
Passive and model-agnostic
sampling for training data
development in machine

learning regression

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Paolo Climaco
aus

Rom, Italien

Bonn, Januar 2025

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Gutachter/Betreuer: Prof. Dr. Jochen Garcke
Gutachter: Prof. Dr. Martin Rumpf

Tag der Promotion: 24.03.2025
Erscheinungsjahr: 2025

Abstract

Machine learning (ML) regression has a tremendous impact on advancing scientific
progress. ML regression models predict continuous label values based on input features
by leveraging large labeled datasets to learn the underlying ruling mechanisms. However,
using large datasets may not always be feasible due to computational limitations and
high data labeling costs. Such issues often arise in scientific applications, where we can
typically only label a limited number of points for training due to expensive numerical
simulations or laboratory experiments. The prediction quality of regression models is
highly dependent on the training data. Consequently, selecting appropriate training sets
is essential to ensure accurate predictions.

This work shows we can improve the prediction performance of ML regression models
by selecting suitable training sets. We focus on passive and model-agnostic sampling,
that is, selection approaches that solely rely on the data feature representations, do not
consider any active learning procedure, and do not assume any specific structure for
the regression model. This approach promotes the reusability of the labeled samples,
ensuring labeling efforts are not wasted on subsets useful only for specific models or tasks.

First, we aim to improve the robustness of the models by minimizing their maximum
prediction error. We study Farthest Point Sampling (FPS), an existing selection approach
that aims to minimize the fill distance of the selected set. We derive an upper bound
for the maximum expected prediction error of Lipschitz continuous regression models
that linearly depends on the training set fill distance. Empirically, we demonstrate that
minimizing the training set fill distance by sampling with FPS, thereby minimizing our
derived bound, significantly reduces maximum prediction error and improves prediction
stability in Gaussian kernel regression, outperforming alternative sampling methods.
Next, we focus on improving average prediction performances. We derive an upper

bound for the expected prediction error of Lipschitz continuous models that depends
linearly on a weighted fill distance of the training set. We propose Density-Aware FPS
(DA-FPS), a novel data selection approach. We prove that DA-FPS provides suboptimal
minimizers for a data-driven estimation of the weighted fill distance, thereby attempting
to minimize our derived bound. We empirically show that using DA-FPS decreases the
average absolute prediction error compared to other sampling strategies.

Our experiments focus on molecular property prediction, a crucial application for drug
discovery and material design, which originally motivated our research effort. Traditional
methods for computing molecular properties are slow. Using ML regression allows for
quick predictions, accelerating the exploration of chemical space and the discovery of new
drugs and materials. We empirically validate our findings with four distinct regression
models and various datasets.

I

Acknowledgements

I want to thank Prof. Dr. Jochen Garcke for supervising the work that led to this thesis.
I worked under Jochen’s supervision for more than five years. I am deeply grateful for
that. He has significantly contributed to my professional development. He enabled me
to explore diverse scientific applications. Together, we tackled mathematical problems
from various fields, including engineering, quantum chemistry, and nonlinear dynamical
systems. That was a fun and formative experience. He helped me interact with multiple
scientific communities from different research fields. This allowed me to broaden my
perspective and understand the importance of looking at a given problem from different
angles. I feel lucky I had Jochen as my supervisor, and I am thankful for our continuous
interaction over the past years.

I thank my family - my sister Cecilia and my parents, Patrizia and Mauro - for their
constant support, their sacrifices, that allowed me to move to Bonn in 2018, and their
unconditional love. I thank Zia Rosi, for reaching out to me with creativity and love
every single day.

I thank my colleagues Hannes, Inga, Mikhail and Tim for creating such a friendly en-
vironment. I will always remember with joy our conversations and the time we spent
together, inside and outside the institute.

I want to express my deepest gratitude to my dear friend Jona. We met in Bonn at the
beginning of our Masters, and since then, we have built up an unforgettable friendship,
experience after experience. For many years in Bonn, while I was far away from my
family, I was fortunate to have my dear friend nearby.

III

Contents

1. Introduction 1
1.1. Structure . 4

2. Data-Centric AI (DCAI) 7
2.1. The path to DCAI . 7

2.2. Definitions of DCAI . 8

2.3. Goals and tasks of data-centric AI . 8

2.4. Importance of data selection in training data development for supervised ML 9

2.4.1. A simple classification of data selection procedures for supervised ML 10

2.4.2. Data labeling budgets . 11

3. Data Selection Via Coresets 15
3.1. Uniform and importance sampling . 15

3.2. Cluster based methods . 16

3.2.1. k-means . 16

3.2.2. k-medoids . 17

3.2.3. The importance of initializing: k-medoids++ 21

3.3. Greedy approaches . 22

3.3.1. Optimization problems with submodular functions 23

3.3.2. Greedy algorithms for Min-Max-Min optimization problems 28

3.4. A conceptual comparative analysis of coresets 30

3.5. More on coresets . 33

4. Machine Learning for molecular property prediction 37
4.1. Molecular descriptors . 38

4.1.1. Topological descriptors . 38

4.1.2. Geometrical descriptors . 41

4.2. Quantum chemistry datasets . 43

4.2.1. Underlying characteristics of the datasets 45

4.3. Regression models . 47

4.3.1. Kernel Ridge Regression (KRR) 47

4.3.2. Feed Forward Neural Networks (FNNs) 48

4.3.3. Gradient-Domain Machine Learning (GDML) 49

4.4. Metrics for evaluating model performance 50

4.4.1. Univariate regression . 50

4.4.2. Multivariate regression . 51

V

Contents

5. On minimizing the training set fill distance 53
5.1. Problem definition . 54

5.2. Effects of a training set fill distance minimization approach. 55

5.3. Selecting training sets with the farthest point sampling 60

5.3.1. An illustrative numerical example 61

5.4. Increased numerical stability of Gaussian kernel regression with FPS . . . 63

5.5. Alternatives to the fill distance . 66

6. On minimizing a training set weighted fill distance 69
6.1. Problem definition . 70

6.2. Bound for the expected prediction error 71

6.3. Density-Aware Farthest Point Sampling (DA-FPS) 76

6.3.1. An illustrative example of DA-FPS sampling 79

6.4. Analysis of DA-FPS . 80

7. Numerical Results 89
7.1. Minimizing the fill distance with FPS . 89

7.1.1. Baseline sampling strategies for FPS 89

7.1.2. Experimental setting with FPS . 90

7.1.3. Experiments with FPS: Molecular property prediction 92

7.1.4. Increased numerical stability of kernel ridge regression with FPS . 92

7.1.5. Empirical analysis and discussion 95

7.1.6. Force-field prediction on the rMD17 dataset 103

7.1.7. Section highlights . 104

7.2. Minimizing the weighted fill distance with DA-FPS 106

7.2.1. Baseline sampling strategies for DA-FPS 106

7.2.2. Experimental setup with DA-FPS 107

7.2.3. Experiments with DA-FPS: Molecular property prediction 108

7.2.4. Ablation study DA-FPS hyperparameters on ZINC dataset 116

7.2.5. Computational efficiency DA-FPS 119

7.2.6. Additional experiments . 120

7.2.7. Section highlights . 123

8. Conclusion 125
8.1. Summary, contributions, and findings . 125

8.2. Challenges, limitations, and possible future directions 126

8.3. Final thoughts . 128

A. Appendix 149

B. Appendix 151
B.1. Investigation weights ratio . 151

B.2. Datasets for additional experiments . 151

B.3. Hyperparameters for additional experiments 152

VI

Contents

B.4. Cauchy Kernel . 153
B.5. DA-FPS on FPS setting . 154

VII

Notation and Acronyms

Notation

Data

X ⊂ Rd Subset defining the data feature space
Y ⊂ R Subset defining the data label space
yi ⊂ Y Label value associated with the i-th data point
xi ⊂ X Data feature associated with the i-th data point
D := {(xi, yi)}ni=1 ⊂ X × Y Labelled data set of available points
DX := {xi}ni=1 Set of data features associated with set D
DY := {yi}ni=1 Set of data labels associated with set D
L ⊂ D Labelled training set
LX ⊂ DX Set of data features associated with set L
LY ⊂ DY Set of data labels associated with set L
U := D − L Set of points in D with unknown labels
S ⊂ DX Set selected from DX
Si ⊂ DX Set selected after i iterations of a greedy algorithm
2DX Collection of all possible subsets of DX
LFPS
X ⊂ DX Set selected with FPS

mi ∈ DX i-th medoid selected with k-medoids
uj ∈ Rd j-th centroid selected with k-means
Cj ⊂ DX Data points cluster associated with the j-th centroid

(medoid) selected with k-means (k-medoids)
Data distribution

X Data features’ random variable taking value in X
Y Data labels’ random variable taking value Y
P Space of probability distributions on X × Y
pD ∈ P Joint distribution of random variable X and Y , also

called data source distribution
pL ∈ P Joint distribution of random variable X and Y , also

called training data distribution
pXL(x) :=

∫
Y pL(x, y)dy Marginal of the training data distribution

pXD(x) :=
∫
Y pD(x, y)dy Marginal of the data source distribution

p̂kXD
(x) ∈ R+ k-nearest neighbors data-driven density estimation

of pXD(x)

IX

p̂kXL
(x) ∈ R+ k-nearest neighbors data-driven density estimation

of pXL(x)

Data quantities

ϵ ∈ R+ Labels’ uncertainty
λp ∈ R+ Lipschitz constant of data regularity
ϵL ∈ R+ Maximum prediction error on training set L
λlX ∈ R+ Lipschitz constant of error function w.r.t the first

argument
λlY ∈ R+ Lipschitz constant of the error function w.r.t the

second argument
sLX ∈ R+ Separation distance of the points in LX
hLX ,DX ∈ R+ Fill distance of LX in DX
WLX,X (pXL∥pXD) ∈ R+ Weighted fill distance of LX in X related to pL and

pD
W k

LX ,DX
∈ R+ Estimated weighted fill distance of LX in DX

ρk(x) ∈ R+ Distance between x ∈ X and its k-th nearest neigh-
bor in DX

rkLX
(x) ∈ R+ Minimum between distance from x ∈ X and its

closest element in LX and ρk(x)
Nk(x) ⊂ DX Set of data points in the k-neighborhood of x ∈ X
ωk
LX

(x) ∈ N Weight value associated with x ∈ X used to define

W k
LX ,DX

f : 2DX → R+ Utility set function
u ∈ N Hyperparameter defining number of point to initially

select with FPS in DA-FPS algorithm
Learning

M := {g : X → Y} Function space defining solution of the regression
problems

l : X × Y ×M→ R+ Error function
mL : X → Y Function learned training a regression model on set

L
KKKL ∈ Rb,b Kernel matrix built on training set L
λ ∈ R+ Kernel regularization parameter in KRR optimiza-

tion problem
ααα = [α1, α2, . . . , αb]

T ∈ Rb Learning weights of the KRR
αααL ∈ Rb Analytic solution to the KRR weights optimization

problem on the labeled training set L
mL,ααα(x) ∈ R Label associated with x ∈ X predicted with kernel

KKKL and weights ααα
IIIb ∈ Rb,b Identity matrix of size b.

X

γ ∈ R+ Width of the Gaussian kernel
y(x) ∈ R Predicted label associated with x ∈ X using an

unspecified regression model
Chemistry

C Carbon atom
F Fluorine atom
H Hydrogen atom
O Oxygen atom
N Nitrogen atom
S Sulfur atom
P Phosphorus atom
Å Anstrong, which is 10−10 metre
a.u. Atomic units
mol Mole, the international unit for amount of substance
kcal/mol Kilocalories per mole, unit of energy
na ∈ N Number of atoms in a molecule
ri = [ri,1, ri,2, ri,3] ∈ R3 Location of the i-th atom of a given molecule in the

3-dimensional space
F i ∈ R3na Vector of per-atom forces acting on the i-th molecule

with na atoms
Mathematical Symbols

ϵX Positive scalar value, arbitrary small
R Set of real numbers
Rn n-dimensional real vector space
R+ Set of positive real numbers, [0,∞)
N Set of natural numbers (positive integers and value

0)
N+ Set of natural numbers excluding the value 0
Lp Space of functions for which the p-th power of the

absolute value is integrable
∥ · ∥p p-norm
∥ · ∥∞ Infinity norm (maximum norm)

Acronyms

AI Artificial intelligence

CM Coulomb Matrix

CPU Central Processing Unit

DA-FPS Density-Aware Farthest Point Sampling

XI

DCAI Data-Centric AI

DFT Density Functional Theory

FNN Feed-Forward Neural Networks

FPS Farthest Point Sampling

GDML Gradient-Domain Machine Learning

KRR Kernel Ridge Regression (with Gaussian kernel unless otherwise specified)

kNN k-nearest neighbors

MAE Mean Absolute Error

MAEF Mean Absolute Error (with vector-valued labels)

MAXAE Maximum Absolute Error

MAXAEF Maximum Absolute Error (with vector-valued labels)

MAXMAEF Maximum Mean Absolute Error (with vector-valued labels)

ML Machine Learning

PAM Partitioning Around Medoids

RDM Uniform Random Sampling

RMSE Root Mean Square Error

SMILES Simplified Molecular Input Line System

XII

1. Introduction

Machine learning (ML) is a field of artificial intelligence (AI) that studies mathematical
theories and numerical algorithms that enable computers to learn from data. ML systems
implement algorithms that analyze data to identify underlying patterns and relationships,
make predictions, or automate decision-making processes.
ML is becoming increasingly important because it can handle complex tasks that

directly impact our daily lives, such as: translating languages [LCW+22, CBC+23],
predicting weather [PSGA+24], and diagnosing diseases [RLJ20]. Moreover, ML is
significantly enhancing our ability to gain knowledge in various scientific fields, speeding
up the process of scientific breakthroughs [MFP+24].
A common application of machine learning is regression, which focuses on predicting

continuous numerical values based on input features. For instance, ML regression models
can predict the electrochemical properties of molecules from their geometric structure
and chemical composition, helping to accelerate drug development [VCC+19]. Regression
models learn the underlying prediction mechanism from the training data, for which both
the input features and their corresponding output values (the labels) are already known.
The conventional research approach to ML regression tends to focus on model devel-

opment, that is, algorithmic improvements. We call such an approach model-centric.
Thanks to algorithmic breakthroughs and increases in computational power, the time
required to build useful and effective regression models on a given benchmark task and
dataset has shrunk dramatically. In the past, it would have taken decades of research.
Now, it is often a matter of just a few years [KBN+21].
Unfortunately, model-centric ML research neglects the foundational role of data.

Without enough data to learn from, ML is ineffective. If data is biased or corrupted
with false information, ML regression models may provide biased or wrong predictions.
In other words, data is crucial for developing and deploying effective regression models.
Thus, data development procedures such as acquisition, labeling, and preprocessing are
essential aspects to consider in ML regression. They play a crucial role in ensuring the
quality and reliability of the data and, therefore, of the regression models that learn from
it.

Recent advancements in algorithms have made it possible to develop effective models
more quickly, emphasizing the importance of data-related issues. As a result, a portion
of the scientific ML community is shifting its research focus from being model-centric to
data-centric. Because of this, data-centric artificial intelligence (DCAI) is becoming an
increasingly important area of research in ML and AI [ZBL+25].
This work addresses challenges related to the limited availability of labeled training

data, often resulting from computational constraints and high labeling costs. These
challenges frequently occur in scientific applications, where labeling typically relies on

1

1. Introduction

expensive numerical simulations or laboratory experiments. We focus on molecular
property prediction, a critical task in drug discovery and material design. Identifying
molecules with desirable properties is essential for developing new drugs and materials.
However, the space of possible molecules is large, with more than 1060 molecules according
to some estimates [KE04], and classical numerical methods for predicting molecular
properties are computationally intensive and time-consuming, limiting the pace of research.
Consequently, in applications involving molecular property prediction, it is common to
have access to large pools of unlabeled data, that is, molecules for which chemical and
physical properties (the labels) are unknown and costly to obtain. Machine learning
(ML) regression models offer an efficient and cost-effective solution for this challenge. By
labeling a small subset of the data using traditional methods, we can train a regression
model to predict the properties of the remaining unlabeled molecules quickly. This
approach enables the fast exploration of the chemical compound space, accelerating the
discovery of promising molecules [vLMT20].

The performance of ML regression models strongly depends on the quality of the
training data used for learning the parameters. With a limited labeling budget, it is
essential to select training sets that maximize model performance. The unlabeled data
pool may contain hundreds of thousands or even millions of molecules, and the budget
might allow labeling a few thousand of them for training. Manually evaluating such
a large dataset to identify a suitable training set may be very time-consuming or not
even feasible. It is more effective to develop algorithms that automate the data selection
process by implementing a data selection strategy based on predefined principles. The
labeling budget plays a critical role in shaping these selection strategies, as it determines
how many data points can be labeled for training and directly impacts the effectiveness
of the implemented strategy.

This work studies a fundamental question: how can we efficiently choose training data
to improve the performance of regression models, especially when labeling resources are
limited? In particular, we are interested in label-agnostic, passive, and model-agnostic
strategies to select training data that can make ML regression models more robust, stable,
and accurate according to some evaluation metrics of interest.

We call label-agnostic those sampling approaches that select points based solely on
their feature representations and do not have access to the data labels at the time of
selection. We categorize label-agnostic data selection strategies as active and passive.

Active learning [Set12, RXC+21] iteratively selects training points to maximize the
predictive performance of a given model or model class. It involves training one or several
learning models, predicting uncertainties or estimating labels for unlabeled data, and
using these to determine the relevance of data points for training purposes. The most
relevant data points are selected for labeling, and the cycle starts anew until (qualitative)
stopping criteria are fulfilled. Consequently, active learning benefits a specific model
or model class and optimizes performance for a particular learning task, as it relies on
the knowledge of the labels to update the parameters of the learning models employed
during the selection process. In contrast, passive sampling relies solely on feature space
locations, potentially benefiting multiple learning tasks, as it does not depend on label

2

values. Passive sampling was first introduced in [YK10], where the authors highlight its
importance in scenarios where labeled data can be difficult, time-consuming, or expensive
to obtain.

We think that passive sampling strategies can be classified as model-dependent and
model-agnostic. Model-dependent approaches optimize the data selection process for
specific models or classes. Assuming the knowledge of the learning model may lead to
developing strategies that reflect some principle of optimality for selecting the training
set, as for selection approaches in experimental design [JD75, YBT06]. However, such
optimal selections aim to optimize the performances of specific models, similar to active
learning. Contrarily, model-agnostic strategies have the potential to benefit multiple
classes of regression models, thereby enhancing reusability of costly data labeling.

Our aim is to select training data from an unlabeled pool of available points to improve
the prediction performance of regression models. We train the regression models on
the selected data and use them to predict labels for the points in the pool not selected
for training. We select the training sets relying solely on passive and model-agnostic
sampling approaches. This leads us to two key questions: How can we quantify the
suitability of a selected set for training an unknown regression model? And how can we
systematically and efficiently select suitable training sets from a pool of unlabeled data?

To quantify the suitability of a selected set for training purposes, we use scalar-valued
functions. These functions take a selected set as input and evaluate its quality based on
the distribution of its points within the input space. By leveraging these scalar-valued
functions, we derive theoretical bounds for the expected prediction error of a regression
model trained on the selected set. The concept is straightforward: the smaller the scalar
value associated with a training set, the tighter the bound on the model’s prediction
error.

Once we establish a method to measure the suitability of a set for training purposes,
the next critical step is to devise a systematic and efficient approach for selecting suitable
sets. To this end, we introduce and develop algorithmic procedures that identify subsets
from a pool of unlabeled data according to specific principles. Furthermore, we provide
theoretical insights demonstrating that these selection methods align with our derived
theoretical results. Specifically, they select training data aiming at minimizing our derived
bounds on the prediction error of ML regression models.

We have two primary objectives. The first is to determine an algorithmic procedure,
supported by theoretical results, for selecting training sets that improve the robustness of
regression models by minimizing their maximum prediction error. The second objective
is to develop an algorithmic procedure, also supported by a solid theoretical motivation,
for selecting training sets that improve the average performance of regression models by
reducing their mean absolute prediction error.

Note that our work originates from addressing challenges related to molecular property
prediction tasks. Consequently, the experimental sections, where we provide empirical
validation of our theoretical results, mainly focus on such application scenario. Nonethe-
less, the theoretical results and algorithms we analyze and develop are independent of
the specific application context.

3

1. Introduction

1.1. Structure

In Chapter 2 we provide an overview of data-centric AI (DCAI). We mention the
core principles and methodologies that drive this paradigm shift from the model-centric
perspective in AI research. We report various definitions of DCAI, providing a solid
foundation for readers new to this area or seeking a clearer understanding of this research
field. Moreover, we introduce and describe the key objectives and tasks in DCAI. In
particular, we focus on training data development procedures, specifically data selection
approaches. We delve into why data selection is critical for the training data development
process, clarifying its role in building robust and effective machine learning models. We
also provide a classification of data selection procedures.

In Chapter 3 we focus on coresets, a specific class of data selection methods of interest
in this work. Coresets are practical tools for performing label-agnostic, passive and
model-agnostic sampling. We introduce and describe various coreset selection methods
that serve as baselines in our numerical experiments. These methods include uniform
sampling, cluster-based approaches, and greedy techniques.

In Chapter 4 we provide a general overview of ML for molecular property prediction,
which is the application focus of this work. Additionally, we provide details of all the tools
we use in the experimental sections, including datasets, data preprocessing procedures,
regression models, evaluation metrics and additional info on open-source coding libraries.

In Chapter 5, we introduce the first optimization problem we aim to solve. The
problem involves selecting a training set from a pool of unlabeled points to minimize
the maximum expected prediction error of an unknown Lipschitz continuous regression
model trained on the selected set. To address the problem we use the concept of fill
distance (Definition 5.1). The fill distance is a scalar quantity we can associate with
subsets of points in a given unlabeled data pool. We use this scalar to quantify the
suitability of a set for training purposes. We derive an upper bound for the maximum
expected prediction error that linearly depends on the training set fill distance (Theo-
rem 5.1). Additionally, we analyze the Farthest Point Sampling (FPS) an existing greedy
algorithm that we can use to select training sets by aiming to minimize their fill distance,
thereby minimizing our derived bound. Furthermore, recapturing results from numer-
ical mathematics, we theoretically show that selecting training sets with the FPS can
also increase model stability for the specific case of Gaussian kernel regression approaches.

In Chapter 6 we introduce the second optimization problem we aim to solve. The
problem involves selecting a training set from a pool of unlabeled points to minimize
the expected prediction error of a Lipschitz continuous regression model trained on the
selected set. To address the problem, we introduce the concept of weighted fill distance
(Definition 6.1). We define the weighted fill distance as a scalar quantity we can associate
with finite sets of points in a given bounded space in Rd, d ∈ N+. We introduce this scalar

4

1.1. Structure

as an alternative approach to the fill distance to quantify the suitability of a set for train-
ing purposes. We derive an upper bound for the expected prediction error of Lipschitz
continuous regression models that is linearly dependent on the weighted fill distance of
the training set (Theorem 6.1). Furthermore, we propose Density-Aware Farthest Point
Sampling (DA-FPS), a novel data sampling approach. DA-FPS (Algorithm 6), aims
to select training sets by minimizing the weighted fill distance. We show that DA-FPS
provides suboptimal minimizers for a data-driven estimation of the weighted fill distance,
thereby aiming to minimize our derived bound (Theorem 6.2 and Theorem 6.3).

In Chapter 7 we provide experimental validation to the theoretical results from
Chapter 5 and Chapter 6. In Section 7.1 we empirically show that selecting a training set
by aiming to minimize the fill distance using FPS, significantly reduces the maximum pre-
diction error of various regression models, outperforming alternative sampling approaches
by a large margin (Figs. 7.1, 7.2 and 7.10). Furthermore, we show that selecting training
sets with FPS can also increase model stability for the specific case of Gaussian kernel
regression approaches (Fig. 7.3). In Section 7.2 we empirically show that selecting training
sets with DA-FPS, thus attempting to minimize the weighted fill distance of the selected
set, significantly decreases the average prediction error of Lipschitz continuous regression
models (Figs. 7.11, 7.13 and 7.19). Moreover, we empirically investigate the benefits of
combining FPS with other well-established passive and model-agnostic strategies. We
show that augmenting such approaches with FPS during the initial steps of the sampling
process consistently improves the average performance of the predictions (Fig. 7.12).
We conduct the experiments with the regression models and datasets introduced and
described in Chapter 4 and Appendix B.

In Chapter 8 we provide a summary highlighting the key findings and contributions.
Additionally, we reflect on the limitations of this work and suggest possible future research
directions to overcome them.
We note that part of the work presented in this thesis, primarily in Chapter 5 and

Section 7.1, has been published in [CG24].

5

2. Data-Centric AI (DCAI)

In this chapter we provide an overview of DCAI. We start by introducing key definitions,
objectives and tasks. Next, we focus on training data development, which is one of
the main branches of DCAI and particularly of interest in this work. We analyze the
main aspects of data selection, explaining why data selection plays a key role in the
development of training data. Furthermore, we provide a classification of data selection
procedures.

2.1. The path to DCAI

Artificial intelligence (AI), and more specifically machine learning (ML), has a tremendous
impact on a large variety of domains such as finance [HSK19], healthcare [MWW+17],
chemistry [HvL21], agriculture [LBM+18] and many others. The rise of ML is due to
three main factors: the increasing availability of large amounts of data, advancements
in computing power (the hardware), and improvements in learning algorithms and
models development (the software). The increase in computing power allows for complex
calculations to be performed quickly and efficiently, while the advancements in algorithms
enable ML systems to process and interpret data more accurately. The exponential
increase in data production provides the fuel needed to train, refine and effectively
deploy ML methodologies. Data play one of the three key roles in the development
and deployment of ML. However, in the initial phase of ML development the dominant
paradigm was to build better software technologies by developing more effective algorithms
and models to increase performances on one or several tasks, while keeping the data
mainly fixed. Unfortunately, such a model-centric approach, consistently relying on a
fixed dataset for model development, may overlook several issues related to deploying the
developed ML model into the real world. For instance, the cost and reliability of data
development procedures, such as acquisition, labeling and preprocessing, may strongly
affect the fidelity and relevance of the analyzed data to the underlying problem, possibly
leading to a variety of issues that could interfere with the effectiveness of the model,
such as limited amount of data, data biases and mislabeled data. Consequently, the
ML research community is increasingly focusing on data-related issues. The need for
better data practices can also be highlighted by the success of new initiatives within
the industry landscape, such as Cleanlab, a start-up founded in 2021 that developed an
automated data curation platform now used by several Fortune 500 Companies and that
raised $25 million in funding in 2023 [Kon23]. Another example is Snorkle AI [RBE+19],
which among other services develops systems for automatic data annotations without
hand labeling. It started in 2015 as a research project and was valued at $1 billion in

7

2. Data-Centric AI (DCAI)

2021 [Van21].

The rising interest and recognition of the value of data to improve ML applications
has led to the creation of a new concept in the machine learning research community:
Data-centric AI, coined by Prof. Andrew Ng in 2021. Since then, the ML research
community is increasingly more enthusiastic and involved in data-centric AI. This is
evidenced by various factors, including the NeurIPS 2023 Datasets and Benchmark track
receiving approximately 1000 submissions − almost twice as many as the previous year.
Additionally, there is a growing community effort to develop and promote data-centric AI
competitions, such as the six Dataperf Benchmark challenges [MBY+23]. Furthermore,
The Journal of Data-centric Machine Learning Research (DMLR) has been established
to provide a reputable publication venue for high-quality articles focused on the data
aspect of machine learning research.

2.2. Definitions of DCAI

Data-centric AI is a developing area of research that aims to enhance various data aspects
of machine learning procedures. There have been several attempts to define it, with
some authors defining it as a research field that “encompasses methods and tools to
systematically characterize, audit, generate, and monitor the underlying data used to
train and evaluate ML models” [SIS24]. Others have defined it as “a framework to
develop, iterate and maintain data for AI systems” [ZBL+25]. While these definitions,
and many others [PZ21, JMG23, ZLB+23], clarify that DCAI focuses on improving data
development and maintenance procedures to enhance ML performances, they do not
provide a clear explanation of the practices and procedures involved. To address this
issue, [ZBL+25] proposed a first research framework for data-centric AI that defines a
list of goals and associated tasks. While this framework is likely to be updated as the
field evolves, it provides a clear outline for researchers and practitioners to navigate and
understand data-centric AI. In the next section, we briefly summarize the framework
they propose.

2.3. Goals and tasks of data-centric AI

Following along [ZBL+25] we frame data centric AI in three main areas or goals: training
data development, inference data development, and data maintenance. Training data de-
velopment aims to collect and produce high-quality data for machine learning models. It
includes data collection [BFPK20], labeling [KMLE20], preparation [AFK+14, SJ19], re-
duction [LCW+17, MBL20], and augmentation [FAKA+18]. Inference data development
aims to create new evaluation sets and benchmarks to test the models capabilities. This
involves generating samples that adhere to or shift from the training data distribution,
in order to assess or unlock various capabilities of the model [MDFF16, KSM+21]. Data
maintenance aims to ensure the quality and reliability of data in a dynamic environment.
It includes data understanding [BW13], quality assurance [SDD+18], and efficient storage

8

2.4. Importance of data selection in training data development for supervised ML

and retrieval [BJL19]. It plays a crucial role in ensuring that the data used in AI training
and inference is accurate, up to date and easily retrievable.
In this work, we are interested in tasks related to training data development. Note

that, training data development is crucial in both supervised and unsupervised machine
learning. In supervised machine learning, training data is labeled, and the quality of
the labels is essential for effective model training. Ensuring the data is representative,
correctly labeled, and well-balanced across different categories is critical to achieve
high model performance. In unsupervised machine learning, training data development
involves careful preparation to ensure that meaningful patterns can be extracted. This
includes selecting appropriate features, removing noise, normalizing data, and sometimes
even engineering features to highlight important relationships. Although there are no
explicit labels, the quality of the data still significantly affects the ability to discover
useful clusters, associations, or embeddings.
In this work, we mainly focus on tasks related to training data development for

supervised machine learning. Key tools of training data development procedures are data
selection techniques. Unfortunately in [ZBL+25], data selection techniques are merely
seen as a tool for data reduction. We think this is just one on the application of data
selection approaches. Next, we show that selecting points or subsets from a previously
collected data pool plays a key role in training data development and is used not only
for data reduction, but it is also required for other tasks including data labeling and
cleaning.

2.4. Importance of data selection in training data development
for supervised ML

The first step in training data development is data collection. Data collection is the
process of gathering and acquiring data with the goal of creating a pool of data points
related to the underlying task. Data collection practices include discovery, integration,
and data synthesis. Dataset discovery consists of finding related and useful datasets, data
integration combines datasets from different sources into one and data synthesis consists
of generating datasets, for instance, through numerical simulations. In some cases, it is
better to create a dataset with desired patterns than to collect them from the real world.

At the end of the data collection process, we are provided with a pool of data points. In
a supervised ML application context, either all the gathered points are used for training
purposes, or only a portion of those is selected as the training set. Unfortunately, using
all the gathered data for training may be unfeasible or negatively affect the learning
process. If the collected points are already labeled, there could be mislabeled points
polluting the dataset with false information that may affect the final performances of the
trained model. Thus, there is a need to preprocess the data pool, selecting and excluding
the mislabeled points. When the collected data is unlabeled, labeling every point may
be too costly or time-consuming. Furthermore, training on the entire dataset might be
prohibitive due to resource constraints. In such cases, a representative subset needs to
be selected for data reduction. Note that different training subsets may lead to different

9

2. Data-Centric AI (DCAI)

performances of the same learning algorithm. Therefore, selecting a suitable subset from
the collected data pool is crucial to ensure good model performance.
Consequently, it is important to develop data selection strategies that aim to choose

training sets that can enhance the performance of ML models while taking into account
the available knowledge at the time of selection, and considering the costs of the selection
process as well as the available budget.

Another important task to consider is data splitting. For instance, benchmark datasets
used for model evaluation purposes are typically split into training, validation, and
test sets. Different splits provide different representations of the same underlying data
population. Therefore, selecting appropriate training, validation, and test sets is essential
to evaluate models properly.

2.4.1. A simple classification of data selection procedures for supervised ML

We categorize data selection approaches as label-aware and label-agnostic. Label-aware
approaches have access to the data points labels and use them to guide their selection
strategy. Label-agnostic approaches select points based on their feature representation.
Label-aware selection approaches can be based on data valuation techniques or on

geometrical consideration of the data points in the feature and label spaces. Data
valuation approaches aim to associate each data point with a specific value, rating its
quality according to some specific criteria. Data point valuation can be model-dependent
or model-agnostic. Model-dependent valuation approaches analyze how data points affect
the performances of a model or set of models, giving higher value to those points that
are more likely to lead to a performance increase. For instance, in [GZ19], the authors
propose using data Shapley values as a metric to measure the value of individual training
data points in increasing the predicting performance of a specific supervised prediction
approach. Model-agnostic data valuation approaches rate the quality of data points
independently of an underlying learning algorithm. For example, [JKW+23] develops a
novel method to value individual data based on the sensitivity analysis of the Wasserstein
distance, taking into account data labels and features. Label-aware selection approaches
based on geometrical consideration of the data points aim to select subsets providing
good representations of the feature and label space by making geometrical considerations
related to the data positions. For instance, in [CHE+21], the authors propose an approach
aiming at maximizing Euclidean distances between data features and data labels to select
subsets providing a better representation of the data space. Label-agnostic data selection
procedures select points only considering the data feature representation. We distinguish
between active and passive label-agnostic data selection. Active learning [Set12, RXC+21]
involves training one or several regression models, predicting uncertainties or estimating
labels for unlabeled data, and use these to determine the relevance of data points for
training purposes. The most relevant are selected for labeling and the cycle starts anew,
until (qualitative) stopping criteria are fulfilled. It typically only benefits a specific model
or model class and optimizes the performance of the models for a specific learning task,
as it exploits the knowledge of the computed labels to iteratively update the parameters
of the models during the selection process. Passive sampling [YK10] is based only

10

2.4. Importance of data selection in training data development for supervised ML

Label aware Label agnostic

Data valuation Geometric PassiveActive

Model
dependent

Model
agnostic

DATA SELECTION
for supervised ML

Model
agnostic

Model
dependent

Figure 2.1.: Flowchart illustrating a simple classification of data selection approaches for
supervised ML

on the feature representation of the data points, that is, their location in the feature
space. Consequently, it has the potential to be beneficial for multiple learning tasks that
pertain to the same data, as it is entirely independent of the label values associated with
the analyzed data points. We think passive sampling can be further divided into two
subclasses: model-dependent and model-agnostic. Model dependent passive sampling
strategies are developed to benefit specific learning models or model classes, such as linear
and kernel regression [YBT06], similar to active learning. Assuming the knowledge of the
learning model may even lead to the development of strategies that reflect some principle
of optimality for the selection of the training set, as in the case of approaches developed
in the field of experimental design [JD75]. Contrarily, model-agnostic strategies have the
potential to benefit multiple classes of regression models rather than just one. We note
that passive sampling strategies are categorized as label-agnostic in our classification.
Therefore, when we refer to passive sampling, we implicitly refer to approaches that do
not consider data labels. In this work, we focus on passive and model-agnostic sampling.
In the next chapter we provide an overview on “coresets” a class of approaches that
can be effectively used for passive model-agnostic data selection and that we consider as
baselines methods in the experimental sections of this work.

2.4.2. Data labeling budgets

We highlight that an important aspect to consider for the choice of the training data
selection strategy is the data labeling budget, that is, the amount of resources we can
invest in the labeling process, which determines the number of points we can label

11

2. Data-Centric AI (DCAI)

for training purposes. Depending on the number of points that can be selected and
labeled for training, the training data selection process can either focus on improving the
robustness of the regression models, the average accuracy of their predictions or, ideally,
both. Later, in Section 4.4 we see that robustness refers to the ability of a regression
model to maintain low maximum prediction error over entire data space, while average
accuracy measures how close the predictions of the model are to the true label values on
average across the entire dataset.

In this work, we qualitatively refer to three main budget scenarios. Low, medium
and large budget. The quantitative notions of low, medium and large data budget are
context-dependent. They relate to various factors, including the costs of the labeling
procedure, the size of the available pool and the distribution of the data locations.
Nonetheless, we can consider qualitative, context-independent notions that provide an
intuitive understanding of such data regimes.

We say we are in a low data budget regime when we can only label a small amount of
points for training. In particular, in such a low data budget regime, it is not possible to
adequately represent in the training set the variability and complexity of the distribution
of the data points in the available pool, independently of how we choose the training
points. One potential downside of having a low data budget is that a regression model
trained on few labeled data points may perform very poorly in those regions of the data
space that are not represented in the training set. This implies that there are portions of
the data space where the predictions of the trained model are not reliable. One approach
that can be implemented to increase the reliability of a regression model is to improve its
robustness by considering a training data selection strategy that prioritizes performance
improvement on the worst-case scenarios, that is, minimizing the maximum error. By
aiming to improve robustness, we ensure that the performance of the model is consistently
reliable across the considered data space, even if the average prediction quality might
not be optimal. In Chapter 5 we study a data selection approach aiming at improving
the robustness of the regression models.

We are in the medium data budget regime if we can label a moderate amount of data
points for training, such that, depending on the selection process, the training set can
potentially represent the entire data space and capture the distribution of the points in
the available pool. Thus, depending on the selection strategy, each point in the data pool
may have a close selected point and, simultaneously, the distribution of the data points in
the selected training set may resemble that of the points in the data pool. Consequently,
in the medium data budget scenario, a data selection approach can focus on optimizing
robustness and improving average prediction quality. In Chapter 6 we propose one
approach to do that, where we first include in the training set data points across the
entire data space of interest. After that, we focus the sampling on portions of the data
space with higher density to better represent in the training set those regions that are
more populated and where it is necessary to optimize the performances of a model in
order to improve the average quality of its predictions. The approach we propose initially
aims at including in the training set data points across the entire data space to prevent
very large prediction errors in the underrepresented regions. Note that, depending on

12

2.4. Importance of data selection in training data development for supervised ML

their magnitude, large prediction errors may have a significant impact on the average
quality of the predictions. Thus, robustness of the predictions plays an important role in
ensuring the improvement of average performances.

In the large data budget regime it is possible to select training sets capturing the full
distribution of the analyzed dataset. That is, it is possible to properly represent all
the regions in the data space of interest. In this work, we are not interested in such a
labeling budget scenario, as we restrict our study to applications where labeling resources
are limited, and training data selection has a higher impact on the performances of the
resulting trained regression model.

13

3. Data Selection Via Coresets

Coresets [Fel19] is a class of data selection approaches that can be effectively employed
for passive and model-agnostic sampling. Coresets can be used to identify (informative)
subsets from a pool of unlabeled points, according to some specific principle and solely
relying on the data points’ locations. Following along [Fel19], we organize coresets into
four main categories: uniform sampling, importance sampling, cluster-based methods,
and greedy methods. Uniform sampling involves randomly selecting data points with
equal probability. Importance sampling selects data points that are more relevant or
important to the problem at hand. Cluster-based methods group similar points together
and select representatives from each cluster. Greedy methods iteratively add the most
influential point at each step, according to a given principle. In the following sections,
we describe each of these approaches in more detail.

3.1. Uniform and importance sampling

Uniform sampling involves selecting samples uniformly at random across the domain of
interest. This means that each point in the available data pool has an equal probability of
being selected, independently of its location in the feature space or label value. While this
sampling approach is the simplest coreset, it is also considered the natural benchmark for
all the other sampling strategies [Fel19]. Formally, given a dataset DX := {xi}ni=1 ⊂ Rd,
d ∈ N, consisting of data points locations, we have that the probability of selecting
xi ∈ DX is p(xi) := 1

n ∀ i = 1, . . . , n. The uniform sampling approach can result in
biased results if the dataset is imbalanced or if some data points are more important than
others. Importance sampling strategies aim to overcome this limitation, by assigning
a weight ai ∈ R to each data point xi based on its relevance to the problem being
addressed. Typically, the higher is the weight the more relevant the point. By assigning
weights to the data points, we can deterministically select them based on a ranking
system that prioritizes points with higher weights. Alternatively, we can select points
in a randomized fashion by constructing a probability distribution pa(xi) depending on
the weights, that is,

∑n
i=1 pa(xi) = 1, pa(xi) ≥ 0 ∀ i = 1, . . . , n, and for each i ̸= j we

have pa(xi) ≥ pa(xj) ⇐⇒ ai ≥ aj . This leads to a non-uniform randomized selection
that prioritizes more important data points. The importance weights {ai}ni=1 can be
defined through domain knowledge and statistical or geometrical arguments. Importance
weights may define the importance of the data points with respect to the learning
process of a specific model o with respect to a general model independent principle.
For instance, in [XSML23] the authors propose an important sampling approach for
selecting suitable pre-training datasets for large language models (LLM) based on weights

15

3. Data Selection Via Coresets

that are independent of the specific language model considered. Alternatively, [TMO23]
provides an importance sampling selection method to improve data distillation processes
and [KF18, JG18] propose importance sampling for accelerating the training of deep
neural networks. Another example is the CUR approach [MD09], which selects data
points based on an importance score determined to ensure that the most important
points are those providing a best low-rank approximation of the data matrix. The CUR
approach can be effectively used for data points and data features selection [CHE+21].

3.2. Cluster based methods

Clustering algorithms are essential tools in machine learning and data analysis for
grouping similar data points into distinct clusters. A cluster can be defined as a group of
data points that are more similar to each other than to those outside the group. The
similarity criteria used to define a cluster can vary depending on the application, but
typically in ML, it is based on a notion of distance between the data points locations.
Thus, we can think of a cluster as a group of data points whose inter-point distances are
small compared with the distances to points outside the cluster. In this work we consider
the Euclidean distance. Cluster-based coresets segment the feature space in clusters and
select representative points from each cluster to build a representative subset (a coreset).
Well known and established methods within this class are as k-medoids and k-means
that we now introduce.

3.2.1. k-means

The k-means [Mac67] partitions a given dataset DX := {xi}ni=1 ⊂ Rd into some number
k of clusters and provides a coreset consisting of k data points, called centroids, which
are representative of each cluster. For now, we shall suppose that the value of k is given.
The goal of k-means is to determine clusters {Cj}kj=1 of points in DX and centroids

Algorithm 1 k-means algorithm

b
Input: Data points DX = {x1,x2, . . . ,xn} and number of clusters k
Output: Cluster centroids {u1,u2, . . . ,uk}
1: Initialize cluster centroids randomly: u1,u2, . . . ,uk.
2: repeat
3: for i = 1 to n do
4: Assign each point xi to the nearest centroid u∗

i = arg min
1≤j≤k

{∥xi − uj∥22}

5: for j = 1 to k do
6: Update cluster centroid uj as the mean of all data points assigned to it:
7: uj =

1
|Cj |

∑
x∈Cj

x where Cj = {xi ∈ DX |u∗
i = uj}

8: until Convergence criterion is met.

16

3.2. Cluster based methods

{uj}kj=1 ⊂ Rd, solving the following optimization problem

min
u1,...,uk∈Rd

k∑
j=1

∑
x∈Cj

∥x− uj∥22, (3.1)

where ∥ · ∥2 is the Euclidean norm and each point in DX is assigned to the cluster
represented by its closest centroid. In other words, the goal k-means is to find a set of
centroids {uj}kj=1 minimizing the sum of squared distances between each data point and
the representative of its cluster, that is, the nearest centroid.

The k-means procedure, described in Algorithm 1, starts by randomly selecting k data
points {uj}kj=1 ⊂ DX to serve as the initial centroids, which act as the center points
for the clusters. Next, the algorithm assigns each data point xi ∈ DX to the nearest
centroid u∗

i := arg min
1≤j≤k

∥xi−uj∥22, creating k clusters {Cj}kj=1 based on proximity, where

Cj = {xi ∈ DX |u∗
i = uj}. After assigning each data point to a cluster, the k-means

algorithm recalculates the centroids by taking the mean of all data points assigned to
each cluster, that is, uj =

1
|Cj |

∑
x∈Cj

x for all j = 1, . . . , k, where |Cj | is the cardinality of

the j-th cluster. Note that, the new centroids are locations in Rd that might not be in
DX . These steps of assigning and updating centroids are repeated until the centroids
no longer change significantly or a maximum number of iterations is reached. At this
point, we say the algorithm converges. By following this iterative process, the k-means
algorithm can effectively cluster data points into distinct groups and provide a set of k
centroids as representative of each cluster. Overall, the time complexity of the k-means
algorithm is O(nki), where n is the number of points in the dataset, k is the number of
clusters or centroids we consider and i is the number of iterations required for convergence.
The computational cost of the k-means algorithm is dominated by the assignment step,
consisting of assigning the points to the respective centroid, which has a computational
cost of O(nk) and must be iteratively performed.

The k-means algorithm has two main issues: Firstly, outliers can significantly influence
the computation of the mean required to calculate new centroids. Secondly, k-means
provides coresets consisting of centroids that may not be included in the initial dataset DX ,
which, depending on the application, may not be of interest. The k-medoids algorithm,
which we introduce next, was developed to address these issues.

3.2.2. k-medoids

k-medoids [PJ09] is a variation of k-means that uses data points in DX as cluster
representatives. The medoid is the most centrally located object of the cluster with the
minimum sum of squared distances to other points within the cluster. k-medoids is more
resilient to noise and outliers than k-means by providing coresets of representative points
that are subsets of the given data pool. Fig. 3.1 illustrates the difference between the
k-means and k-medoids algorithms in a 2-dimensional example, where k = 1. In the
figure, a group of points arranged in a hexagon shape represents a cluster, while the

17

3. Data Selection Via Coresets

(a) Mean (b) Medoid

Figure 3.1.: The figure displays the results of applying k-means and k-medoids algorithms,
with k=1, to a dataset consisting of eight 2-dimensional points (in blue). The
points are arranged to form an hexagon-shaped cluster with an outlier on the
right. In (a), the red point is the centroid selected by the k-means algorithm,
which is not one of the points of the dataset. The k-means algorithm is
affected by the outlier, resulting in a centroid that does not represent the
cluster center accurately. In (b), the point in red is the medoid selected
with the k-medoids algorithm, which is one of the points in the dataset.
The k-medoids algorithm is robust to the outlier, selecting a medoid that
correctly represents the cluster center.

rightmost point is an outlier. On the one hand, Fig. 3.1a shows that when computing
the centroid with the k-means algorithm, the outlier affects the result and the centroid
cannot correctly represent the cluster center. On the other hand, Fig. 3.1b illustrates that
the k-medoids algorithm is robust to the outlier and provides a medoid that correctly
represents the cluster center.
The k-medoids attempts to determine clusters {Cj}kj=1 of points in DX and medoids

{mj}kj=1 ⊂ DX , solving the following optimization problem

min
m1,...,mk∈DX

k∑
j=1

∑
x∈Cj

∥x−mj∥22, (3.2)

where, as for the k-means, each point in DX is assigned to the cluster represented by its
closest medoid. Thus, the k-medoids procedure aims to minimize the same optimization
objective as k-means in (3.1) with the difference that the solution space of the optimization
problem is restricted to points in DX .

The k-medoids algorithm is conceptually similar to the k-means, iteratively assigning
points in the dataset to medoids that are themselves iteratively updated. The major
difference with k-means is in the updating process of the medoids, which is restricted to
points in DX .

Finding an optimal solution to the k-medoids optimization problem in (3.2) is NP-hard.
Various heuristic methods have been developed to compute approximate solutions. The
partitioning around medoids approach (PAM) [LK90], described in Algorithm 2, is known

18

3.2. Cluster based methods

Algorithm 2 k-medoids (PAM) algorithm

Input: Data points DX = {x1,x2, . . . ,xn}, number of clusters k.
Output: Cluster medoids {m1,m2, . . . ,mk}.
1: Initialize cluster medoids randomly: m1,m2, . . . ,mk.
2: for i = 1 to n do
3: Assign each point xi to the nearest medoid m∗

i = arg min
1≤j≤k

{∥xi −mj∥22}.

4: TD ←
∑k

j=1

∑
x∈Cj
∥x−mj∥22, where Cj = {xl ∈ DX |m∗

l = mj}.

5: repeat
6: for ml ∈ {m1,m2, . . . ,mk} do
7: for xq ∈ DX with xq /∈ {m1,m2, . . . ,mk} do
8: TDswap ← compute TD as in step 4 with xq as a medoid instead of ml

9: if TDswap < TD then
10: TD ← TDswap and ml ← xq.

11: until Convergence criterion is met

Algorithm 3 k-medoids (alternating) algorithm

Input: Data points DX = {x1,x2, . . . ,xn}, number of clusters k.
Output: Cluster medoids {m1,m2, . . . ,mk}.
1: Initialize cluster medoids randomly: m1,m2, . . . ,mk.
2: repeat
3: for i = 1 to n do
4: Assign each point xi to the nearest medoid m∗

i = arg min
1≤j≤k

{∥xi −mj∥22}

5: for j = 1 to k do
6: mj = arg min

x̂∈Cj

∑
x∈Cj
∥x− x̂∥22 where Cj = {xi ∈ DX |m∗

i = mj}

7: until Convergence criterion is met

19

3. Data Selection Via Coresets

to be one of the most effective algorithm for the k-medoids problem. PAM approach starts
by randomly selecting k data points {mj}kj=1 ⊂ DX to serve as the initial medoids and
assigning each point in DX to its closest medoid. Next, considers for each of the initially
randomly selected medoids, swapping it with each non-medoid point available and for each
possible swap calculates the total cost, which is the optimization objective in (3.2). After
considering all the possible swap combinations, PAM chooses the medoid-non-medoid
pairs with the lowest total cost and performs the swap. The computational cost of PAM
is O(k(n − k)2i), where k is the number of clusters considered, n the number of data
points in the given data pool DX and i the number of iterations of the medoids update
procedure [JH17]. The computational complexity of PAM scales quadratically with the
number of data points, making it not suitable to analyze large datasets. To address
the computational cost issue, alternative approaches building on the PAM procedure
have been proposed for the medoids update, such as CLARA [KR86] applying the PAM
algorithm on smaller subsets of DX , CLARANS [NH02], an extension of CLARA based
on randomized search, Fast and Faster PAM [SR21] implementing faster approaches
for the swap procedure, and others [VdLPB03, ZC05]. A simpler and computationally
efficient method, not inspired by PAM, was developed in [PJ09] where the authors propose
to update the medoids similarly to k-means, by selecting as the new medoid of each
cluster the data point minimizing the total distance to other objects in its cluster. This
approach, described in Algorithm 3, is known as “alternating”. While it can lead to poorer
performances than PAM-based approaches, its authors claim it has a runtime of O(nk) per
iteration, as for the k-means. In practice, the alternate approach is widely used because
of its simplicity and computational efficiency, making it suitable for analyzing very large
datasets. In Table 3.1 we recapture information from [SL22] providing an overview of the
various libraries available in different programming languages to implement the k-medoids
including sklearn extra [sci21], kmedoids [SL22], ELKI [SZ19], PyClustering [Nov19] and
biopython [CAC+09]. This table serves as resource for researchers and practitioners who
are looking for efficient ways to implement k-medoids in their projects.

Library Algorithm Language

sklearn extra Alternating Python
kmedoids [SL22] Alternating Python, Rust
ELKI Alternating Java
biopython Alternating Python, C
kmedoids FasterPAM Python, Rust
ELKI FasterPAM Java
kmedoids PAM Python, Rust
ELKI PAM Java
sklearn extra PAM Python
PyClustering PAM Python, C++

Table 3.1.: Libraries for k-medoids

20

3.2. Cluster based methods

3.2.3. The importance of initializing: k-medoids++

We mentioned various methods for updating the initially randomly selected medoids.
However, the choice of the initial medoids significantly impacts the quality of the clustering
solution and, therefore, of the chosen coreset consisting of the selected medoids. Several
heuristics have been proposed for initializing the k-medoids algorithm. Such methods
have different computational costs and performances. We mention the most relevant.
The BUILD [LK90] initialization approach was developed and proposed together with
the PAM updating procedure as an alternative to the naive random choice commonly
used with k-means. BUILD is a greedy approach initializing the medoids by iteratively
choosing the point minimizing the optimization objective in (3.2), starting with the point
for which the sum of the distances with all other points is as small as possible. Initializing
the k-medoids algorithm with the BUILD approach takes O(n2k) operations.

The work done in [EC91] integrates the “alternating” approach into the greedy BUILD
heuristic, updating the medoid of the existing clusters when the next medoid is added.
Such an algorithm called “GreedyG” can provide initial medoids for which the optimization
objective has even lower values than with BUILD and, therefore, can be considered better
distributed. Nonetheless, GreedyG still requires at least O(n2k) operations. A faster but
still effective alternative for the initialization of the medoids was developed initially for
k-means and takes the name of k-means++[AV07]. The initialization of the medoids
based on k-means++, described in Algorithm 4, consists of selecting the first medoid
uniformly at random from the available pool and then choosing the next medoids at
random with probability proportional to their distance to the nearest selected medoids.
If we assume there is a cluster of points and no medoid nearby, the probability mass of
this cluster is high, and the next medoid will likely be selected within that cluster. After
that, the presence of the new nearby medoid decreases the probability mass of the cluster.
While there are works arguing that BUILD still provides better initialization [SR19],
the procedure based on k-means++ provides points that are O(log k) competitive to
the optimal solution, that is, there are theoretical guarantees that it generates good
starting conditions. Moreover, it requires only O(nk) operations because it computes the
distances to all other points only for the k iteratively selected medoids [LPP14], thus
making it more suitable for analyzing large datasets. We refer to the k-medoids algorithm
initialized with this procedure as k-medoids++.

Another initialization strategy with a computational cost of O(nk) is the linear

Algorithm 4 k-medoids++ initialization procedure

Input: Data points DX = {x1,x2, . . . ,xn}, number of clusters k.
Output: Cluster medoids {m1,m2, . . . ,mk}.
1: Randomly choose the first medoid m1 ∈ DX with uniform probability
2: for i = 2 to k do
3: Compute the distance D(x) of each data point x to the nearest medoid

4: Choose the xi ∈ DX as the next medoid with probability D(xi)
2∑

x∈DX
D(x)2

21

3. Data Selection Via Coresets

approximation of the original PAM BUILD (LAB). LAB consists of applying the BUILD
algorithm on subsets of the data set. While [SR19] provides examples where this
initialization outperforms the one based on k-means++, no theoretical guarantee is
provided to motivate its improved effectiveness, which is supported mainly by their
experiments.

3.3. Greedy approaches

Greedy approaches are a class of selection methods that start with an empty set and
iteratively select the next points according to some deterministic principle, aiming to
optimize certain objectives. To be more specific, let us start considering a dataset
DX := {xi}ni=1 ⊂ Rd and a utility set function f : 2DX → R+, mapping subsets of DX
into some positive real value determining the utility of the subset, where 2DX represent
the collection of all possible subsets of DX . Greedy approaches are particularly useful
for solving optimization tasks involving combinatorial or discrete choices to maximize or
minimize the utility function f , that is, greedy algorithms can efficiently find solutions
to optimization problems such as

max
S⊂DX

f(S) and min
S⊂DX

f(S), (3.3)

subject to some constraint on S, e.g., a cardinality constraint. Although greedy algorithms
do not guarantee the optimal solution to the optimization problems in (3.3), they can
provide solutions that are fast to compute and sufficiently close to the optimal solution
for a wide range of problems, including NP and NP-hard problems. In some cases the fact
that greedy algorithms provide good solutions to complicated optimization problems can
even be proven mathematically. For instance, if the set function f has certain properties,
such as submodularity, it is possible to show that greedy procedures provide solutions
close to the optimal one, as we see later. We note that the greedy procedures aiming at
solving optimization problems as in (3.3), may consider data labels or label predictions
of a fixed model, as in the case of active learning [WIB15]. Nevertheless, our focus is on
optimization problems and greedy procedures that solely rely on locations of the data
points in the feature space and do not consider data labels or data label predictions.

Greedy algorithms Given a dataset DX := {xi}ni=1 ⊂ Rd, greedy algorithms start with
an initial set S0 ⊂ DX , possibly empty, and iteratively augment it. At the i-th iteration,
a point xi ∈ DX is selected according to some specific principle obtaining a set

Si = Si−1 ∪ xi. (3.4)

In general, the principle for selecting the new point xi depends on the application
and optimization problem at hand. We mention two examples of greedy procedures
for selecting the new point, where together with DX , we are provided with a utility set
function f : 2DX → R. The first greedy procedure selects, at the i − th iteration, the
point xi ∈ DX satisfying the following principle.

22

3.3. Greedy approaches

xi := arg max
x∈DX

|f(Si−1 ∪ x)− f(Si−1)|, (3.5)

Thus, this greedy procedure aims to iteratively select a new data point that, if added
to the already selected set, maximizes change in the output of the utility function. The
second greedy procedure selects the i− th point according to the following principle

xi := arg max
x∈DX \Si−1

f(x). (3.6)

In other words, it aims to select a new point among those not yet selected that maximizes
the output of the utility function f . Note that, we could perform different choices for the
iterative selection steps than those in (3.5) and (3.6). For instance, we could consider the
minimum instead of the maximum. Nevertheless, the greedy selection principles in (3.5)
and (3.6) can be employed to find solution to a large variety of interesting problems, as
we see shortly. Note also that they are independent of the specific application as they
only depend on the choice of the set function f .

Submodular function optimization problems is a class of NP-hard optimization prob-
lems that often arise in machine learning, and for which the greedy procedure in (3.5) is
guaranteed to find solutions close to the optimal [Bil22]. In the following sections, we
define submodular functions, provide examples of submodular functions that are com-
monly used to find coresets in various applications and describe the related optimization
problems. We also explain why the greedy algorithm is particularly effective in solving
these problems.

3.3.1. Optimization problems with submodular functions

In this subsection we follow along [KG14] and introduce submodularity, which is a
property of set functions f : 2DX → R, that is, functions that map subsets of a given
dataset, DX := {xi}ni=1 ⊂ Rd, into a scalar value. There are two equivalent definitions of
submodularity that we now provide

Definition 3.1 A set function f : 2DX → R is submodular if for every A ⊂ B ⊂ DX
and x ∈ DX \B it holds that

f(A ∪ x)− f(A) ≥ f(B ∪ x)− f(B). (3.7)

Equivalently, a set function f : 2DX → R is submodular if for every A,B ⊂ DX ,

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B). (3.8)

If in (3.7) and (3.8) the equality holds, then we say the set function f is modular.

In other words, the more intuitive formula (3.7) says that a function is submodular if
adding an element to a smaller set gives a larger increase in the function value compared
to adding the same element to a larger set. Thus, submodularity captures the idea that

23

3. Data Selection Via Coresets

the more points have been already selected, the less additional value each new point adds.
This is known as the diminishing return property.

Submodular functions have various useful properties that make them a very powerful
and adaptable tool for coresets selection. For instance, submodularity is preserved
under non-negative linear combinations of submodular functions, that is, if f1, f2, . . . , fm
are submodular set functions and α1, α2, . . . , αm are non-negative scalar values, then
g :=

∑m
i=1 αifi is also submodular. This property allows designing more complex

submodular functions by linear combination of simpler ones. Additionally, residuals
of submodular functions are also submodular, that is, given f : 2DX → R submodular,
disjoint sets A,B ⊂ DX , then g : 2A → R, with g(S) := f(S ∪ B) − f(B), S ⊂ A
is submodular. See [KG14] to read about other interesting properties of submodular
functions.

A subclass of submodular functions that are of particular interest to coreset selection
are those that are non-decreasing.

Definition 3.2 A set function f : 2DX → R is non-decreasing if for each A ⊂ B ⊂ DX
f(A) ≤ f(B).

Thus, non-decreasing set functions do not decrease as the argument set gets larger.
Next we provide two examples of classes of submodular non-decreasing set functions: the
weighted coverage and the facility location functions.

Weighted coverage Weighted coverage functions are among the simplest examples of
submodular functions. Let us start introducing the simpler modular weighted coverage
functions, for which the equality holds in (3.7), that is, for every A ⊂ B ⊂ DX and
x ∈ DX \B it holds that f(A ∪ x) − f(A) = f(B ∪ x) − f(B). Given a dataset DX , a
weight function w : DX → R and a set S ⊂ DX , we define a modular weighted coverage
set function f : 2DX → R as

f(S) :=
∑
x∈S

w(x). (3.9)

The weighted coverage set function in (3.9) associates to each subset of the dataset
a scalar value given by the sum of all the weights associated with the points in the
considered subset. The weight function w : DX → R, mapping data points into their
respective scalar weight, must be defined a priori and depends on the specific application.
Notice that, if the weight function is non-negative, then the modular weighted coverage
function in (3.9) is non-decreasing. The simplest example of weight function is the
constant function, e.g., w(x) = 1 for all x ∈ DX . In such a case we have that f(S) := |S|,
which is easy to verify is modular non-decreasing. More elaborate examples of weighted
coverage functions are those providing the weighted coverage of a collection of subsets of
the dataset DX . Consider a non-negative modular function f : 2DX → R+ as in (3.9), a
collection of subsets C ⊂ 2DX and subcollection D ⊂ C then the function

g(D) := f(
⋃
S∈D

S) =
∑

x∈
⋃

S∈D
S

w(x) (3.10)

24

3.3. Greedy approaches

is submodular non-decreasing. It is possible to show that g is submodular for any submod-
ular function f . Moreover, g is non-decreasing if and only if f is non-decreasing [KG14].
It is interesting to note that greedy approaches considering a weighted coverage

set function can be used to implement importance sampling techniques, discussed in
Subsection 3.1, in a deterministic fashion. Recall that, importance sampling approaches
assign weights to data points based on their relevance to the problem at hand. If the
importance weights do not change over the selection process and can be defined by a
single weight function w : DX → R, then a greedy algorithm aiming at maximizing the
weighted coverage function defined by the computed importance weights can be used to
select data points deterministically according to their importance.

Facility location Another important class of submodular functions are facility location
functions, originally designed to determine the optimal location of facilities or service
centers in order to minimize costs or maximize coverage. Given a dataset DX , a similarity
function ϕ : Rd×Rd → R+ and a subset S ⊂ DX , a facility location function f : 2DX → R
quantifies how well the selected points in S cover the entire set according to the following
principle

f(S) :=
∑

x̃∈DX

max
x̄∈S

ϕ(x̃, x̄), (3.11)

with f(∅) := 0. Given that the similarity function ϕ is non-negative, the set function
defined in (3.11) is submodular non-decreasing. It is interesting to note that if in (3.11)
we set the similarity function

ϕ(x̃, x̄) := m0 − ∥x̃− x̄∥22, (3.12)

with ∥x̃ − x̄∥22 ≤ m0 for each x̃, x̄ ∈ DX , then the problem of maximizing the facility
location function is equivalent to the k-medoids minimization problem in (3.2) [MKSK16].
Note that other choices are possible for the similarity function ϕ. For instance, the
similarity based on the Gaussian function [BCD+24], i.e.,

ϕ(x̃, x̄) := e−γ∥x̃−x̄∥22 , (3.13)

with γ hyperparameter to be fine-tuned. Facility location functions have been very
successfully employed to improve various aspects of machine learning models, such as
data-efficient training of machine learning models [MBL20, PDM22], robust training of
neural networks against noisy labels [MCL20], accelerating training process [PYM+23],
maximize accuracy performance of classifiers trained on sets of limited size [WLKB14],
and, more recently, for selecting effective datasets for fine-tuning of large language
models [BCD+24].
While we mentioned weighted coverage and facility location functions as examples

of submodular functions, there are many other submodular functions used in a wide
range of machine learning applications. For instance, entropy and mutual information,
which can be used in sensor placement problems [KSG08, SDK15], cut functions for
feature selection in text classification [KNTB09], and saturated coverage for document

25

3. Data Selection Via Coresets

summarization [LB11]. These applications all involve using a greedy algorithm to find a
subset that maximizes a submodular function. This means that submodular function
maximization problems arise in many ML areas. The underlying common denominator
of these problems is that their solutions typically yield subsets that offer greater diversity,
information, spread, or coverage [Bil22].

It is worth mentioning that also submodular minimization problems are of interest in
various applications. In particular, solving submodular minimization problems typically
leads to sets with increased homogeneity, conformity, or coherence. For instance, image
segmentation problems can be addressed via submodular function minimization [ENV17].
Consider a scenario where we analyze a dataset consisting of pixels in an image. In such
a case, we may want to select a group of pixels that represent a specific object and have
similar properties, such as color and luminance. Thus, in this case, we may be interested
in selecting a subset of the dataset that, even if large, minimizes the diversity of the
selected elements, quantified by the submodular function value. Nevertheless, in this
work, we focus on coreset strategies for training data development in ML regression, which
typically requires solving tasks such as data summarization and data compression. Thus,
we are mainly interested in selecting subsets maximizing data representation, diversity
and information. Consequently, we focus on submodular function maximization.
Note that if a function f is submodular then −f may not be. That is, submodular

maximization of a function f can not be rephrased as submodular minimization of the
function −f . The author of [Bil22] mentions that “Unconstrained submodular maxi-
mization is NP-hard (albeit approximable), and this is not surprising given that there
are an exponential number of sets needing to be considered. Remarkably, submodular
minimization does not require exponential computation, is not NP-hard, and in fact,
there are polynomial time algorithms for doing so...”. This implies that, solving submod-
ular minimization problems is generally computationally less demanding than solving
submodular maximization problems. We refer the reader to [Fuj05, Iwa07] for further
details on submodular function minimization. Next, we describe submodular function
maximization problems formally and present a result that proves the effectiveness of
greedy algorithms in providing solutions that are close to optimal.

Greedy submodular functions maximization

Typically, given dataset DX and set function f : 2DX → R, a submodular function
maximization problem takes the form

max
S⊂DX

f(S) subject to some constraint on S (3.14)

Here we consider the simpler cardinality constraint on the selected set, that is, we
require that |S| ≤ b for some budget value b ∈ N. More complicated constraints could be
applied. For instance, if the points in the dataset are associated with some categories or
classes, we could require that the selected set consists of points that are fairly distributed
among the categories. Unfortunately, even considering the simpler cardinality constraint,
the submodular maximization problem is NP-Hard [KG14].

26

3.3. Greedy approaches

Various branch and bound algorithms have been developed to address the submodular
function maximization problem [NW81, KNTB09]. However, because of the hardness of
the optimization problem in (3.14) they are not scalable to large datasets. In [NWF78],
the authors prove that the greedy procedure in (3.5) provides good approximations of the
optimal solution to the problem in (3.14) of maximizing a non-decreasing submodular
function, which is NP-Hard. In particular, they propose the following theorem

Theorem 3.1 ([NWF78]) Fix a non-negative non-degreasing submodular function f :
2DX → R+, and let {Si}i≥0 be the greedy sets defined in (3.4) selected according to the
principle in (3.5), with S0 = ∅. Then for all positive integers b and l,

f(Sl) ≥
(
1− e−

l
b

)
max

S:|S|≤b
f(S). (3.15)

In particular, for l = b, f(Sb) ≥
(
1− 1

e

)
maxS:|S|≤b f(S).

Theorem 3.1 demonstrates that greedy algorithms can effectively compute good approx-
imate solution to submodular maximization problems. The greedy algorithm considered
in Theorem 3.1 requires O(nb) evaluations of the submodular function, where n is the
size of the dataset and b is the number of points that needs to be selected. This is because
at each iteration of the algorithm, in order to perform the greedy step defined in (3.5)
and select the (i+ 1)-th point, one has to compute the function value f(Si ∪ {x}) for all
x ∈ DX that are not in Si. The cost of evaluating the submodular function may change
depending on the function considered. For instance, evaluating the quantity f(Si ∪ {x})
for the weighted coverage function in (3.9), assuming that the weights are given, has a
cost of O(1) as it simply requires to add the weight associated with the data point x to
the sum of the weights associated with the points in Si already computed in the previous
step. Alternatively, for the case of facility location functions as in (3.11), assuming that
the pairwise similarities are already provided, computing the quantity f(Si ∪ {x}) for
some Si ⊂ DX has a cost of O(n). This is because in order to evaluate the function value
one has to check for each of the n points in the dataset if the new considered point {x}
added to Si is the one that maximizes the pairwise similarity or not. Moreover, if the
similarities between the data points need to be computed before initializing the greedy
algorithm, then the overall computational effort could be higher. For example, if the
similarity between two points is based on the computation of their Euclidean distance,
then computing the similarities would cost at least O(n2).

Various approaches have been developed to make the greedy procedure for submodular
function maximization faster than its naive version considered in Theorem 3.1. Among
the most relevant of these implementations there is lazy (or accelerated) greedy [Min78],
which uses the property of diminishing returns of submodular functions to avoid re-
evaluating examples that provide little gain. Another important implementation is
Stochastic greedy [MBK+15], a randomized version of the greedy algorithm that finds
near optimum solution in time linear in the size of the dataset and independent of the
cardinality constraint. Additionally, there is GreeDi [MKSK16] a two-stage algorithm
for distributed submodular function maximization designed to work on datasets that are

27

3. Data Selection Via Coresets

too large to fit into memory. There are various libraries that can perform submodular
function optimization considering different submodular functions and greedy procedures.
Apricot[SBN20] is a peer-reviewed and widely used Python library for submodular
function optimization. Other available libraries for submodular function optimization
are SFO [Kra10] written in MATLAB and Submodlib[KRI22] in Python.

The usefulness of greedy algorithms is not restricted to submodular maximization
problems. Another group of problems that can be solved effectively and efficiently using
greedy procedures are the min-max-min problems, which we introduce next.

3.3.2. Greedy algorithms for Min-Max-Min optimization problems

Given dataset DX , a collection of set functions fi : 2
DX → R, i = 1, . . . ,m, for some

integer m ∈ N and a budget b ∈ N, min-max-min optimization problems have the form

min
S⊂DX
|S|=b

max
1≤i≤m

min
x∈S

fi(x). (3.16)

The authors of [LPW23], show that greedy procedures can be used to find good
solutions for all min-max-min problems that have smooth and strongly convex objectives.
One relevant min-max-min problem in ML applications is the k-center problem [HP11]
defined as follows

min
S⊂DX
|S|=k

max
xi∈DX

min
xj∈S

∥xi − xj∥2, (3.17)

where ∥ · ∥2 is the Euclidean norm. Note that formula (3.17) is a specific case of (3.16),
which we can obtain by setting fi(xj) := ∥xi − xj∥2 for all xi ∈ DX and xj ∈ S.

In words, the k-center problem consists of selecting k points, or centers, from a given
dataset so that the maximum distance between a point in the dataset and its closest
center is minimized. Put differently, the optimization problem in (3.17) aims to select a
set S ⊂ DX minimizing the fill distance of the selected set defined as follows

hS,DX := max
xi∈DX

min
xj∈S

∥xi − xj∥2. (3.18)

The quantity on the right-hand side of (3.18) is called the fill distance of S in DX . It
is a quantity we can associate to subsets of the dataset DX , and it indicates that any
point xi ∈ DX has a point xxxj ∈ S not farther away than hS,DX .

The concept of fill distance is not new and has been applied in various contexts
that do not involve a k-center problem. For example, it is associated with the earliest
notion of dispersion, which is used to quantify approximation errors in Quasi-Monte
Carlo optimization methods [Hla76, RT96]. Additionally, the authors of [JMY90] use
the fill distance in the context of designing computer experiments, linking it to specific
optimality criteria in experimental design under the assumption that the experiments
are generated by a Gaussian process or a similar framework. It is only more recently
that the fill distance has been used in connection with the k-center problem to assess

28

3.3. Greedy approaches

(2) (3) (4)

Figure 3.2.: Illustration of the Farthest Point Sampling iterative selection procedure.

Algorithm 5 Farthest Point Sampling (FPS)

Input Dataset DX = {xi}ni=1 ⊂ X and data budget b ∈ N, b≪ n.
Output Subset LFPS

X ⊂ DX with |LFPS
X | = b.

1: Choose x̂ ∈ DX randomly and set LFPS
X = x̂.

2: while |LFPS
X | < b do

3: x̄ = arg max
xq∈DX

min
xj∈LFPS

X

∥xq − xj∥2.

4: LFPS
X ← LFPS

X ∪ x̄.

the quality of selected sets for training predictive models in classification or regression
tasks [SS18, CG24].

Unfortunately, the fill distance minimization problem is NP-Hard [Hoc84], as the other
min-max-min optimization problems, but there is a greedy algorithm called Farthest
Point Sampling (FPS) that provides fast and effective solutions. The FPS, described in
Algorithm 5 and illustrated in Fig. 3.2, iteratively selects points from a dataset by first
choosing a random initial point. Next, in each iteration it selects the point the farthest
away from the currently chosen subset, ensuring a maximally spaced subset of points.
The following theorem shows that the FPS selects sets with fill distance at most a

factor of 2 from the minimal fill distance.

Theorem 3.2 ([HP11]) Assume O ⊂ D is a subset of cardinality b with minimal fill
distance. Then, the fill distance of a set LFPS ⊂ D, |LFPS | = b, obtained using FPS, is
at most two times the minimal fill distance, that is,

hLFPS
X ,DX

≤ 2hOX ,DX . (3.19)

FPS can be implemented using O(n) space and takes O(nb) time [HP11], where n
is the amount of points in the dataset and b is the amount of points to select. It is
worth to note that reducing the factor of approximation below 2 would require solving
an NP-hard problem [HS85]. Thus, FPS provides a suboptimal solution, but obtaining a
better approximation with theoretical guarantees would not be feasible in polynomial
time. In applications the FPS has been used as a passive and model-agnostic sampling
strategy to select training sets improving prediction performances of various machine

29

3. Data Selection Via Coresets

learning models [YK10, WLH19, SS18, CG24] or to ensure diversity in the selected
training data [CHE+21, DBB+21]. Note that, step 3 of Algorithm 5 can be accurately
modified so that the resulting algorithm can address various min-max-min problems with
robust theoretical approximation guarantees. See [LPW23] for more details about the
quality of greedy algorithmic solutions for this class of optimization problems.

3.4. A conceptual comparative analysis of coresets

We think the effectiveness of a data sampling procedure it is determined by the strategy
it implements but also by the context in which such strategy is applied. Specifically
by the relation between the underlying data distribution and the final goal of the
sampling procedure. Simply put, data selection approaches are not “good” or “bad”
a priori. For instance, in [SDF+24] the authors provide examples where the most
straightforward uniform random selection is as effective, or even outperforms, more
sophisticated active learning procedures, for training data selection for supervised ML.
Therefore, understanding and comparing the underlying principles implemented by
the various sampling methodologies and how these relate to the problem at hand is
crucial for choosing an appropriate selection method. Next, we provide a conceptual
comparative analysis of the coresets mentioned in the previous sections, such as uniform
random sampling, importance sampling, cluster-based methods, and greedy methods. We
highlight the main characteristics of the different sampling approaches and comment on
their strengths or weaknesses in relation to training data selection. We remark that, the
effectiveness of a given sampling approach is determined by the strategy it implements,
but it also strongly depends on the specific context of the application. Nonetheless, in
what follows we emphasize some general characteristics and principles of various coreset
strategies that may be useful to consider when choosing a suitable sampling technique.

Uniform sampling is fast and easy to understand and implement. It gives each data
point in a dataset an equal chance of selection, aiming for uniformity among sampled
points. However, it does not guarantee a uniform distribution across the data space. This
is a key aspect to consider in training data selection for supervised ML regression, where
we may be interested in maximizing diversity of the selected points. Fig. 3.3 shows results
of uniform random sampling on two datasets of 1000 two-dimensional points in the unit
square [0, 1]2. One dataset consists of uniformly distributed points, while the other has
150 uniformly distributed points and 850 normally distributed points clustered at the
center and enclosed in a red circle. The figure illustrates that random sampling may be
uniform over the dataset but might not accurately represent a uniform distribution across
the entire data space. If points in a dataset cluster around specific locations of the data
space, a random sampled subset may not include points in areas with lower data density,
e.g., upper-right corner of the unit square associated with uniform random sampling in
the bottom row of the figure. Alternatively, if the points are “well” distributed and the
goal is to select a subset that reflects their distribution, uniform random sampling can
be effective.

Importance sampling prioritizes the selection of data points that are more beneficial

30

3.4. A conceptual comparative analysis of coresets

Datasets consisting of
1000 two-dimensional

points in [0,1]2

Subsets of 100 points selected with :

Uniformly
distributed

points

uniformly
distributed
points and

an high-density
cluster

(enclosed in red
circle)

Uniform random
sampling k-medoids FPS

No region is distinctly under- or
over-represented

Most points are in the
high-density cluster

Figure 3.3.: Comparison of three sampling methods on two datasets shown on the left.
Each dataset contains 1000 two-dimensional points in the unit square [0, 1]2.
One dataset consists of uniformly distributed points, while the other has 150
uniformly distributed points and 850 normally distributed points, forming
a cluster in the center within a red circle. The scatter plots on the right-
hand side show that the distribution of 100 points selected through uniform
random sampling and k-medoids depends on the dataset’s point distribution.
Moreover, uniform random sampling may neglect areas with lower data
density, such as the upper right corner of the unit square. In contrast, FPS
sampling offers broader coverage of the data space, regardless of the dataset’s
distribution.

in a given context. This sampling strategy is based on a concept of importance that
must be defined a priori. Suppose we know a suitable concept of importance that we
can use to effectively rank the data points by defining importance weights. In such a
scenario, this method allows for targeted data selection that aligns with the final goal of
the sampling procedure. That is, this method is characterized by strong adaptability to
specific contexts. However, accurately determining the importance of data points can
be challenging, and incorrect estimation of the importance weights may lead to biased
selections. Therefore, the effectiveness and reliability of importance sampling strongly
depend on how well and reliably we can define a concept of importance and compute the
relative importance weights in a given context.

Cluster-based sampling typically ensures that all segments in a given dataset are
represented in the selected set. Consequently, cluster-based sampling approaches, such
as k-medoids, are particularly beneficial in scenarios where the dataset from which we

31

3. Data Selection Via Coresets

(a) Balanced clusters (b) Unbalanced clusters

Figure 3.4.: Results of k-medoids sampling on two two-dimensional datasets with k = 9
and initialized with random sampling. The blue circles are the data points
from which k-medoids selects, and the red crosses are the selected points.
(a) A balanced dataset consisting of three clusters with 100 points each.
k-medoids selected three samples per cluster. (b) Unbalanced dataset with
three clusters of different sizes, consisting of 2000, 100 and 50 points. k-
medoids selected eight points from the larger cluster and one from the
medium-sized cluster.

sample is segmented into different clusters. It is important to note that cluster-based
sampling may not be effective in scenarios where clusters have large size imbalances. For
instance, approaches similar to k-medoids, aiming at minimizing the distance between
data points in a cluster and the selected cluster center, may fail to effectively represent the
smaller clusters in the selected set. Such approaches may focus the sampling mainly on
larger clusters. Fig. 3.4 shows the results of k-medoids sampling on two two-dimensional
datasets with k = 9. Fig. 3.4a illustrates the result of the sampling from a balanced
dataset consisting of three clusters with 100 points each. k-medoids selects three samples
per cluster. That is, the selected set equally represents all the segments in the dataset.
Fig. 3.4b illustrates the result of the sampling from an unbalanced dataset with three
clusters of different sizes, consisting of 2000, 100 and 50 points. k-medoids selects eight
points from the larger cluster, one from the medium-sized one and neglects entirely the
smaller one. This simple illustrative example highlights one of the challenges that a
cluster-based approach relying on a data similarity concept may encounter. Cluster size
imbalance may lead to prioritizing sampling in the larger clusters, potentially neglecting
points in the smaller ones. Furthermore, Fig. 3.3 illustrates that, the distribution of
the points selected with uniform random sampling and k-medoids are qualitatively very
similar, independently of the underlying distribution of the points in the dataset from
which the subsets are sampled. Fig. 3.3 shows that k-medoids is less prone than random

32

3.5. More on coresets

sampling to neglect entire regions of the data space during sampling. Nonetheless, in
scenario where the data has simple distribution, such as uniform distribution, or only
one cluster, the simpler uniform random sampling might be sufficient, eliminating the
need for the added complexity of clustering approaches.

Greedy approaches are a broad category that implements intrinsically different
strategies. In this work, we primarily focus on facility location and farthest point sampling
(FPS). The strategy implemented by the facility location algorithm is determined by
choice of the similarity function considered in the optimization problem in (3.11). In
this work, we consider the similarity functions defined in (3.12) and (3.13), which are
based on a sum of Euclidean distances, and on the Gaussian function, respectively. If we
consider the similarity function in (3.12), it is possible to show that the facility location
algorithm aims to minimize the sum of the squared distances between the points in the
pool and their closest selected element, similar to k-medoids [MKSK16]. However, the
fundamental difference is that facility location is a greedy technique, while k-medoids
is based on a segmentation of the data points into clusters. FPS aims to maximize
the coverage of the data spaces by sampling aiming to maximize inter-points distances.
Fig. 3.3 shows the results of FPS sampling on two datasets of 1000 two-dimensional
points in the unit square [0, 1]2. The figure clearly shows that FPS does not tend to over
or under-represent any region of the data space, independently of the distributions of
the points in the datasets from which it samples. The comparison between FPS and
the other two strategies considered in Fig. 3.3 suggests that, FPS may behave similarly
to random sampling and k-medoids if the dataset from which it samples consists of
uniformly distributed points. But it may lead to very different results in scenarios where
the datasets include high-density clusters.

Furthermore, we note that the data dimensionality is another important factor to
consider when selecting a sampling method based on the distances between data points.
Working with high-dimensional data presents various challenges, a phenomenon known
as the “curse of dimensionality”, a term originally introduced by [Bel61]. For instance,
the intuitive concept of distance breaks down in high dimensions. This may strongly
affect the effectiveness and interpretability of the employed selection method. For more
literature on the effects of the high dimensions in ML application, we refer the reader to
[RNI10].

3.5. More on coresets

In this section we discuss two additional sampling approaches that are related to coresets:
Data twinning and single-shot batch active learning.

Data twinning. Data twinning [VJ22], focuses on partitioning datasets into statistically
similar twin sets. The primary goal of this approach is to ensure that the dataset
splits maintain statistical similarity. The original motivation of data twinning to ensure
unbiased model evaluations when one of the twin sets is used for training and the other
(typically the smaller one) for testing.

33

3. Data Selection Via Coresets

The underlying principle that drives the implementation of the twinning approach is
to minimize an energy associated to one of the two twin sets. Given a set of data points
DX := {xi}ni=1 ⊂ Rd and a data budget b ∈ N, the goal of the Twinning approach is to
select a set LX ⊂ DX of cardinality b solving the following problem

min
L̃X⊂DX
|L̃X |=b

 2

nb

∑
x∈DX

∑
x̃∈L̃X

∥x− x̃∥2 −
1

b2

∑
x̃∈L̃X

∑
x̂∈L̃X

∥x̂− x̃∥2

 (3.20)

By minimizing the quantity between the brackets, the Twinning algorithm aims to
select a set LX with a similar distribution as the set UX := {x ∈ DX | x /∈ LX } and
representative of the original dataset DX . On the one hand, the first argument of the
optimization objective in (3.20) ensures that the elements in DX are close to the selected
elements in LX , that is, the selected subset covers the dataset well in terms of proximity.
On the other hand, the second component of the optimization objective promotes diversity
within the selected subset by ensuring that the selected points are not too close to each
other.

The input to the Twinning algorithm is a dataset DX that needs to be partitioned into
twin sets, i.e., DX = LX ⊔ UX . In addition, the algorithm also takes in input and integer
value r ∈ N determining the ratio of the smaller twin set, e.g., if r = 5 than the smaller
set consists of 100

r % = 20% of the data points in DX . The output of the algorithm are
two statistically similar twin sets, LX and UX , that segment the dataset and such that
the smaller of the two sets minimizes the quantity in (3.20). For more details on the
Twinning algorithm see [VJ22].

The main characteristic of the Twinning approach for training data selection is its
ability to sample a set of data points whose distribution closely reflects that of the entire
dataset, similar to random sampling, while promoting diversity within the selected subset.
Data twinning is a passive and model-agnostic sampling strategy and therefore of interest
in this work. We use the Twinning python implementation from [VJ22] for our numerical
experiments in Section 7.2.6.

Single-shot batch active learning Single-shot (or zero-shot) batch active learners is
another class of data selection approaches that, despite being called “active learners”, we
think is part of the family of coresets strategies. More specifically, we classify them as
passive data selection strategies. The authors of [VKL19], mention that single-shot batch
active learners, similarly to coresets, aim to “select representative samples” and “there
is no label information at the time the batch of queries is determined”. Thus, they are
label-agnostic approaches. Moreover, “The advantage of zero-shot active learning is that
all queries can be computed ahead of time, and collected labels do not have to be fed
into the active learners”. That is, there is no active procedure involved in the selection
process. Thus, we classify them as passive strategies.

Similarly to our work, the theoretical results motivating the effectiveness of single-shot
active learners consist of upper bounds on the error performances of the prediction

34

3.5. More on coresets

methods. Accordingly, single-batch active learning approaches typically attempt to select
a training set in order to minimize such bounds.
However, differently from what we consider here, the relevant work related to single-

shot batch active learning selection is limited to zero-one loss functions [CWF+12], that
is, to classification tasks, or it assumes a specific class of regression models, such as L2

regularized kernel models [VKL19]. We are not aware of single-batch active learning
approaches that are model-agnostic, that is, that do not assume a specific regression
model design.
For more on state-of-the-art single-shot batch active learning, we refer the reader

to [VKL19]. Notably, in the mentioned paper, the authors theoretically and empirically
analyze three greedy single-batch active learning approaches for L2 regularized kernel
models: Minimum-maximum discrepancy, discrepancy and nuclear discrepancy. Note
that the sampling strategies from [VKL19], are based on a greedy approach requiring the
computation of the eigenvalues of a kernel matrix to be computed for each new candidate
point at each iteration of the greedy selection procedure. This is computationally very
demanding, which makes such approaches not suitable for large datasets.

35

4. Machine Learning for molecular property
prediction

In this chapter we introduce ML for molecular property prediction, which provides the
application scenario we consider for our experiments.

Predicting the properties of molecules is crucial for exploring the chemical compound
spaces [vLMT20]. Accurate prediction models can significantly reduce the cost and
time associated with experimental testing, enabling the rapid identification of promising
compounds for various applications, including drug discovery, materials science, and
chemical engineering. Traditional methods based on quantum mechanics, such as density
functional theory [CF23], while reliable, are often computationally expensive and may
not scale well with the increasing complexity and size of molecular datasets. Machine
learning (ML) offers a powerful alternative, leveraging vast amounts of data to learn
patterns and relationships that can generalize to unseen molecules.
Various datasets, molecular descriptors, and software toolkits have been developed

and made publicly available to facilitate research and the application of ML technologies
for molecular property prediction tasks. Datasets play a crucial role in training and
benchmarking ML predictive models. Notable examples include the Quantum-Machine
datasets [WRF+18], such as QM7, QM8 and QM9. Together these datasets contain
quantum mechanical calculations for hundreds of thousands of small organic molecules
and are widely used benchmarks in the research community [HvL16, LSB18, SKSF+17,
SUG21, STR+19]. Molecular descriptors represent molecular structures in a format
that machine learning models can interpret. Molecular descriptors can be based on the
molecules’ 3D geometry or only on the 2D topological structure of the molecule. Software
toolkits for quantum chemistry ML perform various tasks, including representing and
comparing molecules and developing and training ML predictive models. Such software
toolkits play a crucial role in speeding up the research development and employment of
ML technologies in this application field. Key tools include: DeepChem [REW+19], an
open-source toolkit that integrates various machine learning models and datasets specifi-
cally designed for chemical and drug discovery applications, providing a comprehensive
platform for researchers. RDKit [Lan12] is a collection of cheminformatics and machine
learning tools used for manipulating chemical data, widely adopted in the research
community. Mordred [MTKT18] is a Python library that can provide vector-valued
molecular descriptors based on the molecules’ topological information. Together, these
datasets, descriptors, and toolkits form the backbone of research and development in
machine learning for molecular property prediction, enabling significant advancements
in various scientific and industrial domains. In what follow we introduce the Molecular
descriptors, datasets, toolkits and regression models that we employ in this work.

37

4. Machine Learning for molecular property prediction

4.1. Molecular descriptors

In this work, we focus on the task of molecular property prediction, that is, given a
molecule we aim to use ML regression techniques to predict a label scalar value associated
with it, e.g., atomization energies and HOMO-LUMO gaps. To achieve this, we need to
represent molecules in a computer-readable way. More specifically, we need to represent
molecules as (multidimensional) numerical objects that we can give into input to ML
algorithms. Approaches for molecular representation are either based on the 3D geometry
of the molecules or their 2D configuration, which is characterized by their topological
structure. We describe the general principles of these molecular representations and
introduce in detail those that we use in this work.

4.1.1. Topological descriptors

The topological structure of a molecule consists of the number of atoms, the atom
types and how they are bonded together. One approach to encode the topological
structure in a computer-readable chemical notations is to represent molecules as linear
strings of symbols, similar to natural language. Notable examples of such notations
are SMILES [Wei88] and SELFIES [KHN+20]. Such approaches represent molecules as
strings providing information on the atom types and how they are bonded together, but
do not generally provide information or their 3-Dimensional representation, e.g., atom
coordinates or relative positions of the atoms. The topological information encoded in the
string representations can then be processed to obtain various numerical values associated
with each represented molecule. Such numerical values can be collected together in
vector-valued descriptors that can can be used for ML tasks. There are various software
toolkits and libraries that can be used to obtain vector-valued molecular descriptions
from string representations of the molecules. Notable examples are Mordred [MTKT18]
and PaDel-Descriptor [Yap10]. In this work we use SMILES strings and Mordred library.
SMILES descriptors are strings encoding the topological structure of the molecules
and Mordred is a library we use to obtain vector-valued molecular descriptors from
SMILES strings. On the one hand, we choose SMILES as they are an established and
widely employed tool to representing molecules. On the other hand, we choose the
Mordred library as it provides a large variety of numerical values quantifying molecular
characteristics related to the topological structure of the molecules. Moreover, Mordred
computes such numerical values fast, it is easy to use and to install. Additionally, all
direct dependent libraries in Mordred, except RDKit [Lan12] and NumPy [vdWCV11],
are coded in Python, which we use as the programming language in this work, and, at
the time of writing, is also the main programming language for ML applications.

Thus, the topological descriptors we use in this work are based on SMILES strings
and the Mordred library (Fig. 4.1), which we now introduce more in detail.

38

4.1. Molecular descriptors

CN1C=NC2=C1C(=O)N(C(=O)N2C)C

2D –Graph
(caffeine)

SMILES string

Mordred vector

(Mordred)

Topological
Descriptors

m1

m2

m3

md

...

d

Figure 4.1.: Steps to compute Mordred vector-valued molecular descriptors from the 2D
representation of the molecule. We considered caffeine for this example.

SMILES

Simplified Molecular Input Line System (SMILES) [Wei88] is a chemical notation language
that encodes molecular structures including information related to atom types, bond
types, branches, cyclic structures, disconnected structures and aromaticity. SMILES do
not represent any particular three-dimensional arrangement of the atoms. We follow
along [Wei88] and provide a description of the SMILES syntax.

Atoms are represented by their atomic symbols enclosed in square brackets. The
second letter of two-character symbols must be entered in lowercase. Elements in the
“organic subset”, B, C, N, 0, P, S, F, C1, Br, and I, may be written without brackets if
the number of attached hydrogens conforms to the lowest normal valence consistent with
explicit bonds. For example, the SMILES string C represents methane (CH4), N describes
Ammonia (NH3), and O describes water (H20). Atoms in aromatic rings are specified
by lowercase letters, e.g., normal carbon is represented by the letter C, and aromatic
carbon is represented by c. Elements not in the organic subset must be represented
with brackets. For instance, the symbol [Au] is for elemental gold. If there are attached
hydrogens or formal charges, these are always specified inside brackets. The number of
attached hydrogens is shown by the symbol H followed by an optional digit. Similarly, a
formal charge is shown by one of the symbols + or -, followed by an optional digit. If
unspecified, the number of attached hydrogens and charges is assumed to be zero for
an atom inside the bracket. Examples are [H+] proton, [OH-] hydroxyl anion, [OH3+]
hydronium cation, [Fe+2] iron cation, [NH4+] ammonium cation. The SMILES also

39

4. Machine Learning for molecular property prediction

recognizes constructions of the form [Fe+++] as being synonymous with the form [Fe+3].

Single, double, triple, and aromatic bonds are represented by the symbols -, =, #, and
:, respectively. Single and aromatic bonds may be, and usually are, omitted. Examples
are CC for ethane (CH3CH3), C=C for ethylene (CH2=CH2), O=C=O for carbon dioxide
(CO2), and [H][H] molecular hydrogen (H2).

A branch is specified by placing the symbol(s) for the branch between parentheses.
The string in parentheses is placed directly after the symbol for the atom to which it is
connected. If it is connected by a double or triple bond, the bond symbol immediately
follows the left parenthesis. Examples are CC(O)C for 2-Propanol and CC(=O)C for
2-Propanone.

SMILES uses numbers to identify opening and closing atoms in ring structures. Different
numbers are used for multiple rings. For example, in C1CCCCC1, the first carbon has
a number “1” which connects by a single bond with the last carbon which also has a
number “1”. The resulting structure is cyclohexane. Bond symbols are used before the
ring closure number for double, single or aromatic bonds.

Disconnected compounds are written as individual structures separated by a period.
For instance, [Na+].[Cl-] is the SMILES string for sodium chloride.

Aromatic structures can be described by writing the atoms in the aromatic ring in
lower case letters, for example, c1ccccc1C(=O)O for benzoic acid.

Mordred

Mordred [MTKT18] is a software application that can calculate 1613 numerical values
describing various characteristics related to the 2D molecular structure and 213 related
to the 3D configuration for a total of 1826 for each molecule. We use the Mordred
library to compute descriptors from the 2D representation of the molecules encoded in
the SMILES strings. Thus, we do not make use of the numerical values related to the 3D
configuration, which, if calculated from the molecular 2D representation encoded in the
SMILES, would output non-numerical values indicating an error has occurred during the
computation. Moreover, to work with a more compact representation, we do not consider
all the numerical values that have zero variance across the dataset.

Mordred is freely available and can be easily installed and used in the Linux command-
line interface, as a web application, or as a Python package on all major platforms, such
as Windows, Linux, and macOS.

It is important to mention that Mordred strongly relies on the RDKit library, which
provides the necessary tools for handling molecular structures, including reading SMILES
strings, parsing them into molecular objects, and preparing them for the calculation
of the numerical values. The RDKit library plays a key role in the computer-based
analysis of molecular objects and is a key tool for the development and deployment of
ML technologies in the field of chemistry.

40

4.1. Molecular descriptors

4.1.2. Geometrical descriptors

Geometrical descriptors represent molecules using information about atom types and
their position in the Cartesian space, possibly in addition to the information provided by
the 2D representation of the molecules, such as bonds and bond types between atoms.
The development of molecular descriptors based on the geometry of the molecules is a
highly studied area of research. Providing a comprehensive review of the geometrical
descriptors in the literature is outside the scope of this work. Nonetheless, we provide an
overview of such descriptors and point the readers to [HvL21] for more a more accurate
description.

Following along [HvL21], we classify geometrical descriptors into two main categories:
discrete and continuous. Discrete descriptors represent each molecule as a collection
of points (the atoms) in the Cartesian space. Notable examples include the Coulomb
Matrix (CM) [RTMvL12], which is based exclusively on atom types and their location in
the Cartesian space, and the Bag of Bonds (BoB) [HBR+15], which aims to improve the
CM representation by taking into account information related to bonds and bond types.
Various generalizations of these representations exist, such as BAML [HvL16], which
takes into account not only the bonds but also their angle and higher-order interactions
between atoms, and many-body dispersion (MBD) based representations involving two
and three body terms [PTM18]. The main advantage of discrete molecular descriptors is
that they can be computed fast. Nonetheless, they have some limitations. For instance,
they often depend on some indexing of the atoms, which is an arbitrary choice that may
affect the quality of the resulting descriptors and that may require artificial methods
to ensure atom indexing invariance. Continuous descriptors represent molecules as
continuous functions over the molecular environment in the Cartesian space and are
derived from atomic properties or spectra. Continuous descriptors can also capture long
range interaction between atoms, contrary to the discrete mainly providing information
related to the atoms’ local environment. Notable examples are the Smooth Overlap of
Atomic Potentials (SOAP) [BKC13] and Atomic Spectrum of London Axilrod-Teller-
Muto (aSLATM) [HvL20]. Continuous descriptors address the indexing problem related
to discrete ones and typically provide more effective representations. However, they are
often more expensive to compute.

Note that, while geometrical descriptors have shown to be very effective for molecular
property prediction tasks, they may not always be applied in ML applications. For
instance, if we consider a scenario in which we aim to predict the DFT-calculated atom-
ization energy of the molecules in their equilibrium geometry, to obtain the geometrical
descriptors, we would need the knowledge of the equilibrium geometry obtained via DFT
calculations that already yield the target quantity [DBB+21]. That is, to obtain the
descriptors required to set up the regression problem, we should perform calculations
that would already provide us the energy values in which we are interested, thus re-
moving the need of solving a regression problem. Nonetheless, the predictive power of
geometrical descriptors is evident and suggests that they may be able to achieve other
useful goals. Therefore, we also consider them in this work. In particular, we consider
the Coulomb Matrix (CM) as it has been considered as an essential baseline for the

41

4. Machine Learning for molecular property prediction

interpretation, analysis, and further development of various machine learning tasks in
the context of quantum chemistry [HvL21]. Next, we provide a detailed description of
the CM descriptor.

Coulomb Matrix

The Coulomb Matrix (CM) descriptor [RTMvL12] is a representation of molecular
structures used in computational chemistry and machine learning. It encodes the
geometrical and atomic information of a molecule into a numerical matrix form. Given a
molecule consisting of a collection of na ∈ N atoms, each associated with a unique index
in {1, . . . , na}, the CM is and object C ∈ Rna×na defined as

Ci,j =

{
1
2z

2.4
i if i = j
zizj

∥ri−rj∥2 if i ̸= j
(4.1)

where zi is the nuclear charge of the i-th atom, ri ∈ R3 is the coordinates vector
describing its location and i, j ∈ {1, . . . , na}. The off-diagonal entries of the matrix
represent the Coulomb repulsion between the i-th and j-th atoms, whereas the elements
on the diagonal contain a polynomial approximation of atomic energies based on the
nuclear charge [Eng14]. The Coulomb matrix is invariant to translations and rotations
of the molecule, which is essential for ensuring that the descriptor accurately reflects
the molecule’s intrinsic properties and is independent of its orientation in space. Note
that such invariance to translations and rotations is enforced by considering pairwise
inter-atomic distances ∥ri − rj∥2. The CM descriptors are not permutation invariance:
if we consider a different order for the atoms we would obtain a different descriptor.
Various approaches have been developed to preserve permutation invariance. For instance,
it is possible to preserve permutation invariance by considering the eigenvalues of the
CM, although this approach sacrifices uniqueness [Mou12, RTMvL12]. Another method
attempting to address the permutation invariance issue involves using sets of randomly
permuted CMs [MRG+13], while a third option is to sort by norms of rows [HMB+13].

Geometrical descriptors not including atom types

For some applications, molecular descriptors may not need to include information about
atom types, as for the CM, and can be solely based on the positions of the atoms.
One example of such applications is force-field predictions for a molecule along its
thermodynamic trajectory, where the objective is to predict the inter-atomic forces acting
on different conformers of the same molecule. Conformers are molecules composed of
the same atoms but with different relative positions between the atoms. One molecular
representation we can use for such tasks is the one proposed by [CTS+17], consisting, for
each molecule with na atoms, of a matrix M ∈ Rna×na defined as follows

M ij =

{
∥ri − rj∥−1

2 if i > j

0 if i ≤ j
(4.2)

42

4.2. Quantum chemistry datasets

where ri ∈ R3 is the location of the i-th atom. Such representation is invariant to
translations and rotations of the molecule but still not invariant to permutations of the
atoms.

4.2. Quantum chemistry datasets

This subsection introduces in detail the datasets we use in this work. In particular, we
introduce the QM datasets, the rMD17 and the ZINC dataset. Additionally, we also
describe the data preprocessing procedures we apply.

QM7

QM7 [BR09, RTMvL12] is a benchmark dataset in quantum chemistry consisting of
7165 small organic molecules with up to 23 atoms including 7 heavy atoms: C, N, O
and S. It includes information such as the Cartesian coordinates of the atoms in each
molecule and the atomization energy of the molecules. We use QM7 for a regression task,
where the feature vector used to describe a molecule is the Coulomb matrix [RTMvL12].
Consequently, each molecule in the QM7 is represented as an element in R529, and the
label value to predict is the atomization energy, a scalar value describing amount of
energy in electronvolt (eV) required to completely separate all the atoms in a molecule
into individual gas-phase atoms.

QM8

QM8 [RvDBR12, RHTvL15] is a curated collection of 21,786 organic molecules with up
to 8 heavy atoms (C, N, O, and F). For each of the molecules it provides the SMILES
representation [Wei88] together with various molecular properties, such as the lowest two
singlet transition energies and their oscillator strength. These molecular properties have
been computed considering different approaches. In this study we consider those values
computed with hybrid exchange correlation functional PBE0. We consider the 21716
molecules in the QM8 with unique smile representation. Next, to generate the molecular
descriptors we employ Mordred [MTKT18], a publicly available library that exploits
the molecules’ topological information encoded in the SMILES strings to provide 1826
physical and chemical features. We set to zero all the descriptor values that could not be
computed by the Mordred library and to work with a more compact representation, we
remove 530 features for which the values across the dataset have zero variance. Thus,
each molecule in QM8 is represented by a vector in R1296. Furthermore, we normalize
the features provided by the Mordred library, to scale them independently in the interval
(0, 1). The label value to predict in the regression task is the lowest singlet transition
energy (E1), measured in eV, describing the energy difference between the ground state
and the lowest excited state in a molecule. It is an important property in understanding
the electronic behavior of molecules.

43

4. Machine Learning for molecular property prediction

QM9

QM9 [RvDBR12, RDRvL14] is a publicly available quantum chemistry dataset containing
the properties of 133,885 small organic molecules with up to nine heavy atoms (C, N, O, F).
QM9 is frequently used for developing and testing machine learning models for predicting
molecular properties and for exploring the chemical space [FHH+17, RvL17, PSTM18].
QM9 contains the SMILES representation [Wei88] of the relaxed molecules, as well as their
geometric configurations and 19 physical and chemical properties. In order to ensure the
integrity of the dataset, we exclude all 3054 molecules that did not pass the consistency
test proposed by [RDRvL14]. Additionally, we remove the 612 compounds that could
not be interpreted by the RDKit package [Lan12]. Furthermore, in order to ensure the
uniqueness of data points, we exclude 17 molecules with SMILES representations identical
to those of other molecules in the dataset. Following this preprocessing procedure, we
obtain a smaller version of the QM9 dataset consisting of 130202 molecules. The molecular
representation we employ is based on the Mordred [MTKT18] library, as for the QM8
dataset. We set to 0 all the features that could not be computed by Mordred. Next,
remove 519 features for which the values across the dataset have zero variance. Thus,
each molecule in QM9 dataset is represented by a vector in R1307. When specified in the
experiments, we also normalize the computed features to scale them independently in
the interval (0, 1). The label value to predict is the HOMO-LUMO energy, measured
in eV, describing the difference between the highest occupied (HOMO) and the lowest
unoccupied (LUMO) molecular orbital energies. It is a useful quantity for examining the
molecules kinetic stability.

Revised MD17

The revised MD17 [CvL20a, CvL20b] (rMD17) is an updated version of the molecular
dynamics dataset (MD17) [UCS+21] commonly used for developing and testing machine
learning models for force-field prediction [SKSF+17, GSS+22, LWL+22]. The rMD17
consists of temporal trajectories of various small organic molecules of varying sizes and
complexity. The dataset provides information on the Cartesian coordinates, atomic
charges, and per-atom forces, that is, the force-field, of each molecule at each time step
of the molecules’ trajectories. The per-atom forces are provided in kcal

mol×Å
, where Å is

angstrom (10−10 meter). We use the rMD17 for a multivariate regression task. Using
the atoms coordinates we aim at predicting the per atom forces of the molecules over
the course of their trajectories. We consider the molecular descriptors described in
(4.2). In this work, we study the trajectories of the Benzene with 9 atoms, Uracil and
Malonaldehyde each consisting of 12 atoms. The trajectories of each of the considered
molecules consists of 100000 time steps.

ZINC

The ZINC dataset [GBWD+18] consists of approximately 250,000 molecules with up to
38 heavy atoms selected from the ZINC database [SI15], which contains over 120 million

44

4.2. Quantum chemistry datasets

purchasable organic molecules. To reduce the computational effort of our analysis, we
follow along [DJL+23] and consider a subset of the ZINC dataset. Specifically, we use a
subset of ZINC consisting of 24000 molecules that we select uniformly at random. The
molecular representation we employ is based on the Mordred [MTKT18] library, as for
the QM8 and QM9 datasets. We normalize the features provided by the Mordred library,
to scale them independently in the interval (0, 1). We set to zero all the descriptor
values that Mordred could not compute, remove the features for which the values across
the dataset have zero variance and apply PCA to reduce the dimension of the feature
vectors to 100. The label value to predict is the water-octanol partition coefficient (LogP),
describing the molecules’ solubility.

4.2.1. Underlying characteristics of the datasets

In this work, we study datasets specifically developed for molecular property and force
field prediction. Given the specificity of these datasets to the applications we consider
in this work, it is important to reflect on their underlying characteristics, as they may
impact the results of an empirical analysis.

First, we note that while the space of molecules may be very large, with more than 1060

molecules [KE04], it is intrinsically discrete. Therefore, when we represent molecules in
the QM and ZINC datasets with vector-valued descriptors in Rd, d ∈ N, it is important to
take into account the fact that each molecule is uniquely associated with one real-valued
vector, but not each real-valued vector represents a physically valid molecule. The
fact that the QM and ZINC datasets have such a ”discrete” structure may limit the
applicability of some selection strategies. For example, in this situation, the centroids
chosen with the k-means approach (described in Algorithm 1) may not be suitable as
a training set. This is because centroids can potentially be at any locations in Rd. In
particular, they could be at locations that do not correspond to any molecule in the
available datasets or to any valid molecule at all.

Note that, the rMD17 provides a different scenario. In this dataset each trajectory is
associated with a specific molecule, and the atoms of the molecule change their relative
positions at different time steps of the trajectory. While physical constraints may limit
the movements of the atoms, such movements are continuous. That is, if we consider
a specific molecule and, at each step of the trajectory, we represent a specific atom’s
location with a three-dimensional vector r = [r1, r2, r3], the entries of such vector may
vary continuously in some bounded subspace of R. That is ri ∈ Si ⊂ R for each i = 1, 2, 3.

It is important to note that all the datasets we consider arise from numerical simulations.
These simulations are based on a theoretical framework from which numerical models
describing the phenomena of interest are derived. Therefore, while the datasets we
consider represent very complex quantum mechanics phenomena, there are underlying
numerical models that produce the molecular configurations and associated properties
(labels). These numerical models are explicitly known. Thus, we can rely on some
consistency in the labeling process.
The numerical methods employed to compute the labels may be subject to errors in

approximating the true solution. Nonetheless, we can rely on the fact that all the data

45

4. Machine Learning for molecular property prediction

points’ labels are computed using some numerical method which is explicitly known and
for which an approximation error and biases are likely quantifiable. Such a reliability
of the labeling process is not always guaranteed in ML applications. There may be
applications in which labeling procedures may be affected by external factors on which we
do not have any control. Examples of such labeling procedures are laboratory experiments.
Labeling procedures based on laboratory experiments may be intrinsically less consistent
than numerical simulations, as they may be affected by several hidden variables over
which scientists do not have control. On the contrary, numerical experiments follow
clearly defined mathematical rules where all relevant variables used to compute the
solutions are known.

Simulated datasets arising from numerical experiments may consist of subcollections of
points, each generated using a distinct simulation method or the same simulation approach
but with different parameter settings. For instance, molecular datasets, such as the QM
datasets, are computed using numerical methods based on density functional theory
(DFT) [KBP96]. DFT is a quantum-mechanical modelling method for the energetic
structures of many body systems, such as atoms and molecules. DFT models the total
energy of the system as a functional of the electron density function. Different functionals
(e.g., PBE, B3LYP) offer varying levels of accuracy and computational requirements.
Thus, the same molecule can be associated with similar but different energy values
depending on the accuracy level considered. Thus, it may be possible that molecules in
a simulated dataset are labeled according to different levels of accuracy, that is, using
different numerical approaches.
In this work, we perform experiments considering scenarios where molecules within

each dataset have been labeled using the same level of accuracy. Recall that, we consider
a scenario in which we want to perform label-agnostic training data selection. That
is, we want to select training data exclusively based on their locations in the feature
space. In such a scenario, we must rely on the assumption that the labeling procedure is
reliable or at least consistent so that we can assume the existence of ground truth or,
more formally, the existence of a unique underlying map connecting the features with
the labels. The goal of the regression task is to recover such a map from the training
data. If there are data points that are mislabeled or if label values arise from different
procedures that may associate the same data point to different labels, the assumption of
a unique underlying map connecting features with the labels would be violated. This may
affect the effectiveness of the data selection procedures we employ. For instance, even if
we are able to select training data points at the optimal locations, assuming that such
optimal locations are well-defined and exist, if they are mislabeled, we would not have
the guarantee that the optimal selected points are of value for the training procedure.
On the contrary, the presence of mislabeled points may pollute the information in the
selected training set, deteriorating the performances of the resulting trained model.

46

4.3. Regression models

4.3. Regression models

In this work we use ML regression models that have been utilized in previous works for
molecular property and force field prediction tasks. Specifically, we consider kernel ridge
regression with the Gaussian kernel (KRR) [STR+19, DBB+21] and feed forward neural
networks (FNNs) [PMS+20] for molecular property prediction and the gradient-domain
machine learning (GDML) method [CTS+17] for force field prediction. KRR and FNN
are of interest to us because of their Lipschitz continuity, which is a required property to
validate the theoretical results we propose in later chapters. Next, we formally introduce
KRR, FNN and GDML regression models.

4.3.1. Kernel Ridge Regression (KRR)

Kernel regression models with the Gaussian kernel, is a class of regression approaches
successfully employed in various applications, such as molecular and material sci-
ences [DBB+21], and robotics [DFR15]. Kernel ridge regression is an ML technique that
combines the concepts of kernel methods and ridge regression to perform non-parametric,
regularized regression [DBB+21]. In this work, we use a Gaussian kernel function. Given
two data points xq,xr ∈ Rd, the Gaussian kernel is defined as follows:

k(xq,xr) := e−γ∥xq−xr∥22 , (4.3)

where γ ∈ R+ is a kernel hyperparameter to be selected through an optimization process.
Provided a training set L = {(xj , yj)}bj=1 and set of weights ααα = [α1, α2, . . . , αb]

T ∈ Rb,

the predicted label value mL,ααα(x) ∈ R associated with a data location x ∈ Rd of a new
data point is defined as follows

mL,ααα(x) :=

b∑
j=1

αjk(x,xj). (4.4)

The scalarmL,ααα(x) is the label predicted by the KRR method associated with the training
data locations {xj}bj=1 and weights ααα. The weights of a trained KRR model are learned
by solving the following minimization problem

αααL = arg min
ᾱαα

b∑
j=1

(mL,ᾱαα(xj)− yj)2 + λᾱααTKKKL ᾱαα. (4.5)

Here, KKKL ∈ Rb,b is the kernel matrix, i.e., KKKL(q, r) = k(xq,xr), and the parameter
λ ∈ R+ is the so-called regularization parameter that addresses eventual ill-conditioning
problems of the matrix KKKL. The closed-form solution to the minimization problem in
(4.5) is given by

αααL = (KKKL + λIIIb)
−1y (4.6)

where y = [y1, y2, . . . , yb]
T and IIIb the identity matrix of size b.

47

4. Machine Learning for molecular property prediction

In the experiments we perform in Chapter 7 we analyze how the performance of a
given regression model vary as the training set used to learn the weights changes. Given a
pool of unlabeled points, we consider training sets of various sizes and selected according
to different sampling strategies. To ensure that change in performance are only due to
changes of the training set, we keep the hyperparameters of the model fixed. The choice
of the KKR hyperparameters γ and λ is the result of the following optimization process:
first we perform a cross-validation grid search to find the best hyperparameter for each
training set size using subsets obtained by random sampling. Next, the average of the
best parameters pair for each training set size is used to build the final model. Note that,
we do not use an optimal set of hyperparameters for each selection strategy and training
set size. This decision is made because we aim to analyze the qualitative behavior of a
fixed model, where the only variable affecting the quality of the predictions is the selected
training set.
To address the question of the Lipschitz continuity of the KRR with the Gaussian

kernel we have the following lemma:

Lemma 4.1 The regression function provided by the trained kernel ridge regression
algorithm with the Gaussian kernel is Lipschitz continuous with respect to the absolute
difference of the predictions.

Proof. Consider the training set L = {(xj , yj)}bj=1 and set of learned weights αααL :=

[α1, α2, . . . , αb]
T ∈ Rb obtained by training the KRR on L. Then, given x ∈ Rd the

predicted label y(x) ∈ R provided the KRR approximation function can be computed as
follows:

y(x) =
b∑

j=1

αjk(x,xj) = αααT
Lkx, (4.7)

where k(x,xj) := e−γ∥x−xj∥22 , and kx := [k(x,x1), k(x,x2), . . . , k(x,xb)]
T ∈ Rb. Next,

considering x̃, x̂ ∈ X , we have

|y(x̃)− y(x̂)| ≤ |αααT
Lkx̃ −αααT

Lkx̂|
≤ ∥αααL∥2∥kx̃ − kx̂∥2

= ∥αααL∥2

√√√√ b∑
j=1

(
e−γ∥x̃−xj∥22 − e−γ∥x̂−xj∥22

)2
≤ ∥αααL∥2

√
bλk∥x̃− x̂∥2,

where λk is the Lipschitz constant of the function e−γr2 , r ∈ R+.

4.3.2. Feed Forward Neural Networks (FNNs)

Feed-forward neural networks [GBC16] (FNNs) are among the simplest deep neural
networks. Given x ∈ X the predicted label, y(x), provided by a FNN, with l ∈ N layers,
can be expressed as the output of a composition of functions, that is,

y(x) := ϕl ◦ σl ◦ ϕl−1 ◦ σl−1 ◦ · · · ◦ ϕ1(x), (4.8)

48

4.3. Regression models

where the ϕi are affine linear functions or pooling operations and the σi are nonlinear
activation functions. Following along [PMS+20], we set l = 3, consider only ReLu
activation functions and define

ϕi(x) = W ix+ bi (4.9)

where the weight matrices W i and the biases bi are learned by minimizing the mean
absolute error or the mean squared error between the true and predicted labels of the data
points in the training set, depending on the application. To learn the weight matrices
W i and the biases bi, we use the Pytorch [PGM+19] Adam optimizer with a learning
rate of 0.001, betas range (0.9, 0.999) and weight decay 0.001. We use a batch size
of 516, independently on the dataset, and consider 1000 or 250 epochs, depending on
the computational cost required for the training procedure, which is determined by the
dataset size and the dimension of the data descriptors employed. Moreover, to ensure
that the changes in performance are exclusively due to the changes of the training set,
the training procedure of the FNN is always initialized with the same set of random
weights. The Lipschitz continuity of FNN and other more advanced neural networks has
been already shown in the literature [SV18, GFPC20].

4.3.3. Gradient-Domain Machine Learning (GDML)

For force-field prediction tasks we use the gradient-domain machine learning (GDML)
method developed in [CTS+17], which we follow to introduce the main idea behind
GDML, briefly. See [CTS+17] for further information on this regression technique. In
force-field prediction tasks the label values are multidimensional. GDML aims to learn
the functional relationship

f̂F : xi → F i

between the coordinates xi ∈ R3na of the atoms in a given molecule and the per-atom
forces F i ∈ R3na . The GDML method relies on a kernel ridge regression technique
with Matern kernel functions to learn such function relationships from data. Given a
training dataset L = {(xj ,F j)}bj=1, the estimation of the function f̂F on a data point x
representing the per atom location in the Cartesian space takes the form

f̂F (x) :=
b∑

j=1

3na∑
i=1

(αj,i)
∂

∂xj,i
∇k(x,xj)

where xj = [xj,1, . . . , xj,3na]. The parameters ααα ∈ Rb×3na are learned by solving a ridge
regression type optimization problem, and the function k : R3na × R3na → R is the
employed Matern kernel function. Given that GDML is based on a differentiable Matern
kernels we expect its predictions to exhibit some regularity. However, analyzing the
Lipschitz continuity of this regression model is beyond the scope of this work.

49

4. Machine Learning for molecular property prediction

4.4. Metrics for evaluating model performance

In this section we introduce and define the metrics we consider to evaluate the perfor-
mances of the studied regression models. We consider evaluation metrics for univariate
and multivariate tasks, that is, for regression tasks with scalar and vector-valued labels,
respectively.

Before providing the formulas describing the evaluation metrics we consider in this work,
it is helpful to have an intuitive understanding of the concept of prediction quality. We
characterize prediction quality by breaking it down into two distinct concepts: robustness
and average accuracy.

Robustness refers to a model’s ability to maintain low prediction error over the entire
data space of interest, including regions of the data space that may not be represented
in the training set. One way to measure robustness is through the maximum absolute
prediction error, that is, the largest absolute difference between one label value and the
related prediction provided by the regression model. A low maximum prediction error
implies that the predictions of the considered model are accurate over the entire data
space and, therefore, robust and reliable.

Average accuracy in the context of regression models typically refers to how close the
model’s predictions are to the actual values on average across the entire dataset. One
way to measure average accuracy is to consider the mean of the predictions absolute
errors in the data space on interests. Note that, models with low average prediction error
may not be robust and still perform very poorly on some regions of the data; that is,
they may still lead to a large maximum prediction error[CG24].

4.4.1. Univariate regression

We consider three metrics to evaluate the performance of the ML methods used for
regression tasks with scalar label values: Maximum Absolute Error (MAXAE), Mean
Absolute Error (MAE) and the root mean squared error (RMSE). The MAXAE is the
maximum absolute difference between the true target values {yi}ni=1 and the predicted
values {ỹi}ni=1, that is,

MAXAE := max
1≤i≤n

|yi − ỹi|, (4.10)

where n is the number of unlabeled data points in the analyzed data pool. The MAE is
calculated by averaging the absolute differences between the predicted values and the
true target values, that is,

MAE :=
1

n

n∑
i=1

|yi − ỹi|. (4.11)

The RMSE is calculated by taking the square root of the average absolute square
differences between the predicted values and the true target values and, that is,

RMSE :=

√√√√ 1

n

n∑
i=1

|yi − ỹi|2. (4.12)

50

4.4. Metrics for evaluating model performance

The RMSE penalizes large errors more than the MAE, those providing insight on the
robustness of the predictions.

4.4.2. Multivariate regression

We consider three metrics to evaluate the performance of the ML method used for the
force-field regression tasks with vector-valued label values: the atom-wise maximum error
over the predicted forces (MAXAEF), the molecule-wise maximum MAE (MAXMAEF)
and the mean absolute error (MAEF). The MAXAEF is the maximum absolute difference
between the entries of the true target values {F i}ni=1 ⊂ R3na , describing the per-atom
forces of the analyzed molecule with na atoms, and those of the predicted values {F̃ i}ni=1 ⊂
R3na , that is,

MAXAEF := max
1≤i≤n

max
1≤j≤3na

|Fi,j − F̃i,j |, (4.13)

where F i = [Fi,1, Fi,2, . . . , Fi,3na]. The MAXMAEF is defined as follows:

MAXMAEF := max
1≤i≤n

 1

3na

3na∑
j=1

|Fi,j − F̃i,j |

 . (4.14)

Both, the MAXAEF and the MAXMAEF , are quantities we introduce to evaluate the
robustness of the predictions of a given regression model for the force-field prediction task.
The MAXAEF provides an atom-wise information on the worst case prediction error
while the MAXMAEF focuses on the molecule-wise worst case error. To evaluate the
average performance of a multivariate regression model we consider the MAEF , that is,
the average absolute differences between the predicted values and the true target values:

MAEF :=
1

3nna

n∑
i=1

3na∑
j=1

|Fi,j − F̃i,j |. (4.15)

51

5. On minimizing the training set fill
distance

In the previous chapter we saw that one of the key applications of Machine Learning
(ML) regression is to label pools of unlabeled data points for which the existing labeling
methods are too expensive in terms of computation, time, or money. To achieve this, a
subset of the unlabeled pool is labeled and used to train a regression model. The trained
model is then employed to get fast predictions for the labels of points not considered
during training. However, the effectiveness of regression models is strongly dependent on
the training data used for learning the regression parameters. Therefore, the selection of
a suitable training set is crucial for the quality of the predictions of the model. Our focus
is on selecting data points that result in a good performance for a variety of regression
models. This ansatz ensures that the labeling effort is not wasted on subsets that may
only be useful for specific learning models, classes of models, or prediction tasks.
In this chapter we are interested in a data selection strategy that maximizes model

robustness in the low data budget regime. That is, we have few points we can choose for
training and want to select them to minimize the maximum prediction error of a given
regression model over the remaining unlabeled data points in the pool. Note that the
maximum prediction error is a helpful evaluation metric in various applications, such
as those related to material science and chemistry, where the average error provides an
incomplete evaluation of the predictions of a model [SBG+20]. The authors of [VSH21],
mention the maximum prediction error among those metrics that are “key to compar-
ing the performance of different models and thus for developing guidelines and best
practices for the successful application of machine learning in chemistry”. In [ZHSK22]
and [HvLKB23], the maximum error is considered to evaluate the prediction quality of
machine learning models trained to study and explore the chemical or conformational
spaces. Moreover, the authors of [GBP+20] use the maximum error to evaluate the pre-
diction quality of Nuclear Magnetic Resonance spectroscopy parameters for 3-dimensional
chemical structures.
Specifically, in this chapter we investigate theoretically the impact of minimizing

training set fill distance through Farthest Point Sampling (FPS) for ML regression. We
show that minimizing the fill distance of the training set can reduce the maximum
expected prediction error of Lipschitz continuous regression models. Farthest point
sampling (FPS) [ELPZ94] is a well-established passive and model-agnostic sampling
strategy for training set selection, as introduced in Section 3.3.2. FPS was already
employed in various application fields, such as image classification [SS18] or chemical
and material science [DBB+21]. FPS provides suboptimal solutions to the k-center
problem [HP11], which involves selecting a subset of k points from a given set by

53

5. On minimizing the training set fill distance

minimizing the fill distance of the selected set, that is, the maximum over the distances
between any point in the remaining set and selected point nearest to it.

For classification tasks, it was shown that minimizing the fill distance of the training
set reduces the average prediction error of Lipschitz-continuous classification models with
soft-max output layer and bounded error function [SS18]. Unfortunately, these results
do not carry over to regression tasks, even for simpler Lipschitz-continuous approaches,
such as kernel ridge regression with the Gaussian kernel (KRR) or feed-forward neural
networks (FNNs). In particular, in Chapter 7 we provide examples where reducing the
training set fill distance does not significantly lower the average prediction error compared
to random selection. For regression, the concept of fill distance was already used to
obtain, under several assumptions, error bounds for the prediction error of specific model
classes, such as kernel methods based on Gaussian Process regression [WBG21]. However,
we are interested in error bounds that are model-agnostic, that is, we do not assume any
specific framework or methodology for the regression model learning process. The use of
FPS in regression has been studied in various works [YK10, WLH19, DBB+21], where
it was also argued that passive sampling strategies such as FPS are more effective than
active learning in terms of data efficiency and prediction accuracy. However, these works
lack theoretical motivation, relying only on domain knowledge or heuristics.

We derive an upper bound for the maximum expected prediction error of Lipschitz
continuous regression models that is linearly dependent on the training set fill distance.
Our theoretical analysis offers results, which set it apart from previous works. Specifically,
we extend the theoretical work of [SS18] from classification to regression, demonstrating
that reducing training set fill distance lowers the maximum prediction error of the regres-
sion model. Moreover, contrary to [YK10] and [WLH19], who studied the advantages
of using FPS for regression tasks, our findings are supported by mathematical results
providing theoretical motivation for what we show empirically, in this chapter with a
simple example, and in Chapter 7 with an extensive empirical analysis. We emphasize
that, according to our knowledge, prior research did not detect the relationship between
reducing the fill distance of the training set using FPS and decreasing the maximum
prediction error of Lipschitz continuous regression models, neither theoretically nor em-
pirically. In addition, we provide further theoretical examination to show supplementary
advantages of selecting training sets with the FPS for kernel regression models using
a Gaussian kernel. Specifically, our findings indicate that employing FPS for selecting
training sets enhances the stability of this particular category of models.

5.1. Problem definition

We now formally define the problem. We consider a supervised regression problem defined
on the feature space X ⊂ Rd and the label space Y ⊂ R. We assume the solution of the
regression problem to be in a function spaceM := {g : X → Y}, and that for any set of
weights w ∈ Rm there exists a function inM associated with it. M can be interpreted as
the space of functions that we can learn by training a given regression approach through
the optimization of its weights w ∈ Rm. Additionally, we consider an error function

54

5.2. Effects of a training set fill distance minimization approach.

l : X × Y ×M→ R+. The error function takes as input the features of a data point, its
label, and a trained regression model and outputs a real value that measures the quality
of the prediction of the model for the given data point. The smaller the error, the better
the prediction.

Furthermore, we consider a dataset D := {(xq, yq)}nq=1 ⊂ X × Y, n ∈ N+, consisting
of independent realizations of random variables (X, Y) taking values in Z := X × Y
with joint probability measure pZ . We study a scenario in which we have only access
to the realizations {xq}nq=1, while the labels {yq}nq=1 are unknown, and the goal is to
use ML techniques to predict the labels accurately and fast, recovering from data the
relation between the random variables X and Y . In supervised ML, we first label a subset
L := {(xqj , yqj)}bj=1 ⊂ D, b≪ n, with qj ∈ {1, 2, . . . , n} ∀j. We then train a regression

model mL : X → Y using a learning algorithm A(·) : 2D → Rm that maps a labeled
subset L ⊂ D into weights w ∈ Rm determining the learned function mL ∈M used to
predict the labels of the remaining unlabeled points in U := {x ∈ D such that x /∈ L}.
The symbol 2D represents the set of all possible subsets of D. In the following, we
renumber the indices {qj}bj=1 associated with the selected set L, and denote them as j,

that is, L := {(xj , yj)}bj=1. Furthermore, given a set L := {(xj , yj)}bj=1 ⊂ D we define

LX := {xj}bj=1 and LY := {yj}bj=1.

In several applications the labeling process is computationally expensive, therefore,
given a budget b ≪ n of points to label, the goal is to select a subset L ⊂ D with
|L| = b that is most beneficial to the learning process of algorithm A(·). In this chapter
we focus on promoting robustness of the predictions, that is, we want to minimize the
maximum expected error of the predictions of the labels obtained with the learned
function. Specifically, the problem we want to solve can be expressed as follows:

min
L⊂D,
|L|=b

max
x∈UX

E[l(x, Y,mL)|x], (5.1)

In other words, we aim to select and label a training set L of cardinality b, so that
the maximum expected error associated to a trained regression model mL evaluated on
the unlabeled points is minimized. We focus on model-agnostic training set sampling
strategies that have the potential to benefit various learning algorithms. In particular,
we do not optimize the data selection process to benefit only an a priori chosen class of
learning models.

5.2. Effects of a training set fill distance minimization approach.

Direct computation of the solution to the optimization problem in (5.1) is not possible
as we do not know the labels for the points. To cope with this issue, we derive an upper
bound for the minimization objective in (5.1) that depends linearly on the fill distance of
the training set. Afterwards, we describe FPS, which provides a computationally feasible
approach to obtain suboptimal solution for minimizing the fill distance.

First, let us introduce the fill distance, a quantity we can associate with subsets of

55

5. On minimizing the training set fill distance

ℎ ℒ, 𝒟

∈

∈

,

Figure 5.1.: Illustration of the concept of fill distance. The two-dimensional data points in
the figure, represented as orange or white circles, constitute a finite dataset
DX . The orange circles represent a selected subset LX ⊂ DX . The fill
distance hLX,DX of the set LX in DX can be understood as the radius of the
largest ball in Rd (with d = 2 in this example) that is centered on a data
point in DX and does not include any points from LX .

the pool of data points we wish to label. It can be calculated by considering only the
features of the data points.

Definition 5.1 Given DX := {xq}nq=1 ⊂ Rd and LX ⊂ DX , the fill distance of LX in
DX is defined as

hLX,DX := max
x∈DX

min
xj∈LX

∥x− xj∥2 (5.2)

where ∥ · ∥2 is the L2-norm. Put differently, we have that any point x ∈ DX has a point
xxxj ∈ LX not farther away than hLX,DX .

Fig. 5.1 provides an intuitive illustration of the concept of fill distance. Notice that
the fill distance depends on the distance metric we consider in the feature space. In
this work, for simplicity, we consider the L2-distance, but the following result can be
generalized to other distances.
Next, we formulate two assumptions. The first assumption concerns the data being

analyzed and the relationship between data features and labels.

Assumption 5.1 We assume that for any feature vector xq ∈ X we have that

E
[
|Y |
∣∣xq

]
:=

∫
Y
|y| p(y|xq)dy <∞ (5.3)

56

5.2. Effects of a training set fill distance minimization approach.

and that there exists ϵ ≥ 0 such that

E
[
|Y − E[Y |xq]|

∣∣xq

]
:=

∫
Y

∣∣y − E[Y |xq]
∣∣ p(y|xq)dy ≤ ϵ, (5.4)

where

p(y|xq) :=
pZ(xq, y)

pX (xq)
and pX (xq) :=

∫
Y
pZ(xq, y)dy. (5.5)

We refer to “ϵ” as the labels’ uncertainty. Moreover, we assume that∣∣E [Y |x̂]− E [Y |x̃]
∣∣ ≤ λp∥x̂− x̃∥2, (5.6)

∀ x̂, x̃ ∈ X , where λp ∈ R+.

In most applications, it is reasonable to assume that labels are finite, as measurements
or experimental outcomes typically fall within some range value. Formula (5.3) formally
ensures that for any given feature vector xq ∈ X the expected absolute value of the
associated label is finite. This assumption aligns with the practical need for models to
operate on data that has finite-valued labels. Formula (5.4) states that given a realization
X = xq, the expected absolute difference between the variable Y and its conditional
expectation, taken over the distribution of Y given xq, is bounded by a positive scalar ϵ.
In simpler words, given a data point location xq ∈ X in the feature space, its associated
label value is not fixed. Instead, it tends to be concentrated in a small region of the label
space around its conditional expected value, whose size is determined by the positive
scalar ϵ. Formula (5.4) models those scenarios where the underlying true mapping
between the feature and label spaces is either stochastic in nature or deterministic with
error fluctuations of magnitude parameterized by ϵ. The Lipschitz continuity in (5.6) is
an assumption on the regularity of the map connecting the feature space X with the
label space Y . It tells us that if two data points have close representations in the feature
space, then the conditional expectations of the associated labels are also close, that is,
elements closer in X are more likely to be associated labels close in Y.

The second assumption concerns the error function used to evaluate the performance
of the model and the prediction quality of the model on the training set. Firstly, to
formalize the notion that the prediction error of a trained model on the training set is
bounded. Secondly, to limit our analysis to error functions that exhibit a certain degree
of regularity, which also reflects the regularity of the regression model.

Assumption 5.2 We assume there exist ϵL ≥ 0, depending on the labeled set L ⊂ D :=
{(xq, yq)}nq=1 ⊂ X × Y and the trained regression model mL, such that for any labeled
point (xj , yj) ∈ L we have that

E[l(xj , Y,mL)
∣∣xj] ≤ ϵL. (5.7)

We consider ϵL as the maximum expected prediction error of the trained model mL on
the labeled data L. Moreover, we assume that for any y ∈ Y and L ⊂ D the error
function l(·, y,mL) is λlX -Lipschitz and that for any x ∈ X and L ⊂ D, l(x, ·,mL) is
λlY -Lipschitz, convex and E[|l(x, Y,mL)|

∣∣x] <∞.

57

5. On minimizing the training set fill distance

With (5.7) we assume that the expected error on the training set is bounded. Moreover,
with the Lipschitz continuity assumptions we limit our study to error functions that show
a certain regularity. However, these regularity assumptions on the error function are not
too restrictive and are connected with the regularity of the evaluated trained model as we
show in Remark 5.1. For instance, the λlY -Lipschitz regularity and the convexity in the
second argument are verified by all Lp-norm error functions, with 1 ≤ p <∞. We also
assume that E[|l(x, Y,mL)|

∣∣x] <∞ for any given x ∈ X . This assumption formalizes the
intuitive fact that, in applications, independently of the trained model and the feature
vector considered, we can expect the error function to take finite values. With that, we
formulate the main theoretical result of this chapter, which is a theorem that provides
an upper bound for the optimization objective in (5.1), depending linearly on the fill
distance of the selected training set.

Theorem 5.1 Consider random variables (X, Y), taking values in Z := X × Y with
joint probability measure pZ . Let D := {(xq, yq)}nq=1 = U ⊔L ⊂ X ×Y ⊂ Rd×R be a set
of independent realizations of (X, Y). Let mL ∈M be a regression model trained on L,
and l : X × Y ×M→ R+ an error function. If Assumptions 5.1 and 5.2 hold, then the
following result applies:

max
x∈UX

E [l(x, Y,mL)|x] ≤ hLX,DX

(
λlX + λlYλp

)
+ λlY ϵ︸︷︷︸

labels
uncertainty

+ ϵL,︸︷︷︸
max error
training set

(5.8)

where DX := {xq}nq=1 = UX ⊔ LX . Moreover, hLX,DX is the fill distance of LX in
DX , ϵ and λp are the labels’ uncertainty and Lipschitz constant from Assumption 5.1,
respectively, λlX and λlY are the Lipschitz constants of the error function, and ϵL is the
maximum expected error of the learned model predictions on the labeled set L.

Proof. First we want to find an upper bound for E [l(x̃, Y,mL)|x̃] for each x̃ ∈ UX . Recall
that, UX ⊂ X is the set of data features associated with data points in U ⊂ D. Fixed
x̃ ∈ UX , by the definition of the fill distance we know there exists xj ∈ LX such that
∥x̃− xj∥2 ≤ hLX,DX . Next, we note that

E [l(x̃, Y,mL)|x̃] =
∫
Y
l(x̃, y,mL)p(y|x̃)dy

≤
∫
Y

∣∣l(x̃, y,mL)− l(xj , y,mL)
∣∣p(y|x̃)dy + ∫

Y
l(xj , y,mL)p(y|x̃)dy

≤ hLX,DXλlX +

∫
Y
l(xj , y,mL)p(y|x̃)dy

(5.9)
where λlX is from Assumption 5.2. The second inequality in (5.9) follows from the
λlX -Lipschitz continuity of the error function and from the fact that, by how it is defined

58

5.2. Effects of a training set fill distance minimization approach.

p(y|x̃) in (5.5), we have
∫
Y p(y|x̃)dy = 1. We can bound the remaining term as follows∫

Y
l(xj , y,mL)p(y|x̃)dy ≤

∫
Y

∣∣l(xj , y,mL)− l(xj ,E [Y |x̃] ,mL)
∣∣p(y|x̃)dy

+

∫
Y

∣∣l(xj ,E [Y |x̃] ,mL)− l(xj ,E [Y |xj] ,mL)
∣∣p(y|x̃)dy

+

∫
Y
l(xj ,E [Y |xj] ,mL)p(y|x̃)dy

≤ λlY
∫
Y

∣∣y − E [Y |x̃]
∣∣p(y|x̃)dy

+λlY

∫
Y

∣∣E [Y |x̃]− E [Y |xj]
∣∣p(y|x̃)dy

+

∫
Y
E[l(xj , Y,mL)

∣∣xj]p(y|x̃)dy

≤ λlY ϵ+ λlY

∫
Y
(λphLX,DX) p(y|x̃)dy +

∫
Y
ϵL p(y|x̃)dy

≤ λlY ϵ+ λlYλphLX,DX + ϵL.
(5.10)

The second inequality follows from the λlY -Lipschitz continuity of the error function
and Jensen’s inequality, which is used to obtain the conditional expectation in the
integrand of the last term. The third inequality follows from the definition of labels’
uncertainty, the λp-Lipschitz continuity of the conditional expectation of the random
variable Y and the assumption that the expected error on the training set is bounded by
ϵL. The fourth inequality is obtained by taking out the constants from the integrals in
the second and third terms and noticing that, from the definition of p(y|x̃) in (5.5), we
have

∫
Y p(y|x̃)dy = 1. Since inequalities (5.9) and (5.10) hold for each x̃ ∈ UX , we have

that

max
x∈UX

E [l(x, Y,mL)|x] ≤ hLX,DX

(
λlX + λlYλp

)
+ λlY ϵ+ ϵL. (5.11)

Formula (5.8) provides an upper bound for the minimization objective in (5.1) that
is linearly dependent on the fill distance of the training set. Note that our derived
bound also depends on the labels’ uncertainty “ϵ”. In particular, the larger the labels’
uncertainty, the larger the bound for a fixed training set fill distance. Assuming that
the maximum error on the labeled data (ϵL) is negligible, the smaller the fill distance,
the smaller the bound for the maximum expected approximation error on the unlabeled
set, conditional to the unlabeled data locations. Although ϵL is typically considered
to be small, its presence in the formula suggests that the maximum expected error on
the unlabeled set is also dependent on the maximum error of the predictions on the
labeled set used for training, thus, on how well the trained model fits the training data.
Additionally, the connections between the bound and the regularity of the map connecting

59

5. On minimizing the training set fill distance

the features and the labels, and the chosen error function are highlighted by the presence
of the Lipschitz constants λp, λlX and λlY on the right-hand side of (5.8).

We remark that if we consider the error function to be the absolute value of the difference
between true and predicted labels, Theorem 5.1 holds for all Lipschitz continuous learning
algorithms, such as kernel ridge regression with the Gaussian kernel and feed forward
neural networks.

Remark 5.1 If the trained model mL ∈ M is λlX−Lipschitz continuous, then also
the absolute value error function is λlX−Lipschitz continuous with respect to its first
argument. To see this, fix y ∈ Y, L ⊂ D and x, x̃ ∈ X . Then we have

|l(x, y,mL)− l(x̃, y,mL)| =
∣∣|mL(x)− y| − |mL(x̃)− y|

∣∣ ≤ |mL(x)−mL(x̃)|.

Moreover, the absolute value error function is always λlY -Lipschitz with respect to its
second argument with λlY = 1. As a matter of fact, fixed x ∈ X , mL ∈M and y, ỹ ∈ Y
we have

|l(x, y,mL)− l(x, ỹ,mL)| =
∣∣|mL(x)− y| − |mL(x)− ỹ|

∣∣ ≤ |y − ỹ|.
It is worth noticing that the result in Theorem 5.1 is independent of the data dimension

in the feature space. That is, the right-hand-side of Formula 5.8 does not explicitly
include the data features dimension d ∈ N. While the independence of the data dimension
is a desirable quality of our proposed bound, in practical scenarios, the dimensionality
of the data significantly impacts the interpretability of the fill distance and, therefore,
the interpretability and effectiveness of the bound, especially when the L2 distance is
used. This issue arises due to the well-known “curse of dimensionality”. The curse of
dimensionality was first introduced by [Bel61], and it refers to the difficulties that arise
when working with high dimensional data. As mentioned in [RNI10], “One aspect of the
dimensionality curse is distance concentration, which denotes the tendency of distances
between all pairs of points in high-dimensional data to become almost equal”. In such
a scenario it is clear that the fill distance may not be a good indicator of how well the
selected training set represents the data space of interest. Thus, while the theorem
provides a dimension-agnostic bound, the practical implications of high-dimensional
spaces and the specific effects of the L2 distance metric cannot be overlooked in practical
applications. For more literature on the effects of the high dimensions in ML application
we refer the reader to [RNI10].

5.3. Selecting training sets with the farthest point sampling

Theorem 5.1 provides an upper bound for the maximum expected value of the error
function on the unlabeled data, conditional to the knowledge of the data features. Our
aim is to select a training set by minimizing such a bound. Assuming that the value
of the maximum prediction error of the trained regression model on the training set is

60

5.3. Selecting training sets with the farthest point sampling

negligible, we can attempt the minimization of the upper bound in (5.8) by solving the
following minimization problem

min
L⊂D,
|L|=b

hLX,DX , (5.12)

where D := {(xq, yq)}nq=1 ⊂ X × Y is the pool of data points we want to label, and

L := {(xj , yj)}bj=1 is the set of labeled points we use for training. The minimization
problem in (5.12) is equivalent to the k-center clustering problem [HP11]. Given a set of
points in a metric space, the k-center clustering problem consists of selecting k points, or
centers, from the given set so that the maximum distance between a point in the set and
its closest center is minimized, i.e., the fill distance of the k centers in the set is minimized.
Unfortunately, the k-center clustering problem is NP-Hard [Hoc84]. However, using the
farthest point sampling (FPS), introduced in Section 3.3.2 and described in Algorithm 5,
it is possible to obtain sets with fill distance at most a factor of 2 from the minimal
fill distance in polynomial time [HP11]. It is worth to recall that reducing the factor of
approximation below 2 would require solving an NP-hard problem [HS85]. Thus, FPS
provides a suboptimal solution, but obtaining a better approximation with theoretical
guarantees would not be feasible in polynomial time. To give a qualitative understanding
of the data efficiency of FPS, with our implementation of the FPS algorithm, it takes
approximately 70 seconds 1 to select 1000 points from the training dataset provided within
the selection-for-vision DataPerf challenge [MBY+22], consisting of circa 3.3 millions
points in R256.

5.3.1. An illustrative numerical example

To provide a more empirical understanding of our theoretical result and the effects of
minimizing the training set fill distance using FPS, we provide an illustrative example
where we empirically estimate the theoretical bound provided in Theorem 5.1 and compare
it with the computed maximum error achieved by a given regression model.

We use a set of two-dimensional data points D̂ := {xi}1000i=1 ⊂ [−1, 1]2, the function
f(xi) = xi,1×xi,2, which is the function we aim to predict from data, where xi = [xi,1, xi,2],
and a linear regression model. We consider the absolute error as error function, which is
the absolute value of the difference between the actual and predicted function evaluated
on a specific data point. We note that f(x) is Lipschitz continuous with respect to
the absolute error function in [−1, 1]2 with Lipschitz constant λp =

√
2. Moreover, the

Lipschitz constants associated with the absolute error of the predictions of a linear
regression model are λlX = ∥aL∥2 and λlY = 1, where a ∈ R2 is the vector of the weights
learned by the linear model trained on a set L ⊂ D. λlX coincide with the Lipschitz
constant of the regression model as we know from Remark 5.1. We also consider a noisy
version of the dataset, by independently adding random noise ϵi ∈ R with mean zero and
variance 0.1 to each of the data point labels yi = f(xi) for i = 1, . . . , 1000. To quantify

the amount of noise in the data we compute the data to noise ratio DTNS :=
1

1000

∑1000
i=1 y2i

1
1000

∑1000
i=1 ϵ2i

,

1We used a 48-cores CPU with 384 GB RAM.

61

5. On minimizing the training set fill distance

1% 3% 5%
Amount of training samples

1.0

1.5

2.0

2.5
M

AX
AE

FPS
RDM
TB-FPS
TB-RDM

(a) No noise

1% 3% 5%
Amount of training samples

1.0

1.5

2.0

2.5

M
AX

AE

FPS
RDM
TB-FPS
TB-RDM

(b) data-to-noise ratio: 12.5

Figure 5.2.: Results for regression task on the illustrative example dataset.(a) No noise.
(b) Noisy labels. We use a linear regression model trained on sets of various
sizes selected uniformly at random (RDM) and with FPS. The amount of
data used for training is expressed as a percentage of the available data
points. The graphs illustrate the maximum absolute error (MAXAE) of the
trained linear regression model and the data-driven estimation of theoretical
bound (TB) from (5.8) for the expected maximum error of the linear model.
The results suggest that our bound provides an effective qualitative estimate
of the expected maximum error. That is, the larger the bound the larger the
MAXAE. Moreover, using FPS leads to lower MAXAE.

which in this illustrative experiment is equal to 12.5. Moreover, we approximate the
labels’ uncertainty with the maximal noise magnitude ϵ̄ := max1≤i≤1000 |ϵi| We train
the linear model independently on subsets Li ⊂ D̂, i = 1, 2, 3, consisting of 1%, 3%
and 5% of the available data points, that is, 10, 30 and 50 points, respectively. Next,
we compute the maximum error of the predictions on the training sets,{ϵLi}3i=1, and
estimate the theoretical bounds (TB) related to each of the selected training sets and
respective trained models as follows

TB(Li,aLi) := hLi,D̂

(
∥aLi∥2 +

√
2
)
+ ϵLi + ϵ̄.

We consider both, training sets selected randomly and with FPS.
Figs. 5.2a-b illustrate the maximum error of the predictions of the linear model trained

on randomly selected training sets (in orange) and sets selected with FPS (in blue), for
the noiseless and noisy data scenarios, respectively. Moreover, Figs. 5.2a-b illustrate the
related TB (dashed lines) for each training set size and selection strategy considered.
The figure suggests that, the theoretical bound provides a qualitative estimate of the
expected maximum error that can capture the behavior of the true maximum error,
independently of the selection strategy, the training set size and whether the data is noisy
or not. Furthermore, Fig. 5.2 indicates that selecting the training set by fill distance
minimization with the FPS reduces the theoretical bound calculated according to (5.8)

62

5.4. Increased numerical stability of Gaussian kernel regression with FPS

in Theorem 5.1 and the maximum error of predictions, with respect to the randomly
selected training sets. Comparing Fig. 5.2a and Fig. 5.2b, we can see that including
noise in data increases the maximum prediction error and the theoretical error bound,
independently of the selection strategy employed. This can be expected as noise can
distort the true underlying relationship between the input features and the target variable,
making the regression task more challenging. It is also important to note that including
noise does not only affect the bound in terms of the labels’ uncertainty, but it also has
an effect of other quantities such as the maximum error on the training set and the
Lipschitz constant of the trained regression model, which is determined by the learned
weights. This is because both the maximum error on the training set and the learned
weights also depend on the label values considered in the regression task. Additionally, it
is worth highlighting that, with FPS, the maximum prediction error is flat, that is, it
converges fast to a plateau value. This is particularly evident in Fig. 5.2a where noise
is not included. It can be clearly seen that such a phenomenon may not be reflected in
our proposed bound, indicating that our theorem provides a qualitative estimate of the
maximum expected error that may be further improved. In Section 7.1.5, we empirically
investigate on three different datasets why there can be a fast decay of the maximum
expected error when using the FPS and how this is related to the data points distribution
in the feature space. Nonetheless, Fig 5.2 suggests that our proposed bound provides
an effective qualitative estimate of the expected maximum error and that reducing the
training set fill distance benefits the robustness of the trained model. This is evident
from both a theoretical perspective, as shown by the decrease in the computed value of
the theoretical bound, and from an empirical point of view, as indicated by the reduced
maximum prediction error.

5.4. Increased numerical stability of Gaussian kernel regression
with FPS

Our theoretical analysis suggests that selecting training sets by fill distance minimization
with the FPS leads to a reduction in the expected maximum error of the predictions of
Lipschitz continuous models. We note that our analysis relies on the Lipschitz continuity
assumption of the loss function, which is related to the regularity of the trained model
under consideration, as suggested by Remark 5.1. A natural question is whether we can
highlight additional benefits of using the FPS for selecting the training set by tightening
the assumption on the regularity of the regression model through the consideration
of specific regression models. In this section, we investigate the additional benefit of
selecting the training set using FPS for kernel regression models with the Gaussian kernel,
a class of regression approaches successfully employed in various applications such as
molecular and material sciences [DBB+21], or robotics [DFR15]. In particular, we see
how selecting training sets with the FPS increases the model stability for this specific
class of regression approaches.

Numerical stability in a regression approach is a key factor in ensuring the robustness
of the learning algorithm with respect to noise and therefore its reliability. A standard

63

5. On minimizing the training set fill distance

criterion for measuring the numerical stability in case of kernel regression is the condition
number of the kernel matrix, KL ∈ Rb,b. In the specific case of a Gaussian kernel we have
that KL(i, j) := e−γ∥xi−xj∥22 , γ ∈ R+. The condition number of a matrix is defined as

cond(KL) := ∥KL∥2∥K−1
L ∥2 =

λmax(KL)

λmin(KL)
, (5.13)

where λmax(KL) and λmin(KL) are the largest and smallest eigenvalues of KL, respec-
tively. The smaller the condition number, the more numerically stable the algorithm.
For high condition numbers, the numerical computations involving the kernel matrix
can suffer from amplification of rounding errors and loss of precision that can lead to
numerical instability when performing operations like matrix inversion or solving linear
systems involving the kernel matrix. Such phenomena may also lead to instability of
the predictions as small variations in the input may lead to significant variations in the
output.

To increase the model stability we aim to select a training set that leads to a kernel
matrix with a small condition number (5.13). Since the condition number can be
expressed as the ratio between the largest and smallest eigenvalues of the kernel, we
aim to select a training set that minimizes the largest eigenvalue while maximizing
the smallest eigenvalue. In the following, we recapture results related to the stability
of the kernel matrix that have been presented in [Wen04] in the context of numerical
mathematics. Our goal is to connect such results with the FPS and show that FPS can
be used to increase the stability of KRR models by reducing the condition number of the
kernel matrix. For further information and analysis on the stability of kernel matrices,
we direct the reader to [Wen04], Chapter 12. From the cited literature, we know that
the largest eigenvalue of a kernel matrix is mainly dependent on the number of points
we consider and not on how we choose them. In particular, the value of the largest
eigenvalue can be bounded as follows

λmax(KL) ≤ b max
q,r=1,...,b

|KL(q, r)|. (5.14)

Thus, the maximum eigenvalue is bounded by a quantity that depends linearly on the
number of training samples times the maximal entry of the kernel matrix. Since we are
considering Gaussian kernels, the maximal entry of the kernel is bounded. Consequently,
the value of the maximal eigenvalue grows at most as fast as the number of points we
select, independently of how we choose them.

On the contrary, the value of the smallest eigenvalue is strongly dependent on how we
choose the training points. To study that, we use the separation distance, a quantity we
can associate to subsets of our pool of unlabeled data points.

Definition 5.2 Given set LX := {xj}bj=1 ∈ Rd, the separation distance of the points in
LX defined as

sLX :=
1

2
min

xq ,xr∈LX
q ̸=r

∥xq − xr∥2.

64

5.4. Increased numerical stability of Gaussian kernel regression with FPS

In words, the separation distance is half the minimal distance between two points in LX .
Given a training set L ⊂ D we define sLX to be its separation distance.

With the concept of separation distance in mind, we observe that the value of the
smallest eigenvalue of the Gaussian kernel matrix can be bounded from below as [Wen04]

λmin(KL) ≥ Cd

(√
2γ
)−d

e

−40.71d2

(s2LX
γ)
s−d
LX
, (5.15)

where d ∈ N is the training data dimension, which is fixed, γ ∈ R+ is the Gaussian
kernel hyperparameter, representing the width of the Gaussian, and sLX ∈ R+ is the
training set separation distance. It is important to notice that the lower bound of the
smallest eigenvalue decreases exponentially as the separation distance of the selected set
decreases. Consequently, given two training sets of the same size, a small difference in
their separation distance may lead to a large difference between the smallest eigenvalue
of their corresponding kernel matrices, thus also in condition number and model stability.
We note that the inequality in (5.15) applies to the minimum eigenvalue of the Gaussian
Kernel specifically. It is interesting to know that [Wen04, Theorem 12.3] provides a more
general lower bound for the minimum eigenvalue, depending on the separation distance,
that applies to all kernels that can be characterized by an even conditionally positive
definite function that possesses a positive Fourier transform, including the Gaussian
kernel.

Given Formula (5.15), in order to increase the model stability of the kernel regression
approach with Gaussian kernel, we aim to select a training set that solves the following
NP optimization problem

max
L⊂D
|L|=b

sLX . (5.16)

Interestingly, the FPS provides sets with separation distance at most a factor of 2 from
the maximal separation distance [RRT94]. Specifically, given Q ⊂ D such that

Q ∈ arg max
L⊂D
|L|=b

sLX .

Then, the separation distance of a set LFPS ⊂ D, |LFPS | = b, obtained using FPS, is at
least the half of the maximal separation distance, that is,

1

2
sQX ≤ sLFPS

X
.

Moreover, to obtain an approximation factor better than 2, an NP problem must be
solved [RRT94]. Thus, the FPS provides the solution with optimal approximation factor
in polynomial time to both the problems in (5.12) and (5.16). Consequently, when we
consider kernel regression approaches with the Gaussian kernel, selecting the training set
with the FPS leads to more robust and stable models

65

5. On minimizing the training set fill distance

5.5. Alternatives to the fill distance

The fill distance is a scalar that measures how well a subset represents the dataset from
which it is selected. From Definition 5.1, the fill distance of a set LX in DX can be
understood as the radius of the largest ball in Rd that is centered on a data point in
DX and does not include any points from LX (Fig. 5.1). In what follows, we see how
the concept of dispersion generalizes the notion of fill distance by considering other
d-dimensional shapes instead of balls.
The concept of dispersion, introduced by [Hla76], was initially used to quantify error

estimates in numerical approximation procedures, such as, estimating the maximum
value of a function within the unit cube. The notion of dispersion originally coincided
with the definition of the fill distance of a point set within the d-dimensional cube. Over
time, the concept of dispersion evolved and was expanded, particularly in the context of
Quasi-Monte Carlo methods [RT96].

Dispersion is typically defined for the unit cube Qd := [0, 1]d [LL22]. Let us define the
set

Rd :=
{ d∏

i=1

Ii | Ii := [ai, bi) ⊂ [0, 1]
}
. (5.17)

Rd is the set of all axis-parallel boxes within Qd. Suppose P is a finite subset of Qd. The
dispersion of P is defined as

disp(P) := sup{Vold(B) | B ∈ Rd, B ∩ P = ∅}, (5.18)

where Vold(B) :=
∫
B dx is the d-dimensional volume of B. Thus, the dispersion is the

size of the largest axis-parallel box within Qd that contains no points from P . The
definition of dispersion can be further generalized. For example, instead of computing
the volumes of the boxes with the Lebesgue measure, one could consider a probability
measure p on Qd, that is, Vold(B) =

∫
B p(x)dx. Similarly, the family of subsets Rd could

be replaced with any family of measurable subsets of Qd with respect to p [RT96].
To apply the concept of dispersion based on axis-parallel boxes to training data

selection, some challenges arise. These challenges stem from the fact that, in practice, we
often work with a finite dataset DX := {xi}ni=1 in an unknown space X ⊂ Rd, which may
not be bounded, rather than within a unit cube. The goal is to represent the dataset
DX with a subset LX ⊂ DX . One way to address this issue is to redefine the family of
axis-parallel boxes Rd to ensure their centroids lie within DX . That is, we can consider

R̃DX :=
{ d∏

j=1

Ik | Ik := [ak, bk] ⊂ R such that ∃ x ∈ DX with xk :=
bk − ak

2

}
(5.19)

and define the dispersion of a set LX ⊂ DX as

d̃isp(LX ,DX) := sup{Vold(B) | B ∈ R̃d, B ∩ LX = ∅}. (5.20)

The scalar in (5.20) represents the volume of the largest axis-parallel box in Rd with its
centroid in DX that does not include any point from LX . This provides a measure of how

66

5.5. Alternatives to the fill distance

effectively the selected set LX covers DX . A smaller value of dispersion indicates better
coverage of DX by LX . Therefore, given a data budget b ∈ N, we can select a training
set by minimizing the value in (5.20). This can be achieved by solving the following
optimization problem:

min
LX⊂DX
|LX |=b

d̃isp(LX ,DX). (5.21)

In principle, we can define d̃isp(LX ,DX) considering more general shapes than axis-
parallel boxes. Exploring alternative shapes and examining their theoretical and practical
implications could lead to more reliable metrics than the fill distance for evaluating
coverage and enhancing the representativeness of selected subsets. We remark that
the concept of fill distance can be related to the concept of dispersion based on ball
radii instead of volumes. The curse of dimensionality makes concepts of space coverage
based on ball radii less effective or meaningful. In high dimensions, the volume of a ball
becomes increasingly concentrated near its surface, making the fill distance (radius-based
dispersion) less informative about space coverage. This is also one of the facts that led
the Quasi-Monte Carlo community to generalize the concept of dispersion to make it
more effective and useful in high-dimensional domains. Future research should focus on
extending our findings related to fill distance to various concepts of dispersion.
Note that there may be alternatives to the fill distance other than the concept of

dispersion. In this work, we use the concept of fill distance based on the L2 metric. We
may choose to consider different distance metrics or concepts of similarity between data
points. One notable alternative, which we do not explore in this study, is the density
connectivity distance (dc-distance) developed in [BDH+23]. The dc-distance measures
the similarity between two data points based on the L2 distance while also accounting for
the overall density distribution of the points. As we see in the next chapter, incorporating
data density information into the sampling process may allow the sampling procedure to
go beyond only reducing the MAXAE and also improving MAE performances.

67

6. On minimizing a training set weighted fill
distance

In the previous chapter we focused on the low data budget regime scenario. The goal
was sampling points to improve the robustness of regression models by prioritizing the
performance improvement on the worst-case scenarios. That is, minimizing the maximum
prediction error rather than optimizing for average performance. We derived an upper
bound for the maximum expected prediction error of Lipschitz continuous regression
models that is linearly dependent on the training set fill distance. Moreover, we provided
a first example where minimizing the training set fill distance with the FPS significantly
reduces the maximum error of the label predictions of a linear regression model.
In this chapter we focus on the medium data budget regime scenario. In particular,

we aim to develop a data selection strategy to select training sets that can improve the
average prediction quality of ML regression models. We intend to do that by selecting
training sets that can capture the distribution of the data in our pool of interest, while
ensuring that the whole data space is represented in the training set. To achieve this, we
propose a passive sampling, model-agnostic data selection strategy we name “Density-
Aware Farthest Point Sampling” (DA-FPS). Our proposed strategy greedily selects sets
from a pool of available data points. The primary goal of DA-FPS is selecting training sets
that can improve the average prediction performance of Lipschitz continuous regression
models on the new points not considered for training. DA-FPS starts analogously to
FPS, iteratively sampling data points at a maximal distance from those already selected.
However, contrary to FPS, after selecting a portion of the data pool, DA-FPS also
considers the underlying data source distribution during the sampling process. This
is done by considering weighted distances, where the weights depend on the selected
set and enclose information related to the distribution of the selected training points
in relation to the distribution of the data points in the available pool. The weights we
use to deform the distances, which we later formally define, take higher values in those
regions that are not properly represented by the training data distribution, that is, where
the training data distribution underestimates the data source distribution. Note that,
since the weights we consider depend on the selected set they dynamically change as the
selected set changes.
We derive an upper bound for the expected prediction error of Lipschitz continuous

regression models on data arising from a fixed source distribution. Our derived bound is
linearly dependent on the weighted fill distance, that is, the maximum weighted distance
between a point in the feature domain of interest and its closest selected point. We prove
that our proposed algorithm, DA-FPS, provides suboptimal minimizers for a data-driven
estimation of the weighted fill distance, thereby attempting to minimize our derived

69

6. On minimizing a training set weighted fill distance

bound.

We are not aware of any other passive and model-agnostic sampling strategy supported
by theoretical work that aims at improving the average prediction error of the predictions
of a regression model. Furthermore, we are not aware of any approach, other than
DA-FPS, that can provide suboptimal minimizers to the weighted k-center problem with
dynamics weights as we later define it.

6.1. Problem definition

Recapturing the setting introduced in the previous chapter, we focus on a supervised
regression problem defined on the bounded spaces X ⊂ Rd and Y ⊂ R determining the
feature and label space, respectively. We assume the solution of the regression problem
to be on a function spaceM := {g : X → Y}. That is, for each set of weights w ∈ Rm

we learn by training a given learning algorithm there exists a function inM associated
with it. Additionally, we consider an error function l : X × Y ×M→ R+.

Let D := {(xi, yi)}ni=1 be a pool of available data points consisting of i.i.d. realizations
of two random variables X and Y taking value on X and Y, respectively, with joint
distribution pD ∈ P := {p : X × Y → R+|

∫
X×Y p(x, y)dxdy = 1}. Our objective is to

select and label a training set L := {(xij , yij)}bj=1 from D, with ij ∈ {1, . . . , n} ∀j, and
b≪ n, to maximize the average predictive performance of a regression model mL ∈M,
trained on L, on the new data points not selected for training. In the following, without
loss of generality, we assume L := {(xj , yj)}bj=1 and define LX := {xj}bj=1. Following
along [WY15], we consider a scenario where the training data is selected according to a
distribution pL ∈ P with pD ≠ pL and pD(y|x) = pL(y|x). In other words, the training
data distribution may differ from the data source distribution, but the map connecting
a data location x ∈ X and its associated label value is independent on how the data is
selected. Furthermore, we study a typical scenario involving molecular prediction tasks
in which the data source distribution pD is unknown, and we have only access to the
locations DX := {xi}ni=1 of the dataset D. Moreover, we are interested in applications in
which the labeling process is computationally expensive, therefore, given a budget b ∈ N
of points to label, the goal is to select a subset LX ⊂ DX and label it to obtain a subset
L ⊂ D that solves the following optimization problem:

min
L⊂D,
|L|=b

EpD [l(X, Y,mL)], (6.1)

In other words, we aim to sample and label a training set L, of cardinality b, so that the
expected error on the data distribution pD associated with the regression function mL is
minimized.

Both the optimization problems in (5.1) and (6.1) focus on minimizing an expected
value of the error function by selecting a subset L from a set of available data points
D. The key distinction lies in their objectives: in (5.1), the goal is to minimize the
maximum expected error over a finite set of known data locations. In contrast, in (6.1),

70

6.2. Bound for the expected prediction error

the objective is to minimize the average error, defined as the expected value of the error
function over the data source distribution pD on X × Y.
In (6.1), an alternative version of the problem could involve minimizing the average

expected error over a finite set of data points with known data locations. We decide to
address the more general version by considering the expected error over a data distribution
pD defined on X ×Y , which may be non-finite sets. Addressing the more general problem
requires modifications to the formulation of the problem setting. For instance, we now
assume the error function is evaluated on the non-zero support of pD, which may contain
an uncountable number of points. In particular, the feature space X may be non-finite.
Thus, given the data point locations of a finite training set LX ⊂ X if we want to use a
notion of coverage based on pairwise distances between data features of points in LX
and those in X ⊂ Rd, we must assume X is bounded. For example, if the fill distance
hLX ,X := supx∈X minxj∈LX ∥x− xj∥2 is used, X must be bounded to ensure it is finite.

6.2. Bound for the expected prediction error

The optimization problem in (6.1) cannot be solved directly because the labels of the
points in D and the data source distribution pD are unknown. To address this challenge,
we establish an upper bound for the optimization objective in (6.1), depending linearly
on a weighted fill distance of the training set. Subsequently, we introduce Density-Aware
Farthest Point Sampling (DA-FPS), a novel data selection algorithm aiming at selecting
training sets that can minimize the proposed bound. First, we define the weighted fill
distance, a quantity we can associate with finite subsets of the feature space X selected
from pXL , which is the marginal on X of a distribution pL ∈ P, which we call training
data distribution.

Definition 6.1 Consider X ⊂ Rd bounded and LX = {xj}bj=1 ⊂ X , set of locations
of data points sampled from pXL, marginal on X of a distribution pL ∈ P. Moreover,
consider pXD marginal on X of a distribution pD ∈ P. We define the weighted fill
distance of LX in X with respect to pXD as

WLX,X (pXL ||pXD) := sup
x∈X

min
xj∈LX

∥x− xj∥2ψLX (x), (6.2)

where ∥ · ∥2 is the L2-norm and the weight function ψLX : X → R is defined as

ψLX (x) :=

{
1− pXL (x)

pXD (x) if pXD(x) ̸= 0

0 otherwise
(6.3)

with pXL(x) :=
∫
Y pL(x, y)dy and pXD(x) :=

∫
Y pD(x, y)dy.

The weighted fill distance depends on the distance metric and on how we define the
weight function ψLX . Here, the L2-distance is considered, but the following results can be
generalized to other distances. Moreover, we make a specific choice for the weight function
ψLX , aiming to take into account the relationship between pXD and pXL . The weight

71

6. On minimizing a training set weighted fill distance

function has higher positive values in regions of the feature space where the marginal
of the training data distribution (pXL) underestimates the marginal of the data source
distribution (pXD). On the contrary, it has lower negative values where pXL(x) > pXD(x).
Note that the weighted fill distance is non-negative as we show in the following remark.

Remark 6.1 The weighed fill distance defined in (6.2) is non-negative.

Proof. In the definition of the weighted fill distance in (6.2) the distances are by definition
non-negative. Therefore, it is enough to show that there always exists a point x ∈ X such
that pXD(x) ≥ pXL(x), that is, there always exists a point where the weight function is
non-negative. Let us proceed by contradiction. Let us assume that ∀x ∈ X we have that
pXD(x) < pXL(x). Next, let us note that

∫
X pXL(x)dx =

∫
X pXD(x)dx = 1, which follows

from the fact that both, pXD and pXL are probability distributions on X . However, by
our assumption we have that

1 =

∫
X
pXD(x)dx <

∫
X
pXL(x)dx = 1,

which is a contradiction.

Moreover, the weighted fill distance is zero only in two scenarios: First, if pXD(x) =
pXL(x) ∀ x ∈ X . In this case, the weight function would always be zero. Second,
in the case that LX contains all the points in the non-zero support of pXD where
pXD(x) > pXL(x), that is, {x ∈ X such that pXD(x) ̸= 0 and pXD(x) > pXL(x)} ⊂ LX .
Simply put, the weighted fill distance considers both point distances and distributional
differences, and it provides a way to quantify how well the features of points in LX
selected from pXL represent the underlying distribution of data points features arising
from pXD .

We use Assumption 5.1 and Assumption 5.2 from Chapter 5 for our theoretical analysis.
In particular, we consider the assumptions to be valid also for pD and pL. Recall that,
the first assumption states that given the data feature location X = xi, the associated
label value, yi, is close to the conditional expected value of the random variable Y at
that location. This assumption models scenarios where the true feature-label relationship
is stochastic or deterministic but subject to random fluctuations with a magnitude
parameterized by a fixed scalar ϵ. Further, a Lipschitz continuity assumption relates to
the smoothness of the map connecting X and Y. It implies that when two data points
are closer in X , their corresponding labels tend to be closer in Y . The second assumption
essentially states that the expected error on the training set is bounded and that standard
regularity assumptions on the error function and the model hold in the form of Lipschitz
continuity. With that, we are able to establish an upper bound for the optimization
objective in (6.1).

Theorem 6.1 Consider random variables (X, Y) taking value on X ×Y ⊂ Rd×R, with
X bounded, data source distribution pD ∈ P, labeled dataset L := {(xj , yj)}bj=1 arising
from training data distribution pL ∈ P, regression model mL ∈ M trained on L, and

72

6.2. Bound for the expected prediction error

error function l : X × Y ×M→ R+. If Assumptions 5.1 and 5.2 are fulfilled, then we
have that

EpD [l(X, Y,mL)] ≤ CWLX,X (pXL ||pXD) + λlY ϵ︸︷︷︸
labels

uncertainty

+ ϵL︸︷︷︸
max error
training set

+EpL [l(X, Y,mL)]︸ ︷︷ ︸
expected error

training distribution

(6.4)
where C :=

(
λlX + λlYλp

)
. λp Lipschitz constant and ϵ labels’ uncertainty from Assump-

tion 5.1. λlX and λlY are Lipschitz constants of the error function from Assumption 5.2. ϵL
is the maximum error of mL on the training set, from Assumption 5.2. WLX,X (pXL ||pXD)
weighted fill distance defined as in (6.2). Moreover, pXD and pXL are the marginals of pD
and pL, respectively, defined on X .

Proof. First, let us notice that

EpD [l(X, Y,mL)]

= EpD [l(X, Y,mL)]− EpL [l(X, Y,mL)] + EpL [l(X, Y,mL)]

=

∫
X
E [l(x, Y,mL)|x] pXD(x)dx−

∫
X
E [l(x, Y,mL)|x] pXL(x)dx+ EpL [l(X, Y,mL)]

≤
∫
X ,

pXD≥pXL

E [l(x, Y,mL)|x] (pXD(x)− pXL(x)) dx+ EpL [l(X, Y,mL)] .

(6.5)

Note that in (6.5) the expectation E [l(x, Y,mL)|x] is independent of pD and pL. This
is because, as mentioned in Section 6.1, we consider a scenario where pD may differ
from pL but the map connecting a data location x ∈ X and its associated label value is
independent on how the data is selected, that is, pD ≠ pL and pD(y|x) = pL(y|x). In
what follows we define p(y|x) := pD(y|x) = pL(y|x). Next, fixed X = x̃ ∈ X , we want
to bound E [l(x̃, Y,mL)|x̃]. To do that we use a result from the proof of Theorem 5.1:
For fixed x̃ ∈ X and xj ∈ LX we have

E [l(x̃, Y,mL)|x̃] =
∫
Y
l(x̃, y,mL)p(y|x̃)dy

≤
∫
Y
|l(x̃, y,mL)− l(xj , y,mL)| p(y|x̃)dy +

∫
Y
l(xj , y,mL)p(y|x̃)dy

≤ ∥x̃− xj∥2λlX +

∫
Y
l(xj , y,mL)p(y|x̃)dy

(6.6)

The second inequality in (6.6) follows from the λlX -Lipschitz continuity of the error
function. We can bound the remaining term as follows∫

Y
l(xj , y,mL)p(y|x̃)dy

73

6. On minimizing a training set weighted fill distance

≤
∫
Y
|l(xj , y,mL)− l(xj ,E [Y |x̃] ,mL)| p(y|x̃)dy

+

∫
Y
|l(xj ,E [Y |x̃] ,mL)− l(xj ,E [Y |xj] ,mL)| p(y|x̃)dy

+

∫
Y
l(xj ,E [Y |xj] ,mL)p(y|x̃)dy

≤λlY
∫
Y
|y − E [Y |x̃]| p(y|x̃)dy

+ λlY

∫
Y
|E [Y |x̃]− E [Y |xj]| p(y|x̃)dy

+

∫
Y
E[l(xj , Y,mL)

∣∣xj]p(y|x̃)dy

≤λlY ϵ+ λlY

∫
Y
(λp∥x̃− xj∥2) p(y|x̃)dy +

∫
Y
ϵL p(y|x̃)dy

≤λlY ϵ+ λlYλp∥x̃− xj∥2 + ϵL.

Similarly to the proof of Theorem 5.1, the second inequality follows from the λlY -Lipschitz
continuity of the error function and Jensen’s inequality, which is used to obtain the
conditional expectation in the integrand of the last term. The third inequality follows
from the definition of labels’ uncertainty, the λp-Lipschitz continuity of the conditional
expectation of the random variable Y and the assumption that the expected error on
the training set is bounded by ϵL. The fourth inequality is obtained by taking out the
constants from the integrals in the second and third terms and noticing that, from the
definition of p(y|x̃), we have

∫
Y p(y|x̃)dy = 1.

By taking the minimum over xj ∈ LX we get

E [l(x̃, Y,mL)|x̃] ≤ min
xj∈LX

∥x̃− xj∥2
(
λlX + λlYλp

)
+ λlY ϵ+ ϵL. (6.7)

Next, we define C :=
(
λlX + λlYλp

)
and apply (6.7) to (6.5). Consequently, we have

EpD [l(X, Y,mL)]

≤
∫
X ,

pXD≥pXL

(
min

xj∈LX
∥x− xj∥2C + λlY ϵ+ ϵL

)
(pXD(x)− pXL(x)) dx+ EpL [l(X, Y,mL)]

=

∫
X ,

pXD≥pXL

min
xj∈LX

∥x− xj∥2C (pXD(x)− pXL(x)) dx

+

∫
X ,

pXD≥pXL

(
λlY ϵ+ ϵL

)
(pXD(x)− pXL(x)) dx+ EpL [l(X, Y,mL)]

74

6.2. Bound for the expected prediction error

≤
∫
X ,

pXD≥pXL

min
xj∈LX

∥x− xj∥2C (pXD(x)− pXL(x)) dx

+ (λlY ϵ+ ϵL)

∫
X
pXD(x)dx+ EpL [l(X, Y,mL)]

≤
∫
X ,

pXD≥pXL
pXD>0

min
xj∈LX

∥x− xj∥2C
(
1− pXL(x)

pXD(x)

)
pXD(x)dx+ (λlY ϵ+ ϵL) + EpL [l(X, Y,mL)]

≤ C sup
x∈X

(
min

xj∈LX
∥x− xj∥2

(
1− pXL(x)

pXD(x)

))
+ λlY ϵ+ ϵL + EpL [l(X, Y,mL)]

= CWLX,X (pXL ||pXD) + λlY ϵ+ ϵL + EpL [l(X, Y,mL)] .

The last inequality follows from taking the supremum over x ∈ X , taking the constant
terms out of the integral and noticing that

∫
X ,

pXD≥pXL
pXD>0

pXD(x)dx ≤
∫
X
pXD(x)dx = 1.

Theorem 6.1 provides a qualitative upper bound for the expected value of the error
function on the data source distribution pD depending linearly on the weighted fill
distance of the selected training set. Our goal is to design a training data distribution
marginal pXL and sample a training set LX to attempt to minimize the only component
of the bound that does not involve the data labels and that we can attempt to estimate
before training a regression model: the weighted fill distance.
Note that, the bound in (6.4) depends on four main quantities: the maximum er-

ror on the training set (ϵL), which we can only compute after training a regression
model, the label uncertainty (ϵ), the expected error on the training data distribution
(EpL [l(X, Y,mL)]), which we may not know or be able to compute, and the weighted
fill distance, which contrarily to the previous three quantities does not depend on the
data labels. The expected error on the training data distribution and the maximum
error on the training set indicate that the bound also depends on how well the unknown
trained model fits the training data distribution. We do not consider minimizing these
quantities because we can not estimate them without training a regression model. We are
considering a passive and model-agnostic sampling scenario where we have no knowledge
about the data labels and the regression model at the time of selection. In what follows,
we work under the general assumption that the employed trained model works well on
the training data and these quantities to be negligible. A similar assumption has been
considered in previous work [JKW+23]. Note that, under these assumptions, the smaller
the weighted fill distance of the selected training set, the smaller the bound for the
expected approximation error on data from the source distribution pD.
Intuitively, a sampling procedure aiming at selecting training sets by minimizing the

weighted fill distance should consider how each data point in X influences its value and
select those that minimize it. From (6.2), we know that for each x ∈ X the weighted

75

6. On minimizing a training set weighted fill distance

fill distance considers two quantities: the value of the weight function, ψLX (x), and
the data point’s distance to its closest selected point in LX . For each data point, the
distance to its nearest selected point in LX tends to be smaller in regions where pXL has
higher values. This is because the points in LX are drawn from pXL . Consequently, LX
is more likely to include data points from regions of the feature space where pXL is larger,
thereby reducing the distance factor for points in those areas. Furthermore, the weight
function ψLX (x) (defined in (6.3)) takes higher values in regions of the feature space
where pXL(x) ≤ pXD(x). As a result, the weighted distances tend to be larger in regions
where pXL(x) ≤ pXD(x) and that are not well represented by the points in the selected
set LX . Since the weighted fill distance is defined as the supremum of these weighted
distances, a sampling procedure that seeks to minimize it should either include in the
training sets data points where pXL(x) ≤ pXD(x) or consider a training data distribution
that assigns to them greater importance.

In the next section we propose one possible sampling approach attempting to minimize
the weighted fill distance of the selected set.

6.3. Density-Aware Farthest Point Sampling (DA-FPS)

In this section we design a data selection procedure aiming at minimizing the weighted
fill distance of the selected set: WLX,X (pXL ||pXD). Unfortunately, given a set LX ⊂ X ,
its associated weighted fill distance can not be directly computed as the weights explicitly
depend on pXD , and we are considering scenarios in which we do not know the data
source distribution pD, and therefore its marginal, pXD . Still, we have access to a set
DX = {xi}ni=1 of unlabeled data points arising from pXD . Thus, we first compute an
estimation p̂XD of pXD from the unlabeled set DX . Subsequently, we select a training set

Algorithm 6 Density-Aware Farthest Point Sampling (DA-FPS)

Input Dataset DX = {xi}ni=1 ⊂ X , data budget b ∈ N, neighborhood size k ∈ N, with
b, k ≪ n. Set LX ⊂ DX with |LX | ≪ b, u ∈ N with u < b
Output Subset LX ⊂ DX with |LX | = b.

1: if LX = ∅ then
2: Choose x̂ ∈ DX randomly and set LX = {x̂}
3: while |LX | < b do
4: if |LX | < u then

5: x̄ = arg max
x∈DX

[
min

xj∈LX
∥x− xj∥2

]
.

6: else
7: Compute ωk

LX
(x) ∀ x ∈ DX \LX as in (6.11).

8: x̄ = arg max
x∈DX

[
min

xj∈LX
∥x− xj∥2ωk

LX
(x)

]
.

9: LX ← LX ∪ x̄.

76

6.3. Density-Aware Farthest Point Sampling (DA-FPS)

LX = {xj}bj=1 ⊂ DX determining an estimation p̂XL of the marginal of the training data
distribution pXL . The selection procedure we propose aims at selecting a set LX that
minimizes a data-driven estimation of the weighted fill distance based on the dataset DX ,
the selected subset LX and the two estimated marginals p̂XD and p̂XL .
Before diving into the technicalities of our proposed sampling method, let us briefly

describe its core procedure. Our approach involves iteratively sampling data points
at a maximal weighted distance from those already selected. Initially the weights are
set to one for all available points, thus, in this initial stage, our procedure coincides
with FPS. After a portion of the data has been selected, the weights adapt dynamically
during the selection process according to the chosen training set. The weights reflect the
relationship between p̂XD and p̂XL , which we estimate from the data locations. For this
reason we call our approach Density-Aware Farthest Point Sampling (DA-FPS). The
weights dynamically change because the estimation of the marginal of the training data
distribution, p̂XL , is data-driven and depends on the current training set. As we add new
points to the selected set, p̂XL must be updated.
To estimate the multivariate marginal distributions pXD and pXL , we follow along

[WKV09] and choose an adaptive k-nearest-neighbor (kNN) density estimation approach.
Note that, we opted for kNN density estimators over other strategies for density or density
ratio estimation because they are computationally efficient. Using kNNs, we can estimate
the density at a specific data point by only considering its distance relationships with
its k-nearest neighbors, without having to perform additional comparisons with other
points in the data set. This reduces the computational costs involved in the iterative
process of density estimation. The multivariate kNN density estimations of marginal
distributions, pXL and pXD , are based on a selected set LX , the dataset DX and a kernel
function K : Rd → R+. At a point x ∈ X the estimated densities have the form

p̂kXD(x) :=

∑
xi∈DX

K

(
x−xi

rkLX
(x)

)
|DX |

(
rkLX

(x)
)d and p̂kXL(x) :=

∑
xj∈LX

K

(
x−xj

rkLX
(x)

)
|LX |

(
rkLX

(x)
)d , (6.8)

where

rkLX (x) := min

{
min
x̄∈LX

∥x− x̄∥2 +
ϵX
|LX |

, ρk(x)

}
and K(x) :=

{
1
Vd
, if ∥x∥2 ≤ 1

0, otherwise
,

(6.9)

with ρk(x) the distance between x and its k-nearest neighbor in DX , and Vd := πd/2

Γ(d/2+1)

is the volume of the unit ball in Rd, where Γ(r) = (r−1)! is the so-called Gamma function.
The quantity rkLX

(x) defines an adaptive neighborhood size, depending on the selected
set LX , aiming at reducing the estimation bias at finite sample sizes [WKV09]. ϵX in the
definition of rkLX

(x) is an arbitrary small positive scalar that prevents the denominator
in the kNN density estimations from becoming zero on points in LX . Note that, we are
interested in estimating the densities only for points in DX \LX := {x ∈ DX such that x /∈
LX }, which are not already in LX , and we may want to select depending on the value they

77

6. On minimizing a training set weighted fill distance

would provide, which we quantify with the associated weighted distance. Nonetheless, the
kernel estimations in (6.8) are well-defined for all points in X . In Appendix A we show
that, under some assumptions, p̂kXL

and p̂kXD
are asymptotically unbiased estimations

of pXL and pXD , respectively. Considering the density estimations in (6.8), given a set
LX ⊂ DX , we compute a data-driven estimate of its weighted fill distance as

WLX ,DX (pXL ||pXD) ≈ max
x∈DX \LX

[(
1−

p̂kXL
(x)

p̂kXD
(x)

)
min

xj∈LX
∥x− xj∥2

]
(6.10)

Unfortunately, the behavior of the estimated weight function in (6.10) is inconsistent
with that of the true weight function in (6.3). To see this, let us consider Nk(x) ⊂ DX
as the set of data points of DX in the k-neighborhood of x, with x ∈ Nk(x), and the
weights

ωk
LX (x) :=

{
|{x̄ ∈ DX such that ∥x− x̄∥2 ≤ rkLX

(x)}|, if |LX | > 0

k, if LX = ∅
(6.11)

as the number of points in DX contained in the ball centered in x with radius rkLX
(x).

For completeness, we set the weights associated with the empty set equal to k. Next, let
us note that for each x ∈ X we have(

1−
p̂kXL

(x)

p̂kXD
(x)

)
:=

1, if there is no xj ∈ LX s.t. xj ∈ Nk(x)

1− |DX |
ωk
LX

(x)|LX | , otherwise
(6.12)

Thus, depending on the ratio |DX |
ωk
LX

(x)|LX | and the value of k, the estimated weight function

in (6.12) may allow for negative values on data points in DX \LX , which have not been
selected and included in LX where we would expect p̂kXL

(x) ≤ p̂kXD
(x). This is an artifact

of the approach we use to estimate the densities’ ratio which is not consistent with the
behavior of true weight function defined in (6.3), which associates positive weight values
with points where pXL(x) ≤ pXD(x). This inconsistency indicates that the approach
we use to compute the densities’ ratio may cause scaling issues for the values of the
estimated weight function in (6.12). To address this inconsistency, we note that the values
of the estimated weight function are directly correlated with those of ωk

LX
(x) defined in

(6.11). Given x̃, x̄ ∈ X we have

(
1−

p̂kXL
(x̃)

p̂kXD
(x̃)

)
>

(
1−

p̂kXL
(x̄)

p̂kXD
(x̄)

)
⇒ ωk

LX
(x̃) ≥ ωk

LX
(x̄) and

ωk
LX

(x̃) > ωk
LX

(x̄) ⇒
(
1−

p̂kXL
(x̃)

p̂kXD
(x̃)

)
>

(
1−

p̂kXL
(x̄)

p̂kXD
(x̄)

)
. The weights ωk

LX
(x) are directly

associated with the data density around the data points as they quantify the number of
points close to a given point. Moreover, they are not affected by issues related to the
estimation of the densities’ ratio. Based on these observations, instead of attempting the
minimization of the quantity in (6.10) we consider the following minimization problem:

OX ∈ arg min
LX⊂DX
|LX |=b

[
max
x∈DX

(
ωk
LX (x) min

xj∈LX
∥x− xj∥2

)]
. (6.13)

78

6.3. Density-Aware Farthest Point Sampling (DA-FPS)

For a more compact notation, given a subset LX ⊂ DX , we define the quantity between
the squared brackets as follows

W k
LX ,DX := max

x∈DX

(
ωk
LX (x) min

xj∈LX
∥x− xj∥2

)
(6.14)

and refer to it as estimated weighted fill distance of LX in DX . The value k in (6.14) is
the amount of nearest neighbors we consider to compute the distance weights as in (6.11).
The optimization problem in (6.13) is a weighted version of the fill distance minimization
problem and is therefore at least NP hard. To address the optimization problem in (6.13)
we propose the novel DA-FPS described in Algorithm 6. DA-FPS takes in input a finite
dataset DX ⊂ Rd, a data budget b ∈ N, a neighborhood size k ∈ N, with b, k ≪ n, a
subset LX ⊂ DX , with |LX | ≪ b and an additional hyperparameter u ∈ N, u < b. The
input hyperparameter u ∈ N allows for a greedy selection with uniform weights until
the size of the selected set reaches the value described by the hyperparameter. Later on,
the objective of our algorithm is to greedily augment the input subset LX by selecting
points from the dataset DX so that the maximum weighted distance of any point in DX
to its nearest selected point in LX is minimized. The algorithm stops when the number
of elements in the selected set LX reaches the data budget b. After that, LX is provided
as output.

6.3.1. An illustrative example of DA-FPS sampling

We provide a simple example to illustrate how DA-FPS sampling works, comparing it
with uniform random sampling and FPS. The top-left graph in Fig. 6.1 shows a dataset of
1200 two-dimensional points. The dataset contains a high-density cluster with 600 points
and three sparser clusters of 200 points each, differing in both point density and surface
area coverage. The top-right graph displays a 2D kernel density estimation (KDE) plot
of the points in the dataset. To generate the plot we use the Seaborn python library
[Was21]. In the KDE plot, darker blue areas indicate higher data density, and lighter
areas indicate lower data density. The graphs in the second, third, and fourth rows of
Fig. 6.1 show the locations and distributions of points in subsets selected using uniform
random sampling (RDM), FPS, and DA-FPS, respectively. For each sampling approach,
we consider three subset sizes (5%, 10% and 20% of the available data points), with each
larger subset including the smaller ones selected by the same approach. We initialized
DA-FPS with u = 0 and k = 300.

From a global perspective, DA-FPS balances two objectives: covering the data space
evenly while giving greater importance to higher-density regions. Consequently, for all
subset sizes, the sampled data approximates the original distribution but with reduced
density differences across the data space. More specifically DA-FPS initially provides
a rough estimation of the data density distribution, while ensuring all regions are
represented, as seen in the 5% sampling plot. Trivially, as the subset size increases, the
distribution of sampled points more closely resembles that of the full dataset. Still, the
differences in density across regions are less pronounced than in the true data distribution.

79

6. On minimizing a training set weighted fill distance

In contrast, FPS consistently selects points to provide a uniform representation of the
data distribution, while RDM mainly focuses on the high-density cluster, neglecting
sparser regions.
Locally, both FPS and DA-FPS tend to select points that are evenly distributed

without clustering. This is due to their optimization processes, which lead to maximize
pairwise (weighted) distances between the selected points, creating a “repulsion effect”.
One of the key advantages of DA-FPS for sampling training sets lies in its ability to

balance the representation of both dense and sparse regions in the data. By ensuring
that high-density regions are well-represented while also covering sparser areas, DA-FPS
mitigates the risk of over-fitting or under-fitting to dominant clusters, which is a common
issue when using random sampling and FPS, respectively.
Said that, we recall that sampling strategies are not inherently good or bad. The

effectiveness of a sampling approach depends on the specific context and goals of the task.
While DA-FPS balances the representation of dense and sparse regions, we can encounter
scenarios where RDM or methods that closely reflect the original data distribution may
be better suited. For instance, when the data distribution is uniform, DA-FPS may
add unnecessary complexity. Additionally, for very small training sets, or very simple
distributions, e.g., a dataset with only one high-density cluster and a few outliers, RDM
may better reflect the original distribution, while DA-FPS may over-represent the less
impactful regions populated by the outliers. Nonetheless, in Chapter 7 we provide
examples on various datasets and with different regression models where using DA-FPS
for training data selection leads to better average performances compared to various
baselines, including RDM and FPS.

6.4. Analysis of DA-FPS

This section studies how well the proposed DA-FPS algorithm can address the optimization
problem in (6.13). In particular, the following theorem shows that, if we initialize
Algorithm 6 with LX = ∅ and u = 0, it provides a 2k-approximation to the optimization
problem in (6.13), where k is the amount of nearest neighbors we consider to estimate
the densities in (6.8) given in input to the algorithm.

Theorem 6.2 Given set of data locations DX = {xi}ni=1 ⊂ Rd, subset OX ⊂ DX , optimal
solution to the problem in (6.13) with |OX | = b ∈ N+, b < n, and LX ⊂ DX , |LX | = b,
subset selected with Algorithm 6 initialized with LX = ∅ and u = 0, we have

W k
LX ,DX ≤ 2kW k

OX ,DX , (6.15)

where W k
LX ,DX

and W k
OX ,DX

are the estimated weighted fill distances of LX and OX in
DX , respectively, defined as in (6.14).

Proof. Let us fix the budget b ∈ N+, and define, for each i = 1, . . . , b + 1, Li :=
{x1, . . . ,xi} as the set of cardinality i obtained after i− 1 iterations of the “While” loop
in line 3 of Algorithm 6. To simplify the notation, for the rest of the proof, for each
LX ⊂ DX we define WLX := W k

LX ,DX
omitting the k and DX from the notation of the

estimated weighted fill distance. The following proof consists of three main steps.

80

6.4. Analysis of DA-FPS

Data points Data Density Distribution
RD

M
FP

S
D

A-
FP

S

(a) 5% (b) 10% (c) 20%

Figure 6.1.: Comparison of DA-FPS, FPS, and RDM. (Top row, left graph) The original
dataset of 1200 points, with a high-density cluster (600 points) and three
sparser clusters (200 points each). (Top row-right graph) A 2D kernel density
estimation (KDE) plot highlighting the density variations. Darker areas
indicate higher data density. (Graphs in rows 2-4) Subsets comprising 5%,
10%, and 20% of the available data, selected using RDM, FPS, and DA-FPS.

81

6. On minimizing a training set weighted fill distance

Step 1 The first step of the proof consists of showing that for each 1 ≤ i < b+ 1 we
have

WLi+1 ≤WLi .

To prove this first step we notice that Li+1 = Li ∪ xi+1. Thus, for each x ∈ DX we have
that

min
xj∈Li+1

∥x− xj∥2 ≤ min
xj∈Li

∥x− xj∥2.

This is because adding a point to the selected set Li ensures that the distance from
any x ∈ DX to its closest selected element either remains the same or decreases.
Consequently, ωk

Li+1
(x) ≤ ωk

Li
(x) also holds. To see this, recall that ωk

Li
(x) is the

number of data points in DX contained within the ball centered at x with radius

rkLi
(x) := min

{
minxj∈Li ∥x− xj∥2 + ϵX

|Li| , ρk(x)
}
, where ρk(x) is the distance between

x and its k-th nearest neighbor and ϵX positive scalar value, which we consider arbitrary
small. Adding a point to the selected set Li ensures that the distance between any
x ∈ DX and its closest selected element does not increase. As a result, the value of rkLi

(x)

is non-increasing, which in turn implies that the weights ωk
Li
(x) are also non-increasing.

Therefore, we have that for each 1 ≤ i < b+ 1

min
xj∈Li+1

∥x− xj∥2ωk
Li+1

(x) ≤ min
xj∈Li

∥x− xj∥2ωk
Li
(x),

Since the above inequality holds for each x ∈ DX , by taking the maximum over the
points in DX we prove the first claim.

Step 2 The second step of the proof shows that for each 2 ≤ i ≤ b+1 and 1 ≤ l < m ≤ i
we have that

WLi−1 ≤ ∥xm − xl∥2ωk
Lm−1

(xm), (6.16)

where xm and xl are the points selected by Algorithm 6 at the m-th and l-th iterations,
respectively. To prove this second step we proceed by induction. For the base step we
have i = 2, m = 2, l = 1. Then we have

WL1 = max
x∈DX

∥x− x1∥2ωk
L1
(x) = ∥x2 − x1∥2ωk

L1
(x2)

which verifies the base step. The second equality follows from how the selection strategy
in Algorithm 6 is defined. Next, let us assume the assumption in (6.16) is true for i− 1.
Then we have for each 1 ≤ l < m ≤ i− 1

WLi−1 ≤WLi−2 ≤ ∥xm − xl∥2ωk
Lm−1

(xm).

Where the first inequality follows from the first step of the proof and the second inequality
is our inductive assumption. Now notice that for each 1 ≤ r < i we have

WLi−1 = min
xj∈Li−1

∥xi − xj∥2ωk
Li−1

(xi) ≤ ∥xi − xr∥2ωk
Li−1

(xi),

which proves the inductive step.

82

6.4. Analysis of DA-FPS

Step 3 Consider now a set C ⊂ DX , with |C| = b. Observe that by the definition
of weighted fill distance we have that for each x ∈ DX there exists c ∈ C such that
ωk
C(x)∥x − c∥2 ≤ WC. Next, notice that given Lb+1, with |Lb+1| = b + 1, selected

with Algorithm 6, by the pigeonhole principle we have that there exists xm,xl ∈ Lb+1

with 1 ≤ l < m ≤ b + 1 that have a common closest element c̄ ∈ C. Therefore,
max{∥xm − c̄∥2ωk

C(xm), ∥xl − c̄∥2ωk
C(xl)} ≤WC . Thus, we have

WLb
≤ ∥xm − xl∥2ωk

Lm−1
(xm)

≤ (∥xm − c̄∥2 + ∥xl − c̄∥2)ωk
Lm−1

(xm)

≤
(
∥xm − c̄∥2ωk

C(xm) + ∥xl − c̄∥2ωk
C(xl)

)
ωk
Lm−1

(xm)

≤ 2ωk
Lm−1

(xm)WC

≤ 2kWC .

(6.17)

The first inequality follows from the second step of the proof, the second inequality follows
from the triangular inequality of the distance considered, the third and fifth inequalities
follow from the fact that, by its definition, we have 1 ≤ ωk

C(x) ≤ k for all x ∈ DX and
C ⊂ DX . Since the above inequality holds for each C ⊂ DX , it holds for the optimal
subset OX as well.

Note that, Algorithm 6 can be implemented using O(|D|k) memory and takes O(b|D|k)
time. To give a qualitative understanding of DA-FPS efficiency, with our PyTorch [PGM+19]
implementation, it takes approximately 330 seconds to select 1000 points from the
QM9 [RvDBR12, RDRvL14] dataset consisting 133885 data points of dimension 100.1

Later in Section 7.2.5 we provide more experimental results showing the efficiency of
DA-FPS and how it scales with the dataset size. Additionally, it is important to note that
if the nearest neighborhood size to compute the weights as in (6.11) is set to k = 1, the
optimization problem in (6.13) coincides with the fill distance minimization problem and
Algorithm 6 reduces to the well known Farthest Point Sampling algorithm (FPS), thus
providing 2-optimal solution [HP11]., which is the best approximation factor attainable
in polynomial time with theoretical guarantees [HS85].

We note that, while Theorem 6.2 demonstrates that DA-FPS provides suboptimal
solutions to the optimization problem in (6.13), multivariate density estimation theory
indicates that smaller selected sets lead to more biased approximations of the corre-
sponding density marginals in (6.8), especially for high-dimensional data [WKV09]. In
simpler terms, the smaller the size of the selected set, the less representative are the
computed weights of the actual distribution of the points. To mitigate these limitations,
in our experiments, we make use of the hyperparameter u > 0. During the initial steps
of the sampling process we consider constant weights, which we then iteratively update
according to (6.11) after selecting the first u points. Thus, in early stages, DA-FPS
coincides with FPS. That is, it focuses on minimizing the maximum distance between
any point in the dataset DX and its closest selected element. This approach ensures

1We used a 48-cores CPU with 384 GB RAM.

83

6. On minimizing a training set weighted fill distance

broader coverage of the data space without initially accounting for the density of the
data. The value of u plays a crucial role in the effectiveness of the selection strategy
for training data development in regression task. If u is set too small, sparse regions of
the dataset may be underrepresented in the training set, as the sampling will primarily
target higher-density regions. This imbalance can result in low model performances in
sparse regions of the dataset with a consequential increase in the average error.
Theorem 6.2 states that DA-FPS provides a 2k-optimal result to the optimization

problem in (6.13), which considers dynamic-weights, that is, the weights are iteratively
updated any time a new point is selected. We can consider a simplified version of
the optimization problem in (6.13) by considering for each data point x ∈ DX a fixed
weight ω(x) ∈ R+, which is determined a-priori and does not depend on the selected
set. Such a simplified scenario has been already studied in literature. In particular, the
authors of [DF85] show that it is possible to find solutions that are σ-optimal, with

σ := min{3, 1 + α}, where α :=
maxx∈DX ω(x)

minx∈DX ω(x) . That is, it is possible to find solutions

that are at least 3-optimal. With the following theorem we attempt to extend the result
provided in [DF85] into our scenario with dynamic weights.

Theorem 6.3 Given set DX = {xi}ni=1 ⊂ Rd, subset OX ⊂ DX , optimal solution to the
problem in (6.13) with |OX | = b ∈ N+, b < n, and LX ⊂ DX , |LX | = b, subset selected
with Algorithm 6 initialized with LX = ∅ and u = 0, we have

W k
LX ,DX ≤ σγW

k
OX ,DX , (6.18)

where W k
LX ,DX

and W k
OX ,DX

are the estimated weighted fill distances of LX and OX in
DX , respectively, defined as in (6.14). Moreover,

γ := max
j=1,...,b+1

ωk
Lj−1

(xj)

ωk
OX

(xj)
(6.19)

and

σ := min{3, 1 + α} with α := max
i,j=1,...,b+1

i<j

ωk
Lj−1

(xj)

ωk
Li−1

(xi)
. (6.20)

For each j = 1, . . . , b, Lj := {x1, . . . ,xj} is the set of cardinality j obtained with
Algorithm 6. We set L0 = ∅. The weights ωk

Lj−1
(xj) and ω

k
OX

(xj) in (6.19) and (6.20)

are computed according to the same principle as in (6.11).

Proof. Let OX := {o1, . . . ,ob} be an optimal solution to the optimization problem in
(6.13). Moreover, let Lb+1 := {x1, . . . ,xb+1} be the set of cardinality b+1 obtained with
Algorithm 6. First, note that by pigeonhole principle there exist xi,xj ∈ Lb+1, with
1 ≤ i < j ≤ b+ 1 such that there exists a common closest element oc ∈ OX . Therefore,
max{∥xi − oc∥2ωk

OX
(xi), ∥xj − oc∥2ωk

OX
(xj)} ≤WOX ,DX . Next, we define the quantity

β :=
ωk
Lj−1

(xj)

ωk
Li−1

(xi)

and consider two scenarios β ≤ 2 and β > 2.

84

6.4. Analysis of DA-FPS

First scenario: β ≤ 2. If we assume β ≤ 2 we can prove the Theorem as follows

W k
Lb,DX ≤ω

k
Lj−1

(xj) min
x∈Lj−1

∥x− xj∥2

≤ωk
Lj−1

(xj)∥xi − xj∥2
≤ωk

Lj−1
(xj) (∥xi − oc∥2 + ∥xj − oc∥2)

≤
ωk
Lj−1

(xj)

ωk
OX

(xj)
ωk
OX (xj)∥xj − oc∥2

+
ωk
Lj−1

(xj)

ωk
Li−1

(xi)

ωk
Li−1

(xi)

ωk
OX

(xi)
ωk
OX (xi)∥xi − oc∥2

≤γ(1 + β)W k
OX ,DX

≤σγW k
OX ,DX .

The first inequality follows from the fact that W k
Li+1,DX

≤ W k
Li,DX

for all i = 1, . . . , b.
This is shown in Step 1 of the proof of Theorem 6.2. The second inequality follows from
the fact that xi ∈ Lj−1 since i < j. The last inequality follows from the assumption that
β ≤ 2, thus, we have that β ≤ min{α, 2} which implies that 1 + β ≤ σ.

Second scenario: β > 2. Consider 1 = i < j ≤ b+ 1. Note that by how the weights
are defined in (6.11), we have that ωk

Li−1
(xi) = ωk

L0
(x1) = ωk

∅ (x1) = k and that for each

j = 2, . . . , b+ 1 we have 1 ≤ ωk
Lj−1

(xj) ≤ k. Thus, if 1 = i < j ≤ b+ 1, it follows that

β =
ωk
Lj−1

(xj)

ωk
Li−1

(xi)
=
ωk
Lj−1

(xj)

k
≤ 1,

which contradicts the assumption β > 2, so it holds i > 1. Next, consider 1 ≤ l < i <
j ≤ b+ 1, and xl to be the closest point to xj when xi is chosen, then we have that

W k
Lb,DX ≤ω

k
Lj−1

(xj) min
x∈Lj−1

∥x− xj∥2

≤ωk
Lj−1

(xj)∥xl − xj∥2

≤
∣∣{x̄ ∈ DX such that ∥xj − x̄∥2 ≤ min{∥xj − xl∥2 +

ϵX
|Li−1|

, ρk(xj)}
}∣∣∥xl − xj∥2

=ωk
Li−1

(xj) min
x∈Li−1

∥x− xj∥2

≤ωk
Li−1

(xi) min
x∈Li−1

∥x− xi∥2

≤ωk
Li−1

(xi)∥xi − xl∥2
≤ωk

Li−1
(xi) (∥xi − xj∥2 + ∥xj − xl∥2) .

(6.21)

85

6. On minimizing a training set weighted fill distance

The second inequality follows from the fact that xl ∈ Lj−1, thus the distance between xj

and the closest element in Lj−1 is smaller than ∥xj−xl∥2. This is also relevant for the third
inequality: The value of the weight ωk

Lj−1
(xj), which is the amount of data points in the

ball centered in xj with radius rkLj−1
(xj) := min

{
minx∈Lj−1 ∥x−xj∥2 + ϵX

|Lj−1| , ρk(xj)
}
,

is less or equal the amount of data points contained in the ball centered in xj with the
larger radius of min{∥xj − xl∥2 + ϵX

|Li−1| , ρk(xj)}. The equality follows from the fact

that we assume xl to be the closest point to xj when xi is chosen, that is, r
k
Li−1

(xj) =
min{∥xj − xl∥2 + ϵX

|Li−1| , ρk(xj)}. The fourth inequality is true because if we assume it
was false then xj would have been selected before xi.

If we now assume that ∥xi − xj∥2 ≤ ∥xj − xl∥2 by the inequalities in (6.21) we would
have

ωk
Lj−1

(xj)∥xj − xl∥2 ≤ 2ωk
Li−1

(xi)∥xj − xl∥2,

which implies that
ωk
Lj−1

(xj)

ωk
Li−1

(xi)
≤ 2,

which is a contradiction since we are assuming β > 2. Thus, we have that ∥xi − xj∥2 >
∥xj − xl∥2. Therefore, from equation (6.21), we have that

W k
Lb,DX ≤2ω

k
Li−1

(xi)∥xi − xj∥2
≤2ωk

Li−1
(xi) (∥xi − oc∥2 + ∥xj − oc∥2)

≤2
ωk
Li−1

(xi)

ωk
OX

(xi)
ωk
OX (xi)∥xi − oc∥2

+ 2
ωk
Li−1

(xi)

ωk
Lj−1

(xj)

ωk
Lj−1

(xj)

ωk
OX

(xj)
ωk
OX (xj)∥xj − oc∥2

≤2γ(1 + β−1)W k
OX ,DX

≤σγW k
OX ,DX

The last inequality follows from the facts that β > 2 ⇒ α > 2 ⇒ 1 + α > 3 ⇒ σ = 3.
Thus, since 2(1 + β−1) ≤ 3, we have that σ ≥ 2(1 + β−1).

With Theorem 6.3 we provide an alternative result to Theorem 6.2 for the optimality of
the solution provided by DA-FPS. Note that in Theorem 6.3 we explicitly link the quality
of approximation of DA-FPS with the ratio between the computed and optimal weights.

In particular, one of the terms in the approximation factor is γ := maxj=1,...,b+1

ωk
Lj−1

(xj)

ωk
OX

(xj)
,

that is, the ratio between the weights related to the set selected with DA-FPS and
those of an optimal set. Note that the simplest upper bound for γ is γ ≤ k. This is
because, for how we defined them in (6.11), the weights value is at least 1 and at the
most k, independently of the set considered to define them. Thus, using the simplest
upper bound for γ, according to Theorem 6.3, DA-FPS achieves approximations that

86

6.4. Analysis of DA-FPS

are 3k-optimal. This rate represents a less favorable worst-case scenario compared to
the 2k-optimal rate given by Theorem 6.2. Nonetheless, we think this result is relevant
because it showcases that there may be other ways to determine the approximation factor
of DA-FPS than the one provided in Theorem 6.2. Moreover, by explicitly linking the
quality of DA-FPS’s approximation to γ and σ, we aim to highlight a possible path
for improving the optimality constant by identifying a bound for either of these two
quantities. Future work should focus on this direction.

87

7. Numerical Results

In this chapter we provide empirical validations for the theoretical results from Chapter 5
and Chapter 6. It is organized in two main sections. In the first, we consider the low data
budget regime scenario and report experiments showing that selecting the training set by
fill distance minimization using FPS substantially reduces the maximum prediction error
for Lipschitz continuous regression models. In the second section we focus on the medium
data budget regime and show that by minimizing the introduced weighted fill distance of
the training set with the DA-PFS, we can improve the average prediction performances
of Lipschitz continuous regression models. The datasets, regression models, and data
processing procedures we employ in our experiments related to chemistry applications
have been introduced and described in detail in Chapter 4. Our GitHub repository
(https://github.com/ins-uni-bonn/PassiveSamplingML) contains all the necessary code
for downloading, reading, and preprocessing the datasets, our implementations of FPS
and DA-FPS, regression models, and evaluation procedures.

7.1. Minimizing the fill distance with FPS

In this section we investigate the effects of minimizing the training set fill distance on
regression tasks from quantum chemistry. We predict molecular properties on the QM7,
QM8 and QM9 datasets. In particular, we study the performance of FPS in comparison to
various passive and model-agnostic sampling baselines while using two machine learning
models for prediction, KRR and FNN. Additionally, we empirically investigate the
potential benefit of minimizing the training set fill distance for multivariate regression
tasks, that is, regression tasks where the label value to predict is multidimensional. More
precisely, we focus on the force-field prediction task on molecular trajectories from the
rMD17 dataset. The molecular force-field consists of the per-atom forces in a molecule.

7.1.1. Baseline sampling strategies for FPS

We compare the effects of minimizing the training set fill distance through the FPS
algorithm with three sampling techniques. We selected the three baselines method among
those analyzed in well-established papers related to data selection [SS18, GZ19, MBL20,
KSRI21], that fit our application scenario and problem constraints. That is, passive
and model-agnostic data selection techniques that do not rely on the knowledge of the
labels. Specifically, we consider uniform random sampling (RDM), the facility location
algorithm and k-medoids++, which we introduced and described in Chapter 3 and
briefly recapture next. RDM is considered the natural benchmark for all the other coreset
sampling strategies [Fel19], and consists of choosing the points to label and use for training

89

https://github.com/ins-uni-bonn/PassiveSamplingML

7. Numerical Results

uniformly at random from the available pool of data points. Facility location [Fri74] is
a greedy algorithm that aims at minimizing the sum of the squared distances between
the points in the pool and their closest selected element. k-medoids++ [MJH+11] is a
variant of the k-means++ [AV07], that partitions the data points into k clusters and,
for each cluster, selects one data point as the cluster center by minimizing the distance
between points labeled to be in a cluster and the point designated as the center of
that cluster. Both, facility location and k-medoids++, attempt to minimize a sum of
pairwise distances. However, the fundamental difference is that facility location is a
greedy technique, while k-medoids++ is based on a segmentation of the data points into
clusters.

7.1.2. Experimental setting with FPS

This section reports experiments related to molecular property prediction tasks on
four different datasets: QM7, QM8 and QM9 for univariate regression and rMD17 for
multivariate regression. Detailed information on the datasets, preprocessing procedures,
descriptors and regression models are provided in Section 4.2. Here we introduce them
briefly. QM7 [BR09, RTMvL12] consists of 7165 molecules with up to 23 atoms that we
represent as vectors in R529. The vector-valued descriptors provide information related to
the molecules’ geometrical structure. The label value to predict is the atomization energy,
measured in electronvolt (eV). QM8 [RvDBR12, RHTvL15] consists of 21786 molecules
with up to 8 heavy atoms that we represent as vectors in R1296 describing the molecules’
topological structure. The label values to predict is the lowest singlet transition energy
(E1), measured in eV. QM9 [RvDBR12, RDRvL14] has 133885 molecules with up to 9
heavy atoms that we represent as vectors in R1307 describing the molecules’ topological
structure. The label values to predict is the HOMO-LUMO energy, measured in eV. The
revised MD17 [CvL20a, CvL20b] (rMD17) consists of temporal trajectories of various
small organic molecules. We study the trajectories of the Benzene with 9 atoms, Uracil
and Malonaldehyde each consisting of 12 atoms. We represent the molecules using
the vector-valued descriptors defined in (4.2) providing information on the molecules’
geometrical structure. We use the rMD17 for a multivariate regression task, where the
vector-valued labels to predict are the per atom forces measured in kcal

mol×̊angstrong .
We consider two regression models for the univariate tasks: KRR with the Gaussian

kernel and FNN. The hyperparameters of the KRR are selected following the grid-search
procedure described in Section 4.3, by varying the hyperparameters on a tensor product
grid with 12 points per dimension between 10−14 and 10−2. To train the FNN, we use
the procedure described in Section 4.3. We consider 1000 epochs for the QM7 and 250
epochs for the QM8 and QM9. QM8 and QM9 are much larger than QM7, and the
feature vectors used for the QM8 and QM9 have higher dimension than those used
for QM7. Thus, we use fewer epochs on the QM8 and QM9 to make the experiments
computationally affordable. For the multivariate regression tasks on the rMD17 we use
the gradient-domain machine learning (GDML) method introduced in Section 4.3.
The experiments we perform involve testing the predictive accuracy of each trained

model. For measuring the predictive accuracy of the regression models we use various

90

7.1. Minimizing the fill distance with FPS

evaluation metrics. For the molecular property prediction tasks on the QM datasets, with
univariate labels, we consider the Maximum Absolute Error (MAXAE), Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE). For the force-field prediction tasks
on the rMD17, with vector-valued labels, we consider MAXAEF , MAXMAEF and MAEF .
Recall that, in the univariate label scenario, given true target values {yi}ni=1 and the
predicted values {ỹi}ni=1 we have

MAXAE := max
1≤i≤n

|yi − ỹi|, (7.1)

MAE :=
1

n

n∑
i=1

|yi − ỹi|, (7.2)

RMSE :=

√√√√ 1

n

n∑
i=1

|yi − ỹi|2. (7.3)

In the multivariate scenario, consider the true target values {F i}ni=1 ⊂ R3na , describing
the per-atom force of the analyzed molecule, with na atoms and F i = [Fi,1, Fi,2, . . . , Fi,3na],
along its trajectory. Moreover, consider the predicted values {F̃ i}ni=1 ⊂ R3na , then we
define

MAXAEF := max
1≤i≤n

max
1≤j≤3na

|Fi,j − F̃i,j |, (7.4)

MAXMAEF := max
1≤i≤n

 1

3na

3na∑
j=1

|Fi,j − F̃i,j |

 , (7.5)

MAEF :=
1

3nna

n∑
i=1

3na∑
j=1

|Fi,j − F̃i,j |. (7.6)

See Section 4.4 for a detailed description and interpretation of the above-mentioned
evaluation metrics.
For each of the data sampling strategy we consider, we construct multiple training

sets consisting of different amounts of samples. For each sampling strategy and training
set size, the training set selection process is independently run five times. In the case
of RDM, points are independently and uniformly selected at each run, while for the
other sampling techniques, the initial point to initialize is randomly selected at each run.
Consequently, for each selection strategy and training set size, each analyzed model is
independently trained and tested five times. Each time, the performance of the models
are tested on all the points in the dataset not used for training. The reported test
results are the average of the five runs. We also plot error bars, which, unless otherwise
specified, represent the standard deviation of the results. We remark that the final goal
of our experiments is to empirically show the benefits of using FPS compared to other
model-agnostic state-of-the-art sampling approaches. We do not make any claims on the
general prediction quality of the employed models on any of the studied datasets.

91

7. Numerical Results

7.1.3. Experiments with FPS: Molecular property prediction

Fig. 7.1 and Fig. 7.2 show the results for the regression tasks with scalar label values
on the QM7, QM8 and QM9 datasets using KRR with the Gaussian kernel and FNN,
respectively. The graphs on the top rows of Fig. 7.1 and Fig. 7.2 illustrate the maximum
absolute error (MAXAE) of the predictions on the unlabeled points. The results suggest
that, independently of the dataset and the regression model, selecting the training set by
fill distance minimization using FPS, we can perform better than the other baselines in
terms of the maximum error of the predictions. FPS consistently leads to lower MAXAE
values than the other baselines.

The graphs on the middle row of Fig. 7.1 and Fig. 7.2 show the MAE of the predictions
on the QM7, QM8 and QM9 datasets for KRR and FNN, respectively. These graphs
indicate that selecting training sets with FPS does not drastically reduce the MAE of
the predictions on the unlabeled points with respect to the baselines, independently of
the dataset and regression model. On the contrary, we observe examples where FPS
performs worse than at least one of the baselines, e.g., with the FNN on the QM7, QM8
and QM9 when trained with 5% of the available data points. These experiments suggest
that, contrary to what has been shown for classification [SS18], selecting training sets by
fill distance minimization does not provide any significant advantage compared to the
baselines in terms of the average error in the low data budget scenario. This marks a
fundamental difference between regression and classification tasks regarding the benefits
of reducing the training set fill distance.

The graphs on the bottom row of Fig. 7.1 and Fig. 7.2 show the RMSE of the predictions
on the QM7, QM8 and QM9 datasets for KRR and FNN, respectively. It can be clearly
seen that selecting training sets with FPS may not reduce the RMSE of the predictions on
the unlabeled points with respect to the baselines. For instance, with KRR on the QM9
FPS consistently leads to the worst performance. Nonetheless, there are scenarios where
FPS does indeed lead to an improvement with respect to the baselines. For instance,
with KKR on the QM7 when at least 3% of the available data points have been selected
and on the QM8 when at least 5% the data points have been selected. Another example
is with FNN on the QM7, where FPS consistently outperforms all the baselines. On the
one hand, we think that this is due to the fact that the RMSE penalizes large errors
more than the MAE, thus giving more relevance to outlier error values, as mentioned in
Section 4.4. On the other hand, from Chapter 5 we know that minimizing the training
set fill distance with the FPS leads to a substantial decrease in maximum prediction error
and hence reduce the amount and magnitude of outlier error values. For these reasons, it
follows that FPS may lead to an improvement with respect to the RMSE.

7.1.4. Increased numerical stability of kernel ridge regression with FPS

Next, we show that selecting training sets with FPS increases the stability of KRR
models with Gaussian kernel by reducing the condition number of the kernel matrix, as
we show theoretically in Section 5.4. The graphs in the bottom row of Fig. 7.3 show
the condition number of the regularized kernel matrices generated during training of the

92

7.1. Minimizing the fill distance with FPS

FPS
RDM
FacilityLocation
k-medoids++

1% 3% 5% 7% 10%
Amount of training samples

0

10

20

30

40

M
A

X
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0

1

2

3

M
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0

1

2

3

4

R
M

S
E

 [
e
V

]

(a) KRR on QM7

1% 3% 5% 7% 10%
Amount of training samples

0

2

4

6

8

10

M
A

X
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0.0

0.1

0.2

0.3

0.4

0.5
M

A
E

 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0.0

0.2

0.4

0.6

R
M

S
E

 [
e
V

]

(b) KRR on QM8

1% 3% 5% 7% 10%
Amount of training samples

0

20

40

60

M
A

X
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0.0

0.1

0.2

0.3

0.4

0.5

M
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0.0

0.2

0.4

0.6
R

M
S

E
 [
e
V

]

(c) KRR on QM9

Figure 7.1.: Results for regression tasks on QM7, QM8 and QM9 using KRR with the
Gaussian kernel trained on sets of various sizes, expressed as a percentage
of the available data points, and selected with different sampling strategies.
MAXAE (top row), MAE (middle row) and RMSE (bottom row) are shown
for each training set size and sampling approach. Error bars represent the
standard deviation of the results over five runs. The results related to the
MAXAE in the top row indicate that selecting the training set using FPS
(blue bars) leads to improved performances, independently of the dataset.
The graphs illustrating the MAE and RMSE show that selecting training
sets with FPS may not lead to better predictions on average.

KRR approach and used to calculate the regression parameters as shown in (4.6). For
the QM9, the condition number appears not to be affected by the training dataset choice,
while for the QM7 and QM8, choosing training sets with FPS reduces the condition

93

7. Numerical Results

FPS
RDM
FacilityLocation
k-medoids++

1% 3% 5% 7% 10%
Amount of training samples

0

10

20

30

40

50

M
A

X
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0.0

0.5

1.0

1.5

2.0

M
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0

1

2

3

R
M

S
E

 [
e
V

]

(a) FNN on QM7

1% 3% 5% 7% 10%
Amount of training samples

0

2

4

6

8

M
A

X
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0.0

0.1

0.2

0.3

0.4

0.5

M
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0.0

0.2

0.4

0.6

R
M

S
E

 [
e
V

]

(b) FNN on QM8

1% 3% 5% 7% 10%
Amount of training samples

0

2

4

6

8

10

M
A

X
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0.0

0.2

0.4

0.6

M
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0.0

0.2

0.4

0.6

0.8

R
M

S
E

 [
e
V

]

(c) FNN on QM9

Figure 7.2.: Results for regression tasks on QM7, QM8 and QM9 using FNN trained on
sets of various sizes, expressed as a percentage of the available data points,
and selected with different sampling strategies. MAXAE (top row), MAE
(middle row) and RMSE (bottom row) are shown for each training set size
and sampling approach. Error bars represent the standard deviation of
the results over five runs. The results related to the MAXAE in the top
row indicate that selecting the training set using FPS (blue bars) leads to
improved performances, independently of the dataset. The graphs illustrating
the MAE and RMSE show that selecting training sets with FPS may not
lead to better predictions on average.

number of the regularized kernel, particularly in the low data regime, leading to improved
stability of the learned model. We remark that the graphs in the bottom row of Fig. 7.3
depict the condition number of the regularized kernel matrix KKKL + λIII, where KKKL is the

94

7.1. Minimizing the fill distance with FPS

Gaussian kernel matrix built from the training data and λIII is the regularization term,
introduced in (4.5), used to address ill-conditioning problems. The hyperparameter λ
has been chosen following a procedure based on cross-validation on randomly selected
subsets of the available data pool, as explained in Subsections 4.3.1 and 7.1.2. The values
of λ we employed are 1.90 · 10−4, 3.64 · 10−4 and 1.19 · 10−11 for the QM7, QM8 and
QM9, respectively. The top row of Fig. 7.3 illustrates the condition numbers of the
non-regularized kernels and shows that, if no regularization is applied, for the QM7 and
the QM8 the difference between the condition numbers of the matrices obtained with the
FPS and those obtained using the benchmark strategies is close to an order of magnitude,
as expected from (5.15). As for the QM9, we still see a lower condition number when
using the FPS in the low data limit, until 7% of the data is employed for training. Notice
that, for the QM9, the magnitude of the condition number is significantly higher than
for the other datasets due to the larger size of the kernel matrix.

It is also important to mention that, in our experiments, differences in the conditions
numbers are mainly due to differences in the minimum eigenvalues, which aligns with
the theory reported in Section 5.4. The top and bottom rows of Fig. 7.4 show the
minimum and maximum eigenvalues of the non-regularized kernel matrices obtained
from the training data from experiments in Fig. 7.3, respectively. It can be clearly seen
that the kernels have similar maximum eigenvalues independently of how the training
data was selected. Moreover, the maximum eigenvalues grow linearly with the size of
the kernel matrix, while the minimum eigenvalues decrease exponentially. The y-axis
of the minimum eigenvalue plots is on a logarithmic scale. For the QM7 and QM8, the
differences between the minimum eigenvalues of the kernel matrices from training sets
selected with FPS and those from the baselines are measured in orders of magnitude and
reflect the differences between the relative condition numbers in Fig 7.3.

7.1.5. Empirical analysis and discussion

This section further examines the empirical results presented in 7.1.3. Specifically, we
identify the overall trends of the MAXAE and relate them to our theoretical study,
focusing on their connection with the concept of fill distance of the training set. Moreover,
we emphasize what we think should be the practical application of our theoretical result
in Theorem 5.1. Next, we analyze the benefit of employing the FPS from a more empirical
perspective, focusing on understanding how the FPS selection process works, that is,
what points are prioritized during the selection process, how they are distributed, and
what consequence this has on the learning process of a given regression model. After
that, we discuss the limitations of the FPS.

Interestingly, with FPS, the MAXAE converges fast to a plateau value for all datasets
and regression models (Fig. 7.1- 7.2). Differently, with the baseline approaches, the
MAXAE has much larger values in the low data regime and tends to decrease gradually as
the size of the training sets increases. Note that, these trends of the MAXAE are directly
correlated with the fill distances of the respective labeled sets used for training, illustrated
in Fig. 7.5a. The figure clearly shows that independently of the dataset considered, with
FPS, the fill distances are consistently lower even for small data budgets, while with

95

7. Numerical Results

FPS
RDM
FacilityLocation
k-medoids++

1% 3% 5% 7% 10%
Amount of training samples

10
4

10
5

10
6

10
7

C
o
n
d
it
io

n
 n

u
m

b
e
r

1% 3% 5% 7% 10%
Amount of training samples

10
4

10
5

10
6

C
o
n
d
it
io

n
 n

u
m

b
e
r

(a) QM7

1% 3% 5% 7% 10%
Amount of training samples

10
6

10
7

10
8

10
9

C
o
n
d
it
io

n
 n

u
m

b
e
r

1% 3% 5% 7% 10%
Amount of training samples

10
6

C
o
n
d
it
io

n
 n

u
m

b
e
r

(b) QM8

1% 3% 5% 7% 10%
Amount of training samples

10
17

10
19

10
21

10
23

C
o
n
d
it
io

n
 n

u
m

b
e
r

1% 3% 5% 7% 10%
Amount of training samples

10
14

10
15

C
o
n
d
it
io

n
 n

u
m

b
e
r

(c) QM9

Figure 7.3.: Condition number of the non-regularized (top row) and regularized (bottom
row) Gaussian kernels are shown for each QM dataset, training set size and
sampling approach. The graphs are on log-log scale and the error bands
represent the confidence interval over five runs of the experiments. For the
QM7 and QM8, choosing the training sets with FPS (blue lines) reduces the
condition number of both regularized and non-regularized kernel, particularly
in the low data regime, leading to improved stability of the learned KRR
models. For the QM9, the condition number of the regularized kernels
appears not to be affected by how the training set is chosen, while for the
non-regularized kernels FPS appears to be beneficial mainly for lower training
set sizes.

the benchmarks, the fill distances are much larger in the low data regime and gradually
decrease as the size of the training set increases. These observations indicate that the
training set fill distance is directly correlated with the predictions MAXAE, in line with
our theoretical result. Nevertheless, from Theorem 5.1 we know that the training set fill
distance is only linked to the maximum expected value of the error function. Moreover,
the bound proposed in the theorem also depends on other quantities we may not know or
that we cannot compute a priori: The labels’ uncertainty and the maximum prediction
error on the training set, quantifying how well the trained regression model fits the
training data. Thus, we think that the training set fill distance should not be considered
as the only parameter to obtain an a priori quantitative evaluation of the MAXAE of
the predictions, but as a qualitative indicator of the model robustness that, if minimized,
leads to a substantial reduction of the MAXAE.

The bound derived in Theorem 5.1 also depends on the labels’ uncertainty and the

96

7.1. Minimizing the fill distance with FPS

FPS
RDM
FacilityLocation
k-medoids++

1% 3% 5% 7% 10%
Amount of training samples

10
4

10
3

M
in

im
u
m

 e
ig

e
n
v
a
lu

e

1% 3% 5% 7% 10%
Amount of training samples

200

400

600

M
a
x
im

u
m

 e
ig

e
n
v
a
lu

e

(a) QM7

1% 3% 5% 7% 10%
Amount of training samples

10
6

10
5

10
4

M
in

im
u
m

 e
ig

e
n
v
a
lu

e

1% 3% 5% 7% 10%
Amount of training samples

500

1000

1500

2000

M
a
x
im

u
m

 e
ig

e
n
v
a
lu

e

(b) QM8

1% 3% 5% 7% 10%
Amount of training samples

10
17

10
15

10
13

M
in

im
u
m

 e
ig

e
n
v
a
lu

e

1% 3% 5% 7% 10%
Amount of training samples

2500

5000

7500

10000

12500

M
a
x
im

u
m

 e
ig

e
n
v
a
lu

e

(c) QM9

Figure 7.4.: Minimum eigenvalues (top row) and maximum eigenvalues (bottom row) of
the non-regularized Gaussian kernels are shown for each dataset, training
set size and sampling approach. The y-axis of the graphs of the minimum
eigenvalues are on the log-scale and the error bands represent the standard
error over five independent runs of the experiments.

maximum error on the training set. We provide additional insight on these two quantities.
Unfortunately, the labels’ uncertainty is an intrinsic property of the dataset that we
cannot compute or estimate unless we know the true solution of the regression problem,
or we have an estimate of the error performed by the numerical procedure used to obtain
the data labels. Concerning the maximum error on the training sets, we can compute it
post-training and evaluate its behaviors with respect to the different selection strategies
and regression models we consider. In what follows we analyze the maximum error on the
training sets selected for the experiments in 7.1.3 related to the best and worst performing
selection strategies, that is, we consider FPS and random sampling, respectively.

Fig. 7.6 shows the maximum absolute prediction error on the training sets for QM7,
QM8 and QM9 using KRR (top row) and FNN (bottom row). The training sets we
consider are the same we used for the experiments in Fig. 7.1 and Fig. 7.2. It can be
clearly seen that the maximum error tends to increase as the size of the training set
increases, which is an expected result since the more data samples we have, the more
difficult it becomes for the model to accurately fit all the data points. Moreover, it is
worth noticing that the behavior of the maximum error on the training set for the KRR
is consistent across different datasets and training set sizes, independently of the selection
strategy we consider. In particular, Fig. 7.6 suggests that, for the KRR, maximum
errors on the training sets selected with the FPS and randomly are comparable. This

97

7. Numerical Results

1% 3% 5% 7% 10%
Amount of training samples (QM7)

30

40

50

60

70

80

90

F
ill

 d
is

ta
n

ce

FPS
RDM
FacilityLocation
k-medoids++

1% 3% 5% 7% 10%
Amount of training samples (QM8)

3

4

5

6

7

8

9

10

11

F
ill

 d
is

ta
n

ce

FPS
RDM
FacilityLocation
k-medoids++

1% 3% 5% 7% 10%
Amount of training samples (QM9)

2000

4000

6000

8000

10000

12000

F
ill

 d
is

ta
n

ce

FPS
RDM
FacilityLocation
k-medoids++

(a) Training sets fill
distances.

(b) Distances to the nearest
neighbor.

5 10 15 20 25 30 35 40
Distance to closest molecule (QM7)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
en

si
ty

0 1 2 3 4 5 6
Distance to closest molecule (QM8)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

0 1000 2000 3000 4000 5000
Distance to closest molecule (QM9)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

D
en

si
ty

(c) Density of distances to
the nearest neighbor.

Figure 7.5.: (a) Fill distances of the selected training sets. (b) Euclidean distances to
the nearest neighbor and (c) density of such distances for molecules in the
QM7 (top row), QM8 (middle row) and QM9 (bottom row). In (b) the red
lines are the average distances between the molecules in the datasets and
their nearest neighbor and the molecules are sequentially numbered such
that the distances decrease in magnitude as the associated molecule numbers
increase.

observation also holds for the FNN on QM7. This fact implies that differences in the
maximum error on the relative test sets are mainly due to the other quantities appearing
in the bound in Theorem 5.1, such as the training set fill distance. However, when
comparing the FPS and random sampling (RDM) on QM8 and QM9 with FNN, we
notice more pronounced differences. Notably, on the training sets selected with RDM
the maximum error tends to be smaller than on those selected with FPS. It is also
interesting to compare Fig 7.6, which illustrates the error on the training sets, with

98

7.1. Minimizing the fill distance with FPS

FPS
RDM

1% 3% 5% 7% 10%
Amount of training samples

0.0

0.5

1.0

1.5

2.0

M
A

X
A

E
 t
ra

in
in

g
 s

e
t
[e

V
]

1% 3% 5% 7% 10%
Amount of training samples

0

1

2

3

4

5

M
A

X
A

E
 t
ra

in
in

g
 s

e
t
[e

V
]

(a) QM7

1% 3% 5% 7% 10%
Amount of training samples

0.0

0.5

1.0

1.5

M
A

X
A

E
 t
ra

in
in

g
 s

e
t
[e

V
]

1% 3% 5% 7% 10%
Amount of training samples

0

2

4

6

M
A

X
A

E
 t
ra

in
in

g
 s

e
t
[e

V
]

(b) QM8

1% 3% 5% 7% 10%
Amount of training samples

0.0

0.5

1.0

1.5

2.0

M
A

X
A

E
 t
ra

in
in

g
 s

e
t
[e

V
]

1% 3% 5% 7% 10%
Amount of training samples

0

1

2

3

4

5

M
A

X
A

E
 t
ra

in
in

g
 s

e
t
[e

V
]

(c) QM9

Figure 7.6.: MAXAE on training set for QM7, QM8 and QM9 using KRR (top row) and
FNN (bottom row) trained on sets of various sizes, expressed as a percentage
of the available data points, and selected uniformly at random (RDM) or
with FPS.

Fig. 7.2 and Fig. 7.1, illustrating the error on the relative test sets. From this comparison,
we notice that for KRR, the maximum error on the training set is negligible or much
smaller compared to the maximum error on the test set, particularly for QM8 and QM9.
This is not the case for the FNN regression model. Specifically, with FNN on QM8, the
maximum error on the training sets selected with FPS can be larger than on the test set.

As a matter of fact, we think that the effectiveness of FPS is also due to its ability to
sample, even for small training sets sizes, those points that are at the tails of the data
distribution and that are convenient to label, as the predictive accuracy of the learning
methods on those points would be limited due to the lack of data information in the
portions of the feature space where data points are more sparsely distributed. To see this
empirically, let us first consider Fig. 7.5b and Fig. 7.5c, showing for each molecule the
Euclidean distance to the respective closest molecule and the density of such distances,
respectively, for the QM7, QM8 and QM9 datasets. Fig. 7.5b shows that, in all the
analyzed datasets, there are “isolated” molecules for which the Euclidean distance to the
nearest molecule is more than twice the average distance between the molecules in the
dataset and their nearest neighbor, represented by the red line in the graphs. Fig. 7.5c,
representing the density distribution of the distances of the molecules to their closest
data point, indicates that the “isolated” molecules are only a very small portion of the
dataset and, therefore, represent the tail of the data distribution. We now see that FPS,
contrary to the other baselines, can effectively sample the isolated molecules even for

99

7. Numerical Results

Figure 7.7.: In blue, the Euclidean distances to the nearest neighbor for molecules in the
QM7 (top row), QM8 (middle row) and QM9 (bottom row). In orange are
highlighted the molecules selected with FPS and the other baselines. For
each dataset we selected 1% of available data points.

a low training data budget. Fig. 7.7 highlights the Euclidean distances to the closest
neighbor for molecules selected with FPS, and the other baseline strategies, from all
the analyzed datasets. The size of the selected sets is 1% of the available data points.
Specifically, we are analyzing the same elements selected in the lowest training data
budget we considered for the regression tasks in Fig. 7.1 and Fig. 7.2. Fig. 7.7 clearly
illustrates that, independently of the dataset, FPS selects points across the whole density
spectrum. On the contrary, the baseline methods mainly sample points that have a closer
nearest neighbor and that are nearer to the center of the data distribution (Fig. 7.5c).

The observation that selecting isolated molecules is beneficial in terms of the MAXAE
reduction is also in line with Theorem 5.1. We know that a sampling strategy that aims
to reduce the maximum error of the predictions should minimize the fill distance of the
training set. Thus, it should include the isolated molecules in the training set, as their
distance to the nearest neighbor is much larger than the average

Our empirical analysis indicates that using FPS can be advantageous in the low training
data budget, as it allows including early in the sampling process the “isolated” molecules.
However, we think that once the data points at the tails of the data distribution have been

100

7.1. Minimizing the fill distance with FPS

FPS
FPS-RDM

1% 3% 5% 7% 10%
Amount of training samples

0

5

10

15
M

A
X

A
E

 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0

10

20

30

M
A

X
A

E
 [
e
V

]

(a) QM7

1% 3% 5% 7% 10%
Amount of training samples

0

1

2

3

M
A

X
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0

1

2

3

M
A

X
A

E
 [
e
V

]

(b) QM8

1% 3% 5% 7% 10%
Amount of training samples

0

5

10

15

M
A

X
A

E
 [
e
V

]

1% 3% 5% 7% 10%
Amount of training samples

0

2

4

6

M
A

X
A

E
 [
e
V

]

(c) QM9

Figure 7.8.: Results for regression tasks on QM7, QM8 and QM9 using KRR with
the Gaussian kernel (top row) and FNN (bottom row) trained on sets of
various sizes and selected with FPS and with FPS combined with random
sampling (RDM) after 2% of the available data have been selected. The
graphs illustrate the MAXAE of the predictions for each training set size
and sampling approach. Error bars represent the standard deviation of the
results over five runs. Selecting the initial 2% of data points with FPS,
followed by RDM, produces results comparable to using FPS alone.

included, there may be more convenient sampling strategies than FPS to select points
at the center of the distribution, where more information is available. To empirically
support the observation that FPS is mostly beneficial in the low data limit, Fig. 7.8
illustrates the MAXAE of the predictions on the QM7, QM8 and QM9, for the KRR and
FNN trained on sets selected with the FPS and on sets selected initially with the FPS,
the first 2%, and then selected randomly. The figure clearly illustrates that after FPS
has sampled the first 2% of the dataset, the MAXAE of the predictions does not tend to
decrease or increase significantly for larger training set sizes, even if the later samples are
selected randomly, independently of the datasets and regression model considered. This
fact further suggests that FPS is mainly beneficial in the low data limit and is strongly
connected with the ability of this sampling strategy to select samples at the tail of the
data distribution.

101

7. Numerical Results

Importance of the data assumptions

We now highlight the importance of the data assumptions in ensuring that a fill distance
minimization strategy leads to a significant reduction of the MAXAE, in correspondence
to the theoretical result proposed in Theorem 5.1. The focus is on Assumption 5.1,
Formula (5.6), indicating that if two data points have close representations in the feature
space, then the conditional expectations of the associated labels are also close. Simply
put, this assumption states that if two data points have similar features, their labels
are more likely to be similar as well. Therefore, we expect the pairwise distances in the
feature and label spaces to be directly correlated for the experiments to ensure consistency
with the theory.

One approach to test such a correlation on a given dataset is to calculate the Euclidean
distance in the feature and label spaces for each pair of points and then calculate
Pearson’s (ρp) or Spearman’s (ρs) correlation coefficient [Bos08] to assess the strength
and direction of the correlation between the pairwise distances. These coefficients measure
how closely correlated two quantities are, with values ranging from -1 to 1. Pearson’s
coefficient captures linear relationships between variables, whereas Spearman’s coefficient,
measures monotonic relationships regardless of linearity. A positive value indicates a
positive correlation, while a negative value indicates a negative correlation. Following
along [SBS18], we define the correlation between the two analyzed quantities to be
negligible if the considered correlation coefficient ρ is such that |ρ| ≤ 0.1, otherwise we
consider the correlation positive or negative, depending on the sign of ρ.

We calculate Pearson’s (ρp) and Spearman’s (ρs) coefficients for the datasets used in
the experiments we perform in Section 7.1.3 and illustrate in Fig. 7.1 and Fig. 7.2. Due
to memory issue in storing the distance matrix, for the QM9 we computed the correlation
coefficients on 50% of randomly selected data points. We selected random subsets and
computed the associated correlation coefficients for five times. The results we report for
the QM9 are the average over the five runs. The computed coefficients are 0.15, 0.22, and
0.27 for ρp, and 0.28, 0.19, and 0.22 for ρs, for QM7, QM8, and QM9, respectively. These
numbers indicate that in all experiments where the fill distance minimization approach
is successful in significantly reducing the maximum prediction error, there is a positive
correlation between the pairwise distances of the data features and labels.

Moreover, we also want to show that if the correlation between the pairwise distances
in the feature and label space is negligible, the fill distance minimization approach may
not lead to a significant reduction in the maximum prediction error. To illustrate this, we
perform additional experiments on the QM8 dataset. In these experiments, we examine
various labels not yet considered in this work while considering the same data features
we previously used. The labels we now consider are the second singlet transition energy
(E2), measured in eV, and the first and second oscillator strengths (f1 and f2), measured
in atomic units (a.u.). Our computations reveal a Pearson’s and Spearman’s correlation
coefficient of 0.278 and 0.236 for E2, respectively. As for correlations with f1 and f2,
Pearson’s coefficients are 0.065 and -0.034, respectively, while Spearman’s coefficients
are 0.098 and -0.036, accordingly. These results suggest a positive correlation between
pairwise distances in the feature and label space when considering E2 as the label value,

102

7.1. Minimizing the fill distance with FPS

FPS
RDM
FacilityLocation
k-medoids++

ρp : 0.278, ρs : 0.236

1% 3% 5% 7% 10%
Amount of training samples

0

2

4

6

8
M

A
X

A
E

 [
e
V

]

(a) second singlet
transition energy (E2)

ρp : 0.065, ρs : 0.098

1% 3% 5% 7% 10%
Amount of training samples

0

5

10

15

M
A

X
A

E
 [
e
V

]

(b) first oscillator
strength (f1)

ρp : −0.034, ρs : −0.036

1% 3% 5% 7% 10%
Amount of training samples

0

5

10

15

20

M
A

X
A

E
 [
e
V

]

(c) second oscillator
strength (f2)

Figure 7.9.: Results for regression tasks on QM8 considering three different labels: (a)
second singlet transition energy, (b) first oscillator strength, (c) second
oscillator strength. Regression performed using KRR trained on sets of
various sizes and selected with different sampling strategies. ρp and ρs are
Pearson’s and Spearman’s correlation coefficients of the data points pairwise
distance in the feature and label space.

but negligible correlations for f1 and f2. Such a negligible correlation for f1 and f2
indicates that our initial assumptions about the data properties may not hold true when
considering these two labels.

Fig. 7.9 shows the results for the regression tasks on the QM8 dataset considering
E2, f1 and f2 as labels, and using the KRR as regression model. Specifically, Fig. 7.9b
and 7.9c illustrate the MAXAE of the predictions for the regression tasks with f1 and
f2, respectively, and suggest that selecting the training set by fill distance minimization
using FPS, does not lead to a significant reduction in the maximum prediction error
when the correlation between the pairwise distances in the feature and label space is
negligible. On the contrary, Fig. 7.9a, illustrating the results on the E2 regression task,
provides further evidence that the fill distance minimization approach is effective when
the correlation is positive. Note that, for the case of the QM8 dataset with f1 or f2 as
labels, where the correlation between pairwise distances in the features and label space is
negligible, selecting training sets by fill distance minimization approach with the FPS is
either comparable or better than randomly choosing the points in terms of the MAXAE
of the predictions. Moreover, no benchmark approach can consistently perform better
than FPS. For instance, the facility location approach performs best on the f2 regression
task for training set sizes of 7% and 10%, but is the worst performing on the f1 regression
task for all training set sizes other than 1%.

7.1.6. Force-field prediction on the rMD17 dataset

In this section, we empirically investigate the effects of minimizing the training set fill
distance for multivariate regression tasks on the rMD17 dataset. The label value to
predict is the molecular force-field along a molecule’s trajectory. We note that for the

103

7. Numerical Results

experiments on the rMD17 we analyze a different range for the size of the training sets,
from 0.1% to 1% of the available points, instead of the range 1%- 10%. This change
was made because the data points associated with each molecule in the rMD17 are
taken from time series and may have a high degree of correlation. For this reason the
authors of the rMD17 suggest “DO NOT train a model on more than 1000 samples
from this dataset” [CvL20a]. Since each trajectory in our analysis consists of 100000
points, limiting ourselves to at most 1% of the available data ensures that we respect the
constraint set by the authors. Fig. 7.10 shows the results for the force-field regression
tasks on the trajectories of Benzene, Malonaldehyde and Uracil using GDML. The graphs
on the top and middle rows of Fig. 7.10 illustrate the MAXAEF and MAXMAEF of
the predictions on the unlabeled points. The results suggest that, independently of the
trajectory considered, selecting the training set by fill distance minimization using FPS
we can perform better than the baselines in terms of these two metrics quantifying the
robustness of the model predictions. The graphs on the bottom row of Fig. 7.10 show the
MAEF of the predictions. These graphs indicate that selecting training sets with FPS
may not improve the MAEF of the predictions on the unlabeled points with respect to
the baselines, similarly to the experiments with scalar labels. In particular, we observe
examples where FPS performs worse than one of the baselines, e.g., on the trajectory of
Malonaldehyde FPS performs consistently worse than random sampling. Nonetheless,
these experiments suggest that selecting training set by fill distance minimization with
the FPS can be beneficial for multivariate regression tasks, increasing models robustness
by reducing of the entry-wise maximum error of the predictions. We remark that the
theoretical analysis we propose in Chapter 5 is limited to regression tasks with scalar
label values, and Lipschitz continuous models. Therefore, while the results illustrated
in Fig. 7.10 show promising potential for the FPS in increasing model robustness in
multivariate regression tasks, they are not supported by a solid theoretical result.

7.1.7. Section highlights

Our experiments indicate that selecting the training set using FPS significantly reduces
the MAXAE of the predictions for KRR and FNN (Fig. 7.1 and Fig. 7.2). The empirical
results align with the theoretical analysis from Chapter 5. Our empirical analysis
(Section 7.1.5) suggests that FPS leads to a reduction of the MAXAE by maximizing
data space coverage, ensuring the inclusion in the training set of points from the tails of
the data distribution. FPS enhances model stability for KRR with the Gaussian kernel
(Fig. 7.3), as expected from the theoretical results from numerical mathematics reported
in Section 5.4. FPS is mainly beneficial in scenarios with limited training data. We
find that selecting the initial 2% of data points with FPS, followed by random sampling,
yields results comparable to using FPS alone in terms of the MAXAE (Fig. 7.8). Recall
that our theoretical results from Chapter 5 focus on regression tasks with scalar labels,
but our experiments show FPS can also improve the model robustness in tasks with
multidimensional labels (Fig. 7.10). FPS does not seem to offer any advantage in terms
of the MAE compared to random sampling and the other baselines. This suggests that
alternative sampling strategies may be better suited for decreasing the MAE.

104

7.1. Minimizing the fill distance with FPS

FPS
RDM
FacilityLocation
k-medoids++

0.1% 0.3% 0.5% 0.7% 1%
Amount of training samples

0

2

4

6

8
M

A
X

A
E

F
 [
k
c
a

l/
m

o
l/
Å

]

0.1% 0.3% 0.5% 0.7% 1%
Amount of training samples

0.0

0.2

0.4

0.6

0.8

1.0

M
A

X
M

A
E

F
 [
k
c
a

l/
m

o
l/
Å

]

0.1% 0.3% 0.5% 0.7% 1%
Amount of training samples

0.00

0.05

0.10

0.15

M
A

E
F
 [
 k

c
a

l/
m

o
l/
Å

]

(a) Benzene

0.1% 0.3% 0.5% 0.7% 1%
Amount of training samples

0

10

20

30

40

50

M
A

X
A

E
F
 [
k
c
a

l/
m

o
l/
Å

]

0.1% 0.3% 0.5% 0.7% 1%
Amount of training samples

0

2

4

6

8
M

A
X

M
A

E
F
 [
k
c
a

l/
m

o
l/
Å

]

0.1% 0.3% 0.5% 0.7% 1%
Amount of training samples

0.0

0.5

1.0

1.5

M
A

E
F
 [
 k

c
a

l/
m

o
l/
Å

]

(b) Malonaldehyde

0.1% 0.3% 0.5% 0.7% 1%
Amount of training samples

0

10

20

30

40

M
A

X
A

E
F
 [
k
c
a

l/
m

o
l/
Å

]

0.1% 0.3% 0.5% 0.7% 1%
Amount of training samples

0

2

4

6

M
A

X
M

A
E

F
 [
k
c
a

l/
m

o
l/
Å

]

0.1% 0.3% 0.5% 0.7% 1%
Amount of training samples

0.00

0.25

0.50

0.75

1.00

1.25
M

A
E

F
 [
 k

c
a

l/
m

o
l/
Å

]

(c) Uracil

Figure 7.10.: Results for multivariate regression tasks on trajectories of Benzene (a),
Malonaldehyde (b) and Uracil (c) from the rMD17 dataset. We use GDML
trained on sets of various sizes, expressed as a percentage of the available
data points in each trajectory, and selected with different sampling strategies.
MAXAEF (top row), MAXMAEF (middle row) and MAEF (bottom row)
are shown for each training set size and sampling approach. Error bars
represent the standard deviation of the results over five runs. The results
with the MAXAEF and MAXMAEF , quantifying the robustness of the
model predictions, suggest that selecting the training set using FPS (blue
bars) leads to better performances than with the baselines, independently
of the trajectory considered. The graphs on the bottom row showing the
MAEF indicate that selecting training sets with FPS may not reduce the
average error of the predictions with respect to the baselines.

105

7. Numerical Results

7.2. Minimizing the weighted fill distance with DA-FPS

In this section we empirically validate the theoretical results presented in Chapter 6. That
is, we investigate the effects of minimizing the training set weighted fill distance using DA-
FPS for training data selection on regression tasks. In the previous section we saw that
FPS is mainly beneficial in the low data budget scenario, reducing the magnitude of the
worst-case prediction error. Moreover, the experiments suggested that FPS does not lead
to any significant advantage in terms of the models MAE. In what follows, we consider a
medium training data budget regime, instead of the low data budget scenario analyzed
in the previous section. Thus, we focus on larger training set sizes and investigate a
data regime where employing the FPS does not show any significant advantages in terms
of the MAE, compared to classical passive and model-agnostic sampling approaches.
We empirically show that in this data budget scenario using DA-FPS for training data
selection reduces the MAE of the predictions of Lipschitz continuous regression models.
Additionally, we empirically investigate the benefits of combining the FPS with other
well-established passive and model-agnostic sampling strategies and show that augmenting
such approaches with the FPS during the initial steps of the sampling process consistently
leads to a decrease in the MAE of the predictions.

We consider the same datasets, regression models and tasks used in Section 7.1 for
univariate regression. That is, we perform experiments where we predict molecular
properties on the QM7, QM8 and QM9 datasets using the KRR with the Gaussian kernel
and FNN as regression models.

Let us remark that the final goal of our experiments is to empirically show the benefits
of using DA-FPS compared to other model-agnostic sampling approaches and investigate
the benefits of complementing classical passive and model-agnostic sampling approaches
with the FPS. We do not make any claims on the general prediction quality of the
employed models on any of the studied datasets.

7.2.1. Baseline sampling strategies for DA-FPS

We benchmark DA-FPS with the four sampling techniques used in the previous section.
Specifically, we consider uniform random sampling (RDM), Farthest Point Sampling
(FPS), the facility location algorithm [Fri74] and k-medoids++ [MJH+11]. Additionally,
to empirically investigate the benefits of combining a given passive and model-agnostic
sampling technique with FPS, we also consider modified versions of the RDM, facility
location and k-medoids++. These modified versions of the baselines first select a prefixed
amount of points with FPS, the same amount we consider for DA-FPS, and then augment
the selected set by sampling from the remaining points in the data pool according to
their specific criteria. Consequently, in the early stage of the sampling process, the sets
selected with our proposed approach coincide with those selected with FPS and the
modified baselines. We refer to the modified baselines as FPS-RDM, FPS-FacLoc and
FPS-k-medoids++.

106

7.2. Minimizing the weighted fill distance with DA-FPS

7.2.2. Experimental setup with DA-FPS

We analyze the effectiveness of DA-FPS considering training sets of sizes from 5% up
to 20% of the available points in the data pool of interest. Note that, previously we
investigated the benefits of the FPS considering a lower data budget regime, with training
set sizes from 1% up to 10% of the available data pool. On the one hand, we now focus on
larger training set sizes to limit the issues affecting the effectiveness of DA-FPS, related
to high-dimensional density estimation with limited data points. On the other hand, by
considering larger training set sizes we can analyze scenarios where only employing FPS
may not provide any significant advantages compared to classical passive and model-
agnostic sampling approaches in terms of the MAE. Our experiments involve the QM
datasets for molecular energy prediction tasks. The data preprocessing procedure is
similar to that used in the previous section and described in Section 4.2. But, we use
lower-dimensional feature vectors (up to 276 dimensions instead of up to 1300) again to
mitigate issues related to high-dimensional data density estimations in (6.8), affecting
the effectiveness of DA-FPS. To describe molecules in the QM7 [BR09, RTMvL12] we
consider the upper triangular entries of the Coulomb matrix. Thus, in the case of
QM7 each molecule is represented as vector in R276. The label value to predict is the
atomization energy, measured in electronvolt (eV). For QM8 [RvDBR12, RHTvL15] and
QM9 [RvDBR12, RDRvL14] we follow the same preprocessing procedure as in Section 4.2.
In addition to that we scale the entries of the molecular descriptors of the QM9 dataset
in the interval (0,1) and perform dimensionality reduction applying principal component
analysis (PCA) [JC16] on both, QM8 and QM9. Thus, molecules in the QM8 and QM9
datasets are represented by feature vectors in R100 describing the molecules topological
structure. The label values to predict are the lowest singlet transition energy, and
HOMO-LUMO energy, measured in eV, for the QM8 and QM9, respectively.

We use KRR with the Gaussian Kernel and FNN as regression models. We adapt the
hyperparameter grid search for the KRR and the number of epochs to train the FNN
to the new data scenario consisting of different training set sizes and lower dimensional
molecular descriptor. Specifically, for the hyperparameter grid search related to KRR,
we vary the hyperparameters on a smaller tensor product grid of 6 points per dimension
between 10−6 and 10−2. To train the FNN, we use the procedure described in Section 4.3
considering 1000 epochs independently of the dataset. In this setup, the lower-dimensional
feature vectors result in fewer weights for the FNN to learn. This allows us to train
for more epochs than what we consider in the previous Section 7.1 without significant
computational costs. Training the FNN on the QM9 dataset with all selected subsets took
about six days (the most computationally demanding case). The training was conducted
sequentially on a 48-core CPU with 384 GB of RAM.

We test the predictive accuracy of each trained model on all data points not used for
training in terms of the MAE, RMSE and MAXAE. These quantities have been already
recalled in the previous section and interpreted in Section 4.4. We remark that, the
main metric of interest for these experiments the MAE. However, analyzing RMSE and
MAXAE, may provide further insights into the performance of DA-FPS compared to the
other baselines.

107

7. Numerical Results

We consider various training set sizes for each sampling strategy. For each sampling
strategy and set size, the training set selection process is independently run five times
considering different initializations, that is, different initial point or random seed. Ac-
cordingly, we report for each analyzed model the average of the results for five runs. We
also plot error bars, which represent the standard deviation over the five runs.

The number of k-NNs we consider to initialize DA-FPS (Algorithm 6) is 100. We think
that a good choice for the value of k is data dependent and relies on various factors, such
as data dimensions and distribution. Nonetheless, while we think that there may be
better choices, we could find a value of k suitable for all the QM datasets. Determining
the optimal value of k requires further research as it is closely tied to the problem of
high-dimensional density approximation, which is beyond the scope of this study. The
input parameter u is set to be 3% of the available data points, for each of the considered
datasets. Thus, we first sample 3% of the available data considering constant weights, as
done by FPS. We note again that setting the parameter u to be 3% of the available data
points implies that our proposed approach coincides with FPS, FPS-RDM, FPS-FacLoc
and FPS-k-medoids++ until 3% of the available data has been sampled.
In this section, we use line plots to visualize results. In the previous section, we used

bar plots to highlight the large differences in the magnitude of predictions’ MAXAE.
The value of the MAE tends to be more similar across various training sets because it
averages errors, smoothing out extremes. We find that line plots are better suited for
capturing trends and subtle variations of the MAE, particularly when comparing up to
six different strategies for each training set size.

7.2.3. Experiments with DA-FPS: Molecular property prediction

The graphs on Fig. 7.11 show the MAE for the regression tasks on the QM7, QM8 and
QM9 datasets using KRR (left column) and FNN (right column). Our experiments
indicate that selecting the training sets using DA-FPS we can perform better than the
baselines RDM, facility location, FPS and k-medoids++ in terms of the MAE of the
predictions, particularly on the larger QM8 and QM9 and for larger training set sizes
(> 5% of the available data points). Comparing the MAE obtained with KRR and FNN,
reveals that the standard deviation of the MAE, represented by the error bars, tends to
be larger for the FNN, especially on the smaller QM7. This occurs because the FNN
training process is data hungry, and it is sensitive to the limited amount of training data
available with the QM7. More specifically, the FNN determines its regression parameters
by solving a non-linear optimization problem using stochastic gradient descent. This
training approach is inherently prone to variability and instability. The stochastic nature
of gradient descent introduces randomness in parameter updates, and the complexity
of the non-linear optimization landscape, with infinite possible solution, can lead to
greater fluctuations in performance. As a result, metrics like the MAE often exhibit
larger standard deviations, particularly for smaller datasets where the amount of data is
insufficient to stabilize the training process. In contrast, KRR solves a convex optimization
problem with a closed-form solution (4.5). This deterministic approach results in lower
variability in predictions and lower standard deviation of the MAE.

108

7.2. Minimizing the weighted fill distance with DA-FPS

RDM
FacilityLocation
k-medoids++
FPS
DA-FPS

KRR

5% 10% 15% 20%
Amount of training samples

0.6

0.7

0.8

0.9

1.0

1.1
M

AE
 [e

V]
FNN

5% 10% 15% 20%
Amount of training samples

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
AE

 [e
V]

(a) QM7

5% 10% 15% 20%
Amount of training samples

0.22

0.24

0.26

0.28

0.30

0.32

M
AE

 [e
V]

5% 10% 15% 20%
Amount of training samples

0.22

0.24

0.26

0.28

0.30

0.32

M
AE

 [e
V]

(b) QM8

5% 10% 15% 20%
Amount of training samples

0.20

0.22

0.24

0.26

M
AE

 [e
V]

5% 10% 15% 20%
Amount of training samples

0.22

0.24

0.26

0.28

0.30

M
AE

 [e
V]

(c) QM9

Figure 7.11.: MAE for regression tasks on QM datasets using KRR with Gaussian kernel
(left column) and FNN (right column) trained on sets of various sizes,
expressed as a percentage of the available data points, and selected with
different sampling strategies. Error bars represent the standard deviation
over five runs. DA-FPS (red lines) outperforms the baselines. FNN exhibits
larger MAE standard deviations than KRR, particularly on QM7. This is
due to its data-intensive stochastic gradient descent training, which increases
variability in parameters and predictions. In contrast, KRR’s deterministic
closed-form solution results in smaller variability.

109

7. Numerical Results

RDM
FacilityLocation
k-medoids++
FPS-RDM
FPS-FacLoc
FPS-k-medoids++

KRR

5% 10% 15% 20%
Amount of training samples

0.6

0.7

0.8

0.9

1.0

M
AE

 [e
V]

FNN

5% 10% 15% 20%
Amount of training samples

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
AE

 [e
V]

(a) QM7

5% 10% 15% 20%
Amount of training samples

0.22

0.24

0.26

0.28

0.30

0.32

M
AE

 [e
V]

5% 10% 15% 20%
Amount of training samples

0.24

0.26

0.28

0.30

0.32

M
AE

 [e
V]

(b) QM8

5% 10% 15% 20%
Amount of training samples

0.20

0.22

0.24

0.26

M
AE

 [e
V]

5% 10% 15% 20%
Amount of training samples

0.22

0.24

0.26

0.28

M
AE

 [e
V]

(c) QM9

Figure 7.12.: MAE for regression tasks on QM datasets using KRR with Gaussian kernel
(left column) and FNN (right column) trained on sets of various sizes,
expressed as a percentage of the available data points, and selected with
different sampling strategies. Error bars represent the standard deviation
over five runs. The modified versions of the baselines (dashed lines) lead to
better performance than the respective original baselines (solid lines).

Fig. 7.12 shows that FPS-RDM, FPS-FacLoc and FPS-k-medoids++ consistently
outperform the associated baselines RDM, facility location and k-medoids++ . These
results suggest that modifying the baselines by initially sampling with FPS leads to a
reduction of the MAE independently of the dataset and trained model.

110

7.2. Minimizing the weighted fill distance with DA-FPS

FPS-RDM
FPS-FacLoc
FPS-k-medoids++
DA-FPS

KRR

5% 10% 15% 20%
Amount of training samples

0.6

0.7

0.8

0.9

1.0
M

AE
 [e

V]

FNN

5% 10% 15% 20%
Amount of training samples

0.6

0.7

0.8

0.9

1.0

1.1

M
AE

 [e
V]

(a) QM7

5% 10% 15% 20%
Amount of training samples

0.22

0.24

0.26

0.28

0.30

M
AE

 [e
V]

5% 10% 15% 20%
Amount of training samples

0.22

0.24

0.26

0.28

0.30

0.32

M
AE

 [e
V]

(b) QM8

5% 10% 15% 20%
Amount of training samples

0.20

0.21

0.22

0.23

0.24

0.25

0.26

M
AE

 [e
V]

5% 10% 15% 20%
Amount of training samples

0.22

0.24

0.26

0.28

M
AE

 [e
V]

(c) QM9

Figure 7.13.: MAE for regression tasks on QM datasets using KRR with Gaussian kernel
(left column) and FNN (right column) trained on sets of various sizes,
expressed as a percentage of the available data points, and selected with
different sampling strategies. Error bars represent the standard deviation
over five runs. DA-FPS (red lines) outperforms the modified baselines. FNN
exhibits larger MAE standard deviations than KRR, particularly on QM7.
This is due to its data-intensive stochastic gradient descent training, which
increases variability in parameters and predictions. In contrast, KRR’s
deterministic closed-form solution results in smaller variability.

Fig. 7.13 compares DA-FPS with the modified baselines. Overall, DA-FPS leads to
lower MAE of the regression models.

111

7. Numerical Results

Looking at the results in Fig. 7.13 obtained with FNN, we can highlight two scenarios
where DA-FPS is outperformed the modified baselines: on the smaller QM7 and on the
QM9 for the 5% training set size. These results suggest that, the advantages of using
DA-FPS with respect to the modified baselines may be less evident on smaller datasets
and training set sizes (≤ 5% of the available points), when using the FNN as learning
model. Recall that, FNN predictions are prone to instability for lower training set sizes.
Nonetheless, our experiments still indicate that, overall, DA-FPS is more competitive
than the modified baselines in terms of the MAE of the predictions. In particular, no
modified baseline can consistently outperform DA-FPS in any of the datasets considered.
Moreover, according to our experiments, the comparative effectiveness of the modified
baselines, in terms of the MAE, depends on the dataset considered, that is, on the
underlying data distribution. For instance, in Fig. 7.13, if we consider KRR as the
regression model, FPS-RDM outperforms FPS-k-medoids++ on QM9. The opposite is
true on QM8. The results with DA-FPS appear to be more robust to changes in the
datasets. We think this is because DA-FPS considers data density during the sampling
process, allowing it to adapt effectively to changes in the underlying data distribution.

The graphs in Fig. 7.14 compare the performances of DA-FPS with the baselines and
illustrate the RMSE of the predictions for the KRR and FNN. The illustrated results
suggest that the performances of FPS may be closer to that of DA-FPS when we consider
the RMSE. This is particularly evident on the smaller QM7 and for larger set sizes on
the QM8. Note that the RMSE penalizes large errors more than the MAE, thus giving
more relevance to outlier error values. As we know from the results in Section 7.1.3,
FPS leads to a substantial decrease in maximum prediction error and hence reduces the
amount and magnitude of large error values. Nevertheless, DA-FPS still leads competitive
performances in terms of the RMSE, highlighting its robustness against large errors.
Fig. 7.15 compares DA-FPS with the modified baselines in terms of the RMSE. The
performances of the modified baselines may be closer to the performance of DA-FPS
than their non-modified version, e.g., on QM7 with KRR as regression model. Still,
DA-FPS remains the most competitive approach. No modified baseline can consistently
outperform DA-FPS in any of the datasets.

Figure 7.16 shows the MAXAE of predictions on the QM datasets using KRR (right)
and FNN (left) as regression models. The results indicate that minimizing the training
set fill distance with FPS remains effective for reducing MAXAE, even with larger
training sets and lower-dimensional feature vectors than those in Section 7.1.3. FPS
consistently outperforms all other methods across scenarios. DA-FPS achieves a MAXAE
of a similar magnitude to FPS. Additionally, we note that, modifying baseline approaches
by starting with FPS significantly reduces MAXAE, as suggested by the empirical analysis
in Section 7.1.5 and the experiments in Fig. 7.8, where we compare the results obtained
with RDM and FPS-RDM. This was also confirmed by additional experiments that we
do not report in this work to avoid supplementary experiments that do not provide any
additional information.

112

7.2. Minimizing the weighted fill distance with DA-FPS

RDM
FacilityLocation
k-medoids++
FPS
DA-FPS

KRR

5% 10% 15% 20%
Amount of training samples

0.8

1.0

1.2

1.4

1.6

1.8
R

M
SE

 [e
V]

FNN

5% 10% 15% 20%
Amount of training samples

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

R
M

SE
 [e

V]

(a) QM7

5% 10% 15% 20%
Amount of training samples

0.30

0.32

0.34

0.36

0.38

0.40

0.42

R
M

SE
 [e

V]

5% 10% 15% 20%
Amount of training samples

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

R
M

SE
 [e

V]

(b) QM8

5% 10% 15% 20%
Amount of training samples

0.26

0.28

0.30

0.32

0.34

0.36

R
M

SE
 [e

V]

5% 10% 15% 20%
Amount of training samples

0.28

0.30

0.32

0.34

0.36

0.38

0.40

R
M

SE
 [e

V]

(c) QM9

Figure 7.14.: RMSE for regression tasks on QM datasets using KRR with Gaussian
kernel (left column) and FNN (right column) trained on sets of various sizes,
expressed as a percentage of the available data points, and selected with
different sampling strategies. Error bars represent the standard deviation
over five runs. The performances of FPS (blue lines) may be close to that
of DA-FPS (red lines) when we consider the RMSE, particularly for larger
training set sizes. This is particularly evident on the smaller QM7 and for
larger set sizes on the QM8. Nevertheless, DA-FPS still leads to the most
competitive performances across datasets.

113

7. Numerical Results

FPS-RDM
FPS-FacLoc
FPS-k-medoids++
DA-FPS

KRR

5% 10% 15% 20%
Amount of training samples

0.8

0.9

1.0

1.1

1.2

1.3

R
M

SE
 [e

V]
FNN

5% 10% 15% 20%
Amount of training samples

0.8

0.9

1.0

1.1

1.2

1.3

1.4

R
M

SE
 [e

V]

(a) QM7

5% 10% 15% 20%
Amount of training samples

0.30

0.32

0.34

0.36

0.38

0.40

R
M

SE
 [e

V]

5% 10% 15% 20%
Amount of training samples

0.30

0.32

0.34

0.36

0.38

0.40

0.42

R
M

SE
 [e

V]

(b) QM8

5% 10% 15% 20%
Amount of training samples

0.26

0.28

0.30

0.32

0.34

R
M

SE
 [e

V]

5% 10% 15% 20%
Amount of training samples

0.30

0.32

0.34

0.36

0.38

R
M

SE
 [e

V]

(c) QM9

Figure 7.15.: RMSE for regression tasks on QM datasets using KRR with Gaussian
kernel (left column) and FNN (right column) trained on sets of various sizes,
expressed as a percentage of the available data points, and selected with
different sampling strategies. Error bars represent the standard deviation
over five runs. DA-FPS (red lines) is the most competitive approach. No
modified baseline (dashed lines) can consistently outperform DA-FPS in
any of the datasets.

114

7.2. Minimizing the weighted fill distance with DA-FPS

RDM
FacilityLocation
k-medoids++
FPS
DA-FPS

KRR

5% 10% 15% 20%
Amount of training samples

10

20

30

40

50

M
AX

AE
 [e

V]
FNN

5% 10% 15% 20%
Amount of training samples

20

40

60

80

100

M
AX

AE
 [e

V]

(a) QM7

5% 10% 15% 20%
Amount of training samples

2

3

4

5

6

7

8

M
AX

AE
 [e

V]

5% 10% 15% 20%
Amount of training samples

2

3

4

5

6

7

M
AX

AE
 [e

V]

(b) QM8

5% 10% 15% 20%
Amount of training samples

3

4

5

6

7

M
AX

AE
 [e

V]

5% 10% 15% 20%
Amount of training samples

3

4

5

6

M
AX

AE
 [e

V]

(c) QM9

Figure 7.16.: MAXAE for regression tasks on QM datasets using KRR with Gaussian
kernel (left column) and FNN (right column) trained on sets of various sizes,
expressed as a percentage of the available data points, and selected with
different sampling strategies. Error bars represent the standard deviation
over five runs. FPS (blue lines) consistently outperforms all other methods.
DA-FPS (red lines) achieves a MAXAE of a similar magnitude to FPS.

115

7. Numerical Results

7.2.4. Ablation study DA-FPS hyperparameters on ZINC dataset

Next, we analyze how the performances of DA-FPS may be affected as we vary the
hyperparameter u, defining the amount of samples initially selected with uniform weights
and the hyperparameter k, defining the amount of k-nearest neighbors considered for
computing the weights. We perform this analysis on the ZINC dataset and use the KRR
and FNN as regression models. We consider a version of the ZINC dataset consisting
of 24000 molecules represented as vectors in R100. We aim to predict the molecules’
LogP value, describing the molecules’ solubility. In Section 4.2 we provide the details on
the descriptors, label values, and preprocessing procedures we use. ZINC provides one
additional application scenario to those already considered in previous sections.

Hyperparameter “u”

To study how DA-FPS performs as the hyperparameter u varies, we fix k = 300. The
graphs in Fig. 7.17a illustrate how the performance of DA-FPS (dashed lines) changes
as the parameter u varies, compared to the classical baseline approaches (solid lines).
We consider u = 0%, 1%, 2%, 3%. For the low data budget of 5%, we see that random
sampling and k-medoids++ lead to better results than DA-FPS, particularly if we
consider larger values of u for DA-FPS. This is more evident with KRR. On the contrary,
for the larger training set sizes of 10%, 15% and 20%, DA-FPS consistently outperforms
all the baselines independently of the choice of u. Moreover, for the smallest training
set size of 5% we see that the smaller the value of u the more accurate the average
predictions obtained considering training set selected with DA-FPS, independently of
the regression model. We note that, such a trend may change or even be reverted if we
consider larger training set sizes of 10%, 15% and 20%. This is particularly evident in the
graph of Fig. 7.17a related to the FNN model, where, for training set sizes of 15% and
20%, the larger the value of u the more accurate the average predictions with DA-FPS.
Thus, from our experiments, we see that the parameter u may affect the performance of
DA-FPS differently, depending on the training set size and regression model considered.

The graphs in Fig. 7.17b compare DA-FPS and the modified baselines. They show the
results obtained by initializing DA-FPS and the modified baselines with u = 1% of the
available data points. That is, DA-FPS and the modified baselines coincide with FPS
until 1% of the available data points has been selected. The results align with those of
the experiments performed in Section 7.2.3. In particular, the graphs in Fig. 7.17b show
that, DA-FPS tends to outperform the modified baselines in terms of the MAE of the
regression models, particularly for larger training set sizes (> 5%).

Fig. 7.17c illustrates the performance of DA-FPS and the modified baselines considering
u = 3% of the available data. The graphs suggest that, by increasing the parameter u
form 1% to 3% the gap between the modified baselines and DA-FPS reduces for KRR
and increases FNN. This indicates that the choice of u has an impact on the relative
effectiveness of the modified baselines and DA-FPS and that such impact also depends
on the model used for the regression task. Nonetheless, independently of the choice u,
DA-FPS is the best or second best performing for the larger training set sizes (> 10%).

116

7.2. Minimizing the weighted fill distance with DA-FPS

KRR

5% 10% 15% 20%
Amount of training samples

0.18

0.20

0.22

0.24

0.26

M
AE

 [L
og

P]

RDM
FPS
FacilityLocation
k-medoids++
DA-FPS_0
DA-FPS_1
DA-FPS_2
DA-FPS_3

FNN

5% 10% 15% 20%
Amount of training samples

0.20

0.22

0.24

0.26

0.28

M
AE

 [L
og

P]

RDM
FPS
FacilityLocation
k-medoids++
DA-FPS_0
DA-FPS_1
DA-FPS_2
DA-FPS_3

(a) u = 0%, 1%, 2%, 3%

5% 10% 15% 20%
Amount of training samples

0.20

0.22

0.24

0.26

M
AE

 [L
og

P]

FPS-RDM
FPS-FacLoc
FPS-k-medoids++
FPS
DA-FPS

5% 10% 15% 20%
Amount of training samples

0.20

0.22

0.24

0.26

0.28
M

AE
 [L

og
P]

FPS-RDM
FPS-FacLoc
FPS-k-medoids++
FPS
DA-FPS

(b) u=1%

5% 10% 15% 20%
Amount of training samples

0.20

0.22

0.24

0.26

M
AE

 [L
og

P]

FPS-RDM
FPS-FacLoc
FPS-k-medoids++
FPS
DA-FPS

5% 10% 15% 20%
Amount of training samples

0.20

0.22

0.24

0.26

0.28

M
AE

 [L
og

P]

FPS-RDM
FPS-FacLoc
FPS-k-medoids++
FPS
DA-FPS

(c) u=3%

Figure 7.17.: Sensitivity study DA-FPS hyperparameter “u”: MAE for regression tasks
on ZINC using KRR (left column) and FNN (right column) trained on
sets of various sizes, expressed as a percentage of the available data points,
and selected with different sampling strategies. DA-FPS is implemented
with k = 300 and considering various values for u. In (a) DA-FPS is
implemented with u = 0%, 1%, 2%, 3%. DA-FPS and the modified baselines
are implemented with u = 1% in (b) and u = 3% in (c). Error bars represent
the standard deviation over five runs.

117

7. Numerical Results

k = 30
k = 290
k = 300
k = 310
k = 3000

5% 10% 15% 20%
Amount of training samples

0.18

0.20

0.22

0.24

0.26

M
AE

 [L
og

P]

(a) KRR

5% 10% 15% 20%
Amount of training samples

0.20

0.22

0.24

0.26

0.28

M
AE

 [L
og

P]

(b) FNN

Figure 7.18.: Sensitivity study DA-FPS hyperparameter “k”: MAE for regression tasks
on ZINC using KRR with Gaussian kernel (a) and FNN (b) trained on
sets of various sizes, and selected with DA-FPS considering u = 1% and
k = 30, 290, 300, 310, 3000. Error bars represent the standard deviation
over five runs. The performance of DA-FPS remains stable when the
hyperparameter k is within a certain range (k = 290, 300, 310). Choosing k
too small may lead to a notable performance decline.

Hyperparameter “k”

To study how DA-FPS performs as the hyperparameter k varies, we fix u=1%. We choose
u=1% because, according to the results in Fig. 7.17, it provides the better overall results
across the various training set sizes considered. Fig. 7.18 reports experiments where we
investigate the effects of varying the DA-FPS parameter k for regression tasks with KRR
and FNN on the ZINC dataset. We select training sets of various sizes with DA-FPS,
considering different values of k (k = 30, 290, 300, 310, 3000).

These exemplary results suggest that the proposed value k = 300 (used for the
experiments in Fig. 7.17) falls within a range where small changes would not negatively
impact the effectiveness of our approach on the ZINC datasets. Using k = 290 and 310
does not lead to substantial differences, independently of the training set size. However,
applying changes of an order of magnitude to k could potentially affect the approach. For
instance, changing the value of k = 300 by a factor of 10 to k = 30 leads to a significant
decrease in performance for the training set size of 5%, independently of the regression
model. The rough magnitude of k likely depends on the data dimension and distribution
and is generally investigated in the context of density estimation. We expect further
insights from that domain.

Data assumptions

So far, in this section, we empirically validated the theoretical results presented in
Chapter 6. That is, we saw that attempting to minimize the estimated training set
weighted fill distance using DA-FPS leads to an improvement of the average prediction
performance of regression models. We note that, for the experiments to be consistent
with the theory developed in Chapter 6, the datasets we use should respect the data

118

7.2. Minimizing the weighted fill distance with DA-FPS

assumptions required in Theorem 6.1. We focus on Assumption 5.2, more specifically
Formula (5.6), indicating that if two data points have close representations in the feature
space, then the conditional expectations of the associated labels are also close. This
assumption is necessary to attain the theoretical result in Theorem 6.1.

For the QM datasets, we have already tested the assumption in Section 7.2 where we
perform experiments related to FPS. However, for the experiments with DA-FPS we use
different feature vectors. Thus, it is worth to verify whether the new feature vectors we
consider still respect the required assumptions or not.

We use the same procedure employed in Section 7.2 and study the correlation between
pairwise distances in the feature and labels spaces by computing the Pearson’s (ρp) and
Spearman’s (ρs) correlation coefficients. We recall that these coefficients measure and
quantify the correlation between the quantities of interest. We compute the correlation
coefficients for the pairwise distances in the feature and label spaces on the QM7, QM8,
QM9 and ZINC. We consider the features and labels used for the experiments illustrated
in Section 7.2.3 and Section 7.2.4.
Due to memory issue in storing the distance matrix, for the QM9 we computed the

correlation coefficients on 50% of randomly selected data points. We selected random
subsets and computed the associated correlation coefficients for five times. The results
we report for the QM9 are the average over the five runs. The computed coefficients are
0.15, 0.22, 0.26 and 0.22 for ρp, and 0.27, 0.19, 0.22 and 0.19 forρs, for QM7, QM8, QM9
and ZINC, respectively. Thus, both the Pearson’s and Spearman’s coefficients indicate
a positive correlation between the pairwise distances of the data features and labels,
suggesting that the data assumption considered in Theorem 5.1 is respected for each of
the considered datasets.

We remark that this check on the data assumption based on the correlation coefficient
between pairwise distances in the feature and label space only provides a qualitative
understanding of the data regularity. That is, it indicates that the data respects the
assumption, but it does not confirm it. Moreover, it relies on the knowledge of the
data labels. We are interested in scenarios where the labels and the map connecting the
features and the labels are unknown. At this moment in time, we do not see any numerical
approach that can provide a qualitative or quantitative understanding of the regularity
of the mapping connecting data locations and associated labels without the knowledge of
the labels. Thus, we think that researchers should rely on domain knowledge, as was our
case, to understand whether data assumptions are respected or not.

7.2.5. Computational efficiency DA-FPS

Given the novelty of DA-FPS, it is important to investigate its computational complexity.
DA-FPS can be implemented using O(|D|k) memory and the greedy selection takes
O(db|D|k) time. |D| is the amount of available data points, k the amount of nearest
neighbors we consider for the density approximation, b is the amount of points we
select and d is the dimension of the data points. The computational cost of DA-FPS is
determined by the weights update (line 7 in Algorithm 6) taking O(d|D|k) at each of the
b iterations. In the current implementation the weights update involves iterating over all

119

7. Numerical Results

points in D and compute the distances between the new selected point and the points’
k-nearest neighbors, which costs O(d|D|k).
Note that, initializing DA-FPS requires the computation of the k-nearest neighbors

matrix, which can be a potential bottleneck. In our implementation we query the k-nearest
neighbors using the cKDtree algorithm from the SciPy python library [VGO+20]. The
algorithm takes O(d|D| log |D|) for building the balanced tree in the worst case scenario.

After that, it queries the k-nearest neighbors with a worst-case cost of O(|D|1−
1
d) and an

average cost of O(log |D|).
We implemented two versions of DA-FPS: one using NumPy [vdWCV11] and the

other with PyTorch [PGM+19]. The average computation times (over five runs) to
select 20% of data points from QM7, QM8, QM9, and ZINC are respectively as follows:
NumPy - 6, 48, 1974, and 70 seconds; PyTorch - 4, 31, 968, and 33 seconds. This was
conducted on a 48-core CPU with 384 GB RAM. DA-FPS was initialized with u = 0 and
k = 100 independently of the dataset. DA-FPS’ PyTorch implementation is faster than
the NumPy implementation. This is because PyTorch can run computations exploiting
multiple CPU cores. It uses libraries like OpenMP[DM98] and Math Kernel Library
[WZS+14] to perform operations on multiple CPU cores, leading to faster computations.

7.2.6. Additional experiments

In this section we present experiments considering two additional datasets unrelated to
quantum chemistry, two additional sampling strategies, and one additional kernel method.
The new datasets are the Concrete Compressive Strength dataset and the Electrical Grid
Stability Simulated Dataset, from the public UCI ML repository [DG17]. The Electrical
Grid Stability dataset contains 10000 data points represented by 12-dimensional vectors.
The target variable for regression is the stability margin (stab), reflecting grid stability.
The Concrete dataset consists of 1030 data points of described by 8-dimensional vectors.
The target variable is the compressive strength in megapascals (MPa). In Appendix B.2
we provide additional details on the datasets and preprocessing procedures. We also
consider the QM8 to evaluate the performance of the additional sampling strategies and
regression model in a quantum chemistry context.

The additional sampling strategies are the Twinning algorithm [VJ22], introduced in
Section 3.5, and the facility location with a Gaussian similarity function (FacLocG) as
defined in (3.13). Fine-tuning is required for the Gaussian width of the similarity function
in facility location, and we follow the methodology outlined in [BCD+24], with complete
details and hyperparameters described in Appendix B.3. Appendix B.3 also includes the
hyperparameters used for DA-FPS. In these experiments, we compare DA-FPS with the
additional sampling strategies alongside the baseline methods used in the previous section,
including RDM, k-medoids++, facility location and FPS. We intentionally exclude the
modified baselines analyzed earlier to keep the error plots clear and avoid introducing
unnecessary complexity.

The Twinning algorithm implementation from [VJ22] only allows the selection of
subsets of the size that can be expressed as an integer “r” representing the inverse of

120

7.2. Minimizing the weighted fill distance with DA-FPS

Twinning
FacLoc-G
FacilityLocation
k-medoids++
RDM
FPS
DA-FPS

5% 10% 16.67% 20%
Amount of training samples

6

7

8

9
M

A
E
 [

M
Pa

]

5% 10% 16.67% 20%
Amount of training samples

8

9

10

11

12

R
M

S
E
 [

M
Pa

]

5% 10% 16.67% 20%
Amount of training samples

30

40

50

60

M
A

X
A

E
 [

M
Pa

]

(a) Concrete

5% 10% 16.67% 20%
Amount of training samples

0.006

0.007

0.008

0.009

M
A

E
 (

st
a
b
)

5% 10% 16.67% 20%
Amount of training samples

0.008

0.009

0.010

0.011

0.012
R

M
S
E
 (

st
a
b
)

5% 10% 16.67% 20%
Amount of training samples

0.05

0.06

0.07

0.08

0.09

0.10

M
A

X
A

E
 (

st
a
b
)

(b) Electrical Grid

5% 10% 16.67% 20%
Amount of training samples

0.225

0.250

0.275

0.300

0.325

0.350

M
A

E
 [

e
V

]

5% 10% 16.67% 20%
Amount of training samples

0.30

0.35

0.40

0.45

R
M

S
E
 [

e
V

]

5% 10% 16.67% 20%
Amount of training samples

2

4

6

8
M

A
X

A
E
 [

e
V

]

(c) QM8

Figure 7.19.: Results for regression tasks on the Concrete Compressive Strength, Electrical
Grid Stability, and QM8 datasets. We use KRR with the Cauchy kernel
trained on sets of various sizes, expressed as a percentage of the available
data points, and selected with different sampling strategies. MAE (top row),
RMSE (middle row) and MAXAE (bottom row) are shown for each training
set size and sampling approach. Error bars represent the standard deviation
of the results over five runs. DA-FPS (red lines) consistently showcases
competitive performances across all metrics. For MAE, DA-FPS generally
outperforms other methods, except Twinning (black lines) at 5% training set
size on QM8. Twinning is the second-best method in terms of the MAE. For
the RMSE, DA-FPS consistently ranks as the best or second-best. MAXAE
results confirm DA-FPS as the best or second-approach, with FPS (blue
lines) as the other most competitive approach. As for Twinning, despite
strong MAE performance, it under-performs in MAXAE, sometimes worse
than random sampling (green lines). Overall, DA-FPS delivers competitive
performances across all metrics.

121

7. Numerical Results

the partitioning ratio, i.e., for obtaining a training subset consisting of 20% of the data
points, we must set r = 100

20 = 5. Consequently, to use the Twinning algorithm, we
consider training set sizes similar to those considered in the previous section, but that
can be expressed as an integer ratio. Specifically, we consider training set sizes of 5%,
10%, 16.67% and 20% associated with a ratio r of 20, 10, 6 and 5, respectively.

We use KRR with a Cauchy kernel as an additional regression method. We take
the definition of Cauchy kernel used in [Bas08]. We describe the Cauchy kernel, its
hyperparameters and the hyperparameters’ optimization process in Appendix B.4.

For each sampling strategy and set size, the training set selection process is indepen-
dently run five times considering different initializations, that is, different initial point
or random seed. Accordingly, we report for each analyzed model the average and the
standard deviation of the results for five runs.

Fig. 7.19 presents the regression task results on the Concrete dataset, the Electrical
Grid dataset, and the QM8 dataset, using KRR with a Cauchy kernel trained on datasets
of various sizes, selected with different strategies. The top row of the figure shows the
MAE of the predictions, the primary metric of interest. These results suggest that,
overall, DA-FPS outperforms other methods across all datasets. The only exception
occurs with a training set size of 5% on the QM8 dataset, where the Twinning approach
performs slightly better. Nonetheless, the MAE plots indicate that Twinning is generally
the second-best method regarding MAE.

The middle row of Fig. 7.19 presents the RMSE results, which indicate that DA-FPS
consistently achieves strong performance, ranking as either the best or second-best
method across all scenarios. Unlike the MAE results, where Twinning is the second
best-performing approach, the RMSE results highlight FPS as the method most closely
aligned with DA-FPS in terms of performance. This distinction underscores the reliability
of DA-FPS across varying evaluation metrics. Since RMSE assigns greater weight to
larger prediction errors compared to MAE, these findings emphasize the capability of
DA-FPS to manage and mitigate significant prediction errors effectively.

The bottom row of Fig. 7.19 illustrates the MAXAE, further indicating DA-FPS as
either the best or second-best method in every scenario. FPS emerges as the other best
performing. It is worth to note that while the Twinning approach is the second best
performing approach it terms of the MAE, it performs poorly in terms of MAXAE,
especially when compared to DA-FPS and FPS. For example, Twinning is the worst-
performing algorithm on the Concrete dataset with a training set size of 5% and the
second-worst on the QM8 dataset, regardless of training set size. In both cases, Twinning
performs even worse than random sampling.

The results in Fig. 7.19 underscore the effectiveness and adaptability of DA-FPS across
different datasets, sampling strategies, and error metrics. These additional experiments
further indicate that DA-FPS is a robust and versatile approach for various regression
tasks not only constrained to the quantum-chemistry domain.

Next, we compute the condition number of the Cauchy kernel to examine the impact of
different sampling strategies on the robustness of KRR predictions. From the theoretical
observations presented in Section 5.4 we know that the lower the condition number

122

7.2. Minimizing the weighted fill distance with DA-FPS

Twinning
FacLoc-G
FacilityLocation
k-medoids++
RDM
FPS
DA-FPS

5% 10% 16.67% 20%
Amount of training samples

107

109

1011

1013

1015

C
o
n
d
it

io
n
 n

u
m

b
e
r

(a) Concrete

5% 10% 16.67% 20%
Amount of training samples

106

107

108

C
o
n
d
it

io
n
 n

u
m

b
e
r

(b) Electrical grid

5% 10% 16.67% 20%
Amount of training samples

106

107

108

109

C
o
n
d
it

io
n
 n

u
m

b
e
r

(c) QM8

Figure 7.20.: Condition number of the non-regularized Cauchy kernels are shown for
each dataset, training set size and sampling approach. The y-axes of the
graphs are on log scale and the error bands represent the confidence interval
over five runs of the experiments. The figure shows that selecting training
sets using FPS (blue lines) leads to kernels with lower condition number,
with respect to the other sampling approaches. The second-best-performing
strategy is DA-FPS (red lines).

of the kernel, the higher the robustness of the predictions. The graphs in Fig. 7.20
show that selecting training sets using FPS tends to reduce the condition number of the
kernel, which is in line with the experimental results in Section 7.1.4. The only case
where FPS does not outperform all other strategies occurs with the Concrete dataset for
the largest training set size analyzed. It is notable that for the Concrete dataset, the
condition numbers are significantly larger than those on other datasets, regardless of
the sampling strategy. This observation highlights the reduced effectiveness of FPS in
high condition number regimes. Similar behavior was observed in experiments with the
QM9 dataset using the Gaussian kernel, as detailed in Section 7.1.4. Interestingly, the
second-best-performing strategy across all cases is DA-FPS, regardless of the dataset or
selection approach used.

7.2.7. Section highlights

Our experiments indicate that selecting the training sets using DA-FPS reduces the
predictions’ MAE for KRR and FNN. In particular, DA-FPS outperforms various baselines,
including RDM, facility location, FPS, and k-medoids++ (Fig. 7.11 and Fig. 7.19).
Moreover, our experiments suggest that modifying the baselines by initially sampling
with FPS consistently enhances their average performance (MAE), regardless of the
dataset or model used (Fig. 7.12). Still, DA-FPS remains the most competitive approach
(Fig. 7.13). Additionally, we find that FPS may perform similarly to DA-FPS in terms
of RMSE, particularly for large training set sizes. Nonetheless, DA-FPS is still the
most competitive approach across datasets and training set sizes also when considering
RMSE as the evaluation metric (Fig. 7.14, Fig. 7.15). Furthermore, we analyze how the
performances of DA-FPS may be affected as we vary the hyperparameter u, defining

123

7. Numerical Results

the number of samples initially selected with uniform weights, and the hyperparameter
k, defining the amount of k-nearest neighbors considered for computing the weights.
Our experiments on the ZINC dataset suggest that the impact of u on the prediction
performance varies, depending on the training set size and regression model (KRR or
FNN). Nonetheless, for larger training set sizes (> 10% of the available data points),
DA-FPS shows to be the most competitive approach regardless of u (Fig. 7.17). Our
experiments also indicate that choosing for DA-FPS the hyperparameter k too small
may lead to a notable performance decline in the MAE of the predictions, especially for
smaller training sets (Fig. 7.18).

124

8. Conclusion

This work addressed issues related to training data selection with a limited labeling
budget. We studied passive and model-agnostic approaches to select training sets that can
benefit various learning models and prediction tasks. We had two main objectives. The
first was selecting training sets aiming to maximize the robustness of regression models
by reducing their maximum prediction error. The second was selecting training sets to
improve the average performance of regression models by decreasing their mean absolute
prediction error. Our experiments mainly focused on molecular property prediction
tasks relevant to drug discovery and material design. In what follows we summarize the
contributions of this work highlighting the main findings and results.

8.1. Summary, contributions, and findings

First, we focused on selecting training sets that can improve the robustness of the
regression models by reducing the maximum error of their predictions. We derived
an upper bound for the maximum expected prediction error of Lipschitz continuous
regression models that is linearly dependent on the training set fill distance (Theorem 5.1).
In Section 5.3 we saw that the Farthest Point Sampling algorithm (FPS) provides solution
with optimal approximation factor in polynomial time to the fill distance minimization
problem. We showed that selecting the training sets by aiming to minimize their fill
distance using FPS, thereby aiming to minimize our derived bound, significantly decreases
the MAXAE of the predictions of Lipschitz continuous regression models, such as KRR
and FNN. We compared the FPS approach with other passive and model-agnostic
sampling techniques and demonstrated its superiority for low training set budgets in
terms of maximum absolute error (MAXAE) reduction (Fig. 7.1, Fig. 7.2, and Fig. 7.10).
The error bound in Theorem 5.1 focuses on regression tasks with scalar labels, but
we also reported experiments showing that FPS can reduce MAXAE in tasks with
multidimensional labels (Fig. 7.10). Our experiments indicated that FPS does not lead to
any significant advantage in average prediction quality compared to random sampling or
other baseline approaches. We provided further theoretical examinations and empirical
investigations to show additional advantages of selecting training sets with FPS for KRR
with the Gaussian kernel. Specifically, our findings indicated that employing FPS for
selecting training sets enhances the stability of this particular class of models (Fig. 7.3)
and of other kernel methods, such as KRR with the Cauchy kernel (Fig. 7.20). An
additional important finding of this study relates to the impact of the training set size
on the performance of FPS. Our experiments demonstrated that FPS is particularly
advantageous in terms of MAXAE reduction, especially in scenarios with limited training

125

8. Conclusion

data. However, we found that after a certain number of points have been selected with
FPS, there is no significant advantage in continuing the sampling with it compared to
other model-agnostic strategies. Specifically, we found that selecting the initial 2% of
data points with FPS, followed by random sampling, produces results comparable to
using FPS alone in terms of MAXAE reduction (Fig. 7.8).

Next, we focused on selecting training sets that can improve the average prediction
performance of the regression models. We derived an upper bound for the expected
prediction error of Lipschitz continuous regression models (Theorem 6.1). The bound is
linear in the weighted fill distance of the training set, which we defined as the maximum
weighted distance between a point in the data space of interest and its closest selected point
(Definition 6.1). Furthermore, we introduced “Density-Aware Farthest Point Sampling”
(DA-FPS) a novel passive and model-agnostic data selection strategy (Algorithm 6).
DA-FPS greedily selects sets from a pool of available data points. We proved that
DA-FPS provides suboptimal minimizers for a data-driven estimation of the weighted
fill distance (Theorems 6.2 and 6.3), thereby aiming to minimize our derived bound.
We reported experimental results showing that selecting training sets using DA-FPS
increases the average prediction quality of Lipschitz continuous regression models, such
as KRR and FNN. In particular, we compared DA-FPS with other model-agnostic
sampling techniques, including FPS, and demonstrated its superiority in terms of mean
absolute error (MAE) reduction (Fig. 7.11, Fig. 7.13, and Fig. 7.19). We found that
the training set size has an impact on the effectiveness of DA-FPS. Our experiments
indicated that DA-FPS is advantageous in terms of MAE reduction with respect to
the baselines, particularly for medium-to-large data budget regimes, that is, after a
portion of the data has been selected (> 5% of the available points). Furthermore, we
empirically investigated the benefits of combining FPS with other well-established passive
and model-agnostic sampling strategies. We showed that augmenting such approaches
with FPS during the initial steps of the sampling process consistently led to a decrease
in the predictions’ MAE (Fig. 7.12).

This work highlighted the importance of training data selection in improving the
performance of regression models, particularly under limited data labeling budgets. By
analyzing and evaluating FPS and DA-FPS, we theoretically motivated and empirically
illustrated that these approaches can effectively reduce prediction errors by optimizing
training set selection. FPS is effective in minimizing maximum prediction error with
small training set sizes, while DA-FPS enhances average prediction quality, particularly
with medium-to-large data labeling budgets.

8.2. Challenges, limitations, and possible future directions

We can think of passive model-agnostic data sampling strategies as existing on a spectrum.
On one end are methods that select subsets to uniformly cover the dataset without
considering the data distribution. On the other end are approaches that prioritize
selecting points that closely reflect the overall data distribution. A key challenge is
to design a data selection strategy that balances covering the dataset and capturing

126

8.2. Challenges, limitations, and possible future directions

its density distribution to select training sets that can optimize the performance of a
regression model, according to a specific evaluation metric, under the constraint of a
fixed labeling budget. In what follows, we mention the limitations of this work related to
balancing the broad coverage of the dataset by sampling with FPS, and capturing the
underlying data density using DA-FPS. Additionally, we mention limitations related to
the data density estimations we consider to develop DA-FPS. We also propose future
research directions to address these limitations and further extend this work.

Our experiments revealed that using FPS is highly effective in reducing MAXAE in the
low training data budget regime. Alternatively, DA-FPS proves particularly beneficial in
reducing MAE in medium-to-large data regimes. However, the definitions we provided in
Section 2.4.2 of “low”, “medium”, and “large” data regimes are only qualitative. In our
experiments we quantified such data regimes based on the range of effectiveness of FPS
and DA-FPS. We determined such ranges using a heuristic approach, where we performed
various experiments with different training set sizes. Ideally, given an unlabeled pool
of data points, we would like a quantitative approach to define a-priori the training set
size ranges for which FPS and DA-FPS can be effective. At this moment of time it is
not clear to us how to determine a-priori until when it is beneficial to sample aiming at
covering the dataset with FPS, in order to reduce the MAXAE, and when it is beneficial
to switch to capturing the data distribution with DA-FPS, to reduce the MAE. Finding
an optimal balance between broad coverage of the dataset with FPS and accurately
capturing the underlying data density with DA-FPS is still an open challenge. Future
work should focus on addressing it. Intuitively, the solution to this problem depends on
the distribution and dimension of the points in the available dataset.

In the experiments of Section 7.2 we address balancing data space coverage with
FPS and the emphasis on density distribution with DA-FPS by heuristically tuning the
DA-FPS hyperparameter “u”, which determines the amount of samples to select while
considering uniform weights. Recall that DA-FPS initially selects points considering
uniform weights, that is, DA-FPS initially coincides with FPS. By sampling as with
FPS during the initial phase of the sampling process, DA-FPS reduces the MAXAE and
avoids large outlier error values, which helps to reduce the MAE for larger training set
sizes. The shift from sampling as with FPS to iteratively updating the weights, taking
into account the data density during the sampling process, is determined by the input
hyperparameter “u”, which we tune following a heuristic approach. Ideally, we would
like to have a principled approach to determine a-priori an optimal value of “u” for a
given dataset.

DA-FPS also takes in input the hyperparameter “k”, determining the number of
nearest neighbors considered to compute the weights. In this work, we optimized “k”
by performing an a-posteriori analysis where we considered various values for “k” and
selected those that provided better results. The lack of principled approaches to determine
effective values “k” is a limitation of this work. We think that future work should also
focus on the problem of identifying a-priori the rough magnitude of effective values for k.
Determining an optimal value is closely tied to the problem of high-dimensional density
approximation, which was beyond the scope of this study.

127

8. Conclusion

Additional research directions should also investigate alternatives for the data density
estimations we use to compute the weights, as we defined them in the definition of
weighted fill distance in (6.2). In (6.8) we proposed one possible approach based on
k-nearest neighbors, but others more effective may be developed. Further insights and
methodologies to investigate this direction may be found in the field of data density
approximation in high dimensions.

In Section 5.5 we discussed how the concept of dispersion, commonly used in Quasi-
Monte Carlo methods, can provide an alternative to the fill distance. The dispersion
quantifies the representativeness of the selected training sets by focusing on volumes
instead of distances. Both, FPS and DA-FPS, could be adapted to use dispersion. This
would change the principles according to which these two approaches attempt to represent
the data space of interest, potentially leading to a performance improvement. Further
investigation into this approach is recommended

This work focused on selecting training data for improving the performance of regression
models. Our motivation relates to the fact that different training sets can lead to different
performances of the same regression models. Another important aspect to consider while
developing ML regression models is the evaluation process. Model evaluation is a crucial
aspect for assessing the effectiveness of regression models before deploying them into the
real word. Typically, regression models are evaluated by measuring their performance on
a fixed test set, for which the labels are known. Different test sets can lead to different
evaluations of the same model. Therefore, future research could also focus on developing
test sets for effective and interpretable evaluations. In particular, it would be valuable
to develop test sets that can assess specific aspects of the regression models, such as
robustness. Note that test sets need to be labeled. Therefore, selecting small test sets
from large pools of unlabeled points to evaluate specific aspects of regression models can
be beneficial in scenarios with limited computational resources and high labeling costs.

8.3. Final thoughts

The study of training data selection for regression models is a crucial area that merges
theoretical insights with practical applications, particularly when resources for labeling
data are limited. This work contributes to this evolving domain by providing clear
theoretical guidelines, analyzing sampling strategies like FPS and the novel DA-FPS,
and empirically validating their effectiveness across various tasks and data regimes.

Our findings and contributions advance the understanding of how data selection impacts
regression performance. FPS and DA-FPS offer valuable tools for optimizing training
data selection under data availability constraints.

Despite these advances, the research field is far from exhausted. The challenge of
balancing uniform data coverage with density-aware sampling remains open. Our work
identifies promising research directions, such as finding principled approaches for DA-FPS’
hyperparameters selection, investigating alternative approaches to density approximation,
and adapting concepts like dispersion from Quasi-Monte Carlo methods. These research
directions could lead to the refinement of the sampling methodologies investigated in this

128

8.3. Final thoughts

work or even to the creation of new ones.
In summary, the contributions of this work underscore the potential of data selection

strategies in ML regression. By providing theoretical insights, empirical validations, and
future research directions, this work aims to inspire further investigations in this field,
ultimately leading to cheaper, more reliable and effective ML systems.

129

Bibliography

[AFK+14] Peshawa Jamal Muhammad Ali, Rezhna Hassan Faraj, Erbil Koya, Pe-
shawa J Muhammad Ali, and Rezhna H Faraj. Data normalization and
standardization: a technical report. Mach Learn Tech Rep, 1(1):1–6, 2014.

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of
careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’07, page 1027–1035, USA, 2007.
Society for Industrial and Applied Mathematics.

[Bas08] Jayanta Basak. A least square kernel machine with box constraints. In 2008
19th International Conference on Pattern Recognition, page 1–4. IEEE,
December 2008.

[BCD+24] Gantavya Bhatt, Yifang Chen, Arnav Das, Jifan Zhang, Sang Truong,
Stephen Mussmann, Yinglun Zhu, Jeff Bilmes, Simon Du, Kevin Jamieson,
Jordan Ash, and Robert Nowak. An experimental design framework for
label-efficient supervised finetuning of large language models. In Findings of
the Association for Computational Linguistics ACL 2024, pages 6549–6560.
Association for Computational Linguistics, 2024.

[BDH+23] Anna Beer, Andrew Draganov, Ellen Hohma, Philipp Jahn, Christian M.M.
Frey, and Ira Assent. Connecting the dots – density-connectivity distance
unifies dbscan, k-center and spectral clustering. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD ’23, page 80–92. ACM, August 2023.

[Bel61] Richard E. Bellman. Adaptive Control Processes. Princeton University
Press, Princeton, 1961.

[BFPK20] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos
Konstantinou. Dataset discovery in data lakes. In ICDE, pages 709–720,
2020.

[Bil22] Jeff Bilmes. Submodularity in machine learning and artificial intelligence,
2022.

[BJL19] Christopher Baik, H. V. Jagadish, and Yunyao Li. Bridging the semantic
gap with sql query logs in natural language interfaces to databases. In 2019
IEEE 35th International Conference on Data Engineering (ICDE), pages
374–385. IEEE, April 2019.

131

Bibliography

[BKC13] Albert P. Bartók, Risi Kondor, and Gábor Csányi. On representing chemical
environments. Physical Review B, 87(18):184115, May 2013.

[Bos08] Sarah Boslaugh. Statistics in a nutshell. O’Reilly, 2008.

[BR09] L. C. Blum and J.-L. Reymond. 970 million druglike small molecules for
virtual screening in the chemical universe database GDB-13. J. Am. Chem.
Soc., 131:8732, 2009.

[BW13] Michael Burch and Daniel Weiskopf. On the Benefits and Drawbacks of
Radial Diagrams, pages 429–451. Springer New York, June 2013.

[Cac66] Theophilos Cacoullos. Estimation of a multivariate density. Annals of the
Institute of Statistical Mathematics, 18(1):179–189, December 1966.

[CAC+09] Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman,
Cymon J. Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank
Kauff, Bartek Wilczynski, and Michiel J. L. de Hoon. Biopython: freely
available python tools for computational molecular biology and bioinfor-
matics. Bioinformatics, 25(11):1422–1423, March 2009.

[CBC+23] Seamless Communication, Löıc Barrault, Yu-An Chung, Mariano Cora
Meglioli, David Dale, Ning Dong, Paul-Ambroise Duquenne, Hady Elsa-
har, Hongyu Gong, Kevin Heffernan, John Hoffman, Christopher Klaiber,
Pengwei Li, Daniel Licht, Jean Maillard, Alice Rakotoarison, Kaushik Ram
Sadagopan, Guillaume Wenzek, Ethan Ye, Bapi Akula, Peng-Jen Chen,
Naji El Hachem, Brian Ellis, Gabriel Mejia Gonzalez, Justin Haaheim,
Prangthip Hansanti, Russ Howes, Bernie Huang, Min-Jae Hwang, Hirofumi
Inaguma, Somya Jain, Elahe Kalbassi, Amanda Kallet, Ilia Kulikov, Janice
Lam, Daniel Li, Xutai Ma, Ruslan Mavlyutov, Benjamin Peloquin, Mo-
hamed Ramadan, Abinesh Ramakrishnan, Anna Sun, Kevin Tran, Tuan
Tran, Igor Tufanov, Vish Vogeti, Carleigh Wood, Yilin Yang, Bokai Yu,
Pierre Andrews, Can Balioglu, Marta R. Costa-jussà, Onur Celebi, Maha
Elbayad, Cynthia Gao, Francisco Guzmán, Justine Kao, Ann Lee, Alexan-
dre Mourachko, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah
Saleem, Holger Schwenk, Paden Tomasello, Changhan Wang, Jeff Wang,
and Skyler Wang. Seamlessm4t: Massively multilingual and multimodal
machine translation, 2023.

[CF23] Eric Cancès and Gero Friesecke. Density Functional Theory: Modeling,
Mathematical Analysis, Computational Methods, and Applications. Springer
International Publishing, 2023.

[CG24] Paolo Climaco and Jochen Garcke. On minimizing the training set fill
distance in machine learning regression. Journal of Data-centric Machine
Learning Research, 1(14):1–36, 2024.

132

Bibliography

[CHE+21] Rose K Cersonsky, Benjamin A Helfrecht, Edgar A Engel, Sergei Kliavinek,
and Michele Ceriotti. Improving sample and feature selection with prin-
cipal covariates regression. Machine Learning: Science and Technology,
2(3):035038, jul 2021.

[CTS+17] Stefan Chmiela, Alexandre Tkatchenko, Huziel E. Sauceda, Igor Poltavsky,
Kristof T. Schütt, and Klaus-Robert Müller. Machine learning of accurate
energy-conserving molecular force fields. Science Advances, 3(5), may 2017.

[CvL20a] Anders S. Christensen and Anatole von Lilienfeld. Figshare: Revised md17
dataset (rmd17). https://figshare.com/articles/dataset/Revised_

MD17_dataset_rMD17_/12672038, July 21 2020. Accessed: April 27, 2024.

[CvL20b] Anders S Christensen and O Anatole von Lilienfeld. On the role of gradients
for machine learning of molecular energies and forces. Machine Learning:
Science and Technology, 1(4):045018, October 2020.

[CWF+12] Rita Chattopadhyay, Zheng Wang, Wei Fan, Ian Davidson, Sethuraman
Panchanathan, and Jieping Ye. Batch mode active sampling based on
marginal probability distribution matching. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data
mining, KDD ’12, pages 741–749. ACM, August 2012.

[DBB+21] Volker L. Deringer, Albert P. Bartók, Noam Bernstein, David M. Wilkins,
Michele Ceriotti, and Gábor Csányi. Gaussian process regression for
materials and molecules. Chemical Reviews, 121(16):10073–10141, aug
2021.

[DF85] M.E Dyer and A.M Frieze. A simple heuristic for the p-centre problem.
Operations Research Letters, 3(6):285–288, February 1985.

[DFR15] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian
processes for data-efficient learning in robotics and control. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 37(2):408–423, feb
2015.

[DG17] Dheeru Dua and Casey Graff. Uci machine learning repository, 2017.
Accessed: November 1, 2024.

[DJL+23] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas
Laurent, Yoshua Bengio, and Xavier Bresson. Benchmarking graph neural
networks. Journal of Machine Learning Research, 24(43):1–48, 2023.

[DM98] L. Dagum and R. Menon. Openmp: an industry standard api for shared-
memory programming. IEEE Computational Science and Engineering,
5(1):46–55, 1998.

133

https://figshare.com/articles/dataset/Revised_MD17_dataset_rMD17_/12672038
https://figshare.com/articles/dataset/Revised_MD17_dataset_rMD17_/12672038

Bibliography

[EC91] M. Eugénia Captivo. Fast primal and dual heuristics for the p-median
location problem. European Journal of Operational Research, 52(1):65–74,
May 1991.

[ELPZ94] Yuval Eldar, Michael Lindenbaum, Moshe Porat, and Yehoshua Y. Zeevi.
The farthest point strategy for progressive image sampling. Proceedings of
the 12th IAPR International Conference on Pattern Recognition, Vol. 2 -
Conference B: Computer Vision & Image Processing. (Cat. No.94CH3440-
5), pages 93–97 vol.3, 1994.

[Eng14] Berthold-G. Englert. Semiclassical Theory of Atoms. Springer, 2014.

[ENV17] Alina Ene, Huy Nguyen, and László A. Végh. Decomposable submodular
function minimization: Discrete and continuous. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017.

[FAKA+18] Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Goldberger, and
Hayit Greenspan. Synthetic data augmentation using gan for improved
liver lesion classification. In 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018), pages 289–293, 2018.

[Fel19] Dan Feldman. Core-sets: Updated survey. In Sampling Techniques for
Supervised or Unsupervised Tasks, pages 23–44. Springer International
Publishing, oct 2019.

[FHH+17] Felix A. Faber, Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S.
Schoenholz, George E. Dahl, Oriol Vinyals, Steven Kearnes, Patrick F.
Riley, and O. Anatole von Lilienfeld. Prediction errors of molecular machine
learning models lower than hybrid DFT error. Journal of Chemical Theory
and Computation, 13(11):5255–5264, oct 2017.

[Fri74] A. M. Frieze. A cost function property for plant location problems. Mathe-
matical Programming, 7(1):245–248, dec 1974.

[Fuj05] Satoru Fujishige. Submodular Functions and Optimization, Volume 58.
Elsevier Science, 2005.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[GBP+20] Will Gerrard, Lars A. Bratholm, Martin J. Packer, Adrian J. Mulholland,
David R. Glowacki, and Craig P. Butts. Impression – prediction of nmr
parameters for 3-dimensional chemical structures using machine learning
with near quantum chemical accuracy. Chemical Science, 11(2):508–515,
2020.

134

Bibliography

[GBWD+18] Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel
Hernández-Lobato, Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-
Guzik. Automatic chemical design using a data-driven continuous repre-
sentation of molecules. ACS Central Science, 4(2):268–276, January 2018.

[GFPC20] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Reg-
ularisation of neural networks by enforcing lipschitz continuity. Machine
Learning, 110(2):393–416, dec 2020.

[GSS+22] Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan
Günnemann, Zachary Ward Ulissi, C. Lawrence Zitnick, and Abhishek
Das. Gemnet-OC: Developing graph neural networks for large and diverse
molecular simulation datasets. Transactions on Machine Learning Research,
2022.

[GZ19] Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of
data for machine learning. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages
2242–2251. PMLR, 09–15 Jun 2019.

[HBR+15] Katja Hansen, Franziska Biegler, Raghunathan Ramakrishnan, Wiktor
Pronobis, O. Anatole von Lilienfeld, Klaus-Robert Müller, and Alexandre
Tkatchenko. Machine learning predictions of molecular properties: Accurate
many-body potentials and nonlocality in chemical space. The Journal of
Physical Chemistry Letters, 6(12):2326–2331, jun 2015.

[Hla76] Edmund Hlawka. Abschätzung von trigonometrischen summen mittels
diophantischer approximationen. Österreich. Akad. Wiss. Math.-Naturwiss.
Kl. S.-B. II, 185(1-3):43–50, 1976.

[HMB+13] Katja Hansen, Grégoire Montavon, Franziska Biegler, Siamac Fazli,
Matthias Rupp, Matthias Scheffler, O. Anatole von Lilienfeld, Alexan-
dre Tkatchenko, and Klaus-Robert Müller. Assessment and validation of
machine learning methods for predicting molecular atomization energies.
Journal of Chemical Theory and Computation, 9(8):3404–3419, July 2013.

[Hoc84] Dorit S. Hochbaum. When are NP-hard location problems easy? Annals
of Operations Research, 1(3):201–214, oct 1984.

[HP11] Sariel Har-Peled. Geometric approximation algorithms. American Mathe-
matical Society, 2011.

[HS85] Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for
the k-center problem. Mathematics of Operations Research, 10(2):180–184,
may 1985.

135

Bibliography

[HSK19] Bruno Miranda Henrique, Vinicius Amorim Sobreiro, and Herbert Kimura.
Literature review: Machine learning techniques applied to financial market
prediction. Expert Systems with Applications, 124:226–251, June 2019.

[HvL16] Bing Huang and O. Anatole von Lilienfeld. Communication: Understanding
molecular representations in machine learning: The role of uniqueness and
target similarity. The Journal of Chemical Physics, 145(16), October 2016.

[HvL20] Bing Huang and O. Anatole von Lilienfeld. Quantum machine learning using
atom-in-molecule-based fragments selected on the fly. Nature Chemistry,
12(10):945–951, September 2020.

[HvL21] Bing Huang and O. Anatole von Lilienfeld. Ab initio machine learning in
chemical compound space. Chemical Reviews, 121(16):10001–10036, August
2021.

[HvLKB23] Bing Huang, O. Anatole von Lilienfeld, Jaron T. Krogel, and Anouar Benali.
Toward dmc accuracy across chemical space with scalable δ-qml. Journal
of Chemical Theory and Computation, 19(6):1711–1721, March 2023.

[Iwa07] Satoru Iwata. Submodular function minimization. Mathematical Program-
ming, 112(1):45–64, January 2007.

[JC16] Ian T. Jolliffe and Jorge Cadima. Principal component analysis: a review
and recent developments. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 374(2065):20150202,
April 2016.

[JD75] R. C. St. John and N. R. Draper. D-optimality for regression designs: A
review. Technometrics, 17(1):15–23, feb 1975.

[JG18] Tyler B Johnson and Carlos Guestrin. Training deep models faster with
robust, approximate importance sampling. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[JH17] Xin Jin and Jiawei Han. K-Medoids Clustering, pages 697–700. Springer
US, Boston, MA, 2017.

[JKW+23] Hoang Anh Just, Feiyang Kang, Tianhao Wang, Yi Zeng, Myeongseob
Ko, Ming Jin, and Ruoxi Jia. LAVA: Data valuation without pre-specified
learning algorithms. In The Eleventh International Conference on Learning
Representations, 2023.

[JMG23] Mohammad Hossein Jarrahi, Ali Memariani, and Shion Guha. The prin-
ciples of data-centric ai. Communications of the ACM, 66(8):84–92, July
2023.

136

Bibliography

[JMY90] M.E. Johnson, L.M. Moore, and D. Ylvisaker. Minimax and maximin dis-
tance designs. Journal of Statistical Planning and Inference, 26(2):131–148,
October 1990.

[KBN+21] Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger,
Zhengxuan Wu, Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik
Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel, Zeerak Waseem,
Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, and Ad-
ina Williams. Dynabench: Rethinking benchmarking in NLP. In Kristina
Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Belt-
agy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
Zhou, editors, Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 4110–4124, Online, June 2021. Association for
Computational Linguistics.

[KBP96] W. Kohn, A. D. Becke, and R. G. Parr. Density functional theory of
electronic structure. The Journal of Physical Chemistry, 100(31):12974–
12980, January 1996.

[KE04] Peter Kirkpatrick and Clare Ellis. Chemical space. Nature, 432(7019):823–
823, December 2004.

[KF18] Angelos Katharopoulos and Francois Fleuret. Not all samples are created
equal: Deep learning with importance sampling. In Jennifer Dy and An-
dreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 2525–2534. PMLR, 10–15 Jul 2018.

[KG14] Andreas Krause and Daniel Golovin. Submodular function maximization.
Tractability, 3:71–104, 2014.

[KHN+20] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and
Alan Aspuru-Guzik. Self-referencing embedded strings (selfies): A 100string
representation. Machine Learning: Science and Technology, 1(4):045024,
October 2020.

[KMLE20] Mucahid Kutlu, Tyler McDonnell, Matthew Lease, and Tamer Elsayed. An-
notator rationales for labeling tasks in crowdsourcing. Journal of Artificial
Intelligence Research, 69:143–189, September 2020.

[KNTB09] Yoshinobu Kawahara, Kiyohito Nagano, Koji Tsuda, and Jeff A Bilmes.
Submodularity cuts and applications. In Y. Bengio, D. Schuurmans, J. Laf-
ferty, C. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems, volume 22. Curran Associates, Inc., 2009.

137

Bibliography

[Kon23] Alex Konrad. Cleanlab raises 25 million to help solve ai models’ data mess.
Forbes, 10 Oct 2023.

[KR86] Leonard Kaufman and Peter J. Rousseeuw. CLUSTERING LARGE DATA
SETS, pages 425–437. Elsevier, 1986.

[Kra10] Andreas Krause. Sfo: A toolbox for submodular function optimization.
Journal of Machine Learning Research, 11:1141–1144, 2010.

[KRI22] Vishal Kaushal, Ganesh Ramakrishnan, and Rishabh Iyer. Submodlib: A
submodular optimization library, 2022.

[KSG08] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor
placements in gaussian processes: Theory, efficient algorithms and empirical
studies. Journal of Machine Learning Research, 9:235–284, 02 2008.

[KSM+21] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie,
Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga,
Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne David, Ian Stavness,
Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure Leskovec,
Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy
Liang. Wilds: A benchmark of in-the-wild distribution shifts. In Ma-
rina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 5637–5664. PMLR, 18–24 Jul 2021.

[KSRI21] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan,
and Rishabh Iyer. Glister: Generalization based data subset selection
for efficient and robust learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(9):8110–8118, May 2021.

[Lan12] G. Landrum. Rdkit:. Open-source cheminformatics, 2012.

[LB11] Hui Lin and Jeff Bilmes. A class of submodular functions for document sum-
marization. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies - Volume
1, HLT ’11, page 510–520, USA, 2011. Association for Computational
Linguistics.

[LBM+18] Konstantinos Liakos, Patrizia Busato, Dimitrios Moshou, Simon Pearson,
and Dionysis Bochtis. Machine learning in agriculture: A review. Sensors,
18(8):2674, August 2018.

[LCW+17] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P.
Trevino, Jiliang Tang, and Huan Liu. Feature selection: A data perspective.
ACM Computing Surveys, 50(6):1–45, December 2017.

138

Bibliography

[LCW+22] Ann Lee, Peng-Jen Chen, Changhan Wang, Jiatao Gu, Sravya Popuri, Xutai
Ma, Adam Polyak, Yossi Adi, Qing He, Yun Tang, Juan Pino, and Wei-Ning
Hsu. Direct speech-to-speech translation with discrete units. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics, 2022.

[LK90] Peter J. Rousseeuw Leonard Kaufman. Partitioning Around Medoids
(Program PAM), chapter 2, pages 68–125. John Wiley & Sons, Ltd, 1990.

[LL22] A.E. Litvak and G.V. Livshyts. New bounds on the minimal dispersion.
Journal of Complexity, 72:101648, October 2022.

[LPP14] Jefrey Lijffijt, Panagiotis Papapetrou, and Kai Puolamäki. Size matters:
choosing the most informative set of window lengths for mining patterns in
event sequences. Data Mining and Knowledge Discovery, 29(6):1838–1864,
December 2014.

[LPW23] Jourdain Lamperski, Oleg A. Prokopyev, and Luca G. Wrabetz. Min-
max-min optimization with smooth and strongly convex objectives. SIAM
Journal on Optimization, 33(3):2435–2456, September 2023.

[LSB18] Nicholas Lubbers, Justin S. Smith, and Kipton Barros. Hierarchical mod-
eling of molecular energies using a deep neural network. The Journal of
Chemical Physics, 148(24), March 2018.

[LWL+22] Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin,
and Shuiwang Ji. Spherical message passing for 3d molecular graphs. In
International Conference on Learning Representations, 2022.

[Mac67] J. B. MacQueen. Some methods for classification and analysis of multivari-
ate observations. In L. M. Le Cam and J. Neyman, editors, Proceedings
of the fifth berkeley symposium on mathematical statistics and probability,
pages 281–297. University of California Press, 1967.

[MBK+15] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan
Vondrak, and Andreas Krause. Lazier than lazy greedy. Proceedings of the
AAAI Conference on Artificial Intelligence, 29(1), February 2015.

[MBL20] Baharan Mirzasoleiman, Jeff A. Bilmes, and Jure Leskovec. Coresets for
data-efficient training of machine learning models. In Proceedings of the
37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 6950–6960. PMLR, 2020.

[MBY+22] Mark Mazumder, Colby Banbury, Xiaozhe Yao, Bojan Karlaš,
William Gaviria Rojas, Sudnya Diamos, Greg Diamos, Lynn He, Douwe
Kiela, David Jurado, David Kanter, Rafael Mosquera, Juan Ciro, Lora

139

Bibliography

Aroyo, Bilge Acun, Sabri Eyuboglu, Amirata Ghorbani, Emmett Good-
man, Tariq Kane, Christine R. Kirkpatrick, Tzu-Sheng Kuo, Jonas Mueller,
Tristan Thrush, Joaquin Vanschoren, Margaret Warren, Adina Williams,
Serena Yeung, Newsha Ardalani, Praveen Paritosh, Ce Zhang, James Zou,
Carole-Jean Wu, Cody Coleman, Andrew Ng, Peter Mattson, and Vi-
jay Janapa Reddi. Dataperf: Benchmarks for data-centric ai development,
2022.

[MBY+23] Mark Mazumder, Colby Banbury, Xiaozhe Yao, Bojan Karlaš, William
A Gaviria Rojas, Sudnya Diamos, Greg Diamos, Lynn He, Alicia Parrish,
Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Douwe Kiela, David
Jurado, David Kanter, Rafael Mosquera, Will Cukierski, Juan Ciro, Lora
Aroyo, Bilge Acun, Lingjiao Chen, Mehul Smriti Raje, Max Bartolo, Sabri
Eyuboglu, Amirata Ghorbani, Emmett Daniel Goodman, Addison Howard,
Oana Inel, Tariq Kane, Christine Kirkpatrick, D. Sculley, Tzu-Sheng Kuo,
Jonas Mueller, Tristan Thrush, Joaquin Vanschoren, Margaret Warren, Ad-
ina Williams, Serena Yeung, Newsha Ardalani, Praveen Paritosh, Ce Zhang,
James Y. Zou, Carole-Jean Wu, Cody Coleman, Andrew Ng, Peter Mattson,
and Vijay Janapa Reddi. Dataperf: Benchmarks for data-centric AI devel-
opment. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023.

[MCL20] Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. Coresets for robust
training of neural networks against noisy labels. Advances in Neural
Information Processing Systems, 33, 2020.

[MD09] Michael W. Mahoney and Petros Drineas. Cur matrix decompositions for
improved data analysis. Proceedings of the National Academy of Sciences,
106(3):697–702, January 2009.

[MDFF16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.
Deepfool: A simple and accurate method to fool deep neural networks.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2574–2582, 2016.

[MFP+24] Nestor Maslej, Loredana Fattorini, Raymond Perrault, Vanessa Parli, Anka
Reuel, Erik Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons,
James Manyika, Juan Carlos Niebles, Yoav Shoham, Russell Wald, and
Jack Clark. Artificial intelligence index report 2024, 2024.

[Min78] Michel Minoux. Accelerated greedy algorithms for maximizing submodular
set functions. In J. Stoer, editor, Optimization Techniques, pages 234–243,
Berlin, Heidelberg, 1978. Springer Berlin Heidelberg.

[MJH+11] Shie Mannor, Xin Jin, Jiawei Han, Xin Jin, Jiawei Han, Xin Jin, Jiawei
Han, and Xinhua Zhang. K-medoids clustering. In Encyclopedia of Machine
Learning, pages 564–565. Springer US, 2011.

140

Bibliography

[MKSK16] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause.
Distributed submodular maximization. Journal of Machine Learning Re-
search, 17(235):1–44, 2016.

[Mou12] Jonathan E. Moussa. Comment on “fast and accurate modeling of molecular
atomization energies with machine learning”. Physical Review Letters,
109(5):059801, August 2012.

[MRG+13] Grégoire Montavon, Matthias Rupp, Vivekanand Gobre, Alvaro Vazquez-
Mayagoitia, Katja Hansen, Alexandre Tkatchenko, Klaus-Robert Müller,
and O Anatole von Lilienfeld. Machine learning of molecular electronic prop-
erties in chemical compound space. New Journal of Physics, 15(9):095003,
sep 2013.

[MTKT18] Hirotomo Moriwaki, Yu-Shi Tian, Norihito Kawashita, and Tatsuya Takagi.
Mordred: a molecular descriptor calculator. Journal of Cheminformatics,
10(1), feb 2018.

[MWW+17] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T
Dudley. Deep learning for healthcare: review, opportunities and challenges.
Briefings in Bioinformatics, 19(6):1236–1246, May 2017.

[NH02] R.T. Ng and Jiawei Han. Clarans: a method for clustering objects for spatial
data mining. IEEE Transactions on Knowledge and Data Engineering,
14(5):1003–1016, September 2002.

[Nov19] Andrei V. Novikov. Pyclustering: Data mining library. Journal of Open
Source Software, 4(36):1230, 2019.

[NW81] G.L. Nemhauser and L.A. Wolsey. Maximizing Submodular Set Functions:
Formulations and Analysis of Algorithms, pages 279–301. Elsevier, 1981.

[NWF78] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of ap-
proximations for maximizing submodular set functions—i. Mathematical
Programming, 14(1):265–294, December 1978.

[PDM22] Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. Adaptive
second order coresets for data-efficient machine learning. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato, editors, Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 17848–17869. PMLR, 17–23 Jul 2022.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

141

Bibliography

Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: an imperative style,
high-performance deep learning library. Curran Associates Inc., Red Hook,
NY, USA, 2019.

[PJ09] Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-
medoids clustering. Expert Systems with Applications, 36(2):3336–3341,
March 2009.

[PMS+20] Gabriel A. Pinheiro, Johnatan Mucelini, Marinalva D. Soares, Ronaldo C.
Prati, Juarez L. F. Da Silva, and Marcos G. Quiles. Machine learning
prediction of nine molecular properties based on the SMILES representation
of the QM9 quantum-chemistry dataset. The Journal of Physical Chemistry
A, 124(47):9854–9866, nov 2020.

[PSGA+24] Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R. Andersson,
Andrew El-Kadi, Dominic Masters, Timo Ewalds, Jacklynn Stott, Shakir
Mohamed, Peter Battaglia, Remi Lam, and Matthew Willson. Probabilistic
weather forecasting with machine learning. Nature, December 2024.

[PSTM18] Wiktor Pronobis, Kristof T. Schütt, Alexandre Tkatchenko, and Klaus-
Robert Müller. Capturing intensive and extensive DFT/TDDFT molecular
properties with machine learning. The European Physical Journal B, 91(8),
aug 2018.

[PTM18] Wiktor Pronobis, Alexandre Tkatchenko, and Klaus-Robert Müller. Many-
body descriptors for predicting molecular properties with machine learning:
Analysis of pairwise and three-body interactions in molecules. Journal of
Chemical Theory and Computation, 14(6):2991–3003, May 2018.

[PYM+23] Neha Prakriya, Yu Yang, Baharan Mirzasoleiman, Cho-Jui Hsieh, and
Jason Cong. Nessa: Near-storage data selection for accelerated machine
learning training. ACM Workshop on Hot Topics in Storage and File
Systems (HotStorage), 2023.

[PZ21] Neoklis Polyzotis and Matei Zaharia. What can data-centric ai learn from
data and ml engineering?, 2021.

[RBE+19] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen
Wu, and Christopher Ré. Snorkel: rapid training data creation with weak
supervision. The VLDB Journal, 29(2–3):709–730, July 2019.

[RDRvL14] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole
von Lilienfeld. Quantum chemistry structures and properties of 134 kilo
molecules. Scientific Data, 1, 2014.

[REW+19] Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande,
Karl Leswing, and Zhenqin Wu. Deep Learning for the Life

142

Bibliography

Sciences. O’Reilly Media, 2019. https://www.amazon.com/

Deep-Learning-Life-Sciences-Microscopy/dp/1492039837.

[RHTvL15] Raghunathan Ramakrishnan, Mia Hartmann, Enrico Tapavicza, and
O. Anatole von Lilienfeld. Electronic spectra from TDDFT and machine
learning in chemical space. The Journal of Chemical Physics, 143(8), aug
2015.

[RLJ20] Jonathan G. Richens, Ciarán M. Lee, and Saurabh Johri. Improving
the accuracy of medical diagnosis with causal machine learning. Nature
Communications, 11(1), August 2020.

[RNI10] Miloš Radovanovic;, Alexandros Nanopoulos, and Mirjana Ivanovic;. Hubs
in space: Popular nearest neighbors in high-dimensional data. Journal of
Machine Learning Research, 11(86):2487–2531, 2010.

[RRT94] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case
algorithms for dispersion problems. Operations Research, 42(2):299–310,
apr 1994.

[RT96] G. Rote and R.F. Tichy. Quasi-monte-carlo methods and the dispersion
of point sequences. Mathematical and Computer Modelling, 23(8–9):9–23,
April 1996.

[RTMvL12] Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O. Ana-
tole von Lilienfeld. Fast and accurate modeling of molecular atomization
energies with machine learning. Physical Review Letters, 108(5):058301,
January 2012.

[RvDBR12] Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Jean-Louis
Reymond. Enumeration of 166 billion organic small molecules in the
chemical universe database GDB-17. Journal of Chemical Information and
Modeling, 52(11):2864–2875, nov 2012.

[RvL17] Raghunathan Ramakrishnan and O. Anatole von Lilienfeld. Machine learn-
ing, quantum chemistry, and chemical space. In Reviews in Computational
Chemistry, pages 225–256. John Wiley & Sons, Inc., apr 2017.

[RXC+21] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B.
Gupta, Xiaojiang Chen, and Xin Wang. A survey of deep active learning.
ACM Computing Surveys, 54(9):1–40, October 2021.

[SBG+20] Christopher Sutton, Mario Boley, Luca M. Ghiringhelli, Matthias Rupp,
Jilles Vreeken, and Matthias Scheffler. Identifying domains of applicability
of machine learning models for materials science. Nature Communications,
11(1):4428, sep 2020.

143

https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837

Bibliography

[SBN20] Jacob Schreiber, Jeffrey Bilmes, and William Stafford Noble. apricot:
Submodular selection for data summarization in python. Journal of Machine
Learning Research, 21(161):1–6, 2020.

[SBS18] Patrick Schober, Christa Boer, and Lothar A. Schwarte. Correlation
coefficients: Appropriate use and interpretation. Anesthesia & Analgesia,
126(5):1763–1768, may 2018.

[sci21] Scikit-learn-extra: An experimental scikit-learn-compatible package. https:
//github.com/scikit-learn-contrib/scikit-learn-extra, 2021. Ver-
sion 0.3dev.

[SDD+18] Shazia Sadiq, Tamraparni Dasu, Xin Luna Dong, Juliana Freire, Ihab F.
Ilyas, Sebastian Link, Miller J. Miller, Felix Naumann, Xiaofang Zhou, and
Divesh Srivastava. Data quality: The role of empiricism. ACM SIGMOD
Record, 46(4):35–43, February 2018.

[SDF+24] Nore Stolte, János Daru, Harald Forbert, Dominik Marx, and Jörg Behler.
Random sampling versus active learning algorithms for machine learning
potentials of quantum liquid water, 2024.

[SDK15] Dravyansh Sharma, Amit Deshpande, and Ashish Kapoor. On greedy max-
imization of entropy. In Proceedings of the 32nd International Conference
on on Machine Learning - Volume 37, ICML’15, page 1330–1338, Lille,
France, 2015. JMLR.org.

[Set12] B. Settles. Active Learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2012.

[SI15] Teague Sterling and John J. Irwin. Zinc 15 – ligand discovery for every-
one. Journal of Chemical Information and Modeling, 55(11):2324–2337,
November 2015.

[SIS24] Nabeel Seedat, Fergus Imrie, and Mihaela van der Schaar. Navigating
data-centric artificial intelligence with dc-check: Advances, challenges, and
opportunities. IEEE Transactions on Artificial Intelligence, 5(6):2589–2603,
June 2024.

[SJ19] Ayodeji Olalekan Salau and Shruti Jain. Feature extraction: A survey
of the types, techniques, applications. In 2019 International Conference
on Signal Processing and Communication (ICSC), pages 158–164. IEEE,
March 2019.

[SKSF+17] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan
Chmiela, Alexandre Tkatchenko, and Klaus-Robert Müller. Schnet: A
continuous-filter convolutional neural network for modeling quantum inter-
actions. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,

144

https://github.com/scikit-learn-contrib/scikit-learn-extra
https://github.com/scikit-learn-contrib/scikit-learn-extra

Bibliography

S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

[SL22] Erich Schubert and Lars Lenssen. Fast k-medoids clustering in rust and
python. Journal of Open Source Software, 7(75):4183, July 2022.

[SR19] Erich Schubert and Peter J. Rousseeuw. Faster k-Medoids Clustering:
Improving the PAM, CLARA, and CLARANS Algorithms, pages 171–187.
Springer International Publishing, 2019.

[SR21] Erich Schubert and Peter J. Rousseeuw. Fast and eager k-medoids cluster-
ing: o(k) runtime improvement of the pam, clara, and clarans algorithms.
Information Systems, 101:101804, November 2021.

[SS18] Ozan Sener and Silvio Savarese. Active learning for convolutional neural
networks: A core-set approach. In International Conference on Learning
Representations, 2018.

[STR+19] Annika Stuke, Milica Todorović, Matthias Rupp, Christian Kunkel, Kunal
Ghosh, Lauri Himanen, and Patrick Rinke. Chemical diversity in molecular
orbital energy predictions with kernel ridge regression. The Journal of
Chemical Physics, 150(20):204121, may 2019.

[SUG21] Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message
passing for the prediction of tensorial properties and molecular spectra. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 9377–9388. PMLR, 18–24 Jul 2021.

[SV18] Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neural
networks: Analysis and efficient estimation. In Proceedings of the 32nd In-
ternational Conference on Neural Information Processing Systems, NIPS’18,
page 3839–3848, Red Hook, NY, USA, 2018. Curran Associates Inc.

[SZ19] Erich Schubert and Arthur Zimek. Elki: A large open-source library for
data analysis - elki release 0.7.5 ”heidelberg”, 2019.

[TMO23] Murad Tukan, Alaa Maalouf, and Margarita Osadchy. Dataset distillation
meets provable subset selection. July 2023.

[UCS+21] Oliver T. Unke, Stefan Chmiela, Huziel E. Sauceda, Michael Gastegger,
Igor Poltavsky, Kristof T. Schütt, Alexandre Tkatchenko, and Klaus-Robert
Müller. Machine learning force fields. Chemical Reviews, 121(16):10142–
10186, mar 2021.

[Van21] Jonathan Vanian. This hot startup is now valued at 1 billion for its a.i.
skills. Fortune, 9 August 2021.

145

Bibliography

[VCC+19] Jessica Vamathevan, Dominic Clark, Paul Czodrowski, Ian Dunham,
Edgardo Ferran, George Lee, Bin Li, Anant Madabhushi, Parantu Shah,
Michaela Spitzer, and Shanrong Zhao. Applications of machine learn-
ing in drug discovery and development. Nature Reviews Drug Discovery,
18(6):463–477, April 2019.

[VdLPB03] Mark Van der Laan, Katherine Pollard, and Jennifer Bryan. A new parti-
tioning around medoids algorithm. Journal of Statistical Computation and
Simulation, 73(8):575–584, August 2003.

[vdWCV11] Stéfan van der Walt, S Chris Colbert, and Gaël Varoquaux. The numpy
array: A structure for efficient numerical computation. Computing in
Science & amp; Engineering, 13(2):22–30, March 2011.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

[VJ22] Akhil Vakayil and V. Roshan Joseph. Data twinning. Statistical Analysis
and Data Mining: The ASA Data Science Journal, 15(5):598–610, February
2022.

[VKL19] Tom J. Viering, Jesse H. Krijthe, and Marco Loog. Nuclear discrepancy for
single-shot batch active learning. Machine Learning, 108(8–9):1561–1599,
June 2019.

[vLMT20] O. Anatole von Lilienfeld, Klaus-Robert Müller, and Alexandre Tkatchenko.
Exploring chemical compound space with quantum-based machine learning.
Nature Reviews Chemistry, 4(7):347–358, June 2020.

[VSH21] Gaurav Vishwakarma, Aditya Sonpal, and Johannes Hachmann. Metrics
for benchmarking and uncertainty quantification: Quality, applicability,
and best practices for machine learning in chemistry. Trends in Chemistry,
3(2):146–156, February 2021.

[Was21] Michael L. Waskom. seaborn: statistical data visualization. Journal of
Open Source Software, 6(60):3021, 2021.

[WBG21] George Wynne, François-Xavier Briol, and Mark Girolami. Convergence
guarantees for gaussian process means with misspecified likelihoods and
smoothness. J. Mach. Learn. Res., 22(1), January 2021.

146

Bibliography

[Wei88] David Weininger. SMILES, a chemical language and information system.
1. introduction to methodology and encoding rules. Journal of Chemical
Information and Modeling, 28(1):31–36, feb 1988.

[Wen04] Holger Wendland. Scattered Data Approximation. Cambridge University
Press, dec 2004.

[WIB15] Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset
selection and active learning. In Francis Bach and David Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 1954–1963,
Lille, France, 07–09 Jul 2015. PMLR.

[WKV09] Qing Wang, Sanjeev R. Kulkarni, and Sergio Verdu. Divergence estimation
for multidimensional densities via k-nearest-neighbor distances. IEEE
Transactions on Information Theory, 55(5):2392–2405, May 2009.

[WLH19] Dongrui Wu, Chin-Teng Lin, and Jian Huang. Active learning for regression
using greedy sampling. Information Sciences, 474:90–105, feb 2019.

[WLKB14] Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes. Unsupervised
submodular subset selection for speech data. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
May 2014.

[WRF+18] Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb
Geniesse, Aneesh S. Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: a
benchmark for molecular machine learning. Chemical Science, 9(2):513–530,
2018.

[WY15] Zheng Wang and Jieping Ye. Querying discriminative and representative
samples for batch mode active learning. ACM Transactions on Knowledge
Discovery from Data, 9(3):1–23, feb 2015.

[WZS+14] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. Intel Math Kernel Library, page 167–188. Springer
International Publishing, 2014.

[XSML23] Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data
selection for language models via importance resampling. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[Yap10] Chun Wei Yap. Padel-descriptor: An open source software to calculate
molecular descriptors and fingerprints. Journal of Computational Chemistry,
32(7):1466–1474, December 2010.

147

Bibliography

[YBT06] Kai Yu, Jinbo Bi, and Volker Tresp. Active learning via transductive
experimental design. In Proceedings of the 23rd international conference
on Machine learning - ICML '06. ACM Press, 2006.

[Yeh98] I-Cheng Yeh. Modeling of strength of high-performance concrete using
artificial neural networks. Cement and Concrete Research, 28:1797–1808,
1998.

[YK10] Hwanjo Yu and Sungchul Kim. Passive sampling for regression. In 2010
IEEE International Conference on Data Mining. IEEE, dec 2010.

[ZBL+25] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng
Jiang, Shaochen Zhong, and Xia Hu. Data-centric artificial intelligence: A
survey. ACM Computing Surveys, January 2025.

[ZC05] Qiaoping Zhang and Isabelle Couloigner. A new and efficient k-medoid
algorithm for spatial clustering. In Osvaldo Gervasi, Marina L. Gavrilova,
Vipin Kumar, Antonio Laganà, Heow Pueh Lee, Youngsong Mun, David
Taniar, and Chih Jeng Kenneth Tan, editors, Computational Science and
Its Applications – ICCSA 2005, pages 181–189, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[ZHSK22] Viktor Zaverkin, David Holzmüller, Ingo Steinwart, and Johannes Kästner.
Exploring chemical and conformational spaces by batch mode deep active
learning. Digital Discovery, 2022.

[ZLB+23] Xin Zheng, Yixin Liu, Zhifeng Bao, Meng Fang, Xia Hu, Alan Wee-Chung
Liew, and Shirui Pan. Towards data-centric graph machine learning: Review
and outlook, 2023.

148

A. Appendix

In this appendix we show that the kNN data-driven estimates p̂kXD
and p̂kXL

, defined

in (6.8) and derived from the finite sets DX ,LX ⊂ Rd, are asymptotically unbiased
estimations of some densities pXD and pXL , respectively, for any 2 ≤ k < n. We assume
that pXD and pXL are uniformly continuous and that DX and LX consist of random
samples drawn from pXD and pXL , respectively.

To show this we use results from [Cac66], which we recapture in the following theorem
in a formulation that is more suitable for our purposes.

Theorem A.1 Let us consider a d-dimensional Euclidean space X and K : X → R,
Borel function on X , such that

sup
x∈X
|K(x)| <∞,

∫
X
|K(x)|dx <∞,

∫
X
K(x)dx = 1 and lim

∥x∥2→∞
∥x∥d2|K(x)| = 0.

(A.1)
Additionally, let us consider a sequence of positive scalar numbers {ri}∞i=1 ⊂ R such that
lim
i→∞

ri = 0. Let us also consider {xi}mi=1 ⊂ X , m ∈ N+, set of m independent realization

of a random variable X with uniformly continuous distribution density p. Then, for any
x ∈ X in the non-zero support of p we have that

pm(x) =
1

m(rm)d

m∑
i=1

K

(
x− xi

rm

)
(A.2)

is an asymptotically unbiased estimator of p(x), i.e., lim
m→∞

Ep[pm(x)] = p(x).

Proof. The theorem recaptures results from Theorem 3.1 of [Cac66], which is proved
using results from Theorem 2.1 and Lemma 2.1 of the same paper. The sketch of the
proof is as follows: First, fix x ∈ X , and let

εm(x) :=
1

rm
K

(
x−X

rm

)
. (A.3)

Then, under the mentioned assumptions on K and p, given a positive integer l, it is
possible to show that

lim
m→∞

rd(l−1)
m Ep[ε

l
m(x)] = p(x)

∫
K l(x)dx. (A.4)

Next, the theorem follows from noting that

Ep[pm(x)] = Ep[εm(x)]. (A.5)

149

A. Appendix

Next we provide a corollary of the above theorem showing that the data-driven kNN
density estimations p̂kXD

and p̂kXL
are asymptotically unbiased estimators of pXD and pXL ,

respectively, for any 2 ≤ k < n.

Corollary A.1 Let us consider X ⊂ Rd and the function K : Rd → R+ defined in (6.9).
Let us also consider Dn,Lb ⊂ X , n, b ∈ N+ such that Dn := {xi}ni=1 and Lb := {x̄j}bj=1

are independent realizations of random variables XD and XL with uniformly continuous
densities pXD and pXL, respectively. Next, consider the points x, x̄ ∈ Rd in the non-
zero support of pXD and pXL, respectively, and the kNN data-driven density estimations
p̂kXDn

(x) and p̂kXLb
(x̄) defined as follows

p̂kXDn
(x) :=

∑
xi∈Dn

K

(
x−xi

rkb,n(x)

)
n
(
rkb,n(x)

)d and p̂kXLb
(x̄) :=

∑
x̄j∈Lb

K

(
x̄−x̄j

rkb,n(x̄)

)
b
(
rkb,n(x̄)

)d , (A.6)

where, for each x̃ ∈ Rd , rkb,n(x̃) := min

{
min
x̄j∈Lb

∥x̃− x̄j∥2 + ϵX
b , ρk,n(x̃)

}
, with the scalar

ϵX > 0 arbitrary small and ρk,n(x̃) the distance between x̃ and its k-nearest neighbor
in Dn. Then we have that, for any 2 ≤ k < n, p̂kXDn

(x) and p̂kXLb
(x̄) are asymptotically

unbiased estimators of pXD(x) and pXL(x̄), respectively, i.e.,

lim
n→∞

EpXD
[p̂kXDn

(x)] = pXD(x) and lim
b→∞

EpXL
[p̂kXLb

(x̄)] = pXL(x̄). (A.7)

Proof. First note that the function K : Rd → R+ defined in (6.9) satisfies all the
requirements in (A.1). In particular, we have that

sup
x∈Rd

|K(x)| = 1

Vd
and

∫
Rd

K(x)dx =
1

Vd

∫
Bd(0,1)

1dx = 1, (A.8)

where Vd is the volume of the d-dimensional unit ball, which we write as Bd(0, 1) :=
{x ∈ Rd such that ∥x∥2 ≤ 1}. Moreover, we have that |K(x)| = 0 for ∥x∥2 ≥ 1, thus,
lim

∥x∥2→∞
∥x∥d2|K(x)| = 0. The only thing left to show to apply Theorem A.1 to p̂kXDn

(x)

and p̂kXLb
(x̄) is that lim

b→∞
rkb,n(x̄) = 0 and lim

n→∞
rkb,n(x) = 0.

To show that lim
b→∞

rkb,n(x̄) = 0 it is sufficient to observe that lim
b→∞

min
x̄j∈Lb

∥x̃− x̄j∥2 = 0

due to the fact that as the number of samples in Lb increases, the distance between x̄ and
its nearest neighbor in Lb decreases, tending to zero. Moreover, lim

b→∞
ϵX
b = 0. Similarly,

we have that lim
n→∞

rkb,n(x) = 0 from the fact that lim
n→∞

ρk,n(x) = 0 which follows from

the observation that as the number of samples in Dn increases, the distance between x
and its k-nearest neighbor decreases, tending to zero. Thus, we can apply Theorem A.1
to p̂kXDn

(x) and p̂kXLb
(x̄) showing that they are asymptotically unbiased estimators of

pXD(x) and pXL(x̄), respectively, for any 2 ≤ k < n.

150

B. Appendix

B.1. Investigation weights ratio

0% 5% 10% 15% 20%
Amount of training samples

1.0

1.5

2.0

2.5

3.0

3.5

we
ig

ht
s r

at
io

 (
)

(a) QM7

0% 5% 10% 15% 20%
Amount of training samples

1.0

1.5

2.0

2.5

we
ig

ht
s r

at
io

 (
)

(b) QM8

Figure B.1.: Computation of parameter α := maxi,j=1,...,b+1
i<j

ωk
Lj−1

(xj)

ωk
Li−1

(xi)
representing the

ratio of the weights computed by the DA-FPS algorithm implemented on
the QM7 (a) and QM8 (b) datasets. For each dataset we initialized DA-FPS
with k = 100 and u = 0%

Figure B.1 shows the parameter α := maxi,j=1,...,b+1
i<j

ωk
Lj−1

(xj)

ωk
Li−1

(xi)
, which is a component

of the DA-FPS approximation factor described in Theorem 6.3. We calculated α using
the weights generated by applying DA-FPS to the QM7 and QM8 datasets. The value of
α depends on the size of the selected subset and increases as the subset grows.

The relevant component of the approximation factor in Theorem 6.3 involving α is
σ = min{3, 1 + α} This implies that when α < 2, the approximation bound is better
than the worst-case scenario of 3. The graphs in the figure illustrate that, in the early
stages of the sampling process, the approximation factor remains below 3. Specifically,
this holds up to 5% of the selected set size for QM7 and up to 10% for QM8.

B.2. Datasets for additional experiments

This section provides a more detailed description of the additional datasets unrelated to
quantum chemistry used for experiments in Section 7.2.6, including information on the

151

B. Appendix

preprocessing procedures.

The Concrete Compressive Strength dataset [Yeh98] downloaded from the UCI
Machine Learning Repository [DG17] contains 1030 data points and is used for regression
tasks. It includes eight features: the amounts of cement, blast furnace slag, fly ash, water,
superplasticizer, coarse aggregate, and fine aggregate, as well as the age of the concrete
in days. We remove 34 data points having identical descriptors as at least one other
point in the dataset, obtaining a reduced dataset of 996 data points. Furthermore, we
normalize the features to scale them independently in the interval (0, 1). The target
variable is the compressive strength of the concrete, measured in megapascals (MPa).
This dataset is used to test machine learning models to predict material properties.

In the experiments described in Section 7.2.6, we use the Twinning algorithm imple-
mentation from [VJ22], which selects subsets based on an integer r, the inverse of the
partitioning ratio. Since the algorithm strictly partitions the dataset according to this
ratio, we remove 6 points from the Concrete dataset, resulting in a reduced dataset with
990 points. The points were selected randomly. This adjustment ensures that the subset
size determined by the Twinning algorithm matches the percentages used to select the
subsets, eliminating any discrepancies. Similarly, for the experiments in Section 7.2.6,
we remove 66 points from the QM8 dataset, creating a reduced dataset of 21700 points.
QM8 is preprocessed with the same procedure used Section 7.2.3

The Electrical Grid Stability Simulated dataset from the UCI Machine Learning
Repository [DG17] contains 10000 data points and is designed for both classification
and regression tasks. Each data point in this dataset is represented by 12 features that
describe characteristics of a simulated power grid. We normalize the features to scale
them independently in the interval (0, 1). For regression tasks, the target variable is the
stability margin, which quantifies how stable the power grid is.

B.3. Hyperparameters for additional experiments

In this section we follow along [BCD+24] and describe the fine-tuning process for opti-
mizing the facility location selection with the Gaussian similarity function. In addition,
we report the hyperparameters considered for DA-FPS used for the experiments in
Section 7.2.6.

For the facility location method using the Gaussian similarity function defined in (3.13),
the fine-tuning process involves selecting an appropriate kernel width, denoted as γ, to
prevent the function’s gains from saturating when new data points are added to the
training set. That is, given f(Sk) value of the facility location function evaluated on the
set Sk, we aim to choose γ to maximize the gains f(Sk+1) − f(Sk). The optimization
procedure consists of computing the gains for various values of γ and analyzing their
behavior. The optimal value γ is chosen to maximize gains for larger training sets while
maintaining the ability to capture interactions between data points.

Figure B.2 illustrates the gains obtained from adding new elements to the selected sets
for the Concrete, Electrical grid, and QM8 datasets. We initialize the greedy selection
process with the same data point, independently of the value of γ. Low values of γ result

152

B.4. Cauchy Kernel

1000
10
5
1
1e-1
1e-2

Values of γ
0% 10% 20%

Amount of training samples

10 2

100

102
f(

S
k

+
1
)

f(
S

k
)

(a) Concrete

0% 10% 20%
Amount of training samples

10 1

101

103

f(
S

k
+

1
)

f(
S

k
)

(b) Electrical grid

0% 10% 20%
Amount of training samples

10 1

100

101

102

103

f(
S

k
+

1
)

f(
S

k
)

(c) QM8

Figure B.2.: Gains from adding new elements to the selected sets for the QM8, Concrete,
and Electrical Grid datasets using the facility location method with the
Gaussian similarity function. Gains are shown for various values of the
kernel width, γ = 1000, 10, 5, 1, 0.1 and 0.01.

in diminishing gains as the training set size grows, while excessively high values, such
as γ = 1000, cause the kernel to approximate a diagonal matrix, failing to capture data
point interactions. Based on the experimental results, we set γ to 1 for QM8, 10 for the
Concrete dataset, and 10 for the Electrical grid dataset.

For the DA-FPS we follow the same heuristic approach used for experiments in
Section 7.2 and set u = 3%, 1% and 3% and k = 100, 300 and 300 for the QM8, Concrete
dataset and electricity dataset, respectively.

B.4. Cauchy Kernel

In this section we define the Cauchy kernel used in the additional experiments in
Section 7.2.6 and describe the optimization process implemented to fine-tune the kernel
hyperparameter and the regularization hyperparameter for the kernel ridge regression
weights optimization problem. Given data points xi,xj ∈ Rd, we follow along [Bas08]
and define the Cauchy kernel as follows:

k(xi,xj) =
1

1 +
(
∥xi−xj∥2

γc

)2 (B.1)

The hyperparameter γc of the Cauchy kernel and λ, the regularization parameter of
kernel ridge regression problem in (4.5), are fine-tuned using the following process: first,
we conduct a cross-validation grid search to identify the best hyperparameters for each
training set size used in the experiments. The training subsets are obtained through
random sampling. Then, we calculate the average of the best hyperparameter pairs across
all training set sizes, which is subsequently used to build the final model. The grid search
explores 6 points for each hyperparameter, ranging from 10−6 to 10−2. It is important to
note that in our experiments we do not use an optimal set of hyperparameters for each
selection strategy and training set size. This choice ensures that we focus on analyzing the

153

B. Appendix

DA-FPS
FPS
RDM
FacilityLocation
k-medoids++

1% 3% 5% 7% 10%
Amount of training samples

104

105

106

107

C
o
n
d
it

io
n
 n

u
m

b
e
r

(a) QM7

1% 3% 5% 7% 10%
Amount of training samples

106

107

108

109

C
o
n
d
it

io
n
 n

u
m

b
e
r

(b) QM8

1% 3% 5% 7% 10%
Amount of training samples

1017

1019

1021

1023

C
o
n
d
it

io
n
 n

u
m

b
e
r

(c) QM9

Figure B.3.: Condition number of the non-regularized Gaussian kernel obtained from the
QM datasets selecting training sets of various sizes and according to different
sampling strategies. The reported experiments consider the experimental
setup described in Section 7.1.2. The y-axes of the graphs are on log scale
and the error bands represent the confidence interval over five independent
runs of the experiments. The figure extends the results illustrated in the
top row of Fig. 7.3 including DA-FPS initialized with k = 100 and u = 3%.

qualitative behavior of a fixed model, where the only variable influencing the prediction
quality is the selection of the training set.

B.5. DA-FPS on FPS setting

In this section we compare the performance DA-FPS with FPS and other baseline
methods by examining the condition number of the Gaussian kernel and the fill distance
with the experimental setup described in Section 7.1.2.

Fig. B.3 expands on the graphs in the top row of Fig. 7.3 by including results obtained
using DA-FPS. Specifically, it illustrates the condition number of the non-regularized
Gaussian kernels. The kernels were constructed under the same experimental setup
described in Section 7.1.2, using the same datasets, data descriptors, training dataset
sizes and baseline sampling approaches. DA-FPS was initialized with k = 100 and u=3%,
regardless of the dataset. This means that DA-FPS and FPS are identical until 3% of
the data is sampled. The figure demonstrates that, as expected, DA-FPS leads to worse
performance than FPS. However, it still outperforms other baseline approaches.
Fig. B.4 extends the results shown in Fig. 7.5a by illustrating the fill distance of

the training sets obtained using DA-FPS compared to that of other baseline sampling
strategies. Also in this case we consider the same experimental setup as in Section 7.1.2.
Interestingly, with DA-FPS, the fill distance decreases until 3% of the data is selected,
during which DA-FPS is equivalent to FPS, since we set u = 3%. Once DA-FPS starts
the weights update process, the fill distance for the set it selects remains constant. This
indicates that after the initial 3% of elements are selected using FPS, DA-FPS sampling
shifts its focus from space coverage to better representing the underlying data distribution.

154

B.5. DA-FPS on FPS setting

DA-FPS
FPS
RDM
FacilityLocation
k-medoids++

1% 3% 5% 7% 10%
Amount of training samples

3 × 101

4 × 101

6 × 101

Fi
ll

d
is

ta
n
ce

(a) QM7

1% 3% 5% 7% 10%
Amount of training samples

101

3 × 100

4 × 100

6 × 100

Fi
ll

d
is

ta
n
ce

(b) QM8

1% 3% 5% 7% 10%
Amount of training samples

104

Fi
ll

d
is

ta
n
ce

(c) QM9

Figure B.4.: Fill distance of training sets obtained using DA-FPS and other baseline
sampling strategies on the QM datasets. The experiments in the figures
are performed with the same experimental setup described in Section 7.1.2.
The figure extends the results illustrated in Fig. 7.5a including DA-FPS
initialized with k = 100 and u = 3%. The y-axes of the graphs are on
log scale and the error bands represent the confidence interval over five
independent runs of the experiments.

155

	Introduction
	Structure

	Data-Centric AI (DCAI)
	The path to DCAI
	Definitions of DCAI
	Goals and tasks of data-centric AI
	Importance of data selection in training data development for supervised ML
	A simple classification of data selection procedures for supervised ML
	Data labeling budgets

	Data Selection Via Coresets
	Uniform and importance sampling
	Cluster based methods
	k-means
	k-medoids
	The importance of initializing: k-medoids++

	Greedy approaches
	Optimization problems with submodular functions
	Greedy algorithms for Min-Max-Min optimization problems

	A conceptual comparative analysis of coresets
	More on coresets

	Machine Learning for molecular property prediction
	Molecular descriptors
	Topological descriptors
	Geometrical descriptors

	Quantum chemistry datasets
	Underlying characteristics of the datasets

	Regression models
	Kernel Ridge Regression (KRR)
	Feed Forward Neural Networks (FNNs)
	Gradient-Domain Machine Learning (GDML)

	Metrics for evaluating model performance
	Univariate regression
	Multivariate regression

	On minimizing the training set fill distance
	Problem definition
	Effects of a training set fill distance minimization approach.
	Selecting training sets with the farthest point sampling
	An illustrative numerical example

	Increased numerical stability of Gaussian kernel regression with FPS
	Alternatives to the fill distance

	On minimizing a training set weighted fill distance
	Problem definition
	Bound for the expected prediction error
	Density-Aware Farthest Point Sampling (DA-FPS)
	An illustrative example of DA-FPS sampling

	Analysis of DA-FPS

	Numerical Results
	Minimizing the fill distance with FPS
	Baseline sampling strategies for FPS
	Experimental setting with FPS
	Experiments with FPS: Molecular property prediction
	Increased numerical stability of kernel ridge regression with FPS
	Empirical analysis and discussion
	Force-field prediction on the rMD17 dataset
	Section highlights

	Minimizing the weighted fill distance with DA-FPS
	Baseline sampling strategies for DA-FPS
	Experimental setup with DA-FPS
	Experiments with DA-FPS: Molecular property prediction
	Ablation study DA-FPS hyperparameters on ZINC dataset
	Computational efficiency DA-FPS
	Additional experiments
	Section highlights

	Conclusion
	Summary, contributions, and findings
	Challenges, limitations, and possible future directions
	Final thoughts

	Appendix
	Appendix
	Investigation weights ratio
	Datasets for additional experiments
	Hyperparameters for additional experiments
	Cauchy Kernel
	DA-FPS on FPS setting

