intermediate Phenotypes (B-SNIP). World Psychiatry. 2019;18:67–76.

68. Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Duncan L, et al.
Analysis of shared heritability in common disorders of the brain. Science.
2018;360:eaap8757.

69. Schoorl J, Barbu MC, Shen X, Harris MR, Adams MJ, Whalley HC et al. Grey and
white matter associations of psychotic-like experiences in a general population
sample (UK Biobank). Transl Psychiatry. 2021;11. https://doi.org/10.1038/s41398-
020-01131-7.

70. Van Tol MJ, Van Der Meer L, Bruggeman R, Modinos G, Knegtering H, Aleman A.
Voxel-based gray and white matter morphometry correlates of hallucinations in
schizophrenia: The superior temporal gyrus does not stand alone. Neuroimage
Clin. 2014;4:249–57.

71. Nickl-Jockschat T, Schneider F, Pagel AD, Laird AR, Fox PT, Eickhoff SB. Pro-
gressive pathology is functionally linked to the domains of language and emo-
tion: Meta-analysis of brain structure changes in schizophrenia patients. Eur Arch
Psychiatry Clin Neurosci. 2011;261. https://doi.org/10.1007/s00406-011-0249-8.

72. Stan AD, Tamminga CA, Han K, Kim JB, Padmanabhan J, Tandon N, et al. Asso-
ciating Psychotic Symptoms with Altered Brain Anatomy in Psychotic Disorders
Using Multidimensional Item Response Theory Models. Cereb Cortex.
2020;30:2939–47.

73. van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, et al. Cortical
Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control
Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis
(ENIGMA) Consortium. Biol Psychiatry. 2018;84:644–54.

74. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference
sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and
functional annotation. Nucleic Acids Res. 2016;44:D733–D745.

75. Gottschall PE, Howell MD. ADAMTS expression and function in central nervous
system injury and disorders. Matrix Biol. 2015;44–46:70–76.

76. Alsulami M, Munawar N, DIllon E, Oliviero G, Wynne K, Alsolami M, et al. SETD1A
methyltransferase is physically and functionally linked to the DNA damage repair
protein RAD18. Mol Cell Proteom. 2019;18:1428–36.

77. Singh T, Kurki MI, Curtis D, Purcell SM, Crooks L, McRae J, et al. Rare loss-of-
function variants in SETD1A are associated with schizophrenia and develop-
mental disorders. Nat Neurosci. 2016;19:571–7.

78. Singh T, Neale BM, Daly MJ. Exome sequencing identifies rare coding variants in
10 genes which confer substantial risk for schizophrenia on behalf of the Schi-
zophrenia Exome Meta-Analysis (SCHEMA) Consortium. medRxiv. 2020. https://
www.medrxiv.org/content/10.1101/2020.09.18.20192815v1.

79. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of
summary data from GWAS and eQTL studies predicts complex trait gene targets.
Nat Genet. 2016;48:481–7.

80. Wenze SJ, Gunthert KC, German RE. Biases in Affective Forecasting and Recall in
Individuals With Depression and Anxiety Symptoms. Pers Soc Psychol Bull.
2012;38:895–906.

81. Zeighami Y, Bakken TE, Nickl-Jockschat T, Peterson Z, Jegga AG, Miller JA et al. A
comparison of anatomic and cellular transcriptome structures across 40 human brain
diseases. PLoS Biol. 2023;21. https://doi.org/10.1371/JOURNAL.PBIO.3002058.

82. Sullivan PF, Agrawal A, Bulik CM, Andreassen OA, Børglum AD, Breen G, et al.
Psychiatric Genomics: An Update and an Agenda. Am J Psychiatry.
2018;175:15–27.

ACKNOWLEDGEMENTS
We thank the patients participating in this study and the staff for their help with
recruitment and data collection. A detailed list of acknowledgements can be found
here: www.for2107.de/acknowledgements.

AUTHOR CONTRIBUTIONS
AK* & FS*: data collection, study design, analysis, data interpretation, literature
search, writing, figures, *contributed equally; FSD: data collection, study design,
genetic analysis, data interpretation, figure, literature search, writing; TFMA, SS, KB,
JKP, KGR, TM, FTO, SM, KT, AW, LW, HL, DG, NO, JR, FSTR, SW: data collection and
curation, review; AP: data interpretation, review; TH, MR, MMN, IN, UD, TK: funding
acquisition, data collection, data curation, review; AJF: data collection, study design,
genetic analysis, data interpretation, writing.

FUNDING
This work is part of the German multicentre consortium “Neurobiology of Affective
Disorders. A translational perspective on brain structure and function“, funded by the
German Research Foundation (Deutsche Forschungsgemeinschaft DFG; Forschungs-
gruppe/Research Unit FOR2107). Principal investigators (PIs) with respective areas of
responsibility in the FOR2107 consortium are: Work Package WP1, FOR2107/MACS
cohort and brainimaging: Tilo Kircher (speaker FOR2107; DFG grant numbers KI588/
14-1, and KI588/14-2, and KI588/20-1, KI588/22-1), Udo Dannlowski (co-speaker
FOR2107; DA 1151/5-1, DA 1151/5-2), Axel Krug (KR 3822/5-1, KR 3822/7-2), Igor
Nenadić (NE2254/1-2, NE2254/2-1, NE2254/3-1, NE2254/4-1), Carsten Konrad (KO
4291/3-1). WP5, genetics: Marcella Rietschel (RI 908/11-1, RI 908/11-2), Markus Nöthen
(NO 246/10-1, NO 246/10-2), Stephanie Witt (WI 3439/3-1, WI 3439/3-2). The study
was in part supported by grants from UKGM and Forschungscampus Mittelhessen to
Igor Nenadić. Biomedical financial interests or potential conflicts of interest: Tilo
Kircher received unrestricted educational grants from Servier, Janssen, Recordati,
Aristo, Otsuka, neuraxpharm. Open Access funding enabled and organized by Projekt
DEAL.

COMPETING INTERESTS
The authors declare no competing interests.

ETHICS APPROVAL
Patients gave written informed consent to the study protocol. This study was
approved by the local Ethics Committee Marburg (AZ:07/14) and Münster (AZ:2014-
422-b-S) according to the Declaration of Helsinki.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41398-024-02936-6.

Correspondence and requests for materials should be addressed to Frederike Stein.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

A. Krug et al.

9

Translational Psychiatry          (2024) 14:235 

3  Publications 36

https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.1038/s41467-017-01261-5
https://doi.org/10.1038/s41467-017-01261-5
https://doi.org/10.1038/s41467-017-01261-5
https://doi.org/10.1038/s41467-017-01261-5
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x1995
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x1995
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x1995
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x1995
https://doi.org/10.1038/s41398-020-01131-7
https://doi.org/10.1038/s41398-020-01131-7
https://doi.org/10.1038/s41398-020-01131-7
https://doi.org/10.1038/s41398-020-01131-7
https://doi.org/10.1007/s00406-011-0249-8
https://doi.org/10.1007/s00406-011-0249-8
https://www.medrxiv.org/content/10.1101/2020.09.18.20192815v1
https://www.medrxiv.org/content/10.1101/2020.09.18.20192815v1
https://www.medrxiv.org/content/10.1101/2020.09.18.20192815v1
https://www.medrxiv.org/content/10.1101/2020.09.18.20192815v1
https://doi.org/10.1371/JOURNAL.PBIO.3002058
https://doi.org/10.1371/JOURNAL.PBIO.3002058
http://www.for2107.de/acknowledgements
http://www.for2107.de/acknowledgements
https://doi.org/10.1038/s41398-024-02936-6
https://doi.org/10.1038/s41398-024-02936-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://www.nature.com/reprints
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

A. Krug et al.

10

Translational Psychiatry          (2024) 14:235 

3  Publications 37

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


3 Publications  38 
 

 

3.3 Genomics yields biological and phenotypic insights into bipolar disorder 

More than 300 authors contributed to this large study of the Bipolar Disorder Working 

Group of the Psychiatric Genomics Consortium. The first, shared second and shared last 

authors are O'Connell KS, Koromina M*, van der Veen T*, Boltz T*, David FS*, Yang 

JMK*, Lin K*, Wang X*, Coleman JRI*, Mitchell BL*, McGrouther CC*, Rangan AV*, Lind 

PA*, Koch E*, Harder A*, Parker N*, Bendl J*, McQuillin A+, Forstner AJ+, Mullins N+, Di 

Florio A+, Ophoff RA+, and Andreassen OA+. 

*shared second authors 

+shared last authors 

In this study, we conducted the largest GWAS meta-analysis of BD to date and performed 

a plethora of downstream analyses to obtain novel insights into the biology and genetic 

architecture of BD. As part of the analytical team, I played a significant role in the planning 

of the scientific work, data collection, evaluation and interpretation. Above all, I was 

responsible for the cell type-specific analysis and, together with Maria Koromina and Toni 

Boltz, for the quantitative trait loci integration analyses. 

The study was published in Nature on January 22, 2025: 

O'Connell KS, Koromina M, van der Veen T, Boltz T, David FS, … Andreassen OA. 

Genomics yields biological and phenotypic insights into bipolar disorder. Nature 2025; 

639: 968–975 
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Genomics yields biological and phenotypic 
insights into bipolar disorder

Bipolar disorder is a leading contributor to the global burden of disease1. Despite high 
heritability (60–80%), the majority of the underlying genetic determinants remain 
unknown2. We analysed data from participants of European, East Asian, African 
American and Latino ancestries (n = 158,036 cases with bipolar disorder, 2.8 million 
controls), combining clinical, community and self-reported samples. We identified 
298 genome-wide significant loci in the multi-ancestry meta-analysis, a fourfold 
increase over previous findings3, and identified an ancestry-specific association in  
the East Asian cohort. Integrating results from fine-mapping and other variant-to- 
gene mapping approaches identified 36 credible genes in the aetiology of bipolar 
disorder. Genes prioritized through fine-mapping were enriched for ultra-rare 
damaging missense and protein-truncating variations in cases with bipolar disorder4, 
highlighting convergence of common and rare variant signals. We report differences 
in the genetic architecture of bipolar disorder depending on the source of patient 
ascertainment and on bipolar disorder subtype (type I or type II). Several analyses 
implicate specific cell types in the pathophysiology of bipolar disorder, including 
GABAergic interneurons and medium spiny neurons. Together, these analyses provide 
additional insights into the genetic architecture and biological underpinnings of 
bipolar disorder.

Bipolar disorder (BD) is an often lifelong mood disorder that impairs 
quality of life, functional ability and is associated with suicidality5. 
Symptoms typically occur in early adulthood5, with a similar preva-
lence and incidence rate across the world6. Current treatment options 
include pharmacotherapies such as mood stabilizers, antipsychotics 
and antidepressants, preferably administered in conjunction with 
psychosocial interventions1,5. However, approximately one-third of 
patients relapse within the first year of treatment7.

The heterogeneous nature of the disorder is noted in the fifth edition 
of Diagnostic and Statistical Manual of Mental Disorders (DSM-5), which 
includes the category ‘bipolar and related disorders’, encompassing BD 
type I (BDI), BD type II (BDII) and cyclothymic disorders8. The 11th revi-
sion of International Classification of Diseases (ICD-11) also recognizes 
BDI and BDII as distinct subtypes9. BDI is characterized by episodes of 
both mania and depression, whereas BDII includes episodes of hypo-
mania and depression. Advances in genetics and neuroimaging have 
begun to make inroads into the underlying pathophysiology of BD. The 
Psychiatric Genomics Consortium (PGC) Bipolar Disorder Working 
Group has spearheaded genetic discoveries in BD10,11. A genome-wide 
association study (GWAS) of 41,917 individuals with BD and 371,549 
control individuals identified 64 loci and highlighted calcium channel 
antagonists as potential targets for drug repurposing3. Brain imaging 
studies have shown decreased cortical thickness, lower subcortical 
volume and disrupted white matter integrity associated with BD, as 
well as brain alterations associated with medication use12. To date, 
this research has been conducted almost exclusively on individuals 
of European (EUR) ancestry.

Here we present the largest to date multi-ancestry GWAS meta- 
analysis of 158,036 individuals with BD and 2,796,499 control indi-
viduals, combining clinical, community and self-reported samples. 

We identified 337 linkage disequilibrium-independent genome-wide 
significant variants that map to 298 loci. We hypothesized that dif-
ferences in source of patient ascertainment, BD subtype and genetic 
ancestry might lead to differences in genetic architecture, thus we 
also analysed these groups separately. We provide new insights into 
the genetic architecture and neurobiological mechanisms involved in 
BD, with the potential to inform the development of new treatments 
and precision medicine approaches.

Study population
The current GWAS meta-analysis includes 79 cohorts. Case definitions 
were based on a range of assessment methods: (semi-)structured clini-
cal interviews (clinical), medical records, registries and questionnaire 
data (community) and self-reported surveys (self-reported). Details of 
the cohorts, including sample size, ancestry, and inclusion or exclusion 
criteria for individuals, are provided in Supplementary Tables 1 and 
2 and the Supplementary Note. BD subtype data were available for 
a subset of individuals within the clinical and community groups. Of 
individuals with BD (cases), 82.5% in the clinical ascertainment group 
had BDI, as did 68.7% of individuals in the community ascertainment 
group (X2 = 730, P < 2.2 × 10−16; Supplementary Table 2). The total num-
ber of samples available for analyses included 158,036 cases with BD 
and 2,796,499 controls (effective n (neff) =  535,720; see Methods).

Genetic architecture of BD
Given our hypothesis that samples ascertained and assessed by dif-
ferent methods could lead to differences in the genetic architecture, 
we performed meta-analyses separately for clinical, community and 
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self-reported samples. Using linkage disequilibrium score regression 
(LDSC)13 and assuming a population prevalence of 2%14, BD ascertained 
from clinical samples was more heritable (single-nucleotide polymor-
phism heritability (SNP-h2) = 0.22; s.e. = 0.01) than BD ascertained from 
community samples (SNP-h2 = 0.05; s.e. = 0.003) or self-reported 
(SNP-h2 = 0.08; s.e. = 0.003; Supplementary Table 3). We used genetic 
correlation13 and MiXeR15,16 analyses to further investigate the genetic 
architecture of BD based on assessment. Although there was a strong 
genetic correlation (rg) between clinical and community samples 
(rg = 0.95; s.e. = 0.03), the genetic correlation for self-reported BD was 
significantly greater (P = 7.4 × 10−28) with community samples (rg = 0.79; 
s.e. = 0.02) than with clinical samples (rg = 0.47; s.e. = 0.02; Extended 
Data Fig. 1).

MiXeR estimated the greatest polygenicity for BD ascertained from 
self-reported samples, followed by clinical and then community sam-
ples (Fig. 1 and Supplementary Table 4). BD in clinical samples was 
estimated to be the most discoverable, whereas self-reported BD had 
the lowest discoverability (Extended Data Fig. 2 and Supplementary 
Table 4). Almost all variants estimated to influence BD in community 
samples were shared with BD ascertained from clinical samples. The 
majority of clinical and community BD-influencing variants were also 
shared with self-reported BD (Fig. 1 and Extended Data Fig. 3). The 
mean correlation of variant effects in the shared components was 
high across all groups (community and self-reported rg_shared = 0.95 
(s.e. = 0.03), community and clinical rg_shared = 0.99 (s.e. = 0.01) and clini-
cal and self-reported rg_shared = 0.74 (s.e. = 0.06; Supplementary Table 4).

To analyse BD subtypes, we used available GWAS summary statis-
tics for BDI (25,060 individuals) and BDII (6,781 individuals)3, which 
come from a subset of the clinical and community samples. Assuming 
a population prevalence of 1%17, BDI was more heritable (SNP-h2 = 0.21; 
s.e. = 0.01) than BDII (SNP-h2 = 0.11; s.e. = 0.01). BDI and BDII were highly,
but imperfectly, correlated (rg = 0.88; s.e. = 0.05). The genetic cor-
relations between both subtypes and the community samples were 
high (BDI rg = 0.85; s.e. = 0.03, BDII rg = 0.95; s.e. = 0.06). By contrast,

the genetic correlation between BDI and self-reported BD (rg = 0.42; 
s.e. = 0.02) was significantly lower (P = 7.1 × 10−13) than between BDII
and self-reported BD (rg = 0.76; s.e. = 0.05; Extended Data Fig. 1).

Given the difference in proportion of individuals with BDI and BDII 
within the clinical and community cohorts, we evaluated the genetic 
correlation between BD within clinical and community cohorts, and 
self-reported BD, after conditioning on the genetic risk for BDI and 
BDII. After conditioning, the genetic correlation between self-reported 
BD and BD within community cohorts (rg = 0.92; s.e. = 0.09) was not 
significantly different (P = 0.10) than BD in clinical cohorts (rg = 0.71; 
s.e. = 0.13).

We show that genetic architecture is different across ascertainment 
and subtypes, and that these differences appear to be driven by the 
proportion of BD subtype within the sample. Despite these observed 
differences, the high correlations of variant effects in the shared com-
ponents across ascertainment groups support our decision to use a 
meta-analysis for all BD cases.

Ancestry-specific GWAS meta-analyses
We conducted separate meta-analyses in four ancestral groups. Because 
the self-reported data differed in genetic architecture from the clinical 
and community data, we performed separate meta-analyses with and 
without the inclusion of the self-reported data. Supplementary Table 2 
provides a summary of the GWAS meta-analyses, and details of associ-
ated loci are described in Supplementary Tables 5–7. Ancestry-specific 
estimates of SNP heritability and cross-ancestry genetic correlations 
are provided in Supplementary Table 3.

We identified 261 independent genome-wide significant variants 
mapping to 221 loci associated with BD in EUR ancestry meta-analyses 
that included self-reported data, and 94 independent genome-wide 
significant variants mapping to 88 loci without self-reported data 
(Supplementary Tables 5 and 6). There were 92 of the 94 independ-
ent genome-wide significant variants available for meta-analysis in the 
self-reported cohorts, of which 78 (85%) were concordant for direction 
of effect (Supplementary Table 6).

In the East Asian (EAS) ancestry meta-analysis, we identified two 
BD-associated loci, one of which is novel with an ancestry-specific 
index variant (rs117130410, chromosome 4: 105734758, build GRCh37; 
Extended Data Fig. 4 and Supplementary Table 7). Although this variant 
had a frequency of 16% and 9% in EAS individuals with BD and controls, 
respectively, it is monomorphic in non-Asian populations. The second 
locus (rs174576, chromosome 11: 61603510, build GRCh37; Supple-
mentary Table 7) was only identified when the self-reported data were 
excluded from the meta-analysis as the index variant was not available 
in the self-reported data. This locus has been identified previously and 
implicates the FADS1 and FADS2 genes3,18. No genome-wide signifi-
cant loci were observed in the African American (AFR) or Latino (LAT) 
ancestry meta-analyses.

Multi-ancestry meta-analysis
A multi-ancestry meta-analysis of all the datasets identified 337 linkage 
disequilibrium-independent genome-wide significant variants map-
ping to 298 loci (Extended Data Fig. 4 and Supplementary Table 8). 
There was minimal test statistic inflation due to uncontrolled popula-
tion stratification after correction for principal components in each 
dataset (LDSC intercept = 1.052 (s.e. = 0.016), attenuation ratio = 0.071 
(s.e. = 0.013)).

Of the 298 loci identified in this multi-ancestry meta-analysis, 267 
are novel for BD. Of the 64 previously reported BD-associated loci3, 31 
met genome-wide significance in the present analysis containing all 
samples, and of the 33 that did not, 25 met genome-wide significance 
in either the clinical samples or in the meta-analysis that excluded 
self-reported data (Supplementary Table 9). Moreover, the direction 
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Fig. 1 | Genetic correlation and bivariate MiXeR estimates for the genetic 
overlap of BD ascertainment and subtypes. Trait-influencing genetic variants 
shared between each pair (grey) and unique to each trait (colours) are shown. 
The numbers within the Venn diagrams indicate the estimated number of 
trait-influencing variants (and standard errors; in thousands) that explain 90% 
of SNP-h2 in each phenotype. The size of the circles reflects the polygenicity  
of each trait, with larger circles corresponding to greater polygenicity. The 
estimated genetic correlation (rg) and standard error between BD and each 
trait of interest from LDSC are shown below the corresponding Venn diagram. 
Clinical and community samples were stratified into BDI and BDII subtypes  
if subtype data were available. Model fit statistics indicated that MiXeR- 
modelled overlap for bivariate comparisons including the BD subtypes (BDI 
and BDII) were not distinguishable from minimal or maximal possible overlap, 
and therefore are to be interpreted with caution (see Supplementary Table 4).
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of association for all top SNPs (12,151 SNPs with P < 1 × 10−5) from the 
previous GWAS was consistent with the direction of association in this 
multi-ancestry meta-analysis of all samples (Supplementary Table 9).

When considering the effect of ancestry on the discovery of these 
298 loci, one locus (index SNP rs7248481, chromosome 19: 13079957– 
13122567) was most strongly associated in the EAS ancestry meta- 
analysis. For all other loci, the association was strongest in the EUR 
ancestry meta-analysis. The majority of the 298 loci were nominally 
significant (P < 0.05) within the AFR (290 of 298 loci), EAS (257 of 298 
loci) and LAT (293 of 298 loci) ancestry-specific meta-analyses, high-
lighting consistency of signal across the ancestry groups (Supplemen-
tary Table 8).

We estimated the proportion of SNP-h2 accounted for by SNPs within 
genome-wide significant loci19. Compared with only 8.3% accounted for 
by SNPs within the 64 previously identified loci3, SNPs within the 298 
loci account for 18.5% of the SNP-h2 of BD (Supplementary Table 10). 
Moreover, SNPs within the 298 loci also accounted for higher propor-
tions of SNP-h2 in the clinical (64 loci: 8.5%; 298 loci: 17.8%), BDI (64 loci:  
8.3%; 298 loci: 17.5%), community (64 loci: 4.8%; 298 loci: 22.6%) and 
self-reported (64 loci: 2.0%; 298 loci: 21.1%) samples.

We carried out sensitivity meta-analyses excluding the self-reported 
samples (leaving 67,948 cases and 867,710 controls; neff = 191,722) 
and identified 116 independent genome-wide significant variants 
mapping to 105 loci (Supplementary Table 11). There was minimal 
test statistic inflation due to uncontrolled population stratification 
after correction for principal components in each dataset (LDSC 
intercept = 1.050; s.e. = 0.012, attenuation ratio = 0.086; s.e. = 0.018). 
Analysis of self-reported cohorts only (90,088 cases and 1,928,789 
controls; neff = 344,088) identified 126 loci (Supplementary Table 12). 
Of the 116 independent genome-wide significant variants identified 

in the meta-analysis excluding the self-reported samples, 110 variants 
were available for meta-analysis in the self-reported samples, of which 
96 (87%) were concordant (Supplementary Table 11).

Our multi-ancestry meta-analysis identified 298 loci, implicating 337 
linkage disequilibrium-independent genome-wide significant variants.

Genetic correlations with other traits
Genome-wide genetic correlations were estimated between EUR ances-
try BD GWAS (with and without self-reported data, and when stratified 
by ascertainment and subtypes) and human diseases and traits via 
the Complex Traits Genetics Virtual Lab (https://vl.genoma.io) web 
platform20 (Fig. 2 and Supplementary Tables 13–15). Most psychiatric 
disorders, including major depressive disorder, post-traumatic stress 
disorder, attention deficit–hyperactivity disorder (ADHD), borderline 
personality disorder and autism spectrum disorder, were more strongly 
correlated with the full meta-analysis, BDII and BD in community and 
self-reported samples, than with BDI and BD in clinical cohorts (Fig. 2). 
By contrast, schizophrenia was more strongly genetically correlated 
with the full BD meta-analysis excluding self-reported data and with BDI 
and BD in clinical samples (Fig. 2). This pattern of correlations, together 
with the observed patterns of genetic architecture, suggest that the 
self-reported samples include a high proportion of people with BDII.

Polygenic association with BD
Polygenic risk score (PRS) analyses were performed using PRS-CS-auto21 
in 55 EUR ancestry cohorts for which individual-level genotype and 
phenotype data were available (40,992 cases and 80,215 controls), as 
well as one cohort of AFR ancestry (347 cases and 669 controls) and 
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calculated from the two-sided z-statistics computed by dividing the estimated 
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Details are provided in Supplementary Table 13. PTSD, post-traumatic stress 
disorder.
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three cohorts of EAS ancestry (4,473 cases and 65,923 controls; Sup-
plementary Tables 16–20). In the EUR ancestry cohorts, the variance 
explained by the multi-ancestry GWAS without the self-reported data 
(R2 = 0.090, s.e. = 0.019) was significantly greater than that explained by 
both the multi-ancestry GWAS including self-reported data (R2 = 0.058, 
s.e. = 0.017, P = 2.72 × 10−4) and the EUR ancestry GWAS excluding
the self-reported data (R2 = 0.084, s.e. = 0.018, P = 5.62 × 10−3; Fig. 3a 
and Supplementary Tables 16 and 21). Individuals in the top quintile  
(top 20%) for this multi-ancestry GWAS without the self-reported data 
PRS had an odds ratio of 7.06 (95% CI = 3.9–10.4) of being affected 
with BD compared with individuals in the middle quintile. The cor-
responding median area under the receiver operating characteris-
tic curve was 0.70 (95% CI = 0.67–0.73). Therefore, the BD liability 
explained remains insufficient for diagnostic prediction in the general  
population.

Similarly, PRS derived from GWAS excluding self-reported data 
explained significantly more variance in cases of BDI (Fig. 3b and Sup-
plementary Tables 17) and in clinical cohorts (Fig. 3d and Supplemen-
tary Tables 19) than when self-reported data were included. Conversely, 
inclusion of the self-reported data yielded greater median R2 estimates 
for the PRS in cases of BDII (Fig. 3c and Supplementary Tables 18) and in 
community cohorts (Fig. 3e and Supplementary Tables 20); however, 
these differences were not significant. These results are probably due 
to increased phenotypic heterogeneity when the self-reported data 
were included in the PRS discovery sample (see Fig. 2).

PRS analysis of three clinically ascertained EAS cohorts revealed 
that the PRSs derived from GWAS excluding the self-reported data 
(Taiwan: EUR ancestry PRS (EUR-PRS) R2 = 0.069, multi-ancestry PRS 
(multi-PRS) R2 = 0.075; Japan: EUR-PRS R2 = 0.027, multi-PRS R2 = 0.025; 
Korea: EUR-PRS R2 = 0.016, multi-PRS R2 = 0.022) performed better than 
those that included self-reported data (Taiwan: EUR-PRS R2 = 0.026, 

multi-PRS R2 = 0.036; Japan: EUR-PRS R2 = 0.015, multi-PRS R2 = 0.015; 
Korea: EUR-PRS R2 = 0.014, multi-PRS R2 = 0.017; Supplementary 
Table 22).

In a clinically ascertained AFR target cohort, the inclusion of self- 
reported data increased the explained variance (R2) by both the 
multi-PRS and the EUR-PRS from 0.010 to 0.23 or 0.22, respectively  
(Supplementary Table 22).

Pathway, tissue and cell-type enrichment
Gene set enrichment analyses were performed on the summary 
statistics derived from the multi-ancestry meta-analysis including 
self-reported data, using MAGMA22. We identified significant enrich-
ment of six gene sets (Supplementary Table 23) related to synapse and 
transcription factor activity. The association signal was enriched among 
genes expressed in the brain (Supplementary Table 24), and specifically 
in the early-to-mid-prenatal stages of development (Supplementary 
Table 25). Single-cell enrichment analyses of brain cell types indicate 
involvement of neuronal populations from different brain regions, 
including hippocampal pyramidal neurons and interneurons of the 
prefrontal cortex and hippocampus (Supplementary Fig. 1), and were 
largely consistent with findings from the previous PGC-BD GWAS3. 
Similar patterns of enrichment were observed based on ascertainment 
and subtype (Supplementary Fig. 2). In addition, GSA-MiXeR19 high-
lighted enrichment of specific dopamine-related and calcium-related 
biological processes and molecular functions, as well as GABAergic 
interneuron development, respectively (Supplementary Table 26).

A recent study23 has analysed single-nucleus RNA sequencing data 
of 3.369 million nuclei from 106 anatomical dissections within 10 brain 
regions and divided cells into 31 superclusters and 461 clusters, respec-
tively, based on principal component analysis of sequenced genes.  
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Fig. 3 | Phenotypic variance in BD in EUR cohorts explained by PRSs  
derived from the multi-ancestry and EUR meta-analyses (with and without 
self-reported data). Variance explained is presented on the liability scale, 
assuming a 2% population prevalence of BD. The results (all cohorts) are the 
median weighted liability R2 values across all 55 EUR cohorts (40,992 cases  
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panels show the results across 36 BDI cohorts (12,419 cases and 33,148 controls; 
neff = 14,607), 21 BDII cohorts (2,549 cases and 23,385 controls; neff = 4,021), 48 
clinical cohorts (27,833 cases and 46,623 controls; neff = 29,543) and 7 community 
cohorts (13,159 cases and 36,592 controls; neff = 17,178). All analyses were 
weighted by the effective n per cohort. The median liability R2 is represented  
as a horizontal black line.
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These superclusters were then annotated based on their regional com-
position within the brain (Fig. 4). We used stratified LDSC24 to estimate 
SNP-h2 enrichment for the top decile of expression proportion genes in 
each of the 31 superclusters and 461 clusters, as previously described25. 
Heritability was significantly enriched in 9 of the 31 superclusters 
(Fig. 4), and 49 of the 461 clusters (Extended Data Fig. 5). No enrich-
ment was seen in non-neuronal clusters. Two clusters within the medium 
spiny neurons, not observed at the supercluster level, were significantly 
enriched, further supporting the involvement of striatal processes in BD.

Together, these results implicate the synapse, interneurons of the 
prefrontal cortex and hippocampus, and hippocampal pyramidal  
neurons as particularly relevant in the molecular biology of BD.

Single-cell enrichment analysis in 914 cell types across 29 non-brain 
mouse tissues identified significant enrichment in the enteroendo-
crine cells of the large intestine and delta cells of the pancreas, which 
remained significant after cross-dataset conditional analyses with a 
mouse brain tissue dataset (Supplementary Table 27).

Fine-mapping
We performed functional fine-mapping using Polyfun+SuSiE26 (Sup-
plementary Tables 28 and 29). At a threshold of posterior inclusion 

probability (PIP) > 0.50, we identified 80 putatively causal fine-mapped 
SNPs for the multi-ancestry meta-analyses including self-reported 
data. At the more stringent threshold of PIP > 0.95, we identified 20 
putatively causal SNPs. When comparing the number of SNPs within 
95% credible sets, the inclusion of multi-ancestry and self-reported data 
led to smaller credible sets (that is, credible sets with fewer numbers of 
SNPs). For example, we identified 175 95% credible sets of less than 20 
SNPs in the multi-ancestry dataset with self-reported data, compared 
with 122 in the EUR dataset with self-reported data (Extended Data 
Fig. 6). Putatively causal SNPs with a PIP > 0.5 were mapped to genes 
by performing variant annotation with Variant Effect Predictor (VEP; 
GRCh37) Ensembl release 109 (ref. 27), based on their position relative 
to annotated Ensembl transcripts and known regulatory features. This 
analysis identified 71 unique genes annotated to fine-mapped SNPs 
from the multi-ancestry meta-analysis including self-reported data 
(Supplementary Table 29).

Common and rare variation convergence
Within loci associated with BD in the multi-ancestry meta-analysis, 
the 71 genes annotated to putatively causal fine-mapped SNPs (Sup-
plementary Table 29) were enriched for ultra-rare (5 or less minor allele 
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count) damaging missense and protein-truncating variants in cases 
of BD in the Bipolar Exome (BipEx) consortium dataset4 (OR = 1.16, 
95% CI = 1.05–1.28, P = 0.002), and in cases of schizophrenia in the 
Schizophrenia Exome Meta-analysis (SCHEMA) dataset28 (OR = 1.21, 
95% CI = 1.02–1.43, P = 0.024). This enrichment is similar to that  
observed for schizophrenia28 and ADHD29.

Credible BD-associated genes
In addition to the 71 genes annotated to the fine-mapped putatively 
causal SNPs as described above, we annotated a further 45 genes to 
the 80 fine-mapped SNPs by summary data-based Mendelian ran-
domization using expression quantitative trait locus (eQTL) and 
splicing QTL (sQTL) data, as well as by proximity, that is, the nearest 
gene to each SNP (Extended Data Fig. 7 and Supplementary Tables 30  
and 31). No genes were annotated to the CpGs identified by the methyla-
tion QTL (mQTL) analysis (Supplementary Table 30). We then deter-
mined whether any of these 116 genes were also identified through 
the genome-wide gene-based analysis using MAGMA22, eQTL analyses 
using transcriptome-wide association study (TWAS) as implemented 
in FUSION30 and isoTWAS31, or through enhancer–promoter interac-
tions32,33. This resulted in seven possible approaches by which loci could 
be mapped to genes, including eQTL evidence (eQTL or TWAS or FOCUS 
or isoTWAS), mQTL, sQTL, VEP, proximity, MAGMA and enhancer– 
promoter interactions.

We integrated the results from the post-GWAS analyses described 
above and identified a credible set of 36 genes identified by at least 
three of the described approaches (Supplementary Table 31). The 
SP4 gene was identified by six of these approaches, and astrocyte and 
GABAergic neuron-specific regulation of SP4, by the genome-wide 
significant variant rs2107448, was identified from cell-type-specific 
enhancer–promoter interaction results (Supplementary Table 31). 
Moreover, the TTC12 and MED24 genes were identified by five of the 
approaches. Eight of the 36 credible genes have synaptic annota-
tions in the SynGO database34. Three genes (HTT, ERBB4 and LR5NF) 
were mapped to both postsynaptic and presynaptic compartments. 
One gene (CACNA1B) was mapped to only the presynapse, and four 
genes (SHANK2, OLFM1, SHISA9 and SORCS3) were mapped to only the  
postsynapse (Supplementary Table 32).

On the basis of the lifespan gene expression data from the Human 
Brain Transcriptome project (www.hbatlas.org)35, suggestive evidence 
for two clusters of credible genes was observed based on temporal 
expression (Extended Data Fig. 8 and Supplementary Table 31). The first 
cluster showed reduced prenatal gene expression, with gene expression 
peaking at birth and remaining stable over the life course. Conversely, 
the second cluster showed a peak in gene expression during fetal devel-
opment with a drop-off in expression before birth. However, both clus-
ters showed high variability in gene expression across the lifespan.

Together, these results implicate 36 credible genes in BD.

Drug target analyses
Gene set analyses were performed restricted to genes targeted by drugs, 
assessing individual drugs and grouping drugs with similar actions, 
as previously described3,36. Gene-level and gene set analyses of the 
multi-ancestry GWAS summary statistics including self-reported data 
were performed in MAGMA22, and identified significant enrichment in 
the targets of anticonvulsant pregabalin (Supplementary Table 33). 
There was also significant enrichment in the targets of antipsychotics 
and anxiolytics (Supplementary Table 34).

Examination of the Drug Gene Interaction Database (DGIdb)37 to 
identify drug–gene interactions using the credible genes as input 
genes showed that 15 out of 36 genes were interacting with a total of 
528 drugs. Gene set enrichment analysis of these drug–gene interac-
tions showed a significant enrichment (P < 0.0001) for targets of the 

atypical antipsychotic drugs nemonapride and risperidone (Supple-
mentary Table 35). However, after correction for the total number of 
drugs (n = 69,018), the enrichment was not significant (false discovery 
rate > 0.05). In addition, 16 of the 36 credible genes had evidence of 
tractability with a small molecule in the OpenTargets dataset, includ-
ing FURIN, MED24, THRA, ALDH2, ANKK1, ARHGAP15, CACNA1B, ERBB4, 
ESR1, FES, GPR139, HTT, MLEC, MSH6, PSMD14 and TOMM2.

Among the 36 credible genes, two genes (ALDH2 and ESR1) were 
within the list of 139 lithium target and interaction partner genes. The 
results of the network-based separation (SAB) analysis do not indicate 
a general overlap between the credible genes and lithium target genes 
in the human protein interactome (SAB = 0.124, z =1.710, P = 0.044). 
The positive SAB value indicates that the lithium target genes and the 
36 credible genes are separated from each other in the network of  
protein–protein interactions.

As the credible gene list is primarily derived from our fine-mapping 
analysis, it is possible that lithium target genes (and interaction part-
ners) are within loci for which significant fine-mapped putatively causal 
SNPs were not identified. The identification of evidence of tractability 
with small molecules for some of the credible genes indicates oppor-
tunities for novel drug development.

Discussion
We performed, to our knowledge, the largest GWAS of BD, including 
diverse samples of EUR, EAS, AFR and LAT ancestry, resulting in an 
over fourfold increase in the number of BD-associated loci: 337 link-
age disequilibrium-independent genome-wide significant variants 
mapping to 298 loci. In the meta-analysis of EUR, the largest ancestry 
group, we identified over 200 genome-wide significant loci. We also 
found a novel ancestral-specific association in the EAS cohort. We 
confirmed our hypothesis that differences in ascertainment and BD 
subtype might lead to differences in genetic architecture. Post-GWAS 
analyses provide novel insights into the biological underpinnings and 
genetic architecture of BD and highlight differences depending on 
ascertainment of participants and BD subtype. We also showed that 
multi-ancestry data improved fine-mapping and polygenic prediction.

Enrichment of the common variant associations from this 
multi-ancestry meta-analysis highlights the synapse, interneurons of 
the prefrontal cortex and hippocampus, and hippocampal pyramidal 
neurons as particularly relevant. Exploratory analyses19 suggest enrich-
ment of dopamine-related and calcium-related biological processes and 
development of GABAergic interneurons. These findings were further 
corroborated by enrichment analyses in single-nucleus RNA sequencing 
data from adult post-mortem brain tissue, which highlighted specific 
clusters of interneurons derived from the caudal and medial ganglionic 
eminences and medium spiny neurons predominantly localized in the 
striatum. Medium spiny neurons are not enriched in depression using 
the same dataset25. Although interneurons derived from ganglionic 
eminences were also enriched in schizophrenia, stronger signals were 
observed for amygdala excitatory and hippocampal neurons25.

A novel finding is that single-cell enrichment analysis of non-brain 
mouse tissues identified significant enrichment in the enteroendocrine 
cells of the large intestine and delta cells of the pancreas. Conditional 
analyses suggest that this enrichment is independent of overlap-
ping genes between these cell types and those expressed in neurons. 
Stimulation of enteroendocrine cells by short-chain fatty acids pro-
motes serotonin production in the colon, which leads to enhanced 
levels of serotonin in systemic circulation and in the brain, and is a 
proposed mechanism by which microbiota influence the gut–brain 
axis38,39. Of note, lithium treatment is shown to upregulate short-chain 
fatty acid-producing bacteria, highlighting a potential mechanism of 
action40.

We mapped genes to the 80 putatively causal SNPs identified 
from fine-mapping based on seven complementary approaches 

3  Publications 44

http://www.hbatlas.org
http://www.hbatlas.org


974 | Nature | Vol 639 | 27 March 2025

Article
and identified a subset of 36 credible genes implicated by at least 
three of these approaches. The top credible gene, identified by six 
gene-mapping approaches, was SP4, which has also been implicated in 
schizophrenia through both rare28 and common41 variation. Moreover, 
we clustered the credible genes based on similar patterns of temporal 
variation in expression over the lifespan and found suggestive evi-
dence for two clusters. Although within cluster gene expression was 
highly variable across the lifespan, the second cluster had a peak in 
expression during fetal development aligning with the neurodevel-
opmental hypothesis of mental disorders42. Genes prioritized through 
fine-mapping were shown to be enriched for ultra-rare damaging mis-
sense and protein-truncating variation in the BipEx4 and SCHEMA28 
datasets, respectively, highlighting convergence of common and rare 
variant signals as recently shown in schizophrenia41.

We identified differences in the genetic architecture of BD subtypes 
related to ascertainment. BD within clinical and community samples 
was highly but imperfectly correlated, with varying correlations with 
self-reported BD. The low genetic correlation and minimal genetic 
overlap between cases ascertained through clinical studies and cases 
with self-reported BD are driven by a greater proportion of BDI within 
the clinical and community samples. In line with these results, PRS 
derived from meta-analyses excluding the self-reported data per-
formed better in clinical and BDI target samples, whereas the inclu-
sion of self-reported data improved the PRS in community and BDII 
target samples. Moreover, the pattern of correlations between BD and 
other psychiatric disorders differed with the inclusion of self-reported 
data. Schizophrenia had the highest genetic correlation with BD with-
out the inclusion of the self-reported data, whereas major depressive 
disorder was most strongly correlated with BD after the inclusion of 
the self-reported data. These results suggest that the self-reported 
samples may include a high proportion of people with BDII. Moreover, 
this is in line with recent findings in individuals diagnosed with BDII, 
which showed increasing PRS for depression and ADHD and decreasing 
PRS for BD over time43. However, BD in the outpatient setting may be 
overdiagnosed in people with conditions such as chronic depression or 
borderline personality disorder, highlighting a higher rate of comorbid 
disorders and potential for ‘overdiagnosis’ of BD within cohorts of this 
nature44,45. We showed that the differences in genetic architecture and 
phenotypic proportions of the clinical, community and self-reported 
cohorts with BD affected the replication of previous BD-associated 
loci. Previously associated loci that fell short of meeting genome-wide 
significance in the current study were genome-wide significant in the 
clinical samples and in the meta-analyses that excluded self-reported 
data, and all top SNPs (12,151 SNPs with P < 1 × 10−5) from the previous 
GWAS were consistent in direction of association in this multi-ancestry 
meta-analysis of all samples (Supplementary Table 9).

Investigation of the novel ancestral-specific association in the EAS 
ancestry meta-analysis in the GWAS Catalog46 highlights overlaps with 
genome-wide significant loci for reduced sleep duration47 and lower 
educational attainment48, as well as a suggestive locus (P < 2 × 10−6) 
for the interaction between cognitive function and major depressive 
disorder49. These findings suggest a role for this genomic region in 
complex brain-related phenotypes.

The multi-ancestry PRS provided the greatest improvement over 
the EUR-PRS in two of the three EAS ancestry target cohorts (Korea 
and Taiwan). More subtle improvements were seen when the EUR 
target cohorts were analysed. Multi-ancestry training data provided 
little improvement in the AFR target cohort, which may be due to the 
genetic heterogeneity of this target cohort50. These results highlight 
the benefits of multi-ancestry representation in the PRS training data, 
in line with findings from other diseases51. The predictive power of this 
BD PRS shows a substantial improvement compared with previous 
findings3; however, this BD PRS alone still falls short of clinical utility52.

One limitation is the lack of in-sample linkage disequilibrium esti-
mates for all cohorts due to a lack of in-house raw genotype data for 

some cohorts. For instance, analysis of the MHC/C4 locus was not con-
sidered as the number of samples for which individual-level genotype 
data were accessible did not increase much since the previous analysis3. 
We used a EUR linkage disequilibrium reference panel to analyse the 
multi-ancestry meta-analyses53 in which linkage disequilibrium pat-
terns and interindividual heterogeneity within the ancestry groups are 
not fully captured. Another limitation is the inclusion of samples with 
minimal phenotyping. Although this allowed us to achieve large sample 
sizes, especially in under-represented non-EUR ancestry cohorts, and 
greatly increase the number of loci identified, minimally phenotyped 
samples have some shortcomings. For example, minimal phenotyping 
may result in low specificity association signals, as shown in major 
depression54,55, and individuals in community-based biobanks may 
represent those less severely affected, as shown in schizophrenia56.

In conclusion, in this large-scale multi-ancestry GWAS of BD, we iden-
tified 298 significant BD-associated loci, from which we have demon-
strated convergence of common variant associations with rare variant 
signals and highlight 36 genes credibly implicated in the pathobiology 
of the disorder. We identified differences in the genetic architecture 
of BD based on ascertainment and subtype, suggesting that stratifi-
cation by subtype will be important in BD genetics moving forwards. 
Several analyses implicate specific cell types in BD pathophysiology, 
including GABAergic interneurons and medium spiny neurons, as well 
as the enteroendocrine cells of the large intestine and delta cells of 
the pancreas. Enrichment of dopamine-related and calcium-related 
biological processes were also identified, further contributing to our 
understanding of the biological aetiology of BD.
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Methods

Sample description
Details of each of the cohorts, including sample size, ancestry, inclu-
sion and exclusion criteria for cases and controls as well as citations, 
are provided in Supplementary Table 1 and the Supplementary Note. 
We included three types of samples: (1) samples in which participants 
were assessed using semi-structured or structured interviews (clinical), 
(2) samples in which participants were assessed using medical records, 
registries and questionnaire data (community), and (3) samples in 
which participants self-report a diagnosis of BD (self-reported). The 
clinical samples included 55 cohorts, 46 of which were included in 
previous PGC-BD GWAS publications3,10,11. The community samples
included 20 cohorts, 11 of which were included in the previous PGC-BD 
GWAS3. Finally, we included four self-reported cohorts from 23andMe,
in which individuals were classified as cases if they self-reported hav-
ing received a clinical diagnosis or treatment for BD in responses to 
web-based surveys (“Have you ever been diagnosed with, or treated 
for, bipolar disorder?”).

Individual-level genotype and phenotype data were shared with 
the PGC for 53 ‘internal’ cohorts, whereas the remaining 26 ‘external’ 
cohorts contributed summary statistic data.

The final multi-ancestry meta-analysis included up to 158,036 cases 
and 2,796,499 controls. The total neff, equivalent to an equal number of 
cases and controls in each cohort (4 × ncases × ncontrols/(ncases + ncontrols), was 
535,720 with 82.3% of participants (proportion of neff) of EUR ancestry, 
4.4% of AFR ancestry, 4.2% of EAS ancestry and 9.1% of LAT ancestry.

The majority of new cohorts included in this study were external 
community cohorts in which subtype definitions were more difficult 
to determine, and as such, the total number of BDI and BDII subtype 
cases does not differ remarkably from the previous PGC-BD GWAS3 
(Supplementary Table 1). Thus, the previous BDI (25,060 cases and 
449,978 controls) and BDII (6,781 cases and 364,075 controls) GWAS 
summary statistic data were used for BDI and BDII analyses in this study.

Genotyping and imputation
Technical quality control was performed separately on each cohort 
for which individual-level data were provided separately according to 
standards developed by the PGC57, including SNP missingness < 0.05 
(before sample removal), subject missingness < 0.02, autosomal 
heterozygosity deviation (Fhet < 0.2), SNP missingness < 0.02 (after 
sample removal), difference in SNP missingness between cases and con-
trols < 0.02, SNP Hardy–Weinberg equilibrium (P >  1 × 10−10 in BD cases 
and P >  1 × 10−6 in controls), and mismatches between pedigree and 
genetically determined sex based on the F statistic of X chromosome 
homozygosity (female F < 0.2 and male F > 0.8). In addition, relatedness 
was calculated across cohorts using identity by descent, and one of 
each pair of related individuals (pi_hat > 0.2) was excluded, prioritiz-
ing exclusion of individuals related to the most others, controls over 
cases, and individuals from larger cohorts. Principal components were 
generated using genotyped SNPs in each cohort separately using EIGEN-
STRAT (v6.1.4; https://www.hsph.harvard.edu/alkes-price/software/)58. 
Genotype imputation was performed using the prephasing/imputation 
stepwise approach implemented in Eagle (v2.3.5; https://alkesgroup.
broadinstitute.org/Eagle/)59 and Minimac3 (https://genome.sph.umich.
edu/wiki/Minimac3)60 to the Haplotype Reference Consortium (HRC) 
reference panel (v1.0)61. Data on the X chromosome were also available 
for all 53 internal cohorts, and these were imputed to the HRC refer-
ence panel in males and females separately. The remaining 22 external 
cohorts were processed by the contributing collaborative teams using 
comparable procedures. Identical individuals between PGC-processed 
cohorts and external cohorts with suspected sample overlap were 
detected using genotype-based checksums (https://personal. 
broadinstitute.org/sripke/share_links/zpXkV8INxUg9bayDpLToG4g 
58TMtjN_PGC_SCZ_w3.0718d.76) and removed from the PGC cohorts.

Genome-wide association study
For internal cohorts, GWAS were conducted within each cohort using 
an additive logistic regression model in PLINK (v1.90; https://www.
cog-genomics.org/plink2/)62, covarying for the first five principal com-
ponents and any others as required, as previously described3. Analyses 
of the X chromosome were performed in males and females separately, 
with males scored 0 or 2 and females scored 0, 1 or 2. X chromosome 
analyses were performed only in individuals of EUR ancestry for which 
individual-level data were available. For external cohorts, GWAS were 
conducted by the collaborating research teams using comparable 
procedures. To control test statistic inflation at SNPs with low minor 
allele frequency (MAF) in small cohorts, SNPs were retained only if 
cohort MAF was more than 1% and minor allele count was more than 
10 in either cases or controls (whichever had smaller n).

Initially, meta-analysis of GWAS summary statistics was conducted 
using inverse-variance-weighted fixed-effect models in METAL (v2011-
03-25; https://genome.sph.umich.edu/wiki/METAL_Documentation)63 
across cohorts within ancestral groups. A genome-wide significant 
locus was defined as the region around a SNP with P < 5.0 × 10−8 with 
linkage disequilibrium R2 > 0.1, within a 3,000-kb window, based on 
the linkage disequilibrium structure of the ancestry-matched HRC 
reference panel (v1.0)61, except LAT (EUR panel used). Multi-ancestry 
meta-analysis was similarly performed by combining cohorts with 
diverse ancestry using inverse-variance-weighted fixed-effect 
models in METAL63. Given that more than 80% of the included par-
ticipants were of EUR ancestry, the linkage disequilibrium structure 
of the EUR HRC reference panel was used to define genome-wide  
significant loci.

For all meta-analyses, SNPs present in less than 75% of total effec-
tive sample size (neff) were removed from the meta-analysis results. In 
addition, we used the DENTIST tool (https://github.com/Yves-CHEN/
DENTIST) for summary data-based analyses, which leverages linkage 
disequilibrium from a reference sample (ancestry-matched HRC refer-
ence panel (v1.0)61, except LAT and multi-ancestry for which the EUR 
panel was used) to detect and filter out problematic variants by testing 
the difference between the observed z-score of a variant and a predicted 
z-score from the neighbouring variants64.

To identify independent association signals (P < 5 × 10−8), the GCTA 
forward selection and backward elimination process (command 
‘cojo-slct’) was applied using the summary statistics from the EAS, 
EUR and multi-ancestry meta-analysis (both including and exclud-
ing the self-report data), with the EAS and EUR HRC reference panels, 
respectively65,66.

The genetic correlation between meta-analyses based on all new 
cohorts (118,284 cases and 2,448,096 controls) and EUR cohorts from 
our previous PGC-BD GWAS3 was rg = 0.64 (s.e. = 0.02), and rg = 0.91 
(s.e. = 0.04) when excluding self-reported cohorts. Concordance of 
the direction of associations in the present GWAS with associations 
in the previously published BD data were evaluated as previously  
described67.

Heritability and genetic correlation
LDSC (https://github.com/bulik/ldsc)13 was used to estimate the SNP-h2 
of BD from EUR GWAS summary statistics, including all cohorts as well 
as subgroups by ascertainment and BD subtype. Popcorn was used to 
estimate SNP-h2 of BD from non-EUR GWAS summary statistics68. SNP-h2 
was converted to the liability scale using a lifetime BD prevalence of 2%. 
LDSC bivariate genetic correlations were also estimated between EUR 
BD GWASs (with and without self-report data) and 11 other psychiatric 
disorders as well, as 1,390 human diseases and traits via the Complex 
Traits Genetics Virtual Lab (https://vl.genoma.io) web platform20. 
Adjusting for the number of traits tested, the Bonferroni-corrected 
P < 3.569 × 10−5. Cross-ancestry bivariate genetic correlations were 
estimated using Popcorn (https://github.com/brielin/Popcorn)68. 
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Differences in rg between phenotype pairs were tested as a deviation 
from 0 using the block jackknife approach implemented in LDSC69.

The results of the clinical and community cohort meta-analyses were 
conditioned on genetic risks for BDI and BDII, to account for differences 
in proportion of the BD subtypes within these cohorts. Conditioning 
was conducted using multitrait-based conditional and joint analysis 
using GWAS summary data (mtCOJO; https://yanglab.westlake.edu.cn/
software/gcta/#mtCOJO)70, implemented in GCTA65. mtCOJO is robust 
to sample overlap between the GWAS of the exposure and outcome. The 
conditioned summary statistics were evaluated for genetic correlation 
with self-reported BD using LDSC.

MiXeR
We applied causal mixture models (MiXeR; https://github.com/
precimed/mixer)15,16,71 to investigate the genetic architecture of BD, 
specifically the overlap between clinical, community and self-report 
samples, as well as BD subtypes. We first computed univariate analy-
ses to estimate the polygenicity, discoverability and heritability of 
each trait. These were followed by bivariate analyses to compute the 
number of shared trait-influencing variants between pairs of traits, 
and finally trivariate analyses to compute the proportion of shared 
variants between all three traits analysed. We also determined the cor-
relation of effect sizes of SNPs within the bivariate shared components. 
For trivariate MiXeR analyses, model optimization procedures were 
repeated 20 times (20 runs) to obtain the means and standard errors 
of model parameters. Estimated parameters from the ‘run’ with the 
smallest deviation from the median overlap pattern were then selected 
and reported.

Polygenic association with BD
We used PRS-CS-auto21 to compute PRSs in target cohorts, using a dis-
covery GWAS in which the target cohort was left out. Given that the 
majority of the individuals included in the meta-analysis were of EUR 
descent, we used the EUR linkage disequilibrium reference panel based 
on UK BioBank data as provided by PRS-CS developers (https://github.
com/getian107/PRScs). Raw scores were standardised to z-scores, and 
covariates including sex, the first five principal components and any 
others as required (as above for each cohort GWAS) were included 
in the logistic regression model, via the glm() function in R72, with 
family=binomial and link=logit. The variance explained by PRS (R2) 
was first converted to Nagelkerke’s pseudo-R2 via the fmsb package in R 
(https://cran.r-project.org/web/packages/fmsb/index.html), and then 
converted to the liability scale to account for the proportion of cases in 
each cohort and the population prevalence of BD73. We have provided 
R2 values for BD assuming a population prevalence of 2%, based on a 
recent multinational survey14. The weighted average R2 values were 
then calculated using the neff for each cohort. PRS-specific medians 
and their confidence intervals were computed using non-parametric 
bootstrap replicates (10,000 resamples with replacement). The odds 
ratios for BD for individuals in the top quintile of PRS compared with 
those in the middle quintile were calculated for all cohorts. Similarly, 
the area under the curve (AUC) statistic was calculated via the pROC 
package in R (https://cran.r-project.org/web/packages/pROC/index.
html), for which we performed a training and testing procedure by 
taking 80% of the individuals in a given cohort on which to train the 
model, and tested the predictability in the remaining 20% of individu-
als. Ten random samplings of training and testing sets were performed 
in all cohorts, and the median AUC after all permutations is provided 
Supplementary Tables 16–22. The median confidence intervals for the 
AUC were similarly averaged across the ten random permutations. 
These AUC statistics were calculated based on the logistic regression 
model that includes the standardized PRS as a predictor and principal 
component covariates. To assess the gain in AUC due to the PRS itself, we 
subtracted the median AUC of the model containing only the covariates 
from the full model, reported in Supplementary Tables 16–22 as AUC.

Gene and gene set association analysis
Gene-level, gene set and tissue set associations were performed using 
a SNP-wise mean model (±10-kb window) implemented in MAGMA 
(https://ctg.cncr.nl/software/magma)22. Bonferroni correction was 
used to control for multiple testing. In addition, we performed gene set 
analysis with GSA-MiXeR (https://github.com/precimed/gsa-mixer)19, 
which quantifies partitioned heritability attributed to n = 10,475 gene 
sets from the Gene Ontology74 and SynGO34 databases, alongside their 
fold enrichment with respect to a baseline model. The GSA-MiXeR 
full model incorporates 18,201 protein-coding genes, using a joint 
model to estimate heritability attributed to each gene based on GWAS 
summary statistics and HRC59 reference panel to account for linkage 
disequilibrium between variants. The baseline model in GSA-MiXeR 
accounted for a set of 75 functional annotations75, as well as accounting 
for MAF-dependent and linkage disequilibrium-dependent genetic 
architecture. The heritability model in GSA-MiXeR was estimated using 
Adam (method for stochastic gradient-based optimization of the likeli-
hood function)76. Standard errors of fitted parameters were estimated 
from the observed Fisher’s information matrix (the negative Hessian 
matrix of the log-likelihood function).

Identified credible genes were further assessed for enrichment in 
synaptic processes using the SynGO tool (v1.2; https://www.syngopo-
rtal.org/) with default settings34.

Cell-type-specific enrichment analyses
Single-cell enrichment analyses of brain cell types were performed 
according to Mullins et al.3. In brief, from five publicly available 
single-cell RNA sequencing datasets derived from human77,78 and 
mouse79–81 brain tissues, 10% of genes with the highest gene expression 
specificity per cell type were extracted. After MAGMA22 gene analysis 
of the multi-ancestry GWAS summary statistics including self-reported 
data using an annotation window of 35 kb upstream and 10 kb down-
stream of the gene boundaries and the 1,000 Genomes phase 3 EUR 
reference panel, MAGMA gene set analyses were conducted for all cell 
types in each dataset, respectively. Within each dataset, false discovery 
rate (FDR)-adjusted P < 0.05 was considered statistically significant.

In addition, we performed an exploratory single-cell enrichment anal-
ysis in 914 cell types across 29 non-brain mouse tissues as implemented 
in FUMA82. Cell types with FDR-adjusted P < 0.05 were considered sta-
tistically significant. Moreover, to determine that identified enrich-
ment was not due to overlapping genes with neuronal cell types, we 
performed cross-dataset conditional analyses of significantly enriched 
cell types with mouse brain tissue.

Single-nucleus RNA sequencing enrichment
We used the Human Brain Atlas single-nucleus RNA sequencing data-
set23 consisting of 3.369 million nuclei sequenced using single-nucleus 
RNA sequencing. The nuclei were from adult post-mortem donors, and 
the dissections focused on 106 anatomical locations within 10 brain 
regions. Following quality control, the nuclear gene expression pat-
terns allowed the identification of a hierarchy of cell types that were 
organized into 31 superclusters and 461 clusters. In the current paper, 
we used the same naming system for the cell types and the brain regions 
as in Siletti et al.23. We estimated SNP-h2 enrichment for the top decile 
of expression proportion genes (approximately 1,300 genes) in each 
of the 31 superclusters and 461 clusters, respectively, using stratified 
LDSC24, as previously described25. We used FDR correction (FDR < 0.05) 
to account for multiple comparisons.

Fine-mapping
We performed functional fine-mapping of genome-wide significant loci 
via Polyfun-SuSiE26, using functional annotations of the baseline-LF2.2 
UKB model and linkage disequilibrium estimates from the HRC EUR 
(n = 21,265) reference panel. The maximum number of causal variants 
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per fine-mapped region was adjusted accordingly based on the results 
from the conditional analysis. We excluded loci that fell within the MHC 
locus (chromosome 6: 28000000–34000000, build GRCh37) due to 
the known complexity of the linkage disequilibrium architecture in that 
region. Genome-wide significant locus ranges with a linkage disequi-
librium R2 > 0.1 were used as fine-mapping ranges. Putatively causal 
SNPs (PIP > 0.50 and part of 95% credible set) were mapped to genes by 
performing variant annotation with VEP (GRCh37) Ensembl release 75 
(https://www.ensembl.org/info/docs/tools/vep/index.html)27.

Convergence of common and rare variation
Data from the BipEx consortium4 (13,933 cases of BD and 14,422 con-
trols) were used to assess the convergence of common and rare variant 
signals, using a similar approach as previously used for schizophrenia41. 
This dataset includes approximately 8,200 individuals with BDI and 
3,400 individuals with BDII, whereas the remainder of the sample lack 
BD subtype information. Ultra-rare variants (5 or less minor allele count) 
for damaging missense (missense badness, PolyPhen-2 and regional 
constraint score of more than 3) and protein-truncating variants (includ-
ing transcript ablation, splice acceptor variants, splice donor variants, 
stop gained and frameshift variants) were considered. An enrichment of 
rare variants in genes prioritized through fine-mapping in cases relative 
to controls were assessed using a Fisher’s exact test. Given the genetic 
overlap between BD and schizophrenia, we repeated the analysis in 
data from the Schizophrenia Exome Meta-analysis (SCHEMA) cohort 
(24,248 schizophrenia cases and 97,322 controls)28. Using the same 
approach as taken in the SCHEMA28 and BipEx4 papers, background 
genes included all genes surveyed in each sequencing study, respec-
tively. As a sensitivity analysis, we further evaluated the enrichment of 
synonymous variants in the credible genes in cases of BD of the BipEx 
cohort and found no enrichment (OR = 0.96, 95% CI = 0.935–0.985).

QTL integrative analysis
We conducted different QTL integration analyses to elucidate molecu-
lar mechanisms by which variants associated with BD might be linked 
to the phenotype. Summary data-based Mendelian randomization 
(SMR; v1.3; https://yanglab.westlake.edu.cn/software/smr/)83 with 
subsequent heterogeneity in dependent instruments (HEIDI)70 tests 
were performed for eQTLs, sQTLs and mQTLs. Data on eQTLs and sQTLs 
were obtained from the BrainMeta study (v2; n = 2,865)84, whereas data 
on mQTLs were obtained from the Brain-mMeta study (v1; n = 1,160)85. 
Putatively causal SNPs identified from fine-mapping, as outlined above, 
were used as the QTL instruments for the SMR analyses. Using the BD 
GWAS and QTL summary statistics, each putative causal SNP was ana-
lysed as the target SNP for probes within a 2-Mb window on either side 
using the --extract-target-snp-probe option in SMR. The EUR HRC link-
age disequilibrium reference panel was used for the analyses of the 
multi-ancestry meta-analysis. A Bonferroni correction was applied for 
2,021 tests, that is, SNP-QTL probe combinations, in the eQTL analysis 
(PSMR < 2.47 × 10−5), 6,755 tests in the sQTL analysis (PSMR < 7.40 × 10−6) 
and 2,222 tests in the mQTL analysis (PSMR < 2.25 × 10−5). The signifi-
cance threshold for the HEIDI test was PHEIDI ≥ 0.01. Additional eQTL 
integration analyses were conducted using TWAS (http://gusevlab.
org/projects/fusion/), FOCUS and isoTWAS (https://github.com/
bhattacharya-a-bt/isotwas). Details related to these analyses are pro-
vided in the Supplementary Note.

Enhancer–promoter gene interactions
To investigate enhancer–promoter interactions influenced by BD GWAS 
variants, we utilized cell-type-specific enhancer–promoter maps from 
a multi-omics dataset, which included joint single-nucleus ATAC– 
single nucleus RNA sequencing and cell-specific Hi-C data from devel-
oping brains. We used the activity-by-contact (ABC) model32,33 for  
this analysis. Following the authors’ guidelines, we excluded enhancer–
promoter interactions that (1) had an ABC score below 0.015,  

(2) involved ubiquitously expressed genes or genes on the Y chromo-
some, or (3) included genes not expressed in major brain cell types. 
Focusing on the BD GWAS, we selected only those enhancer–promoter 
links that overlapped genome-wide significant SNPs (with peaks 
extended by 100 bp on both sides to increase overlap) or their link-
age disequilibrium buddies (R2 ≥ 0.8). This selection process yielded
11,023 enhancer–promoter links. We then overlapped these putative 
disease-relevant variants with enhancer–promoter links to prior-
itize causal genes. To avoid multiple associations for a single variant, 
we applied the ABC-Max approach33, retaining only the enhancer– 
promoter links with the highest ABC score for each peak.

Credible gene identification
We have provided a set of credible genes by integrating information 
from various gene-mapping strategies, using a similar approach previ-
ously described86 (Extended Data Fig. 7 and Supplementary Table 31). 
First, genes identified through fine-mapping, and QTL (eQTL, mQTL and 
sQTL) analyses using SMR and proximity (nearest gene within 10 kb) to 
fine-mapped putatively causal SNPs were included. The identified set of 
116 genes were then further assessed based on gene-level associations 
(MAGMA)22, additional integrative eQTL analyses30,31 and enhancer–
promoter gene interactions32,33. The criteria for filtering genes from 
the different eQTL methods were: (1) SMR adjusted P < 0.05 and HEIDI 
test P > 0.01, (2) TWAS adjusted P < 0.05 and colocalization probability 
(COLOC.PP4) > 0.7, (3) FOCUS posterior inclusion probability > 0.7 and 
within a credible set, and (4) isoTWAS permutation P < 0.05, isoTWAS 
poster inclusion probability > 0.7 and within a credible set (Extended 
Data Fig. 7). Genes annotated by at least one of these eQTL approaches 
were confirmed as having eQTL evidence (Supplementary Table 31). 
Thus, seven approaches were considered by which loci could be 
mapped to genes, including eQTL evidence (eQTL or TWAS or FOCUS 
or isoTWAS), mQTL, sQTL, VEP, proximity, MAGMA and enhancer–
promoter interactions.

Temporal clustering of credible genes
Lifespan gene expression from the Human Brain Transcriptome project 
(www.hbatlas.org)35 was used to cluster the list of credible genes based 
on their temporal variation. The gene expression and associated meta-
data were acquired from the Gene Expression Omnibus (GEO accession 
GSE25219). The data consist of 57 donors 5.7 weeks post-conception 
to 82 years of age with samples extracted across regions of the brain. 
Before filtering gene expression for the list of credible genes, gene 
symbols of both credible genes and the gene expression dataset were 
harmonized using the ‘limma’ package in R (https://www.bioconduc-
tor.org/packages/release/bioc/html/limma.html), which updates any 
synonymous gene symbols to the latest Entrez symbol. Gene expres-
sion was available for 34 of the 36 credible genes. Within a given brain 
region, the expression of each gene was then mean centred and scaled. 
Outliers in gene expression more than 4 standard deviations from the 
mean were removed. To generate a single gene expression profile for 
each gene across the lifespan, at a given age, the mean gene expression 
for a given gene was taken across brain regions, and in some cases across 
donors. This resulted in a matrix in which each gene had a single expres-
sion value for each age across the lifespan. This gene expression-by-age 
matrix was then used to cluster the credible genes by the lifespan 
expression profiles using the R package ‘TMixClust’ (https://www.
bioconductor.org/packages/release/bioc/html/TMixClust.html). This 
method used mixed-effect models with non-parametric smoothing 
splines to capture and cluster non-linear variation in temporal gene 
expression. We tested K = 2 to K = 10 clusters performing 50 clustering 
runs to analyse stability. The clustering solution with the highest likeli-
hood (that is, the global optimum using an expectation maximization 
technique) is selected as the most stable solution across the 50 runs 
for each of the trials testing 2–10 clusters. We compared the average 
silhouette width across the K = 2 to K = 10 clusters and selected that 
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with the maximum value as the optimal number of clusters. The high-
est average silhouette width was 0.24 for two clusters, whereas the 
lowest was 0.17 for four clusters. Overall, evidence was suggestive for 
a two-cluster solution for the temporal expression of credible genes.

Drug enrichment analyses
Gene set analyses were performed restricted to genes targeted by 
drugs, assessing individual drugs and grouping drugs with similar 
actions as previously described3,36. Gene-level and gene set analyses of 
the multi-ancestry GWAS summary statistics including self-reported 
data were performed in MAGMA (v1.10)22, as outlined above for 
cell-type-specific enrichment.

Gene sets were defined comprising the targets of each drug in the 
Drug Gene Interaction database DGIdb (v5.0.6)37; the Psychoactive 
Drug Screening Database Ki DB87; ChEMBL (v27)88; the Target Cen-
tral Resource Database (v6.7.0)89; and DSigDB (v1.0)90; all down-
loaded in October 2020. Multiple testing was controlled using a 
Bonferroni-corrected significance threshold of P < 5.41 × 10−5 (924 
drug sets with at least 10 valid drug gene sets) for drug set analysis 
and P < 5.49 × 10−4 (91 drug classes) for drug-class analysis, respectively.

We also assessed whether any of the 36 credible genes were clas-
sified as druggable in the OpenTargets platform (https://genetics.
opentargets.org/).

In addition, gene set analyses were also performed to test the enrich-
ment of drug–gene interactions on only credible genes as described 
above. Moreover, we investigated whether any lithium target genes, as 
well as their interaction partners, were among the 36 credible genes 
using the latest version of the human protein interactome91. We calcu-
lated the SAB between credible genes and lithium target genes, in which 
a significant overlapping network neighbourhood would be indicative 
of functional similarity92.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Genome-wide association summary statistics for these analyses are 
available at https://www.med.unc.edu/pgc/download-results/. The full 
GWAS summary statistics for the 23andMe datasets will be made availa-
ble through 23andMe to qualified researchers under an agreement with 
23andMe that protects the privacy of the 23andMe participants. Please 
visit https://research.23andme.com/collaborate/#dataset-access for 
more information and to apply to access the data. After applying with 
23andMe, the full summary statistics including all analysed SNPs and 
samples in the GWAS meta-analyses will be accessible to the approved 
researchers. Genotype data are available for a subset of cohorts, includ-
ing dbGAP accession numbers and/or restrictions, as described in the 
‘Cohort descriptions’ section of the supplementary materials.

Code availability
No custom code was developed for this study. All software and tools 
used for the analyses presented are publicly available and referenced 
within the respective sections in the Methods of the article.
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Extended Data Fig. 1 | Network diagram of the genetic correlations between 
BD ascertained from Clinical, Community and Self-report samples, as  
well as BD-subtypes (BDI and BDII). The line widths are proportional to the 
strength of the correlations between pairs. BDI: bipolar disorder I, BDII: bipolar 
disorder II.
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Extended Data Fig. 2 | Univariate MiXeR estimates of the required effective 
sample size needed to capture 50% of the genetic variance (horizontal 
dashed line) associated with each BD ascertainment and subtype. N and 
Sample size refer to the effective sample size. The estimated effective sample 
size (and standard errors) are given in the legend alongside each trait name.
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Extended Data Fig. 3 | Trivariate MiXeR estimates for the genetic overlap  
of BD from Clinical, Community and Self-report samples. The percentages 
show the proportion of trait-influencing variants within each section of the 
Venn diagram relative to the sum of all trait-influencing variants across all 
samples. The size of the circles reflects the polygenicity of each trait.
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Extended Data Fig. 4 | Miami plot for BD genome-wide meta-analyses, 
including all cohorts. Upper panel: the multi-ancestry meta-analysis identified 
298 genome-wide significant (GWS) loci. Lower panel: porcupine plot showing 
the results of the Latino (0 GWS loci), African American (0 GWS loci), East Asian 
(1 GWS locus) and European (229 GWS loci) meta-analyses. The x-axes show 

genomic position (chromosomes 1–22), and the y axes show statistical 
significance as –log10[p-value]. P-values are two-sided and based on an inverse- 
variance-weighted fixed-effects meta-analysis. The dashed black lines show 
the GWS threshold (P < 5 × 10−8). The star indicates the position of the East Asian 
GWS locus (rs117130410, 4:105734758, build GRCh37).

3  Publications 59



Extended Data Fig. 5 | Cluster-level SNP-heritability enrichment for bipolar 
disorder. The t-distributed stochastic neighbor embedding (tSNE) plot (left) 
(from Siletti et al.23) is coloured by the enrichment z-score. Grey indicates 

non-significantly enriched superclusters (FDR > 0.05). The barplot (right) 
shows the top 35 significantly enriched clusters. The numbers in parentheses 
on the y-axis indicate the cell type clusters as defined in Siletti et al.23.
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Extended Data Fig. 6 | Number of SNPs within the smallest 95% credible sets 
(CS) from meta-analysis of European and multi-ancestry meta-analyses 
when excluding and including self-report data. Colours represent CS of 

varying size, with blue CS containing 0 SNPs and red CS containing 15+ SNPs.  
All fine-mapped SNPs regardless of their PIP were used to assess the size of the 
95% credible sets.
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Extended Data Fig. 7 | Methods and criteria for credible gene identification.
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Extended Data Fig. 8 | Clustering of patterns of temporal variation in 
expression of 34 credible genes. Cluster 1 (n = 21 genes) shows reduced 
prenatal gene expression, with gene expression peaking at birth and remaining 
stable over the life-course. Cluster 2 (n = 13 genes) includes genes with a peak 
gene expression during fetal development with a drop-off in expression before 
birth. Genes within each cluster are described in Supplementary Table 31.  
To illustrate the variability in gene expression within each cluster we plot each 
donor expression value in each sampled brain region for the 34 credible genes 
as individual points. Smoothing splines used to illustrate the age trajectory for 
each cluster is based on generalized additive models with the predicted 95% 
confidence interval in grey. We use age in days to plot the variation in gene 
expression with the x-axis on a log2 scale and labels for birth, 10, 18, and  
65 years of age as reference points.
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4 Discussion 

The following chapter highlights key findings from the three studies included in this 

doctoral thesis, briefly discusses their significance in relation to existing literature, and 

outlines directions for future research regarding the role of common genetic variation in 

affective and psychotic disorders. 

In the first and second study we investigated how common genetic variants are associated 

with symptom dimensions of acute (David et al., 2023) and lifetime (Krug et al., 2024) 

psychopathology shared across MDD, BD, and SSD. As suggested by initiatives such as 

the Research Domain Criteria (RDoC) project (Cuthbert, 2014), we adopted a 

transdiagnostic perspective that focuses on dimensions of behavior observed across 

diagnostic boundaries rather than on existing diagnostic groupings. In the PRS analyses 

of the transdiagnostic sample we found associations of individual symptom dimensions 

with the polygenic liability for BD and SCZ, respectively, e.g., between the PRS for SCZ 

and the dimension of paranoid-hallucinatory syndrome (David et al., 2023) and between 

the PRS for BD and the dimension of mania (Krug et al., 2024). This is in line with the 

substantial genetic overlaps between the disorders (Cross-Disorder Group of the 

Psychiatric Genomics Consortium, 2019) and indicates that genetic variants identified by 

disorder-specific case-control GWAS of affective and psychotic disorders might comprise 

variants related to individual symptom dimensions shared across diagnoses. Similar 

findings were obtained by studies of polygenic profiles within BD (Allardyce et al., 2023; 

Richards et al., 2022), supporting this view. 

While the exploratory GWAS in David et al. (2023) did not reveal any genome-wide 

significant associations, the exploratory GWAS in Krug et al. (2024) yielded two genome-

wide significant findings for the lifetime symptom dimensions of mania and depression. 

This could be interpreted as lifetime measures being more suitable than acute measures 

of psychopathology for the investigation of genetic correlates. However, neither 

rs10062519, which was associated with lifetime mania, nor rs11131155, associated with 

lifetime depression, showed a genome-wide significant disease association (i.e., 

p <  5 × 10−8) in the latest large-scale GWAS meta-analyses of BD (O’Connell et al., 

2025) and major depression (Adams et al., 2025), respectively. Therefore, given the 
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sample size of our exploratory GWAS, the findings should be interpreted with caution until 

replication is achieved by other studies. 

In contrast to the first two studies adopting a transdiagnostic approach, the third study 

included in this thesis consists of a disorder-specific investigation of common genetic 

variants associated with BD disease status (O’Connell et al., 2025). The study represents 

the largest GWAS meta-analysis of BD to date, encompassing over 158,000 cases and 

2.7 million controls from four different ancestral groups. 298 genome-wide significant loci 

associated with BD were identified. In addition, the results of the meta-analysis fueled a 

wide variety of downstream analyses, such as quantitative trait loci integration and cell 

type enrichment analyses. The massive increase in sample size compared to the previous 

GWAS meta-analysis of BD by the PGC (Mullins et al., 2021; more than 41,000 cases 

and 371,000 controls) was largely driven by the inclusion of samples from 23andMe, Inc. 

(more than 90,000 cases and 1.9 million controls), in which case status was ascertained 

via a single-item self-report question. In addition, over 22,000 cases and 441,000 controls 

were newly added from community samples, in which case ascertainment was based on 

medical records, health registries, and questionnaire data. Notably, the SNP-based 

heritability (h2
SNP) of BD in the community samples (h2

SNP = 0.05) and self-report samples 

(h2
SNP = 0.08) was substantially lower than in the samples with clinical case ascertainment 

(h2
SNP = 0.22). This observed difference in the genetic architecture of BD depending on 

the type of case ascertainment may reflect differences in the phenotypic composition, e.g., 

in regard to BD subtypes and disease severity (O’Connell et al., 2025). 

The three studies included in this thesis illustrate the trade-off between sample size and 

the depth and quality of phenotypic data in genetic studies of affective and psychotic 

disorders. The deep phenotyping data of the FOR2107 cohort made it possible to 

construct transdiagnostic dimensional phenotypes of psychopathology and, in 

combination with the genotyping and brain imaging data, enabled the investigation of their 

genetic and brain morphometric correlates in David et al. (2023) and Krug et al. (2024). 

However, this came at the cost of a limited sample size, impeding the detection of 

associated common variants that individually have small effects on highly polygenic 

complex conditions. The GWAS were underpowered and thus only exploratory, even 

though well-constructed quantitative phenotypes are known to increase statistical power 
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for the investigation of common variants in common diseases compared to binary 

phenotypes (Waszczuk et al., 2023). Conversely, the minimal phenotyping strategy 

employed in O’Connell et al. (2025) resulted in a large sample size and successful 

discovery of novel BD-associated loci, but the depth of available phenotype data was not 

sufficient to resolve the observed heterogeneity. Minimal phenotyping can also come at 

the cost of low disease specificity of GWAS signals, as demonstrated by Cai et al. (2020) 

in the context of MDD. However, the lower heritability and higher phenotypic heterogeneity 

compared to other affective and psychotic disorders likely exacerbates the consequences 

of minimal phenotyping in MDD. For SSD, Woolway et al. (2024) have recently 

demonstrated the validity of self-reported diagnoses in genomic research. Together this 

indicates that the best phenotyping strategy for genetic discovery may differ between 

different affective and psychotic disorders and phenotypes. 

One apparent limitation of both David et al. (2023) and Krug et al. (2024) is the restriction 

of the study sample to individuals of European ancestry. Even in O’Connell et al. (2025), 

where we investigated individuals from four different ancestral groups, the majority of 

individuals were of European ancestry. While ancestry-specific research designs are 

helpful to reduce the effect of population stratification on common variant associations, 

they limit the transferability and generalizability of findings, with important implications on 

equity in health care (Martin et al., 2019). This issue has received increasing attention in 

the research community throughout the past years, and it should be emphasized that the 

global efforts towards the recruitment of more ancestrally diverse samples in psychiatric 

genetics research and the development of suitable methods for multi-ancestry analyses 

and diversity-aware modelling must continue (Peterson et al., 2019). 

Overall, the studies included in this dissertation enhance our understanding of the 

complex relationships of common genetic variants with symptom dimensions and disease 

status in affective and psychotic disorders. For future research, a number of directions 

may prove fruitful. First, standardized digital phenotyping, including ecological momentary 

assessments, may be used for a more cost efficient collection of detailed phenotype data 

(Montag, Quintana, 2023), potentially mitigating the trade-off between sample size and 

phenotyping depth. This may resolve some of the observed genetic heterogeneity due to 

the ability to define more homogeneous patient subgroups and to construct more specific 
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quantitative phenotypes. Second, in light of the ever increasing number of GWAS findings, 

the multimodal integration with rare variant data and other molecular features such as 

transcriptomics, proteomics, and metabolomics is expected to be of increasing relevance. 

The multimodal integration will strengthen the identification of genes, pathways, and cell 

types that are involved in the pathophysiological mechanisms of affective and psychotic 

disorders (Bruner, Grant, 2024). Lastly, given the growing abundance of various types of 

data, the application of artificial intelligence, in particular multimodal deep learning models, 

may lead to a breakthrough in the identification of etiologically defined groups of patients 

exhibiting distinct genetic and molecular profiles (Chen et al., 2022). Together, these 

opportunities could be a significant step towards the goal of psychiatric research, which 

ultimately consists of a more effective prevention and treatment of mental disorders. 
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