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S U M M A R Y 

We introduce a novel probabilistic framework for the solution of non-linear geophysical inverse 
problems in complex variables. By using complex probability distributions, this approach can 

simultaneously account for individual errors of real and imaginary data parts, independently 

regularize real and imaginar y par ts of the complex model, and still take into account cross- 
sensitivities resulting from a complex forward calculation. The inverse problem is solved by 

means of optimization. An application of the framework to complex resistivity (CR) imaging 

demonstrates its advantages over the established inversion approach for CR measurements. We 
show that CR data, with real and imaginary parts being subject to different errors, can be fitted 

adequately, accounting for the individual errors and applying independent regularization to 

the real and imaginary part of the subsurface conductivity. The probabilistic framework itself 
serves as a basis for the future application of global sampling approaches, such as Markov 

chain Monte Carlo methods. 
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1  I N T RO D U C T I O N  

We introduce a probabilistic framework for the solution of geophys- 
ical inverse problems in complex variables. Within the framework, 
data and model parameters are treated explicitly as complex ran- 
dom variables and we use Bayes’ theorem to combine the complex 
probability distributions associated with likelihood and model prior 
into a posterior model distribution. The probabilistic formulation 
of the inverse problem using Bayes’ theorem inherently accounts 
for data errors and uncertainties in the prior assumptions, both of 
which are propagated naturally into the solution (e.g. Bayes 1763 ; 
Sen & Stoffa 1996 ; Tarantola 2005 ). Sampling strategies, such as 
Markov chain Monte Carlo (MCMC) methods, can be employed 
to numerically approximate statistical estimators of interest over 
the posterior distribution and to explore ambiguities in the solution 
(e.g. Sambridge & Mosegaard 2002 ). Applications of this concept 
to geophysical inverse problems in real variables can be found in 
man y dif ferent fields of geophysics (e.g. Sen & Stoffa 1996 ; De 
Pasquale et al. 2019 ; Fichtner et al. 2019 ; Deng et al. 2022 ). How- 
ever , to our kno wledge, the concept has not yet been extended to 
geophysical inverse problems in complex variables. The application 
of MCMC strategies to the general geoelectric imaging problem is 
still challenging, mainly due to the computational cost of e v alu- 
ating the forward response. Because of this, we e xclusiv ely focus 
on the estimation of the maximum a posteriori (MAP) solution 
by means of Gauss–Newton optimization and leave the adaptation 
of sampling strategies to the introduced probabilistic framework 
open to future research. The considerations with regard to complex 
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differentiability, necessary for the application of Gauss–Newton 
optimization, provide a basis for the application of gradient-guided 
MCMC methods, such as Hamiltonian Monte Carlo (e.g. Neal et al. 
2011 ; Fichtner et al. 2019 ). 

The complex resistivity (CR) method targets the distribution of 
the complex electrical conductivity within the subsurface, captur- 
ing the conduction and polarization properties under the applica- 
tion of an alternating current at a given frequency. In CR surveys, 
the induced polarization response of the subsurface is measured 
and analysed in terms of the frequency-dependent complex electri- 
cal impedance (e.g. Van Voorhis et al. 1973 ; Pelton et al. 1978 ). 
Previous studies have inverted tomographic data sets of induced 
polarization measurements into subsurface models, using various 
approaches and parametrizations (e.g. Weller et al. 1996 ; Martin & 

G ünther 2013 ; Johnson & Thomle 2018 ). Kemna ( 2000 ) introduced 
the first fully complex framework for the inversion of complex 
impedance measurements into subsurface images of conductivity 
magnitude and phase, which has been used in various applications 
(e.g. Kemna et al. 2004 ; Williams et al. 2009 ; Flores Orozco et al. 
2011 , 2012 ; Weigand & Kemna 2017 ; Maierhofer et al. 2022 ). The 
inversion is based on a weighted-least squares (WLSQ) framework, 
using the Her mitian nor m, in which data and model are both explic- 
itly treated as complex variables. Ho wever , the WLSQ framew ork 
is not able to ensure that the model found by means of optimiza- 
tion appropriately fits the real and imaginar y par t of the data in the 
context of their individual error estimates, which are often avail- 
able from the data acquisition process. The reason for this is the 
inability of the WLSQ scheme to account for the error estimates of 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
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he complex data’s real and imaginary parts indi viduall y. Another
isadvantage of the scheme can be that the model regularization can-
ot be independently adjusted for real and imaginary parts, which
ay be detrimental if subsurface conductivity and polarizability are

nown to exhibit different spatial characteristics. By individually
ccounting for the error estimates of the real and imaginary part of
he complex data, as well as by controlling the prior assumptions
pplied to the real and imaginar y par t of the complex model inde-
endently, an adequate fit of the complex data can be reached in a
omple x inv ersion, using the probabilistic framework introduced in
his work. For the application to CR imaging, we discuss explicitly
ow the probabilistic framework relates to the established WLSQ
ramework, as well as to the approach recently presented by Wang
t al. ( 2023 ). Our implementation of the probabilistic framework
or the inversion of CR measurements uses the forward modelling
nd inversion capabilities provided by the open-source software
ackage pyGIMLi (R ücker et al. 2017 ). 

The remainder of this follows: We introduce the probability distri-
utions underlying the probabilistic framework and discuss simpli-
cations, followed by a description of the Gauss–Newton approach

hat is used to solve the inverse problem by means of optimiza-
ion. After that, we provide a short introduction into CR measure-

ents and the established WLSQ inversion approach to invert them,
hich is used as a reference. Different aspects of the probabilistic

ramework are then demonstrated on synthetic examples. Finally,
e discuss and conclude our results. 

 A  P RO B A B I L I S T I C  S O LU T I O N  T O  

E O P H Y S I C A L  I N V E R S E  P RO B L E M S  I N  

O M P L E X  VA R I A B L E S  

he goal of geophysical inversion in complex variables is to recover
 subsurface model ˜ m ∈ C 

M from a set of data ˜ d ∈ C 

N , given the
orward operator ̃  f ( ̃  m ) , as well as uncertainty estimates for the data
nd prior assumptions on spatial characteristics of the subsurface.
he appropriate formulation of the underlying probability distri-
utions in terms of complex random variables demands usage of
he conjugate coordinate representation of comple x v ectors (e.g.
reutz-Delgado 2009 ). For the comple x v ector ˜ x ∈ C 

M we define
c 
 

�= ( ˜ x , ̃  x ∗) T ∈ C 

2 M to be its representation in conjugate coordi-
ates, with ∗ denoting the complex conjugation and T denoting the
ranspose. The representation in conjugate coordinates is related
o the representation of ˜ x in terms of its real and imaginary part

r 
 

�= ( x ′ , x ′′ ) T ∈ R 

2 M by the linear transformations

c 
x =

[
I iI 
I −iI 

]
︸ ︷︷ ︸

S̃

r
x (1) 

nd 

r 
x = 

˜ S 

−1 c 
x = 

1 

2 
˜ S 

H c 
x , (2) 

ith H denoting the conjugate transpose, I denoting the identity ma-
rix and i 2 = −1. The probabilistic inversion framework described
n this work is built upon Bayes’ theorem (Bayes 1763 ): 

p( 
c 

m | c 
d 

) ∝ p( 
c 
d 

| c 
m ) p( 

c 
m ) . (3) 

he likelihood term p( 
c 
d 

| c 
m ) is combined with the prior term p( 

c 
m )

nto the posterior distribution p( 
c 

m | c 
d 

) , which assigns a conditional

robability to a model realization 
c 

m , given the data 
c 
d 

. In order to
orrectly describe data and model as complex random variables,
q. ( 3 ) features their representation in terms of conjugate coordi-
ates. 

Using the linear operator ˜ S , it is theoretically possible to find
n equi v alent frame work to the one described in this work using
 real-valued parametrization of model and data, as described by
ang et al. ( 2023 ) for the inversion of CR measurements. How-

ver , formulating the in verse problem in terms of complex random
ariables is sensible if the mathematical description of the physi-
al phenomenon underlying the measurements involves complex-
alued parameters. Fur ther more, in case of CR measurements, using
 complex formulation illustrates how the probabilistic framework
ntroduced in this work relates to the established complex inversion
rame work b y K emna ( 2000 ). We realize that a complex-valued
odel parametrization can have implications with regard to the

se of generalized optimization packages. Although Wang et al.
 2023 ) use a real-valued parametrization for the inversion, the for-
ard calculation is nonetheless carried out using complex variables

nd the real and imaginary parts of the complex model response
nd complex sensitivity are extracted from the complex-valued re-
ults. While there might be benefits for specific applications, we do
ot see general advantages or disadvantages for either of the two
pproaches in terms of implementation. 

.1 Likelihood term 

he model and data spaces are linked by the likelihood term. It
escribes the conditional probability of the data, given a certain
odel realization. If the errors of the complex data are assumed

o be normal, we can formulate the likelihood as the following
omplex normal distribution (Picinbono 1996 ): 

p( 
c 
d | c 

m ) ∝ exp 

⎡ 

⎢⎢ ⎢ ⎢⎢ ⎢ ⎣ 

− 1

2

[
( ̃ d − ˜ f ( ̃ m )) H , ( ̃ d − ˜ f ( ̃ m )) T 

](
˜ � d ˜ C d
˜ C 

H 
d 

˜ � ∗d 

)−1 

︸ ︷︷ ︸ 
= cR d

(
˜ d − ˜ f ( ̃ m ) 

( ̃ d − ˜ f ( ̃ m )) ∗

)
⎤ 

⎥⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

.

(4) 

Eq. ( 4 ) maps N complex data and their complex conjugates to a
eal-valued probability. The matrices ˜ � d and ˜ C d capture the second-
rder properties of the complex normal distribution (eq. 4 ). Assum-
ng error estimates for d 

′ and d 

′′ , we find the complex covariance
atrix (Picinbono 1996 ): (
˜ � d 

˜ C d
˜ C 

H 
d 

˜ � 

∗
d 

)
= 2 ̃  S 

(
Cov ( d 

′ , d 

′ ) Cov ( d 

′ , d 

′′ ) 
Cov ( d 

′′ , d 

′ ) Cov ( d 

′′ , d 

′′ ) 

)
˜ S 

−1 . (5) 

xplicitly, ˜ � d and ˜ C d can be calculated according to:

˜ 
 d = Cov ( d 

′ , d 

′ ) + Cov ( d 

′′ , d 

′′ ) + i ( Cov ( d 

′′ , d 

′ ) − Cov ( d 

′ , d 

′′ ) ) ,

(6) 

˜ 
 d = Cov ( d 

′ , d 

′ ) − Cov ( d 

′′ , d 

′′ ) + i ( Cov ( d 

′′ , d 

′ ) + Cov ( d 

′ , d 

′′ ) ) .

(7) 

 first simplification can be derived if the error estimates of d 

′ and
 

′′ are uncorrelated: 

ov ( d 

′′ , d 

′ ) = Cov ( d 

′ , d 

′′ ) = 0 , (8) 

eading to ˜ � d = � 

′ 
d and ˜ C d = C 

′ 
d . Fur ther more, if the error esti-

ates of d 

′ and d 

′′ are equal, we find: 

˜ 
 d = Cov ( d 

′ , d 

′ ) − Cov ( d 

′′ , d 

′′ ) = 0 . (9)
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11) 
Given these two simplifications, eq. ( 4 ) reduces to 

p( ̃ d | ̃  m ) ∝ exp 
[−( ̃ d − ˜ f ( ̃  m )) H ˜ � 

−1 
d ( ̃ d − ˜ f ( ̃  m )) 

]
. (10) 

2.2 Prior term 

We adapt the above concept to formulate the prior term, apply 
independent regularization to m 

′ and m 

′′ , using the symmetric real 
operators R � , � = λ� , � 

(
W 

T 
m 

W m 

)
� , � , with regularization strengths

λ� and λ� , and find the following expression: 

p( 
c 

m ) ∝ exp 

⎡ 

⎢⎢ ⎢ ⎢⎢ ⎣ 

− 1

2

[
( ̃ m − ˜ m p ) 

H , ( ̃ m − ˜ m p ) 
T 
](

R � + R � R � − R �
R � − R � R � + R � 

)
︸ ︷︷ ︸ 

= cR m

(
˜ m − ˜ m p 

( ̃ m − ˜ m p ) ∗

)
⎤
⎥⎥⎥⎥⎥⎦
(

with the prior model ˜ m p ∈ C 

M . Here, the inverse prior covariance 
matrix can be calculated according to 

c 
R m 

= 2 ̃S

(
R � 0 
0 R � 

)
˜ S 

−1 . (12) 

The matrices R � and R � can exhibit different regularization char- 
acteristics. Setting R � = R � = R leads to 

p( ̃  m ) ∝ exp 
[−( ̃  m − ˜ m p ) 

H R( ̃  m − ˜ m p ) 
]
, (13) 

applying equal regularization to m 

′ and m 

′′ . 

2.3 Optimization of the posterior distribution 

We find the MAP model by maximizing eq. ( 3 ), which can be 
achie ved b y minimizing the corresponding cost function 

�( 
c 

m ) = − ln
(

p( 
c 

m | c 
d 

)
)

. (14) 

Minimizing a cost function that maps a complex variable to a real- 
valued output is non-trivial, because such a cost function does not 
fulfil the Cauchy–Riemann equations and is therefore not complex 
dif ferentiable. Howe v er, formulating the comple x model v ector in 
terms of conjugate coordinates allows us to exploit the differentia- 
bility of the cost function with respect to input from R 

2 M . Due to 
the non-linear character of the forward operator ˜ f ( ̃  m ) , eq. ( 14 ) has 
to be minimized iterati vel y. Sorber et al. ( 2012 ) formulate a gener- 
alized Gauss-Newton scheme for the solution of the minimization 
problem 

min ˜ x || ̃  F ( ̃ x , ̃  x ∗) || 2 . (15) 

Around a given model state 
c 
x q , they approximate the non-linear

function ˜ F ( ̃ x , ̃  x ∗) using the first-order Taylor polynomial 

t F q 

(
�

c 
x q 

)
= 

˜ F 

(
c 
x q 

)
+ 

∂ ̃F
(

c 
x q 

)
∂ 

c 
x 

T �
c 
x q , (16) 

yielding the approximation t f q of the objective function (eq. 15 ): 

t f q 

(
�

c 
x q 

)
= 

1

2 

∣∣∣∣∣∣ t F q 

(
�

c 
x q 

) ∣∣∣∣∣∣2 
. (17) 

Here, the deri v ati ve operator with respect to the complex model in 
conjugate coordinates is given by 

∂ 
c = 

(
∂ 

∂ ̃  x 
, 

∂ 

∂ ̃  x ∗

)
. (18) 
∂ x
Explicitly, they find 

t f q 

(
�

c 
x q 

)
= 

1 

2 
|| ̃  F q || 2 + 

1 

2 
�

c 
x 

T
[

˜ J q Q 

˜ J ∗q 

]H [ ˜ F q 
˜ F ∗q 

]
+ 1

2 
�

c 
x 

H 
˜ J H q 

˜ J q � 

c 
x ,

(19) 

for the quadratic approximation of the objective function around 
c 
x q ,

with ˜ J q = 

∂ ̃F
(c 

x q
)

∂ 
c 
x 

T , ˜ F q = F̃
(

c 
x q 

)
and

Q = 

[
0 I 
I 0 

]
, (20) 

so that ( ˜ x , ̃  x ∗) T = Q 

( ˜ x ∗, ̃  x ) T . Setting the deri v ati ve with respect to 

�
c 
x 

∗
equal to 0 yields the condition for the minimum:

∂ t f q 

(
� 

c 
x q 

)
∂� 

c 
x 

∗ = 1 

2 

[
˜ J q 

˜ J ∗q Q 

]H [ ˜ F q 
˜ F ∗q 

]
+ 

1

2 

[
˜ J q 

˜ J ∗q Q 

]H [ ˜ J q 
˜ J ∗q Q 

]
� 

c 
x q 

! = 0 . 

(21) 

In the condition for the minimum (eq. 21 ), we can identify the terms 
corresponding to the normal equations associated with the iterative 
minimization of eq. ( 14 ): 

c
B q � 

c 
m q = 

c 
b q ,

(22) 

c 
B q = 

( [ ˜ G q
˜ � q

˜ � 

∗
q 

˜ G 

∗
q 

]H 
c
R d 

[ ˜ G q
˜ � q

˜ � 

∗
q 

˜ G 

∗
q 

]
+ 

c
R m 

) 

, 

(23) 

c
b q = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

[ ˜ G q ˜ � q 
˜ � 

∗
q 

˜ G 

∗
q 

]
︸ ︷︷ ︸

= c 
G q 

H
c
R d 

( ˜ d − ˜ f ( ̃  m q ) (
˜ d − ˜ f ( ̃  m q ) 

)∗
)

− c
R m 

(
˜ m q − ˜ m p (
˜ m q − ˜ m p 

)∗
)

⎞ 

⎟⎟ ⎟ ⎟ ⎟ ⎠ 

,

(24) 

with 

˜ G ik = 

∂ ˜ f i
∂ ̃  m k 

, (25) 

holding the partial deri v ati ves of the forward operator with respect 
to the complex model, and 

˜ � ik = 

∂ ˜ f i
∂ ̃  m 

∗
k 

, (26) 

holding the partial deri v ati ves of the forward operator with respect 
to the complex conjugate of the complex model. If the forward 
operator is complex differentiable, as it is in case of the CR problem 

(Kemna 2000 ), the Cauchy–Riemann equations demand ˜ � = 0 . In 
that case, the imaginary part of ˜ G ik holds the cross-sensitivities:

∂ f ′ i

∂ m 

′′ 
k 

= − ∂ f ′′i 

∂ m 

′ 
k 

. (27) 

3  A P P L I C AT I O N  T O  C O M P L E X  

R E S I S T I V I T Y  I M A G I N G  

In CR imaging, forward modelling of the complex electric poten- 
tial ˜ ψ , resulting for a given model realization and current source, 
is conducted by solving the Poisson equation at a given angular 
frequency ω: 

∇ · (
˜ σ ( ω ) ∇ ̃

 ψ ( ω ) 
) − ∇ · ˜ j s ( ω) = 0 , (28)
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Figure 1. Conductivity magnitude (a) and phase (b) of the synthetic model and resultant impedance magnitude (c) and phase (d) pseudo-sections for a 
dipole–dipole measurement scheme (with pseudo-depth levels on vertical axis), subject to noise with the standard deviations shown in (e, f). 
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ith the source current density ̃  j s and the complex electrical con-
uctivity ˜ σ . This can be achieved, for example, by using the finite-
ifference method (e.g. Weller et al. 1996 ), or the finite-element
ethod (e.g. Kemna 2000 ). The complex electrical impedance ˜ z

s obtained as the ratio of the measured potential difference to the
njected current. Kemna ( 2000 ) introduced the complex inversion
f CR measurements into subsurface images of complex conductiv-
ty, explicitly treating data and model as complex variables. In this
ork, we adopt his transformation of the data and parametrization
f the model. A set of N complex data 

˜ 
 i = − ln | ̃ z i | + iφi (29) 

ith the complex electrical impedance ˜ z i and ne gativ e phase of
he complex electrical impedance φi , is inverted into a subsurface
odel that features M parameters. The geometric factor k i relates the

omplex electrical impedance to the apparent complex conductivity 

˜ a i =
1 

k i ̃  z i 
, (30) 

hich we use for the visual display of CR data in pseudo-sections.
he model is formulated as the complex logarithm of the complex
lectrical conductivity: 

˜  k = ln ( ̃  σk ) = ln | ̃  σk | + iφk , (31) 

ith the phase of the complex electrical conductivity φk . For rea-
ons of readability, we refer to the real and imaginary parts of
he complex data ˜ d i as the impedance magnitude and impedance
hase , since these are the parts of the measured complex electri-
al impedance ˜ z they represent. Consistently, we refer to the real
nd imaginary part of the complex model ˜ m k as conductivity mag-
itude and conductivity phase , since they represent the magnitude
nd phase of the imaged complex electrical conductivity ˜ σ . 

Kemna ( 2000 ) solves the CR inverse problem by minimizing the
ost function 

( ̃  m ) = ( ̃ d − ˜ f ( ̃  m )) H ˜ W 

H 
d 

˜ W d ( ̃ d − ˜ f ( ̃  m )) + λ( ̃  m − ˜ m p ) 
H W 

T 
m W m ( ̃  m − ˜ m p ) , 

(32) 

ith ˜ � 

−1 
d = 

˜ W 

H 
d 

˜ W d and R = λW 

T 
m 

W m 

. The data weighting matrix
˜ 
 d holds the inverses of the complex data errors

˜  i = std ( ln | ̃ z i | ) + i std ( φi ) (33) 

s diagonal elements. Since equal weight is applied to the real and
maginar y par t of the complex residual ( ̃ d − ˜ f ( ̃  m )) , this WLSQ

art/ggae045_f1.eps
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Figure 2. Conductivity magnitude (a, c) and phase (b, d) images resulting from the inversion of the synthetic data (compare Fig. 1 ) using the WLSQ framework 
(a, b) and the probabilistic framework (c, d). 
frame work implicitl y assumes equal error estimates for impedance 
magnitude and phase. Fur ther more, the same regularization strength 
is applied to the conductivity magnitude and phase. If we interpret 
eq. ( 32 ) from a probabilistic point of view, the data misfit term cor- 
responds to the simplified likelihood term in eq. ( 10 ) and the regu- 
larization term corresponds to the simplified prior term in eq. ( 13 ). 
It is not guaranteed that a model minimizing eq. ( 32 ) achieves ap- 
propriate individual data fits for impedance magnitude and phase. 
Kemna ( 2000 ) overcomes this problem by refining the conductivity 
phase independently, after a solution for the conductivity magnitude 
has been found. During this final phase improvement, the conduc- 
tivity magnitude is kept fixed and changes in the data fit of the 
impedance magnitude caused b y cross-sensiti vities are ef fecti vel y 
disregarded, introducing inconsistencies with regard to the estima- 
tion of the MAP solution. Wang et al. ( 2023 ) provide a detailed 
comparison of the WLSQ inversion with final phase improvement 
to other complex resistivity inversion approaches. In the synthetic 
studies that follow, we use inversion results obtained from the mini- 
mization of eq. ( 32 ) as a reference, without a subsequent refinement 
of the conductivity phase, since we want to stay consistent dur- 
ing our comparison of the WLSQ framework and the probabilistic 
framework. 

The two measured quantities ln | ̃ z i | and φi are assumed to be 
subject to normally distributed noise. For the impedance magnitude, 
the typically used error model is linear in | ̃ z i | (e.g. LaBrecque et al. 
1996 ): 

std ( | ̃ z i | ) = a| ̃ z i | + b. (34) 

The standard deviation of the impedance phase is assumed to be 
constant in some studies (e.g. Kemna 2000 ), or is assumed to follow 

an inverse power law (e.g. Flores Orozco et al. 2012 ) 

std ( φi ) = a| ̃ z i | −b + c, (35) 
extended by an absolute error c . There is no inherent condition that 
suggests for the error estimates of impedance magnitude and phase 
to be of similar size. To quantify how well a model response fits the 
complex data, we use two different formulations of the root-mean- 
square error (RMSE): 

RMSE real = 

√ 

1 
N 

( d 

′ − f( ̃  m ) ′ ) T Cov ( d 

′ , d 

′ ) −1 ( d 

′ − f( ̃  m ) ′ ) , (36) 

RMSE imag = 

√ 

1 
N 

( d 

′′ − f( ̃  m ) ′′ ) T Cov ( d 

′′ , d 

′′ ) −1 ( d 

′′ − f( ̃  m ) ′′ ) , 

(37) 

to isolate the data fits with regard to the impedance magnitude and 
phase. 

3.1 Example I: Independent impedance magnitude and 

phase error estimates 

First, we investigate the probabilistic framework’s ability to account 
for differences in the error estimates of impedance magnitude and 
phase. Fig. 1 shows the true model over which a dipole-dipole sur- 
v e y was simulated to generate synthetic data. Using the error models 
given in eqs ( 34 ) and ( 35 ), synthetic noise was generated and added 
to the data set. For the error model of the impedance magnitude 
(eq. 34 ) we used a = 0.1 and b = 10 −6 �, while for the error model 
of the impedance phase (eq. 35 ) we used a = 10 −7 , b = 0.9 and 
c = 10 −4 rad. Fig. 1 shows the pseudo-sections of the impedance 
magnitude and phase, as well as the distributions of the standard 
deviations associated with the synthetic data. No correlations were 
assumed between the impedance magnitude and phase errors, as 
well as between errors of different data points. The impedance mag- 
nitude error estimates are significantly larger than the impedance 
phase error estimates. As this situation strongly violates the implicit 
assumption underlying eq. ( 32 ), we expect that an inversion using 
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Figure 3. Estimated variances of the conductivity magnitude (a, c) and phase (b, d) according to eq. ( 40 ) for the WLSQ framework (a, b) and the probabilistic 
framework (c, d). Note the different colour scale in (d). Scatter of the conductivity phase variances against the conductivity magnitude variances, obtained for 
the WLSQ framework (e). Scatter of the added conductivity magnitude and phase variances for the WLSQ and probabilistic framework (f). 
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he WLSQ framework is not able to reach an adequate data fit for
oth impedance magnitude and phase. For demonstration purposes
e here compare the results of two inversions. First, we inverted the

ynthetic data using the WLSQ framework. For this we set 

˜ 
 d i i = std ( ln ( | ̃ z i | )) 2 + std ( φi ) 

2 , (38) 

nd 

˜ 
 d = 0 , (39) 

hich implies equal error estimates for impedance magnitude and
hase. The regularization strength λ, applied equally to the con-
uctivity magnitude and phase, was fixed. Secondly, we inverted
he synthetic data using the probabilistic framework. During this
nversion, we included the error estimates of the impedance magni-
ude and phase appropriately in the complex data covariance matrix
eq. 5 ). For regularization, we fixed the individual values of λ� and

� so that the obtained inversion result achieves a good data fit.
oth inversions were performed on the same mesh using second-
rder smoothing between neighbouring cells, with a prior model 
˜ 
 p = 0 . 
Fig. 2 shows the inversion results obtained from the WLSQ frame-

ork and the probabilistic frame work, respecti vel y. Both inversion
rameworks are able to fit the impedance magnitudes well, with
MSE real values of 1.02 for the probabilistic framework and 1.01

or the WLSQ frame work. Dif ferences between the two inversion
esults occur for the data fit of the impedance phases. As indicated
y the values of RMSE imag , the probabilistic framework reaches
he target data fit of 1.0, while the WLSQ framework underfits the
mpedance phases significantly, only reaching a RMSE imag of 7.45.
or the WLSQ framework, choosing a smaller value for λ would
mprove the data fit of the impedance phase. Ho wever , this w ould
ause an overfitting of the impedance magnitude. Both approaches
ecover the synthetic model’s magnitude equally well. For the con-
uctivity phase, the probabilistic framework achieves a superior
esult. 

For both inversion results, we approximated the posterior covari-
nce matrix under the assumption of normally distributed model
arameters near the MAP solution. We isolated the variances of the
onductivity magnitude and phase according to (Picinbono 1996 ;
arantola 2005 ) 

(
Cov ( m 

′ , m 

′ ) Cov ( m 

′ , m 

′′ ) 
Cov ( m 

′′ , m 

′ ) Cov ( m 

′′ , m 

′′ ) 

)
= 

1 

2 
˜ S 

−1 

(
c 
G 

H c 
R d 

c 
G 

+ 

c
R m 

)−1

˜ S . 

(40
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Figure 4. Model used to create the synthetic data and recovered complex conductivity images. Conductivity magnitude (a) and phase (b) show strong 
macroscopic anisotropy. The conductivity magnitude and phase images displayed in (c) and (d) were recovered using isotropic geostatistical regularization. The 
conductivity magnitude and phase images displayed in (e) and (f) were recovered from an inversion, during which non-isotropic geostatistical regularization 
was applied independently to the conductivity magnitude and phase. 
The estimated variances are displayed in Fig. 3 . The conductivity 
magnitude and phase images obtained from the inversion with the 
probabilistic framework are subject to different variances, with the 
conductivity phase showing a significantly smaller uncertainty than 
the conductivity magnitude (compare Figs 3 c and d). In contrast 
to this, the WLSQ framework implies equal error estimates for the 
impedance magnitude and phase in the likelihood term and equal 
regularization acting on the conductivity magnitude and phase in 
the prior term. This propagates into the posterior covariance ma- 
trix of the inversion result, causing equal variance estimates for 
the conductivity magnitude and phase (compare Figs 3 a, b and e). 
The sum of the variances Var ( ln | ̃  σ | ) and Var( φ) is equal for both 
in version framew orks (compare Fig. 3 f). While Var( φ) is smaller 
for the probabilistic frame work, impl ying that interpretations on 
the basis of the conductivity phase obtained by the WLSQ frame- 
work might be too conserv ati ve, Var ( ln | ̃  σ | ) is in fact larger for the 
probabilistic framework. This underestimation of the conductivity 
magnitude’s uncertainty by the WLSQ framework might lead to 
false interpretations of the inversion result. 
3.2 Example II: Independent conductivity magnitude and 

phase regularization 

To demonstrate the probabilistic framework’s ability to apply in- 
dependent regularization to the conductivity magnitude and phase, 
we inverted data from a dipole–dipole surv e y that was simulated 
over the subsurface model shown in Figs 4 (a) and (b). The synthetic 
model exhibits different structural characteristics in the magnitude 
and the phase of the subsurface conductivity. While the magnitude 
is horizontally layered, the layers of the phase show a dip of −45 ◦. 
During the inversion, we used non-isotropic geostatistical regular- 
ization operators provided by pyGIMLi (R ücker et al. 2017 ; Jordi 
et al. 2018 ), to account for the different dipping in conductivity mag- 
nitude and phase, and compared the results to the images obtained 
from an inversion with isotropic geostatistical regularization act- 
ing on the conductivity magnitude and phase. For both inversions, 
the regularization strengths were adjusted such that the data were 
appropriately fitted and the prior model was chosen to be ˜ m p = 0 . 
The data error estimates of impedance magnitude and phase were 
accounted for accurately, according to eq. ( 5 ). The results obtained 
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doi: 10.1007/s10342-013-0711-4. 
rom the two inversions (compare Fig. 4 ) demonstrate the advantage
f using appropriate non-isotropic geostatistical regularization over
sotropic regularization, in the present case. As the probabilistic
ramework introduced in this work is able to apply independent reg-
larization on the conductivity magnitude and phase, setting it apart
rom the WLSQ framework, it is possible to account for the different
tructural characteristics and recover both parameter distributions
ell (compare Figs 4 e and f). This is contrasted by the poor recovery
f the parameters, especially of the conductivity phase, if the same
tructural characteristics are favoured by isotropic regularization
cting on conductivity magnitude and phase (compare Figs 4 c and
), as it is the case for the WLSQ framework [compare eqs ( 10 ) and
 32 )]. 

 C O N C LU S I O N  

e introduced a probabilistic framework for the solution of geo-
hysical inverse problems in complex variables. With regard to the
nversion of CR measurements, the framework combines three key
eatures whose importance has been demonstrated by Wang et al.
 2023 ). First, it provides the possibility to account for independent
rror estimates of impedance magnitude and phase. This is essential
o formulate the inverse problem in a consistent probabilistic sense,
iven that the error estimates of impedance magnitude and phase are
ot equal. While we demonstrated the application of the probabilis-
ic framework for uncor related er rors, cor relations between er rors
f different data points, as well as between impedance magnitude
nd phase errors of the same data point, can be included according
o eq. ( 5 ). Secondly, in order to impose independent regularization
n the conductivity magnitude and phase, the respective model pri-
rs must be controlled indi viduall y. We achie ve this b y allowing for
ndependent regularization operators to act on conductivity magni-
ude and phase. Thirdly, the probabilistic framework incorporates
ross-sensiti vities accuratel y via the imaginar y par t of ˜ G ik , defined
n eq. ( 25 ). 

The probabilistic framework introduced in this work is built upon
ayes’ theorem, combining a likelihood term and a model prior

erm into a posterior model distribution. The correct formulation
f the underlying probability distributions, as well as the solution
f the inverse problem by means of optimization, both demand us-
ge of the conjugate coordinate representation of complex vectors.
e solved the inverse problem resulting from the probabilistic for-
ulation by means of Gauss–Newton optimization, estimating the
AP model under the posterior distribution. Between the proba-

ilistic and WLSQ framework, the difference in computational cost
omes down to the necessity to operate in a 2 N -dimensional com-
lex data space and 2 M -dimensional complex model space in case
f the probabilistic framework, while for the WLSQ framework
his can be reduced to operation in a N -dimensional complex data
pace and M -dimensional complex model space. Ho wever , this is
irectly reflected in the inability of the WLSQ framework to account
or independent error estimates on the real and imaginar y par t of
he data, and to control the model priors acting on the real and
maginar y par t of the model indi viduall y. For the sake of simplic-
ty, we estimated the variances of the recovered subsurface images
nder the assumption of normally distributed model-parameter un-
ertainties near the MAP model. We emphasize that value lies in
he application of more advanced sampling approaches to the CR
nverse problem, such as MCMC methods, which enable to perform
n accurate error propagation and capture ambiguities associated
ith the solution of non-linear inverse problems. The probabilistic
ramework for the solution of geophysical inverse problems in com-
lex variables introduced in this work, provides a basis for such
evelopments. 
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