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Zusammenfassung

I
n den letzten Jahrzehnten hat sich das traditionelle Unkraut- und Pflan-

zenmanagement stark auf Herbizide und mechanische Unkrautbekämpfung

verlassen. Diese Methoden haben erhebliche ökologische und landwirtschaft-

liche Herausforderungen mit sich gebracht. Weltweit werden jährlich über 2

Millionen Tonnen Herbizide eingesetzt, was Bedenken hinsichtlich der Lebensmit-

telsicherheit, Umweltschäden und Gesundheitsrisiken für den Menschen aufwirft.

Die Resistenz von Unkräutern gegen Herbizide ist ein wachsendes Problem, mit

über 500 gemeldeten Fällen weltweit. Gleichzeitig drängen Verbraucher auf or-

ganische, chemiefreie Lebensmittel, was Landwirte dazu zwingt, den Einsatz von

Agrochemikalien zu reduzieren und gleichzeitig hohe Erträge aufrechtzuerhalten.

Diese Situation verdeutlicht die dringende Notwendigkeit innovativer, nachhalti-

ger Lösungen für die Landwirtschaft.

Diese Dissertation untersucht Technologien der Präzisionslandwirtschaft, mit ei-

nem besonderen Fokus auf biodiversitätsbewusste robotische Systeme für pflan-

zenindividuelle Unkrautbekämpfung auf Ackerflächen. Wir haben versucht, die

Einschränkungen konventioneller Unkrautmanagementmethoden zu überwinden,

indem wir fortschrittliche robotische Lösungen unter Einsatz von maschinellem

Sehen, Deep Learning und autonomer Navigation für nachhaltige und gezielte

Interventionen in realen Anwendungen vorschlagen. Die zentrale Innovation kon-

zentriert sich auf die Entwicklung einer neuartigen Plattform für Präzisionsun-

krautbekämpfung und Pflanzenüberwachung namens BonnBot-I. Diese Plattform

ist mit fortschrittlichen Sensoren und Rechenwerkzeugen ausgestattet, um auto-

nome Operationen in verschiedenen Ackerbauumgebungen durchzuführen.

Ein Hauptthema der landwirtschaftlichen Autonomie ist die zuverlässige autono-

me Navigation in unübersichtlichen landwirtschaftlichen Umgebungen mit einge-

schränkter globaler Lokalisierung, wie GPS. Angesichts der Tatsache, dass im-

mer noch ein großer Teil der Ackerflächen nicht mit GPS-gestützten Systemen

eingesät wird, könnte die Integration von Navigationsmethoden, die auf lokalen

Beobachtungen basieren, dazu beitragen, Umweltprobleme zu lösen, die zuverläs-

sige Navigation ermöglichen und Pflanzenschäden minimieren. Daher stellen wir
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einen visionbasierten Navigationsansatz vor, der den BonnBot-Idurch Pflanzen-

reihen mit unterschiedlichen Kronentypen und Kultivaren allein auf Basis von

Echtzeitkameradaten führt.

Ein zentrales Ziel dieser Dissertation ist es, ein robustes Framework für die Ent-

wicklung von Robotern zu etablieren, die in der Lage sind, präzise, pflanzenin-

dividuelle Unkraut- und Pflanzenpflege auf Ackerflächen mit einer Vielzahl von

Kultivaren und Unkrautdichten durchzuführen. Dafür ist ein genaues Überwa-

chungssystem für Pflanzen und Unkraut erforderlich, um Unkrautbekämpfungs-

strategien auf Grundlage der vorhandenen Pflanzeninstanzen zu gestalten. Um

dieses Ziel zu erreichen, integriert BonnBot-Ifortschrittliche instanzbasierte se-

mantische Segmentierungs- und Tracking-via-Segmentierungs-Methoden. Unser

Ansatz ermöglicht es, einzelne Pflanzen in Echtzeit zu identifizieren und zu ver-

folgen, sie nach Art, Größe, Wachstumsstadium und genauer Position unter rea-

len Feldbedingungen zu kategorisieren. Diese fortschrittlichen Systeme erlauben

es, umweltfreundliche Unkrautbekämpfungsstrategien umzusetzen, die auf spezifi-

sche Pflanzen in realen landwirtschaftlichen Umgebungen zugeschnitten sind. Die-

se Innovation ermöglicht die Priorisierung auf Pflanzenebene und die Durchfüh-

rung gezielter Interventionen basierend auf den individuellen Bedürfnissen jeder

Pflanze mithilfe des neuartigen Unkrautbekämpfungswerkzeugs von BonnBot-I.

BonnBot-Iist mit einem spezialisierten Unkrautbekämpfungswerkzeug ausgestat-

tet, das unabhängig steuerbare Linearschienen und Sprühdüsen umfasst, um diese

selektiven Interventionen zu erleichtern. Dieses Design ermöglicht es BonnBot-I,

hochpräzise Anwendungen durchzuführen, den Bedarf an Agrochemikalien erheb-

lich zu reduzieren und die mit herkömmlichen Methoden verbundenen Umwelt-

auswirkungen zu minimieren.

Abschließend zeigt diese Dissertation, wie Robotik und künstliche Intelligenz

(KI) die Zukunft des Pflanzenmanagements durch innovative biodiversitätsbe-

wusste und pflanzenindividuelle Unkrautbekämpfungspraktiken grundlegend ver-

ändern können. Durch die Integration fortschrittlicher maschineller Bildverarbei-

tung, Deep Learning und autonomer Navigation bietet BonnBot-Ieinen einzigarti-

gen Ansatz für nachhaltige Landwirtschaft, der die Biodiversität respektiert und

die Umweltgesundheit priorisiert. Im Gegensatz zu herkömmlichen Unkrautbe-

kämpfungsmethoden, die auf eine einheitliche Anwendung von Herbiziden oder

mechanische Entfernung setzen und oft umliegende Pflanzen und Ökosysteme

schädigen, bietet BonnBot-Ipräzise Eingriffe, die individuell auf einzelne Pflan-

zen abgestimmt sind.
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Abstract

I
n recent decades, traditional crop and weed management has heavily relied

on herbicides and mechanical weeding. These methods have caused sig-

nificant environmental and agricultural challenges. Over 2 million tons of

herbicides are used annually globally, raising concerns about food safety,

environmental harm, and human health risks. Weed resistance to herbicides is a

growing problem, with over 500 cases reported worldwide. Meanwhile, consumer

demand for organic, chemical-free food pushes farmers to reduce agrochemical

use while maintaining high yields. This situation highlights the urgent need for

innovative, sustainable farming solutions.

This thesis explores precision agriculture technologies, focusing on biodiversity-

aware robotic systems for plant-level weeding in arable farms. We tried to ad-

dress the limitations of conventional weed management, by proposing advanced

robotic solutions using machine vision, deep learning, and autonomous navigation

for sustainable and targeted interventions in the real world. The core innovation

is centered on developing a novel precision weeding and crop-monitoring robot

platform called BonnBot-I. This platform is equipped with advanced sensors and

computational tools to conduct autonomous operations in diverse arable farming

environments.

One of the main topics in agricultural autonomy is performing reliable au-

tonomous navigation in cluttered farming environments with poor global local-

ization accessibility like GPS. Considering the fact that still a large portion of

the arable farms are not seeded using GPS-guided systems, integration of lo-

cal observations-based navigation methods could relieve environmentally posed

challenges for robots to achieve reliable navigation and minimize crop damage.

Hence, we introduce a vision-based navigation approach that guides the BonnBot-

I through rows of crops with different canopy types and cultivars relying only on

the real-time camera data.

A central aim of this thesis is to establish a robust framework for developing

robots capable of conducting precise, plant-specific weed and crop management

in arable farms that feature a variety of cultivars and weed densities. Hence an

accurate crop and weed monitoring system is needed to shape weeding strategies

based on the presence of plant instances. To fulfill this requirement, BonnBot-I
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incorporates cutting-edge instance-based semantic segmentation and tracking-

via-segmentation methods. Our approach enables the identification and tracking

of individual plants in real time, categorizing them by species, size, growth stage,

and precise location under actual field conditions. These advanced systems al-

low us to implement eco-friendly weeding strategies tailored to specific plants

in real agricultural settings. This innovation enables plant-level prioritization

and the execution of targeted interventions based on each plants unique needs

using BonnBot-I’s novel weeding tool. BonnBot-Iis equipped with a specialized

weeding tool, including independently controllable linear axes and spray nozzles,

facilitating these selective interventions. This design enables BonnBot-I to per-

form highly precise applications, significantly reducing the need for agrochemicals

and minimizing the environmental impact associated with traditional broadcast

methods.

In conclusion, this thesis demonstrates how robotics and artificial intelligence

(AI) can profoundly reshape the future of crop management through innovative

biodiversity-aware and plant-specific weeding practices. By integrating advanced

machine vision, deep learning, and autonomous navigation, BonnBot-I provides

a unique approach to sustainable agriculture that respects biodiversity and pri-

oritizes environmental health. Unlike traditional weeding methods that rely on

uniform herbicide application or mechanical removal, which often harm surround-

ing crops and ecosystems, BonnBot-I offers precision interventions tailored to

individual plants.
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Chapter 1

Introduction

C
onventional crop and weed management methods predominantly

depend on uniform broadcast approaches like herbicides and mechan-

ical implements, contributing to signiücant issues within agri-food sys-

tems globally [74]. Annually, the world sees the use of approximately

2 million tons of herbicides, leading to widespread concerns over food safety,

persistent environmental damage, and considerable risks to both ecosystems and

human health. The problem of herbicide resistance is getting more crucial. Cur-

rently, over 500 cases of herbicide resistance have been reported worldwide. This

involves 167 diûerent herbicides and approximately 300 weed species and these

numbers continue to grow rapidly [63, 127, 109].

Along with herbicide residences, the agricultural industry is being pushed to

reduce agrochemicals due to the social desire to consume more natural and organic

(a) PathoBot from AgRobotics Uni Bonn (b) Robot One from Pixel Farming Robotics

Figure 1.1: Agricultural Platforms; (a) PATHoBot with sensors, arm, and other components

highlighted and operated in the glasshouse, (b) Robot One from Pixel Robotics Company.
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foods. [23, 127]. Hence, society and governments encourage farmers to promote

the biodiversity of their üelds. To enable this, “smart farming techniques” need

to address the challenges ranging from automated navigation [3], crop monitor-

ing [100, 52], and through to management actions such as weeding [80].

Such technologies have advanced rapidly in the context of agricultural robotics,

enabling precise, plant-level interventions that align with social pressures for sus-

tainable farming, such as reducing herbicide use and promoting bio-based food

production. These technologies address farmers’ needs for more eþcient opera-

tions by integrating diverse tools, including physical, chemical, and laser-based

methods [27, 119, 107]. Given the diversity of crops, weeds, and üeld conditions,

adaptable robotic systems are essential to ensure eûective and environmentally

conscious farming operations [6, 72].

The ever-changing environment, including varying weather conditions, dif-

ferent soil types, and the growth stages of crops and weeds complicate reliable

navigation in arable üelds. To enable the smooth integration of smart farming

technologies in farmers’ everyday practices, we need to ensure that agricultural

vehicles or robots can traverse the üeld ýawlessly at the desired speed and ac-

curacy [7]. A key component of this is accurate and reliable navigation, which

will reduce crop damage from the wheels. To achieve this, platforms need to

be robust to technology outage,s meaning multiple approaches to navigation are

required. One potential solution to the navigation problem is using the Global

Navigation Satellite System (GNSS). Such an approach has been used for both

agricultural machinery [109] and robotic platforms [19]. The downside of this

approach is that it relies on an expensive sensor and suûers from limitations such

as possible GNSS outages and reliance on geo-referenced auto-seeding. Thus,

crop-based navigation techniques leveraging the üeld structure were investigated

for autonomous guidance [21, 7] and in-üeld interventions [12].

Crop monitoring is essential across all types of farming, from arable crops

like wheat, corn, and sugar beet to horticultural crops such as apples, tomatoes,

and sweet peppers [52]. In arable farming, weed presence, type, and density

are critical factors, and various platforms have been developed speciücally to

manage them [16, 78]. Furthermore, eûective plant-level interventions need to

operate in diûerent üelds with varying crops, weed species, and weed distributions.

To achieve sustainable, human-level weeding, it is crucial to accurately identify

weed species and precisely locate targets, enabling strategic decision-making and

targeted interventions. [22, 82].

Weeding is crucial in farming as weeds compete with crops for soil nutrients,

potentially lowering yields [97]. In recent years, robotic weed management tech-

niques have rapidly evolved, intending to treat each weed as precisely as possible.

This will reduce the amount of agrochemicals used and minimize the environ-
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1. Introduction

(a) Sugar-beet. (b) Sweet pepper.

Figure 1.2: Monitoring outputs; monitoring algorithms provide real-time crop insights, in-

cluding ripeness, species identification, and area estimation, to support informed decisions on

weeding, harvesting, and yield estimation.

mental side-eûects of the weeding intervention method [42]. Robotic weed inter-

vention has the potential to revolutionize weeding paradigms through plant-level

weed management.

Furthermore, current broadcast mechanical hoeing technology could, in some

situations, lead to soil erosion and ecosystem disturbances [46]. Additionally, re-

search has shown that broadcast hoeing can heavily impact ecosystems by speed-

ing up soil nutrient loss, and water evaporation, and encouraging new weeds due

to rotation of soil. Such indiscriminate application, aûecting both crops and

weeds, not only undermines the health of beneücial organisms but also accel-

erates biodiversity loss [46, 127]. Traditionally, farming has relied on manual

weeding Figure 1.3, however, this approach is labor-intensive, time-consuming,

and expensive. These negatives make this approach prohibitive in today’s ünan-

cial farming climate. Hence, there is a need for technology to enable farmers to

manage weeds in their farms with the least environmental eûect, high eþciency,

and comparable costs. We believe the research presented in this thesis could

counteract such failing trends with the least invasive and targeted intervention

approach.

Several robotic weed control platforms have been introduced oûering active

and passive interventions in the üeld. Considering the need to operate in diûerent

üelds with varying crops, weed species, and weed distributions, it is clear that

there is no one best solution. These robotic platforms should also be able to

cater to a variety of tools [72, 6], and several approaches have been proposed to

accommodate these diûerent tools [27, 72, 119, 10, 121]. The concept of plant-
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Figure 1.3: Organic manual weeding solution; a time-consuming, laborious, and costly method

that needs almost 200 hours per hectare.

speciüc treatment is referred to as bio-diversity-aware interventions [127], The

current state-of-the-art agricultural weeding technology spans from traditional

hand-picking and mechanical hoeing machines to chemical herbicide sprayers and

nascent robotic weeders. These methods present signiücant challenges, partic-

ularly due to the environmental impact associated with heavy dependence on

any single method. Such uniform and widespread treatment strategies have been

shown to contribute to adverse ecological trends, including the development of

resistance. These approaches can result in soil degradation, water contamina-

tion, nutrient loss, and a reduction in biodiversity. However, some of the more

advanced systems now employ visual recognition technology to diûerentiate be-

tween crops and weeds, enabling precise chemical applications and mechanical

hoeing between rows and crops. Below, we will outline the key technologies in

precision weeding, discussing their advantages and disadvantages.

Spot-Spray: The Spot-Spray systems perform plant-level intervention by

diûerentiating between crop and weed. While chemical applications are the most

eûective approach in today’s agriculture, their suitability is restricted by fac-

tors like precision and environmental conditions. Moreover, the uniform use of

chemical herbicides encourages the emergence of weed species resistant to these

chemicals, diminishing the eþcacy of these methods over time [36, 8]. As an

illustration, a prominent Spot-Spray system on the market is priced at approxi-

mately 150,000 euros. It oûers a maximum precision of 8cm for spray areas and

can operate at speeds up to 5km/h. Nonetheless, these systems often lack the

versatility to accommodate various crop types and growth stages due to relying

only on one herbicide type [89].

Mechanical Inter-row Hoeing: Recent mechanical hoeing systems intro-

duce an advanced inter- and intra-row hoeing mechanism for row-crop üelds.

These systems employ a moving fork with constant contact with soil that is par-
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(a) Eco-Robotics - ARA [89] (b) John Deere; See and Spray [36] (c) Spot Spray - Amazone [8]

Figure 1.4: Spot-Spray weeding system; (a) ARA, (b) See and Spray, and (c) Amazone are

advanced spot-spray weeding systems designed to precisely target and eliminate weeds using

real-time detection precise herbicide application. These technologies reduce chemical usage

while enhancing the accuracy and efficiency of weed management in agriculture.

ticularly used in organic farming, eliminating the need for herbicides [108, 44, 86].

However, it carries the risk of harming crops, especially in densely planted areas.

Its eþcacy diminishes in areas with a high density of weeds, and the disrup-

tion caused to the soil’s structure may adversely aûect soil health. Additionally,

overuse of this method can lead to the emergence of new weeds and contribute

to soil erosion. Moreover, this widespread disturbance of the soil threatens the

fertility of cultivation lands by accelerating the loss of nutrients.

(a) Naio Technologies [108] (b) Farm Droid [44] (c) Farming GT [86]

Figure 1.5: Mechanical Hoeing weeding systems; (a) Naio, (b) Farm droid, and (c) Farming

GT from farming revolution is leading mechanical hoeing systems that use robotics to remove

weeds through mechanical hoeing systems autonomously. These systems provide a chemical-free

solution for weed control, promoting sustainable agriculture while reducing labor and herbicide

reliance.

Thermal Applications (Laser-based or Electricity-based): Thermal

weeding technologies represent some of the latest advancements within the se-

lective intervention category [115, 39, 87]. Laser-based weeding stands out due

to its eþcacy. Some of the limitations associated with this method of interven-

tion include strict safety standards, high upfront costs, and signiücant energy

demands. These limitations contribute to its expense and question the sustain-

ability of future farming. Operating these complex systems necessitates expert

knowledge, and their utility can be hindered by unfavorable weather conditions,

aûecting their adaptability to various farming environments, including diûerent
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growth stages and levels of air and soil moisture. Speciücally, the timing and

growth phase of the weeds is critical for this technology’s success; larger weeds

diminish its eþciency substantially, demanding more energy and time for eûective

management.

(a) WeedBot [115] (b) Earth-Rover [39] (c) Carbon Robotics [87]

Figure 1.6: Thermal weeding systems; these images showcase thermal weeding systems from

(a) WeedBot, (b) Earth-Rover, and (c) Carbon Robotics, which use robotic technology for

autonomous weed removal through burning mostly early-stage weeds. These systems offer an

eco-friendly alternative to chemical weeding and less environment-disturbing means to manage

weeds, making them highly effective in sustainable agriculture.

When considering the challenges associated with available weeding methods,

it becomes evident that each technique, when applied uniformly across all plant

types, introduces its own set of issues. Spot-spraying can lead to excessive chem-

ical use and environmental contamination, and developing of new herbicide re-

sistance. mechanical hoeing can disrupt soil structure and harm beneücial or-

ganisms. However, by integrating these methods into a single, adaptive system

that can dynamically choose the appropriate technique at the appropriate time

would signiücantly enhance both weeding eþcacy and biodiversity. This targeted

approach minimizes the drawbacks of each method, leveraging their strengths to

eûectively manage weeds while preserving the health of the crop and the sur-

rounding ecosystem. By doing so, we not only optimize agricultural productivity

but also contribute to a more sustainable and ecologically responsible farming

practice. The treatment of each plant must be dictated by its species, size, and

impact upon not only the crop but also the environment [22, 52]. One of the key

elements to achieve precise weeding is plant-level treatment, where the treatment

of each plant is dictated by its species, size, and its impact upon not only the crop

but also the environment [22]. These approaches rely on the underlying percep-

tion or agricultural monitoring approaches which have gained signiücant research

attention in recent years, including in glasshouses [101, 99], orchards [110], and

üelds (for weed intervention) [78].

In response, we developed a novel weeding and crop management system

that can be mounted on any weeding trailer (or tractor) or carried with an au-

tonomous robot. Leveraging instance-based semantic segmentation and tracking-

via-detection methods based on deep neural networks (DNNs), our prototype
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distinguishes each plant by its growth stage, type, and potential harm to crops.

Hence, deciding on the most eûective intervention method to deal with individ-

ual plants on the farms. Furthermore, we propose a unique multi-head weeding

tool that permits plant-level selective treatments. The proposed technology can

streamline the integration and reduce the costs for the stakeholders. This ar-

chitecture not only facilitates targeted interventions for individual plants and

encourages biodiversity-oriented interventions but also supports operation across

a diverse range of plant species and environmental conditions, therefore signiü-

cantly lowering barriers to adoption and deployment. The journey toward fully

autonomous precision agriculture faces signiücant challenges. This thesis ad-

dresses four main questions critical to advancing this üeld:

1. What design features are essential for creating a robust, farming robot

capable of crop monitoring, plant-level intervention, and autonomous nav-

igation?

2. How can a farming robot achieve reliable autonomous navigation using only

local and visual (camera-based) observations in row-crop farms?

3. How can we enable a weeding robot to perform crop-agnostic, plant-level

weeding while considering biodiversity-aware practices?

4. Can a robotic system learn to conduct precision weed management based

on diverse plant characteristics and priorities provided by experts?

1.1 Main Contributions

This thesis investigates the application of robotic vision to automate precision

weed management and crop monitoring in arable farming. The work focuses

on developing advanced methods that leverage both classical computer vision

(CV) and deep learning techniques to enhance the autonomy and eûectiveness of

agricultural robots. By integrating these technologies, this thesis demonstrates

how robotic systems can signiücantly improve üeld navigation, weed control, and

sustainable crop management, pushing the boundaries of what is achievable in

precision agriculture.

We begin by introducing our novel precision crop/weed management and mon-

itoring robot called BonnBot-I. This is followed by addressing the fundamental

challenges associated with autonomous navigation in arable üelds, where robots

must operate reliably in dynamic and often unpredictable environments, and

present our solutions using classical machine vision and DNN-based approaches.

Additionally, we explore the capabilities of BonnBot-I in dealing withthe complex-

ities of plant-level intervention, particularly in the context of biodiversity-aware
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practices that prioritize environmental sustainability practices. The ultimate goal

of this work is to provide a comprehensive framework for developing and deploy-

ing agricultural robots that can autonomously perform precise and sustainable

interventions in arable farms.

This thesis is organized into six chapters, each addressing a speciüc aspect of

autonomous precision agriculture, with a focus on developing robotic vision and

precision framing capabilities.

Chapter 2 is dedicated to explaining the fundamental techniques that un-

derpin our proposed precision agriculture systems. These foundational methods

form the building blocks for autonomous precision weed management and crop

monitoring solutions. By reviewing these core principles, we establish a basis

for understanding how our systems eûectively handle tasks such as crop survey-

ing, weed detection, and üeld navigation that are introduced in the following

contribution chapters.

We introduce BonnBot-I in Chapter 3, a precision weeding and crop monitor-

ing robot designed to address the ürst research question. BonnBot-I is equipped

with advanced sensors, powerful computation, and a unique intervention tool that

allows it to perform real-time, precise surveillance and intervention in farming

üelds. Section 3.1 introduces diûerent important sections of the platform and the

ideology behind their design. This continues with Section 3.2, where we introduce

simulation modalities developed especially for this platform with focus on preci-

sion weeding applications. Section 3.3 demonstrates three specially designed and

publicly available datasets created and used in the projects enabled by BonnBot-

I. These data were captured over three years at the Campus Klein-Altendorf of

the University of Bonn using BonnBot-I. These datasets are utilized extensively

to evaluate the performance of the techniques developed throughout this thesis.

Finally, Section 3.4, explores the techniques used to enhance the performance of

DNN-based monitoring systems by leveraging geometric and motion information

captured by BonnBot-I. The capabilities of this robotic platform are critical to

the success of the interventions and operations discussed in later chapters.

Chapter 4 is dedicated to the topic of autonomy in farming sites, and it

demonstrates our vision-based approaches for in-üeld navigation. This approach

relies solely on camera inputs to guide the robot through the crop rows in arable

farms. Initially, Section 4.1 reviews the existing research on autonomous naviga-

tion in row-crop üelds and agricultural robotics and their pros and cons. We then

present our proposed strategy and approach for in-üeld autonomous navigation

using only local, onboard observations in Section 4.2. Next, Section 4.6 details

the experimental evaluations and implementation insights from both simulated

and real-üeld tests. Finally, conclusions and future directions are discussed in

Section 4.7.
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Chapter 5 is dedicated to the third research question of this thesis; addressing

plant-level bio-diversity-aware weeding using robotics and robotics vision. We be-

gin by reviewing similar robotic weeding approaches aimed at precision farming.

Next, in Section 5.2, we deüne a standard weeding scenario and outline the system

requirements for using BonnBot-I. In Section 5.3, we introduce our method for

modeling real-üeld observations into a usable format for weeding. We then discuss

a target-space management strategy in Section 5.4 for real-time interventions. In

Section 5.5, we explain the path-planning strategies that control BonnBot-I’s

intervention heads, leading to the introduction of a biodiversity-aware weeding

scheme in Section 5.6. Finally, Section 5.7 details our experiments in both simu-

lated and real-world settings, assessing the performance of our approach in sugar

beet and corn üelds. The chapter concludes with a discussion on the design,

deployment, and potential future improvements of this weeding system.

The ünal chapter focuses on the application of reinforcement learning (RL)

techniques to optimize plant-level interventions. In Chapter 6 we leverage RL

to perform plant-level in-üeld interventions considering multi-modal observation

using the novel weeding tool of BonnBot-I. After a comprehensive introduction

and review of the literature, we introduce the concept of the RL framework de-

veloped for BonnBot-Iin Section 6.2, which enables the robot to learn and adapt

its intervention strategies based on plant priorities. In the follow-up sections,

topics of observation modeling Section 6.3, action space deign Section 6.4 and

reward function Section 6.5 are discussed. Finally, in Section 6.6 we present ex-

perimental results and their direct comparison to the SOTA methods presented

in Section 6.7, showing the advantages and limitations of the RL-based approach.

This thesis illustrates the transformative potential of integrating robotic vi-

sion and advanced machine learning techniques to enhance the autonomy, preci-

sion, and sustainability of agricultural robots. By deploying these cutting-edge

technologies in systems like BonnBot-I we not only improve the accuracy and

eþciency of üeld interventions but also promote a more sustainable approach

to farming. These advancements have the potential to fundamentally change the

way we manage and monitor crops, leading to more resilient agricultural practices

and paving the way for a new era of sustainable, tech-driven farming. Through

this work, we demonstrate that the future of agriculture lies in the seamless in-

tegration of intelligent robotics with traditional farming techniques, ultimately

contributing to more sustainable food production systems worldwide.

1.2 Publications

Parts of this thesis have been published in the following peer-reviewed conference

and journal articles, for which I have been the main contributor:
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• Alireza Ahmadi, Michael Halstead, and Chris McCool. Virtual Temporal

Samples for Recurrent Neural Networks: applied to semantic segmentation

in agriculture [4]. German Conference on Pattern Recognition (DAGM),

2021.

DOI: 10.1007/978-3-030-92659-537.

• Alireza Ahmadi, Michael Halstead, and Chris McCool. Towards Au-

tonomous Visual Navigation in Arable Fields [3]. IEEE Intelligent Robots

and Systems conference (IROS), 2022.

DOI: 10.1109/IROS47612.2022.9981299.

• Alireza Ahmadi, Michael Halstead, and Chris McCool. BonnBot-I: A

Precise Weed Management and Crop Monitoring Platform [5]. IEEE Intel-

ligent Robots and Systems conference (IROS), 2022.

DOI: 10.1109/IROS47612.2022.9981304.

• Alireza Ahmadi, Michael Halstead, Smitt, Claus, and Chris McCool.

BonnBot-I Plus: A Bio-diversity Aware Precise Weed Management Robotic

Platform [6]. IEEE Robotics and Automation Letters, 9(7):6560-6567, June

2024 Presented in IEEE International Conference on Robotics and Automa-

tion - ICRA40, 2024.

DOI: 10.1109/LRA.2024.3408080.

• Alireza Ahmadi, Julius Rueckin, Michael Halstead, Marija Popović, and

Chris McCool. OptimWeeder: A Reinforcement Learning-based Approach

to Control a Mobile Multi-Axis Weeding System. Submitted to the Journal

of Computers and Electronics in Agriculture, August 2024

1.3 Collaborations

The following collaborations are directly connected to the contributions of this

thesis and have resulted in the following peer-reviewed conference and journal

publications:

• Michael Halstead, Alireza Ahmadi, Smitt Claus, Oliver Schmittmann,

and Chris McCool. Crop agnostic monitoring driven by deep learning [52].

Frontiers in plant science, 12, 2021.

DIO: 10.3389/fpls.2021.786702.

• Smitt Claus, Michael Halstead, Alireza Ahmadi, and Chris McCool. Ex-

plicitly incorporating spatial information into recurrent networks for agri-

culture [99]. Received the best Agri-Robotics paper award at IEEEs
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2022 Intelligent Robots and Systems conference (IROS 2022).

IEEE Robotics and Automation Letters, 7(4):1001710024, 2022.

DOI: 10.1109/LRA.2022.3188105.

• Anna Massfeller, Marie Zingsheim, Alireza Ahmadi, and Hugo Storm.

Optimal design of payments for ecosystem services in the era of weeding

robots. ECCB, 01, 2024.

• Anna Massfeller, Marie Zingsheim, Alireza Ahmadi, and Hugo Storm.

Action-or results-based payments for ecosystem services in the era of smart

weeding robots? [70] Biological Conservation, 11099, 2025.

DOI: 10.1016/j.biocon.2025.110998.

• Stefan Paulus, Thomas Linkugel , Alireza Ahmadi, Arno Ruckelshausen,

Chris McCool, Anne-Katrin Mahlein. A generalized concept of autonomy

levels for weeding robots. Submitted to Journal of Field Robotics, August

2024.

• Felix Esser, Elias Ariel Marks, Federico Magistri, Jan Weyler, Simon Bult-

mann, Tobias Zaenker, Alireza Ahmadi, Michael Schreiber, Heiner kuhlmann,

Christopher Steven McCool, Marija Popovic, Cyrill Stachniss, Sven Behnke,

Maren Bennewitz, Lasse Klingbeil. Automated Leaf-Level Inspection of

Crops in Agricultural Fields by Combining Aerial and Ground Robot Sys-

tems [41]. IEEE International Conference on Robotics and Automation -

ICRA40, 09, 2024.
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Chapter 2

Basic Techniques of Precision

Weed Management in Arable

Farms

T
his chapter is dedicated to explaining the fundamental techniques used

in our proposed precision agriculture systems. These foundational

techniques form the building blocks for the autonomous precision weed

management and crop monitoring systems discussed in subsequent

chapters. Topics covered include autonomy in aid of precision agriculture, vision-

based arable farm monitoring, and robotic in-üeld targeted intervention.

2.1 Autonomy in Aid of Precision Agriculture

Achieving robust and reliable autonomy in agricultural environments requires

the integration of several fundamental techniques. These methods are essential

to ensure precise üeld localization, enabling safe navigation across complex and

dynamic terrains, and informed, strategic decision-making tailored to speciüc

agricultural tasks. The required algorithms include sensor fusion techniques,

real-time signal and data processing, and environmental mapping to maintain

accuracy and eþciency in operations. In the following, we brieýy explain the

methods that were used in this thesis.

2.1.1 Camera Model

Our robotic platform BonnBot-I incorporates multiple RGB-D and stereo cam-

eras to perceive the environment’s geometry, making it essential to understand

the mathematical models underlying their operation. We use the pinhole projec-

tion model [105], which mathematically represents the imaging process through
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2.1. Autonomy in Aid of Precision Agriculture

a projection function, describing how a 3D point in the environment is mapped

onto the camera’s 2D image plane. This projection is determined by the camera’s

intrinsic parameters, such as focal length, optical center, and lens distortion. The

main elements of the model are shown in Figure 2.1.

Figure 2.1: Pinhole camera model; Pinhole camera model, showing 3D point P which is pro-

jected into 2D space of image plane with pixel coordinates p.

In Figure 2.1, a camera with the center of projection denoted with O and the

principal axis parallel to the Zc axis going through the image plane is shown. The

image plane is placed along the Zc axis at a distance equal to the focal length f

away from the center of the projection O. Using this model, a 3D point P(x, y, z)
will project into the image plane forming point p(u, v), according to equation

below:

p(u, v) = π(KP) (2.1)

where π(w) represented the homogeneous normalization and the calibration

matrix K deünes as follows:

K =







fx 0 cx

0 fy cy

0 0 1







π(v) =
1

vz







vx

vy

1







(2.2)

with fx, fy as focal lengths in x and y direction and the principal point cx, cy
respectively in the x and y axis (in pixels).
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2.1.2 Kalman Filter

The Kalman Filter (KF) is an algorithm for estimating the state of a dynamic

system, such as position and velocity, from noisy measurements. It is particularly

useful for sensor fusion in agricultural robotics, combining GPS, Inertial Naviga-

tion Systems (INS), and odometry data for accurate localization. This is essential

for autonomous robots operating in outdoor environments with varying terrain

and GPS signal quality and is a part of the real-time process on BonnBot-I. The

Kalman Filter assumes a linear system with Gaussian noise and operates in two

main steps:

Initially, in the "Prediction Step", the KF predicts the next state based on the

systems motion model:

x̂−
t = F · x̂t−1 + B · ut, (2.3)

P−
t = F · Pt−1 · F⊤ + Q, (2.4)

where, x̂−
t represents the predicted state at time t, and the state transition model

is denoted by F. The control input model is represented by B, and the control

input, ut, includes variables such as velocity and steering. The predicted error

covariance is expressed as P−
t , while Q represents the process noise covariance,

which accounts for uncertainties in the system’s dynamics. After the prediction

spate, which relies on the system model and the previous state of the system, the

KF reünes the predicted system state using sensor measurements, This step is

called the "Update Step":

Kt = P−
t ·H⊤ · (H · P−

t ·H⊤ + R)−1, (2.5)

x̂t = x̂−
t + Kt · (zt −H · x̂−

t ), (2.6)

Pt = (I−Kt ·H) · P−
t , (2.7)

where Kt represents the Kalman gain, which is used to update the predicted

state. The measurement model is denoted by H, and R represents the measure-

ment noise covariance, accounting for uncertainties in the measurements. The

measurement at time t is given by zt, and I refers to the identity matrix, which

is used in various matrix operations in the Kalman ülter process.

2.1.3 Extended Kalman Filter (EKF)

In reality, none of the captured sensory data or system models are linear, hence,

a non-linear variant of KF is required to enable precise sensory function and state

estimation. The Extended Kalman Filter(EKF) extends the KF to handle non-

linear systems, which are common in real-world robotics. It linearized the system
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around the point of operation and integrates changes using the Jacobian of the

measurement model. Generally, for non-linear state transition functions:

x̂−
t = f(x̂k−1, ut), (2.8)

P−
t = Ft · Pk−1 · F⊤

t + Q, (2.9)

where, f denote the non-linear state transition function and Jacobian of f is

deüned as Ft =
∂f

∂x . Similarly, for non-linear measurement functions:

zt = h(x̂−
t ), (2.10)

Ht =
∂h

∂x , (2.11)

Kt = P−
t ·H⊤

t · (Ht · P−
t ·H⊤

t + R)−1, (2.12)

x̂t = x̂−
t + Kt · (zt − h(x̂−

t )), (2.13)

Pt = (I−Kt ·Ht) · P−
t , (2.14)

where, non-linear measurement function is denoted by h and Ht is the Jacobian

of h. A robust sensor fusion system is essential for achieving precise positioning

of üeld robots in outdoor environments with limited GPS coverage or obstructed

areas, where GPS signal degradation poses a signiücant challenge for systems

that rely solely on GPS data. In contrast, an inertial measurement unit (IMU)

provides high-frequency motion updates but suûers from drift over time and is

prone to minor noise caused by disturbances. Similarly, wheel odometry can

eûectively track simple local motions but is highly susceptible to errors from

wheel slippage and uneven terrain.

To address these limitations, we utilize an EKF to integrate data from these

diverse input modalities, accounting for their respective uncertainties. This ap-

proach delivers accurate and reliable estimates of the robots position, orientation,

and velocity. Such precision enables eþcient navigation for tasks like precision

weeding and üeld mapping in arable environments. Further details on this topic

are discussed in Chapter 3.

2.1.4 Non-Linear Least Squares Optimization

Non-linear least-squares optimization is an unconstrained optimization technique

that üts a set of m observations with a model that can be expressed with n

unknowns non-linearly, where m ≥ n. The general form of this optimization

method is shown in Equation (2.15).

F(x) =
1

2

m
∑

i=1

fi(x)2 =
1

2
f(x)⊤f(x) (2.15)
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where fi(x) is the diûerence between one of the desired and predicted values in

the system, and the objective function F(x) is deüned based on the sum of the

diûerences of the squares. A typical way to minimize this function is to ünd

the local minimum of the function and iteratively update the estimates in the

direction of descent.

2.1.5 Gauss-Newton method

While there are a bunch of diûerent methods to minimize function Equation (2.15),

we use the Gauss-Newton method, which ünds x∗ = argminx F(x) by taking the

ürst derivative of F(x) using Taylor expansion for small steps h where:

f(x + h) ∼= ℓ(h) ≡ f(x) + J(x)h (2.16)

This method approximates f by linearizing it around x and assumes the function

f to be locally quadratic. By inserting Equation (2.16) into Equation (2.15) we

get:

F(x + h) ∼= L(h) ≡ 1

2
ℓ(h)⊤ℓ(h)

=
1

2
f⊤f + h⊤J⊤f +

1

2
h⊤J⊤Jh

= F (x) + h⊤J⊤f +
1

2
h⊤J⊤Jh

(2.17)

Given the Jacobian matrices J, we can now solve for minimizing the error, which

this procedure iteratively reduces the sum of squared errors toward the minimum

of the quadratic function f with steps of the size of h.

(J⊤J)h = −J⊤r (2.18)

where r is known as residuals and shows the actual error value at the given

point x. To update the value of x Equation (2.19):

xt+1 = xt−1 + h (2.19)

2.1.6 Visual-Servoing Based Robot Guidance

Visual servoing is a widely recognized technique for enhancing the accuracy

and ýexibility of vision-based robotic systems. This approach integrates vision-

derived features directly into the feedback loop of a robotic control system, en-

abling reactive behavior through rapid image processing. It utilizes one or more

cameras to perceive the visual information from the surrounding environment

continuously, guiding the robot’s movements toward a speciüed target [34]. In
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this thesis, we used visual serving to guide our precision farming robot through

lanes of crop in an outdoor environment, relying only on camera observation,

explained in Chapter 4. In visual servoing, the robotic task is deüned by im-

age features extracted from the target object, which are then used to control

the robot’s or camera’s motion within the environment. The goal of the posi-

tioning task is to minimize the error function, which is designed to regulate the

robot’s end-eûector or orientation position relative to either a global coordinate

system or the reference frame of the object being manipulated. Based on visual

Figure 2.2: Visual-Servoing general scheme; A set of Extracted Features from the robot’s camera,

which observes the local environment, is compared to the Desired Features as reference. The

IBVS controller then generates joint control signals in a closed-loop system to minimize the

error between the extracted and desired features.

features extracted in real-time, the error function is crucial for determining the

robot’s conüguration and adjusting it over time to achieve precise control. Var-

ious methods have been developed to control robots using visual information,

with two primary approaches emerging: position-based visual servoing (PBVS)

and image-based visual servoing (IBVS).

In PBVS, image data is processed to estimate the 3D pose between the camera

and the target. In contrast, the IBVS calculates the error directly from features

observed in the image. The error function in IBVS is deüned as the diûerence

between the desired and current image features. For a set of n image features s,
the error is:

e = sdesired − scurrent (2.20)

Where sdesired and scurrent are the vectors of desired and current image features,

respectively. In IBVS, the control law is designed to minimize the error in the

image space. The robot velocity is related to the error and the Jacobian matrix

Js, which maps image feature velocities to robot joint velocities. The control law

is given by:

Ẋ = −λJ−1
s e (2.21)

Where Ẋ is the robot velocity in joint space, J−1
s is the inverse of the image

Jacobian, which relates the motion of image features to the robot’s joint space
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velocity, and λ is a scaling coeþcient. The Jacobian matrix Js in IBVS relates

the velocity of the image features s to the robots joint velocities:

ṡ = JsẊ (2.22)

Where ṡ is the velocity of the image features, and Ẋ is the joint space velocity.

Hence, two key factors signiücantly inýuence the performance of any visual ser-

voing method: the choice of visual features used as input for the control law and

the design of the control scheme itself. The selected set of features can result

in diûerent behaviors, this variability means that selecting speciüc features or

control schemes can sometimes lead to stability and convergence issues.

2.2 Vision-Based Arable Farm Monitoring

An advantage of surveying an agricultural scene over a pedestrian scene is the

structured and relatively static nature of crops, particularly with respect to the

moving platform. While the scene is somewhat static and structured, there are a

number of challenges an automatic agent needs to overcome due to the compli-

cated nature of the scene, including, illumination variation, and occlusion. De-

spite this structured nature, to further advance agricultural robotics, two equally

important components need to be considered: intelligent perception and control

methods, and abundant labeled data. Recent advances in agricultural robotics

have exploited convolutional neural networks (CNNs) [59] to both alleviate some

of these challenges and achieve high performance.

Modern machine learning techniques rely on CNNs to perceive useful visual

information about a scene. Most of the successful deep learning techniques uti-

lize a paradigm of multi-layer representation learning from which semantic seg-

mentation [59] [60] has evolved. These segmentation networks can classify on

a pixel level [65] the appearance of a speciüc class, creating class-based output

maps. From a spatio-temporal perspective, RNNs [55] can exploit previous in-

formation to improve performance in the current frame. Despite these advances,

only feed-forward networks have been predominately used to generate the net-

work parameters in each layer [45]. In agriculture, one of the few examples that

uses spatio-temporal information is [66], where they exploit the regular planting

intervals of crop rows.

These advances in perception methods directly support the diverse vision-

based tasks critical to precision agriculture. The techniques used in scene under-

standing in agriculture based on machine vision techniques could be categorized

as follows:

1. Object Detection: Object detection identiües and localizes speciüc ob-

jects within an image by placing bounding boxes around them. This tech-
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nique is commonly used for object counting, size estimation, or analyzing

spatial relationships. See Figure 2.3a for an example. Popular models in-

clude:

• Faster R-CNN: A two-stage model that proposes regions of interest

and then reünes them for accurate classiücation and localization [85].

• YOLO (You Only Look Once): A real-time object detection model

that processes the entire image in one pass, balancing speed and ac-

curacy [83].

• DETR (DEtection TRansformer): A transformer-based model

that simpliües object detection into an end-to-end task using attention

mechanisms [26].

2. Semantic Segmentation: Semantic segmentation assigns a label to each

pixel in an image, creating a mask where each region corresponds to a

speciüc category, such as crops, weeds, or soil. This technique is ideal for

precise boundary delineation and area measurement. An example is shown

in Figure 2.3b. Key models include:

• U-Net: Known for its encoder-decoder structure with skip connec-

tions, widely used in medical and agricultural imaging [91].

• DeepLab: Uses dilated convolutions for capturing multi-scale context

and CRFs for sharper boundaries [29].

• SegFormer: Combines transformers and convolutional techniques for

lightweight and high-performance segmentation [120].

3. Instance Segmentation: Instance segmentation identiües individual ob-

jects in an image by assigning unique pixel masks and bounding boxes to

each (see Figure 2.3c). This is particularly useful for tracking or analyzing

multiple entities in a scene. Notable models include:

• Mask R-CNN: Extends Faster R-CNN by adding a branch to gen-

erate precise object masks [54].

• YOLACT: A single-stage model that predicts mask prototypes and

coeþcients for eþcient mask generation [24].

4. Panoptic Segmentation: Panoptic segmentation combines semantic and

instance segmentation, labeling every pixel in an image while distinguish-

ing between "stuû" (e.g., soil) and "things" (e.g., plants), shown in Fig-

ure 2.3d. This approach provides a comprehensive understanding of agri-

cultural üelds. Key models include:
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• Panoptic DeepLab: Builds on DeepLab to integrate both semantic

and instance predictions [30].

• Mask2Former: A transformer-based model capable of handling se-

mantic, instance, and panoptic tasks in a uniüed framework [31].

By leveraging these approaches, robotic systems can transform raw visual data

into actionable insights, ensuring robust performance in tasks like crop monitor-

ing, weed identiücation, and üeld monitoring. These techniques are essential for

robotic systems in precision agriculture, enabling tasks like weed identiücation,

crop health monitoring, and resource optimization.

(a) Object detection (b) Semantic segmentation

(c) Instance segmentation (d) Panoptic segmentation

Figure 2.3: Illustrative outputs from four distinct computer vision tasks applied to an image

taken by BonnBot-I in CKA from a sugar beet farm. (a) shows basic object detection, where

each crop is enclosed within a bounding box. (b) presents semantic segmentation, using distinct

colors to represent key elements: red for weeds, purple for crops, and light cyan for soil. (c)

showcases instance segmentation, focusing on crops and weeds, with each instance color-coded

distinctly. (d) displays a panoptic segmentation output, categorizing crops as ’things’ with

sub-classes based on crop types, while all other elements are assigned to the ’stuff’ category,

shown in light cyan.
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2.2.1 Machine Learning for on Scene Understanding

Machine learning (ML) is a üeld of artiücial intelligence that focuses on build-

ing systems that can learn from data and improve their performance over time.

Instead of following explicit instructions for every task, ML models are trained

using examples and patterns in the data to make predictions or decisions. This

ýexibility makes ML applicable to a wide range of tasks, from detecting objects

in images to predicting stock prices. Also in this thesis, we use multi-layer per-

ceptrons (MLPs) and DNNs in diûerent methods from environment perception

to regulating actions of weeding nozzles.

A critical component of ML is the neural network, which is loosely inspired by

the biological neurons in the human brain. Neural networks are powerful models

designed to approximate complex functions by learning patterns and relation-

ships in data. They are particularly useful when the data involves non-linear

relationships, where traditional methods represent regression fall short.

Basics of a Neural Network

A basic neural network consists of interconnected units called neurons organized

into layers (I) Input Layer: Represent the raw input features (e.g., pixel values

of an image, numerical data). (II) Hidden Layers: Intermediate layers where

computations and feature extraction occur. (VI) Output Layer: Produces the

ünal output, such as a class label or a regression value.

Each neuron in the network transforms its inputs into an output using a

weighted sum followed by an activation function. For a neuron j in a hidden or

output layer, the output zj is computed as:

zj = σ

(

∑

i

wijxi + bj

)

, (2.23)

where, xi are the inputs to the neuron, wij are the weights associated with the

inputs, bj is the bias term, σ(·) is the activation function. The activation function

σ(·) introduces non-linearity, enabling the network to learn complex mappings.

Common activation functions include:

1. Sigmoid:

σ(x) =
1

1 + e−x
(2.24)

Sigmoid maps inputs to the range [0, 1], often used in binary classiücation

tasks.

2. ReLU (Rectified Linear Unit):

σ(x) = max(0, x) (2.25)
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ReLU is widely used in hidden layers because of its simplicity and eþciency.

3. Softmax (used in output layers for classiücation):

Softmax(zi) =
ezi

∑

j e
zj

(2.26)

Softmax converts raw outputs into probabilities, ensuring the sum of out-

puts equals 1.

Forward Propagation

In a neural network, data ýows from the input layer through the hidden layers to

the output layer. This process is called forward propagation. For an input vector

x, the network computes the following sequentially:

1. For the ürst hidden layer:

z(1) = W(1)x + b(1), (2.27)

a(1) = σ(z(1)) (2.28)

Here, W(1) represents the weight matrix, b(1) is the bias vector, z(1) is the

linear transformation, and a(1) is the activation output.

2. For subsequent layers:

z(l) = W(l)a(l−1) + b(l), (2.29)

a(l) = σ(z(l)) (2.30)

This computation repeats until the output layer.

3. For the output layer: The output depends on the type of problem. For

regression, the output is typically a raw value. For classiücation, softmax

or sigmoid activation is applied.

Loss Function

The networks performance is evaluated using a loss function, which measures

the diûerence between the predicted output and the actual target. Common loss

functions include:

1. Mean Squared Error (MSE) for regression:

MSE =
1

n

n
∑

i=1

(yi − ŷi)2, (2.31)

where yi is the true value and ŷi is the predicted value.
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2. Cross-Entropy Loss for classiücation:

L = − 1

n

n
∑

i=1

k
∑

j=1

yij log(ŷij), (2.32)

where yij is the true probability (usually 1 for the correct class, 0 otherwise),

and ŷij is the predicted probability for class j.

Backpropagation and Weight Updates

To improve its predictions, the network adjusts its weights and biases through a

process called backpropagation. This involves:

1. Computing Gradients: The derivative of the loss with respect to each

weight and bias is calculated using the chain rule of calculus.

2. Gradient Descent: The weights are updated using an optimization algo-

rithm. In its simplest form, gradient descent updates weights as:

wij ← wij − ¸
∂L
∂wij

, (2.33)

where ¸ is the learning rate, and ∂L
∂wij

is the gradient of the loss with respect

to the weight.

The MLPs are the simplest type of feedforward neural networks, yet they remain

foundational in machine learning. Their ability to model non-linear relationships,

coupled with their straightforward implementation, makes them a valuable tool

for solving structured data problems and an excellent starting point for under-

standing deeper and more advanced architectures.

Convolutional Neural Networks(CNNs)

Modern machine learning techniques rely on CNNs to perceive useful visual in-

formation about a scene. Most of the successful deep learning techniques utilize

a paradigm of multi-layer representation learning from which semantic segmen-

tation has evolved. In a convolutional layer, the input is convolved with a set of

learnable ülters (kernels) to extract features. For a 2D input I and a ülter K,

the convolution operation is given by:

S(i, j) =
∑

m

∑

n

I(i+m, j + n)K(m,n), (2.34)

24



2. Basic Techniques of Precision Weed Management in Arable Farms

where, I(i + m, j + n) is the input patch, K(m,n) is the kernel, S(i, j) is the

resulting feature map. The convolution operation is followed by applying a non-

linear activation function like ReLU:

S ′(i, j) = max(0, S(i, j)). (2.35)

Padding ensures the output size remains controlled, particularly when edge

information is critical. If p is the padding size, the input is extended before

applying the convolution. Stride determines the step size of the ülter as it

moves over the input. If stride is s, the ülter skips s − 1 elements in each step.

The output size of a convolution layer is computed as:

Output Size =
Input Size−Kernel Size + 2p

s
+ 1. (2.36)

Pooling reduces the spatial dimensions of the feature maps, retaining essen-

tial information and making the computation more eþcient. The most common

pooling methods are:

• Max Pooling:

P (i, j) = max
m,n

S(i+m, j + n), (2.37)

where S(i+m, j + n) is a patch of the feature map.

• Average Pooling:

P (i, j) =
1

k2

∑

m

∑

n

S(i+m, j + n), (2.38)

where k is the pooling window size.

2.2.2 Evaluation Metics

To evaluate our proposed methods in this thesis, we use several well-known met-

rics. For the task of object detection, we employ the F1 metric, which summarizes

the precision-recall curve into a single value. For semantic segmentation, we use

the intersection over union (IoU), and for classiücation, we use confusion matrices.

Each of these is brieýy outlined below.

The precision-recall curve describes the performance of a two-class classiüer

(e.g., object detector) and can be summarized by the F1 score. The precision

P = TP

TP+FP
and recall R = TP

TP+FN
are deüned by TP which is the number of true

positives (correct detections), FP which is the number of false positives (false

detections), and FN which is the number of false negatives (miss detections).

The value for P and R will vary as the threshold for the classiüer varies, and to
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summarize the resultant curve, we calculate the F1 score. This score is the point

at which the precision equals the recall.

F1 = 2× P · R
P + R

. (2.39)

The IoU metric describes how well a semantic segmentation operates. Given

the output of a system O and the ground truth GT the IoU is given by

IoU (O,GT ) =
O ∩GT
O ∪GT . (2.40)

The maximum IoU is 1.0, which indicates perfect semantic segmentation. For sub-

class performance, we also calculate the average accuracy based on the confusion

matrix, such that,

confacc =
1

I

I
∑

i

Cii, (2.41)

where C is an I × I confusion matrix and the accuracy is calculate by summing

the diagonals and dividing by the number of rows. This provides the average

accuracy of the confusion matrix where a value closer to 1.0 indicates a higher

performance. Finally, for our tracking analysis, we utilize two metrics, the coef-

ücient of determination (R2) and the mean normalized absolute error (µNAE),

µNAE =
1

I

I
∑

i

|GTi − Pi|
GTi

(2.42)

where I is the number of rows being evaluated, GT is the ground truth, and P is

the predicted count. These results are calculated on the total number of objects

counted against the ground truth to allow direct comparison to [100]. It should

be noted that this metric has a lower bound of zero (our desired outcome), but it

is unbounded in the opposite direction. This is due to the prediction being scaled

by the ground truth; if the prediction is considerably higher than the ground

truth, this value can exceed 1.

2.3 Robotic In-Field Targeted Intervention

Eþcient path planning is essential for real-time robotic interventions in agricul-

tural üelds, where precision and speed are critical for optimal performance. In

this work, we developed a multi-headed weeding nozzle that requires a tailored

path-planning algorithm to ensure accurate and timely targeted interventions. To

address this, in Chapter 5, we leveraged the Traveling Salesman Problem (TSP)

and its variant, the n-Cities Open Loop TSP (nOTSP), as robust frameworks

for optimizing plant-speciüc routes [71, 69]. Additionally, in Chapter 6, Rein-

forcement Learning (RL) was integrated to enhance ýexibility, enabling adaptive

decision-making in dynamic scenarios and overcoming limitations of hand-made

techniques. The following sections delve deeper into these methods.
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2.3.1 Traveling Salesman Planning

The Traveling Salesman Problem (TSP) is a well-known NP-hard problem that

has been widely studied in the combinatorial optimization üeld in computer sci-

ence and operations research[71, 69]. The TSP is widely applied in real-world

problems, including logistics, robotics, and precision agriculture. In this thesis, a

variant of TSP is used for path planning where a weeding nozzle must visit mul-

tiple locations (plants) while minimizing travel distance or energy consumption

in a time-constrained scenario. The objective of TSP is to determine the shortest

possible route that allows a salesman to visit a given set of cities exactly once

and return to the starting point. Formally, the TSP is deüned as:

• Input: A set of n cities C = {c1, c2, . . . , cn} and a distance matrixD = [dij],

where dij is the distance or cost between cities ci and cj.

• Objective: Find a permutation π of the cities such that the total travel

distance is minimized:

Minimize:
n
∑

i=1

dπ(i),π(i+1), (2.43)

where π(n+ 1) = π(1) to ensure the route is a cycle.

The TSP can be formulated as an integer linear program (ILP) using binary

decision variables xij:

xij =







1 if the route includes an edge from city i to city j,

0 otherwise.
(2.44)

The objective function minimizes the total distance of the route:

Minimize:
n
∑

i=1

n
∑

j=1

dijxij. (2.45)

Constraints Each city is visited exactly once

n
∑

j=1,j ̸=i

xij = 1 ∀i ∈ {1, . . . , n}, and
n
∑

i=1,i ̸=j

xij = 1 ∀j ∈ {1, . . . , n}. (2.46)

Eliminate sub-tours using sub-tour elimination constraints:

ui − uj + nxij ≤ n− 1 ∀i, j ∈ {2, . . . , n}, i ̸= j, (2.47)

where ui is a helper variable representing the order in which city i is visited.
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Since solving TSP exactly is NP-hard, various heuristics and approximation

algorithms are used to ünd near-optimal solutions eþciently. Starting from an

arbitrary city, the nearest unvisited city is selected at each step:

Route: c1 → arg min
j /∈Visited

dij. (2.48)

The origin of the TSP was devoted to a completely closed Hamilton path,

which means a path that visits every node in the graph exactly once and returns

to the starting point. However, in many scenarios, only n out of m cities need

to be visited, leading to the *n-Cities Open Loop Traveling Salesman Problem*

(nOTSP), which addresses such practical route planning needs [33]. We use this

approach to plan trajectories for the independently controllable weeding nozzle of

BonnBot-I (explained in Chapter 3) In this scenario, similar to nOTSP, the agent

only needs to visit n cities/weeds. However, in our problem setting, we aim to

maximize the number of visited nodes while considering other important criteria

like cost and success rate. We use our constrained unidirectional node-graph

representation as a base for solving nOTSP using dynamic programming.

2.3.2 Node Graph

A node graph is a visual representation of a set of objects (nodes or vertices) and

their relationships (edges or connections). Each node represents an entity, and

the edges represent relationships between them. Node graphs are widely used

in computer science, network analysis, and AI for modeling structures like social

networks, decision trees, or data ýow. Let graph G = (V,E) be a mathematically

represented by V and E where:

• V : The set of nodes (vertices), e.g., V = {v1, v2, v3}.

• E: The set of edges (connections) between nodes, e.g., E = {(v1, v2), (v2, v3)}.
For an undirected graph with no parallel edges, the total number of possible

edges is:

|E| ≤
(|V |

2

)

=
|V |(|V | − 1)

2
(2.49)

2.3.3 Weighted Unidirectional Graph

In this thesis, we use weighted undirected node graphs to model the relation

between detected plants and enable proper planning between the nodes for con-

ducting interventions (details in Chapter 5. A weighted unidirectional graph is

a type of graph in which every edge is weighted based on speciüc measured or

estimated characteristics representing cost, distance, or any other value, hence

G = (V,E,w), edges have a speciüc direction, meaning (u, v) ̸= (v, u), and

w : E → R is a weight function assigning a real number to each edge.
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Adjacency Matrix Representation

The adjacency matrix A of a graph G = (V,E) is a square matrix of size n× n,

where n = |V |, and each entry aij represents the presence and weight of an edge

from vertex i to vertex j. The entries are deüned as follows:

aij =







wij, if there is an edge from vertex i to vertex j,

0, otherwise.
(2.50)

2.3.4 Reinforcement Learning based Robotics

Intervention

Reinforcement Learning (RL) is a branch of machine learning where an agent

learns how to act within an environment to achieve a speciüc goal. Unlike super-

vised learning, which relies on labeled data, RL operates through trial-and-error

interactions with the environment. The agent explores diûerent actions, receiving

feedback in the form of rewards or penalties, which guide it toward an optimal

strategy. This iterative process enables the agent to discover the best actions

to maximize cumulative rewards over time. RL can eþciently adapt and scale

through the reward function design, bypassing the need for complex heuristics, as

seen in classical approaches. Hence in this thesis, to achieve a more ýexible path

planning to control the weeding nozzle of BonnBot-I weeding tool, we viewed the

problem as an RL problem that integrates the real kinematics of BonnBot-I too.

Our method is elaborated in detail in Chapter 6.

In RL, the agent must balance "exploration", trying new actions to gather

information, and "exploitation", leveraging known strategies to maximize rewards

(see Figure 2.4). Establishing this balance is crucial to achieving optimal perfor-

mance. RL methods have been successfully applied in diverse domains, including

robotics, game-playing, recommendation systems, and industrial automation. Es-

sentially, it can be interpreted as an expert human trained to excel in a speciüc

task and respond eûectively to various system scenarios, aiming to maximize the

system’s output, as modeled in [75].

2.3.5 Markov Decision Processes (MDPs)

The mathematical foundation of RL is built on Markov Decision Processes (MDPs),

which model sequential decision-making problems where outcomes depend partly

on chance and partly on the agents actions.

Thus, we could deüne a Markov decision process (MDP) asM = (S,A,R,P),
where S represents the set of possible states, A denotes the action space, R is the

function that assigns a reward to each state, and P characterizes the probabilities
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Figure 2.4: A general RL framework: the agent interacts with the environment, performing

an action at, which leads to a new state st+1 and a reward rt that informs the learning of its

policy.

of transitioning between states. The policy of an agent is symbolized by π(a|s),
indicating the likelihood of choosing action a ∈ A when in state s ∈ S. The

objective in an MDP context, pertinent to reinforcement learning (RL), is to

identify the optimal policy that maximizes cumulative rewards over time through

the cycle of action selection, state observation, and reward reception. In this

thesis, we focus on an epoch-based approach, where the aggregate reward is

calculated as

Rt = R(st), (2.51)

with t as the time step of epoch and st being the initial state drawn from a

predeüned distribution P0.

2.3.6 Deep Q-Learning (DQN)

Deep Q-Learning (DQN) is a landmark RL algorithm that enables the agent to

handle high-dimensional state spaces. Traditional Q-learning, a foundational RL

method, learns a value function Q(s, a) that estimates the maximum cumulative

reward achievable from a given state-action pair(see Figure e value function of

Q-learning gets updates according to:

Q(s, a)← Q(s, a) + ³
[

r + µmax
a′

Q(s′, a′)−Q(s, a)
]

, (2.52)

where ³ is the learning rate, r denotes to the immediate reward of every epoch,

and µ is the discount factor that regulates between exploration and learning.

DQN incorporates two critical techniques, ürst Experience replay that

stores past experiences in a buûer and samples them randomly to break corre-

lations between consecutive updates. Second, the Target network, A separate

network that is updated less frequently to stabilize training. DQN is particularly

eûective in environments with discrete action spaces, such as video games and

grid-world tasks, where it famously achieves human-level performance on Atari

games.
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Figure 2.5: Human-level control [75]; visualization f a Deep Q Network(DQN) including (left)

observation input,(middle) hidden layers, and (right) fully-connected layers and output signal.

However, Q-learning becomes impractical in environments with very large or

continuous state spaces, as maintaining a table of Q(s, a) values is infeasible.

DQN overcomes this limitation by approximating Q(s, a) using a deep neural

network parameterized by ¹. To train its network, the loss is deüned as:

L(¹) = E(s,a,r,s′)∼Replay Buffer

[

(

r + µmax
a′

Qθ′(s
′, a′)−Qθ(s, a)

)2
]

, (2.53)

where ¹′ represents the parameters of a target network that provides stable Q-

value targets.

2.3.7 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a policy-gradient method that directly

optimizes the policy, rather than the value function, to maximize the expected

cumulative reward:

J (πθ) = Eτ∼πθ

[

∑

t

µtrt

]

. (2.54)

PPO improves upon earlier policy-gradient methods by introducing a clipped

objective function, which ensures stable updates by limiting the deviation of the

new policy from the old policy. The clipped objective is deüned as:

LCLIP(¹) = E

[

min
(

rt(¹)Ât, clip(rt(¹), 1− ϵ, 1 + ϵ)Ât

)]

, (2.55)

where rt(¹) is the ratio of probabilities under the new and old policies, and Ât is

the advantage estimate.
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Figure 2.6: General scheme of the Reinforcement Learning framework using Proximal Policy

Optimization (PPO), illustrating the agent-environment interaction loop, policy updates, and

reward-driven learning process.[106]

PPO’s ability to handle continuous action spaces, combined with its robust-

ness to hyperparameter tuning, makes it highly eûective for complex, dynamic

environments. In this thesis, we utilize PPO to optimize the behavior of our

system in a real-world agricultural scenario. The algorithm’s stability and adapt-

ability make it an ideal choice for tasks requiring precise and adaptive decision-

making. Reinforcement Learning has evolved from foundational methods like

Q-learning to advanced techniques like PPO, enabling it to tackle increasingly

complex problems. PPO, in particular, represents a milestone in RL, balanc-

ing exploration and exploitation while ensuring stable training. Its application in

this thesis demonstrates its eûectiveness in optimizing systems within challenging

real-world environments, contributing to the broader üeld of RL and its practical

impacts.
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Chapter 3

BonnBot-I: A Precision Weeding

and Crop Monitoring System

I
n this chapter, we introduce BonnBot-I a platform capable of autonomous

üeld navigation, monitoring, and weed management for arable farms. The

BonnBot-I is equipped with multi-modal imagery, inertial and geometric

sensors, as well as a novel weeding tool that enables plant-level interventions

in arable farms, which is introduced in [5]. As Chapter 1 discussed, agricultural

robotics technology must align with the practical needs of farmers, which includes

reducing costs and labor associated with deploying innovative technologies. Fur-

thermore, ensuring the eûectiveness and aûordability of novel farm management

systems is imperative to meet the requirements of farmers, serving as both cost-

Figure 3.1: BonnBot-I Platform, a robotic platform capable of conducting field monitoring and

precision weed management in an arable field.
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eûective platforms and replacements for manual or mechanical labor [66].

In a general sense, the capabilities of robotic systems in arable farms could be

categorized into three major subjects: autonomous navigation, farm monitoring,

and targeted interventions, including seeding, fertilization, weeding, etc. Hence,

in this chapter, we delve into addressing the ürst question presented in Section 1.1,

as "What design features are essential for creating a robust, farming robot capable

of crop monitoring, plant-level intervention, and autonomous navigation?".

The advancement of precision farming, characterized by assigning speciüc

shapes to üelds, particularly multiple parallel rows, has signiücantly contributed

to improving the autonomy of agricultural practices. It results in facilitated crop

row navigation and a more constrained variety in environmental dynamics.

Nevertheless, ýexibility is crucial in agricultural technologies due to the di-

versity of farming environments. Solutions must adapt to various üelds and en-

vironmental conditions with minimal supervision and re-engineering. In recent

years, smart farming has seen advancements in selective crop and weed treat-

ments. This progress is partly due to farming sites adapting to support multiple

parallel rows. This design has made cultivation, monitoring, and weeding more

eþcient for crops like lemon balm, mint, potatoes, and beans worldwide.

Despite these advancements, many systems lack real-time üeld monitoring.

This capability is essential for providing detailed information about the state of

crops and weeds. Without it, precision farming approaches face limitations, espe-

cially in autonomous operations that require constant environmental awareness.

With BonnBot-I, we aimed to address this gap. We introduced a novel weed-

ing tool combined with an advanced monitoring system. The system integrates a

multi-modal sensor array, using RGB-D cameras, GPS, and LiDAR. This enables

precise navigation and thorough üeld analysis. The design improves real-time

weed detection and intervention. It also enhances decision-making by provid-

ing detailed insights into crop growth and weed spread. These features make

BonnBot-I capable of performing autonomous, biodiversity-aware weeding eûec-

tively. In this chapter, we make the following contributions to make:

• We introduce BonnBot-I a fully autonomous precision weeding

platform fully compatible with ROS.

• Propose a new concept for weeding tools that enables ýexible, high-

precision weed management.

• Improve crop monitoring performance of BonnBot-I by exploiting the extra

robotic vision-based and sensor fusion techniques.

• Release three new datasets collected in row-crop arable farming sites, in-

cluding sugar-beet and corn crop (SB20, CN20, SB21).
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3. BonnBot-I: A Precision Weeding and Crop Monitoring System

In this chapter, we introduce BonnBot-I, a precision weeding and crop mon-

itoring robot developed to tackle all research questions presented in Chapter 1.

This novel system is equipped with advanced sensors, a powerful computation

unit, and a unique intervention tool, enabling real-time, precise surveillance and

intervention in farming üelds. Section 3.1 outlines the key components and design

philosophy of the platform. We then present simulation tools in Section 3.2, tai-

lored for precision weeding tasks. Section 3.5.6 details three specialized datasets

collected over two years at the University of Bonn’s Campus Klein-Altendorf, used

for development of new methods and evaluations throughout this thesis. Lastly,

Section 3.4 we elaborate on the monitoring system designed and deployed on

BonnBot-I which enabled instance semantic segmentation and tracking of plant-

level intervention on real üelds. Furthermore, we discuss techniques for improving

DNN-based monitoring by leveraging geometric and motion data from BonnBot-

I, which are crucial for the success of the interventions detailed in subsequent

chapters.

Figure 3.2: BonnBot-I dimensions and Sensory field of view setup; BonnBot-I is equipped with

a range of sensors to perceive the most important information on the field in real-time. Here,

the field of view of different sensors is depicted color-coded (laser scanner(red), multi-spectral

Jai camera (purple), RGB-D Intel camera (light-blue), Visual odometry Camera (green), and

weeding workspace in yellow.
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3.1. BonnBot-I A Physical System

3.1 BonnBot-I A Physical System

The base platform is a Thorvald system [49], which is a lightweight four-wheel-

drive (4WD) and four-wheel-steering (4WS) system. With considerable modiüca-

tions, throughout four years, we adapted this platform to an arable farming and

phenotyping robot suitable for operation in real-üeld applications like crop/weed

monitoring and targeted interventions.

These modiücations were carried out to ensure they met European farming

standards for the distance between rows. The European phenotypic regulation

pattern (35 cm or 55 cm between crop rows) leads to either two or three crop

rows in each lane with a total width of 1.25m. Based on these speciücations,

the width from wheel-center-to-wheel-center was set to 1.5m (see Figure 3.2). To

ensure we could monitor the diûerent growth cycles of our primary crops (sugar

beet, wheat, and corn), the vertical clearance is set to 0.57m, and has a maximum

speed of 1.5m/s. The length of BonnBot-I 1.39m, was selected to ensure there

was adequate space to install replicating weeding tools. These dimensions also

act to increase the stability of the platform on the uneven terrain witnessed in

arable farmland. An overview of the BonnBot-I platform and four versions of

BonnBot-I through the years 2020 to 2024 are depicted in Figure 3.3.

We equipped BonnBot-I with a comprehensive selection of sensors to enable

autonomous navigation, crop monitoring, and precise plant-level interventions in

the üeld Figure 3.4. These sensors are divided into two main categories: one for

"localization and navigation" and another for "environment perception and inter-

vention". This setup allows BonnBot-I to excel in arable üelds, performing tasks

such as precise localization (using sensor fusion and dead-reckoning techniques),

waypoint-based and vision-based autonomous navigation in row-crop üelds, and

environment perception for selective, real-time plant-level interventions.

The sensor setup includes inertial measurement units (IMUs), a dual GNSS

receiver with NRTK technology supported by Germany’s SAPOS positioning sys-

tem for accurate localization, as well as 2D and 3D vision sensors like NIR-RGB-

D cameras. To provide a homogeneous view of the environment, we added an

Ouster-OS1 lidar to the front. The OS-1 lidar is a 64-beam lidar covering 360 and

45 degree üeld of view in the horizontal and vertical directions, with a maximum

range of 120m. degrees horizontal and vertical üeld of views with a maximum

range of 120m meters. This provides long-range sparse depth data to enable 3D

mapping, navigation, and safety. We will delve into the speciüc components in

the following sections.
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3. BonnBot-I: A Precision Weeding and Crop Monitoring System

(a) Saga Thorvald Base

(b) BonnBot-I in 2020 (c) BonnBot-I in 2021

(d) BonnBot-I in 2022 (e) BonnBot-I in 2023-2024

Figure 3.3: BonnBot-I evolution’s in five years; (a) BonnBot-Ibase; Saga thorvald an omni-

directional field robotic platform [49], (b) BonnBot-I in 2020 without weeding tool and only

capable of autonomous GPS based navigation and multi-modal data collection in fields, (c)

BonnBot-I in 2021 equipped with one linear weeding axis equipped with a single spray nozzle

and visual row-crop field navigation package, (d) In 2022, the weeding tool on BonnBot-I com-

pleted with 4 linear axes and 4 spray nozzles and it could perform crop/weed segmentation to

intervene with weeds, (e) And finally in 2023-2024 BonnBot-I could reach to its full capabilities

of conducting plant level bio-diversity aware weeding interventions in real fields.
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3.1. BonnBot-I A Physical System

(a) 3D Lidar.

(b) NRTK-GPS. (c) RGB-D-IR. (d) Multi-spectral RGB-NIR. (e) VIO Camera.

Figure 3.4: BonnBot-I sensor configuration; (a) Ouster; a 3D laser scanner, (b) Ellipse-D SBG

device; an INS-GPS localization system with dual antenna using SAPOS technology providing

NRTK service, (c) Real-sense D455 RGB-D-IR camera; a stereo-based camera providing on-

board depth frames, (d) JAI camera; an RGB-NIR prism-based multi-spectral camera, (e) Intel

T265 visual odometry camera.

3.1.1 Dead-Reckoning and Precise Outdoor Localization

Precise centimeter-level localization is a necessity to perform plant-level farm

monitoring and interventions. The localization of BonnBot-I is performed with

a compact inertial navigation system (INS), Ellipse2-D SBG Systems [94], which

includes an IMU and dual-antenna receiver. Multi-band GNSS receivers are üxed

at the front and back of the robot at a height of 1.85m above the ground. A high-

frequency extended Kalman ülter fusion Section 2.1.3 of IMU, GPS, and wheel

odometry data provides us with a horizontal and vertical position accuracy of

2cm and 3cm respectively. Furthermore, the heading of the platform can be

determined with an accuracy of 0.1◦ and 0.3◦ in roll-pitch and yaw directions,

respectively.
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3. BonnBot-I: A Precision Weeding and Crop Monitoring System

3.1.2 Vision Sensors Aiding Navigation

An agricultural robotic system must deal with a range of challenges posed by

the environment in the agricultural cities, including self-similar views that hinder

navigation capabilities, as well as sudden variations in illumination conditions,

slippery, muddy, hard, bumpy surfaces, extreme humidity, etc. Self-similarity

poses a challenging issue, and at the same time, brings some beneüts to automa-

tion in agriculture. This issue is due to crops being arranged in multiple parallel

curves within diûerent plots of arable üelds. Hence, a camera in most conügu-

rations will see multiple rows that might not be located underneath the robot.

This introduces uncertainty in identifying rows that the robot should follow.

Furthermore, other challenges persist, particularly regarding accurate crop-

row navigation and precise plant localization, which are critical for successful au-

tomation. Most advanced agri-robotic systems operate in controlled agricultural

environments reliant on structural information and precise real-time kinematic

(RTK) GNSS receivers for autonomous navigation. Yet, the majority of üelds

still adhere to traditional seeding methods without auto-seeding geo-referenced

systems, highlighting the need for GPS-independent navigation approaches.

Figure 3.5: Navigation Cameras; BonnBot-I visual navigation sensory setup, two Intel

Realsense-D435i rolling-shooter RGB-D cameras in front and back of the robot (Cf and Cb)

tilted towards the crop rows underneath the robot .

In Chapter 4 we will demonstrate our approach, enabling BonnBot-I to au-

tomatically traverse a multi-crop-row üeld without human intervention and in-

dependent of any global localization services. To enable such an approach we

added two symmetrically üxed Intel RealSense-D435i in front and back of the

robot denoted by Cf and Cb in Figure 3.5. In Chapter 4 we show that this sensor

conüguration could reliably navigate a üeld regardless of the number of crop rows
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3.1. BonnBot-I A Physical System

under the robot or the crop type; this was achieved without using any global

localization service.

3.1.3 Vision Sensors Aiding Intervention

Vision sensors play a crucial role in achieving precise and eþcient agricultural

interventions. Advanced vision technologies, such as multi-spectral and RGB-D

cameras, support tasks like precise plant phenotyping and selective weeding by

ensuring minimally invasive actions in crop üelds. By collecting locally observed

multi-modal data on plants, their types, growth stages, and environmental fac-

tors, these sensors enable robots like BonnBot-I to identify and target speciüc

plants for intervention with accuracy (see Figure 3.2). In the following, we brieýy

introduced the cameras that have been used:

1. JAI Camera: In front of the platform, an AD-130GE multi-spectral

GigE camera with rolling shutter CCD is used, depicted in Figure 3.4e.

It uses two CCD sensorsone for color and the other for near-infrared (NIR)

Figure 3.6: Detection Camera Sample Images (from 2020 with 2 Realsense and 2 Jai cameras

in front); (top) Synchronous visualization of captured RGB and depth data from a camera of

BonnBot-I in Rviz application along with TF-tree markers; (bottom left to right) depth image,

RGB image, N-IR image, and normal IR image of a scene from a Corn farm in CKA.
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3. BonnBot-I: A Precision Weeding and Crop Monitoring System

monochrome combined with prism optics. This design allows it to capture

both visible and NIR data from the same angle of view, aiding in precise

vegetation health assessments and species diûerentiation. Figure 3.6 depicts

some sample data from this sensor.

2. RealSense D455 Camera: The RealSense D455 Figure 3.4c, is a global

shutter camera that provides RGB, IR, and stereo-based computed depth

images. We mounted this camera with a nadir-view on BonnBot-I at a

height of 0.78m, oûering a viewable area of 1.4m× 0.81m, which covers the

space between the two front wheels as shown in Figure 3.6, resulting in a

ground sampling of approximately ∼ 1mm. This sensor is the primary tool

used for üeld monitoring.

3. RealSense T265 VIO-Camera: To improve motion estimations of

BonnBot-I we use an Intel RealSense T265 VIO camera (in green in Fig-

ure 3.6) that utilizes advanced dual üsheye lenses and a vision sensor to

capture wide-angle images. It integrates features extracted from stereo vi-

sion with IMU data through its proprietary V-SLAM (Visual Simultaneous

Localization and Mapping) algorithm. This approach allows the camera

to map its surroundings with high precision, even in GPS-denied environ-

ments.

The data received from such devices is used to achieve instance-based seman-

tic segmentation and provide critical information such as plant species (e.g., weed

types), surface area from the RGB-D camera (translating to plant growth met-

rics), and the location of plant stems used for steering intervention pin-points.

We developed advanced deep neural networks that process individual observations

while integrating 3D geometric information, temporal data, and motion-related

information measured on the platform in real-time, which are introduced in detail

in Section 3.4.

3.1.4 Multi-Axes and Multi-Head Weeding Tool

Weeding is a critical task for farmers during each cultivation cycle. A major chal-

lenge in modern weeding is reducing herbicides and pesticides while maintaining

crop quality and yield. To address this, developing ýexible, repeatable weeding

systems capable of deploying various end-eûectors is a key focus for BonnBot-I.

The platform’s main goal is to enable precise interventions, as outlined in [5],

allowing it to adapt its tools according to soil conditions and weed populations.

The proposed design features independently controlled high-resolution ZLW-

1040S Igus linear actuators mounted 0.57m above the ground, creating a working

space of 1.3m × 0.36m. The current setup includes four linear actuators, each
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3.1. BonnBot-I A Physical System

1.3m long, controlled by Igus dryve D1 motor control systems via Modbus con-

nections. These actuators oûer high precision, with a resolution of 0.01cm, and

can achieve maximum speeds of 5m/s and accelerations of 10m/s2. The system

allows ýexibility in tool deployment, as the linear axes, currently equipped with

spot-spray nozzles, can accommodate various end-eûectors, such as mechanical

hoes.

A Raspberry Pi 3-B single-board computer controls linear actuators and noz-

zle valves, interfaced through a Pixtend v1.3 I/O board. The Pixtend board, a

PLC-compliant logic controller, oûers a broad range of digital and analog I/O op-

tions and standard serial interfaces like RS232, RS485, Ethernet, and CAN, shown

in Figure 3.8. Each linear axis operates independently, equipped with ASCO

solenoid L172V03 spray valves, featuring an On-Oû time of approximately 10ms,

mounted on aluminum lever arms at a height of 0.3m. High-speed N-channel

MOSFET transistors (IRFZ44N 55V, 41A) control the nozzle valves, ensuring

minimal delay with a total operation time of around 10− 12ms per spray head.

The chemical application system includes a 8L reservoir tank for compressed

liquid with up to 10bar pressure and an 8bar portable compressor üxed on the

robot. Spray footprint control is achieved by adjusting the lever arm height and

liquid pressure. Depending on the pressure settings, individual nozzle footprints

can vary between 0.02m and 0.13m. This design provides precise and adaptable

weed management capabilities, enhancing the overall eþciency of the weeding

process.

Figure 3.7: BonnBot-I Weeding Tool; the latest version of the weeding tool on BonnBot-I is

equipped with four linear axes and each axis carries one spray nozzle covering the wheel-to-

wheel area under the robot.
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Figure 3.8: Hydraulic and Chemical application system schematic; (cyan) Pixtend Embedded

Controller Board, (Orange) Igus linear axes Driver interfaced by Mud-Bus, (red) Igus Linear

axes with brush-less motors and Brake system, (blue) Air compressor to pressure up piping

system, herbicide reservoir supplying 8 liters of liquid for intervention, Pressure control nubs

to regulate pressure on nozzles and reservoir, and High-Speed spray nozzle controlled via High-

Speed MOSFETs to grantee low latency on execution of interventions.

3.2 Weeding Simulation Framework

Conducting experiments in real üelds can be time-consuming and costly. To

address this, we developed accurate and reliable simulation environments that

closely mimic real-world conditions. These include a customized ROS-based [92]

one-to-one scale simulation model for BonnBot-I and a native Python simulator

speciücally designed for weeding applications and intervention monitoring. The

Python simulator is also compatible with OpenAI Gym [76], enabling reinforce-

ment learning trials.

Several demonstrations of the ROS-based simulation are shown in Figure 3.9,

where all sensors and actuators are fully operational. Additionally, we developed

a Gazebo [47] plugin capable of generating various üeld conügurations, including

diûerent crop sizes, weed densities, number of rows, and curvature. This allows

us to simulate diverse üeld conditions and test navigation strategies in realis-

tic settings Figure 3.9. The ROS-based simulation is designed to replicate the

physics and dynamics of the BonnBot-I platform at its full scale. It incorporates
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the robots exact dimensions, sensors, and weeding actuators into a simulation

package built upon the Saga [48] framework of Thorvald platform description.

By matching the real-world speciücations and üeld scenarios, simulation environ-

ments like Gazebo or Moveit allow us to test navigation strategies and weeding

techniques with high reliability.

Our self-developed native Python-based simulation framework simulates the

robot kinematics and can generate synthetic crop rows with varying weed distri-

butions. We used Open3D and Pyglet python libraries for rendering graphics,

(a) BonnBot-I in Rviz with TF-Tree structure. (b) BonnBot-I simulation in Gazebo environment.

(c) BonnBot-I full simulation with weeding action visualizations.

Figure 3.9: BonnBot-I ROS simulation with active sensors and actuators; (a) An example view

of Rviz software of BonnBot-I conducting weeding scenario in simulation with active sensing and

actuation (b) BonnBot-I simulated twin running vision-based crop row navigation, using self-

developed field models in Gazebo environment, (c) A complete weeding scenario visualization

in Rviz with detected and treated plant (plant centers: colored markers, circles: treatment

footprints) and four execute trajectories from weeding tools of BonnBot-I.
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a simpliüed example view of the planning scenario is shown in Figure 3.10a-(a).

The üeld monitoring environment within the simulation framework serves as a

critical component for evaluating and reüning the crop and weed monitoring sys-

tems. This environment simulates a wide variety of crop conditions, plant sizes,

and weed distributions, allowing us to stress-test the robot’s sensing, decision-

making, and weeding capabilities in highly controlled, repeatable settings.

The ýexibility of the üeld generator enables the creation of complex crop-row

structures, facilitating the development of robust algorithms for both autonomous

navigation and plant-level intervention. By accurately reýecting the challenges

present in real-world farming conditions, this environment allows us to üne-tune

monitoring and weeding strategies before deploying them in the üeld. The simu-

lations generated not only assess plant recognition and localization but also the

eþcacy of intervention tools under various plant densities and biodiversity consid-

erations. The integration of an OpenAI Gym-compatible simulation framework

represents a signiücant step forward in enhancing the robot’s decision-making

(a) Open-3D based visualization of our self-developed weeding environment.

(b) Gym Env;BonnBot-I with four nozzle. (c) Gym Env; BonnBot-I with a single nozzle.

Figure 3.10: Native Python-based Weeding Simulation Software; (a) An Open-3D visualization

of a weeding operation on a real crop-row field distribution, (b,c) The image-based observation

of BonnBot-I weeding gym environment; there are four agents (yellow, pink, cyan, and black

squares) in a field with crops (green circles) and weeds (red circles). The spray footprint circles

with a central green core indicate successful intervention.
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capabilities. This environment allowed for the application of reinforcement learn-

ing (RL) techniques, enabling BonnBot-I to autonomously learn and improve its

weeding strategies through trial and error, presented in Chapter 6. By utilizing a

well-deüned action space and reward function, the system can iteratively optimize

plant-level interventions, improving its ability to plant more eþcient trajectories

for weeding heads of BonnBot-I weeding tool. The OpenAI Gym framework sup-

ports seamless experimentation, where various RL models can be trained and

evaluated within a controlled virtual environment. This provides the robot with

a platform to simulate real-world interventions while continuously improving its

strategies, thereby minimizing the need for extensive üeld tests and allowing for

more adaptive and intelligent weeding operations in complex, dynamic farming

conditions, we will elaborate more on this topic in Chapter 6.

3.3 Datasets

One of the major challenges in agricultural robotics and precision farming is the

scarcity of detailed, annotated datasets. To address this issue, we developed a

series of specialized datasets using BonnBot-I speciücally for precision agriculture

applications. Over four years (2020 to 2023), in several trial sessions data was

collected at the University of Bonns Klein-Altendorf campus (CKA), focusing on

sugar beet, corn, and mixed oat and fava bean üelds. Resulting in the creation

of six datasets SB20, CN20, SB21, and WeedAI [126] published in separate

publications, and two other datasets SB22 (sugar-beet) and Mixed-Crop 22

(MC22) (mixed oat and fava bean), which are not published yet. Despite record-

ing nearly 20 terabytes of data with the BonnBot-I platform, only a small portion

was annotated due to the complexity and labor-intensive task. However, we suc-

cessfully made the SB20, CN20, and SB21 datasets publicly available through

a series of publications, the details of which are introduced below. By making

Table 3.1: Included classes in datasets; Overview of crop and weed class distributions across

SB20, CN20, SB21, and SB22 datasets, including counts for different species and unknown

categories.

Name Crop Bi An Cy Pe Th Ch Ve Po Lp So unknown

SB20 768 241 19 64 620 775 253 - - - - 185

CN20 2570 8 24 14 40 859 225 8 21 - - 28

SB21 942 4 1829 7 143 793 1135 244 51 449 43 287

SB22 200 - - - - - 15 21 - - 38 13

MC22 8796 - 60 283 1 - - - 7 33 43 626
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them publicly available, these data mark a crucial step in overcoming the data

scarcity challenge. They contribute to the advancement of autonomous farming

technologies and are already attracting signiücant international attention.

Each dataset features temporally sparse annotations, meaning that the anno-

tations for one image do not overlap with those of other images. The captured

üeld is separated into three herbicide treatment regimes (30%, 70%, 100%) which

provide a large range of distribution variations of diûerent classes. For every

plant instance in these datasets, annotations include the stem point, pixel-wise

segmentation, and bounding box, along with both super and subcategories iden-

tiüed with expert assistance.

Additionally, every image in the dataset is geo-referenced and accompanied

by relevant robot position, orientation, velocity, raw odometry, IMU, and control

data in Coco format. These datasets contain RGB-D images of crops (SB20

and SB21: sugar beet, CN20: corn) and eleven diûerent categories of weeds.

In each dataset, several variations occur naturally, including, weed species, crop

and weed densities,arious ranges of growth stages, illumination variation, and

shadowing caused by the platform. These datasets represent 21271 instances of

the plant (see Table 3.3) through 675 RGB images (with available Depth, IR,

location, orientation, robot metadata, etc), annotated manually in almost 520

hours.

The distribution of plants and instances is shown in Table 3.5, also Figure 3.12

shows an example set of original and annotated images of SB20, CN20, and SB21

datasets.

The datasets were created using Coco-Annotator, an open-source tool that

provided JSON annotations. Metadata, covering training, evaluation, and vali-

dation set details, along with camera and robot capture parameters, was stored

in YAML üles. The data was initially acquired in ROS bag üle format, requir-

ing additional steps to produce the ünal dataset. This included sub-sampling

and synchronizing data for a training subset with labeled instance segmentation

Table 3.2: Dataset’s Image and meta-data Characteristics; Summary of image count, resolution,

frame rate (Fps), channels, and sensor data (IMU, odometry, GPS) for the SB20, CN20, SB21,

SB22, and MC22 datasets.

Name Image Num. Resolution Fps Channels IMU Odometry GPS

SB20 143 640× 480 30 RGB-D-IR ✓ ✓ ✓

CN20 283 1280× 720 15 RGB-D-IR ✓ ✓ ✓

SB21 84 1280× 720 15 RGB-D-IR ✓ ✓ ✓

SB22 20 1280× 720 15 RGB-D-IR ✓ ✓ ✓

MC22 145 1280× 720 15 RGB-D-IR ✓ ✓ ✓
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(a) SB20; RGB Frame (b) SB20; Instance-based pixel-wise annotation

(c) CN20; RGB Frame (d) CN20; Instance-based pixel-wise annotation

(e) SB21; RGB Frame (f) SB21; Instance-based pixel-wise annotation

Figure 3.11: Example image of datasets; (top)SB20, (middle) CN20, (bottom) SB21. On the

right, the raw RGB dataset is displayed, while on the left, multi-class annotations are used to

represent different crop and weed types, each distinguished by a specific color. In the SB20

(top) sample visualization, annotations are color-coded based on class IDs: all crops are shown

in red, while each weed class is marked with a unique color. In contrast, the visualizations for

CN20 (middle) and SB21 (bottom) use instance-based annotations, where each plant is assigned

a different color.

annotations.

The recorded bag üles contain various system topics, such as camera data and

robot motion parameters, where each was sampled at diûerent frequencies. To

address this, an initial synchronization of key topics was performed at the device

level. The Figure 3.13 illustrates our approach for aligning timestamps, where

data was capped at the lowest frame rate (15Hz, for camera RGB and depth

images) to achieve synchronization. Afterward, we sub-sampled the extracted
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(a) SB22; RGB Frame (b) SB22; Instance-based annotation

(c) WeedAI; RGB Frame (d) WeedAI; Instance-based annotation

(e) Mixed-Crop 22; RGB Frame (f) Mixed-Crop 22; Instance-based annotation

Figure 3.12: Example image of datasets; (top)SB22, (middle) WeedAI, and (bottom) Mixed-

Crop 22. On the right, the raw RGB dataset is shown, while on the left, multi-class annotations

are applied to represent various crop and weed types, with each type identified by a unique color.

Table 3.3: Dataset’s Annotation Characteristics; Overview of annotated instances, annotation

time, and the number of samples in the training, validation, and evaluation sets for SB20, CN20,

SB21, SB22, and MC20 datasets.

Name Ann. Instances Ann. Time Train Set Valid Set Eval Set

SB20 2925 35.1 h 71 37 35

CN20 2566 93.7 h 149 39 44

SB21 5931 162.3 h 56 14 14

SB22 282 8.0 h - - -

MC22 9849 221.3 h - - -
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Figure 3.13: Data synchronization architecture for BonnBot-I sensors; where various sensor data

streamsranging from high-frequency IMU, odometry, and GPS data to lower-frequency camera

imagesare aligned based on the lowest frequency source (camera images at 15Hz) to ensure

synchronized data logging (length of dash-lines indicates how long data acquisition takes).

images to avoid overlap and matched each image with associated GPS, IMU,

odometry, and other sensor data.

3.4 Crop and Weed Monitoring

Agricultural monitoring application is widely used in diûerent cultivars and farm-

ing sites including in glasshouses [101, 99], orchards [110], and üelds (for weed

intervention) [78]. As discussed previously, one of the primary capabilities of an

autonomous precision agricultural robotic platform is its ability to monitor the

üeld in real-time as it traverses, complementing its core function as a weeding

system. Similarly, BonnBot-I relies on a monitoring approach that utilizes Mask-

RCNN for instance segmentation, providing species-level identiücation (e.g., crop

and weed) and surface area estimation. We introduced the main method in [52]

where our dynamic radius (DR) spatial matching operator as a tracking-via-

segmentation method outperforms the traditional intersection over union (IoU)

method. The technique also leverages re-projection [100] between frames using

wheel odometry and camera parameters supplied by BonnBot-I.

In the original work [52] we only relied on wheel odometry data of BonnBot-I

to utilize the re-projection technique. However, wheel odometry is susceptible to

errors, making it less reliable. Hence in [5], we showcase BonnBot-I’s potential

for üeld monitoring by enhancing its tracking capabilities through the integra-

tion of additional localization sensors and utilizing extended Kalman ülter-based

(EKF) Section 2.1.3 sensor fusion.

In the following, we elaborate on the details of our approach for detecting

each plant underneath the robot and tracking them to enable precise intervention.

Which is followed by a subsection of experiments using our monitoring system.
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Finally, by relying on the result of the monitoring system, we introduce our

method for creating reusable üeld models based on real observations and the

output of the monitoring system to enable the development and evaluation of

weeding algorithms. However, we should note that developing a novel vision

system was not the main focus of this thesis, therefore we will brieýy discuss

developed improvements and strategies empowering targeted intervention.

3.4.1 Instance-Based Semantic Segmentation

In [52], we introduced a DNN-based monitoring approach designed to be both

crop- and robot-agnostic. Figure 3.14 provides an overview of the introduced

monitoring approach, with extensions for re-projection tracking, implemented on

PATHoBot [100] and BonnBot-I [5] for horticultural and arable farming applica-

tions.

Our vision pipeline is consistent across both robots, diûering only in the deep-

learning model, each tailored to speciüc sub-classes. In this setup, the robot

scans the environment while executing instance segmentation, enabling accurate

localization of plants/fruits along with area estimations and classiücation within

the scene. To achieve this, we utilize instance segmentation masks from Mask-

RCNN [54] as the base network. Our instance-based segmentation approach

segments each plant individually, enabling unique data points for every object.

Figure 3.14: The agnostic monitoring algorithm provides up-to-date information to the farmer

based on instance segmentation with ripeness or species information and area estimation. This

assists in making more informed management decisions such as weeding or harvesting using

a tracking-via-segmentation approach for yield estimation. The approach is evaluated on two

robotic platforms PATHoBot (left) and BonnBot-I (right) which work in significantly different

environments: glasshouse or arable fields [52].
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The super-class labels distinguish between background (soil) and plant. The sub-

class classiücation layer further reünes this by providing quality metrics, such

as identifying speciüc weed species in arable farmland. As demonstrated in [53,

51], this sub-classiücation method improves both classiücation and segmentation

accuracy without losing information.

Figure 3.15 details the super- and sub-class layout. This approach leverages

ýexible super- and sub-class relationships for enhanced classiücation beyond tra-

ditional multi-class systems, where class quantity or quality constraints could

degrade performance.

Following up this instance-based perception, the predictions are aggregated

through a tracking-via-segmentation method resulting in unique-per-target track-

lets. Finally, tracklets information is processed to generate key data, supporting

intervention planning for subsequent manual or robot-based operations.

3.4.2 Estimating the Area

For informed intervention decisions, object quality or species alone is insuþcient.

Area estimation adds a critical information layer relevant to weeding and har-

vesting. This supports better decisions for crop management, labor allocation,

and business planning (e.g., abundant, ripe sweet peppers indicate readiness for

harvest).

Phenotypic information is essential for informed decisions on monitored ob-

jects. In arable farmland, plant area estimation provides insights into the growth

stage. Likewise, weed presence alone doesnt justify herbicide use; weed count

and area oûer biodiversity data that can inýuence treatment decisions. To es-

timate object area, we leverage the stereo vision capabilities of the sensors on

the BonnBot-I platform. The area is calculated using registered depth and cam-

era focal length following object segmentation. Once a masked area is identiüed,

Figure 3.15: An overview of the Mask-RCNN network with the parallel sub-class classification

layer included to calculate the quality (ripeness) of sweet pepper in the glasshouse or the species

of crops/weeds in arable farmland [52].
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the area (A) of the m-th object is calculated as follows:

Am =
N
∑

i

d2i
fx × fy

(3.1)

The N represents the total number of pixels in the segmented region (1D vector),

and depth values (d, in meters) come from the registered depth image. fx and

fy are the cameras focal length parameters, sourced from its intrinsic properties.

With this sensor framework, we provide richer farm information to end users.

No prior scene scaling assumptions are needed, as the sensor supplies pixel-wise

depth, enabling direct area calculation for crop surfaces.

Adding area as a metric to segmentation and classiücation (super- and sub-

class) enhances data on the objects and entire rows being scanned. This supports

tracking plant growth time, aiding in farm management. For weeding and crop

management, area estimation enables more precise interventions (e.g., large crops

but small weeds imply no immediate weeding is needed). Integrating these metrics

into intervention decisions provides a more robust decision-making framework,

though currently based on single-image analysis.

3.4.3 Tracking-via-segmentation

As discussed previously, one major part of our monitoring and environmental

perception software is tracking individual crops in a üeld which is crucial for

accurate and targeted interventions or providing useful monitoring information.

In agricultural environments, the scenes relative stability and predictable robot

movement support tracking by segmentation. Tracking-via-segmentation takes

advantage of the relatively stable agricultural scene, where plants remain spatially

static as the robot moves along a row. This allows us to assume that objects

imaged at time t will appear nearby in position at t + 1, given the platform’s

moderate speed and camera frame rate.

An initial approach by [53] used tracking-via-detection with bounding boxes,

such early tracking approaches relied heavily on spatial and temporal consis-

tency, yet were prone to duplicate tracklets when image captures were too far

apart. later expansions to tracking-via-segmentation with reprojection by [100]

showed that by using odometry data and depth information, reprojection could

compensate for larger robot movements between frames, improving tracklet ac-

curacy. However, small discrepancies in captures posed a challenge for IoU-based

matching, particularly for small objects, as noted in [52].

To address this, [52] introduced a dynamic radius criterion, which compares

the Euclidean distance between object centers rather than relying on IoU alone.

If the center distance is within a threshold radius, the objects are merged into a
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single tracklet. While eûective, this approach occasionally mismatches due to its

360-degree matching around the object center.

By combining mask output from a deep-learning classiüer with depth and

odometry data, we can predict object location from frame t − 1 to t, forming

the basis of reprojection for tracking [100]. The tracklets act as the baseline of

the approach to maintain the identity of an object and aggregate the instance

segmentation as the robot traverses the scene. Tracklets maintain each crop’s

identity as the robot moves through the üeld, aggregating segmentation data.

Using a greedy algorithm, tracklets at t − 1 are matched to new masks at t,

updating tracklets if a match is found or creating new tracklets if not.

The position of an active tracker at t is updated with the position of the

detection with the highest IoU value at t + 1 if the IoU value is greater than a

threshold (0.7). Otherwise, the track is not considered active, and if the inactivity

happens for several frames (3), the track is removed from the list of active tracks,

then the number of plants is added by one if it satisües the minimum number of

tracks. For the sub-class of the plant, the most frequent prediction is taken for

the output sub-class.

To ensure robust matching, only objects fully visible within the image bounds

are tracked, reserving entry and exit zones per input image [100]. Matching

criteria are key to eûective tracking, so four methods are evaluated: IoU and

dynamic radius, each with and without reprojection. The IoU metric compares

tracklet and mask shapes based on overlap, while dynamic radius calculates center

distance, especially beneüting small object tracking. Each approach leverages

reprojection to further stabilize tracking through varying scene conditions.

3.4.4 Dynamic Radius

The dynamic radius (DR) metric addresses the limitations of pixel-wise intersec-

tion over union (IoU) by representing each object as a center point with a radius

proportional to its size. This approach removes the need for precise alignment

required by IoU. A comparison of DR and IoU is shown in Figure 3.16 with both

small (bottom row) and large (top row) objects; the smaller plant is zoomed in

for clarity. The ünal images in Figure 3.16 illustrate how DR accommodates

a slight shift of üve pixels in each direction. In this example, the IoU method

(second from the right) fails to maintain signiücant overlap for the smaller plant,

while DR (rightmost image) still eûectively includes the shifted location within its

matching region. For larger objects, the ýexible DR boundaries simplify matching

compared to the strict IoU requirement.

The DR metric begins by calculating the center of mass (mean of x and y

samples) for each object, as shown in Figure 3.16. Then, the DR is set to the

greatest distance from the center to the bounding box edge along either the x or
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Figure 3.16: The dynamic radius calculation, far left is the original RGB image where we select

two of the plants in the scene. The top row is a large crop example and the bottom row is a

small weed. From left to right (after the RGB) the segmentation map, finding the center of

mass location, calculating the radius of the search, the IoU after a small shift (5 pixels in each

direction), and finally the centroid locations and the search radius. The bottom row has been

scaled up in resolution to match the top row and is a considerably smaller plant [52].

y direction. Using this radius, we apply an Euclidean distance ülter to exclude

objects outside this radius from being matched. For tracking, a masks center of

mass closest to the tracklet and within the DR is matched.

3.4.5 Re-projection

In both IoU and DR metrics, limited spatial shifts between frames are crucial.

To address this, [100] introduced reprojection, allowing the alignment of track-

lets between consecutive frames. This reprojection approach increased tracking

performance in cluttered weeded scenes by adjusting the location of previous

tracklet masks to newly segmented regions. Reprojection uses motion informa-

tion of BonnBot-I to compute the camera transformation between frames i and

j:

Hij = E−1WijE, (3.2)

where W and E represent the motion transformation and camera extrinsics. Using

this transform, pixel coordinates m in the detection mask Mi from frame i are

projected to frame j as:

mjk = π(Hij(π
−1(mik, dmik

))), (3.3)

where k = [1, . . . , N ], π(.) is the camera projection function, and dm is each

coordinates depth.

3.5 Experiments

This section presents an experimental evaluation of our üeld monitoring approach,

deployed on our self-developed robot BonnBot-I. Our evaluation covers various
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components of the proposed method, starting with the performance assessment

of the instance-based semantic segmentation algorithm, which includes crop de-

tection and sub-class classiücation accuracy. We then analyze the eûectiveness of

our tracking methods, both with and without reprojection, emphasizing the ro-

bustness of the reprojection approach amid signiücant frame skips. Furthermore,

examining the impact of sensor fusion on localization accuracy and tracking per-

formance. Additionally, we introduce high-üdelity üeld models to assess weeding

methods across varied weed densities and üeld arrangements.

3.5.1 Experimental Setup

We implemented the Mask-RCNN using PyTorch and trained it for 500 epochs

with a 0.001 learning rate using stochastic gradient descent. For datasets SB21,

SB22, and WeedAI, images are resized to 704 × 416 as in [4]; SB20 maintains

its full resolution of 640 × 480. The training uses a batch size of six, and the

model is selected based on validation set performance, which may occur before

the 500th epoch. Key hyperparameters include a learning rate of 0.001. For non-

maximum suppression and IoU matching, we use thresholds of 0.4 and 0.1, as

established in [51] and [53]. In the following, our evaluation, methodology involves

three stages: (1) assessing object detection accuracy, (2) evaluating segmentation

quality, (3) analyzing the precision of the sub-class layer, and (4) evaluation of

tracking performances on similar datasets.

3.5.2 Object detection

The object detection accuracy is quantiüed using localization metrics, where a

true detection (TP ) is identiüed by suþcient overlap with ground-truth positions

at an IoU threshold of 0.1. On the SB20 dataset, our approach achieves Precision,

Recall, and F1-Score values of 0.89%, 0.85%, and 0.87%, respectively. For the

CN20 dataset, these values improve to 0.96%, 0.88%, and 0.92%, while on the

SB21 dataset, the approach yields Precision, Recall, and F1-Score values of 0.96%,

0.72%, and 0.82%, respectively.

3.5.3 Instance- and Semantic Segmentation

Instance segmentation extends object detection by accurately identifying all pixels

corresponding to an object. Instance-based segmentation forms the foundation

of our proposed approach, utilizing Mask-RCNN enhanced with a novel paral-

lel layer for sub-class classiücation. This parallel structure allows the model to

simultaneously learn broad (super-class) and speciüc (sub-class) categories.
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IoU serves as the primary evaluation metric, though it tends to show lower

scores due to the impact of false positives and missed detections. By comparing

Mask-RCNN outputs with ground-truth masks, we achieve detailed performance

insights. Table 3.4 presents the instance and semantic segmentation results for

the SB20, CN20, and SB21 datasets.

Table 3.4: Instance and semantic segmentation results for the datasets. Metrics include back-

ground IoU (BG IoU), foreground IoU (FG IoU), and average IoU (µIoU).

Instance Segmentation Semantic Segmentation

Dataset BG IoU FG IoU µIoU BG IoU FG IoU µIoU

SB20 0.99 0.49 0.74 0.97 0.72 0.85

CN20 0.99 0.61 0.80 0.99 0.74 0.86

SB21 0.99 0.48 0.74 0.97 0.67 0.82

The results highlight the impact of false and missed detections on instance

segmentation performance. For the SB20 dataset, an FG IoU of 0.49% illustrates

that while segmentation accuracy is high for correctly predicted regions, false and

missed detections considerably inýuence the overall IoU score. To better under-

stand these eûects, we also evaluated a simpliüed two-class semantic segmentation

scenario (plant vs. background), where the inýuence of false and missed detec-

tions is reduced. As shown in Table 3.4, semantic segmentation delivers robust

FG IoU performance, closely aligned with results obtained by excluding false and

missed detections from instance segmentation. This demonstrates that, despite

challenges, our parallel layer-enhanced Mask-RCNN eûectively segments images

based on object properties, providing a reliable approach for üeld-based plant

analysis.

3.5.4 Sub-class Accuracy

To eûectively implement plant-speciüc interventions, accurate classiücation of

both crops and weed species is essential. This task is challenging due to the

diverse growth patterns and varying, unconstrained shapes of diûerent species.

Our evaluation across multiple datasets SB20, CN20, and SB21reveals signiücant

variations in classiücation accuracy among species, often correlating with the

number of training samples available. So we group diûerent species in three

diûerent groups based on prediction accuracy in blow:

• High Accuracy Species:

Crop (Sugar Beet (SB) and Cron (CN)): Consistently high accuracy across

all datasets (SB20: 0.946, CN20: 0.988, SB21: 1.000), reýecting the abun-
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dance of training samples and the importance of precise crop identiücation

in agricultural management. Persicaria lapathifolia (Pe): Achieved high

accuracy in SB20 (0.990) and SB21 (0.917), indicating eûective classiüca-

tion when suþcient training data is available. Lamium purpureum (Lp):

Present only in SB21, with perfect accuracy (1.000), suggesting that ade-

quate representation in the training set enhances classiücation performance.

• Moderate Accuracy Species:

Bidens pilosa (Bi): Displayed moderate accuracy in SB20 (0.615) and CN20

(0.727), but was absent in SB21, indicating variability possibly due to diûer-

ing sample sizes or dataset characteristics. Thlaspi arvense (Th): Showed

moderate accuracy in SB20 (0.731) and SB21 (0.907), with absence in

CN20, suggesting that dataset-speciüc factors inýuence classiücation per-

formance. Chenopodium hybridum (Ch): Recorded moderate accuracy in

SB20 (0.792), CN20 (0.806), and SB21 (0.906), indicating relatively con-

sistent classiücation across datasets. Veronica persica (Ve): Present only

in SB21 with an accuracy of 0.909, suggesting eûective classiücation when

included in the dataset. Polygonum aviculare (Po): Achieved perfect accu-

racy in CN20 (1.000) and high accuracy in SB21 (0.889), indicating reliable

classiücation in these datasets. Solanum nigrum (So): Present only in SB21

with an accuracy of 0.500, suggesting challenges in classiücation, potentially

due to limited training samples.

• Low Accuracy Species:

Anthemis arvensis (An): Exhibited low accuracy in SB20 (0.333) and SB21

(0.953), with perfect accuracy in CN20 (1.000), indicating inconsistencies

possibly due to varying sample sizes or dataset characteristics. Chenopodium

album (Cy): Showed low accuracy in SB20 (0.475) and was absent in CN20

and SB21, suggesting challenges in classiücation, potentially due to limited

representation in the training data.

These ündings underscore the importance of balanced datasets with suþcient

sample sizes to achieve reliable classiücation across diverse plant species. The

high accuracy observed for Sugar Beet (SB) is particularly valuable, as preci-

sion in crop identiücation is crucial for eûective crop monitoring and precision

weeding, where misclassiücation of weeds is less critical. In summary, combining

precise pixel-wise object localization with robust species classiücation provides

farmers with valuable phenotypic insights, enhancing decision-making in agricul-

tural management.

58



3. BonnBot-I: A Precision Weeding and Crop Monitoring System

Table 3.5: Classification Accuracies Across Datasets; This table presents the classification ac-

curacies for various plant species across three datasets: SB20, CN20, and SB21. Each cell

indicates the accuracy achieved for a specific species within a particular dataset, with dashes

representing species not present in the evaluation test. Higher accuracy values denote better

classification performance, which is crucial for effective plant-specific interventions in agricul-

tural settings (Note that ’-’ indicates the species was not present in the evaluation test for that

dataset).

Name Crop Bi An Cy Pe Th Ch Ve Po Lp So unknown

SB20 0.946 0.615 0.333 0.475 0.990 0.731 0.792 - - - - 0.368

CN20 0.988 0.727 1.000 0.000 0.000 0.727 0.806 0.000 1.000 - - 0.000

SB21 1.000 0.000 0.953 0.000 0.917 0.907 0.906 0.909 0.889 1.000 0.500 0.826

3.5.5 Tracking Evaluation

Eûective tracking is essential for developing robust agricultural monitoring algo-

rithms, as it enables precise in-üeld interventions by providing detailed phenotypic

data, such as plant species and growth stages. To achieve this, speciüc tracking

parameters are employed. The "keep running" parameter allows a tracklet to skip

up to 5 frames, accommodating temporary occlusions or missed detections. A

tracklet must have a minimum of 10 segmentation matches to be considered valid,

ensuring reliability in tracking data. An Intersection over Union (IoU) thresh-

old of 0.1 is used to associate tracklets with new regions, balancing sensitivity

and speciücity in matching. Empirical testing of weighting values (0.5, 0.75, and

1.0) for the Dynamic Radius found 1.0 to be optimal, enhancing tracking perfor-

mance. To prepare ground truth for tracking experiments, the evaluation rows

of the datasets are manually annotated (crops and weeds are counted manually),

to ensure accurate and reliable data for performance assessment.

All datasets feature objects solely on the ground plane, eliminating the need

for depth ültering and simplifying tracking evaluation. Table 3.6 presents tracking

results across three datasets (SB20, CN20, and SB21), evaluated using diûerent

criteria: IoU, IoU with Reprojection, DR, and DR with Reprojection (introduced

in Section 3.4.5).

In agricultural monitoring systems, tracking algorithms are evaluated using

metrics such as the coeþcient of determination (R2) and mean normalized abso-

lute error (µNAE). As the ürst observation from the results in Table 3.6, high

R2 values more than 0.93 across various datasets indicate a strong linear correla-

tion between predictions and ground truth, underscoring the reliability of these

tracking methods.

The SB20 dataset, characterized by lower-resolution imagery and a high di-

versity of plant and weed species at various growth stages, presents challenges due

to the complexity and variability of visual data. In this context, the Dynamic Ra-
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Table 3.6: Tracking-via-Segmentation results using different criteria across datasets (SB20,

CN20, and SB21). Results display the R2 value and the mean normalized absolute error

(µNAE).

SB20 CN20 SB21

Approach R2 µNAE R2 µNAE R2 µNAE

IoU 0.937 0.392 0.997 0.717 1.000 0.328

IoU Reproj 0.947 0.269 0.975 0.257 1.000 0.411

DR 0.957 0.208 0.993 0.083 1.000 0.083

DR Reproj 0.970 0.131 0.962 0.035 1.000 0.034

dius (DR) approach with reprojection achieved a µNAE of 0.131, outperforming

the IoU with reprojection method, which had a µNAE of 0.269.

Conversely, the CN20 dataset comprises cleaner üelds with low weed density

and limited weed diversity, primarily featuring weeds at small growth stages. This

simpler environment contributes to higher R2 values and lower µNAE in certain

approaches. For instance, in CN20, the DR trackers µNAE improved from 0.083

to 0.035 with sensor fusion and projection technique, eûectively halving the error.

Similarly, the IoU trackers µNAE decreased from 0.717 to 0.257 with enhanced lo-

calization, demonstrating the beneüts of integrating multiple localization sensors

and sensor fusion techniques in improving tracking accuracy.

The SB21 dataset presents a scenario with very high weed density, exceed-

ing 70 weeds per square meter, diverse weed growth stages, and limited weed

diversity, posing signiücant challenges for tracking algorithms due to the dense

and heterogeneous plant distribution. In SB21, all tracking approaches achieved

an R2 value of 1.000, indicating a perfect linear correlation between predictions

and ground truth. The µNAE varied across methods, with IoU with reprojec-

tion exhibiting the highest error at 0.411, while DR with reprojection achieved

the lowest error of 0.034. These results demonstrate that the Dynamic Radius

approach, particularly when combined with reprojection, outperforms IoU-based

methods in tracking accuracy within the SB21 dataset.

These varying characteristics across datasets highlight the adaptability and

robustness of the Dynamic Radius approach with reprojection, as it consistently

delivers superior tracking performance despite diûerences in image resolution,

plant diversity, and weed density.

3.5.6 Field Models

Field models of sugar-beet and corn crops were developed as part of an innovative

crop monitoring approach. All models captured real-time system performance at
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the CKA campus over multiple years.

Our novel method compiles crop-speciüc data from real-world üelds, to create

high-üdelity models representing varying weed densities and growth stages. The

models organize complex agricultural data into a structured row format that

simulates real-üeld conditions for advanced performance analysis.

A major achievement of this work is the representation of four distinct weed

densities: low (CN20), moderate (SB20-S2), high (SB20-S1, SB21-S1), and very

high (SB21-S2). This diversity allows for realistic test scenarios that capture the

large variability in weed populations, as shown in Figure 3.17. Evaluating the

crop monitoring system with such detailed models enables precise operational ef-

üciency assessment using two key metrics. The ürst is the ’loss’ percentage, which

reýects the number of untreated weeds. The second metric is the linear axis travel

distance, which provides insights into workload balance and planning eþciency.

This approach contributes to more robust testing in both simulations and real

üelds. It also sets a new standard for validating crop monitoring technologies,

ensuring they are prepared for the complex conditions of real-world agriculture.

(a) Sugar beet field with very high weed density (1.5× 17.5 meters).

(b) Corn field with low weed density (1.5× 17.5 meters).

(c) Sugar beet field with moderate weed density (1.5× 20 meters).

Figure 3.17: Example Field models of sugar-beet and corn crops captured based on the real-

time performance of monitoring system Section 3.4 in CKA campus. The moves are gathered

and processed throughout four years and include varying weed densities and growth stages.
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3.6 Conclusion

In this chapter, we introduced BonnBot-I a transformative advancement in crop

monitoring and precision weeding robotic platfrom. During four years of devel-

opment, we reformed and built the BonnBot-I to be adaptable across various

crop types and growth stages and is designed to meet the diverse needs of Eu-

ropean phenotyping üelds and farm management. We equipped it with a rich

sensory network and versatile design that delivers signiücant advantages in mul-

tiple facets of agriculture like autonomous navigation, monitoring, and targeted

interventions, making it a promising tool for modern farmers.

BonnBot-I is also capable of performing plant-level interventions on arable

farms. This is made possible by its innovative and unique weeding tool, which

features several independently controllable weeding nozzles. The system’s archi-

tecture supports applications on both organic and non-organic farms, oûering the

ability to use various intervention modalitiessuch as chemical, mechanical, and

electricalsimultaneously.

Furthermore, we created a set of specialized public datasets using BonnBot-I,

speciücally designed to encourage precision plant-level applications. Over four

years (2020 to 2023), data was gathered during multiple trial sessions at the

University of Bonn’s Klein-Altendorf campus (CKA), with a focus on sugar beet,

corn, and oat-fava bean (mixed) üelds.

We are conüdent that BonnBot-I has greatly impacted the future of automated

precision weeding and intervention in arable farms by facilitating a broad range of

applications. These advancements enable farmers to make better-informed weed-

ing and crop management decisions, leading to improved eþciency, sustainability,

and higher quality in agricultural production.

Therefore, we conclude that BonnBot-I serves as an excellent platform for

real-time precision weeding in various farming environments, eûectively address-

ing our research objectives. In the following chapter, we will investigate incorpo-

rating local camera-only observations to guide BonnBot-I through rows of crops

in real conditions without relying on any global localization or navigation tech-

nologies. This new modality of navigation control aims to enhance autonomous

navigation performance and robustness of common problems in a dynamic and

challenging environment with cluttered cropping situations and no-GPS-guided

seeded farms.

62



Chapter 4

Vision-Only In-Field Navigation

I
n this chapter, we present a novel approach to enable autonomous navi-

gation in row-crop üelds empowering precision farming and crop monitor-

ing tasks only relying on vision sensors. The proposed approach is orig-

inally presented in [3], which exploits the multi-crop row structure using

only the local observation from the on-board navigation cameras (introduced

in Section 3.1.2) without requiring any global or local position awareness. To

achieve this, we have introduced a novel multi-crop row detection strategy that

can deal with cluttered and weedy scenes. The presented scheme uses a novel

lane-switching strategy that enables BonnBot-I to switch to a new lane of crops

(multiple crops underneath the robot) independent of any global positioning sys-

tem or human intervention. We evaluated our approach on BonnBot-I on up to

üve crop types (with varying canopy shapes) in real üeld conditions and three

Figure 4.1: BonnBot-I following lanes of crops using two symmetrically mounted monocular

cameras in front and back.
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challenging simulated üelds achieving centimeter-level navigation accuracy in real

üelds.

Navigating through the üeld is central to the real-world deployment of agricul-

tural robotics and agricultural vehicles. For autonomous navigation, it is common

for platforms to use precise real-time kinematic (RTK) GNSS as it is being used

in fully controlled and engineered agricultural sites where they heavily rely on

structural information [1, 19]. But, robotic technologies will never be guaranteed

accurate GPS in every üeld, due to its expense and coverage. An example of

this is that currently most üelds are seeded using traditional methods, not auto-

seeding geo-referenced systems, which creates a gap between GPS capabilities

and farming requirements [1]. As such, utilizing GPS technology in unregistered

üelds increases the risk of damaging crops [14]. In a worst-case scenario GPS can

fail, therefore, generally applicable crop row following techniques are required.

In our prior work [7] we introduced a GPS-independent technique that was

able to traverse a single crop row and switch between adjacent rows. This system

was deployed on the skid-street robotic platform and tested using only a single

artiücial cropping environment. Considering the row-crops are planted in par-

allel lines, this structure can be exploited to overcome issues such as a lack of

germination, which can leave gaps in a crop row, creating navigation issues for

single crop row techniques. Such issues can lead to unrecoverable failure cases

for a single-crop row navigation system, see Figure 4.2. We greatly extend our

Figure 4.2: Example images where crops have yet to germinate leaving large gaps in a row,

indicated by red boxes.

prior work [7] and use information from multiple crop rows to navigate a weeding

robotic platform in üve diûerent real üelds under various weather conditions. The

proposed approach takes advantage of planting schemes (standardized distances

between rows of crops), and ensures minimum damage to crops and persistent

coverage throughout the üeld. The proposed approach relies on well-known sig-

nal processing and computer vision approaches, however, their combination is

unique and their robustness has been demonstrated by being applied to üve crop

types on a robot in the üeld. We consider this approach as an extra navigation

controller modality for achieving more reliable traverses in challenging real üelds
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4. Vision-Only In-Field Navigation

conditions and not denying the potential of beneüting other technologies like GPS

and odometry which represents a complete system.

We consider this approach as an extra navigation controller modality for

achieving more reliable traverses in challenging üelds conditions and not denying

the potential of beneüting other technologies like GPS and odometry which rep-

resents a complete system. We also made its implementation publicly available 1.

In this chapter, we make the following novel contributions:

• A robust multi-crop row detection strategy, capable of dealing with

cluttered and weedy scenes for a variety of crop types; and

• A multiple crop row following approach which enables autonomous

guidance in real-üelds; and

• A multi-crop row lane switching strategy that enables BonnBot-I to

switch to a new lane independent of any global positioning system; and

• Deployed and evaluated on a real-sized weed management robot in

simulation and the üeld for üve crop types (with diûerent shapes: straight

and curved crop rows); and

• Released a novel multi-row-crop dataset (MultiRowCrop-v1) cov-

ering üve crop types with various growth stages under varying illumination

conditions.

In the following, initially, Section 4.1 reviews the prior works in subject of

autonomous navigation in the row-crop üelds and agricultural robotics. Then, we

introduce our proposed approach for in-üeld autonomous navigation in the row-

crops üeld using only local and on-board observations Section 4.2. The Section 4.6

describes the experimental evaluations and implementation details gathered from

our simulated and real-üeld experiments. Finally, the conclusions and future

works of this work are drawn in Section 4.7.

4.1 Related Works

Autonomous agricultural robots could improve productivity [113, 25], enable tar-

geted üeld interventions [77] and facilitate crop monitoring [20]. For uptake of

these platforms, they should be deployable in a variety of scenarios including dif-

ferent cultivars, crop row structures, and seeding patterns [112]. A key enabling

technology is reliable navigation through the whole üeld [11].

One potential solution to the navigation problem is to make use of the Global

Navigation Satellite System (GNSS). Such an approach has been used for both

1https://github.com/Agricultural-Robotics-Bonn/visual-multi-croprow-navigation
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agricultural machinery [109] and robotic platforms [19]. The downside of this

approach is that it relies on an expensive sensor and suûers from limitations such

as possible GNSS outages and reliance on geo-referenced auto-seeding. Thus,

crop-based navigation techniques leveraging the üeld structure were investigated

for autonomous guidance [21, 7] and in-üeld interventions [12].

In an attempt to use the structure of a üeld, Barawid et al. [17] investigated

LiDAR-based orchards navigation system a similar strategy was used in a simu-

lated environment by [68] for traversing row-crop üelds. In addition, Winterhal-

ter et al. [117] proposed sensor-independent feature representation from diûerent

sensor modalities and detected crop rows. They used LiDAR and camera images

to extract single lines in a row-crop üeld which were spaced equidistantly. While

these approaches enable side applications such as obstacle avoidance, frame drift

in self-similar environments can cause issues [13], including crop damage.

To avoid crop damage through GNSS or LiDAR failures, RGB based navi-

gation approaches directly exploit the available visual information. These tech-

niques can vary signiücantly in terms of cost, algorithm simplicity, and availabil-

ity. Classical machine vision approaches detect crop rows with juvenile crops [12]

or detect crop rows under challenging illumination conditions [102].

Kraemer et al. [58] used a deep learning approach to reconcile the PSEP fea-

tures by exploiting the likelihood maps of deep neural networks (DNN). Also

utilizing DNNs, [79] proposed a convolutional neural network (CNN) for straw-

berry crop row detection with accurate navigation. Lin et al. [64] also showcases

the potential of CNNs to reliably navigate a tea üeld by classifying tea rows.

These approaches are often more accurate than their traditional counterparts

for detecting or segmenting speciüc plants. However, in contrast to traditional

approaches, CNNs require a signiücant amount of labeled data and more compu-

tational resources both for training and inference, while being less dynamic and

requiring further tuning in diûerent conditions. [35].

To perform vision-based navigation of wheeled platform two common ap-

proaches were more popular: proportional-integral-derivative (PID) or visual ser-

voing. Billingsley et al. [21] extracted the row of plants using a Hough transform,

and used a PID controller for navigation through a sugar-beet üeld. The visual-

servoing [40] technique was also exploited for autonomous car guidance in urban

areas [34] by road lane following with obstacle avoidance using a monocular cam-

era. These methods regularize the controlled agent’s motion within a loop directly

based on the current visual features.

The technique proposed in this chapter draws inspiration from our previous

work [7] where we are able to both navigate a single crop row and switch lanes

at the end. However, this approach was only tested in a single artiücially created

row-crop üeld, without considering real open-üeld challenges like (diûerent crop
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4. Vision-Only In-Field Navigation

types, illumination variation, appearance of weeds, and uneven distribution of

plants in rows). We propose a real-üeld applicable method to automatically

detect the number of crop rows. Multi-crop row switching is then enabled by

being able to correctly identify new crops as the robot moves across the üeld.

4.2 In Field Guidance Strategy

A beneüt of crop rows is that they are generally planted in consistent long parallel

structures. A downside to this parallel structure is that there is no connection

between them. Therefore, the platform needs to not only follow the crop row

without damaging the crop but also autonomously switch between them.

Note that our navigation scheme allows the robot to transition from one crop

row to the next one only by switching the cameras and without requiring the robot

to perform a complex maneuver to enter the next row. Furthermore, following

our navigation scheme the robot requires a smaller space for maneuvering than

the one required to perform a U-turn.

The technique proposed in this section draws inspiration from our previous

work [7] where we are able to both navigate a single crop row and switch lanes

at the end. However, this approach was only tested in a single artiücially created

row-crop üeld, without considering real open-üeld challenges like (diûerent crop

types, illumination variation, appearance of weeds, and uneven distribution of

plants in rows). We propose a real-üeld applicable method to automatically

detect the number of crop rows. Multi-crop row switching is then enabled by

being able to correctly identify new crops as the robot moves across the üeld.

We greatly extend our prior work [7] and use information from multiple crop

rows to navigate a weeding robotic platform in üve diûerent real üelds under

various weather conditions. The proposed approach takes advantage of planting

schemes (standardized distances between rows of crops), and ensures minimum

damage to crops and persistent coverage throughout the üeld. The proposed

approach relies on well-known signal processing and computer vision approaches,

however, their combination is unique and their robustness has been demonstrated

by being applied to üve crop types on a robot in the üeld. To achieve multi-crop

row following we employ a similar high-level algorithm to our previous work in [7]

for a single crop row. Figure 4.4 outlines our multi-crop row following strategy.

Hence, we introduce a visual-based navigation scheme that allows the robot to

follow a crop row, exit from it, and enter the next one by exploiting two of the

cameras mounted on the front FCfront and back FCback of the robot, as shown

in Figure 4.3.

Starting in a corner of the üeld, The robot ünds the number of crop rows

underneath it and starts autonomously following the current set of crop rows (a
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4.2. In Field Guidance Strategy

Figure 4.3: Robot, frames and variables; FCfront , FCback are the front and back camera frames.

The cameras are mounted at an offset tx from the robot center FR and tz above the ground,

and with tilt ρ.

lane) using vision-based navigation techniques 1 until the front-facing camera

detects the end of the current lane. The rear camera then guides the robot to

the exit point, end of the lane, actively guiding the robot at all times 2 . Using

the omnidirectional capability, the robot then switches to the next set of crop

rows 3 to be traversed. The beneüts of the omnidirectional platform prevail

here as we can directly navigate to the new lane without turning around 4 , this

also outlines the beneüt of symmetrically mounted sensors at the front and rear.

In the next section we describe the vision-based crop row following and crop row

switching algorithms. In the next section we describe the vision-based crop row

Figure 4.4: In-field navigation strategy, (1) following crop rows with front camera, (2) exiting

crop rows using back camera, (3) switching to the next crop rows, and (4) following new crop

rows with back camera.

following and crop row switching algorithms. When the robot reaches the end of

the crop row, it should exit the current row and enter the next one. However, the

camera looking in the navigation direction cannot see any crop anymore. Thus,

the robot is still in the row and has no path curve to follow. We introduce a
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4. Vision-Only In-Field Navigation

visual-based navigation scheme that allows the robot to exit the current row and

enter the next one by exploiting both the cameras mounted on the robot and the

symmetry of the robot dynamics.

4.3 Multi-Crop-Row Detection

The ürst step in a successful vision system capable of traversing a üeld is the

assumption that crop rows are planted parallelly. To have a completely crop-

agnostic navigation system the varying distances between the rows for the diûer-

ent crops is an important element. Therefore, it is imperative to have a system

that can detect the number of crop rows before instantiating the navigation al-

gorithm.

We perform crop row detection by employing a novel sliding window-based

approach. This extracts the location of the prominent crop rows while being

robust to the appearance of weeds between them. Our detection approach consists

of three steps. First, we perform vegetation segmentation followed by connected

components operations to ünd individual regions (plants) and their center points.

This allows us to remain agnostic to the crop that has been planted. Second, we

automatically detect the number of crop rows by employing an estimate of the

moving variance which we use to describe the üeld structure. Finally, we track

the detected crop rows by centering a parallelogram on each row while the robot

is traversing the lane. We detail each of these steps below.

We summarize a row by the position of the individual plants along it. Each

plant is represented by its center point. We obtain this by ürst computing the

vegetation mask of the input RGB image using the excess green index (ExG) [118].

IExG = 2IG − IR − IB, (4.1)

To separate foreground and background pixels in the image based on ExG we em-

ploy Otsu’s method [84] which obviates the need for manual tuning of a threshold.

Then, each connected component in the vegetation mask is converted to an object

of interest (plant) with a unique center point obtained from the center of mass.

One issue associated with this technique occurs when multiple “plants” are

absorbed into a single large region most often occurring with bushy plants. A

single region representing an entire crop row negatively impacts later stages such

as line ütting. To reconcile this we divide contours into smaller subsections if

they exceed a predeüned maximum height, depicted in Figure 4.5. Ultimately,

this step allows us to cater to a larger variety of canopy types.

Figure 4.6 illustrates the crop row detection algorithm, First, a sliding window

Ψ scans the image from left to right with a stride of S. The size of the sliding

window (w and h) and the stride S are set to ensure a large overlap between
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4.3. Multi-Crop-Row Detection

(a) Lemon-balm (b) Coriander

(c) Potato

Figure 4.5: The vegetation segmentation (in green), plant boundaries (in bold green), and

the resultant plant centers (magenta dots). The location of individual plants is indicated by

the enclosed regions (in green), from vegetation segmentation, and their estimated centers are

indicated with magenta dots. In (a) individual plants are easy to see (b) is a case where crop

boundaries have to be estimated and case (c) is a mixture of both conditions.

adjacent steps in the scans. For the n-th sliding window Ψn we compute a line

(Ln) based on the crop centers inside the sliding window using the least-squares

method. We then ünd the intersection point In of the line Ln with the bottom

axis of the image; we only retain lines that intersect within the image bounds.

Each line is then described by its point of intersection In = [x, y] and the angle

of intersection ϕn such that Ln = (In, ϕn).

We use the estimated crop lines in conjunction with the moving variance [67]

to represent the local structure of the üeld. The moving variance of the estimated

crop line angles, ϕn, is calculated over a window of size k such that

σ2(ϕn) =

∑n+k/2
i=n−k/2(ϕn − ϕ̄n)

2

k
; ϕ̄n =

∑n+k/2
i=n−k/2 ϕi

k
. (4.2)

The moving variance operator yields peaks when there is discord between the

local hypothesized crop lines, this occurs between the crop row lines. Troughs

occur when there is a consistent agreement regarding the hypothesized crop lines,
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4. Vision-Only In-Field Navigation

this occurs in the presence of crop rows. A depiction of this üeld structure signal

is given in Figure 4.6. The peaks (▲) and troughs (▽) of the üeld structure

signal are detected using peak prominence with a constant threshold. To detect

Figure 4.6: The sliding window Ψ is applied progressively. The moving variance of the estimated

line angles is used to represent the field structure. The peaks (▲) and troughs (▽) from the field

structure are used to find the crop rows and the center of the between crop rows respectively.

The weighted average of multiple troughs leads to the final trough ■.

the troughs, the signal is ýipped (via negation) and peak prominence is applied

with the same threshold. The detection of troughs is more complex as crop rows

can yield multiple peaks. We resolve this by computing the weighted average of

the possible solutions in the local neighborhood, where the local neighborhood is

deüned to be adjacent sampling positions with similar standard deviation values.

An example of this is given in Figure 4.6 where the ünal trough is denoted by ■.

The output of this step is the set of detected crop row lines L.

4.4 Visual-Servoing Based Crop-Row Following

To guide the robot within the crop rows, we utilize our previously developed

in-row guidance approach [7] which relies on the locally extracted features from

camera images used on the image-based visual servoing (IBVS) controller [40,

32]. By continuously regulating the robot’s motion based on this controller and

observation features as explained in Section 4.3, we ensure the robot stays in the

middle of the path and follows the desired crop rows to their end.
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4.4. Visual-Servoing Based Crop-Row Following

Figure 4.7: The image frame I and L = [I, θ] denotes the average line estimated from the visible

crop rows.

We deüne the primary guiding feature L(t) = [I, Θ] as an average line derived

from previously detected crop row lines in L. In this context, the error function

e(t) for the IBVS controller is deüned as:

e(t) = L(t)− L∗, (4.3)

The L(t) line is computed from the current camera image, and L∗ = [0, H
2
, 0]

corresponds to the desired feature value located at the bottom center of the

image I, as depicted in Figure 4.7. The camera’s velocity uc = (vc, ωc) includes

both the instantaneous transitional velocity vc and the angular velocity ωc of the

camera frame. Consequently, the robot’s frame velocities u can be expressed as a

function of the camera velocity uc using the relationship u = RTC uc, where RTC

is a homogeneous rigid-body transformation from FC to FR.

L̇ = Is uc = Is
CTR u, (4.4)

The interaction matrix Is deünes the relationship between the feature dynamics

L̇ and the robot velocity in the camera frame uc. For crop monitoring or weeding

tasks, where the robot typically operates at a constant linear velocity v = v∗x,

the feature dynamics can be reformulated in terms of the robot’s velocity u. The

Jacobian matrix J then captures the relationship between these variables, as

shown:

L̇ = J u = Jv v
∗ + Jω ω, (4.5)
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where Jv and Jω are the columns of the Jacobian matrix J . Therefore, the control

law can be obtained by:

ω = −J+
ω (λe+ Jvv

∗), λ > 0, (4.6)

where J+
ω indicates the Moore-Penrose pseudo-inverse of Jω.

Hence, the controls law Equation (4.6) leads the current feature L(t) =

[a,
H

2
, Θ] to towards L∗, where H denotes the height of the image and a is

the deviation from the image center of the intersection point I. By continuously

regulating the robot’s motion based on the visual-servoing controller and obser-

vation features, we ensure the robot stays in the middle of the path and follows

the desired crop rows to their end. At the end of crop rows, we switch to the

next lane by using the switching technique described in the next section.

4.5 Multi-Crop-Row Switching

To autonomously navigate over an entire row-crop üeld a robot must be able to

both navigate down lanes and shift between them. Utilizing an only image-based

motion controller in conjunction with other localization techniques (like GPS and

wheel odometry) could considerably improve the reliability of the system in cases

of outage of motion information due to hardware problems and environmental

situations. In our previous work [7] the task of changing lanes was managed

successfully, however, it was only designed to handle a single crop row in a lane

under a highly engineered condition. This method was highly reliant on the

seeding pattern of the crops-rows and struggled with cases that often occur in

real üelds like uneven-seeded crop rows, unexpected distances between the rows,

and the appearance of cluttered and weedy regions.

Furthermore, it required signiücant space to perform the switching maneuver

could not reconcile diûerences between rows, and subsequently followed the in-

correct lane. In this work, we propose a multi-crop row switching technique that

detects and counts the rows as it progressively shift between them. This takes

advantage of the side-ways movement of BonnBot-I allowing easier transitions

while requiring less space. To detect a new crop row we exploit SIFT features

to ensure we only traverse the desired number of crop rows to conürm our new

lane is in the correct location without relying on any motion information neither

odometry nor GPS.

To detect a new crop row, we use a feature-based crop row recognition tech-

nique based on SIFT features described below, and the number of crop rows to

shift by is given by the previous step which gives us the number of crop rows

beneath the robot. This approach is designed for arable farms land with multi-

ple rows complying with European phenotypic farm patterns [5]. The process of
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changing lanes needs to be robust to diûerent numbers of crop rows contained in a

lane and ensure complete coverage is obtained without missing or double count-

ing crop rows. The approach described here takes advantage of the side-ways

movement of BonnBot-I allowing easier transitions while requiring less space.

We use a feature-based crop row recognition technique based on SIFT features

described below. The feature-based crop row recognition technique also reduced

issues with lane detection due to its robustness to both false detections and missed

detections of the crop rows themselves. We start by considering the robot to have

found the end of the crop row; stage 3 of the navigation scheme Section 4.2. The

multi-crop row detection algorithm Section 4.3 provides us with the number of

crop rows C that have been traversed. To ünd new crop rows and lane switching,

we need to move across C rows and then restart the crop row following the

algorithm.

To do this we describe each crop row by a set of SIFT features and follow

the algorithm described below. Assuming we are moving left-to-right, we store

the features of the right most parallelogram in the image forming a feature set

G. The robot then starts moving to the right side with a constant uy = 0.15m/s

velocity. Upon receiving a new image we detect the crop rows in a similar manner

outlined in Section 4.3 and then only consider the right-most side of the image.

We extract a new set of SIFT features from the right-most parallelogram in the

image forming a feature set G∗. The new feature set, G∗, is potentially a new

crop row. To determine if G∗ is a new crop row we compare it to the stored SIFT

features G. If a new crop row has been detected, we update the stored features

(G=G∗) and continue this process until we have moved across C new crop rows.

To compare the SIFT features, we use a FLANN-matcher to obtain the best

matches � between the two sets G and G∗. This results in the Euclidean distances

between G and G∗ being stored in Ω. We then take the average of the m matches

in Ω which are above a threshold λ. This is used to provide a distance measure

between the two sets of features: When D(G,G∗) exceeds a threshold τ we assume

a new crop row has been found, τ is a crop type speciüc constant.

D(G,G∗) = 1

m

m
∑

i=1

�m (4.7)

4.6 Experiments

We performed three experiments to show the capability and robustness of our

proposed approaches. These experiments were carried out on both simulated and

real phenotyping üelds. The simulated üelds are built in the Gazebo environment

with either two or three rows in a lane. It is also designed with various challenging

arrangements, such as curved crop rows (Sim-Curved), crop rows with large inter-
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(a) Sim-Curved (b) Sim-Large-Gaps (c) Sim-Dense-Weed

Figure 4.8: Simulated Fields with different plant sizes as weeds (small) and crops (big), for

visualization soil background in simulation is removed.

crop gaps (Sim-Large-Gaps), and lanes of crops having dense weed appearance

(Sim-Dense-Weed), which are depicted in Figure 4.8. The real üelds represent

up to üve diûerent crops with non-similar canopy shapes and varying numbers of

crop rows per lane. All results outlined in this section are based on the evaluation

data and require limited human intervention (apart from minor hyper-parameter

tuning) during run-time and navigation.

4.6.1 Experimental Setup

The experiments of all üve crop types were completed on BonnBot-I at Campus

Klein-Altendorf of the University of Bonn under various illumination and weather

conditions such as: relatively wet and very dry grounds, cloudy and sunny day

times with long and short shadow cases (with minimal hyper-parameter tuning),

depicted in Figure 4.9. We used a 1:1 scale Gazebo simulation model with a real-

istic üeld to fast-track the üeld experiments. From this simulation, we were able

to derive our algorithmic hyperparameters. On BonnBot-I, the front and back

navigation cameras are üxed at a height of 1.0m and tilt angle ρ = 65◦. Both

camera resolutions are 1280 × 720 with a capture rate of 15 fps. For all experi-

ments, the width w of the sliding window Ψ was kept constant w = W/10 = 128

with a height of h = 720 pixels. This window size and stride equal to 13 en-

sures ≃ 95% overlap between consecutive sliding windows. Also, we empirically

set k = 10 in Equation (4.2), which in the simulation provided the best trade-

oû between sample consistency and neighborhood relationship. As the primary

goal of this platform is to perform weeding, we set its velocity to be a constant

v∗x = 0.5m/s. We use diûerential velocity control within the crop rows and omni-

directional control for switching between the lanes. Our approach is implemented

using Python and PyCuda, ensuring real-time operation (while with CPU-only

machines, performance is real-time) and runs on a user-grade computer (Cincose

DS-1202).
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(a) Maze (b) Coriander

(c) Lemon-Balm (d) Sugar-beet

(e) Potato

Figure 4.9: Long-view of Row-crop fields; the robot was deployed in a variety of row-crop field

scenarios characterized by significant variability in illumination, crop type, canopy architecture,

and phenological stage.

4.6.2 Multi-Crop-Row Detection

The ürst experiment is a qualitative analysis of the ability to detect crop rows in

the üeld using the technique described in Section 4.3. We use ExG with Otsu’s

technique [84] to diûerentiate foreground from background as this obviates the

need for individual hand-tuned plant segmentation thresholds. The goal of this

technique is to exploit the dominant crop locations and accurately detect the best

location for traversing a lane (i.e., keeping the crop rows under the platform). Due

to weeds growing between the crop rows, this can be a challenging proposition
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Figure 4.10: Performance of multi-crop row detection technique: accuracy of detections (a)

position (w.r.t the image width) and (b) orientation w.r.t the acceptable thresholds

in real üelds. Qualitative results for four crops (sugar-beet, coriander, potato,

and beans) are presented in Figure 4.12; we refrained from adding Lemon-balm

and simulated üeld results due to space limitations. The illustrated crops have

diverse canopy types (see Figure 4.12) and are arranged in two standard patterns

with two and three crop rows per lane. In the bottom row of Figure 4.12 it can

be seen that our approach for detecting crop row lines through peaks and troughs

works for these chosen crops even with a varying number of crop rows. This is

true even for challenging crops such as coriander and beans.

For all crops, we were able to consistently detect both the peak (no crop

row) and trough (crop row) locations regardless of the presence of weeds. This

is especially evident in coriander, where even with the small distance within the

crop row (between the coriander plants), we are still able to detect the crop

rows. This is an example where dividinga single large region into sub-regions is

essential. Sugar-beet, Figure 4.12-a, is another interesting use case. Visually, it

is considerably more diþcult to discern the crop locations, however, this tech-

nique was still able to extract crop rows. Overall, this technique for crop row

detection successfully located the required troughs in order to navigate a lane,

providing accurate information required for the other stages of our system. To

further analyze the robustness of the crop row detection technique, we perform a

quantitative evaluate. For each of the üve crops (those listed in Figure 4.12 and

lemon-balm) and the simulated üeld, 100 images were annotated using data from
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BonnBot-I where the camera tilt angle ρ was varied from 55◦ to 75◦.

The annotations contain the ground truth of all the crop row lines located

underneath the robot and crop masks belonging to the main crop rows. To

measure the accuracy, we compare the predicted lines of each image to the ground-

truth using two parameters: position and orientation. The position of a line is

deüned based on its intersection with the bottom edge of the image, where the

distance between the prediction and the ground truth is normalized based on the

width of the image. Figure 4.10 outlines the quantitative performance result of

real üelds and the averaged performance of simulated üelds.

We observe our method is able to estimate crop row positions with a mean

accuracy of 88.1% and a standard deviation of 8% over all types of real crops.

Similarly, we see that the algorithm is able to correctly estimate the orientation

of crop rows in more than 88.3% of cases when the acceptance threshold is set

to 11 degrees. The crop row lines of beans and sugar beet were the hardest to

estimate. For sugar-beet, we attribute this to the fact that the crop was at an

early growth stage, as seen in Figure 4.12, and this made it more complicated

to detect the crop lines. For beans, we attribute this to their branchy canopy

shape, disarranged seeding pattern, and plant vibration due to the wind in the

üeld. One potential use case where the approach may fail is when the number

of weeds is close to or greater than the number of crops in the image (very high

weed pressure). Furthermore, diþculties may be faced when navigating the üeld

once full canopy closure has been achieved and there are no visible crop lanes

to follow (full vegetation). Nevertheless, overall, we observe that our novel crop

row detection method could estimate lines of crops in a variety of challenging

real-world conditions for diûerent crop types reliably.

4.6.3 Navigating Along The Crop-Rows

To analyze the performance of our crop row navigation technique, we require

accurate ground truth information. We collected the ground truth information

by manually driving the robot down each of the row-crop üelds for all crop types

and stored the associated information (e.g., GPS measurements) for later evalua-

tion. Also, all simulated crop rows came with reference line coordinates from the

simulation environment. The associated GPS measurements are then used as the

“correct” position (accurate to 1cm). Even though manual operation can cause

some errors, we consider this to be an appropriate ground truth to compare t,o

as the crop rows are not guaranteed to be planted in a straight line. The üve

crops (sugar-beet, coriander, potato, beans, and lemon-balm) provide a range

of challenges such as diûerent canopy types, weed densities, and varying growth

stages. Table 4.1 outlines the performance of our full pipeline, including the nav-

igation system, on these crops as well as three challenging simulated üelds. The
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(a) Sugar-beet (b) Coriander

Figure 4.11: Illustrations of four crops (top row) RGB images with marked vegetation index of

detected rows and their corresponding field structure signal (bottom row). The detected peaks

(blue triangle) and troughs (orange square) obtained via their prominence in the signal are also

provided. Denote that the field structure signal only includes the values of lines intersecting

with the bottom axes of the image.

most challenging crop for navigation was sugar-beet, and we attribute this to two

reasons. First, the crop was at an early growth stage, as seen in Figure 4.12, and

this made it more complicated to detect the crop lines. Second, not all of the

sugar-beet had germinated and this led to gaps or long “dead space” along the
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(a) Potato (b) Beans

Figure 4.12: Illustrations of four crops (top row) RGB images with marked vegetation index of

detected rows and their corresponding field structure signal (bottom row). The detected peaks

(blue triangle) and troughs (orange square) obtained via their prominence in the signal are also

provided. Denote that the field structure signal only includes the values of lines intersecting

with the bottom axes of the image.

rows, which the same eûect can be seen in Sim-Large-Gaps results too. However,

tracking multiple crop rows allowed our technique to still navigate over the entire

evaluation area without any manual intervention. This evaluation shows that

multiple crop rows following have considerable beneüts over techniques that only
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Table 4.1: Lane following performance of BonnBot-I using the proposed method in real and

simulated fields.

Crop Length
µ± σ of

dist. to crop rows

µ± σ of

angular error

Sim-Curved 200 m 9.01 ± 2.63 cm 4.52 ± 3.52 deg

Sim-Large-Gaps 200 m 6.75 ± 3.15 cm 4.76 ± 2.69 deg

Sim-Dense-Weed 200 m 7.41 ± 2.86 cm 3.91 ± 1.73 deg

Beans 52 m 3.49 ± 2.89 cm 3.73 ± 3.21 deg

Potato 37 m 2.18 ± 3.01 cm 4.91 ± 1.63 deg

Coriander 54 m 2.91 ± 2.38 cm 2.57 ± 1.05 deg

Sugar-beet 69 m 8.41 ± 3.79 cm 3.25 ± 1.27 deg

Lemon-balm 40 m 2.12 ± 1.58 cm 3.21 ± 2.83 deg

track a single crop row.

From a navigational perspective, the bean crop had a large standard deviation

between real üelds and Sim-Curved among simulated üelds when considering

angular error. The weather conditions played a crucial part in this, as heavy

winds consistently changed the location of the leaves of the crops. This limitation

in the navigation technique leads to large angular variations while traversing the

lane.

Across the üve real crop types, the average deviation from the ground truth

was 3.82cm or approximately 10% of the crop row distance. This minor ýuctua-

tion is suþcient to ensure safe navigation without damaging crops. Finally, this

navigational accuracy was suþcient for the technique to traverse all the crops in

the üeld without manual intervention.

4.6.4 Multi-Crop-Row Switching

Our ünal evaluation is based on the lane-switching technique outlined in Sec-

tion 4.5. To evaluate the performance of this technique, we manually annotated

randomly selected positive and negative samples from our three main crop types:

beans, coriander, and sugar-beet, and simulated üelds as we did not have the

switching information for potato and lemon-balm due to a technical problem.

We store one of the positive annotations as our main row and compare it to

each of the other positive and negative rows. Figure 4.13 outlines the precision-

recall curves achieved on each of the main crops. We outline the F1 score here

which provides a trade-oû between precision and recall. For this simple matching

technique, we are able to achieve promising results across all crop types, even

sugar-beet, which, as outlined Section 4.6, had a number of added complexities.

The early germination stage of the crop added extra complications to crop row

switching as, even visually, the rows appeared similar. However, we were able to
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Figure 4.13: The precision-recall plot for switching the platform across lanes, includes beans,

coriander, and sugar beet.

achieve an F1 score of 62.1, which was the lowest-performing crop. Overall, from

these evaluations, we were able to empirically set thresholds that favored high

precision in order to remove false positives. From this, we were able to provide

a lane-switching technique that was robust to the challenges of each crop type.

In experiments in the üeld and deployed on a robot, it successfully switched 6

lanes of crop, across the three main crop types, without any manual interven-

tion. Furthermore, we used this technique in simulated crop row üelds for 20 lane

switching cases, which outlined an average success rate of 90%.

A ünal key analysis of our crop row switching technique is the distance needed

to perform the maneuver. In our experiments, an average of 0.7m was required

from the end of the crop to the location of the camera. This is a marked im-

provement over [7], which required more space to perform the switching than the

length of the robot itself.

4.7 Conclusion

Autonomous agricultural robots are increasingly important in enhancing farm

productivity by performing precise üeld management tasks. Nowadays, robots

and agricultural vehicles navigate using high-precision dual-frequency RTK-GNSS

receivers, which guide them along pre-programmed paths. However, the cost and

vulnerability of such systems to outages have driven interest in alternative navi-

gation methods.

In this chapter, we introduced an approach exploiting the crop row structure

using only the local observation from the onboard cameras without requiring any
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global or local position awareness. Despite the potential, these systems face signif-

icant challenges, such as working in highly self-similar enrolments and unreliable

sensor data due to the dynamic nature of crop üelds. Furthermore, the changing

üeld environment, driven by plant growth, necessitates frequent updates to üeld

maps or the adaptability of used algorithms. To achieve this, we have proposed

a novel multi-crop row detection strategy that can deal with cluttered and weedy

scenes.

Furthermore, we proposed a novel lane-switching strategy enabling BonnBot-

I to switch to a new lane independent of any global positioning system or human

intervention robustly. We evaluated our approach on BonnBot-I on up to üve crop

types (with varying canopy shapes) in real üeld conditions and three challenging

simulated üelds achieving an average navigation accuracy of 3.82cm in real üelds.

BonnBot-Is multi-crop row visual navigation system and our previous work [7]

have signiücantly inýuenced the future of automated plant phenotyping and inter-

vention. To further support the robotics community, we released the Multi-crop

row dataset necessary to reproduce our results and open-sourcing the code of our

approach. This impact is evident in the number of publications and projects initi-

ated using our implementation. A comprehensive collection of qualitative results,

along with the C++ and Python implementations, can be accessed in https://

github.com/PRBonn/visual-croprow-navigation and https://github.com/

Agricultural-Robotics-Bonn/visual-multi-croprow-navigation to facilitate

further advancements in this üeld.

Nevertheless, the classical vision-based approaches especially in outdoor navi-

gation applications struggle in dynamic and cluttered environments, particularly

in distinguishing between crops and weeds in densely vegetated areas. While these

approaches excel in controlled and engineered environments, they are mostly sen-

sitive to varying lighting conditions, occlusions, and the natural variability in

crop and weed appearances, where precise diûerentiation is critical for eûective

üeld operations. Hence, future works could explore an alternative approach to

detecting individual plants (crop/weed semantic segmentation) using deep neu-

ral networks to surpass classical signal processing and machine-vision techniques

to move towards a holistic and crop-agnostic navigation approach for row-crop

üelds.

In the next chapter, we shift focus to the third research question, addressing

plant-level targeted intervention using robotics and robotic vision. This includes

reviewing precision farming approaches and deüning system requirements, explor-

ing novel techniques for target-space management, path-planning strategies, and

a biodiversity-aware weeding scheme. This is followed by presenting the results

of experiments conducted in both simulated and real-world settings to evaluate

their performance.
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Chapter 5

In Field Bio-Diversity-Aware

Interventions

I
n this chapter we present our novel precision weeding approach. This ap-

proach enables plant-level and bio-diversity-aware interventions in the üelds

using our self-built robotic platform BonnBot-I (introduced in Chapter 3).

In this chapter, we show how we fuse image-based perception and geometric

information of the plants underneath the robot to properly guide independently

controllable weeding axes of BonnBot-I in real-time while the robot moves. This

Figure 5.1: BonnBot-I Platform, a robotic platform capable of conducting field monitoring and

precision weed management in arable field. The detection camera positioned at the front of

BonnBot-I observes the wheel-to-wheel area beneath the robot (depicted as a cyan rectangle).

Linear axes of the weeding tool (L1-L4, shown as green arrows) in the back of the robot carry

spray nozzles (N1-N4, indicated in pink).
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work was originally introduced in [5]. Furthermore, in [6] for the ürst time we in-

troduce the concept of plant-level bio-diversity-aware weeding which is integrated

into the BonnBot-I weeding approach.

The preference for consuming more natural and organic foods has rapidly

increased in recent years [23]. This has forced the agricultural industry to use

fewer agri-chemicals when dealing with weeds while maintaining the quality and

quantity of their crops. Weeding is an important aspect of arable farming as weeds

compete for nutrients in the soil [97], potentially reducing yield. To alleviate the

impact of weeds, unifo9rm treatment has been the most common approach. This

means that regardless of the presence of weeds the entire üeld is sprayed with

herbicide. This approach has led to an increasing number of herbicide-resistant

weed species [127] as well as negatively impacting the environment by increasing

soil erosion and water contamination [74].

In Chapter 3, we introduced the BonnBot-I platform and outlined the design

of its sensory setup and its novel intervention tool. However, a key component

of BonnBot-I is its ability to perform precise intervention actions in the üeld.

These actions are derived from the ability to use advanced planning and fusion

algorithms which are built into the platform.

In [5], we initially developed a planning approach for BonnBot-I that used

non-overlapping segments of üeld observation to predict intervention trajectories

for weeding axes of the weeding tool. In a follow-up work [6] we proposed an al-

ternative rolling-view planning approach that improves the intervention accuracy

and performance. Furthermore, it emphasizes the need for robots to recognize

and adapt to the diversity of weed species. By integrating such details in the in-

tervention scheme, we could equip the BonnBot-I to perform bio-diversity-aware

weed management. This advancement in targeted plant-level intervention en-

hances crop protection and resource optimization in weeding, signifying a shift

towards more nature-conscious and eþcient agricultural practices.

Overall, in this chapter, our third research question is "How can we enable

a weeding robot to perform crop-agnostic, plant-level weeding while considering

biodiversity-aware practices?" of this thesis by oûering the following main contri-

butions:

• Propose several novel concepts for per-plant intervention approaches

towards enabling more sustainable weed management practices.

• For the ürst time we propose the integration of bio-diversity aware weed-

ing in the capabilities of an autonomous robotic weeding platform.

• We introduce a framework for testing different weeding strategies

using a simulation environment.
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5. In Field Bio-Diversity-Aware Interventions

• We represent the results of real-world experiments of multi-nozzle weed-

ing of BonnBot-I.

This chapter is structured as follows: we begin by reviewing similar robotic weed-

ing approaches addressing precision farming. In Section 5.2, we deüne a standard

weeding scenario and outline the system requirements for interventions. Sec-

tion 5.3 introduces our methodology for transforming real-üeld observations into

a deployable space for weeding. Next, in Section 5.4, we discuss target-space

management for allocating targets across multiple weeding axes in real-time. In

Section 5.5, we present path-planning strategies for controlling BonnBot-I’s in-

tervention heads, including a biodiversity-aware weeding scheme in Section 5.6.

Finally, Section 5.7 describes experiments in simulated and real-world scenarios,

evaluating the systems performance in sugar beet and corn üelds. The chapter

concludes with a discussion of results and potential improvements.

5.1 Related Works

In recent years, weed management techniques have rapidly evolved to treat in-

dividual weeds precisely. Intervention on this level cuts the amount of agro-

chemicals required which minimizes the environmental side-eûects. Robotic weed

intervention has the potential to revolutionize weeding paradigms through plant-

level weed management. To achieve this, the treatment of each plant must be

dictated by its species, size, and impact upon not only the crop but also the

environment [22, 52]. Several robotic weed control platforms have been intro-

duced oûering active and passive interventions. On these platforms, a variety

of weeding implements have been investigated including physical [27, 72, 15, 9],

chemical [119, 43], electrocuting [10], laser-based [107, 87, 107, 121], and multi-

intervention system [90]. Considering the need to operate in diûerent üelds with

varying crops, weed species, and weed distributions, it is clear that there is no

one best general solution and robotic systems should be able to cater to a variety

of tools [72, 6].

Slaughter et al. [98] provides an early detailed review of diûerent tools, While

not speciücally researching a platform. An early, low-cost, platform was devel-

oped by [81] which contained a mechanical weeding tool for intra-row intervention

that required a human in the loop. Bawden et al. [19] proposed an automated

platform that utilized a row of weeding hoes and spray nozzles to improve broad-

cast applications and perform multi-modal weeding (physical and chemical). Also

combining mechanical tools (two ranks of stampers) and sprayers [80] can selec-

tively weed based on the overall size of the plant. To design a spraying plat-

form [123] developed a technique that was able to speciücally target regions or
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(a) BoniRob mechanical and chemical weeder (b) Agbot2 mechanical and chemical weeder

(c) Deep field mechanical weeder (d) Carbon robotics laser weeder

Figure 5.2: Weeding Platforms; each of these platforms are designed with specific weeding tools

and operates in unique ways. (a) BoniRob [88] , (b) Agbot2 [73] , (c) Deepfield Robotics [86] ,

and (d) Carbon robotics [87]

weeds. In an indoor experiment, they were able to reduce the amount of chem-

icals used, compared to a uniform sprayer, by 46.8%. Chang et al. [28] built a

platform to evaluate two diûerent mechanical weeding tools which was tested on

a purpose-built üeld with a single crop-row of 20m. Their approach used Yolo

to both locate weeds of interest in the üeld but also control the movement of the

platform.

A consistent trend with the above approaches is that they aim to improve

broadcast or uniform weeding by introducing equally spaced tools. In doing so

they ensure coverage but have the signiücant downside of having to replicate the

tool across the entire width of the robot. To achieve a truly precise weed control

method, a weeding platform must be equipped with the capability to carry and use

multiple tools simultaneously. Replicating equally spaced tools across multiple

sets increases the complexity and manufacturing challenges of this task.

A more promising approach involves using movable tools on a robotic plat-

form, but this necessitates a sophisticated planning algorithm to ensure eþcient

and accurate operation. A frequently overlooked aspect of weeding is planning

üeld-based intervention. If a robot carries multiple movable tools then plan-

ning their deployment is essential, yet limited work has explored this aspect.
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Lee et al. [61] is one of the few works in this area. They presented a multi-query

approach for eþciently planning paths using a single UR5 robot manipulator to

enable precision weeding. This was achieved by maintaining a database of pre-

computed paths that were constructed oÿine and the optimal path was chosen

and adapted online. Xion et al. [121] proposed a laser-based intervention scheme

that segmented the visible weeds into equally spaced regions along the x-axis,

this then allowed them to engage targets sequentially.

In this work, we aim to address the limitations of existing weeding platforms

by introducing a novel approach. We equipped BonnBot-I with a novel weeding

tool (introduced in Section 3.1.4), where a set of movable and replicated tools

are utilized to conduct selective operations in real üelds. This innovative design

oûers great ýexibility and precision in weed control, enabling targeted intervention

without compromising eþciency.

5.2 The System Overview

BonnBot-I is equipped with a novel weeding tool design enabling high-precision

plant-level üeld interventions. It consists of a set of replicated linear actuators

and is controlled via the intervention controller unit consisting of several compo-

nents which are elaborated in the following sections. Here, we brieýy explain the

conceptual design of the weeding tool, its requirements, and operation assump-

tions. The most critical challenge in this design is to eþciently plan paths for

intervention heads, such that we maximize the number of well-managed weeds

in a weeding scenario. A typical weeding scenario is composed of the following

stages:

1. Weeds get detected, classiüed, and tracked within the viewable area of the

down-facing detection camera in front of the robot. The monitoring sys-

tem introduced in Section 3.4 runs the Mask-RCNN network for instance-

based semantic segmentation and classiücation is used to estimate necessary

phenotypic information about the plants. Finally, the plants are tracked

(tracklets) through the viewable area.

2. The tracklets, which are identiüed as valid plants for management, are

monitored beneath the robot using its localization system. These tracklets

are then relayed to a target-space manager, who eþciently allocates them

among the various weeding axes for optimal handling.

3. Each intervention planner plans an optimal path considering phenotypic

factors like weed type, size, harmfulness, required action time, and bio-

diversity considerations.
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4. The computed paths are transmitted to the relevant axis drivers and nozzle

controllers to carry out corresponding actions on the plants.

Figure 5.3: The software architecture, including sensors (purple), vision perception, localization

of robot base frame FR (light blue), intervention planning, intervention planner, and weeding

axes controllers (orange).

5.3 Observation Model

In [5] we introduce a segment-view observation model which was used to transfer

real-time detection of monitoring systems to comprehensive model üeld models.

Then this model was used to manage planning observations for weeding scenarios

at each timestamp. This method used discrete non-overlapping segments of ob-

servation to represent a weeding scenario in any time. This segment-view-based

model allows us to focus on an individual üeld segment, enabling us to cope with

their distinct weed distributions. We derive the distance between the weeding

equipment and individual weeds assuming a weed distribution yielded by a Pois-

son process with an arrival rate of ¸ = λ×Π, where Π denotes the weeding width

illustrated in Figure 5.4. To understand the spacing between the weeds (¶x) we

use the robot’s motion along the x-axis within its frame of reference (FR) de-

picted in Figure 5.4. While this method was successful, it is less adaptable to the

changing weed spatial distribution patterns and thus harms overall performance.

To overcome this we propose a rolling-view observation model.

We propose a rolling-view model which, integrates discrete camera observa-

tions into a comprehensive model of the entire üeld. Expanding the planning

scope beyond single segments, allowing for more eûective weeding strategies over

a larger area. A key advantage of this approach is illustrated in Figure 5.4 which

highlights that the previous segment-based approach would treat two views inde-

pendently whereas the rolling window approach updates the planned intervention
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Figure 5.4: Segment-view vs Rolling-view Planning; two separate segments T0 and T1 with

different weeding distributions are shown. An intermediate Ti is substantially helping the

planner to optimize the planned route of the weeding axis (green) w.r.t the baseline (red).

across these two views iteratively. This enables the planning to be optimized more

ýexibly without increasing the planning window size. By simply incorporating

only one intermediate frame T 1

2

, we achieve a notable enhancement in the weeding

trajectory and overall performance.

We have implemented this algorithm using multi-threading and dynamic pro-

gramming techniques that enable the rolling-view planning to be at a frequency

> 500Hz on CPU (Intelő Core i7-12700K). The rolling window planner uses the

most recent information. This means we take the prior plan and update it only

if there are new plants that need to be treated. This rolling-view model not only

reünes the weeding process and inter-image tracking but also compensates for

the vision system’s shortcomings, like missed detections or incorrect classiüca-

tions. The accumulation of multiple detections over the same area considerably

increases the accuracy of our predictions. Furthermore, by analyzing continuous

üeld segments, we can predict more precise weeding paths, leading to improved

overall eþciency in weed management.

5.4 Target-Space Management

When a robot encounters multiple targets N beneath it, the primary objective is

to engage each target using one of its intervention heads H while the robot is in

motion. Hence, before these targets enter the workspace of the weeding tool, it is

crucial to plan the motion for each intervention head. Considering sets of weeds

in any given workspace motivates a multi-query approach.

In the proposed workýow, the intervention controller node receives the de-
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Figure 5.5: In (a) an example unidirectional constrained node-graph is presented where the

numbered circles represent weeds (targets) for one intervention tool n1 with different possible

start paths (in different colors). In (b) we present a visualization of static work-space sub-

division (top) and dynamic work-space sub-divisions (bottom).

tected targets at time t + τd where τd is the time required for detection in the

monitoring node. The monitoring node provides plant-speciüc information like

plant category, pixel-wise segmentation, estimated area, and the bounding box.

Furthermore, we estimate plant centers based on their predicted segmentation

center of mass. This information is then used in the target-space management

step to assign targets to the intervention heads. The next step ünd the best mo-

tion plan for each intervention head by maximizing the number of targets that

are visited (sprayed).

The main goal is to visit all the targets with at least one of the intervention

heads as they pass the workspace of the weeding tool without the need to stop the

robot. In our wedding scenario to robot only moves in a forward direction which

makes the intervention time-critical. Hence, we use a uni-directional constrained

node graph to model the target space.

To obtain the global spatial order of targets in a segment we use the ¶x of each

weed (see Figure 5.6). In Figure 5.5(a), each node (circle) shows a weed along

with the connecting path between nodes j to k represented with a uni-directional

link (arrow) ljk. The link ljk exists if, node j geometrically is located after node k

in the 3D world frame Fw. Furthermore, the link ljk is associated with an inter-

weed cost ϱjk based on the distance of nodes j and k and a property denoting

motion probability of Pjk based on Equation (5.4). We calculate inter-weed costs

using the top-right of the cost-matrix GN×N (to respect the weeds’ spatial order).
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There are H independent intervention heads so multiple plans can lead to the

same targets being visited (sprayed). To solve this problem, we consider the weeds

as a set of targets detected in one location, this motivates us to assign intervention

targets to the H heads as either distance-based or work-space division-based

assignments.

1. Distance-based Target Assignment (D): In this approach, target j

gets assigned to the laterally closest intervention head along the sliding

direction (y-axis). This means the selected intervention head i has the

least motion required to reach the weed j. The lateral distance between

heads and weeds is deüned based on the 2D Euclidean distance between

the projection of the intervention head’s position on the ground plane and

weed positions on the same plane w.r.t the Fw frame.

2. Static Work-space Division-based Target Assignment (SD): In

this method, we divide the work space of the weeding tool toH sub-sections

of width Π/H meters. Hence, each intervention head is only responsible

for engaging with weeds laying within its sub-work-space as shown in Fig-

ure 5.5(b)-top.

3. Dynamic Work-space Division-based Target Assignment (DD):

In this model, for each new set of detected weeds, we ürst determine the min-

imum region of intervention deüned by ymin and ymax (see Fig. 5.5 (b)). The

minimum region of intervention is then divided into H equal sub-regions.

This process assists in optimizing the planning for weed engagement by

potentially reducing the area any one tool has to cover.

5.5 Plant-level Treatment In Field

We assume the robot moves along a crop-row with constant speed µ. Conse-

quently, intervention is time-critical and must respect the spatial ordering of the

weeds. There is a constant gap (Γ) between the tools and the area sensed by the

camera (Cdetect). Similar to [18] we assume weeds are uniformly distributed in

the üeld with density λ weeds/m2. Hence, using a Poisson process we can explain

the distance between the weeding implement and individual weeds by accounting

for the arrival rate of ¸ = λ×Π. We use the motion along the x-axis of the robot

frame FR to explain the weeds interval distance (¶x), visualized in Figure 5.6.

This can be shown using the following probability density function,

f(¶x) = λΠe−λΠδx , (5.1)
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also the location of weeds on the y axis can be represented via a uniformly dis-

tributed random variable y as,

f(y) =

{

1
Π

for 0 ≤ y ≤ Π

0 otherwise
. (5.2)

To engage the i-th intervention head with the j-th weed it has to traverse,

¶ijy = |hi − nj|, where 0 ≤ ¶ijy ≤ Π, (5.3)

where hi is the current position of i-th intervention head and the nj denotes to

the position of the j-th weed.

Figure 5.6: Visualization of Kinematic model of weeding tool work-space (a) the weeds detected

in the viewable area of the camera Cdetect (c); and (b) the gap between two regions.

We need to generate H independent and eþcient routes to guide the interven-

tion heads, taking into account assigned targets, the intervention head’s position,

the robot’s linear speed, and the speed and acceleration limits of its linear axes.

To do this, the intervention controller embeds all the details about each plant in

a uni-directional graph, including its type, segmentation, estimated size, bound-

aries, plant center, and corresponding bio-diversity characteristics. In this graph,

each node represents a detected plant and every edge scores the motion feasibility

between two nodes. As introduced in [5], the probability of visiting the j-th weed

with i-th weeding nozzle is computed as follows,

Pij = P

(

µ

ϑ
<
¶xij

¶
y
ij

)

, (5.4)
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where ϑ and µ denote the maximum velocity of linear axes and maximum linear

velocity of the robot, ¶x and ¶y denote the relative distance between the i-th

nozzle to the j-th weed. In this scheme, we deüne each edge to consist of a

feasibility score Γjk using the logistic function Equation (5.5) of motion between

nodes (weeds) j and k.

Γjk =
1

1 + e−ω(Sjk)
, (5.5)

where Sjk is the favorability score in seconds

Sjk =
¶xjk

µ
−
¶
y
jk

ϑ
, (5.6)

and the weighting parameter ω adjusts how quickly the favorability score makes

the Γjk change from the boundary score (0.5) to being very likely (1.0). The

boundary score occurs when Sjk = 0 and represents when there is just enough

time for the tool to transition from node j to k.

In a greedy algorithm, every potential route is calculated by permuting all

nodes in the graph, considering the edge directions in the node graph. The best

route is the one that visits a high number of nodes with high feasibility. The

best performed method utilized in [5] was nOTSP which is a modiücation of the

conventional traveling salesman problem.

Here we address how to plan H independent eþcient routes. The planned

routes must guide intervention heads through all their assigned targets while

minimizing the chance of missing any target. This has to take into account the

the prior knowledge of an intervention head’s position, robot linear speed as well

as the limits of speed and acceleration of linear axes.

The planning approach generates m potential trajectories T⃗ = [T⃗0, . . . , T⃗m]

for each intervention head. Each trajectory T⃗i is an ordered list of length q

consisting of weed positions which can be visited. To obtain T⃗ we use the following

approaches:

1. Brute-Force: In this case we compute all possible routes by ünding the

permutation of all nodes in the graph (without considering the direction of

links). Then the routes with the lowest cost and maximum success rate will

be selected from all predicted routes.

2. Open Loop Traveling Salesman Planning: This approach, termed

OTSP, is a variant of the classic travelling salesman problem where the

agent must visit all nodes of a graph once without making a loop back

(Hamilton loop) to the start node [33]. To solve this we use an approach

similar to nOTSP where the agent only needs to visit n nodes in the graph,

however, in our problem setting we aim to maximize the number of visited

nodes while considering other important criteria like cost and success rate.
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We use our constrained uni-directional node-graph representation as a base

for solving nOTSP using dynamic programming.

The optimal trajectory for each intervention head is obtained by considering

two criteria: the number of nodes successfully visited and the total movement of

the predicted trajectory. In every trajectory, we calculate the number of nodes

that satisfy Equation (5.4) to determine if a node can be successfully visited.

This gives us an updated set T⃗′ which only consists of nodes in the trajectories

which are feasible. From this updated set T⃗′ we then calculate the movement

cost-matrix G,

G(T⃗ ′
i ) =

q−1
∑

j=0

(nj − nj+1)
2. (5.7)

After this process, the trajectory from T⃗′ with the maximum number of success-

fully vised nodes is passed to the intervention controller. In the case multiple

trajectories successfully visit the same number of nodes, the trajectory which

also minimizes the movement cost will be passed to the intervention controller.

The planning strategies generate a set of m possible trajectories presented by

T⃗ = [T⃗0, . . . , T⃗m−1], where each T⃗t represents an organized list of weed locations

in the trajectory, consisting of qt elements in form of T⃗t = [w0, . . . , wqt−1]. Using

the following criteria we calculate the success criterion C⃗ = [C0, . . . , Cm−1] for each

trajectory in T⃗.

C⃗(T⃗, ρ) =







1

qt

qt−1
∑

r=0

Γ(nr, nr+1), for all Γ ≥ ρ

0 otherwise

(5.8)

where ρ = 0.6 is a cutoû threshold applied to each feasibility score ensuring the

planner only considers trajectories with all reachable targets. To incorporate the

harmfulness factor, we use the T⃗ where Ct > 0, and pick the trajectory with

maximum total harmfulness score K using,

argmax
t

K(T⃗); where K(T⃗t) =
qt−1
∑

r=0

κ
(

T⃗t(r)
)

(5.9)

and κr is the harmfulness factor, Equation (5.10), of the r-th node in T⃗t. This

leads to the best trajectory being the one that has the largest number of reachable

targets and high-priority weeds.

5.6 Bio-Diversity-Aware Plant-level Treatment

Weed harmfulness is inýuenced by aggressiveness, competition for water, and leaf

size. Species like barnyardgrass, pigweed, and lambsquarters can signiücantly out-

compete crops for light, water, and nutrients, reducing yield and quality [125]. In

96



5. In Field Bio-Diversity-Aware Interventions

moisture-limited environments, this competition becomes more critical. Under-

standing these factors is essential for eûective weed management, recognizing that

not all weeds are detrimental; some can enhance soil fertility and moisture reten-

tion. An example scenario is depicted in Figure 5.7 where dicots are considered

beneücial.

Therefore, robots must recognize and adapt to bio-diversity when managing

these varied weed threats. In this case, a generalized approach to weed manage-

ment will not suþce due to the diverse competitive behaviors of diûerent weeds.

We propose a novel weeding method enabling BonnBot-I to consider bio-diversity

factors by diûerentiating between weed species and their phenotypic character-

istics, assessing their threat levels based on competitiveness factors, and acting

accordingly. This ensures not only the well-being and productivity of crops but

also resource optimization concerning weeding actions (i.e. spraying).

Figure 5.7: Biodiversity in Focus: A field area with low crop (green) density, susceptible to

invasive weeds, and the potential role of Dicot (yellow) plants in controlling weed (red) growth.

Relying upon the phenotypic information, we aim to facilitate our robots’ un-

derstanding of diûerent weeding scenarios in the real üeld. Using the monitoring

technique introduced in Section 3.4 we determine the type, growth stage, and

distance of weeds in a cropping area. We introduce the ’harmfulness’ factor κ,

illustrated in Equation (5.10), for each weed type, ranking them based on their

threat to the nearby crops. It is important to acknowledge that currently, there

is no deünitive method for assessing plant-wise harmfulness eûects in actual üelds

on diûerent crops. However, in this work, we aim to build upon existing heuristics

to facilitate incorporating this information into future weeding strategies. Hence,

we derived this factor from phenotypic data, which helps our robots discern var-

ious weeding scenarios. It ranks weeds based on their threat to crops, using a

methodology inspired by Dentika et al. [38], who proposed a similar concept for

pathogen-host and disease risk imposed by weeds on the crops, and was derived
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from comprehensive on-site experiments and is formulated below:

κ(w, p) =
³w × ´w

³p ×∆(w, p)
(5.10)

In Equation (5.10), the harmfulness eûect κ(w, p) of weed w on plant p is calcu-

lated where, ³w and ³p denote the size of weed w and crop p in mm2, respectively.

This is reýecting the competitive relationship between a weed and its adjacent

crop, based on their sizes. Also, ´w is the harmfulness factor of each speciüc weed

category, noting that certain weeds should be eliminated from the üeld regardless

of their size or speciüc location. Furthermore, the ∆(w, p) is the Euclidean dis-

tance between crop p to weed w. This acknowledges that weeds situated far from

crops may not pose a signiücant threat, thus requiring no intervention. This

approach promotes eco-friendly interventions by prioritizing the most harmful

weeds, thereby enhancing biodiversity and resource conservation.

5.7 Experiments

In the following, we demonstrate the results of several experiments accomplished

in simulation and real environments to show the versatility and robustness of

BonnBot-I with its novel weeding implement and our monitoring and intervention

approach. We consider that the robot moves with constant speed µ = 0.5m/s

along a crop row with weed density of λ weeds/m2 and we set the velocity of the

linear actuators to ϑ = 5m/s. All experiments are conducted using 4 linear axes.

5.7.1 Weeding Planning Real-Time Performance

To evaluate the performance of the planning approach for the weeding tool ex-

plained in Section 5.5, we use our native Python simulator (Section 3.2) speciü-

cally designed for this purpose. We investigate our approach’s performance using

two types of crop-row models: simulated rows of crops and weeds and real üeld

models (introduced in Section 3.5.6) created based on evaluation rows datasets.

We initially evaluated the performance of the Brute-Force planner against

the nOTSP planner. We found that the results were similar in trivial cases

with a limited number of targets (N ≤ 10). The computational expense of the

Brute-Force method increases almost exponentially when there are more than

four targets as it has a run-time complexity of O(n!) compared with O(n22n)

of graph-based nOTSP. This is a signiücant problem for weeding applications

where real-time performance is important. In the case where we see only ten

weeds in the planning region, the Brute-Force approach requires 3.7s compared

to nOTSP which requires only 266µs. This is a prohibitive quality of the Brute-
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Force approach and for our two weeding experiments we employ the nOTSP

technique.

5.7.2 Planning on Simulated Crop-Row Models

In this experiment, we evaluate the performance of diûerent weed densities and a

diûerent number of linear axes. This evaluation uses the simulation environment

introduced in Sec. 3.2, allowing us to control the experimental parameters. The

üeld parameters are set to 3 crops-rows in a single lane with a length of 20m. To

fully analyze the performance of our approach we vary the weed density such that

λ = [3, 5, 10, 20, 40] represents the weeds per m2. Finally, to outline the beneüt

of having multiple linear axes we show the performance for H = [1, 2, 4, 8].

The results for this simulated experiment are summarized in Fig. 5.8, where

we provide the comparison of weed density to the percentage of missed targets.

From this ügure, it is evident that increasing the number of linear axes has an

obvious impact on results, with 8 axes performing better than all others. We see

from this that even with a distribution of 40 weeds (the hardest case) the worst

performing 8 axes system, Distance-Based, achieves a loss of ∼ 15%. Overall, the

Figure 5.8: The results of the nOTSP weeding planner. The loss represents the number of

missed weeds. We evaluate 5 different weed density models (x-axis); and three different planning

types: Dist.-Based (D), Dyn.-Div. (DD), and Sub-Div. (SD); and intervention heads H =

1, 2, 4, 8, yellow, green, purple and blue, respectively.

Distance-Based approach routinely performs worse as the weed density increases,

this is particularly evident as the number of heads increases. This will be further

evaluated in the next evaluation, but as the distribution grows the intervention

heads need to travel further to meet the demands of the planner, this movement

can negatively impact the capacity of the intervention head to reach the next
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weed. Finally, the two division-based methods appear to perform at a commen-

surate level across all weed densities in our simulations. We attribute this to the

wide distribution of weeds negating the impact of the dynamic approach, mean-

ing, weeds generally appear across the entire lane rather than concentrated in a

speciüc region. Overall, this shows the validity of our planning methods for weed

intervention in a uniformly distributed pattern.

5.7.3 Planning on Real Crop-Row Models

To further evaluate the performance of our three planning approaches, we use real

weed distributions captured in the üelds within the weeding simulator. This in-

formation is obtained from the crop monitoring approach outlined in Section 3.4

and aggregated into a simulated row. We perform this on the evaluation rows

of the SB20, CN20, and SB21 datasets where we have four diûerent weed distri-

butions: low (CN20), moderate (SB20-S1), high (SB20-S2), high (SB21-S1), and

very high (SB21-S2).

The results of our three planning approaches are displayed in Table 5.1, in

this experiment we only use four intervention heads as this accurately evaluates

BonnBot-I performance. Table 5.1 displays two metrics, ürst, the percentage

of missed weeds, and second, the mean and standard deviation of the distance

moved by the axes.

For the percentage of missed weeds, we see that the SB20-S2 with a high den-

sity of weeds is the most diþcult to intervene on, this is somewhat expected due

to the heavy distribution of weeds. However, the simple Sub-division approach

outperforms the other two approaches for this distribution which is unlike the

shown results in Figure 5.8 for a density of 10 per m2. The poorer performance

of the two other approaches can be attributed to the distribution of the weeds in a

real crop row. We performed the Chi-squared test [111] on the sections of the data

from the rows and found that the distribution of üelds was not uniform, hence

increasing the complexity. This performance is mirrored through the other rows,

Table 5.1: The rate of Loss (%) and average traveled distance (m) of interventions heads in

real-world weeding scenarios.

Sub-Div. (SD) Dist.-Based (D) Dyn.-Div. (DD)

(%) (m) (%)↓ (m)↓ (%)↓ (m)↓
CN20 0.0 2.7±0.2 4.3 2.7±2.8 3.4 4.0±3.9

SB20-S1 0.0 1.4±0.2 2.3 1.5±0.6 0.0 1.0±0.8

SB20-S2 11.9 10.1±0.9 19.8 4.7±3.5 13.5 5.0±1.8

SB21-S1 17.2 6.1±5.3 23.5 3.9±3.2 17.1 7.1±2.6

SB21-S2 38.2 13.4±8.2 48.2 4.1±1.9d 38.9 9.3±3.1
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where the static Sub-division approach achieves higher scores. However, once we

reduce the weed density (CN20, SB20-S1) we are able to achieve a percentage of

missed weeds close to zero for all approaches.

Our ünal evaluation is based on the movement requirements of the diûerent

planning approaches, where a value closer to zero is desired. While static Sub-

division achieved the best performance for the percentage of missed weeds we

see the negative aspect of this approach here. Both the dynamic division and

distance-based approaches can achieve considerably better results in the traveled

distance, in the case of SB20-S2 both other approaches move half as much as the

static Sub-division approach. For SB21-S1 and SB21-S2, the static Sub-division

approach demonstrates lower weed missed percentages, highlighting its eûective-

ness in high weed density situations. However, in terms of traveled distance,

the SD approach results in signiücantly higher, which could be attributed to the

corresponding weeding performance gain. We will utilize the static Sub-division

approach in future evaluations as the nOTSP baseline.

5.7.4 Segment-view Observations vs Rolling-view

Observations Models

Here we illustrate the eþciency of the weeding system on real-üeld models, show-

casing the nOTSP approach in two distinct observation modes, Segment-view

(baseline) and our novel Rolling-view observations. Our evaluations are applied to

the test rows within the three datasets (CN20, SB20, and SB21). Table 5.2 sum-

marizes the diûerence in planning performance and traveled distance of weeding

axes between the two observation models (Segment-view (baseline) and Rolling-

view) deployed on the real-üeld models. Below we brieýy describe the results

in Table 5.2 in terms of weed density, from low to very high.

Low weed density: both methods demonstrate comparable performance

in areas with lower weed density achieving zero loss on CN20 and leaving no

untreated weeds in the üelds. The Rolling-view model, however, required less

Table 5.2: Weeding performance of BonnBot-I with two observation models Segment-view and

Rolling-view denoting weeding loss (%) and traveled distance (m) of the linear axis.

Weed-density Segment-view Rolling-view

- Avg/m2 (%)↓ (m)↓ (%)↓ (m)↓
CN20 low 3.1 0.0 2.7±0.2 0.0 2.0±1.6

SB20-S1 moderate 8.2 0.0 1.4±0.2 0.0 1.9±0.9

SB20-S2 high 15.4 11.9 10.1±0.9 6.4 4.1±2.1

SB21-S1 high 22.3 17.2 6.1±5.3 14.1 2.8±2.6

SB21-S2 very high 81.2 38.2 13.4±8.2 36.5 5.2±3.1
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travel distance compared to the Segment-view. However, the variance in the

traveled distance of the weeding axes seems to be lower when using Segment-

view planning. This suggests a more balanced distribution of targets across the

diûerent implements. Moderate weed density: Similar to low density, both

models achieved 0.0% loss, with no noticeable diûerence in weeding eþciency.

However, the Rolling-view model had a slightly higher travel distance (1.9±0.9m)

than the Segment-view (1.4 ± 0.2m). High and very high weed density: In

this scenario, the Rolling-view model outperformed the Segment-view model. The

Rolling-view achieved only a 6.4% loss compared to the Segment-view’s 11.9%
loss. Additionally, the Rolling-view required a substantially lower travel distance

than the Segment-view, showing the eþciency of the Rolling-view method in

more complex situations. Overall, the Rolling-view planning method surpasses

the baseline with an average absolute improvement of 3.5% over all the üeld

models with a maximum and minimum absolute improvement of 5.5% on SB20-

S1 and 1.7% on SB21-S2, respectively.

5.7.5 Bio-diversity aware weeding operation

The bio-diversity-aware system should accurately diûerentiate between crops and

weeds. This includes detecting beneücial dicots and only intervening where it

is essential for crop health while preserving and promoting biodiversity. This

weed classiücation approach is particularly crucial in challenging scenarios. These

scenarios can include high weed density, restricted robot velocity, restricted linear

axis speed, or herbicide usage limitations. Hence, the system must manage certain

losses while achieving optimal performance. To test our system’s resilience and

capability under extreme conditions, we devised an experiment where the robot

operates at a speed two times the normal µ = 1.0m/s.

In this analysis, we utilized the üeld models from our previous experiment

but with two modiücations. First, we designate two priority levels where a low-

priority for weeding is given to potentially beneücial dicots and a high-priority is

given to all other weeds. To represent the priority levels we give a weight of 0.1

and 1.0 for low- and high-priority respectively. Second, the occurrence of high-

priority weeds was set to be one-tenth of that of low-priority. Consequently, this

setup required the bio-diversity-aware system to adjust its weeding trajectories

to prioritize the less frequent, high-priority weeds, even if it meant potentially

overlooking some of the low-priority weeds.

In the following, we compare the bio-diversity-aware (Bio-Div.) approach

with a baseline (not-bio-diversity-aware) method under extreme conditions on

the same real-üeld models used in the previous experiment.

The weeding loss for the Bio-Div. the approach is very similar to the baseline.

It leaves no untreated weed in the üelds, indicating its comparable eûectiveness
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Figure 5.9: Real-field intervention examples; Different spray footprints of BonnBot-I weeding

operation in campus CKA of the University of Bonn, with different weed densities and various

weed types.

in scenarios with low to moderate weed densities. However, in cases of very high

weed densities (SB21-S1, SB21-S2), there is a minor (< 2%) increase in weeding

loss with the Bio-Div. approach. This suggests a small trade-oû in performance

at extremely high weed densities. The average traveled distance of axes using

both observation methods is generally similar or marginally higher (< 0.2m on

average) for the Bio-Div. approach across all üeld models, reýecting the method’s

thoroughness in targeting speciüc weed priorities and achieving bio-diversity con-

siderations. Additionally, to enhance our evaluation of the operation’s speciücs,

we detailed the treatment percentage for each weed type individually and their

results are presented in Table 5.3.

When considering the low-priority weeds, the Bio-Div. method achieves

slightly reduced performance when compared to the baseline. On the other hand,

this reduced performance could be interpreted as a positive point, where keeping

low-priority weeds in the üeld could beneüt the ecosystem and align with bio-

diversity purposes. However, the beneüt of this approach is evident in the ability

Table 5.3: Weeding performances (treatment percentage) of BonnBot-I with baseline weeding

and Bio-diversity-aware schemes on real-field models.

Weed 1 (Low Priority) Weed 2 (High Priority)

Field Model (not-Bio-Div.) (Bio-Div.) (not-Bio-Div.) (Bio-Div.)

(%)↑ (%)↑ (%)↑ (%)↑
CN20 73.3 73.3 56.6 56.6

SB20-S1 47.5 44.3 56.0 60.2

SB20-S2 42.5 40.5 53.5 63.5

SB21-S1 18.0 15.2 19.1 38.8

SB21-S2 7.0 5.1 7.0 17.4
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of the Bio-Div. approach to achieve stronger performance when targeting higher-

threat weeds. Our approach is able to improve performance on all but the lowest

weed distribution (CN20) where performance is identical. This illustrates the

Bio-Divapproach’s eûectiveness in prioritizing and managing high-priority weeds.

5.7.6 Real-World Intervention Performance

In [5] we only evaluated the weeding performance on recorded data and consid-

ered non-overlapping segments of observations for running the experiments. To

further evaluate the whole system’s performance, we deployed BonnBot-I in a

series of unseen üelds with diûerent weed distributions, illumination conditions,

and cultivars. The experiments were conducted on various days, under a mix

of weather conditions including partial cloudiness and sunshine, and on diûerent

types of soil ranging from solid and compact to relatively muddy. Additionally,

the plants tested were at various growth stages, from the two-leaf stage up to

the eight-leaf stage. The üeld experiments with the real robot were conducted

at the CKA, covering nearly 100 square meters of sugar-beet üeld. This evalu-

ation outlines the most important metrics associated with the operation of the

robot. These metrics include the number of missed weeds, the number of partially

treated weeds, and the number of accurately treated weeds. We quantitatively

evaluated our performance on two diûerent weeding scenarios: crop-weed; and

weed-only.

During all evaluations, we used the Rolling-view observation model enabling

more accurate planning in real-world scenarios. An example of this planning

approach is depicted in Figure 5.10 where only three linear axes are utilized

(indicated by the three colors). The weed-only üeld model was used to evaluate

our intervention approach independently of vision system failures (i.e. classifying

a weed as crop or vice versa). Our quantitative analysis is based on visually

interpreting the footage captured on a camera mounted at the rear of BonnBot-I.

Figure 5.9 demonstrates the footprint of weeding interventions in the real üelds.

The trial üelds contained regions with low (< 5) to high weed (> 10) densities,

therefore oûering challenging scenarios for testing BonnBot-I weeding capabilities.

In total our two üelds contain 1038 weeds, the sugar-beets in the crop-weed üelds

had plants in the four- to six-leaf stage (approximately three to six weeks old).

Table 5.4 summarizes the performance of BonnBot-I in both weed-only and crop-

weed regions. Initial evaluations in the crop-weed region showed, that BonnBot-I

has treated 23 crops falsely which counts as a total of 4% of visited crops in the

üeld. Furthermore, of the total weeds in the üelds, we accurately detected 886.

Of these detected weeds BonnBot-I did not perform an intervention on 121 of

them.

Consequently, the weeding loss attributable to planning or intervention con-
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Figure 5.10: BonnBot-I Simulation; An example field with weed density λ ≊ 12 with planned

trajectories of three linear axes in different colors (blue, green, and orange). All dots that lie

along one of the lines are weeds that will be treated, while all the dots that do not lie upon a

line cannot be treated.

Table 5.4: Real-world weeding performance of BonnBot-I in weed-only and crop-weed regions.

Crop Weed

Field Model False Hits Total Weeds Acc. Hits Par. Hits Missed

Weed-Only - 473 183 192 98

Crop-Weed 4% 565 177 213 175

straints stands at 11.6%. This loss could be addressed by üne-tuning planning

strategies, adding more weeding axes, increasing the velocity of the linear axis,

or decreasing the robot’s linear velocity. The remaining 152 weeds (1038 − 886)

were missed because of systemic issues, notably the vision system’s performance

under diþcult real-time and challenging lighting conditions. Hence, the overall

loss of the system added up to 26.3% of the total number of weed plants in the

üelds (including the detected-and-missed and not-detected instances).

Further examination showed that from the total of 98 missed weeds in the

weed-only region, a total of 39 plants remained untreated solely because of the

vision system’s inability to detect them. Similarly, in the crop-weed region, 113

weeds were missed due to vision system failure highlighting the limitations of the

vision system and the challenges encountered in real-üeld conditions. This loss

could be reduced by improving the vision system and using more advanced DNN

architecture in the future.

Weeds were successfully treated in the real-world üeld trials of BonnBot-I 765.

Of the treated weeds, on average 47% were considered to be treated in a highly

accurate manner, 183 and 177 weeds in weed-only and crop-weed regions, respec-

tively. This means the spray footprint was centered on the weed. The remaining

53% were treated successfully but with less accuracy, with an oûset of nearly

2cm. They are considered to be partial treatments as they still cover a large

proportion of the weed. This reduced performance is likely linked to the vari-

able conditions encountered in real-üeld settings. Factors such as slight weather
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changes, like unexpected wind gusts, can alter spray distribution by a few cen-

timeters or move plant leaves, thereby impacting the accuracy of weed detection

and treatment. While several factors caused these errors, we still consider this a

successful treatment of the weeds in the üeld.
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5.8 Conclusion

In this chapter, we introduced several novel precision weeding approaches based

on the BonnBot-I platform. These approaches were evaluated in both real-üeld

conditions and simulated environments. The simulated environment accurately

mimic real-world weed distributions, leveraging data from our üeld monitoring

techniques running on real-üelds at CKA campus of the University of Bonn.

Experiments conducted in these simulated üelds demonstrated the eûective-

ness of our proposed workspace division techniques, showing a signiücant reduc-

tion in movement (10m compared to 5m) when compared to distance-based target

assignment methods. We also presented an advanced planning method using a

rolling-view technique, which led to an average absolute performance improve-

ment of 3.4% compared to segment-view planning. Additionally, for the ürst time,

we explored the concept of biodiversity-aware weed management and assessed its

practicality in real-world scenarios. Our approach not only improves the preci-

sion and eûectiveness of agricultural robots but also highlights the importance of

incorporating ecological considerations into crop management.

Furthermore, our real-üeld experiments with actual robots demonstrated that

the BonnBot-I weeding strategy could be eûective with only an 11.66% loss due

to planning or intervention constraints. In conclusion, our research indicates that

performance variations in weeding technologies are often inýuenced by dynamic

real-üeld conditions, such as unexpected weather changes impacting weed detec-

tion and treatment accuracy.

This work and the development of the BonnBot-I enabled us to further explo-

ration of plant-level interventions on arable farms. Additionally, it has motivated

us to create a more intelligent approach for controlling weeding mechanisms and

interacting with the environment. Future eûorts will focus on enhancing these

systems’ adaptability to environmental factors by developing more robust and

responsive vision systems, ensuring consistent and eûective weed management

across diverse agricultural settings. As a result, we have devised a method to

learn intervention concepts using deep reinforcement learning (RL). In the next

chapter, we will delve into the architecture and our approach for modeling preci-

sion plant-level weeding as an RL problem, which can integrate various modalities

of information and eûectively plan interventions for diûerent scenarios.
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Chapter 6

Learning to Perform In-Field

Intervention

I
n this chapter, we introduce OptimWeeder a novel reinforcement learning

(RL)-based approach to control precision weeding operations on BonnBot-

I introcuded in Chapter 3. The proposed method is adapted from the

well-known proximal policy optimization (PPO) method [95]. This method

learns to predict the trajectory and move the intervention heads on the weeding

tool of BonnBot-I in an eþcient manner.

Figure 6.1: OptimWeeder Environment; observations from the BonnBot-I platform including

four weed (circled ids), weed position, weeding-tool, and robot kinematics, agent current posi-

tion ρ are translated to an RL-agent H1 observation space and action space to learn a policy

to control weeding nozzles. The OptimWeeder Environment allows the agent to observe the

environment as an image or through vector representations which enables training an effective

RL-based weed control policy.
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In Chapter 5, we investigated classical planning methods. We deployed these

on BonnBot-I to control the motion of the weeding heads, which were able to

intervene on plants precisely and accurately. However, these classical methods,

such as brute force and nOTSP lack ýexibility and scalability in diverse weeding

scenarios meaning they often fail in real-world agri-robotic situations. This is

most evident when there is a need to consider modalities such as plant-speciüc

actions (bio-diversity aware weeding).

To achieve a more ýexible approach we model the precision weeding problem

as an RL problem by considering th real kinematics of BonnBot-I. RL can eþ-

ciently adapt and scale through the reward function design, bypassing the need

for complex heuristics, as seen in classical approaches. Another beneüt of our RL

approach is that it excels in managing partial observations and adapts quickly in

real-time. Coupling our RL approach with BonnBot-I’s independently movable

and controllable weeding heads (depicted in Figure 6.1), allows precise applica-

tion of herbicides. This ensures BonnBot-I is able to directly target weeds while

minimizing herbicide usage and avoiding crop damage.

Another key beneüt of our RL based approach is the ability to smootly tran-

sition between single- and multi-agent schemes by using a decentralized policy

execution protocol. We conducted comprehensive experiments in a simulated

environment using real-world üeld models of sugar beet and corn üelds, encom-

passing a wide range of weed densities and distributions. The results demonstrate

that our novel RL-based weeding approach outperforms state-of-the-art nOTSP

planners, leaving fewer untreated weeds in the üelds. Additionally, our novel

biodiversity-aware RL-based method outperforms an nOTSP-based biodiversity-

aware planning approach.

As introduced in Chapter 3, the spray nozzles are independently movable

and controllable modules, allowing precise application of herbicides directly. We

model each linear axis as an independent RL-agent, allowing active interven-

tions in real time as the robot navigates the üeld. Our results demonstrate that

the proposed method eûectively learns control policies for managing biodiversity-

aware weed removal in realistic üeld conditions. OptimWeeder integrates multi-

modal weed observations into the planning process, enabling more informed and

biodiversity-conscious weeding decisions. To achieve this, we have made signiü-

cant developments to enhance the capabilities of BonnBot-I. The key contribu-

tions of this work are as follows:

1. The development of the ürst OpenAI-Gym compatible simulation platform

speciücally designed for precision weeding applications.

2. A novel reinforcement learning-based strategy for precision weed manage-

ment based on real kinematics of our self-built platform BonnBot-I.

110



6. Learning to Perform In-Field Intervention

3. The introduction of the ürst biodiversity-aware precision weeding scheme

using reinforcement learning.

4. Validation of the proposed approach through synthetic and real-üeld models

in simulation.

5. The release of the weeding gym environment as a standardized benchmark

for evaluating precision weeding approaches.

This ünal contribution chapter focuses on our approach to RL for optimizing

plant level interventions. Following the introduction and literature review, we in-

troduce the RL framework developed for BonnBot-I in Section 6.2, which enables

the robot to learn and adapt its intervention strategies based on plant priorities.

Subsequent sections delve into observation modeling (Section 6.3), action

space design (Section 6.4), and the reward function (Section 6.5) in detail. Fi-

nally, in Section 6.6, we present experimental results and compare them directly

to the state-of-the-art methods discussed in Section 6.7.

6.1 Related Works

Agricultural robotics has undergone a revolution, driven by cultural expecta-

tions and resource allocation to achieve sustainable solutions [122]. Reducing

labor costs is crucial for farmers, as it represents a signiücant business expen-

diture [2]. Improved automated monitoring techniques now enable more robust

decision management schemes, including interventions that signiücantly reduce

environmental impacts, such as soil compaction. Additionally, a wide range of

weeding implements have been used to deal with diûerent types of weeds in vari-

ous farm conditions, including organic and non-organic üelds. Examples include

mechanical hoeing systems [19, 27] used in organic üelds, precise sport-spray

systems [119], and electrocution [10] and laser-based [121] end-eûectors. These

novel approaches oûer diûerent beneüts and restrictions. They enhance farming

operations by reducing agrochemical use and directly improving crop yield [104].

However, most of these methods rely on handcrafted and classical techniques,

which lack the ýexibility to incorporate multi-modal information (weed type,

harmfulness factor, distance to crop, etc) or biodiversity considerations in their

intervention strategies. Here, we build upon our advanced biodiversity-aware

scheme in [6] by integrating an RL-based learning process for obtaining the opti-

mal intervention scheme in various weeding scenarios.

Early RL methods leveraging the power of deep learning as function approx-

imators were initially applied to learning policies solving challenging games in

controlled simulations [75, 96, 114]. However, a long-standing challenge in RL re-

search is transferring policies trained in simulation to real-world scenarios without
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drastic performance loss [37]. This issue is particularly prominent in real-world

robotic control tasks, as the policy learned in the simulation must be robust to

sensor and actuator noise, system delays, and changing environmental conditions.

More recently, with the advent of advanced and versatile RL algorithms [95,

50] combined with hardware-accelerated realistic physics-based simulators [37,

93], various challenging robotic control tasks have been solved with RL ap-

proaches [57, 62]. These approaches have even been able to outperform well-

known non-RL control methods [103]. Kaufmann et al. [57] showcase professional

human-level control performance in the highly agile drone racing task, combining

training a policy from large amounts of simulated racing data with a sophisti-

cated simulator design closely approximating real-world actuation and perception

noise. Song et al. [103] empirically show that such RL approaches to drone rac-

ing might outperform classical model-predictive control methods. This is due to

RL facilitating the algorithm design by shaping outcome-based reward functions

that directly reýect the mission goal. Similarly, Hwangbo et al. [56] propose

an RL-based system to train locomotion policies for legged robots in simulation

that are directly deployable in real-world scenarios without retraining. Lee et

al. [62] extend this approach to enable real-world deployment in challenging, e.g.,

muddy or snowy terrains which were not encountered during training in simula-

tion. Other domains RL-based robotic control was successfully applied to include

point-goal navigation with household robots [116] or dexterous hand control for

manipulation tasks [124].

In our previous chapter (Chapter 5), we presented a method to control BonnBot-

I’s multi-head weeding tool using a variant of the traveling salesman problem,

called the nOTSP approach. A signiücant challenge within this system involves

incorporating additional modalities (weed type, harmfulness factor, size, etc) into

the decision-making process. To address this, we introduce a more ýexible weed

control strategy. Exploiting the beneüts of RL methods, we propose an RL-based

algorithm trained on a custom-developed OpenAI Gym simulator (see Section 3.2)

that accurately replicates the kinematics of BonnBot-I. In contrast to previous

weed control methods, our framework incorporates selective interventions target-

ing speciüc weed species based on priority by integrating this information into

the observation. These features enable the algorithm to adapt its behavior to

biodiversity considerations, prioritizing interventions based on the most harmful

weeds and minimizing unnecessary interactions.

6.2 Problem Definition with RL

A key aspect of our approach is the encoding of real robot constraints to ease

the deployment on real conditions. The observation and the reward functions for
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6. Learning to Perform In-Field Intervention

Figure 6.2: BonnBot-I Weeding Schematics; (a) A top view of BonnBot-I with observation space

of Cdetect in light-Cyan and the workspace of weeding tool in yellow is depicted. Weeding Tool

and Observable Areas: (b) Actual kinematics model of weeding tool w.r.t the observations area

(Cyan windows) with four linear axes (l1...4) of equally spaced Ψ. (c) Gym environment model

of weeding tool lining up all nozzle (H1...4) on a single bar at the bottom of the observable area.

learning an optimal weeding strategy, and a simulation environment speciücally

designed for precision weeding application.

We deüne a weeding scenario which consists of a set of weeds (targets) denoted

by w and tools (nozzle heads) H that visit/spray the weeds. A nozzle is given

a set of qt weeds Wt = {w0, w1, . . . , wqt−1} where wj is a two-dimensional vector

consisting of the x-y stem position in the robot’s frame at time t. Let ∆t(Hi, wj)

denote the Euclidean distance between the i-th tool and the j-the weed. A

valid trajectory visits n targets and every weed must be visited only once while

also minimizing the distance traveled. Therefore, the nOTSP target function,

Equation (6.1), considers a trajectory of length n as T⃗t = {wj, wj+1, . . . , wn−1},
where each wk ∈ Wt and n is constrained to be n <= qt

min
n

n−1
∑

j=0

∆(wj, wj+1) + ∆ij(wj, w0). (6.1)

To obtain valid observations we used data from three real-world üelds using

BonnBot-I. These üelds, based at Campus Klein-Altendorf (CKA) of the Uni-

versity of Bonn, were captured over two years and represent a range of weed

densities, ranging from low (CN20), moderate (SB20-S2), high (SB20-S1, SB21-

S1), and very high densities (SB21-S2). More information about these publicly

available datasets can be found in Section 3.3 [4, 5, 6]. As introduced in Chap-

ter 3, BonnBot-I has modular and repeatable weeding tools with interchangeable

end-eûectors, allowing tool changes based on soil and weed conditions. The de-

sign involves independently controlled linear actuators placed at 0.72m above the

ground, providing a working space of 1.3m × 0.36m. There are four linear ac-
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tuators, each with a length of 1.3m. Currently, BonnBot-I has high-speed spray

valve heads installed, with an on-oû time of ∼ 12ms. Individual adjustable valves

are utilized to control the droplet size from the spray nozzles which can be set

to have a spray footprint between 0.02m and 0.13m. Similar to Chapter 5, the

robot linear speed is set to µ = 0.5m/s with weed density λ (weeds/m2) pro-

vided from real üeld models, and we set the velocity of the linear actuators to

ϑ = 5m/s. The üeld models, extracted from the crop monitoring procedure, out-

lined in Section 3.5.6, are structured into a representative crop-row format. To

achieve a correct hit (of the weeds) we set the spray footprint to 4cm meaning

that a resulting hit of greater than 2cm from the center is required.

The choice between single-agent and multi-agent systems is pivotal. In a

multi-agent framework, each linear axis assumes the role of a distinct agent, of-

fering ýexibility, especially when varying the number of linear axes and their

workspace. However, challenges arise from this approach, notably due to non-

stationary environments where changes depend on other agents actions. Further-

more, revealing the contribution of individual agents to the global reward and

determining the credited assignment problem leads to greatly increased complex-

ity. Hence, we decided to use a single-agent model and replicate them for each

tool to match the kinematics of the BonnBot-I weeding tools.

6.3 State and Observation Space

In a weeding scenario, the robot moves at a constant speed through the crop

rows, detecting and tracking each plant in real time. An accurate representation

of the weeds/targets is required to plan appropriate trajectories for each wedding

axis, enabling precise plant-level interventions. To create realistic observations

and eûectively train the RL agent, we rely on real-üeld models as introduced

in Section 3.5.6. This observation model must capture the robot’s critical kine-

matic parameters and the targets’ key characteristics to ensure precise weeding

actions. We have a partial observation of the environment, precisely reproducing

views of the robot camera (Cdetect) represented in vector and image-based forms.

The gap between the detection area (Cdetect) and the workspace of the weeding

tool, as illustrated in Figure 6.2-a, means that by the time an action is performed

for segment T0, segment T2 has already been observed due to the robot’s con-

stant velocity. This can be advantageous in situations where weeds are unevenly

distributed or when high-priority weeds appear in later sections. However, in the

gym environment model, we control the gap between the detection and working

areas to be minimal. This could potentially limit the number of visible targets

at any given time, making the observation vector simpler and reducing complex-

ity, which aids in learning a more eþcient weeding strategy. Hence, we sets the
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nozzles in a position directly after the observation area.

We consider the Markov decision process (MDP) asM = (S,A,R,P), where

S represents the set of possible states, A denotes the action space, R is the func-

tion that assigns a reward to each state, and P characterizes the probabilities of

transitioning between states. The stochastic policy of an agent is symbolized by

π(a|s), indicating the probability of sampling action a ∈ A when in state s ∈ S.

The RL objective is to identify the optimal policy that maximizes cumulative

rewards over time through sequential action selection based on the evolving en-

vironment state, Rt = R(at, st, st+1), where t is the time step of the epoch and st
is the initial state drawn from a predeüned distribution P0. In each state (st) the

agent receives a representation of weeds visible in the observation space and can

take only a single action (at) with the type of, either nozzle movement or weed

intervention.

The developed training environment provides two types of agent observations:

vector-based and image-based. Image-based observations which mimic the per-

spective of a detection camera positioned in front of the BonnBot-I, as shown

in Figure 6.3, are only used for visualization purposes. The vector-based obser-

vation S⃗ is set to a üxed length comprising two parts, as shown in Figure 6.4:

• The agent’s state in cyan S⃗a, the current intervention head position ϱ in its

linear workspace Π.

• The weeds’ states in orange and green S⃗t, a list of ýoat values that repre-

sent the relative distance of the i-th intervention head to the visible weeds

underneath the robot and their priority information ∇.

In the following, we elaborate on how we develop a new representation of the

agent observation for the weed control problem.

Agent State: The agent is deüned based on the model of linear axes in

the weeding tool, hence it only moves laterally (y-axis) while the whole robot

carries it in the x-direction as shown in Figure 6.2-b. The ürst element in the

observation vector denotes the nozzle head’s position ϱ in its linear workspace Π,

shown in Figure 6.2-b. We use zero-centric positioning schemes (zero standing

in the middle of the linear axis) to map nozzle head movements in S⃗. This

approach centers the observation reference at zero, which lies at the midpoint

of the workspace Π (refer to Figure 6.2-b). This division creates an evenly split

workspace into positive and negative regions (ϱ ranging from -1.0 to 1.0).

Target’s State: We consider the relative position of target weed wj w.r.t the

nozzle head Hi in the observation environment, which is parameterized based on

Euclidean distance ∆ and cast in a proper domain using arctan2 kernel, shown

in Equation (6.2).

∆′
ij = arctan 2(

√

(Hx
i − wx

j )
2 + (Hy

i − wy
j )

2, λ) (6.2)
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(a) Single-Nozzle (b) Multi-Nozzle

Figure 6.3: BonnBot-I weeding Gym environment; (a) Single-nozzle (yellow) setup, (b) The

setup with Multi-agents (four nozzles: yellow, pink, cyan, and black squares) in a field with

crops (green circles) and weeds (red circles). The spray footprint circles with a central green

core indicate successful intervention.

where λ = 0.02m is a constant value to evaluate the accuracy of interventions.

To make a üxed-dimensional observation vector, we deüne the maximum number

of observable targets to appear in the observation vector. The targets that get

hit with a spray disappear from the next observation vector while remaining in

the visible region. It can help emphasize certain features or reduce noise, making

the observation more informative for the model.

Normalization: We normalize the target states, ∆ij, to range between −1
and 1 using Equation (6.3). This process better encodes relative diûerences of

the target states and empirically we found this leads to faster and more stable

learning by ensuring that no feature dominates due to its scale.

∆ij = 2
∆′

ij −min(Π)
max(Π)−min(Π) − 1. (6.3)

Sort: This attribute speciües the reference entity in the observation space. It

determines the sorting procedure for observations in a vector. It could be chosen

between (I) randomized, (II) closest target in the X-axis, (III) closest target in the

Y-axis or ürst-in-ürst-out (FIFO), and (IV) closest target based on 2D Euclidean

distance. We use the FIFO sorting method, as we found it empirically more

compatible with real weeding scenario.

Biodiversity Priority: The impact of weeds on the crop varies depending on

the species and environmental conditions. Integrating biodiversity-aware factors

into the observation vector for the RL agent equips it with the capability to

learn more sustainable intervention strategies. To enable the RL agent to learn

such policies, a key feature of our approach is to consider the priority ∇ of

targeted plants, used to adjust intervention rewards accordingly, as described

in Section 6.5. Furthermore, we include priority data and diûerent types of plants
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Figure 6.4: Observation vector structure. The case with four targets on the visible segment St

and BonnBot-Ionly uses one nozzle head. (a) observation vector of the RL-based scheme when

the agent only receives lateral distance ∆ij of each visible target, (b) observation vector when

the agent perceives lateral ∆ij distance and priority ∇ij of each visible target. The φ denotes

to constant space older value.

within the observation vector, allowing the RL agent to discern between high-

priority and low-priority weeds and thus take actions which tradeoû the number

of weeds treated and their priority.

Observation Modality Arrangement: To prepare the observation vector

the model stacks characteristics of each visible target in two diûerent observation

vectors depicted in Figure 6.4, where (a) shows an equal-priority observation

vector with only distance stacked in a vector and (b) shows an example of bio-

diversity-aware observation vector grouping 2D distance ∆j and plant priority ∇j

for each target in the vector.

6.4 Action Space

We introduce three relative motion controllers to allow the agent to perform

actions with high precision and ýexibility these being: constant, dynamic, and

continuous. The proposed action space include three main action types: spray,

motion, and stop. Hence, the action space of the deüned agents does not control

the motor torque or speed; a low-level controller manages it to enhance robust-

ness. Motion of the axes are controlled by their position in a discrete space having

a maximum resolution of 1mm, this matches real linear systems’ maximum res-

olutions too.

Constant: In this model, the agent is limited to making üxed movement

steps to the left or right, with a size ψ = ±15 pixels translating to 1.5cm on

real linear axis coordinates. The sign of ψ determines the direction of movement:

negative for left, positive for right, and zero for remaining stationary. In the

constant model, the valid actions are as follows: (spray: 0, stop: 1, move-right:

2, move-left: 3, move-right-and-spray: 4, move-left-and-spray: 5).

Dynamic: Enhancing the agent’s ýexibility and responsiveness to better deal

with complex scenarios where variable step sizes are needed we use a range of

predeüned motion sizes in the form of a vector Ψ⃗. In this model, rather than

moving with predetermined üxed step sizes, the agent adjusts its motion step
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size by choosing it from a predeüned range of motion ψ[i] = Ψ⃗[i].

Continuous: This model permits the agent to execute movements across a

continuous range, enabling üner and smoother adjustments. This ýexibility is

particularly advantageous in complex tasks like unbalanced weed densities across

row-crop üelds. Hence, the agent can precisely position itself anywhere within the

workspace, adapting to changing conditions and requirements for more accurate

and eûective interventions. In the dynamic and continuous models, the valid

actions are as follows: spray: 0, stop: 1, motion: ψ deüned in a range of min:

−1.0, max: 1.0, min-step: ±0.01.

6.5 Reward Function

We design a reward function to reýect desirable weed control behavior. The agent

gets intermediate rewards for every action in the episode. Besides only a binary

feedback system of hit or miss of plants, we found it useful also to consider the

area of the weed that has been sprayed or covered as this provides more detailed

feedback of precision of the executed action. Hence, after each action, spray

footprints are evaluated based on the accuracy of the intervention, considering

both true and false sprays. A spray is interpreted as a true intervention only if it

hits a weed and false if it lays on empty ground or a crop. The reward function

is based on the normal distribution of the distance between the agent and the

closest weed in the y-axis is given by,

R(st, st+1, at) =
1√
2πσ2

exp
(

−(∆ij)
2

2σ2

)

+ ··, 1cbf + Λ · 1mwf (6.4)

which encourages the highest reward for zero distance to the target, and σ controls

the spread of the reward distribution. A constant penalty of Λ = −1.0 is applied

to the reward function Equation (6.4) using an indicator function 1mwf for each

completely missed target (an untreated weed that leaves the observation and

action space). The movements of the agent is determined by their magnitude

and direction, either towards or in the opposite direction of the closest target.

A strong penalty of · = −100 is given for hitting the workspace boundaries (far

left and far right of the workspace) integrated into the reward function using 1cbf

indicator function. In observations without any targets, we allocate a penalty

for any motion or spraying and a reward for not taking any action. To evaluate

the stop action of the agent, we consider a reward for stopping within a certain

threshold λ close to the nearest target in the y-axis. Stopping falsely, when at

least one visible target and nozzle lateral position is not within ±λ, also incurs a

penalty relative to the distance between the target and nozzle head ∆ij according

to Equation (6.4).
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Furthermore, we integrate a biodiversity-aware mode within the RL system

to enable the prioritization of diûerent crops and weeds. This leads to more in-

formed decision-making and potentially boosting weeding performance in stressed

situations, such as when the velocity of the robot is increased. Our reward func-

tion incorporates a speciüc plant’s priority/harmfulness factor Equation (6.6) and

further explained in Section 5.6. The agent is encouraged to perform an action

on high-priority targets, where missing a high-priority weed incurs a signiücant

penalty of Λ = −20. Similarly, correct movements and stops towards high-priority

weeds earn an additional reward of κ relative to the importance of the weeds.

R(st, st+1, at) = κ(wj, pk) ·
1√
2πσ2

exp
(

−(∆ij)
2

2σ2

)

+ · · 1cbf + Λ · 1mwf , (6.5)

where

κ(wj, pk) =
³w · ´w

³p ·∆(wj, pk)
. (6.6)

The harmfulness factor κ(wj, pk) of j-th weed wj on k-th plant pk is determined

by their sizes ³wk
and ³pk (in mm2). The factor ´wj

represents the speciüc

harmfulness of each weed category, indicating that some weeds must be removed

regardless of size or location. Additionally, ∆(wj, pk) is the Euclidean distance

between the crop pk and weed wj. In experiments, for simplicity, we assigned

weed priorities ∇j to be equal to κ(wj, pk), hence the harmfulness of a weed will

underscore the importance of prioritized intervention in the weeding process.

6.6 Experimental Setup

To train and evaluate our RL weeding approach we use the developed simulation

with a range of weeding scenarios captured from real üelds. These models are

captured using BonnBot-I from two crop üelds (corn and sugar beet) observed

over two years at Campus Klein-Altendorf (CKA) of the University of Bonn, as

elaborated in Section 3.5.6. The üeld models used for training and evaluation were

selected to represent all weed distributions without overlap between the subsets.

This data reýects the key aspects relevant to testing our approach, including

realistic üeld variations such as the performance under varying weed density,

deployment for systems with multiple tools, and biodiversity-aware weeding. We

compare the performance of the proposed RL method to the nOTSP algorithm

as a baseline. The robot linear speed is set to µ = 0.5m/s and the velocity of

the linear actuators is ϑ = 5m/s to match the real robot operational conditions.

We measure intervention loss as a percentage to indicate the number of weeds

missed during weeding. Another important metric is the distance traveled by the

weeding axes, in meters, which should ideally be low.
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We trained the models using the PPO algorithm implemented in PyTorch

with PyTorch Lightning on an Nvidia A4000 GPU. We used the Adam optimizer

with an initial learning rate of 3 exp−4 and with a batch size of 64 to 256 and

used an entropy coeþcient of 0.01 to promote exploration. The training ran for

500 exp 3 epochs, with each epoch comprising multiple optimization steps every

50 epochs.

6.6.1 Single Axis Weeding Performance

To evaluate the performance of the proposed RL planning method, we directly

compare it against the greedy planner and nOTSP (baseline) for conducting weed-

ing on real-üeld models in simulation, demonstrated in Table 6.1. In our case,

the greedy planner only tries approach to the closest target on the Y-axis. We

use the RL planner with three diûerent action spaces (constant, dynamic, and

continuous). In this experiment, we consider that there is only one weeding tool.

In scenarios with low weed density (CN20), the RL-continuous method outper-

Table 6.1: Demonstrating the difference in the weeding performance of BonnBot-Iintervention

pipeline using only a single linear axis with different control schemes: Greedy-planner, nOTSP

(baseline), RL-constant, RL-dynamic, and RL-continuous. The metrics provide weeding loss

(%) and traveled distance (m) of the linear axis. It is worth mentioning that the desired trend

is a lower traveled distance with minimum missing weeds.

Fields Greedy-planner nOTSP RL-constant RL-dynamic RL-continuous

name - Avg/m2 (%) ↓ (m) (%) ↓ (m) (%) ↓ (m) (%) ↓ (m) (%) ↓ (m)

CN20 low 3.1 22.0 16.9 19.5 17.1 82.7 42.4 74.6 41.1 10.0 17.2

SB20-S1 moderate 8.2 54.7 9.65 53.7 15.7 73.5 11.0 68.0 6.3 24.9 17.8

SB20-S2 high 15.4 75.5 16.2 72.8 15.3 33.9 10.1 82.6 9.4 35.9 26.5

SB21-S1 high 22.3 83.8 7.8 77.4 9.8 38.3 11.5 88.9 8.4 19.6 18.6

SB21-S2 very high 81.2 85.2 20.9 85.1 23.6 71.5 7.4 86.5 4.8 64.9 26.6

forms its counterparts and achieves a loss (missed weeds) rate of 10.0% while only

traveling 0.1m more than baseline (nOTSP). The advantage of the RL-continuous

method becomes even more apparent in moderate to high weed densities (SB20-

S1 and SB20-S2), where it not only maintains a substantial lead by halving the

weeding loss to 24.9% and 35.9% with respect to the baseline but also maintains

a low distance traveled. Moreover, in the most demanding scenario of very high

weed density (SB21-S2), the RL-continuous approach continues to exhibit its su-

periority in both measures of weeding loss and deviled distance hence attributing

smaller travel distance of the nOTSP w.r.t the RL method to the fact that it

misses more weeds.

The advantage of the RL method in high-weed density scenarios can be at-

tributed to the potential for a single spray to aûect multiple weeds clustered
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closely together, which is reýected as multiple correct hits in our proposed re-

ward function Equation (6.4). However, this eûect leads to decreased accuracy

in targeting plant centers, as anticipated.

To evaluate this, we conducted an experiment to compare the performance

of RL models trained with and without the multi-hit factor incorporated into

the reward function. Speciücally, we trained another RL model without the

multi-hit factor, so the agent could only get one weed sprayed with every single

spray action. The results indicate that incorporating the multi-hit factor reduces

the number of spray actions by an average of 5.3%, which positively impacts

agrochemical savings. However, excluding the multi-hit factor from the reward

function leads to an increase in the total loss of weeding performance, which is

directly proportional to the weed density in the üelds. For example with lower

weed density, fewer instances of weeds clustered closely together with a distance

less than spray footprints λ = 0.02m will appear in the üeld models, hence fewer

multi-hits could happen.

In the CN20 üeld model, which features the lowest weed density, the weeding

loss of the models without multi-hit factor is %10.4, where its diûerence to the

base models is negligible and only 0.4%. Conversely, in üeld models like SB21-

S1 and SB21-S2, where dense clusters of weeds are more common, the exclusion

of the multi-hit factor signiücantly decreases the weeding performance to 24.8%
and 78.1%, respectively. This eûect is also noticeable on SB20-S1 and SB20-S2

models with a moderate to high range of weed density with %27.4 and %41.1

weeding losses, respectively.

6.6.2 Effect of Varying the Observation Vector Length

We conducted an ablation study to evaluate the impact of observation vector

length on our system’s performance of RL agents. The observation vector length

determines the number of closest targets (closest in the y-direction) that the RL

agent can perceive simultaneously. We varied this length across diûerent experi-

ments, enabling agents to consider an observation vector of length ranging from

1 to 40 elements. The results, in Figure 6.5, show how the amount of information

available to the RL agent inýuences its learning and decision-making process. A

short observation vector length (N = 1, 2 or 4) restricts the agent’s perception

of the environment, potentially leading to sub-optimal decision-making. This

could be due to the limited awareness of nearby targets and the ability to fore-

cast upcoming situations. Conversely, a longer observation vector with length

N > 8 gives the agent a more comprehensive view of the surroundings but has

the downside of increased complexity leading to learning diþculties. We found

empirically that N = 5 provided the best performance, so we use this setting in

this chapter’s other experiments.
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Figure 6.5: Plot to exploit the effect of observation vector length (N = 1 to N = 40) on

the performance of weeding. The best model uses N = 5 which on average leads to the least

weeding loss.

Table 6.2: Weeding performances of BonnBot-Iweeding tool using nOTSP (baseline) and RL-

based models (RL-continuous).

Fields nOTSP RL-based

- Avg/m2 (%)↓ (m) (%)↓ (m)

CN20 low 3.1 0.0 2.0±1.6 6.9 4.8±3.2

SB20-S1 moderate 8.2 0.0 4.1±2.1 4.3 3.4±0.9

SB20-S2 high 15.4 6.4 1.9±0.9 5.1 6.2±1.9

SB21-S1 high 22.3 14.1 2.8±2.6 1.5 4.5±3.3

SB21-S2 very high 81.2 36.5 5.2±3.1 7.2 7.3±3.4

6.6.3 Multi-Axis Weeding Performance

In this experiment, we provide a comparative analysis of a multi-axis weeding

performance. We use two planning models: nOTSP and RL, where under a new

experimental setup, BonnBot-I utilizes 4 linear axes with the static-subdivision

method for target management within the workspace, where each linear axis has

an independent weeding planner (nOTSP or RL). The static sub-division method

divides the total width of the weeding tool’s workspace into sections based on the

number of available weeding heads. Consequently, each weeding head is assigned

to a smaller portion of the workspace (see Section 5.4). Similar to our single axes

evaluations Equation (6.6.1), in Table 6.2 we examine weed densities ranging from

low to very high.

In Table 6.2, the low and moderate weed-density scenarios (CN20 and SB20-

S1), the nOTSP method achieves a remarkable weed management eþciency, indi-
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cated by a 0.0% weeding loss. This suggests that, for lower densities, the nOTSP

is highly eûective, potentially due to its ability to better navigate and identify

weeds within less cluttered environments. By contrast, the RL-based system

misses some weeds and has a weeding loss of 6.9% and 4.3%, respectively.

As weed density increases to high and very high levels (SB20-S2, SB21-S1,

SB21-S2), the RL-based method begins to outperform the nOTSP in managing

weeds while also keeping the traveled distance relatively low. For instance, in

the SB20-S2 scenario, the RL-based method reduces the weeding loss to 5.1%
compared to 6.4% by the nOTSP, albeit at a higher distance travelled. This

trend continues in more densely weeded environments (SB21-S1 and SB21-S2),

with the RL-based method signiücantly reducing weeding loss compared to the

nOTSP, suggesting that the RL-based approach can handle more complex densely

weeded scenarios.

The RL-based system shows increased travel distances in high weed-density

areas, indicating a trade-oû between weed reduction and movement eþciency.

This highlights the potential of RL-based systems to adapt to complex environ-

ments. While nOTSP is eþcient in low weed densities, the RL approach excels

in dense weed areas despite longer distances traveled.

6.6.4 Biodiversity-Aware Weeding

Our previous evaluations only considered how often we missed weeds in each crop

row and did not consider the importance of each weed. For precision weeding,

this is not the optimal solution as some weeds do not require intervention as

they have minimal impact on the crop. In this evaluation, we consider weeding

decisions based on biodiversity-aware schemes. Moreover, we double the system’s

speed to µ = 1m/s to represent a stressed condition for weeding. Hence, this

experiment shows the eûectiveness of learned policy compared to the biodiversity-

aware variant of nOTSP. In this experiment, planning models use 4 linear axes

as in the previous section.

In Table 6.3, we compare three approaches: biodiversity-aware nOTSP (nOTSP-

Bio-Div), RL-based, and a special variant of the RL-based model, guided by

our novel reward function to consider biodiversity (RL-Bio-Div), as introduced

in Section 6.5. To facilitate the analysis of experimental results, we combined the

weeding loss percentage of low and high-priority weeds with ³×wh+(1−³)×wl

where wh and wl denote high-priority and low-priority loss rates, respectively. We

considered the üeld models to only contain two classes of low and high-priority

weeds (with a ratio of 1 to 10 both in count and priority), hence, setting ³ = 0.9.

Generally, RL-Bio-Div shows promising results across all scenarios, lowering the

weeding loss to an average of 26.7%. Notably, in SB20-S1, RL-Bio-Div achieves a

loss rate of 14.2%, outperforming both RL-based and nOTSP-Bio-Div with 27.2%
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and 5.2%, respectively.

Table 6.3: Weeding loss of nOTSP-Bio-Div, RL-based and RL-Bio-Div methods on real-field

models.

Fields nOTSP-Bio-Div RL-based RL-Bio-Div

(%)↓ (%)↓ (%)↓
CN20 41.8 26.3 24.7

SB20-S1 41.4 19.4 14.2

SB20-S2 38.8 29.7 30.9

SB21-S1 33.6 29.9 28.3

SB21-S2 79.3 41.9 35.5

The RL-Bio-Div performance improvements are particularly pronounced in

high weed-density scenarios, such as SB21-S2, where it outperforms the nOTSP-

Bio-Div relatively by 43.8% and the RL-based by 6.4%. These results highlight

the importance of considering weed density variations when evaluating weeding

strategies and emphasize the potential of RL-Bio-Div in optimizing weeding per-

formance across diverse üeld conditions.

6.7 Conclusion

In this chapter, we signiücantly advanced the weeding capabilities of BonnBot-I

by introducing a novel and reactive reinforcement learning (RL)-based scheme.

The proposed method enables precision weeding utilizing kinematics and obser-

vation models of our self-built weeding robot, BonnBot-I. This development is

closely tied to the last research question posed in Chapter 1: "Can a robotic

system learn to conduct precision weed management based on diverse plant char-

acteristics and priorities provided by experts?" Our approach leverages the power

of RL to optimize the movement strategies of independently controllable weed-

ing nozzles, allowing for ýexible and eþcient operations based on multi-modal

observations.

The RL algorithm we employed is derived from the proximal policy opti-

mization (PPO) method, a state-of-the-art technique known for its stability and

eþciency in training complex policies. By modeling the precision weeding task as

an RL problem, we enabled BonnBot-I to learn and adapt its intervention strate-

gies dynamically. This learning process accounts for the robot’s real kinematics

and the partial observability of the environment, making it well-suited for the

highly variable and dynamic conditions of real-world agricultural üelds.

One of the critical advantages of using RL in this context is its ability to

continuously reüne its decision-making process through interaction with the en-

vironment. This is particularly beneücial in precision agriculture, where the
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variability in weed density, crop types, and environmental conditions requires a

system that can adapt on-the-ýy. Our RL-based approach allows BonnBot-I to

integrate multiple sources of informationsuch as visual data from cameras, spatial

data from sensors, and expert-provided plant prioritiesto make informed decisions

about weeding actions.

In Section 6.6, we present the results of extensive experiments conducted using

real-world üeld models of sugar beet and corn crops. These experiments demon-

strate the eûectiveness of our RL-based method, which reduced the number of un-

treated weeds by an average of 5.0% compared to state-of-the-art traveling sales-

man problem (TSP)-based planners. Furthermore, our innovative biodiversity-

aware RL approach improved weed treatment in complex and diverse üeld condi-

tions by 26.26% over the nOTSP-based biodiversity-aware method. This improve-

ment is a testament to the system’s ability to handle the complexity and diversity

of real-world agricultural environments, making it a signiücant step forward in

the üeld of precision farming.

We attribute the success of our approach to several key factors. First, the

RL algorithm’s capability to perform high-frequency re-planning allows it to re-

spond eûectively to the partial observability of crop rows, a common challenge in

agricultural robotics. Second, the decentralized policy execution within the RL

framework enables smooth transitions between single-agent and multi-agent op-

erations, providing a versatile solution that can scale to diûerent üeld conditions

and operational requirements.

This research lays a strong foundation for future work in the üeld of robotic

precision agriculture. One promising direction is to enhance the eþciency of the

RL-based system by further optimizing its movement strategies to reduce travel

distances while maintaining high weed removal eþcacy. Another critical area for

future exploration is the deployment of these algorithms in real-world applica-

tions, which presents signiücant challenges due to the sim-to-real gap. Bridging

this gap will require more sophisticated learning algorithms, improved simulation

environments, and potentially, the reünement of target management strategies,

such as the static-subdivision method, to ensure that the system performs reliably

in diverse agricultural settings. In conclusion, this chapter not only demonstrates

the potential of RL to transform precision weeding but also opens up new path

for research and development in the broader context of agricultural robotics.
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Chapter 7

Conclusion

T
his thesis investigated the application of robotic vision and automa-

tion in precision weed management and crop monitoring within arable

farming. We presented research topics focusing on developing ad-

vanced techniques that combine classical computer vision and deep

learning to enhance the autonomy, accuracy, and eûectiveness of agricultural

robots. By integrating these technologies, we demonstrated how robotic systems

can signiücantly improve üeld navigation, weed control, and sustainable crop

management, advancing the state-of-the-art in precision agriculture. We show-

cased the BonnBot-Is ability to execute targeted, biodiversity-aware weeding,

emphasizing the importance of plant-level precision to reduce herbicide use and

promote ecological balance. We structured the thesis into six chapters, each focus-

ing on diûerent fundamental research questions introduced in Section 1 ranging

from robot design to autonomous precision agriculture, aspects of robotic vision

in agricultural sites, bio-diversity-aware precision weeding:

The foundation of this work is built on BonnBot-I introduced in Chapter 3,

our novel precision crop and weed management robot, speciücally designed to

address the complexities of plant-level interventions in dynamic agricultural en-

vironments. We introduced the BonnBot-I advanced sensor systems and inter-

vention tools that are engineered to operate reliably in real-world conditions,

autonomously navigating üelds and performing precise weeding actions that pri-

oritize environmental sustainability. The chapter also covers the simulation envi-

ronments developed speciücally for BonnBot-I facilitating extensive testing and

training of weeding algorithms under controlled conditions. Furthermore, we ex-

plained our DNN-based monitoring approach which was developed to oûer crop-

and platform-agnostic monitoring operations in diûerent environments. More-

over, it highlights the three unique, publicly available datasets collected over

three years at the University of Bonn’s Campus Klein-Altendorf, used to validate

the methods developed throughout this research.
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In Chapter 4, we focused on autonomy in agricultural üelds, showcasing vision-

based navigation strategies that enable BonnBot-Is to navigate row-crop üelds

using only on-board cameras. This chapter discusses the core principles of au-

tonomous navigation, emphasizing the challenges faced in dynamic, cluttered

environments. Our method integrated multi-crop-row switching to its control

scheme, ensuring the whole üeld can be traversed. The experiments show that

the presented approach can reliably detect multi-crop-row structures of various

row-crop üelds, guide the robot along the lanes of crops in üve diûerent üelds

accurately and, autonomously switch between adjacent lanes of crops without

supervision successfully replacing manual operation.

In Chapter 5 delves into the key question of plant-level, biodiversity-aware

weeding using robotic vision. This chapter reviewed related robotic weeding ap-

proaches and outlined the system requirements for implementing precision weed-

ing with BonnBot-I. It introduced a method for modeling real-üeld observations

into usable formats, crucial for accurate weeding actions. The chapter further

discussed target-space management strategies and path-planning algorithms that

control BonnBot-Is intervention tools, culminating in a biodiversity-aware weed-

ing scheme that prioritizes ecologically sensitive weeding actions. Experimental

evaluations in both simulated and real-world conditions demonstrate the sys-

tem’s performance in sugar beet and corn üelds, highlighting its eûectiveness in

sustainable weed management.

Finally, the application of reinforcement learning (RL) is investigated for the

ürst time in Chapter 6 to optimize plant-level interventions. We introduced an RL

framework developed for BonnBot-I, designed to enhance the BonnBot-I’s ability

to learn and adapt its weeding strategies based on real-time observations. The

chapter covers the design of the observation models, action spaces, and reward

functions that underpin the RL-based approach, enabling the robot to make in-

telligent, context-aware weeding decisions. Experimental results demonstrate the

advantages of the RL-driven system over traditional methods, showing improved

intervention accuracy and eþciency.

Overall, this thesis illustrated signiücant contributions of the pursued research

topic to showcase further the potential of combining robotic vision and advanced

learning techniques to enhance the autonomy, precision, and sustainability of agri-

cultural robots. By implementing these technologies on BonnBot-I, we demon-

strate signiücant improvements in the accuracy and eûectiveness of üeld interven-

tions, redirecting the precision weeding to a new era of sustainable, tech-driven

agriculture. We can conüdently assert that BonnBot-I has paved the way for the

future of biodiversity-aware, plant-level weeding and interventions in agriculture.

Its innovative capabilities have transformed how autonomous robots handle tar-

geted treatments, ensuring precision and minimal environmental impact. Look-
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ing ahead, BonnBot-I is positioned to considerably advance üeld management

techniques considerably, supporting more sustainable and eco-conscious farming

practices that promote healthier ecosystems while optimizing crop production.

7.1 Open Source Contributions

During this project, we made several open-source contributions which are listed

in below:

Datasets

• 2020 - Sugar-beet Dataset SB20 https://agrobotics.uni-bonn.de/sugar_

beet_2020_dataset/index.html.

• 2021 - Corn Dataset CN20 https://agrobotics.uni-bonn.de/corn_2020_

dataset/index.html.

• 2021 - Multi-Crop Row Navigation Dataset MultiNav21http://github.

com/PRBonn/visual-crop-row-navigation.

• 2023 - Sugar-beet Dataset SB21 https://agrobotics.uni-bonn.de/sugar_

beet_2021_dataset/index.html.

Software Packages

• 2021 - Multi-Crop Row Navigation Package http://github.com/PRBonn/

visual-crop-row-navigation.

• 2024 - RL-Gym environment along with Weeding Speciüc Field models

WeedingGym-v1https://agrobotics.uni-bonn.de/rl_weeding_gym/index.

html.

7.2 Future Work

The advancements presented in this thesis highlight the potential of integrat-

ing robotic vision, machine learning, and autonomous intervention strategies in

precision agriculture. While signiücant progress has been made, numerous op-

portunities for future work could further enhance the capabilities, eþciency, and

sustainability of agricultural robots like BonnBot-I. The following sections out-

line key areas for future research and development, emphasizing the expansion

of precision weeding, the integration of advanced perception technologies, the
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exploration of multi-modal data fusion, and the enhancement of autonomous

navigation and decision-making systems.

Advanced Perception and Multi-Modal Data Integration A critical

area for future work could be the enhancement of perception systems through

the integration of multi-modal data sources, including LiDAR, thermal cam-

eras, and hyperspectral sensors, and further advancing machine vision models

for higher levels of adaptability. Currently, BonnBot-Irelies primarily on RGB-D

and NIR cameras for üeld navigation and target detection, which, while eûective,

can be limited under challenging conditions such as variable lighting, shadows, or

high weed density. Incorporating additional sensors can considerably improve the

robots ability to distinguish between crops and weeds under diverse conditions,

enhancing detection accuracy and robustness.

Further exploration into multi-modal data fusion techniques can enable the

development of more sophisticated perception models that leverage complemen-

tary information from diûerent sensors, leading to more accurate and reliable

plant-level identiücation. Future research should focus on creating uniüed data

processing pipelines that integrate these varied data sources, allowing the robot

to make more informed decisions based on a comprehensive understanding of its

environment.

Enhanced Decision-Making with RL While the reinforcement learning

(RL) framework implemented in this thesis has demonstrated promising results

in optimizing plant-level interventions, there is signiücant potential to expand

these capabilities. Future work could explore more advanced RL algorithms, such

as hierarchical reinforcement learning or meta-learning, which allow the robot to

learn from past experiences more eþciently and adapt its strategies based on real-

time changes in the üeld environment. This approach would enable BonnBot-Ito

dynamically adjust its weeding strategies according to evolving üeld conditions,

such as weed density ýuctuations, crop growth stages, or unexpected obstacles.

Moreover, incorporating adaptive control techniques that enable the robot to

continuously reüne its actions based on sensor feedback could further improve

intervention precision. This would involve developing adaptive models that can

adjust intervention parameters, such as spray rates or tool positions, controlling

the type of intervention, in response to real-time data, and ensuring optimal

performance in varying üeld conditions.

Scalability and Real-World Deployment The current implementation of

BonnBot has been extensively tested in controlled environments and speciüc crop

settings, such as sugar beet and corn üelds. However, scalability to a broader

range of crops and üeld conditions remains a critical challenge. Future work

should aim to validate and optimize the system across diverse cropping systems,

including row crops, orchards, and mixed planting scenarios, each presenting
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unique challenges for navigation and intervention.

To facilitate real-world deployment, further research is needed to address the

operational scalability of BonnBot-I, focusing on energy eþciency, system robust-

ness, and maintenance requirements. Developing lightweight and energy-eþcient

hardware components, alongside more durable and weather-resistant designs,

would ensure the robot can operate reliably over extended periods and larger

üeld areas. Additionally, integrating cloud-based data management and remote

control systems could enable real-time monitoring and adjustments, enhancing

the robots usability in commercial farming operations.

Improved Biodiversity-Aware Weeding Strategies Bio-diversity-aware

weeding has the potential to revolutionize sustainable farming practices by re-

ducing reliance on chemical herbicides and promoting ecological balance. The

missing part of the puzzle at the moment is a proper model of environmental

impact from diverse constlaion of weeds and crops. Developing and utilizing such

assessment models in the decision-making framework could enable the robot to

optimize interventions based on immediate crop health and long-term ecosystem

health.

Collaborative Robotics and Integrated Farm Management Scaling

precision weeding across larger, diverse üelds can be optimized through collabora-

tive multi-robot systems, where robots coordinate tasks and share data for greater

eþciency. By leveraging swarm robotics principles, these systems enhance cover-

age and resilience, distributing tasks among specialized robots for interventions

like spot spraying and soil sampling. Developing protocols for task coordination

would support autonomous large-scale operations. Integrating robots with farm

management systems enables seamless data exchange, empowering farmers with

real-time insights for data-driven decisions in irrigation, nutrient application, and

yield prediction. This ultimately reduces input costs and enhances productivity.

Overall we believe, the future of precision agriculture lies in the continued

development and integration of advanced robotic vision, machine learning, and

autonomous intervention technologies. By expanding the capabilities of agricul-

tural robots, and enhancing their perception, decision-making, and collaborative

functions, we can drive the next wave of innovations that will make farming more

sustainable, eþcient, and resilient.
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