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Abstract

Climate change and the depletion of essential resources like phosphorus are
challenging agriculture by reducing water and fertilizer availability and ultimately
threatening the security of the human food supply. Knowledge of how plants re-
spond to changing environmental conditions is required to cope with these chal-
lenges. Plant growth information and corresponding environmental data are key
to unraveling stress responses and revealing the underlying mechanisms. Under-
standing architectural and functional plant adaptations to stresses, such as water
and nutrient limitation, is crucial to exploring new pathways to sustainable agri-
culture. It is vital to consider all organs, including the often-overlooked root
system and surrounding soil, that are essential for water and nutrient uptake.
Plant phenotyping and functional-structural plant modeling are key technologies
for understanding plant responses to changing environments, making their contin-
ued development and application imperative. This doctoral project is dedicated
to advancing the field of plant research by 1. developing a novel in situ pheno-
typing method for roots, 2. applying this method to assemble a comprehensive
collection of in-field root and soil data, 3. investigating the architectural responses
of Zea mays to phosphorus deficiency, 4. gaining a deeper understanding of the
responses to stress by investigating the effects of phosphorus deficiency on the
root system’s conductance, and 5. placing the findings into an overall context.

First, a new method combining deep neural networks and automated feature
extraction was developed and validated to analyze root images, reducing process-
ing time by 98% while achieving high precision compared to manual annotation
(r=0.9). Second, besides other technologies, this method was applied to assem-
ble a comprehensive collection of in-field root and soil data over time in two
minirhizotron facilities in distinct soil domains. The resulting open-access, time-
series dataset includes dynamic crosshole ground-penetrating radar, minirhizotron
camera measurements, and static soil sensor observations at a high temporal and
spatial resolution over five years of Zea mays and Triticum aestivum experiments,
including drought stress treatments and crop mixtures trials. Third, a combined
approach of the developed phenotyping workflow and functional-structural plant
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modeling was used to investigate the responses of Zea mays to varying phos-
phorus availability. Combining measured architectural plant parameters with
root hydraulic properties enabled time-dependent simulations of plant growth
and root system conductance under different phosphorus regimes, revealing that
only plants with optimal phosphorus availability sustained a high root system
conductance. In contrast, all other phosphorus levels led to significantly lower
root system conductance under light and severe phosphorus deficiency. It was
also shown that root system organization is critical for its function rather than
mere total size. Finally, this thesis contributes to collaborative studies aiming to
enhance phenotyping methods and further investigate Zea mays responses to envi-
ronmental changes. We found that ground-penetrating radar could be employed
as a root-sensing tool in the future. By linking aboveground crop data to the
belowground dataset, we revealed that maize responses to water stress vary sig-
nificantly with soil conditions. We combined the automated analysis method with
functional-structural modeling to show that Zea mays domestication was driven
by water availability, with seminal root number emerging as a critical adaptation
trait, possibly providing key information for breeding drought-tolerant varieties.
Lastly, we applied an in silico approach using a game engine that visualizes plant
models in high-performance computing environments to generate virtual data for
neural networks, enhancing their precision and informative power.

This work explores different methods, data, and models to understand plant re-
sponses to a changing environment across scales and provides new insights into
the combined stress responses and development of Zea mays.



Zusammenfassung

Der Klimawandel und die Verknappung wichtiger Ressourcen, wie Phosphor,
stellen die Landwirtschaft vor Herausforderungen, da sie die Verfügbarkeit
von Wasser und Düngemitteln verringern und letztlich die Sicherheit der
menschlichen Nahrungsmittelversorgung gefährden. Um diese Herausforderungen
zu meistern, ist es notwendig, zu verstehen, wie Pflanzen auf sich ändernde
Umweltbedingungen reagieren. Informationen über das Pflanzenwachstum
und korrespondierende Umweltdaten sind entscheidend, um Stressreaktionen
zu entschlüsseln und die zugrundeliegenden Mechanismen aufzudecken. Das
Verständnis der strukturellen und funktionellen Anpassungen von Pflanzen an
Stressfaktoren wie Wasser- und Nährstoffmangel ist entscheidend, um neue
Wege hin zu einer nachhaltigeren Landwirtschaft zu finden. Dabei müssen alle
Organe, einschließlich des Wurzelsystems, das für die Aufnahme von Wasser und
Nährstoffen unerlässlich ist, berücksichtigt werden. Pflanzenphänotypisierung
und funktionell-strukturelle Pflanzenmodellierung sind Schlüsseltechnologien für
ein besseres Verständnis der Reaktionen von Pflanzen auf sich ändernde
Umweltbedingungen, was die Fortentwicklung und Anwendung dieser Methoden
unerlässlich macht. Dieses Promotionsprojekt widmet sich dem Fortschritt
der Pflanzenwissenschaften durch 1. Entwicklung einer neuartigen in situ
Phänotypisierungsmethode für Wurzeln, 2. Anwendung dieser Methode zur
Zusammenstellung eines umfassenden Datensatzes von Wurzel- und Bodendaten,
sowie 3. Identifizierung struktureller Veränderungen von Zea mays unter
Phosphormangel, 4. Vertiefung des Verständnisses der Reaktionen auf
Stress durch Untersuchung der Auswirkungen von Phosphormangel auf die
Wurzelsystemleitfähigkeit, und 5. dem Einordnen der Ergebnisse dieser Arbeit
in einen globaleren Kontext.

Erstens wurde eine neue Methode zur Analyse von Wurzelbildern entwickelt und
validiert, die tiefe neuronale Netzwerke und automatisierte Merkmalextraktion
kombiniert, welches die Bearbeitungszeit um 98% reduzierte und gleichzeitig
eine hohe Präzision im Vergleich zur manuellen Annotation erreichte (r=0,9).
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Zweitens wurde diese Methode zusammen mit anderen Technologien verwendet,
um einen umfassende Datensatz von Wurzel- und Bodendaten über einen
bestimmten Zeitraum in verschiedenen Bodenbereichen zu sammeln. Der
resultierende Datensatz umfasst dynamische Crosshole-Bodenradarmessungen,
Minirhizotron-Kameramessungen und statische Bodensensorbeobachtungen mit
hoher zeitlicher und räumlicher Auflösung. Der resultierende Datensatz
umfasst fünf Jahre Zea mays- und Triticum aestivum- Experimente,
einschließlich Trockenstress- und Sortenmischungsversuchen. Drittens wurde
ein kombinierter Ansatz des entwickelten Phänotypisierungs-Workflows und
funktioneller-struktureller Pflanzenmodellierung verwendet, um die Reaktionen
von Zea mays auf unterschiedliche Phosphorverfügbarkeiten zu untersuchen.
Die Kombination von gemessenen architektonischen Pflanzenparametern mit
hydraulischen Eigenschaften des Wurzelsystems, ermöglichte zeitabhängige
Simulationen des Pflanzenwachstums und der Leitfähigkeit des Wurzelsystems
unter verschiedenen Phosphorstufen und zeigte, dass nur Pflanzen mit
optimaler Phosphorverfügbarkeit eine hohe Leitfähigkeit des Wurzelsystems
aufrechterhielten. Im Gegensatz dazu, führten alle anderen Phosphormengen
zu einem signifikanten Rückgang der Leitfähigkeit des Wurzelsystems bei
leichtem sowie schwerem Phosphormangel. Zuletzt kombiniert diese Dissertation
mehrere kollaborative Ansätze, um Phänotypisierungsmethoden zu verbessern
und die Reaktionen von Zea mays auf Umweltveränderungen weiter zu
untersuchen. Wir fanden heraus, dass das Bodenradar in Zukunft als
Wurzelphänotypisierungsmethode im Feld eingesetzt werden könnte. Durch die
Verknüpfung von oberirdischen Pflanzendaten mit dem unterirdischen Datensatz,
konnten wir zeigen, dass die Reaktionen von Mais auf Wasserstress erheblich
mit den Bodenbedingungen variieren. Eine Kombination der automatisierten
Analysemethode mit funktionell-struktureller Modellierung zeigte zudem, dass die
Domestikation von Zea mays abhängig von der Wasserverfügbarkeit war, wobei
die Anzahl der seminalen Wurzeln als ein entscheidendes Anpassungsmerkmal
identifiziert wurde. Diese Erkenntnisse liefern möglicherweise wichtige
Informationen für die Züchtung dürreresistenter Sorten. Schließlich, wurde ein
in silico Ansatz, der eine Computerspiel-Engine und Pflanzenmodelle kombiniert,
entworfen, um virtuelle Daten für neuronale Netzwerke zu generieren und deren
Präzision und Aussagekraft zu erhöhen.

Diese Arbeit kombiniert verschiedene Methoden, Daten und Modelle, um die
Reaktionen von Pflanzen auf eine sich verändernde Umwelt auf verschiedenen
Skalen zu erforschen und damit neue Einblicke in kombinierte Stressreaktionen
und die Entwicklung von Zea mays zu gewinnen.



Preface

Welcome, dear reader!

The journey that has brought us to the point where you are reading this thesis
began exactly 10 years ago. It all started with the simple idea of contributing to
the most essential yet underexplored field for humanity - agriculture. Driven by
this goal, I pursued a Bachelor’s in Agriculture, followed by a Master’s in Crop
Science, and am now working towards a Ph.D., eager to learn everything that will
bring me closer to achieving it.

As my journey continues, I invite you to join me in my quest to discover some of
the elusive secrets of the verdant but partially buried kingdom of plants. Together,
we will explore innovative methods to detect the hidden half of plants, excavate
groundbreaking data treasures, and unleash powerful models to deepen our un-
derstanding of plant responses to a changing environment. All of this ties into
the overarching goal: refining how we measure and understand plant structures
and functions.

Now, as we finally embark on this journey, it is essential to acknowledge that
while this thesis is primarily my work, it has been significantly shaped by the
invaluable contributions of many others. Rather than keeping you in suspense,
let us dive straight into the heart of the thesis. The acknowledgments for all who
have supported this journey will be reserved for the end of this work, where their
contributions can be properly recognized and sincerely appreciated.

With that in mind, let us jump in and start this adventure together!

Jülich Felix Maximilian Bauer
30.08.2024
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Note about the thesis structure
This thesis brings together both published and unpublished work. So, to those
brave enough to read the entire document, I apologize in advance for any déjà vu
moments — you have been warned!
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Agriculture is the most healthful, most useful
and most noble employment of man.

George Washington

≪ ⋄ ≫

In the following chapter, we will dive into the
topic, briefly introduce the thesis and formulate

its different objectives.





Chapter 1

Introduction

Plants are of fundamental importance for life on earth, as they are the
foundation of most ecosystems and the key producers in the food chain. They
are not just passive elements of the environment; they actively contribute to
regulating atmospheric gases and mitigating climate change by binding carbon
dioxide and releasing oxygen (Crawley, 2009). Humans and plants have a complex
relationship that dates far back into history. This heritage is evident today. In our
modern society, plants provide food, fiber, medicine, energy, and living space for
people and animals worldwide. The domestication of plants through agriculture
allowed human civilization to evolve. We have domesticated plants to suit our
needs, leading to a cultural shift from hunter-gatherer societies to agriculture-
based societies (Schaal, 2019). Although the domestication of crops, such as
wheat, started approximately 10,500 years ago, the most significant progress in
agriculture has been achieved within the last century (Tanno and Willcox, 2006).
With the beginning of the "Green Revolution" and the development of advanced
technologies in the second half of the 20th century, agricultural production tripled,
and the use of natural resources increased dramatically. However, agriculture now
faces its biggest challenges.

The human population is still growing rapidly. By 2050, the world population
is expected to reach more than 9 billion people. Ensuring food security is key
since hunger and malnutrition persist and approximately 800 million people are
undernourished (UN, 2023). To cope with these challenges, agricultural efficiency
needs to be increased by approximately 60% (Alexandratos and Bruinsma, 2012).
Modern research must, therefore, address these topics with the highest priority
to increase and promote sustainable plant production while minimizing the eco-
logical footprint of agriculture. However, climate change and associated altered
environmental conditions, such as decreased water availability or the shortage of
nutrients, complicate the matter. In order to meet the UN Sustainable Devel-
opment Goals, especially: "Zero Hunger", "Good Health and Well-Being", "Re-
sponsible Consumption And Production", "Climate Action" and "Life on Land"
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(Figure 1-1), we have to increase our understanding of environmental change and
the resulting crop responses (UN, 2023). This includes a detailed understanding
of underlying processes at different scales and the interaction of various key com-
ponents, taking into account the effects of environmental conditions and modern
agricultural practices.

Figure 1-1: The UN Sustainable Development Goals "2: Zero Hunger", "3: Good
Health and Well-Being", "12: Responsible Consumption And Pro-
duction", "13: Climate Action" and "15: Life on Land" are directly
depending on the successful implementation of sustainable agriculture
all around the globe (UN, 2023).

Maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) account for
more than half of the world’s food production and human caloric intake. Among
these three crops, maize is the front-runner in terms of yield produced and is,
therefore, a crucial cornerstone for human nutrition. In 2022, all around the
globe, 1.16 billion tons of maize were produced on 203 million ha of land area,
which is an increase of more than 400 % over the last 60 years. In the same
period, the land area used for cultivation only doubled, indicating an increase in
maize production efficiency of approximately 200% (FAOSTAT, 2024b). Maize is
grown all over the world; however, North and South America together account for
almost half of the world’s production (49.6%), followed by Asia (26.9%), Europe
(8.8%) and Africa (8%) (Figure 1-2). The US and China together produce more
than half of the total maize yield (626 mio. t).

Currently, the annual production increase in Zea mays cropping is 1.6%. However,
to meet the demands driven by population growth, dietary shifts, and increased
biofuel consumption, annual maize production needs to increase faster. Ray et al.
(2013) predicted a required annual increase of approximately 2.4% per year in
maize yields to meet the goal of doubling agricultural production in 2050. To
achieve this, we have to understand how maize is cropped most efficiently and
grasp how plants respond to changing environmental conditions. To do this, we
have to extend our limited knowledge about the architectural and functional adap-
tions taking place in Zea mays exposed to extreme conditions, such as drought or
nutrient deficiency, and gain comprehension of the underlying mechanism. These
new insights hopefully increase our understanding of processes and are therefore
essential to enhance breeding for new, more efficient, and less resource-demanding
cultivars and additionally improve cropping management. To fully understand the
responses of Zea mays, we must first understand the architecture of the plant.

Zea mays is a monocotyl plant, belonging to the family of Poaceae. It is a tall
stout grass (1.2-4m height), producing a cereal grain (corn). The shoot of Zea
mays consists mainly of the leaves, which are attached to a pseudo-stem, often
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Figure 1-2: Zea mays production around the globe in 2022, according to FAOSTAT
(2024b). Units are in tonnes (t).

also referred to as a stalk. After germination maize develops a single cotyledon,
followed by the actual leaves. The leaves arise from nodes, alternately on opposite
sides on the stalk. At the flowering stage, the tassel, the inflorescence of the male
flower, develops at the top of the stem. The female inflorescence initially develops
as a silk, appearing as a bundle of tubular hairs, each connected to a future kernel.
Later, the whole female inflorescence turns into an ear, enveloped by multiple
husks (Solaimalai et al., 2020). In modern varieties, grains and the corncob are
mostly yellow. However, traditional varieties may have orange, red, brown, blue,
purple, or black colors (Yu et al., 2024). The shoot structure is shown in Figure
1-3a.

The root system of a plant is crucial to access water and nutrients that are stored
in the soil. The capability of the plant to take up these precious resources mainly
depends on the suitability of the root system for given soil conditions. The mor-
phological characteristics of the different root types together form the root system
architecture (Lynch, 2007). The architecture of the root system of Zea mays is de-
termined by different embryonic and postembryonic root types. Embryonic roots
are formed early after germination, and postembryonic roots are formed later at
different stages of development. While embryonic preformed roots dominate the
early root system of the seedling, the adult rootstock is determined by postem-
bryonic roots. The embryonic root system consists of a primary root, which is the
first root emerging at germination, followed by the seminal roots. Both root types
can have postembryonic lateral roots of different orders. Later, the adventitious
roots develop, starting with the crown roots, which are developed at the shoot
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nodes but are still located in the soil. A maize plant can have several crowns.
Since they originate from the shoot, the crown roots are also called shoot-born
roots (Figure 1-3b). A later type of shoot-born roots are the brace roots that
are exclusively developed above-ground (Figure 1-3c). A maize plant typically
develops several brace root nodes (Hochholdinger, 2009).

Figure 1-3: Zea mays: a) shoot of a mature plant b) embryonic primary and
seminal roots and postembryonic lateral and crown roots are already
visible in 14-day-old wild type maize seedlings. c) Aboveground shoot
borne brace roots of a 6-week-old plant (panel b and c are adapted
with permission from Hochholdinger (2009)).

1-1 Changing environmental conditions and the impli-
cations for Zea mays

For agriculture, the main problematic consequence of climate change is water
availability. Agriculture is the main consumer of global freshwater (900–1700 ×
109 m3 year-1) (Chaturvedi et al., 2015). Climate change is expected to increase
global evapotranspiration, because the hydrological cycle will get additionally
disturbed due to elevated temperature. This reduces water availability, making
water management a critical issue for sustainable agriculture. Additionally, the
occurrence of drought, extreme weather conditions, and disturbances in rainfall
patterns are a consequence of human-made climate change (Srivastav et al., 2021).
With increasing latitudes, there will be increased precipitation in tropic regions,
while already arid areas will have less precipitation. Consequently, regions that
already have less water availability will even become drier and warmer. The Food
and Agriculture Organization states that irrigation will have to increase around
5-20% within the next years to maintain crop production (FAO, 2011).

Additionally to the lack of water, the temperature increase affects soil health.
Climate change has a negative impact on nutrient cycling and soil water content
(Wagena and Easton, 2018). Changes in rainfall patterns and heat may change the
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magnitude of nutrient, their transport, and consequently their plant availability
(Boesch et al., 2001). Especially the macronutrient nitrogen (N) is prune to runoffs
(Wang et al., 2015). A common practice in agriculture is to compensate for these
losses with additional fertilization. However, approximately 14% of the total
greenhouse gas emission of agriculture originates from this inorganic fertilization
management, which is an increase of 45% since 2002 (FAO, 2015). Additionally to
nutrient runoffs, the exploitation of finite natural resources poses new challenges
to agriculture. The availability of phosphorus (P), which is a finite resource mined
from rock phosphate, will decrease soon (Cordell et al., 2009). Already in 2030,
it is expected that the mining costs will increase dramatically due to reduced
mining efficiency, and consequently, the affordability and availability will decline
soon (Reijnders, 2014). In the past, P fertilization has been a comparatively small
financial investment for crop production in industry nations, which resulted in an
excessive fertilization history in North America and Europe. However, excessive
N and P fertilizer use significantly impacts the environment by affecting open
water bodies (Randall, 2003). Besides N, P is the most important macronutrient
for crop production. Especially P is limiting maize yields in approximately 30 %
of all cultivated maize area (Heuer et al., 2017).

The deficiency of water and important nutrients triggers architectural responses in
Zea mays. These responses affect both the shoot and the root system (Marschner,
2011). The inhibition of shoot growth in maize caused by water and nutrient lim-
itation is of direct interest to agriculture, as the shoot is the relevant harvesting
organ. However, since the root system is responsible for water and nutrient up-
take, the effects caused by its underdevelopment are of indirect but major impor-
tance for crop production. Changes in plant architecture often imply functional
changes, e.g. in water and nutrient uptake capacity or photosynthetic ability.

Limitation of water and essential nutrients, such as N and P, inhibit plant growth
and ultimately lead to a reduction in yield. The responses of maize architecture
to alternating effects of multiple deficiencies at once are complex and our knowl-
edge is still very limited. However, the architectural reactions to water, N, or P
limitation considered individually are already well known.

In the case of water stress, the maize plant reduces shoot size by limiting height
and leaf area, the tassel growth is reduced as well, and the leave angle is steeper
(Ribaut et al., 2009). The stomata may close partially or fully to reduce water
loss through transpiration. The root system often responds under water stress
with an increased rooting depth and density, an enhanced lateral root formation,
and root angle changes, generally leading to a carbon re-allocation from shoot to
root system (Hochholdinger, 2009). Increased root diameter has also shown to
be a drought resilience trait in Zea mays since soil penetration resistance triggers
thicker roots (Lin et al., 2016). Larger root cortical cell size can improve drought
tolerance by reducing metabolic costs (Chimungu et al., 2014) and reduced lateral
branching under water can lead to a carbon allocation in favor of axial root (all
roots not being lateral roots) diameter (Zhan et al., 2015). The reduction of
crown root numbers was also reported as a beneficial response to drought (Gao and
Lynch, 2016). Furthermore, cultivar-specific adaption, through domestication and
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target breeding, changed the root system to be beneficial under drought. Insights
from recent studies identified seminal root number, primary elongation rate, and
lateral distance on the primary root as major morphological traits contributing
to drought resistance (see Chapter 5-3, Appendix C-4, and Yu et al. (2024)).

N limitation generally results in reduced shoot growth due to limited resources
for synthesizing proteins and chlorophyll, resulting in significant reductions in
shoot dry matter and overall biomass. Leaf area is heavily reduced (Binder et al.,
2000, Pandey et al., 2000). N deficient plants often exhibit chlorosis, seen by a
yellowing of the leaves (Khamis et al., 1990). Maize reallocates N from older leaves
to younger leaves, resulting in a delayed senescence (Riedell, 2010). Similar to the
response to drought, maize promotes primary root elongation, increasing the root-
to-shoot ratio under N limitations to enhance nutrient acquisition from a larger
soil volume (Gao et al., 2014). Generally, the total root system length increases
under N deficiency, mainly driven by enhanced individual axial root elongation,
but reduction in axial root number and general promoted lateral root growth
(Chun et al., 2005). Furthermore, maize root growth angles become steeper under
low N conditions (Trachsel et al., 2013). It is not surprising that water and N
limitations trigger the same root system responses since plant available N is mainly
transported as NO3

- with the water. Therefore, the root system of a hypothetical
ideotype would have similar attributes in most maize cropping environments.
Lynch (2013) hypothesizes that a potential ideotype should have a large diameter
primary root with few but long lateral roots, many seminal roots with a shallow
growth angle, small diameter, and many lateral roots or alternatively a medium
number of seminal roots with a steep growth angle, large diameter, and few lateral
roots in combination with an abundant lateral branching of the initial crown roots,
an intermediate number of crown roots with steep growth angles and few but
long lateral roots, a whorl of supporting roots with high occupancy, which have
a growth angle somewhat flatter than the growth angle for crown roots, with few
but long lateral roots.

Regarding P limitation, maize responses, similar to water and N deficiency, with
a general reduction in shoot biomass (Wen et al., 2017). P deficiency also affects
leaf morphology, resulting in reduced leaf area and red chlorosis due to reduced
leaf area index and decreased chlorophyll content. This lowers the photosynthetic
capacity of the shoot (Zhang et al., 2018). The allocation of the remaining carbon
is shifted from shoot to root, resulting in an increased root to shoot ratio, which
is supposed to enhance P uptake (Lynch et al., 2005). However, the underlying
changes in root system morphology are contrary to the responses under water and
N limitation. Inhibitions of primary root growth, shallower axial root angle, and
various changes in lateral root growth, such as the reduction of lateral root growth
in the field, but also an increase in lateral branching in plants with few axial roots
are known responses to P deficiency (Borch et al., 1999, Marschner, 2011, Zhu
and Lynch, 2004). Also, contrary to water and N limitation, an increase in crown
root number (Sun et al., 2018), and reduced axial root radii (Sheng et al., 2012,
Zhang et al., 2012) has been reported to be beneficial under P deficiency.
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Additionally to N and P, potassium (K) is a crucial macronutrient for crop pro-
duction. However, in maize cropping, N and P deficiencies are more critical in
maize production due to their direct roles in essential plant processes and typi-
cally result in more immediate and noticeable reductions in growth compared to
K deficiency (Essel et al., 2020).

Although important changes in plant architecture under drought conditions and
macronutrient limitations are known for each deficiency separately, the interplay
between several deficiencies is often poorly understood. The effects of P deficiency
and water deficiency on whole plant architecture are rarely investigated together;
however, P deficiency frequently occurs in parts of the world where water is also
limiting, such as regions in Africa and Australia. We must investigate these
combined stresses’ reciprocal effects on plant development to close this knowledge
gap. Since combined effects complicate the investigations, we require modern,
non-invasive phenotyping methods to obtain and analyze reliable plant data and
apply sophisticated models to expand our ability to understand the relationships
between processes.

1-2 Importance and overview of (belowground) pheno-
typing

The term "phenotype" was first used over 100 years ago by the botanist Wil-
helm Johannsen to describe a wide range of characteristics in plants, microbes,
fungi, and animals (Johannsen, 1911). In the 1960s, the term "phenotyping" was
introduced, which refers to a quantitative analysis of the characteristics of an
organism. Phenotyping can be considered the counterpart to genotyping, which
analyzes the organism’s genetic code to identify specific genetic variations. Plant
phenotyping is the comprehensive detection, recording, and analysis of observable
plant traits related to growth, development, and stress responses. This research
domain aims to understand the genetic, environmental, and management factors
that influence plant performance. Phenotyping measures a wide range of plant
characteristics, including morphological parameters defining the plant’s architec-
ture, physiological parameters defining the plant’s function, biochemistry, and
growth dynamics. Phenotypic measurements can be taken at all stages of plant
development and are a valuable resource for plant scientists to understand plant-
environment interactions. In recent decades, phenotyping has become the most
important tool for characterizing various plant processes, functions and struc-
tures, primarily through the non-invasive optical analyses of plant traits using,
e.g., images. However, in contrast to genotyping, phenotyping is still considered
a bottleneck in plant science, as the collection and analysis of observable traits is
slow and labor-intensive.

With the increasing development of non-invasive technologies in the 2010s, a new
era of plant phenotyping has started. The capacity and throughput of sensor-,
automation- and computer-based tools grew, as did their availability, affordabil-
ity, robustness, and scalability, making modern phenotyping methods interesting
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beyond the borders of science, e.g., for commercial breeding (Watt et al., 2020).
Together with the tremendous progress in data analysis through the integration of
artificial intelligence, driven in particular by deep neural networks, phenotyping
methods are developing fast. There is an incredible number of different methods
for phenotyping plants, varying from molecular to field scale.

The current gold standard of shoot architecture phenotyping is RGB-, multi-,
and hyper-spectral sensors, potentially combined with thermal measurement or a
laser scanner, to generate optical representations of the canopy in 2-D, 3-D, or, if
measured over time, 4-D (Paulus, 2019). From the resulting digital plant copies,
structural traits can be derived. To obtain more functional implications about
photosynthesis, fluorescence measurements can be conducted (Li et al., 2014).
A new method to phenotype insect-plant interactions is acoustic phenotyping
(Branding et al., 2023).

Measuring the hidden half of the plant is as important as measuring the above-
ground part, but challenging since the root system is mostly covered by soil.
Therefore, root phenotyping methods were developed comparatively late, and
fewer phenotyping platforms are available (Atkinson et al., 2000). Currently, the
International Plant Phenotyping Network (IPPN) lists 111 operating phenotyping
facilities, each measuring a huge variety of different traits. Only 25 of them in-
clude root properties. However, in recent years, root phenotyping became more of
a focus and was developed further, and a suit of measurement tools was developed
(Atkinson et al., 2019). Root phenotyping is mainly divided into invasive and non-
invasive methods. Invasive methods, such as soil coring, excavation, and trenches,
are often used in the field to get an overview of the heterogeneity present in the
experiment. Non-invasive methods are preferred to observe root development over
time with less to no disturbance. Possibilities of non-invasive root observations
are on a wide range, from simple, transparent windows for visual growth control
to the use of rhizotrons, magnetic resonance imaging (MRI), computer tomogra-
phy (CT), and positron emission tomography (PET) scans (Yang et al., 2020).
Recently also, electromagnetic measurement methods, such as electrical resistance
tomography, electromagnetic inductance, and Ground Penetrating Radar (GPR),
have been applied to measure roots (Atkinson et al., 2019, Klotzsche et al., 2019,
Lärm et al., 2024, Michels et al., 2024).

For both root and shoot, the progress in optical phenotyping led to a significant
increase in data quantity. In the late 2010s, the development of neural networks
for image analysis accelerated the progress in phenotypic data analysis (Pound
et al., 2017). In situ root phenotyping in particular benefits from these new anal-
ysis methods (Smith et al., 2020a). Starting with leaf and shoot segmentation,
convolutional neural networks (CNNs) were used to separate the targeted organ
from the background automatically. Followed by subsequent feature extraction,
such as area measurement, length, radius, convex hull, or perimeter, architectural
parameters are derived easily (Ubbens and Stavness, 2017, Wang and Su, 2022).
CNNs are now also frequently used for 2D root system segmentation tasks (Bauer
et al., 2022, Smith et al., 2020a, 2022). However, feature extraction from the
segmented root system still requires some effort and additional processing after
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segmentation. Therefore, tools capable of performing this task must be combined
or integrated into neural network-based analysis workflows to facilitate the pro-
cess. CNNs are also applied to 3D data, such as MRI scans. However, they
currently only have an assisting function since full automation is not yet feasi-
ble, and manual labor is still required to extract architectural root system traits
(Selzner et al., 2023).

For the shoot, we are in the process of closing the gap to genotyping and elimi-
nating the "phenotypic bottleneck" by using high-throughput phenotyping tech-
nologies, automated imaging systems, and neural network-based data analysis
(Minervini et al., 2015, Song et al., 2021). In root system phenotyping, advances
in non-invasive imaging techniques such as CT, MRI, and PET, combined with
sophisticated neural network-driven software for root system analysis, are also
helping to overcome the phenotypic bottleneck. However, especially with multi-
dimensional data, faster and more accurate processing is required (Bauer et al.,
2022, Selzner et al., 2023).

Phenotyping is crucial for further progress in plant science, as it provides essential
insights into how genetic variations manifest in architectural and physiological
traits, enabling effective breeding programs to improve crop yields and ultimately
providing a deeper understanding of plant responses to environmental changes.
Phenotyping data is also the foundation for computational plant modeling.

1-3 Introduction to functional-structural plant model-
ing

Functional-structural plant modeling (FSPM) is an approach that combines the
architecture (structure) of a plant with its physiology (function) to create a com-
prehensive computational model to simulate growth and development. These
models are of great value for plant sciences as they can predict how plants will
respond to different environmental conditions and understand processes in detail
(Dejong et al., 2011). In FSPMs, the plant architecture is usually represented
as connected plant segments distributed in the 3D below- or above-ground space
or both domains together. FSPMs can deal with the spatial distribution of en-
vironmental conditions. FSPMs are available on different scales (Figure 1-4).
Typically, they are based on up-scaling, usually from organ to plant, but also
from tissue to organ or from single plant to crop stand. To cope with complex
environmental conditions, FSPMs can be coupled with other models, e.g., soil or
crop models, and used together to solve more complex scenarios, ensuring that
appropriate computational methods are used (Godin and Sinoquet, 2005).

The origins of FSPMs date back to the late 20th century, when advances in com-
puter technology made simple, descriptive models of plant growth possible for
the first time. The first models focused primarily on geometric representations
of plant architecture, usually looking at either the shoot or the roots individu-
ally (Vos et al., 2009). A major step forward was the development of L-systems,
where the basic idea is to define complex objects by gradually replacing parts
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Figure 1-4: Computational plant modeling can be conducted on different scales,
from molecular scale to field scale, depending on information density
and desired information output.

of geometrical objects with a series of letters defined by rewriting rules, to sim-
ulate plant morphology. (Lindenmayer, 1968, Prusinkiewicz and Lindenmayer,
1990). On top of the structure, integrating process-based plant functions, such as
carbon allocation or N distribution, facilitated the representation of basic phys-
iology (Fourcaud et al., 2008). With further advances in computing methods,
computational power, and the increased processed-based understanding of plant
physiology, FSPMs became more sophisticated and incorporated functional as-
pects, such as photosynthesis, transpiration, and nutrient uptake (Cieslak et al.,
2011). For a long time, the root system architecture and functionality were still
the missing puzzle part of FSPMs, however, due to the recent development of
functional-structural root system models, this gap could be closed (Javaux et al.,
2008, Postma et al., 2017, Schnepf et al., 2018). With the integration of the shoot
and root system into a single FSPM, as it is done in CPlantBox by Giraud et al.
(2023), scientists can now use FSPMs that simulate plant functions at the scale
of a single (sub)organ up to the entire plant and crop stand.

FSPMs have a wide range of applications in plant sciences. They are used to
enhance our understanding of plant-environment interactions, e.g. to improve
breeding strategies or crop management. An exemplary application of FSPMs is
to predict the effects of different root system architectures on the impact of water
stress and, hence, plant performance and to assess the potential benefits of genetic
modification (Vos et al., 2007). Another use case is the prediction of nutrient
uptake by different cultivars at different soil conditions or under different nutrient
supply levels (De Bauw et al., 2020). FSPMs are used at different agriculture
management scales, such as lab, greenhouse, or for field applications (Vos et al.,
2009).

The possible applications of FSPMs are as diverse as the technological advances
and the research questions we want to address. In general, these models provide
a powerful decision-making tool, allowing researchers to test different scenarios
and develop strategies that have the potential to maximize productivity and sus-
tainability. However, as with any model, an FSPM is only as good at answering
a real-world question as the parameterization on which it is based.
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Phenotyping data is required to parameterize an FSPM. Parameterization of an
FSPM can be achieved by direct measurements of the shoot and root traits,
such as e.g., leaf area, stem or root diameter, and length, which are obtained
using high-throughput phenotyping platforms. However, since most FSPMs also
include dynamic growth, we also require information on the trait’s development
over time.

We can use high-throughput phenotyping platforms to study how plants change
over time. Modern imaging techniques like 3D laser scanning and MRI show us
how the shoot is developing, while rhizotrons, MRI, or PET scans show us how
the root system is developing (see Chapter 1-2). By combining these data sources
and the shoot and root information, we can quantify that the FSPMs accurately
reflect the architectures of plants in the real world. However, while phenotyping
provides valuable data on many aspects of architectural plant traits, functional
parameters are sometimes complex to measure, especially if development over
time is regarded (Fiorani and Schurr, 2013). Especially critical key components
of the plants, such as the time-dependent variations in hydraulic architecture,
which has crucial implications for plant water uptake, are hard to phenotype, and
consequently, it is a complex challenge to precisely investigate water uptake capac-
ity based on mechanistic functions (Heymans et al., 2020, Meunier et al., 2018).
FSPMs can help address this challenge by incorporating theoretical and empirical
data to simulate these observable processes, providing insights into how plants
regulate water transport, maintain structural integrity, and adapt to environmen-
tal changes. However, the required empirical data still needs to be obtained, and
therefore, workflows and pipelines must be developed, validated, and applied to
provide the data to the FSPM.

Besides the persisting challenge in complex functional data collection, the process-
ing, analysis, and integration of data originating from high-throughput phenotyp-
ing methods for model parameterization is still challenging (Fiorani and Schurr,
2013).

Automation in data measurement and analysis is inevitable due to the vast
amount of data produced by cutting-edge phenotyping methods (Pound et al.,
2017, Watt et al., 2020). However, processing pipelines for complex data struc-
tures are still a bottleneck, especially when it comes to model parameterization, as
FSPMs require highly precise data. This is because when model inputs already
contain high uncertainties, validating the model becomes too complex (Bauer
et al., 2024, Wang et al., 2020). Ensuring data quality and consistency is essen-
tial, as inaccuracies can cause faulty model predictions.

The pooling of different types of data, including measurements of the shoot and
root system, requires advanced methods and robust analysis pipelines. Consid-
ering the dynamic nature of plant growth, we require continuous data collection
over time, which is further complicating the parameterization process. In order to
apply FSPMs to complex questions and unleash their full potential, overcoming
the challenge of precise parameterization is key.
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1-4 From phenotyping to model parameter estimation

In order to develop feasible analysis methods, tools, and combined pipelines to
extract FSPM model parameters from phenotypic data, we have to understand
which components of plant architecture are relevant for FSPM parameterization.
This highly depends on the FSPM framework used. One of the most complex
scenarios is the parameterization of a whole plant functional-structural model.

CPlantBox (Giraud et al., 2023) offers the possibility to generate full plant struc-
tures at the vegetative growth stage as a single topological network of organs
based on structural parameterization. In most FSPMs, simulated plant architec-
ture is composed of nodes with defined coordinates. The nodes have properties,
such as type, radius, or hydraulic properties. Together the nodes form a con-
nected network. To parameterize the plant structure, single organ attributes are
required from measured data. These attributes depend on the organ. However,
since all organs contribute to the node-network, length information, such as the
maximal leaf or root length, width information, such as root and stem radii or leaf
width, a branching information, such as lateral root emergence distance and delay
or time delay between leaves and growth information, such as elongation rate of
root, stem, and leaves, are the basic requirements for the structural whole plant
parameterization. Additionally to this single organ information, data on general
plant architecture are required, such as the amount of seminal or shoot-born roots
and root crowns, their emergence delay, and the leaf shape type.

The data analysis methods and tools to extract these data highly depend on the
data structure of the available phenotypic data. Obtaining whole plants, or at
least undisturbed and connected whole root systems or shoot images or scans, is
the convenient way to obtain reliable FSPM parameters.

Regarding 2D or 3D measurements, we can consider the depicted plant as a con-
nected network, similar to the one FSPMs are often realizing. The end of each
organ is the tip of a network branch, and root and leaf exit points are nodes at
which the network branches out. Ideally, time information on node or tip creation
and node and tip organ affiliation are also recorded. If all network data are as-
sembled, only the length and diameter between the nodes and tips of the network
have to be measured. If the node creation time information can be accessed as
well, growth rates and potentially also the maximal length or area of each organ
can be derived directly from the network structure. For the root system, the net-
work analogy has already been often described, and even a data format describing
the root system as a network structure by saving node and tip coordinates and as-
signing them functions, such as creation time and radii, is available (Root System
Marker Language, Lobet et al. (2015)). For the shoot, the network analogy works
as well as for the root system and has been implemented, e.g., through Multiscale
Tree Graph (Godin and Caraglio, 1998). However, until today, it has not been
used in FSPMs frequently. The drawback of this method is that the automation
of the process of extracting the nodes-network and the parameters from it, is not
yet far progressed.
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Regarding optical phenotyping data, the first step is always a segmentation of all
available plant organs, so we can distinguish which part of the image is part of the
plant and contributing to the node-network (Pound et al., 2017). While there are
already automated workflows for 2D data, optical 3D data require a high amount
of manual interaction (Selzner et al., 2023). Once having the segmented 2D or
3D of a plant or the root system and shoot organs separately, a variety of soft-
ware tools exist to extract the required parameter. The range of tools goes from
highly flexible programming packages allowing full automation but are complex
to use, such as PlantCV (Gehan et al., 2017), over semi-automated GUI-based
tracking software, such as SmartRoot (Lobet et al., 2011) or RootSystemAnalyzer
(Leitner et al., 2013b) to mostly manual drawing and tracing solutions, such as
VRoot (Baker et al., 2024b). The mutual advantage of this procedure is that the
extracted parameters are directly usable for FSPM parameterization. However,
it is often the case that we do not have data from completely measured plants
but only from fragments of organs, such as broken root systems, as measured in
a minirhizotron or leaf area data obtained from UAVs.

Additional methods, having the capability to estimate model input parameters
based on these unconnected or fragmented plant organ architecture measurements,
are therefore required. These kinds of data can be used to obtain aggregate data,
such as leaf area index (LAI) or root length density (RLD). Inverse model pa-
rameter estimation from aggregated parameters is a promising method. E.g.,
Morandage et al. (2021) developed a method that takes RLD data that are deriv-
able from, e.g., soil coring or minirhizotrons images, as input for a Bayesian in-
ference with Markov chain Monte Carlo algorithm to estimate architectural root
model input parameters. Further development of this approach would significantly
help to identify parameters from aggregated data.

On top of the structural parameters that are crucial to simulate the architecture
of a plant, further parameters for the functional aspects of the plants are required.
In order to obtain these data, phenotyping of anatomical features, such as xylem
and phloem vessel size and count, may help to compute the hydraulic properties.
Tools to analyze the anatomical structure of the measured organ, such as ROXAS
for shoots (von Arx and Carrer, 2014) or GRANAR for roots (Heymans et al.,
2020), help gather this information. In conjunction with the hydraulic simulator
MECHA, these data provide insights into plant hydraulic properties that are re-
quired to parameterize an FSPM so that functional simulations, such as water and
solute transport within the plant, are enabled (Couvreur et al., 2018). However,
gathering all information from a single experimental set-up or even the same plant
is often not feasible, although it would be desirable. Therefore, complex FSPM
parameterization problems often combine data originating from different sources
and methods.

The methodological examples described above demonstrate that methods, tools,
and pipelines used to obtain model parameters are as diverse as the phenotyping
methods used to obtain the underlying data. However, the procedure to design an
analysis workflow stays the same for every method. Therefore, the following step-
by-step workflow was created to standardize the development of a data-to-model
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workflow, as shown in Figure 1-5. Step 1 is the identification of the desired param-
eter(s). The second step is the choice of the method and technique to phenotype
the desired corresponding traits. If the phenotyping was already performed before
the target parameters were defined and the dataset already exists, step 3 is espe-
cially important. In the third step, the data structure has to be defined, which is
the preparation for the following steps. Step 4, the pre-processing, is optional and
highly depends on the available data format and structure. Step 5 is the core part
of the analysis, where we have to choose the right tools for our (pre-processed)
data. The last step, the post-processing, is also optional and mainly serves as
a verification that the previous steps were successful. Sticking to these 6 steps
facilitates the data-to-model workflow for FSPM parameterization.

Once we have a well-parameterized FSPM, it can answer different scientific ques-
tions regarding plant development and responses under various environmental
conditions. In the past, FSPMs have been used to quantify how resource al-
location is affected by plant architecture (Godin and Sinoquet, 2005), how light
distribution within a canopy affects photosynthesis plant growth (Vos et al., 2009),
how environmental stresses, such as drought or high temperature, impact plant
architecture and function (Chenu et al., 2008), how breeding strategies can be
optimized for specific environments (Boote et al., 2021), how nutrient availabil-
ity influence root growth patterns and overall plant development (Postma and
Lynch, 2011), or how genotypes are affecting the root system conductance (Yu
et al., 2024).

FSPMs’ application cases are versatile and mainly limited by model implementa-
tion and data quantity and quality. Therefore, developing comprehensive FSPM
toolboxes, such as CPlantBox , is crucial. These toolboxes should combine differ-
ent structures and processes across various scales to cover as much of the reality
as possible. Measuring, analyzing, and structuring the underlying data correctly
is key for accurate model predictions.

Figure 1-5: Schematic procedure to design an analysis workflow to obtain FSPM
parameter from phenotyping (data2model).



1-5 Aims and Objectives 17

1-5 Aims and Objectives

This work focuses on developing and validating a new phenotyping method to
increase our ability to non-invasively collect and analyze in situ root development
information over time and at different scales. Furthermore, this work aims to col-
lect a unique and comprehensive belowground dataset, including all agronomic as-
pects over a longer time period that are required to enable further ground-breaking
research on plant responses to changing environments. Ultimately, this work com-
bines phenotyping with FSPMs to understand the consequences of combined en-
vironmental stresses, in particular, how the absence of the crucial macronutrient
phosphor is affecting the capacity for water uptake of Zea mays. Additionally,
this work contributed to several collaborative studies with the methods, data,
and models presented in Chapters 2-4. These studies focus on new phenotyp-
ing methods, such as GPR, the creation of comprehensive aboveground datasets
complimenting the subsoil dataset presented in this work, the domestication and
adaption of maize to water availability over time, and in silico methods to increase
our phenotyping and modeling capacities by using high-performance computing
(HPC) and computer game engines combined with virtual worlds.

The overall objective of this work is to improve the structural and functional
quantification of plants with a special focus on their root systems.

In detail, this work is focused on the following main research objectives:

1. Develop, implement, and validate an automated minirhizotron image analy-
sis method, enabling a faster and objective analysis of minirhizotron data to
decrease resource demand for the analysis process and increase data quan-
tity and quality.

2. Collect and provide a comprehensive subsoil minirhizotron data set for a
wide range of scientific domains and applications.

3. Investigate the architectural responses to phosphorus deficiency in Zea mays
by using phenotyping and modeling methods

4. Quantify the effect of phosphorus-related changes in plant architecture
and physiology on water uptake capacity, by parameterizing a functional-
structural plant model of Zea mays with CPlantBox, based on the previously
obtained plant-scale phenotyping data.

5. Transfer the phenotyping and model pipelines previously developed to other
application cases with a focus on investigating the response of Zea mays to
changing environmental conditions. Apply the methods, data, and mod-
els used to approach the above objectives to further develop and test new
in situ and in silico methods at different scales to phenotype Zea mays,
analyze data and predict the architectural and functional responses to en-
vironmental conditions. In particular, evaluate GPR as a method, generate
an aboveground dataset corresponding to the belowground dataset, evaluate
the root response of maize under dry and wet field conditions in different
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soils, provide a method and model that assist in unraveling the Zea mays do-
mestication history, and generate data to further develop new phenotyping
methods built on immersive technologies.

1-6 Outline of the thesis

This thesis is composed of six chapters and eight appendices:

Chapter 1 is the introduction chapter. It provides an overview of chang-
ing environmental conditions and the implication for Zea mays, the importance
of phenotyping, functional-structural plant modeling, and how to combine these
two disciplines to enable deeper insight into plant responses. It further introduces
the aims and objectives and provides a brief outline of the content of this work.

Chapter 2 introduces a newly developed and validated minirhizotron im-
age analysis pipeline, based on deep neural network segmentation of roots and
the subsequent automated feature extraction. The presented method increases
minirhizotron image analysis by approximately 99% and increases objectivity
and metrics quantity and quality. The data produced in this study are, amongst
other data, presented in detail in Chapter 3.

Chapter 3 focuses on a holistic and comprehensive sub-soil data set ac-
quired at two minirhizotron facilities in Selhausen, Germany. The data
acquisition and processing includes data collected for the years 2015 - 2021
for Triticum aestivum and Zea mays grown on two different soil types. The
measurement methods presented include minirhizotron root images, time-lapse
horizontal crosshole GPR, soil sensors recording soil water content, soil water
potential, and soil temperature, measured with Time-Domain-Reflectometers,
tensiometer and MPS-2 sensors, respectively.

Chapter 4 investigates the response of Zea mays to decreasing soil phos-
phorus availability. Architectural changes to phosphorus limitation are obtained
by phenotyping and used for functional-structural plant modeling to enable
deeper insights into the impacts of combined stresses. Changes in plant hydraulics
are investigated using a CPlantBox model, leading to new insights into the
implications of phosphorus deficiency on the conductivity of the root system.

Chapter 5 discusses the results made in Chapters 2-4 and sets them in a
global context. Additionally, this chapter combines the published results of six
studies to which the work in this dissertation has made significant contributions.

Chapter 6 summarizes the key results of the doctoral project and presents
general conclusions. Recommendations for future work and research topics are
provided as an outlook.
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Appendix A contains supplementary information to Chapter 2.

Appendix B contains supplementary information to Chapter 4.

Appendix C includes a comprehensive overview of all published studies to which
this work has made significant contributions and supplementary information
pertinent to Chapter 5.

Appendices D-H contain conference proceedings about methods, data, and re-
sults developed during the studies presented in Chapters 2-4 and published on
the way to finish the here presented doctoral project.
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A baby learns to crawl, walk and then run. We
are in the crawling stage when it comes to

applying machine learning.

Dave Waters

≪ ⋄ ≫

The following chapter presents a new
high-throughput image analysis pipeline for root

phenotyping that significantly reduces
processing time and achieves high accuracy

through the use of deep neural networks and
automated feature extraction.





Chapter 2

Development and validation of
a deep learning based

automated minirhizotron
image analysis pipeline

Abstract

Root systems of crops play a significant role in agro-ecosystems. The root
system is essential for water and nutrient uptake, plant stability, symbiosis with
microbes and a good soil structure. Minirhizotrons have shown to be effective
to non-invasively investigate the root system. Root traits, like root length, can
therefore be obtained throughout the crop growing season. Analyzing datasets
from minirhizotrons using common manual annotation methods, with conven-
tional software tools, are time consuming and labor intensive. Therefore, an
objective method for high-throughput image analysis that provides data for field
root-phenotyping is necessary. In this study we developed a pipeline combining
state-of-the-art software tools, using deep neural networks and automated feature
extraction. This pipeline consists of two major components and was applied
to large root image datasets from minirhizotrons. First, a segmentation by a
neural network model, trained with a small image sample is performed. Training
and segmentation are done using RootPainter. Then, an automated feature
extraction from the segments is carried out by RhizoVision Explorer. To validate
the results of our automated analysis pipeline, a comparison of root length
between manually annotated and automatically processed data was realized with
more than 36,500 images. Mainly the results show a high correlation (r=0.9)
between manually and automatically determined root lengths. With respect to
the processing time, our new pipeline outperforms manual annotation by 98.1
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- 99.6 %. Our pipeline, combining state-of-the-art software tools, significantly
reduces the processing time for minirhizotron images. Thus, image analysis is no
longer the bottle-neck in high-throughput phenotyping approaches.

Adapted from: Felix Maximilian Bauer, Lena Lärm, Shehan Morandage,
Guillaume Lobet, Jan Vanderborght, Harry Vereecken, Andrea Schnepf
(2022): Development and validation of a deep learning based auto-
mated minirhizotron image analysis pipeline. Plant Phenomics, 2022,
https://doi.org/10.34133/2022/9758532

https://doi.org/10.34133/2022/9758532
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2-1 Introduction

Roots are an essential component of the global biosphere. They are
mainly responsible for the acquisition of the resources water and nutrients for
the entire plant. In most ecosystems, these resources are the limiting factors for
growth of plant organs and yield (Atkinson et al., 2000). Water and nutrient
uptake are directly linked to the parameters defining the root system, like length,
diameter or branching. Therefore, collecting information about the root system
becomes increasingly significant. In order, to improve water and nutrient uptake of
plants for specific soil and climatic conditions, it is essential to obtain information
about the root system architecture of plant species that have been shown to be
beneficial for the given conditions (Lynch, 2007). For plant breeding, this will help
to develop new genotypes, which are able to cope better with, e.g., drought stress
and are more efficient in nutrient uptake (Lynch, 2013). This will not only help to
increase the cultivated area for certain species, it might also lead to higher yields.
This especially applies to locations with less suitable environments for highly
productive agriculture. The negative impact on the soil should be minimized at
the same time (Bianco and Kepinski, 2018).

The direct observation of roots is difficult, because the root system is surrounded
by soil, making it challenging to visually measure the roots. To avoid that mea-
surements heavily disturb the plant and its environment, permanent installed
equipment, like rhizotubes, or the construction of a minirhizotron, are crucial
(Atkinson et al., 2019). Minirhizotrons are useful tools to collect data about
the root system without disturbing the environment of the roots or the plant
itself. Moreover, they allow root observations over the whole vegetation period
at a high temporal resolution and the comparison of different vegetation periods
and crop types. Transparent rhizotubes, installed below ground, function as a
window in the soil. Guided scanners and camera-systems provide high resolution
images of the roots and the surrounding soil. Consequently, the non-invasive root
measurements can be repeated multiple times during the growing period under
in situ conditions. However, large minirhizotron facilities include tubes in dif-
ferent depth-levels. Measurements in several depths and time lapse observations
result in big datasets that often consist out of 10,000 images and more (Cai et al.,
2016a). Images provided by minirhizotrons strongly differ from, e.g., root scans
gained from excavated and washed roots (Zeng et al., 2010). Various soil condi-
tions around the tubes in different depths lead to a wide range of heterogeneous
images with different characteristics. Beside the actual roots, soil structures and
disturbing fragments, including small animals, are depicted. Different soil condi-
tions in various depths and at varying locations lead to varying color and light
conditions and therefore make the automated processing of minirhizotron-images
a challenging task (Vamerali et al., 2011).

To analyze roots mainly two steps are needed, the segmentation of root objects
and the object quantification (Leitner et al., 2013b). Due to the heterogeneity
within minirhizotron images, the segmentation is very complicated. Different
analysis approaches emerged, represented by a numerous collection of software
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tools, designed to extract the information about the root system (Lobet et al.,
2013). These tools work manually, or in a (semi-)automated way. Manual anno-
tation tools for minirhizotron images, like WinRhizoTRON (Regent Instruments
Incl.), or RhizoTrak (Möller et al., 2019) rely on the human interaction with
each individual image taken, to track each root by hand. It requires the user
to follow every root depicted in the image by hand and mark start, branch and
endpoints. Semi-automated and automated approaches with software-tools ex-
ist to facilitate and speed-up the post-processing of the images (Vamerali et al.,
2011). Filter algorithms used to increase the contrast between root and back-
ground and to find root structures by typical geometrical shapes, were proposed
by several authors (Dowdy et al., 1998, Murphy and Smucker, 1995, Zeng et al.,
2010). Semi-automated software like RootSnap! (CID Bioscience) and Rootfly
(Zeng et al., 2008) require a manual annotation, but also provide root suggestions
by a filter created on an initial dataset. Consequently, most of these programs are
strictly limited to certain type of images, like high-contrast root scans (Yasrab
et al., 2019). Eventually, this has the consequence that the annotation of the
roots in most minirhizotron images needs to be done almost exclusively manu-
ally. Depending on the number of images taken and the number and length of
roots, the manual and semi-automated analysis can take weeks to years. Previous
studies found that the estimated amount of minirhizotron images, annotated with
an annotation software, was between 17 and 38 images h−1 (Ingram and Leers,
2001). Adapted to the working routine with Rootfly, it takes 1-1.5 h annotation
time for an image area of 100 cm2 depicted soil (Smith et al., 2022). Further, the
results underlie the subjectivity of the annotator, because annotations are done
according to personal experiences and knowledge of the annotator.

Deep learning has developed to the Gold Standard of machine learning methods
within the recent years. Deep neural networks are able to learn from big datasets
and provide outstanding results on complex cognitive challenges, even beating
human performance in some application fields (Alzubaidi et al., 2021). Convo-
lutional Neural Networks (CNN), a subclass of deep learning models, have been
created to deal with data in the shape of multiple arrays and are therefore suit-
able for high-dimensional data like images (LeCun et al., 2015). They have the
potential to perform a decent automated detection of regions of interests within
a heterogeneous and noisy dataset (Janiesch et al., 2021). Transferred to the
analysis of minirhizotron images, CNNs should have the capability to precisely
identify and segment roots in images where the roots cannot be segmented suf-
ficiently by, e.g., explicitly programmed thresholds or filter algorithms. CNNs
were already used successfully to localize plant organs, including roots (Kami-
laris and Prenafeta-Boldú, 2018, Keller et al., 2018, Pound et al., 2017, Santos
et al., 2020). However, the use of CNNs has mainly been proven on data orig-
inating from controlled environment, like lab experiments (Yasrab et al., 2019).
Furthermore, they are often limited to the use of one or a few fixed pre-trained
neural network models (Narisetti et al., 2021), or they are not easily usable for
non IT-professionals (Shen et al., 2020). The main reason for this is the required
knowledge and competences in machine learning and programming needed to cre-
ate a CNN-based system. Especially the data partition between training and
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validation, the process of annotation and the setup of network architecture make
the use of CNNs complicated (Smith, 2018). Although the use of CNNs is promis-
ing for root segmentation and first approaches to use CNNs to segment roots have
been successfully accomplished with, e.g., the SegRoot networks, it is not subject
of many published studies and not yet widely used as phenotyping tool for root
traits (Wang et al., 2019). To make the advantages of CNNs widely utilizable,
a software, combining the annotation, training and segmentation process with
CNN together in an interface easy to handle, is the key for general use of neural
networks for automated root segmentation. The recently published software tool
RootPainter is one of the most promising approaches for this task (Smith et al.,
2022).

However, fast and reliable segmentation is only the first step of root analysis. For
the root quantification another tool is required to obtain morphological and topo-
logical features from segmented images. For this task conventional automated root
analysis tools, like WinRhizo (Regent Instruments Incl.) and IJ_Rhizo (Pierret
et al., 2013) can be used. Recent progress in the development of root-system fea-
ture extraction from high-contrast images or scans have resulted in new software
tool with the ability of extracting multiple features with a high precision. On the
front line of current developments is the new software RhizoVision Explorer, pro-
viding the functions to accurately skeletonize a high-contrast segmented image,
to correct the skeleton and deriving several features from it (Seethepalli et al.,
2021).

The aim of our study is to develop a generally applicable, automated analysis
pipeline, based on state-of-the-art technologies and software to extract root traits
from minirhizotron images. This includes data annotation for neural network
training, segmentation and feature extraction. The automated analysis pipeline
has to meet the requirements in i) availability and feasibility, ii) accuracy and
comparability, iii) speed and efficiency. It was an important requirement to us
that this workflow should be feasible for root scientists, who only have basic
knowledge in programming or computer science. This workflow should make fast
root phenotyping easily accessible for newcomers in root science and lower the
time and effort needed to get into the topic. Therefore, it relies on already pub-
lished software. This workflow further should underline the practicability of deep
learning phenotyping tools for the scientific root analysis routine. All software re-
quired to use this automated root image analysis pipeline are freely available and
easy to operate. Another key advantage of our study is the scope of data used for
validation and comparison and the concomitant claim to a general validity of this
pipeline. To test and validate the automated analysis pipeline, datasets obtained
from several years and two minirhizotron facilities were processed and compared
to previously manual annotated data (Cai et al., 2018a,b, 2016a, Morandage et al.,
2021). Previous studies evaluating the results of a CNN-automated image analysis
for root images originating from (mini)rhizotrons used between 40 - 857 images
(Narisetti et al., 2021, Smith et al., 2022, Wang et al., 2019). In our test we eval-
uated the results of more than 107,000 images of which we used more than 36,500
for a direct one-to-one comparison of manual human annotation to our automated
analysis pipeline. The images represent different in situ conditions. In this pa-
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per we will present the detailed procedure on operating the automated analysis
pipeline and compare its performance to a previously done manual annotation for
a decent evaluation.

2-2 Materials and Methods

2-2-1 Experimental test site

The data used for the automated analysis pipeline were collected at the two
minirhizotron facilities at the Selhausen test site of the Forschungszentrum Jülich
GmbH (50°52’07.8"N, 6°26’59.7"E), Germany (Bogena et al., 2018, Weihermüller
et al., 2007). The field, in which the minirhizotron facilities are located, has a
slight incline with a slope of under 4°. The two minirhizotron-facilities are ap-
proximately 150 m apart. The minihizotron facility located at the top of the field
is hereafter referred to as RUT (rhizotron upper terrace) and the minirhizotron
at the lower part of the field as RLT (rhizotron lower terrace). The thickness of
the soil layer with silty loam texture varies strongly along the field-slope. While
it is not present at the top, its thickness at the bottom is up to 3 m. At RUT
the gravel content is 60 % while at RLT it is only 4 %. Both facility contain 54
horizontally installed, transparent tubes with each a length of 7 m and an outer
diameter of 6.4 cm. The tubes are separated into three plots with each three ver-
tical, slightly shifted (10 cm) rows of six tubes, where three different treatments
can be studied. The tubes in each row are installed in -10 cm, -20 cm, -40 cm,
-60 cm, -80 cm and -120 cm depth. Past treatments include different irrigation
patterns (sheltered, rainfed, irrigated), different sowing densities and dates (later
sowing in sheltered plot), or cultivar mixtures (two single cultivar treatments and
one mixture). The two minirhizotron facilities were installed in 2012 (RUT) and
2014 (RLT), respectively. Further construction details are explained in (Cai et al.,
2016a).

2-2-2 Data acquisition

Two different camera systems manufactured by Bartz (Bartz Technology Corpo-
ration) and VSI (Vienna Scientific Instruments GmbH) were used to capture the
root images in the minirhizotrons. Both camera-systems are designed to be used
manually. A regular measurement produces 40 images per tube. 20 images are
taken 80° clockwise and 20 images 80° counter-clockwise from the tubes top point
(Cai et al., 2018b, 2016a, Klotzsche et al., 2019, Morandage, 2020). In this study,
the collected images of three crop growing seasons from 2015/16 and 2017 were
taken into account. Depending on the year and measurement date either the
Bartz- or the VSI-system was used. The crops cultivated at the test site and used
for this study were Triticum aestivum cv. Ambello in 2015/16 (winter wheat)
and in 2017 Zea mays cv. Zoey. Table 2-1 gives an overview on camera sys-
tem used, the resolution of the images, measurement years, measured time period
and cultivars observed. Depending on crop growing season, the total amount of
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measurement dates varied between 21 and 38. The amount of images, taken at
one measurement date, varied according to the amount of tubes measured at this
measurement date (Table S1.1). This was depending on the state of vegetation
evaluated in field.

Table 2-1: Overview of the camera-systems and experiment timeline of minirhi-
zotron images acquisition

camera system Bartz VSI
original resolution (px) 754 x 510 3280 x 2464
converted resolution (px) 1508 x 1020 2060 x 2060
real size (mm) 16.5 x 23.5 20 x 20
growing season 2015/16 & 2017 2017
culture 2015/16: Triticum aestivum cv. Ambello Zea mays cv. Zoey

2017: Zea mays cv. Zoey
time period 16/11/15 - 23/06/16 08/06/17 - 22/06/17
(dd/mm/yy) 23/06/17 - 12/09/17

Over the past years, the root images collected in the minirhizotron facilities in
Selhausen were analyzed manually, using Rootfly as a semi-automated tracking
tool for the root length and root counts (Cai et al., 2018a,b, 2016a, Morandage,
2020, Zeng et al., 2008). In this study the images of the years 2015/16 and 2017
were analyzed. The manual annotation of 2015/16 and 2017 has been already
published in (Cai et al., 2018b, Morandage et al., 2021). Further a sub-sample
of the root images was manually annotated by two persons separately in Rootfly.
1,760 images were used for the comparison between both annotators, and the
annotators and the results of the automated analysis pipeline, to test if there are
differences in terms of human subjectivity .

2-2-3 Software tools

Our proposed automated minirhizotron image analysis pipeline is based on two
software tools for the segmentation (Smith et al., 2022) and the automated feature
extraction (Seethepalli and York, 2020). Furthermore, scripts to convert the seg-
mented images and analyze the outcome are available. For an easy accessibility
all scripts are available together within the GUI of the executable RootAnaly-
sisAssistance (Supplementary Material). The conversion of the segmented images
is also possible within RootPainter.

Segmentation

RootPainter, a software tool for the deep learning segmentation of biological im-
ages with an included annotation function provides an interactive training method
within a GUI, using a U-net based CNN. U-net was developed to train with less
images for a more precise segmentation and is therefore suitable when it comes
to images where the manual annotation is especially time and labor consuming
(Ronneberger et al., 2015, Smith et al., 2022). RootPainter was developed to
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make training-data creation, annotation and network-training accessible for ordi-
nary users. It provides a dataset creation function, which allows an easy selection
of training images and cropping them in multiple tiles and to a suitable size
for the interactive training. The training mode provides an interactive graphical
platform to manually annotate a small part of the dataset and create a neural
network model. Further, a mode to segment whole image directories at once is
provided. For training and segmentation a Graphics Processing Unit (GPU) is
required (Smith et al., 2022). However, a full minirhizotron image analysis is
based on two main components, the segmentation and the root trait extraction.
Although RootPainter provides an inbuilt function for basic root trait extraction
based on the previous segmented images, it does not provide, e.g., a skeleton cor-
rection function and a comprehensive feature extraction including multiple root
traits. For our pipeline the feature extraction part should provide multiple mor-
phological and architectural root features with a high accuracy. Furthermore,
the possibility of a systematic correction function should be implied. Therefore a
platform fulfilling these requirements was used for feature extraction.

Feature extraction

RhizoVision Explorer represents the current state-of-the-art technology with a
sophisticated automated root traits extraction from segmented root images, by
combining the abilities of several existing root image analysis platforms. This
includes skeletonization of the segments, filter, filling, smoothing and pruning
functions (Seethepalli et al., 2021, Seethepalli and York, 2020). However, like
most programs for automated root system analysis it is built for the use with
binary images or high contrast scans and therefore not suitable for minirhizotron
images. The capability of RhizoVision Explorer are nevertheless useful when
applied to already segmented minirhizotron images.

2-2-4 Analysis pipeline

The starting point for the automated analysis pipeline is a directory containing the
raw images captured at the minirhizotron facility. The pipeline was run on a GPU-
server with 4 Nvidia GeForce RTX 2080 Ti (NVIDIA Corporation). As client, a
computer with an Intel i5-8265U processor and 24GB RAM, operated on Windows
10, was used. However, it is also possible to run the pipeline on one machine, if
there is a GPU with CUDA available, or to use the Google Colaboratory (Google
Colab). An overview of all following steps is explained in Figure 2-1.

Pre-processing

The first step of the pipeline is the pre-processing of the images. Depending
on the image acquisition system either an up- or down-scaling and a distortion
correction is performed (supplementary data). In the same step a labeling, sorting
and registration of the images is done automatically. If the images are already
ready to use, this step can be omitted.
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Figure 2-1: Schematic overview of the workflow of the automated analysis pipeline
starting with image acquisition in the minirhizotron facility.

Training

This step is only needed if no suitable neural network model exists for the targeted
dataset. The process, to train a model for root segmentation starts with the
creation of a training dataset and subsequently a new project in RootPainter. We
highly recommend to balance the training data according to the factors influencing
image visually, in order to maximise the heterogeneity in the training data. Images
with different quantities of roots and various root types at different locations
should be included. In our case the training dataset for one model contains a
balanced amount of images from two different minirhizotron facilities, respectively
soil types, depths, tubes and dates. We used only a small amount of images
from all available images. For each camera system a separate model was trained,
because the images of the two cameras differ significantly. The annotation can be
done in the GUI. The roots are annotated as "foreground", soil and other not root-
belonging fragments as "background". After the training is started, RootPainter
automatically creates neural network models, depending on the annotation done
previously. The progress can be seen in real time, because RootPainter provides
previews of the segmentation done by the actual model. These proposals can be
corrected and supplemented by the user. The training procedure used in this study
is the "corrective training". It is intended for large datasets and therefore suitable
for the minirhizotron image data. Essentially this training approach starts with
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annotating a few images in detail and then continue with correcting only the false-
positive and false-negative suggestions of the current model. After finishing the
interactive annotation the training is completed automatically. Further details
and instructions are explained in (Smith et al., 2022).

Segmentation

The fully-automated segmentation is done with the best model previously trained
with a small selection of images from the corresponding measurements. To per-
form the fully-automatic segmentation, all images have to be located in one direc-
tory. The segmentation process itself is started from the RootPainter main menu.
For each minirhizotron image stored in the directory, one segmented image will
be created (Figure 2-2a, Figure 2-2b).

Converting

To import the segmented images into RhizoVision Explorer in the next step, it is
essential to convert the images to binary, otherwise the images are not loaded prop-
erly (Figure2-2c). This step is performed by a conversion-script, which converts
the mono-colored segmented images to black and white images and reduces the
images information to binary by only giving information for either black or white
pixels. The conversion-script is available as python script or within the RootAnal-
ysisAssistance-GUI. It is possible to either browse the image-folders to convert
manually, or to process the conversion of a certain image directory in a batch
mode. This option is suitable for fast processing a large amount of segmented
images. The conversion option is also available within the RootPainter-GUI.

Feature extraction

The final step is the feature extraction, performed by RhizoVision Explorer. This
is also done in batch mode. The threshold of the non-root filter, hole filling, edge
smoothing and pruning was chosen in a standardized way and uniform for each
parameter, depending on the resolution of the image. For the images resulting
from the Bartz-system the threshold is 13 px and for the VSI-system 20 px. This
results in filtering parts smaller then 0.2 mm2 and filling holes bigger than 0.2
mm2. To minimize the influence of segmentation mistakes at the border between
root and soil and thus reduce the false detection of non-existent laterals, the min-
imum size for a lateral root to be detected as a branching root is the parent roots
radius multiplied with 0.2 mm. The architectural and morphological information
are exported as CSV and the processed segmented images with the calculated
skeleton is saved as PNG (Figure 2-2.d). The feature extraction is started from
the RhizoVision Explorer GUI. Further details and background information are
explained in (Seethepalli et al., 2021).
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Root analysis

As last step in addition to the feature extraction, the two-dimensional root length
density (RLD) is calculated from the total root length and the window size of
the image in the unit of cm cm−2. Furthermore, the number of root tips and
branch points, the total root length, the branching frequency, the network and
surface area, the diameter (average, median and maximal), the perimeter and the
volume can be extracted from the RhizoVision Explorer output CSV and applied
to spatio-temporal analysis of the root system (Figure S1.1 and supplementary
data).

(a)

Detected root-segments from RootPainter

(b)

exported root-segments from RootPainter

(c)

converted segments to binary 

(d)

post-processing result of RhizoVision Explorer

Figure 2-2: Example for one image processed by the automated root analysis
pipeline. (a) The roots are "detected" by RootPainter according to
the previous trained model. (b) The segmented image is exported and
(c) converted to binary. (d) The last step is the skeletonization and
feature extraction with RhizoVision Explorer.
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2-2-5 Statistics, data processing and visualization

Python 3.8 with Pandas 1.0.5, Numpy 1.18.5, Matplotlib 3.2.2, Pillow 8.2.0 and
SciPy 1.5.0 have been used for statistics, data processing and visualization.

The F1-score (eqn. 1) is a measure commonly used to evaluate neural network
models (Smith et al., 2022). The F1 combines precision and recall and has been
designed to work on imbalanced data. Precision evaluates the percentage of all
correct positive predictions and recall indicates how many positive of all positives
the model found. F1 values are bounded between 0 and 1, the highest value is
indicating perfect precision and recall.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(2-1)

precision =
TP

TP + FP
(2-2)

recall =
TP

TP + FN
(2-3)

where TP are the true positive, FP the false positive and FN are the false negative
pixels. The F1-score was calculated during the interactive training. True positive
pixels are correct recognized pixels, where roots are correctly classified as roots.
False positive pixels are pixels classified as root, not including a part of a root
and false negative pixels are pixels including parts of a root, but are classified as
background.

The outcome of the automated root annotation was compared to the manual
annotation by means of the pearson correlation coefficient, both on the data set
as a whole as well as on individual measurement dates for the seasons 2017. For
the same season we calculated the mean of the total root length per image for
each measurement date and used a Welch two-sample t-test to assess whether
the differences between automated analysis and manual annotation of the total
root length (∆RL) were statistically significant. Furthermore the normalized root
mean squared error (NRMSE) was calculated according to eqn. (4).

NRMSE =

√∑n
i=1(yi −

∧
y)2

n
ymax − ymin

(2-4)

where n = sample size, yi is the ith observation of y and
∧
y is the predicted y value.

Additionally a linear Model II regression (ordinary least products) was performed
to test for fixed and proportional bias with the total root length of 2017 data. We
choose this type of regression because the x-values might also be subject to errors
(Delory et al., 2017, Ludbrook, 1997). For each measurement date and facility, a
model was fitted and the 95% confidence interval (95% CI) of slope and intercept
was calculated. We considered a fixed bias if the 95% CI of the intercept did not
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include 0 and there was a proportional bias if the 95% CI of the slope did not
include 1.0.

The manual per-image annotation with Rootfly of 2015/16 data is no longer avail-
able. However, the images and mean RLD values per tube are available and there-
fore were used for comparison. Based on this the RLD resulting from automated
and manual analysis methods was calculated for every minirhizotron tube and
measurement date (Figure S1.1) and compared as a proxy for a common root
measurement parameter (Zuo et al., 2004). In this analysis, all growing periods
2015/16, and 2017 were included.

2-3 Results

2-3-1 Neural Network model validation

The F1 for both neural network models trained for each camera-system is high.
The F1 for the Bartz-system is 0.78 and 0.81 for VSI-system model. After 60
epochs without any improvement the neural network training was stopped auto-
matically.

2-3-2 Comparison of automated and manual annotation

Considering all images used for comparison, the overall correlation of total root
length between manual annotation and automated analysis pipeline is very high
with r = 0.9.

The correlation was performed with 16,599 images taken at RUT and 21,082 im-
ages taken at RLT. For the data obtained in the growing period 2017, the correla-
tion is high to very high (r = 0.77 - 0.94) for every measurement date except the
first measurement date at RLT (r = 0.57) (Figure 2-3). Generally, the correlation
shows an increasing trend towards later measurement dates (Table 2-2). ∆RL
and NRMSE indicate low values for most measurements dates at both facilities.
Regarding especially the ∆RL it can be seen, that the differences in mean between
manual annotation and automated analysis pipeline in 2017 are very low -0.5 mm
(RUT), -0.77 mm (RLT). However, the t-test indicates that there are no significant
differences between the mean of total root length except for measurement date 4
at RUT. The slope of the linear regression models is slightly under one in most
cases and the intercept marginally higher than 0 for all measurement dates. Both
fixed and proportional bias were detected within almost every measurement date
(Table S1.2).

Regarding the RLD values from 2015/16, one specific difference between manual
and automated analysis is visible. Until the 14th measurement date the RLD is
continuously increasing and then stagnating in the 2015/16 data resulting from
manual annotation. The RLD from the automated analysis follows the same
trend but decreases from 14th measurement date continuously. Beyond this, the
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RLD curves of both methods are very consistent (Figure 2-4). In 2017 datasets,
only negligible differences between manual and automated analysis method are
recognizable, except for the first measurement date at RLT (Figure 2-4f, Figure
S1.2b) and first two dates and a small peak at the fourth measurement at RUT
(Figure 2-4h).

The comparison between two human annotators and each annotator and the auto-
mated analysis pipeline separately shows that the correlation between the person
1 and the pipeline is r = 0.92 and the correlation between person 2 and the
pipeline is r = 0.79. The correlation between both persons is the lowest (r =
0.73).

RLT

RUT

a
u
to

m
a
te

d
 a

n
a
ly

s
is

manual annotation

Figure 2-3: Correlation of automated and manual analyzed root length, obtained
from 2017. Each measurement date is considered separately for RUT
and RLT. The color represents the density.
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Figure 2-4: Comparison RLD of the data obtained from images originating from
two minirhizotrons in the growing season 2015/16 and 2017, separated
by plots grown with different treatments. The images were analyzed
by hand (blue: manual) and by the automated analysis pipeline (red:
automated). 2015/16: (a) RUT manual, (b) RUT automated, (c) RLT
manual,(d) RLT automated; 2017: (e) RUT manual, (f) RUT auto-
mated, (g) RLT manual,(h) RLT automated;
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Table 2-2: Overview of the statistical comparison of automated and manual an-
notation. ∆RL is the difference between the mean total root length
(mm) obtained from automated and manual analysis methods, and a
Welsch two sample t-test shows whether differences are significant (*
= p<0.01).

2017
measurement date RUT RLT

∆RL 0.45 0.42
1 NRMSE 0.071 0.077

r 0.92 0.53
∆RL 0.89 1.17

2 NRMSE 0.071 0.053
r 0.78 0.83

∆RL 0.95 0.54
3 NRMSE 0.057 0.052

r 0.83 0.92
∆RL 2.94* 0.65

4 NRMSE 0.051 0.055
r 0.88 0.9

∆RL 1.36 0.92
5 NRMSE 0.041 0.072

r 0.9 0.87
∆RL 1.35 1.7

6 NRMSE 0.044 0.065
r 0.9 0.84

∆RL -1.46 1.8
7 NRMSE 0.046 0.058

r 0.88 0.93
∆RL 0.11 0.55

8 NRMSE 0.045 0.073
r 0.86 0.89

∆RL -1.41 -0.97
9 NRMSE 0.039 0.057

r 0.88 0.94
∆RL -2.44 -2.89

10 NRMSE 0.039 0.047
r 0.88 0.92

∆RL 0.65
11 NRMSE 0.065

r 0.92
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2-3-3 Time evaluation

The time required to train the neural network model mostly depends on the
amount of images included in the training dataset. Approximately 65 % of the
time needed is used for training of the deep neural network. The annotation takes
40 % of the time, based on a mean of 200 annotated images h−1. The range it
took to annotate one image was between 1 and 180 s per image, depending on
the accuracy of the proposed segmentation. The time required for annotation
decreases significantly with increasing training time. The mean time needed by
the network for the training of a dataset of 1,500 images, was approximately 5h,
excluding the real-time training during the annotation. This is approximately 25
% of the entire processing time. Segmentation took around 27 % of the total
time. With 4 Nvidia GeForce RTX 2080 Ti GPUs and a batch size of 12 the
segmentation took around 0.7 s per image. Converting the segmented to binary
images and the final feature extraction took around 8 % of the time (Figure 2-5).

h
h

hh

h
h

Finish network training

h

h

Figure 2-5: Time requirements to run the automated analysis pipeline for a sample
of 25,000 images. Left: All sub-processes together. Right: share of
the neural network training, which is only required when no suitable
model is available.

2-4 Discussion

2-4-1 Availability and feasibility

The availability is the parameter for how easily accessible all components of the au-
tomated pipeline are for everyone. The feasibility defines how easy the proposed
pipeline and with that the required software can be operated. The equipment
needed to apply the new workflow requires a computer with a powerful GPU, or
alternatively a basic computer, an additional server with powerful GPUs and a
network-connection between both. Furthermore, the software packages of Root-
Painter and RhizoVision Explorer are needed and the conversion and analysis
script are required. All this is open-source available (Seethepalli and York, 2020,
Smith et al., 2022). All software can be found in the section "data availability".
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The training of the model requires interaction with RootPainter, if the user wants
to start the training of a new model or corrects a segmentation within the training
process. This step is therefore not fully automated. All other components of the
automated analysis pipeline are automated. The interactive mode of the training
represents a major time saving compared to the conventional separation of the
training step and the application step. Adaptations to the model can be done “on
the fly” with little time investment, facilitating, e.g., the adaptation to new types
of images. Once the model is trained, the human interaction needed to apply the
pipeline is reduced to a few "clicks". With a suitable model available, the user
has to interact actively three times with the automated pipeline, (1.) to start
the segmentation, (2.) to convert the segments to binary and (3.) to start the
feature extraction. No deeper knowledge in computer science is needed, because
all intermediate steps are available within a GUI. However, the first implementa-
tion of the RootPainter environment at the server part of the setup requires basic
knowledge in server administration or support.

In contrast to manual or semi-automated operated root analysis programs, like
different tools based on ImageJ, DART, GiA Roots, SmartRoot, EZ-Rhizo or
Rootfly, the expenses in time, knowledge and experiences required to apply the
automated workflow, are much lower. This is granted due to the very small
interactions needed for the automated analysis pipeline (Armengaud et al., 2009,
Bot et al., 2009, Galkovskyi et al., 2012, Lobet et al., 2011, Pierret et al., 2013,
Zeng et al., 2008).

2-4-2 Accuracy and comparability

The accuracy evaluates the automated analysis pipeline in terms of reliability
and exactness of the generated data. Comparability is given, if the results of the
automated analysis pipeline can be compared to the outcome of previously eval-
uated data of the same kind, like the manual annotation performed with Rootfly.
The most important characteristic of the automation of plant data analysis is
the reliability of the generated datasets. Therefore, the accuracy of the observed
root traits has to be as close to the ground truth as possible (Atkinson et al.,
2019). In our study we used the manual annotation of the roots as comparison.
The manual annotation was performed by different persons and over a long time
period. Consequently, a certain subjectivity was included in this process.

Generally, the results for 2017 data analyzed automatically and manually are very
close to each other, indicating a general great fit of the models used for images
originating from 2017.

However, there is a fixed and proportional bias between automated analysis and
manual annotation, showing a minor but systematic underestimation of total root
length from the automated analysis (Table S1.2) that increases slightly to the later
measurement dates, see also the negative ∆RL values in Table 2-2. This originates
from the fact that the neural network model is only able to segment roots, if they
are also visible by the human eye. Rarely, small parts of roots are covered by
soil and this can only be compensated to a certain extend by training the neural
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network and filling holes with RhizoVision Explorer (Figure S1.3). The more roots
there are in the images, the more likely this segmentation mistake occur. Although
this is a disadvantage of the automated analysis pipeline, its main purpose is to
provide reliable and consistent data for a qualitative biological analysis. The
known systematic bias in the method is well predictable in contrast to the bias
originating from different annotators. Consequently, the data obtained from the
automated analysis pipeline are more robust and reliable, which is in advantage
for further biological conclusions drawn from the data.

The consistency of the automated analysis results becomes especially visible re-
garding the RLD plots plotted from 2015/16 and 2017 data (Figure 2-4). The
decrease in 2015/16 RLD profiles that is not monitored in the manual annotation
data, originated from the root senescence (Figure S1.4). The senescence could be
better evaluated by the neural network than by the human annotator. In man-
ual annotation the slight, gradual discoloration of the roots visually revealing the
senescence is easy to miss. Furthermore, it is a complicated work step in Rootfly
to eliminate already annotated roots at the right point in the timeline. Taking
this into consideration, the results of the method comparison for 2015/16 and
2017 data shows impressive results, regarding accuracy and comparability of the
automated analysis pipeline.

Regarding the biological conclusions that could be derived from the data, the dif-
ferences between the methods are negligible, as we are working with minirhizotron
data that cover a huge spatial and temporal resolution and are measured in het-
erogeneous conditions. Especially the consistent low ∆RL and NRMSE (Table
2-2), as well as the high conformity of the RLD profiles (Figure 2-4) indicate that
the qualitative conclusions derived from data provided by the automated analysis
pipeline are at least the same as from manual annotation. Considering the in-
fluence of the human subjectivity on manual annotation, the automated pipeline
additionally provides objectivity that most likely cannot be reached, if more than
one annotator does the manual annotation.

The manual annotation itself requires a certain level of expertise in root pheno-
typing. This expertise is gained with a lot of personal experiences (Vamerali et al.,
2011, Zeng et al., 2008). Therefore, it can be hypothesized that there is also a
significant influence of subjectivity in human annotation. Over the years, different
persons annotated the root datasets. Hence, the impact of differences resulting
from varying manual annotation strategies might influence the results more than
the differences between manual and automated analysis. The direct comparison
between two annotators showed a lower correlation between the persons annotat-
ing, than between the automated analysis pipeline and each human annotator.
Consequently, we concluded that the human effect on manual annotation is higher
than the impact of a mistake done by the automated workflow.

The automated analysis pipeline provides a level of objectivity, a human anno-
tator cannot achieve. Therefore, it is highly probable that with the application
of the automated pipeline associated minimization of the human influence will
significantly improve objectivity and also accuracy of the minirhizotron image
analysis.
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2-4-3 Speed and efficiency

The speed is the pure amount of time the pipeline requires to analyze a certain
amount of images. Efficiency is defined through the amount of time and labor
needed to analyze a dataset in contrast to manual annotation. The time required
to analyze root images by hand is enormous. The estimated time to analyze 100
cm2 of depicted soil is 1 - 1.5 h (Smith et al., 2022). This is consistent with the
results of other studies, needing approximately 1 h for annotating 17-38 images
manually (Ingram and Leers, 2001). Intern evaluation reproduced the same re-
sults. To annotate 25,000 images, which is approximately the amount of images
for a shorter growing season, the annotation time needed is 1,000 - 1,500 h. The
time needed to process the same amount of images with the automated pipeline
is approximately 19 h, including the training of the neural network. Without the
training, the segmentation and feature extraction would only take around 6.5 h
for all images. The resulting benefits in time saving are massive (Figure 2-5).
Generally, only around 1.2 % - 1.9 % of the time needed for manual annotation
is needed by the automated workflow to process the data, including the training.
Excluding the entire training process, the automated workflow requires only 0.4
% - 0.65 % of the time needed to annotate the same amount of images manually
with, e.g., Rootfly. Regarding the advantages of time saving, it further has to be
taken into account that the time of interaction with the computer is decimated
to almost zero, once the training is completed.

2-4-4 Limitations and further improvement

Although the current automated analysis pipeline does include time series in form
of either root length density depth profiles at different time points or in form of
root arrival curves, i.e., root length as a function of time at different depths,
individual roots and their phenology are not followed from their birth to their
death. This could be of high interest, for example, to root ecologists. To fully
exploit minirhizotron data it would be a significant progress to add a single root
tracking possibility, including root order and status. The implementation of these
functions would improve the pipeline and enhance the use-cases for root ecologists.

2-5 Conclusion

We propose a new approach to analyze large amounts of 2D root image data.
This became necessary with the big amount of data created in experimental field
sites such as the minirhizotron facilities in Selhausen (Germany) as well as oth-
ers (Svane et al., 2019, Ytting et al., 2014). The automated analysis pipeline
illustrated in this study, is a suitable solution to easily and accurately analyze
minirhizotron images in significantly less time. To the best of our knowledge,
we are the first study testing a deep learning and automated feature extraction
combining high-throughput minirhizotron image analysis pipeline to this extent.
The biggest advantage of the automated workflow is the massive saving in time.
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Precisely expressed, the required time is reduced by more than 98 % in contrast
to manual annotation, while providing several root traits, including number of
root tips, number of branch points, root length, branching frequency, network
area, perimeter, volume, surface area and diameter on a spatio-temporal scale.
The required root traits can be made available quickly which may speed up fur-
ther analysis and applications of this type of data. In conclusion, the automated
pipeline outperforms the manual annotation in time requirements and informa-
tion density, while providing reliable data and feasibility for everyone. Tested with
more than 107,000 minirhizotron images, including more than 36,500 images for
detailed comparison, obtained from two growing seasons and different soil types,
depths and cultures our results indicate a high general validity for the presented
pipeline. Irregularities in the match of manual annotation and analysis pipeline
can be essentially explained with rarely occurring missed segmentations of root
fragments by the automated analysis pipeline, due to soil covered roots and mainly
by the influence of human subjectivity in manual annotation. Balanced training
datasets and consequent annotation of the training data are the key to good re-
sults. If these facts are considered, the here presented and evaluated pipeline has
the potential to be the new standard method for reliable high-throughput root
phenotyping of minirhizotron images.
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Data is the new science. Big data holds the
answers.

Pat Gelsinger
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In the following chapter, we will focus on the
comprehensive dataset of root and soil data

collected at minirhizotron facilities, explore the
methods of data collection, and discover the

potential of these data for understanding the
soil-plant continuum.





Chapter 3

Multi-year belowground data
of minirhizotron facilities in

Selhausen

Abstract

The production of crops secure the human food supply, but climate
change is bringing new challenges. Dynamic plant growth and corresponding
environmental data are required to uncover phenotypic crop responses to the
changing environment. There are many datasets on above-ground organs of
crops, but roots and the surrounding soil are rarely the subject of longer term
studies. Here, we present what we believe to be the first comprehensive collection
of root and soil data, obtained at two minirhizotron facilities located close
together that have the same local climate but differ in soil type. Both facilities
have 7m-long horizontal tubes at several depths that were used for crosshole
ground-penetrating radar and minirhizotron camera systems. Soil sensors
provide observations at a high temporal and spatial resolution. The ongoing
measurements cover five years of maize and wheat trials, including drought stress
treatments and crop mixtures. We make the processed data available for use in
investigating the processes within the soil–plant continuum and the root images
to develop and compare image analysis methods.

Adapted from: Lena Lärm*, Felix Maximilian Bauer*, Normen Hermes, Jan
van der Kruk, Harry Vereecken, Jan Vanderborght, Thuy Huu Nguyen, Gina
Lopez, Sabine Julia Seidel, Frank Ewert, Andrea Schnepf and Anja Klotzsche
(2023): Multi-year belowground data of minirhizotron facilities in Selhausen.
Scientific Data 10, 672. https://doi.org/10.1038/s41597-023-02570-9
(*contributed equally to this publication)

https://doi.org/10.1038/s41597-023-02570-9
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3-1 Background & Summary

As a result of climate change, ensuring food security for the vastly grow-
ing human population is one of the major challenges of the 21st century. While
climate change is exerting increasing pressure on the availability of natural re-
sources such as water and soil nutrients, there is an increasing demand on food
production. To ensure food security for the growing world population, agricultural
production will have to increase by at least 60% by 2050 (Alexandratos and Bru-
insma, 2012). The yield of agricultural crops therefore needs to be increased and
yield stability under changing conditions must be preserved, if current consump-
tion patterns are maintained. A comprehensive understanding of all processes
within agro-ecosystems is crucial to identify the key parameters to maintain yield
stability and increase yield. The main source of water and nutrients for plants is
the rhizosphere and the surrounding soil. Key parameters for potential improve-
ments in water and nutrient efficiency could be revealed through a comprehensive
understanding of the soil–plant continuum and its processes. This includes pa-
rameters describing the root architecture, influencing processes such as root water,
and nutrient uptake, which governs the yield (Lynch, 2007). Field phenotyping,
especially incorporating below ground information is crucial for breeders to cap-
italize on developments in genetics, since information identified under controlled
environment are often not accounting for "real-world" field conditions (Araus and
Cairns, 2014). In-field observations also enable to investigate quantitative traits,
particularly those related to root features that influence drought stress tolerance.
Therefore, field phenotyping facilities including below ground information provide
precious data for breeders (York, 2021). Additionally, knowledge about soil het-
erogeneity is crucial to understanding the distribution in soil water and nutrient
content.

The data presented here include information about crop-relevant subsoil data
– such as soil water content, soil water potential, soil temperature, and root
development – on a high temporal-spatial resolution for multiple crop growing
periods.

There are several techniques to observe roots non-destructive. The whole root
system development can be observed with rhizotrons, equipped with a clear win-
dow on the side. Rhizotrons exist in various shapes for greenhouse and in-field
observation (Silva and Beeson, 2011, Wasson et al., 2020). If installed above
ground, these rhizoboxes allow for the sampling and imaging of root systems
through easily accessible windows and apertures at the side (Rasmussen et al.,
2020, Thorup-Kristensen et al., 2020). In the past, several in-field rhizotrons of-
ten took the form of covered underground cellars or walkways with transparent
windows or side walls for observing root development. In order to avoid expen-
sive construction and maintenance costs, transparent – minirhizotrons (MR) –
were introduced, enabling the in situ observation of the root in a fixed position,
but at several depths (Taylor et al., 1990). By installing transparent tubes with
an inclination, they could be accessed from the surface. These rhizotubes were
subsequently also used in rhizotron facilities, where they were installed horizon-
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tally from the trench walls at different depths to ensure that root distributions
and root development could be observed in a larger soil volume than only at the
side walls (Van de Geijn et al., 1994). It is important that the installation of
the rhizotubes is causing as little soil disturbance as possible. Especially in fine
textured soil, less soil compaction around the tube, caused by the installation
process, might alter the root growth (Johnson et al., 2001). These influences on
the collected root data can be reduced to a negligible minimum when auger with
the same diameter as the rhizotubes are used to drill holes for tube insertion, the
soil is re-compacted according to previous bulk density measurements and a rest-
ing period is respected after tube installation (6-17 month) (Johnson et al., 2001,
Joslin et al., 2006, Pritchard et al., 2008, Vamerali et al., 2012). The permanent
installation and maintenance of MR at several depths has only been done on very
rare occasions due to the high manufacturing effort involved (Svane et al., 2019,
Van de Geijn et al., 1994). However, this kind of MR facility enables insights
into processes within the soil–plant continuum at the plot scale, while offering
high instrumentation for multifaceted observations at high spatial and temporal
resolution.

One way to observe the root growth is imaging the roots and surrounding soil
through the transparent rhizotubes with a special camera system. To analyze the
resulting root images, various methods from root counting to single root analysis
were performed with several manual or semi-automated software tools (Atkinson
et al., 2000, Möller et al., 2019, Vamerali et al., 2012, Zeng et al., 2010). Depending
on the targeted phenotypic traits and root image quality it is not always feasible
to extract it manually from the images (Atkinson et al., 2019, Vamerali et al.,
2012). In contrast to genotype analysis, which can be performed with various
high-throughput methods, the phenotyping of corresponding plant architecture
and anatomy is still a bottleneck (Minervini et al., 2015). Image analysis based
on the convolutional neural network (CNN) is the most promising way to close
this gap (Song et al., 2021). In particular, CNNs are used to automatically detect
different plant organs by segmenting them from the background (Kamilaris and
Prenafeta-Boldú, 2018). While this is already established for above-soil organs of
plants, applying these techniques to extract information about the root system
remains challenging, especially under field conditions (Ubbens and Stavness, 2017,
Wang and Su, 2022). This is mainly due to the lack of availability of root image
data, which are required to train a segmentation model, compared to shoot image
data. Capturing shoot images is inexpensive and easy, while in-field root imaging
is time- and labor-intensive (image acquisition time is 5-10 minutes on average
per tube) (Atkinson et al., 2019, Yang et al., 2020).

In addition to the root information, soil sensors measure point information on soil
water content, soil water potential and soil temperature. Moreover, the spatial soil
water content per depth can be measured with a ground-penetrating radar (GPR)
(Klotzsche et al., 2019, Yu et al., 2020) between two neighboring rhizotubes.

The two MR facilities (Cai et al., 2016b) in Selhausen, Germany, enable longer
term studies of the soil–plant continuum on two different soils in the same cli-
mate. To investigate the different components of the soil–plant continuum, these
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MR facilities offer unique conditions to record 4D subsoil information for mul-
tiple growing seasons under different field conditions and agronomic treatments.
Detailed information about soil water content (SWC), soil water potential, and
soil temperature was obtained at two locations within different soil types by the
soil sensors mentioned above. Furthermore, morphological root information was
obtained in situ, including relevant root system traits such as length, diameter,
branching frequency, etc.. Root traits were acquired with cameras, taking images
through horizontal transparent rhizotubes installed at several depths (Cai et al.,
2016b, Morandage et al., 2021). Since all measures to avoid altered root growth
due to tube installation were taken, the root parameters are expected to have at
most negligible deviations in this respect.

The data collected in this study can be used to develop, calibrate, and validate
models of the soil–plant continuum across different scales (Schnepf et al., 2022b)
with regard to different root zone components such as soil processes, including flow
processes (Landl et al., 2021, Vereecken et al., 2016), root development (Schnepf
et al., 2022a), and biopores (Landl et al., 2019) as well as different model com-
pilations such as single-plant and (Schnepf et al., 2022a) multi-plant modeling
(Morandage et al., 2019) or soil water content and root water uptake modeling
(Cai et al., 2017, 2018b). The data include agronomically relevant information
for breeding water-efficient cultivars and for field management under various con-
ditions, which can be directly used by, for example, agronomists and biologists.
Furthermore, the root image data provided here can be used to train and bench-
mark neural networks, since deep learning-based technologies are a fast and con-
tinuously developing branch of plant and agronomic data analysis. The images
presented in this paper, which correspond to the root data, are – to the best of
our knowledge – the largest available MR image collection, covering several years,
cultivars, and agronomic treatments. In this context, the advantage of this im-
age collection is twofold. Firstly, we provide more than 160,000 MR images in
one freely available and categorized dataset. Secondly, we simultaneously publish
reference data that can be used for validation. On the one hand, this will help
machine learning scientists to develop models, capturing more heterogeneity. On
the other hand, soil and plant scientists will benefit directly from the analyzed
data. The dataset was acquired for the years 2016, 2017, 2018, 2020, and 2021,
and will be continued in the future. The dataset will thus be added to each year.
Data for the years 2012–2015 are partly available, but are not included in this
publication. The related above-ground data, including measurements on crop
development, transpiration fluxes, and assimilation rates, will be published in a
corresponding paper.
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3-2 Methods

3-2-1 Minirhizotron facilities

The data for this publication were acquired at two MR facilities, allowing us to
observe root growth through the rhizotubes and to measure 4D geophysical data.
A detailed description of the construction of the MR facilities is provided in Cai
et al. (2016b). Here, we provide a basic overview of the facilities and the data
acquisition.

The MR facilities are situated within the TERENO (TERrestrial ENvironmental
Observatories) Eifel/Lower Rhine observatory near Selhausen, Germany (50°52’N,
6°27’E) (see Figure 3-1a). The Selhausen test site was mentioned in various studies
ranging from geophysical observations and soil physics to root and plant model-
ing (Bauer et al., 2011, Bogena et al., 2018, Brogi et al., 2019, Cai et al., 2017,
Jadoon et al., 2012, Weihermüller et al., 2007). The weather station (SE_BDK_002)
is located within the Selhausen test site. The recorded parameters are used to cal-
culate the evapotranspiration with a temporal resolution of 10 min. The data are
available in the TERENO Data Discovery Portal (https://ddp.tereno.net/ddp/).
The soil at the two MR facilities was deposited by fluvio-glacial sediments of the
river Rur catchment during the Pleistocene (Bogena et al., 2018, Cai et al., 2016b,
Pütz et al., 2016). Different river sediments were deposited at each MR facility.
The upper terrace sediments consist of gravely, partly stony, and silty sand, and
it is here where the upper terrace MR facility (RUT) is located. It is classified as
Orthic Luvisol with a high stone content (>50 %) (Yu et al., 2020) according to
the World Reference Base for Soil Resources (IUSS Working Group WRB, 2007).
The soil at the lower terrace is classified as Cutanic Luvisol (Ruptic, Siltic) (Bauer
et al., 2011), and it is here where the lower terrace MR facility (RLT) is located.
The soil organic content and total soil nitrogen (derived from 2020) were 1.14 %
and 0.116 % (0-0.3 m), 0.66 % and 0.081 % (0.3–0.6 m), and 0.42 % and 0.059 %
(0.6-1 m) in RLT as well as 1.39 % and 0.128 % (0–0.3 m, with a stone weight of
45 %) in RUT. The sand, silt, and clay contents are on average 16 %, 63 %, and
21 % (0–1 m, RUT) and 32 %, 53 %, and 15 % (0–0.3 m, RUT). The different soils
cause a 4° morphology incline from RUT towards RLT (see Cai et al. (2016b). Due
to regular tilling and plowing, a 0.3-m-thick plow layer (Ap horizon) was present
in the upper 0.3 m of the two MR facilities (see Figure 3-1b and 3-1c).

To compare different agronomic treatments under the same soil and atmospheric
conditions, the two MR facilities were divided into three plots (Figure 3-2a).
Within the individual plots, three horizontal rhizotubes were installed at each of
six different depths between 0.1 m and 1.2 m, each with a length of 7 m. The
rhizotubes were embedded at a distance of 0.75 m in the horizontal axis (Figure
3-2a). For each crop growing season, a crop row orientation perpendicular to the
rhizotubes was chosen. To perform the measurements within the rhizotubes an
access trench was built within the ground in front of the plots, from which the
rhizotubes can be reached. At RUT, the soil was excavated and refilled while
installing the rhizotubes, which was due to the high stone content. A plastic
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foil was installed down to 1.3 m depth to separate the plots. At RLT, the soil
is undisturbed since the installation was performed by drilling. The soil was
precisely compacted layer by layer to the same bulk density as the undisturbed
soil (see Cai et al. (2016b). For RUT, the differences in excess length is negligible,
as they are less than < 0.02 m. In contrast, for RLT, excess lengths are up to 0.10
m. This was taken into account during the processing of the data. Due to soil
erosion and soil compaction after tillage and seedbed preparation, the depths of
the rhizotubes vary between the individual measurement seasons. The individual
rhizotube depths are provided in the repository “Additional_Information” (Lärm
et al., 2023a).

In addition to the measurements (GPR and root images) that can be performed
within the rhizotubes, various soil sensors are embedded within the soil (see Soil
Sensor Data section). Above ground at RLT, there is a monitoring system for
spectral electrical impedance tomography (sEIT) (Weigand et al., 2022). A water
reservoir is installed to provide rainwater for irrigation.

Figure 3-1: Overview of the location of the minirhizotron(MR)-facilities a) Map of
the apparent electrical conductivity (ECa in [mS/m]) measured with
the electromagnetic induction (EMI) (vertical diapoles, 9.7 cm depth
of investigation, 135 cm coil distance) of the Selhausen test site. Pro-
vided by Brogi et al. (2019). b) Aerial photograph of the Selhausen
test site and the MR-facilities. Both maps are given in WGS 1984
UTM Zone 32N [m]. For a) and b) the location of the MR-facilities
is given by the blues rectangles, the upper terrace facility (RUT) and
the lower terrace facility (RLT), the location of the access trench is
indicated with a grey rectangle. c-d) Photos of the soil profiles of the
loamy soil at the RLT (c) and of stony soil at the RUT (d).
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Figure 3-2: Overview of the Minirhizotron (MR)-facilities. a) Schematic setup
of the MR-facilities indicating that at each of the plots a different
agricultural treatment was applied for the different growing seasons.
The direction of the crop rows is perpendicular to the direction of the
rhizotrubes (red arrow). The measurements are carried out from the
access trench. b) View within the access trench. c) Overview of one
exemplary plot within the MR-facilities with the horizontal crosshole
GPR ZOP measurement set up. Transmitter and receiver antennae
are labeled Tx and Rx, respectively. Root image measurement are
acquired using camera system attached to an index handle. d) Sensor
location for one exemplary plot.
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3-2-2 Study design

The MR facilities allow an in situ investigation of the soil–plant continuum. To
observe the impact of drought stress and planting density on different crops and
the impact of crop mixtures on root development, various agronomic treatments
were carried out for the different plots. This includes, depending on the growing
season, surface water treatment (sheltered, natural/rainfed & irrigated), planting
density, sowing date, and different crop cultivar mixtures. In this study, we present
the data of multiple crop growing seasons between the years 2016 and 2021. An
overview of the individual crop growing seasons and the agricultural treatments
is provided in the repository “Additional_Information” (Lärm et al., 2023a).

During the 2016 crop growing season, the goal was to compare different drought
stress levels for winter wheat (Triticum aestivum, cv. Ambello). A shelter was
therefore installed on Plot 1 for both MR facilities. The shelter had a cover,
which was removed when no precipitation was forecasted. Plot 2 was left under
natural conditions and is also referred to as the rainfed plot. For Plot 3, irrigation
pipes were installed and the soil was irrigated regularly. The individual irrigation
values can be found in the “Additional_Information” (Lärm et al., 2023a). For
crop growing seasons 2017 & 2018, Zea mays (cv. Zoey) was chosen and the
shelter needed to be removed due to the height of the crop. This resulted in two
rainfed plots (Plot 1 and Plot 2). As before, Plot 3 was irrigated. In 2018, the
influence of the sowing date and the planting density was investigated on Plot 1
for RUT and RLT, respectively.

Since the 2020 crop growing season, the focus of research was on comparing the
different crop root architectures of cultivars – purely sown and in a cultivar mix-
ture with alternating rows. To explore the beneficial effects of mixing deep and
shallow rooting cultivars, one cultivar chosen was always a deep rooting, while
the other one was a shallow rooting cultivar. The surface water treatment was
therefore uniform for all three plots. Irrigation was only applied to all crops under
heavy drought conditions when the crops showed severe drought stress symptoms.
For the 2020 crop growing season, two different Zea mays cultivars (cv. Sunshinos
and cv. Stacey) were sown on Plot 1 and Plot 3, respectively. The cultivar mix-
ture was sown on Plot 2. For the 2021 growing season, winter wheat (Triticum
aestivum) with two different cultivars (cv. Milaneco and cv. Trebelir) was again
sown on Plot 1 and Plot 3, respectively. The mixture was sown on Plot 2. In
2021, irrigation was not required since the winter wheat was sufficiently supplied
by precipitation and the crops did not show any stress symptoms (Figure 3-3). In
order to perform destructive measurements above and below ground in 2020 and
2021, a replication field (extra field (EF)) next to RLT was sown. The EF had
the same dimension and plot design as the MR facilities and was located on the
west side of the facility (see Above-Ground Data section).
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3-2-3 Ground-penetrating radar data

Crosshole GPR data acquisition at the MR facilities

The time-lapse GPR data were collected using a 200 MHz PulseEKKO borehole
system manufactured by Sensors and Software (Canada). Crosshole zero-offset-
profiling (ZOP) measurements were carried out, with the transmitter (Tx) and re-
ceiver antennae (Rx) located within neighboring rhizotubes. Both antennae were
simultaneously pulled in parallel positions along the length of the rhizotubes, with
a spacing of 0.05 m between the individual ZOP positions. An electromagnetic
(EM) wave is emitted by Tx, which is sent through the soil and then recorded
by Rx. Changes in soil and root properties between the rhizotubes affect the
measured GPR traces and, therefore, information about the medium parameters
can be obtained (more information can be found in Klotzsche et al. (2019)). Due
to the different rhizotube lengths of both MR facilities, the length over which the
ZOPs are collected is 6.70 m and 6.40 m, resulting in 115 and 109 traces for RUT
and RLT, respectively.

For a time-zero calibration, wide-angle reflection and refraction (WARR) mea-
surements are carried out within the access trench. Here, Rx antennae are moved
over a distance of 6.0 m with a step size of 0.1 m, while the Tx antennae are fixed
at the zero location. At least four calibration measurements per MR facility and
measurement day were performed to capture daily variations of the time-zero (see
GPR Data Processing section).

In contrast to the root images, which capture the soil in contact with the rhizo-
tubes, the ZOP measurements investigate the soil between two rhizotubes. A 1D
horizontal permittivity profile is thus obtained. For the measurements seasons
2016–2018, only one horizontal permittivity plane was measured per depth. For
Plot 1 and Plot 2, this were the slices between column C1 and C2, and for Plot
3 between column C2 and column C3. In 2020, two main planes were measured
per depth; occasionally only one plane was measured with the same configuration
as for the previous measurement seasons. Table 3-1 indicates that the number of
horizontal permittivity planes was measured per measurement date.
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Table 3-1: Detailed overview of the GPR data acquired during growing season
2016, 2017, 2018, 2020 and 2021.

2016 2017 2018 2020 2021
no fac date pl date pl date pl date pl date pl

1 RUT 03.02.2016 12 26.04.2017 15 25.04.2018 15 19.03.2020 12 - -
RLT 03.02.2016 - 26.04.2017 14 25.04.2018 14 - - 25.11.2020 29

2 RUT 30.03.2016 15 03.05.2017 15 02.05.2018 15 12.05.2020 30 - -
RLT 30.03.2016 10 03.05.2017 14 02.05.2018 14 - - 02.12.2020 30

3 RUT 08.04.2016 15 10.05.2017 14 09.05.2018 15 28.05.2020 30 - -
RLT 08.04.2016 15 10.05.2017 14 09.05.2018 14 - - 14.12.2020 29

4 RUT 14.04.2016 15 17.05.2017 15 14.05.2018 15 03.06.2020 30 - -
RLT 14.04.2016 15 17.05.2017 14 14.05.2018 14 - - 14.01.2021 29

5 RUT 20.04.2016 15 23.05.2017 15 24.05.2018 15 10.06.2020 30 - -
RLT 20.04.2016 15 23.05.2017 11 24.05.2018 14 - - 27.01.2021 29

6 RUT 28.04.2016 15 31.05.2017 15 20.06.2018 15 17.06.2020 25 - -
RLT 28.04.2016 15 31.05.2017 14 20.06.2018 14 - - 10.02.2021 29

7 RUT 04.05.2016 15 07.06.2017 15 27.06.2018 15 06.07.2020 29 04.03.2021 30
RLT 04.05.2016 15 07.06.2017 14 27.06.2018 14 - - - -

8 RUT 12.05.2016 15 14.06.2017 15 04.07.2018 15 15.07.2020 30 - -
RLT 12.05.2016 15 14.06.2017 14 04.07.2018 14 - - 09.03.2021 -

9 RUT 19.05.2016 15 21.06.2017 15 09.07.2018 15 23.07.2020 5 11.03.2021 30
RLT 19.05.2016 15 21.06.2017 14 - 14 - - 11.03.2021 -

10 RUT 25.05.2016 15 05.07.2017 15 11.07.2018 15 27.07.2020 30 19.03.2021 24
RLT 25.05.2016 15 05.07.2017 14 11.07.2018 14 - - 19.03.2021 -

11 RUT 02.06.2016 15 12.07.2017 15 18.07.2018 15 05.08.2020 5 30.03.2021 15
RLT 02.06.2016 14 12.07.2017 14 18.07.2018 14 - - 30.03.2021 29

12 RUT 09.06.2016 15 19.07.2017 15 19.07.2018 15 - - 15.04.2021 30
RLT 09.06.2016 15 19.07.2017 14 19.07.2018 14 - - 15.04.2021 -

13 RUT 13.06.2016 15 27.07.2017 15 20.07.2018 15 - - 14.07.2021 30
RLT 13.06.2016 15 27.07.2017 14 20.07.2018 14 - - 22.07.2021 -

14 RUT 20.06.2016 15 02.08.2017 15 25.07.2018 15 - - 28.07.2021 30
RLT 20.06.2016 14 02.08.2017 14 25.07.2018 14 - - 28.07.2021 29

15 RUT 27.06.2016 15 09.08.2017 15 01.08.2018 15 - - 04.08.2021 30
RLT 27.06.2016 14 09.08.2017 14 01.08.2018 14 - - 04.08.2021 28

16 RUT 04.07.2016 15 14.08.2017 15 08.08.2018 15 - - 18.08.2021 15
RLT 27.06.2016 15 09.08.2017 15 01.08.2018 15 - - 04.08.2021 30

17 RUT 20.07.2016 15 23.08.2017 15 15.08.2018 15 - - - -
RLT 20.07.2016 15 23.08.2017 14 15.08.2018 14 - - 25.08.2021 30

18 RUT 27.07.2016 15 30.08.2017 15 22.08.2018 15 - - - -
RLT 27.07.2016 15 30.08.2017 14 22.08.2018 14 - - 31.08.2021 23

19 RUT 01.08.2016 15 06.09.2017 15 05.09.2018 15 - - 10.09.2021 30
RLT 01.08.2016 15 06.09.2017 14 05.09.2018 14 - - 10.09.2021 19

20 RUT 08.08.2016 15 13.09.2017 15 17.09.2018 15 - - 29.09.2021 30
RLT 08.08.2016 15 13.09.2017 14 17.09.2018 14 - - - -

21 RUT 15.08.2016 15 20.09.2017 15 24.09.2018 15 - - 03.11.2021 30
RLT 15.08.2016 15 20.09.2017 14 24.09.2018 14 - - 03.11.2021 27

22 RUT - - 27.09.2017 15 02.10.2018 15 - - - -
RLT - - 27.09.2017 14 02.10.2018 14 - - - -
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Ground-penetrating radar data processing

From horizontal GPR crosshole ZOP measurements, we can derive the relative
dielectric permittivity εr, which can be transformed into SWC using appropriate
petrophysical relationships. All the required pre-processing steps are explained in
detail by Klotzsche et al. (2019). Here, we highlight the most important aspects.
Firstly, a dewow filter is applied, which reduces low-frequency noises on the GPR
data. Secondly, a time-zero (T0) correction of the ZOP data is performed and
thirdly, the first breaks (FB) of the signals are estimated (Figure 3-4a).

Following this processing procedure, the EM wave travel times between the neigh-
boring rhizotubes for each ZOP position are obtained. Since the horizontal spacing
between the neighboring rhizotubes (drhizotubes) is known to be 0.75 m, the EM
wave velocity v for each ZOP position can be calculated using the obtained travel
times (ttravel), see Figure 3-4b. As suggested by Jol (2008), when considering
low-loss and non-magnetic soils the EM velocity v can be transformed into the
relative dielectric permittivity εr of the bulk material with

v =
c

√
εr

(3-1)

where c is the speed of light (~0.3 m/ns).

Because of the presence of the soil sensors and pertaining cables in the first 0.75
m away from the facility wall, GPR measurements were made between 1 and 7 m
away from the facility wall. Close to the surface (depth of 0.1 m) the radar wave
interferences of the critically refracted air wave and the direct wave (Klotzsche
et al., 2019) occur. Therefore, these data were excluded. Additionally, at RLT,
an sEIT system is installed and the metal parts interfere with the GPR waves.
Therefore, at a depth of 0.2 m, where the sEIT system is located, the data were
also excluded.

GPR-derived permittivity can be transformed into the soil water content (SWC),
which provides a parameter that is directly used in soil science. This is achieved by
using different conversion formulas, which are based on empirical relationships and
petrophysical, volumetric mixing models (see Huisman et al. (2003) and Steelman
and Endres (2011)). In this data descriptor, we provide the permittivity values to
ensure that the conversion can be chosen by the user of the data. In the past, we
have used two conversions, the Topp’s equation Topp et al. (1980) and the complex
refractive index model (CRIM) (Steelman and Endres, 2011) (see Klotzsche et al.
(2019) and the Dielectric Permittivity to Soil Water Content section).
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GPR data processing
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Figure 3-4: GPR processing steps
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3-2-4 Root images

Root image acquisition at the minirhizotron facilities

Images of roots and the surrounding soil were captured through the transparent
rhizotubes. The amount of images obtained varied depending on the vegetation
and the progress of root development. To save resources, the depth of measure-
ment was continuously increased at the beginning of each growing season as root
depth increased. Meticulous care was taken not to omit any root depth at which
roots were already present. A measurement produces always 40 images per tube.
Half of the images were taken 80° clockwise and the other half were taken 80°
counter-clockwise from the top point of the rhizotubes. Two different camera
systems were used over time to take the images. The camera used in 2016, and
for most measurements in 2017, was manufactured by Bartz (Bartz Technology
Corporation). The camera used for some of the images taken in 2017 and for all
images taken in 2018, 2020, and 2021 was produced by VSI (Vienna Scientific
Instruments GmbH). The photographed area differs depending on the camera
(Table 3-2). Table 3-3 provides a detailed overview of the images taken over the
different growing seasons.

Table 3-2: Overview of the camera-systems and experiment timeline of minirhi-
zotron images acquisition

camera system Bartz VSI
resolution (px) 1508 x 1020 2060 x 2060
real size (mm) 16.5 x 23.5 20 x 20
wavelength (nm) 400-780 400-780
growing season 2016 & 2017 2017 & 2018 & 2020 & 2021

Root image data processing

The post processing of the images was performed by an automated analysis
pipeline including neural network segmentation and automated feature extrac-
tion following the analysis pipeline of Bauer et al. (2022). Neural network train-
ing and image segmentation were performed with the RootPainter (Smith et al.,
2022) software. Firstly, the roots were segmented by a CNN. As part of the pro-
cess, the roots are separated from the background and extracted as binary image
data. A small subset of the root images is used as training data to train the
CNN. The evaluation of the models was performed with the F1-score (>0.7 for
each model used). More information on the models can be found in Bauer et al.
(2022). The resulting neural network model was then used for the segmentation
of the roots. The segmentation of the images was performed in a batch process.
Secondly, the morphological features were extracted by the automated feature
extraction program RhizoVision Explorer (Seethepalli et al., 2021). This includes
multiple automated steps for thresholding obstacles and filling holes smaller than
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0.2 mm as well as the skeletonization of the roots and the feature derivation from
the skeletonized roots.

The root system parameters provided by the automated analysis include the total
root length, branch points, branching frequency, diameter (average, maximum,
median), network area, perimeter, amount of root tips, volume, and surface area
(Bauer et al., 2022) (Figure 3-5).

Table 3-3: Detailed overview of the images taken at the growing season 2016,
2017, 2018, 2020 and 2021.

2015/16 2017 2018 2020 2020/21
no fac date img date img date img date img date img

1 RUT 16.11.2015 719 08.06.2017 480 23.05.2018 440 02.07.2020 1,160 24.02.2021 1,480
RLT 16.11.2015 720 08.06.2017 584 23.05.2018 720 13.08.2020 1,760 14.01.2021 600

2 RUT 26.11.2015 1,070 29.06.2017 1,800 30.05.2018 480 13.08.2020 1,800 03.03.2021 1,440
RLT 26.11.2015 1,073 22.06.2017 1,800 30.05.2018 720 - - 27.01.2021 920

3 RUT 17.12.2015 1,799 06.07.2017 1,800 07.06.2018 960 - - 11.03.2021 1800
RLT 17.12.2015 1,439 29.06.2017 2,160 07.06.2018 1,075 - - 04.02.2021 1,280

4 RUT 02.02.2016 1,518 13.07.2017 1,800 18.06.2018 1,280 - - 01.04.2021 440
RLT 21.01.2016 1,795 06.07.2017 2,160 18.06.2018 1,436 - - 24.02.2021 1,320

5 RUT 12.02.2016 1,789 20.07.2017 1,800 26.06.2018 1,400 - - 08.04.2021 2,160
RLT 12.02.2016 1,798 13.07.2017 2,160 26.06.2018 1,800 - - 03.03.2021 1,280

6 RUT 26.02.2016 1,795 27.07.2017 1,200 05.07.2018 1,638 - - 22.04.2021 1,560
RLT 26.02.2016 2,155 20.07.2017 2,160 18.07.2018 2,156 - - 10.03.2021 1,640

7 RUT 14.03.2016 1,792 02.08.2017 1,840 18.07.2020 1,760 - - 21.05.2021 2,160
RLT 14.03.2016 2,158 27.07.2017 1,430 01.08.2018 2,159 - - 07.04.2021 2,000

8 RUT 26.03.2016 1,837 10.08.2017 1,959 01.08.2018 1,680 - - 01.06.2021 520
RLT 24.03.2016 2,155 02.08.2017 2,157 23.08.2018 2,159 - - 21.05.2021 1,960

9 RUT 07.04.2016 2,157 23.08.2017 2,120 16.08.2018 1,676 - - 07.06.2021 240
RLT 07.04.2016 2,158 10.08.2017 2,154 - - - - 01.06.2021 1,960

10 RUT 13.04.2016 2,160 12.09.2017 1,800 - - - - - -
RLT 13.04.2016 2,157 24.08.2017 2,159 - - - - - -

11 RUT 29.04.2016 2,154 - - - - - - - -
RLT 29.04.2016 2,157 12.09.2017 2,150 - - - - - -

12 RUT 06.05.2016 2,154 - - - - - - - -
RLT 06.05.2016 2,144 - - - - - - - -

13 RUT 13.05.2016 2,151 - - - - - - - -
RLT 13.05.2016 2,155 - - - - - - - -

14 RUT 20.05.2016 2,156 - - - - - - - -
RLT 20.05.2016 2,155 - - - - - - - -

15 RUT 27.05.2016 2,152 - - - - - - - -
RLT 27.05.2016 2,153 - - - - - - - -

16 RUT 03.06.2016 2,108 - - - - - - - -
RLT 03.06.2016 2,153 - - - - - - - -

17 RUT 09.06.2016 2,114 - - - - - - - -
RLT 09.06.2016 2,083 - - - - - - - -

18 RUT 16.06.2016 2,111 - - - - - - - -
RLT 16.06.2016 2,142 - - - - - - - -

19 RUT 23.06.2016 2,087 - - - - - - - -
RLT 23.06.2016 2,006 - - - - - - -
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Root image processing

Images acquisition 
at MR-facilities

Automatic feature 
extraction with 
RhizoVision Explorer

Features:
- total root length
- root volume
- surface area
...

automatic 
segmentation 
with RootPainter

converting segmented 
to binary images

Automatic feature 
extraction with 
RhizoVision Explorer

small image 
sample

Training with
RootPainter

Neural network
model

Figure 3-5: Root image processing steps
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3-2-5 Soil coring in the extra field

Soil coring was performed in the EF (extra field established next to RLT) dedi-
cated to destructive belowground measurements in 2020 (maize) and 2021 (winter
wheat). The soil next to RUT is not homogeneous, which is why a representative
replica was not feasible. The maize roots were extracted once on July 14, 2020
when the crops were in BBCH 65, whereas the winter wheat roots were extracted
on June 16, 2021 when the crops were in BBCH 69. The soil was cored using a
root auger with an inner diameter of 0.9 m and a length of 1.0 m, and the cores
were drilled directly around the plant. The soil core was then divided into 0.1 m
pieces and filled into plastic bags. For maize in 2020, four replicates were taken
in Plot 1 and four replicates in Plot 3 of the EF (no core was taken in the cultivar
mixture treatment – Plot 2). For winter wheat in 2021, one replicate was taken in
Plot 1, one in Plot 3, and two in Plot 2 of the EF (one core for each variety in the
cultivar mixture). The soil samples were then put into refrigerators and processed
step by step. The samples were later soaked in tap water, washed, and passed
through several sieves with mesh sizes of 1.00 mm, 0.83 mm, and 0.5 mm until the
coarsest soil and residues were cleared. The roots were subsequently stored in tap
water at 3°C until they were scanned with an EPSON scanner (HP Expression
1100XL). The roots of each sample were laid (preferably without overlaps) into
an acrylic glass plate filled with tap water and were subsequently scanned. The
images of the scanned roots were processed using a similar procedure as for the
minirhizotron images, resulting in the total length estimation of the roots and the
root length density (Han et al., 2021).

3-2-6 Soil sensor data

All plots within the two MR facilities have the same layout. Each plot contains
three horizontal rhizotubes per depth but the soil sensors are distributed into four
columns, with the middle section divided into two columns, column C2a and C2b
(see Figure 3-2 c). For each column, there are four TDR-sensors installed for
each of the six depths. For the tensiometers and the soil water potential and soil
temperature sensors, one sensor is installed for each depth. The distribution over
the four columns is shown in Figure 3-2 c.

To measure the soil water potential for dry soil conditions and to acquire the soil
temperature, MPS-2 sensors manufactured by Decagon Devices, Inc., US are used.
The soil water potential is measured in a range of -9 kPa to -100,000 kPa (pF 1.96
to pF 6.01) with a resolution of 0.1 kPa. The accuracy is of ±(25% of reading +2
kPa) over the range of -9 to -100 kPa and proven to be higher for drier conditions
until permanent wilting point (-1,500 kPa) under lab conditions and -4,500 kPa
under field conditions by the manufacturer. The soil temperature is measured
in a range of -40°C to 60°C with a resolution of 0.1°C. The soil water potential
for wet soil conditions is measured using T4 pressure transducer tensiometers
manufactured by UMS GmbH, Germany. The measurement range is -85 kPa to
+100 kPa with an accuracy of ± 0.5 kPa. To acquire and record the soil sensor
data, all sensors – with the exception of the TDR sensors – are connected to a
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DataTaker DT85 manufactured by Omni Instruments Ltd, UK. The TDR sensors
were manufactured by the institute’s technicians and consist of three rods, with
a length of 200 mm and a spacing of 26 mm. The TDR sensors are connected to
institute-made multiplexers (50C81-SDM), providing a lower relative error (>1%)
then commercial system (Weihermüller et al., 2013). To acquire and record the
data, the multiplexers are connected to a TDR100 Time-Domain Reflectometer
manufactured by Campbell Scientific, Inc., US. Because of the high stone content
at RLT the relationship of SWC and dielectric permittivity measured by the TDR
was calibrated in the lab (Cai et al., 2016b). For information on SWC calculation
see Dielectric Permittivity to Soil Water Content section.

3-2-7 Soil water content using a mobile frequency domain reflec-
tometry device

In addition to the soil sensors (see Soil Sensor Data section), the soil water con-
tent was measured using the mobile FDR device that employs the HH2 moisture
sensor with the ThetaProbe ML3 (ecoTech Umwelt-Meßsysteme GmbH, Bonn,
Germany). Due to the nature of the soil at RUT, the soil moisture was only mea-
sured for the topsoil, while for the RLT and EF, the soil water was measured at
depths of 0 m, 0.30 m, 0.6 m, and 0.9 m. In total, the soil water was measured
ten times in each plot of the RUT, six times in each plot of the RLT, and eleven
times in each plot of the EF over the crop growing season. The sensor was always
placed between crop rows.

3-2-8 Soil sampling

In September 2020, a new irrigation tank was installed at RLT and undisturbed
soil samples were taken from the trench for the new tank. The samples were
taken from several depths and analyzed in the in-house soil physics lab. The
soil hydraulic parameters were measured using the HYPROP (Meter, München,
Germany) method (Schindler et al., 2010) and a WP4 Dewpoint Potentiometer
(Decagon Devices, WA, USA). The saturated hydraulic conductivity was derived
using the KSAT system (Meter, München, Germany). Soil texture was determined
according to DIN ISO 11277 using the pipette method combined with wet sieving
(Müller et al., 2009).

The soil hydraulic properties can be found in “Additional_Information” (Lärm
et al., 2023a).

3-3 Data Records

All data were uploaded to Geonetwork in accordance with ISO 19115. The data
were persistently stored and will be regularly updated (see Usage Notes). The
data were subdivided according to the characteristics of the sensing method and
data type. GPR data (Lärm et al., 2023b), root data (Lärm et al., 2023c) root
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GPR_DATA ROOT_DATA ROOT_IMAGES SENSOR_DATA
ADDITIONAL_
INFORMATION

YEAR YEARYEARYEAR

FACILITY_YEAR_GPR_ESP.csv FACILITY_YEAR_Branch_Points.csv

FACILITY_YEAR_Branching_Frequency.csv

FACILITY_YEAR_Diameter(maximum).csv

FACILITY_YEAR_Diameter(median).csv

FACILITY_YEAR_Network_Area.csv

FACILITY_YEAR_Perimeter.csv

FACILITY_YEAR_Root_Tips.csv

FACILITY_YEAR_Surface_Area.csv

FACILITY_YEAR_Total_Length.csv

FACILITY_YEAR_Volume.csv

FACILITY

MEASUREMENT
DATE

FACILITY_DATE_TUBE_WINDOW
_MEASUREMENT_INITIALS.jpg

FACILITY_SENSOR_YEAR_ALL.csv

Experiment_overview..csv

...

FACILITY_YEAR_Diameter(mean).csv

Irrigation.csv

Soil_parameter.csv

Rhizotubes_depth.csv

Figure 3-6: Folder structure of the repositories.

images (Lärm et al., 2023d), and soil sensor data (Lärm et al., 2023e) are each
available with a DOI, providing a link to a repository. Within these repositories,
the data were subdivided by year of measurement. In the GPR data (Lärm et al.,
2023b) repository, one folder for each year contains two CSV files – one for all
measurements performed on each facility in the corresponding year. The root
image data repository contains a CSV file for each root trait measured in the
corresponding year and facility.

The root images (Lärm et al., 2023d) were organized by year and facility. For
each measurement date, one folder (labeled: YYYYMMDD) contains all images
measured on that date in the corresponding facility. The sensor data (Lärm et al.,
2023e) repository contains one file for each sensor type and facility, corresponding
to the year the data were obtained. The file names are explained in Table 3-4 and
the repository structures in Figure 3-6.

Measurement- season
technique interval 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Root Images weekly
GPR weekly
TDR continuous 
MPS-2 continuous 
Tensiometer continuous 
FDR occasionally
Root Images weekly
GPR weekly
TDR continuous 
MPS-2 continuous 
Tensiometer continuous 
FDR occasionally

EF FDR occasionally
Legend: measurement interval complete measurement incomplete no measurements

RLT

2016 2017 2018 2020 2021
Site

2015

RUT

Figure 3-7: Data availability for the measurement seasons 2016 - 2021.
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The data can be downloaded using the following links:

GPR data: https://doi.org/10.34731/cg3t-nb88,
Root data: https://doi.org/10.34731/7x05-2r96,
Root images: https://doi.org/10.34731/5zwe-t974,
Soil sensor data: https://doi.org/10.34731/ffsk-sy65,
Additional information: https://doi.org/10.34731/st8e-4082.

Table 3-4: Overview of the repository content and data labelling. The labels always
contain the facility name (RUTor RLT) and the year the data haven been
obtained. For the root images, each image is also labeled according to
exact date (year (YYYY), month (MM) , day (DD)), tube and position
it was taken.

repository data label size
GPR_Data FACILITY _ YYYY _GPR_EPS.csv 2.68 MB
Root_Data FACILITY _YYYY _ROOT PARAMETER.csv 21.6 MB
Root_Images FACILITY YYYY MMDD_TUBE_WINDOW _MEASUREMENT_INITIALS.jpg 199 GB
Soil sensors_Data FACILITY _ SENSOR YYYY _ALL.csv 103 MB
Additional_Information experiment, irrigation and soil overview (CSV) 1 MB

Some root image data have been previously used and published. Root length data
from 2016 were used by Nguyen et al. (2020). Root length data obtained from
the images and the soil moisture values, measured by TDR and MPS-2 sensors
on both facilities in 2016 and 2017 were used byMorandage et al. (2021). The
root image data of RUT from June 8, July 13, and September 12, 2017 were
used by Nguyen et al. (2022b). However, the root lengths used in these three
studies were obtained by a different method and are based on a manual single
root annotation (Zeng et al., 2008). The root length data of RUT and RLT from
2017 were published by Bauer et al. (2022) to validate the analysis pipeline used
to extract all root data. The GPR data and the mean soil water content values
calculated from TDR sensors from 2016 and 2017 have already been partly used
by Klotzsche et al. (2019).

3-4 Technical Validation

3-4-1 Ground-penetrating radar data

The GPR permittivities (Lärm et al., 2023b) were manually checked for plausi-
bility and unreliable data were excluded. Implausible permittivity outliers were
manually detected and removed.

3-4-2 Root Images

The root data (Lärm et al., 2023c) derived from the minirhizotron images (Lärm
et al., 2023d) were automatically analyzed by the pipeline following Bauer et al.
(2022) using deep neural networks and automated feature extraction (Seethepalli
et al., 2021, Smith et al., 2022). Using this approach, part of the total root length

https://doi.org/10.34731/cg3t-nb88
https://doi.org/10.34731/7x05-2r96
https://doi.org/10.34731/5zwe-t974
https://doi.org/10.34731/ffsk-sy65
https://doi.org/10.34731/st8e-4082
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data has been representatively compared to a manual annotation of the images.
Approximately 36,500 images were used for validation. The correlation of total
root length values obtained from the same images by manual annotation and
automated analysis is very high (r=0.9) (Bauer et al., 2022).

3-4-3 Soil sensor data

The data (Lärm et al., 2023e) of the different sensor types were filtered for the
different measurement ranges listed in the Methods Soil Sensor Data section. To
remove outliers, we applied a Hampel filter, which involves a sliding window being
moved over the data. As a window size, we used 10 data points for each size of
the element, which corresponds to 5 h for the tensiometers and MPS-2 to 10 h for
the TDR sensors. For the element, we calculated the median and the standard
deviation. If the element deviated more than one time the standard deviation,
then the element is replaced by the median (Hampel, 1974). Additionally, the
data from the different soil sensors were manually checked for plausibility and
unreliable data were excluded. The TDR sensor data were filtered for errors in
the TDR wave recordings and data for different dates and sensors were excluded.

3-5 Usage Notes

Figure 3-7 provides information on which periods of data are available for the
different measurement seasons and the different measurement techniques. In 2019,
no crops were sown on the MR facilities due to a project change. In 2020 and 2021,
the datasets do not cover the whole growing period due to technical issues within
the access trench and the measurement systems. Different measurement intervals
were used for the different measurement techniques. For the root images and the
GPR measurements, weekly measurements were performed when possible during
the vegetation period. The interval was adjusted to a biweekly period for the root
images when the root growth stagnated. The availability of the sensor data (TDR,
Tensiometer & MPS-2) depends on the technical state of the measuring devices,
and in 2020 and 2021 there were problems with the data recording system. The
measurements should be recorded as continuous measurements with measuring
intervals of 30 min for tensiometers and MPS-2 sensors and 1 hour for TDR
sensors. All timestamps are UTC+1.

3-5-1 Soil sensor data

Due to the measurement interval and the sensitivity of the TDR permittivity time
series results, we suggest applying a median filter or similar filters to the TDR
dataset to smooth the data as well as to remove the outliers, as mentioned above.
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3-5-2 Dielectric permittivity to soil water content

Using the geophysical measurement techniques mentioned in this study, we pro-
vide the dielectric permittivity of the soil. Point information is provided by the
TDR measurements and spatial information along the rhizotubes is provided by
the GPR measurements. The dielectric permittivity can be converted to the soil
water content. In the past, literature using TDR and GPR data measured within
the MR facilities have used the empirical Topp’s equation (Topp et al., 1980) and
the petrophysical relationships referred to as the complex refractive index model
(CRIM) (see Huisman et al. (2003)). The Topp’s equation is valid for sandy loam
to clay and requires the bulk permittivity of the soil (εr) to derive the soil water
content (SWC):

SWC = −5.3× 10−2 + 2.92× 10−2εr − 5.5× 10−4ε2r + 4.3× 10−6ε3r . (3-2)

For the petrophysical relationship CRIM, which considers the different dielectric
components of the soil (air, soil matrix, and soil water), we obtain

SWC =

√
εr − (1− ϕ)

√
εs − ϕ

√
εw − 1

. (3-3)

For the CRIM approach, additional parameters such as the porosity ϕ and the
permittivity of the soil matrix εs, air (εa = 1) and water (εw = 84, at 10°C) are
necessary. The permittivity of the soil matrix is 4.7 and 4.0 for RUT and RLT,
respectively (Robinson et al., 2005). The porosity in the plow layer is considered
to be 0.33 and 0.4 for RUT and RLT, respectively. For underlying subsoil, the
porosity is considered to be 0.25 and 0.35, respectively (Weihermüller et al., 2007).
In particular, for RUT, we recommend using the CRIM relationship instead of the
Topp’s equation due to the high stone content.

3-5-3 Soil hydraulic parameters

To provide information on, for example, rhizosphere modeling, we provide an
overview of the soil hydraulic parameters, which were derived for the MR facili-
ties using different methods. In Cai et al. (2017), soil hydraulic parameters (SHP)
for both MR facilities can be estimated. These were derived by inverse modeling
using soil water content, potential measurements, and root observations of win-
ter wheat. Yu et al. (2020) and Jadoon et al. (2012) estimated the SHP using
hydrogeophysical inversion for RUT and RLT, respectively. The SHP for RLT was
derived by an inverse parameter estimation using a 1-dimensional CO2 transport
and carbon turnover model, with direct soil sampling and laboratory analysis by
Bauer et al. (2011).
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3-5-4 Updates

The data corresponding to this paper will be updated regularly on a yearly basis
once the analysis is finalized. The updated data can be downloaded from these
DOIs:

GPR data: https://doi.org/10.34731/renq-an61,
Root data: https://doi.org/10.34731/jnhr-ke36,
Root images: https://doi.org/10.34731/jgd1-tq27,
Soil sensor data: https://doi.org/10.34731/rb0q-a208,
Additional Information: https://doi.org/10.34731/ke7b-a021.

3-5-5 Above-ground data

The related above-ground data are managed by the Crop Science group of the In-
stitute of Crop Science and Resource Conservation (INRES), University of Bonn,
and will be available upon demand in a future data paper. These data have
been partially published in Nguyen et al. (2020),Nguyen et al. (2022a), (2022b)
(Nguyen et al., 2022b). The data measured within the EF were carried out by
the project partner at INRES.

3-5-6 Code availability

Custom code was used to process the data. For the GPR Data we used MATLAB
version: 9.13. 0 (R2022b) to run the codes. The root image processing and soil
sensor data is run with Python 3.10.10. Processing codes for the roots images
can be found in the Supporting Material for Bauer et al. (2022) at https://doi.
org/10.34731/pbn7-8g89. The soil water content data measured with the FDR
device was processed using R version 4.0.2.

The custom codes can not be made publicly accessible due to copyright issues,
but are available upon request.

https://doi.org/10.34731/renq-an61
https://doi.org/10.34731/jnhr-ke36
https://doi.org/10.34731/jgd1-tq27
https://doi.org/10.34731/rb0q-a208
https://doi.org/10.34731/ke7b-a021
https://doi.org/10.34731/pbn7-8g89
https://doi.org/10.34731/pbn7-8g89
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No phosphorus, no food—it’s as simple as that.

Vaclav Smil

≪ ⋄ ≫

In the next chapter, we explore how varying soil
phosphorus levels influence the development of

Zea mays, using experiments and
functional-structural plant modeling to uncover

the critical connections between nutrient
availability, root system architecture, and water

uptake capacity.





Chapter 4

Root system architecture
reorganization under

decreasing soil phosphorus
lowers root system

conductance of Zea mays

Abstract

The global supply of phosphorus is decreasing. At the same time, climate
change reduces the availability of water in most regions of the world. Insights on
how decreasing phosphorus availability influences plant architecture are crucial
to understanding its influence on plant functional properties, such as the root
system’s water uptake capacity. In this study, we investigated the structural and
functional responses of Zea mays to varying phosphorus fertilization levels focus-
ing especially on the root system’s conductance. A rhizotron experiment with
soils ranging from severe phosphorus deficiency to sufficiency was conducted. We
measured the architectural parameters of the whole plant and combined them
with root hydraulic properties to simulate time-dependent root system conduc-
tance of growing plants under different phosphorus levels. We observed changes in
the root system architecture, characterized by decreasing crown root elongation
and reduced axial root radii with declining phosphorus availability. Modeling re-
vealed that only plants with optimal phosphorus availability sustained a high root
system conductance, while all other phosphorus levels led to a significantly lower
root system conductance, both under light and severe phosphorus deficiency. We
postulate that phosphorus deficiency decreases root system conductance, which
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could mitigate drought conditions through a more conservative water use strat-
egy, but ultimately reduces biomass and impairs root development and overall
water uptake capacity. Our results also highlight that the organisation of the
root system, rather than its overall size, is critical for estimating important root
functions.

Adapted from: Felix Maximilian Bauer, Dirk Norbert Helmrich, Mona
Giraud, Juan Carlos Baca Cabrera, Jan Vanderborght, Guillaume Lobet, Andrea
Schnepf (2024). Root system architecture reorganization under decreasing soil
phosphorus lowers root system conductance of Zea mays. Annals of Botany.
mcae198, https://doi.org/10.1093/aob/mcae198.
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4-1 Introduction

The exploitation of finite natural resources poses new challenges to agricul-
ture. The supply of phosphorus (P), a vital nutrient derived from finite resources,
will decrease (Marschner, 2011). The predicted time for "peak phosphorus", i.e.,
the time at which global P production reaches its maximum due to the deple-
tion of reserves and declines again immediately afterwards, is estimated around
the early to mid-21st century (Reijnders, 2014). Additionally, excessive use of P
fertilizer significantly impacts the environment by contributing to eutrophication,
which harms open water bodies and leads to aquatic plant and algae growth,
impairing water quality for other organisms and limiting water use for drinking,
recreation, and industry (Randall, 2003). Especially in lakes, rivers, estuaries,
and coastal oceans over-enrichment with P is a widespread problem (Carpenter
et al., 1998). Most of the P stored in water bodies originates from agricultural
and urban activities. P fertilizers dissolve quickly, releasing P faster than plants
can absorb it. P fertilizers, bound on loose soil particles, are highly prone to
being lost by erosion. P that is not used by plants or object to runoff losses is
immobilised in the soil and subsequently not available for plants anymore. For
these reasons, a reduction of P fertilization is required (Hussain et al., 2021).

Concurrently with the impending shortage of P, climate change is anticipated to
lead to a scarcity of water across various regions around the globe (Gosling and
Arnell, 2013). In view of this future water shortage, it is, therefore, crucial to
gain an advanced understanding of how the reduced availability of soil P affects
the plant’s architecture, specifically functional alterations related to the plant’s
capacity for water uptake through its root system (Fry et al., 2018).

Zea mays is one of the most important crops worldwide and crucial for human
nutrition (Ranum et al., 2014). Maize is sensitive to P deficiency and it is known
that canopy development is inhibited by P deficiency, leading to yield decline.
The plant’s architecture changes under soil P limitation. P deficiency is often
associated with reduced growth and rigid appearance of shoots. Limited soil P
availability also induces changes in root architecture. Studies report different
morphological changes, such as the inhibitions of primary root growth, shallower
axial root angle, or various changes in lateral root growth, such as the reduction
of lateral root growth in the field, but also an increase in lateral branching in
plants with few axial roots (zero order roots) (Borch et al., 1999, Marschner,
2011, Zhu and Lynch, 2004), often resulting in a higher root to shoot biomass
ratio (Lynch et al., 2005). Furthermore, an increase in crown root number has
been reported to be beneficial under P deficiency (Sun et al., 2018). A reduced
root radius was described as a response of Zea mays to reduced soil P availability
in soil (Sheng et al., 2012, Zhang et al., 2012). However, no direct functional
relationships between root system responses to P availability and root system
functions have yet been established. Additionally, under field conditions, most
plant responses are measured in rather coarse metrics and do not provide direct
response functions (Lopez et al., 2023). Although a variety of different plant
responses were reported, it remains uncertain which parameters (non-aggregated,



76
Root system architecture reorganization under decreasing soil phosphorus lowers

root system conductance of Zea mays

directly measurable attributes, such as type-depended root length and number)
have a direct impact on aggregated structural and functional root system traits,
such as total root system volume or plants water uptake capacity.

The root system architecture and anatomy are the main factors that are important
for the plant’s water uptake capacity (Steudle, 2001). Root plasticity refers to the
ability of plant roots to alter their growth depending on environmental conditions.
Root architecture refers to the spatial and temporal distribution of roots within
the soil. The root system can be described as an assembly of cylindrical root
segments, and the root architecture defines the shapes of the individual segments,
such as their length, radius, and orientation, as well as how they are connected.
Root anatomy relates to the internal structure of the root. Together, they govern
the root hydraulic properties.

The root hydraulic properties determine the plant’s capacity to channel water
from the soil to the roots and then to the aboveground organs. The root system
conductance (Krs) is a property of the root system and defines the absorptive
capacity of the entire root system. As it is an intrinsic property of the root system,
it does not depend directly on the surrounding soil environment. Consequently,
Krs is not conditioned by the characteristics of the perirhizal zone, the region
surrounding the roots where radial symmetric flow and hydraulic gradient are
generated by root water uptake (Vanderborght et al., 2024). However, Krs depends
on the size and age of the root system. The variability in Krs can be very high; e.g.,
in young maize (up to one month), the Krs can vary from 7.00x10-5 to 2.37x10-2

cm2d-1 (Baca Cabrera et al., 2024).

In order to relate Krs to the size, age, and architecture of the root system, it
is necessary to know the hydraulic properties of the individual root segments
that make up the whole root system. The radial hydraulic conductivity (kr)
of a root segment is a measure of the root’s ability to take up water from the
soil into its vascular system. kr represents the ratio of the water uptake by a
root segment to the water potential difference and the outer surface of the root
segment. The axial hydraulic conductance (Kx) relates to the efficiency of water
transport along the length of the root’s main axis (Steudle, 2001). It represents
the ratio of the axial water flow in a segment (Jx) to the potential gradient along
the segment. Both kr and Kx are intrinsic properties of the roots. kr is often
treated as an intensive property, i.e., it does not depend on the size or radius of
the root segment. However, this is debatable as kr can decrease with increasing
root radius and cortical thickness, increasing the transport distance and, hence,
the resistance to flow. Kx is an extensive property since Kx increases with an
increasing cross-sectional area of the xylem tissue. kr and Kx depend on the
properties of the root tissues (cortex, xylem, casparian band), and changes in
these properties at the cellular and organ levels can impact the root’s overall
hydraulic function, which might alter the root system conductance. A change in
Krs affects the plant’s ability to uptake water (Meunier et al., 2020). Since ageing
root architecture development depend on environmental conditions, variations
in Krs depend indirectly on the soil environment (Baca Cabrera et al., 2024,
Meunier et al., 2017). Many different environmental influences, such as drought
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or salinity, lower Krs (Aroca et al., 2011). P deficiency was also suggested as an
influencing factor for lowering Krs in different species (Li et al., 2009, Mu et al.,
2006, Shanguan et al., 2005).

We know that anatomical changes in the roots of Zea mays under P deficiency
reduce the root hydraulic conductivity in very young plants but it has also been
shown that line-specific differences in the anatomical formation can strongly in-
fluence the Krs changes caused by P deficiency (Fan et al., 2007, Rishmawi et al.,
2023). In general, the relationship between soil P availability and key architec-
tural root system parameters that drive changes in Krs is not well understood.
Moreover, Zea mays was rarely the object of studies investigating the influences
of P deficiency on Krs. Continuous data showing changes in conductance of the
whole root system to soil P limitation over time are lacking but would be helpful
to understand the influence of decreasing soil P on Krs. However, with experi-
mental setups, it is especially challenging to quantify solely the effects of soil P
limitation on whole crop and canopy development and its consequences on rele-
vant physiological processes, such as water uptake-related functions. Especially
for kr, experimental measurements require complex setups, such as root pressure
probe (Frensch and Steudle, 1989), measuring water flow of pruned roots within a
pressure chamber (Zwieniecki et al., 2002), or using the high-pressure flow meter
device on whole root systems for root system conductance, as proposed by (Tyree
et al., 1994). The necessity of measuring kr at several locations, in case of its
variation along the root axis or for various root types, makes its experimental
evaluation more challenging. Inverse modeling is a newer, additional method to
obtain kr and kx values (Couvreur et al., 2018).

Functional-structural plant models (FSPMs) are a suitable tool to help investi-
gate and interpret the reaction of the plant to a changing environment, such as
the absence of a crucial nutrient. They can bridge the gap between the sub-
organ and whole plant level and thus simulate mechanistically emerging plant
phenotypes caused by the interaction of processes at smaller scales, such as the
effect of radial and axial water fluxes through root segments on the whole plant
water uptake. Indeed, FSPMs are computational frameworks that simulate plant
growth by integrating physiological functions with (3D) structural representations
of plant organs. In the context of P, FSPMs have already been used to test hy-
potheses regarding changes in the root architecture of Zea mays, such as a bigger
inter-lateral distance (Postma et al., 2014) and a higher amount of seminal roots
regarding its advantages for P uptake (Perkins and Lynch, 2021).

Although it has already been shown that root architecture and shoot size adap-
tation are affected by soil P availability, transferring these findings directly to the
sub-organ level is very complex without a more detailed experimental investiga-
tion of how architecture changes at a high spatio-temporal resolution. Previous
studies had however a coarse temporal or spatial resolution or focused on specific
organs (Sun et al., 2018). Moreover, it is also suggested that potential reactions to
P deficiency can already occur in very early growth stages (Brunel-Muguet et al.,
2014), whereas experimental studies focused on older plants (Pereira et al., 2020).
To the best of our knowledge, there are currently no studies investigating the
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whole plant’s architectural response of Zea mays to different levels of phosphorus
availability, including the influence of this response and its consequences for Krs.

This work aims to understand which root and shoot architectural parameters are
responding to four decreasing soil P levels from sufficient to severe deficient and
how this will affect the plant’s root system capacity for water uptake. Therefore,
this study has two main objectives:

1. Identify experimentally which structural parameters of maize organs show
the strongest responses to soil phosphorus availability.

2. Parameterize and use Zea mays FSPMs from experimental data to anal-
yse how root system conductance in maize adapts to the different soil P
availability levels.

4-2 Materials and Methods

4-2-1 Experimental set-up

Five Zea mays cv. B73 plants per treatment were grown in rhizotrons (60 cm × 30
cm × 2 cm) (Pfeifer et al., 2014) under four levels of soil P availability, thereafter
called P0, P1, P2, and P3. The experiment was conducted in a greenhouse at the
Forschungszentrum Jülich GmbH, Germany (50°54’36” N, 6°24’49” E) from May
to June 2022.

As substrate, a P deficient luvisol soil from the "Dikopshof" long-time fertilization
trial (Wesseling, Germany) was used (Schellberg and Hüging, 1997). The initial
plant available P concentration in soil (P extracted according to the calcium-
acetate-lactate (CAL method), (Schüller, 1969)) was 1.8 mg P per 100 g soil
(P0). The soil was fully enriched by all other nutrients and sufficiently supplied
with demineralized water, so P was the only limiting factor for plant growth.
The substrate was additionally fertilized (45% P2O5, Triplesuperphosphate). The
resulting soil P concentration was respectively 3.3 mg 100 g−1 for P1, 4.6 mg 100
g−1 for P2, and 7.7 mg 100 g−1 for P3. Together with P0, these four different soil
P levels represent the different P content classifications for agricultural soils, low
B to D range, as proposed by VDLUFA (Verband deutscher landwirtschaftlicher
Untersuchungs- und Forschungsanstalten) (Wiesler et al., 2018). In the context
of agricultural applications, P0 is in the range of severe, P1 of strong (B) and P2
of mild (low C) P deficiency, while P3 is P sufficient (D).

Always two seeds were planted in the rhizotrons and directly after germination
of the first seed, the other seed was removed. The soil in the rhizotrons was
saturated with demineralized water before the experiment began and in the first
two weeks, 75 ml H20 d-1 and the following two weeks 125 ml H20 d-1 were added
from the top. To obtain a high temporal resolution, imaging was first performed
daily and, after 3 weeks, every two days. The measurements were performed until
28 days after sowing (DAS).
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To phenotype the roots, a daily image of the root system was performed with a
"PhotoBox" equipped with a high-resolution camera (EOS 70D; 14mm APS-C,
Canon Inc., Tokyo, Japan), where the rhizotron was always located at the same
position, avoiding distortion and image-shift (Pfeifer et al., 2014). This allowed
us to take high-resolution images of the whole growing root system. During the
experiment, the rhizotrons are stored in boxes at 45° inclination, so the root sys-
tem will grow towards and along the window of the rhizotron. The windows
remained covered and heat-shielded between the measurements, so the roots grew
in a dark and heat-isolated environment. To obtain information about the shoot
architecture of the maize plant, we performed a high-resolution 2D-RGB measure-
ment with a fixed position horizontally to the plant. The camera (X-S10, Fujifilm
Holdings K.K, Tokyo, Japan) was equipped with a fixed focal length lens (35mm
APS-C, Fujifilm Holdings K.K, Tokyo, Japan). To ensure a good image processing
a uniform blue background was installed. During the measurement, the rhizotron
was fixed at an angle of 45°, to provide a vertical positioning of the maize shoot.
To ensure detailed and accurate data collection, the shoot imaging was conducted
just prior to the imaging of the roots. At the end of the experiment, a destructive
biomass measurement was performed.

4-2-2 Image processing

The data obtained from root and shoot are available as 2D RGB images (shoot:
JPG, 2080x2080 px; root: JPG, 2268x4862 px). To facilitate the analysis of the
images, a mostly automated image-processing pipeline was established, stream-
lining the CPlantBox model parameterization from the experimental data (Fig.
1). The first step of image analysis was the segmentation of the targeted organ.

The shoot image analysis pipeline started with the segmentation of the maize
crop shoot. This was performed by a colour-threshold-filter algorithm written in
Python based on the OpenCV wrapper PlantCV and the OpenCV library itself
(Gehan et al., 2017). The blue background was removed using a colour-based filter
and only the predominantly green-to-red coloured plants were still present after
filtering. Then, a semi-automated detection with RootSystemAnalyser (Leitner
et al., 2013b) was performed. The parameters used for CPlantBox were directly
derived from RootSystemAnalyser. We used the procedure already successfully
applied in Yu et al. (2024).

For the root system part, we adapted the method from Bauer et al. (2022) to
segment the roots in the image with a deep neural network model trained with
RootPainter (Smith et al., 2022). We trained the neural network to ignore small
gaps in the root system. However, since some gaps remained we added a feature
to RootPainter, allowing manually correcting segmentation errors and tracing the
root by hand if needed. The RootPainter add-on allowed us to analyse time series
by transferring the segmentation of an image to the next consecutive image in the
time series and only adding the additional segmented roots to the previous seg-
mentation. The segmentation results were complete 2D binary root systems. The
next processing step was the automated root tracing. RootSystemAnalyser di-
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rectly provided the input parameter usable for CPlantBox, by manually choosing
axial roots and automatically detecting the laterals. Finally, an RSML file (Root
System Marker Language) for every root system and time step was produced by
RootSystemAnalyser (Lobet et al., 2015). The first root was always flagged as the
primary root. To discriminate between crown roots and all other root types, the
crown roots were manually flagged in the RSMLs with SmartRoot (Lobet et al.,
2011).

4-2-3 CPlantBox parameter extraction

CPlantBox is a modeling platform that can simulate the morphology and 3D
topology of the plant and, among other processes, plant and soil water fluxes (Gi-
raud et al., 2023). To use the CPlantBox modeling framework, plant parameters
obtained from real plants are required to create a structure as either a virtual
copy of an existing plant or a stochastic variation of a plant, representing the
parameterized cultivar, respectively line (Schnepf et al., 2018, Zhou et al., 2020).

In terms of plant topology, it is possible to reduce the whole plant architecture to
a handful of key parameters that are the input to calibrate CPlantBox. A precise
parameterization of every organ type (e.g., leaf, basal roots) of the shoot and
root system is required. This includes plant age at organ emergence, maximal
length and initial elongation rate of stem, leaf and every root type. Depending
on the organ, initial growth angle, radius, tropism, and branching distance and
-pattern have to be defined (Figure S2.1). These parameters were used as direct
model input to simulate the plant structure. We furthermore have parameters
that describe general root system traits, such as (first) initiation time, maximal
count and appearance probability of different lateral root types and the seed
position. We also have organ-specific parameters, which had to be measured and
calculated for every organ sub-type. Regarding the shoot, this only applied to the
leaf and stem. For the root system, specific parameter-ensembles were derived
for every root type, respectively primary embryonic root (primary root), seminal
roots, crown roots and lateral roots. For maize, there exist also two different
types of lateral roots (Heymans et al., 2021). We sub-divided first order laterals
into l-(long) laterals, which have branching roots and s-(short) laterals.

In a CPlantBox simulation, each parameter is determined using the average value
(mean) and variability (standard deviation, sd) from all the data points provided
for parameterizing that specific organ. A comprehensive list detailing the param-
eters, their abbreviations, and the units of measurement can be found in Table
4-1.

The static root model parameters were directly derived from the RSMLs (Table
4-3). For the initial elongation rate parameter (r) a curve fitting was performed
according to eq. 4-1 (Schnepf et al., 2018). We assumed a maximal root length
(lmax) of 139 cm from literature and fitted r only (Ordóñez et al., 2018, Qiao et al.,
2019). General root system parameters, such as the amount and delay of seminal
and crown roots, were evaluated manually from the rhizotrons. For leaves, we
also considered negative exponential growth, according to eq. 4-1. Growth data
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from leaves that had not yet reached the phase of declining daily elongation rate
were not used for the computation of r.

lexp(t) = lmax(1− e−
r

lmax
t) (4-1)

where t (d) is the time, lmax (cm) is the maximal length and r (cm d−1) is the
initial elongation rate.

Table 4-1: Overview of organ parameters (and their units) that are used to cal-
ibrate models with CPlantBox, as used for this study (day: d; inte-
ger:int), adapted from Schnepf et al. (2018), Zhou et al. (2020) and
Giraud et al. (2023)

root abbriv. unit shoot abbriv. unit
planting depth depth cm nodal growth

implementation nodalGrowth int [0,1]
first emergence time period
of seminal roots firstB d between leaves delayLat d
time period rotation of
between basal roots delayB d leaves around stem RotBeta int [0-1]
max. no. of shape type
basal roots maxB int of leaves shapeType int [0,1]
first occurrence of
crown roots firstS d petiole width Width_petiole cm
time period between
shoot-born roots
per root crown delayS int max. area of leaf areaMax cm2

no. of shoot-born geometry
roots per crown nS d of the leaves leafGeometry array
distance between crowns
along the shoot dzS cm length of petiole lb cm
root radius a cm stem radius a cm
insertion angle θ rad insertion angle leaf θ rad
length of basal zone lb cm length of stem

until the first leaf lb cm
apical delay ldelay cm d-1 length of leaf blade la cm
initial elongation rate r cm d-1 init. elongation rate r cm d-1

max. root length lmax cm max. length lmax cm
tropism type1 type int [0-3] tropism type1 tropsimT int [0-5]
tropism strength N int tropism strength tropsimN int
root successor type successor int successor successor type,%2

type of root elongation3 gf int [0,1] type of elongation3 gf int [0,1]
root lifetime rlt d lifetime rlt d
max. segment length dx cm max. segment length dx cm
1 plagio-, gravi-, exo-, chemo-, hydro, antigravi-, or age-dependent-tropism
2probability of emergence
3 negative exponential or linear growth



82
Root system architecture reorganization under decreasing soil phosphorus lowers

root system conductance of Zea mays

Figure 4-1: Workflow from experiment to CPlantBox model parameterization.

4-2-4 Krs calculation

To calculate the root system conductance and assess the water uptake of the
plant, information about kr (d−1) and Kx (cm3 d−1) is required (Meunier et al.,
2018). The root hydraulic properties vary strongly among species, but also among
genotypes of the same species (Rishmawi et al., 2023). However, most functional-
structural simulations for maize rely on time dynamic hydraulic conductivity pro-
file values from Doussan et al. (1998), a study conducted 25 years ago that only
covers two root types, as highlighted in subsequent studies (Javaux et al., 2008,
Meunier et al., 2020, Postma et al., 2017). Besides measuring the radial flow and
root anatomy, hydraulic anatomy simulators integrated into new modeling soft-
ware tools, can assist a more precise estimation of these values (Couvreur et al.,
2018, Heymans et al., 2020, Passot et al., 2019). This enables new possibilities,
such as the hydraulic atlas of Zea mays cv. B73 of Heymans et al. (2021). With
these parameters, the hydraulic properties of the root system can be defined and
the Krs (cm2 d−1) can be calculated according to Couvreur et al. (2012),

Krs =
Tact

ψsr,eff − ψcollar
(4-2)

where ψsr,eff (cm) is the effective soil-root interface water potential felt by the
roots, ψcollar (cm) is the plant collar potential and Tact (cm3 d−1) is the ac-
tual plant transpiration rate and the net sum of the radial water flow rates (Jr,
cm3 d−1) in the roots, respectively root segments that make up the root system,
since no changes in plant water storage are taken into account. ψsr,eff is obtained
following the method of Couvreur et al. (2012):

ψsr,eff = SUF T .ψsr (4-3)
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where SUF (−) is the vector containing the standard uptake fraction, which is the
ratio between the water uptake of each root segment and the total water uptake
of the root system, and ψsr is the vector of soil water potentials at each root-soil
interface. Jr is defined as:

Jr = Kr(ψsr − ψxyl) (4-4)
Kr = 2π aorgan dl kr (4-5)

where Kr is the radial conductance (cm2 d−1) of a root segment with an in-
finitesimal length dl (cm). aorgan is the organ radius, and ψxyl is the xylem water
potential (cm). As we assume steady-state water flow with no plant water storage
variations, Jr is equal to the changes in axial water flow (Jx, cm3 d−1) along l,
so we obtain:

Jr =
∂Jx
∂l

∂l (4-6)

Jx = Kx
∂ψxyl

∂l
(4-7)

Kx =
πa4xyl
8µ

(4-8)

where axyl is the equivalent xylem radius, µ (cm d−1 H2O) the dynamic water
viscosity, assumed equal to that of pure water at 20◦C. Note that we express
water potentials in terms of water heads, as is common in models that simulate
water flow in soils. Eq. 4-4 - 4-7 gives us a system of equations that are solved
analytically using the method of Meunier et al. (2020), implemented in CPlantBox
according to Giraud et al. (2023). The solution yields both Jr and ψxyl for a
specific set of kr and Kx.

We calculated the root hydraulic properties kr and Kx from the values published
in Heymans et al. (2021) for Zea mays cv. B73 (Table S2.1). We assumed that
the kr and Kx did not change between the different P treatments. We assume
here that kr and Kx does not depend on the root radius; however, the changes in
radii between P treatments were considered when calculating radial conductance
(eq. 4-5). A). Although it was shown that the aerenchyma structure can change
under P deficiency (Fan et al., 2007), the inter-line specific differences in kr and Kx
are much higher in Zea mays than the reformation under P deficiency (Rishmawi
et al., 2023). Furthermore, the aerenchyma reformation of Zea mays cv. B73 with
a no-P treatment under lab conditions, is reported to be still very moderate (Fan
et al., 2007). Finally, the few root hydraulic property data available for maize
under P deficiency are hard to use for our model, since they only take a single root
type (primary root) into account and are measured for very young plants grown
in nutrient solution. The data from Heymans et al. (2021) are given as distance-
depending from the root tip distance and for every root type. The conversion
from distance-dependent to age-dependent conductivity was done using eq. 4-9.
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For a specific distance from the root base l (cm) the corresponding root segment
age (age(lexp), d) was calculated with

age(lexp) = − lmax

r
ln(1− l

lmax
) (4-9)

where r is the initial elongation rate, obtained from the experiments and eq. 4-1,
lmax is the maximal root length and l is the current measured root length (from
experimental data). In contrast to Doussan et al. (1998), we distinguished between
primary root, seminal roots, crown roots, l-lateral roots and s-lateral roots. For
the parameterization of the shoot organs we followed the simpler approach of
Lobet et al. (2014), where it was assumed that the radial stem conductivity was
0 and the axial stem conductance (cm3 d−1) is also calculated according to the
Hagen-Poiseuille law (eq.4-8).

We finally calculated the Krs (eq.4-2) using the simulated plant architecture and
the root hydraulic anatomy based on (Heymans et al., 2021).

4-2-5 Statistical analysis

All statistical analyses, besides a principal component analysis (PCA), were per-
formed with Python 3.9.13. For significance testing of the experimentally mea-
sured parameter between P treatments, we applied a Shapiro-Wilk Normality Test
and Levene’s Test for Equality of Variances, followed by an ANOVA and Tukey
post-hoc test with the "scikit" package (scikit-learn 1.4.2) (Pedregosa et al., 2011).
The results of the statistical test are summarised in the Table S2.2. All parameters
with significant differences (pvalue<0.05) were included in the PCA, namely axial
root radii, leaf elongation and crown root elongation and we further added Krs,
dry matter, P to dry matter ratio and P measured in soil. We clustered for the
different P treatments and included the five repetitions per treatment. For curve
fitting of the initial elongation rate parameter (r) and maximal length (lmax), the
"scipy" package was used (Virtanen et al., 2020). The PCA was performed with
R 4.3.1 (R Core Team 2023) and the "FactoMineR" package (Le et al., 2008). For
linear regression models of the identified response parameter, the "sklearn" pack-
age was used (Pedregosa et al., 2011). Plots were created with the "matplotlib"
package (Hunter, 2007).

4-2-6 Data and code availability

All analysed data, code and model input files used for simulations
and to plot the figure are publicly available and released in a GitHub
repository https://github.com/Plant-Root-Soil-Interactions-Modelling/
CPlantBox/releases/tag/Publication2024 in the folder /experimental/pdef.
The image data are available here: doi.org/10.5281/zenodo.11384890. We
further transferred the simulation set-up to a docker container for easy access.

https://github.com/Plant-Root-Soil-Interactions-Modelling/CPlantBox/releases/tag/Publication2024
https://github.com/Plant-Root-Soil-Interactions-Modelling/CPlantBox/releases/tag/Publication2024
doi.org/10.5281/zenodo.11384890
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4-3 Results

4-3-1 Plant structural responses to soil P level

The influences of P deficiency on the architecture of young root systems appear
complex. Although we observed a reorganisation in many different architectural
root system traits, the clearest significant trends in root trait responses to P de-
ficiency can be seen in the radius of axial roots and the elongation rate of crown
roots (Figure S2.2A and Figure S2.2B). The radii of axial roots significantly in-
creased with the amount of P fertilized. Only for the initial leaf elongation rate
we found a significant architectural response of the shoot to soil P availability.
The initial elongation rate was significantly higher for the highest P level (P3)
compared to the two lowest P levels (P0-P1) (Figure S2.2C). Consequently, the
maximal leaf area showed an increasing trend as well. Although stem length and
diameter also increased slightly with higher P supply, the differences between the
soil P levels were not significant. The destructively measured root mass frac-
tion (root biomass/plant biomass) shows a decreasing trend with increasing soil
P availability (Figure S2.2D). We performed a PCA, including the significant
response parameters to P deficiency, which clearly demarcates clusters for each
phosphorus treatment level, with minimal overlap between the confidence ellipses.
This suggests a strong grouping effect in our data, reflective of the distinct phos-
phorus treatments applied (Figure 4-2). The PCA further revealed that axial root
radii are closely associated with soil P content, while crown root elongation showed
a notable correlation with the soil P to dry matter ratio (PB, mg P g biomass−1).
A similar positive correlation was observed between soil P and leaf elongation rate.
Therefore, we considered crown root elongation rate and axial root radii as plas-
tic response parameters for root system changes. Additionally, the leaf elongation
rate was considered as shoot response to soil P availability.

P soil
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leaf elongation
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DM plant
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Figure 4-2: Principal component analysis (PCA) to identify the contribution of the
plant parameters to the response of Zea mays to P deficiency. The big
symbols corresponds to the centroids for the different P treatments.
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For the radii of axial roots (aax) we found a direct linear relationship to P available
in soil (Figure 4-3A) within the measured upper boundary (Pmax) and lower
boundary Pmin (mg hg soil (100 g−1) of soil P, described as eq. 4-10.

aax = αaaxP + aP0 , Pmin < P < Pmax (4-10)

where parameter αaax defines the increase in radii per unit of P in soil and aP0 the
intercept of the response that represents the radii at the theoretical situation of
no available P in soil. We found that the crown root elongation rate arc (cm d−1)
is a response to the ratio of Psoil to dry matter (DM, g) of the plant (eq. 4-11).

PB =
Psoil

DMplant
,

rc =

{
αrcPB, 0 < PB < PBmax,

αrcPBmax, PB ≥ PBmax

(4-11)

where αrc is the increase in elongation per unit PB. PBmax describes the max-
imal PB we measured, which however aligns with several maximal crown root
elongation rates, measured by other studies (Figure 4-3B).

The initial leaf elongation rate (rl, cm d−1) is a linear function of the P available
in the soil and is described by eq. 4-12 (Figure 4-3C).

rl = αrlP + rP0 , Pmin < P < Pmax (4-12)

where αrl (cm d−1) is the increase in elongation per unit P, while rP0

(cm mg P d−1 hg soil) is the intercept at the theoretical situation of no soil
P. Pmin and Pmax (mg hg soil) describe the lower and upper boundaries of P for
the rl variations. Our observations revealed that the leaf area was maintained for
plants with higher P supply and sharply decreased at the two lowest soil P levels
(Table 4-2). The root volume increased linearly with the amount of available soil
P (Figure S2.3).

For every soil P level, a complete CPlantBox parameter set was created for whole
plant simulations (Figure 4-4). A full list of the parameters, including root system
internalising parameters, as well as root and shoot specific parameters can be
found in Tables 4-3, 4-4 and 4-2, respectively. We moreover created an FSPM,
which simulates the dynamic growth of Zea mays cv. B73 under different soil P
levels and modified only the identified key parameters (see section 4-4-1) according
to the measured soil P levels. We compared the time-dependent simulated total
root system volume and found no relevant absolute differences between the same
treatments (Figure S2.3).
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Figure 4-3: Response of axial roots radii (A), crown root elongation (B) and leaf
elongation rate (C) to different soil P availability levels.

Table 4-2: Overview of shoot organ specific architectural CPlantBox parameters,
as described in Table 4-1, for the distinguished P regimes.

P level P0 P1 P2 P3
params type mean sd mean sd mean sd mean sd
a stem 0.187 0.01 0.16 0.02 0.166 0.014 0.130 0.0
ln stem 1.487 0.313 0.153 0.175 1.676 0.214 1.636 0.126

r stem 0.759 0.876 0.915 1.034 1.0 0.772 1.129 0.66
leaves 7.921 2.338 7.914 2.041 8.8 2.976 10.907 3.005

lb leaves 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
lmax leaves 38.411 7.88 42.606 14.001 52.237 17.901 49.124 15.521
θ leaves 0.705 0.306 0.773 0.055 0.794 0.403 0.739 0.262
delaylat leaves 3.0 3.0 3.0 3.0
RotBeta leaves 1.0 1.0 1.0 1.0
WidthBlade leaves 1.638 1.681 1.561 1.563
areaMax leaves 54.454 66.695 80.683 71.956



88
Root system architecture reorganization under decreasing soil phosphorus lowers

root system conductance of Zea mays

Table 4-3: Overview of initial root system architectural parameters for the dis-
tinguished P regimes. These parameter describe the initiation time,
maximal count and appearance probability of the different lateral root
types, the seed position and simulation time.

root system parameter P0 P1 P2 P3
firstB [d] 3.6 3.6 3 4.0
delayB [d] 1.0 1.0 1.0 1.0
maxB [-] 3.5 3.5 3.5 3.5
firstSB [d] 8.6 9.4 9.2 8.2
delaySB [d] 1.0 1.0 1.0 1.0
delayRC [d] 7.4 6.6 6.3 6.2
nC [-] 3.0 3.6 3.4 3.0
seedPos [x,y,z] [ 0.0, 0.0, -3.0 ]
simulationTime [d] 28
successor probability

0.04; 0.96 0.05; 0.95 0.05; 0.95 0.05 ;0.95on axial roots
[l-lateral; s-lateral]

Table 4-4: Overview of root organ specific architectural CPlantBox parameters for
the distinguished P regimes and the parameterset (general) for simula-
tion to evaluate the root system response parameter.

P level P0 P1 P2 P3 general
params type mean sd mean sd mean sd mean sd mean sd

a

primary 0.054 0.012 0.064 0.017 0.067 0.01 0.091 0.01 0.069 0.003
seminal 0.052 0.011 0.062 0.016 0.066 0.01 0.081 0.011 0.065 0.003
crown 0.061 0.016 0.059 0.02 0.066 0.014 0.066 0.003 0.063 0.007
l-lateral 0.025 0.011 0.024 0.009 0.025 0.008 0.03 0.007 0.026 0.002
s-lateral 0.025 0.007 0.028 0.01 0.025 0.008 0.04 0.012 0.030 0.002

lb

primary 0.8 0.899 1.879 2.385 3.183 2.236 3.777 5.681 2.410 2.033
seminal 2.55 2.333 3.883 2.432 3.969 4.574 1.642 0.814 3.011 1.546
crown 3.161 2.454 7.216 7.564 3.473 2.487 3.924 3.025 4.444 2.468
l-lateral 2.27 2.433 1.732 1.441 2.854 2.349 1.779 1.392 2.159 0.564

ldelay

primary 0.212 0.153 0.481 0.597 2.63 0.284 1.743 1.331 1.267 0.527
seminal 0.499 0.364 0.941 0.784 1.038 0.864 0.94 0.535 0.855 0.230
crown 0.194 0.124 0.666 0.625 0.547 0.476 0.666 0.428 0.518 0.210
l-lateral 0.327 0.294 0.618 0.444 0.341 0.305 0.442 0.309 0.432 0.071

r

primary 3.951 0.766 3.35 1.252 4.417 0.865 4.627 0.486 4.086 0.317
seminal 3.28 1.955 2.149 1.417 2.912 0.644 3.239 1.698 2.895 0.567
crown 2.981 2.693 2.556 2.902 2.29 2.146 4.886 2.583 3.178 0.319
l-lateral 2.951 1.492 1.763 0.693 2.15 0.56 1.742 0.582 2.152 0.444
s-lateral 2.555 2.479 5.078 4.814 5.292 4.982 5.97 5.168 4.724 1.263

lmax
l-lateral 5.549 3.821 4.756 2.513 6.736 3.546 4.794 2.392 5.459 0.721
s-lateral 1.631 1.596 1.341 1.15 0.84 0.452 1.238 1.123 1.263 0.472

θ
l-lateral 1.194 0.375 1.262 0.309 1.344 0.324 1.413 0.324 1.303 0.029
s-lateral 1.194 0.375 1.37 0.346 1.396 0.327 1.413 0.324 1.343 0.023

ln

primary 0.466 0.0454 0.457 0.085 0.536 0.122 0.545 0.187 0.501 0.060
seminal 0.847 0.327 0.519 0.116 0.767 0.202 0.773 0.234 0.727 0.087
crown 0.847 0.327 0.628 0.244 0.811 0.419 0.754 0.124 0.760 0.125
l-lateral 0.833 0.946 0.459 0.284 0.53 0.417 0.48 0.319 0.576 0.308
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4-3-2 Root system hydraulics

Based on the created FSPM we calculated Krs. Our results indicate a close
association of P in soil and Krs (see Figure 4-2). The Krs for a root system
under high to mild P deficiency was significantly lower than for the root system
with a high P supply. After 28 days, the simulated mean Krs was between 0.014-
0.016 cm2d-1 for P0, P1 and P2, while P3 reached a mean Krs of 0.021 cm2d-1

at the same time point. The differentiation in Krs between the treatments begins
between 7 and 10 DAS (Figure S2.5). Figure 4-5 shows (A) the temporal evolution
of Krs according to our simulations and (B) in comparison with literature values.

1

3

4

5

7

2

1 Rishmamwi et al., 2023
2 Niu et al., 2016
3 Hu et al., 2011
4 Parent et al., 2009
5 Hose et al., 2000
6 Freundl et al., 2000
7 Zimmermann & Steudle, 1998

6

A

B

Figure 4-5: A: Krs calculated for each P level with 100 simulation runs (shaded
areas show the standard deviation to the mean); B: Comparison of
different studies investigating Krs of Zea mays with our results (blue).



4-4 Discussion 91

4-4 Discussion

The here presented study focuses on two main points. First, we conducted a
whole plant phenotyping experiment of Zea mays cv. B73 under various soil P
availability conditions in rhizotrons to identify which architectural parameters of
maize organs are responding most to variations in soil P availability. Second,
we parameterized FSPMs based on the previously measured data to understand
how root system conductance in maize adapts to the different soil P availability
levels. With additional hydraulic property data (kr,Kx) from Heymans et al.
(2021), which was based on Zea mays cv. B73 anatomy, we could calculate
the Krs according to the different structures of the root systems. This allowed
us to explore the water uptake capacities of each root system under static soil
conditions.

4-4-1 P levels strongly influence axial root radius and crown root
elongation

Having a close look at the architectural parameters of the plant, we could see
that initial leaf elongation reacted to P deficiency. We observed clear differences
in maximal leaf area depending on the P content in the soil, which originated
from significant differences in the initial elongation rate of the leaf between high
and low soil P levels, indicating that the P deficiency was already an important
limitation in the initial growing phase of early leaves. Finally, a reduction of the
maximal leaf area might have disadvantageous effects on water regulation and
total photosynthesis. These results might be not surprising, as the P deficiency
reaction of the plant is mainly linked to a rigid appearance of the shoot (Plénet
et al., 2000). However, the quantitative empirical values presented here and the
derived response functions are valuable additions, as, contrary to most studies,
the functions are valid for soil P levels ranging from strongly limited to sufficient
(Lopez et al., 2023).

The influences of soil P limitation on the root system were more complex to
disentangle. Especially since there exist maize genotypes that are considered P
efficient and P inefficient. B73 is considered an inefficient line and is thus suitable
for investigation on the reaction to P deficiency, since possible reactions might be
observed already under mild P stress (Kaeppler et al., 2000). When responding
to environmental conditions, several phenes interact, so phenotypic effects are not
always clear to observe in a single organ, although they become more clear from
a holistic perspective, when all organs are evaluated together (Klein et al., 2020,
York et al., 2013). We call this effect a plastic reorganization of the root system.

The reorganization effects are complex and our understanding of them is limited
(Lynch, 2011). However, modeling approaches have already shown that an in-
creasing amount of seminal roots might be beneficial for P uptake (Perkins and
Lynch, 2021), although studies focusing on QTL identification of seminal root
count and length report the opposite reaction of Zea mays cv. B73 under lab



92
Root system architecture reorganization under decreasing soil phosphorus lowers

root system conductance of Zea mays

conditions (Zhu et al., 2006). Our findings do not unequivocally support either
of the divergent perspectives reported in the literature.

The reduced radii of axial roots as a response to P deficiency aligns with previous
observations. We could show that there is a high linear relationship between
plant-available soil P and axial root radii (Sheng et al., 2012, Zhang et al., 2012).
Possibly the plant reduced carbon costs to invest it in other organs that might be
beneficial for P uptake under soil P limitations or is shifting biomass allocation
to more metabolically efficient root classes (Lynch, 2019, Lynch et al., 2005).

Regarding crown root development, we know that a higher number of crown roots
is beneficial under P deficiency (Sun et al., 2018). However, past research has
indicated that minimizing the amount of crown roots can substantially lower the
metabolic expenses associated with root construction, allowing more metabolic
energy to be allocated towards root extension (Gao and Lynch, 2016). Following
the rhizoeconomic paradigm, this would suggest that an increased number of
crown roots might already result in an initially reduced crown root elongation.
Under conditions of nitrogen deficiency, it has been already observed that there
is a decrease in the number of crown roots, which is accompanied by an increase
in their elongation rate (Saengwilai et al., 2014). For plants under P deficiency,
the response of crown root elongation is less well-defined. We found that crown
root elongation in young plants is already an important response parameter for
Zea mays under P deficiency and has a negative linear response to decreasing
soil P availability in soil. As P leaching to deeper soil strata is limited, lower
crown root elongation under limiting soil P conditions would support enhanced
topsoil foraging, which is considered to be beneficial for a greater P uptake (Lynch,
2019). However, we could not detect a significantly higher number of crown roots
in plants under soil P limitation. This may be attributed to the limitations of the
rhizotron setup, which may impede the visibility of all crown roots. Alternatively,
if crown root formation is indeed enhanced under P limitation, the effect may not
be detectable until 28 DAS, necessitating a longer observation period for accurate
quantification.

Overall, the observations in this study are not only meant to investigate shoot and
root in terms of biological general validity but also to parameterize CPlantBox
to obtain dynamic FSPMs under various soil P conditions and to obtain new
findings from this model approach. To our knowledge, this is the first approach
of a detailed whole plant 3D FSPM parameterization of Zea mays.

4-4-2 Krs varies between fully fertilized and deficient plants, but not
among those with severe to mild P deficiency

Krs varies due to environmental conditions (Baca Cabrera et al., 2024, Freundl
et al., 2000, Hose et al., 2000). It is known that Krs is influenced by drought (Hu
et al., 2011, Parent et al., 2009), osmotic stress (Niu et al., 2016), but also due
to genotypic differences (Rishmawi et al., 2023). The Krs values simulated with
our Zea mays FSPM are in the same range as the ones given in these studies
(7.00x10-5 - 2.37x10-2 cm2d-1, see Figure 4-5B).
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We found that when below a specific threshold, soil P limitations modulate the
root system conductance, which might impact young plant vigour. Indeed, the
Zea mays plants with the highest P supply had a significantly higher Krs com-
pared with the Krs for the three lower soil P supply levels, indicating that, as
soon as the plants suffer from P deficiency, the adjustment of the root architec-
ture reduces their water uptake capability. Interestingly, the degree of severity of
the P deficiency has no significant influence on Krs. Changes in Krs are not solely
a consequence of architectural changes, but rather the result of a combination of
altered root architectural traits under phosphorus deficiency and the correspond-
ing adjustments in root functional properties that govern water uptake capacity.
Especially soil P related changes in root radii and crown root length, due to
faster elongation, (as shown by eq. 4-10 and eq. 4-11) influence the root’s radial
conductance, which significantly contributes to observed changes in Krs. The re-
duction in axial root size alone causes a reduction in the radial conductance (as
shown by eq. 4-5). In addition, shorter roots have a non-linear reduction in Krs
because the relation between root age, surface area and kr and Kx is non-linear
(Doussan et al., 1998, Meunier et al., 2017). The non-linear response of Krs in
plants with slower growing crown roots may be also attributed to the higher ax-
ial conductivity found in the proximal parts of crown roots compared to other
root types. This, combined with the fact that crown roots are connected to the
shoot’s vascular system, enhances the propagation of xylem tension along crown
roots, potentially providing benefits to faster growing crown roots than to slower
growing ones (Ahmed et al., 2018).

A biological implication could be that plants under soil P limitation with lower Krs
decrease transpiration later than plants with high Krs since they have lower water
use and soil water would not be depleted so quickly, which is beneficial to mitigate
potential drought stress. However, under sufficient water conditions, a high Krs
would be beneficial since the general capability of water uptake is higher. In rice,
it has been demonstrated that at low soil P levels, the discrepancy in growth
between well-watered and drought-stressed plants was insignificant compared to
the difference observed in plants with sufficient soil P (De Bauw et al., 2020).

These are new insights, since studying Krs experimentally on this high spatio-
temporal scale is challenging, due to the complex architecture of root systems,
their dynamic interactions with varying soil environments, and the technical dif-
ficulties associated with accurately measuring water flow through roots under
different conditions (Heymans et al., 2020). With this approach, we also showed
that computational modeling is overcoming these challenges and could be a tool
for improving our understanding of the dynamic modulation of root water uptake
mechanisms under soil P starvation since all other investigation methods only
provide static information at a certain time point and of specific parts of the root
system (Li et al., 2009, Mu et al., 2006, Shanguan et al., 2005, Yu et al., 2024).

Our results showed changes of the root system architecture under soil P limita-
tions. Root volume increases linearly with soil P. We identified decreasing axial
root radii and crown root elongation as key parameters for root systems and leaf
elongation as the main shoot response to soil P limitation. We combined these
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results into a functional-structural model to show that maximal potential water
uptake capacity does not differ between plants with high and mild P deficiency
plants but between fully P fertilized and P deficient plants. Both, root system
anatomy and architecture are key to understanding root system function. Al-
though root system architectural traits, such as volume, do increase linearly to
soil P availability, the root system’s capacity to take up water does not follow
the same trend. That underscores that root system organization is critical for its
function rather than mere total size. The main reasons for this phenomenon are
the non-linear relationship of Krs with root surface area, root length, and presum-
ably volume (Baca Cabrera et al., 2024, Meunier et al., 2017), which is associated
with the age dependence of kr and kx (Doussan et al., 1998).

To guarantee better generalizability, it would be important to validate whether
these results are applicable in field conditions and across different maize varieties.
Experimentally testing water uptake with two or more contrasting soil P con-
centrations would provide additional validation. Measuring or simulating actual
transpiration and root water uptake would be another way to validate the findings
on the influence of soil P limitation on water uptake capacity. Further research
is required to investigate the effects on older plants. Furthermore, an evaluation
of how the local intrinsic root hydraulic properties themselves might change un-
der P deficiency and information on the internal P concentration within different
plant organs under various soil P conditions would be a valuable addition to the
results presented here. This study does not fully account for the complexity and
heterogeneity of all soil conditions and cases of extreme P over- or under-supply
in natural settings, which can significantly affect nutrient availability and plant
growth. While the focus on P is critical, it is important to consider interactions
with other nutrients and how they collectively impact plant growth and develop-
ment. The impact of varying environmental conditions beyond controlled settings
on P stress responses is not fully explored and it would be beneficial if further
future studies include a range of genetic diversity within Zea mays to understand
how different genotypes respond to P deficiency.
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In my quest to unravel the complex interactions between maize and its envi-
ronment, a new root phenotyping pipeline was developed, extensive datasets were
gathered, and functional-structural plant models were developed and applied. As
shown in Chapter 2 and 3, the advancements in automated minirhizotron image
analysis and thereby generated belowground dataset provide us with a robust
framework to further analyze and understand the dynamic responses of maize
to changing conditions from greenhouse to field scale. Within this chapter, we
will explore new possible technologies to monitor root presence in the field non-
invasively, link aboveground data to our already presented belowground minirhi-
zotron data, and provide an example of how to use both together to understand
how field-grown maize responds to different soil types. Further, we investigate the
possibilities of transferring our implemented phenotyping pipeline for data anal-
ysis and functional-structural plant model (FSPM) calibration and our model
approach presented in Chapter 4 to other studies. Thereby, we explore the poten-
tial effects of domestication of Zea mays on root system architecture and model
the functional implications of the adaptions. We will immerse ourselves in virtual
worlds to tackle the bottleneck of data generation for neural network training with
virtual data produced by a new approach. Finally, we shed light on the responses
to P deficiency and the implications for future agriculture.

Figure 5-1: Connections between Chapters 2-4 and the studies presented in this
chapter. The arrows show the connection, which is either driven by
data exchange (yellow), methodological transfer (blue), or by the use
of similar model approaches (grey).
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The results of this work have contributed significantly to several studies by provid-
ing either methods, data, models, or a combination of these elements (as shown
in Figure 5-1). This chapter illustrates the scientific use of the results of this
work and sets it in the context of other studies. Extended information on all pub-
lished studies to which this work has made significant contributions, as well as
supplementary information relevant to this chapter, can be found in Appendix C.

5-1 Towards new standards and methods for in situ
root phenotyping

The automated analysis pipeline illustrated in Chapter 2 is a suitable solution
to easily and accurately analyze minirhizotron images in significantly less time
by combining the automated segmentation tool RootPainter (Smith et al., 2022)
with the automated feature extraction program RhizoVision Explorer (Seethepalli
et al., 2021).

The highlight of this study, in addition to the development of the workflow pre-
sented, is the large-scale testing and validation. The pipeline was tested with
more than 107,000 minirhizotron images, including more than 36,500 images for
detailed comparison to manual annotation, obtained from two growing seasons
and different soil types, depths, and cultures, resulting in an overall correlation
of r=0.9. It was proved that the automated image analysis workflow is mas-
sively saving time, as the required time is reduced by more than 98 % in contrast
to manual annotation while providing more root trait information. In conclu-
sion, the automated pipeline outperforms manual annotation in terms of time
requirements and information density while providing reliable data and feasibility
for everyone. The presented and evaluated pipeline has already been the new
standard method for reliable high-throughput root phenotyping of minirhizotron
images, as highlighted by many studies individually (Balestrini et al., 2024, Banet
et al., 2024, Berrigan et al., 2024, LaRue et al., 2022, Nair et al., 2023, Seethepalli
et al., 2024, Smith et al., 2024, Solimani et al., 2023, Zhu et al., 2024). Weihs
et al. (2024) states that the pipeline has removed the image analysis bottleneck to
high-throughput phenotyping approaches by substantially reducing the processing
time for minirhizotron imagery and outperforming traditional methods.

Generally, the development of neural network-based tools for root analysis has
made significant progress in recent years, but the focus has often been on specific
applications. RootNav 2.0 (Yasrab et al., 2019) and ChronoRoot (Gaggion et al.,
2021) are also driven by a CNN but only suitable for young root systems on
an artificial background. Other approaches using CNNs, such as SegRoot (Wang
et al., 2019), faRia (Narisetti et al., 2021), and RootDetector (Peters et al., 2023),
are often limited to the use of one or a few fixed pre-trained neural network models
and, therefore, not easily usable for non-professionals or reach worse evaluation
scores compared to the method presented here. Also, the majority of these tools
do not permit direct annotation of training data without utilizing supplementary
software. RootPainter (Smith et al., 2022), in contrast, offers the possibility of



5-1 Towards new standards and methods for in situ root phenotyping 101

creating individual models with interactive annotation. Although newer tools
using CNNs for root segmentation and analysis are still being developed (Gillert
et al., 2023, Huang et al., 2023), the hype towards CNN-based tools has started
to decline. This might be because the current approaches, especially the here
presented analysis pipeline, are already well-developed and tested. Currently, the
focus shifts toward time-series analysis and other multi-dimensional data sources,
such as MRI or CT, since automated data analysis is not far progressed for this
kind of data (Selzner et al., 2023). RNNs (Recurrent Neural Networks) appear to
be a promising approach to face this challenge since their architecture allows the
input of temporal data (Weihs et al., 2024).

In the field of 2D minirhizotron image analysis, the method presented here rep-
resents the current gold standard. The presented models and datasets serve as
benchmarks for other neural network-based root image analysis approaches (Banet
et al., 2024, Khoroshevsky et al., 2024). Furthermore, our results were used to
validate existing methods and justify using neural network-based tools in plant
image analysis (Clark et al., 2024, Nair et al., 2023, Selzner et al., 2023, Smith
et al., 2024, Zhu et al., 2024). Especially the way of using the Normalised RSME,
as first shown in Bauer et al. (2022) (eq. 2-4), is now a standard in the root image
analysis community to evaluate root data originating from neural network mod-
els (Banet et al., 2024, Khoroshevsky et al., 2024). Nevertheless, the pipeline’s
transferability to other application purposes, e.g., validating alternative root phe-
notyping methods, such as GPR (Ground Penetrating Radar), or applying it to
whole connected root systems, remains to be explored (Bauer et al., 2022, Clark
et al., 2024, Zhu et al., 2024).

Minirhizotron measurements are the method of choice for in situ root monitor-
ing. However, it is not suitable for rapid, high-throughput screening or for use
in precision agriculture. Finding additional ways, ideally with already existing
methods, to complement our need for root measurement tools would be beneficial
to increase spatial and temporal resolutions while minimizing measurement time.

GPR may help us to enhance the resolution and provide additional insights into
the root system dynamics and their environmental responses. GPR is a geophys-
ical method that uses electromagnetic wave propagation in the soil. From this,
we can derive the relative dielectric permittivity (eq. 3-1) that can be directly
linked to soil water content (SWC) with a high spatial resolution (Klotzsche et al.,
2019). In the past, it has been shown that GPR can be used to detect coarse roots,
such as tree roots applying a surface GPR (Guo et al., 2013). However, detecting
finer root systems of important arable crops, such as Zea mays, using GPR is
still challenging, and a ground-truth validation is required to approach this. The
Selhausen minirhizotrons, presented in Chapters 2 and 3, are ideal experimental
platforms to explore the capabilities to quantify root presence and development
using GPR. Here, Klotzsche et al. (2019) already showed that the GPR signal
and hence the SWC distribution, especially under dry soil conditions, is affected
by maize root presence. However, it still remained elusive how the GPR-derived
permittivity is linked to the presence of finer root systems.
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The synthesis of camera and in situ horizontal crosshole GPR measurements be-
tween neighboring rhizotubes of minirhizotrons provides a comprehensive view
into the plant-soil continuum, enabling the exact quantification of roots and link-
ing them to GPR data. In Lärm et al. (2024), we aimed to non-invasively monitor
the crops rooting zone by investigating the relationship between the root volume
fraction and the GPR-derived permittivity in Zea mays crops in the correspond-
ing measurement depths. To correlate the GPR data with the presence of roots,
we applied the Chapter 2 presented analysis pipeline and used the resulting time-
series data of root images for root volume fraction determination. We identified a
clear, increasing trend during the vegetation period of the GPR data, correlating
to a similar increase in root volume fraction during the same time period (Fig-
ure S3.1). We found that GPR-derived permittivity patterns show a consistent
variability increase with higher root presence in soil, meaning that it can be used
as a proxy for assessing root presence, which may improve data acquisition for
agronomic studies and crop modeling and has future potential for using GPR for
precision agriculture.

5-2 Combining multiyear above- and belowground data
to investigate the soil-plant-atmosphere continuum
comprehensively

The creation of the in Chapter 3 presented unique multi-year belowground data
collection from the minirhizotron facilities in Selhausen would not have been fea-
sible without the automated image analysis pipeline presented in Chapter 2.

The unique set-up of the Selhausen minirhizotron facilities, which are located close
together in the same local climate but with different soil types, enables exceptional
possibilities to measure the soil-plant continuum. The 7m-long horizontal tubes
at several depths could be used for crosshole GPR and minirhizotron camera
systems. Additionally, soil sensors (TDR, Tensiometer and MPS-2) provided ob-
servations at a high temporal and spatial resolution. The in Chapter 3 presented
data cover five years of ongoing measurements of Zea mays and Triticum aes-
tivum experiments, including validated root development data and dynamic and
static soil moisture data, and the underlying soil permittivity values of drought
stress and crop mixture trials. The open-access dataset was partly already used
to develop, calibrate, and validate models of the soil–root continuum across differ-
ent scales (Schnepf et al., 2022b) concerning different root zone components such
as soil processes, including flow processes (Landl et al., 2021, Vereecken et al.,
2016), root development (Schnepf et al., 2022a), biopore quantification (Landl
et al., 2019), and different model compilations such as single-root system (Garré
et al., 2012, Schnepf et al., 2022a) or multi-root system modeling (Morandage
et al., 2019). Further application cases were soil water content and root water
uptake modeling (Cai et al., 2017, 2018b). The data include relevant agronomic
information for breeding water-efficient cultivars and for field management under
various conditions, which is directly usable for agronomists. Evaluating the suit-
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ability of GPR for root presence detection would not have been possible without
this dataset (Lärm et al., 2024). This dataset provides a valuable opportunity to
explore the significance of interannual variability in root growth patterns influ-
enced by environmental factors such as soil moisture and temperature. We hope
to increase our understanding of the complexity of root dynamics and their sen-
sitivity to external conditions. We expect to enable holistic studies by gathering
as much as possible of the environmental influences on crops.

However, this dataset is limited to the belowground part of the cropping zone.
Therefore, only the root-soil continuum can be investigated fully with this infor-
mation. To fully access the soil-plant-atmosphere continuum, above-ground crop
and climate data are required. In Nguyen et al. (2024b) we present a comprehen-
sive dataset from leaf to the canopy using several sensing techniques, including leaf
chlorophyll, stomatal conductance and photosynthesis, canopy CO2 exchange, sap
flow, canopy temperature, and detailed plant growth traits, such as plant height,
leaf area index, aboveground biomass, and yield measurements to complement the
belowground dataset presented in this work (Figure S3.2). The aboveground data
was collected under field conditions with different soil types, water treatments,
and different wheat and maize varieties analog to the experimental set-up pre-
sented in Chapter 3. The final data collection also covers the same time period,
location, and treatments. The data were made available for studying soil/water-
plant relations and improving soil-plant-atmospheric continuum models, which are
the backbone for the process understanding of crops and predictions for cropping
systems. We made the data on the same platform and in the same standardized
formats available (doi: https://doi.org/10.34731/1a9s-ax66).

Currently, the facilities in Selhausen stand as a unique and pioneering example,
with only one comparable permanent set-up, the "RadiMax phenotyping facility"
in Copenhagen, Denmark (Svane et al., 2019). However, due to the improved
minirhizotron image data handling methods, new minirhizotron set-ups in new
dimensions were recently constructed or are still under construction, such as the
3038 tube containing minirhizotron field at the University of Illinois at Urbana-
Champaign (Champaign, IL, US) (Rajurkar et al., 2022), and the "HYDRAS"
facilities at the ILVO (Merelbeke, Belgium) (Blanchy et al., 2024). These facilities,
along with a few other smaller installations, use, in contrast to the Selhausen
facilities, temporary and inclined installed minirhizotrons to address a range of
agricultural research questions.

In the past, they were used to, e.g., evaluate key knowledge gaps regarding ge-
netic and environmental effects on root system size and distribution in the field
(Rajurkar et al., 2022), understand stress responses of root systems, such as tem-
perature variations (Aidoo et al., 2018), water limitation (Cseresnyés et al., 2021),
nutrient deficiency (Wacker et al., 2022), salinity (Shalhevet et al., 1995), inves-
tigate belowground carbon allocation and turnover (Chandrasoma et al., 2023),
and identify genotypic cultivar differences (Svane et al., 2019). However, root
senescence and decay have not yet been the focus of in situ root studies because
the available analytical methods are not yet suitable for this purpose or only ap-
plicable to tiny selected datasets and not yet transferable (Gillert et al., 2023).

https://doi.org/10.34731/1a9s-ax66
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Another problem to overcome is the lack of data on senescenting and decaying
roots. The data collection presented in Chapter 3 fills this gap since the below-
ground dataset will include images and data of root senescence and decay as part
of the ongoing data updates.

Although recent studies combined various soil, atmosphere, and plant measure-
ments, such as soil CO2 efflux, temperature, moisture content (Nair et al., 2023),
waterlogging information (Qian et al., 2023), atmospheric and elevated CO2 (De-
frenne et al., 2021), photosynthetic active radiation, net photosynthesis rate,
stomata conductance, stem water potential, and sap flow (Atta et al., 2022, Zhou
et al., 2018) with minirhizotron root information, no study has ever published a
dataset as comprehensive in measurement techniques, temporal- and spatial reso-
lution, and experimental variety, as the one presented in this work. While minirhi-
zotron images are published from time to time, such as in Xu et al. (2022), the
scope and integration of the dataset in this study remain unparalleled. In conclu-
sion, the combination of the above- and belowground dataset sets new standards
while simultaneously emphasizing the importance of effectively using such detailed
data to gain meaningful insights.

We made use of both here presented datasets (Chapter 3 and Nguyen et al.
(2024b)) to investigate how Zea mays reacts to different soil types, water regimes,
and contracting vapor pressure deficits (VPD). Precisely, we investigated the in-
fluences of the stony soil and the silty soil at the RUT and RLT minirhizotron
facilities, different water regimes, namely irrigated and rainfed treatments on the
root-to-shoot growth characteristics, and the hydraulic linkages between the soil
and Zea mays. We used the data measured in the growing seasons of 2017 (low
VPD) and 2018 (high VPD). In detail, we used the root growth data, analyzed
with the method presented in Chapter 2, and soil moisture sensor data from the
dataset in Chapter 3 and combined them with aboveground data from (Nguyen
et al., 2024b). We found that the response of Zea mays to stress can be completely
opposite depending on soil conditions. To cope with water deficit, Zea mays had
a higher water uptake rate per unit root length and higher root segment conduc-
tance in the stony soil than in the silty soil, while at the same time, the crop
reduced transpired water via reduced shoot size.

5-3 Data-to-model pipelines combine in situ and in
silico approaches to gain new insights into plant
growth and hydraulics

So far, we have mainly discussed data generation methods and plant behavior
on the field scale. To fully understand the complex interactions between plants
and their environment, we need to look at them in more detail in the context
of critical environmental conditions, such as water and nutrient limitations. To
understand plant reactions and the underlying mechanisms, we must look at the
individual morphological characteristics of the plants and the genetic components
that determine them. Exploring the complex architectural adaptations of the
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root system and revealing the underlying functional and genetic drivers is cru-
cial. Understanding the functional implications of the discovered plant responses
is complex; however, it can be efficiently approached with modeling based on
experimental data.

Recently, several studies have focused on plant reactions to environmental stresses,
especially the root system responses to water or nutrient deficiency or changes in
root system conductance (Krs), as explained in detail in Chapter 4-1. Most of
these studies are exclusively based on experimental observations, and FSPMs are
rarely involved. Yet, these models can extend our research capabilities and pro-
vide insights into areas we cannot reach on an experimental scale alone. Almost
all FSPMs have in common that they use an explicit simulated plant architec-
ture. This requires parameterization with structural parameters. Obtaining these
parameters is a complex task that requires precise phenotyping methods. By in-
tegrating the phenotyping method presented in Chapter 2 into a new workflow
to extract single organ traits, we were able to create the first detailed structural
whole plant model of Zea mays that includes all single organs, namely leaves, stem,
primary root, seminal roots, crown roots and different types of lateral roots.

Building on such detailed FSPMs, it is possible to explore plant responses to
environmental stresses. Among the group of FSPMs, functional-structural root
models are particularly relevant for simulating responses to water or nutrient
deficiency or changes in root system conductance. Well-known root models that
are suitable to deal with these tasks and are still in use are SimRoot (Lynch et al.,
1997) and its successor, OpenSimRoot (Postma et al., 2017), R-SWMS (Javaux
et al., 2008), and SRI (Beudez et al., 2013). CPlantBox (Giraud et al., 2023,
Schnepf et al., 2018, Zhou et al., 2020), the modeling framework used in this
work, also provides these capabilities, with the additional option of coupling it
with DuMux (Koch et al., 2021), which allows simulations of plant-rhizosphere-
soil interactions. While SimRoot, OpenSimRoot, R-SWMS, and SRI only focus
on the plant’s root system, CPlantBox also offers the possibility of including shoot
organs to simulate a complete 3D growing plant. As of today, CPlantBox is the
only fully integrated model that simulates the dynamics of a variety of complete
growing plants with a detailed description of each organ.

All named models are capable of modeling the root water uptake (Schnepf et al.,
2023). Especially, R-SWMS was often applied in the context of water uptake
simulations (Meunier et al., 2022), but was recently also used to predict pesticide
uptake (Jorda et al., 2021). SimRoot was used in several cases to simulate ideo-
types (Lynch, 2013), especially concerning nitrogen (N) (Saengwilai et al., 2021,
2014, Schneider et al., 2021) and phosphorus (P) uptake (Postma and Lynch,
2011) capabilities. Recent studies used OpenSimRoot to simulate the root system
in order to provide insights into the dynamics of carbon partitioning (Punyasu
et al., 2024), to identify beneficial root ideotype for low N conditions (Ajmera
et al., 2022, Lynch et al., 2023, Schneider et al., 2021), and to understand how
seminal root number (SRN), associated with domestication, improves N and P
acquisition in maize seedlings (Perkins and Lynch, 2021). CPlantBox has been
used to, e.g., investigate the P uptake strategies of Oryza sativa (De Bauw et al.,
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2020), evaluate root development in stony soil (Morandage et al., 2021) and un-
der mechanical and hydric stress at different soil compaction levels (de Moraes
et al., 2019), discover how phloem anatomy restricts the root system architecture
development (Zhou et al., 2023), model root elongation as a function of soil bulk
density and matric potential (Seidel et al., 2022), simulate rhizodeposition pat-
terns around growing and exuding root systems (Landl et al., 2021), model root
water and nutrient uptake from dynamic soil (Mai et al., 2019), and as a bench-
mark for root water uptake modeling (Schnepf et al., 2023). CPlantBox was also
used to calculate Krs (Baca Cabrera et al., 2024, Selzner et al., 2023).

Generally, simulating Krs with FSPMs is an emerging practice that is gaining
increasing attention. In particular, Zea mays serves as a model plant for the
development and validation of computational solutions for Krs estimation. The
initial straightforward methodologies were implemented a considerable period of
time ago, as presented in the models of Doussan et al. (2006) and Javaux et al.
(2008). Later, whole plant FSPMs, such as PlaNet, added the shoot hydraulic
parameter by coarse approximations of leaf and stem conductance and taking the
stomatal conductance as proxy for radial leaf conductivity (Lobet et al., 2014).
Meunier et al. (2020) firstly developed a method to precisely estimate water flow in
hydraulic architecture, based on a CPlantBox simulated root system architecture
of maize (MAize Root System Hydraulic Architecture soLver (MARSHAL)). The
same study also presents the first longer-term, time-dependent simulations of Krs
values for Zea mays, which have been compared to experimental values from the
literature. However, all these studies use the simulated hydraulic parameters
(kr, Kx) of Doussan et al. (1998), which has, in contrast to the Krs simulation
presented in Chapter 4-3-2, several major drawbacks.

The spatial resolution of the Doussan et al. (1998) dataset is relatively coarse,
with the values expressed in distance units relative to the root tips. Since no
elongation rate is provided, the required conversion to time-dependent values has
to be approximated. The most important difference to this work is that Doussan
et al. (1998) provides kr and Kx for two root types, namely axial roots and lateral
roots. No separation between the hydraulic properties of primary, seminal roots,
crown roots, and different types of lateral roots is made. It seems probable that
simulations based on the parameters from Doussan et al. (1998) overestimate
Krs, particularly in seedlings and young plants. This is because primary and
seminal roots contribute significantly to the total root system size at this stage
of growth (Hochholdinger, 2009), and a mean value for axial roots, presumably
heavily influenced by crown roots, is an inaccurate representation that produces
biased results.

The in Chapter 4 presented maize FSPM is capable of estimating Krs based on a
comprehensive parameterized plant architecture and considers the hydraulic prop-
erties of primary, seminal roots, crown roots, long lateral roots, and short lateral
roots individually. Compared to the studies mentioned above, this approach un-
doubtedly reduced the uncertainty and significantly increased information density
for Krs computation of Zea mays. Additionally, this work contributed a valuable
and detailed dataset of architectural Zea mays parameters and a data-to-model
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parameterization approach to obtain these data. However, a critical question
that had to be assessed was whether this method could be successfully adapted
to measurement setups that differ from those described in Chapter 4-2-1.

In Yu et al. (2024), we aimed to identify the genomic and geographical drivers for
SRN formation. We, therefore, investigated the precise morphological influences
and functional implications of the root system architecture of 218 representative
traditional Zea mays cultivars on Krs and standard uptake fraction (SUF). We
did this with precise sub-organ phenotyping and functional-structural modeling.
In a rhizobox set-up, we measured all varieties using the pipeline described in
Chapter 4-2 to access root architectural and morphological traits. We found that
SRN negatively correlates with primary root length and lateral root density along
the primary root.

We then created one FSPM with CPlantBox for each cultivar, including statistical
variation from several repetitions, for a 9-day-old seedling. Our simulation, which
was performed in a simplified set-up used for the simulation procedure presented in
Chapter 4-2-4 (Figure 5-2), showed that SRN affects seedling vigor by modulating
Krs. Since lateral roots mainly drive water uptake in young maize plants, we
suggest that the reduction of SRN favors seedling establishment in water-limited
conditions. Depending on our results, we concluded that variations in SRN may
shape the size and branching of the entire root system, which in turn might
determine the plant’s water uptake capacity. By simulating the SUF, we could
further demonstrate that lateral roots’ relative contribution to total root water
uptake decreases with increasing SRN. A soil-hydraulic modeling approach further
showed that the point at which a small increase in transpiration provokes a large
drop in leaf water potential at a given soil water potential (stress onset limit)
occurred at a less negative leaf water potential in the traditional varieties with
lower SRNs. This implies that plants with more seminal roots require higher flow
rates at the same root length for water uptake and, therefore, a higher plant water
potential to maintain transpiration than cultivars with a low SRN. Cultivars with
low SRNs are, hence, more tolerant to drought conditions. With our simulations,
we could provide evidence that root architecture changes, mainly driven by SRN
variations, impact maize seedling’s hydraulic properties.

The results of this study offer ground-breaking insights into root responses to
changes in water availability and highlight the historical impact of domestication
and adaptation on maize roots. Furthermore, this study underscores the potential
of genetic advancement to assess climate resilience in future Zea mays generations
and partly delivers the required knowledge to realize new breeding targets. Fi-
nally, the successful transfer of the method and model approach used in Chapter 4
to another research domain and application case proved that the results presented
in this work are of significant importance and can help to address pressing issues
in plant research, but also beyond.

The in this study presented comprehensive dataset of Zea mays architectural
parameters was of significant interest to other studies in related fields, such as
computer vision for plant phenotyping. As stated in Chapter 2, deep learning
has expanded our ability to analyze new data and investigate structural plant



108 General Discussion

Figure 5-2: A multi-step structural-functional modeling pipeline to estimate Krs
and SUF. Each root system was traced with Root System Analyzer.
An RSML file was exported from RSA and migrated to SmartRoot to
manually label seminal roots. The parameter set was used to generate
five realizations of virtual root systems with the stochastic CPlantBox
model. The anatomical traits were referred to in the published articles
and created with the GRANAR model. The radial hydraulic conductiv-
ity and axial hydraulic conductance (kr and Kx) of these root anatomies
were estimated using the MECHA model. From the CPlantBox root
system architectures and their respective root hydraulic conductance,
Krs and SUF were determined with the model MARSHAL for each
virtual root system (figure adapted from Yu et al. (2024)).

responses beyond the limits of our already implemented mechanistic approaches.
Image analysis, in particular, has been significantly improved by this technique,
and the quantity and quality of structural plant parameters obtained in a much
shorter time is an enormous gain (Pound et al., 2017). The current bottleneck
of deep neural networks is the amount of data required to train them (Bauer
et al., 2022). In Baker et al. (2023), we followed a new approach to overcome
this bottleneck. We built a coupling of an FSPM and a game engine to tackle
the bottleneck of data generation for neural network training by producing virtual
training data. Our newly developed method integrates a CPlantBox realized plant
structure with a newly implemented shoot geometry into the game graphic engine
"UnrealEngine" to generate synthetic images, including FSPM-provided ground-
truth data, that can be directly used for user-defined neural network training.
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To evaluate the reliability and precision of this method, we created a synthetic
copy of the greenhouse set-up that was used in Chapter 4-2-1 and compared the
results with the measured parameters. We aimed to measure the performance on
an HPC cluster with a virtual drone flight, producing synthetic drone images of
a virtual maize field based on the FSPM parameterization presented in Chapter
4-3-1. In a follow-up study (Baker et al., 2024a), we could furthermore implement
the pipeline so that HPC resource use efficiency was accelerated, which helps with
the development of more accurate and robust deep learning models. Most impor-
tantly, we presented the potential for large-scale use cases to benefit from these
techniques. Generally, we found that our method is a promising and practical way
to generate synthetic plant data for neural network training. The results of Baker
et al. (2024a, 2023) demonstrated that the in this work presented models can be
transferred to entirely new research areas beyond the realms of plant science.

In summary, this work provides a versatile method for obtaining plant parame-
ters to parameterize a whole-plant FSPM framework, such as CPlantBox, and a
comprehensive Zea mays dataset of plants with and without P limitation. The
resulting method and data have been demonstrated to be transferable for differ-
ent applications across different scales and scientific domains and have made a
significant impact by contributing to several publications.

5-4 Zea mays responses to environmental conditions:
The case of phosphorus

The role of P fertilization in agricultural systems is often neglected in regions of
the world with highly industrialized agriculture, such as the EU, North America,
or China, where soils typically contain abundant P reserves and P fertilizer is not
(yet) a significant cost issue. Through a long history of excessive P fertilization,
the anthropogenic release of reactive forms of P to land and oceans exceeded
and still exceeds the safe operating range of our planet (Richardson et al., 2023).
However, P is a resource derived from finite reserves. Some studies anticipate that
global rock P will be available to meet the growing demand into the 22nd century
(Helin and Weikard, 2019, Koppelaar and Weikard, 2013), while others predicted
that all P resources should have been already depleted today (Reidinger, 1976).
Whatever the exact time frame for P resources to end may be, the reality is that
global P reserves are finite, and the depletion of accessible P sources is becoming
an increasingly pressing concern. Although the depletion of P resources may not
be the most acute issue, P production capacity from mining will decline in 10-20
years as production efficiency is reduced by increasing mining costs (Reijnders,
2014). Therefore, it can be reasonably deduced that the availability of P will
inevitably decline soon.

For these ecological and economic reasons, we aim to reduce the P inputs into
(agro-)ecosystems. Official fertilization recommendations from governmental and
global institutions advise reducing the quantity of P fertilizer applied in agri-
culture (FAO, 2015, UN, 2023). For example, Germany has lowered the official
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reference values for plant-available P in soil by about 30 % (Wiesler et al., 2018).
Although, as a consequence, the use of P fertilizers has been reduced by 11 %
worldwide in recent years and by as much as 54 % in Germany over the same
period, it is interesting to note that crop yields are still increasing worldwide.
Also, countries with a high degree of agricultural industrialization have not ex-
perienced any systematic loss of production (FAOSTAT, 2024a). This poses a
central question: Is P scarcity a fundamental problem at all?

The short answer is: Probably yes! The long answer is complex and the results
of this work will provide neither a comprehensive nor a fully satisfactory response
to this question. However, it will shed light on some plant responses to reduced
soil P availability that have remained obscure until now and help us to assess
the consequences of reduced P availability for one of the most important and P
sensible crops: Zea mays.

Reducing P fertilization has not been a major issue in industrialized regions be-
cause a long history of fertilization has enriched the P reserves in arable soils,
and P is continuously supplied from these deposits for a number of years. To
further understand why reducing P fertilization was an easy step for the farming
industry to take without much thought, we first need to look at how P deficiency
symptoms are assessed in the field. Since the harvest organs of the most relevant
crops are located aboveground, the focus in the search for potential malnutrition
symptoms lies on these parts of the plant. In maize, P deficiency is diagnosed by a
rigid appearance of shoots, mainly characterized by reduced leaf area (Marschner,
2011). In severe cases of P deficiency, a reddish leaf discoloration is also visible.
In this work (Chapter 4-3-1), we could show that in cases of reduced P in soil
(4.6 mg P 100 g-1 soil), the leaf area is maintained, and only in heavier cases of P
deficiency (< 3.3 mg P 100 g-1 soil) the leaf area started to reduce. While relevant
changes in shoot growth were only observable in really low soil P conditions, the
root system responded already to a milder P deficiency. The main responses were
linearly decreasing axial root radius and initial elongation rates of crown roots
with decreasing soil P, leading to a linear decrease in total root volume (Fig-
ure S2.3. While a reduction in root volume at reduced soil P levels is a known
structural response of Zea mays, the specific morphological parameters driving
this response were less well known. Sun et al. (2018) hypothesized that an in-
creased amount of crown root might also be an adaptive response. However, since
crown root emergence is staggered, the strong effects of this response would only
become significant later in crop development and not in the early development
stages (Lynch et al., 2005).

We gained groundbreaking insights by shifting the focus to root functionality. In-
terestingly, the Krs responded non-linear to decreasing soil P and only the maize
plants with an optimal soil P level maintained high Krs, while in soil with any
lower P level than optimal, Krs decreased dramatically (>25 %). The Krs values of
plants exhibiting any degrees of soil P reduction are not statistically distinguish-
able from one another, which emphasizes a critical change in the functionality
of the root system at any degree of P reduction in the soil (Figure 4-5). More
precisely, any level of P deficiency reduces the plant’s capacity to take up water.
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In conclusion, while there are no notable alterations in shoot development when
soil P is moderately depleted, the water uptake functionality of the root system
is modified significantly (for a detailed explanation of the process, see Chapter
4-4-2). These results explain the generally accepted practice that soil P can
be moderately reduced without losses since the harvested organ has no visible
changes. However, this raises the question of when the root system’s reduced
water uptake capacity has a relevant impact on maize cultivation.

Plants under soil P limitation, with lower Krs, decrease transpiration later than
plants with high Krs since a lower plant water potential is required to maintain
water uptake (Ahmed et al., 2018, Yu et al., 2024). For the plant, this means that
on the one hand, plants under P deficiency could potentially mitigate drought
with a water-saving strategy because they have a higher drought stress resilience
in beginning or mild drought conditions since a lower plant water potential is re-
quired to maintain uptake and the remaining soil water is depleted slower. On the
other hand, higher Krs could enhance drought recovery following severe drought
conditions and would be generally beneficial under sufficient water conditions
since the general capability of water uptake is higher.

Due to climate change, water availability decreases in most regions in the world
(Gosling and Arnell, 2013). In the last years, less water is available in agricul-
tural soils (Dorigo et al., 2017, Gruber et al., 2019). However, the reduction in
water availability is predominantly observed during the pre-growing season and
the initial growth stages of maize, while increasingly heavy precipitation events in
the summertime have the effect of increasing water availability in the subsequent
growth stages (Vargas Zeppetello et al., 2024). This accounts especially for the
regions where maize is cultivated intensively (Proctor et al., 2022). It could be
postulated that the effects of reduced water availability during the early growth
stages were not prominent due to the simultaneous reduction in P input, as the
root system’s adaptation in Krs to limited P availability may favor mitigation of
the consequences of moderate drought conditions.

If applied to Zea mays growing strategies, this would mean that a reduced P intake
might even be beneficial if mild drought conditions are present at the beginning
of the growing season, as long as no severe P or water limitation is taking place.
However, if it comes to maximizing yield and water is not limiting, a reduced soil
P availability will lead to malnutrition symptoms and ultimately reduce yield.
This is of particular concern in regions already facing water scarcity and in parts
of the world where climate change is expected to intensify drought conditions.

In a world where soil P and water availability are becoming increasingly scarce,
the stakes are high. We still need to learn more about the responses of maize
and other crops to environmental stressors and their combined effects on plant
development. Testing the hypothesis that a reduction in P input and the result-
ing root system’s adaptation in Krs may favor mitigation of the consequences of
drought conditions in early growth state is only one of the topics we need to ad-
dress towards sustainable agriculture and resource conservation. We must develop
and refine models that accurately simulate root system responses to P deficiency,
ideally based on mechanical processes. These models would be of major value
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in predicting crop performance under limited nutrient conditions and may help
to guide the development of P efficient cultivars and optimize fertilizer use. Due
to soil reserves, a further reduction in P fertilization may be applicable in some
regions for a few decades. Still, it is not a long-term solution, as this will result in
the depletion of soil deposits and, consequently, in a global P scarcity. Since it is
unlikely that plants will be able to grow effectively with minimal or no P intake,
agriculture must consider alternative solutions to P depletion. Looking ahead,
possible ways could be investigating the potential for P recycling from waste
streams, developing crops that can utilize P more efficiently, or even engineering
plants that can access P from currently unavailable sources in the soil.



Change is the end result of all true learning.

Leo Buscaglia

≪ ⋄ ≫

In the final chapter, we will tie it all together by
summarizing the main findings, acknowledging

the limitations and pointing to future directions.





Chapter 6

Conclusions and Outlook

6-1 Conclusions

The main objectives of this work were: 1.) to develop, implement and validate
a new belowground phenotyping pipeline to increase our ability to non-invasively
collect and analyze in situ root development information over time; 2.) to collect,
archive and distribute a unique and comprehensive belowground dataset including
important agronomic information over a longer time period for a wide range of
scientific domains and applications; 3.) investigate the architectural responses to
phosphorus (P) deficiency in Zea mays by; 4.) combining phenotyping and FSPMs
to understand the consequences for water uptake capacity, giving important new
insights in responses to environmental stresses; and 5.) transfer the phenotyping
and modeling methods previously introduced to collaborators to jointly investigate
the response of Zea mays to changing environmental conditions and to develop
and test new in situ and in silico methods and to evaluate the transferability of the
methods developed in this work. The common goal of these five main objectives,
addressed in Chapters 2-5, is to explore plant responses to changing environmental
conditions by integrating phenotyping and modeling across different scales.

Chapter 2 proposes a new approach to analyzing large amounts of 2D root image
data. The automated analysis pipeline presented is a suitable solution to easily
and accurately analyze minirhizotron images in significantly less time. The high-
light of this study, in addition to the development of the workflow presented, is the
large-scale testing and validation. The automated pipeline outperforms manual
annotation in terms of time requirements and information density while provid-
ing reliable data and feasibility for everyone. Recent studies independently stated
that the pipeline significantly contributed to removing the image analysis bot-
tleneck to high-throughput phenotyping approaches by creating a new standard
method.
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The data analyzed with the pipeline presented in Chapter 2 provided the backbone
for the dataset presented in Chapter 3, which features what may be the first com-
prehensive multi-year collection of root and soil data obtained in minirhizotron
facilities. The dataset combines validated root development data and dynamic
and static soil moisture data, including the underlying soil permittivity values of
drought stress and crop mixture trials. All processed data is made open access
available. The dataset can be used to, e.g., develop, calibrate, and validate mod-
els of the soil–plant continuum across different scales concerning different root
zone components such as soil processes, including flow processes, root develop-
ment, biopore quantification, or different model compilations such as single-plant
or multi-plant modeling. Further potential application cases are soil water content
and root water uptake modeling. The data include relevant agronomic information
for breeding water-efficient cultivars, field management under various conditions,
and training and benchmarking root analysis methods.

In Chapter 4, the scope and scale changed to elucidate the stress responses of in-
dividual Zea mays plants to P deficiency. By integrating the phenotyping method
presented in Chapter 2 into a new workflow to extract single organ traits, we iden-
tified changes in the root system and shoot architecture under soil P limitation.
Decreasing axial root radii and crown root elongation were identified as key pa-
rameters for the root system, and leaf elongation was the main shoot response to
P deficiency. These data were successfully combined with precise root system hy-
draulic properties of the same Zea mays cultivar to enable dynamic plant growth
simulations of root system conductance (Krs). The modeling approach revealed
that maximal potential water uptake capacity does not differ between plants with
high and mild P deficiency plants but between fully P fertilized and P deficient
plants. This provided new insights into the possible effects of combined water
and P stresses. We postulate that under soil P limitation, plants with low Krs
would reduce transpiration later than plants with high Krs because a lower plant
water potential is required to maintain water uptake. As a result, soil water would
not be depleted as quickly, which could be beneficial under drought conditions.
However, a high Krs would be beneficial under sufficient water conditions as the
overall water uptake capacity is higher. Although root system architectural traits,
such as volume, increase linearly to soil P availability, the root system’s capacity
to take up water, represented by the Krs, does not follow the same trend. That
underscores that root system organization is critical for its function rather than
mere total size.

Finally, this work evaluates the transferability and usefulness of the methods,
data, and models presented here by applying them in collaborative studies and
placing them in the context of the current state of the art. By using the root
data generated by the automated minirhizotron image analysis pipeline, we could
evaluate GPR as a potential root phenotyping tool and explore the responses of
Zea mays to different soil types, water availability, and contrasting vapor pressure
deficits. In addition, the up-scaling of the parameterization and modeling work-
flow presented in Chapter 4 was used for a comprehensive screening of traditional
maize varieties, ultimately leading to the identification of seminal roots number
as the root system trait driving local adaptation in Zea mays domestication. Fi-
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nally, we explored further possibilities to overcome the data bottleneck in neural
network training for plant organ detection by combining a game engine, High Per-
formance Computing, and the Zea mays model created in this work to virtually
reproduce the greenhouse setup presented in Chapter 4 to generate virtual plant
data with corresponding ground-truth.

The compilation of the different parts of this doctoral project has shown com-
prehensive and timely insight into phenotyping and functional-structural plant
modeling applied to monitor and predict the responses of plants to changing en-
vironmental conditions across different scales.

6-2 Outlook

Building on the observations and conclusions, the following section should provide
suggestions for further research.

Further improvements required for automated root image analysis

Although the pipeline to analyze minirhizotron images automatically is working
fast, accurately, and mostly objectively with a high correlation to manual mea-
surements, there are still occasional but systematic irregularities in the match
of manual annotation and the results of the automated analysis pipeline. How-
ever, these mismatches can be explained by rarely occurring missed segmentation
of root fragments by the automated analysis pipeline due to soil-covered roots.
When this is considered, the systematic underestimation of the automated method
is easy to correct. As in all neural networked-based analysis methods, balanced
training datasets and consequent annotation of the training data are the keys to
sufficient results. Although the time series analysis in the form of either root
length density depth profiles at different time points or root arrival curves is sup-
ported in the workflow, individual roots and their phenology are not followed
from birth to death. Implementing a function to track root senescence and decay
into the existing method would be of high interest to researchers. Generally, it
would be significant progress to add a single root tracking possibility, including
root order and status. The implementation of these functions would improve the
pipeline and enhance use cases.

Closing missing data gaps

The belowground dataset presented in this work is already very comprehensive.
However, several scenarios are (yet) not covered, and it would be beneficial infor-
mation in the future. Monitoring root senescence and decay would be especially
interesting for future studies. Furthermore, increasing spatial and temporal mea-
surement resolution would be helpful in covering more detailed insights into the
plant soil continuum. Currently, the dataset only includes abiotic influences on
crop development; however, adding biotic factors, such as microbial data, would
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be a huge benefit. Additional GPR measurements, not only covering the pla-
nar spatio-temporal soil water content but also making measurements at different
depths, would dramatically increase the soil water information density.

Up-scaling in modeling and validating hydraulic plant response to
phosphorus deficiency across scales

Although the results shown in Chapter 4 provide valuable information on the
interaction of P deficiency and Krs at the level of the individual plant, it would
be important to investigate the extent to which these effects are noticeable under
field conditions. Furthermore, it would be important to test the robustness of the
observed effects on cultivar variations. Further research is required to investigate
the impact on older plants. An evaluation of how the local intrinsic root hydraulic
properties themselves might change under P deficiency and information on the
internal P concentration within different plant organs under various P soil con-
ditions should be addressed in further studies. As in most modeling studies, this
study does not fully account for the immense complexity and heterogeneity of all
environmental conditions, such as soil conditions and cases of extreme P over- or
under-supply in natural settings. Furthermore, it is important to consider inter-
actions with other nutrients and how they collectively impact plant growth and
development. Generally, we require extended knowledge of the impact of varying
environmental conditions and combined stresses beyond controlled settings.



Appendix A: Supplementary
Materials to Chapter 2



120 Appendix A: Supplementary Materials to Chapter 2

Supplementary Materials

RLD
0 21

1

2

3

4

5

6

7

8

Figure S1.1: 3D spatio-temporal distribution of RLD measured in all tubes at
one minirhizotron. Distances between tubes are not to scale. 1-8
represents the time steps.
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(a) (b)

(c) (d)

Figure S1.2: Comparison of root arrival curves of the data obtained from images
originating from two minirhizotrons in the growing season 2017. The
images were analyzed by hand (left: manual) and by the automated
analysis pipeline (right: automated). 2017: a) RUT manual, b) RUT
automated, c) RLT manual,d) RLT automated.

original image

automated analysis

manual annotation

Figure S1.3: Manual vs. automated analysis. The automated analysis misses
a small part of the root and underestimates the total root length
slightly.
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1. 2. 3. 4.

segmented and processed image

original image

Figure S1.4: Root senescence visible from early to late measurement dates in the
growing season 2015/16 and the corresponding segmentation and
skeletonization.
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Table S1.1: Detailed overview of the images taken at the growing season 2015/16
and 2017

2015/16 2017
measurement no. facility date images date images

1 RUT 16/11/15 720 08/06/17 480
RLT 16/11/15 720 08/06/17 584

2 RUT 26/11/15 1,080 29/06/17 1,800
RLT 26/11/15 1,079 22/06/17 1,800

3 RUT 17/12/15 1,800 06/07/17 1,800
RLT 17/12/15 1,439 29/06/17 2,160

4 RUT 02/02/16 1,520 13/07/17 1,800
RLT 21/01/16 1,800 06/07/17 2,160

5 RUT 12/02/16 1,800 20/07/17 1,800
RLT 12/02/16 1,800 13/07/17 2,160

6 RUT 26/02/16 1,800 27/07/17 1,200
RLT 26/02/16 2,160 20/07/13 2,160

7 RUT 14/03/16 1,800 02/08/17 1,840
RLT 14/03/16 2,160 27/07/17 1,430

8 RUT 26/03/16 1,840 10/08/17 1,959
RLT 24/03/16 2,160 02/08/17 2,159

9 RUT 07/04/16 2,160 23/08/17 2,120
RLT 07/04/16 2,160 10/08/17 2,160

10 RUT 13/04/16 2,160 12/09/17 1,800
RLT 13/04/16 2,160 24/08/17 2,159

11 RUT 29/04/16 2,160 - -
RLT 29/04/16 2,160 12/09/17 2,150

12 RUT 06/05/16 2,160 - -
RLT 06/05/16 2,160 - -

13 RUT 13/05/16 2,160 - -
RLT 13/05/16 2,160 - -

14 RUT 20/05/16 2,160 - -
RLT 20/05/16 2,160 - -

15 RUT 27/05/16 2,160 - -
RLT 27/05/16 2,159 - -

16 RUT 03/06/16 2,160 - -
RLT 03/06/16 2,159 - -

17 RUT 09/06/16 2,160 - -
RLT 09/06/16 2,160 - -

18 RUT 16/06/16 2,155 - -
RLT 16/06/16 2,160 - -

19 RUT 23/06/16 2,149 - -
RLT 23/06/16 2,156 - -
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Table S1.2: Comparison of the automated analysis pipeline and the manual anno-
tation of the total root length obtained in the growing season 2017
with a linear regression. The confidence interval (95%) of the regres-
sion coefficient (ordinary least products) are listed in parenthesis. The
bias is fixed if the 95% CI of the intercept do not include 0 and the
bias is proportional if the 95% CI of the slope do not include 1.

measurement no. facility Intercept (95% CI) Slope (95% CI) Bias
Fixed Proportional

1 RUT 0.26 (0.08, 0.45) 0.73 (0.71, 0.74) yes yes
RLT 1.09 (0.83, 1.36) 0.7 (0.65, 0.75) yes yes

2 RUT 2.8 (2.16, 3.44) 0.81 (0.78, 0.84) yes yes
RLT 3.5 (2.78, 4.23) 0.92 (0.89, 0.94) yes yes

3 RUT 3.07 (2.46, 3.69) 0.8 (0.78, 0.83) yes yes
RLT 3.12 (2.45, 3.79) 0.88 (0.86, 0.89) yes yes

4 RUT 2.99 (2.28, 3.7) 0.99 (0.97, 1.02) yes no
RLT 4.53 (3.63, 5.43) 0.86 (0.85, 0.88) yes yes

5 RUT 2.35 (1.72, 2.97) 0.93 (0.91, 0.95) yes yes
RLT 6.68 (5.65, 8.07) 0.83 (0.81, 0.85) yes yes

6 RUT 2.43 (1.75, 3.11) 0.93 (0.91, 0.95) yes yes
RLT 8.99 (7.51, 10.48) 0.82 (0.8, 0.84) yes yes

7 RUT 1.55 (0.86, 2.24) 0.81 (0.79, 0.83) yes yes
RLT 4.99 (3.95, 6.03) 0.93 (0.91, 0.94) yes yes

8 RUT 2.37 (1.61, 3.12) 0.85 (0.83, 0.88) yes yes
RLT 5.71 (4.38, 7.05) 0.89 (0.87, 0.91) yes yes

9 RUT 1.18 (0.57, 1.79) 0.82 (0.81, 0.84) yes yes
RLT 3.0 (1.95, 4.05) 0.92 (0.9, 0.93) yes yes

10 RUT 2.31 (1.65, 2.98) 0.72 (0.7, 0.74) yes yes
RLT 3.35 (2.2, 4.5) 0.87 (0.85, 0.88) yes yes

11 RUT - - - -
RLT 3.61 (2.47, 4.75) 0.86 (0.84, 0.87) yes yes

Data Availability

• The supplementary data that support the findings of this study and help to
operate the in this work introduced root image analysis pipeline, including
an example, are open available. Furthermore, data and scripts to reproduce
the RLD-profiles (Fig. 2-4) and RAC-curves (Fig. S1.2) are open to access
with the same identifier: https://doi.org/10.34731/pbn7-8g89.

• RootPainter (Smith et al., 2022) is available at: https://github.com/
Abe404/root_painter

• RhizoVision Explorer (Seethepalli et al., 2021) is available at:
https://zenodo.org/record/4095629 and https://github.com/
rootphenomicslab/RhizoVisionExplorer

https://doi.org/10.34731/pbn7-8g89
https://github.com/Abe404/root_painter
https://github.com/Abe404/root_painter
https://zenodo.org/record/4095629
https://github.com/rootphenomicslab/RhizoVisionExplorer
https://github.com/rootphenomicslab/RhizoVisionExplorer
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Figure S2.1: Schematic overview of the different organ parameters required for
root and shoot calibration with CPlantBox.
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Figure S2.2: A: Axial root radii, B: Initial crown root elongation rate, C: Initial
elongation rate of the leaves. D: Root fraction for different soil P
availability levels (p<0.05)
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Figure S2.3: Total volume [cm3] of simulated root systems with all parameters
as measured and with all parameters set as mean and only identified
response parameters, elongation of crown roots and axial root radii,
set as function of P level in soil.
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Figure S2.4: Biomass (dry mass) [g] of shoot, root and whole plant depending on
soil P level.
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Figure S2.5: Krs for 7, 14, 21 and 28 DAS depending on soil P concentration,
depending on the mean of 100 simulations. The error-bars display
the standard deviation.
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Table S2.1: Overview of the hydraulic properties (kr and Kx) used to compute
dynamic root system conductance, based on the simulated root system
architecture.

Primary Seminal roots Crown roots Long laterals Short laterals
age kr Kx age kr Kx age kr Kx age kr Kx age kr Kx
0.11 1.06E-04 0.0014 0.13 1.13E-04 0.001 0.11 1.34E-04 0.0061 0.24 1.18E-04 4.48E-05 0.3 1.29E-04 1.49E-05
0.16 1.06E-04 0.0014 0.19 1.13E-04 0.0011 0.16 1.34E-04 0.0061 0.38 1.18E-04 4.63E-05 0.53 1.30E-04 1.60E-05
0.22 1.06E-04 0.0015 0.26 1.13E-04 0.0011 0.22 1.34E-04 0.0061 0.51 1.18E-04 3.62E-05 0.92 1.29E-04 1.58E-05
0.27 1.06E-04 0.0015 0.32 1.13E-04 0.0011 0.27 1.34E-04 0.006 0.66 1.18E-04 4.87E-05 >2.83 1.30E-04 1.58E-05
0.32 1.06E-04 0.0014 0.39 1.13E-04 0.0011 0.32 1.35E-04 0.0063 0.82 1.18E-04 3.97E-05
0.38 1.06E-04 0.0015 0.45 1.13E-04 0.0011 0.38 1.34E-04 0.0059 0.98 1.18E-04 4.29E-05
0.43 1.06E-04 0.0014 0.52 1.14E-04 0.001 0.43 1.35E-04 0.006 1.16 1.18E-04 4.66E-05
0.65 1.06E-04 0.0015 0.78 1.22E-04 0.001 0.65 1.35E-04 0.0058 2.02 1.18E-04 4.22E-05
0.87 1.06E-04 0.0014 1.05 1.22E-04 0.001 0.87 1.41E-04 0.0058 3.35 1.18E-04 3.86E-05
1.09 1.06E-04 0.0015 1.31 1.23E-04 0.001 1.09 1.41E-04 0.0067 >6.28 3.75E-05 4.21E-05
1.54 1.14E-04 0.0013 1.58 1.23E-04 0.0009 1.31 1.42E-04 0.0074
1.77 1.14E-04 0.0014 1.85 1.23E-04 0.0009 1.54 1.43E-04 0.007
2 4.00E-05 0.0013 2.12 1.23E-04 0.0008 1.77 1.47E-04 0.0064
2.23 3.99E-05 0.002 2.4 1.24E-04 0.0008 1.99 1.48E-04 0.0068
2.69 3.99E-05 0.1614 2.67 1.23E-04 0.0009 2.22 1.48E-04 0.0069
2.93 4.00E-05 0.1633 2.95 4.22E-05 0.0008 2.69 1.44E-04 1.4277
3.17 3.68E-05 0.1718 3.23 4.23E-05 0.0008 2.92 5.28E-05 1.5169
3.41 3.68E-05 0.1736 3.52 4.24E-05 0.0009 3.16 5.28E-05 1.6072
4.63 3.89E-05 0.1618 3.8 4.25E-05 0.0009 3.4 5.31E-05 1.6917
7.25 4.10E-05 0.2438 4.09 4.26E-05 0.0009 4.63 5.08E-05 2.3449
>10.12 4.29E-05 0.3336 5.57 3.93E-05 0.1122 7.24 5.24E-05 4.0946

8.71 4.16E-05 0.1015 >10.11 5.67E-05 6.6086
>12.16 4.31E-05 0.1505

Table S2.2: Overview of statistical results for axial root radii, crown root elon-
gation and leaf elongation for the P levels P0-P3. A Shapiro-Wilk
Normality Test and Levene’s Test for Equality of Variances were per-
formed, followed by an ANOVA (n = 5 - 12).

axial root radii crown root elongation leaf elongation
P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

Shapiro-Wilk
Normality Test

F 0.89 0.68 0.6 0.48 0.93 0.98 0.83 0.98 0.89 0.9 0.95 0.92
p >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05

Levene’s Test for
Equality of Variances

F 1.09 2.45 1.07
p >0.05 >0.05 >0.05

ANOVA F 10.21 4.73 4.04
p <0.001 0.01 0.01
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Lena Lärm, Felix Maximilian Bauer, Jan van der Kruk, Jan Van-
derborght, Shehan Morandage, Harry Vereecken, Andrea Schnepf, Anja
Klotzsche (2024). Linking horizontal crosshole GPR variability with root
image information for maize crops. Vadose Zone Journal, 23, e20293.
https://doi.org/10.1002/vzj2.20293.

Thuy Huu Nguyen, Gina Lopez, Sabine J. Seidel, Lena Lärm, Fe-
lix Maximilian Bauer, Anja Klotzsche, Andrea Schnepf, Thomas
Gaiser, Hubert Hüging, Frank Ewert (2024). Multi-year aboveground
data of minirhizotron facilities in Selhausen. Scientific Data 11, 674.
https://doi.org/10.1038/s41597-024-03535-2.

Thuy Huu Nguyen, Thomas Gaiser, Jan Vanderborght, Andrea Schnepf,
Felix Maximilian Bauer, Anja Klotzsche, Lena Lärm, Hubert Hüging,
Frank Ewert (2024). Responses of field-grown maize to different soil
types, water regimes, and contrasting vapor pressure deficit. Biogeoscience.
https://doi.org/10.5194/egusphere-2023-2967.

Peng Yu, Chunhui Li, Meng Li, Xiaoming He, Danning Wang, Hongjie Li,
Caroline Marcon, Yu Li, Sergio Perez-Limón, Xinping Chen, Manuel Delgado-
Baquerizo, Robert Koller, Ralf Metzner, Dagmar van Dusschoten, Daniel
Pflugfelder, Ljudmilla Borisjuk, Iaroslav Plutenko, Audrey Mahon, Marcio F.R.
Resende Jr., Silvio Salvi, Asegidew Akale, Mohanned Abdalla, Mutez Ali Ahmed,
Felix Maximilian Bauer, Andrea Schnepf, Guillaume Lobet, Adrien Heymans,
Kiran Suresh, Lukas Schreiber, Chloee M. McLaughlin, Chunjian Li, Manfred
Mayer, Chris-Carolin Schön, Vivian Bernau, Nicolaus von Wirén, Ruairidh J. H.
Sawers, Tianyu Wang, Frank Hochholdinger. Seedling root system adaptation to
water availability during maize domestication and global expansion (2024). Na-
ture Genetics 56, 1245–1256. https://doi.org/10.1038/s41588-024-01761-3.

Dirk Norbert Baker, Felix Maximilian Bauer, Mona Giraud, Andrea Schnepf,
Jens Henrik Göbbert, Hanno Scharr, Ebba Þora Hvannberg, Morris Riedel (2024).
A scalable pipeline to create synthetic datasets from functional–structural plant
models for deep learning. in silico Plants, Volume 6, Issue 1, diad022.
https://doi.org/10.1093/insilicoplants/diad022

Dirk Norbert Baker, Felix Maximilian Bauer, Andrea Schnepf, Hanno
Scharr, Morris Riedel, Jens Henrik Göbbert, Ebba Þora Hvannberg (2024).
Adapting agricultural virtual environments in game engines to improve
HPC accessibility. Communications in Computer and Information Science.
https://doi.org/10.34734/FZJ-2024-03386.

https://doi.org/10.1002/vzj2.20293
https://doi.org/10.1038/s41597-024-03535-2
https://doi.org/10.5194/egusphere-2023-2967
https://doi.org/10.1038/s41588-024-01761-3
https://doi.org/10.1093/insilicoplants/diad022
https://doi.org/10.34734/FZJ-2024-03386


C-1 Linking horizontal crosshole GPR variability with root image information
for maize crops 133

C-1 Linking horizontal crosshole GPR variability with
root image information for maize crops

In minirhizotrones, our resolution in measuring root dynamics is limited by the
capability of the optical sensors, such as the cameras applied in the rhizotubes.
Taking camera images takes a lot of time and personal resources. Finding ad-
ditional ways, ideally with already existing methods, to complement our need
for root measurement tools would be beneficial to increase spatial and tempo-
ral resolutions while minimising measurement time. The non-invasive monitoring
agrogeophysical technique "ground penetrating radar" (GPR) may help us to
enhance the resolution and provide additional insights into the root system dy-
namics and their environmental responses. GPR is a geophysical method that
uses electromagnetic wave propagation in the soil. From this, we can derive the
relative dielectric permittivity (eq. 3-1) that can be directly linked to soil water
content (SWC) with a high spatial resolution (Klotzsche et al., 2019). In the past,
it has been shown that GPR can be used to detect coarse roots, such as tree roots
applying a surface GPR (Guo et al., 2013). However, detecting finer root systems
of important arable crops, such as Zea mays, using GPR, is still challenging. The
Selhausen minirhizotrons, presented in Chapters 2 and 3, are ideal experimental
platforms to explore the capabilities to quantify root presence and development
using GPR. Here, Klotzsche et al. (2019) already showed that the GPR signal
and hence the SWC distribution, especially under dry soil conditions, is affected
by maize root presence. However, it still remains elusive how the GPR-derived
permittivity is linked to the presence of finer root systems. The synthesis of cam-
era and in situ horizontal crosshole GPR measurements between neighbouring
rhizotubes of minirhizotrons provides a comprehensive view into the plant-soil
continuum, enabling the exact quantification of roots and linking them to GPR
data. In Lärm et al. (2024), we aimed to non-invasively monitor the crops rooting
zone by investigating the relationship between the root volume fraction (RVF)
(eq. 1) and the GPR-derived permittivity in Zea mays crops in the corresponding
measurement depths.

Given the soil volume Vsoil, the equations for calculating RVF are defined as
follows:

RV F =
RV

Vsoil
(1)

while using

Vsoil = L ·W · rrhizotube (2)

where W is the width of the image, L is the length of the image and rrhizotube is
the radius of a rhizotube.

We used the already processed time-lapse data of root images and GPR pre-
sented in Chapter 2 and Chapter 3, respectively. While linking root data to GPR
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measurements, we had to consider the noises from static influences, such as soil
heterogeneity and rhizotube deviations, and dynamic influences, which are mainly
caused by seasonal moisture changes. We achieved this by adapting the permittiv-
ity values across different time points and reflecting only the variations related to
root presence, which are referred to as "trend-corrected spatial permittivity devi-
ations of vegetation field". These corrected data showed a clear, increasing trend
during the vegetation period. This trend could be linked to a similar increase in
RVF during the same time period (Figure S3.1). The results further showed that
the variability in permittivity is strongly correlated with the presence of roots.
We found that patterns in permittivity show a consistent increase in variability
with higher root presence in soil. Furthermore, we could reveal that the history of
water management also influences root development and, consequently, the per-
mittivity. Interestingly the trends were not influenced by different soil types and
compaction layers. One possible explanation for the observed correlation is that
the roots in the soil cause a redistribution of the soil water and, thus, an increase
in the variability of the soil water.

Figure S3.1: Exemplary comparison of the permittivity high-resolution root image
dataset measured on August 5, 2020, and the respective root volume
fraction (RVF). The different plots represent the different depths of
0.2–0.8 m, (a)–(d), respectively, for Plot 2 at RUT. The solid blue line
indicates the permittivity. The green bars indicate the RVF along the
rhizotubes. The black solid line indicates the smoothed RVF along
the rhizotube over five positions. The dashed black line represents the
mean RVF along the rhizotubes (adapted from Lärm et al. (2024)).
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Summarized, in Lärm et al. (2024), we showed that GPR-derived permittivity
could be used as a proxy for assessing root presence, which may improve data ac-
quisition for agronomic studies and crop modeling and shows the future potential
of using GPR for precision agriculture.

C-2 Multi-year aboveground data of minirhizotron fa-
cilities in Selhausen

A better understanding of crop response to soil water stress is crucial for plant
breeding, crop and cultivar selection, and management decisions to minimize ad-
verse effects. Furthermore, these data are important for the development of soil-
plant systems or crop models, which are the backbone for process understanding
of crops and predictions for cropping systems. Studies on the ecophysiological
properties of crops from leaf to canopy under different soil water conditions and
crops are often carried out under controlled conditions. Measurements on plant
water potential, together with CO2 and H2O gas fluxes and growth processes,
performed under realistic field conditions, are rare.

This work presents a comprehensive dataset from leaf to the canopy using several
sophisticated sensing techniques, including leaf chlorophyll, stomatal conductance
and photosynthesis, canopy CO2 exchange, sap flow, canopy temperature, and
detailed plant growth traits, such as plant height, leaf area index, aboveground
biomass, and yield measurements (FigureS3.2). The data was collected under
field conditions with different soil types, water treatments, and different wheat
and maize varieties analog to the experimental set-up presented in Lärm et al.
(2023). The final data collection also covers the same time period, location, and
treatments. The data were made available for studying soil/water-plant relations
and improving soil-plant-atmospheric continuum models with this DOI: https:
//doi.org/10.34731/1a9s-ax66.

C-3 Responses of field-grown maize to different soil
types, water regimes, and contrasting vapor pres-
sure deficit

Scientific data are the foundation for all our analyses, interpretations, discussions,
and conclusions. The data presented in Chapter 3 are a precious foundation for
analyzing belowground crop behavior. Combining it with data from the above-
ground part of the plant allows us to holistically tackle important agronomic
questions, such as how crops react to different soil types, water regimes, and
contracting vapor pressure deficits, as it was done in the study of Nguyen et al.
(2024a).

https://doi.org/10.34731/1a9s-ax66
https://doi.org/10.34731/1a9s-ax66
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Figure S3.2: Overview of (a) above-ground measurement set-up in one exem-
plary plot (here for maize) within the minirhizotron facility, from
the minirhizotron access trench: canopy temperature sensor, sam-
pling area and leaf measurements, sap flow sensor installation with
data logger, canopy chamber with LI-6400XT, and soil respiration
chambers) (b) leaf gas exchange measurement with LI-6400XT ma-
chines (c) sap flow measurements with the Dynamax sensors, and
(d) canopy chamber measurements for winter wheat (left) and maize
(right). (adapted from Nguyen et al. (2024b)).

We investigated the influences of the stony soil and the silty soil at the RUT and
RLT minirhizotron facilities, different water regimes, namely irrigated and rainfed
treatments on root to shoot growth characteristics and the hydraulic linkages
between the soil and Zea mays. We used the data measured in the growing seasons
of 2017 and 2018. These two years had very different climatic conditions, resulting
in a low (2017) and high vapor pressure deficit (2018). In detail, we used the root
growth data and soil moisture sensor data from (Bauer et al., 2022, Lärm et al.,
2023, Lärm et al., 2023c,e) and combined them with crop growth measurements,
leaf gas exchange, leaf water potential, and sap flow measurements to test two
hypotheses.

We hypothesized that soil-plant hydraulic conductance, especially under dry soil
conditions, depends on soil hydraulic properties. The minimum leaf water po-
tential of maize does not significantly differ across the different soil types, water
treatments, and climatic conditions represented by the two growing seasons. We
tested this by checking the effects of soil types, water treatments, and climatic
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conditions on root growth, stomatal conductance, leaf photosynthesis, transpira-
tion, and leaf water potential. Furthermore, we analyzed the relative contribution
of root growth and shoot development to the water uptake capacity of maize.

We found that generally, in the stony soil, more roots grew in the upper soil layer
up to 20 cm, while in the silty soil, the highest root density could be observed in
the subsoil from 60-80 cm depth. In the silty soil, the total root length was 2.5-6
times the total root length in the stony soil under the same water treatments.
Interestingly, the ratio of root length to shoot biomass was even up to 3 times
higher under rainfed conditions than in the irrigated treatments of silty soil, while
the ratio did not differ between treatments in the stony soil. Comparing the soil
with the same water treatments, the ratio of root length to shoot was always
higher for the silty soil. Comparing the minimal leaf water potential (ψleaf ), we
observed a difference from -1 MPa between 2017 (ψleaf = -1.5 MPa) and 2018
(ψleaf = -2.5 MPa) on rainfed stony soil and thus lower than on silty soil (ψleaf =
-1.5 to -2 MPa in 2017, ψleaf = -2 to -2.5 MPa in 2018).

Leaf water potential, water potential gradients from soil to plant roots, plant
hydraulic conductance, stomatal conductance, transpiration, and photosynthesis
were considerably influenced by soil water content. The stony soil generally had
a lower soil water availability, and consequently, the plant’s water stress levels
were higher. Our results show that the plant’s reaction to lower water availability
on the stony soil resulted in fewer roots with a higher root tissue conductance
compared to the silty soil. However, on the silty soil, we observed the opposite.
Plants growing on the rainfed treatment, which had a lower water availability,
resulted in more roots with a lower root tissue conductance than in irrigated
treatments. Despite the root length reduction of plants in irrigated stony soil,
the transpiration rate was not much lower than in the silty irrigated plots. This
compensatory adaptation was reflected in higher root conductance per unit root
length compared to plants in silty soil.

Additionally, we found that stomatal regulation maintains leaf water potential at
certain thresholds, which depend on soil types, soil water availability, and seasonal
atmospheric demand. The stomata conductance was lower and at a more negative
leaf water potential in stony soil than in silty soil.

We concluded that the response of Zea mays to stress can be completely opposite
depending on soil conditions. To cope with water deficit, Zea mays had a higher
water uptake rate per unit root length and higher root segment conductance in
the stony soil than in the silty soil, while at the same time, the crop reduced
transpired water via reduced shoot size.
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C-4 Seedling root system adaptation to water availabil-
ity during maize domestication and global expan-
sion

Although maize grows in a lot of climatic conditions all around the world, maize
cropping can be challenging. Not only the absence of crucial nutrients such as
phosphorus may inhibit the plant development, as shown in Chapter 4. As in
most agricultural systems, sufficient water availability is also absolutely essential
for the plants to grow and develop the highest possible yields. Already in the first
days of growth, water scarcity leads to significant stress, which in turn affects
plant development and influences the yield. Even a short drought spell can cause
severe damage or death to young plants. Consequently, it is key that the seedling
has optimal water availability. However, the amount of water that is considered
optimal is highly dependent on the Zea mays variety. As we already know from
Chapter 4, mainly the root systems account for the ease and the amount of water
that can be taken up. Already in seedlings and young plants, root system ar-
chitectural organization and, consequently, functional traits, such as root system
conductance, differ between varieties. The root system itself has been reshaped
indirectly during domestication. Climate and geographical conditions, such as
water and nutrient availability and soil features, drive the root system’s reshap-
ing during the colonization of new sites. The domestication process of Zea mays
started more than 9,000 years ago from teosinte (Zea mays ssp. parviglumis) from
the lowlands of Mexico. Then, maize spread over Panama to Peru, South Amer-
ican lowlands in the Caribbean and Amazon, and back north to the Mexican
highlands. From there, the domestication continued in the southwest US and,
much later, northern territories of today’s Canada and the US. Approximately
500 years ago, maize arrived in Europe and finally conquered almost the whole
world (Figure S3.3). During this time, the domestication processes adapted the
root system of the plant and, therefore, altered the water uptake capacity of the
root system of maize seedlings. In the following results of the study of Yu et al.
(2024) we will illuminate which changes in root system architecture occurred and
how this relates to the water uptake functionality.

The maize seedling’s root system mainly consists of a primary root and a variable
amount of seminal roots (0-14, average: 3.3), Primary and seminal roots do have
lateral roots (Figure 1-3). Crown roots and secondary lateral roots are rather not
yet present in seedlings and can therefore be neglected (Hochholdinger, 2009).
Seminal root number mainly form the root system architecture at this point.
Consequently, this influences the depth and soil volume that roots can explore.
So far, it is not well known how the root system changed form and function during
global expansion. With our study, we aimed to understand how the seminal root
number (SRN) was affected by environmental conditions, the underlying genetic
foundation, and whether it is possible to use SRN as a potential adaptive function
to develop maize crops that are resilient to effects of climate change, such as
drought.
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Within this study, over 9,000 Zea accessions were analyzed regarding SRN, rep-
resenting traditional varieties, modern inbred lines, and wild teosinte from all
around the globe. Since seminal roots are embryonic, seed size was often hypoth-
esized to be important for the number of seminal roots. However, we could not
find a significant correlation between seminal root number and seed size. Further-
more, we could show that SRN does not depend on the amount of carbohydrates
available during seed development. We concluded that SRN depends on domes-
tication but not on seed size. That posed the question of which environmental
signals might influence the SRN. We found that mean diurnal temperature range
(r = -0.36), temperature seasonality (r = -0.29) and precipitation seasonality (r
= -0.07) are important climatic drivers, while soil organic carbon (r = 0.11) and
soil sand content (r = -0.16) are the main influences originating from the loca-
tion. Precipitation in the mid-Holocene also showed a positive correlation (r =
0.3), showing the importance of rain events and, consequently, water availability
during maize evolution (Figure S3.4a). With a random forest model, it was iden-
tified that SRN decreased with increasing geographical latitude (Figure S3.4b). A
genome-wide association study, combined with a phenotype mapping with eight
founders Multi-parent Advanced Generation InterCross (MAGIC), which repre-
sent the latitudinal trend observed, identified several shared genomic regions. A
specific already known gen locus (rootless concerning crown and seminal roots,
rcts) was prominent (Figure S3.4c). A genome-wide predictive model for SRN us-
ing the MAGIC families was applied to the eight founder haplotypes and success-
fully captured the latitudinal trend in SRN as well. The model was effective and
robust since removing any single chromosome from the model did not change the
prediction, also indicating that more than one genome locus is involved. Detailed
analysis of the rtcs region revealed different allele effects from the eight founders,

Figure S3.3: Geographical variability of SRN in traditional varieties of maize. SRN
was determined in globally collected traditional varieties of indicated
geographical origin. Domestication and expansion times for maize
populations are indicated accordingly. (Figure is adapted from Yu
et al. (2024)).
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ranging from positive to negative, depending on the founder’s geographical origin,
but also following the latitudinal trend. The variation in SRN among different
varieties is likely driven by indirect selection. The SRN changes are a byproduct
of other adaptive changes to the environment. An additional driver for SRN is
the Northern Flint alleles, a group from Southwest US. The proportion of alleles
derived from Northern Flint germplasm was negatively correlated with SRN, in-
dicating that cultivars with a higher share of the Northern Flint genome formed
fewer seminal roots (Figure S3.4d).

Having identified the genomic and geographical drivers for SRN formation, we in-
vestigated the more precise morphological influences and functional implications.
We did this with precise sub-organ phenotyping and functional-structural mod-
eling. In a rhizobox set-up, we measured 218 representative traditional varieties
using the pipeline described in Chapter 4 to access root architectural and morpho-
logical traits. We then created one FSPM with CPlantBox for each line, including
statistical variation from several repetitions, for a 9-day-old seedling (Figure 5-2).
We found that SRN negatively correlates with primary root length and lateral
root density along the primary root (Figure S3.4f). Our simulation, which was
performed in a simplified set-up used for the simulation procedure presented in
Chapter 4, showed that SRN affects seedling vigor by modulating the root system
conductance (Krs) (Figure S3.4g). In field soil, we could see that in the absence
of seminal roots, the rtcs mutant produced an increased number of lateral roots.
Since lateral roots mainly drive water uptake in young maize plants, we suggest
that the reduction of seminal root count favors seedling establishment in water-
limited conditions. Variations in SRN may shape the size and branching of the
entire root system, which in turn might determine the plant’s water uptake capac-
ity. Our CPlantBox realizations were then used to demonstrate that the relative
contribution of lateral roots to total root water uptake decreases with increasing
SRN by simulating the standard uptake fraction (SUF). A soil-hydraulic modeling
approach further showed that the point at which a small increase in transpiration
provokes a large drop in leaf water potential at a given soil water potential (stress
onset limit) occurred at a less negative leaf water potential in the traditional vari-
eties with lower SRNs. This implies that plants with a higher number of seminal
roots require higher flow rates at the same root length for water uptake and,
therefore, a higher plant water potential to maintain transpiration than cultivars
with a low SRN. Cultivars with low SRNs are, hence, more tolerant to drought
conditions. Additionally, we could show that the lignin accumulation along the
tip of the primary roots is higher with lower SRN, facilitating root penetration in
dry soils and adding an additional beneficial feature for drought tolerance.

To investigate genetic factors affecting SRN in inbred maize, a genome-wide asso-
ciation study helped to identify associated single-nucleotide polymorphisms asso-
ciated with SRN, including the key gene rtcs. Further experiments with CRISPR-
Cas9 knockouts of another important gene, ZmHb77, revealed that mutations in
this gene reduced SRN but increased lateral root density. A drought stress exper-
iment with re-watering showed that ZmHb77 knockout mutants with lower SRN
and higher lateral density had a significantly better performance under drought
and better recovery after re-watering, while under optimal conditions, no sig-
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nificant differences were detected (Figure S3.4h). This indicates that ZmHb77
controls SRN and the depending architectural traits. In further experiments with
maize inbreeds with high and low SRN and drought tolerance, RNA sequencing
was conducted to explore the gene expression pattern in the embryo and root
stele tissue. ZmHb77 is mainly expressed in the root stele tissue at the point of
lateral root initiation, suggesting that the major function of ZmHb77 is linked
with lateral root formation in a way that it potentially promotes the formation
of seminal roots while inhibiting the density of lateral roots (Figure S3.4i).

Generally, we concluded that SRN variations impact maize seedlings’ hydraulic
properties. This has the genetic potential to modify root plasticity and offer
insights into root responses to changes in water availability. Our findings highlight
the historical impact of domestication and adaptation on maize roots. They also
underscore the potential of genetic advancement to assess climate resilience in
future Zea mays generations.
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Figure S3.4: a) Comparison of seminal root numbers in maize lines originating
from different climate groups according to the Köppen-Geiger cli-
mate classification maps. Significant differences were tested by one-
way PERMANOVA with post-hoc test (p < 0.05); b) SRN decreases
along a latitudinal gradient from south to north in Mexico. c) MAGIC
founder allele effects in a 20 Mb window around rtcs; d) Correlation
between SRN and the proportion of Northern Flint sources in the US
Ames panel; e) SUF of seminal roots and lateral roots as a function of
SRN. For each SRN, the average proportion of water uptake per root
type is expressed as a ratio relative to overall water uptake; f) SRN
is negatively correlated with rooting depth of the primary root and
lateral root density in different maize traditional variety accessions;
g) Seminal root variation affects Krs; h) Comparison of drought toler-
ance between WT and plants of the two ZmHb77 CRISPR-knockout
lines after drought conditions and re-watering; i) Model of a potential
function of ZmHb77 on the formation of seminal roots and lateral
roots in contribution to maize seedling drought tolerance (figures are
adapted from Yu et al. (2024)).
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C-5 A scalable pipeline to create synthetic datasets
from functional–structural plant models for deep
learning.

Deep learning has expanded our ability to analyze new data and investigate struc-
tural plant responses beyond the limits of our already implemented mechanistic
approaches. Image analysis, in particular, has been significantly improved by this
technique, and the quantity and quality of structural plant parameters obtained
in a much shorter time is an enormous gain (Pound et al., 2017). The current
bottleneck of deep neural networks is the amount of data required to train them,
as stated in Chapters 1 and 2. We follow a new approach to overcome these
bottlenecks, as shown in Baker et al. (2023).

To train neural networks, we require sufficient data, e.g., images for CNNs (Bauer
et al., 2022). However, these data require some kind of ground-truth, such as
already known parameters or structures. Annotating images is time-intensive,
as shown in Chapter 2. Consequently, annotated images are a scarce resource.
Synthetic data are a promising way to cope with this limitation as long as they
offer ground-truth and validation. The current challenge in creating synthetic
data requires expert knowledge in Computer Graphics, Visualization, and High-
Performance Computing (HPC) to generate data of sufficient quality. To facilitate
this, a model that generates the ground truth, a visualization tool that displays
a most realistic output, and a framework coupling these parts and enabling an
interface for the neural network implementation are required.

In Baker et al. (2023), we present SynavisUE, a framework that enables synthetic
data generation in real-time. The underlying pipeline integrates a CPlantBox
(Giraud et al., 2023) realized plant structure with a newly implemented shoot
geometry into the game graphic engine "Unreal Engine" to generate synthetic
images that can be directly used for a user-defined neural network training. Due
to the versatility of the Unreal Engine, which allows the modification of environ-
mental parameters, such as light and shadows, it is possible to create heterogeneity
while keeping the plant architectural ground-truth data. SynavisUE is ready to
use and offers a user-friendly environment.

In order to evaluate the reliability and versatility of the SynavisUE pipeline,
we created a synthetic copy of the greenhouse set-up we used in Chapter 4 to
evaluate the precision. Then, we aimed to measure the performance on an HPC
cluster with a virtual drone flight, producing synthetic drone images of a virtual
maize field based on the FSPM parameterization we obtained with the study
presented in Chapter 4. In the greenhouse scene, we could induce heterogeneity
by changing camera properties and angle. To evaluate the results, we compared
the leaf blade area from our SynavisUE generated synthetic greenhouse rhizotron
set-up with the real measurement since this is a common agronomic research task.
We found that the synthetic data were slightly but systematically underestimating
blade area, however results were consistent. We used CPlantBox stochasticity
and Unreal Engine’s environmental altering functions to generate heterogeneity
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in the field scenario. To minimize the warm-up time until the scene is loaded and
maximize the frame rate, we parallelized Unreal Engine exclusively on the GPU
and CPlantBox realizations on the CPU. The virtual drone scene was feasible and
produced usable and comparable results as well. However, a lot of computational
power was required to render the scene in real-time, and the frame rate dropped
to a minimal 2.5 images s-1.

Generally, we found that our coupling framework, together with a visualization of
the FSPM CPlantBox, is a promising and practical way to generate synthetic data
for neural network training. However, to access the full potential, the incorpora-
tion of more morphological features, the use of real agronomic research questions,
and a performance improvement on the HPC side to distribute workload and
increase speed are required in the future.
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Figure S3.5: Comparison of parameter extraction pipeline between synthetic and
real-world data. Real-world data, 23 plant images at this growth
stage and angle, were acquired in controlled rhizotron experiments.
Bottom: Analyzed skeletons of shoot organs, starting with the
pseudo-stem. Right: Comparison of blade lengths in mm, compared
across samples sorted by longest first. The error bars indicate the
standard deviation on each axis (figure adapted from Baker et al.
(2023)).

C-6 Adapting Agricultural Virtual Environments in
Game Engines to Improve HPC Accessibility

As stated before, using SynavisUE to generate virtual data of fields with a high-
density crop stand containing a lot of generated plant geometries is computa-
tionally demanding, even on HPC systems. These scenes typically cannot be
rendered in real time without specialized techniques. Within the study of Baker
et al. (2024a), we try to address this challenge since it is particularly relevant in
agricultural science, where virtual fields may consist of numerous individual plant
geometries.
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As before we used the Unreal Engine as the primary rendering framework, in-
tegrated with the Synavis framework to facilitate data production and image
analysis, based on CPlantBox realizations. To address the scalability problem,
a technique to partition large-scale virtual fields across multiple GPU nodes was
developed. This partitioning enables the generation of extensive datasets without
overpowering individual nodes and thereby maintaining high performance and
efficiency.

We conducted two virtual experiments to evaluate the effectiveness and feasibility
of the newly integrated methods. In the first experiment, GPU performance was
evaluated when rendering an increasing number of FSPM instances, and the scene
was continuously updated as time progressed. We measured the frame time and
GPU utilization. The results showed a superlinear increase in frame time as the
number of plants increased, resulting in lower GPU efficiency. For example, with
about 10,000 plant geometries, about 10.7 frames per second were provided, and
GPU utilization decreased due to memory exhaustion. In the second experiment,
the effects of rendering multiple instances simultaneously on the same GPU node
were investigated. The results showed higher average frame times and greater
variance when four instances were run simultaneously on a single node. This
simultaneous rendering led to competition for resources, which affected overall
performance. The results of this experiment showed the importance of optimal
partitioning and distribution techniques to ensure high GPU utilization and ef-
ficiency. We therefore concluded that field partitioning, where large fields are
divided into manageable sections, improves GPU efficiency and enables scalable
data generation. This method ensures that virtual environments can replicate
real-world farming conditions, supporting robust and scalable training models.
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Figure S3.6: Overview of technical components and data flows. The illustrated as-
signment to specific nodes is a performance recommendation, though
individual components can share resources. A linked line indicates
concurrent coupling (figure adapted from Baker et al. (2024a)).
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The results of this study and the findings of the study of (Baker et al., 2023)
showed that distributed rendering of virtual agricultural fields using HPC systems
represents a significant advance in data generation for crop science. By utilizing
game engines such as Unreal Engine and frameworks such as Synavis, researchers
can create dynamic, high-quality datasets that address the lack of annotated data
in agriculture. The presented approach not only improves the efficiency of HPC
resource use but also supports the development of more accurate and robust deep
learning models. Most importantly, we presented the potential for large-scale use
cases to benefit from these techniques.
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experimental whole plant model parametrization approach.

D-1 Introduction

Phosphorus (P) is a crucial macronutrient for plant growth and essential for yield
development. In 70 % of the globally cultivated land area, P is a limiting nu-
trient. Yield security is currently only obtained by regular application of plant
available P fertilizer. However, the crops use-efficiency of the fertilized P is low.
70-80 % of this P is not utilized and eventually cause eutrophication of open water
bodies. Therefore, it is important to increase the P use-efficiency of crops by im-
proving breeding and agricultural management. The first step towards this is the
prediction of the effects of P availability and deficiency to relevant crops. Signif-
icant changes in plant architecture, like reduced growth and rigid appearance of
shoots, inhibition of primary root growth, or changes within lateral root growth
have been associated with P deficiency. However, it is challenging to quantify
the relevant processes that cause the detrimental effects of P limitation on crop
and canopy development and the consequences on relevant physiological processes
(Marschner, 2011). FSPMs are appropriate tools to approach this, since they in-
tegrate several processes based on (3D-)simulated plant structures (Schnepf et al.,
2018). To parametrize these models for the evaluation of P deficiency effects on
plant structure, times-series data of whole plants under P deficiency are required.
Specific parameters, related to growth processes, like the elongation rate of stem,
leaf, base and lateral roots are important, but often difficult to acquire. This
project focuses on the creation of a dataset for the parameterization of a FSPM
for Zea mays under various levels of P limitation. The data include time-series
of photographs of shoot and root of maize until 28 days after sowing, growing
at different P levels in soil. Our aim is to parametrize the FSPM CPlantBox to
simulate crop structure development under P deficiency. Through the coupling of
CPlantBox with water, carbon-flow and photosynthesis modules, we will enable
the modelling of structure, water- and nutrient uptake and light-use efficiency of
a maize crop with variable P limitation under field conditions (Zhou et al., 2020).
This study introduces an easy to implement workflow to acquire dynamical data of
root and shoot simultaneously for FSPM parameterization. We aim for a broader
understanding of the influences of P deficiency on maize, by using a FSPM, to
unravel the effects of P deficiency on plant structure and function.

D-2 Materials and Methods

Zea mays cv. B73 was grown in greenhouse-rhizotrons in a P deficient luvisol soil
from a long time fertilization trial. The initial plant available P concentration
was 2.0 mg P 100 g-1 soil (CAL-Method). To obtain the different P treatments,
the substrate was additionally fertilized with 2.0, 4.0 and 6.0 mg P 100 g-1. P was
the only limiting factor for plant growth. Images of shoot and root, starting with
germination, were regularly taken on a fixed position. Image processing was done
in several steps including segmentation, skeletonization and parameter extrac-
tion. Above- and below-ground organ segmentation differed. Shoot segmentation
was performed by a background color filter algorithm. For root segmentation,
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we implemented a combination of automated segmentation with convolutional
neural networks and manual correction into the segmentation tool “RootPainter”,
enabling the processing of time-series (Smith et al., 2022). The skeletonization
was performed by RootSystemAnalyzer, a program originally designed for root
parameter extraction, but also usable on shoot segments (Leitner et al., 2013a). It
directly provided the shoot parameter and RSML-files from which the parameters
for the root system were derived.

D-3 Results and Discussion

We established a pipeline to extract root and shoot parameters from 2D im-
ages, usable for the parametrization of the FSPM CPlantBox. With this, we
obtained full parameter-sets for Zea mays with corresponding response-curves of
key-parameters under various P limitations. First results show that the P level
in the soil influences, e.g., leaf and basal root elongation. Diameter of basal roots
raise with increasing P supply, while the seminal root count is decreasing. Our
plant models indicates that the root system re-organize without a gain in total
root length until a P threshold, while the leaf growth is increasing until the same
P level. Only with P supply higher this threshold, total root system length in-
creases, while leaf area stagnates. The coupling with photosynthesis, water- and
carbon-flow modules will enable investigations on underlying mechanisms.

D-4 Conclusion

Our results will facilitate the in silico observation of functional and structural
crop reaction to various P limitations and help to understand more detailed the
architectural and physiological responses of maize to P deficiency. These insights
will provide valuable information for breeders on trait selection and management
decisions.
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experimental whole plant model parametrization approach.

Figure S4.1: Workflow from 2D- images of shoot and roots to FSPM parameter-
ization: 1) image acquisition, 2) segmentation, 3) feature detection
and parameter extraction, 4) assemble parameter set, 5) plant struc-
ture from parameter.
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phosphorus deficiency based on experimental data.

Agricultural practices often rely on the excessive use of mineral fertilizer. Phos-
phorus (P) is an essential macronutrient and is required for plant growth. Within
the next years, the availability of rock phosphate, the current main P-fertilizer
source, will decline. Especially for Zea mays it is known that yield declines and
canopy development is inhibited by P-deficiency. However, it remains unclear
how various P-limitation levels affect structural properties and the depending
life-sustaining processes like water uptake. We conducted a greenhouse rhizotron
experiment with Zea mays cv. B73 in agricultural soil at four P fertilization lev-
els, from strongly to not P-deficient. 2D RGB-imaging of shoot and root-systems
was conducted on a daily basis. The resulting timeline data were analyzed, using
a neural network-supported and mostly automated analysis pipeline, to obtain
architectural parameters of all plant organs. Our observations revealed that the
leaf area was maintained for plants with higher P-supply and sharply decreased
at the two lowest P-levels. Total root length sharply decreased when P was below
the highest level and stagnated at the three lowest P-levels. We also observed a
reorganization of the root systems resulting in more seminal roots and shorter and
thinner basal roots at lower P-supply. We used the measured architectural and
anatomical parameters to calibrate the functional-structural plant model CPlant-
Box. We simulate empirically the growth of Zea mays at the four P-supply levels
and mechanistically the resulting water flow. Zea mays with the highest P-supply
had a significantly higher total root conductance (Krs) compared with the Krs for
the three lower P-supply levels. In the next steps, we will evaluate how this affects
the plant fitness and water flow in the soil-plant-atmosphere continuum.
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investigate subsoil processes within the soil-plant continuum.

Climate change raises new challenges for agriculture. A comprehensive under-
standing of whole plant responses to a changing environment is the key to maintain
yield and improve sustainable crop production. Although there are many projects
approaching this challenge, most studies focus on the acquisition and analysis of
above-ground field data. The subsoil processes involved in plant root growth and
resource acquisition are rarely in focus, since very complex set-ups are required
to obtain these data on field scale. Therefore, detailed measurement of the plant
roots and the corresponding soil conditions are required. The minirhizotron fa-
cilities in Selhausen (Germany) are located within the TERENO-Selhausen test
site in the lower Rhine valley. They enable non-invasive longer-term studies of
the soil–plant continuum on two different soils in the same climate by offering
a unique set-up to record above- and belowground information over entire crop
growing seasons under various field conditions and agronomic treatments. De-
tailed information about soil water content, soil water potential, soil temperature
and root development are collected with a high spatial and temporal resolution.
Above-ground measurements, such as biomass, transpiration fluxes and assimila-
tion rates are performed additionally.

In recent years, continuous development and improvement of measurement tech-
nology and data analysis has facilitated the process, transfer and access to these
data. Currently several dynamic and permanently installed sensors are used
within the facilities. 7 m-long transparent tubes are horizontally located in several
depths. An in-house developed RGB-camera system enables root imaging along
the tubes in multiple directions. The images are analyzed with a deep neural
network-based analysis pipeline that provides relevant root system traits, such as
total root length and root length density. To obtain the spatial soil water content
variations per depth, crosshole ground-penetrating radar (GPR) measurements
are performed between the tubes. The derived permittivity and hence soil water
content values show a clear spatial variation along the tubes and different behav-
iors for various plant and soil types. Recently, a novel analysis tool to derive the
trend-corrected spatial permittivity deviation was introduced, allowing an inves-
tigation of the GPR variability independently of static and dynamic influences.

The ongoing measurements currently cover five years of wheat and maize trials,
including water stress treatments, sowing density, planting time, and crop mix-
tures. Data collected in this study are available through the TERENO data portal
and can be used to develop, calibrate, and validate models of the soil–plant con-
tinuum across different scales, including soil process, root development and root
water uptake models, as well as model compilations, such as single-plant and
multi-plant models. Further, the data can be of direct use for agronomists and
ecologists.
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Appendix G: Unrevealing subsoil processes in the selhausen minirhizotron
facilities: Comprehensive insights into the soil-plant continuum with a new

unique dataset.

Agriculture faces enormous challenges due to climate change that require innova-
tion in crop production. A comprehensive understanding of whole plant responses
to a changing environment is the key to maintain yield and improve sustainable
crop production. Many studies focus on shoot development and its response to
environment, but due to its inaccessibility, little attention is paid to root system
development and the subsoil processes and soil conditions that influence it. How-
ever, this information is indispensable to understand crop reactions to climate
change. The minirhizotron facilities in Selhausen (Germany) were constructed
within the TERENO test site Selhausen in the Lower Rhine valley, to enable
non-invasive long-term studies of the soil–plant continuum on two different soils
under the same climate conditions. A unique set-up of sensors provides detailed
information about soil water content and potential, soil temperature and root
development with a high spatial and temporal resolution over entire growing sea-
sons and for various agronomic treatments. Vegetation measurements, such as
biomass, transpiration fluxes and assimilation rates are performed additionally. A
continuous development of technology and analysis has improved the processing,
transfer and accessibility of this data. Static sensors are continuously monitoring
the soil water status. Dynamic sensors enable the measurement of spatial soil wa-
ter content variations and the observation of root growth through 7m long tubes
installed at several depth. An in-house developed camera-system is used for ac-
quiring images that are analyzed with a deep neural network integrated pipeline
to extract root features.

The measurements cover five years of wheat and maize trials, including various
treatments differing in the magnitude of water stress, sowing density, planting
time, and crop mixture experiments. To our knowledge, this is the most compre-
hensive dataset including crop, water and soil related information over time. The
data are freely available and can be used to develop, calibrate, and validate mod-
els of the soil–plant continuum across different scales, including soil processes,
root development and root water uptake models. The data can be helpful for
agronomists, ecologists or breeders to cope with the challenges of climate change.
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Appendix H: Functional-structural plant modelling based on experimental data

reveals that soil phosphorus status influences root system conductance.

Content Snapshot

Dynamic functional-structural modeling of Zea mays under phosphorus deficiency,
parameterized from experimental data, showed that total root system conductance
does not differ between low to mild phosphorus deficient plants, but between fully
fertilized and deficient plants.

H-1 Background

The exploitation of natural resources and climate change pose new challenges to
agriculture. The supply of phosphorus (P), a vital nutrient derived from finite
mined resources, will decrease in the future. Climate change will also reduce
water availability in most regions of the globe. It is therefore crucial to gain
insight on how decreasing P availability influences crops architecture and thereby
their functional traits, such as their root systems’ water uptake capability.

H-2 Objective

We investigate the structural and functional responses of Zea mays to varying P
fertilization levels with respect to the water uptake capability of the root system.

H-3 Material and Methods

We conducted a systematic investigation across a spectrum of P availability, from
severe deficiency to full sufficiency with a greenhouse rhizotron setup. As basis
we used a strongly P deficient field soil from a long-term fertilization experiment.
Detailed architectural parameters of the plant’s shoot and root system were ob-
tained from a neural network analyzed image time series. We combined these
data with anatomical root data to parameterize the CPlantBox model, enabling
dynamic growth simulations and root system conductance (Krs) calculation under
the distinct P supply regimes.

H-4 Results and Discussion

Our analysis and structural modeling show a reorganization in root system ar-
chitecture characterized by an increased seminal rooting and reduced basal root
thickness with declining P availability, leading to a linear increase in root sys-
tem volume. Interestingly, the modeling revealed that only plants with optimal
P availability sustained a high Krs, while all other P levels led to a significantly
lower Krs, regardless of whether it is a light or severe P deficiency. The model
outcome also underscored that targeted root systems architectural and anatomi-
cal traits are more critical for estimating its function than merely considering the
root system’s total size.
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