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1. Summary 

In this cumulative thesis, I present my research on transcriptomic-based drug repurposing in 

human viral infections describing an optimized workflow for drug prediction, in vitro validation 

and in vivo studies in clinical cohorts based on three publications. 

In the first publication, I took lead in a larger team effort to introduce a newly designed drug 

repurposing approach based on whole blood transcriptomics data and drug signatures 

databases, which was applied to identify potential drug candidates for treatment of patients 

across COVID-19 severity groups stratified based on clinical parameters and transcriptomic 

phenotypes (Aschenbrenner et al. 2021). One of the drug candidates identified using this 

approach was dexamethasone, which was predicted to be effective in the most severe group 

of COVID-19 patients.  

In the second publication, I present my findings on transcriptomic alterations in the monocyte 

compartment in chronically infected HIV patients using multi-omics technologies, demonstrate 

that these alterations originate from a certain disease state and identify potential drug 

candidates for the reversal of the disease signatures in monocytes (Knoll et al. 2023). In this 

study, I further extend the transcriptomics drug repurposing approach by refining the 

underlying disease signatures using single-cell omics for drug prediction and I validate 

promising drug candidates using in vitro stimulation experiments. Reading out direct drug-

induced transcriptional alterations from these in vitro studies substantially strengthened the 

results from the drug repurposing approach.  

In the third publication, I describe our framework on how to investigate repurposed drugs in 

clinical cohorts in vivo using single-cell transcriptomics towards precision medicine, 

exemplified with dexamethasone treatment in COVID-19 (Knoll et al. 2024). Dexamethasone 

caused strong transcriptional and immunomodulatory changes with a reversal of dysregulation 

in severe COVID-19 monocytes compared to treatment-naïve patients. Moreover, a treatment-

specific monocyte response state was identified which stratified outcome and enabled 

prediction of treatment responses, stressing the potential of single-cell transcriptomics for 

companion diagnostics and mechanistic studies of repurposed drugs.  

In conclusion, the research presented in this thesis describes the design and application of a 

transcriptomics-based drug repurposing pipeline for human viral infections. It highlights the 

significant potential of drug repurposing in context of data-driven disease severity stratification 

using optimized cell-state specific disease signatures. Moreover, it underscores the 

importance of in vitro validation for promising drug candidates to reverse disease signatures. 

This paves the way for a standardized analytical approach to evaluate drug indications in 

https://sciwheel.com/work/citation?ids=10307867&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15766075&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16649442&pre=&suf=&sa=0&dbf=0
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clinical cohorts in vivo, utilizing single-cell transcriptomics for treatment response stratification, 

ultimately enabling precision medicine (Figure 1).  

 
Figure 1: Graphical overview of drug repurposing framework towards companion 
diagnostics based on transcriptomics data.  
Summary of the presented thesis consisting of three parts: 1) establishment of the drug repurposing 
pipeline and identification of drugs patient and therapy stratification, 2) signature optimization for drug 
repurposing from disease-driving cell states and in vitro validation of drug candidates and 3) single-cell 
multi-omics for assessment of repurposed drug effects as well as identification and prediction of 
treatment response as a basis for companion diagnostics.  
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2. Introduction 

2.1. Evolution of omics for systems medicine 

In biology, the term “omics” describes the comprehensive and complete analysis of 

biomolecules or processes of a specific type within a biological system. There are five major 

omics disciplines: 1) genomics; which studies the set of genes of an organism with respect to 

the structure, function and interaction, 2) transcriptomics; which studies all RNA molecules 

produced by genes, 3) proteomics; which describes all proteins translated from RNA including 

structure, function, interaction and modification, 4) metabolomics; which studies all 

metabolites and 5) epigenomics; which studies modifications to DNA and histones related to 

gene expression regulation. The related suffix “-ome” relates to all molecules and objects of 

the respective field, e.g. the transcriptome describes the entirety of RNA molecules such as 

messenger RNA (mRNA), non-coding (ncRNA) or micro RNA (miRNA) produced within cells 

or tissues at a specific time. Each omics discipline utilized high-throughput methodologies 

yielding comprehensive measurements of unprecedented resolution. Recent developments in 

the field of microfluidics and nanoliter reaction efficiency, further increase the resolution to 

apply omics at the level of individual cells, allowing to study physiological and pathological 

processes at the smallest structural and functional unit of life. 

Profiling gene expression is considered to be one of the most powerful approaches to 

characterize disease-associated molecular alterations. First steps towards comprehensive 

measurements of the transcriptome were made with the invention of DNA microarrays in 1995, 

which allowed to probe thousands of genes with fluorescent dyes at a time (Figure 2, Schena 

et al. 1995). Although microarrays proofed to be very valuable in describing and classifying 

human diseases, their main drawback is that previously unknown transcripts cannot be tested 

as the probes need to be designed with known nucleotide sequences. More than a decade 

after the invention of microarrays, next generation sequencing (NGS) revolutionized the field 

of genomics and transcriptomics (Metzker 2010; Mardis 2011; Emrich et al. 2007). NGS 

technologies enabled rapid processing of increased sample sizes at unprecedented speed. 

As sequencing is performed from DNA, RNA need to be reverse transcribed to DNA in order 

to measure the RNA levels of a sample. With continuous technology optimization, sequencing 

costs were strongly reduced over the years, outpacing Moore’s Law. In 2001, the cost per 

megabase of DNA sequence was approximately $10,000 (Wetterstrand 2024). By 2022, 

technological advancements had driven this cost down by a staggering factor of 106. For 

illustration, the sequencing costs of one human genome reduced from $100 Million to $1,000. 

Using NGS, all present RNA species of a sample could be measured in an unbiased and high 

throughput manner, leading to identification of previously unknown transcripts and biomarkers. 

https://sciwheel.com/work/citation?ids=66092&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=66092&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5873,765028,3264676&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16652048&pre=&suf=&sa=0&dbf=0
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By that time, experiments were mostly performed on samples comprising a mixture of cells 

from a tissue, the so-called bulk transcriptomics. Bulk transcriptomics lead to valuable findings 

in characterization of human diseases, however, its main disadvantage is that gene 

expression is averaged across all cells in the sample. This can lead to a loss of signal from 

different cell types and rare subpopulations driving a disease can be overseen. Only few years 

after the invention of bulk RNA-sequencing (RNA-seq), a technological breakthrough in 2009 

enabled the whole-transcriptome sequencing of a single-cell (Tang et al. 2009).  

 

 

Figure 2: Evolution of transcriptomic methods and technologies.  
Schematic overview of the development of omics methods and their application for transcriptomics over 
time. Microarray technology dominated the field after its invention in 1995, but was replaced with next 
generation sequencing (NGS) approaches a decade later. Their high throughput, unbiased 
quantification of gene expression and low cost were superior. NGS was first applied to measure the 
transcriptome of a mixture of cells per sample (bulk RNA-seq) but recent advancements let to higher 
resolutions, allowing the measurement of transcriptomes from single-cells (single-cell RNA-seq). Figure 
was created with Biorender.com.  
 
 

Since then, improved and advanced single-cell (sc)RNA-seq technologies and protocols were 

developed, enhancing sample collection, processing, single-cell isolation, cDNA amplification, 

library preparation and sequencing (Svensson et al. 2018; De Domenico et al. 2020). With the 

technological developments, costs per sequenced cell strongly decreased while number of 

cells per experiment increased, allowing for the wide application in the scientific community 

which is reflected by the rapid increase of publications including scRNA-seq (Jovic et al. 2022) 

(Figure 3). The notable increase of single-cell studies in the recent years can, in part, be 

explained by the COVID-19 pandemic where single-cell transcriptomics proofed to be a 

powerful tool in unraveling the pathogenesis of the disease, which will be further addressed in 

the following section.  

https://sciwheel.com/work/citation?ids=24779&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4962070,10239000&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13285117&pre=&suf=&sa=0&dbf=0
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Figure 3: Number of publications including single-cell RNA-seq (Pubmed search).  
Number of published studies that include scRNA-seq by year extracted by pubmed search (performed 
on pubmed.ncbi.nlm.nih.gov on 21.05.2024, searching for “single cell RNA seq”).  

 

As the number of single cells analyzed in scRNA-seq datasets can reach several million (Cao 

et al. 2020; Sikkema et al. 2023; Li et al. 2023; Terekhova et al. 2023), the dimension and 

thereby the file size of these datasets continues to expand significantly. Managing such vast 

amounts of data effectively demands substantial computational resources for storage and 

processing. In addition to the required computing resources, novel computational solutions 

and algorithms are needed for informative analyses and biological interpretation (Lähnemann 

et al. 2020; Kiselev et al. 2019). At a rapid pace, novel methods, algorithms and tools for 

analysis are being developed, rigorously tested and fine-tuned for optimization (Zappia and 

Theis 2021). The vast amount of possibilities for the analysis of scRNA-seq data requires 

continuous exchange in the scientific community, well documented guidelines and best 

practices (Haque et al. 2017; Bonaguro et al., 2022; Heumos et al. 2023).  

 

2.1.1. Studying the immune system using scRNA-seq 

Due to its immense complexity and heterogeneity as well as its easy accessibility, the immune 

system represents a prime target for scRNA-seq (Papalexi and Satija 2018). The immune 

system comprises various cell types that can be broadly grouped into T cells, B cells, innate 

lymphoid cells (ILCs), macrophages, monocytes, dendritic cells (DCs) and granulocytes, each 

with distinct roles and functionalities. By employing scRNA-seq, molecular signatures and 

pathways specific for the respective cell groups can be characterized. This is powerful for 

dissecting the cellular heterogeneity of the immune system and identifying rare cell 

populations. For instance, different subsets of monocytes and DCs can be distinguished by 

their gene expression profiles and even previously unknown subsets can be identified (Villani 

et al. 2017). Moreover, scRNA-seq provides unprecedented insights during immune 

https://sciwheel.com/work/citation?ids=10019244,14940087,15501918,15637186&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10019244,14940087,15501918,15637186&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8194974,6246285&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8194974,6246285&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11949995&pre=&suf=&sa=0&dbf=0
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responses in disease, enabling the discovery of transient cell states and molecular changes, 

that are difficult to capture using traditional methods. In example, Keren-Shaul et al. 

demonstrated the power of scRNA-seq by identifying a novel subset of microglia which 

associated with Alzheimer’s disease and describing their markers and pathways (Keren-Shaul 

et al. 2017). These studies exemplify how scRNA-seq can be utilized to understand the 

immune system in health and disease, facilitating the discovery of novel cellular states, 

biomarkers and therapeutic targets (Figure 4).  

 

 

Figure 4: Simplified overview of scRNA-seq dissection of the immune system.  
Simplified overview showing the potential of scRNA-seq to identify rare cellular states during immune 
responses in health and disease. Disease-associated states are more abundant in diseased patients 
and show distinct molecular signatures. These molecular signatures can give rise to new biomarkers 
for disease identification. Figure generated with Biorender.com. 
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2.2. The COVID-19 pandemic  

In December 2019, several unexplained pneumonia cases emerged in Wuhan, China (WHO 

2020). A novel coronavirus was quickly isolated from epithelial cells of infected patients, first 

named 2019-nCoV but in February 2020 renamed to severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) by the international Committee on Taxonomy of Viruses (Wu et 

al. 2020; Zhang and Holmes 2020). The disease caused by SARS-CoV-2 was termed 

coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO) (Gandhi et 

al. 2020; Berlin et al. 2020). From China, a rapid spread of the virus and COVID-19 occurred 

around the globe, causing the most devastating pandemic of the recent decades with serious 

health, economic and social consequences worldwide (Nicola et al. 2020; Smit et al. 2023). 

As of April 2024, the WHO reported 775.3 million confirmed COVID-19 cases of which more 

than 7 million deceased (WHO 2024). 

SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA virus of approx. 80nm in 

diameter belonging to the genus betacoronavirus (Yao et al. 2020). The virus enters the host 

cells by binding of its viral spike proteins to the host receptor angiotensin-converting enzyme 

2 (ACE2) following membrane fusion (Jackson et al. 2021). In addition, the furin-like 

proteases, transmembrane protease serine subtype 2 (TMPRSS2) and cathepsin L (CTSL) 

play important roles for viral entry into the host cytoplasm (Hoffmann et al. 2020). Exploiting 

human (single-cell) transcriptome databases revealed that type II alveolar cells in the lower 

lung and even more upper bronchial and nasal epithelia, especially ciliated cells, showed 

expression of ACE2 (Hou et al. 2020; Sungnak et al. 2020; Wang et al. 2020; Ahn et al. 2021). 

A single-cell meta-analysis of 31 lung studies further assessed expression of ACE2, 

TMPRSS2 and CTSL and identified risk factors such as age, sex and smoking to associate 

with higher expression of these genes (Muus et al. 2021). Besides the respiratory system as 

the primary infection site, ACE2 expression was also identified in cells of other organs such 

as in small intestine, colon, heart, muscle, kidney, testis and thyroid gland (Ziegler et al. 2020; 

Zou et al. 2020; Hikmet et al. 2020).  

COVID-19 is a very heterogenous disease with disease courses ranging from asymptomatic 

to mild, severe and even critical courses with fatal outcome (Schultze and Aschenbrenner 

2021). The most common features of COVID-19 are acute respiratory manifestations with 

symptoms such as cough, fever and in more severe cases pneumonia with hypoxemia, which 

can worsen to acute respiratory distress syndrome (ARDS) and/or multi-organ failure (Novel 

Coronavirus Pneumonia Emergency Response Epidemiology Team 2020; Osuchowski et al. 

2021; Lamers and Haagmans 2022). Besides respiratory manifestations, many 

extrapulmonary manifestations have been reported, including neurologic, renal, hepatic, 

gastrointestinal, thromboembolism, cardiac, endocrine and dermatological manifestations 
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(Gupta et al. 2020; Osuchowski et al. 2021). In addition to these acute manifestations, about 

10% of SARS-CoV-2 infected individuals develop long-lasting symptoms summarized under 

the term “long COVID” or “post-COVID-19 syndrome” (Davis et al. 2023; Mehandru and Merad 

2022; Kedor et al. 2022). Symptoms include fatigue, cognitive impairment, memory loss, 

dyspnea, cough, chest pain and abdominal pain. This broad variety of symptoms makes it 

challenging to diagnose long COVID and several risk factors such as age, sex, ethnicity, 

comorbidities like type 2 diabetes, presence of autoantibodies and genetic polymorphisms 

have been reported (Davis et al. 2023; Su et al. 2022; National Center for Health Statistics. 

U.S 2024).  

The rapid emergence and spread of COVID-19 around the globe led to a swift response by 

governments and especially the scientific community to diagnose the disease, to understand 

the immunopathology and to develop therapeutic strategies. At an unprecedented speed, 

testing kits were produced, both antibody- and PCR-based (Vandenberg et al. 2020; 

Filchakova et al. 2022), clinical trials for drugs such as for remdesivir or dexamethasone were 

conducted (RECOVERY Collaborative Group et al. 2021; Beigel et al. 2020; Salama et al. 

2021) and vaccines were developed (Tregoning et al. 2021; Watson et al. 2022). As of April 

2024, approx. 13.6 billion vaccine doses were administered (WHO 2024), preventing millions 

of deaths and paving the way to get COVID-19 under control. To understand the 

immunopathology of COVID-19, large-scale single-cell multi-omics studies have proven to be 

highly powerful in providing unprecedented level of details into disease progression, 

heterogeneity of severities and immune system alterations (Bernardes et al. 2020; Schulte-

Schrepping et al. 2020; Krämer et al. 2021; Wendisch et al. 2021; Stephenson et al. 2021; Su 

et al. 2020; Georg et al. 2022; Liao et al. 2020; Chua et al. 2020; Arunachalam et al. 2020; 

Combes et al. 2021; Delorey et al. 2021; Ren et al. 2021; COvid-19 Multi-omics Blood ATlas 

(COMBAT) Consortium 2022; Sinha et al. 2022; Yoshida et al. 2022; Ziegler et al. 2021; Liu 

et al. 2021; Wilk et al. 2021; Woodall et al. 2024; Edahiro et al. 2023). 
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2.2.1. Monocytes and macrophages in COVID-19 

Knoll R, Schultze JL, Schulte-Schrepping J, “Monocytes and Macrophages in COVID-19“, 

Front Immunol. 2021 Jul 21;12:720109. doi: 10.3389/fimmu.2021.720109.  

 
Figure 5: Monocytes and macrophages in COVID-19.  
Graphical overview of the compositional and molecular alterations in monocyte and alveolar 
macrophage populations in COVID-19. Distinct monocyte and macrophage phenotypes were identified 
in the peripheral blood of patients with severe COVID-19 including immature cells indicating emergency 
myelopoiesis, dysfunctional HLA-DRlo classical monocytes and complement gene expressing non-
classical monocytes. These cells are attracted to the lung by pro-inflammatory chemokines resulting in 
a continuous accumulation of hyperactivated MNPs producing more pro-inflammatory mediators 
recruiting more inflammatory cells, including cytotoxic T cells and neutrophils, thus further exacerbating 
inflammation and tissue damage. SARS-CoV-2 infected macrophages in the lung may act as trojan 
horses propagating SARS-CoV-2 infection and spreading hyperinflammation across the lung. Figure 
and legend taken from (Knoll et al. 2021). 

 

COVID-19 has been associated with profound changes in the immune system, including 

increased levels of pro-inflammatory cytokines, neutrophilia, appearance of immature 

neutrophils, lymphopenia and myeloid dysregulation (Chen et al. 2020; Qin et al. 2020; Mehta 

et al. 2020; Schulte-Schrepping et al. 2020; Aschenbrenner et al. 2021; Cao 2020; Liao et al. 

2020).  

In (Knoll et al. 2021), we described monocyte and macrophage ontogeny and function, their 

general role in viral respiratory infections and summarized current findings about monocytes 

and macrophages in COVID-19.  

The lung acts as a barrier between the outside world and the inside of the organism. With 

every inhalation, the organism is exposed to pathogens including viruses, bacteria and fungi 

(Prussin et al. 2015). Macrophages are the most abundant immune cells in the lung under 
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homeostatic conditions and act as a first line of defense to prevent infection. Depending on 

their location, macrophages can be distinguished into CD11cnegCD11bpos interstitial 

macrophages (IM), which are residing in the lung parenchyma or CD11cposCD11bneg alveolar 

macrophages (AM), residing in the airspace lumen close to alveolar epithelial cells (Hussell 

and Bell 2014; Franke-Ullmann et al. 1996).  

AMs originate from the yolk sac and populate the lung early after birth (Schulz et al. 2012; 

Guilliams et al. 2013). Due to self-renewal, the AM population in the lung is independent from 

bone marrow replacement and can persist lifelong (Tarling et al. 1987; Sawyer et al. 1982; 

Golde et al. 1974). Under homeostatic conditions, AMs have an anti-inflammatory and 

immunosuppressive phenotype characterized by clearance of debris, tissue remodeling, 

production of immunosuppressive prostaglandins and production of anti-inflammatory 

cytokines such as IL-10 and TGFβ (Hussell and Bell 2014; Coleman et al. 2013; Soroosh et 

al. 2013; Morris et al. 2003). AM phenotype is, however, strongly dependent on the local 

microenvironment can change between a e.g. pro- and anti-inflammatory state, described as 

AM plasticity (Coleman et al. 2013; Watanabe et al. 2019).  

Upon infection, AMs switch to a pro-inflammatory state due to loss of anti-inflammatory signals 

such as CD200/CD200R and recognition of pathogen associated molecular patterns (PAMP) 

or damage associated molecular patterns (DAMP) via pattern recognition receptors (PRR) 

(Snelgrove et al. 2008; Steinmüller et al. 2000). Activated AMs have higher phagocytic activity, 

oxidative burst and enhanced production of pro-inflammatory cytokines and chemokines, 

leading to recruitment of other immune cells such as neutrophils, cytotoxic T cells and 

monocytes, that can differentiate into macrophages and enhance inflammation (Trapnell and 

Whitsett 2002; Baharom et al. 2017). To prevent prolonged inflammation with tissue damage, 

AMs switch to an anti-inflammatory state, enhancing tissue repair, removal of dying cells and 

secretion of anti-inflammatory mediators (Watanabe et al. 2019; Ortega-Gómez et al. 2013). 

If this tight balance between inflammation and resolution is lost, severe consequences for the 

organism can occur.  

COVID-19 has a profound impact on the immune system leading to systemic elevation of 

cytokine and chemokine levels. The myeloid compartment plays an important role during the 

disease, as quantitative and phenotypic alterations varying by disease severity have been 

described.  

In blood, reduced percentages of total monocytes were detected in severe COVID-19 using 

flow cytometry (Qin et al. 2020; Laing et al. 2020; Zhou et al. 2020). A significant reduction 

was described for non-classical monocytes in multiple studies using flow cytometry and/or 

single-cell transcriptomics (Gatti et al. 2020; Wilk et al. 2020; Schulte-Schrepping et al. 2020). 
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Patients admitted to ICU had expanded intermediate CD14+CD16+ monocytes with high 

expression of IL-6 compared to non-ICU patients (Zhou et al. 2020) and inflammatory myeloid 

cells were found to be increased in severe COVID-19 (Yim and Mizushima 2020).  

Besides quantitative changes, monocytes in the blood also exhibited profound phenotypic 

alterations. Monocytes had higher expression of CD169, a clear sign of activation (Gatti et al. 

2020) and featured inflammasome activation and increased pyroptosis from COVID-19 

patients in ICU (Ferreira et al. 2021). Most importantly, monocytes from severely ill COVID-19 

patients showed a reduced expression of the MHC-class-II receptor HLA-DR, which is a typical 

sign of immune suppression (Silvin et al. 2020; Schulte-Schrepping et al. 2020; Payen et al. 

2020; Giamarellos-Bourboulis et al. 2020; Spinetti et al. 2020). This dysfunctional monocyte 

state strongly correlated with disease severity and outcome (Wang et al. 2020) as well as with 

levels of immunosuppressive factors such as IL-10, TGF-β, VEGFA and AREG (Kvedaraite et 

al. 2021). This cellular state was described by anti-inflammatory and immature gene 

expression as well as high levels of alarmins (S100A) (Silvin et al. 2020; Schulte-Schrepping 

et al. 2020; Su et al. 2020; Bernardes et al. 2020). Immunosuppression of HLA-DRlo 

monocytes was further demonstrated by their ability to suppress T cell proliferation via ARG-

1 (Falck-Jones et al. 2021), showing similar characteristics to myeloid derived-suppressor 

cells (MDSC) which were previously described in chronic inflammation (Hegde et al. 2021). 

Patients with mild disease on the other hand had increased interferon-stimulated gene 

signatures in HLA-DRhi inflammatory monocytes (Schulte-Schrepping et al. 2020). 

In the lung, infiltration of activated monocytes from the blood was observed in animal models 

and patients with COVID-19 (Nouailles et al. 2021; Sánchez-Cerrillo et al. 2020). In 

bronchoalveolar lavage fluid (BALF) of severe COVID-19 patients, a significant alteration in 

immune cell composition with increased proportions of macrophages was described (Liao et 

al. 2020). Tissue-resident AM were mostly depleted in severe COVID-19 but were replaced 

with inflammatory monocyte-derived macrophages, characterized by high expression of IL-1β, 

TNF, IL-6, CCL2, CCL3 and CCL4. High levels of CCL2 lead to the attraction of additional 

inflammatory and dysfunctional monocytes, enhancing inflammation. Trajectory analysis 

revealed the connection of hyperinflammatory monocytes to macrophages in the lung, 

showing higher levels of inflammasome- and fibrosis-related genes (Wauters et al. 2021). 

Macrophage states with gene expression associated with fibrosis such as SPP1, TERM2 and 

TGFB2 were also identified in other studies (Liao et al. 2020; Wendisch et al. 2021). 

Overall, a strong inflammatory cascade can be described in COVID-19, starting with pro-

inflammatory cytokine- and chemokine-release by hyperactivated macrophages in the lung, 

leading to infiltration of hyperinflammatory and dysfunctional monocytes, which exacerbates 
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tissue damage and further activate macrophages and fibrosis-associated programs (Figure 

5).  

For this publication, I was responsible for reviewing and summarizing current literature about 

alveolar and interstitial macrophages in respect to their ontogeny and function as well as the 

role of lung macrophages in viral respiratory infections. Moreover, I contributed to the 

collection of COVID-19 literature, designed the graphical overview figure and revised the 

manuscript.  
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2.3. The HIV/AIDS epidemic 

Since the beginning of the Human Immunodeficiency Virus (HIV) epidemic, an estimated total 

of 85.6 million people have been infected with the virus and the HIV-related disease Acquire 

Immune Deficiency Syndrome (AIDS) caused approx. 40.4 million deaths (UNAIDS 2023). 

Although antiretroviral therapy (ART), the standard-of-care treatment, is highly effective in 

suppressing the virus and thereby strongly reducing morbidity, in 2022, there were 1.3 million 

new cases of HIV infection, about 39 million people living with HIV (PLHIV) and 630,000 HIV-

related deaths (UNAIDS 2023). These numbers stress that the HIV/AIDS epidemic is still of 

major importance, continues to be a threat for public health and demands further studies for 

better disease characterization and treatment.  

2.3.1. HIV origin, transmission, pathogenesis and treatment 

HIV is a zoonosis and originates from the simian immunodeficiency virus (SIV) (Rambaut et 

al. 2004). It is proposed that the transmission occurred from consumption of infected primates 

by indigenous people in Central and West Africa (Kalish et al. 2005) with potential first cases 

of HIV around 1930-40 (Korber et al. 2000; Lemey et al. 2003). AIDS, the disease caused by 

HIV-infection, was first recognized and described as a mysterious disease in 1981 (Centers 

for Disease Control (CDC) 1981). Two years later, the virus was isolated at the Institute 

Pasteur (Barré-Sinoussi et al. 1983). Two subtypes of HIV are known: HIV-1, which originates 

from chimpanzees and spread world-wide as well as HIV-2, which originates from sooty 

mangabey and is mostly found in Central and West Africa and in a small area in India (Cho et 

al. 2022; Rambaut et al. 2004). In the subsequent text, any mention of HIV specifically refers 

to HIV-1 given its role in causing the epidemic.  

HIV is a single-stranded RNA virus and belongs to the Retroviridae family (Seitz 2016). 

Transmission from human to human requires exposition to infected body fluids such as blood 

or sexual fluids, of note, ~80% of infections in adolescents or adults occur through vaginal or 

anal intercourse (Hladik and McElrath 2008; Cohen et al. 2011). HIV gains access to host cells 

via the CD4 receptor, a surface protein mostly expressed on T lymphocytes, but also on 

myeloid cells such as monocytes, macrophages and dendritic cells (Lekkerkerker et al. 2006; 

Chan and Kim 1998; Suligoi et al. 2010). As co-receptor, HIV uses the chemokine receptors 

CXCR4 or CCR5, which are expressed on T lymphocytes and myeloid cells, respectively 

(Dragic et al. 1996; Bleul et al. 1996). After fusion, the virus releases its core into the host cell 

where reverse transcription, host genome integration, virus gene transcription and translation 

as well as new virus assembly occurs (Barré-Sinoussi et al. 1983; Bukrinsky et al. 1992). The 

reverse transcription step is error-prone and leads to a very high mutation rate of virus DNA 

which can results in drug-resistance and immune evasion (Roberts et al. 1988). This 

https://sciwheel.com/work/citation?ids=16652033&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16652033&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=387408&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=387408&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5063603&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=458234,2865886&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2163781&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2163781&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1538488&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16649462,387408&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16649462,387408&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4493030&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=490097,985659&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16649469,1711621,1719952&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16649469,1711621,1719952&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=69870,1217719&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1538488,16649467&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=3887849&pre=&suf=&sa=0&dbf=0


 

14 
 

replication cycle is very rapid and about 1010 virions are produced per day (Perelson et al. 

1996). In contrast to the productive form of infection, HIV can also latently infect cells, e.g. T 

cells (Chun et al. 1995). In a latent infection, the viral genome is integrated into the host 

genome, but no virus genes are transcribed and translated. However, reactivation of virus 

replication can occur at any time following cell activation (Pitman et al. 2018). By latently 

infecting resting long-lived memory T cells, HIV has a permanent reservoir. As these reservoirs 

are not showing active signs of HIV infection and are with 0.05% of resting T cells very small 

in numbers, it is not possible for the immune system to completely eradicate the source of 

virus.  

HIV infection and progression can be separated into three phases in the absence of treatment: 

acute phase, asymptomatic phase and AIDS. After infection, HIV replication occurs mostly in 

activated CD4+ T cells in both circulation and tissue. Diagnosis of HIV infection is only possible 

by detection of virus RNA in blood, which can be measured about 10-12 days after infection 

using reverse transcription polymerase chain reaction (RT-PCR), before that, it is almost 

impossible (Fiebig et al. 2003; Lindbäck et al. 2000; Hecht et al. 2002). In this acute phase, a 

strong burst of viral replication is observed which results in up to 100 million viral RNA copies 

per ml plasma (Figure 6, (Fiebig et al. 2003; Lindbäck et al. 2000; Little et al. 1999)). Moreover, 

a progressive decline of CD4+ T cells numbers can be seen, down to half of their normal 

counts (Gupta 1993). During the acute phase, symptoms can last for 10 days and include 

fatigue, myalgias, mild rash, fever and headache (Kahn and Walker 1998; Cooper et al. 1985). 

After some time, viral load declines and HIV-specific cytotoxic T cells increase (Walker et al. 

1987). In the following asymptomatic phase, viremia declines further to a lower level, while 

CD4+ T cell count is slightly rising, but never to levels before infection. Latent reservoirs act 

as permanent source for viral replication resulting in continuous immune activation and 

exhaustion (Fenwick et al. 2019). Over the years, persistent viremia induces a slow, but 

progressive loss of CD4+ T cells leading to an increased immunodeficiency (Ford et al. 2009). 

When the CD4+ T cell count is <200 cells per µl, the AIDS stage is reached. HIV-infected 

patients then become susceptible to opportunistic infections by bacteria, other viruses, fungi, 

and parasites and are more often diagnosed with cancer of different types (El-Atrouni et al. 

2006; Crowe et al. 1991; Brooks et al. 2009) such as Kaposi sarcoma as described in the first 

description of AIDS (Centers for Disease Control (CDC) 1981). During this phase, viral load 

rapidly increases and further opportunistic diseases occur, leading to an inevitable death if no 

treatment occurs. HIV progression to AIDS is around 8-10 years but dependent on the 

individual patient.   
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Figure 6: Overview of the HIV progression in absence of treatment.  
Depiction of the disease course of HIV infection described with change of HIV RNA copies (per ml 
plasma) and CD4+ T cell count (cells per mm³) in the first weeks and following years after infection 
start. Three phases can be defined: the acute phase (first weeks) with diverse flu-like symptoms, peak 
of HIV RNA and strong reduction of CD4+ T cells, the asymptomatic phase (several years) with 
progressive decline of CD4+ T cells and increase of HIV RNA and the AIDS phase, characterized by 
very low CD4+ T cell count, rapidly increased HIV RNA and occurrence of opportunistic diseases, 
leading to the death approx. 11 years after infection. Adapted from (Bekker et al. 2023). 

 

As untreated HIV infection leads to AIDS and death, the need for an effective treatment has 

been high. A first drug appeared in the 1990s (Concorde Coordinating Committee 1994) and 

more effective treatments and combinations of drugs were tested in the following years. The 

current standard-of-care is ART, which usually comprises a three-drug oral daily regimen with 

different combinations of nucleoside reverse transcriptase inhibitors (NRTI), integrase strand 

transfer inhibitor (INSTI), non-nucleoside reverse transcriptase inhibitor (NNRTI), protease 

inhibitors (PI) or entry inhibitors, each targeting unique steps of the HIV life cycle (Saag et al. 

2020; Ryom et al. 2022). Treatment has a profound impact on HIV progression with clinical, 

immunological and psychological benefits, counteracting AIDS-related death, reducing HIV 

transmission and restoring quality of life (Antiretroviral Therapy Cohort Collaboration 2017; 

May et al. 2014; Cohen et al. 2016). The interruption of the HIV replication leads to a strong 

reduction in viremia, as well as a decline in CD4+ T cell destruction. The latter recover, first 

rapidly and then with a slow but steady increase, however, often to a level below pre-infection 

(Autran et al. 1997; Rajasuriar et al. 2010). Of great importance is the timing of treatment 

initiation. Studies showed that ART should be conducted as soon as feasible, proposing a 

“test and treat” strategy (Saag et al. 2020; INSIGHT START Study Group et al. 2015; 

TEMPRANO ANRS 12136 Study Group et al. 2015). If ART is initiated early, the acute HIV 

phase is shortened, maximum viral load is reduced and excessive CD4+ T cell destruction is 

prevented. For both timepoints, the AIDS stage is prevented. Nevertheless, immune activation 

is persistently elevated due to viral reservoirs and this lifelong latent infection leads to an 
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increased risk for cardiovascular, renal and neurological diseases as well as cancer, 

commonly termed non-AIDS-defining events (van der Heijden et al. 2021; Deeks et al. 2013; 

Hunt et al. 2016; Zicari et al. 2019; Strategies for Management of Antiretroviral Therapy 

(SMART) Study Group et al. 2006). As non-AIDS-defining events occur although ART is 

administered, new personalized drugs will be of great value.  

 

2.3.2. Monocytes in HIV 

Monocytes as part of the innate immune system play an important role in the defense 

response and clearance of pathogens including viruses (Shi and Pamer 2011). However, 

excessive recruitment of monocytes can also be detrimental and cause unwanted 

inflammation. In chronic HIV infection, the persistent inflammation and immune activation 

could be explained by viral reservoirs and increased susceptibility for coinfections with other 

pathogens such as human cytomegalovirus (hCMV). Of note, both explanations are 

associated with monocyte activation (Anzinger et al. 2014). Besides CD4+ T cells, 

macrophages and monocytes can also be infected with HIV via the co-receptor CCR5 and 

serve as viral reservoirs (Zhu et al. 2002; Bacchus et al. 2013; McElrath et al. 1989).  

HIV infection leads to an increased number of intermediate and non-classical monocytes and 

the degree of non-classical monocyte expansion was linked to the rate of disease progression 

(Thieblemont et al. 1995; Ellery et al. 2007; Pulliam et al. 1997). Monocytes from PLHIV 

showed shortened telomers, a sign for increased cell division in the bone marrow during 

infection (Hearps et al. 2012). Indeed, monocyte turnover was found to be increased during 

HIV and SIV infection as well as HIV-positive aged individuals (Ziegler-Heitbrock 2014; Burdo 

et al. 2010; Hasegawa et al. 2009). Rhesus macaques positive for SIV confirmed increased 

turnover, however, the monocyte half-life was decreased so that the overall percentage was 

not changed in blood (He et al. 2018).  

Besides increased turnover upon infection, monocytes also show a persistent activation in 

PLHIV (Hearps et al. 2012; Martin et al. 2013). Proinflammatory signaling was found to be 

increased in monocytes of PLHIV compared to HIV-negative controls with higher levels of 

CXCL10, CCL2 and neopterin (Hearps et al. 2012; McKibben et al. 2015). In vitro infection of 

monocytes with HIV and treatment with ART showed alterations in activation markers and 

proinflammatory genes such as IL1B (Bowman et al. 2020). Increased production of IL-1β 

from monocytes of PLHIV compared to healthy controls was confirmed with ex vivo 

stimulations using various pathogens (van der Heijden et al. 2021).  
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Across multiple studies, the most prominently reported reasoning for monocyte involvement 

in chronic inflammation of PLHIV are the elevated levels of the circulating and monocyte-

associated soluble CD14 (sCD14) and soluble CD163 (sCD163) (Lyons et al. 2011; van der 

Heijden, Van de Wijer, et al. 2021; Sandler et al. 2011; Mensching and Hoelzemer 2022; 

Knudsen et al. 2022; Møller 2012; McKibben et al. 2015; van der Heijden, Wan, et al. 2021). 

CD14 acts as a receptor for bacterial LPS together with Toll-like receptor 4 (TLR4) (Wright et 

al. 1990) and can be cleaved from the surface of monocytes for solubilization (Stelter et al. 

1996; Schütt et al. 1991). Similarly, activation of monocytes leads to shedding of the 

hemoglobin scavenger receptor CD163 from the cell surface in a soluble form (Møller 2012). 

As both receptors are expressed exclusively on monocytes and macrophages, they represent 

specific markers for these cell types and altered levels directly reflect monocyte involvement. 

Elevated levels of both sCD14 and sCD163 in PLHIV were associated with non-AIDS-related 

events (Rogacev et al. 2012; McKibben et al. 2015) and serve as predictors of mortality 

(Knudsen et al. 2016; Sandler et al. 2011). Moreover, increased sCD14 levels in PLHIV 

correlated with higher levels of serum amyloid A, D-dimers and markers of inflammation 

including IL-6 and high sensitivity C-reactive protein (hsCRP) (Lien et al. 1998; Méndez-

Lagares et al. 2013), which were also associated with clinical outcome (Kuller et al. 2008; 

Duprez et al. 2012; De Luca et al. 2013; Shikuma et al. 2014). Non-AIDS-related events 

associated with profound monocyte involvement defined by elevated levels of sCD14 and 

sCD163 in PLHIV are mostly cardiovascular-related diseases. High levels of sCD14 were 

correlated with carotid artery intima-media thickness, a measurement for atherosclerosis 

(Sandler et al. 2011; Kelesidis et al. 2012; Merlini et al. 2012) and were associated with 

coronary artery calcification (Longenecker et al. 2014), while elevated levels of sCD163 

increased the prevalence of atherosclerotic plaques (Burdo et al. 2011), noncalcified coronary 

plaques and arterial inflammation in PLHIV (Burdo et al. 2011; Fitch et al. 2013). Moreover, 

both elevated sCD14 and sCD16 were linked to carotid artery atheroma development in 

chronic HIV infection (Burdo et al. 2011; Hanna et al. 2017). 

Besides sCD14 and sCD163, monocyte expression levels of CD11b and CX3CR1 associated 

with atherosclerosis and carotid intima-media thickness in PLHIV (Westhorpe et al. 2014; 

Hsue et al. 2012) and expression of tissue factor correlated with the coagulopathy marker D-

dimer, which lead to the hypothesis that monocytes facilitate prothrombotic environments 

(Funderburg et al. 2010). Overall, a strong link of monocyte activation and marker expression 

was linked to multiple non-ADIS-related events, clearly highlighting the important role of 

monocytes in chronic inflammation in PLHIV (Rappaport and Volsky 2015; Burdo et al. 2011; 

Westhorpe et al. 2014; Hearps et al. 2011; Sandler et al. 2011; Anzinger et al. 2014). 
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In a recent study, Kazer et al. analyzed circulating immune cells during hyperacute HIV 

infection using single-cell transcriptomics (Kazer et al. 2020). Upon infection, monocytes in 

the blood were expanded and elevated levels of sCD14 were measured. They further 

described alterations in transcriptional programs of monocyte caused by HIV using gene 

modules. During HIV infection, monocytes had higher expression of genes related to antigen 

presentation, showed a strong interferon response signature and had elevated inflammatory 

programs. These transcriptional programs persisted throughout the first month of infection and 

showed their potential persisting role. The described programs were expressed by different 

states of monocytes, among others “inflammatory” as well as “anti-viral” monocytes, the latter 

showing high expression of interferon response genes such as ISG15, IFIT3 and IFIT2. 

Despite the clear involvement of monocytes in acute HIV infection, but also in chronic disease 

of PLHIV, extensive studies describing transcriptional and functional alterations of monocytes 

after long-term ART are still rare.  
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2.4. Drug repurposing  

Newly emerging infectious diseases like COVID-19 impose a significant burden on society 

and the healthcare sector due to limited knowledge of immunopathology and the consequent 

lack of effective treatment strategies. Additionally, chronic infectious diseases, such as HIV, 

for which we have effective treatments available, some patients still develop comorbidities that 

diminish their quality of life, which could be mitigated with additional personalized treatments. 

In both cases, de novo drug development is often impractical, as it requires excessive time 

and financial investment with limited returns, which is reflected in a growing productivity gap 

in the pharmaceutical industry (Scannell et al. 2012; Ashburn and Thor 2004). Particularly for 

COVID-19, for which a quick and effective treatment was crucial, drug repurposing proofed to 

be exceptionally powerful (Rodrigues et al. 2022).  

Drug repurposing or repositioning is a strategy to identify and apply previously approved or 

investigated drugs for purposes beyond their original indented indications (Pushpakom et al. 

2019). There are three major advantages over de novo drug development (Figure 7). First, 

the risk of failure is lower since repurposed drugs were often already tested for safety in 

preclinical animal models or phase I trials in humans. Second, the development timeline is 

shortened from 12-16 years for new drugs to approx. 6 years for repurposed drugs because 

preclinical testing, safety assessments and chemical design have often been completed 

(Nosengo 2016). Third, the financial investment required by pharmaceutical companies is 

significantly reduced with costs estimated at $300 million for a repurposed drug compared to 

$2-3 billion for developing a new drug. Overall, repurposing of drugs has proven to be a less 

risky, faster and more cost-efficient approach for drug discovery compared to de novo drug 

development, offering a high return on investment.   

 

Figure 7: Comparison of de novo drug development against drug repurposing.  
Development of new drugs takes approx. 12-16 years, costs $1-2 billion and has a low success rate 
until Federal Drug Administration (FDA) approval (Sun et al. 2022; Morgan et al. 2018). Drug 
repurposing on the other hand has a lower risk of failure, is approx. shortened by half due to previous 
existing preclinical testing and safety assessment and has a reduced cost of approx. $300 million. This 
figure was generated with Biorender.com and adapted from (Nosengo 2016). 
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Historically, repurposing of drugs was rather by serendipity with discovery of off-target or new 

on-target effects followed by commercial exploitation. The most successful and known 

example which was discovered without a systemic approach is sildenafil, originally developed 

as an antihypertensive drug but after evaluating the side effects, it was later repurposed for 

erectile dysfunction and marketed under the name Viagra® by Pfizer (Ghofrani et al. 2006). 

Another example is thalidomide, originally intended as a sedative against morning sickness 

which, however, showed severe side effects for pregnant women, leading to market 

withdrawal. Thalidomide was later repurposed for treatment of erythema nodosum leprosum 

and even showed efficacy against multiple myeloma (Ashburn and Thor 2004; Singhal et al. 

1999). Inspired by these historic successes, more systematic approaches for identification of 

repurposed drugs were designed, resulting in numerous successful candidates, especially for 

COVID-19 (Table 1, Pushpakom et al. 2019; Rodrigues et al. 2022). These approaches share 

three steps before entering phase III clinical trials: 1) identification of drug candidates for a 

given indication, 2) mechanistic assessment of the drug effect in preclinical models and 3) 

evaluation of efficacy in phase II clinical trials. Of note, step 1 is the most critical and multiple 

systemic computational or experimental methods are available to facilitate this process. In this 

thesis, the focus is on the computational approach using signature matching.  

Table 1: Overview of successfully repurposed drugs. 
Selection of successfully repurposed drugs with original and new indication. This table was adapted 

from (Pushpakom et al. 2019) and extended for COVID-19 drugs from (Rodrigues et al. 2022). 

Drug name Original indication New indication Date of approval 

Zidovudine Cancer HIV/AIDS 1987 

Sildenafil Angina Erectile dysfunction 1998 

Thalidomide Morning sickness ENL and multiple myeloma 1998 

Celecoxib Pain and inflammation Familial adenomatous polyps 2000 

Atomoxetine Parkinson disease ADHD 2002 

Rituximab Cancer Rheumatoid Arthritis 2006 

Raloxifene Osteoporosis Breast cancer 2007 

Fingolimod  Transplant rejection Multiple sclerosis 2010 

Aspirin Analgesia Colorectal cancer 2015 

Remdesivir Ebola virus COVID-19 2020 

Baricitinib Rheumatoid Arthritis COVID-19 2020 

Dexamethasone Allergies, asthma, arthritis COVID-19 2021 

Paxlovid 
SARS, HIV/AIDS, 
Hepatitis C 

COVID-19 2022 

https://sciwheel.com/work/citation?ids=1816146&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=177966,7551306&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=177966,7551306&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6168187,16649669&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6168187&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16649669&pre=&suf=&sa=0&dbf=0


 

21 
 

2.4.1. Transcriptomics-based drug repurposing 

For identification of potentially effective repurposed drugs, there are several computational 

approaches available, including data mining, modeling, machine learning or network analyses 

(Jarada et al. 2020). One of the most straightforward and simplistic yet highly efficient 

approaches is based on signature matching, known as the signature reversion principle (SRP, 

Figure 8, (Pushpakom et al. 2019; Iorio et al. 2013). In this method, disease-associated 

signatures, e.g. differentially expressed genes (DEG) between disease and healthy samples, 

are compared to transcriptomic signatures from drugs. These drug signatures are derived from 

comparing before and after treatment in tissues or cell lines. If a significant negative correlation 

is present, this drug might be able to reverse the disease signature and therefore reverse the 

disease phenotype. For the SRP analysis, publicly available and standardized drug signature 

databases are a prerequisite. First steps were made in 2006 by the Broad Institute, which 

established the Connectivity Map (cMap), comprising expression data from 164 distinct 

compounds at different concentrations across multiple cell lines (Lamb et al. 2006). Shortly 

after, the cMap was updated to the Library of Integrated Network-based Cellular Signatures 

(LINCS) by applying the L1000 platform (Subramanian et al. 2017). This resource initially 

comprised a total of 1.3 million profiles, generated from over 19,800 small molecules and 

5,000 genetic perturbations, tested in replicates at varying concentrations and incubation 

times in up to 77 cell lines, resulting in over 437,000 unique signatures. In 2020, this database 

was updated to include over 3 million profiles and it continues to expand, offering an 

increasingly comprehensive resource for drug repurposing. Tools such as clue.io by the Broad 

Institute (Subramanian et al. 2017) or integrative LINCS (iLINCS, Pilarczyk et al. 2022), 

facilitate database query and SRP analysis. This principle proved to be highly effective, 

leading to the proposal of many promising repurposed drug candidates for various diseases, 

which were in part validated in either in vitro or in vivo models (Knoll et al. 2023; 

Aschenbrenner et al. 2021; Wagner et al. 2015; Huang et al. 2016; Malcomson et al. 2016; 

Shin et al. 2015). For instance, Dudley and colleagues applied the SRP to inflammatory bowel 

disease (IBD), a non-communicable inflammatory disease with limited treatment options 

(Dudley et al. 2011). Generating their own algorithm based on cMap, they not only confirmed 

the efficacy of prednisolone, the standard treatment for IBD, but also identified topiramate as 

a new potential candidate. Topiramate, an anticonvulsant commonly used to treat epilepsy, 

was validated in a rodent model of IBD where it improved colon tissue damage which is one 

of the most severe symptoms. Here, the authors applied the SRP on disease-signatures, 

however, the principle can also be applied for other purposes. Instead of a disease-signature, 

Wei et al. used glucocorticoid resistance signatures, which were calculated by comparing 

resistant acute lymphoblastic leukemia samples against responding samples and they 
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identified rapamycin as a potential modulator of resistance (Wei et al. 2006). In general, 

studies applying the SRP often group all patients of the respective disease together, however, 

therapy responses can be heterogeneous (Roden et al. 2011; Sweeney 1983). This variability 

in drug response is a core concept of precision medicine (Dugger et al. 2018; Goetz and 

Schork 2018). Therefore, combining SRP approaches with stratification of patients into 

severity groups or immunotypes can provide more insightful results and group-specific drug 

candidates (Figure 8, Aschenbrenner et al. 2021). Similarly, averaging the signal across all 

cells in a disease sample can result in loss of signal from rare and disease-driving cell types 

and states. A more precise generation of disease signature based on these specific disease-

driving states, could improve drug candidate prediction (Knoll et al. 2023; He et al. 2023). And 

finally, in vivo validations of repurposed drug candidates in human clinical cohorts combined 

with single-cell omics technologies can provide valuable insights into the underlying pathways 

as well as compositional and transcriptional alterations (Knoll et al. 2024). Moreover, this 

validation enables the evaluation and prediction of treatment response, contributing to the 

development of more effective and precise therapies and highlights the potential of single-cell 

omics for development of companion diagnostics.  

In this thesis, an optimized framework of drug repurposing comprising all improvements is 

presented.  
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Figure 8: Signature Reversion Principle (SRP) for drug repurposing and optimizations 
For drug repurposing, computational approaches based on the signature reversion principle (SRP) 
proofed to be powerful. DEG between diseases and healthy patients are calculated to generate a 
disease-signature and compared to all drug-signatures in the drug database. A drug, with a sufficiently 
reverse pattern could reverse the disease-signature and potentially the disease phenotype, restoring a 
healthy condition. The SRP can be optimized by stratifying patients into severity groups and predicting 
group-specific drugs, enhancing the disease-signature input by using a signature of disease-driving cell 
states and in vivo validation combined with single-cell multi-omics to decipher the mechanism and 
alterations by the repurposed drug as well as stratifying patients into drug-responder and non-
responder. This figure was generated with Biorender.com. 
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Figure 9: Graphical abstract for “Disease severity-specific neutrophil signatures in 

blood transcriptomes stratify COVID-19 patients”.  
Summary of the presented study generated with Biorender.com.  

 

After first reported cases of COVID-19 worldwide, clinical observations revealed that there is 

a wide spectrum of disease manifestations, spanning from asymptomatic cases to mild and 

moderate with flu-like symptoms and severe cases with the need for mechanical ventilation, 

with some resulting in mortality (Knoll et al. 2024; Huang et al. 2020; Zhou et al. 2020; Wang 

et al. 2020). As the immune system plays an important role in viral infections, it was suggested 

that the heterogenous disease courses of COVID-19 can be explained by the differences in 
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the immune responses of the patients (Wang et al. 2020; Guan et al. 2020; Mathew et al. 

2020; Su et al. 2020; Lucas et al. 2020). 

In (Aschenbrenner et al. 2021), we performed bulk transcriptomics on whole blood samples 

from 39 COVID-19 patients and 10 control donors to better understand the heterogenous 

disease courses and to further identify potential treatment strategies (Figure 9).  

First, all COVID-19 patients were grouped and compared against controls, resulting in strong 

transcriptional differences with 2,289 up- and 912 down-regulated genes. From these DEG, 

CD177, a gene highly expressed in neutrophils, was most eminent. To get a better picture of 

the heterogenous disease course of COVID-19, patients were stratified according to the WHO 

ordinal scale into mild (1-4) and severe (5-7). DEG analysis against controls was performed 

resulting in a greater number of DEG in whole blood samples from severe compared to mild 

COVID-19 patients. Functional enrichment revealed granulocyte/neutrophil activation for both 

severities, which was stronger in severe as well as reduced lymphocyte differentiation and T 

cell activation.  

Of note, when inspecting the top 25% of the most variable expressed genes and clustering all 

samples in an unbiased fashion, clinical grouping such as by WHO scale did not fully explain 

the structure in the data. Therefore, we aimed for an unbiased stratification of patients into 

groups by CoCena², a co-expression-based network analysis approach. This analysis resulted 

in ten distinct expression modules and hierarchical clustering of the samples based on their 

group fold changes (GFC) for each module stratified the patients into six distinct transcriptional 

groups with five (G1-G5) comprising the COVID-19 patients and one (G6) consisting mostly 

of controls. Of the five COVID-19 groups, G1 included only male patients that were severely 

ill and together with G2 strongly enriched for inflammatory and neutrophil-associated terms. 

CIBERSORT deconvolution suggested an increased neutrophil-lymphocyte ration in G1 with 

the lowest in G6. This ratio was validated using flow cytometry. Another validation was 

performed by extracting neutrophils from a total of 34 COVID-19 samples (17 mild, 27 severe) 

and performing bulk transcriptomics. This analysis revealed that there were strong 

transcriptional alterations with signatures of pre-/immature neutrophils and simultaneous 

suppressive and inflammatory programs, which were also detected in the whole blood data. 

To put COVID-19 into the context of other well studied diseases, whole blood transcriptome 

datasets from 12 additional studies were integrated to our COVID-19 dataset, including viral 

infections (chikungunya, HIV, influenza, Zika), bacterial infections (tuberculosis, bacterial 

sepsis, SIRRS) and other inflammatory diseases (systemic lupus erythematosus, Crohn’s 

disease, rheumatoid arthritis, Ebola vaccination, neonatal-onset multisystem inflammatory 

disease and macrophage activation syndrome), comprising a total of 3,176 samples. Genes 
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were aligned to our COVID-19 co-expression network and GFCs were calculated for each 

sample. The lightgreen module, which associated mostly with the neutrophil signatures, was 

strongly expressed in the G1 COVID-19 group, but also slightly expressed in sepsis, influenza 

A, tuberculosis and HIV, revealing shared but also distinct transcriptional patterns. Similar 

shared but distinct patterns were observed for platelet activation, inflammatory responses with 

IL6 and TNF signaling as well as interferon-related signatures. The combination of distinct 

patterns reveled that COVID-19 underlies a unique SARS-CoV-2 immune response.  

Despite the dysfunction of the immune system, clinical trials were mostly conducted to target 

the virus or its interaction partners directly, lacking immune-associated approaches. Moreover, 

as COVID-19 is a very heterogenous disease, patient group-specific therapies could strongly 

enhance disease courses, following the idea of precision medicine. To identify potentially 

beneficially drugs, we constructed a drug repurposing pipeline applying the SRP. Here, we 

used the COVID-19 group-specific signatures (DEG, G1-5 against G6) as an input for the 

clue.io and iLINCS platforms to collect a list of 940 unique drugs. Next, the gene signatures of 

these drugs were extracted from iLINCS (total of 62,897) and the top 300 up- and down-

regulated genes were used as input for a gene set enrichment analysis (GSEA) on the whole 

blood COVID-19 data stratified by patient groups G1-G6. Using this pipeline, we wanted to 

identify drug-signatures that reverse the disease-signature, meaning that the genes down-

regulated by a certain drug should mirror the up-regulated genes by the disease and vice 

versa. To asses this reversal we calculated the delta of the normalized enrichment score 

(ΔNES) and clustered the drug-signatures accordingly. Cluster 5 of the drug-signatures was 

very specific for the most severe G1 group and encompassed several drugs tested in clinical 

trials, such as dexamethasone, which is the current standard of care for hospitalized COVID-

19 patients. Reoccurring targets of the drugs from this cluster 5 included pro-inflammatory 

genes such as IL1B and CSTD and associated mostly with the neutrophil-related lightgreen 

CoCena² module. The results from our drug repurposing pipeline highlighted the potential of 

transcriptome-based drug identification tailored for disease-groups and supported many drugs 

under investigation during that time such as dexamethasone.     

In conclusion, we highlighted that COVID-19 is a heterogenous disease in which patients can 

be stratified into five distinct molecular phenotypes. Neutrophils with increased frequencies, 

immature signatures as well as inflammatory/suppressive features were a hallmark for severe 

COVID-19 being distinct from other inflammatory diseases. Our transcriptomic-based drug 

repurposing approach showed the potential to reverse disease-signatures and highlighted the 

importance of patient stratification for optimized and precise therapies.   
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For this publication, I conducted profound literature research, reviewed other models of drug 

repurposing using transcriptomic data and performed the mathematical conceptualization of 

our model which was realized by others. As part of the drug repurposing team, I applied the 

pipeline, interpreted the results and took the lead in writing and revising the corresponding 

manuscript part. Moreover, from the drug signatures of the most prominent drug cluster, I 

extracted the reoccurring target genes and highlighted them on the CoCena² network.  
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3.2. Identification of drug candidates targeting monocyte reprogramming 

in people living with HIV  

Knoll R, Bonaguro L, Dos Santos JC, Warnat-Herresthal S, Jacobs-Cleophas MCP, Blümel 

E, Reusch N, Herbert M, Otten T, van der Heijden WA, van de Wijer L, Shalek AK, Händler K, 

Becker M, Beyer MD, Netea MG, Joosten LAB, van der Ven AJAM, Schultze JL#, 

Aschenbrenner AC#,§, “Identification of drug candidates targeting monocyte 

reprogramming in people living with HIV”, Front Immunol. 2023 Nov 20;14:1275136. doi: 

10.3389/fimmu.2023.1275136.  
*shared first authorship / #shared last authorship / §corresponding author 

 
Figure 10: Graphical abstract for “Identification of drug candidates targeting monocyte 

reprogramming in people living with HIV”.  
Summary of the presented study generated with Biorender.com.  

 

Even under long-term effective ART, PLHIV have higher risks for developing cardiovascular 

diseases, neurocognitive impairment and cancer due to persistent low-grade inflammation and 

immune dysfunction, stressing the need for optimized or additive treatment strategies (van der 

Heijden et al. 2021; Deeks et al. 2013; Hunt et al. 2016; Zicari et al. 2019). Despite the clearly 

important role of the adaptive immune system in HIV, recent studies suggested an alteration 

in the innate immune system in PLHIV, especially in monocytes (van der Heijden et al. 2021; 

Sandler et al. 2011; Mensching and Hoelzemer 2022).  

In (Knoll et al. 2023), we applied multi-omics technologies to assess alterations in the immune 

cell compartment in a small cohort of PLHIV versus healthy controls, serving as a pilot study 

for a larger cohort study. We identified monocytes to be involved in persistent low-grade 

https://sciwheel.com/work/citation?ids=10553550,710904,8402490,8391251&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10553550,710904,8402490,8391251&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10553550,4962824,14388982&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10553550,4962824,14388982&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15766075&pre=&suf=&sa=0&dbf=0
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inflammation and applied our SRP approach to identify and validate drug candidates that were 

predicted to reduce the observed inflammatory monocyte phenotype (Figure 10).  

Five male PLHIV were recruited, matched with five healthy controls and blood was drawn to 

generate a multi-layer dataset including soluble factors in plasma, proteomics assessment, 

bulk transcriptomics of PBMCs and CD14+ monocytes, Assay for Transposases-Accessible 

Chromatin (ATAC-seq) of CD14+ monocytes and single-cell transcriptomics. First, 

transcriptional alterations were evaluated in all circulating immune cells. DEG analysis 

revealed 287 up- and 914 down-regulated genes in PLHIV, which we then clustered into four 

gene clusters. Clusters associated with PLHIV included early innate immune response genes 

with S100A8 and S100A9 (cluster 1) as well as typical interferon response genes such as 

STAT1 and ISG15 (cluster 2), reflecting an overall innate and myeloid pro-inflammatory gene 

program in PLHIV.  

To inspect the involvement of myeloid cells in PLHIV in more detail, plasma levels of 

monocyte-specific soluble factors like sCD163 and sCD14 were assessed and reveled higher 

concentrations in PLHIV. Therefore, CD14+ monocytes were isolated and analyzed with bulk 

transcriptomics. Although few DEG were detected (65 up- and 6 down-regulated genes), a 

clear induction of type I interferon-related genes such as CXCL10, STAT2, MX2 and XAF1 

was observed, which was also reflected in the functional enrichment with terms related to IFN 

response and response to virus enriched most prominently. Mapping back the induced genes 

in PLHIV from CD14+ monocytes to the transcriptional clusters identified in the PBMC 

analysis, a strong overlap to cluster 2 was seen.  

To assess whether the alterations in PBMCs and monocytes of PLHIV are due to general 

transcriptional changes or result from a certain cell state, we analyzed PBMCs in more detail 

using scRNA-seq of the same donors. The resulting dataset comprised 31,566 cells with all 

expected immune cell present. DEG analysis highlighted strong transcriptional differences in 

PLHIV to healthy controls, especially in the monocyte compartment supporting previous 

results. Functional enrichment of the induced genes in monocytes of PLHIV showed IFN 

responses and response to virus as strongest enriched terms, matching our bulk 

transcriptomics analysis. Upregulation of genes was verified using protein measurements. To 

relate our findings from PLHIV to acute HIV, we integrated our data with our previous dataset 

from acute HIV infection, which was generated with the same microwell-based single-cell 

technology. From this integrated PBMC data, we subsetted the monocytes and annotated 

clusters based on the previously reported acute monocyte states. Acute HIV infection was 

associated with several inflammatory monocyte states, which were absent in PLHIV. Of note, 

the ‘anti-viral’ monocyte state that was present in acute HIV was equally detectable in PLHIV. 
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This state was characterized by high expression of interferon-related genes such as IFIT3, 

IFIT2 and ISG15 and showed strong enrichment for IFN response terms as well as response 

to virus, reminiscent of our previous results.  

To identify drug candidates that have the potential to reverse the phenotype that we observed 

in monocytes of PLHIV, we applied our drug repurposing approach previously described in 

COVID-19. HIV signatures from PBMCs and monocytes were used as an input giving a list of 

519 drug candidates, which resulted in 17,641 drug signatures. These signatures were used 

for enrichment on the bulk transcriptome PBMC and CD14+ monocyte datasets. Normalized 

enrichment scores (NES) were retrieved for the genes down-regulated and up-regulated from 

a drug signature and the delta of these values was calculated (ΔNES). Clustering of drug 

signature ΔNES values gave rise to 50 clusters, of which cluster 43 showed the highest score. 

The higher the score, the higher the potential to reverse the disease signature. Reoccurring 

target genes of drug candidates in that cluster were mostly related to interferons (IFI27, OAS1, 

MX1, IFI44L) and strongly enriched in the “anti-viral” monocyte state. Of the 32 drug 

candidates, five were chosen for an in vitro validation experiment: trametinib, sunitinib, 

sitagliptin and clofarabine, which have been studied in the context of HIV before, and the 

antibiotic doxycycline. For all of these five drugs, no immune-modulating functions have been 

reported. PBMCs of six independent PLHIV were extracted and stimulated with the respective 

drugs or DMSO as control overnight. As a readout for transcriptional changes, bulk 

transcriptomics was performed. Prominent transcriptional differences were induced by the 

treatments, which was reflected in the principle component analysis (PCA) and number of 

DEG. To validate our previous findings and to proof the potential of the drug repurposing 

approach, we tested the influence of the drug treatments on four gene signatures: 1) the 

reoccurring target genes of cluster 43 from the drug repurposing pipeline, 2) the marker genes 

of the “anti-viral” monocyte state from the single-cell analysis, 3) the IFN-γ response term and 

4) the inflammatory response term. Sunitinib and doxycycline significantly reversed all four 

PLHIV-specific gene signatures, while trametinib also showed a strong and clofarabine a 

moderate reduction of the signatures. Sitagliptin did not show any reduction in our in vitro 

validation experiment.  

In conclusion, we showed that monocytes play a major role in the persistent low-grade 

inflammation in PLHIV, with elevated interferon responses, mainly originating from a state 

previously described as “anti-viral” monocytes in acute infection. Moreover, we predicted and 

validated drugs in vitro that could reverse the monocyte-derived signatures in PLHIV with 

sunitinib and doxycycline as most potent repurposed drug candidates.  
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For this publication, I was responsible for the analysis of the multi-omics datasets including 

bulk and single-cell transcriptome, proteome, flow cytometry and ATAC-seq datasets, 

applying the drug repurposing pipeline as well as analyzing the drug in vitro validation bulk 

transcriptomic dataset. In particular, I conducted the DEG and functional analyses, the single-

cell clustering, the cell type annotation, the integration of single-cell datasets, the in silico drug 

repurposing and its validation. Moreover, I took the lead in writing and reviewing the 

manuscript.   
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3.3. The life-saving benefit of dexamethasone in severe COVID-19 is 

linked to a reversal of monocyte dysregulation 

Knoll R*, Helbig ET*, Dahm K, Bolaji O, Hamm F, Dietrich O, van Uelft M, Müller S, Bonaguro 

L, Schulte-Schrepping J, Petrov L, Krämer B, Kraut M, Stubbemann P, Thibeault C, Brumhard 

S, Theis H, Hack G, De Domenico E, Nattermann J, Becker M, Beyer MD, Hillus D, Georg P, 

Loers C, Tiedemann J, Tober-Lau P, Lippert L, Pascual-Leone BM, Tacke F, Rohde G, Suttorp 

N, Witzenrath M, CAPNETZ Study Group, Pa-COVID-19 Study Group, Saliba AE, Ulas T, 

Polansky JK, Sawitzki B, Sander LE#, Schultze JL#, Aschenbrenner AC#,§, Kurth F#, “The life-

saving benefit of dexamethasone in severe COVID-19 is linked to a reversal of 

monocyte dysregulation”, Cell. 2024 Jul, doi: https://doi.org/10.1016/j.cell.2024.06.014. 
*shared first authorship / #shared last authorship / §corresponding author 

 
Figure 11: Graphical abstract for “The life-saving benefit of dexamethasone in severe 

COVID-19 is linked to a reversal of monocyte dysregulation”.  
Summary of the presented study generated with Biorender.com, taken from (Knoll et al. 2024). 

 

Dexamethasone is the current standard-of-care against severe COVID-19 and was proven to 

be very effective by the RECOVERY trial and follow-up trials (RECOVERY Collaborative 

Group et al. 2021; WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working 

Group et al. 2020; Tomazini et al. 2020). Nevertheless, there is still a substantial number of 

patients that are not responding to dexamethasone treatment, progress to a critical stage and 

decease. So far, biomarkers as predictors for treatment response to dexamethasone are 

lacking, which would be valuable for decision-making in personalized therapy, also known as 

companion diagnostics.  

In (Knoll et al. 2024), we present a framework for identification of molecular changes and 

biomarkers defining treatment response of repurposed drugs using single-cell omics, 

https://sciwheel.com/work/citation?ids=16649442&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9298578,9583542,9583541&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9298578,9583542,9583541&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9298578,9583542,9583541&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16649442&pre=&suf=&sa=0&dbf=0
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exemplified with dexamethasone in COVID-19. We analyzed blood-derived immune cells as 

well as immune cells from bronchoalveolar lavage (BAL) by multi-omics in a well-matched 

cohort of treatment naïve and dexamethasone-treated COVID-19 patients with either 

moderate or severe disease including deceased patients. Dexamethasone response was 

characterized by the induction of a monocytic response state and the reversal of the 

dysfunctional monocyte phenotype in severe COVID-19, but not in those with fatal outcome 

(Figure 11). Single-cell outcome-specific signatures were used for prediction of treatment 

response in two independent bulk whole blood transcriptome datasets and successfully 

stratified outcome, highlighting the potential as predictive biomarkers for treatment response.  

From our central phenotyping platform study, we carefully selected patients that met the 

RECOVERY trial criteria for dexamethasone treatment and matched them with treatment 

naïve patients as controls. Whole blood and PBMC samples were taken on average 8 days 

after treatment and multi-omics was performed, including cytometry by time of flight (CyTOF), 

single-cell transcriptomics and multi-color flow cytometry. Compositional alterations were 

assessed using CyTOF, revealing a significant absolute increase of leukocytes in 

dexamethasone-treated patients with moderate disease as well as a relative decrease of 

monocytes, while there was no difference in severe patients. Treatment-related transcriptional 

alterations were inspected of a total of 114,181 single-cell PBMC transcriptomes. Molecular 

phenotypes of treatment-naïve COVID-19 patients matched previous studies including 

alterations in MHC-II (HLA), alarmin (S100A) and interferon genes. DEG analysis revealed 

most prominent changes by treatment in monocytes and B cells with many suppressed but 

also induced genes especially in monocytes. Common up-regulated genes across multiple 

cell types included TSC22D3 and TXNIP, while IFITM1 and FTH1 were shared down-

regulated genes. Functional enrichment indicated that dexamethasone acts via inhibition of 

NF-kB in multiple cell types.  

As the monocyte compartment showed the most prominent regulation in response to 

dexamethasone-treatment, we aimed for a more detailed analysis. First, we investigated 

commonalities of treatment-effects between moderate and severe COVID-19 in monocytes, 

which resulted in a core up- and down-signature for dexamethasone treatment in COVID-19. 

This core signature was again related to NF-kB inhibition. Enrichment of an in vitro 

glucocorticoid signature strongly enriched in monocytes of treated patients. Of note, when 

assessing the enrichment by monocyte states, a strong enrichment was found in one specific 

state which we termed “Dexa response” state. This was validated using additional 

glucocorticoid signatures as well as investigating state specific markers, which included 

several known dexamethasone target genes such as TSC22D3, SAP30, FKBP5 and CD163.  
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Of note, the “Dexa response” state was strongly increased in proportions for dexamethasone-

treated patients, especially in moderate disease. Protein measurements by CyTOF and flow 

cytometry validated higher expression of CD163, a top marker of the “Dexa response” state, 

as well as higher frequencies of CD163+ monocytes in dexamethasone-treated patients. 

When the severe COVID-19 group was further stratified by outcome, a significant frequency 

increase of the “Dexa response” state was observed between treated survivors and those that 

deceased, the latter with barely detectable levels. As there were outcome-specific differences, 

we assessed transcriptional changes between severe survivors under dexamethasone 

treatment against untreated controls. Besides the core transcriptional signature, treatment 

was associated with a reversal of the dysfunctional monocyte state, previously reported in 

monocytes of severe COVID-19 patients. Dexamethasone treatment led to an induction of 

MHC-II genes and suppressed pro-inflammatory alarmins, chemokines and cytokines. Of 

note, dexamethasone non-survivors failed to reverse this dysregulation, resembling treatment-

naïve severe COVID-19, indicating that outcome is associated with a monocytic 

dexamethasone response failure. To investigate this treatment effect in the lung, we sampled 

bronchoalveolar lavage (BAL) of severe COVID-19 patients. Marker genes related to the 

“Dexa response” state observed in blood were equally enriched in survivors that received 

dexamethasone, while untreated survivors as well as treated non-survivors showed a 

significantly reduced enrichment.  

To see if the observed transcriptional alterations are underlying epigenetic changes, we 

sampled COVID-19 patients (WHO score 4-5) at day 2 after dexamethasone initiation and 

generated genome-wide DNA methylation profiles from sorted cell types for patients that 

responded to treatment and those that deteriorated, termed non-responders. PCA showed a 

difference of DNA methylation between responders and non-responders for CD14+ 

monocytes, which was not observed in CD19+ B cells and CD4+ and CD8+ memory T cells. 

Functional enrichment of promoter-associated differentially methylated positions (DMPs) 

showed associations towards pro-inflammatory programs in myeloid cells. Moreover, 

outcome-specific genes from the single-cell monocyte analysis showed significant differential 

methylations.  

Lastly, we aimed to predict dexamethasone treatment response in two independent whole 

blood transcriptomics cohorts, which were sampled either 2 or 4 days after treatment initiation. 

After optimization, the outcome-specific single-cell monocyte signatures were enriched in the 

whole blood datasets, resulting in significant stratification by outcome. This highlighted the 

potential to identify dexamethasone non-responders already at a very early stage after 

treatment initiation using our identified signature and whole blood transcriptomics.  
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Taken together, we presented the framework on how to define treatment response of 

repurposed drugs by investigating treatment effects with single-cell multi-omics, exemplified 

with dexamethasone in COVID-19. Single-cell transcriptomics revealed immunosuppressive 

but also immunomodulatory effects of dexamethasone with strongest transcriptional and 

compositional changes in monocytes, where a core dexamethasone signature was identified. 

In monocytes, we identified a specific state that was associated with treatment response, 

stratifying outcome. Furthermore, dexamethasone lead to the reversal of the previously 

described dysfunctional monocyte phenotype in treated survivors, while non-survivors failed. 

Epigenetic investigations revealed pro-inflammatory changes already at an early stage in 

CD14+ monocytes, while other cell types did not show any differences. Lastly, we 

demonstrated how single-cell signatures were able to stratify patients by outcome in larger 

clinical cohorts using whole blood transcriptomics at an early time point after treatment start, 

highlighting the potential for single-cell omics signatures for companion diagnostics.  

For this publication, I processed part of the samples, prepared the libraries for sequencing, 

was responsible for the entire blood single-cell transcriptomics analyses, as well as the BAL 

re-analyses of published datasets and took the lead in writing and reviewing the manuscript.  

  



 

36 
 

4. Conclusion 

In my thesis, I outlined recent advancements in transcriptomic technologies, summarizes 

immunological alterations especially in monocytes in COVID-19 and chronic HIV and 

highlights drug repurposing based on transcriptomic data as a powerful approach for 

identification of new potential drug candidates in human diseases. In my work, I presented the 

optimized workflow of drug repurposing in human viral diseases based on transcriptomic data 

including the optimized strategy of drug candidate prediction for disease-specific patient 

groups, refinement of molecular disease-signatures from single-cell data, in vitro validation 

experiments and in vivo molecular characterization in human clinical cohorts with treatment 

response assessment and prediction based on multi-omics data towards the generation of 

companion diagnostics for precision medicine.  

 

4.1. Characterization of human viral infections using omics 

Transcriptomics, and especially single-cell transcriptomics, proofed to be exceptionally 

powerful in characterizing the immunopathology of human diseases, including infections 

(Kazer et al. 2020; Reyes et al. 2020; Bossel Ben-Moshe et al. 2019; Oelen et al. 2022), 

inflammatory diseases (Nehar-Belaid et al. 2020; Perez et al. 2022; Jaeger et al. 2021; Baßler 

et al. 2022), cancer (Bischoff et al. 2021; Barkley et al. 2022), cardiovascular diseases (Chaffin 

et al. 2022; Lake et al. 2023; Reichart et al. 2022) and neurodegenerative conditions (Mathys 

et al. 2019; Kamath et al. 2022; Keren-Shaul et al. 2017). In this thesis, I present the potential 

of high-resolution omics to investigate two human viral infectious diseases, namely acute 

COVID-19 and chronic HIV infection.  

In acute COVID-19, we identified five whole blood transcriptome endotypes based on co-

expression network analysis with specific transcriptomic signatures for each group 

(Aschenbrenner et al. 2021). The stratification into five groups showed that there are distinct 

molecular phenotypes in COVID-19, which are not fully explainable by clinical assessment. 

The most severe group was marked by strong neutrophil activation-associated signatures and 

showed the highest levels of neutrophils. Stratification of patients is of great importance as 

humans show a strong diversity, especially in the immune system (Brodin and Davis 2017; 

Liston et al. 2021). This immune variation arises from factors such as genetics, age, sex, diet 

and environment and can lead to different immune responses when challenged with 

pathogens like viruses. Consequently, every individual experiences varying degrees of 

disease severity, which can be hard to grasp by few measurements or the patient’s medical 

records. Ideally, patient groups with similar molecular endotypes require personalized 

treatments to mitigate immunopathology (Dugger et al. 2018; Goetz and Schork 2018). 

https://sciwheel.com/work/citation?ids=8504628,8249639,7217247,13128324&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9366656,12779517,10775711,13398505&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9366656,12779517,10775711,13398505&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11909530,13434438&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13204525,15151513,13431919&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13204525,15151513,13431919&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6887211,12936497,3796408&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6887211,12936497,3796408&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10307867&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2842757,12031413&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2842757,12031413&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4617755,10547755&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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However, precision medicine approaches are often not available for the treatment of viral 

infections.  

In chronic HIV, we highlighted the importance of monocytes in continuous immune activation 

and inflammation and identified a persistent anti-viral state, previously identified in acute HIV 

infection (Knoll et al. 2023). This finding would not have been possible without single-cell 

resolution. Although monocytes clearly play an important role in PLHIV as described 

previously (Hearps et al. 2012; Bowman et al. 2020; Lyons et al. 2011), most transcriptomic 

studies there are focusing on T cells, leaving monocytes understudied (Rato et al. 2017; 

Bradley et al. 2018; Buggert et al. 2018; Wang et al. 2020). As our cohort was limited in patient 

size, we are currently investigating another clinical study including up to 350 patients for 

single-cell transcriptomics in PLHIV.  

Our transcriptomic clinical studies supported by other omics-layer as validations, proofed to 

be a robust and powerful strategy as they were absent of batch effects, showed great 

comparability to other studies and gave reliable and validated results based on multiple data 

layer.  

Designing transcriptomics studies in a clinical setting offers exciting opportunities but requires 

thoughtful planning. Careful selection of eligible patients, considering factors like 

comorbidities, treatments, and the matching of age and sex for comparison groups helps to 

ensure robust results. Managing variables such as seasonality or technical effects further 

enhances the quality of the studies. For coherent analysis and comparison with other data 

sources, it is important to have standardized and well documented metadata. For this aim, 

multiple solutions are considered. Moreover, as transcriptomics research continues to evolve, 

increasing standardization and optimizing workflows will further enhance reproducibility and 

consistency, especially across different research centers and laboratory setups.  

There are further developments in the field of transcriptomics, which may allow even more 

detailed analysis of the immunopathology of human diseases. These developments include 

the introduction of spatial transcriptomics (Marx 2021; Moses and Pachter 2022), multi-modal 

sequencing (Stoeckius et al. 2017; Reyes et al. 2019; Baysoy et al. 2023), which is the 

combination of transcriptomics with additional omics layer such as proteomics or epigenomics, 

and perturbation screens (Adamson et al. 2016; Dixit et al. 2016; Jaitin et al. 2016; Mimitou et 

al. 2019). Especially for the characterization of HIV reservoirs in T cells, which are highly 

heterogenous and rare, new single-cell multi-omics approaches have been suggested (Table 

1). These methods aim for the analysis of enriched HIV-positive cells, defined by either HIV-

RNA or HIV-DNA positivity, resulting in new insights of viral reservoirs which are believed to 

https://sciwheel.com/work/citation?ids=15766075&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5913666,12223758,3347547&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4455077,6710408,5370589,8266912&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4455077,6710408,5370589,8266912&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10278373,12641799&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4006944,8100128,14932270&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2867113,2867112,2842264,6845633&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2867113,2867112,2842264,6845633&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0


 

38 
 

be crucial for the success of future HIV cure strategies (Collora et al. 2022; Liu et al. 2020; Wu 

et al. 2023; Sun et al. 2023; Wei et al. 2023; Clark et al. 2023).  

 

Table 2: Methods for characterization of HIV-positive cells. 
Overview of published omics approaches for enhanced characterization of HIV-positive cells.  

Method Omics Authors Journal Date 

SortSeq Single-cell Liu et al. 
Science Translational 
Medicine 

2020 

ECCITE-seq 
Transcriptomics, epigenomics, 
proteomics 

Collora et al. Immunity 2022 

FIND-seq Transcriptome Clark et al. Nature 2023 

PheP-seq proteomics Sun et al. Nature 2023 

ASAPseq 
Chromatin accessibility, 
proteomics 

Wu et al. Nature Immunology 2023 

DOGMA-seq 
Transcriptomics, epigenomics, 
proteomics 

Wei et al. Immunity 2023 

 

Until there are scalable and clinically applicable efficient and successful cure strategies 

available for HIV-positive patients, a complete characterization of the immune dysregulation 

of chronically infected PLHIV is required. For this aim, the 2000HIV study (Vos et al. 2022, 

clinicaltrials.gov: NCT03994835) was initiated with 1,895 HIV patients enrolled from the Dutch 

population comprising PLHIV on ART but also untreated HIV elite controllers. From all 

patients, in-depth multi-omics analyses were performed, including transcriptomics, 

proteomics, genomics, epigenomics and metabolomics. Moreover, single-cell transcriptomics 

was conducted on a subset of patients. In addition to the omics layers, other data layers such 

as immunophenotyping, immunological assays, viral reservoirs and clinical measurements 

were generated. The primary objectives of this study are to identify new candidate biomarkers 

that stratify non-AIDS-defining events, to describe extreme HIV phenotypes, such as rapid 

progressors and elite controllers, and to identify new therapeutic targets for repurposed or 

newly designed drugs. First insights of the 2000HIV study were reported and more are to come 

in the future (Blaauw et al. 2023; Vadaq et al. 2023; Vos, Navas, et al. 2024; Vos, Vadaq, et 

al. 2024; van Eekeren et al. 2024).  
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4.2. A framework for transcriptome-based drug repurposing 

De novo design of drugs for human diseases is laborious, expensive and has low success 

rates (Sun et al. 2022; Scannell et al. 2012; Ashburn and Thor 2004). An alternative approach 

is to repurpose drugs approved for another indication (Rodrigues et al. 2022; Nosengo 2016). 

Drug repurposing has been proven to be efficient and less cost-effective intensive resulting in 

numerous successful new applications of drugs such as Sildenafil, Thalidomide, Aspirin and 

Dexamethasone (Pushpakom et al. 2019; Rodrigues et al. 2022). Many experimental and 

computational approaches for repurposing of drugs have been developed. Based on 

transcriptomic data, the reversal of disease signatures by drugs, by applying the SRP 

approach, led to promising predictions (Aschenbrenner et al. 2021; Knoll et al. 2023; Wagner 

et al. 2015; Huang et al. 2016; Malcomson et al. 2016; Shin et al. 2015). 

In this thesis, I present an optimized framework for transcriptomics-driven identification of 

drugs that might be candidates for clinical applications in diseases caused by viral infections. 

This framework includes the stratification of patients into disease endotypes, refinement of the 

disease signatures using high-resolution single-cell data, in vitro validation experiments to test 

the efficacy of selected drug candidates and the usage of single-cell omics for treatment effect 

analysis and response prediction. In (Aschenbrenner et al. 2021) we introduced a 

transcriptomics-based drug repurposing approach which is based on the SRP and identified 

drugs for data-driven patient groups. As a result of human diversity, not all patients are 

benefitting from the same drug. This highlights the need for drug identification in stratified 

patient cohorts, following the concept of precision medicine (Dugger et al. 2018; Goetz and 

Schork 2018). Using disease-signatures from bulk transcriptomic data gave great insights, 

nevertheless further optimization could be achieved. By using single-cell data, a more fine-

grained cell type-specific disease signature was generated (Knoll et al. 2023). As not all cell 

types contribute to immunopathology and disease severity, repurposing on optimized 

signatures can lead to more precise drug predictions. By this optimization approach, drugs 

predicted to be only moderately effective could be excluded. Although this refinement 

improves the prediction of drugs, the drug repurposing approach still generates a large and 

complex output. By ranking the signatures by their ability to reverse the disease signature, the 

focus can be narrowed to a select a few drugs for validation studies as the initial list of 

candidates would remain too long for evaluation in human clinical trials. To further refine the 

drug candidate list, in vitro stimulation experiments focusing on the top predicted drug 

candidates can be performed. By reading-out the drug influence through bulk transcriptomics, 

drug candidates that demonstrate strong potential to reverse the disease phenotype can be 

further selected. Therefore, testing the in silico predicted drugs with in vitro stimulation 
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experiments significantly narrows down the list of drugs candidates for further clinical 

evaluation.  

Finally, if an identified drug candidate proves to be potent, its treatment effects and responses 

need to be tested and analyzed – e.g. by using single-cell omics – in vivo within human clinical 

cohorts. We assessed this step for the previously predicted (Aschenbrenner et al. 2021) and 

efficacy-tested (RECOVERY Collaborative Group et al. 2021; WHO Rapid Evidence Appraisal 

for COVID-19 Therapies (REACT) Working Group et al. 2020; Tomazini et al. 2020) drug 

dexamethasone in a clinical cohort study of COVID-19 patients (Knoll et al. 2024). We 

observed transcriptional and compositional alterations post-treatment and identified that these 

changes were confined to a specific monocyte state. Notably, these molecular treatment 

responses were directly correlated with clinical outcomes. Dexamethasone-treated COVID-19 

survivors successfully reversed the previously described dysregulated severe phenotype in 

monocytes, whereas treated patients who deceased failed to achieve this reversal. Using the 

single-cell signatures, we were able to stratify whole blood bulk transcriptomics samples at 

earlier timepoints after treatment with high success into responder and non-responder in two 

independent cohorts. This analysis demonstrated that assessing dexamethasone treatment 

response with single-cell omics is powerful for treatment response analysis of clinical cohorts 

and can be used to stratify COVID-19 patients early after treatment initiation, distinguishing 

patients who benefit from those who do not. While we exemplified this framework for 

dexamethasone and COVID-19, we are convinced that this approach is not restricted to that 

drug and disease, but can be applied to evaluate other drug responses in various human 

diseases.  

In the clinics, performing single-cell omics from every treated patient is still too expensive and 

not standardized. However, we demonstrated that this is not necessary. With single-cell omics 

from a medium-sized discovery cohort, we have the power and resolution to pinpoint the drug-

induced changes and molecular responses in the immune system, leading to the generation 

of precise gene signatures. These gene signatures can then be used for treatment response 

stratification using methods that are more feasible in the clinics such as bulk transcriptomics 

or PCR. With our framework, we are paving the way for evaluation tests for treatment 

responses based on single-cell omics, which would be the exploratory step for the 

development of companion diagnostics. Companion diagnostic tests are used either before or 

during treatment, to evaluate if a diseased patient would benefit from a certain treatment and 

if not, another treatment might have to be suggested (Goetz and Schork 2018; Kang et al. 

2023). Therefore, companion diagnostics are essential in personalized medicine. Although 

this is a great principle, so far, only 170 companion diagnostic tests, designed for 72 unique 

drugs, have been approved by the FDA (FDA 2024). Moreover, these tests are based on 43 
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unique biomarkers, with nearly all drugs being tested in cancer patients. To go beyond cancer, 

we suggest our framework for generation of companion diagnostics in viral infections. Our 

single-cell monocyte signature showed its potential and could be further optimized by reducing 

the number of genes in the signature so that a simpler test e.g. a PCR test could be developed 

for clinical purposes. However, FDA approval requires meeting stringent prerequisites and 

regulations including premarket approval, analytical and clinical validation, risk assessment, 

adherence to good manufacturing practices, compliance with quality system regulations and 

alignment with extensive guidance documents – all of which can present challenges (FDA, 

2024).  

Repurposing of drugs based on transcriptomics in human viral infections showed its great 

potential. Nevertheless, there are still further enhancements needed to improve the 

repurposing approach. Our approach uses the drug signature library from the Broad institute 

(Subramanian et al. 2017), which consists of over 437,000 unique drug signatures, 

representing a valuable resource. However, the drug signatures were generated mostly from 

cancer cell lines and are based on a bulk transcriptomic expression profile. Ideally, drug 

signatures extracted from immune cells or disease-relevant tissues using single-cell omics 

would strongly enhance the possibilities and accuracy of predicting repurposed drugs for 

various human disease. As this procedure would be applied for many drugs, a standardized 

protocol would be a prerequisite. In addition, the drug repurposing approach could benefit from 

additional computational methods or artificial intelligence (AI), to further narrow down the list 

of top predicted drugs. Additionally, larger cohorts of patients will improve repurposing and 

signature identification. Considering the exceptionally high number of patients included in the 

2000HIV study as well as both bulk and single-cell transcriptomics layers included, performing 

a data-driven stratification followed by our drug repurposing approach presents a highly 

promising strategy. 

Collectively, this work highlights the potential of transcriptomics-driven approaches for drug 

repurposing in human viral diseases, while showcasing how single-cell omics could guide 

exploratory analyses to develop future companion diagnostic tests, advancing precision 

medicine. 
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COVID-19 is a contagious viral disease caused by SARS-CoV-2 that led to an ongoing
pandemic with massive global health and socioeconomic consequences. The disease is
characterized primarily, but not exclusively, by respiratory clinical manifestations ranging
from mild common cold symptoms, including cough and fever, to severe respiratory
distress and multi-organ failure. Macrophages, a heterogeneous group of yolk-sac
derived, tissue-resident mononuclear phagocytes of complex ontogeny present in all
mammalian organs, play critical roles in developmental, homeostatic and host defense
processes with tissue-dependent plasticity. In case of infection, they are responsible for
early pathogen recognition, initiation and resolution of inflammation, as well as repair of
tissue damage. Monocytes, bone-marrow derived blood-resident phagocytes, are
recruited under pathological conditions such as viral infections to the affected tissue to
defend the organism against invading pathogens and to aid in efficient resolution of
inflammation. Given their pivotal function in host defense and the potential danger posed
by their dysregulated hyperinflammation, understanding monocyte and macrophage
phenotypes in COVID-19 is key for tackling the disease’s pathological mechanisms.
Here, we outline current knowledge on monocytes and macrophages in homeostasis and
viral infections and summarize concepts and key findings on their role in COVID-19. While
monocytes in the blood of patients with moderate COVID-19 present with an
inflammatory, interferon-stimulated gene (ISG)-driven phenotype, cellular dysfunction
epitomized by loss of HLA-DR expression and induction of S100 alarmin expression is
their dominant feature in severe disease. Pulmonary macrophages in COVID-19 derived
from infiltrating inflammatory monocytes are in a hyperactivated state resulting in a
detrimental loop of pro-inflammatory cytokine release and recruitment of cytotoxic
effector cells thereby exacerbating tissue damage at the site of infection.

Keywords: monocytes, macrophage, COVID-19, SARS-CoV-2, hyperinflammation, scRNA-seq, alveolar
macrophage, viral infection
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INTRODUCTION

COVID-19 (1, 2) is primarily a mild to moderate respiratory
tract infection caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), an enveloped, single-stranded
RNA betacoronavirus (3–5). While 80% of the infections lead
to asymptomatic or mild disease with common cold symptoms
including dry cough, headache, loss of taste, dyspnea, fatigue and
fever, contained by an efficient immune response (6–8), 15% of
the patients go on to develop severe disease requiring intensive
care and oxygen support and 5% develop critical disease with
life-threatening pneumonia, acute respiratory distress syndrome
(ARDS) and septic shock often culminating in multi-organ
dysfunction and death (9).

Age, various comorbidities, including diabetes, obesity, lung
and cardiovascular diseases, as well as genetic polymorphisms
correlate with a higher risk of respiratory failure (10–13).

SARS-CoV-2, similar to SARS-CoV (14), enters host cells via
the angiotensin-converting enzyme 2 (ACE2) receptor and uses
the human protease TMPRSS2 as entry activator (15, 16). These
genes are expressed in a wide range of cells, including nasal and
bronchial epithelial cells, enterocytes, cardiomyocytes, vascular
and testicular cells, placental trophoblasts, bile duct cells (17, 18)
as well as macrophages (19, 20). Furthermore, additional entry
molecules, such as Neuropilin (NRP1), have been discussed to
facilitate viral cell entry (21, 22).

Although acute respiratory manifestations are the most
common feature, COVID-19 can have multiple acute extra-
pulmonary clinical effects likely to be related to vascular
pathology (23), and also long-lasting complications referred to
as the post-COVID syndrome or long COVID, including fatigue
or neurological sequelae (24–27).

Control of viral infections and resolution of inflammation
generally depends on dose and route of infection, viral virulence
properties aswell as host immune factors (28, 29). Tightly regulated
interactions between epithelial cells and immune cells, orchestrated
by cytokine signaling anddirect cellular contacts, play a critical role,
also in COVID-19 (30, 31). Moreover, viral clearance does not
necessarily mean recovery to a healthy state. Hyperactivated and
dysregulated immune cells pose a substantial danger for
exacerbated tissue damage (32–34) and alter susceptibility to
secondary bacterial superinfection (35, 36).

Severe COVID-19 has been associated with pronounced
changes in peripheral immune activity (37, 38), including
increased levels of acute phase reactants and pro-inflammatory
cytokines (39, 40), neutrophilia and emergence of immature and
low-density neutrophils (41, 42), increased neutrophil-to-
lymphocyte ratio and lymphopenia (43) as well as myeloid
inflammation (44) and reduced expression of the human
Abbreviations: AMs, alveolar macrophages; APC, antigen-presenting cells;
COPD, chronic obstructive pulmonary disease; COVID-19, Coronavirus disease
2019; DC, dendritic cells; IL, intereukin; IFN, interferon; IPF, idiopathic
pulmonary fibrosis; ISG, interferon-stimulated genes; MNPs, mononuclear
phagocytes; Mo-AMs, monocyte-derived AMs; Mo-DC, monocyte-derived DC;
ORF, open reading frames; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; scRNA-seq, single-cell RNA-sequencing; snRNA-seq, single-
nucleus RNA-sequencing.
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leukocyte antigen DR isotype (HLA-DR) by circulating
monocytes (42, 45).

A time-dependent, multi-stage disease model for COVID-19
has been proposed (28). Early and efficient activation of the
immune system through induction of a potent interferon
response is crucial for controlling the virus. However, a
delayed and/or prolonged interferon response may lead to
progressive tissue damage, which may ultimately result in a
deleterious hyperinflammation characterized by excessive
activation of mononuclear phagocytes (MNPs) and coagulation
in combination with dysregulation of tissue repair mechanisms
and fibrosis (46).

Together with dendritic cells (DC), macrophages and
monocytes form the MNP system (47). In addition to being
professional antigen-presenting cells (APC), MNPs sense and
phagocytose pathogens, mediate leukocyte recruitment, initiate
and shape immune responses and regulate inflammation.

Macrophages are a heterogeneous family of tissue-resident,
phagocytic innate immune cells, including brain microglia, liver
Kupffer cells and lung alveolar and interstitial macrophages, that
play an important role in tissue homeostasis and immune
defense (48). In case of infection, macrophages sense danger
signals from microbial pathogens or tissue damage via a plethora
of pattern recognition receptors (PRRs), and respond by release
of inflammatory molecules that eliminate pathogens, initiate
inflammation and recruitment of additional effector cells and
promote tissue repair (32). However, as is the case for example in
macrophage activation syndrome (MAS), an overwhelming
macrophage response can be detrimental to the host (33).

Monocytes are blood-circulating, phagocytic innate immune
cells classically divided into three subsets based on their respective
expression of CD14 and CD16 [classical (CD14+CD16−), non-
classical (CD14dimCD16+), and intermediate (CD14+CD16+)]
(48, 49). Under pathological conditions, including viral infections,
monocytes, activated and recruited by inflammatory mediators,
infiltrate affected tissues and acquire inflammatory macrophage
andDC-like phenotypes to fulfil their effector functions of pro- and
anti-inflammatory activities, antigen-presentation and tissue
remodeling (50).

Here, we outline major findings concerning the role of
monocytes and macrophages in COVID-19 and put them into
the context of general knowledge of these cells in viral infections.
ALVEOLAR AND INTERSTITIAL
MACROPHAGEONTOGENY AND FUNCTION

Every day, the lung inhales thousands of liters of air containing
high amounts of pathogens including viruses, bacteria, and fungi
(51). To prevent infection and its resulting complications for the
organism, a tight control by the immune system is needed. In the
lung, macrophages are the most abundant immune cell type
under homeostatic conditions. Based on their exact location, they
can be separated in at least two different populations; the
interstitial macrophages (IMs) and alveolar macrophages
(AMs) (52, 53).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Knoll et al. Monocytes and Macrophages in COVID-19
IMs reside in the parenchyma between the microvascular
endothelium and alveolar epithelium, while AMs have close
contact to epithelial cells of alveoli and reside in the airspace
lumen. However, a recent study by Neupane et al. showed that
AMs are, in contrast to macrophages in other tissues, not sessile
but can crawl in and between alveoli using the pores of Kohn
(54). By expression of integrins, CD11cnegCD11bpos IMs can be
distinguished from CD11cposCD11bneg AMs (52).

In addition to mucus and the epithelial barrier, AMs are the
first defenders against pathogens entering the respiratory system.
They originate from the yolk sac and populate the lung early after
birth (55, 56). AMs have proliferative capacity, thus can persist
over the lifespan by self-renewal and are independent of
replacement from the bone marrow (57–59). AMs detected in
bronchoalveolar lavage fluid (BALF) after lung transplantation
were almost exclusively donor derived (60). Following depletion
of lungmacrophages inmice, repopulationoccurred almost entirely
by in situ proliferation (61). In contrast, analysis of pulmonary
MNPs in patients receiving bone marrow transplantation for
hematologic disorders provided evidence for replenishment of
AMs by monocytes of bone marrow origin (62). The current
understanding of the plastic composition and complex ontogeny
of pulmonary MNPs is best described by a dynamic interplay of
cells derived from yolk sac macrophages, fetal liver, and adult
monocytes given pathologic threats and vacant niches (63).

The functional phenotype of AMs strongly depends on the local
microenvironment and can change with contact with epithelial
cells, oxygen tension and surfactant-rich fluid, highlighting the
relevance of AM plasticity (64, 65). Therefore, AMs can be pro-/
anti-inflammatory, pro-/anti-fibrotic, pro-asthmatic, pro-resolving
and/or tissue-reparative. In the physiological state, AMs are critical
for homeostasis by removing apoptotic cells, foreignmaterials, and
surfactant, thereby ensuring that the lungs remain free of debris. Of
note, they typically show an immunosuppressive phenotype (52).
The anti-inflammatory program is critical to prevent unwanted
inflammation in the lung that can be of serious danger for the
organism. Although AMs have antigen presenting capacities and
expressHLA-DR, theypromote toleranceand suppress lymphocyte
activation under homeostatic conditions by producing
immunosuppressive prostaglandins and TGFb, of which the latter
together with retinoic acid may drive the development of
FOXP3+ regulatory T cells (Treg), further strengthening the anti-
inflammation (66–68).By signaling throughvarious receptors, such
as by CD200R (69), SIRPa (70), mannose receptor CD206 (71),
MACRO (72), TREM2 (73), and soluble mediators including
Interleukin (IL)-10 (74), TGFb (75) and PPARg (76) AMs
experience negative regulation. For instance, CD200 is expressed
on the luminal side of respiratory epithelial cells and binding to
CD200R on AMs leads to the suppression of pro-inflammatory
genes in AMs (69).

Upon lung injury or infection, AMs can mount inflammatory
responses (77). Destruction of airway epithelium can lead to a loss of
exposure to regulatory ligands, suchasCD200, resulting in a switch to
a pro-inflammatory program in AMs (69). Recognition of pathogen
associated molecular patterns (PAMP) of invading pathogens by
AMs via PRRs further enhances this activation. These activated
Frontiers in Immunology | www.frontiersin.org 3
AMs are characterized by enhanced phagocytic capacity, higher
oxidative burst and increased release of pro-inflammatory
cytokines and chemokines, which results in inflammation and
recruitment of other immune effector cells to the lung, including
neutrophils (78). Recruited cells also include monocytes, which can
differentiate intomacrophage andDC-like cells, thus often referred to
as monocyte-derived AMs (Mo-AMs) and DC (Mo-DC), upon
arrival in peripheral tissues and can further enhance inflammation
(79, 80). Their different ontogeny and functionality can influence
the outcome of infection and inflammation.

Importantly, prolonged, and dysregulated inflammation caused
by macrophages and monocytes can cause collateral tissue damage
(81). To prevent prolonged inflammation and to limit tissue
damage and fibrosis, AMs have evolved several strategies. These
include phagocytosis of dying cells, e.g. neutrophils (82) preventing
the release of their pro-inflammatory and toxic contents and
triggering the secretion of TGFb, IL-10, prostaglandin E2 and
platelet-activating factor from AMs (83).

Respiratory pathologies such as asthma, chronic obstructive
pulmonary disease (COPD), cystic fibrosis and idiopathic
pulmonary fibrosis (IPF) are characterized by defective AM
phagocytosis resulting in continuous inflammation (84–87).

Besides respiratory pathologies, cigarette smoking also
presents a major risk factor for impaired AM function. AMs of
smokers are expanded in numbers compared to non-smoking
controls but show less phagocytic activity, glucose oxidation rate
and cytokine production compared to non-smoking controls,
which increases the risk of severe disease progression upon
bacterial and viral infection (88–91).

After a successful inflammation, suppressive stimuli as described
above are restored and AMs shift to an anti-inflammatory, tissue
reparative phenotype restoring the homeostasis of the lung (65).
THE ROLE OF LUNG MACROPHAGES IN
VIRAL RESPIRATORY INFECTIONS

As described above, the lung is at permanent risk of infection by
several pathogens, amongst them viruses such as rhinovirus,
respiratory syncytial virus, influenza virus and coronavirus.
Despite their obvious relevance, investigation of human lung
MNPs during respiratory infections has been limited so far and
most of our knowledge comes from animal models. For instance,
Schneider et al. showed that AM-depleted WT mice infected
with influenza A virus had impaired gas exchange and fatal
hypoxia (92). Similar results were obtained in pigs which, after
AM depletion by dichloromethlyene diphosphonate, were
infected with seasonal human H1N1 influenza virus resulting
in 40% mortality rate and increased suffering from severe
respiratory signs, whereas infected control pigs showed less
severe symptoms with no mortality (93).

Notably, various viruses, including Influenza, Chikungunya,
human herpes and Zika virus, have been shown to utilize
monocytes and macrophages as vessels for virus replication,
dissemination, or long-term persistence within tissues. They enter
the cells through endocytosis, phagocytosis, macropinocytosis or
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membrane fusion and induce elevated expression of
proinflammatory signaling and antiviral molecules (94–99).
Direct infection of macrophages with SARS-CoV has also been
shown, which, however, did not lead to dissemination or virus
amplification but rather to an impaired type I interferon (IFN)
response potentially worsening disease outcome (100).

Upon viral infection, AMs produce high levels of cellular
mediators, including IL-1b, CCL3, CCL7 and CCL2, also known
as monocyte chemotactic protein 1 (MCP1), which rapidly
recruits CCR2-expressing bone marrow-derived monocytes
into the lung. Furthermore, AMs are the main producers of
type I IFN to trigger an antiviral response in influenza infection
(101, 102). Of note, type I IFN production by AMs was higher
than by plasmacytoid DCs (pDCs), coined as the natural “IFN
producing cells”, in response to virus, indicating that pDCs may
play a subordinate role in the defense against viral infections in
the lung (102). Moreover, alveolar epithelial cells also did not
produce any type I IFN in response to influenza, further stressing
the key role of AMs (103). Type I IFNs can signal autocrine and
paracrine resulting in the activation of antiviral transcriptional
programs including the transcription of ISG such as ISG15, IFIT1
and STAT2, which can suppress viral replication (104, 105).
Interestingly, not all virus infections trigger an increased type I
IFN response. For instance, when human AMs were infected with
coronavirus strain 229E (HCoV-299E), they secreted increased
amounts of TNF, CCL5 and CCL4 (MIP-1b), causing
inflammation, but IFN-b levels remained unchanged (106).

Viral infection triggers the migration of circulating
monocytes to the lung guided by pro-inflammatory cytokines,
such as CCL2 and CCL3, increasing the number of defending
mononuclear phagocytes and enhancing inflammation (79). This
is a necessary defense response, since viruses such as influenza
can either reduce the numbers of resident AMs dramatically or
impair their phenotype. When BALB/c mice were infected with
influenza, 90% of resident AMs were lost in the first week after
infection (107). This, however, was strain specific, since C57B1/6
mice did not show loss of AMs but rather an impaired
phenotype. Nevertheless, both consequences were driven by
IFN-g and resulted in increased susceptibility to bacterial
superinfections leading to significant body weight loss and
mortality. Furthermore, a recent study by Neupane et al.
showed that crawling of AMs, which is critical for AM
function, was impaired after influenza infection. Again, this
impairment was mediated by the IFN-g pathway and resulted
in increased risk for bacterial superinfections (54).
THE ROLE OF MONOCYTES AND
ALVEOLAR MACROPHAGES IN COVID-19

The Involvement of Monocytes and
Macrophages in SARS-CoV-2 Induced
Hyperinflammation
COVID-19 is characterized by a systemic increase of numerous
cytokines, including IL-1a, IL-1b, IL-6, IL-7, tumor necrosis
Frontiers in Immunology | www.frontiersin.org 4
factor (TNF), type I and II IFN, and the inflammatory
chemokines CCL2, CCL3 and CXCL10 (40, 108, 109). Elevated
levels of CCL2 and CCL7, two chemokines potent at the
recruitment of CCR2+ monocytes, have also been found in
BALF from patients with severe COVID-19 (110).

The term “cytokine storm”, historically described as an
influenza-like syndrome that occurred after systemic infections
and immunotherapies (111), has quickly become widely used,
both in scientific publications and the media, to describe the
cytokine response in COVID-19 (39). Although the increased
systemic cytokine response in COVID-19 is undisputed, the term
“cytokine storm” in COVID-19 pathophysiology is a topic of
debate, as TNF, IL-6, and IL-8 concentrations in COVID-19 are
less strong compared to sepsis, acute respiratory distress
syndrome unrelated to COVID-19, trauma, cardiac arrest, and
cytokine release syndrome (CRS) (112–115). Moreover, COVID-
19 immune responses are highly dynamic as shown by time-
dependent alterations of the systemic levels of many cytokines
including IL-6 (40). Considering the co-occurrence of distinct
systemic pro-inflammatory cytokine waves with the emergence
of aberrant and immunosuppressive innate immune cells further
complicates the exact terminology of immunopathology in
severe COVID-19 and suggests a much more complex host-
pathogen interaction better described by the term viral sepsis
(28). In any case, the systemic cytokine profile observed in
patients suffering from severe COVID-19 does resemble those
observed in CRS, such as macrophage activation syndrome
(MAS), which led early on to the working hypothesis that
dysregulated activation of the MNP compartment contributes
to COVID-19-associated hyperinflammation (33, 113).

The induction of cytokine production in MNPs in COVID-19
can either be triggered via recognition of damage-associated
molecular patterns (DAMPS) released from epithelial cells
affected by SARS-CoV-2 by PRRs or by direct recognition of
viral pathogen-associated molecular patterns (PAMPs) via
specific Toll-like receptors, i.e. TLR2 and TLR4, the retinoic
acid-inducible gene I (RIG-I) or the melanoma differentiation
associated gene (MDA)-5 (116–119). Furthermore, C-type lectin
receptors, including DC-SIGN, L-SIGN, LSECtin, ASGR1,
CLEC4K (Langerin) and CLEC10A (MGL), as well as Tweety
family member 2 have been identified to interact with the SARS-
CoV-2 spike protein inducing proinflammatory responses, but
not allowing direct infection. Notably, however, these
interactions were shown to promote virus transfer to ACE+

cells (120, 121).
SARS-CoV-2 infection of lung-resident MNPs might result

either from phagocytosis of infected alveolar epithelial cells
followed by viral escape from the lysosome or by direct
infection. In vitro experiments with human monocyte-derived
DC and macrophages with SARS-CoV-2 have demonstrated that
both cell types are permissive to SARS-CoV-2 as measured by
quantification of SARS-CoV-2 nucleocapsid protein expression
after in vitro infection, but did not support productive viral
replication. Interestingly, expression of proinflammatory
cytokines and chemokines however was only triggered
in macrophages and not DC under these experimental
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conditions (122). Additional independent infection experiments
confirmed the abortive SARS-CoV-2 infection in human
monocyte-derived DC and macrophages in vitro and
corroborated the induction of antiviral and proinflammatory
cytokines, including IFN-a/b, TNF, IL-1b, -6, and -10, as well
as CXCL10, leading to type I IFN–mediated host cell death (123).
Accordingly, investigation of cell tropism and immune activation
profiles of SARS-CoV-2 in ex vivo organ cultures of human lung
tissues revealed infection of type I and II pneumocytes as well as
AMs (124), confirmed by detection of SARS-CoV-2 in AMs in
autopsy samples from COVID-19 patients (125). Interestingly,
analysis of murine AMs derived from human (h)ACE2 transgenic
animals revealed different susceptibility to SARS-CoV-2 infection
depending on their cytokine-induced polarization as in vitro
treatment with IFN-g and LPS caused increased infection rates
compared to pre-treatment with IL-4 (126). Furthermore, in vitro
treatment of PMA-differentiated THP-1 human macrophages and
isolated CD14+ monocytes with SARS-CoV-2 spike protein after
LPS stimulation exposed a hyperresponsiveness to TLR signals by
suppression of IRAK-M (127). Moreover, antibody-dependent
mechanisms of infection present a conceivable alternative
pathway and have been described for SARS-CoV (128, 129).
Besides this body of evidence demonstrating the induction of
inflammatory pathways in monocytes and macrophages upon
recognition of SARS-CoV-2, metabolic alterations in these cells
have been reported. Ex vivo infected human monocytes shifted
their metabolism and became highly glycolytic leading to elevated
glucose levels promoting SARS-CoV-2 replication and cytokine
production (130). Moreover, monocytes derived from COVID-19
patients were shown to have increased lipid droplet accumulation,
which was explained by the modulation of lipid synthesis and
uptake investigated using in vitro infection models and again
favored virus replication and inflammatory mediator production
(131). Interestingly, the pharmacological inhibition of DGAT1, a
key enzyme in lipid droplet formation, inhibited SARS-CoV-2
replication and production of pro-inflammatory mediators
presenting a new opportunity for therapeutic intervention.

Corresponding to the systemic increase of cytokine and
chemokine levels, quantitative and qualitative changes in
immune cell populations, particularly in the myeloid
compartment, have been observed in blood and lungs of
patients with COVID-19 dependent on disease severity.

Flow cytometric analyses of peripheral blood reported reduced
percentages of total monocytes in the blood of severe COVID-19
cases (38, 132, 133). Notably, this reduction was observed only
transiently in a longitudinal study of immune cells in severe cases
pointing to the highly time-sensitive immune response (134).

Beyond quantitative changes, striking disease-specific
differences in monocyte phenotypes in the blood and
monocyte–macrophage composition in the lung have been
consistently reported. A significant expansion of CD14+CD16+

monocytes featuring high expression of IL-6 in the blood
discriminated patients with COVID-19 admitted to ICUs from
those who did not require intensive care (132). Moreover,
significantly reduced numbers of non-classical and intermediate
monocytes are found in acute patients with symptoms of severe
Frontiers in Immunology | www.frontiersin.org 5
SARS-CoV-2 infection (135) and circulating classical monocytes
show clear signs of activation, including increased expression of
CD169 (135). In addition, experimentally infected monocytes and
those from patients with severe COVID-19 requiring intensive
care feature inflammasome activation and increased pyroptosis
associated with caspase-1 activation (136). Furthermore, increased
proliferation of monocytes derived from patients with severe
COVID-19 after in vitro challenge with lipopolysaccharide was
discussed as an indicator for a release of immature myeloid cells
from the bone marrow reminiscent of emergency myelopoiesis
(137) and contributing to innate immune dysfunction (138). Most
prominently and consistent across all studies, reduced HLA-DR
expression on monocytes – a well-established marker of immune
suppression – was reported in patients suffering from severe
COVID-19 (41, 42, 134, 139, 140). Decreased HLA-DR
expression appeared to be strongly associated with COVID-19
disease severity, exemplified by lower expression of HLA-DR by
monocytes in patients admitted to the ICU versus non-ICU patients
(140) and in non-survivors versus survivors (141). Furthermore, the
presence of HLA-DRlo monocytes in severe cases of COVID-19 was
found to be positively correlated with levels of the soluble
immunosuppressive factors IL-10, TGF-b, VEGFA, and AREG
(142). In addition, reduced HLA-DR and CD86 expression
together with elevated levels of IL-1b, IL-6, IL-8, IL-10, IL-17 and
IFN-g were observed in children with multisystem inflammatory
syndrome (MIS-C) associated with SARS-CoV-2 infection (143).
Downregulation of HLA-DR is a molecular feature often described
for monocytic myeloid-derived suppressor cells (MDSC) – a cellular
state of monocytes described to develop during chronic
inflammation, especially late-stage cancers, and defined by T cell
immunosuppressive functions (144). Functional assessment of
HLA-DR- monocytes derived from COVID-19 patients indeed
confirmed their capacity to suppress T cell proliferation, partly via
ARG-1, and thus supports the MDSC state beyond phenotypic
description (145). Interestingly, the HLA-DR- monocytes specific
for severe acute COVID-19 have furthermore been found to express
CPT1, an enzyme essential for fatty acid oxidation, again
highlighting the relevance of immunometabolic effects of SARS-
CoV-2 infection (146).

High-Resolution Single-Cell Omics
Characterization of Monocytes and
Macrophages in the Blood and Lungs
of COVID-19 Patients
Application of high-resolution omics technologies with single-cell
resolution, which were only developed and became widely applied
within the last decade, has confirmed their great potential to
rapidly decipher the immune response to an emerging pathogen
during the COVID-19 pandemic. The first transcriptomic
immune atlas of circulating peripheral blood mononuclear cells
(PBMC) from 10 COVID-19 patients demonstrated globally
decreased lymphocyte counts, while inflammatory myeloid cells
were found to be more abundant (147). By now, at least 16 other
studies have used scRNA-seq to characterize the immune
response to SARS-CoV-2 (31, 41, 42, 45, 108, 148–158). While
initial studies were based on low sample numbers limiting their
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explanatory power, latest reports comprised samples derived
from more than 100 individuals, included longitudinal samples
or profiled matched samples from multiple tissues. Single-cell
transcriptomic analysis of PBMC in 7 hospitalized COVID-19
patients revealed a depletion of CD16+ monocytes in peripheral
blood and the induction of an ISG signature in CD14+

monocytes, but detected no substantial induction of pro-
inflammatory cytokine genes, such as TNF, IL6, IL1b, CCL3,
CCL4 or CXCL2 in these cells, suggesting that peripheral
monocytes are no major contributors to the cytokine response
in COVID-19 (155). The lack of expression of inflammatory
cytokines in innate immune cells in the periphery of COVID-19
patients was confirmed by multiplex plasma cytokine analysis,
mass cytometry, and scRNA-seq in a cohort of 76 COVID-19
patients and 69 healthy individuals from two cohorts. Despite
significantly upregulated levels of inflammatory molecules in the
plasma of COVID-19 patients and transiently induced expression
of ISGs in peripheral immune cells, an impaired cytokine
response in blood myeloid cells and pDCs, with markedly
reduced expression of IL-6, TNF and IL-1b upon TLR
stimulation, was observed emphasizing a tissue origin of the
plasma cytokines (108). Interestingly, the lack of ISG-expressing
cells associated with mild disease was linked to severe disease-
specific production of antibodies suppressing cellular interferon
responses (159). In a dual-center, two-cohort study, we combined
scRNA-seq and single-cell proteomics of whole-blood and PBMC
and determined changes in the immune cell composition and
activation in mild versus severe COVID-19 over time.While non-
classical monocyte numbers were diminished in COVID-19,
HLA-DRhiCD11chi inflammatory monocytes with an ISG
signature were elevated in mild COVID-19 and monocytes in
severe COVID-19 featured strongly reduced HLA-DR expression,
high expression levels of genes with anti-inflammatory and
immature properties, including SELL (CD62L), CD163, MPO
and PLAC8, as well as increased expression of S100A family
members, e.g. S100A12 (42). Loss of non-classical monocytes,
reduced HLA-DR expression in monocytes and massive release of
S100A family members was observed in severe cases of COVID-
19 in multiple additional studies (41, 151, 156, 157), albeit disease
stratification into mild, moderate, severe and critical disease
showed slight differences. In addition, calprotectin (S100A8/
S100A9) plasma levels and decreased frequencies of non-
classical monocytes were found to discriminate patients who
develop a severe form of COVID-19 (41).

Although the analysis of blood was extremely instructive
particularly when assessing systemic effects of COVID-19, the
lung presents the primary site of infection for SARS-CoV-2 and
investigating the local immune system response is key to
understanding the pathology. Activated monocytes of the
blood have been shown to infiltrate the lungs in patients with
COVID-19 and in animal models of SARS-CoV-2 infection (160,
161). In their seminal study, Liao et al. characterized BALF from
patients with varying severity of COVID-19 and healthy
individuals using scRNA-seq and reported striking shifts in
cellular composition with increased proportions of
macrophages and neutrophils and lower proportions of DCs
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and T cells in samples from severe/critical COVID-19 compared
to those from moderate disease and healthy individuals. Within
the MNP compartment, they observed a depletion of tissue-
resident AMs and a replacement by inflammatory monocyte-
derived macrophages in patients with severe disease. Notably,
cytokine and chemokine expression levels differed dependent on
disease severity. While CXCL9, CXCL10 and CXCL11
expression levels were increased both in moderate and severe
disease compared to healthy levels, IL1b, IL6, TNF as well as
CCL2, CCL3, CCL4 and CCL7 were expressed at higher levels in
lung macrophages from patients with severe COVID-19.
CXCL16, which interacts with the chemokine receptor CXCR6
and attracts subsets of T cells, was specifically induced in patients
with moderate disease. These distinct expression profiles suggest
that lung macrophages in patients with severe COVID-19 may
promote tissue infiltration of inflammatory monocytes
enhancing local inflammation, whereas macrophages in
patients with moderate COVID-19 preferentially attract T cells.
Furthermore, macrophage subpopulations specific for severe
disease presented with immunoregulatory features but also
expression of the profibrotic genes TREM2, TGFB2, and SPP1
(45). In agreement with this study, scRNA-seq data of
nasopharyngeal and bronchial samples from 19 COVID-19
patients revealed the presence of inflammatory non-tissue
resident and monocyte-derived macrophages expressing
various cytokines, including IL1, TNF, CCL2 and CCL3, as
well as enhanced interactions between epithelial and immune
cells as determined by ligand–receptor expression profiling, in
critical compared to moderate disease (31). Interestingly,
comparing macrophages from the lower to the upper airways
demonstrated increased expression of inflammatory cytokines
and chemokines in the bronchia. Furthermore, monocyte-to-
macrophage trajectory analysis in scRNA-seq of BALF samples
from COVID-19 patients exposed enrichment of chronic
hyperinflammatory monocytes in critical COVID-19
presenting with elevated expression levels of inflammasome-
related genes (NLRP3, IL1-b, IL10RA) and genes associated
with fibrosis (FGL2, TGFB1, COTL1) potentially contributing
to tissue damage in severe COVID-19 (154). Single-nucleus
(sn)RNA-seq on lung autopsies from 19 COVID-19 decedents
confirmed the lungs to be highly inflamed with dense infiltration
of aberrantly activated monocyte-derived macrophages and
alveolar macrophages in the tissue (153). Another cross-
sectional scRNA-seq of 780,000 PBMC sampled from 130
patients collected across three medical centers in the UK
revealed the presence of a non-classical monocyte population
characterized by the expression of complement transcripts
C1QA/B/C in COVID-19. The complement system is a key
host-defense mechanism with capacity to exacerbate tissue
injury through its proinflammatory effects. Notably, integration
of these PBMC transcriptomes with data derived from
BALF samples (45) followed by partition-based graph
abstraction (PAGA) analysis demonstrated transcriptional
similarity between the circulating C1QA/B/C+CD16+ monocytes
and alveolar macrophages in COVID-19 emphasizing the altered
composition of the lung MNP compartment (150). The consistent
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reports of aberrant CD163hi and HLA-DRlo monocyte populations
expressing the chemokine receptor CCR2 in the blood and
hyperactivated airway monocytes and macrophages producing
pro-inflammatory chemokines, including CCL2 and CCL3, were
furthermore confirmed by high-dimensional phenotypic,
transcriptomic, and functional profiling of immune cells from
paired airway and blood samples obtained longitudinally from
patients with severe COVID-19 (149).

Taken together, these data strongly suggest a model of a
vicious cycle of pro-inflammatory cytokine release by
hyperactivated lung MNPs resulting in erratic infiltration of
pro-inflammatory effector cells, including dysregulated
monocytes and cytotoxic T cells, which in turn exacerbates
tissue damage and fuels macrophage activation (Figure 1).
Detection of SARS-CoV-2 RNA in
Single-Cell RNA Profiles of Monocytes
and Macrophages
Since SARS-CoV-2 exploits the host cell transcriptional
machinery to express viral genes, viral transcripts can be
detected alongside human mRNA transcripts in scRNA-seq
data, thereby allowing for identification of infected cells and
their unique properties at single-cell resolution. Bost et al.
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developed a new computational pipeline, called Viral-Track, to
quantify viral RNA in single-cell transcriptomic data. Application
of their approach to scRNA-seq data of BALF from the
aforementioned study by Liao et al. revealed the presence of
viral reads in samples derived from patients with severe, but not
mild disease, suggestive of a differential viral load in the lung
(162). The highest levels of viral RNA were observed in ciliated
and epithelial progenitor cells. However, viral RNA was also
detected in a subset of macrophages characterized by expression
of SPP1. Whether these transcripts resulted from direct infection
of and viral replication within the myeloid cells or whether the
cells phagocytosed cellular material carrying viral RNA could not
be clarified by this approach. However, the results of the single-
cell specific viral RNA quantification allowed for differential gene
expression in infected vs bystander SPP1+ macrophages, which
revealed increased expression of chemokines (CCL7, CCL8, and
CCL18) and APOE in virus-positive cells. The approach was
further advanced by Wauters et al. who stratified SARS-CoV-2
infected cells in scRNA-seq data from BALF samples derived
from patients with mild and critical COVID-19 by the presence of
viral transcripts from distinct viral open reading frames (ORF).
Detection of spike protein (S) specific transcripts in epithelial cells
and consequentially reduced expression of ISGs suggests that S+

epithelial cells have actively been infected. In contrast, transcripts
FIGURE 1 | Monocytes and Macrophages in COVID-19. Graphical overview of the compositional and molecular alterations in monocyte and alveolar macrophage
populations in COVID-19 created with BioRender.com. Distinct monocyte and macrophage phenotypes were identified in the peripheral blood of patients with severe
COVID-19 including immature cells indicating emergency myelopoiesis, dysfunctional HLA-DRlo classical monocytes and complement gene expressing non-classical
monocytes. These cells are attracted to the lung by pro-inflammatory chemokines resulting in a continuous accumulation of hyperactivated MNPs producing more
pro-inflammatory mediators recruiting more inflammatory cells, including cytotoxic T cells and neutrophils, thus further exacerbating inflammation and tissue damage.
SARS-CoV-2 infected macrophages in the lung may act as trojan horses propagating SARS-CoV-2 infection and spreading hyperinflammation across the lung.
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of the nucleocapsid protein (N) and the ORF10 and ORF1a were
detected in myeloid and lymphoid cells at much higher levels than
in epithelial cells. Comparing N+ vs N- alveolar and monocyte-
derived macrophages determined genes involved in MHC class-II
expression and ISG to be upregulated in response to the virus.
Grant et al. followed an alternative approach to answer whether
SARS-CoV-2 productively infects myeloid cells. Adding the
negative-strand SARS-CoV-2 transcripts, which are transiently
formed during viral replication, to the reference genome during
alignment and quantification of their single-cell and bulk BALF
transcriptome data allowed for evaluation of replicating SARS-
CoV-2 in AMs. Besides the expected detection of positive and
negative strand transcripts in epithelial cells, viral reads were also
detected in subsets of macrophages suggesting that AMs harbor
SARS-CoV-2 and allow viral replication in vivo (158), challenging
the results on abortive infection gained from in vitro experiments.
Interestingly, immunostaining of post-mortem tissue from
patients who had died from COVID-19 revealed the presence
of SARS-CoV-2 nucleoprotein in and the expression of ACE2 on
populations of CD169+ macrophages in lymph nodes and the
spleen (20). Given the increasing body of evidence in support of
active infection of and the indication of productive viral replication
in AMs by SARS-CoV-2, Grant et al. have come up with the
hypothesis that AMs may act as a Trojan horse, transferring the
virus to adjacent lung regions, thereby slowly propagating
SARS-CoV-2 infection and spreading hyperinflammation across
the lung (Figure 1).
OUTLOOK AND OPEN QUESTIONS

After more than a year into the pandemic, it is rather clear that
the innate immune system and in particular monocytes and
macrophages are linked to the heterogeneity of the COVID-19
disease courses. For example, HLA-DRhi monocytes are typically
seen in mild cases, while HLA-DRlo S100+ cells dominate in
severe COVID-19. Future work needs to untangle which
Frontiers in Immunology | www.frontiersin.org 8
molecular mechanisms are responsible for these different
cellular responses. For example, are certain signals from the
microenvironment normally increasing the induction of HLA-
DR molecules missing in patients with severe disease course?
Are elevated levels of inhibitory factors such as certain
prostaglandins or TGFb responsible for the molecular
phenotype of MNPs in severe COVID-19. Furthermore, is
there a direct link between fibrotic lung disease as a result of
severe COVID-19 with ARDS and changes in the MNP
compartment or other immune cells like NK cells. And if this
is the case, are the anti-fibrotic molecular programs of
monocytes and macrophages not working or do these cells
suddenly gain pro-fibrotic functionality. Are molecular changes
seen in these cells early during the disease predictive for disease
courses leading to irreversible tissue damage as it is proposed for
some patients with Long COVID-19? Even if the pandemic will
be under control due to world-wide vaccination programs and
other medical measures, the sequelae of Long COVID-19 and its
potential burden on long-term health requires further studies
into the role of the immune system, in particular the innate
immune system with monocytes, macrophages and granulocytes
requiring special attention.
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17. Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The Protein
Expression Profile of ACE2 in Human Tissues. Mol Syst Biol (2020) 16:
e9610. doi: 10.15252/msb.20209610

18. Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, et al.
SARS-CoV-2 Entry Factors are Highly Expressed in Nasal Epithelial Cells
Together With Innate Immune Genes. Nat Med (2020) 26:681–7.
doi: 10.1038/s41591-020-0868-6

19. Song X, Hu W, Yu H, Zhao L, Zhao Y, Zhao X, et al. Little to No Expression
of Angiotensin-Converting Enzyme-2 on Most Human Peripheral Blood
Immune Cells But Highly Expressed on Tissue Macrophages. Cytom Part A
(2020) 2020:1–10. doi: 10.1002/cyto.a.24285

20. Xiang Q, Feng Z, Diao B, Tu C, Qiao Q, Yang H, et al. SARS-CoV-2 Induces
Lymphocytopenia by Promoting Inflammation and Decimates Secondary
Lymphoid Organs. Front Immunol (2021) 12:661052. doi: 10.3389/
fimmu.2021.661052

21. Daly JL, Simonetti B, Klein K, Chen KE, Williamson MK, Antón-Plágaro C,
et al. Neuropilin-1 Is a Host Factor for SARS-CoV-2 Infection. Science
(2020) 370:861–5. doi: 10.1126/science.abd3072

22. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S,
et al. Neuropilin-1 Facilitates SARS-CoV-2 Cell Entry and Infectivity.
Science (2020) 370:856–60. doi: 10.1126/science.abd2985

23. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al.
Extrapulmonary Manifestations of COVID-19. Nat Med (2020) 26:1017–32.
doi: 10.1038/s41591-020-0968-3

24. Fraser E. Long Term Respiratory Complications of Covid-19. BMJ (2020)
370:m3001. doi: 10.1136/bmj.m3001

25. Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al.
Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med (2020)
382:2268–70. doi: 10.1056/NEJMc2008597

26. Carfì A, Bernabei R, Landi F. Persistent Symptoms in Patients After Acute
COVID-19. JAMA - J Am Med Assoc (2020) 324:603–5. doi: 10.1001/
jama.2020.12603

27. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS,
et al. Post-Acute COVID-19 Syndrome. Nat Med (2021) 27:601–15.
doi: 10.1038/s41591-021-01283-z

28. Schultze JL, Aschenbrenner AC. COVID-19 and the Human Innate Immune
System. Cell (2021) 184:1671–92. doi: 10.1016/j.cell.2021.02.029

29. Rouse BT, Sehrawat S. Immunity and Immunopathology to Viruses: What
Decides the Outcome? Nat Rev Immunol (2010) 10:514–26. doi: 10.1038/
nri2802

30. Branchett WJ, Lloyd CM. Regulatory Cytokine Function in the Respiratory
Tract.Mucosal Immunol (2019) 12:589–600. doi: 10.1038/s41385-019-0158-0

31. Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D, Pott F, et al.
COVID-19 Severity Correlates With Airway Epithelium–Immune Cell
Interactions Identified by Single-Cell Analysis. Nat Biotechnol (2020)
38:970–9. doi: 10.1038/s41587-020-0602-4

32. Merad M, Martin JC. Pathological Inflammation in Patients With COVID-
19: A Key Role for Monocytes and Macrophages. Nat Rev Immunol (2020)
20:355–62. doi: 10.1038/s41577-020-0331-4

33. Schulert GS, Grom AA. Pathogenesis of Macrophage Activation Syndrome
and Potential for Cytokine-Directed Therapies. Annu Rev Med (2015)
66:145–59. doi: 10.1146/annurev-med-061813-012806

34. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al.
Synergism of TNF-a and IFN-g Triggers Inflammatory Cell Death, Tissue
Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock
Syndromes. Cell (2021) 184:149–68.e17. doi: 10.1016/j.cell.2020.11.025
Frontiers in Immunology | www.frontiersin.org 9
35. Goulding J, Godlee A, Vekaria S, Hilty M, Snelgrove R, Hussell T. Lowering
the Threshold of Lung Innate Immune Cell Activation Alters Susceptibility
to Secondary Bacterial Superinfection. J Infect Dis (2011) 204:1086–94.
doi: 10.1093/infdis/jir467

36. Oliver BGG, Lim S, Wark P, Laza-Stanca V, King N, Black JL, et al.
Rhinovirus Exposure Impairs Immune Responses to Bacterial Products in
Human Alveolar Macrophages. Thorax (2008) 63:519–25. doi: 10.1136/
thx.2007.081752

37. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and
Immunological Features of Severe and Moderate Coronavirus Disease 2019.
J Clin Invest (2020) 130:2620–9. doi: 10.1172/JCI137244

38. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of
Immune Response in Patients With Coronavirus 2019 (COVID-19) in
Wuhan, China. Clin Infect Dis (2020) 71:762–8. doi: 10.1093/cid/ciaa248

39. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ.
COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression.
Lancet (2020) 395:1033–4. doi: 10.1016/S0140-6736(20)30628-0

40. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, et al.
Longitudinal Analyses Reveal Immunological Misfiring in Severe COVID-
19. Nature (2020) 584:463–9. doi: 10.1038/s41586-020-2588-y

41. Silvin A, Chapuis N, Dunsmore G, Goubet AG, Dubuisson A, Derosa L, et al.
Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate
Severe From Mild COVID-19. Cell (2020) 182:1401–18.e18. doi: 10.1016/
j.cell.2020.08.002

42. Schulte-Schrepping J,ReuschN,PaclikD,BaßlerK, SchlickeiserS,ZhangB, et al.
Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment.
Cell (2020) 182:1419–40.e23. doi: 10.1016/j.cell.2020.08.001

43. Cao X. COVID-19: Immunopathology and its Implications for Therapy. Nat
Rev Immunol (2020) 20:269–70. doi: 10.1038/s41577-020-0308-3

44. Aschenbrenner AC, Mouktaroudi M, Krämer B, Oestreich M, Antonakos N,
Nuesch-Germano M, et al. Disease Severity-Specific Neutrophil Signatures
in Blood Transcriptomes Stratify COVID-19 Patients. Genome Med (2021)
13:7. doi: 10.1186/s13073-020-00823-5

45. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. Single-Cell Landscape of
Bronchoalveolar Immune Cells in Patients With COVID-19. Nat Med
(2020) 26:842–4. doi: 10.1038/s41591-020-0901-9

46 . S iddiqi HK, Mehra MR. COVID-19 I l lness in Nat ive and
Immunosuppressed States: A Clinical–Therapeutic Staging Proposal.
J Hear Lung Transplant (2020) 39:405–7. doi: 10.1016/j.healun.2020.03.012

47. van Furth R, Cohn ZA. The Origin and Kinetics of Mononuclear Phagocytes.
J Exp Med (1968) 128:415–35. doi: 10.1084/JEM.128.3.415

48. Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, Aschenbrenner AC,
Schultze JL. The Myeloid Cell Compartment-Cell by Cell. Annu Rev
Immunol (2019) 37:269–93. doi: 10.1146/annurev-immunol-042718-041728

49. Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, et al.
Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory
Diseases. Front Immunol (2019) 10:2035. doi: 10.3389/fimmu.2019.02035

50. Guilliams M, Mildner A, Yona S. Developmental and Functional
Heterogeneity of Monocytes. Immunity (2018) 49:595–613. doi: 10.1016/
j.immuni.2018.10.005

51. Prussin AJ, Garcia EB, Marr LC. Total Concentrations of Virus and Bacteria
in Indoor and Outdoor Air. Environ Sci Technol Lett (2015) 2:84–8.
doi: 10.1021/acs.estlett.5b00050

52. Hussell T, Bell TJ. Alveolar Macrophages: Plasticity in a Tissue-Specific
Context. Nat Rev Immunol (2014) 14:81–93. doi: 10.1038/nri3600

53. Franke-Ullmann G, Pförtner C, Walter P, Steinmüller C, Lohmann-Matthes
ML, Kobzik L. Characterization of Murine Lung Interstitial Macrophages in
Comparison With Alveolar Macrophages In Vitro. J Immunol (1996)
157:3097–104.

54. Neupane AS, Willson M, Chojnacki AK, Vargas E Silva Castanheira F,
Morehouse C, Carestia A, et al. Patrolling Alveolar Macrophages Conceal
Bacteria From the Immune System to Maintain Homeostasis. Cell (2020)
183:110–25.e11. doi: 10.1016/j.cell.2020.08.020

55. Schulz C, Perdiguero EG, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf
K, et al. A Lineage of Myeloid Cells Independent of Myb and Hematopoietic
Stem Cells. Science (2012) 335:86–90. doi: 10.1126/science.1219179

56. Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, et al.
Alveolar Macrophages Develop From Fetal Monocytes That Differentiate
July 2021 | Volume 12 | Article 720109

https://doi.org/10.1016/s2213-2600(21)00218-6
https://doi.org/10.1056/nejmoa030747
https://doi.org/10.1073/pnas.2003138117
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.15252/msb.20209610
https://doi.org/10.1038/s41591-020-0868-6
https://doi.org/10.1002/cyto.a.24285
https://doi.org/10.3389/fimmu.2021.661052
https://doi.org/10.3389/fimmu.2021.661052
https://doi.org/10.1126/science.abd3072
https://doi.org/10.1126/science.abd2985
https://doi.org/10.1038/s41591-020-0968-3
https://doi.org/10.1136/bmj.m3001
https://doi.org/10.1056/NEJMc2008597
https://doi.org/10.1001/jama.2020.12603
https://doi.org/10.1001/jama.2020.12603
https://doi.org/10.1038/s41591-021-01283-z
https://doi.org/10.1016/j.cell.2021.02.029
https://doi.org/10.1038/nri2802
https://doi.org/10.1038/nri2802
https://doi.org/10.1038/s41385-019-0158-0
https://doi.org/10.1038/s41587-020-0602-4
https://doi.org/10.1038/s41577-020-0331-4
https://doi.org/10.1146/annurev-med-061813-012806
https://doi.org/10.1016/j.cell.2020.11.025
https://doi.org/10.1093/infdis/jir467
https://doi.org/10.1136/thx.2007.081752
https://doi.org/10.1136/thx.2007.081752
https://doi.org/10.1172/JCI137244
https://doi.org/10.1093/cid/ciaa248
https://doi.org/10.1016/S0140-6736(20)30628-0
https://doi.org/10.1038/s41586-020-2588-y
https://doi.org/10.1016/j.cell.2020.08.002
https://doi.org/10.1016/j.cell.2020.08.002
https://doi.org/10.1016/j.cell.2020.08.001
https://doi.org/10.1038/s41577-020-0308-3
https://doi.org/10.1186/s13073-020-00823-5
https://doi.org/10.1038/s41591-020-0901-9
https://doi.org/10.1016/j.healun.2020.03.012
https://doi.org/10.1084/JEM.128.3.415
https://doi.org/10.1146/annurev-immunol-042718-041728
https://doi.org/10.3389/fimmu.2019.02035
https://doi.org/10.1016/j.immuni.2018.10.005
https://doi.org/10.1016/j.immuni.2018.10.005
https://doi.org/10.1021/acs.estlett.5b00050
https://doi.org/10.1038/nri3600
https://doi.org/10.1016/j.cell.2020.08.020
https://doi.org/10.1126/science.1219179
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Knoll et al. Monocytes and Macrophages in COVID-19
Into Long-Lived Cells in the First Week of Life. via GM-CSF. J Exp Med
(2013) 210:1977–92. doi: 10.1084/jem.20131199

57. Tarling JD, Lin HS, Hsu S. Self-Renewal of Pulmonary Alveolar
Macrophages: Evidence From Radiation Chimera Studies. J Leukoc Biol
(1987) 42:443–6. doi: 10.1002/jlb.42.5.443

58. Sawyer RT, Strausbauch PH, Volkman A. Resident Macrophage
Proliferation in Mice Depleted of Blood Monocytes by Strontium-89. Lab
Investig (1982) 46:165–70.

59. Golde DW, Byers LA, Finley TN. Proliferative Capacity of Human Alveolar
Macrophage. Nature (1974) 247:373–5. doi: 10.1038/247373a0
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Abstract

Background: The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over
the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with
acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the
severe cases call for a better characterization and understanding of the changes in the immune system.
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Methods: In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell
transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using
a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used
to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify
known or novel drug candidates based on finding from data-driven findings.

Results: Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a
data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were
prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an
independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients
(44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples
derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly
specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific
drug candidates targeting the dysregulated systemic immune response of the host.

Conclusions: Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not
simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for
COVID-19 since they capture granulocytes which are major drivers of disease severity.

Keywords: COVID-19, Blood transcriptomics, Transcriptome, Co-expression analysis, Stratification, Molecular disease
phenotypes, Granulocytes, Neutrophils, Drug repurposing

Background
Pandemic spread of the recently emerged coronavirus, se-
vere acute respiratory syndrome-coronavirus 2 (SARS-
CoV-2), has resulted in over 84 million confirmed infected
individuals and over 1.8 million deaths worldwide (WHO,
covid19.who.int, as of January 6, 2021) from the resulting
severe respiratory illness, called coronavirus disease 2019
(COVID-19) [1–3]. Based on clinical observations, it has
become clear that there is great variety in disease mani-
festation, ranging from asymptomatic cases, to flu-like
symptoms, to severe cases needing mechanical ventilation,
to those who do not survive [4–8]. Increasing evidence
suggests that the immune system plays a pivotal role in
determining the severity of the disease course and it has
been suggested that different molecular phenotypes might
be responsible for the heterogeneous outcome of COVID-
19 [9–14]. Identifying these molecular phenotypes might
not only be important for a better understanding of the
pathophysiology of the disease, but also to better define
patient subgroups that are more likely to benefit from spe-
cific therapies [15–20]. Indeed, while vaccines are still
under development, finding an effective and patient-
tailored therapeutic management for COVID-19 patients
including targeting derailed immune mechanisms [21–23]
is key to mitigate the clinical burden as well as to prevent
further disease fatalities [18, 19].
The analysis of peripheral blood-derived immune pa-

rameters in inflammatory and infectious diseases either
by classical testing, including flow cytometry and serum
protein measurements, or by omics technologies, includ-
ing transcriptomics, has been proven very valuable in
the past [24–32]. In COVID-19 patients, monitoring

peripheral blood as a proxy for the ongoing changes
within the circulating cells of the immune system has re-
vealed lymphopenia to correlate with disease severity
[33]. Single-cell analysis of blood-derived cells revealed
downregulation of MHC molecules on monocytes and
granulocytes [34], immune cell exhaustion [35], and a
dysregulated myeloid cell compartment [34, 36] includ-
ing dendritic cells [37] in a disease stage-dependent
manner. Serial immune response analyses revealed four
immune signatures represented by growth factors, two
cytokine-defined phenotypes as well as a chemokine-
defined phenotype [14]. While an early elevation in cyto-
kine levels was associated with worse disease outcomes,
patients with moderate COVID-19 displayed a progres-
sive reduction in antiviral and antifungal immune re-
sponses [14]. Moreover, impaired type I interferon
responses were seen in severe COVID-19 cases [38]. In
another study, three distinct patient immunotypes were
related to a poor clinical trajectory when combining flow
cytometry, single-cell proteomics, and clinical observa-
tions [12]. Furthermore, several studies reported in-
creased IL-6 serum levels to be a hallmark of COVID-19
[9, 13, 39–41], but also TNF and IL-8 [41]. A very recent
large multi-omics longitudinal observational study iden-
tified a sharp transition between mild and moderate dis-
ease, indicating that targeting such a shift therapeutically
might be beneficial for these patients [13].
Indeed, while one can envision mild and/or early cases

to benefit from antiviral drug treatments currently under
clinical investigation, more severe cases may benefit
from treatment to mitigate the excessive systemic im-
mune reactions resulting in progressing pneumonia and
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even respiratory failure associated with severe COVID-
19 [4–9]. The detrimental role of the systemic inflamma-
tion in the late phase of the disease has become clear, as
the elevated inflammatory signaling has been associated
with disease morbidity [6, 9, 13, 38–42]. Thus, a better
understanding of the dysregulation of the host response
to the infection leading to immunopathology is urgently
needed to dissect and comprehend the immune parame-
ters accompanying the heterogeneous disease severity
seen upon SARS-CoV-2 infection.
Based on previous experience with other infectious

diseases [24–30], we hypothesized that whole blood
transcriptomes should allow us to (1) determine immune
cellular characteristics and functions in COVID-19 pa-
tients, (2) reveal heterogeneous molecular phenotypes of
patients with similar clinical presentation, (3) define
commonalities and differences of COVID-19 in compari-
son to other inflammatory conditions, and (4) predict
potential drug repurposing that might counteract ob-
served immune dysregulations.
Here, by using blood transcriptomes, we provide evi-

dence for molecular subtypes within the immune re-
sponse of COVID-19 patients beyond distinguishing
mild and severe cases only. In addition, molecular
changes in blood of severely affected patients are strik-
ingly associated with changes in the granulocyte com-
partment. Furthermore, blood transcriptomes of
molecular subtypes of COVID-19 patients seem to be
unique in comparison to more than 2600 samples de-
rived from other infections, inflammatory conditions,
and controls. Finally, reverse drug target prediction
using patients’ blood transcriptomes revealed known as
well as additional new potential targets for further evalu-
ation. Our data might also serve as a starting point for a
large-scale assembly of molecular data collected during
currently ongoing and future therapy trials for COVID-
19 patients based on whole blood transcriptomes.

Methods
Human cohorts
Whole blood samples for RNA-seq analysis
The study was conducted between March 13 and March
30, 2020. A total of 6 ml of blood was sampled from pa-
tients with community-acquired pneumonia (CAP) by
SARS-CoV-2 within the first 24 h of hospital admission.
CAP was defined as the presence of diffuse infiltrates in
chest X-ray or chest computed tomography and positive
molecular testing of respiratory secretions for SARS-
CoV-2. Exclusion criteria were infection by the human
immunodeficiency virus, neutropenia, and any previous
intake of immunosuppressive medication (corticoste-
roids, anti-cytokine biologicals, and biological response
modifiers). The studies were conducted under the 23/
12.08.2019 approval of the Ethics Committee of Sotiria

Athens General Hospital and the 26.02.2019 approval of
the Ethics Committee of ATTIKON University General
Hospital. Written informed consent was provided by pa-
tients or by first-degree relatives in case of patients un-
able to consent. Patients were classified based on the
WHO ordinal scale: mild =WHO1–4 and severe =
WHO5–7. “Immune classification” of the patients is
based on the criteria used in Giamarellos-Bourboulis
et al. [40]: MAS for patients with > 4.420 ng/ml ferritin,
dysregulation for patients with < 4.420 ng/ml ferritin
with < 5000 molecules of HLA-DR+/CD14+ cells, and
intermediate for those patients lying in between MAS
and dysregulation. The following information was re-
corded: white blood cell count and differential, adminis-
tered treatment, and 28-day outcome. Patients were
sampled within 24 h upon admission to the hospital. A
volume of 2.5 ml of the collected blood was transferred
into one PAXgene tube and stored at − 80 °C. The
remaining was used for flow cytometry analysis. A simi-
lar amount of blood was sampled from 10 controls,
matched for age, sex, and Charlson’s comorbidity index.
They were subject to testing of the nasopharyngeal se-
cretion for SARS-CoV-2 and all confirmed to be asymp-
tomatic and seronegative.
For the second cohort, whole blood samples were col-

lected for RNA-seq analysis in PAXgene tubes from 30
patients upon admission to the Intensive Care Unit of
the Radboud University Medical Center in Nijmegen,
the Netherlands. The study was carried out in accord-
ance with the applicable rules concerning the review of
research ethics committees and informed consent. All
patients or legal representatives were informed about the
study details and could decline to participate. COVID-19
was diagnosed by a positive SARS-CoV-2 RT-PCR test
in nasopharyngeal and throat swabs and/or by typical
chest CT-scan findings. Exclusion criteria were
hematological malignancies and/or active chemotherapy,
solid organ transplant, autoimmune diseases, and pre-
existent use of high-dose corticosteroids.

Granulocyte samples for RNA-seq analysis
This study was approved by the Institutional Review
Board of the University Hospital Bonn (073/19 and 134/
20). After providing written informed consent, 16
COVID-19 patients (44 samples) were included in the
study. In-patients who were not able to consent at the
time of study enrollment, consent was obtained after re-
covery. COVID-19 patients who tested positive for
SARS-CoV-2 RNA in nasopharyngeal swabs were re-
cruited at the Medical Clinic I of the University Hospital
Bonn between March 30 and May 17, 2020. Longitudinal
samples were included from day 1 to 20 after onset of
symptoms and grouped into day 1–10 and 11–20 ac-
cording to previous reports [34, 43].
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Granulocytes were isolated from EDTA-treated or
heparinized peripheral blood by density centrifugation
over Pancoll or Ficoll-Paque density centrifugation
(density: 1.077 g/ml). Granulocyte fractions were then
treated with 10ml RBC lysis buffer (Biolegend) for 10
min. After RBC lysis, cells were washed with DPBS and
recovered by centrifugation at 300×g for 10 min. Gran-
ulocyte pellets were then lysed with 500 μl of QIAzol
(Qiagen), shortly vortexed, and incubated 5 min at RT
prior storage at − 80 °C until RNA extraction.

Rhineland Study as control samples within the integrated
dataset for disease comparison
Study population
The Rhineland Study is an ongoing community-based
cohort study in which all inhabitants of two geographic-
ally defined areas in the city of Bonn, Germany, aged
30–100 years are being invited to participate. Persons
living in these areas are predominantly German with
Caucasian ethnicity. Participation in the study is possible
by invitation only. The only exclusion criterion is insuffi-
cient German language skills to give informed consent.

Ethical approval
Approval to undertake the Rhineland Study was ob-
tained from the ethics committee of the University of
Bonn, Medical Faculty. The study is carried out in ac-
cordance with the recommendations of the International
Conference on Harmonization (ICH) Good Clinical
Practice (GCP) standards (ICH-GCP). Written informed
consent was obtained from all participants in accordance
with the Declaration of Helsinki.

Blood withdrawal
Overnight fasting blood was collected from all partici-
pants between 7:00 and 9:30 AM, including a PAXgene
tube for RNA extraction.

Flow cytometry techniques
Whole blood cells were incubated for 15 min in the dark
with anti-CD45 PC5 (emission 667 nm, Beckman
Coulter). Fluorospheres (Beckman Coulter) were used
for the determination of absolute counts. Cells were ana-
lyzed after running through the CYTOMICS FC500 flow
cytometer (Beckman Coulter Co, Miami, FL). Isotypic
IgG controls stained also with anti-CD45 were used for
each patient. Gating to identify neutrophils and lympho-
cytes was done by the characteristic sideward scattering
of CD45-positive cells (Additional file 2: Figure S8).

Whole blood RNA isolation
Total RNA was isolated from whole blood samples
stored and stabilized in PAXgene RNA tubes using the
Qiagen PAXgene Blood miRNA kit according to the

manufacturer’s guidelines. Eluted RNA was dissolved in
RNase-free water. The quality and quantity of RNA were
evaluated by visualization of 28S and 18S band integrity
on a Tapestation 4200 system (Agilent).

RNA-sequencing
Total RNA was converted into double-stranded cDNA
libraries using the TruSeq Stranded Total RNA with
Ribo-Zero Globin kit (Illumina). In brief, ribosomal and
globin mRNA were depleted from 750 ng purified total
RNA using biotinylated, target-specific oligos combined
with Ribo-Zero rRNA removal beads; remaining RNA was
fragmented using divalent cations under elevated
temperature. First-strand was generated using Super-
Script2 RT (Invitrogen) supplemented with actinomycin
D, followed by second-strand synthesis with dUTP re-
placing dTTP. 3′ ends were adenylated and index adapters
were ligated before subsequent PCR amplification to yield
the final library. Remaining overhangs were converted into
blunt ends via exonuclease/polymerase activities, and en-
zymes were removed. Selective enrichment of DNA frag-
ments with ligated adaptor molecules was performed
using Illumina PCR primers in a 15-cycle PCR reaction,
followed by purification cDNA using SPRIBeads (Beck-
man Coulter). Libraries were quantified by Qubit dsDNA
HS Assay (Thermo Fisher Scientific), and fragment size
distribution was determined using the HS D1000 assay on
a Tapestation 4200 system (Agilent). High-throughput se-
quencing was carried out with a NovaSeq™ 6000 Sequen-
cing System S2 (50bp paired-end reads), and data was
converted into fastq files using bcl2fastq2 v2.20.

RNA-sequencing analysis
Sequenced reads were aligned and quantified using
STAR: ultrafast universal RNA-seq aligner (v2.7.3a) [44]
and the human reference genome, GRCh38p13, from
the Genome Reference Consortium. Raw counts were
imported using DESeqDataSetFromHTSeqCount func-
tion from DESeq2 (v1.26.0) [45] and rlog transformed
according to DESeq2 pipeline. DESeq2 was used for the
calculation of normalized counts for each transcript
using default parameters. All normalized transcripts with
a maximum over all row mean lower than 10 were ex-
cluded resulting in 37,526 present transcripts. Differen-
tially expressed genes were calculated for the scenario
status (COVID-19 vs controls), mild/severe (severe
COVID-19 vs controls, mild COVID-19 vs controls, and
severe vs mild COVID-19), and new_cluster (1vs6, 2vs6,
3vs6, 4vs6, and 5vs6) separately using a p value cutoff of
0.05, an adjusted p value (IHW) < 0.05 (independent hy-
pothesis weighting), and a FC of 2. All present tran-
scripts were used as input for principal component
analysis. The top 25% most variable transcripts within
the dataset were selected and visualized in a heat map.
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DEGs were visualized as DE bar plots and were used as
input for volcano plots.

Gene ontology enrichment analysis (GOEA)
To test for functional enrichment within all three sce-
narios, we performed GOEA for up- or downregulated
transcripts in the respective comparison using gene
ontology set of biological processes. Gene set
“c5.bp.v7.0.symbols.gmt” was obtained from the Molecu-
lar Signatures Database (MSigDB) [46]. compareCluster
and enrichGo functions from the R package ClusterPro-
filer (v3.12.0) [47] were used to determine significant en-
richment (q value < 0.05) of biological processes. All
present genes were used as background (universe).

Filtering for transcription factors, epigenome,
surfaceome, and secretome
All present transcripts were filtered and sorted by their
variance in the dataset. The 20 most variable genes of
each category were selected and visualized using a heat
map. Transcription factor lists were extracted from [48],
the epigenome gene list was literature-driven, and sur-
face and secretome markers were extracted from the
Human Protein Atlas [49].

Clustering of patients according to clinical parameters
The contribution of each clinical parameter to the tran-
scriptome in COVID-19 patients was determined using
linear modeling of each parameter separately with PC1.
Clinical parameters with rounded up adjusted r-square
≥ 0.2 were used for agglomerative hierarchical clustering
of the COVID-19 patients. A dissimilarity matrix based
on Gower distance was calculated using the daisy func-
tion from the cluster packages (version 2.1.0). Agglom-
erative hierarchical clustering was performed using the
hclust function, defining the method with a setting for-
ward.D2 method linkage. We evaluated the clustering by
extracting cluster statistics using the function cluster.-
stats from the package fpc (version 2.2-5). The number
of clusters was chosen at the value at which the lowest
distance among patients within clusters (i.e., low value
of within-cluster sum of squares distance) and preserv-
ing a high distance among clusters (i.e., high average sil-
houette width) was achieved, while still maintaining a
comparable number of individuals among the clusters.

Linear support vector regression
Linear support vector regression [50] was employed to
computationally deconvolute the study’s whole blood
samples. Gene expression tables were normalized with
DESeq2 and were utilized as the input mixture file.
LM22-subsetted signatures for B cells, T cells, NK cells,
monocytes, dendritic cells, eosinophils, and neutrophils
were generated as described on https://cibersort.

stanford.edu/tutorial.php. The algorithm was subse-
quently run with 1000 permutations, and the proportions
of cell types were visualized with ggplot2 (v3.2.1) [51].

CoCena2: Construction of Co-expression network
analysis—automated
To define differences and similarities in transcript ex-
pression patterns among the different groups, CoCena2

(Construction of Co-expression network analysis—auto-
mated) was performed based on Pearson’s correlation.
CoCena2 is a network-based approach to identify clus-
ters of genes that are co-expressed in a series of
observed conditions based on data retrieved from RNA-
sequencing. The tool offers a variety of functions that
allow subsequent in-depth analysis of the biological con-
text associated with the found clusters. First, we have
calculated the variance for each gene in the complete
dataset. Nine thousand three hundred seventy-eight of
all present genes show a variance of at least 3rd quantile
of all variances. Therefore, we selected the 10,000 most
variable genes as input for the analysis.
To identify genes whose expression patterns are highly

similar across all tested samples, pairwise Pearson’s cor-
relation coefficients are calculated using the R package
Hmisc (v4.1-1). The underlying assumption of the Pear-
son correlation to the data is that it is normally distrib-
uted, which is a valid assumption to make in the context
of gene expression when looking at expression patterns
within different experimental conditions. The correlation
between each pair of genes is the basis for the subse-
quent network construction. Therefore, the tool focuses
mainly on positively correlated gene pairs, since the rate
of confirmation of an edge representing an association
of genes is higher than that of a non-existing
association.
In order to refine the structure of the upcoming net-

work and to unravel the condition-specific signatures, a
correlation cutoff is proposed to mark the minimal
correlation a pair of genes must exhibit for their co-
expression to be taken into account. The cutoff is deter-
mined based on different criteria:

1) Scale-free topology

Gene expression networks have been argued to have a
scale-free topology [52], meaning that the majority of
vertices has a low number of adjacent edges, also re-
ferred to as the vertex’ degree, whereas only very few
vertices have a high degree. The degree distribution of
scale-free networks asymptotically follows a power law.
To assess the scale-free topology of a network con-
structed by a given correlation cutoff, a log-log plot of
the degree distribution is constructed and the R2 value

Aschenbrenner et al. Genome Medicine            (2021) 13:7 Page 5 of 25

https://cibersort.stanford.edu/tutorial.php
https://cibersort.stanford.edu/tutorial.php


of the resulting linear regression is used to evaluate the
scale-free criterion.

2) Number of graph components

A graph component is a subset of nodes, such that
there is a path from every node within the component
to any other node in that same component but none
connecting the nodes to any outside of that component.
Even though there exist functional collections of genes
that cooperate to fulfill a common task, these collections
are not expected to be operating independently within
the cell. Thus, the cutoff proposal favors graphs with a
small number of components.

3) Number of edges

To avoid a highly connected graph with great lack of
structure—“hairball,” the cutoff is chosen such that the
number of edges is minimized while respecting the
abovementioned criteria.
A Pearson correlation coefficient cutoff of 0.857 (6085

nodes and 252,584 edges) was chosen to construct scale-
free networks.
The undirected co-expression network is constructed

based on the gene pairs which show a higher correlation
in their expression pattern than the set cutoff. A series
of network-based clustering algorithms is available to
then identify clusters of strong co-expression within the
network. An option “auto” is provided, which tests the
different clustering algorithms and picks the one that
achieves the highest modularity score. Unbiased cluster-
ing was performed using the “label propagation” algo-
rithm in igraph (v1.2.1) [the igraph software package for
complex network research] and was repeated 1000
times. Modules with less than 40 genes were discarded.
Genes assigned to more than 5 different clusters during
the iterations received no cluster assignment.
To assess the expression strength of the found gene

clusters in the different studied conditions, the group
fold changes (GFCs) of the conditions are calculated for
each gene by calculating the mean expression of a gene
over all samples and then computing the fold change of
the mean gene expression within each condition from
the overall mean. The GFCs of all genes within one clus-
ter are then added and divided by the total number of
genes per cluster, resulting in condition-specific GFCs
per cluster. By using the GFC, it is possible to illustrate
a directional change for all conditions including the con-
trol samples in respect to the overall GFC. Agglomera-
tive hierarchical clustering was performed by the hclust
function (cluster package, version 2.1.0), using a dissimi-
larity matrix of samples based on the GFC values of each
sample defined with the daisy function for calculating

the Euclidean distances. The number of clusters was set to
achieve a low within-cluster sum of squares distance and a
high average silhouette, while preserving a comparable num-
ber of individuals within each cluster. The clinical parame-
ters and the GFC results are displayed in a heat map where
conditions are clustered by their GFCs revealing similar and
opposing patterns (Cluster/Condition heat map). The ex-
pression pattern of the modules can be further used for add-
itional analysis, e.g., stratification in another cohort.
Utilizing the R package clusterProfiler, CoCena2 auto-

matically analyzes the gene clusters with respect to dif-
ferent kinds of gene set enrichments: the genes within
each cluster are scanned for enrichment in KEGG [53],
Hallmark [54], Gene Ontology terms [55], and Reactome
[56]. Using the R package pcaGoPromoter [57], the genes
are also analyzed for enrichment of transcription factor
binding sides, and if the predicted transcription factors
are present in the data, their expression profile is visual-
ized to facilitate evaluation of their possible role.
To investigate the interactions between protein-

coding and long non-coding RNAs, we utilized the
enricher function from the clusterProfiler package.
We performed an enrichment analysis for lncRNA
species, using the protein-coding genes that belong to
the lightgreen cluster as the input gene list and all
the network protein-coding genes as background. The
annotation table defining lncRNA to protein-coding
RNA was downloaded from the RNA interactome
database RNAInter [58], filtered to only include inter-
actions of lncRNA detected by the RNA-sequencing,
had an experimental validation score of at least 0.5,
and was involved in regulating the function of granu-
locytes [59]. Next, to obtain a comprehensive under-
standing of the lncRNA that may be relevant for this
specific network module, the lncRNA found by the
enrichment analysis with p value < 0.1 were sorted ac-
cording to the highest number of genes. Thereafter,
Spearman’s correlation among the gene expression of
each lncRNA and its corresponding protein-coding
RNAs was performed, and significant protein-coding
RNA genes were plotted in a heat map. The CoCena2

network was visualized by using the ggplot function
from the ggplot2 package. Annotations were gener-
ated by filtering the edges of the network for the 5
top connected transcription factors, epigenetic regula-
tors, and surface and secretome markers in each clus-
ter. GO enrichment analysis was performed on each
cluster by utilizing the enrichGO function from the
clusterProfiler package to assess the overall function-
ality of the cluster using the genes of each cluster as
the input and all the in the network as background.
The top GO term and top connected genes of each
cluster were compiled representing their general
characteristic.
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Granulocyte dataset analysis
Granulocyte raw data was aligned and quantified using
STAR (v2.7.3a) and the human reference genome,
GRCh38p13, from the Genome Reference Consortium.
Raw counts were imported using DESeqDataSet-
FromHTSeqCount function and rlog transformed.
DESeq2 was used for the calculation of normalized
counts for each transcript using default parameters. All
normalized transcripts with a maximum over all row
mean lower than 10 were excluded resulting in 27,781
present transcripts. Differentially expressed genes were
calculated for the severe vs mild for day 1–10 and 11–20
(post 1st symptoms groups) separately using a p value
cutoff of 0.05, an adjusted p value (IHW) < 0.05 (inde-
pendent hypothesis weighting), and a FC of 2. All
present transcripts were used as input for principal com-
ponent analysis. DEGs were visualized as DE bar plots.
To visualize the module expression over the time be-

tween mild and severe case, the granulocyte data was
grouped by the modules identified in Fig. 2 and the
function geom_smooth with default parameters was
used to calculate the estimated curve for the module
gene expression over the time and a confidence band
representing the uncertainty in the estimate.

Data integration for disease comparison
To describe the differences and similarities between
COVID-19 and other diseases, we searched in databases
for genomics data such as Gene Expression Omnibus
(GEO) [60] and ArrayExpress [61] for studies that fulfill
certain criteria: (I) having at least 20 samples, (II) the
disease of study was of relevance (other infections, such
as bacterial and viral, plus diseases that mainly involve
immune dysregulation, such as autoimmune disease),
and (III) library preparation and sequencing technology
differ as little as possible from our COVID-19 protocol,
except for the influenza dataset which comes from a
microarray experiment (GSE111368). The fastq files of
18 additional studies (PRJNA588242, GSE101705,
GSE107104, GSE112087, GSE127792, GSE128078,
GSE129882, GSE133378, GSE143507, GSE57253,
GSE63042, GSE66573, GSE79362, GSE84076,
GSE89403, GSE90081, GSE97590, GSE99992, and the
Rhineland study) were downloaded and aligned with
STAR. The counts were imported into R (v3.6.2) and
were modeled for each gene using DESeq2. Merged raw
counts from the RNA-seq studies were combined with
the microarray study and were filtered for the genes
present in the COVID-19 co-expression network, and
ribosomal protein-coding genes and mitochondrial genes
were removed, yielding a total of 5770 genes and 3176
samples. To account for differences in sequencing depth
across studies as well as between RNA-seq and micro-
array data, a quantile normalization was performed on

the filtered data. Group fold changes were calculated,
where the grouping variable was set to be the disease
status.
To explore COVID-19 associated expression of genes

within the integrated dataset, the data was intersected
with the gene modules previously retrieved from the
COVID-19 CoCena2 network, and the mean group fold
changes were determined per cluster and condition and
visualized in a heat map.
The modules were analyzed for enriched immune cell

markers as provided by CIBERSORT and BD Rhapsody,
and those that showed neutrophil enrichment were
screened for genes representative of different neutrophil
subtypes as recently described [34].

Enrichment of signature from scRNA data of granulocytes
The signatures of different neutrophil states in COVID-
19 as previously described [34] were enriched for the dif-
ferent clusters from CoCena2.
To get a more fine-grained differentiation of the specific

neutrophil states for Fig. 3, the authors kindly provided
additional signatures from the scRNA dataset using a Wil-
coxon rank sum test for differential gene expression im-
plemented in Seurat. Genes had to be expressed in > 10%
of the cells of a cluster, to exceed a logarithmic threshold
> 0.1, and to have > 5% difference in the minimum detec-
tion between two clusters. The following additional com-
parisons were performed: 8 and 9 (pre- and immature
neutrophils combined) vs the rest, and 1, 3, 4, and 6 (neu-
trophil states from control patients) vs the rest. To get
unique signature genes for clusters 0, 2, and 5 (COVID-
19-specific clusters), we took the following approach for
each cluster: (1) calculate DEG for cluster 0 vs all other
clusters, (2) calculate DEG for cluster 0 vs 2 and 5, (3) take
intersection of these two calculations, and (4) remove
genes that occur in more than one of these intersections
of cluster 0, 2, or 5.

Gene set enrichment analysis (GSVA)
The GSVA R package (v1.34.0) [62] was used to test the
enrichment of neutrophil signatures [34] in the normal-
ized gene expression table. The gsva method was used
for the run and data were visualized in a heat map with
the pheatmap (v1.0.12) package.

Overview of drugs
An overview of currently used, recommended, or investi-
gated drugs for treatment of COVID-19 patients was
compiled from drug lists and lists of drugs in clinical tri-
als downloaded from https://www.drugbank.ca/covid-19,
https://www.pharmgkb.org/page/COVID, and https://
clinicaltrials.gov/ct2/results?cond=COVID-19 (last up-
date: 5 June 2020). Classification of the drugs was per-
formed based on the ATC code, as well as additional
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research on the drugs action. Drug target genes were
identified using the DrugBank database [63] (Add-
itional file 7: Table S6). The number of drugs currently
recommended or investigated, and the number of clin-
ical trials within the respective drug classes were visual-
ized using the ggplot2 package [64, 65]. The target genes
of the drugs currently recommended or investigated
with a minimum frequency of 4 were visualized in a
word cloud using the wordcloud package (version 2.6).

Drug prediction
To identify drugs, which reverse the gene expression sig-
nature observed in the comparisons of the COVID-19-
specific clusters compared to the control cluster, the
drug prediction databases iLINCS (http://www.ilincs.
org/ilincs/) and CLUE (https://clue.io/) were accessed.
As input for the drug prediction, the top 1000 (iLINCS)
or the top 100 (CLUE) DEGs were used. Drugs reversing
the COVID-19 gene expression signature (defined by a
negative score) were pooled together with drugs under
investigation in current literature, resulting in a list of
940 unique drugs. Using the iLINCS API (https://github.
com/uc-bd2k/ilincsAPI/blob/master/usingIlincsApis.
Rmd), every gene expression signature from each drug
listed in the signature libraries iLINCS chemical pertur-
bagens (LINCSCP), iLINCS targeted proteomics signa-
tures (LINCSTP), Disease-related signatures (GDS),
Connectivity Map signatures (CMAP), DrugMatrix sig-
natures (DM), Transcriptional signatures from EBI Ex-
pression Atlas (EBI), Cancer therapeutics response
signatures (CTRS), and Pharmacogenomics transcrip-
tional signatures (PG) was downloaded. Labeling was
performed in the following principle: “drug name”_
“database”_“database ID”. Signatures were ordered by
fold change, and only the top 300 genes were used. This
resulted in a total of 62,897 unique drug signatures each
with an up- and downregulated set. Subsequently, GSEA
[66] was performed on the sequencing data for every up-
and downregulated set for each drug and each cluster
comparison. The resulting normalized enrichment
scores (NES) were used to calculate the delta NES for
each drug, defined as ΔNES =NES (down) −NES (up),
ergo the difference of the NES from the downregulated
set and the NES from the upregulated set of each re-
spective drug. These ΔNES values were then k-mean
clustered (k = 40). The clusters showing the highest
ΔNES values for all comparisons and the cluster show-
ing only high ΔNES in the comparison G1 vs G6 (most
severe) were chosen and selected ones of the uniquely
present drugs shown. The leading edge genes of the
downregulation signatures of these drugs for the G1 vs
G6 comparison were examined, and the frequency was
counted. Recurring target genes were plotted on the
CoCena2 network.

Patterns of differential gene expression of genes tar-
geted by drugs which are currently approved or under
investigation for the treatment of COVID-19 patients
were visualized using ggplot2. To this end, target genes
of each drug and their first-degree neighbors were ex-
tracted from several databases and the gene co-
expression networks, respectively. Regulation patterns of
expression of these genes in different COVID-19 patient
groups, as compared to the control group, were classi-
fied as up-/downregulated or not significant (n.s.) when
pairwise comparisons of gene expression of COVID-19
patients and controls were not statistically significant.
The same methodology was applied to genes not in-
cluded in the drug-target list to identify genes which are
not targeted by current drugs but could be potentially
targeted by newly identified drugs.

Results
Whole blood transcriptomes reveal diversity of COVID-19
patients not explained by disease severity
To investigate the host immune response of COVID-19
patients in a systematic approach, whole blood transcrip-
tomes were analyzed from 39 patients and 10 control
donors recruited at the same hospital by RNA-
sequencing (RNA-seq, Fig. 1a, Additional file 1: Table
S1). Two-dimensional data representation using princi-
pal component analysis (PCA) showed separation of
COVID-19 and control samples (Additional file 2: Figure
S1A). Differential expression analysis identified 2289 up-
regulated and 912 downregulated genes comparing
COVID-19 and control samples (FC > |2|, padj < 0.05;
Fig. 1b). Upregulated genes showed greater fold changes
than the downregulated genes (Fig. 1c). Of note, CD177,
markedly expressed in neutrophils [67, 68], was the most
prominently upregulated gene with the lowest p value.
Heightened expression was further found for several
granulocyte- and monocyte-associated molecules, such
as Eosinophil-derived neurotoxin (RNASE2), Haptoglo-
bin (HP), Neutrophil elastase (ELANE), Olfactomedin 4
(OLFM4), Myeloperoxidase (MPO), Resistin (RETN),
matrix metalloproteinases (MMP8, MMP9), and alar-
mins (S100A8, S100A9, S100A12), as well as for cell
cycle progression-associated genes (G0S2, CDC6,
CDC25A), type I interferon (IFN)-induced genes (IFI27,
IFITM3, SIGLEC1 (CD169)), but also genes with im-
munosuppressive functions (IL10, SOCS3, ARG1 (Argi-
nase)). Downregulated genes included many
lymphocyte-associated factors, such as NELL2, RORC,
KLRB1, TCF7 (TCF1), RCAN3 (Calcipressin-3), BACH2,
or LEF1 (Fig. 1c, Additional file 3: Table S2). Functional
analysis of the differentially expressed genes (DEGs) by
gene ontology enrichment analysis (GOEA) revealed
granulocyte and complement activation-associated terms
enriched in the upregulated DEGs and lymphocyte
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Fig. 1 Whole blood transcriptomes reveal diversity of COVID-19 patients not explained by disease severity. a Schematic workflow for analysis of
whole blood transcriptome data. b Number of significantly upregulated (red) and downregulated (blue) genes (FC > |2|, FDR-adj. p value < 0.05)
comparing COVID-19 and control samples. c Volcano plot depicting fold changes (FC) and FDR-adjusted p values comparing COVID-19 and
control samples. Differentially expressed up- (red) and downregulated genes (blue) are shown and selected genes are highlighted. d Plot of top
10 most enriched GO terms for significantly up- and downregulated genes, showing ratio of significantly regulated genes within enriched GO
terms (GeneRatio). e PCA plot depicting relationship of all samples based on dynamic gene expression of all genes comparing mild and severe
COVID-19 as well as control samples. f Number of significantly upregulated (red) and downregulated (blue) genes (FC > |2|, FDR-adj. p value <
0.05) comparing mild and severe COVID-19 as well as control samples. g Volcano plot depicting fold changes and FDR-adjusted p values
comparing mild and severe COVID-19 as well as control samples. Differentially expressed up- (red) and downregulated genes (blue) are shown
and selected genes are highlighted. h Hierarchical clustering map of 25% most variable genes between control patients and COVID-19 mild or
severe patients, with additional annotation of disease outcome, hierarchical agglomerative clustering of clinical parameters COVID-19, the groups
defined by agglomerative clustering, WHO ordinal score, and age bins
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differentiation and T cell activation for the downregu-
lated DEGs (Fig. 1d). Interestingly, the T cell activation-
associated genes accounting for the enrichment of this
term for the upregulated DEGs included IL10 and
CD274 (PD-L1) pointing at suppressive T cell function-
ality (Additional file 3: Table S2).
Given the heterogeneous nature of clinical manifest-

ation of COVID-19, we sought to stratify the transcrip-
tomic profiles by disease severity based on WHO ordinal
scale. Classification scores of 1–4 was considered as
“mild” and 5–7 as “severe.” Indeed, samples from pa-
tients with mild disease clustered more closely to the
control samples, while those of severe cases scattered
away in the PCA (Fig. 1e). Consequently, there was a
greater number of DEGs in blood samples from severe
COVID-19 patients than in mild patients when com-
pared to controls (Fig. 1f). Many of the DEGs found in
the COVID-19 vs control comparison (Fig. 1c) were also
found when separating the COVID-19 samples by sever-
ity (Additional file 2: Figure S1B,C). Both, severe and
mild COVID-19 in comparison to controls shared
neutrophil-specific CD177 and HP expression among
the most upregulated DEGs, as well as lymphocyte-
associated genes such as ABLIM1, NELL2, RCAN3,
RORC, BACH2, and KLRB1, among the downregulated
genes (Additional file 2: Figure S1B,C). GOEA reflected
these findings (Additional file 2: Figure S1D). Although
all samples from COVID-19 patients showed functional
enrichment for granulocyte/neutrophil activation-
associated terms in general, direct comparison of severe
and mild COVID-19 patients revealed this to be a
heightened characteristic of the immunoprofiles in se-
vere COVID-19 (Additional file 2: Figure S1D). Upregu-
lated DEGs in the severe vs mild sample comparison
included CD177, Neutrophil elastase (ELANE), Olfacto-
medin 4 (OLFM4), Myeloperoxidase (MPO), Resistin
(RETN), and matrix metalloproteinases MMP8 and
MMP9. Whereas the type I IFN-response genes, such as
IFI27 or IFITM3, were not differentially regulated in se-
vere vs mild samples, expression of immunosuppression-
associated factor Arginase (ARG1) was more pro-
nounced in severe COVID-19 patients (Fig. 1g, Add-
itional file 3: Table S2). Moreover, blood transcriptomes
from severe cases showed decreased expression of
lymphocyte-associated genes, such as the T cell receptor
chains (TRAC, TRBC1), CD3 zeta chain (CD247), CD4,
CD2, TBX21 (TBET), and IL7R, as well as monocyte-
associated genes, such as the fractalkine receptor
(CX3CR1) or the macrophage scavenger receptor
(MSR1) (Fig. 1g, Additional file 3: Table S2). Differences
in gene expression were not restricted to granulocyte
and T cell functions only: assessing the changes in de-
fined gene groups, e.g., transcription factors, epigenetic
regulators, and surface or secreted molecules, we

observed many significant changes in genes that are not
restricted to granulocytes or T cells, clearly indicating
that other cell types are also transcriptionally altered in
COVID-19 patients (Additional file 2: Figure S1E).
Distribution of the COVID-19 samples in the PCA re-

vealed heterogeneity in the transcriptomic profiles
(Fig. 1e), which might be due to clinical heterogeneity
(Additional file 1: Table S1). In order to investigate this
further, the top 25% of the most variable expressed
genes were visualized in a heat map and samples sorted
by unbiased hierarchical clustering based on their tran-
scriptomic profiles, which resulted in more than three
clusters suggesting higher transcriptional heterogeneity
as explained by mild and severe COVID-19 cases vs con-
trol (Fig. 1h). Strikingly, neither disease, disease severity,
nor the inclusion of outcome or immune classification
[40] sufficiently explained the structure in the data. In
order to get a better clinical understanding of the tran-
scriptional data, we included further clinical parameters
and grouped the COVID-19 patients accordingly
(Fig. 1h). We therefore performed agglomerative hier-
archical clustering using the clinical parameters that
contributed most to the transcriptional differences ob-
served across the first principal component of the data-
set (r-adjusted square ≥ 0.1, Additional file 2: Figure
S1F). The COVID-19 patients were clustered into five
clinical groups, which was the optimal number of clus-
ters at which the intra-group variance was low and the
“clusters distance” remained high (Additional file 2: Fig-
ure S1G,H). Interestingly, neither COVID-19 disease sta-
tus, immune classification, nor our clinical parameter-
based grouping of the COVID-19 patients aligned with
overall transcriptional variability in the data (Fig. 1h), in-
dicating that hidden information in the blood transcrip-
tome may guide further patient stratification.

Co-expression analysis discloses COVID-19 subgroups
with distinct molecular signatures
Classical approaches to analyze the transcriptome data
by using differential gene expression analysis based on
sample groups defined by a selection of clinical parame-
ters precluded dissection of the heterogeneity of the host
immune response towards SARS-CoV-2 infection, which
is evident in the high-parameter space of the transcrip-
tome (Fig. 1). Co-expression analysis on the other hand
identifies similarly regulated genes across samples and
groups these genes into modules, which can then be ex-
plored for each patient sample individually or for entire
patient groups. Applying such an approach using our
established CoCena2 pipeline [https://github.com/Ulas-
lab/CoCena2] (Fig. 2a) for all 49 samples (39 COVID-19,
10 control) independent of their clinical annotation dis-
closed 10 co-expression modules, designated by color
indianred to darkgrey, across a total of 6085 genes
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included in the analysis (Additional file 2: Figure S2A).
Hierarchical clustering of the samples based on their
group fold changes (GFCs) for each module revealed a
data-driven patient stratification assorting the samples
into six groups (Additional file 2: Figure S2B), which
were subsequently used in all following analyses: five dif-
ferent COVID-19 sample-containing groups, which only

partially grouped by disease severity and illustrated het-
erogeneity of the immune response in COVID-19 pa-
tients, plus one group containing all control as well as
four COVID-19 samples (Fig. 2b + Additional file 2: Fig-
ure S2C). Overlaying this information onto the original
PCA reflected structured sample stratification as the
newly defined groups clustered together (Additional file

Fig. 2 Co-expression analysis discloses COVID-19 subgroups with distinct molecular signatures. a Schematic overview of the analysis performed
on the whole blood samples. b Alluvium plot visualizing the distribution of the samples according to different grouping; disease status, severity,
and data-driven sample groups. c Group fold change heat map and hierarchical clustering for the six data-driven sample groups and the gene
modules identified byCoCena2 analysis. d Functional enrichment of CoCena2-derived modules using the Hallmark gene set database. Selected
top terms were visualized. e Functional enrichment of CoCena2 module lightgreen using GO gene set database. Top 5 terms were visualized. f
Heat map presenting the normalized expression values of the lncRNA CYTOR, and protein-coding RNAs PIK3CB and VIM from the lightgreen
CoCena2 module. g Neutrophil-lymphocyte ratio plot after cell type deconvolution at lineage level. h Neutrophil-lymphocyte ratio across the six
data-driven sample groups. Box plots show median with variance, with lower and upper hinges representing the 25th and 75th
percentile, respectively
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2: Figure S2D). GFC analysis of the newly generated
groups revealed group-specific enrichment of co-expressed
gene modules (Fig. 2c). GOEA on each of the modules
identified associated gene signatures displaying distinct
functional characteristics, which distinguish the different
sample groups G1–G6 (Fig. 2d + Additional file 2: Figure
S3, Additional file 4: Table S3). For example, “inflammatory
response” was enriched in modules maroon, lightgreen,
pink, and darkgrey, all characteristic for sample groups G1
and G2 to different extents, indicating these to possibly
undergoing a more vigorous inflammatory immune reac-
tion (Fig. 2c, d). Of note, G1 and G2 harbor a great fraction
of samples from patients with severe COVID-19 (Fig. 2b).
Only a slight increase in the inflammation-associated mod-
ule maroon, an increase in expression in the genes of dar-
korange (enriched in oxidative phosphorylation, mTORC1
signaling, and cell cycle-associated genes), and a loss of ex-
pression in the gold module (connected to estrogen re-
sponse genes and IL2 signaling) were indicative of the G4
sample group. G6, encompassing all control samples, was
not associated with any modules connected to inflamma-
tory processes, but showed higher expression of indianred,
steelblue, and gold, all functionally enriched basic cellular
and metabolic processes. Extended analysis of the light-
green module, containing 987 genes, revealed a prominent
enrichment of granulocyte/neutrophil activation-related
signatures (Fig. 2e, Additional file 4: Table S3). To further
explore this neutrophil activation signature association, we
investigated possible co-expression patterns of long non-
coding RNAs (lncRNA) that were reported as regulators of
granulocyte function [59]. CYTOR (also known as Morrbid)
is a lncRNA that mediates survival of neutrophils, eosino-
phils, and classical monocytes in response to pro-survival
cytokines [59], and interacts with the protein-coding RNAs
for the catalytic PI3K isoform phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit beta (PIK3CB) and
the filament Vimentin (VIM) [69]. Interestingly, expression
of CYTOR was significantly increased in severe COVID-19
patient group G1 (p < 0.001) and correlated with both
PIK3CB (r = 0.53, p < 0.001) and VIM (r = 0.55, p < 0.001)
(Fig. 2f).
Next, we asked whether the enrichment for neutrophil

activation-associated signatures in G1 and G2 is attrib-
uted to an increased relative number of granulocytes
within the whole blood sample. Deconvolution of the ex-
pression values using linear support vector regression
[50] showed increased relative percentages of neutro-
phils especially in G1 and G2 (Additional file 2: Figure
S2E). G5, on the other hand, clearly displayed an in-
creased percentage of monocytes. At the same time,
lymphocyte enrichment was found to be reduced in the
COVID-19 sample groups, most prominently in G1 and
G2 (Additional file 2: Figure S2E). The linear deconvolu-
tion results were then validated by flow cytometry. Blood

composition of COVID-19 donors confirmed an increased
number of neutrophils and a decreased number of lym-
phocytes especially in G1 and G2 (Additional file 2: Figure
S2F). As a result, the neutrophil-lymphocyte ratio (NLR),
a clinical marker proposed for disease severity as it has
been associated with an increased systemic inflammation
[70, 71], was markedly elevated in G1 and G2 compared
to the control sample-containing G6, both in the compu-
tationally deconvoluted results (Fig. 2g) as well as mea-
sured by flow cytometry (Fig. 2h). Interestingly, in context
of the observation that men more often progress to severe
COVID-19 than women [72], G1 encompasses samples
from solely male patients (Additional file 2: Figure S2C).
Analysis of the top 20 differentially expressed transcrip-
tion factors, epigenetic regulators, and surface or secreted
proteins for the six sample groups confirmed an increased
inflammatory state, again most remarkably for G1 and G2,
evident from the transcription factors of the STAT family,
STAT1, STAT3, STAT5B, and STAT6; the surface marker
CSF3R (G-CSF) or FCGR3B (CD16b); the secreted factors
GRN or IL1B; or the epigenetic regulator PADI4 (PAD4)
(Additional file 2: Figure S2H).
We confirmed our findings of distinct molecular phe-

notypes in the blood of COVID-19 patients in a second
independent cohort. Thirty patients, severely affected by
SARS-CoV-2 infection, were sampled upon admission to
the ICU. We stratified the obtained blood transcrip-
tomes based on the module signatures from the co-
expression analysis (Fig. 2c). The samples of the second
cohort were filtered for the genes present in the
COVID-19 co-expression network, group fold changes
were calculated across all patients individually, and sam-
ple groups G1–G6 assigned according to their combina-
torial module expression (Additional file 2: Figure S4A).
Controls from the first cohort were included for com-
parison. Interestingly, in these ICU patients, we noted
the transcriptome profiles from the second cohort to
show greatest similarity to G1 and G2, which is in line
with their severe phenotypes and our findings from the
first cohort. Hierarchical clustering of the samples based
on their group fold changes for each module stratified
the samples of the second cohort into four groups (Add-
itional file 2: Figure S4B). The control samples from the
first cohort built one separate group, which we desig-
nated again as G6. To allow for group-specific compari-
son to the stratification within the first cohort (Fig. 2c),
we calculated the mean GFCs of the four groups identi-
fied in the second cohort (Additional file 2: Figure S4C).
Second cohort samples of the first group showed enrich-
ment in modules lightgreen, pink, and darkgrey and
were thus assigned most similar to G1; the third group
of the new samples showed enrichment in modules ma-
roon and darkorange, most similar to G2; and the
remaining samples were stratified into an intermediate
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group exhibiting stronger expression of genes from the
darkorange as well as pink module indicating character-
istics of both G1 and G2 (Additional file 2: Figure S4C).
Collectively, co-expression analysis (CoCena2) in

whole blood transcriptomes reveals at least five molecu-
lar phenotypes of the host’s immune response in
COVID-19 patients with at least two different groups in
clinically described severe COVID-19 patients. The two
molecularly defined groups G1 and G2 are transcription-
ally characterized by a pronounced neutrophilic signa-
ture, at the same time distinct in other cellular
characteristics. Such molecular classification might serve
as a basis for identifying clinical surrogates for patient
stratification. Since whole blood transcriptomics cap-
tures functional changes in the host’s peripheral immune
response across all cell types, we next sought a more de-
tailed investigation of the granulocyte compartment
within the framework of the newly identified subgroups.

Granulocytes from severe COVID-19 patients show a
simultaneous increase in inflammatory and suppressive
signatures
To investigate whether the activation signatures seen in
whole blood of COVID-19 patients are not only due to
disease-associated increase of the neutrophil population,
granulocytes were sequenced and transcriptomes were
analyzed from 16 longitudinally sampled patients (8
mild, 9 severe), resulting in 17 mild and 27 severe
COVID-19 samples (Fig. 3a). Evaluation of the relative
cell type composition within each sample using linear
deconvolution predicted the samples to mainly consist
of neutrophils, with comparable fractions of 79% on
average (Additional file 2: Figure S5A). Exploratory ana-
lysis by PCA showed a separation between mild and se-
vere COVID-19 patients’ granulocyte samples, especially
for the day 1–10 groups (Fig. 3b). Differential expression
analysis identified 314 upregulated and 703 downregu-
lated genes comparing severe and mild samples from
day 1 to 10 after first symptoms, while comparison at a
late disease stage showed less differences on gene level
(445 up- and 1924 downregulated genes; FC > |2|, padj <
0.05; Fig. 3c, Additional file 5: Table S4). Whole blood
transcriptome analysis showed enrichment of neutrophil
activation-associated signatures (Fig. 2). Excluding the
bias of alterations in neutrophil population size across
conditions, gene set enrichment analysis on granulocyte
samples now uncovered that differentially expressed
genes between severe and mild COVID-19 patients are
indeed characterized by an increase in granulocyte
activation-associated factors (Additional file 2: Figure
S5B). CD177 is part of the granulocyte activation gene
set and was indeed markedly increased in severe (day 1–
10) compared to mild (day 1–10) COVID-19 samples
(Fig. 3d). Also, the alarmin S100A12 exhibited

heightened expression in granulocytes from severe
COVID-19 patients (Fig. 3d).
Next, we used the CoCena2 modules from the whole

blood analysis (Fig. 2c) to identify modules that are actu-
ally driven by alterations in neutrophil activation instead
of a mere increase in the neutrophil population. To in-
vestigate the expression patterns in a longitudinal fash-
ion, mean expression over time and a confidence
interval were calculated for each module in the mild and
severe cases, respectively. Modules being mainly
expressed in the severe groups G1 and G2 (darkgreen,
darkgrey, lightgreen, maroon, and pink) showed a shift
towards upregulation of genes in the severe group com-
pared to the mild group, except for module darkgrey
(Fig. 3e). The other modules, darkorange, gold,
indianred, orchid, and steelblue, presented mostly the
opposite trend, being expressed at higher levels in the
mild compared to the severe COVID-19 cases (Add-
itional file 2: Figure S5C).
Recently, heterogeneity of neutrophils with distinct

subsets associated with disease severity and phase was
revealed by single-cell RNA-seq analysis in blood of
COVID-19 patients [34]. Enrichment of the three signa-
tures that related to severe COVID-19 in our granulo-
cyte samples demonstrated that the findings obtained in
the single-cell study were also discernible in bulk data,
and the results in accordance with the reported pheno-
types: premature/immature, severe inflammatory, and
severe suppressive subset marker genes were markedly
enriched in granulocytes from severe COVID-19 patients
in the present study (Additional file 2: Figure S5D). Fur-
ther analysis of this observation on the gene level dis-
played the heightened expression of pre-/immature
neutrophil-associated markers in severe COVID-19 pa-
tients’ granulocytes, such as FUT4 (CD15), metallopro-
teinase MMP8, alarmins (S100A8/9), NET formation-
involved PADI4, or NLRC4, for which activating muta-
tions have been reported to overtly trigger the inflamma-
some and thereby increase the risk to develop
autoinflammatory syndrome [73, 74] (Fig. 3f). Marker
genes attributed to the “mild mature activated” neutro-
phil subset [34], such as ITGA4 or SLC38A1, were in-
deed elevated as well in the mild COVID-19 patients’
granulocytes of this study. In line with the single-cell
study, signs of an interferon response were observed ir-
respective of disease severity (IFIT1, IFIT3), while only
severe COVID-19 patients’ granulocytes featured expres-
sion of genes with suppressive functionality, such as
ARG1 or CD274 (PD-L1) (Fig. 3f).
We next assessed the granulocyte samples based on

the module signatures from the whole blood analysis.
The granulocyte samples were filtered for the genes
present in the COVID-19 co-expression network (Fig. 2c)
and the group fold changes were calculated across all
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patients individually; sample groups G1–G5 were
assigned according to their combinatorial module ex-
pression (Figs. 2c + 3g). For example, samples attributed
to G1 showed high enrichment scores in modules

lightgreen, darkgreen, and pink, whereas those assigned
as G2 additionally expressed the maroon module. Sam-
ples with the indianred/darkorange combination were
designated as G4. Re-analysis of CD177, NLRC4, ARG1,

Fig. 3 Granulocytes from severe COVID-19 patients show a simultaneous increase in inflammatory and suppressive signatures. a Schema of
sample processing and analysis. b PCA of all genes within the dataset mapped by COVID-19 severity status. c Bar plot of DEGs between severe
and mild COVID-19 patients at day 1–10 (left) and day 11–20 (right) (FC > |2|, FDR-adj. p value < 0.05). d Boxplot of CD177 (left) and S100A12
(right) in mild and severe COVID-19 patients at day 1–10 and 11–20. e Mean of group fold changes (GFCs) of the modules darkgreen, darkgrey,
lightgreen, maroon, and pink in the granulocyte samples of mild (light purple) and severe (purple) COVID-19 cases over time. f Heat map of
mean expression of 24 markers in mild (top) and severe (bottom) patients ordered by days after disease onset bins (day 1–10 and 11–20). g Heat
map of mean GFCs of the CoCena2 whole blood modules in the granulocyte samples from each individual patient. Patients are clusters by the
mean GFC module expression. Severity patterns found in the whole blood CoCena2 network were identified and patient groups were assigned
accordingly (G1–G5). h Box plot of CD177 expression in granulocytes grouped by G1–G5. i Box plot of CD177 expression in whole blood
grouped by G1–G6

Aschenbrenner et al. Genome Medicine            (2021) 13:7 Page 14 of 25



and CD274 (PD-L1) as a function of the assigned sample
groups (Fig. 3g) showed increased expression in G1 and
G2 in relation to the other groups (Fig. 3h + Additional
file 2: Figure S5E). Interestingly, the stratified patient
groups in the whole blood data also depicted increased
expression in G1 and G2 in comparison to the control-
containing G6 (Fig. 3i + Additional file 2: Figure S5F).
Analysis of granulocyte samples from COVID-19 pa-

tients proved that, in addition to the relative increase in
neutrophils in severe COVID-19 cases, there are indeed
alterations in the transcriptional program of these cells
themselves. We found enrichment of signatures typical
of pre-/immature neutrophils and evidence of simultan-
eous inflammatory and suppressive features, arguing for
a dysregulation in the peripheral granulocyte compart-
ment. Importantly, transferring these findings back to
the whole blood analysis showed that the granulocyte
phenotypes were still observable within the whole blood
transcriptomes.

Integration with signatures from other diseases reveals
COVID-19-specific characteristics
Putting COVID-19 into context of other known diseases,
we compiled whole blood transcriptomes from 12 fur-
ther diseases, including several viral and bacterial infec-
tions as well as immune-related disorders into one large
dataset encompassing a total of 3176 samples including
the 39 COVID-19 samples from this study (Fig. 4a, Add-
itional file 2: Figure S6A, Additional file 6: Table S5). All
in all, the dataset contains four other viral infection
studies (chikungunya [30], HIV [27], influenza [75], and
Zika [76], n = 695), seven bacterial infection studies (tu-
berculosis [24–27, 77], bacterial sepsis and systemic in-
flammatory response syndrome (SIRS, n = 1578) [28]),
six inflammatory/autoimmune studies (systemic lupus
erythematosus [78], Crohn’s disease, rheumatoid arth-
ritis [79], Ebola vaccination [29], neonatal-onset multi-
system inflammatory disease (NOMID), and macrophage
activation syndrome (NLRC4-MAS) [74], n = 326), and
control samples from nine different studies (n = 538). To
investigate how the COVID-19-specific co-expression
modules can be linked to other diseases, the combined
dataset was filtered for the genes present in the COVID-
19 co-expression network (Fig. 2c) and the group fold
changes were calculated across all samples (Fig. 4b).
Additionally, cell type-specific signatures [50] and single
cell-derived neutrophil subset signatures [34] (Additional
file 7: Table S6) were intersected with all CoCena2 mod-
ules. This analysis revealed that the lightgreen module
shows a high (61%) neutrophil enrichment followed by
module pink (38%) and maroon (32%), which is in line
with a high functional enrichment for neutrophil activa-
tion in lightgreen (Fig. 2e, Additional file 4: Table S3).
Genes within module lightgreen were most prominently

upregulated in the severe COVID-19 group (G1) as well
as in sepsis, in patients with influenza A and with tuber-
culosis and HIV infection, but less so in individually oc-
curring HIV and tuberculosis (Fig. 4b). Enrichment of
the neutrophil subset signatures revealed increased ex-
pression of genes found in pre-/immature neutrophils
and those of inflammatory neutrophils associated with
severe COVID-19. Many genes within module lightgreen
are known to be related to induction of neutrophil extra-
cellular traps (NET) (e.g., PKC [80], PADI4 [81], LTB4
[82]). Moreover, a link between excessive NET forma-
tion and tissue damage has been reported in sepsis [83].
Module darkgrey shares a similar expression pattern
across the disease spectrum with lightgreen though be-
ing upregulated in infection with any of the four in-
cluded influenza strains and contains genes involved in
platelet activation. The NET-platelet-thrombin axis has
been reported to be involved in the promotion of intra-
vascular coagulation in sepsis [84]. The pink module
shows the second highest neutrophil enrichment, which
is dominated by the enrichment of pre-/immature neu-
trophil subtype signatures. It is strongly increased in
sepsis, tuberculosis, and after Ebola vaccination as well
as in autoinflammatory diseases such as rheumatoid
arthritis, NLRC4-MAS, and NOMID, and shows slight
overlap with the severe COVID-19 patients in group G1.
It contains many epigenetic modifiers, such as HDAC5,
SETD1B, or KMT2D, as well as KLF2, shown to regulate
NF-κB-mediated immune functions, such as inflamma-
tion, erythropoiesis, and lung development [85]. Maroon
is the third module with predicted neutrophil enrich-
ment, which features genes from the “severe suppres-
sive” subset alongside the “severe inflammatory” and
pre-/immature subset signatures. It is associated with
COVID-19 groups G2–4 and shares this characteristic
with blood transcriptomes from the response to infec-
tion with chikungunya and Zika virus or from HIV pa-
tients suffering from tuberculosis.
A combination of single sample gene set variation ana-

lysis (ssGSVA), a non-parametric, unsupervised ap-
proach to estimate variation of gene set enrichment
within each single sample, and Hallmark enrichment for
each disease or inflammatory condition in the compiled
dataset accentuated the findings on COVID-19 blood
transcriptomes in context of the other diseases (Fig. 4c).
“Interferon alpha and gamma responses” were enriched
in acute viral infections with chikungunya and Zika virus
as well as in HIV with or without concomitant tubercu-
losis or after Ebola vaccination, and this enrichment was
shared with COVID-19 G2. “Inflammatory response,”
“IL6 and TNFA signaling” is an attribute of both G1 and
G2, to a lesser degree of G5, also tuberculosis/HIV, and
to some extent of sepsis and influenza A. More promin-
ently enriched in sepsis were “complement,”
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“coagulation,” “heme metabolism,” and “glycolysis” —
shared by COVID-19 G1+G3, whereas “oxidative phos-
phorylation” and “mTORC1 signaling” were seen for all
four influenza strains, chikungunya, and Zika virus infec-
tions — shared to some extent with COVID-19 G3+G4.
Although we observed overlaps of gene modules

enriched in COVID-19 with several other infectious and

immune-related diseases, each of our molecularly de-
fined COVID-19 patient groups was characterized by a
specific combination of these modules, clearly indicating
the unique biology of this SARS-CoV-2 infection-
mediated immune response, which needs to be consid-
ered when developing patient-stratified therapy
regimens.

Fig. 4 Integration with signatures from other diseases reveals COVID-19-specific characteristics. a Schema of analysis of the integrated dataset.
The integrated dataset was analyzed with regard to expression patterns of the clusters previously identified in the whole blood COVID-19-specific
co-expression network. b Heat map of mean group fold changes of CoCena2 module comparison between COVID-19 and other diseases. From
left to right, the diseases are ordered by category (COVID-19, viral infections, bacterial infections, and others). On the right side of the heat map,
the first box plot shows the enriched immune cell markers in each module. The second box plot shows the enrichment of genes upregulated in
specific neutrophil subtypes based on cross-referencing with single-cell data [34]. Both box plots show enriched cell types in percent of total hits;
absolute hits with respect to cluster size are stated aside. c Gene set variation analysis was conducted for every single patient based on Hallmark
gene sets as shown in Fig. 2d. The result was standardized to retrieve the z-scores; a disease mean was calculated and displayed as a dot plot
with size and color correlating to the z-score. The labels on the x-axis are the same as in b
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COVID-19 patient subgroup-specific signatures can be
used to predict potential drug repurposing
Despite the immunologically driven nature of COVID-
19, most drugs that are currently investigated in clinical
trials to combat or ameliorate COVID-19 are targeting
the virus and its direct interaction partners (Additional
file 2: Figure S7A+B, Additional file 8: Table S7). Com-
pounds as well as the number of clinical trials performed
with anti-inflammatory, immunosuppressive, and immu-
nomodulatory properties are immensely outnumbered
by other approaches. Examining the listed target genes
of currently investigated drugs in our stratified patient
groups, we found 162 included in our co-expression net-
work analysis, most of which being differentially
expressed in the severe patient group G1 in comparison
to G6 (Figs. 2c + 5a). In addition, many of the regulated
genes in our patient signatures are clearly not affected
by the drugs that are currently investigated against
COVID-19. The immunopathologies seen in COVID-19
patients, especially past their second week of symptoms,
demand a host-directed, immune system-focused
therapy.
To identify potentially beneficial drugs, we designed

an in silico signature-based drug repurposing approach
(Fig. 5b). To generate input signatures of interest, we
characterized our stratified sample groups by identifying
differentially expressed genes between groups G1–G5
and the control group G6 (Additional file 2: Figure S7C).
Most transcriptional differences were observed for G1
(up: 4032, down: 4729) and G2 (up: 2336, down: 2767),
whereas group G3 (up: 1193, down: 1921), G5 (up: 1089,
down: 1216), and especially G4 (up: 727, down: 547)
were less different to G6. Only a minor fraction of 137
DEGs was shared by all 5 comparisons. The most over-
lap of DEGs was observed between G1 and G2, the two
groups comprising mostly severe COVID-19 patients.
Nevertheless, G2 was still characterized by a large num-
ber of specific DEGs (Additional file 2: Figure S7C).
GOEA of the upregulated DEGs of each comparison re-
vealed enrichment of genes in the context of “neutrophil
activation” and “coagulation” in all comparisons (Add-
itional file 2: Figure S7D). Humoral and B cell-mediated
immunity terms on the other hand were enriched the
strongest in G4-specific upregulated DEGs (Additional
file 2: Figure S7D). Differential expression analysis for
the stratified sample groups once more emphasized that
neutrophils play a central role in the host’s immune re-
sponse against SARS-CoV-2 infection. Neutrophils, as
the most abundant circulating leukocytes, have become
a therapeutic target of interest in multiple disease set-
tings in recent years [86]. Two interesting target genes
discussed in this context and already addressed in clin-
ical trials are CXCR2 and C5AR1. Consistent with the
increased NLR in G1 and G2, we observed significant

upregulation of CXCR2 and C5AR1 in both groups
(Additional file 2: Figure S7E).
Using patient cluster-specific DEGs as input (Add-

itional file 2: Figure S7C, Additional file 9: Table S8), we
searched for compounds that evoke a reverse signature
in human cells via the NIH Library of Integrated
Network-Based Cellular Signatures (iLINCS) [87] and
the Broad Institute’s Repurposing Hub [88]. The best
counteracting signatures for each comparison were com-
bined with signatures for all currently investigated drugs
and downloaded for further analysis, resulting in about
63,000 signatures from 940 compounds/drugs. We per-
formed gene set enrichment analysis for all signatures
against our COVID-19 patient comparisons and calcu-
lated the difference of the up- and downregulated nor-
malized enrichment score (ΔNES). A positive ΔNES
indicates drug signatures that reverse our COVID-19
signatures, whereas drugs with a negative ΔNES induce
signatures similar to the ones observed in COVID-19.
Signatures were then grouped by k-means clustering re-
vealing groups of drug signatures that reverse specific
patient subgroup signatures (e.g., cluster 5) or those that
have the highest impact on all patient subgroups (e.g.,
cluster 13, Fig. 5c). Among the top signatures in cluster
13 are methylprednisolone (ΔNESG1 = 7.13), immuno-
globulins (ΔNESG1 = 6.62), methotrexate (ΔNESG1 =
4.21), and pevonedistat (ΔNESG1 = 4.81) which are all
under investigation (clinicaltrials.gov), thereby proving
that our in silico signature-based drug repurposing ap-
proach can indeed predict drugs that have already been
deemed potentially beneficial in this disease (Additional
file 2: Figure S7F). Extracting the leading edge of the
most frequently targeted genes by the drugs included in
cluster 13 revealed alarmins, such as S100A8 or S100A6,
and SERPINB1, critical for neutrophil survival by pro-
tecting the cell from proteases released into the cyto-
plasm during stress [89–91]. Visualizing these genes in
the co-expression network deducted from the blood
transcriptomes of our COVID-19 patient cohort identi-
fied most of them as part of cluster lightgreen and ma-
roon (Additional file 2: Figure S7G). Sample group G1-
specific drug signature cluster 5 also encompasses a con-
siderable number of drugs currently being tested in clin-
ical trials to fight COVID-19 (Fig. 5d + Additional file 2:
Figure S7A, Additional file 10: Table S9). Interestingly, a
lot of drug signatures in cluster 5 were related to female
hormones, such as alpha-estradiol (ΔNESG1 = 2.83),
estradiol-cypionate (ΔNESG1 = 2.78), estriol (ΔNESG1 =
2.78), or chlormadinone acetate used in birth control
pills (ΔNESG1 = 2.74), but also for example dexametha-
sone (ΔNESG1 = 2.65) that was recently reported to re-
duce mortality in severe COVID-19 cases requiring
intubation, while showing no benefit for patients with
milder disease courses [92]. The most frequently
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Fig. 5 Patient subgroup-specific signatures can be used to predict potential drug targets. a Schematic workflow of the drug prediction analysis.
Drug signatures were collected using the platforms iLINCS and CLUE. Signatures were selected by highest counteracting ΔNES score and
combined with signatures of drugs under investigation from the literature. b Visualization of genes targeted by drugs approved or undergoing
trial for the treatment of COVID-19 patients included in the whole blood co-expression network. Numbers of such genes from each module are
designated on the right of the panel. Genes are represented as hexagons and colored by the expression fold change between COVID-19 patient
severity group (G1–G5) and the control group (G6) (upregulated: red, downregulated: blue, not regulated: grey). c Drug predictions based on
ΔNES score of drug signatures in regard to diseased patient group-specific gene expression patterns (G1–5 vs G6). Signatures were clustered by
k-means clustering. A high ΔNES score accounts for drug signatures which counteract the gene expression of the patient group they are
compared to. Drug signatures with a negative ΔNES score induce a gene expression pattern similar to the input. The number of signatures
within a cluster determines its size. d Display of selected drug signatures from k-means cluster 5 from c showing the highest ΔNES score in the
most severe COVID-19 patient group G1 and the least effect in patient group G4. e Visualization of recurring target genes in the G1 vs G6
comparison of cluster 5 signatures and their frequency mapped onto the CoCena2 network
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targeted genes within the signatures of cluster 5 included
protein tyrosine kinase 2 beta (PTK2B), playing an im-
portant role for integrin-mediated neutrophil degranula-
tion [93, 94]; lysosomal protease cathepsin D (CTSD)
expressed in neutrophils and monocytes; and the inflam-
matory mediator interleukin-1β (IL1B) (Fig. 5e). The ma-
jority of these target genes cluster in the G1-specific
lightgreen and pink, as well as in the maroon CoCena2

modules. Drugs predicted to be effective for each module
are presented as a resource as supplementary information
for further inspection (Additional file 10: Table S9).
We used stratified blood transcriptomes from COVID-

19 patients in an in silico signature-based approach to
identify potential drugs for therapeutic repurposing.
Many of our identified hits are indeed already being
tested in clinical trials. Further, it became evident that,
apart from common therapeutic avenues to address the
immune dysregulation in COVID-19 patients, there are
patient groups that may benefit from treatments target-
ing more precisely their immune phenotype and this
phenotyping could be used for enrichment of patient
groups in clinical trials.

Discussion
The global spread of SARS-CoV-2 resulting in hundreds
of thousands of COVID-19 cases urgently demands a
more thorough molecular understanding of the patho-
physiology of the disease [15, 20, 95, 96]. While vaccines
are still under development [97–102], therapeutic man-
agement of the COVID-19 patients is key to mitigate the
clinical burden as well as to prevent deaths. It has be-
come clear that there is great variety in the occurrence
of disease manifestation, and dysregulation of local and
systemic immune responses have been implicated in dis-
ease heterogeneity [12–14, 22, 37, 38, 42, 95, 103, 104].
Here, by applying classical bioinformatics approaches
and data-driven co-expression network analysis
(CoCena2) on blood transcriptomes of COVID-19 pa-
tients, we provide evidence for the existence of distinct
molecular phenotypes that are not solely explained by
current clinical and immunological parameters. Particu-
larly in severe COVID-19, we detected dramatic tran-
scriptional changes in the blood compartment with loss
of T cell activation and concurrent gain of a rather
unique combination of neutrophil activation signals,
which was not simply due to changes in cell numbers
since isolated neutrophils showed the same transcrip-
tional changes. CoCena2 allowed us to group function-
ally related genes into 10 major transcriptional modules
with distinct expression patterns across five, on this
basis newly defined COVID-19 patient groups, of which
two (G1, G2) were related to severe disease courses.
While pronounced neutrophil-related alterations were
observed in both subgroups of severe COVID-19

patients (G1, G2), genes associated with coagulation and
platelet function were mainly elevated in patients with
the most highly elevated number of neutrophils as mea-
sured by flow cytometry, an information that was also
deduced by linear support vector regression from tran-
scriptome data. Assessment of non-coding RNA species
from whole blood transcriptomes also allowed the iden-
tification for additional regulatory circuits. For example,
we identify CYTOR, a lncRNA associated with granulo-
cyte survival [59] strongly upregulated in COVID-19 pa-
tient group G1, which was accompanied by strong
induction of CYTOR interactors such as VIM and
PIK3CB [69]. These findings strongly support the notion
that whole blood transcriptomics might not only be suit-
able for better understanding the systemic immune re-
sponse in COVID-19 patients, but can also be used to
predict novel therapeutic targets involving distinct
pathophysiological mechanisms observed in COVID-19.
In a “reverse transcriptome approach,” we used the spe-
cific changes observed in the COVID-19-related tran-
scriptional modules as the bait and searched for inverse
correlation in thousands of drug-based transcriptome
signatures to predict potential drug candidates. Most
interestingly, we identified drug candidates that might
be beneficial for all COVID-19 patients, but also candi-
dates that might only be suitable for a subgroup of pa-
tients. Lastly, by comparing the transcriptional modules
identified in whole blood of COVID-19 patients, we
identified unique differences to other viral and bacterial
infections, for which similar data were available, suggest-
ing that blood transcriptomes might also be used diag-
nostically or for outcome prediction in larger clinical
cohorts, treatment, or vaccine trials in the near future.
Classical bioinformatic assessment of blood transcrip-

tome data comparing defined groups, in this study repre-
sented by control individuals and samples derived from
either mild or severe COVID-19 patients, already revealed
important biology of the systemic immune response. For
example, the most significantly elevated transcript was
CD177, a cell surface molecule on neutrophils, which was
enhanced in both mild and severe cases (Fig. 1, Additional
file 2: Figure S1), was recently identified by proteomics in
bronchoalveolar lavage of COVID-19 patients [105], and
has also been introduced as a hallmark for Kawasaki syn-
drome [106], a syndrome that has been observed in several
studies being increased in children and adolescents during
the SARS-CoV-2 pandemic [107–112]. In acute Kawasaki
syndrome, elevated expression of CD177 was associated
with resistance to treatment with intravenous immuno-
globulin (IVIG), a therapy in COVID-19 patients that is
currently investigated in clinical trials around the world
(18 trials, clinicaltrials.gov). Integrating the assessment of
CD177 into these trials might help to stratify patients and
better predict individual therapy outcome.
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Hierarchical clustering of the most variable genes in
the dataset already hinted towards further heterogeneity
among patients beyond the current clinical differenti-
ation into mild and severe patients (Fig. 1). Indeed, co-
expression network analysis in a data-driven fashion
allowed us to define five patient subgroups (G1–5) de-
fined by 10 distinct transcriptional modules, which was
corroborated in a second independent cohort (Fig. 2 +
Additional file 2: Figure S4). Gene transcription observed
in severe COVID-19 patients in G1 clearly differed from
severe G2 COVID-19 patients particularly in modules
darkgrey, pink, orchid, and maroon (Fig. 2c). For ex-
ample, biological mechanisms related to the darkgrey
module included blood coagulation, platelet activation,
aggregation, and degranulation, as well as cell-cell adhe-
sion and integrin-mediated signaling. These are all
mechanisms that are integral to several of the complica-
tions observed in a subset of severe COVID-19 patients
including increased disseminated intravascular coagula-
tion [113–115], venous thromboembolism [113, 116],
stroke [117, 118], or acute cor pulmonale [119]; neutro-
phil extracellular traps have been reported to contribute
to immunothrombosis seen in pulmonary autopsies
[120, 121]. All in all, these findings support the need for
advanced molecular subtyping of COVID-19 patients, as
proposed here based on blood transcriptomes. This is
only one prominent example of the rich information
within the new structure of molecular COVID-19 phe-
notypes that we provide here. For further inspection of
the data, we refer the reader to the online tool that al-
lows to extract module and group specific gene expres-
sion information (https://www.fastgenomics.org/).
In addition to many other infectious and non-

infectious diseases [24–32], whole blood transcriptomics
revealed important insights into the patient structure in
COVID-19 and comparative analysis provides first evi-
dence for the unique changes elicited by this disease
within the host in comparison to other infections (Fig. 4).
While cases in G2–4 shared changes with other viral in-
fections such as influenza, chikungunya, or Zika, mainly
including interferon signature genes (IFI16, IFI35, IFIT1,
maroon module), partial overlap to bacterial sepsis was
observed for G1–G3, albeit the major sepsis module
(pink) was not prominently enriched in COVID-19 pa-
tients indicating that there are distinct differences in
pathology of these two diseases. Although we could es-
tablish an integrative model using historical and publicly
available blood transcriptome data, we also realized that
limited standardization of the experimental procedures
(sample processing, library production, sequencing) be-
tween different whole blood transcriptomics studies led
to the exclusion of several additional important studies.
In this context, it will be of great interest whether blood
transcriptomics, as it was shown for tuberculosis [24,

25], can be utilized in large enough cohorts and clinical
trials for disease risk or outcome prediction in COVID-
19. We propose to collect whole blood transcriptomics
data in a central registry for direct inspection by the re-
search community and provide a prototype model for
such a registry on FASTGenomics. Transcriptome data
have been successfully used to predict a role for specific
gene networks in the drug response to certain cancer
types [122–126]. Considering the strong influence of the
systemic immune response on severity and outcome of
COVID-19, we wanted to establish whether the global
assessment of molecular subgroups of COVID-19 pa-
tients could be utilized to predict novel drug targets for
this disease addressing the dysregulated peripheral im-
mune response of the host (Fig. 5). Using two major da-
tabases providing transcriptome signatures to many
known drugs, CLUE [126] and iLINCS [125], we de-
signed an in silico signature-based drug repurposing ap-
proach, allowing us to identify candidate drugs [127]
that might reverse immune pathophysiology as observed
in blood transcriptomes. Some of the candidate drugs
identified are currently already in clinical trials, for ex-
ample imatinib (NCT04394416, NCT04357613,
NCT04346147, NCT04422678), ruxolitinib (20 trials
listed), or nintedanib (NCT04338802, NCT04541680),
for which prediction was particularly high in G1 pa-
tients. These trials might benefit from assessing molecu-
lar phenotypes of immune cells thereby determining
whether patients with G1 type transcriptomes benefit
most from such treatment. First study reports have re-
cently declared strong benefit for dexamethasone treat-
ment in severe COVID-19 cases requiring intubation,
while no effect on mortality was seen for those patients
who did not require respiratory support [23, 92]. Of
note, drugs predicted to potentially reverse the tran-
scriptome signatures of the severely affected G1 group
may have adverse effects in milder COVID-19 cases
from G4 as observed in the contrasting regulation pat-
terns in many of the clusters (Fig. 5c). Interestingly and
in line with the reports on sexual dimorphism in
COVID-19 severity and mortality [128], G1 included
only male patients and many of the drugs predicted to
reverse the G1-specific signatures were related to female
hormones (Fig. 5d). However, we also predicted drugs
for all COVID-19 patients already in clinical trials such
as immunoglobulins (> 150 trials, clinicaltrials.gov), or
methylprednisolone (19 trials), findings further support-
ing the value of our prediction approach. Despite these
promising results, strongly suggesting that reverse tran-
scriptomics is not only of value in cancer [122–124] but
might also be used to identify drugs targeting the im-
mune pathophysiology in COVID-19, we would also like
to point out current limitations of our findings that need
to be addressed in future studies. Predictions, as well as
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also the molecular phenotypes for patient stratification,
will further benefit from and focused by validation stud-
ies in independent COVID-19 patient cohorts, which is
to be fostered by a central database for COVID-19 pa-
tients’ blood transcriptome data. These additional stud-
ies will also be able to further address disease severity in
combination with different patient demographics and
additional clinical parameters. Nevertheless, we used
samples from different countries, illustrating the
generalizability. Furthermore, the molecularly derived
and prioritized drug candidates presented here might be
tested in very recently introduced pre-clinical models
[129] prior to starting clinical trials. Irrespective of the
current shortcomings, we favor such drug candidate
identification, since it is based on interrogation of mo-
lecular data directly derived from patients’ immune cells
involved in the ongoing processes in the disease and
therefore may increase the likelihood of a beneficial ef-
fect in patients.

Conclusions
Collectively, we provide first evidence for whole blood
transcriptomics to potentially become a valuable tool for
distinguishing the peripheral immune response seen in
COVID-19 from that in other infections in cases for
which pathogen detection might be difficult, for moni-
toring and potentially predicting outcome of the disease,
to further dissect molecular phenotypes of COVID-19,
particularly of the host’s immune system, also along the
disease course over time, and to support drug target pre-
diction for subgroups of patients. Clearly, in contrast to
more sophisticated higher resolution methods, whole
blood transcriptomes can be easily obtained in large
clinical cohort studies and large clinical treatment trials
yet providing an enormous information content about
the molecular reactions of the host’s immune system.
We therefore propose a blood transcriptome registry fol-
lowing the model we introduce here on the FASTGen-
omics platform that would allow the scientific
community to utilize the information for new clinical
studies and to address further large-scale studies into
pathophysiological mechanisms of the disease and en-
hance the chances of trials to demonstrate a clinical
benefit in patients.
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Introduction: People living with HIV (PLHIV) are characterized by functional

reprogramming of innate immune cells even after long-term antiretroviral

therapy (ART). In order to assess technical feasibility of omics technologies for

application to larger cohorts, we compared multiple omics data layers.

Methods: Bulk and single-cell transcriptomics, flow cytometry, proteomics,

chromatin landscape analysis by ATAC-seq as well as ex vivo drug stimulation

were performed in a small number of blood samples derived from PLHIV and

healthy controls from the 200-HIV cohort study.

Results: Single-cell RNA-seq analysis revealed that most immune cells in

peripheral blood of PLHIV are altered in their transcriptomes and that a

specific functional monocyte state previously described in acute HIV infection

is still existing in PLHIV while other monocyte cell states are only occurring acute

infection. Further, a reverse transcriptome approach on a rather small number of

PLHIV was sufficient to identify drug candidates for reversing the transcriptional

phenotype of monocytes in PLHIV.
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Discussion: These scientific findings and technological advancements for

clinical application of single-cell transcriptomics form the basis for the larger

2000-HIV multicenter cohort study on PLHIV, for which a combination of bulk

and single-cell transcriptomics will be included as the leading technology to

determine disease endotypes in PLHIV and to predict disease trajectories and

outcomes.
KEYWORDS
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Introduction

For people living with HIV (PLHIV), major risk factors for

developing cardiovascular diseases (CVDs), neurocognitive

impairment, frailty, and cancer are persistent low-grade

inflammation and immune dysfunction even under long-term

effective antiretroviral therapy (ART) (1–6). Although the

adaptive immune system appears to play an important role (7),

there is a growing body of evidence that suggests changes in the

innate immune system as exemplified by elevated levels of

circulating soluble CD163 and sCD14 derived from monocytes

are critical (1, 8, 9). We and others have recently demonstrated that

concentrations of pro-inflammatory monocyte-derived cytokines

are elevated in serum from PLHIV, which was further validated

when peripheral blood mononuclear cells were stimulated ex vivo

with a number of pathogens or their derivatives resulting in

increased levels of IL-1b (1, 10–14).

While CMV infection (15), the HIV reservoir itself (16), as well as

microbial translocation (17) have been proposed as potential drivers of

low-grade inflammation, the complex interplay between the different

immune cell compartments in PLHIV is not fully understood. To

study the role of different immune cells in the pathophysiology of

persistent inflammation in PLHIV it will be necessary to apply higher-

resolution single-cell technologies to larger cohorts of PLHIV (18–20).

Based on our previous experience applying single-cell technologies to

better understand the pathophysiology of COVID-19 (21–23) or

chronic obstructive pulmonary disease (COPD) (24), we have

recently suggested that large-scale studies should be preceded by

smaller optimization studies for clinical application of omics

technologies to a particular disease setting (25, 26).

Here, we describe a study using bulk and single-cell transcriptomics

technologies as well as chromatin landscaping by ATAC-seq under

clinically applicable conditions to assess the reprogramming of the

peripheral immune cell compartment in PLHIV cohorts. Despite

heterogeneity between individuals, scRNA-seq combined with bulk

transcriptomics on a limited number of PLHIV included in this pilot

study revealed important new information concerning the involvement

of the monocyte compartment in persistent low-grade inflammation.

Further, a reverse transcriptome approach in this setup allowed the

identification of drug candidates reducing the inflammatory

endophenotype, which we validated experimentally in an independent

group of PLHIV.
02
Results

Bulk transcriptomes from PBMC of PLHIV
are dominated by monocyte-related
proinflammatory programs

We previously demonstrated in a cross-sectional study that

PLHIV exhibits a proinflammatory profile in monocyte- but not

lymphocyte-derived cytokines (1). We recalled five male PLHIV

using long-term suppressive ART (mean 7.4 years) from the 200-

HIV study with no overt clinical symptoms at the time of blood

draw, determined as normal progressors, to investigate whether

higher-resolution technologies down to the single-cell level would

reveal further information about molecular and functional changes

within the peripheral immune system in PLHIV. We generated a

multi-layer dataset including selected soluble factors in plasma,

multicolor flow cytometry (MCFC), bulk RNA-seq, Assay for

Transposase-Accessible Chromatin using sequencing (ATAC-seq)

and microwell-based scRNA-seq comparing five age- and sex-

matched healthy controls (Figure 1A; Supplementary Table S1).

TheMCFC data generated here indicate that the five PLHIV chosen

were representative of the 200-HIV cohort with similar alterations in the

circulating immune cell compartment (e.g. higher CD8+ and lower

CD4+ T as well as NK cell population frequencies in PLHIV versus

healthy donors) (11) (Figure S1A). Principal component analysis (PCA)

of bulk RNA-seq of PBMC revealed a disease-associated separation of

the samples (Figure 1B). Exploration of these alterations by differential

gene expression analysis resulted in 287 up- and 914 down-regulated

genes in PLHIV compared to control (|FC|>1.5, adj p-value <0.05, with

independent hypothesis weighting (IHW) correction) (Figure S1B).

Inspection of those differentially expressed genes (DEGs) in more

detail by hierarchical clustering revealed four transcript clusters

similarly regulated across the donors (Figure 1C). One cluster

revealed a group of commonly upregulated early innate immune

response genes for PLHIV and a second cluster contained typical

interferon response genes (Figure 1C), which was corroborated by

functional enrichment analysis (Figure 1D; Supplementary Table S2).

Upregulation of alarmins S100A8 and S100A9 (cluster 1), which have

been previously associated with inflammation (27, 28) indicated a

strong signal from the myeloid cell compartment. In cluster 2,

STAT1, previously linked to enhanced inflammation in HIV (29, 30),

was strongly expressed. Both heatmap visualization (Figure 1C) and
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gene set variation analysis (Figure S1C) showed the highest

heterogeneity among the five patients in genes belonging to cluster 2.

Collectively, analysis of bulk transcriptomes from PBMCs of

PLHIV revealed upregulat ion of innate and myeloid

proinflammatory gene programs.
Bulk transcriptomics of monocytes in
PLHIV reveals enriched IFN-signaling

The bulk transcriptomes of PBMCs pointed towards the

involvement of myeloid cells in PLHIV, and indeed plasma
Frontiers in Immunology 03
concentrations indicated elevated monocyte-specific soluble

factors in circulation such as sCD163 and sCD14, a classical

marker of HIV disease progression and monocyte activation (8,

31, 32), while other markers such as liver-derived C-reactive protein

(CRP) did not show a significant elevation in these PLHIV (Figure

S2A). Consequently, we isolated CD14+ monocytes from the same

donors (Figure S2B) and analyzed their transcriptomes. DEGs were

calculated for the comparison of PLHIV vs. control, resulting in 65

up- and 6 down-regulated genes (|FC|>1.5, p-value <0.05, IHW)

(Figures 2A, S2C). Upregulated genes included several type I IFN-

related genes such as CXCL10, STAT2,MX2, and XAF1 (Figures 2B,

S2D). Functional enrichment analysis of the upregulated DEGs
A

B
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FIGURE 1

Bulk transcriptomes from PBMC in PLHIV are dominated by monocyte-related proinflammatory programs (A) Overview of the study design. (B)
Principal component analysis (PCA) of bulk RNA-seq data from PBMCs. (C) Heatmap of DEG (adj. p.val<0.05, |FC|>1.5) from bulk PBMC
transcriptomes based on HIV vs. control (see Figure S1C) and hierarchical clustering of genes into 4 clusters. (D) Functional enrichment using the GO
and Hallmark databases and transcription factor (TF) prediction of gene clusters from (C) (full list see Supplementary Table S2).
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supports these findings on the pathway level with IFN response and

response to the virus being the most highly enriched terms

(Figure 2C). The intersection of the CD14+ DEG with those from

the PBMC data revealed 3 shared downregulated (HERC2P10,

HSBP1L1 , PHLDB3) and 21 upregulated (e.g. CXCL10,

SERPING1, GBP1) genes, most of which belong to cluster 2 of the

PBMC DEGs (Figure 2D).

To investigate a possible epigenetic component of the disease-

associated changes, we performed ATAC-seq of sorted CD14+

monocytes. Using default analysis criteria (|FC|>1.5, adj. p-value

< 0.05), we identified no differentially accessible regions (DARs)

when comparing cells from PLHIV with control donors

(Figure S2E).

Collectively, the CD14+ monocytes in PLHIV show clear signs

of transcriptional activation of IFN-mediated pathways which is not

significantly impacted by chromatin packing.
“Anti-viral” monocyte state is
persistent in PLHIV

To address whether changes in the transcriptomes of

PBMCs (Figure 1), as well as isolated CD14+ monocytes

(Figure 2), are due to general alterations in the transcriptional

programs of the myeloid compartment or due to the presence of
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disease-specific cell states, scRNA-seq was performed on PBMCs of

the same individuals (Figure 3). Transcriptomes from 31,566 single

cells were produced representing all major immune cell types of the

peripheral circulation according to cluster-specific markers known

in literature, such as monocytes (LYZ, S100A9, S100A8), CD4+ T

cells (IL7R, TRAT1), CD8+ T cells (GZMH, CCL5, CD3G) and NK

cells (GNLY, NKG7, KLRF1) (Figures 3A; S3A). Density-based

coloring of the UMAP for PLHIV and control groups disclosed a

major transcriptional shift in the monocyte cluster, in the CD8+ T

cell cluster, but not in the CD4+ T cell cluster (Figure 3B).

These differences are also reflected in changes in the number of

DEG (log2FC=0.25, adj. p-value<0.05, min.pct=0.1) (Figure 3C).

Compared to other immune cell populations, monocytes

showed the highest number of DEGs comparing PLHIV with

controls, 90 up- and 25 down-regulated genes. Functional

enrichment analysis on the HIV-specific up-regulated

DEG of the monocyte compartment included terms such as ‘IFN-

g response”, “IFN-a response” and “response to virus” (Figure 3D),

in line with the PBMC and CD14 bulk RNA-seq data (Figures 1B,

2C). Similar to the bulk data produced from CD14+ monocytes,

19 genes were also upregulated in the monocyte cluster

resulting from scRNA-seq, including XAF1 and GBP1 (Figures

S3B, E; Supplementary Table S3). To confirm the upregulation

of the genes from that intersection, we measured protein levels

of SAMD9L, VAMP5, IFIT3, GBP1, SELL, and EIF2AK2, which are
A B

DC

FIGURE 2

Bulk transcriptomics of monocytes in PLHIV mainly reveals IFN-signaling (A) Volcano plot showing the DEGs (adj. p.val<0.05, |FC|>1.5) in HIV vs.
control of bulk CD14+ monocyte transcriptomes. (B) Boxplot and whisker of selected HIV-specific genes. Wilcoxon rank-sum for statistical testing
(*: p-value <0.05, **: p-value <0.01). (C) Functional enrichment using the GO and Hallmark databases upregulated DEG (HIV vs Ctrl). (D) Intersecting
DEG for the comparison of HIV vs Ctrl in bulk transcriptomes from CD14+ monocytes and PBMCs. Commonly upregulated DEG mapped to PBMC
clusters from Figure 1C.
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FIGURE 3

“Anti-viral” monocyte state is persistent in PLHIV (A) UMAP of PBMCs from PLHIV patients (n= 31,566 cells) indicating identified cell types. (B) UMAP
from (A) colored by disease group density distribution. (C) Number of DEG (adj. p.val<0.05, |log2FC|>0.25, min.pct=0.1) by major cell types for the
comparison HIV vs Ctrl. (D) Functional enrichment using the GO and Hallmark databases for HIV-specific (up-regulated) genes in monocytes. (E)
Marker expression of XAF1 and GBP1 by disease group for monocytes extracted from scRNA-seq data (left panel) and bulk CD14+ monocytes (right
panel). (F) Protein level quantification for SAMD9L, VAMP5, IFIT3, GBP1, SELL, and EIF2AK2 using the Olink system. Wilcoxon rank-sum for statistical
testing (ns: not significant, *: p-value <0.05, **: p-value <0.01). (G) UMAP of integrated PBMCs from PLHIV (A) and acute HIV (Kazer et al., n= 59,286
cells) for commonly present cell types in both datasets, identified cell types are indicated (total dataset n= 89,500 cells). (H) UMAP of integrated
monocyte subset (n= 39,803 cells) from PLHIV and acute HIV annotated by signatures from Kazer et al. and cluster marker expression. (I) UMAP of
integrated monocytes colored by dataset origin (PLHIV and acute HIV), each n= 10,000 cells. (J) Confusion matrix heatmap showing the distribution
of monocyte cell states for disease groups stratified by dataset. (K) Functional enrichment using the GO and Hallmark databases for markers (from
Figure S3E) of the ‘anti-viral’ monocyte state.
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all related to IFN responses (Figure 3F). In PLHIV, all six proteins

showed elevated levels compared to healthy controls with SAMD9L,

VAMP5, IFIT3, and GBP1 being significant.

To relate our findings from chronic HIV in PLHIV to acute

HIV, in which patients did not yet receive ART and have high

viremia, we integrated the newly produced data with our previously

published results using the same microwell-based single-cell

technology describing several inflammatory monocyte states in

acute HIV infection (33) resulting in 89,500 single-cell

transcriptomes (Figures 3G, S3C, D). To investigate the possible

presence of chronic disease-specific cell states within the monocyte

compartment, we subsetted the monocytes of the integrated

scRNA-seq dataset (Figure 3H). Clustering of the monocyte

compartment resulted in seven monocyte substrates, which could

be annotated based on the previously reported acute monocyte

states (33). These included several inflammatory monocyte states

associated with acute HIV infection, e.g. anti-viral/inflammatory or

IFI27hi monocytes (Figures 3H, S3E). Monocytes from our new data

predominantly exhibited resting and non-classical states,

irrespective of HIV group (Figures 3I, J). Chronic HIV was

characterized by an ‘anti-viral’ monocyte state that was also

found during acute infection (Figure 3J). This ‘anti-viral’

monocyte state expresses interferon-related genes, e.g. IFIT3 and

ISG15 (Figure S3E), and is strongly enriched for the hallmarks ‘IFNg
response’ and ‘IFNa response’ as well as the GO term ‘response to

virus’ (Figure 3K), reminiscent of our results in PBMCs (Figures 1C,

D) and CD14+ monocytes (Figure 2C).

Even within the resting and non-classical monocyte substates

that do not exhibit major changes in proportions between the

clinical groups (Figure 3J), differentially expressed genes

(log2FC=0.25, adj. p-value<0.05, min.pct=0.1) for PLHIV vs.

controls (resting: 70 DEGs, non-classical: 36 DEGs) had a

substantial overlay with the DE genes identified from bulk PBMC

data, i.e. clusters 1 and 2 (Figures 1C, S3F; Supplementary Table S3).

ScRNA-seq also revealed heterogeneity in cell state distribution in

the group of the PLHIV, which was not apparent in the healthy

individuals (Figure S3G).

Collectively, single-cell transcriptomics identified monocytes as

the major cause of changes in PLHIV. Common alterations were

evident across all identified cell states, including resting and non-

classical monocytes, yet scRNA-seq uncovered elevated numbers of

monocytes in the ‘anti-viral’ cell state in chronic HIV that had been

described for acute HIV infection. Thus, pathology in PLHIV is a

combination of molecular alterations and proportion changes that

could only be revealed by analysis on the single-cell level.
Drug repurposing to reverse monocyte
reprogramming in PLHIV

To illustrate how to identify potential drug targets for reversing

a molecular phenotype, here the changes observed in monocytes, we

performed a drug repurposing approach (Figure 4A) following a

previously established methodology (34). In brief, genes up- and

down-regulated in PLHIV who are under ART from scRNA-seq

monocytes, bulk RNA-seq PBMCs, and bulk RNA-seq CD14+
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monocytes were subjected to the drug prediction databases

iLINCS and CLUE (35, 36), resulting in 519 predicted drugs

(Supplementary Table S4). From those drugs, 17,641 signatures

were retrieved from iLINCS and used as input for GSEA on the bulk

RNA-seq CD14+ monocytes and PBMC datasets. Drug signatures

were then clustered by their delta normalized enrichment score

(DNES), resulting in 50 clusters (Figure 4B; Supplementary Table

S4). The DNES indicates the efficiency of the respective drug

signature to reverse the PLHIV-specific signature, with higher

DNES indicating a more complete reversal. Cluster 43, consisting

of 32 signatures, showed the highest DNES for CD14+ monocytes

and also a high DNES for PBMCs (Figure 4C). To decipher the

commonalities of those drug responses, we investigated recurring

target genes of all drug signatures in the cluster (Figure 4D). A

majority of genes were interferon-associated such as IFI27, OAS1,

MX1, and IFI44L, and the target genes were strongly enriched in the

‘anti-viral’ and ‘anti-viral/inflammatory’ monocyte states

(Figure S4A).

Of the 32 drug signatures, we chose five among the top 20

drugs according to DNES for CD14+ monocytes in PLHIV. Four

of them had been studied in the context of HIV infection

[trametinib (37), sunitinib (38, 39), sitagliptin (40, 41),

clofarabine (42)], but had not been reported to alter

transcriptional programs in monocytes. Additionally, the

predicted antibiotic doxycycline, for which neither anti-viral

nor immune-modulating function has been reported, was

chosen as well. Instead of addressing the viral life cycle, this

approach predicts a potential impact on the host’s immune

response to these drugs. To test this hypothesis and validate our

predictions, we performed in vitro experiments stimulating

PBMC from PLHIV with the respective drugs.

Six independent PLHIV were recruited, PBMCs were isolated

and co-cultured in the presence of the selected drugs or with

DMSO as control (Figure 4A, right panel). After overnight

incubation, RNA was extracted and bulk transcriptomics was

performed to measure transcriptional changes induced by the

respective treatment (Figure S4B). The different in vitro

treatments resulted in prominent transcriptional changes in the

PBMCs, evident in the PCA with the strongest alterations

induced by doxycycline followed by trametinib, sunitinib, and

clofarabine (Figure 4E). Differential expression analysis reflected

this finding in the number of DE genes (Figure S4C). Of note,

doxycycline, trametinib, and sunitinib induced a greater number

of downregulated DEGs.

Based on our previous findings, we tested the influence of the

different treatments by analyzing the reduction of gene signature

enrichment for 1) the recurring target genes of cluster 43 identified

from the drug repurposing pipeline (n=35), 2) the ‘anti-viral

monocyte’ markers from our integrated single-cell RNA-seq

analysis (n=137), and the hallmark terms 3) ‘IFNg response’

(n=200) and 4) ‘inflammatory response’ (n=200) (Figure 4F).

Sunitinib and doxycycline showed the most significant impact,

strongly reversing the four different HIV-specific gene signatures.

Trametinib also showed strong, clofarabine a moderate, and

sitagliptin no reductions of the four signatures in our in vitro

verification experiment. These differential effects of the different
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drugs are also seen on the gene level when investigating the top

leading edge genes of the four signatures by each drug (Figure S4D).

Taken together, we predicted drugs that could reverse the

altered monocyte-derived signatures and confirmed our
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repurposing approach in vitro with the drugs doxycycline

and sunitinib strongly reversing the HIV-specific gene

signatures , making them repurposed drug candidates

of interest.
A
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FIGURE 4

Drug repurposing to reverse monocyte reprogramming in PLHIV. (A) Drug prediction workflow and follow-up in vitro verification, NES=normalized
enrichment score. (B) Heatmap showing hierarchical clustering (k-mean=50) of DNES from all drug signatures (n= 17,641) as groups enriched on
transcriptomes from bulk CD14+ monocytes and bulk PBMCs. (C) Zoom into cluster 43 from (B), depicting all involved drug signatures. (D) Recurring
target genes of drug signatures identified in cluster 43 from (C). (E) Principal component analysis (PCA) of bulk PBMC transcriptomes of the in vitro
verification experiment (five HIV donors with six conditions). Samples colored by treatment, DMSO as untreated control. (F) Enrichment of gene
signatures across in vitro treatments, analyzed signatures include the recurring target genes from cluster 43 (drug repurposing), marker for the ‘anti-
viral’ monocytes (integrated scRNA-seq analysis), and the hallmark terms ‘IFNg response’ and ‘inflammatory response’. Wilcoxon rank-sum for
statistical testing (ns: not significant, *: p-value <0.05, **: p-value <0.01).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1275136
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Knoll et al. 10.3389/fimmu.2023.1275136
Discussion

In the present study, we illustrate in a small group of PLHIV

derived from our previous cross-sectional 200-HIV cohort study (1)

that single-cell and bulk transcriptomes of isolated immune cells

revealed reprogramming in multiple cellular compartments in

PLHIV, with innate immune cells, in particular monocytes,

showing most profound changes. We further illustrate that a

certain cellular state of monocytes, previously reported in acute

HIV infection can be observed in PLHIV, while other cell states

associated with acute inflammation are specific for acute HIV and

absent in PLHIV. Long-term usage of ART in PLHIV results in

undetectable viral loads and restores CD4 cell counts to normal

levels, and therefore PLHIV patients differ from people with an

acute HIV infection that have high-level viremia and reduced CD4

cell counts (33). Despite the small number of PLHIV studied, which

clearly showed heterogeneity in their transcriptional profiles, we

also illustrate that combined bulk and single-cell data of these

PLHIV was already sufficient to predict drug candidates for

reversing the observed transcriptional deviations in the monocyte

compartment. While technically applicable to a cohort study

setting, ATAC-seq of this small number of PLHIV did not reveal

any significant differences, which clearly points towards the need for

larger cohorts when assessing chromatin landscape differences. As

such the study reported here provides the necessary information to

include sophisticated transcriptome and epigenome data generation

to be integrated into the larger 2000-HIV cohort study currently

recruiting PLHIV including elite controllers.

The combined analysis of bulk transcriptomes from PBMC and

purified CD14+ monocytes together with single-cell transcriptomes

from blood allowed us already in a rather small number of PLHIV

to define major changes within the peripheral immune cell

compartment, e.g. the identification of a gene cluster

characterized by IFN signaling. The higher-resolution information

from scRNA-seq revealed that some of the changes observed in the

PBMC-derived transcriptomes was due to molecular changes in

monocytes including cell-state differences, but not due to cell-type

distribution differences, further supporting the use of higher-

resolution technologies in larger cohort studies. While IFN-

signaling related molecular changes (cluster 2, Figures 1C, D)

were also captured in bulk transcriptomes from purified CD14+

monocytes (Figure 2), the overall information content from purified

CD14+ monocytes was surprisingly low, indicating that many of the

changes observed in PBMC are derived from other monocyte cell

states (CD14low/-) and other cell types. Single-cell transcriptomes

clearly corroborated this hypothesis showing that basically all

immune cell types exhibited transcriptional changes in PLHIV.

With the lowest information content and highest technical effort,

we concluded that cell-type isolation procedures are not suitable for

larger cohort studies on PLHIV. Moreover, when assessing DEG in

monocytes using both bulk and single-cell transcriptomes, we

detected less DEG in bulk and only a small intersection with

single-cell data (n=19, Figure S3B). Differences in experimental

sample handling or sequencing resolution could explain this small

intersection, however, even though certain genes were not tested to
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activation towards IFN responses was uncovered by both methods.

The systemic assessment of single-cell transcriptomes derived

from PBMC of PLHIV revealed that major transcriptional

reprogramming was mainly observed in monocytes and CD8+ T

cells with fewer changes in CD4+ T cells, NK cells, and B cells.

Focusing on the cell compartment with the major changes, we

revealed a cell state composition in PLHIV including the well-

described classical and non-classical monocyte states, but also a cell

state we previously termed ‘anti-viral monocytes’ in acute HIV

infection (33). Interestingly, this particular cell state showed high

heterogeneity between PLHIV, which will have to be studied in

larger cohorts to better define whether there is a pattern reminiscent

of PLHIV endotypes or whether this might be explained by

individual clinical incidents prior to blood sampling. Despite the

heterogeneity of this monocyte state, the assessment of genes

enriched in gene clusters derived from bulk transcriptomes

indicated that even classical and non-classical monocyte states in

PLHIV are characterized by elevated expression of cluster 2 genes,

supporting the notion that despite the observed heterogeneity,

persistent IFN signaling seems to be a major hallmark of

persistent inflammation in PLHIV (43). Based on these

informative and promising results we propose to integrate these

levels of omics technologies into larger PLHIV studies.

As we identified a major theme for persistent inflammation in

this small number of PLHIV, we addressed whether this

information would already be sufficient to identify drug

candidates by a reverse transcriptome approach (34).

Interestingly, while most therapeutic strategies are currently

addressing alternative antiviral drugs with less toxicity or

treatment strategies aiming at minimizing ART toxicity, fewer

drug regimens address immunomodulation itself including the

use of purinergic P2X receptor inhibitors (44) or statins (45–49).

In clinical studies testing the efficacy of these therapeutic

approaches to lower inflammation in PLHIV, mainly soluble

mediators (e.g. CRP, sCD14, IL-6, sCD163) measured in plasma

or serum were used as readouts, while high-resolution technologies

to address molecular changes in immune cells were not reported.

We exemplified here, how such an approach could be applied to the

identification of drug candidates lowering the inflammatory

response observed in PLHIV. We focused on a cluster of drugs

with a particularly high probability of reversing the transcriptional

alterations observed in monocytes and experimentally validated a

small number of drug candidates. A surprising finding was that the

antibiotic doxycycline induced the strongest effect mainly reducing

gene expression. Together with sunitinib, doxycycline was most

effective in reversing gene expression alterations of 1) the major

target genes used for drug prediction, 2) of the marker genes

expressed in monocytes with the ‘antiviral’ cell state, 3) of the

hallmark genes related to IFN signaling, and 4) hallmark genes

related to the pro-inflammatory response. These findings strongly

suggested that drugs such as doxycycline might not only function as

antibiotics but also modulate host immune responses. This is

similarly true for the drug candidates sunitinib and trametinib,

which have been developed for completely different purposes (50,
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51). Importantly, the modulation of the monocyte-related immune

activation should not be considered yet as being unrestrictedly

helpful for PLHIV, as it is not yet entirely clear whether these gene

programs would play a clinically beneficial role or not. As these

findings have to be considered as proof-of-concept, further

investigations using more drug candidates, different drug

concentrations, and further optimized computational and

miniaturized experimental procedures in a larger group of PLHIV

are certainly warranted to more quickly identify promising new

drug candidates counteracting the inflammatory state in PLHIV

under ART therapy.
Limitations of the study

The present study was conceptualized based on the previous cross-

sectional 200-HIV cohort study (1) to determine whether the

combination of high-resolution and high-content technologies such as

bulk and scRNA-seq data would lead to additional insights into the

pathophysiology of immune deviations in PLHI and therefore, only a

limited number of individuals were included in this study. As the main

purpose was to determine the best strategy to scale these technologies to

larger clinical cohorts, we were surprised that despite a rather small

number of individuals studied and obvious heterogeneity within the

group of PLHIV, we could retrieve important information about major

molecular changes on transcriptome level in all immune compartments.

However, it became also clear that other layers, e.g. chromatin

landscapes as assessed by ATAC-seq require a much larger number

of individuals to determine whether immune cells in PLHIV are also

altered on this epigenetic level. Based on these initial findings, we have

now started to include these technologies in the much larger 2000-HIV

cohort study of approx. 2000 PLHIV to study aspects such as disease

heterogeneity, potential disease endotypes, and association of cellular

changes with clinical trajectories, or to determine potential biomarkers

predicting disease outcome. Certainly, the observation that innate

immune cells such as monocytes show the most pronounced

transcriptional reprogramming in PLHIV was unexpected and will be

one major focus within the currently being assembled cohort of PLHIV.

Moreover, the identification of these monocyte-derived programs also

opens new avenues toward the identification of new mechanisms on

how transcriptional alterations contribute to immune dysregulation

in PLHIV.
Methods

Lead contact

Dr. Anna C. Aschenbrenner, anna.aschenbrenner@dzne.de.
Materials availability

This study did not generate unique reagents.
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Data and code availability

Bulk RNA-seq datasets and single-cell RNA-seq data have been

deposited at the European Genome-phenome Archive (EGA) and

are publicly available under the accession numbers.

All original code is stored on FASTGenomics: https://

beta.fastgenomics.org/p/HIV_Pilot

Any additional information required to reanalyze the data

reported in this paper is available from the lead contact

upon request.
Study cohort

Five PLHIV were recruited from the outpatient HIV clinic of

the Radboud University Medical Center on March 26-28th 2019.

Included patients were five males of Dutch/Western-European

ethnicity who were receiving cART for more than 6 months and

latest HIV-RNA levels ≤200 copies/ml. Ethical approval was

granted by the Ethical Committee of the Radboud University

Medical Center Nijmegen, the Netherlands under registration

number NL42561.091.12). Additionally, five age-/sex-matched

healthy volunteers were included as controls (age 43-61), and

ethical approval was granted by the Ethical Committee of the

Radboud University Medical Center Nijmegen, the Netherlands

under registration number NL32357.091.10). For the in vitro

verification experiments of drugs, six additional male PLHIV

were recruited (age 26-43, with ethical approval granted by the

Ethical Committee of the Radboud University Medical Center

Nijmegen, the Netherlands under registration number

NL68056.091.18). Written consent was obtained from all

participants involved in this study and experiments were

conducted according to the Declaration of Helsinki principles.
PBMC isolation

Human peripheral blood mononuclear cells (PBMCs) were

isolated by dilution of blood in pyrogen-free PBS and differential

density centrifugation over Ficoll-Paque (GE Healthcare, UK) as

previously described by (52). Briefly, the interphase layer was

collected, and cells were washed with cold PBS. Cells were

resuspended in RPMI 1640 culture medium (Roswell Park

Memorial Institute medium; Invitrogen, USA) supplemented with

50 g/mL gentamicin, 2 mM glutamax (Gibco, Life Technologies,

USA), and 1 mM pyruvate (Gibco) and quantified. A fraction of

PBMCs was viably frozen for later use. The cell suspension was

spun down for 5 min at 300g, 4°C, after which all supernatant was

removed. Cells were very gently resuspended in freezing medium

(90% fetal calf serum, 10% DMSO) and aliquoted into cryovials.

They were placed first at -80°C in a CoolCell freezing container

(Corning), after which they were transported the next day on dry ice

and moved to liquid nitrogen storage. For the thawing of PBMCs,
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one vial of 5 million cells was thawed in 10ml RMPI medium

supplemented with 10% FCS.
Preparation of Seq-Well
arrays/libraries/sequencing

Seq-Well arrays and libraries were prepared from isolated

PBMCs as described previously (24).
Measurements of plasma markers

Clinical plasma markers were measured using ELISA (Duoset

or Quantikine, R&D Systems) for IL18-BP, IL-18, hsCRP, sCD14,

sCD163 or using SimplePlex Cartridges (Protein Simple) for IL-6,

all performed according to manufacturers’ instructions. As a

reference, the mean of healthy controls from van der Heijden

et al. (1) were used.
Isolation of CD14+ monocytes

CD14+ monocytes were isolated from PBMC by magnetic-

activated cell sorting (MACS) positive selection with CD14

microbeads (Miltenyi Biotec), according to the manufacturer’s

instructions. Depending on the available PBMC counts used as input,

either MS or LS columns were used (Miltenyi Biotec). After isolation,

cells were again resuspended in a Dutch modified RPMI culture

medium (Invitrogen) supplemented with 50 µg/mL gentamycin, 2

mM glutamax and 1 mM pyruvate (Gibco, Life Technologies).
Flow cytometry

Frozen PBMCs were thawed then stained for surface markers

(Supplementary Table S1) in DPBS with BD Horizon Brilliant Stain

Buffer (Becton Dickinson) for 30min at 4°C. To distinguish live

from dead cells, the cells were incubated with LIVE/DEAD Fixable

Yellow Dead Cell Stain Kit (1:1000 – Thermo Scientific). Following

staining and washing, the cell suspension was fixed with 4% PFA for

10 min at room temperature to prevent any possible risk of

contamination due to aerosol formation during sample handling

and acquisition. Flow cytometry analysis was performed on a BD

Symphony instrument (Becton Dickinson) configured with 5 lasers

(UV, violet, blue, yellow-green, red).
ATAC-seq

Frozen PBMCs were thawed and sorted on a BD FACSAria III

(Blue, Yellow-Green, Red, and Violet lasers), and 20,000 live CD14+

cells were sorted and spun down at 500×g for 5 min at 4°C. The cell

pellet was washed with 50 mL of cold 1x PBS buffer and spun down

at 500 ×g for 5 min at 4°C. The pellet was then resuspended in 50 mL
of cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM
Frontiers in Immunology 10
MgCl2, 0.1% IGEPAL CA-630) and spun down immediately at

500×g for 10 min at 4°C. The supernatant was then discarded, and

the transposition reaction was immediately performed. To perform

the transposition reaction, a mixture of transposase, 5x TAPS-DMF

buffer (50mM TAPS (T5130 SIGMA), 25mMMgCl2, 50% DMF (N,

N-Dimethylformamide)), and water was combined and added to

the cell pellet. The transposition reaction was incubated at 37°C for

30 min. Following transposition, the DNA was purified using a

Qiagen MinElute Kit. The transposed DNA was eluted in 10 mL of

water, and purified DNA was stored at 4°C until the following day

or at -20°C.

To amplify the transposed DNA fragments, a PCR mixture was

prepared using the purified DNA, nuclease-free water, customized

Nextera PCR primers, and NEBNext High-Fidelity 2x PCR Master

Mix. The PCR mixture was cycled as follows: 72°C for 5 min, 98°C

for 30 sec, 98°C for 10 sec, 63°C for 30 sec, and 72°C for 1 min. Steps

3-5 were then repeated 11 times for a total of 12 cycles. The PCR

products were then purified using a Qiagen MinElute Kit and eluted

in 12 mL of water. To validate the quality and concentration of the

PCR products, gel electrophoresis was performed using the

TapeStation and Agilent High Sensitivity D1000 kit.
Protein measurements

Proteomic profiling of selected markers was performed as

described before (53). In brief, venous whole-blood samples were

collected in EDTA tubes and centrifuged into plasma, and then

stored at -80°C. Protein measurements were performed by Olink

Proteomics AB using the Olink Explore platform. QC and

normalization were performed by Olink services. For this study,

protein markers of interest were selected.
In vitro verification of selected drugs

To verify the effectiveness of predicted drugs, six different PLHIV

from the 200-HIV cohort were re-called, and the PBMCs were

extracted and seeded in triplicates with 500,000 cells per replicate.

The PBMCs were cultured for 24 hours in the presence of a selected

subset of drugs from cluster 43, including trametinib (50 mM in

0.000002% DMSO), sunitinib (100 mM in 0.0001% DMSO),

clofarabine (100 mM in 0.00001% DMSO), doxycycline (100 mM

in H2O) and sitagliptin (100 mM in 0.0001% DMSO) or DMSO

(0.001%) as control. After incubation, replicates were collected in a

total of 1 ml TRIzol reagent and processed for bulk RNA-seq.
Quantification and statistical analysis

RNA-sequencing analysis (bulk RNA
PBMC, CD14)

Sequenced reads were aligned and quantified using STAR: ultrafast

universal RNA-seq aligner (v2.7.3a) (54) and the human reference

genome, GRCh38p13, from the Genome Reference Consortium. Raw

counts were imported using the DESeqDataSetFromMatrix function
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from DESeq2 (v1.32.0) (55) and rlog transformed according to the

DESeq2 pipeline. DESeq2 was used for the calculation of normalized

counts for each transcript using default parameters. All normalized

transcripts with a maximum overall row mean lower than 10 were

excluded resulting in 26,920 present transcripts. All present transcripts

were used as input for principal component analysis (PCA).

Differentially expressed genes were calculated for HIV vs. control

using an independent hypothesis weighting (IHW) adjusted p-value

cutoff of 0.05 and an absolute fold change (|FC|) of 1.5. DEGs were

used as input for the k-mean clustered heatmap (k=4), generating

four clusters.

RNA-sequencing analysis (drug
verification analysis)

Sequenced reads were aligned and quantified using kallisto

v0.44.0 (56) and the human reference genome, GRCh38p13, from

the Genome Reference Consortium. Raw counts were imported

using the DESeqDataSetFromTximport function from DESeq2

(v1.32.0) (55) and vst-transformed according to the DESeq2

pipeline. DESeq2 was used for the calculation of normalized

counts for each transcript using default parameters. All

normalized transcripts with a maximum overall row mean lower

than 10 were excluded resulting in 37,952 present transcripts.

Variation in the data was identified using the SVA package

(v3.40) (57), and batch effects were removed with limma (v3.48.3)

(58) using the first six surrogate variables (SVs), which were also

added in the design of the dds object. All present transcripts were

used as input for principal component analysis (PCA) of the batch-

corrected data. Differentially expressed genes were calculated for

HIV vs. control using a p-value cutoff of 0.05, an adjusted p-value

(IHW) < 0.05 (independent hypothesis weighting), and a |FC|>2.

DEGs were used as input for the clustered heatmap.

Transcription factor prediction analysis
The R package RcisTarget (version 1.12.0) (59) was used to

predict the transcription factors potentially regulating heatmap

cluster-specifically contained gene sets. The genomic regions of

TF-motif search were limited to 10kb around the respective

transcriptional start sites by using the RcisTarget-implemented

“hg19-tss-centered-10kb-7species.mc9nr.feather” motifRanking

file. Prediction was performed using the cisTarget function and

the resulting top 3 predicted TF, according to their normalized

enrichment scores (NES), were selected for each heatmap cluster.

Gene set ontology enrichment analysis
Gene set ontology enrichment analysis using the heatmap

clusters as input was performed on the gene sets from the Gene

Ontology (GO) biological process (BP) database (60, 61) and the

Hallmark gene sets (62) using the R package clusterProfiler (version

4.0.5) (63). Ontologies with the highest and statistically significant

enrichment were used for presentation.

Gene set variation analysis
For the enrichment of the genes included in the four different

clusters of the DE heatmap (PBMC data) and for the enrichment of
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the four different transcriptional signatures for the in vitro

verification of drugs, the GSVA package (version 1.40.1) (64)

was applied.

Flow analysis
After pre-processing, compensated fluorescence intensities were

exported from FlowJo (BD, v. 10.7.1). Exported.fcs files were

imported in R with the flowCore package (v. 2.2.0). Fluorescence

intensities were auto-logicle transformed, used for dimensionality

reduction using the UMAP algorithm (umap package v. 0.2.7.0)

(65) and clustered using the Phenograph package (v. 0.99.1) (66).

Cell types were annotated for each cluster by respective marker

expression. For visualization, the proportions of main cell types

were calculated and stratified by disease group.

ATAC-seq analysis
Reads were aligned to human hg38 reference with bowtie2 (67).

Samtools (68) was used to remove adapter offset and to create bam

files. Open chromatin peaks were called using MACS2 (69),

blackl is ted regions (hg38-blackl is t .v2.bed.gz , https : / /

sites.google.com/site/anshulkundaje/projects/blacklists), the low

covered peaks were excluded, and then the peaks were annotated

with gene models from TxDb.Hsapiens.UCSC.hg38.knownGene

using the ChIPseeker package (applying annotatePeaks function)

(70). Downstream analysis was performed with the DESeq2

(v1.26.0) package (55). Differentially accessible regions (DAR)

were detected with a |FC|>1.5 and a corrected p-value > 0.05.

With these standard parameters, no DAR were identified.

ScRNA-seq data analysis
ScRNA-seq UMI count matrices were imported to R 4.1 and

gene expression data analysis was performed using the Seurat

package 4.0.4 (71, 72). Cells with more than 10% mitochondrial

reads and less than 200 expressed genes were excluded from the

analysis and only those genes present in more than 3 cells were

considered for downstream analysis. Moreover, the genes MT-

RNR1 and MT-RNR2 were excluded. Log-normalization, scaling,

and dimensionality reduction steps were performed using the

Seurat implemented functions. For scaling, the number of

detected transcripts per cell was regressed out to correct for

heterogeneity associated with differences in sequencing depth. For

dimensionality reduction, PCA was performed on the top 2,000

variable genes identified using the vst method implemented in

Seurat. Subsequently, UMAP was used for two-dimensional

representation of the data structure using the first 30 PCs. Cell

type annotation was based on the respective clustering results

combined with the expression of known marker genes. DEG by

celltype were calculated for the comparison of HIV vs control with a

|log2FC|>0.25, adj. p-value<0.05 and min.pct=0.1.

Data integration
Data integration of the PLHIV PBMCs (this study) and the

acute HIV PBMC dataset (33) were integrated using the harmony

algorithm (73) based on the first 15 principal components. Prior to

integration, the PLHIV dataset was subsetted for major cell types
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present in acute HIV. Cell type annotation was based on the

respective clustering results combined with the expression of

known marker genes.

Integrated scRNA-seq monocyte analysis
The monocyte compartment was subsetted from the integrated

PBMCs and subsequently normalized, scaled, and subjected to PCA

calculation. For UMAP visualization, the first 10 harmony PCs were

used. After clustering the integrated monocytes with the

FindNeighbors and FindClusters function from Seurat, monocyte

states were annotated according to the signatures described in acute

HIV (33) and cluster-specific markers, separating the monocyte

population into anti-viral (TNFSF10, ISG15, IFIT2, IFIT3),

inflammatory (IL8, IL1B, EREG), anti-viral/inflammatory (CCL2,

CCL4), IFI27/30hi (IFI27, IFI30), HLAhi (HLA-DRB1, HLA-DQA1),

resting (S100A8, S100A9, LYZ) and non-classical (FCGR3A,

C1QA) monocytes.

Confusion matrix
For each monocyte cell state, the relative proportion across the

groups (HIV, control) was visualized as a fraction of samples from

the respective condition contributing to the monocyte cell state

stratified by dataset (PLHIV vs. acute HIV).

Drug prediction
To identify drugs that reverse the gene expression signature

observed in the comparison HIV vs. control for bulk RNA-seq

PBMCs, bulk RNA-seq CD14 monocytes, and scRNA-seq

monocytes, the drug prediction databases iLINCS (http://

www.ilincs.org/ilincs/), and CLUE (https://clue.io/) were accessed.

As input for the drug prediction, the top 1000 (iLINCS) or the top

100 (CLUE) DEGs were used. Drugs reversing the HIV gene

expression signature (defined by a negative score) comprised a

total of 519 unique drugs. Using the iLINCS API (https://

github.com/uc-bd2k/ilincsAPI/blob/master/usingIlincsApis.Rmd),

every gene expression signature from each drug listed in the

signature libraries iLINCS chemical perturbagens (LINCSCP),

iLINCS targeted proteomics signatures (LINCSTP), Disease-

related signatures (GDS), Connectivity Map signatures (CMAP),

DrugMatrix signatures (DM), Transcriptional signatures from EBI

Expression Atlas (EBI), Cancer therapeutics response signatures

(CTRS), and Pharmacogenomics transcriptional signatures (PG)

was downloaded. Labeling was performed in the following

principle: “drug name”_”database”_”database ID”. Signatures

were ordered by fold change, and only the top 300 genes were

used. This resulted in a total of 17,641 unique drug signatures each

with an up- and downregulated set. Subsequently, GSEA was

performed on the sequencing data for every up- and down-

regulated set for each drug and each cluster comparison. The

resulting normalized enrichment scores (NES) were used to

calculate the delta NES for each drug, defined as DNES = NES

(down) −NES (up), ergo the difference of the NES from the

downregulated set and the NES from the upregulated set of each

respective drug. These DNES values were then k-mean clustered

(k = 40). The cluster with the highest DNES values for both CD14
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and PBMCs was chosen and uniquely present drugs were shown.

The leading edge genes of the downregulation signatures of these

drugs (cluster 43) were examined, and the frequency was counted

(recurring target genes).

Data visualization
For data visualization, the R packages Seurat, ggplot2 (version

3.3.5) (74), (https://ggplot2.tidyverse.org), pheatmap (version

1.0.12), and ComplexHeatmap (version 2.8.0) (75) were used.
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SUPPLEMENTARY FIGURE 1

Blood transcriptomes of PLHIV are dominated by monocyte-related

proinflammatory gene programs. (A) Overview of age and sex of the cohort
by disease group. (A) Multicolor flow cytometry (MCFC) cell distribution for

HIV and controls. (B) Number of DEG for the comparison HIV vs. Ctrl in bulk
PBMCs transcriptomes; IHW multiple comparison adjustment and false

discovery rate (FDR) cutoff of 5%, significant fold change of >|1.5|. (C) Gene
set variation analysis (GSVA) of the genes from the four clusters of the DE

heatmap (from ).

SUPPLEMENTARY FIGURE 2

Bulk transcriptomics of monocytes in PLHIV mainly reveals IFN-signaling.

(A) Boxplots of clinically relevant markers measured in the serum of PLHIV.
References as blue bars (1). (B)Overview of MACS CD14 positive selection. (C)
Number of DEG for the comparison HIV vs. Ctrl in bulk RNA-seq CD14; IHW
multiple comparison adjustment and false discovery rate (FDR) cutoff of 5%,

significant fold change of >|1.5|. (D) Boxplot and whisker of selected genes.

SUPPLEMENTARY FIGURE 3

‘Anti-viral’ monocyte state is persistent in PLHIV. (A) Cell type marker

expression of the PLHIV dataset for all identified cell types. (B) Overlap of

up-regulated DEG from monocytes extracted from scRNAseq and bulk
CD14+ transcriptomes (Supplementary Table S3). Genes contributing to the

IFN-g or IFN-a response pathways are indicated for the intersection as well as
the uniquely identified DEG. (C) UMAP of integrated PBMCs from PLHIV and

acute HIV split by dataset (total n= 89,500 cells, each 30,000 cells depicted).
(D) Cell type marker expression of the integrated HIV dataset for all included

cell types. (E) Monocyte cell state marker of the integrated monocytes from

PLHIV and acute HIV. (F) Mapping of HIV-specific (upregulated) DEG of
resting and non-classical monocyte states (for DEG see Supplementary

Table S3) to PBMC clusters from . (G) Integrated monocyte UMAP
subsetted for chronic HIV and stratified by donor.

SUPPLEMENTARY FIGURE 4

Drug repurposing to reverse monocyte reprogramming in PLHIV.

(A) Enrichment of recurring target genes from cluster 43 in monocyte
states of the integrated monocyte analysis (see ). (B) Included samples by

treatment condition after quality control (QC) for the in vitro verification
experiment. (C) Number of DEG (adj. p-value<0.05, |FC|>2, IHW) for each

treatment vs. control (DMSO). (D) Heatmap showing the union of top leading
edge genes of each signature (from ) for each treatment ranked by adj.

p-value.

SUPPLEMENTARY TABLE 1

Donor overview.

SUPPLEMENTARY TABLE 2

Functional enrichment (GO and Hallmark) and transcription factor (TF)

prediction of bulk RNA-seq PBMC heatmap clusters (related to Figure 1)

and MCFC marker.

SUPPLEMENTARY TABLE 3

ScRNA-seq monocytes DEG (related to Figure 3).

SUPPLEMENTARY TABLE 4

Predicted drug clusters and signatures (related to Figure 4).
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SUMMARY

Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and
many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treat-
ment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We
observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19
and the induction of amonocyte substate characterized by the expression of glucocorticoid-response genes.
These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and
they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures
were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts,
highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link
the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and
they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodula-
tory drugs and for patient stratification for precision medicine approaches.
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INTRODUCTION

Dexamethasone represents the first and most effective treatment

against severe COVID-19,1 with likely millions of lives saved

worldwide during the COVID-19 pandemic. Based on transcrip-

tome-based reverse drug target prediction, we had identified

dexamethasone as a potential drug candidate for a subgroup of

patientswith severe disease courses.2 As early as June 2020, pre-

liminary data from the Randomized Evaluation of COVID-19 Ther-

apy (RECOVERY) platform trial demonstrated a significant clinical

benefit of dexamethasone, reducing the relative risk of 28-day

mortality by approximately 30% in patients with severe COVID-

19 requiring mechanical ventilation.1 The benefit of glucocorticoid

(GC) treatment in severeCOVID-19was subsequently validated in

further trials1,3,4 and dexamethasone quickly became the stan-

dard of care (SOC) for all patientswithCOVID-19 requiring supple-

mental oxygen or mechanical ventilation.5 The survival benefit

was lower in patients requiring supplemental oxygen therapy

without invasive ventilation, whereas no benefit and even harm

was observed in patients without respiratory failure and no need

for supplemental oxygen, particularly at higher doses.1,6,7

Although no impact of dexamethasone on severe acute respira-

tory syndrome coronavirus 2 (SARS-CoV-2) viral load kinetics,

antibody and T cell response was observed with the standard

dexamethasone dose used in the RECOVERY trial,8,9 negative ef-

fects of corticosteroid use have previously been reported for pa-

tients with viral pneumonia caused by SARS-CoV and Middle

East respiratory syndrome-related coronavirus (MERS-CoV),10

where delayed viral clearance was observed, as well as for influ-

enza, where corticosteroid therapy is associated with higher

mortality.11

As nomechanistic studies were conducted in the pivotal clinical

efficacy trials, smaller experimental studies haveelaboratedon the

potential effectsofcorticosteroidson the immunesystem.A recent

study demonstrated that dexamethasone treatment of patients

with severe COVID-19 affected circulating neutrophils. The study

revealed transcriptional alteration of several of the known neutro-

phil cell states in peripheral blood,mainly counteracting sustained

interferon (IFN) activation and reinforcing suppressor states, sug-

gesting limitation of neutrophil pathogenicity.12 In two hamster

models, a strong anti-inflammatory effect of dexamethasone

was postulated as amajor effect of therapy, which was also linked

to a specifically responsive subpopulation of neutrophils.13 Down-

regulation of STAT1 target genes in monocytes14 as well as

suppression of T cell function15 were two other potential modes

of action of dexamethasone in COVID-19, yet a link of these tran-

scriptomic changes to treatment response and clinical outcome is

missing.

Despite the proven clinical effectiveness of dexamethasone, a

substantial number of patients progresses to critical illness and

die from COVID-19 with apparently little or no response to dexa-

methasone treatment. Overall, the mechanisms of action of

dexamethasone in severe COVID-19 are unknown, and bio-

markers of treatment response or treatment failure are missing.

Early prediction of treatment failure, however, would be valuable

to guide early step-up of immunomodulatory therapy, and re-

sults from recent clinical trials assessing efficacy of dexametha-

sone in COVID-19 further support the need for biomarker-sup-

ported clinical decision processes, even for such well-known

and widely used drugs as corticosteroids.6,16

Here, we provide a framework to identify molecular modes of

action and markers of treatment response of repurposed drugs,

exemplified by dexamethasone in COVID-19. We identified pa-

tients treated with and without dexamethasone according to

criteria of the RECOVERY trial during the first months of the

COVID-19 pandemic from a large observational cohort study.17

We generated single-cell omics profiles from peripheral blood-

derived immune cells, deciphered cellular, molecular, and

functional changes to dexamethasone treatment, and linked

the observed changes to clinical outcomes. We found that

dexamethasone specifically reverses the dysfunctional molecu-

lar phenotypes associated with severe COVID-19 in monocytes

of patients with a clinical response to treatment but not those

with a fatal outcome. Based on these outcome-specific single-

cell gene expression data, we generated transcriptomic signa-

tures that we transferred to whole blood transcriptomes of two

independent COVID-19 cohorts, demonstrating their potential

as predictive biomarkers for treatment response in clinical

studies. We reveal molecular hallmarks that are linked to the

life-saving effects of dexamethasone and demonstrate, in gen-

eral, the feasibility of single-cell transcriptomics to assess in vivo

drug target engagement and treatment responses in clinical

studies.

RESULTS

Dexamethasone treatment leads to immunomodulation
in circulating immune cells
To determine cellular and molecular changes induced by dexa-

methasone treatment in COVID-19 patients, we identified all

patients enrolled in our central phenotyping platform study17

who were infected during the first two waves of the COVID-19

pandemic (i.e., infected with SARS-CoV-2 D614G strain) and

who were either GC naive (first wave from March to May 2020,

termed control patients, short ‘‘ctrl’’) or who were treated with

dexamethasone (second wave from October 2020 to February

2021) (Figure 1A; Table S1).17 We carefully selected patients

who met the criteria for dexamethasone treatment as identified

in the RECOVERY trial. Of note, all selected patients did not

receive any other immunomodulatory or any antiviral treatment.

We selected patients who received dexamethasone or were

treatment-naive and matched them for sex, age, disease

severity, and time from symptom onset to blood sampling, re-

sulting in comparable baseline characteristics and disease

severity (Table S1). Whole blood and peripheral blood mononu-

clear cells (PBMCs) were taken on average 8 days after treat-

ment initiation and subjected to high-dimensional single-cell an-

alyses utilizing cytometry by time of flight (CyTOF), single-cell

RNA sequencing (scRNA-seq), and multi-color flow cytometry.

Assessment of compositional alterations of the major immune

cell types (Figure 1B) by CyTOF revealed significantly increased

leukocytes in dexamethasone-treated patients with moderate

disease severity (Figure 1C). Increased leukocyte frequencies

were mainly due to alterations in B cells and neutrophils in

moderately ill patients (hospitalized patients requiring oxygen

supplementation but no mechanical ventilation), while there
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Figure 1. Dexamethasone treatment leads to immunomodulation in circulating immune cells

(A) Study design: hospitalizedmoderately (supplemental oxygen needed) and severely affected (i.e., intensive care unit treatment) patients with COVID-19 treated

with dexamethasone were matched for sex, age, disease severity, and time from symptom onset to blood sampling with treatment-naive COVID-19 patients

(ctrl.). Samples were obtained prior to treatment or corresponding time points for controls (‘‘early’’), respectively, and toward the end of the treatment period and

corresponding time points for controls (‘‘late’’). Whole blood leukocytes were analyzed by CyTOF, and purified PBMCs were analyzed by scRNA-seq and flow

cytometry for marker validation. Included sample numbers are indicated. See Table S1.

(B) UMAP of whole blood cells (downsampled from n = 3,191,132 to n = 986,030 cells for better visualization) from CyTOF with identified cell types indicated.

(C) Absolute leukocyte counts from differential blood count, monocyte percentages, and concentration of whole blood cells from CyTOF. Wilcoxon test for

statistical significance, and resulting p value is indicated.

(D) UMAP visualization of the entire PBMC space (n = 114,181 cells) from scRNA-seq with indicated major cell types.

(legend continued on next page)
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was no difference in dexamethasone-treated severely ill patients

(Figure S1A). Further, there was a relative decrease of mono-

cytes in dexamethasone-treated patients with moderate disease

(Figure 1C). Altogether, the compositional changes indicated

cell-type-related immunomodulatory alterations of dexametha-

sone treatment.

Next, we definedmolecular phenotypes and treatment-related

transcriptional alterations of a total of 114,181 PBMCs by

scRNA-seq. All major blood-derived immune cell types were

present in our dataset (Figures 1D and S1B). Overlaying time of

sampling after symptom onset (%10 and >10 days, Figure S1C)

or disease severity onto the uniformmanifold approximation and

projection (UMAP) (Figure 1E) revealed global distribution

shifts, as previously described,18 particularly within the mono-

cyte compartment. Specifically, we observed profound disease

severity-related alterations in expression of human leukocyte an-

tigen (HLA) and S100A genes (Figure 1F) and the IFN system

(Figure S1D), as previously described.18 In order to reveal tran-

scriptional effects of dexamethasone treatment, we quantified

differentially expressed genes (DEGs) by cell type (Figure 1G).

We observed the strongest treatment-dependent transcriptional

changes inmonocytes, followed by B cells andCD4+ T cells, with

all other cell types showing a moderate gene regulation. Of note,

we observed an upregulation of a substantial number of genes

associated with dexamethasone treatment in monocytes in

moderate and severe disease (Figure 1G). Despite clear differ-

ences in the magnitude of transcriptional alterations between

cell types, we identified a small set of DEGs shared across cell

types in severe COVID-19, including thewell-knownGC receptor

target genes TSC22D319 and TXNIP20 among the commonly up-

regulated genes, while IFITM1 and FTH1were among the down-

regulated genes (Figure S1E). Functional enrichment analysis

across all major cell types using all up- and downregulated

genes revealed that a large number of genes are tumor necrosis

factor alpha (TNF)-mediated nuclear factor kB (NF-kB) target

genes, particularly within downregulated DEGs (Figures 1H

and S1F), which corroborates previous findings that corticoste-

roids can inhibit NF-kB transcription factor family members.21,22

The importance of dexamethasone-related changes in the

monocyte compartment was further illustrated by the strongest

enrichment scores ofmany other cellular functionswhen assess-

ing upregulated DEGs in patients with severe disease (Fig-

ure S1F, right panel).

In summary, we observed transcriptional changes associated

with dexamethasone treatment that were quantitatively most

prominent in monocytes and B cells and exhibited cell-type-

specific modulations in addition to common transcriptional

changes.

Dexamethasone treatment elicits a unique cell state in a
subset of monocytes
To determine disease severity-dependent commonalities and

differences in the transcriptional response ofmonocytes to treat-

ment, we compared DEGs in monocytes from dexamethasone-

treated (Dexa) vs. untreated (ctrl.) patients with severe and

moderate COVID-19 (Figure 2A). Dexamethasone treatment

suppressed expression of several proinflammatory genes,

including IL1B,CCL3,CCL4,CCL3L3, andCCL4L2, irrespective

of disease severity, and induced a disease severity-independent

gene program, which included known GC-response genes such

as IL1R2, the decoy receptor for interleukin (IL)-1 in line with

the anti-inflammatory effect of dexamethasone, as well as

TSC22D3, CD163, SAP30, PER1, and ZFP36L219,23–25 (Fig-

ure 2B). Based on these in vivo changes, we compiled a dexa-

methasone treatment gene signature composed of both down-

and upregulated genes (Figure 2C). Upregulated genes were

functionally related to hypoxia and regulation of catabolic pro-

cesses, while downregulated genes enriched for NF-kB

signaling and terms related to immune activation (Figure 2D).

Further, we found a GC signature derived from monocytes

treated with a synthetic GC in vitro26 to be strongly enriched in

monocytes during dexamethasone treatment in our dataset

(Figure 2E).

Next, we sub-clustered the 23,416 transcriptomes of the

monocyte space into ten different cell states (Figures 2F and

2G), showing enrichment of seven cell state signatures derived

from acute COVID-19 prior to introduction of dexamethasone

therapy18 (Figure S2A). Despite the enrichment of the GC-

response gene signature upon dexamethasone treatment in

the monocyte space overall (Figure 2E), cell state-specific anal-

ysis revealed the strongest enrichment of the GC signature in

one selected cluster, which we termed ‘‘Dexa response’’ cell

state (Figures 2H and S2B). These findings were validated with

gene sets based on the Gene Ontology (GO) term ‘‘response to

GC’’ and ‘‘response to steroid hormone’’ (Figures 2I and 2J).

Manual assessment of individual genes corroborated the Dexa

response state to be related to dexamethasone treatment

as several known GC target genes were elevated including

TSC22D3,19 SAP30,24 FKBP5,27 and CD16323 (Figure 2G).

To cross-validate our results, we analyzed 2,350 monocyte tran-

scriptomes included in a recently published dataset of dexa-

methasone-treated patients,12 revealing similar changes in

monocytes from this independent dataset (Figures S2C

and S2D).

Dexamethasone treatment elicited a transcriptional core

signature in monocytes in COVID-19 patients, independent

of disease severity. Single-cell analysis revealed that these

(E) UMAP of the entire PBMC space by scRNA-seq colored by COVID-19 severity with indicated cell types subsetted for untreated controls. Shift in monocytes is

indicated.

(F) Violin plots indicating the expression of selected MHC class II (HLA-DRA,HLA-DRB1, andHLA-DPA1) and alarmin (S100A8, S100A9, and S100A12) genes by

severity in monocytes of untreated controls. Significant differential expression is indicated with asterisks.

(G) Number of differentially expressed (DE) genes (DEGs) by major cell type with at least 2,000 cells for dexamethasone vs. control by COVID-19 severity (DE

parameters: log2FC = 0.25, min.pct = 0.1).

(H) Spider plots depicting the Hallmark TNF signaling via NF-kB, the most prominent term of functional enrichment analysis for the dexamethasone down-

regulated genes by cell types extracted from Figure S1F.

See also Figure S1.
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transcriptional changes were not present evenly across all

monocytes, but that a specific monocyte substate elicited

upon dexamethasone treatment showed the highest enrichment

of GC-response genes (Dexa response monocyte state).

Dexamethasone-induced transcriptional modulation of
monocytes is linked to clinical outcome
Although clinical trials have demonstrated a strong clinical benefit

of dexamethasone in patients with moderate and severe COVID-

19, a substantial number of patients—almost 30% in the

RECOVERY trial—died despite dexamethasone treatment.1 It is

unclear whether the unfavorable outcome in these patients is

caused by a failure to adequately respond to treatment and which

mechanisms contribute to a treatment benefit. We therefore as-

sessed whether the distribution of treatment-related monocyte

cell states was linked to disease severity and to the clinical

outcome. The Dexa response monocyte state was prevalent in

up to 80% of all monocytes in dexamethasone-treated patients

with moderate COVID-19 (hospitalized patients requiring oxygen

supplementation but no mechanical ventilation) and less

pronounced in dexamethasone-treated patients with severe

COVID-19 (Figure 3A). Similarly, protein expression of CD163, a

prominent marker gene of the dexamethasone response cluster,

was elevated on monocytes in dexamethasone-treated COVID-

19 patients (Figure S3A). Analysis of whole blood samples by

CyTOF (Figure S3B) revealed that cluster abundance of the

CD14+CD16�CD163hi classical monocytes (Figure 3B) and signal

intensity of CD163 (Figure 3C) were significantly elevated in dexa-

methasone-treated patients, whereas the CD14+ and CD16+

CD69+PD-L1+ activated classical and non-classical monocyte

subpopulations were significantly downregulated by dexametha-

sone treatment (Figure S3C), with potentially beneficial effects on

T cell functionality, similar to programmed cell death ligand-1 (PD-

L1) blockade in SARS-CoV-2 infection.28

Further stratification of dexamethasone-treated patients with

severe COVID-19 by clinical outcome (survival) revealed a signif-

icantly higher frequency of Dexa response monocytes in survi-

vors compared with patients who later died during the course

of their disease (deceased), in whomDexa response statemono-

cytes were low to undetectable (Figures 3D and S3D).

Given the outcome-dependent transcriptional changes, we

next contrasted the DEGs in all monocytes focusing on dexa-

methasone-treated surviving patients (i.e., responders) and un-

treated control survivors (Figure 3E). Beyond the downregulation

of proinflammatory genes observed in the dexamethasone core

signature, selective analysis of monocyte gene expression in

survivors revealed that dexamethasone treatment was associ-

ated with a reversal of the previously reported transcriptional

dysregulation in monocytes in severe COVID-19.18 Dexametha-

sone treatment led to a downregulation of alarmins, cytokines,

and chemokines and reconstitution of HLA-DRB1, HLA-DRA,

HLA-DPA1, and CD74 expression (Figure 3F). Alarmin expres-

sion in monocytes was lower at 7 days compared with 3 days af-

ter initiation of dexamethasone treatment12 (Figure S3E), indi-

cating a time-dependent effect of dexamethasone on alarmin

gene expression.

In line with these findings, dexamethasone treatment signifi-

cantly reduced the frequency of S100Ahi monocytes in survivors,

but not in non-survivors (Figure 3G). Differential gene expression

analysis of patients with severe COVID-19 (all treated with

dexamethasone) showed that dexamethasone induced the up-

regulation of genes associated with a milder course of disease,

specifically in survivors, whereas monocytes in non-survivors

expressed higher levels of alarmins associated with monocyte

dysregulation (Figure 3H), resembling untreated patients with

severe COVID-19 (Figure S3F). These data indicated that a

non-favorable clinical outcome, i.e., death from COVID-19,

was associated with a failure of monocytes to respond to dexa-

methasone. We had previously identified a dysregulated mono-

cyte state marked by low major histocompatibility complex

(MHC)-II expression and high levels of alarmins, termed ‘‘HLA-

DRloS100Ahi,’’ which was strongly associated with COVID-19

severity.18 Gene set enrichment analysis (GSEA) showed that

dexamethasone treatment reversed this dysfunctional mono-

cyte phenotype in survivors, whereasmonocytes from deceased

patients did not show a reversal of this transcriptional signature,

hence failed to respond to treatment (Figure 3I).

In addition to monocytes, we also tested B cells for outcome-

specific signatures, as they also showed profound transcrip-

tional changes to dexamethasone (Figure 1G). However, only a

Figure 2. Dexamethasone elicits a unique cell state in a fraction of monocytes
(A) Fold change-fold change (FC-FC) plot showing the log2 fold changes of differentially expressed genes (DEGs) in monocytes from the comparisons of severe

COVID-19 Dexa vs. control (y axis) and moderate COVID-19 Dexa vs. control (x axis). Genes that are DE in both or only one comparison are indicated.

(B) Violin plots depicting expression of previously described dexamethasone-induced genes (TSC22D3, IL1R2, CD163, SAP30, PER1, and ZFP36L2) in

monocytes stratified by severity and treatment. Significant differential expression is indicated with asterisks.

(C) Heatmap of the average log2 fold change in monocytes from genes identified in (A) stratified by the severity comparisons. For representation, the top 20

upregulated and downregulated genes were selected.

(D) Functional enrichment of the Dexa core signature genes from (A) and (C) using the GO and Hallmark databases (Bonferroni-adjusted p value < 0.05).

(E) Enrichment of the in vitro generated glucocorticoid signatures fromWang et al.26 in monocytes stratified by COVID-19 severity and treatment represented as

mean module score per donor. Statistical testing using Wilcoxon test.

(F) UMAP visualization of the entire monocyte space (n = 23,416 cells) with identified monocyte states. The Dexa response state is highlighted.

(G) Marker gene expression levels for identified monocyte states from (F). Markers for the Dexa response state are highlighted.

(H) Enrichment of the in vitro generated glucocorticoid up signatures from Wang et al.26 in all monocyte states. Kruskal-Wallis (KW) test between mean module

scores by donor and cell states, and the resulting p value is indicated.

(I) Enrichment of the GO term response to glucocorticoid in all monocyte states. Kruskal-Wallis (KW) test between mean module scores by donor and cell states,

and the resulting p value is indicated.

(J) Enrichment of the GO term response to steroid hormone in all monocyte states. Kruskal-Wallis (KW) test between mean module scores by donor and cell

states, and the resulting p value is indicated.

See also Figure S2.
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comparatively small fraction of genes was associated with

outcome, indicating that B cells are not informative in contrast

to themonocytes for stratifying treatment response (Figure S3G).

To evaluate if similar treatment effects as detected in blood

monocytes were also detectable in the lungs and therefore

potentially directly related to organ failure and disease progres-

sion, we analyzed cells from bronchoalveolar lavage (BAL) of

patients with severe COVID-19. First, we analyzed published

single-cell transcriptomes of BAL29 including a total of six pa-

tients with severe COVID-19 patients, four of whom were

treated with the synthetic GC methylprednisolone. We recov-

ered similar patterns as we found in blood monocytes in

response to dexamethasone treatment. Disease outcome-

stratifying markers from the blood monocytes (Figure 3E)

were also highly expressed in BAL myeloid cells of methylpred-

nisolone-treated survivors (n = 2), while blood monocyte

markers associated with treatment failure were higher in treated

deceased patients (n = 2, Figure S3H). As the cohort size in this

published dataset was too limited for robust statistical analysis,

we generated single-cell transcriptomes from BAL samples

collected from twelve patients with severe COVID-19 in the first

two waves in Germany, including seven dexamethasone-

treated and five untreated patients. The dataset comprised a

total of 67,439 cells (Figure S3I; Table S1) and recovered all

major cell types expected in BAL (Figures S3J and S3K). In or-

der to investigate similarities of the transcriptional responses to

dexamethasone between circulating and pulmonary immune

cells, we analyzed the enrichment of the signature of Dexa

response monocytes from blood in BAL monocytes and macro-

phages, stratified by treatment (dexa vs. untreated) and

outcome (survival vs. deceased) (Figure 3J). The Dexa

response signature was significantly enriched in BAL mono-

cytes from dexamethasone-treated survivors, but it was neither

enriched in monocytes from untreated patients nor in dexa-

methasone-treated deceased patients. A similar stratification

was observed in BAL macrophages, albeit to a lesser extent

(Figure 3J). These data indicate that transcriptional responses

to dexamethasone treatment detected in circulating monocytes

are preserved in the lung and likely contribute to outcome ben-

efits of dexamethasone.

In conclusion, induction of a Dexa response monocyte state

in patients with severe COVID-19 treated with dexamethasone

was associated with clinical benefit (survival). In addition, dexa-

methasone treatment exerted specific modulatory effects by

reversing the dysregulated monocyte phenotype in patients

with severe COVID-19, whereas fatal outcome was associated

with a failure to revert the dysregulated monocyte phenotype.

These data link the clinical effect of a pharmacological interven-

tion (dexamethasone) to a molecular phenotype in immune cells

in the blood and in the lung. The data also demonstrate the

versatility of scRNA-seq to reveal mechanisms of action of ther-

apeutic interventions and to identify non-responders to a spe-

cific treatment prior to the clinical endpoint. The results under-

score the causal relevance of monocyte responses in the

pathophysiology of severe COVID-19.18,30

Dexamethasone treatment response is reflected in the
epigenome of CD14+ monocytes early after treatment
initiation
To investigate whether the observed differences in the dexa-

methasone treatment response on the transcriptional level are

reflected by epigenetic profiles in monocytes, we selected pa-

tients with supplemental oxygen but without invasive mechani-

cal ventilation at treatment start (World Health Organization

(WHO) score of 4–5) and generated genome-wide DNA methyl-

ation profiles of blood samples at an earlier stage of treatment

(median 2 days after initiation of dexamethasone treatment)

than for the transcriptome analysis (median of 8 days) (Figure 4A).

Patients were matched in pairs according to clinical status at

treatment initiation and classified based on their future WHO

score (median 9 days later) as either dexamethasone non-re-

sponders (increased WHO score, i.e., clinical deterioration to

intubation and invasive mechanical ventilation, need for addi-

tional organ replacement, or death) or dexamethasone re-

sponders (stable or improved clinical status and WHO score).

DNA methylation profiles of fluorescence-activated cell sorting

Figure 3. Dexamethasone-induced transcriptional modulation of monocytes is linked to clinical outcome

(A) Percentages of Dexa response monocyte state of all monocytes stratified by severity and treatment with each dot representing one donor. Statistical testing

using Wilcoxon test, resulting p values are indicated.

(B) Monocyte relative cluster distribution fromCyTOF analysis for cluster 3 (CD14+CD16�CD163hi, clustering see Figure S3B). Wilcoxon test for statistical testing,

and resulting p values are indicated.

(C) Mean scaled signal intensity of CD163 in myeloid cells (CyTOF) by treatment group and severity. Wilcoxon test for statistical testing, and resulting p values are

indicated.

(D) Percentages of Dexa response monocyte state of all monocytes in severe patients with dexamethasone treatment stratified by outcome. Statistical testing

using Wilcoxon test, and resulting p values are indicated.

(E) Volcano plot showing the differentially expressed genes (DEGs) for Dexa vs. control in severe COVID-19 survivors (DE parameters: log2FC = 0.25, min.pct =

0.1).

(F) Violin plots for a selection of genes from (E) belonging to the MHC class II, alarmins, or cytokines/chemokines group.

(G) Percentages of ‘‘S100Ahi’’ monocyte state of all monocytes stratified by outcome in dexamethasone-treated severe COVID-19 patients. Statistical testing

using Wilcoxon test, and resulting p values are indicated.

(H) Volcano plot showing the DEG between severe COVID-19 patients treated with dexamethasone who survived vs. those who were treated but deceased in

monocytes (DE parameters: log2FC = 0.25, min.pct = 0.1).

(I) Signature enrichment of the HLA-DRloS100Ahi monocytes from Schulte-Schrepping et al.18 in monocytes of severe COVID-19 patients stratified by treatment

and outcome.

(J) Enrichment of the Dexa response monocyte signature (n = 30) in both bronchoalveolar lavage (BAL) COVID-19 monocytes (left) and macrophages (right),

cohort overview in Figure S3G. Statistical testing using the Wilcoxon test (alternative = ‘‘greater’’), and resulting p values are indicated.

See also Figure S3.
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Figure 4. Treatment response is reflected in the epigenome of CD14+ monocytes early after treatment initiation

(A) Study design: PBMCs were isolated from patients (WHO score of 4–5 at dexamethasone treatment start) 1–4 days after the start of Dexa treatment. Ten

matching pairs of treatment non-responders/responders were selected based on their increased/not-increased WHO score 5–11 days after Dexa treatment,

respectively. CD14+CD16� monocytes, CD19+ B cells, CD4+ memory T cells, and CD8+ memory T cells were purified using flow cytometry (FACS) and analyzed

on the Infinium MethylationEPIC BeadChip array for genome-wide DNA methylation.

(B) Principal-component analysis (PCA) was performed on the genome-wide DNA methylation datasets of CD14+ monocytes. Histograms on the axes show the

distribution of dexamethasone treatment response group samples.

(C) PC linear regression analysis of covariates. Contribution of dexamethasone treatment response, age, and sex are displayed for PCs 1–4.

(legend continued on next page)
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(FACS)-purified CD14+CD16� monocytes, CD19+ B cells, CD4+

memory T cells, and CD8+ memory T cells (Figure S4A) showed

the strongest differences by cell type without differentiating be-

tween responders and non-responders in the global principal-

component analysis (PCA, Figure S4B). To define treatment

response-related differences, each cell compartment was sub-

setted and analyzed individually. A separation between re-

sponders and non-responders was observed in the PCA for

CD14+ monocytes (Figure 4B), which was not seen in CD19+ B

cells or CD4+ and CD8+ memory T cells (Figure S4C). PC linear

regression analysis of the CD14+monocytes confirmed the high-

est influence to be the dexamethasone treatment-response

group on the first principal component (Figures 4B and 4C). To

further explore the epigenetic differences within CD14+ mono-

cytes between non-responding and responding patients, we

determined significantly differentially methylated positions

(DMPs, Figure 4D). Functional enrichment analysis of pro-

moter-associated DMPs revealed high association of GO terms

such as ‘‘myeloid leukocyte activation,’’ ‘‘response to chemo-

kine,’’ ‘‘myeloid leukocyte migration,’’ and ‘‘regulation of inflam-

matory response,’’ displaying epigenetic remodeling of pro-

moter elements of genes contributing to a proinflammatory

program in CD14+ monocytes (Figure 4E).

Comparing these results to our findings on the transcriptome

level (�8 days after treatment initiation), outcome-specific

monocyte signature genes for severe dexamethasone-treated

COVID-19 patients who deceased (Figure 3H) were overrepre-

sented in the top 1% DMPs (based on combined rank) with an

even stronger overrepresentation in the top 0.1% DMPs, indi-

cating significant differential methylation changes in these signa-

ture genes (Figure 4F). This was supported by a significant

robust rank aggregation (RRA) enrichment analysis (Figure 4G).

Taken together, we observed profound epigenetic differences

in monocytes of dexamethasone non-responders vs. re-

sponders early after treatment initiation, thus preceding the

observed transcriptional changes. Differences were mainly

associated with a proinflammatory program and also showed

enrichment of the outcome signature retrieved from single

monocyte transcriptomes, further supporting the importance of

this gene program to be targeted if dexamethasone therapy is

to become clinically effective.

Dexamethasone-inducedmonocyte signatures enrich in
whole blood transcriptomes of two clinical cohorts and
stratify outcome
Given the clear outcome-associated transcriptional changes,

particularly in the monocyte compartment, we next investigated

whether these changes could be recapitulated in whole blood

transcriptomes and whether transcriptome information from

early time points after dexamethasone treatment initiation would

be informative to stratify patients according to their clinical

outcome.

To this end, we generated whole blood bulk transcriptomes

from 92 patients of our single-center COVID-19 cohort (Charité,

Pa-COVID-19), sampled at 4 days after treatment initiation (Fig-

ure 5A), 4 days earlier than for the scRNA-seq analysis. PCA re-

vealed expression differences between moderately ill patients,

severely ill patients who survived, and severely ill patients

who later died (Figure 5B), indicating the feasibility to detect

outcome-related differences from whole blood transcriptomes.

We compiled two transcriptome signatures related to fatal

outcome, i.e., for up- and downregulated transcripts, based on

the single-cell monocyte transcriptomes (Figures 2 and 3). Enrich-

ment scores for these signatures were calculated for each patient

and integrated for each patient group. We observed significant

disease severity- and outcome-dependent differences, with

enrichment of the ‘‘deceased upregulated’’ signature in deceased

patients and highest enrichment of the ‘‘deceased downregu-

lated’’ signature in patients with the lowest disease severity

(moderate COVID-19) (Figure S5A). These findings indicated

that outcome-associated monocyte-specific gene signatures

are detectable in whole blood transcriptomes, even at an earlier

time point after treatment initiation (4 vs. 8 days), and that these

signatures could stratify patients by outcome (Figure S5A).

Next, we utilized samples collected from 90 patients in a

Germanmulti-center cohort (CAPNETZ cohort) at an even earlier

time point after initiation of dexamethasone treatment (2 vs.

4 days, Figure 5C). Also in this cohort, we identified differences

between patients according to disease severity and outcome

(moderate, severe survived, and severe deceased) by PCA (Fig-

ure 5D), albeit less clear than in the samples from the single-cen-

ter cohort collected at a later time point of 4 days post treatment

initiation. Accordingly, the single monocyte transcriptome-

derived deceased upregulated signature was not significantly

enriched, but the deceased downregulated signature enriched

with statistically significant differences between the three groups

(Figure S5B).

To assess the likelihood of obtaining an enrichment of the sin-

gle monocyte transcriptome-derived signatures of that size with

the respective significance, we performed a permutation test

with 500 gene sets randomly drawn from each dataset, respec-

tively, and calculated the enrichment scores in deceased and

surviving patients. In contrast to the vast majority of these

random gene sets, we observed a highly specific enrichment

of our original singlemonocyte transcriptome-derived signatures

in both cohorts, particularly of the deceased upregulated

(D) Volcano plot of differentially methylated positions (DMPs) in CD14+ monocytes comparing both dexamethasone response groups. The red line indicates the

false discovery rate (FDR) of 0.05 (Benjamini-Hochberg).

(E) Gene Ontology enrichment analysis performed on promoter-associated DMPs for CD14+ monocytes comparing dexamethasone response groups.

(F) Fraction of outcome signature genes frommonocytes (deceased vs. survivors, Figure 3H) within all samples on the EPIC array, the top 1% of DMPs (based on

combined rank), and the top 0.1% of DMPs.

(G) Volcano plot with marked sites of monocyte outcome signature genes displaying differential methylation (red dots: p value < 0.05; pink dots: not significant).

Gene names were displayed for DEG sites with an FDR < 0.05. Statistical significance of the overlap between differential DNA methylation and differential gene

expression was calculated (robust rank aggregation [RRA], p value = 0.034).

See also Figure S4.
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Figure 5. Monocyte-specific signatures enrich in whole blood transcriptomes of two validation cohorts and stratify outcome
(A) Schematic representation of the single-center (Charité) COVID-19 cohort used for whole blood transcriptome data analysis sampled on average at 4 days after

dexamethasone treatment initiation. Included sample numbers are indicated.

(B) Principal-component analysis (PCA) plot showing the distribution of the top 5,000 most variable genes present in the single-center cohort, color-coded

according to COVID-19 severity and outcome.

(C) Schematic representation of the multi-center (CAPNETZ) cohort used for whole blood transcriptome data analysis sampled on average 2 days after dexa-

methasone treatment initiation. Included sample numbers are indicated.

(legend continued on next page)
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signature in the single-center cohort and of the deceased down-

regulated signature in the multi-center cohort. (Figures S5C and

S5D.) To further increase the robustness of the enrichment anal-

ysis, we varied the number of genes to be included in the gene

signature and optimized the signature size based on the calcu-

lated enrichment scores and different enrichment between the

groups in both cohorts (Figures S5E and S5F). These optimized

signatures showed a high robustness for stratifying patients ac-

cording to disease severity and outcome in the two independent

cohorts, at early time points after treatment initiation (Figures 5E

and 5F). Investigation of the driving genes of the enrichment

of the outcome-related signature (Figures 5G, 5H, S5G, and

S5H) revealed that the leading edge of the GSEA included

the chemokine CXCL1 together with the alarmins S100A8,

S100A9, S100A11, and S100A12, resembling the monocyte

phenotype in patients with severe acute COVID-19 for the

deceased upregulated signature in the original single-center

cohort (Figure 5G) and that enrichment of the deceased downre-

gulated signature in the deceased patients was strongly driven

by many MHC class II genes (Figure S5G). In the whole blood

transcriptomes of the multi-center cohort sampled at 2 days

post treatment initiation, the leading edge of the enrichment of

the deceased upregulated signature did not yet contain the com-

plete signature at this early time point in patients who later died,

but already showed changes in S100A12 and CXCL1 (Fig-

ure S5H). Yet, the edge of the deceased downregulated signa-

ture was already enriched in MHC class II genes such as

CD74, HLA-DQB1, HLA-DRB1, and HLA-DRA for patients who

later died (Figure 5H). These results further emphasize the role

of dexamethasone in reversing the severe acute COVID-19

phenotype, as early as 2 days after initiation of treatment.

Taken together, clinical outcome-related single monocyte

transcriptome-based gene signatures derived from COVID-19

patients on average 8 days after initiation of dexamethasone

treatment were enriched in whole blood bulk transcriptomes ob-

tained at day 4 post treatment initiation and accurately stratified

patients according to disease severity and outcome. In whole

blood transcriptomes collected 2 days after treatment initiation

in an independent cohort, we could only detect an enrichment

of the gene signature based on downregulated genes, indicating

that dexamethasone treatment effects become apparent in

whole blood transcriptomes between 2 and 4 days after treat-

ment initiation.

The results demonstrate the versatility of single-cell sequencing

of clinical samples to reveal in vivo effects of pharmacological

treatment and that gene signatures derived from these analyses

can be applied to larger clinical cohorts to stratify study patients

by outcome, even at early time points after treatment initiation.

DISCUSSION

GCs are among the most widely prescribed drugs worldwide and

a cornerstone for the treatment of a variety of acute and chronic

inflammatory conditions. In clinical practice, they are often re-

garded as effective yet rather nonspecific immunosuppressants,

despite an established molecular understanding that both natu-

rally occurring and pharmacologically designed GCs are acting

via specific binding to GC receptors.31,32 Responsiveness to GC

treatment is known to beheterogeneousamongpatients, possibly

influenced by the variety of diverse GC receptor isoforms, which

mediate their differential genomic and non-genomic effects.26,33

To better understand the specificity and the molecular mode

of action of GC treatment in COVID-19, we applied high-content

bulk transcriptomics and high-resolution single-cell technolo-

gies in two clinical cohorts of patients with COVID-19. We pro-

vide evidence that dexamethasone treatment in severe COVID-

19 leads to a highly specific immune modulation. Major changes

of molecular phenotypes occur mainly in the myeloid cell

compartment, where dexamethasone elicits a treatment-spe-

cific cell state in a fraction of monocytes, with induction of genes

with well-known regulatory functions including cell surface re-

ceptors, transcriptional regulators, and translational regulators,

while many chemokines and IL-1B are decreased in expression.

Defining qualitative and quantitative effects of dexamethasone

treatment on the cellular and molecular level supported a spe-

cific immunomodulatory effect, with many changes induced irre-

spective of disease severity. Importantly, these effects are remi-

niscent of changes described previously in other therapeutic

settings, such as rheumatoid arthritis, inflammatory bowel dis-

eases, or allergic asthma,32 for example, the increase of expres-

sion of certain genes with regulatory function including Throm-

bospondin 1 (THBS1), IL1R2, or GC-induced leucine zipper

protein GILZ (TSC22D3). Functional enrichment across cell

types pointed toward strong interference with NF-kB signaling,

which is one of the well-known mechanisms downstream of

GC receptor signaling.21,22

(D) PCA illustrating the distribution of the top 5,000 most variable genes present in the multi-center cohort, color-coded according to COVID-19 severity and

outcome.

(E) Boxplots displaying the gene set variation analysis (GSVA) enrichment scores of the optimized deceased upregulated signature (left plot) and deceased

downregulated signature (right plot) in the single-center cohort, split and colored by the COVID-19 severity status and outcome. Wilcoxon test and Benjamini-

Hochberg adjustment were utilized for statistical analysis.

(F) Boxplots displaying the GSVA enrichment scores of the optimized deceased upregulated signature (left plot) and deceased downregulated signature (right

plot) in the multi-center cohort, split and colored by the COVID-19 severity status and outcome. Wilcoxon test and Benjamini-Hochberg adjustment were utilized

for statistical analysis.

(G) Gene set enrichment analysis (GSEA) of the optimized deceased upregulated signature in the deceased patient group of the Charité cohort. Ranking of

samples is based on expression-level statistics, and the running sum is visualized. The heatmap depicts the scaled variance-stabilized mean expression per

COVID-19 severity status and outcome of the genes included in the leading edge.

(H) GSEA of the optimized deceased downregulated signature in the deceased patient group of the multi-center cohort. Ranking of samples is based on

expression-level statistics, and the running sum is visualized. The heatmap depicts the scaled batch-corrected variance-stabilized mean expression per COVID-

19 severity status and outcome of the genes included in the leading edge.

See also Figure S5.
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Most strikingly, the molecular response to dexamethasone

was linked to clinical treatment response and outcome, as

the previously described dysfunctional molecular phenotype

associated with severe acute COVID-19 (HLA-DRloS100Ahi

monocytes)18 was reversed in patients surviving severe

COVID-19. This illustrates that dexamethasone therapy in this

clinical situation is not only immunosuppressive but rather immu-

nomodulatory since expression of genes related to effective im-

mune function was re-established. In fact, a specific Dexa

response state within monocytes, uncovered by single-cell tran-

scriptome analysis, revealed that not all monocytes respond to

treatment. Patients succumbing to the disease did not show a

reversal of the dysfunctional molecular phenotype in the mono-

cyte compartment (HLA-DRloS100Ahi monocytes), accompa-

nied by a lack of the dexamethasone response monocyte cell

state in most of these patients.

The dexamethasone response signature from blood mono-

cytes also enriched in monocytes and macrophages from BAL

samples of dexamethasone-treated survivors, but not of treated

non-survivors or GC-naive patients of our cohort. The role of in-

flammatory and potentially profibrotic monocytes and mono-

cyte-derived macrophages for the development of acute respi-

ratory distress syndrome (ARDS) in COVID-19 has been

documented in numerous studies.34 The reversal of the dysfunc-

tional molecular phenotype of monocytes in the lung, associated

with dexamethasone treatment and positive outcome (survival),

links our findings in circulating immune cells to dexamethasone

treatment-induced protection.

The differences in transcriptional changes following treatment

were preceded by epigenetic changes in the proinflammatory

program of CD14+ monocytes, which also differed between re-

sponders and non-responders. An outcome-related signature

generated from the monocyte transcriptomes (8 days post treat-

ment initiation) was successfully applied to whole blood tran-

scriptomes sampled even earlier within two larger observational

single-center and multi-center cohorts, respectively. The signa-

ture was enriched in whole blood transcriptomes from patients

succumbing to COVID-19 in our single-center study already at

4 days post treatment initiation, indicating early treatment failure.

Testing for generalizability of this potential predictor of treatment

response and outcome in a national multi-center cohort at an

even earlier time point revealed that more than 2 days of treat-

ment are required for molecular outcome stratification.

Several attempts have been made to identify subgroups of pa-

tients with severe COVID-19 who are likely to respond differently

to anti-inflammatory treatment. Two distinct groups of patients

with COVID-related ARDS, similar to the previously described hy-

poinflammatory and hyperinflammatory ARDS subphenotypes,35

were reported to show differential response to corticosteroid

treatment36 and have been proposed for a biomarker-guided

corticosteroid dosing in COVID-19.37 Similarly, peripheral blood

transcriptomes have been used to identify two different endo-

types of patients with severe COVID-19 based on IFN-related

or checkpoint genes, who showed cluster-specific effects of

corticosteroid treatment.38 Attempts to identify different COVID-

19 endotypes or phenotypes in terms of their response to anti-in-

flammatory treatment are particularly important in light of the fact

that several clinical trials initially failed to demonstrate a clear sur-

vival benefit of corticosteroid treatment in COVID-19,4,39 in addi-

tion to the fact that only about one-third of the mechanically venti-

lated severe COVID-19 patients benefit from dexamethasone

therapy.1 There is a long history of research investigating GC

responsiveness,40 based on the known heterogeneity in treatment

response and the variety of unfavorable effects of corticosteroids,

particularly associated with their long-term use. In asthma,

distinct endotypes have been defined based on the level of type

2 inflammation, known to predict response to GC treatment.41

Also in other clinical conditions, e.g., community-acquired pneu-

monia, the significance of steroid treatment is not fully evident,

with clear signs that certain patient groups benefit more from

adjunct corticosteroid treatment than others, thus emphasizing

the importance of early patient stratification.42,43 In our view, the

approachpresented in this study goesone stepbeyondmolecular

stratification and definition of disease endotypes by providing

direct information on therapy response as a form of molecular

therapy monitoring. The potential of whole blood transcriptome-

based signatures to optimize dexamethasone treatment regimens

should be evaluated in a prospective pivotal trial in the future.

Limitations of the study
Our analysis of the effects of dexamethasone treatment was

based on a large prospective, single-center cohort study and

an independent prospective, multi-center cohort study for vali-

dation of the transcriptional signature enrichment associated

with fatal outcome. One important limitation of this approach is

the fact that both cohorts were observational and not primarily

designed to study the effect of dexamethasone treatment. How-

ever, we took advantage of the fact that dexamethasone treat-

ment was only introduced into SOC in the second wave, thus al-

lowing for a well-matched comparison of COVID-19 patients of

similar demographics and disease severity, infected with the

same viral variant (D614G), that differed only by treatment. None-

theless, it would be preferable to conduct studies of this nature

within the setting of randomized controlled trials, designed to

study clinical endpoints as well as mechanisms of action of the

investigated drugs. Thus, adaptive platform trials, such as the

RECOVERY study, designed to rapidly test the effectiveness of

repurposed drugs or new therapies in public health emergen-

cies, would benefit from incorporating high-resolution biomarker

studies to uncover mechanisms and to identify target and risk

populations who would benefit most from the respective treat-

ment or alternative therapies. To this end, global networks of

specialized medical institutions capable of performing highly

standardized, high-resolution methods on study samples at

high throughput are needed to facilitate this accelerated treat-

ment development. While our approach included well-matched

cohorts, the study period was restricted to the early phase of

the pandemic. This is a limitation since immunological and viro-

logical characteristics have changed during the course of the

pandemic. Dexamethasone remains the SOC for patients with

moderate to severe COVID-19, yet, it is unknownwhether it is still

equally effective in re- and breakthrough infections. The use of

corticosteroids in other respiratory infections has been contro-

versial, with potentially detrimental effects in influenza infections

and mixed results in community-acquired pneumonia. However,

it will be difficult to generate new data since it would not be
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ethical to withhold dexamethasone in patients with severe

COVID-19.

Our study has several implications. First, GC treatment in

acute COVID-19 is better characterized as an immunomodula-

tory rather than immunosuppressive therapy. Second, early

outcome predictors could guide personalized therapy by identi-

fying patients not responding adequately to GCs, necessitating

early addition of other immunomodulators such as Janus kinase

inhibitors or IL-6 receptor blockers.44 As high-dose GC therapy

has been reported to increase mortality in hypoxic moderate to

severe patients not requiring mechanical ventilation,6 prolonged

dexamethasone treatment in severe COVID-19 patients might

also increase the risk for secondary infections45 and thereby

might contribute to reduced survival rates in this subgroup of pa-

tients.46 Third, a more precise use of GCs in other medical con-

ditions would be highly desirable, and a more precise stratifica-

tion could be achieved based on clinical trials that incorporate

single-cell resolution biomarker studies.

Taken together, we provide single-cell-level resolved molecu-

lar phenotype information for the immunomodulatory effect of

dexamethasone treatment in patients with COVID-19, which

could be utilized for clinical decision-making regarding therapy

reevaluation for dexamethasone treatment in the future. Com-

bined with transcriptome-based reverse drug target prediction

approaches and randomized controlled trials, this approach

can form the basis for faster drug repurposing solutions for future

emerging infectious diseases, and it may even be a blueprint for

the development of precision medicine for other infectious and

non-infectious diseases.
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38. López-Martı́nez, C., Martı́n-Vicente, P., Gómez de Oña, J., López-Alonso,
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD3 BV421 (clone UCHT1) Biolegend Cat# 300434; RRID:AB_10962690

CD4 APCFire750 (clone RPA-T4) Biolegend Cat# 300560; RRID:AB_2629693

CD8a BV711 (clone RPA-T8) Biolegend Cat# 301044; RRID:AB_2562906

CD14 PerCP (clone TÜK4) Miltenyi Cat# 130-113-150; RRID:AB_2725978

CD16 BV605 (clone 3G8) Biolegend Cat# 302040; RRID:AB_2562990

CD19 PE (clone HIB19) Biolegend Cat# 302208; RRID:AB_314238

CD45RA BV785 (clone HI100) Biolegend Cat# 304140; RRID:AB_2563816

CD66b APC (clone G10F5) Biolegend Cat# 305118; RRID:AB_2566607

CCR7 AF488 (clone G042H7) Biolegend Cat# 353206; RRID:AB_10916389

CD45 89Y (Hi30) Fluidigm Cat# 3089003; RRID:AB_2938863

CCR2 113In (K036C2) Biolegend N/A

CD3 115In (UCHT1) Biolegend Cat# 300443; RRID:AB_2562808

CD196 141Pr (G034E3) Fluidigm Cat# 3141003A; RRID:AB_2687639

CD49d 141Pr (9F10) Fluidigm Cat# 3141004B; RRID:AB_2892684

CD19 142Nd (HIB-19) Fluidigm Cat# 3142001B; RRID:AB_2651155

CD123 143Nd (6H6) Fluidigm Cat# 3143014B; RRID:AB_2811081

CD15 144Nd (W6D3) Fluidigm Cat# 3144019B; RRID:AB_2892685

CD21 145Nd (Bu-15) Biolegend Cat# 354902; RRID:AB_11219188

CD138 145Nd (DL101) Fluidigm Cat# 3145003B

CD226 146Nd (REA1040) Miltenyi Biotec N/A

CD64 146Nd (10.1) Fluidigm Cat# 3146006B; RRID:AB_2661790

IgD 147Sm (IgD26) Biolegend Cat# 348235; RRID:AB_2563775

CXCR2 147Sm (5E8) Fluidigm Cat# 3147010B

ICOS 148Nd (C398.4A) Fluidigm Cat# 3148019B; RRID:AB_2756435

CD206 purified (152) Biolegend Cat# 321127; RRID:AB_2563729

CD96 purified (REA195) Miltenyi Biotec Produced at request

KLRG1 purified (REA261) Miltenyi Biotec Produced at request

TCRgd purified (11F2) Miltenyi Biotec Produced at request

FceRI 150Nd (AER-37) Fluidigm Cat# 3150027B

CD155 purified (REA1081) Miltenyi Biotec Produced at request

CD95 purified (DX2) Biolegend Cat# 305631; RRID:AB_2563766

CD66b 152Sm (80H3) Fluidigm Cat# 3152011B; RRID:AB_2661795

TIGIT 153Eu (MBSA43) Fluidigm Cat# 3153019B; RRID:AB_2756419

CD62L purified (DREG56) Biolegend Cat# 304835; RRID:AB_2563758

CD1c purified (L161) Biolegend Cat# 331502; RRID:AB_1088995

CD27 155Gd (L128) Fluidigm Cat# 3155001B; RRID:AB_2687645

CXCR3 156Gd (G025H7) Fluidigm Cat# 3156004B; RRID:AB_2687646

CCR5 156Gd (NP-6G4) Fluidigm Cat# 3156015A; RRID:AB_2938860

KLRF1 purified (REA845) Miltenyi Biotec Produced at request

CD10 158Gd (HI10a) Fluidigm Cat# 3158011B; RRID:AB_2921314

CD33 158Gd (WM53) Fluidigm Cat# 3158001; RRID:AB_2661799

CD14 160Gd (RMO52) Fluidigm Cat# 3160006; RRID:AB_2661801

CD28 purified (L293) BD Bioscience Cat# 348040; RRID:AB_400367
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CD69 162Dy (FN50) Fluidigm Cat# 3162001B; RRID:AB_3096016

CD294 163Dy (BM16) Fluidigm Cat# 3163003B; RRID:AB_2810253

Anti-APC 163Dy Fluidigm Cat# 3163001B; RRID:AB_2687636

CXCR5 164Dy (RF8B2) Fluidigm Cat# 3164029B
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CD34 166Er (581) Fluidigm Cat# 3166012B; RRID:AB_2756424

CD38 167Er (HIT2) Fluidigm Cat# 3167001B; RRID:AB_2802110

Ki67 168Er (Ki-67) Fluidigm Cat# 3168007B; RRID:AB_2800467

CD25 169Tm (2A3) Fluidigm Cat# 3169003; RRID:AB_2938861

CD24 169Tm (ML5) Fluidigm Cat# 3169004B; RRID:AB_2688021

Lag3 purified (11C3C65) Biolegend Cat# 369302; RRID:AB_2616876

RANK purified (80704) R&D Systems Cat# MAB683; RRID:AB_2205330

CD161 purified (HP-3G10) Biolegend Cat# 339919; RRID:AB_2562836

CD11b purified (ICRF44) Biolegend Cat# 301337; RRID:AB_2562811

CD45RO purified (4G11) DRFZ Berlin N/A

CD44 purified (BJ18) Biolegend Cat# 338811; RRID:AB_2562835

CD137 173Yb (4B4-1) Fluidigm Cat# 3173015B

HLA-DR purified (L243) Biolegend Cat# 307602; RRID:AB_314680

PD-1 175Lu (EH12.2H7) Fluidigm Cat# 3175008; RRID:AB_2687629

PD-L1 175Lu (29.E2A3) Fluidigm Cat# 3175017B; RRID:AB_2687638

CD56 176Yb (NCAM16.2) Fluidigm Cat# 3176008; RRID:AB_2661813

CD8 purified (GN11) DRFZ Berlin N/A

IgM purified (MHM-88) Biolegend Cat# 314502; RRID:AB_493003

CD11c purified (Bu15) Biolegend Cat# 337221; RRID:AB_2562834

CD16 209Bi (3G8) Fluidigm Cat# 3209002B; RRID:AB_2756431

CD14-BV421 (clone M5E2) Biolegend Cat# 301830; RRID:AB_10959324

CD163-PercP-Vio700 (clone REA812) Miltenyi Cat# 130-112-133; RRID:AB_2655489

CD3-FITC (clone UCHT1) Biolegend Cat# 300406; RRID:AB_314060

CD94-FITC (clone DX22) Biolegend Cat# 305504; RRID:AB_314534

NKp80-FITC (clone 4A4.D10) Miltenyi Cat# 130-094-843; RRID:AB_10829948

TCRab-FITC (clone IP26) Biolegend Cat# 306706; RRID:AB_314644

TCRgd-FITC (clone B1) Biolegend Cat# 331208; RRID:AB_1575108

CD20-FITC (clone 2H7) Biolegend Cat# 302304; RRID:AB_314252

CD19-FITC (clone HIB19) Biolegend Cat# 302206; RRID:AB_314236

Amphiregulin-APC (clone AREG559) Ebioscience Cat# 17-5370-42; RRID:AB_2716941

Chemicals, peptides, and recombinant proteins

FcR Blocking Reagent, human Miletnyi Biotec Cat# 130-059-901; RRID:AB_2892112

Proteinase K Sigma-Aldrich Cat# 3115828001

Tempus� Blood RNA Tube ThermoFisher Scientific Cat# 4342792

PAXgene� Blood RNA Tube Becton Dickinson Cat# 762165

SPRIselect Beckmann Coulter Cat# B23318

BD Vacutainer� Lithium Heparin Tubes Becton Dickinson Cat# 367526

Critical commercial assays

BD Single-Cell Multiplexing Kit (human) Becton Dickinson Cat# 633781

BD Rhapsody WTA Amplification Kit Becton Dickinson Cat# 633801

BD Rhapsody Cartridge Kit BectonDickinson Cat# 633733
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

BD Rhapsody cDNA Kit BectonDickinson Cat# 633773

High Sensitivity D5000 ScreenTape Agilent Cat# 5067-5592

High Sensitivity D1000 ScreenTape Agilent Cat# 5067-5584

Qubit dsDNA HS Assay Kit ThermoFisher Cat# Q32851

High Sensitivity DNA Kit Agilent Cat# 5067-4626

NovaSeq 6000 S2 Reagent Kit (200 cycles) Illumina Cat# 20040326

NovaSeq 6000 S4 Reagent Kit (200 cycles) Illumina Cat# 20028313

Chromium Next GEM Single Cell 30 GEM,

Library & Gel Bead Kit v3.1

10x Genomics Cat# 1000121

Chromium Next GEM Chip G Single Cell Kit 10x Genomics Cat# 1000120

Single Index Kit T Set A 10x Genomics Cat# 1000213

TruSeq Stranded Total RNA with Ribo-Zero

Globin

Illumina Cat# 20020613

Maxpar� X8 Antibody Labeling Kit Fluidigm Cat# 201146B

Quick-DNA Microprep Kit Zymo Research Cat# D3020

EZ DNA Methylation-Gold Kit Zymo Research Cat# D5006

Infinium MethylationEPIC BeadChip Kit Illumina Cat# WG-317-1002

Zombie Aqua� Fixable Viability Kit BioLegend Cat# 423101

BD Cytofix/Cytoperm� Fixation/

Permeabilization Kit

Becton, Dickinson Cat# 554714

SeraSpot Anti-SARS-CoV-2 IgG microarray Seramun Diagnostica SP-015-4 G-S12 RUO

Deposited data

scRNA-seq raw data This paper EGAS00001007461, EGAS50000000203

bulk RNA-seq raw data This paper EGAS00001007461

processed scRNA-seq count data and

code

This paper https://github.com/knollr/COVID_Dexa

processed bulk RNA-seq count data and

code

This paper https://github.com/knollr/COVID_Dexa

DNA methylation data This paper GSE270901

Code for DNA methylation data analysis This paper https://github.com/knollr/COVID_Dexa

Software and algorithms

Bcl2fastq2 Illumina v2.20

STAR Dobin et al.47 v2.7.3a

Cutadapt Martin et al.48 v1.16

Dropseq-tools https://github.com/broadinstitute/Drop-

seq/

v2.0.0

fastQC Andrews et al.49 0.11.8

10x Genomics Cell Ranger (Software) Zheng et al.,50 10X Genomics 7.0.0

R (bulk and scRNA-seq blood analysis) https://www.cran.r-project.org v4.1.0

R (DNA methylation analysis) https://www.cran.r-project.org v4.2.1

R (scRNA-seq BAL analysis) https://www.cran.r-project.org v4.3.1

Seurat (scRNA-seq blood, R package) Butler et al.,51 Hafemeister et al.,52 Stuart

et al.53
v4.3.0

Seurat (scRNA-seq BAL, R package) Butler et al.,51 Hafemeister et al.,52 Stuart

et al.53
v4.4.0

Harmony (R package) Korsunsky et al.54 v0.1.0

ClusterProfiler (R package) Yu et al.55 v4.0.5

batchelor (R package) Haghverdi et al.56 v1.16.0

AUCell (R package) Aibar et al.57 v1.22.0

DESeq2 (R package) Love et al.58 v1.32.0
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anna C.

Aschenbrenner (anna.aschenbrenner@dzne.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
scRNA-seq and bulk RNA-seq data generated during this study are deposited at the European Genome-phenome Archive (EGA) un-

der access numbers EGAS00001007461 and EGAS50000000203, which is hosted by the EBI and the CRG. DNA methylation data

are deposited on the GEO database under access number GSE270901. All original code has been deposited at GitHub (https://

github.com/knollr/COVID_Dexa) and is publicly available as of the date of publication. Any additional information required to rean-

alyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient cohorts and study flow overview
To determine dexamethasone-specific molecular signatures, samples from patients with dexamethasone treatment and matched

controls enrolled into the Pa-COVID-19 study, a prospective, observational study on patients with COVID-19 conducted at Charité

Universitätsmedizin Berlin17 were analyzed using single-cell transcriptomics, CyTOF and flow cytometry. In addition, matched sam-

ples from patients with stable versus progressive disease under dexamethasone treatment from the same cohort were assessed for

possible influence of the patient’s DNA-methylation status on responsiveness to dexamethasone treatment. In a last step, to assess if

treatment-related signatures can be used to stratify outcome, bulk-sequencingwas performed on samples frompatients treatedwith

dexamethasone recruited into the Pa-COVID-19 study and an independent study, PROVID-CAPNETZ, a prospective, observational,

multi-centered cohort study with adult SARS-CoV-2 positive hospitalized patients to evaluate clinical data, molecular and functional

biomarkers for prognosis, pathomechanisms and treatment strategies of COVID-19 (PROVID) recruited within the competence

network community-acquired pneumonia (CAPNETZ, https://capnetz.de). Grouping and selection of patients and a synopsis on clin-

ical characteristics of all included patients and controls per analysis is given in Table S1.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

GSVA (R package) Hänzelmann et al.59 v1.40.1

fgsea (R package) Korotkevich et al.60 v1.18.0

ggplot2 (R Package; bulk RNA-seq

analysis)

Wickham et al.61 v3.3.5

ggplot2 (R package; DNA methylation

analysis)

Wickham et al.61 v3.3.6

pheatmap (R package) Kolde et al.62 v1.0.12

sva (R package) Leek et al.63 v3.44.0

minfi (R package) Fortin et al.64 v1.42.0

limma (R package; DNA methylation

analysis)

Ritchie et al.65 v3.52.2

limma (R package; bulk RNA-seq analysis) Ritchie et al.65 v3.48.3

methylGSA (R package) Fortin et al.64 v1.14.0

FlowSOM (R package) Van Gassen et al.66 v3.17

uwot (R package) https://cran.r-project.org/web/packages/

uwot/index.html

v0.1.8

ComplexHeatmap (R package) Gu et al.67 v1.20.0

FlowJo https://www.flowjo.com v10.8

JMP Pro SAS Institute inc. V 16.2.0

Matching (R package) Sekhon et al.68 v4.9-7

OMIQ www.omiq.ai N/A
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Single-cell transcriptomics, CyTOF, and FACS
In order to determine dexamethasone-specific molecular signatures, all 543 patients included from 1 March 2020 to February 28,

2021 into the Pa-COVID-19 study were screened to identify patients treated with dexamethasone (from June 2020 onwards,

following publication of the results of the recovery trial1) and comparable patients without dexamethasone treatment (from March

to May 2020). Disease severity was stratified using the 8-point WHO ordinal scale69 of improvement: WHO score 1 and 2 = ambu-

latory; WHO score 3 = hospitalized without supplemental oxygen; WHO score 4 = hospitalized with low-flow supplemental oxygen;

WHO score 5 = hospitalized with requirement of non-invasive ventilation or high-flow oxygen; WHO score 6 = hospitalized with inva-

sive ventilation;WHO score 7 = hospitalizedwith invasive ventilation and additional organ support;WHO score 8 = death. For analysis

WHO grade%4 was considered as moderate disease, whereas WHO gradeR 5 was considered as severe disease. WHO score at

time point of sampling was used to determine disease severity for these analyses.

Patients meeting one of the following criteria were excluded: age <18 years, no biosamples available, mild disease (maximum

WHO score %3), chronic immunosuppression according to medical history, dexamethasone treatment not following treatment

criteria of the recovery trial1 or any steroid-treatment of control patients recruited early in the pandemic (e.g. hydrocortisone-treat-

ment for septic shock). We also excluded all patients receiving additional immunosuppressive treatments (e.g. TNF-inhibitors, JA-

K-inhibitors, antimetabolites). This resulted in a total of 153 patients. Sampling timepoints were selected towards the end of the dexa-

methasone treatment period, and at corresponding time points based on symptom onset for patients without dexamethasone

treatment, respectively. To obtain comparable groups (glucocorticoid-naı̈ve controls vs. treated patients), multivariate matching

was employed to identify the most suitable matches between groups. Specifically, we used exact matching for treatment with/

without dexamethasone, sex, and maximum recorded value of WHO Ordinal Scale during hospitalization and greedy matching

with Mahalanobis distance68 for age and time interval (in days) between symptom onset and acquisition of blood sample closest

to the end of dexamethasone treatment. If several equivalent matches were available, patient data was reviewed by two clinically

experienced physicians for further details on course of disease (e.g. organ replacement therapy) and pre-existing comorbidities

to find the best matches. The most appropriate matches were selected for the respective analyses depending on sample quality

(e.g. PBMC count), using the same pairs for scRNASeq, CyTOF, and FACS analysis. If needed for CyTOF and FACS analysis, indi-

vidual donors were replaced as equivalent as possible and sampling timepoints were adapted to a maximum of +2 days (for CyTOF)

and +3 days (for FACS, 1 donor only), respectively.

Subject details blood sc transcriptomics subgroup
A total of 66 PBMC samples from 48male patients of the Pa-COVID-19 study were selected, with additional 4 samples included from

2 glucocorticoid-naı̈ve patients from an observational study performed at Bonn university hospital fulfilling the same inclusion criteria

as described above for the Pa-COVID-19 study.70

For analysis of dexamethasone-related signatures, 40 samples collected towards the end of the dexamethasone treatment period

of 40 individuals were analyzed. These included 14 treatment-naive (5 moderately ill, 9 severely ill) and 26 dexamethasone-treated

patients (7 moderately ill, 19 severely ill). The median age of all patients was 62 years (IQR range 55.25-69.75 years). All moderately

affected patients survived, whereas 12 severely ill patients died. Three untreated controls and nine patients treated with dexameth-

asone. Samples included in analysis of dexamethasone treatment effects were obtained at amedian of 8 days (IQR 6.75-9 days) after

initiation of dexamethasone treatment and at a median of 15.5 days (IQR 13.75-18 days) after symptom onset. Control samples were

obtained at a median of 16 days (IQR 14.75-18 days) after symptom onset.

An additional 26 samples frommoderately and severely ill patients were included for comparison and validation of our dataset with

previously defined expression changes, but not for analysis of dexamethasone-related signatures. These include samples collected

during the early phase of hospitalization of glucocorticoid-naive patients (median 9 days (IQR 7.5-10 days) post symptom onset) and

dexamethasone-treated patients (median 6 days (IQR 5-9 days) post symptom onset), as well as early (median 6 days (IQR 5-9 days)

post symptom onset) and late (median 13.5 days (IQR 12.25-16.75 days) post symptom onset) samples of patients treated with dexa-

methasone and the CCR2/CCR5 inhibitor cenicriviroc (CVC71), which showed no major effects on single-cell transcriptomes in our

analyses.

Subject details FACS subgroup
A total of 36 PBMC samples from 36 male individuals (18 treatment-naive and 18 dexamethasone-treated patients) recruited within

Pa-COVID-19 study were analyzed, of which 12 were moderately ill and 24 severely ill. The median age of included patients was 61.5

years (IQR 54-72.25). Samples of dexamethasone-treated patients were obtained at a median of 8 days (IQR 7-10 days) after treat-

ment initiation. Samples were collected at a median of 17 days (IQR 14-18.25 days) after symptom onset for dexamethasone-treated

patients vs. 16.5 days (IQR 15-19.25 days) in the untreated control group. Five severely affected patients died, four of whom were in

the dexamethasone group and one in the control group.

Subject details CyTOF subgroup
Due to expected decreasing sample quality with storage time and therefore reduced processability, optimization of the sample pro-

cessing protocol of whole blood samples was applied (see below) and allowed the analysis of limited available samples taken during
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the very early pandemic phase before dexamethasone and during the early phase of dexamethasone treatment within this study.

Therefore, partial adoption of sampling time points and analyzed individuals was necessary.

A total of 35 samples from 35 patients (1 female, 34males) recruited within the Pa-COVID-19 study were included into this analysis,

17 of whomwere treatment-naive (9 moderately ill, 8 severely ill) and 18 treated with dexamethasone (11moderately ill, 7 severely ill).

The median age of all patients was 61 years (IQR range 54-73 years). All moderately affected patients survived, three severely ill pa-

tients deceased, one untreated patient and two patients treated with dexamethasone.

For determination of dexamethasone-related signatures, samples included into analysis were obtained at a median of nine days

(IQR 6.75 - 9 days) after initiation of dexamethasone treatment and maximum 24 hours after the last dose. Samples from the dexa-

methasone-treated group were collected at a median of 15.5 days (IQR 13.75 - 17.25 days) after symptom onset. Control samples

were obtained at a median of 15 days (IQR 12.5 - 18 days) after symptom onset.

Subject details BAL sc-transcriptomics subgroup
In order to validate our findings from the blood in lung tissue we furthermore analyzed bronchoalveolar lavages (BAL) obtained from

12 patients recruited in the Pa-COVID-19 study. Due to the limited number of available samples, no matching was performed. In line

with the other groups or cohorts, respectively, only immunocompetent glucocorticoid-naive and dexamethasone-treated patients

without any additional immunomodulatory COVID-19-specific treatment were included. Samples from dexamethasone-treated pa-

tients were included into analysis when collected up to 10 days after the end of treatment. Three patients of the BAL analyses (2 treat-

ment-naive, 1 dexamethasone-treated) were also part of the study population analyzed by blood scRNA-seq.

BALs were obtained during bronchoscopy of invasively ventilated COVID-19 patients at the Department of Infectious Dis-

eases and Respiratory Medicine, Charité Universitätsmedizin Berlin according to standard operating procedures. Among the

12 patients 5 were glucocorticoid-naive (3 males, 2 females), who all survived; 7 received dexamethasone treatment (4 males,

3 females) of whom 4 survived and 3 died. The median age of all patients was 59 years (IQR 33-70 years). BALs were collected

at a median of 14 days (IQR 9.5-25 days) after symptom onset from the treatment-naive group and at a median of 23 days (IQR

13-28 days) after symptom onset or 14 days (IQR 8-18 days) after initiation of dexamethasone treatment, respectively, from

treated patients.

Epigenetics
To assess the possible influence of patient’s DNA-methylation status on responsiveness to dexamethasone treatment, we performed

comparative analysis of the included patients from the Pa-COVID-19 study cohort with stable versus progressive disease under

treatment, i.e. which progressed from moderate to severe disease or death after having received at least 2 days of treatment with

a sample collected within the first 4 days of treatment. Control patients without disease progression under treatment were matched

for sex, age, and available early samples after initiation of dexamethasone treatment. If more than one equivalent match was avail-

able, data was reviewed by at least two clinically experienced physicians for pre-existing comorbidities to find the most appro-

priate match.

Subject details epigenetics
A total of 20 samples from 20 dexamethasone-treated patients, 10 males and 10 females, recruited within the Pa-COVID-19 study

were analyzed. All 20 patients required supplemental oxygen at treatment initiation without need of invasive mechanical ventilation

(WHOscore 4-5). Themedian age of all patients was 62 years (IQR 57.25-69.75 years). Ten out of 20 patients (50%) recovered and did

not worsen after initiation of dexamethasone treatment, whereas 10 patients (10/20, 50%) progressed under treatment reflected by

the need of invasive ventilation and/or death. Four patients died. Sampling date for analysis was at a median of 2 days (IQR

2-3.75 days) after initiation of dexamethasone and median 9.5 days (IQR 7.25-11.75 days) after symptom onset.

Bulk transcriptomics
To assess if the treatment-related signatures of dexamethasone-treated patients can be used to stratify outcome, bulk-sequencing

was performed from the earliest available sample of whole blood collected under dexamethasone treatment from moderately

(maximum WHO score %4) to severely ill (maximum WHO score R5) COVID-19 patients recruited into two independent cohorts.

Patients were grouped according to disease severity as described above. First, patients recruited into the Pa-COVID-19 study in Ber-

lin between 03/2020 and 12/2021 were included into the single-center (Charité) bulk subgroup.

Second, for the independent multi-center (CAPNETZ) cohort, samples were obtained from the CAPNETZ foundation. These pa-

tients were recruited across 11 centers (Berlin-Campus Benjamin Franklin, Cottbus, Jena, Bad Arolsen, Dortmund, Bonn, Rotenburg,

Dresden, Gerlingen, Berlin-Charité, Berlin-Neukölln) between 06/2020 and 12/2021.

Subject details single-center bulk subgroup
A total of 92 samples from 92 dexamethasone-treated patients (68 males, 24 females) included into the Pa-COVID-19 study were

included into this subgroup (single-center, Charité). The median age of all patients was 61 years (IQR 49.75-69 years). Thirty-three

patients weremoderately ill and 59 patients severely ill, 18 of whomdied. Samples for this analysis were obtained at amedian 12 days

(IQR 9-15 days) after symptom onset and of 4 days (IQR 3-5 days) after the initiation of dexamethasone treatment, respectively.
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Subject details multi-center bulk subgroup
A total of 90 samples obtained from 90 dexamethasone-treated patients (65 males, 25 females) included into the multi-center

(CAPNETZ) cohort were included into this subgroup. The median age of all patients was 61 years (IQR 52-68 years). A total of

53 patients (65.5%) were moderately ill and 37 (34.4%) were severely ill, 11 of whom (35.5%) died. Samples for this analysis were

obtained at a median of 2 days (IQR 1-3) after the initiation of dexamethasone treatment. Symptom onset was not documented in

the case reporting form of PROVID-CAPNETZ.

Ethics
The Ethics Committee of Charité Universitätsmedizin Berlin approved the following studies: Pa-COVID-19: EA2/066/20, COV-

IMMUN: EA1/068/20. The Ethics Committee of the State Office for Health and Social Affairs Berlin: CVC for COVID-19: 20/

0118 – A1 (AMG). The Institutional Review board of the University Hospital Bonn (073/19 and 134/20) approved the study con-

ducted at University Hospital Bonn. The Ethics Committee of Hannover Medical School approved PROVID-CAPNETZ

(Nr. 301-2008).

The Pa-COVID-19 study is registered in the German and the WHO international registry for clinical studies (DRKS00021688). The

CVC for COVID-19 trial (NCT04500418) and PROVID-CAPNETZ study (NCT04952337) are registered at ClinicalTrials.gov.

The studies were conducted in accordance with the Declaration of Helsinki and current guidelines of Good Clinical Practice.

Informed consent was obtained from all participants or their respective legal representatives. All patients were treated according

to national and international guidelines.

METHOD DETAILS

Details for blood single-cell transcriptomics
Isolation of blood cells for scRNA-seq

scRNA-seq was performed on frozen PBMCs. Briefly, PBMCs were isolated from heparinized peripheral blood by density centrifu-

gation over Pancoll or Ficoll-Paque density centrifugation (density: 1.077 g/ml). Cells were then cryopreserved at -150�C in

RPMI1640 with 40% FBS and 10% DMSO.

BD Rhapsody blood single-cell RNA-seq

Frozen PBMCs were recovered by rapidly thawing frozen cell suspensions in a 37�Cwater bath followed by immediate serial dilution

in pre-warmed RPMI1640+10% FBS (GIBCO) and centrifugation at 300 g for 5 min. After centrifugation, the cells were resuspended

in RPMI1640+10% FBS and processed for whole transcriptome analyses, using the BD Rhapsody Single-Cell Analysis System (BD,

Biosciences) as previously described72. Cells from each sample were labeled with hashtag-oligonucleotide-coupled antibodies,

sample tags (BD Human Single-Cell Multiplexing Kit) following the manufacturer’s protocol. Briefly, a total number of 1x106 cells

were resuspended in 90 ml of Stain Buffer (FBS) (BD PharMingen). The sample tags were added to the respective samples and incu-

bated for 20 min at room temperature. After incubation, 500 ml stain buffer was added to each sample and centrifuged for 5 min at

300 g and 4�C. Samples were washed one more time. Subsequently cells were resuspended in 300 ml of cold BD Sample Buffer and

counted using Improved Neubauer Hemocytometer (INCYTO). Labeled samples were pooled equally in 650 ml cold BD Sample

Buffer. For each pooled sample two BD Rhapsody cartridges were super-loaded with approximately 60,000 cells each. Single cells

were isolated using Single-Cell Capture and cDNA Synthesis with the BD Rhapsody Express Single-Cell Analysis System according

to the manufacturer’s recommendations (BD Biosciences). cDNA libraries were prepared using the BD Rhapsody Whole Transcrip-

tome Analysis Amplification Kit following the BD Rhapsody System mRNA Whole Transcriptome Analysis (WTA) and Sample Tag

Library Preparation Protocol (BD Biosciences). The final libraries were quantified using a Qubit Fluorometer with the Qubit dsDNA

HS Kit (ThermoFisher) and the size-distribution was measured using the Agilent high sensitivity D5000 assay on a TapeStation

4200 system (Agilent technologies). Sequencing was performed in paired-end mode (2*75 cycles) on a NovaSeq 6000 with

NovaSeq 6000 S2 or S4 Reagent Kit v1.5 (200 cycles) chemistry.

Details for DNA methylation
PBMC isolation for methylation analysis

All samples were obtained in Berlin and subjected to standardized processing and stored by the Central Biobank of Charité (ZeBanC)

according to SOPs of the Pa-COVID-19 study.

FACS-based cell isolation for methylation analysis

Frozen PBMC samples were taken up in 37�C RPMI1640 medium (Gibco) containing 20% BSA Fraction V (PAN-Biotech), 1%

10,000 U/ml Penicillin Streptomycin (Thermo Fisher Scientific) and 10 mM Hepes buffer (Biochrom) to quickly thaw. Cells were

washed with PBS (Gibco).

PBMCs were stained using the following fluorescently conjugated monoclonal antibodies: CD3 BV421 (clone UCHT1), CD4

APCFire750 (clone RPA-T4), CD8a BV711 (clone RPA-T8), CD14 PerCP (clone TÜK4), CD16 BV605 (clone 3G8), CD19 PE (clone

HIB19), CD45RA (clone HI100), CD66b APC (clone G10F5), CCR7 AF488 (clone G042H7).

CD14+ Monocytes (CD14+, CD16-, CD66b-), CD19+ B cells (CD3-, CD19+), CD4+ total memory T cells (CD3+, CD4+, CD45RA- and

CD3+, CD4+, CD45RA+, CCR7-) and CD8+ total memory T cells (CD3+, CD8+, CD45RA- and CD3+, CD8+, CD45RA+, CCR7-) were
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sorted via FACS with a BD FACSAria II SORP (Becton Dickinson). Checks for sort purity were performed and ranged between 90%–

99%. Following FACS, cell pellets were flash-frozen in liquid nitrogen.

DNA methylation profiling

From purified cell samples frozen as pellets, genomic DNAwas extracted using Zymo’s Quick-DNAMicroPREP Kit (Zymo Research)

following instructions provided by the manufacturer. DNA concentration was measured using the Qubit dsDNA HS Assay Kit and the

Qubit Fluorometer (Molecular Probes/Life Technologies).

Samples with cell counts <25,000 cells were not subjected to DNA extraction. Instead, the cell pellets were directly taken up in a

mix of 40 ml lysate buffer from the Zymo’s Quick-DNA MicroPREP Kit (Zymo Research) with 1.25 mg/ml Proteinase K (Sigma-Aldrich

3115828001) and incubated for 3 hours at room temperature. Cell lysate was directly used for bisulfite conversion as

described below.

Isolated genomic DNA and cell lysates from Proteinase K digestion were subjected to bisulfite conversion using Zymo’s EZ DNA

Methylation-Gold Kit (Zymo Research) according to manufacturer’s instructions. DNA methylation was assessed using the Infinium

MethylationEPIC Kit (Illumina EPIC-8 BeadChip) following manufacturer’s instructions. Illumina EPIC-8 BeadChips were imaged us-

ing Illumina’s Microarray Scanner iScan.

Details for CyTOF
Antibodies used for CyTOF

All anti-human antibodies pre-conjugated to metal isotopes were obtained from Fluidigm Corporation (San Francisco, USA). All re-

maining antibodies were obtained from the indicated companies as purified antibodies and in-house conjugation was done using the

MaxPar X8 labeling kit (Fluidigm, USA). Antibodies are listed in the key resource table.

Sample processing and antigen staining for CyTOF

Sample processing, cell staining and acquisition was done as previously described.18 In brief, whole blood samples were thawed,

tagged with barcoding antibodies conjugated with different isotopes of Pd or Pt for 30min at 4�C and up to 10 samples were pooled

for surface and intracellular staining. For surface staining, samples were incubated with primary and secondary anti-APC163Dy an-

tibodies for 30min at 4�C, respectively, washed with PBS and fixed overnight. For intracellular staining, samples were permeabilized

with permeabilization buffer (eBiosciecne, San Diego, US), stainedwith the respective antibodies for 30min at room temperature, and

washed and stainedwith iridium intercalator (Fluidigm) for 20min at room temperature. After staining, cells werewashed and stored at

4�C. Mass cytometry measurement was performed on a CyTOF2/Helios mass cytometer (Fluidigm).

Details for bulk transcriptomics
Whole blood RNA isolation

For the single-center (Charité Berlin) and multi-center cohort (CAPNETZ), whole blood RNA isolation strategies were applied. In

cohort 1, whole blood was collected and stored in Tempus tubes (Applied Biosystems), while cohort 2 used the PAXgene system

(BD Medical). RNA was extracted according to the manufacturer’s information.

Bulk RNA sequencing

After RNA extraction, total RNA libraries were generated using the TruSeq Stranded Total RNA with Ribo-Zero Globin kit (Illumina). In

brief, ribosomal and globin mRNA were depleted from 750 ng purified total RNA using biotinylated, target-specific oligos combined

with Ribo-Zero rRNA removal beads; after depletion remaining RNA was purified, fragmented, and primed for cDNA synthesis. 30

ends were adenylated and index adapters were ligated to the ends of the ds cDNA. Selective enrichment of DNA fragments with

ligated adaptor molecules on both ends was performed using Illumina PCR primers in a 15-cycle PCR reaction, followed by a puri-

fication step using SPRIBeads (Beckman Coulter). Libraries were quantified by Qubit dsDNA HS Assay (Thermo Fisher Scientific),

and fragment size distribution was determined using the HS D1000 assay on a Tapestation 4200 system (Agilent). Sequencing

was performed in paired-endmode (2*50 cycles) on a NovaSeq 6000with NovaSeq 6000 S2Reagent Kit v 1.5 (200 cycles) chemistry.

Data was converted into fastq files using bcl2fastq2 v2.20.

BAL single-cell processing and sequencing
BALs were processed and sequenced as described before.30 BAL fluid was filtered through a 70 mm mesh and centrifuged (400 g,

10min, 4�C). The supernatant was removed and cells were washed once with DPBS (GIBCO). Erythrocytes were then removed using

the Red Blood Cell (RBC) lysis buffer (Biolegend). The cells were washed twice and either processed for subsequent scRNA-seq or

cryopreserved in FCS+10% DMSO at -150�C.
Frozen BAL cells were thawed using pre-warmedmedium (RPMI 1640, Gibco; 2% FCS, Sigma; 0.01%Pierce Universal Nuclease,

Thermo Fisher, USA). For multiplexing of multiple BAL donors, cells were labeled with 0.5mg of TotalSeq-A Hashtag antibodies for

30min at 4�C. Subsequently cells were washed three times and up to 4 donors were pooled in equal proportions and passed through

a 40 mm mesh (Flowmi� Cell Strainer, Merck).

The cell suspension was then adjusted to an appropriate concentration to load 16.500- 50.000 cells/reaction into the 10x Geno-

mics Chromium Controller for scRNA-seq. Single Cell 30 reagent kit v3.1 was used for reverse transcription, cDNA amplification and

library construction according to the detailed protocol provided by 10x Genomics and Biolegend. Libraries were quantified by

QubitTM 2.0 Fluorometer (ThermoFisher) and quality was checked using 2100 Bioanalyzer or Tapestation 4150 with High Sensitivity
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DNA kit (Agilent). Sequencing was performed in paired-endmodewith SP, S1, S2 (2x50 cycles) and S4 (2x100 cycles) flowcells using

NovaSeq 6000 sequencer (Illumina).

Monocyte FACS verification
CD163 and amphiregulin expression in monocytes was assessed by flow cytometry. Briefly, after treatment with Zombie Aqua

viability dye (Biolegend, USA), FC receptor blockade (FC Block, Miltenyi), thawed PBMCs were incubated with following surface an-

tibodies: CD14-BV421 (cloneM5E2), CD163-PercP-Vio770 (clone REA812), and for exclusion CD3-FITC (clone UCGT1), CD94-FITC

(clone DX22), NKp80-FITC (clone 4A4.D10), TCRab-FITC (clone IP26), TCRgd-FITC (clone B1), CD20-FITC (clone 2H7), and CD19-

FITC (clone HIB19). Samples were analyzed using a BD Canto II flow cytometer and FlowJo 10.8 software (BD).

SARS-CoV-2 spike protein ELISA
SARS-CoV-2 spike protein-specific antibodies were detected by SeraSpot Anti-SARS-CoV-2 IgGmicroarray-based multiparameter

immunoassay. Samples were processed and measured according to the manufacturer’s instructions (Seramun Diagnostica GmbH,

https://www.seramun.com). In brief, serum samples were pre-diluted 1:101 and added to microarray plates pre-coated with the

SARS-COV-2 receptor-binding domain (RBD) epitope, with negative and positive controls as capture antibodies. Samples were

measured with the accompanying SpotSight plate scanner and results above 160 BAU/ml were regarded as positive, as per the

manufacturer.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of blood single-cell transcriptome data
Data pre-processing of blood scRNA-seq data

After demultiplexing of bcl files using Bcl2fastq2 V2.20 from Illumina and quality control, paired-end scRNA-seq reads were filtered

for valid cell barcodes using the barcode whitelist provided by BD. Cutadapt 1.16 was then used to trim NexteraPE-PE adaptor se-

quences where needed and to filter reads for a PHRED score of 20 or above.48 Then, STAR 2.7.3a was used for alignment against the

Gencode v27 reference genome.47 Dropseq-tools 2.0.0 were used to quantify gene expression and collapse to UMI count data

(https://github.com/broadinstitute/Drop-seq/). For hashtag-oligo based demultiplexing of single-cell transcriptomes and subse-

quent assignment of cell barcodes to their sample of origin the respective multiplexing tag sequences were added to the reference

genome and quantified as well.

Blood scRNA-seq quality control and annotation

Samples were selected and grouped as described above. Analysis of scRNA-seq data was performed using the Seurat pipeline

(v4.3.0).51,73 During preprocessing and quality control (QC), cells that were considered as doublets or negatives after demultiplexing

using the HTODemux function from Seurat (positive.quantile 0.99), singlets that did not exceed 300 unique molecular identifiers

(UMIs), hadmore than 30%mitochondrial genes, showed less than 300 andmore than 3500 features per cell or were present in small

contaminating clusters were excluded from downstream analysis. Additionally, genes that were expressed in less than 5 cells per

cartridge were removed. After QC, a total of 114,181 single-cell transcriptomes of PBMCs were analyzed. The entire dataset was

normalized, scaled, and dimensional reduction was calculated using the standard Seurat functions. For normalization, the

gene expression values were normalized by total UMI counts per cell, multiplied by 10,000 (TP10K) and then log transformed by

log10(TP10k+1). Subsequently, the data was scaled, centered, and regressed against the number of detected transcripts per cell

to correct for heterogeneity associated with differences in sequencing depth. For dimensionality reduction, PCA was performed

on the top 2,000 variable genes identified using the vst method. For two-dimensional representation of the data structure, uniform

manifold approximation and projection (UMAP) was calculated using the first 30 principle components (PCs). Subsequently, the cells

were clustered using the Louvain algorithm based on the first 30 PCs using a resolution of 0.4. Cluster-specific marker genes were

calculated with theWilcoxon rank sum test using the FindAllMakers function (min.pct=0.2, logfc.threshold=0.5). Using the combined

information of cluster marker and literature-known markers, present cell types were annotated: Monocytes (LYZ, S100A8, S100A9),

mDCs (FCER1A, CD1C), pDCs (ITM2C, SOX4), platelets (PPBP, PF4), CD4+ T cells (TCF7, IL7R), CD8+ T cells (CD8A, GZMH), NK

cells (KLRF1, PRF1), B cells (MS4A1, CD79A), plasmablasts (JCHAIN, IGKC), proliferating cells (MKI67, STMN1) and erythrocytes

(HBB, HBA1, HBA2).

Selection of monocytes

Blood monocytes were selected and annotated in a three-step process. First, all monocyte transcriptomes were subsetted from the

PBMC data. This subset was subsequently normalized and scaled, and dimensional reduction was calculated using the standard

Seurat functions. For normalization, the gene expression values were normalized by total UMI counts per cell, multiplied by

10,000 (TP10K) and then log transformed by log10(TP10k+1). Subsequently, the data was scaled, centered, and regressed against

the number of detected transcripts per cell to correct for heterogeneity associated with differences in sequencing depth. For dimen-

sionality reduction, PCA was performed on the top 1000 variable genes identified using the vst method. To adjust for a batch-effect

observed by experimental day, the harmony algorithm (v0.1.0) was applied.54 For two-dimensional representation of the data struc-

ture, uniform manifold approximation and projection (UMAP) was calculated using the first 15 harmony components. Next, mono-

cytes were cleaned from non-monocytes. For this, the cells were clustered using the Louvain algorithm based on the first 15 harmony
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reductions. Clusters showing expression of other cell types (such as NK cells, T cells and B cells) were excluded. Finally, after clean-

ing, the basic Seurat steps were applied again and clusters were calculated using a resolution of 0.7. Cluster-specific marker genes

were calculated with the Wilcoxon rank sum test using the FindAllMakers function (min.pct=0.2, logfc.threshold=0.5). The resulting

monocyte clusters were annotated as IFIhi (IFI6, IFI27, IFI44L), IL1Bhi (IL1B, CCL3, CCL4L2), S100Ahi (S100A12, S100A8, S100A9),

S100AhiCXCLhi (CXCL1, CXCL2, CXCL3, CXCL8), Dexa response (AREG, IL1R2, CD163, TSC22D3), HLAhi (HLA-DPA1, HLA-DRA,

HLA-DRB1), THBDhi (THBD, RGCC, LMNS), PF4+ (PF4), HBhi (HBB) and CD16 C1Q+ (FCGR3A, C1QB, C1QA) monocytes.

Module score calculation

For the module score calculation, the AddModuleScore function from Seurat was applied with the respective gene signatures.

For the interferon enrichment a set of 15 interferon-response genes was used including IFI6, ISG15, IFITM1, ISG20, IFI27, IFI30,

IFIH1, IFIT1, IFIT2, IFIT3, IFITM2, IFITM3, XAF1, MX1 andMX2. For the glucocorticoid signature the top 100 up- and downregulated

genes from Wang et al.26 were extracted and enriched by blood monocyte states.

To check for statistical differences, a Kruskal-Wallis (KW) test was applied for the mean module score per donor against the

respective category of interest, e.g. monocyte states.

Differential gene expression

Differential expression (DE) tests in the blood data were performed using FindMarkers function from Seurat with the Wilcoxon rank

sum test. Genes with a log-fold change greater than 0.25, at least 10% expressed in tested groups and with a bonferroni-corrected p

value %0.05 were considered as significantly differentially expressed genes (DEGs). For calculation of DEGs by cell types, only cell

types with more than 2,000 cells were considered.

Functional enrichment analysis

Gene set ontology enrichment analysis (GOEA) using the DEGs as input was performed on the gene sets from the Gene Ontology

(GO) biological process (BP) database,74,75 the Kyoto Encyclopedia of Genes And Genomes (KEGG) database,76 the Hallmark

gene sets77 and the Reactome gene sets78,79 using the R package clusterProfiler (version 4.0.5).55,80 Ontologies with statistical sig-

nificance (bonferroni-adjusted p value %0.05) were used for presentation. For the common terms in multiple cell types, terms were

filtered for enrichment in at least three different cell types.

Quantification of monocyte states

To compare shifts in the bloodmonocyte states stratified by group and treatment aswell as outcome, the percentages of each cluster

were quantified per sample of the respective groups and visualized together in boxplots. For determination of statistical significant

differences in the distribution a Wilcox test was performed for severity or outcome groups.

Core Dexa signature identification

To identify DEGs common for Dexa treatment despite COVID-19 severity, a fold change (FC) comparison was performed for DEGs

calculated between Dexa vs. ctrl. for both severities independently. Resulting FCs were plotted against each other and commonly

up- and downregulated genes were indicated.

Analysis of BAL single-cell transcriptome data
Re-analysis of BAL monocytes from Sinha et al.

To verify our findings from our scRNA-seq monocyte analysis, we inspected the single-cell whole blood dataset generated by Sinha

et al.12 The monocyte compartment was subsetted based on the original ‘celltype1’ annotation. Subsequently, the monocytes were

normalized, scaled, and visualized using ‘patient’-corrected harmony and UMAP dimensionality reductions. After removal of

contaminating clusters, defined as cells that express cell typemarkers unrelated to monocytes, a total of 2,350monocytes were pre-

sent. ByCD14 and FCGR3A (CD16) expression, themonocytes were annotated as classical or non-classical monocytes. In all mono-

cytes, the average expression of selected Dexa-related genes was calculated stratified by the ‘‘time_split_status’’ information pro-

vided by the authors (including treatment group and duration) and visualized in a heatmap.

Re-analysis of BAL myeloid cells from Liao et al.

To check specific genes identified in this study in the lung, we inspected the single-cell bronchoalveolar lavage (BAL) dataset gener-

ated by Liao et al.29 Here, a total of 6 severe COVID-19 patients were included with n=2 untreated survivors and n=4 methylprednis-

olone-treated patients, of which n=2 deceased. The macrophage and monocyte compartment was subsetted based on the original

cell type annotation, cells were cleaned from contamination and gene expression of 32 selected markers was assessed in a total of

25,191 cells.

BAL scRNA-seq pre-processing, quality control, and annotation

Raw expression data in form of FASTQ files were collected, read quality was assessed using fastQC (version 0.11.8)49 and alignment/

counting was performed using 10x Genomics Cell Ranger (version 7.0.0)50 using a custom reference created from the GRCh38 hu-

man genome reference available from 10x Genomics (refdata-gex-GRCh38-2020-A) and a number of viral genomes including SARS-

CoV-2 (RefSeq:NC_045512.2).

For quality control, transcriptomes were clustered using library size, number of genes, percentage of mitochondrial (%MT) and

ribosomal (%RP) counts. Clusters with %MT > 5 were excluded from the analysis. After QC, a total of 67,439 single-cell transcrip-

tomes of BAL cells remained.
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Datawas loaded into R (version 4.3.1) and stored in a SeuratObject (version 4.1.4). Seurat (version 4.4.0)51,73 was used to normalize

counts, find variable genes, scale data, and compute a PCA embedding. FastMNN from the batchelor package (version 1.16.0)56 was

used to integrate data using ‘‘library’’ as a batch. For annotation, clusters were computed using the Seurat implementation of the

smart local moving algorithm for large-scale modularity-based community detection,81 cell type AUCswere computed using the AU-

Cell package (version 1.22.0)57 and automatic assignment of cell type identity to clusters was performed using annotate_maxAUC of

the SeuratHelper package (version 1.0.0). Annotation was refined using cluster averages of AUC scores and quality metrics.

Cell types annotation markers: Monocytes (CD14, VCAN, FCGR3A), macrophages (MARCO, CD68), DCs (TCF4, CD1C), T cells

(CD8A, CD3D, CD3E), plasmablasts (JCHAIN, IGHGP), neutrophils (CSF3R, NAMPT), erythrocytes (HBA1, HBB) and epithelia

(KRT8, KRT19).

Custom code used for the analysis is available under github.com/saliba-lab/covid19-bal-atlas-integration.

Differential gene expression

Differential expression (DE) tests in the BAL data were performed using FindMarkers function from Seurat with the Wilcoxon rank

sum test. Genes with a log-fold change greater than 0.25, at least 10% expressed in tested groups and with a bonferroni-corrected

p value %0.05 were considered as significantly differentially expressed genes (DEGs). For calculation of DEGs by cell types, eryth-

rocytes and low-quality cells were excluded.

Module score calculation

For the module score calculation in BAL monocytes and macrophages, the AddModuleScore function from Seurat was applied with

the ‘‘Dexa response’’ monocyte state markers (n=30) as a signature. For statistical testing, a Wilcoxon test was performed based on

the mean module score per donor by the respective treatment groups and outcome.

Bulk RNA-sequencing analysis
The ‘STAR: ultrafast universal RNA-seq aligner’ (v2.7.3a)47 was used to align the sequenced reads against the human GENCODE

reference genome v33. Total reads were randomly downsampled to a maximum of 34,195,155 reads per sample. Following the

import of the raw counts using the DESeq258 function DESeqDataSetFromMatrix, genes with a lower total count number than the

included number of samples were excluded from the analysis resulting in 27,669 and 28,784 genes for cohort 1 and cohort 2,

respectively. The count matrices were DESeq2 normalized and a variance stabilizing transformation (vst) was applied. To minimize

the variance introduced by the different study sites in cohort 2, the transformed data was limma batch-corrected65 setting the

study sites and the seasonality as the batch variables. Patient groups were defined as described above. A gene set variation anal-

ysis (GSVA)59 was performed on the transformed data with default parameters using the single-cell RNA-seq monocyte outcome

signature, which was based on the comparison of dexamethasone-treated but deceased patients vs. treated survivors (‘deceased

upregulated’ with 379 genes and ‘deceased downregulated’ with 282 genes). Wilcoxon tests were calculated between the

different conditions and the resulting p values were adjusted utilizing the Benjamini-Hochberg (BH) method. Permutation tests

were performed by drawing 500 random, unique gene sets with the same size as the respective signature. For each gene set,

GSVA enrichment scores were calculated per sample and BH-adjusted p values were computed between surviving and deceased

patients. The likelihood of the enrichment results of the single-cell signatures was computed by dividing the number of gene sets

with lower adjusted p values by the number of permutations. To identify the optimal signature length, signature genes measured in

both cohorts (366 genes in the ‘deceased upregulated’-signature and 275 genes in the ‘deceased downregulated’-signature) were

ordered based on their average log2FC in the scRNA-seq data and a GSVA was performed for all possible signature sizes in each

cohort (starting with an initial size of 10 signature genes). The optimal signature length was defined as the minimum of the mean

adjusted p value distribution of the two cohorts. Genes representing the leading edge of each signature enrichment were assessed

by calculating the expression level statistics from a non-parametric kernel estimation of the cumulative density function of each

gene expression profile per sample and cohort as previously described.59 After computing the mean of the expression level sta-

tistic for each gene over all samples of the deceased patient group of the respective cohort and centering the resulting ranks

around 0, a gene set enrichment analysis (GSEA) was performed per signature and cohort and the leading edge defined as the

subset of the signature including those genes that appear in the ranked list at or before the point at which the running sum reaches

its maximum82 was computed using fgsea (v1.18.0).60

CyTOF: Cell identification and cluster analysis
Major leukocyte populations were identified from two antibody panels designed for CyTOF. Myeloid cells were identified from

panel 2. Monocytes and DCs were obtained from the exclusion of CD3-, CD19- and CD56- cells, and expression of CD14+ and

HLA-DR+ cells. The Monocytes and DCs batch-normalized CyTOF values (described in Schulte-Schrepping et al.18) were first

transformed with the inverse hyperbolic sine function (asinh) and then z-score normalized per marker across all samples and

all cells. They were then clustered using FlowSOM,66 with 25 meta clusters (FlowSOM_k). Clusters were merged in pairs when

their marker expressions were similar, which resulted in 19 clusters (Figure S3B). Similarly, UMAPs were calculated with the

selected markers mentioned above using the R package ‘uwot’ with default parameters (https://github.com/jlmelville/uwot).

The frequency of each cluster was calculated as the percentage of cells in each cluster for each sample in each compartment.
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Statistical testing for the difference in the frequency of each cluster per severe or moderate category was calculated with the Wil-

coxon test. Granulocytes in panel 2 were identified based on the expression or exclusion of CD3-CD19-CD56-CD14-CD15+. Pop-

ulations obtained from panel 1 include:

CD4+Tcells (CD3+CD45+CD19-CD15+CD14+CD8-TCRgd-),CD8+Tcells (CD3+CD45+CD19-CD15+CD14+CD8-TCRgd-) andTCRgd+

cells (CD3+CD45+CD19-CD15+CD14+TCRgd+). Other populations include the B cells (CD45+CD19+CD3-CD14-CD15-) and NK cells

(CD45+CD3-CD19-CD56+CD14-).

Analysis of DNA methylation data
Pre-processing raw methylation data

The raw intensity data files (IDAT) were preprocessed usingminfi version 1.42.0 by quantile normalization. Probeswere filtered based

on not meeting the detection p value threshold against the background (p<0.01), being reported as cross-reactive,83 revisions of Il-

lumina’s manifest (Infinium MethylationEPIC v1.0 13.03.2020), or being at a SNP, using the minfi function dropLociWithSnps. To ac-

count for differences between the 10 matched responder/non-responder pairs (e.g. matched comorbidities, age, sex, etc.) batch

correction was performed using the ComBat function from the sva package version 3.44.0.63

Differential DNA methylation analysis

As the cohort included both female andmale donors, CpGs on sex chromosomes were removed before differential methylation anal-

ysis. Differential methylated positions (DMPs) were identified using the limma package version 3.52.2.65

Enrichment analysis for DNA methylation data
Gene set ontology enrichment analysis adjusting for CpG number per gene using DMPs as input was performed using the methylglm

function from themehylGSA package version 1.14.084 on gene sets from theGeneOntology (GO) biological process (BP) database.75

Enrichment of differentially expressed genes from the scRNA-seq dataset was calculated using the methylRRA function from the

same package. The function utilizes robust rank aggregation (RRA) to adjust multiple p values of each gene for enrichment analysis.62

Data visualization
For data visualization the R packages Seurat (version 4.3.0),73 ggplot2 (version 3.3.5),61 pheatmap (version 1.0.12) or fmsb (version

0.7.5) were used.
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Supplemental figures

Figure S1. Shared effect of dexamethasone treatment across circulating immune cells, related to Figure 1

(A) Percentages of CD45+ leukocytes and concentration of B cells, T cells, and neutrophils in whole blood from CyTOF stratified by treatment and COVID-19

severity. Wilcoxon test for statistical significance, and resulting p values are indicated.

(B) Marker gene expression for identified major cell types in the PBMC space from single-cell RNA-seq data.

(legend continued on next page)
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(C) UMAP of the entire PBMC space from scRNA-seq colored by symptom onset in days after onset (%10 or >10) for untreated patients (control).

(D) Enrichment of the interferon module (n = 15 genes) described for acute COVID-19 monocytes18 in monocytes by time points.

(E) Common differentially expressed genes (DEGs, from Figure 1G) in at least 3 cell types in severe COVID-19. Significant differential expression is indicated with

asterisks.

(F) Functional enrichment of DEGs identified in Figure 1G using the GO biological processes (BP) and Hallmark databases. Displayed terms were common in at

least three cell types.
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Figure S2. Mapping of monocyte states to acute COVID-19 and validation of dexamethasone effects, related to Figure 2

(A) Expression of monocyte-state markers from Schulte-Schrepping et al.18 by monocyte states identified in this study.

(B) Enrichment of the in vitro generated glucocorticoid down signatures from Wang et al.26 in all monocyte states.

(C) UMAP visualization of all monocytes extracted from the whole blood scRNA-seq dataset from Sinha et al. (n = 2,350 cells).12

(D) Dexa-inducible gene expression in whole blood monocytes of dexamethasone-treated and control patients separated for time points (3 and 7 days) from

Sinha et al.12
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(legend on next page)
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Figure S3. Proteomics analysis of monocytes and overview of the BAL dexamethasone cohort, related to Figure 3

(A) CD163 protein expression by flow cytometry on CD14+ monocytes of COVID-19 patients who survived stratified by severity and dexamethasone treatment.

Wilcoxon test for statistical testing, and resulting p values are indicated.

(B) Clusteredmarker heatmap of the CyTOF analysis frommyeloid cells with a total of 18 clusters defined by 31 protein markers. Resulting clusters are indicated.

(C) Monocyte relative cluster distribution from CyTOF analysis for clusters 1 (CD14+CD69+PD-L1+) and 16 (CD16+CD69+PD-L1+) in COVID-19 patients who

survived stratified by severity and dexamethasone treatment. Wilcoxon test for statistical testing, and resulting p values are indicated.

(D) Absolute numbers of monocyte in the Dexa response state in severe patients with dexamethasone treatment stratified by outcome. Statistical testing using

Wilcoxon test, and resulting p values are indicated.

(E) Alarmin (S100A8, S100A9, and S100A12) gene expression in whole blood monocytes selected from Sinha et al. (see Figure S2C).12

(F) Gene expression of selected genes from the monocyte outcome signature (Figure 3H) by COVID-19 severity status and outcome in monocytes. Correlation of

the average gene expression of those genes compared with severe controls that survived is indicated.

(G) Volcano plot showing the outcome DEGs between severe COVID-19 patients treated with dexamethasone who survived vs. those who were treated but

deceased in B cells.

(H) Expression of selected markers identified in this study in the bronchoalveolar lavage (BAL) COVID-19 macrophages and monocytes from Liao et al.29

comprising n = 6 severe COVID-19 patients with n = 2 untreated survivors and n = 4 methylprednisolone-treated patients of which 2 deceased.

(I) COVID-19 BAL cohort overview. A total of 12 severe COVID-19 patients were included of which n = 5 were untreated controls and n = 7 received dexa-

methasone of which 3 deceased (for cohort details see Table S1).

(J) UMAP visualization of the cell types identified in the BAL of severe COVID-19 patients (n = 67,439 cells).

(K) Cell type marker for identification of present cell types identified in (H).
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Figure S4. Gating strategy for cell sorting and PCA by treatment response of the epigenetic data, related to Figure 4

(A) FACS sorting strategy for the isolation of CD14+CD16� monocytes, CD19+ B cells, and CD4+ or CD8+ memory T cells for DNA methylation analysis.

(B) PCA of DNA methylomes of all samples analyzed, colored by cell types (upper) and dexamethasone treatment response group (lower).

(C) PCA of DNA methylomes of B cells, CD4+ and CD8+ memory T cells by dexamethasone treatment response.
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Figure S5. Optimization of the single-cell signature for enrichment in whole blood data, related to Figure 5

(A) Boxplots displaying the gene set variation analysis (GSVA) enrichment scores of the original deceased upregulated signature (left plot) and original deceased

downregulated signature (right plot) in the single-center (Charité) cohort split and colored by the COVID-19 severity status and outcome. Wilcoxon test and

Benjamini-Hochberg adjustment were utilized for statistical analysis.

(B) Boxplots displaying the GSVA enrichment scores of the original deceased upregulated signature (left plot) and original deceased downregulated signature

(right plot) in the multi-center (CAPNETZ) cohort split and colored by the COVID-19 severity status and outcome. Wilcoxon test and Benjamini-Hochberg

adjustment were utilized for statistical analysis.

(legend continued on next page)
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(C) p value distribution of GSVA enrichment results of 500 random, unique gene sets in the single-center cohort on a log10 scale. Gene set size was based on the

size of the original deceased upregulated signature (upper plot) and the original deceased downregulated signature (lower plot). p values were computed with a

Wilcoxon test comparing deceased and surviving patients and were Benjamini-Hochberg adjusted. The red dashed line represents the adjusted p value from

GSVA enrichment of the original deceased upregulated and the original deceased downregulated signatures, respectively.

(D) p value distribution of GSVA enrichment results of 500 random, unique gene sets in the multi-center cohort on a log10 scale. Gene set size was based on the

size of the original deceased upregulated signature (upper plot) and the original deceased downregulated signature (lower plot). p values were computed with a

Wilcoxon test comparing deceased and surviving patients and were Benjamini-Hochberg adjusted. The red dashed line represents the adjusted p value from

GSVA enrichment of the original deceased upregulated and the original deceased downregulated signatures, respectively.

(E) Line plot of the deceased upregulated signature optimization illustrating the GSVA p value distribution between deceased and surviving patients with varying

signature size based on the average log2FC from the scRNA-seq data. Signature size varied from 10 to the number of signature genes expressed in both cohorts,

and the distributions were color-coded according to the single-center cohort (blue), the multi-center cohort (yellow), and the mean of the single- andmulti-center

cohorts (black). The red dashed line indicates the optimal gene signature size.

(F) Line plot of the deceased downregulated signature optimization illustrating the GSVA p value distribution between deceased and surviving patients with

varying signature size based on the average log2FC from the scRNA-seq data. Signature size varied from 10 to the number of signature genes expressed in both

cohorts, and the distributions were color-coded according to the single-center cohort (blue), the multi-center cohort (yellow), and the mean of the single- and

multi-center cohorts (black). The red dashed line indicates the optimal gene signature size.

(G) Gene set enrichment analysis (GSEA) of the optimized deceased downregulated signature in the deceased patient group of the single-center cohort. Ranking

of samples is based on expression-level statistics, and the running sum is visualized. The heatmap depicts the scaled variance-stabilized mean expression per

COVID-19 severity status and outcome of the genes included in the leading edge.

(H) GSEA of the optimized deceased upregulated signature in the deceased patient group of the multi-center cohort. Ranking of samples is based on expression-

level statistics, and the running sum is visualized. The heatmap depicts the scaled variance-stabilized mean expression per COVID-19 severity status and

outcome of the genes included in the leading edge.
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