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Zusammenfassung

Der Anbau von Blumenkohl unterliegt strengen Qualitätsstandards während des
Verkaufs, was die Bedeutung eines präzisen Erntezeitpunkts hervorhebt. Die
genaue Bestimmung der Erntebereitschaft ist jedoch herausfordernd, da die Blu-
menkohlköpfe oft von ihrem Blattwerk verdeckt sind. Dies erfordert eine manuelle
Ernte, die den Ernteprozess arbeitsintensiv und subjektiv gestaltet. Um diese Her-
ausforderungen anzugehen, steigt das Interesse an der Entwicklung nicht-invasiver,
Sensor-basierter Ansätze. Diese bieten schnelle, flächendeckende, kostengünstige
und zuverlässige Lösungen, indem sie objektive und nicht-invasive Daten bereit-
stellen. Die Integration von Zeitreihendaten zur Pflanzenphänotypisierung kann
detaillierte Einblicke in die dynamische Entwicklung von Blumenkohl bieten und
ermöglicht präzisere Vorhersagen über den optimalen Erntezeitpunkt im Vergle-
ich zu Einzelbeobachtungen. Jedoch ist die Datenerfassung auf täglicher oder
wöchentlicher Basis ressourcenintensiv, was die sorgfältige Auswahl der Erfas-
sungstage besonders wichtig macht.

Das Hauptziel dieser Thesis ist die Bild-basierte Schätzung der Erntereife von
Blumenkohl. Die Kombination aus Überwachung von Blumenkohlfeldern mit Hilfe
von Drohnen und der Anwendung von Deep Learning Verfahren ermöglicht eine
automatisierte Schätzung der Erntereife. Allerdings können aufgrund der Feld-
variabilität und begrenzter Trainingsdaten Fehler in den Schätzungen auftreten.

Wir bewerten und vergleichen verschiedene Modelle unter Berücksichtigung un-
terschiedlicher Vorhersagezeiten und Vorhersageziele. Wir stellen ein Framework
vor, welches mit Hilfe von interpretierbarer maschineller Lernverfahren die Zuver-
lässigkeit eines Erntereife-Klassifikators bestimmt. Durch die Identifizierung von
Gruppen von Saliency-Maps leiten wir Zuverlässigkeitswerte für jedes Klassifika-
tionsergebnis unter Verwendung von Kenntnissen über die Domäne und die Bild-
merkmale ab. Für nicht gesehene Daten kann die Zuverlässigkeit genutzt werden,
um (i) Landwirte über Verbesserungen ihrer Entscheidungsfindung zu informieren
und (ii) die Vorhersagegenauigkeit des Modells zu erhöhen.

In einem weiteren Ansatz untersuchen wir die Erntebereitschaft basierend auf
Zeitreihendaten und analysieren, welche Erfassungstage und Entwicklungsstadien
der Pflanzen die Modellgenauigkeit positiv beeinflussen. Dabei verwenden wir
die Interpretationstechnik GroupSHAP, um Einblicke in die vorhersagerelevan-
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ten Beobachtungstage zu gewinnen und die zukünftige Datenerfassungsplanung zu
unterstützen. Durch die Verwendung von Bild-Zeitreihen anstelle einzelner Zeit-
punkte erzielen wir eine signifikante Steigerung der Modellgenauigkeit. Group-
SHAP ermöglicht die Identifikation von Zeitpunkten, die die Modellgenauigkeit
positiv beeinflussen. Durch die Reduktion der Anzahl der Erfassungstermine und
die Fokussierung auf diese positiv beeinflussenden Zeitpunkte, verbessert sich die
Genauigkeit weiter. Eine selektive Auswahl der Erfassungstage kann somit zukün-
ftig zu einer effizienteren Datenerfassung führen.

Die in dieser Arbeit beschriebene Forschung leistet mehrere bedeutende Beiträge
zur Aufgabe der Erntereifeschätzung von Blumenkohl. Sie integriert interpretier-
bare maschinelle Lernansätze für neuartige Lösungen, um die Klassifikationsge-
nauigkeit zu erhöhen und ermöglicht es Einblicke in den Entscheidungsprozess
der Klassifikatoren zu gewinnen. In der Praxis können diese Einblicke nicht
nur zur Verbesserung der Klassifikationsmodelle genutzt werden, sondern auch
Landwirte bei ihren Entscheidungsprozessen bezüglich des Erntezeitpunkts und
der Datenerfassung unterstützen. Alle Beiträge wurden anhand unseres veröf-
fentlichten GrowliFlower-Datensatzes validiert, der ebenfalls einen wichtigen Teil
dieser Arbeit einnimmt und nach dem Peer-Review-Prozess in Konferenzbeiträgen
und Fachzeitschriften veröffentlicht. Die Veröffentlichung des Datensatzes unter-
stützt die Entwicklung und Evaluierung verschiedener maschineller Lernansätze
und soll die zukünftige Forschung erleichtern.
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Abstract

Cauliflower cultivation is subject to high-quality control criteria during sales, high-
lighting the importance of accurate harvest timing. However, accurately deter-
mining harvest-readiness is challenging because the cauliflower curd is covered by
its canopy. This leads to cauliflower being harvested by hand, making the har-
vesting process labor-intensive and subjective. To address these challenges, there
is growing interest in developing non-invasive, sensor-based approaches. These
provide fast, field-comprehensive, cost-effective, and reliable solutions by deliv-
ering objective and non-invasive data. The integration of time series data for
plant phenotyping can provide detailed insights into the dynamic development of
cauliflower, enabling more precise predictions of the optimal harvest time com-
pared to single-point observations. However, data acquisition on a daily or weekly
basis is resource-intensive, making the careful selection of acquisition days highly
important.

The main goal of this thesis is the image-based prediction of cauliflower harvest-
readiness. While the combination of monitoring cauliflower fields using drones
and applications of deep learning enables automated harvest-readiness estimation,
errors can occur due to field variability and limited training data. We assess and
compare different models considering different forecasting times and prediction
goals. We analyze the reliability of a harvest-readiness classifier with interpretable
machine learning. By identifying groups of saliency maps, we derive reliability
scores for each classification result using knowledge about the domain and the
image properties. The reliability can be used for unseen data to (i) inform farmers
to improve their decision-making and (ii) increase the model prediction accuracy.

Another approach examines harvest-readiness based on time series data, an-
alyzing which acquisition days and developmental stages of the plants positively
affect model accuracy. We use the interpretation technique GroupSHAP to gain
insights into the acquisition days relevant to predictions and to support future data
acquisition planning. By using image time series instead of single time points, we
achieve a significant increase in model accuracy. GroupSHAP enables the iden-
tification of time points that positively affect model accuracy. By reducing the
number of acquisition dates and focusing on positively influencing time points,
accuracy improves further. A selective choice of acquisition dates can thus lead to
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more efficient data collection in the future.
The work described in this thesis makes several significant contributions to

the task of harvest-readiness estimation of cauliflower. It integrates interpretable
Machine Learning approaches for novel solutions to enhance classification accu-
racy and gain insights into the classifiers’ decision-making process. In practice,
these insights can not only be used to improve classification models but also sup-
port farmers in their decision-making processes for harvest timing and data collec-
tion. All contributions were validated against our published GrowliFlower dataset,
which also represents an important part of this work, and disseminated through
conference papers and journal articles following the peer review process. The pub-
lication of the dataset supports the development and evaluation of various Machine
Learning approaches and is expected to facilitate future research.
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Chapter 1

Introduction

This thesis deals with image-based harvest-readiness prediction of cauliflower us-
ing Machine Learning (ML) techniques. We select state-of-the-art ML models
to show to what extent image-based predictions are accurate and focus on the
use of interpretable ML techniques, which are employed to gain insights into the
decision-making process of the learned models. We evaluate trained models using
the gained insights by addressing the task of determining the reliability of predic-
tions and the contribution of features to output predictions. We demonstrate that
the use of interpretable ML leads to significant improvements in model accuracy
for single-input images and time series inputs. Throughout this thesis, we intro-
duce and utilize the dataset that we have collected, processed, and published open
source.

1.1 Motivation
Cauliflower is a suitable target crop plant to develop ML algorithms because its
cultivation, morphology, and economic value give rise to many potential appli-
cations in the agriculture digitization context. Cauliflower is a high-value crop
that must satisfy various quality criteria such as curd size, compactness, color,
and overall quality (depicted in Fig. 1.1). Thus, precise timing of plant manage-

(a) Acceptable (b) Size (c) Compactness (d) Color (e) Damage

Figure 1.1: Sale requirements for cauliflower. Undersized curds are unsuitable for sale, while
overripe cauliflower curds lose their compactness. Poor plant self-coverage results in yellowing
curds, further diminishing quality, similarly with damaged plants.
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1.1. MOTIVATION

(a) Planting (b) Monitoring (c) Manual harvest

Figure 1.2: Images taken while (a) planting the plants, (b) monitoring the field during growth
with a drone, and (c) during a manual harvest run.

ment procedures is required to avoid yield losses due to abiotic or biotic stress and
produce marketable cauliflowers. Cauliflower harvesting is labor-intensive because
each cauliflower must be harvested within approximately one week, during which
the curds are of sufficient size but are not yet overripe. In addition, cauliflower
must be harvested by hand due to within-field variability in plant development [1]
(Fig. 1.2c). As the curd is covered by leaves as shown in Fig. 1.3b, each individ-
ual cauliflower curd must be touched to determine whether it satisfies size criteria
subjectively. After cutting and removing the surrounding leaves, product quality
is assessed visually to dismiss curds with discolorations, misshapes, or stress symp-
toms. Note that cauliflower growth is highly dependent on climate, which makes
it difficult to predict the most beneficial harvest time. Depending on the prevail-
ing temperature, irradiance, soil water availability, and seed quality and planting
depth, plants may develop rather heterogeneously, thus, harvesting of established
fields simultaneously can take weeks [2], [3]. Under favorable conditions, plants
in sequentially established fields may need to be harvested simultaneously, which
requires more workers and lowers the price per cauliflower [4]. Early prediction
of harvestable plants and harvest time would facilitate better sales planning and
provide significant economic advantages to farmers. Examples of ready and not
ready for harvest plants at two acquisition days are visualized in Fig. 1.4. This fig-
ure demonstrates that the decision between harvest-ready and not harvest-ready is

(a) Widespread expectation (b) In-field reality

Figure 1.3: The expectation of how a cauliflower plant looks often does not match the reality in
the field.
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CHAPTER 1. INTRODUCTION

Figure 1.4: Example of Ready and Not-ready for harvest plants. A column represents the
same plant at different times, depicted by the rows. The difficulty of accurately classifying into
Ready and Not-ready for harvest becomes evident in this example due to the similar visual
characteristics of the classes simultaneously.

not trivial, highlighting the complexity of accurately determining the appropriate
harvest time.

Addressing these challenges requires innovative solutions. Farmers rely on
frequent crop monitoring, a time-consuming process requiring expert knowledge,
to optimize plant management and support effective decision-making. Typically,
farmers and agricultural advisors monitor fields regularly via spot checks of indi-
vidual plants and extrapolate findings to the entire field. However, this approach
is flawed due to individual growth patterns and localized stress occurrences in
cauliflower fields. Here, remote sensing and analysis methods can help farmers
monitor entire fields more comprehensively [5], [6]. This technology allows for the
acquisition of remote sensing data at any scale without damaging or impacting the
crops, as exemplified by the use of drones capturing image data, as visualized in
Fig. 1.2b. ML methods have become increasingly important in processing and in-
terpreting these large amounts of remote sensing data. ML involves learning a pre-
dictive function that relates observations to the desired output, and trained models
can be designed flexibly relative to the type of observations. While remote sensing
and analysis methods offer a promising way for comprehensive field monitoring,
the ability to interpret and understand the outputs of ML models is also crucial.
Explainable ML methods provide insights into the underlying decision-making
processes of the models, enabling researchers to gain a deeper understanding of
crop dynamics. These insights empower researchers to make informed decisions
based on model predictions, which can be effectively communicated to farmers to
support their decision-making processes.

Furthermore, the development and application of ML methods in agriculture
are closely tied to the availability and quality of benchmark datasets with given
annotations and in-situ measurements. These datasets are beneficial for advancing

3



1.2. MAIN CONTRIBUTIONS

ML methods for plant-specific tasks. However, existing benchmark datasets are
often domain-specific and may not adequately address the diverse needs of plant
applications. This challenge of generalizing ML models to different plant species
but also fields or years showing the same species underlines the need for additional
publicly available datasets in plant science. Such datasets are essential for training
accurate models across various plant phenotyping tasks, including plant classifi-
cation, detection, and harvest-readiness estimation. Tracking and analyzing plant
development over time is particularly relevant in plant phenotyping, providing
valuable insights into plant physiology and growth dynamics.

1.2 Main Contributions
This thesis presents ML-based approaches using interpretation techniques for the
classification of harvest-readiness of cauliflower. Explainable ML is employed to
assess the reliability of predictions and to determine the contribution of individual
acquired data points in the monitored data to model accuracy, thereby enhancing
predictive performance. This section summarizes the main contributions of the
thesis.

As a first contribution, we introduce GrowliFlower, an agricultural dataset de-
signed for the development of ML approaches. Our dataset focuses on the growth
analysis and development of cauliflower plants, facilitating the derivation of phe-
notypic traits relevant to agricultural applications. The primary objective is to
promote advancements in agricultural automation. The open source dataset can
be found here: https://phenoroam.phenorob.de.

The second contribution of this thesis involves the assessment and comparison
of various models for predicting the harvest-readiness of cauliflower. We con-
sider different forecasting times and distinguish between binary classification of
harvest-readiness and prediction of harvest days. Through these investigations,
we demonstrate how different model approaches vary depending on prediction
goals and forecasting time, highlighting which approaches are particularly suitable
for accurate predictions of harvest-readiness.

The third contribution deals with the reliability analysis of harvest-readiness
estimation. We introduce a framework for deriving a reliability score for classi-
fication predictions that operates post-hoc during inference time without human
interaction. Thus, the system can be applied to already trained models, requiring
no modifications or additional training.

The fourth contribution focuses on the comparison between the analysis of
single time points and the integration of time series information showing plant
development over time. We demonstrate that models based on image time series
data exhibit superior accuracy than those that only consider a single time point

4
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CHAPTER 1. INTRODUCTION

as input.
The fifth contribution of the thesis uses the interpretable ML method Group-

SHAP to effectively facilitate the selection of time points from time series that
contribute highly to the model’s prediction and, thus, lead to an improvement
of the models. With this information, we selectively determine time points that
increase the model’s accuracy. We compare the time points with the respective
development stages of the plants. From this, we conclude which developmental
stages are important to determine harvest-readiness and propose how to reduce
data acquisition resources. The findings in the application of cauliflower cultiva-
tion can be used to estimate the costs and benefits and determine whether the
gain in accuracy justifies acquiring data weeks in advance.

To summarize, the main contributions of this paper are that we

• create an open source dataset, called GrowliFlower, that helps to test and
further develop machine learning models;

• compare forecasting times and prediction tasks related to harvest-readiness
prediction;

• provide a framework for reliability analysis of cauliflower harvest-readiness
classification based on single input images;

• show that the use of time series compared to single time points leads to an
improvement in the predictive accuracy of cauliflower harvest-readiness;

• show that using the interpretable machine learning technique GroupSHAP
helps to select time points to improve the accuracy further. This information
can be connected to growth stages and used to reduce the required resources
for data acquisition in future works.

1.3 Organization of the Thesis
This thesis is organized as follows. The work begins with introducing the terminol-
ogy in Chap. 2 crucial for comprehending the thesis. A detailed description of the
related work to this study follows in Chap. 3. The methodology employed in the
experiments is described in Chap. 4. The core of the thesis comprises three parts
and encompasses the contributions of this work. Part I focuses on the description
of the data acquisition and resultant datasets utilized in subsequent parts. In
Part II, analyses of harvest-readiness prediction based on single input time points
and model reliability can be found, followed by Part III, which delves into inves-
tigations of image time series used for harvest-readiness prediction. At last, we
conclude our work in Chap. 5 and discuss future work arising from it in Chap. 6.
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Chapter 2

Terminology

In this chapter, we begin by introducing important notations and terminologies
that are essential for understanding this thesis.

2.1 Notation
In this section, we summarize the notation used in this thesis. We denote vectors
a = [a1, . . . , aI ] in bold letters and matrices A = [aij] = [a1, . . . ,aJ ] with capital
letters, where i and j iterate over rows and columns, respectively. Scalars are
denoted with simple letters, such as a. Sets are denoted in capital calligraphy
style A. The elements of a set can be assembled either into vectors or matrices.
The distribution of a set is denoted by P (·). For the set A it is accordingly
represented as P (A). Functions are denoted by small calligraphic letters, such as
a.

2.1.1 Supervised Task
In the following, we introduce the notations of the data and define a supervised
learning task. We have a training set

{xt, yt} ∈ T, n = {1, . . . , T} (2.1)

with T samples of M -dimensional feature vectors xt ∈ RM and respective class
labels yt ∈ [1, ..., c, ..., C ]. The observations are composed in a (M × T )-matrix
X = [x1, ...,xT ], while the labels are summarized in y = [y1, . . . , yT ]. Similarly, we
have a validation set

{xv, yv} ∈ V, v = {1, . . . , V } (2.2)

and test set
{xu, yu} ∈ U, u = {1, . . . , U} (2.3)
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of U and V samples of M-dimensional feature vectors xu,xv ∈ RM within the sets,
and yu, yv ∈ [1, ..., c, ..., C ] respective class labels. For the supervised learning task,
we assume that all labels are given a priori.

We define the supervised task with

ỹT = f (XT,Θ) (2.4)

where f maps the input observations XT to the output labels yT. The objective
is to learn a function f such that its predicted output labels ỹT match the pro-
vided reference labels yT. This is done by optimizing Eq. 2.4 with respect to any
differential loss function. Furthermore, f should exhibit similar behavior on XV

and XU as it does on the learned training data. The function f can exhibit various
characteristics, which may vary depending on the context. In the study within this
thesis, we employ a non-linear function, specifically a neural network architecture,
as described in Sec. 4.2.1.1.

2.1.2 Unsupervised Task
In contrast to a supervised task, an unsupervised task is based on the absence of
predefined labels. We define the unsupervised task through

q = g (XT), q = {1, . . . , Q}. (2.5)

The function g groups the data samples XT to Q clusters. Various clustering
approaches can be employed to realize the function g. We denote the set of clusters
as Q. Subsequently, we group the samples xt according to the clustering applied
by g and denote the resulting cluster assignments as set {xt, q}.

2.1.3 Interpretation Task
For the interpretation task, Eq. 2.1, Eq. 2.2, and Eq. 2.3 change to

{xt, yt,x
tool
t } ∈ T, n = {1, . . . , T}, (2.6)

{xv, yv,x
tool
v } ∈ V, v = {1, . . . , V }, (2.7)

{xu, yu,x
tool
u } ∈ U, u = {1, . . . , U} (2.8)

where xIT
(.) denotes the corresponding saliency maps for x(.), generated by the

interpretation tool IT.
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2.2 Feature Attribution

Feature attribution aims to quantify the significance of input features in influenc-
ing model predictions [21]. Therefore, feature attribution metrics and methods
play a crucial role in understanding the decision-making processes of ML mod-
els. Various methods focus on different aspects of understanding model decisions,
which are crucial for interpreting and explaining ML models and improving their
performance [22]–[24]. Typically, attribution methods are employed post-hoc to
the model training, as their main purpose is to explain how the learned models
work. Diverse attribution methods have been proposed including saliency methods
(see Sec. 4.3.3), attention mechanisms, and rationale models [25]. When dealing
with the term feature attribution, we frequently encounter terms like feature im-
portance, relevance, contribution, or selection. The purpose of this section is to
categorize these terms to enhance the overall understanding of the work.

Feature importance is a metric that gives a global view of whether a model
uses a feature to make its predictions [26], [27]. It refers to quantitative measures
indicating the impact of a specific feature on a model’s predictions. A higher score
for a feature suggests a greater effect on the model used to predict a certain vari-
able, thereby making it more important for accurate predictions. The term feature
relevance is often considered as a synonym for feature importance [28].

Feature contribution is a metric that provides information on how much of
the score a specific feature adds or subtracts from particular predictions for a spe-
cific data point [29]. A reference value is used for this, which is, for example, the
average prediction over all samples. It is, therefore, comparable to a metric at the
instance level. Feature contribution can be used to determine whether redundant,
irrelevant, or noisy features are present in the dataset.

Feature selection is a method that aims to choose features with high importance
or contribution to enhance models or allocate resources effectively. Additionally,
feature selection serves the purpose of reducing dimensionality, facilitating more
efficient computations [28]. While feature selection can initially enhance model
performance, there is a threshold beyond which excessive information removal re-
sults in a loss of valuable data, ultimately leading to a reduction in model perfor-
mance. It is worth noting that feature selection occurs before model (re-)training,
distinguishing it from feature attribution methods, which involve the prediction of
feature importance, relevance, and contribution and typically take place during or
after the model training process.
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2.3 Components of Model Evaluation: Accuracy,
Reliability, Interpretability, Explainability,
and Beyond

The integrity of ML models is crucial to ensure accurate predictions [30]. Erro-
neous or inaccurate predictions can lead to misjudgments, which adversely affect
farmers’ yields and profitability. With an accurate and reliable model, farmers
can make informed decisions that promote the sustainable use of resources and
optimize crop yields. In this thesis, we determine the extent to which a model
fulfills its designated task, assess the reliability of a model, and check whether
the model meets our expectations. Our focus is on model accuracy, reliability, in-
terpretability, and explainability of predictions, all of which are explained in this
section. We emphasize the importance of the mentioned components and point
out their correlations with related terms such as bias, uncertainty, reproducibility,
plausibility, and robustness. The collective integration substantially facilitating
the development, evaluation, refinement, and improvement of the model architec-
ture and predictions [31]. This not only improves model accuracy but also aids in
the discovery of new knowledge.

2.3.1 Relevant Components for the Thesis
In this section, we delve into the fundamental components of model evaluation
crucial for the success of our thesis on image-based harvest-readiness prediction of
cauliflower. We define the significance of accuracy, reliability, interpretability, and
explainability in the context of developing evaluable models.

Accuracy

Accuracy serves as a quantitative indicator of a model’s performance [32]. In the
field of classification, it quantifies the proportion of correctly classified examples
relative to the total number of instances, emphasizing the model’s effectiveness
in correctly distinguishing the class labels [33]. Various accuracy metrics exist,
as described later on in Sec. 4.2.2. According to Yin et al. [34] the achieved ac-
curacy affects the trust in the model. It depends, e.g., on the composition and
diversity of the training data [35]–[37]. Greater variability within the training
dataset facilitates improved generalization to unseen test data. It is mandatory
for the successful computation of ML models that the training, validation, and
test datasets belong to the same domain. When dealing with out-of-distribution
data, models typically exhibit lower accuracy, which poses challenges for general-
ization [38]. In agriculture, this is because plants of distinct varieties may exhibit
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differing characteristics, thus potentially confounding the model’s ability to gen-
eralize across varieties. However, it is important to note that accuracy alone does
not guarantee the absence of bias and uncertainty or the presence of reliability.
Further measures are required to determine the other components [39].

Reliability

We define reliability as the extent to which a result is deemed correct with a high
level of certainty, closely aligning with predicted outcomes. In the literature, relia-
bility is often equated with repeatability or reproducibility [40], which is explained
in Sec. 2.3.2. However, in this thesis, it carries different meanings.

Interpretability

Interpretability refers to the degree to which a human comprehends the predictions
or decisions made by a model [30], [41]. It involves translating complex aspects
of model behavior into a format understandable to humans, thereby enhancing
transparency in decision-making processes [12]. The comprehensibility of inter-
pretations is subjective, with effective interpretations being understandable to the
majority [42]. Interpretations emphasize how the input is mapped to the output
predictions [43]. This may involve methods for determining feature importance and
contribution [44], or visualizing saliency and attention through heatmaps [45].

Explainability

Explainability refers to the process where interpretable models and their results are
informed by human experiences and domain knowledge [12]. This provides expla-
nations about the decisions or predictions of a ML model given by interpretations
[23]. This implies the necessity for results to be interpretable before they can be
explained [46]. When interpretations align with domain-specific knowledge, they
foster greater trust in the explanations provided [33]. A significant application
of explainable ML is dealing with the black-box nature of deep learning models.
By investigating the model’s internal mechanisms, it is possible to fine-tune pa-
rameters to enhance performance and analyze the features that drive the model’s
decisions, thereby ensuring scientifically sound results. This encompasses the pur-
suit of results that are not only explainable but also reliable and scientifically
consistent. Nevertheless, the correctness of the explanation is independent of the
correctness of the prediction [42].
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2.3.2 Contextualizing within Model Evaluation

With regard to the key components discussed, it is also important to emphasize the
broader context in which they operate. We recognize the importance of contextual
components such as bias, uncertainty, reproducibility, plausibility, and robustness.
It is important to note that there are additional concepts and terms beyond those
covered here that also play a role in the development and evaluation of machine
learning models for agricultural applications.

Bias

Bias refers to systematic errors or distortions in data [47], models [47]–[49] or
human decisions [50], that can lead to incorrect predictions [47]. It significantly
influences how a model interprets and processes data. Bias directly impacts the
accuracy of predictions and can affect the reliability of a machine learning model
by consistently skewing predictions or outputs in a particular direction [47]. Bias
may not be apparent when evaluating overall accuracy but becomes evident when
analyzing the model’s performance across different subclasses [51]. Balancing ac-
curacy and bias mitigation is essential for building reliable models. A biased model
may consistently under- or over-predict certain outcomes, leading to unreliable re-
sults. The recognition and comprehension of bias can be facilitated through the
utilization of interpretation tools [52].

Uncertainty

Uncertainty encompasses various sources inherent in ML frameworks, including
data uncertainty, model uncertainty, and the predictive uncertainty of the model
[33], [53], [54]. While it is essential to categorize uncertainty into these three
sources for analytical purposes, the distinction is often blurred or intertwined,
as highlighted by Gruber et al. [55]. Interpretability can aid in understanding
the origins and implications of uncertainty. Moreover, reducing uncertainty can
significantly improve the accuracy and reliability of ML models.

Reproducibility

According to Rojat et al. [33] reproducibility, indicates that a model produces re-
sults with low variance after repeated training on the same dataset. Reproducibil-
ity is closely linked to reliability, as a reliable model often delivers reproducible
results [56].
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Plausibility

Plausibility, indicating that something appears probable or reasonable and is con-
sistent with known facts, domain knowledge, or experiences, is inherently subjec-
tive due to variations among individuals [57]–[59]. In the field of ML, it is crucial
to differentiate between data, model, and predictive plausibility. Plausibility de-
pends on the underlying factual basis and experiential knowledge. However, while
a plausible assertion can bolster trust in model predictions, plausibility is regarded
as more subjective compared to accuracy and reliability. Merely appearing plau-
sible does not guarantee reliability.

Robustness

Robustness denotes the ability of a model to yield consistent outputs regardless of
perturbations to its inputs [33], [42], such as adding noise or adjusting the blurri-
ness, brightness, and contrast within images [60]–[62]. The robustness of a model
relies on the variability present within the training data [35]–[37]. Augmentations
applied to the input data can serve to augment this variability. However, such
augmentations remain within the distribution of the data samples, underscoring
the importance of establishing a diverse foundation of input data samples. When a
model is robust, it positively impacts the accuracy and reliability of the model [56].
A robust model architecture enables it to handle various datasets and conditions,
resulting in more precise predictions and consistent performance.
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Chapter 3

Related Work

This section covers the existing literature on the research topic. It is intended to
provide a comprehensive understanding of the current state of knowledge in this
field.

3.1 Cauliflower Harvest Prediction
Predicting plant development and yield is crucial for agricultural planning and
management. Recent research, such as by Jin et al. [63], has focused on under-
standing plant developmental stages. However, unpredictable harvest times and
deviations from planned harvest schedules, highlighted in studies like [64]–[66],
create challenges for farmers, particularly with cauliflower. Inconsistent harvest
timing increases costs and logistical complexities. Lindemann et al. [67] empha-
size the financial burden of multiple selective hand harvests, significantly adding
to production expenses and requiring extensive planning. Advancements in tech-
nology, such as machine learning and remote sensing, now enable researchers to
make more informed farm management decisions [68].

For harvest-readiness and yield prediction, a cauliflower plant is usually char-
acterized by three components: curd, head, and plant [69], [70], as shown and
explained in Fig. 3.1. Our study adopts these components. Various methods
have been explored to predict cauliflower yields and harvest times, focusing on
environmental conditions, soil characteristics, agronomic practices, and historical
data. Early models use statistical methods, primarily relating cauliflower growth
to temperature [67], [70]–[75]. For instance, Wurr et al. [76] examine the rela-
tionship between curd diameter and accumulated day degrees, while Olesen and
Grevsen [1] model temperature and radiation effects on growth. Later, Rosen
et al. [77] develop genome-based models to predict curd induction without relying
on temperature data.

Recent approaches include computer vision and remote sensing, particularly
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(a) Curd (b) Head (c) Plant

Figure 3.1: Terminology describing components of a cauliflower plant. The term curd denotes
the predominantly white vegetable structure inside the plant without any surrounding leaves.
The term head denotes the plant’s internal curd, along with a few protective leaves that shield it
from external influences. Lastly, when we refer to a cauliflower plant, we encompass all organic
components visible above the soil level. This encompasses the plant in its natural setting without
removing its organic components.

drone-assisted phenotyping, mainly for traditional crops like wheat, barley, and
maize [78]. In cauliflower cultivation, initial efforts focused on automating plant
localization and harvest-readiness prediction using image segmentation techniques
using HSV color space and thresholding [78]–[81]. Grenzdörffer et al. [78] further
developed methods to derive geometric properties like crop height and curd diam-
eter. However, these methods require varieties with minimal self-covering growth,
a challenge as breeding for stress tolerance increases self-covering, complicating
visual derivation of geometric curd properties.

Statistical models primarily predict initial curd induction, while image analysis
focuses on crop localization. However, there is a gap in research on continuous
harvest-readiness throughout the entire harvest window. In related crops such
as broccoli, previous studies have addressed the prediction of the first harvest day
[67], [75] and even harvest-readiness [82]. However, fewer challenges exist regarding
broccoli curd visibility in these studies compared to cauliflower curd visibility. Our
work addresses this gap by performing image-based harvest-readiness prediction for
cauliflower varieties with self-covering leaves, where traditional geometric property
derivation is infeasible.

3.2 Field Monitoring using Remote Sensing
Field monitoring using remote sensing leverages advanced technologies to enhance
the efficiency and accuracy of crop monitoring, offering farmers insights into field
conditions without the limitations of traditional methods. Large-scale observations
from satellites or aircraft and medium-scale observations from unmanned aerial ve-
hicles (UAV) provide overviews of larger agricultural areas [83]–[85]. Large-area
sensor-based crop monitoring detects heterogeneity in the field and supports the
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farmer’s decision-making regarding field management. With such detailed, area-
wide information on biotic and abiotic stress, these factors can be counteracted
more selectively to support environmentally friendly plant management. Medium-
scale and close-range observations acquired from UAVs and ground robots are
beneficial for collecting detailed information and are ideal for phenotyping indi-
vidual plants. For example, Nock et al. [86] use optical remote sensing data to
define various traits, e.g., structural and phenotypical characteristics at all lev-
els, from individual plants to large areas. Other applications using remote sensing
data include yield estimation [87], yield forecasting [88], and monitoring rapid land
surface changes [89].

3.3 Machine Learning in Remote Sensing

Machine Learning methods have become increasingly important [90] in processing
and interpreting large amounts of remote sensing data. ML involves learning a
predictive function that relates observations to the desired output, and trained
models can be designed flexibly relative to the type of observations [91], [92].
For instance, through the application of ML techniques, remote sensing data can
facilitate the identification of plant traits [93], [94]. Additionally, ML has been
instrumental in large-scale crop type and land cover classification [95]–[97] using
time series. A main application area is plant phenotyping, which can be made
more objective and automated using advanced ML methods, e.g., deep neural
networks. For example, Romera et al. [98], Ren et al. [99], and Scharr et al. [100]
trained ML models to infer various phenotypic traits, e.g., the number of leaves
per plant. Similar traits can also be derived using a combination of object and leaf
keypoint detection, which facilitates observation of plant growth as done by Weyler
et al. [101]. Sa et al. [102] employed deep convolutional neural networks to detect
single fruits, which served as a precursor for subsequent autonomous harvesting
[103]. Drees et al. [16] used time series image data of cauliflower and broccoli
to predict field growth using conditional generative adversarial networks [104].
They generated an image of a plant later and employed the Mask R-CNN [105] to
calculate the projected leaf area. Another typical agricultural application is field
weed control, where weeds, crops, and soil must be distinguished accurately. Using
neural networks, promising results have already been achieved, where the task can
be approached using classification [106], detection [107], or semantic segmentation
[108], [109] techniques.
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3.3.1 Interpretability and Explainability
Interpretability and explainability have become a focus in current ML research,
with increasing application in plant science. A recent review by Mostafa et al.
[110] provides a comprehensive summary of previous research on explainable deep
learning in plant phenotyping, offering valuable insights for this thesis. This study
highlights how deep learning models can reveal new plant traits, improving the
efficiency and accuracy of plant phenotyping solving tasks such as plant species
and disease classification [111], [112], counting or segmentation of different plant
parts as leaves and yield [113], [114], and generating synthetic plant data [115],
[116].

Interpretation ML techniques, like feature attribution methods, are crucial for
identifying features that contribute to or are important for yield prediction, phe-
notypic trait analysis, and plant disease classification [117], [118]. The authors
point out that explainable ML clarify the outputs of these models, offering op-
portunities to enhance them further [119]. In disease diagnosis, these techniques
reveal which leaf characteristics indicate disease presence [111], [112], [120], thereby
improving detection systems, thereby improving detection systems. For this pur-
pose, straightforward layer visualizations or saliency mapping techniques such as
Gradient-weighted Class Activation Mapping (Grad-CAM) [121] or Local Inter-
pretable Model-agnostic Explanations [122] are utilized. For yield prediction, they
identify key environmental factors and agronomic practices influencing crop yield
[123], optimizing agricultural strategies. By analyzing the importance of features
like soil fertility, irrigation levels, and weather conditions, researchers can optimize
agricultural management strategies to maximize productivity and sustainability
[124], [125]. In phenotypic trait analysis, interpretation techniques quantify the
contributions of various traits to plant performance, aiding in crop improvement
[123], [126]–[128]. By assessing the importance of features like plant height, leaf
size, and flowering time, researchers can identify genetic markers associated with
desirable traits and inform breeding programs for crop improvement. In collabo-
ration with Penzel et al. [11], we investigate the feature relevance in cauliflower
harvest-readiness classification by analyzing the causal relationships of features.
Interpretation techniques elucidate which model components identify specific fea-
tures within input images, essential for accurate classification [129], [130].

To the best of our knowledge and based on the summary provided in this
review, it becomes obvious that few works exist in the domain of Deep Learn-
ing (DL) and explainable ML that deal with temporal image data. The applica-
tion of explainable ML to image time series has predominately been performed
for satellite data so far due to challenges in time series analysis such as missing
time series data, handling equidistant intervals between time points [131], [132],
or unequal time series length. Thus, most studies using explainable ML focus
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on one-dimensional time series data only [33], [133]–[136], such as determining
the importance of features in temperature or torque sequences [137]. Leygonie
et al. [138] apply an anomaly detection framework on the image-based cauliflower
dataset GrowliFlower [7], using ResNet-18 [139] and Grad-CAM to detect anoma-
lies in time series images. In this thesis, we employ feature selection based on max-
imum feature contribution from single images within a time series of cauliflowers,
determined through Group Shapley values [29]. Our investigation aims to identify
critical growth stages that significantly influence the determination of harvest-
readiness.

3.3.2 Reliability

In addition to model accuracy, the reliability of ML models is a critical concern,
yet this topic has received inadequate attention in agriculture. While various
approaches, such as regularization and data augmentation, have been proposed
to enhance model prediction reliability [140], [141], most training efforts priori-
tize accuracy and loss minimization without adequately addressing quantitatively
determination of reliability or its improvement.

Recent approaches for enhancing and evaluating this reliability use the applica-
tion of explainable ML [31], [142]–[145]. The capability of explainable ML to ensure
transparency in the decision-making processes of ML models enables the validation
of their reliability. For example, Kailkhura et al. [146] propose a framework that
enhances accuracy, explainability, and reliability ad-hoc, particularly for imbal-
anced data. Their approach specifically employs an ensemble learning framework,
including simple models, and evaluates reliability by quantifying the generalization
performance. In contrast, our contribution introduces a framework that derives
a reliability score for classification predictions post-hoc during inference, requir-
ing no human interaction. This approach allows for applying pre-trained models
without altering their architecture or requiring retraining.

3.4 Plant Science Datasets
Benchmark datasets with annotations and in-situ measurements are beneficial in
facilitating the development of ML methods for plant-specific tasks. Various bench-
mark datasets already exist, however, many of these datasets are domain-specific
with highly specific objects, e.g., buildings [147] and animals [148] or other se-
mantics, e.g., land cover [149]. Generally, such datasets are not suitable for plant
applications. The link between ML and plant sciences is becoming increasingly
important [90], as can be seen from the increasing number of related publications
in recent years [109], [150]–[154]. Despite increased demand, to the best of our
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knowledge, only a few publicly available plant-specific datasets are available for
ML purposes.

Among the limited number of publicly available datasets or datasets described
in the literature, many were acquired in a greenhouse environment [154]–[157] or
are based on synthetically generated data [14], [116], [158], limiting their applicabil-
ity to real-world scenarios. In particular, the greenhouse-grown plant Arabidopsis
thaliana rosettes is frequently used in ML research due to its simple rosette mor-
phology [155]. However, the morphologies of agricultural crop plants are more
diverse, and their development is affected by changing environmental conditions
and abiotic and biotic stresses. Thus, agricultural datasets that represent real-
world field conditions that also cover various challenges, e.g., occlusion, shape
variability, pose variability, the colors of plants, and plant parts, are required,
such as the datasets [159]–[163]. For cauliflower, a disease dataset was published
by Sata et al. [164]. However, the difficulty of generalizing ML models between
different plant species remains due to varying plant morphology or the specific
objectives addressed within each dataset.

Modeling the temporal development of plant growth and plant traits is an
active research area, and this requires datasets that monitor plants over time;
however, publicly available time series datasets of plants are rare. One such dataset
is the cauliflower (Brassica oleracea var. botrytis) and broccoli (Brassica oleracea
var. italica) dataset from Bender et al. [81]. The data in this dataset were acquired
using a camera-equipped robot that captured close-range images at several time
points. However, this dataset is limited to only a few plants and lacks semantic
information and accurate georeferencing of single plants. This also applies to the
Mixed Crop dataset by Drees et al. [16]. The dataset comprises georeferenced
time series of RGB images capturing fields of bean-wheat mixtures and reference
monocultures, all acquired using drones.

Our contribution is the GrowliFlower dataset, designed for developing ML ap-
proaches in agriculture. This dataset facilitates growth analysis, crop development,
and the extraction of phenotypic traits for agricultural automation. The dataset
includes RGB and multispectral orthophotos of two cauliflower fields throughout
the growing period. We provide plant IDs and coordinates for extracting complete
and incomplete time series of image patches, along with in-situ reference data
like harvest state and plant size. Furthermore, the data set contains image pairs
of plants pre- and post-defoliation, enabling analysis of the correlation between
external plant appearance and internal curd structure and pixel-accurate labeled
data.
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Basic Techniques

In this chapter, we explain methodological backgrounds that are crucial for under-
standing the thesis and are applied in the research conducted therein.

4.1 Computer Vision Tasks
The field of computer vision deals with the automated analysis of large amounts of
visual data (e.g., images or videos), employing various techniques for this purpose.
Within this thesis, both supervised and unsupervised techniques are applied. The
primary distinction between these two approaches lies in the availability of labeled
data, which are exclusively available in the supervised task. While the characteris-
tics of the data may differ, our main focus is on image data, placing us within the
domain of image processing. Consequently, we offer examples from this specific
sub-field in the following.

4.1.1 Supervised Techniques
Supervised techniques enable the exploration of structure and patterns in data
using supervision in the form of labels. The disadvantage of supervised techniques
is the expertise and time required to label the data. The general notation of the
supervised task is specified in Sec. 2.1.1. Supervised techniques can be used for
different types of tasks. In the field of image processing, these include classification,
semantic segmentation, detection, and instance segmentation.

Image Classification

Image classification aims to categorize an image [165]. The categorization repre-
sents either an object, e.g., cauliflower as shown in Fig. 4.1a, or a state, such as
determining the harvest-readiness of a cauliflower plant, which can be divided into
Ready and Not-ready for harvest.
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(a) Classification (b) Semantic segmentation (c) Detection (d) Instance segmentation

Figure 4.1: Comparison of four supervised learning techniques. While the task of classification
(a) categorizes the whole image, semantic segmentation in (b) partitions the image into different
semantics, detection in (c) detects and locates objects in images, and instance segmentation in
(d) partitions the image into different objects, also from identical semantics.

Semantic Segmentation

The task of semantic segmentation partitions an image into different semantics
[166]. Each pixel is assigned a target class category to generate masks representing
various objects or semantics. An application example is the distinction between
plants and soil in an image, as illustrated in Fig. 4.1b. All plant pixels are identified
and colored uniformly. In semantic segmentation, distinguishing between objects
with the same semantics is inherently impossible when they overlap or are adjacent
in the image.

Object Detection

Object detection aims to detect and locate objects in images using bounding boxes
[167]. The outer frames of the objects are predicted, but not accurate pixel masking
is given as shown in Fig. 4.1c.

Instance Segmentation

Instance segmentation combines semantic segmentation and detection in one tech-
nique. The aim here is also to partition the image into different instances [105], as
shown in Fig. 4.1d. A mask and bounding box are defined for each instance. The
difference to semantic segmentation is that different instances of the same semantic
are distinguished from each other, even with overlap. In the example of cauliflower
plants, this means that different plants are regarded as separate instances, and
thus, separate masks are determined. Like detection, instance segmentation en-
ables the localization of objects in images. Furthermore, object properties can be
derived using the masks of the individual instances. For instance, in the case of
cauliflower, we can determine the diameter of a plant or the projected leaf area.
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(a) K-Means (b) Spectral Clustering (c) K-Means (d) Spectral Clustering

Figure 4.2: Overview of clustering techniques.

4.1.2 Unsupervised Techniques
Unsupervised techniques enable the exploration of structure and patterns in data
without reference information. No supervision is explicitly required for these tech-
niques, but due to the absence of labels, unsupervised methods are less accu-
rate than supervised methods. The general notation of the unsupervised task is
specified in Sec. 2.1.2. In this study, we employ two categories of unsupervised
techniques: Clustering [168] and Gaussian Mixture Models [169].

4.1.2.1 Clustering

Clustering techniques group unlabeled data to Q clusters based on similarities, such
as the euclidean distance [168]. Consequently, data samples within one cluster are
more similar to each other than samples from different clusters. In this chapter,
we will focus on two clustering techniques: k-Means and Spectral Clustering, as
these will be used throughout the thesis.

K-Means

K-Means is the most basic clustering technique employed with the objective of
grouping data xt ∈ T ∪ RM into a predefined number of Q clusters [170]. The
procedure is iterative: initially, Q cluster centers µq ∈ RM with q = {1, . . . , Q}
are randomly initialized, and denoted as centroids. Subsequently, the data points
xt are alternately assigned to the nearest centroid based on the smallest distance,
followed by an update of centroids according to the new assignments. In this
iterative process, the goal is to minimize

T∑
t=0

min
µq∈RM

(||xt − µq||2)). (4.1)

K-Means exhibits advantages when applied to uniformly distributed data with
comparable cluster sizes, as illustrated in Figure 4.2a. However, challenges arise for
clusters that exhibit non-spherical shapes or varying densities [171], as depicted in
Figure 4.2c. The outcomes are sensitive to the initialization of the cluster centers,
and the presence of outliers can impact the calculated center points, potentially
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skewing the results toward the outlier. As mentioned earlier, the number of clus-
ters Q must be known initially, although this number can also be determined
heuristically.

Spectral Clustering

Spectral Clustering (SC) involves clustering data based on a similarity measure
derived from a new representation of the data [172]. The similarities are used as
weights in a so-called weight matrix W , from which a graph Laplacian matrix L
is obtained. The SC method uses the eigendecomposition of L to determine the
clusters using k-Means.

A weight matrix W is constructed from a similarity graph, where we use the
Gaussian similarity function based on the Euclidean distance

W tm = exp
(
−∥zt − zm∥2

2σ2

)
(4.2)

for the determination of the similarities. The kernel scale is set to σ = 0.2 and
chosen by evaluating eigenvalues obtained from the weight matrix W . A suitable
kernel scale is indicated by significantly different eigenvalues and clear eigengaps.
We compute an eigendecomposition of the normalized graph Laplacian [173]

Lsym = I − D−1/2WD−1/2. (4.3)

Here, D is a diagonal matrix, where a diagonal entry is the sum of the weights
in the graph for a data sample xt. Note, in SC one uses the eigenvectors UQ :=

[u1, . . . ,uQ] for the smallest Q eigenvalues when aiming for Q clusters. In a further
step, the rows of UQ are normalized by

Btm =
utm(∑
q u

2
tq

)1/2
. (4.4)

to norm 1 and organized in a matrix B. The Q-dimensional vector zt corresponding
to the t-th row of B, for t = {1, . . . , T}, gives a new representation for xt that
enhances the cluster-properties in the data [174]. Using the k-Means algorithm,
the data are then divided into Q clusters {C1, . . . ,CQ} based on the vectors zt.

Notably, SC is not well-suited for scenarios involving numerous clusters. When
considering adding a new data point to a cluster, the process necessitates a com-
plete recomputation of the SC analysis or an assignment using the k-Nearest-
Neighbors (kNN) method to one of the established clusters. We adopt the kNN
approach in our subsequent experiments.
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4.1.2.2 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) model complex data distributions using prob-
abilistic approaches. We study the Expectation-Maximization algorithm, a funda-
mental component of GMMs used for parameter estimation, together with Kernel
Density Estimation, which is a non-parametric alternative for density estimation
in data analysis [169].

Expectation-Maximization

Expectation-Maximization (EM), developed by Dempster et al. [175], is an algo-
rithm utilized iteratively to estimate the parameters of a probabilistic model that
best explains the data. It operates under the assumption that the data originates
from a combination of several Gaussian distributions. This algorithm is commonly
employed in statistical estimation, especially for tasks such as clustering data or
modeling mixed distributions. While theoretically not classified as a clustering
algorithm, EM can effectively function as one when the number of Gaussian com-
ponents is set equal to the number of clusters.

The EM algorithm begins with an initial estimation of the model parameters.
It then iterates through alternating ”Expectation” or ”E” step, followed by ”Max-
imization” or ”M” step. In the E-step, the expected values of the missing or latent
variables are computed, including the parameters of the Gaussian distributions.
For each data point, the probability is calculated that it originates from each Gaus-
sian distribution of the mixed model. These probabilities are utilized to update
the weights of the individual Gaussian distributions for each data point. In the
M-step, the model parameters are updated to maximize the likelihood of the data
under the model. Typically, the means, covariance matrices, and weights of the
Gaussian distributions are updated by adjusting them to represent the weighted
data points. The algorithm adjusts the model parameters to best represent the
observed data by iteratively performing the E- and M-steps. The E- and M-steps
are repeated until the parameters no longer significantly change or a predefined
convergence criterion is met.

The EM algorithm is particularly useful in situations where the model is com-
plex. By equating the Gaussian components with the number of clusters, we
employ the EM algorithm as a clustering method and analyze it accordingly in
the subsequent thesis experiments. Compared to the k-Means algorithm, the EM
algorithm identifies and groups clusters with different distributions.

To assign new samples to the distributions, we compute the probability that
they originate from each Gaussian distribution within the mixture model. Subse-
quently, the assignment is determined by the highest probability. This assignment
is also termed soft assignment, as a data point can be assigned to one or more
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Gaussian distributions with varying probabilities.

Kernel Density Estimation

Kernel Density Estimation (KDE) enables the estimation of the probability density
function (PDF) of a random variable based on a sample of data points [176]. For
each data point x, a kernel function K, commonly referred to as a kernel, is
analyzed separately, and subsequently, these individual results are summed to
construct the PDF f̂,

f̂ (x) =
1

T

T∑
i=1

Kh(x− xt). (4.5)

This approach offers a smoothed representation of the data distribution through
the specification of the bandwidth h, serving as a scaling factor. We employ a
Gaussian kernel characterized by

Kh(d) =
1√
2πh

e−d
2

2h² . (4.6)

The selection of the kernel and the bandwidth, which determines the kernels’
width, influence the estimation’s accuracy. Choosing a too small bandwidth can
lead to overfitting, resulting in oversmoothing. Conversely, selecting a too large
bandwidth can lead to underfitting, causing undersmoothing, where variations in
the distribution are overlooked. KDE is particularly valuable when the underlying
distribution of data points is unknown or complex.

To evaluate the goodness of fit of the PDF to the data, we utilize the log-
likelihood function as a metric. The log-likelihood function l quantifies the prob-
ability of the observed data under the assumption of the PDF.

l =
T∑
t=1

log(̂f (xt)) (4.7)

A higher log-likelihood suggests that the PDF better fits the observed data, whereas
a lower log-likelihood indicates a poorer fit. Consequently, the log-likelihood func-
tion is commonly employed to compare various bandwidths or kernels for the PDF
and select those that yield the most optimal fits.
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Input Hidden Output

Input Hidden Output

(a) Detailed representation showing single neurons.

Input Hidden Output

Input Hidden Output

(b) Generalized representation.

Figure 4.3: Overall arrangement of a neural network (NN). In (a), one circle illustrates one
neuron within the network. The arrows indicate weights between neurons of consecutive layers.
(b) shows a simplified version of (a) for later visualization purposes.

4.2 Deep Learning
This section describes the networks and evaluation metrics used within this thesis.

4.2.1 Neural Networks

This subsection delves into the fundamental principles of neural networks (NNs).
Additionally, we explain two types of NNs, Residual Networks [139] and Vision
Transformer [177], in more detail that are employed in this study.

4.2.1.1 Basics

NNs are mathematical models that transform an input into output through a
complex and adaptable process defined by an arbitrary differentiable function as
described by Eq. 2.4. The overall arrangement of basic NNs is shown in Fig. 4.3.
A model consists of a set of neurons organized into multiple layers, where con-
secutive layers are interconnected by weights W . The output of each neuron,
weighted by these connections, serves as the input to the consecutive layer. These
weights, along with additional biases b, collectively represent the parameters θ of
the network

ỹ = f (Wx) + b. (4.8)

Commencing from the input layer, information flows through one or more hidden
layers to compute the predicted output scores ỹ. This path is called the forward
path. The function f is determined by this information flow, and the output ỹ is
calculated. The network depicted in Fig. 4.3 can be described mathematically by
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two functions

f (x, θ) = f (2)(W 2 f (1)(W 1x)). (4.9)

These chain structures are commonly used in NNs. In this case, f (1) represents
the function to calculate neurons of the hidden layer, and f (2) is the function to
calculate the output. The length of the chain defines the depth of the network.

The iterative optimization of the function f occurs through the minimization
of a loss function. Following the forward path, the computed output scores undergo
backpropagation along a backward path. This process entails the determination
of gradients within the network, enabling adjustments to the weights to minimize
the loss function. Cross-entropy (CE) loss is employed for classification tasks in
this study.

CE = −
C∑
c

yc log ŷc, (4.10)

with ŷc as the predicted probability by the model after applying Softmax activation
for class c and yc as the one hot encoded target vector. yc equals 1 if the sample
belongs to class c, 0 otherwise.

NNs are designed to learn the distribution given in the training data. However,
they struggle with classifying inputs that fall outside this learned distribution.
Therefore, extensive data is essential for training networks capable of generalizing
well. To achieve robust generalization, ensuring a diverse range of data inputs is
crucial, promoting adaptability across various scenarios.

A variety of neural network architectures exists, among which convolutional
architectures hold a dominant position in the field of computer vision, largely due
to their exceptional capability in extracting and learning hierarchical features from
visual data [105], [139], [165], [178], [179]. Models based on these architectures are
referred to as Convolutional Neural Networks (CNNs). The convolutions include
inductive biases into CNNs such as translation equivariance and locality, which
are used to learn the 2D position in the image and capture spatial neighborhood
information. Alternative model architectures like the Vision Transformer incorpo-
rate attention mechanisms to capture contextual information within images [177].
Typically, deeper network architectures are better equipped to recognize complex
patterns in the input features [139]. However, the increased depth of such archi-
tectures gives rise to the vanishing gradients phenomenon [180], where gradients
diminish significantly during backpropagation, resulting in slow or stalled learning
within deeper layers due to minimal weight updates.

In the following sections, we introduce two model architectures, which are
employed in this thesis, Residual Networks in Sec. 4.2.1.2 and Vision Transformer
in Sec. 4.2.1.3.
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Figure 4.4: Generalized ResNet-18 architecture.

4.2.1.2 Residual Networks

Residual Networks (ResNets) are state-of-the-art ML models for image classifica-
tion developed by He et al. [139]. These models are designed to circumvent the
problem of vanishing gradients using residual connections, even for deep network
structures.

Residual Networks for Single Images

A ResNet architecture is characterized by its initial convolutional and pooling
layers followed by a series of stacked residual blocks and a linear layer. These
residual blocks incorporate convolutional layers and identity shortcuts, also known
as skip connections, which enable the network to extract hierarchical features from
input images across varying levels of abstraction. The number of residual blocks
varies on the specific ResNet architecture employed. In this work, we use a ResNet-
18, which consists of two initial layers, 16 convolutional layers organized in residual
blocks, and a linear layer for dimension reduction, as visualized in Fig. 4.4.

Residual connections within the blocks facilitate the extraction of features by
allowing the network to learn residual functions relative to the input of each block.
This mechanism alleviates the issue of vanishing gradients during training, as iden-
tified by Glorot et al. [180]. Including residual connections ensures that informa-
tion from earlier layers is preserved by adding the input of each layer to the output
of its corresponding residual block.

After the residual blocks, global average pooling is applied to aggregate spatial
information from the final feature map. This pooling operation effectively reduces
spatial dimensions while retaining essential features. Finally, a fully connected
layer maps the aggregated features to the desired output dimensionality, typically
corresponding to the number of classes in classification tasks.

Residual Networks for Time Series

To solve classification tasks based on image time series, we use a siamese network
structure inspired by the framework developed by Zapata et al. [181] and combine
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Figure 4.5: ResNet-based architecture for cauliflower image time series classification. Each image
of a time series is fed into the network successively. The network weights are updated after the
entire time series has passed through the network. Figure source: Kierdorf et al. [9].

the model with a temporal encoding (TE) for contextual relations between time
points. The model is visualized in Fig. 4.5.

Given an image time series of length T , each image is sequentially fed into
the same ResNet-18 encoder, where the weights are updated only after the entire
time series has passed through the network. To obtain a lower-dimensional fea-
ture embedding vector that can be used for explainable ML methods (Sec. 4.3.4),
we modify the size of the last standard fully connected layer within the encoder
to 32. We add a TE of the plant’s age to the embedding following the idea of
positional encoding in Vision Transformer (ViT). This adjustment facilitates the
establishment of contextual relationships among temporal points, thereby enhanc-
ing the discrimination between young plants and underdeveloped ones. We refer
to the resulting embedding as the time point embedding (TPE). The TPEs are
then concatenated to form a time series embedding (TSE), which is fed into a
linear encoder consisting of two linear layers to calculate the final scores for each
class. The input dimension of the first linear layer in the encoder is equal to the
length of the TSE (T×32). The output dimension is optimized by hyperparameter
tuning based on the length T of the time series to retain most of the information.
Therefore, the output dimension is defined by dividing the TSE length by a scaling
factor λ. We have observed that this additional layer significantly improves the
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Figure 4.6: Vision transformer architecture. The illustration is based on [177].

classification accuracy for time series.
In our architecture, each time series must have the same length, unlike ViT

for time series that can handle varying time series lengths [182]. However, this
architecture has the advantage of requiring less data and fewer parameters to
train an accurate model.

4.2.1.3 Vision Transformer

The concept of a Transformer originated within the domain from the field of Nat-
ural Language Processing (NLP), as introduced by Vaswani et al. [183]. De-
parting from traditional recurrent and convolutional architectures, Transformers
exclusively rely on the attention mechanism. The architecture emphasizes identi-
fying relevant sub-sequences within the input sequence and modeling dependen-
cies among its sequence elements. Consequently, Transformers explicitly encode
contextual information, allowing for nuanced understanding and processing of se-
quential data.

Based on the NLP transformers, Dosovitskiy et al. [177] developed the Vision
Transformer (ViT) for analyzing images. We focus exclusively on the application
for classification tasks. In the following section, we explain the structure of a ViT
for single input images and how we use it for analyzing time series.

Vision Transformer for Single Images

A ViT interprets an image as a sequence of patches, as visualized in Fig. 4.6. To do
this, the image is divided into patches of equal size, which are embedded linearly.
In addition, a positional encoding (PE) of the patches takes place by calculating a
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positional embedding for each patch position in the original image, which is then
added to the patch embedding. The positional embedding is determined through
sinusoidal positional encoding [184]. The encoding is partitioned into both a sine
and cosine component, computed according to the following expressions:

PE(k, 2i) = sin
(

k

s2i/d

)
PE(k, 2i+ 1) = cos

(
k

s2i/d

) (4.11)

The position is denoted with k, d is the dimension of the output embedding, s

is a user-defined scalar, and i implies the mapping index with 0 < i < d/2. The
positional embeddings do not carry information about the 2D position of patches
within the image. The spatial resolution is learned from scratch. That means the
model learns to encode the spatial distance within the image through the similarity
of the (positional) embeddings.

The embedded patches, alongside an embedded classification token, serve as
input to a transformer encoder, comprising multiple stacked multi-head attention
layers and multi-layer perceptron (MLP) blocks [183]. The multi-head attention
layers play a crucial role in capturing the relation among various patches within the
image and computing attention weights among them. This process facilitates the
aggregation of contextual information spanning the entire image. In the context
of a transformer, the attention distance corresponds to the receptive field size of
a CNN. A larger attention distance is similar to a larger receptive field. Unlike
CNNs, where convolutions rely on local neighborhood information, self-attention
operates globally within the image, enabling information integration across the
entire image without any constraints on the distance between pixels.

Following the multi-head attention layer, an MLP is employed to compute a
non-linear transformation of the patch representations. Normalization operations
are performed between layers, and residual connections are introduced to stabilize
the training process of the ViT, similar to the approach utilized in ResNet archi-
tectures. The output derived from the transformer encoder constitutes the image
representation, which subsequently undergoes processing by a classification head
implemented through a MLP to receive the final classification output.

We employ a Vision Transformer with the configuration denoted as ViT-B/16.
The nomenclature of the model is determined by its configuration and patchsize.
The designation ”B” signifies the adoption of a base model architecture inspired
by BERT [185], while the patchsize is specified as 16 px × 16 px.

A ViT often reaches better accuracies for mid-sized datasets than a ResNet.
For low-sized datasets, ResNet achieves better accuracies as no inductive biases
are given. Transformers need more data to learn, for example, the locality of patch
positions.
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Table 4.1: Confusion matrix for two classes.

Prediction

R
ef

er
en

ce Ready Not-ready
Ready TP FN

Not-ready FP TN

4.2.2 Evaluation Metrics

A commonly used method of evaluating the accuracy (Sec. 2.3.1) of neural net-
works is the confusion matrix. Within the confusion matrix, the reference data
is compared to the predictions made by a trained model. An illustration of a
confusion matrix for two classes is presented in Tab. 4.1. In this case, we set the
two classes to Ready and Not-Ready for harvest. True positives (TP) indicate the
correctly classified samples belonging to class Ready, while true negatives (TN)
denote the correctly classified samples of class Not-ready. False positives (FP)
provide information about the number of samples that are incorrectly classified
as class Ready, while false negatives (FN) indicate the number of samples that
are incorrectly classified as class Not-ready. As we focus on the harvest-readiness
prediction of cauliflower, we focus mainly on this binary decision, but the confu-
sion matrix is also valid for multi-class tasks. Various metrics can be derived from
the confusion matrix that are useful for evaluating neural networks. This section
provides an overview of these metrics.

Recall

The recall tells us how likely a sample of a given class is classified correctly. It is
calculated as follows

Recall = TP
TP + FN . (4.12)

The higher the recall, the more individuals are detected.

Precision

The precision indicates the quality of the predictions and is calculated as follows

Precision =
TP

TP + FP . (4.13)

Greater precision implies that a higher proportion of the identified samples are
correctly classified.
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F1 Score

The F1 score summarizes and balances precision and recall by calculating a har-
monic mean. The F1 score is defined as follows

F1 =
2 · Precision · Recall
Precision + Recall . (4.14)

Overall Accuracy

The overall accuracy (oaAcc) with

oaAcc =
TP + TN

TP + TN + FP + FN (4.15)

gives the proportion of correct classified data samples within a dataset compared to
the total amount of data. However, when dealing with imbalanced class data, the
oaAcc fails to offer meaningful insights into the performance of individual classes.
The method assigns higher importance to classes with larger proportions, masking
any potential shortcomings in accurately classifying less represented classes.

Balanced Class Accuracy

Unlike the oaAcc, the balanced class accuracy (bcAcc), also known as the average
of recalls, considers class imbalance. It computes the accuracy for each class and
then calculates the average across all classes. Eq. 4.16 illustrates the formula for
a two-class problem, corresponding to the confusion matrix in Tab. 4.1.

bcAcc =
TP

TP+FN + TN
TN+FP

2
, (4.16)

Intersection over Union

The Intersection over Union (IoU) measures the overlap between the predicted
bounding box or segmentation mask and the reference annotation. The IoU is
calculated as follows

IoU =
Area of Intersection

Area of Union =
TP

TP + FP + FN , (4.17)

following the evaluation metrics of the COCO dataset [186].
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4.3 Interpretability and Explainability in Machine
Learning

Explainable ML comprises methods to increase the level of interpretability and
explainability to elucidate the decision-making process of ML models. It aids in
analyzing complex data by providing visualizations that facilitate the understand-
ing of the data in relation to the model and task at hand [187]. In this section, we
delve into the terminology and types of interpretations crucial for categorizing and
understanding interpretation techniques. Following this, we describe the specific
techniques employed in this study.

4.3.1 Terminology

Before looking at specific interpretation techniques, describing the terminology
used for explainable ML approaches is helpful. This aids in determining the type
of explanation we require and prefer. Various approaches exist to explain the
model’s behavior. They are categorized by locality, specificity, and adaptabil-
ity. Locality encompasses distinctions between local and global approaches, while
adaptability distinguishes between post-hoc and ad-hoc approaches. Specificity
delineates between model-agnostic and model-specific approaches.

Global approaches have the ability to understand and interpret the whole model
behavior across the whole input space [188], [189]. They gain insights into the
decision-making process that is applied across all input samples. Global techniques
often calculate and provide so-called prototypes, which represent a synthetic sam-
ple leading to the maximum score. These prototypes elucidate the features within
the input data that contribute most significantly to the model’s predictions or
decisions.

Local approaches have the ability to understand and interpret one specific model
decision [29], [122]. It aims to explain one specific prediction made by the model
and allows a human to understand why the model reached a particular outcome.

Ad-hoc or intrinsic approaches are integrated during the training phase [190],
[191]. The model is custom-designed to incorporate an interpretable structure
analogous to a decision tree, enabling direct interpretability. However, there are
still concerns about whether all model features correctly reflect the underlying
data or whether some features have not yet been taken into account. By defini-
tion, ad-hoc models are inherently model-specific.
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Post-hoc approaches are applied after training the model and aim to analyze
the learned representations within the model [192], [193], delve into understanding
which input activates which neuron in the activation space of the NN, or analyze
the reasons for certain classification decisions. Furthermore, post-hoc approaches
are adaptable to ad-hoc models after training completion. Sensitivity analyses and
feature importance assessments exemplify post-hoc approaches.

Model-agnostic approaches do not rely on specific structures or architectures
of the underlying ML model [122], [194]. This has the advantage that no ac-
cess to the model’s architecture is required and forces its application post-hoc.
These approaches provide explanations that are applicable across different types
of models. They address the effects on the output when the input is perturbed.
Model-agnostic approaches are particularly suitable for complex models with nu-
merous parameters, such as neural network, where interpreting all parameters can
be challenging. However, they can be applied to any model indiscriminately.

Model-specific approaches rely on specific structures or architectures of the
underlying ML model [195], [196]. These approaches give more detailed insights
into how the model operates and makes decisions.

In this thesis, we solely utilize local, post-hoc interpretable approaches. This
choice is deliberate, as our subsequent experiments involve the investigation of
individual plant instance predictions post-training.

4.3.2 Interpretations Types
We distinguish between two different types of interpretations: model-based and
decision-based interpretations.

Model-based interpretations focus on understanding internal structures of ML
models and how a model processes and transforms the data to output predictions.
These interpretations provide insights into the relationship between model com-
ponents, such as layers, features, and parameters. Model-based interpretations
generate prototypes from input data using learned representations that maximize
neuron activations and thus maximize the output score for a specific target pre-
diction [197].

Decision-based interpretations indicate why a model makes a specific deci-
sion, helping to verify if the model behaves as expected. We distinguish be-
tween example-based [198], [199] and attribution-based methods [192], [200], [201].
Example-based interpretations help to highlight specific examples where the model
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performs well or poorly and how the model behaves for these decisions, while
attribution-based interpretations help to investigate the importance or relevance
of features driving the model’s decision by highlighting the most influencing fea-
tures.

4.3.3 Saliency Mapping
Saliency mapping refers to the visualization of the attribution of specific features
or regions within the input data utilized by a model. It is a straightforward and
effective method for visually representing data in an understandable manner [110].
Saliency maps are typically represented in the form of heatmaps, where values
within the map are encoded by colors, aiding in identifying patterns, trends, and
anomalies compared to numerical matrices. Fig. 4.7 illustrates three exemplary
heatmaps (b-d) in conjunction with the input RGB image (a). The appearance
of the heatmaps varies, characterized by the color palette chosen, which can be
customized according to the task, as well as the underlying methodology employed
to determine feature attribution. Further explanations on this topic can be found
in Sec. 4.3.4.

In the evaluation of heatmaps, various aspects are considered. Besides the
quality of interpretations described by Robnik et al. [42], visual compactness and
the extent of highlighted regions are particularly crucial. Strong compactness and
a broader range of values within the map contribute to easy interpretability and
integration of explainability of the results. Integrating domain knowledge into
heatmaps is easier to accomplish compared to numerical data such as probabilities
and accuracies. Heatmaps facilitate the determination of object locations and
shapes, assessment of data density and compactness, and quantification of the
number of elements.

4.3.4 Interpretation Techniques
Machine Learning interpretation techniques aim to explain the model’s decision by
identifying important regions or specific features within the input. The choice of
the visualization tool for interpreting decisions is contingent upon the underlying
dataset and the nature of the task at hand. For instance, when the objective is to
ascertain the importance of regions or features within an image, attribution-based
methods, supplemented by saliency maps, facilitate visualization [192], [202]. In
scenarios where the focus is on showing feature contribution to an output predic-
tion of specific known features, saliency maps are less suitable. Still, techniques
such as violon plots serve as effective visualization aids [203]. Based on the visu-
alized interpretations, we can predict which regions are important for classifying
a specific class or which features contribute most to the output. For cauliflower,
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(a) RGB (b) Grad-Cam (c) OSM (d) LIME

Figure 4.7: Example saliency maps resulting after applying (b) Grad-Cam, (b) Occlusion Saliency
Mapping, and (d) LIME on the (a) original RGB image. Image source: Kierdorf et al. [8].

highlighted regions in saliency maps may give an answer about which regions are
important for prediction, e.g., Ready or Not-ready for harvest, or which time
points of data acquisition contribute most to high classification accuracy. Com-
bined with domain knowledge, we derive explanations of the interpretation tools’
predictions. Various interpretation techniques exist for visualizing the attribution
of features to the output. The following techniques are utilized in this study:

Gradient-based techniques leverage the backpropagation algorithm, which cal-
culates gradients of the loss function with respect to model parameters, to under-
stand the contribution of each parameter to the model’s output [204], [205].

Perturbation-based techniques modify the input data in various ways and ob-
serve the resulting changes in the model’s predictions [45], [206].

Attention-based techniques compute attention weights to emphasize important
input features and to understand feature interactions [189], [207].

Surrogate-model-based techniques involve constructing simpler, interpretable
models that approximate the behavior of a complex, black-box model [29], [122].
These surrogate models are typically more transparent and easier to interpret,
providing insights into the decision-making process of the original model.

In the following subsections, we delve into four fundamental techniques, namely,
Occlusion Sensitivity Mapping, Gradient-weighted Class Activation Mapping, Lo-
cal Interpretable Model-agnostic Explanations, and Shapley Additive Explana-
tions, providing a detailed explanation as they are employed within this study.

4.3.4.1 Occlusion Sensitivity Mapping

Occlusion Sensitivity Mapping (OSM) is a perturbation-based model-agnostic method
developed by Zeiler et al. [45]. This method evaluates the sensitivity of a trained
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(a) Overview (b) Saliency map

Figure 4.8: Visual overview of Occlusion Sensitivity Mapping (OSM) approach shown in (a)
and the resulting salience map shown in (b). The purple square overlapping the input images
represents the sliding window.

model towards partial occlusions in an image. The use of OSM helps to identify
whether the trained model classifies the input based on task-specific features or
the surrounding context that is included in the classification. Moreover, it shows
which regions contribute positively to the score and which contribute negatively.
If the heatmap outcome is a high absolute value at a given pixel position, chang-
ing this pixel would significantly affect the classification result. This provides an
understanding of the model’s learned behavior based on the underlying task.

OSM uses a sliding window approach as visualized in Fig. 4.8 with patchsize
p and stride s to permute the input by masking patches and, thus, determine the
influence of the occlusion on the predicted model score. The choice of the two
parameters influences the result regarding precision and smoothness. In the area
occluded by the patch around position o, the classifier’s pixel-wise scores for each
class are compared to the obtained scores after a part of the image was occluded.
The difference ∆yco is given by

∆yco = ỹc - ȳco , (4.18)

where the original predicted score for each class is denoted by ỹc, and the predicted
score based on occlusion is given by ȳco. Performed for the whole image, it results
in an occlusion sensitivity heatmap.

Fig. 4.7c shows an example of an OSM heatmap, where blue and red colored
areas show the most sensitive pixels towards occlusion. A blue pixel in the map
indicates that the score after occlusion is lower than the original score, i.e., this
pixel indicates the presence of the examined class. We denote those pixels as
positively sensitive. A red pixel indicates that the score after occlusion is higher
than the original score, indicating a different class. An occlusion helps predict the
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correct class. Thus, we denote those pixels as negatively sensitive. The white-
colored areas indicate no measured influence on the classification. Note that the
smaller s, the finer the map’s resolution.

Varying patchsize and stride allows for flexibility in the generation of OSM
results. This allows to capture features of different sizes in the image. However,
depending on the selected parameters, this increases runtime.

4.3.4.2 Gradient-weighted Class Activation Mapping

Gradient-weighted Class Activation Mapping (Grad-CAM) is a gradient-based
model-specific technique that uses the gradient of the learned network to indi-
cate from which part of an image a given convolutional layer Ak takes information
[121]. Eq. 4.19 shows how to compute a Grad-CAM saliency map.

xGrad-CAM
c = ReLU

∑
k

global average pooling︷ ︸︸ ︷
1

Z

∑
i

∑
j

∂ỹc

∂Ak
ij︸︷︷︸

gradients via backprop

Ak


︸ ︷︷ ︸

linear combination

(4.19)

First, the input image is forward propagated through the network to obtain the
raw score ỹc for the class of interest c. Raw score means the score before the Soft-
max activation. For this work, the class of interest is the predicted class. All other
scores are set to zero. Then, the class-specific gradient ∂ỹc of the score for class
c is calculated concerning feature maps of a convolutional layer Aij. Exemplary
feature maps are visualized in Fig. 4.9 by different colors in layer Ak. Afterward,
the gradient of the raw score is backpropagated to the convolutional layer Ak of
interest, followed by a global average pooling. Here, Z is the normalization factor
that considers the feature map’s spatial dimensions with Z = I × J . A weighted
combination of activation maps is computed, followed by an activation function
like ReLU. An exemplary feature map is shown in Fig. 4.7b.

Gradient-based techniques are particularly effective when discerning objects
against smooth backgrounds, such as a bird against the sky, as those techniques
primarily focus on detecting edges. Remarkably, these techniques remain effective
even in the presence of complicated cauliflower data with numerous edges. Nev-
ertheless, it is important to note that the main objective has shifted from object
identification to status classification. While Grad-CAM provides insights into the
target class or class of interest, it may not provide information regarding other
classes.
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(a) Overview (b) Saliency map

Figure 4.9: Visual overview of Grad-CAM approach shown in (a) and the resulting salience map
shown in (b).

4.3.4.3 Local Interpretable Model-agnostic Explanations

Local Interpretable Model-agnostic Explanations (LIME), is a perturbation-based
model-agnostic method developed by Ribeiro et al. [122]. LIME perturbs the input
and computes the prediction for these perturbed samples with the original model.
Perturbation is applied by changing components in images that are meaningful
to humans, such as superpixels. After perturbation, a local surrogate model is
learned using the perturbed samples. In our work, we use a least squares linear
regression model as a local surrogate model. An example saliency map, produced
by LIME, is shown in Fig. 4.7d.

While LIME is primarily used for explainability, it can indirectly provide in-
sights into the reliability or fidelity of a model’s predictions, as the surrogate model
should be a good approximation of local predictions. One disadvantage of LIME
is the necessity to pre-select the complexity of the local model. If the underlying
model is highly complex or nonlinear, the local approximation may fail to cap-
ture the feature details, leading to unstable explanations [208]. Furthermore, in
datasets characterized by feature interactions, interpretability is prevented. This
limitation is exemplified in scenarios such as distinguishing between a horse and a
zebra. Only considering both color stripes together makes sense to define a zebra
as a zebra. However, treating them as separate superpixels would worsen their
interpretability.

4.3.4.4 Shapley Additive Explanation

Shapley Additive Explanations (SHAP) [29] is a perturbation-based model-agnostic
method used to calculate an entity’s contribution to a model prediction, where an
entity consists of one or more features. The original SHAP approach [29] uses
single features, while the GroupSHAP approach [209] considers multiple features
within an entity. In our work, we compute GroupSHAP values by defining an
entity consisting of a combination of all features within a TPE. Thus, this entity
represents the embedding of an input image of a time series. In doing so, we in-
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vestigate the effect of individual time points on the model’s accuracy rather than
model features.

In general, an entity with a positive SHAP value contributes positively to a
prediction and, thus, increases the model score. In contrast, an entity with a
negative value contributes negatively and, thus, reduces the model score. A SHAP
value represents the deviation from the mean contribution of an entity to the final
prediction. First, all possible entity combinations are formed to determine the
SHAP value, where one of these combinations is referred to as a coalition. The
entities within a coalition are fixed. Entities not present in a coalition are filled
with random examples of the same entity from the training set to maintain a
uniform number of entities required for neural networks. Afterward, the SHAP
value is determined by computing the mean of differences between all coalitions
excluding the entity of interest, compared to the same coalitions, including the
entity of interest. We calculate the weighted average over all coalition differences
using a similarity measurement of the data samples, e.g., using a kernel function
such as Gaussian kernel or binomial coefficients. The resulting value gives the
SHAP value for the entity of interest. Coalitions that consist of either only fixed
entities or non-fixed entities are given the highest weight, as they are most likely to
be used to derive direct entity contributions of the entities of interest. This process
is carried out for all entities representing the different TPEs of a time series. The
final prediction of a data sample is obtained by adding the SHAP value to the
mean prediction of the entire dataset. In general, SHAP values are calculated for
each target. One issue to consider when using GroupSHAP is the assumption of
entity independence. In real-world scenarios, features are often correlated, leading
to misleading interpretations.
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GrowliFlower Dataset
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Introduction
Our objective of this thesis is to develop an image-based prediction model for
determining the harvest-readiness of cauliflower. However, there is a limited
amount of publicly available plant datasets, and none of these datasets capture
cauliflower close to its harvest stage, let alone throughout its entire develop-
ment period. Current research in plant science has not yet advanced to the
point where models can be trained to generalize across various plant species.
As a result, there is a pressing need for datasets that encompass a diverse
range of plant species to support the development of such generalized models.

To close the gap, we present an agricultural dataset and the underlying data
acquisition, introduced as GrowliFlower, that is suitable for the development
of ML approaches. The proposed dataset is intended to address the growth
analysis and development of cauliflower plants and the derivation of phenotypic
traits relevant for agricultural applications to promote the development of
automation in agriculture. The proposed dataset comprises the following:

• RGB and multispectral orthophotos of two different cauliflower fields
were acquired over the entire growing period (from planting to harvest).

• Plant IDs and coordinates, which enables users to extract complete and
incomplete time series of image patches showing individual plants ac-
companied with insitu reference data captured manually on the field.

• The plant IDs and coordinates also allow users to extract image pairs
of plants pre‐ and post‐defoliation accompanied with a time series of
the respective plant to facilitate analysis of the correlation between the
external appearance and internal head of the cauliflower plant..

• The proposed dataset’s pixel‐accurate labeled data are useful for plant
and leaf classification, detection, segmentation, instance segmentation,
and other similar computer vision tasks.

We also present two baselines demonstrated application examples of plant
and leaf instance segmentation using the proposed dataset in a Mask R‐CNN
[105] application. The structure, texts and information from this part were
mostly taken from our paper written by Kierdorf et al. [7].
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Chapter 1

Field Design of the Study Area

In this chapter, we describe the study area. The cauliflower fields used for data
acquisition in this study were located on a farm in Western Germany (50°46’6.742”
N, 6°58’20.271”O) close to the city of Bornheim, which is 20 km south of Cologne
(Fig. 1.1). The mean annual temperature in Bornheim is 14°C, and the mean
annual precipitation is 383mm. This area is dry 142 days a year with an average
humidity of 81%. Note that fertile loess soil is available on the farm.

Figure 1.1: Field locations. The fields are located near Cologne, Germany. Blue: field 1 (2020);
orange: field 2 (2021). Figure source: Kierdorf et al. [7]. Map source: Google Maps.

We acquired data for three fields, i.e., (1) the field shown in blue in Fig. 1.1
(referred to as field 1 in this thesis) in 2020, and (2) the field shown in orange
(referred to as field 2 in this paper) in 2021. Note that the cauliflower plants in
fields 1 and 2 were planted in rows in a northwest to southeast orientation. These
fields were designed for sprayers with a working width of 18m. Prior to planting,
the fields were plowed to prepare the soil. Tractors with 1.8m track width were
used to plant five rows of nursery-grown young cauliflower plants simultaneously,
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1.1. FIELD 1

(a) (b) (c) (d) (e)

Figure 1.2: Example field and plant images. Image (a) shows seedling trays prior to planting.
Image (b) shows plants two weeks after planting. Images (c–d) were taken four weeks after
planting and illustrate how different plants develop over. Image (e) shows plants shortly before
head formation. Image source: Kierdorf et al. [7].

with three rows between the tractor tracks. The distance between the rows was
0.6m, and the distance between the plants in a row was 0.5m, thereby resulting
in a planting density of 33000 plants/hectare. In addition, every 18m, there was a
2m wide lane for spraying and irrigation. The fields were subject to conventional
farming practices, including hoeing cauliflower plants before canopy closure to
reduce weeds and application of pesticides (including herbicides, insecticides, and
fungicides). The fields were also irrigated as required using sprinklers. As a result,
the abiotic and biotic stresses were rather low in all three fields, and the plants
developed rather uniformly.

1.1 Field 1
Field 1 has a width of approximately 100m and length of 240m. Thus, total area
of field 1 is approximately 2.4 ha. This field was planted with the Korlanu cultivar
(Syngenta, Maintal, Germany). Three-quarters of the field were planted using
plants from seedling trays (Fig. 1.2, left) on July 28th, 2020 from the southwest
direction. The remaining northeastern part of the field was planted on July 29th,
2020. Note that field 1 was generally free of weeds.

1.2 Field 2
Field 2 has a width of approximately 55m and a length of 210m. Thus, the area
is approximately 1.32 ha. This field was planted with the Guideline cultivar (Syn-
genta, Maintal, Germany). Here, the plants were transplanted from seedling trays
on June 15th, 2021. Note that field 2 contains more weeds than field 1, especially
along the southwestern edge of the field due to previous rhubarb cultivation.
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Chapter 2

Data Collection

Three types of data were acquired in the data collection process, namely:

1. RGB and multispectral UAV image data with high spatial resolution, which
is an indirect measurement of the phenotypic development of the plants.

2. Georeferenced ground control points (GCP) to locate the data in space,
spatially arranged according to field size to ensure accurate and robust pro-
cessing of the orthophotos [210].

3. In-situ measurements of phenotypic traits characterizing the development
state and stress factors that serve as reference observations.

The different types of data were collected on the same day to synchronize
them. However, to ensure that workers were not visible in the image data, data
acquisition processes were not conducted at the same time. Data acquisition was
conducted once a week during the entire growth period. During the harvest period,
data were collected once between two different harvest days and once after the final
harvest. Note that drone flights were only performed on sunny or overcast days
to ensure stable illumination for the generation of orthophotos without shading
effects due to moving clouds. As a result, the time intervals between successive
flights vary. Fig. 2.1 shows the data collection dates for fields 1 and 2. As seen in
the top timeline, seven orthophotos are only partly available, which is discussed
further in Sec. 3.1. The data collection took a few hours per day, with the in-
situ measurements being the most time-intensive. In addition, data collection
was adjusted to all field conditions separately, resulting in adaptations to camera
settings, number of GCPs, and flight altitude. In the following subsections, we
describe the procedure followed for fields 1 and 2.
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2.1. RGB AND MULTISPECTRAL IMAGING

(a) Field 1

(b) Field 2

Figure 2.1: Timelines of acquired data for (a) field 1 and (b) field 2. The colors represent the
data availability for images and in-situ measurements. Figure source: Kierdorf et al. [7].

Figure 2.2: DJI Matrice 600 hexacopter for UAV image-based measurements. Image source:
Kierdorf et al. [7].

2.1 RGB and Multispectral Imaging

UAV images were captured using a DJI Matrice 600 hexacopter with two mounted
cameras (Fig. 2.2). The first camera was a Sony A7 rIII RGB camera with a
Zeiss/Batis 2.0 lens (resolution: 47.4 MP). The focal length was 25mm with a field
of view of 71.5◦. A shutter speed of 1/1250th and a floating aperture (highest value:
2.0) were selected. The ISO value was set to automated for field 1 and changed to
50 for field 2 to align our approach with the image-capture settings recommended
by Agisoft. The second camera was a MicaSense RedEdge 3 for multispectral
image data. It contains five built-in lenses (resolution: 1.2 MP per band). The
wavelengths of the five acquired bands and their respective bandwidth were 475 nm
(20 nm), 560 nm (20 nm), 668 nm (10 nm), 717 nm (10 nm), and 840 nm (40 nm).
The focal length of the camera is 5.4mm. For field 1, an altitude of approximately
10m and an image overlap of 60/80 were used, and for field 2, an altitude of
approximately 16m and an image overlap of 80/80 were used to optimize the data
acquisition process and subsequent image data processing. The following factors
were considered in terms of the drone flights. For each flight, no irrigation was
permitted in or close to the flight area, the drone was flown at temperatures and
wind speeds within the device’s safe operating range, and the flights only occurred
during periods of no rain.
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2.1.1 Time Series Flights
On each acquisition date, the drone was flown over a specified area of the field once,
which remained the same for the entire growing period. For field 1, this area had
a width of 91m and length of 62m, resulting in approximately 0.60 ha. For field
2, the area had a width of 30m and length of 131m, resulting in approximately
0.39 ha.

The cauliflower plant does not necessarily grow straight, thus, the center of the
plant in later growing stages does not match the position of the seedling exactly
[78]. Thus, a shift of up to ±10 cm between the center position of the head and
the stem position in the early growing stages was observed.

2.1.2 Defoliation Flights
In addition to the time series flights, so-called defoliation flights were conducted.
Here, the upper leaf layers covering the cauliflower head were removed manually on
individual plants after the time series flight. This step is referred to as defoliation.
Note that we ensured that the defoliated leaves did not affect any neighboring
plants. The defoliated plants provided information about the development of the
head relative to the plant’s outer appearance. By performing another UAV flight
after defoliation, a dataset of images showing the time series of the plant’s outer
appearance (Fig. 2.3b) and inner head (Fig. 2.3c) on the day of defoliation was
acquired.

For field 1, the defoliation of plants was performed over two days, i.e., October,
27th and 29th, after harvesting occurred. Thus, the defoliated plants represented
plants whose head size did not satisfy the harvest criteria, which generally meant
that the head was too small. For field 2, starting on August, 19th, when most of
the cauliflower heads started developing, between 70 and 200 plants were defoli-
ated weekly. Here, all plants with developed heads were defoliated in rectangular
plot regions to minimize the impact of defoliation on the biological growth of
neighboring plants. Note that care was taken to not defoliate the reference plants
described previously (Sec. 2.3). A distribution of plots for the first five defoliation
time points is shown in Fig. 2.3a. For the final flight (after the last harvest), most
remaining plants that had not been harvested were defoliated, which resulted in
random distribution. Thus, this is not shown in Fig. 2.3a.

2.2 GCP Points
To localize the image data globally in space, the data were georeferenced with the
help of circular 12-bit GCPs with a diameter of approximately 20 cm, as shown in
Fig. 2.4. Here, the GCPs were fixed in the ground using plastic pegs, and they were
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(a) Defoliation plots for field 2.

(b) Pre defoliation plant.

(c) Post defoliation plant.

Figure 2.3: Visual overview of defoliated plant locations for the first five weeks of defoliation in
field 2. (b) and (c) show images of a plant pre- and post-defoliation. The locations of randomly
distributed defoliated plants from week six are not shown. Figure source: Kierdorf et al. [7].

distributed evenly across the field (refer to Fig. 2 in the appendix) and positioned
on tractor tracks or between plants to avoid displacement by external influences,
e.g., plowing. In addition, surrounding plants were removed as required to ensure
the visibility of GCPs in the image data. We used 21 GCPs in field 1 (35 GCPs/ha)
and 44 GCPs in field 2 (113 GCPs/ha) (refer to Fig. 2 in the appendix), with each
GCP showing a different pattern. The greater number of GCPs in field 2 was
due to the fact that they facilitate subsequent image alignment by ensuring that
at least three GCPs were present in each captured image, especially for growth
stages with a high degree of plant overlap and dense canopies.

As measuring device for GCP coordinates, a Trimble R4-Model 3 base station
with a horizontal standard deviation of ± 5mm + 0.5 ppm RMS and vertical stan-
dard deviation of ± 5mm + 1 ppm RMS was used for both fields. The measured
coordinates were acquired in the WGS84 / UTM 32N coordinate system. To en-
sure that the markers for the GCPs were not displaced due to external influences,
the GCPs were measured at the beginning and end of the data acquisition period
to omit displaced GCPs. A third measurement was added for field 2 in the middle
of the growing period.

2.3 In-situ Measurements of Plant Developments
In each field, so called reference plots were selected to capture information from
reference plants manually. For field 1, four reference plots were assigned (Ap-
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Figure 2.4: Two GCP patterns used for acquisition. Image source: Kierdorf et al. [7].

(a) (b)

Figure 2.5: Visual overview of (a) reference plots for in-situ measurements in field 2 and (b)
the design of reference plot 5 (including reference plants and the ordering of reference plant
numbers). The plot design is valid for all reference plots in field 2. Figure source: Kierdorf et al.
[7].

pendix Fig. 3a), and each plot comprised three rows with 20 plants each (Appendix
Fig. 3b). Thus, each plot contained 60 plants, for a total of 240 plants in all refer-
ence plots. The plots were distributed in the northwestern half of the field along
the long side. Five reference plots were assigned for field 2 (Fig. 2.5a). Here, each
plot comprised five rows of 20 plants (Fig. 2.5b). (100 plants per plot, 500 plants
in total). The plots were distributed evenly in the southwestern half of the field
along the long side. Thus, the reference data were collected along the entire field.
Each reference plant was assigned a specific plant ID identifying the row (field 1:
A–C; field 2/3: A–E) and plant number (Field 1: 1–10, 90–99; Field 2: 1–20).

The following measurements were taken for all reference plants in field 1.

1. Phenological development after BBCH according to Feller et al. [211]

2. Height

3. Maximum diameter

4. Other remarks, e.g., stress infestation (listed in the attachment in Tab. 1)
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5. Head diameter

6. Harvesting status

Note that the farmer followed a rigorous plant protection schedule, and very few
stresses were detected in 2020; thus, information about stresses was not recorded
explicitly in 2021. Due to the observed homogeneous development, focus was
placed on measurements of BBCH and the height of five representative plants per
plot. Here, the head diameter and harvest status were recorded for individual
plants.

Available developmental stages of cauliflower are listed in Tab. 2.1. We start
with listing stage 12, as the plants were planted in the field out of seedling trays
and consist of two or more leaves at the point of planting. The developmental code
is made up of the macro stage (first number) and the micro stage (second number).
Important stages for cauliflower are macro stage 1 ’Leaf development (main shoot)’
and macro stage 4 ’Development of vegetative plant parts (harvested material)’.
We set the mean curd size per harvest day (HD) concerning the day after planting
(DAP), illustrated in Tab. 2.2. The colors represent the different developmental
stages listed in Tab. 2.1. We see that certain stages of development spread over
several flight dates. On average, the harvest-ready plants on different HDs develop
at different speeds. Particularly shortly before harvest, major variations between
the HDs can be seen. Although the development is spread out, there is a certain
correlation between development and acquisition day.
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Table 2.1: BBCH developmental stages on the field for cauliflower according to Feller et al. [211].
The code represents the developmental stage and is made up of the macro stage (first number)
and the micro stage (second number). The expected curd diameter for cauliflower is about 15
cm. The colors are used to set the code in relation to the acquired data used later on in Tab. 2.2.

Code Explanation

12 2. leaf unfolds

13 3. leaf unfolds

1x Stages consecutive to...

19 9 or more leaves unfold

2x Not available for cauliflower

3x Developing the main shoot

40 Start of flowering

41 Start of flowering: Vegetation cone width > 1 cm

43 30% of the expected curd diameter is reached

45 50% of the expected curd diameter is reached

47 70% of the expected curd diameter is reached

48 80% of the expected curd diameter is reached

49 Species/variety-typical size and shape achieved;

curd still firmly closed

Table 2.2: Overview over the mean curd size per harvest day (HD) per day after planting (DAP).
The colors represent the different developmental stages shown in Table 2.1. Additionally, we give
the information about days before the first harvest (DBH).

Mean curd size [cm]

DAP DBH HD1 HD2 HD3 HD4

44 27 0.9 0.7 0.4 0.1

50 21 0.9 0.8 0.5 0.2

57 14 2.1 1.9 1.6 1.2

65 6 7.7 6.1 4.6 3.3

69 2 10.9 8.8 6.7 5.6

71 - - 12.0 9.4 7.3

76 - - - 13.5 10.0

80 - - - - 12.2
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Datasets

The core component of the dataset (Fig. 3.1) comprises both RGB and multi-
spectral orthophotos derived from the captured UAV images. In the orthophotos,
single plants are identifiable by their corresponding coordinates and plant IDs. The
dataset contains four subsets intended for different ML tasks. The instance seg-
mentation GrowliFlowerL subset contains patches extracted and processed from
the RGB orthophotos, and the remaining three subsets contain time series data
of individual plants. The GrowliFlowerT subset comprises randomly selected time
series data representing a wide variety of cauliflower development. In addition
to the time series data, the GrowliFlowerD subset also contains image pairs of
plants before and after defoliation. The GrowliFlowerR subset contains the in-
situ measurements and the time series data. For each field, a text file containing
the measured GCP coordinates at the beginning and the end of field monitoring
is provided. For field 2, the GCP coordinates measured during the growing period
are also given.

3.1 Orthophotos (GrowliFlowerO and GrowliFlow-
erM)

The acquired RGB and multispectral UAV images were aligned to orthophotos
using the Agisoft Metashape Professional software to obtain a large-scale overview
of the monitored fields. Here, the orthophotos were georeferenced according to the
measured GCP coordinates. In addition, the individual orthophotos were exported
in the WGS84/UTM 32 coordinate system.

The ground resolution for the RGB orthophotos of field 1 is 1.65mm px−1 for
the pixel width and height with a minimum and maximum file size of 1.64 GB and
6.7 GB, respectively. The ground resolution for field 2 is 3.10mm px−1 for the pixel
width and height with a minimum and maximum file size of 1.3 GB and 5.0 GB,
respectively. Twelve orthophotos are available for field 1, where five are entirely
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Figure 3.1: Overview of data in proposed GrowliFlower dataset. Figure source: Kierdorf et al.
[7].

processed, and seven contain data gaps for small areas where the quality of the
UAV acquired images was insufficient. For field 2, 15 orthophotos are available,
as shown in Fig. 2.1b. This set of orthophotos is provided in the GrowliFlowerO
subset of the proposed dataset. In addition, the dataset contains multispectral
orthophotos for field 2 with a ground resolution of 2.5 cm px−1 width and length,
denoted as the GrowliFlowerM subset.

3.2 RGB Image Patches
In this section, we describe the data extracted from the RGB orthophotos. Note
that the ground resolution of the resulting image patches is the same as that of
the respective orthophotos.

Each of the following datasets (excluding the labeled dataset described in
Sec. 3.2.1) contains a text file with global information for each field, contain-
ing the image ID, including the plant ID, and corresponding georeferenced UTM
coordinates of the plants. Note that the coordinates identify the center of the
plants as observed on August, 19th for field 1 and July, 7th for field 2. In addi-
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tion, information about the planting day and a proposed assignment as a training,
validation, or testing subset is provided as a basis to compare ML methods. To
minimize spatial correlation between sets, the proposed training, validation, and
testing subsets are spatially disjoint. However, certain systematic factors from
a biological perspective are not excluded. The use of these sets is expected to
promote the development of ML methods with high generalizability. For the ref-
erence data discussed in Sec. 3.2.3, the harvesting time is specified, and for the
defoliation data discussed in Sec. 3.2.4, the defoliation date of the plants is spec-
ified. In addition, text files with local information for each acquisition date are
provided, including the image ID to connect the local information with the global
information, and the corresponding local pixel coordinate relative to the respective
orthophoto for each data acquisition day. Also, note that information about the
day after planting (dap) is included.

To use image patches showing single plants, the patches must be extracted from
the orthophotos using the plant IDs and coordinates. Here, an image side length
and width of at least 490 px for field 1 and at least 256 px for field 2 is recommended
to ensure that the entire plant is captured in the image patch regardless of the
plant developmental stage.

3.2.1 Labeled Image Patches (GrowliFlowerL)

This subset, called GrowliFlowerL, comprises pixelwise, manually annotated im-
ages, thus, it is well-suited for classification, semantic segmentation, detection,
instance segmentation, or stem detection tasks. For this subset, the image patches
of four acquisition dates for field 1 are extracted using a sliding window approach.
The image patches have a size of 368 px×448 px. Here, the size of the patches dif-
fers from that of the proposed sizes because only plants from earlier development
stages are included. In addition, in this dataset, the focus is not on individual
plants but on the variability between images, thus, the plants are not located in
the center of the patch.

For each RGB image patch, four annotated masks are provided. These anno-
tated masks contain segmentations of (1) plant instances, (2) leaf instances, (3)
void segmentations, and (4) stem positions.

(1) The plant instance mask segments the image in soil and plant pixels with
instance information for the plants.

(2) The leaf instance mask segments the plants into single leaves. Note that
plants at image borders for which no stem or only one-quarter of the plant
is visible are annotated as void and no leaf annotation is applied.
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RGB Plant instances Leaf instances Void instances

Figure 3.2: Examples of labeled images for different time points. Column 1 shows the RGB base
for columns 2–4 which illustrate the corresponding labeled plant instance masks, leaf instance
masks, and void segmentation masks. The rows represent different points in time. Dark blue
represents the background class, and the other colors represent different (leaf) instances. Figure
source: Kierdorf et al. [7].

(3) The void segmentation mask is a binary mask where plants located at image
borders where no stem is visible are segmented as void. In addition, plants
with only a small amount of visible leaf material in the RGB image are also
segmented as void.

(4) The stem annotation mask represents the position of the stems of non-void
plants.

Examples of (1) plant instance masks, (2) leaf instance masks, and (3) void
segmentation masks are shown in Fig. 3.2. Two things to note are that weed is not
labeled as a plant but as a background and that stem positions are only represented
by individual pixels, thus, they are difficult to recognize visually. Therefore, masks
that include stem information are not shown in these examples. The annotations
are provided with a defined name based on the name of the RGB image patch.
Here, each patch contains a maximum of four plants, and several patches in the
dataset contain no plants (Tab. 3.1). This subset is divided into training, valida-
tion, and testing sets, and the complete labeled subset is denoted GrowliFlowerL.
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Table 3.1: Overview of distribution of labeled images acquired on different dates.

Definition All images Images with plants Images without plants

[Train/Val/Test] [Train/Val/Test]

2020/08/12 844 745 [521/110/112] 99 [71/15/15]

2020/08/19 892 781 [547/117/117] 111 [78/16/17]

2020/08/25 383 367 [257/55/55] 16 [12/2/2]

2020/09/08 79 79 [56/11/12] 0 [0/0/0]

3.2.2 Time Series for Plant Data (GrowliFlowerT)

For each field, the plant coordinates are provided to allow users to extract time
series plant images. This data is denoted GrowliFlowerT. The time series data of
field 1 comprise the early plant developmental stages and the harvest dates but
lack dates when the canopy around the cauliflower head was closed. The time
series data of field 2 comprise all growth stages.

For field 1, the coordinates for approximately one-third of the plants are de-
termined (3804 plants in total). The distribution of the location of the extracted
data is visualized in Fig. 4a in the Appendix. The selected plants are distributed
along the southeastern edge of the field due to the availability of data for most
time points and the ability to determine the harvest window of individual plants.
The subset is divided into training, validation, and testing sets, as shown in Fig. 4a
in the Appendix. In addition, cauliflower planted on July, 28th or July, 29th are
included in all three sets to ensure that the variability within the sets is guaran-
teed. Note that the orthophotos do not overlap entirely; thus, image data are not
available for all plants at all times, which results in temporally incomplete time
series data. For field 2, 8736 plant coordinates were extracted and distributed
evenly over the field. The subset is divided into training, validation, and testing
sets, as shown in Fig. 4b in the Appendix. Here, all plant coordinates are provided
as georeferenced UTM coordinates.

To use individual plant images, the user must crop the patches around the
local plant coordinates determined in the subset. In addition to all global plant
coordinates, this subset contains the local coordinates of the patches for each
acquisition date, which at a size of 490 px × 490 px for field 1 and 256 px × 256 px
for field 2 lie completely within the orthophoto and are not showing spatial data
gaps, as patches shown in Fig. 3.5b. Five examples of the time series data are
shown in Fig. 3.3 for field 1, and four examples are shown in Fig. 3.4 for field
2. Due to the spatial data gaps, the number of coordinates per date for field
1 varies, which leads to temporal gaps in the time series data. The largest set
of time series that includes equal time steps consists of 3611 time series based
on eight time points, including the five time points up to day after planting 42

60



CHAPTER 3. DATASETS

Figure 3.3: Time-series illustration of five different plants in GrowliFlowerT subset in field 1.
All rows represent time series of plants containing temporal data gaps due to the poor image
quality of the corresponding UAV images (indicated by omitted images). The columns represent
the recording days and show the five representative plants captured at the same time on that
day. Figure source: Kierdorf et al. [7].

Figure 3.4: Four plant time series from field 2. A row represents a time series. The columns
represent the acquisition dates. Figure source: Kierdorf et al. [7].

(Sept, 8th), and all three time points from day after planting 91 (Oct, 27th). In
addition to the file that contains all UTM coordinates, a text file containing the
UTM coordinates for this set is also provided; thus, the user can extract the time
series data for the selected plant IDs. After removing the patches with spatial
data gaps, we retained 8348 complete time series images for field 2. Due to the
heterogeneous weed occurrence in field 2, the patches contain different amounts of
weed, as shown in Fig. 3.5a. Due to the given UTM coordinates, it is possible to
extract the complete time series set of local coordinates for both fields if required.
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(a) Different amounts of weed occurrence on acquisi-
tion date August, 11th.

(b) Data gap occurrence.

Figure 3.5: Data gaps and different amounts of weed occurrences in image data during different
stages of growth. Figure source: Kierdorf et al. [7].

Table 3.2: Number of reference plant image patches per acquisition date for field 1 (2020).

Date Aug 12 Aug 19 Aug 25 Sept 2 Sept 8 Sept 17 Sept 22 Oct 06 Oct 19

# Images 239 239 239 239 239 239 – – 193

Date Oct 27 Post Oct 29 Post Nov 2

# Images 119 119 12

3.2.3 Time Series for Reference Plant Data (GrowliFlow-
erR)

For each field, the subset includes the plant IDs and coordinates, which allows
the user to extract an image time series set of monitored reference plants that
appear similar to those described in Sec. 3.2.2. The time series data for field 1
comprise the early plant developmental stages and the harvest dates, but lack
dates, when the canopy was closed. The time series data for field 2 comprise all
growth stages (see Fig. 3.4). Tab. 3.2 shows the distribution of available plant
IDs and the number of images of plants per time point for field 1. Note that the
pre-defoliation orthophotos of October, 27th and October, 29th do not overlap the
reference plots due to the low quality of the corresponding UAV images. Here, the
reference plants were not defoliated, thus, the orthophotos of defoliation flights are
used to extract images of these days to acquire a reference time series. For field
2, all local coordinates are given for all acquisition dates, which allows the user
to extract complete image time series. Here, the data are divided into training,
validation, and testing set for both fields. In addition, the plants in each plot are
presented in each set. The visual distribution for both fields is shown in Fig. 5 in
the Appendix.

3.2.4 Time Series for Defoliated Plant Data (GrowliFlow-
erD)

For field 1, the GrowliFlowerD subset contains a total of 130 plant IDs and coor-
dinates for defoliated plants (30 for October, 27th and 100 for October, 29th). For
field 2, the subset contains a total of 717 plant IDs and coordinates for defoliated
plants. The coordinates allow the user to extract the time series of defoliated
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Table 3.3: Number of defoliated plants per acquisition date for field 2 (2021).

Date Aug 19 Aug 23 Aug 25 Aug 30 Sept 3 Sept 8

# Images 110 115 251 116 71 54

plants. Tab. 3.3 presents an overview of how many plants were defoliated on
different acquisition days. In addition to the time-series data, pairs of pre- and
post-defoliation images are provided in the subset. The data are divided into
training, validation, and testing sets for both fields, and each defoliation day is
presented in each set. The visual distribution of both fields is shown in Fig. 6 in
the Appendix.

3.2.5 In-situ Data

Three CSV files are made publicly available, i.e., one for each field, and these files
contain the plant ID and the measurements described in Sec. 2.3 for each data ac-
quisition day. The measured values correlate with the images in the GrowliFlow-
erR subset. Fig. 3.6 shows the distribution of the number of harvested plants in
the reference plots per acquisition date for fields 1, 2, and 3. A further subdivision
into Ready and Not-ready plants per harvest day in training, validation, and test
set is listed in Tab. 3.4. A similar distribution is given for each subset for the
different HDs. The table shows that for HD1, more data represent Not-ready for
harvest plants. This is explained by the fact that as the plants grow, the propor-
tion of harvest-ready plants increases, and thus the proportion of Ready for HD2

- HD4 increases and the proportion of Not-ready for harvest decreases.

Table 3.4: Comparison of Ready (1) and Not-ready (0) plants split into training, validation, and
test set for each harvest day (HD), indicated by lowered digits.

HD1(0) HD1(1) HD2(0) HD2(1) HD3(0) HD3(1) HD4(0) HD4(1)

∑
(0)

∑
(1)

Train 261 37 117 144 32 85 0 32 410 298

Train 88% 12% 44% 56% 27% 73% 0% 100% 58% 42%

Val 78 8 25 53 7 18 0 7 110 86

Val 91% 9% 32% 68% 28% 72% 0% 100% 56% 44%

Test 72 14 28 44 8 20 0 8 108 86

Test 84% 16% 39% 61% 29% 71% 0% 100% 56% 44%
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(a) Field 1

(b) Field 2

Figure 3.6: Overview of harvested and non-harvested plants per reference plot per day. Figure
source: Kierdorf et al. [7].

3.3 Challenges in the Data

The datasets present certain challenges that must be considered during analy-
sis. The theoretical size criteria specified by our project farmer is about 14 cm.
However, practical realization of this criterion varies, influenced by various factors
including curd quality, meteorological conditions, economic considerations, and
field labor availability. These factors, coupled with different plant growth stages
[212]–[214] lead to multiple harvest-runs on the same field throughout the harvest
period resulting in multiple weeks of harvest [215]. There exists a temporal gap of
2-4 days between two successive harvest days, whereby the plants may be ready
for harvest 1-3 days before the next harvest-run, but will not be considered until
the next planned harvest-run. Regarding the reference data for the harvest day,
it should be noted that during a harvest round, not necessarily the entire field is
checked for harvest-ready heads. This depends on the field size and the remaining
working time. A rough overview is obtained, and if no harvest-ready heads are
found in large areas, the rest of the field may not be checked. As a result, some
plants that might have been ready for harvest could be missed due to the lack of
field monitoring. During data collection and processing, we assume that plants
with harvested curds are deemed ready for harvest. In practice, however, this may
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also have been due to misjudgment by the field worker or inadvertent damage to
plants during the harvesting process.

For the image data, the varying weather conditions for each flight result in
differences in lighting and image quality over time. This variation occurs not only
within a monitoring period of a field but also across different fields and years.
The data quality and quantity vary in terms of lighting, data availability, blurri-
ness, and other factors. Different varieties were planted in various fields, leading
to differences in plant appearance. The varieties exhibit varying degrees of self-
coverage, which in some cases necessitates intervention by field workers to cover
the cauliflower curd.
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Baseline for Instance
Segmentation Application

4.1 Experimental Setup
We describe two possible applications of the proposed dataset by creating baselines
using the labeled GrowliFlowerL subset and the Mask R-CNN [105], a state-of-the-
art instance segmentation method. We use the pytorch implementation available
at https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html.

We consider plant instance and leaf instance segmentation tasks. Thus, we
use the mask and bounding boxes derived from the plant instance mask as the
target for the first baseline. The mask and bounding box derived from the leaf
instance mask are used as the target for the second baseline. For the leaf instance
segmentation baseline, the given void instances are used as the background because
only leaves that do not belong to void plants are labeled. Note that the estimation
of semantic masks for individual instances enables the derivation of phenotypic
traits. Here, we applied a random horizontal flipping data augmentation technique
with a probability of 0.5.

We trained the Mask R-CNN on a computer with an Intel Core i7-6850K
3.60 GHz processor and a GeForce GTX 1080Ti GPU with 11 GB RAM. The
network was pretrained on the COCO dataset [186], and training was performed
over 100 epochs with a learning rate of 0.001 and batch size of 2. We used an SGD
optimizer, and ResNet-50 was used as the backbone network.

4.2 Evaluation Metrics
We compute precision, recall, and F1 score relative to the single object class
cauliflower plant and calculate the scores for the IoU thresholds tIoU = 0.50 and
tIoU = 0.75. In addition, we determine the average precision (AP), average recall
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(AR), and average F1 (AF1) scores over all IoUs in the interval 0.50− 0.95 with a
step size 0.05 as for the COCO benchmark. This is indicated by (·)@0.5−0.95. For
the leaf instance segmentation baseline, we reduce the evaluation on recall, as we
do not want to penalize predictions on void pixels. The consequence of penalizing
predictions on void pixels would be to penalize the model in identifying leaves that
were simply not labeled as such.

4.3 Experimental Evaluation
We calculate the metrics relative to the detected bounding boxes and the seg-
mented masks of the respective objects. The segmented masks provide information
about the cumulative number of correctly classified pixels and, thus, the more ac-
curate shape of the object. The bounding box enables derivation of the detection
accuracy and thus, the localization of the object.

Tab. 4.1 summarizes the results for the plant instance segmentation task for
the baseline method. As can be seen, 95% at IoU ≥ 0.5 are predicted correctly. In
addition, precision at the bounding box and pixel levels are greater than 80% for
all IoU thresholds ≤ 0.8 (Fig. 4.1a). At an IoU value of ≥ 0.85, precision decreased
rapidly. This trend is also observed for both recall (Fig. 4.1b) and the F1 score
(Fig. 4.1c). For higher IoU values, we found that prediction at the pixel level is less
accurate than at the bounding box level because slight changes in segmentation
generally result in more errors in the segmentation mask than in the bounding
box. An overview of the results is given in Tab. 4.1.

We found that many objects and masks are estimated accurately (Fig. 4.3a).
The results show all predictions with a confidence score greater than a threshold
of 50%. Precise contours are estimated, and in the earlier development stages, the
instances are well separated spatially. Note that the model does not predict the
ground as an object in any case. In addition, smaller weeds that can be seen in
some patches are also not considered objects, which is desirable because, in this
way, we identify that the model distinguishes cauliflower from weeds. We found
that inaccuracies occur with plants that lie at the edge of the image patches.
In such cases, only small parts of the plant are visible, thus, the leaves are not
adjacent to each other, as shown in Fig. 4.3b (top left and bottom left). We also
found that errors occur in later developmental stages because the plants overlap
(Fig. 4.3b bottom right), which represents a more challenging scenario than well-
separated plants. In particular, for overlapping plants, it is even difficult for the
human eye to assign leaves to individual instances. In addition, compared to the
earlier stages of development, where no overlap occurs, fewer training images were
available for the later stage of development. The small number of images means
that less variability in the data is captured, making predictions on new unknown
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Table 4.1: Plant instance segmentation results: precision, recall, and F1 score for predicted
bounding boxes (BBox) and segmentation masks (pixel) for the class plant.

Global metrics Precision Recall F1

Evaluation AP AR AF1 P@0.5 P@0.75 R@0.5 R@0.75 F1@0.5 F1@0.75

BBox 0.917 0.933 0.843 0.952 0.899 0.965 0.913 0.958 0.906

Pixel 0.844 0.858 0.770 0.954 0.902 0.963 0.913 0.959 0.908

Abbreviations: AP, average precision; AR, average recall; AF1, average F1.

(a) Precision (b) Recall (c) F1

Figure 4.1: Representation of precision, recall, and F1 score for class cauliflower plant. The
graphs show the evaluation at different IoU thresholds on the bounding box (BBox), thus object,
(solid-line) and pixel (dashed-line) level. Figure source: Kierdorf et al. [7].

data more difficult.
Another distinctive feature involves plant objects from which leaves fall or

plants that are impaired in their growth and thus decay. In such cases, it is
difficult for the model to distinguish whether one or more plants are represented
(Fig. 4.3b top right).

For the leaf instance segmentation task, which is a more difficult task compared
to plant instance segmentation, we achieve a very good recall result of 74% at the
bounding box level and 77% at the pixel level. The distinction between individual
leaf instances is more complex than the distinction between plant instances. In
addition, here, we assign the void labeled objects to the BG class for this baseline
rather than the leaf class because individual void plants can contain several leaves,
however, such leaves were not labeled individually. Note that the calculated values
for recall are similar to both the pixel and bounding box levels.

We can find explanations for the recall values in the visual consideration of the
results, even though these results show predictions with a confidence score greater
than a threshold of 50%. By defining void instances as the background, the model
is challenged to predict the leaves belonging to void instances not as leaf objects,
as shown in Fig. 4.3d (top left and bottom left). It is difficult for the model
to distinguish whether plants at the edge of the patches are void instances or leaf
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(a)

Global metrics Recall

Evaluation AR R@0.5 R@0.75

BBox 0.735 0.857 0.642

Pixel 0.772 0.862 0.700

(b)

Figure 4.2: Recall results for leaf instance segmentation task. Graph (a) shows the evaluation at
different IoU thresholds on the bounding box (BBox), i.e. object (solid-line), and pixel (dashed-
line) level. (b) shows the respective average recall (AR), R@0.5, and R@0.75 values. Figure
source: Kierdorf et al. [7].

instances. Thus, either leaves are predicted that are not in fact present in the target
(representing low precision) or no leaves are predicted even if they are present in the
target (representing low recall). For plants that are completely visible in the patch,
the model demonstrates better prediction performance. Another source of error is
the prediction of several instances on a single leaf, as shown in Fig. 4.3d (top right
and bottom right) because the model is required to learn various features, e.g.,
leaf structure and size. After all, such features play a crucial role in distinguishing
different leaves.

To sum up, we observe that our instance segmentations, plant instance as
well as leaf instance, perform and can be used for different growth stages of the
cauliflower plants.

4.4 Reflection and Discussion
The results of this research provide insight into the acquisition of image time series
under field conditions. We observe that the flight altitude of the UAV must be
adjusted depending on the characteristics and the height of the cultivated plants
in order to capture images with high quality in terms of resolution and gapless
spatial data. However, to obtain accurate image data, enough keypoints must
be distributed in the field. Our work shows that GCPs are suitable as keypoints
because they help to align and georeference the orthophotos more accurately. For
simplified use of the data for ML approaches, the data should have similar char-
acteristics as exposure over time. For this purpose, data must be recorded under
consistent weather conditions. However, we note that combining consistent con-
ditions and similar interval lengths between acquisition days is a challenging task.

While previous research, such as the work of Bender et al. [81], focuses on
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4.4. REFLECTION AND DISCUSSION

(a) Accurate plant instance segmentation results. (b) Improvable plant instance segmentation results.

(c) Accurate leaf instance segmentation results. (d) Improvable leaf instance segmentation results.

Figure 4.3: Plant and leaf instance segmentation results. The different colors indicate the dif-
ferent instances. In the visualization of the leaf instance segmentation results, we concentrate
on the visualization of the masks for clarity and omit the bounding boxes. The examples shown
in (a) and (c) show accurate results and those in (b) and (d) show improvable results. Figure
source: Kierdorf et al. [7].

collecting data from many different data sources (e.g., imagery, climate, and soil
data), monitoring a large number of different instances that are specifically needed
for training DL methods has not been considered sufficiently. In our work, we
provide a large image number of different instances but we lack additional data
such as soil and climate data. Climate and soil characteristics are important factors
to determine or predict plant growth. ML methods only learn features that are
present in the training data. Thus, if external factors such as climate and soil
change, the growth of plants is influenced as well. The lack of this information can
cause ML models to be prone to errors in their results when applied to new data.
Therefore, we suggest improving the data acquisition by capturing additional soil
and climate data. Another suggestion for improvement of data acquisition is the
field design. To avoid systematic effects in the data, reference plots and other
selected areas like defoliation plots should be distributed equally within the field
because it is difficult at the beginning of data collection to predict how much which
plants (crops and weeds) will grow and how the location will affect growth and
thus, the acquired data.

Regarding our baseline experiment considering instance segmentation, we ob-
serve that the application shows satisfactory results on our data. To improve the
results, future studies could integrate prior knowledge about the shape and struc-
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CHAPTER 4. BASELINE FOR INSTANCE SEGMENTATION
APPLICATION

ture of plants and leaves. Weyler et al. [216] show an example of how to improve
the results for plant and leaf segmentation by developing a combined approach
of neural networks and clustering to simultaneously determine leaf and plant in-
stances. However, to the best of our knowledge, the approach is not used for plants
as large and highly overlapping as in our provided later developmental stages (see
Fig. 4.3c and Fig. 4.3d).

Another way to improve the result of instance segmentation is to vary the field
of view per image. In further experiments, we observe that when applying to a
modified field of view, plants are segmented with only a few errors. For these
experiments, we reduce the threshold by up to 20% depending on the extension
of the field of view. The masks and bounding boxes of the predictions match the
plants. However, the size of the objects differs from the training data due to the
change in scale. This causes the model to have less confidence in its predictions,
even if they are correct. Even with a changed image size, cauliflower plants can be
easily distinguished from weeds and each other. As it brings greater variability to
the data, adding images with a larger field of view to the training set could lead
to further improvements in the results. However, this would require labeling more
data.

We recommend our dataset for further methodological developments or as an
evaluation dataset for existing approaches as used in our cooperative work of Gün-
der et al. [15].

71



Chapter 5

Conclusion and Outlook

In this article, we have introduced the GrowliFlower dataset, a georeferenced,
image-based UAV time-series dataset of two monitored cauliflower fields during
their entire growth period. The proposed dataset was described, and we discussed
the data collection process, which may be helpful for other similar data collec-
tion procedures. The proposed dataset comprises weekly RGB and multispectral
UAV orthophotos and image time series of individual plants reflecting weekly plant
growth. In a subset of the proposed dataset, in-situ reference measurements, e.g.,
plant size, are also available, and another subset provides pre- and post-defoliation
images to demonstrate the relationship between the interior and exterior of the
cauliflower plant. The proposed dataset also contains annotations with segmented
plant and leaf instances, as well as annotations on stems. The data are available at
http://rs.ipb.uni-bonn.de/data/ . The proposed dataset is intended to promote us-
ing and evaluating ML methods and foster close collaboration between disciplines,
e.g., agricultural sciences, remote sensing, and machine learning. We have also
presented baseline results of two applications of the proposed dataset using the
Mask R-CNN model, i.e., plant instance segmentation and leaf instance segmenta-
tion tasks. In addition, we expect that the findings and descriptions presented in
this paper will help realize effective data collection processes that are transferred
to other areas. The steadily increasing citations and downloads of the dataset
indicate that interest in the GrowliFlower dataset is continuously growing.
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Introduction
In this part of the thesis, we address the task of harvest-readiness prediction
of single cauliflower plants which can be challenging due to the cauliflower
head being covered by its canopy. Here, we specifically examine individual
growth stages shortly before harvest without integrating information about
plant development or other factors. While deep learning enables automated
harvest-readiness prediction, errors can occur due to field variability and lim-
ited training data. To tackle these errors, we aim to derive a reliability score for
the model’s output that can be used to support the farmers in their decision-
making process.

To reach our goal, we use saliency mapping to identify image regions that
have distinctive characteristics important for the model decision [217], [218].
We extend the clustering approach of saliency maps by Lapushkin et al. [195]
and combine the maps with knowledge about our application domain and
the image properties to derive reliability scores of the model’s output. Our
work differs from related work in that we propose a framework for deriving
a reliability score for classification predictions that operates post-hoc during
inference time without human interaction. Thus, the system can be applied to
already trained models without changing the model architecture and without
the need for re-training.

The main contributions of this part are:

• two image-based classification models for assessing the harvest-readiness
of cauliflower: A binary classification model that achieves an overall ac-
curacy and balanced class accuracy of 79% each, and a multi-class clas-
sification model that reaches an overall accuracy of 63% and a balanced
class accuracy of 48%.

• a versatile post-hoc approach to derive intuitive reliability scores without
time-consuming human interaction;

• a use case where the reliability scores are used to improve harvest-
readiness predictions on the GrowliFlower dataset by 16.84% to an over-
all accuracy of 93.88% and by 16.30% to an balanced class accuracy of
93.91%.

The majority of this part is based on our published paper by Kierdorf et al.
[8]. Further contents were taken from our paper submitted by Emam et al.
[10]. Additions have been made regarding the forecasting time of classification,
the models used, and the framework steps, leading to changes in the results
compared to Kierdorf et al. [8].
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Chapter 1

Scenarios

In the following, we present various scenarios that describe different approaches to
achieving the objective of predicting cauliflower harvest-readiness. We elucidate
which of these scenarios are applicable in this study and which are not. For each
scenario, we illustrate a timeline depicting data acquisition and tactical manage-
ment decisions like harvest, similar to the example shown in Fig. 1.1. All rows
in the figures depict the same timeline. Each row describes the occurrences of
data acquisition, processing, analysis, and tactical management decisions within a
certain timeline for a harvest-time-point T , starting with T1 and extending over H
harvest days. A gray circle denotes a time point in the time series, while a yellow
circle represents the day of data acquisition, processing, and analysis. In contrast,
a blue circle signifies the day tactical management decisions are made.

Figure 1.1: Scenario 1 visualizes the interaction between data collection, processing, and analysis
by applying tactical management decisions for the binary classification of harvest-readiness based
on single time point data. In scenario 1, the actions are carried out on the same day.
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Scenario 1
The first scenario illustrated in Fig. 1.1 closely resembles the manual harvest pro-
cess, aiming to ascertain the harvest-readiness of a plant on a given day Th. There-
fore, data acquisition, processing, and analysis occur on the same day to inform
tactical management decisions in the field. However, due to the time constraints
associated with data collection, processing, and analysis, this scenario is not prac-
tically feasible. Farmers typically plan ahead, allocating field workers to specific
crops and fields and commencing work early in the day. Consequently, we exclude
this scenario from further consideration in this thesis.

Scenario 2
In the second scenario, depicted in Fig. 1.2, data acquisition, processing, and
analysis are conducted t days before harvest to facilitate proactive planning for
farmers and potential resource reallocation. In this scenario, the investigation
revolves around whether a plant will be considered ready for harvest in t days
from day Th. This includes the consideration of a binary problem. Furthermore,
the forecasting time t is examined to ensure accurate results. Following harvest
on day Th, the next drone flight is conducted to again analyze harvest-readiness of
plants Th+1, and so on. This scenario’s effort is logistically feasible and enables the

Figure 1.2: Scenario 2 visualizes the interaction between data collection, processing, and analysis
by applying tactical management decisions for the binary classification of harvest-readiness based
on single time point data. In scenario 2, the actions are carried out on different days with a lead
time t days.

farmer to effectively plan and allocate resources. By determining the harvestable
quantity, the farmer can exert some influence on the market. However, within this
scenario, no estimation is available for planning the entire harvest phase. During
the harvest period, a drone flight must be conducted after each harvest.
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CHAPTER 1. SCENARIOS

Scenario 3
In the third scenario, we omit drone flights during the harvest and investigate the
harvest time point Th for a plant. This scenario is depicted in Fig. 1.3. We ap-
proach this scenario as a multi-class classification problem. Similarly to scenario 2,
it is interesting to determine the duration t between data acquisition and harvest
time T1 to achieve the most accurate results. Compared to scenario 2, this scenario
offers the same advantages. Additionally, the workload of data acquisition, pro-
cessing, and analysis is significantly reduced, as it only needs to be conducted on
a single day T1 − t. Tactical management decisions can be planned early, making
this scenario applicable in practical implementation.

Figure 1.3: Scenario 3 visualizes the interaction between data collection, processing, and analysis
by applying tactical management decisions for the multi-class classification of harvest-readiness
based on single time point data. In scenario 3, data collection, processing, and evaluation are
only carried out once, with a lead time of t days before the first harvest day, which is T1.
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Chapter 2

Binary Harvest-readiness
Classification

Accurately classifying cauliflower’s harvest-readiness state is pivotal for optimiz-
ing agricultural operations and ensuring the timely and efficient harvesting of
crops. Conventional methods often rely on manual inspection, which can be labor-
intensive, subjective, and prone to inconsistencies. By utilizing the capabilities of
neural network models such as ResNet-18 and ViT-B/16, we attempt to automate
the classification of cauliflower harvest-readiness.

In this study, we embark on a comparative analysis of these neural network ar-
chitectures to ascertain their efficiency in accurately classifying cauliflower harvest-
readiness. Despite their different design architectures, both ResNet-18 and ViT-
B/16 are known for their capabilities in image classification tasks. Two primary
expectations drive our experiment. Firstly, we anticipate comparable accuracies
between ResNet-18 and ViT-B/16. Furthermore, we hypothesize that models uti-
lizing data from three days before harvest will yield higher accuracies compared to
those using data from six days before harvest. This expectation is grounded in the
understanding that cauliflower growth is heavily influenced by weather conditions,
with the closer proximity to harvest providing more relevant and reliable data for
prediction. By exploring these hypotheses, we aim to identify the most effective
approach for cauliflower harvest-readiness prediction based on scenario 2.

2.1 Experimental Setup
We use two image sets of the GrowliFlowerR dataset of field 2 [7]. The first con-
sists of images of the dates 2021-08-23, 2021-08-25, 2021-08-30, and 2021-09-03
with given information about harvest-readiness within the next three days. The
second set consists of images around 6 days before harvest, 2021-08-19, 2021-08-23,
2021-08-25, and 2021-08-30. Example images are shown in Fig. 2.1. Three days
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CHAPTER 2. BINARY HARVEST-READINESS CLASSIFICATION

Figure 2.1: Example of Ready and Not-ready for harvest plants. A column represents the
same plant at different times, depicted by the rows. The difficulty of accurately classifying into
Ready and Not-ready for harvest becomes evident in this example due to the similar visual
characteristics of the classes simultaneously.

is a compromise between harvest-readiness prediction accuracy and practicability
of data acquisition. Six days lead time extends the previously mentioned points
by a longer forecasting time for improved practicability in the field. It is impor-
tant to note that the lead time between image acquisition and harvest includes a
buffer, which means that it does not strictly predict harvest-readiness for points
in time precisely 3 or 6 days ahead. We divide the data into the classes Ready
and Not-ready for harvest. The plants representing both classes show high sim-
ilarity between the same day of acquisition and between different days. The size
of their curds determine the ripeness, however, in most images, the canopy covers
the curd. The plant’s stem is centered within the image, but depending on the
plant’s growth, the center of the cauliflower curd can vary up to 20 cm from the
stem.

We use the training, validation, and test splits as described in [7]. If the plant
shown in an image is already harvested, we exclude the image from the dataset.
This results in preliminary training sets of 541 images, validation sets of 196 im-
ages, and test sets of 194 images. We apply standard augmentations like flipping
and rotation on the training data. For images of class Not-ready, we apply aug-
mentations 50% more often than for images of class Ready to get a more balanced
data distribution. After data augmentation, the training sets contain 6224 images,
2432 of class Not-ready, and 3792 images of class Ready.

For this experiment, we use the ResNet-18 and ViT-B/16 for single-input im-
ages. For each architecture, we train one model with a forecasting time of about
three days and one model with a forecasting time of about six days. The training
for each model consists of at least 50 epochs and stops if validation accuracy does
not increase significantly over 10 epochs. We use an Adam optimizer with a weight
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2.2. EXPERIMENTAL EVALUATION

decay of 0.0001. The learning rate starts at 0.0001 and is reduced with a learning
rate scheduler with a step size of 5 and factor γ of 0.1. We utilize several evalua-
tion metrics, including overall accuracy (oaAcc), balanced class accuracy (bcAcc),
recall, and precision, whereby recall and precision are calculated for class Ready.
Furthermore, we examine the oaAcc per harvest day.

2.2 Experimental Evaluation
Upon comparing the evaluation metrics presented in Tab. 2.1, it becomes evident
that both ViT-B/16 models exhibit slightly higher accuracies in terms of overall
accuracy and balanced class accuracy compared to the ResNet models. The ob-
served differences range up to 2%. As informed in the basic methodology chapter,
this similarity may stem from the dataset’s size. The limited scope of data and
constrained variability therein may result in the absence of inductive biases. An-
other plausible explanation for non-significant differences could be attributed to
the interplay between the task and the model architecture. Given the classification
of a state rather than an object, spatial information or the receptive field within a
CNN likely proves more advantageous for classification compared to the similarity
of patches within a ViT, thus reducing the advantages of ViT and resulting in
similar accuracies.

For all four models, we achieve a higher recall compared to precision. The high
recall values indicate that many Ready for harvest plants were correctly classi-
fied. In practical field applications, this could potentially reduce the need for field
workers to manually inspect the entire field for harvest-ready plants. Instead, they
would only need to cross-check the plants classified as Ready for harvest to identify
falsely classified plants for selection.

The accuracies for the two forecasting times exhibit remarkable similarity de-
spite the expectation that data acquired closer to harvest would yield enhanced
accuracies due to the significant influence of weather on cauliflower plant growth.
To further investigate this, we examine the oaAcc across individual harvest days.
Our analysis reveals that the models accurately capture the underlying data dis-
tribution, as evidenced by comparison with Tab. 3.4. Notably, each harvest day
include a class distribution imbalance, which could not be improved by applying
data augmentation. While the augmentations effectively made the class distri-
bution more similar, the discrepancies in the within-day distribution were not
specifically considered. Consequently, the underlying data exhibit disparate ap-
pearance characteristics across distinct harvest days due to varying weather con-
ditions during data acquisition periods. In collaborative work with Penzel et al.
[11], our investigation centered on the trained ResNet3 model, seeking to unravel
causative relationships between certain features and prediction outcomes. Among
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CHAPTER 2. BINARY HARVEST-READINESS CLASSIFICATION

Table 2.1: Harvest-readiness classification accuracies for single time points. Comparison of
ResNet-18 and ViT-B/16 model for forecasting harvest-readiness in approximately 3 or 6 days.
Accuracies are displayed in %.

(a) Validation set

Model oaAcc bcAcc Recall Precision oaAccHD1 oaAccHD2 oaAccHD3 oaAccHD4

ResNet-183 77.04 77.52 81.46 70.70 84.88 66.67 76.00 100.00

ResNet-186 79.08 80.35 90.70 70.27 84.84 73.08 72.00 100.00

ViT-B/163 78.06 78.93 80.23 72.63 89.53 67.95 64.00 100.00

ViT-B/166 79.59 80.68 89.53 71.30 89.53 70.51 68.00 100.00

(b) Test set

Model oaAcc bcAcc Recall Precision oaAccHD1 oaAccHD2 oaAccHD3 oaAccHD4

ResNet-183 72.16 72.75 77.91 65.69 83.72 55.56 75.00 87.50

ResNet-186 74.22 74.72 79.07 68.00 80.23 66.67 71.43 87.50

ViT-B/163 74.74 75.54 71.43 75.58 83.72 66.67 67.86 100.00

ViT-B/166 73.71 74.38 80.23 66.99 83.72 63.88 67.86 75.00

our findings, we discovered that average brightness exerts a discernible influence
on prediction results. We assume that these observations extend to other models
under consideration.

2.3 Conclusion
We classify the harvest-readiness of cauliflower plants using a convolutional neu-
ral network-based ResNet-18 classification model and an attention-based Vision
Transformer model, considering different forecasting times for harvest-readiness.

The comparison between the accuracies achieved by the two models shows
results without significant differences. We attribute this to the amount of data and
the fundamental structures of both models. Similarly, no significant difference is
observed between the different forecasting times. We confirm this by noting that
the models take features such as the lighting conditions at various capture times
into account for their decisions rather than just the visual appearance of the plant.
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Chapter 3

Reliability Scores from Saliency
Map Clusters for Classification
Improvement

Farmers and others outside the ML community are often skeptical when ML models
are involved, especially regarding economic profit. Thus, it is important to find
an explanation for the model’s decision to get a better understanding. Therefore,
interpretation tools creating saliency maps help. They provide a visual explanation
of the model’s decision. The maps help to understand and improve models but
also help to derive reliability statements.

In this chapter, we propose a framework for deriving a reliability score for clas-
sification predictions that operates post-hoc during inference time without human
interaction. Thus, the system can be applied to already trained models without
changing the model architecture and without the need for re-training. This chapter
is built on scenario 2.

3.1 Experimental Framework
We solve the task of estimating the harvest-readiness of single cauliflower plants
with deep learning-based image classification and combine it with an estimation
of the reliability of the classification through group assignments of saliency maps.
Fig. 3.1 shows an overview of the five-step framework.

1. Classification: In the first step, images are classified into the classes Ready
and Not-ready for harvest within three days. We use a ResNet-18 network,
however, the framework is flexible regarding the classifier.

2. Saliency Mapping: In the second step, we compute saliency maps for val-
idation and test data post-hoc using the learned classifier. We consider
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CHAPTER 3. RELIABILITY SCORES FROM SALIENCY MAP CLUSTERS
FOR CLASSIFICATION IMPROVEMENT

Figure 3.1: Our framework for deriving reliability scores. The different numbers represent (1)
the classification step, (2) the saliency mapping step, and (3) the assignment step of saliency
maps with the assignment of reliability to the groups by relating the confidence scores of the
model to the corresponding saliency maps. (4) represents the dissemination to the farmer of how
reliable the model is, while (5) represents the adjustment step, where the predictions of (1) are
improved by using the reliability score of (3). The figure is adapted from Kierdorf et al. [8] and
slightly modified.

Grad-CAM, OSM, and LIME.

3. Assignment: We employ Spectral Clustering, Expectation-Maximization,
and Kernel Density Estimation to identify groups of saliency maps computed
on validation data and derive reliability scores. For clustering techniques,
the mean saliency map per cluster, denoted as a prototype, is further ana-
lyzed. Test data can be assigned a reliability score by assigning its saliency
map to the nearest group.

4. Dissemination: The reliability score is intuitively usable due to its value
range between 0 and 1 and is communicated to the user together with the
classification result.

5. Adjustment: In our use case, the classification results are adjusted based on
the group assignment of the saliency maps to determine the final predicted
classes. Using a clustering approach, the decision depends on the summed
percentage of false positives (FP) and false negatives (FN) per cluster. For
Kernel Density Estimation, the decision depends on the confidence interval
of log-likelihood values derived from true predictions. The evaluation of the
classification step provides the assignments to true and false predictions.

The framework does not require human interaction and can be applied to dif-
ferent models. However, human interaction is possible to improve the classification
results and reliability measures further by analyzing and evaluating the human-
understandable groups of saliency maps.
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3.1. EXPERIMENTAL FRAMEWORK

Classification
In previous experiments detailed in Chap. 2 of this part, we investigate various
models for binary harvest-readiness classification. Subsequently, for further ex-
plorations within this experiment, we employ the model ResNet-183. We assume
that our investigations are equally applicable to the other models and would yield
similar results.

Saliency Mapping
Saliency maps aim to explain a model’s decision by identifying important regions
in the image. In our case, saliency maps highlight which image regions are im-
portant for predicting the classes Ready and Not-ready for harvest, allowing con-
clusions about the reliability using the prior knowledge that the center of the
image is important for the decision and the background should not play a role
in the harvest-readiness estimation. We consider three well-established local ap-
proaches as baseline approaches for saliency mapping, namely a gradient-based
approach, Grad-CAM, and two permutation-based approaches, OSM and LIME,
where LIME differ in that it uses surrogate modeling, as our focus is not on the
used methods.

Parameters need to be set for the various approaches. As the resulting Grad-CAM
map depends on the employed layer, we follow the suggestions of Selveraju et al.
[121] to use the last convolutional layer as it highlights object-level regions in the
image, which are also easier to interpret. Grad-CAM provides information about
the class of interest but no information about other classes. For the second ap-
proach OSM, parameters such as stride s and patchsize p must be specified. We
select s = 2 to maintain a high resolution and p = 11 as the patchsize. With the
chosen patchsize, it is feasible to perturb roughly a quarter of the cauliflower curds
simultaneously. For LIME, we use a least squares linear regression model.

Group assignment
We adopt the idea proposed by Lapuschkin et al. [195], employing unsupervised
techniques to group the resultant saliency maps, which provides a better under-
standing of the model decision by taking into account image features other than
RGB. This helps to reduce direct influences such as exposure, which, as men-
tioned in Chap. 2, can have a negative impact on the classification results and
may also have a negative result on the group assignment results. Our study con-
ducts a comparative analysis of three prevalent unsupervised techniques: Spectral
Clustering (SC), Expectation-Maximization (EM), and Kernel Density Estima-
tion (KDE). To this end, we leverage the validation set, comprising V samples
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CHAPTER 3. RELIABILITY SCORES FROM SALIENCY MAP CLUSTERS
FOR CLASSIFICATION IMPROVEMENT

{xIT
1 , . . . , xIT

V }, which represent the saliency maps for each validation sample xv.
Before we apply the unsupervised techniques, we perform principal component
analysis (PCA) on the vectorized saliency maps, reducing the dimensionality from
65536 to 50. This dimensionality reduction is motivated by the goal of retain-
ing 95% of the variance, given the absence of significant differences in successive
eigenvalues.

As a first technique, we apply SC to the validation set, as described by La-
puschkin et al. [195], then assigning the nearest cluster IDs to the test data using
kNN with k = 5. For this approach, we set the number of clusters q = 9 to ensure
representativeness and generalizability across diverse datasets.

Secondly, we apply EM to the validation set and determine the closest cluster
assignment by computing the probability of a data point belonging to the Gaussian
distributions representing the clusters. This probabilistic assignment contrasts
with traditional k-Means clustering, allowing data points to be associated with
one or more Gaussian distributions with varying probabilities. For our analyses,
we exclusively consider assignments with maximal probability.

Thirdly, we apply KDE to the true predictions of the validation set, depending
on a selected bandwidth h that maximizes the log-likelihood values of the valida-
tion samples. We use the calculated PDF as the basis for our comparison. We
define samples inside the confidence interval of the PDF as the confidence-group
and samples outside the confidence interval as the non-confidence-group. For our
analyses, we determine the log-likelihood values of the false predicted samples of
the validation data, as well as the log-likelihood values of the entire test data and
assign the samples to the corresponding group.

Dissemination
In the dissemination step, we leverage prior knowledge to draw conclusions about
reliability. This includes the understanding derived from data processing that
the cauliflower curds are positioned at the center of the images. At the image
borders, neighboring plants or soil are visible, which are not intended to influence
the classification outcome. Examples of how such maps could look like are shown
in Fig. 3.2.

Evaluation Metric
We differentiate the evaluation of the adjustment step for SC and EM on the one
hand and KDE on the other hand. To evaluate the adjustment step for SC and
EM, the summed percentage of FP and FN is considered in the calculated clusters
q. We define rq = 1 − (FPq + FNq) as reliability score. The higher the reliability
score, the more reliable a prediction is in a specific cluster. If rq falls below a
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3.2. EXPERIMENTAL EVALUATION

(a) Characteristics that correlate with expert
knowledge.

(b) Characteristics that do not correlate with ex-
pert knowledge.

Figure 3.2: Examples of saliency maps showing characteristics that correlate with expert knowl-
edge in (a) and do not correlate with expert knowledge in (b). For better spatial understanding,
the maps are overlaid with the RGB input image.

threshold t in cluster q of the validation set, we swap the predicted class for all
samples in cluster q and update the confusion matrix. We choose t = 25% for
our experiments. Threshold t is variable and selectable based on data and trained
model and should be chosen to significantly improve the validation set’s accuracy.
Based on the updated confusion matrix, we adjust the overall and average class
accuracy. We store the identified clusters for swapping and apply the same to the
test data, followed by updating the test confusion matrix and accuracies.

To evaluate the adjustment step for KDE, we compute the 95% confidence
interval of the PDF. If the log-likelihood value of a sample falls within the non-
confidence-group, we set the reliability score r to 0 and swap the predicted class
for the specific sample, and update the confusion matrix and accuracies. If the
log-likelihood value falls within the confidence-group, we set r to 1.

3.2 Experimental Evaluation

3.2.1 General Discussion
Our experiments find that clusters or probability densities do not correlate with
harvest-readiness classes. This is expected in binary decision-making, where both
classes may end up in the same cluster or have similar data distributions since they
ideally use the same features. Instead, we focus on whether data within a cluster
or distribution are correctly classified, which allows conclusions to be drawn about
the reliability of the result. We use the confusion matrix for analysis. To assist
the farmer in making harvesting decisions, we exploit the fact that the saliency
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FOR CLASSIFICATION IMPROVEMENT

(a) RGB (b) Grad-Cam (c) OSM (d) LIME

Figure 3.3: Resulting saliency maps or the used approaches (b) Grad-CAM, (c) OSM, and (d)
LIME for a RGB input image (a) which is visualized in the maps’ background. Figure source:
Kierdorf et al. [8].

maps of plant images whose classification result is primarily on the main diagonal
of the confusion matrix (TP or TN), and maps that are associated with incorrect
classification results (FP or FN) tend to end up in separate clusters. Furthermore,
the incorrect classifications tend to fall outside the 95% confidence interval of the
log-likelihood value distribution.

3.2.2 Local Analysis: Saliency Maps of Single Sample In-
puts

In some of the resulting Grad-CAM maps, a hotspot near the center is highlighted
in the image as shown in Fig. 3.3 b). In other maps, the highlighted regions are
located near the edges or scattered in the image. It is easy to analyze which regions
have an influence on the model’s decisions since compact regions are highlighted.

A considerable amount of the OSM results resemble noise regardless of stride
and patchsize for occlusion. Only a minor portion of the results show larger con-
nected regions that are important for decision, as shown in Fig. 3.3 c). These
are located in the area of the image that shows, among other things, the hid-
den cauliflower curd or highlighted leaf regions. Many maps show several smaller
highlighted regions, which are difficult to explain because they do not indicate a
unique plant trait. The ability of a simple explanation of the results varies more
than forGrad-CAM.

In LIME maps, we see that the computed superpixels are not able to summarize
pixels to semantically meaningful regions. This could be caused by the structure
or the strong overlap of neighboring plants. Due to this, LIME saliency maps
are difficult to connect to general statements about the reliability of classification
outputs. An example of a sample analyzed by LIME is shown in Fig. 3.3 d). We
consider LIME not suitable for our application.

Based on the assessment of single saliency maps, we consider Grad-CAM and
OSM to be the most suitable approaches in our framework.
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Figure 3.4: SC results of Grad-CAM maps. The absolute number of (a) validation (val) images
and (b) test images per cluster. (c) shows the prototypes computed by the mean saliency map
per cluster (1) – (8).

3.2.3 Global Analysis: Clustering of Saliency Maps and
Reliability Derivation

We divide the global analysis into two parts, starting with the evaluation of
Grad-CAM saliency maps, followed by the evaluation of OSM concerning the dif-
ferent types of unsupervised techniques.

Grad-CAM:

Fig. 3.4 shows the absolute number of Grad-CAM map assignments of the clus-
tering results for 9 clusters. A distinction is made between the validation and test
set. The confusion matrix entries are differentiated by color. Our experiments
have shown that 9 clusters produce a good separability between false and correct
predictions. Furthermore, depending on the amount of data, there are enough
data points per cluster to make a reliable statement. Based on the distribution
of validation data in Fig. 3.4a, it becomes evident that cluster 6 contains 100%
false predictions, which are equally divided between FP and FN, while cluster 7
contains about 80% false predictions, mainly FN. This means that over 66% of all
FN and FP belong to those two clusters. The remaining part of false predictions
are sorted into clusters 1 and 2, where the percentage is between 20% and 40% of
data samples within those clusters. The other clusters contain less than 3% false
predictions. The clustering analysis allows us to say with high confidence that sam-
ples assigned to clusters 6 and 7 are equivalent to false predictions and should be
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Figure 3.5: EM results of Grad-CAM maps. The absolute number of (a) validation (val) images
and (b) test images per cluster. (c) shows the prototypes computed by the mean saliency map
per cluster (1) – (8).

adjusted. The reliability of the classification results of the saliency maps assigned
to these clusters is, therefore, low and should be disseminated to the farmer. This
is underlined in particular by the cluster assignments of the test data (Fig. 3.4b).
We observe that 66% of the false predicted test data are assigned to clusters 6 and
7. The proportion of false predictions in the other clusters is comparable to those
within the validation data.

The prototypes of Grad-CAM maps per cluster are shown in Fig. 3.4c. More
than half of the prototypes (3,4,5,8,9) highlight the region in the center of the
image. This is the location in the RGB input images of cauliflower curds covered
by leaves, which are the indicators of cauliflower harvest-readiness. Even though
the cauliflower curd is not directly visible in the images, the model identifies the
center of the plant as an essential feature for the classifier to determine the harvest-
readiness. The interpretation of the classification results is straightforward and
understandable for these clusters. The previously noticed clusters 6 and 7 also vary
in these representations to the other clusters. In the image data assigned to these
clusters, the classification model finds no distinctive features for determining the
harvest-readiness. The visualization of the prototypes thus supports the model’s
reliability in addition to the cluster assignment since the visual representation is
easier for the user to understand and interpret.

We conduct the same analysis on the Grad-CAM maps for the EM approach.
The clustering results are shown in Fig. 3.5. For EM, clusters 2 and 9 are clearly
distinguished by a high percentage of more than 80% false predictions per cluster,
constituting about 66% of the total false predictions. The remaining false predic-
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Figure 3.6: KDE results of Grad-CAM maps. Distribution of log-likelihood values for validation
(val) and test data colored by assignment to confusion matrix entries. The mean and 95%
quantile are based on the PDF of the true predictions of validation data.

tions are distributed among clusters 3 and 4. The other clusters contain less than
2% false predictions. Hence, the EM clustering analysis confidently identifies sam-
ples in clusters 2 and 9 as misclassifications, suggesting adjustments. Given the
previous analysis, it is evident that the classification reliability of saliency maps in
these clusters is low, necessitating dissemination to the farmer. again, this is un-
derlined by the cluster assignments of the test data (Fig. 3.5b), where we observe
the same proportion of false predictions in the clusters compared to those within
the validation data.

The prototypes of EM maps per cluster are shown in Fig. 3.5c. We observe
similar phenomena in the SC results, where clusters with a high percentage of
false predictions exhibit no distinct features. Additionally, roughly half of the
prototypes highlight the center, indicating the location of the cauliflower curd.

Fig. 3.6 represents the distribution of log-likelihood values computed under the
PDF of the true validation data estimated using KDE. The figure illustrates the
distribution of true and false predictions for both validation and test data. We
observe that the distributions of true and false predictions of validation data can
be largely separated within the range of log-likelihood values. This phenomenon
arises due to the inability of the maps associated with false predictions to align
with the distribution of true predictions, which happens due to the varying features
between true and false predicted maps. 84% of the false predictions lie outside the
confidence interval. Consequently, the reliability of the classification results of the
saliency maps with a log-likelihood value lower than the quantile value is low and
should be communicated to the farmer. Similar observations can be made for the
test data. 13% of the true predictions for the test data fall within the confidence
interval, while 83% of the false predictions lie outside the confidence interval.

Overall, we observe that it is feasible to assess the reliability of the predic-
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Figure 3.7: SC results of OSM maps. The absolute number of (a) validation (val) images and
(b) test images per cluster. (c) shows the prototypes computed by the mean saliency map per
cluster (1) – (8).

tions using Grad-CAM maps across all three methods despite differences in their
underlying methodologies.

OSM:

The clustering of the OSM maps using SC shows a uniform distribution of false
predictions in all clusters (Fig. 3.7a). The percentage ranges from 10% to 30%.
Based on the OSM cluster results, no statement can be made about the reliability
of the results. The probability that a false prediction occurs in one of the clusters
is similar for all clusters. The cluster assignment of the test data shows a similar
distribution (Fig. 3.7b). Only clusters 2 and 8 stand out for test data. It should
be noted that the assignment to these clusters corresponds to a single image only.

The prototypes also suggest no clear trend in terms of what the model uses
as an informative feature in the RGB images (Fig. 3.7c). Clusters 5 to 8 show a
hotspot near the center, which, just like Grad-CAM, suggests that the model is
paying partial attention to the canopy covering the curd. However, no association
between true and false predictions can be established.

Similar to the clusters calculated using SC, the clustering results obtained
through EM also demonstrate a uniform distribution of false predictions across
the different clusters (Fig. 3.8a). Only clusters 4 and 8 exclusively contain true
predictions, however, they are not representative as they only include 2 samples
each. Thus, the EM results indicate that drawing conclusions about the reliability
of the classification results based on the interpretability technique of OSM is not
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Figure 3.8: EM results of OSM maps. The absolute number of (a) validation (val) images and
(b) test images per cluster. (c) shows the prototypes computed by the mean saliency map per
cluster (1) – (8).

feasible for our use case.
The prototypes for the EM clusters, shown in Fig. 3.8c, behave similarly to

those from the SC approach. Clusters 1, 4, and 8 highlight the importance of
central features in the OSM maps, independent of their correlation with true or
false predictions.

The application of KDE on OSM maps in Fig. 3.9 demonstrates that the dis-
tinction between true and false predictions is difficult even on the basis of the
distributions of the log-likelihood values. The distributions overlap within the
same range of values. Specifically, 0% of the false predictions of the validation
data falls outside the confidence interval. Consequently, we cannot ascertain the
reliability of the classification results of the saliency maps with a log-likelihood
value below the quantile value, as is possible for Grad-CAM. Similar observations
can be made for the test data. In particular, 10% of the true predictions and only
2% of the false predictions of the test data lie outside the confidence interval.

Overall, we note that regardless of the unsupervised method employed, assess-
ing the reliability of predictions with OSM maps is challenging. The key consider-
ation lies in generating interpretable saliency maps that exhibit distinct features.
Comparing the prototypes of the OSM approach with those of the Grad-CAM
approach, we see that for our scenario, the Grad-CAM approach results in more
interpretable maps than the ones of OSM. Since no clear differentiation between
false and correct predictions can be made in the data for OSM, the adjustment
step introduced in this work is only applied to the Grad-CAM results. Adjusting
the classification results based on the clustering results would worsen rather than
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Figure 3.9: KDE results of OSM maps. Distribution of log-likelihood values for validation (val)
and test data colored by assignment to confusion matrix entries. The mean and 95% quantile
are based on the PDF of the true predictions of validation data.

improve the model results.

In summary, the combination of saliency map analysis and clustering provides
information about the reliability of classification results. Nevertheless, careful
consideration should be given to the choice of saliency mapping approach, as its
influence is significant. Once a suitable saliency mapping method is identified,
the visualization of prototypes not only supports the model’s reliability but also
aids in cluster assignment, as visual representations are more user-friendly and
interpretable.

3.2.4 Adjustment of Model Predictions

Regarding the application of the adjustment step to Grad-CAM maps as explained
in Fig. 3.1, we observe improvements in overall accuracy and balanced class accu-
racy for all three unsupervised methods. Tab. 3.1 presents the comparison between
the accuracies achieved by the original model and after applying the adjustment
steps. KDE achieves the highest improvement in the oaAcc and bcAcc of the
validation set, with improvements of 16.84% and 16.30% respectively. The im-
provement achieved by SC and EM show no significant difference compared to

Table 3.1: Comparison of the overall accuracy (oaAcc) and balanced class accuracy (bcAcc)
for three unsupervised methods Spectral Clustering (SC), Expectation-Maximization (EM), and
Kernel Density Estimation (KDE) applied on validation (val) and test set of Grad-CAM maps.

Accuracy ResNet-183 SC EM KDE

val test val test val test val test

oaAcc [%] 77.04 72.16 89.80 87.11 90.31 83.51 93.88 86.08

bcAcc [%] 77.52 72.75 90.27 87.24 90.60 87.11 93.91 85.84
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each other, with improvement ranging from 12.76% to 13.27% for oaAcc and from
12.75% to 13.08% for bcAcc. For the test data, the SC approach yields the highest
accuracies, showing an improvement of 14.95% in oaAcc and 14.49% in bcAcc. On
average, the results of KDE are subsequent, followed by those of EM.

Nevertheless, it is worth questioning which of the unsupervised approaches, in
combination with the adjustment step, is the most suitable. Although the appli-
cation of KDE leads to the highest accuracies in the validation set, the accuracies
may also deteriorate depending on how well the correct and false predictions can
be distinguished in the feature space, as illustrated by the negative example in
Fig. 3.9. We assume that at least 5% of the true predictions are adjusted with-
out knowing the ratio of false to correct predictions below the quantile. For SC
and EM, due to the approach of calculating the reliability scores, it is ensured
that always more false than true predictions are adjusted, thus the accuracy never
deteriorates compared to the original model’s accuracy. For dissemination to the
farmer, we recommend using one of the clustering-based approaches, as these are
the safer options. Furthermore, we are able to generate a more detailed reliability
score for the clustering methods in range [0, 1], while for KDE, we provide only a
score r ∈ {0, 1}.

3.3 Conclusion
This work proposes a framework to derive a reliability score for cauliflower harvest-
readiness estimations that operates post-hoc during inference time without the
need for human interaction. Our work combines a ResNet-18 classification model
with an unsupervised approach for group assignments of saliency maps using Spec-
tral Clustering (SC), Expectation-Maximization (EM), or Kernel Density Estima-
tion (KDE) to derive a reliability statement of classification predictions. Since the
reliability value is in a fixed range between 0 and 1, it is intuitive and can be pro-
vided to the farmer as a decision support. In addition, the classification predictions
can be adjusted, and the accuracy can be improved. We compare three saliency
mapping approaches: Gradient-weighted Class Activation Mapping (Grad-CAM),
Occlusion Sensitivity Mapping, and Local Interpretable Model-agnostic Explana-
tions, and the three above-mentioned unsupervised approaches: SC, EM, and
KDE. The combination of Grad-CAM and SC proves to be the most useful in our
scenario.

For our use case, our approach enables the correct harvest-readiness estimation
on GrowliFlowerR, a subset of the GrowliFlower dataset, of approximately 9 out
of 10 cauliflowers, compared to the state-of-the-art approach ResNet-18, which
achieves only approximately 3 out of 4 correct predictions. Our framework offers
the advantage of not requiring any interaction with the training process. It can
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be applied to already trained models without accessing or modifying the model
architecture. We provide interpretable visualizations and a reliability score for
the model’s decision. Since our framework only considers false predictions, the
approach can also be used to disseminate reliability in multi-class tasks.
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Chapter 4

Multi-class Harvest-readiness
Classification

The binary classification approach presented above only indicates whether a plant
is ready for harvest or not, lacking the detailed temporal information needed for
optimal operational planning. By classifying the exact harvest day, we gain finer
results in predicting the harvest time directly. This enables more precise planning
and resource allocation for harvesting. We extend the idea of binary classifica-
tion of harvest-readiness to a multi-class classification problem by attempting to
directly determine the specific harvest day, following scenario 3. For implemen-
tation, we again examine the two classification models, ResNet-18 and ViT-B/16
and train models for different forecasting times.

Three primary expectations drive our experiment. Firstly, we anticipate lower
accuracies compared to binary classification due to the increased complexity of the
task and the smaller amount of data available per class. This increased complex-
ity arises from the need to distinguish between multiple classes (specific harvest
days) rather than just two states (ready or not ready for harvest). Consequently,
the data for each individual class (specific harvest day) is less comprehensive than
the data used in binary classification, likely leading to lower overall classification
accuracy. Secondly, we hypothesize that the application of the ResNet-18 model
will yield higher balanced class accuracies compared to ViT-B/16. This is due to
ResNet’s ability to handle the significantly reduced dataset more effectively, which
contrasts with the binary classification approach where both models achieved sim-
ilar accuracies. Furthermore, we expect that models, unlike in the binary case,
will exhibit higher accuracies for shorter lead times. These differences are likely
because the models are constructed using data from only one specific day of acqui-
sition, thereby reducing their dependency on exposure and other varying temporal
conditions. We aim to determine which developmental states are more suitable for
predicting the harvest day in advance.
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HD1 HD2 HD3 HD4
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Figure 4.1: The images show plant examples acquired at two days and labeled with the harvest
day (HD) indicated in the columns: HD1, HD2, HD3, and HD4.

4.1 Experimental Setup

For this experiment, we use images from the GrowliFlowerR dataset acquired on
field 2. We utilize multiple subsets, each comprising all images from a specific
acquisition day with a lead time of t ∈ {2, 6, 14, 21, 27, 36} days before harvest,
where t corresponds to the acquisition dates {2021-08-23, 2021-08-19, 2021-08-11,
2021-08-04, 2021-07-29, 2021-07-20}. The data in each subset is grouped into four
classes: HD1, HD2, HD3, and HD4.

A total of 500 reference plants are available, of which only 470 plants were
harvested over four days. The remaining 30 plants were referenced as not ready
for harvest and are therefore excluded from the dataset for this experiment. We
apply the following procedure to each of the subsets. The division into training,
validation, and test data is performed as described in Sec. 3.2.3. This results
in a training set of 298 plants and validation and test sets of 86 plants each
for both subsets. To extend the datasets, we perform standard augmentations,
ensuring that each class is equally represented post-augmentation to balance class
distribution. After augmentation, each subset comprises 2892 training samples.
Fig. 4.1 represents images for each of the four classes across two acquisition days,
highlighting the difficulties in accurately classifying the harvest day. This challenge
arises from the similar developmental stages of the plants, making differentiation
more complex.

For our classification models, we select ResNet-18 and ViT-B/16 for single
input images. Both models use a final linear layer of length four to address the
four-class problem. For each architecture, we train one model with a forecasting
time of t ∈ {2, 6, 14, 21, 27, 36}. The training for each model consists of at least 50
epochs and stops if the validation accuracy does not significantly increase over 10
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Figure 4.2: Comparison of ResNet-18’s and ViT-B/16’s model accuracies computed for different
forecasting times of the harvest day. The overall accuracy (oaAcc) and balanced class accuracy
(bcAcc) for both (a) validation and (a) test sets are illustrated.

epochs. We use an Adam optimizer and fine-tune the weight decay in a range of
0.01 and 0.0001. We also fine-tune the starting learning rate in the range of 0.001
and 0.0001 and reduce it while training using a learning rate scheduler with a step
size of 5 and a factor of 0.1. We utilize oaAcc and bcAcc as evaluation metrics.

4.2 Experimental Evaluation
As expected, we achieve lower accuracies for the multi-class problem for both the
ResNet-18 and ViT-B/16 models compared to the binary case, due to a smaller
dataset and increased task complexity. In Fig. 4.2, we show the comparison be-
tween ResNet-18’s and ViT-B/16’s model accuracies computed for different fore-
casting times of the harvest days. ViT-B/16 achieves up to 63% in oaAcc, which
is higher than ResNet-18’s maximum of 50% on both the validation and test sets.
Since bcAcc is an accuracy metric that averages the accuracy per class, it is partic-
ularly important for multi-class classification problems, especially when the data
samples per class are unevenly distributed. Therefore, we attribute greater signif-
icance to the bcAcc. The bcAcc is similar for both models. Only for forecasting
times of 14 and 27 days do the values vary by 8%, indicating that ViT-B/16 may
achieve better results for forecasting times up to 21 days, while ResNet-18 performs
better for forecasting times beyond 21 days.

Contrary to our expectations, both types of models do not exhibit higher accu-
racies for shorter lead times. One reason for the difficulty in predicting the harvest
day could be the occlusion caused by neighboring plants or weeds. Accurate pre-
dictions become more challenging as the plants develop further because the leaves
of neighboring plants overlap more, making it harder to identify specific features
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in the images. Additionally, some areas of the field are infested with weeds, which
are particularly present in the later acquisition days and thus at shorter lead times.

We cannot definitively attribute the fluctuations in accuracies, as this would
require deeper analyses that we do not discuss further in this work but would be
interesting to explore in future research. Nevertheless, we have two hypotheses
regarding the causes of these fluctuations. The first hypothesis relates to the
image quality, which, unlike in the binary case, does not bias the decision towards
a particular class but still struggles to differentiate between classes, e.g., due to an
increased proportion of blurry or dark images. Another possible reason is that, at
certain times, the plants may exhibit differences in development, which simplifies
classification and is reflected in the classification accuracy.

The analysis of this scenario indicates that it is possible to estimate the harvest
day from a given set of days based on the given data. Assuming that fields exhibit
similar developmental patterns, we assume a transferability to other fields. How-
ever, due to the strong weather dependency of growth, we consider the application
to new data with the aim to achieve comparable accuracy to be challenging for
the time being.

4.3 Conclusion
We classify the harvest day of cauliflower plants using a CNN-based ResNet-18
classification model and an attention-based Vision Transformer model ViT-B/16,
considering different forecasting times for harvest-readiness. The comparison be-
tween the accuracies achieved by the two models shows that the ViT-B/16 model
achieves higher overall accuracies and balanced class accuracies for forecasting
times up to 21 days. In contrast, ResNet-18 demonstrates better-balanced class
accuracies for higher forecasting times.

The transformer-based network shows greater potential for determining the
harvest day, however, the data foundation must be expanded. More data needs to
be labeled, and methodologies such as self-supervised learning should be utilized
to handle datasets with a small proportion of labeled data efficiently. In our
case, self-supervised learning approaches can leverage unlabeled data from the
GrowliFlowerT dataset to pre-train model weights on unlabeled cauliflower image
data.
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Image Time Series Analysis
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Introduction
Determining harvest information of cauliflower from UAV images of single
points in time has already been done in Part II. Opposed to individual time
points, which can only capture a plant’s current state to a limited extent, time
series, enabling continuous monitoring of the entire growth cycle of plants,
offer insights into the dynamic and current rate of plant development. This
facilitates the comprehensive analysis of growth patterns and the estimation
of crop yields. Utilizing image time series has already shown great success in
the field of satellite data, e.g., for crop type mapping [95], [219], [220] or yield
prediction [221]–[223]. Therefore, using time series shows a high potential for
improving the accuracy of harvest prediction using UAV images.

UAV data acquisition and processing on a weekly or even daily basis is time-
consuming. Optimization through the reduction of low-quality data enables
model improvement, as this data harms the result [224]. Low-quality data
results, e.g., from time points that are less relevant or have no information gain
for model predictions [225]. Thus, finding time points that contribute most to
a correct harvest-readiness estimation is crucial to improving the model and
resources like time and money for future observations.

For our study, we classify cauliflower plants according to their harvest-
readiness using image time series showing plants’ development over time. A
modified ResNet18 [139] classifier is employed. We compare models using
images of single time points shortly before harvest [8] to those using time series
with initial acquired time points without explicit selection. Furthermore, we
use the explainable ML method GroupSHAP [209] to identify which image time
points contribute most to the model’s prediction, allowing us to selectively
determine time points that increase the model’s accuracy. We compare the
time points with the respective development stages of the plants. From this,
we conclude which developmental stages are generally important to determine
harvest-readiness and propose how to reduce data acquisition resources.

As the main contributions of this part, we show that:

• the use of time series compared to single time points lead to an improve-
ment in the predictive accuracy of cauliflower harvest-readiness up to
4%;

• the use of GroupSHAP helps to select time points to improve the accu-
racy by a further 4% up to 89%. This information can be connected to
growth stages and used to reduce the required resources for data acqui-
sition in future works.

This part is based on our published paper by Kierdorf et al. [9].
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Chapter 1

Scenarios

All previous scenarios consider single time points as the basis of data, correspond-
ing to individual growth stages of the plants. These approaches are applied in
Part II and evaluated with respect to our objectives. The advantage of field mon-
itoring is that we obtain data throughout the entire growth period and can inte-
grate it into our prediction of harvest-readiness. Part III addresses the question of
whether time series information leads to an improvement in prediction accuracy.
For the investigation of this objective, we consider three additional scenarios. For
clarity, we continue numbering the scenarios sequentially.

Scenario 4
Scenario 4 is an extension of scenario 2. It addresses whether a plant will be ready
for harvest in t days from day Th, but based on the temporal information available
during growth. To aid comprehension, the yellow box visualizes this in Fig. 1.1,
which encompasses multiple time points. Like scenario 2, this scenario involves a
binary problem. In scenario 4, it can be investigated which length of a time series
provides the most accurate accuracies.

Scenario 5
Scenario 5 extends scenario 3 by incorporating time series information prior to
the first harvest, as depicted in Fig. 1.2. Data acquisition during the harvest is
omitted, and the investigation focuses on determining the harvest time point Th

for a plant. Similar to scenario 3, this scenario is approached as a multi-class
classification problem.

For both scenarios utilizing time series information, we observe that the work-
load of data acquisition, processing, and analysis increases compared to scenarios
that utilize single time points. However, it is desirable that the prediction results
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Figure 1.1: Scenario 4 visualizes the interaction between data collection, processing and analysis
with the application of tactical management decisions for the binary classification of harvest-
readiness based on time series data. In scenario 4, the actions are conducted at multiple time
points up to a lead time of t days before each harvest.

Figure 1.2: Scenario 5 visualizes the interaction between data collection, processing, and analysis
by applying tactical management decisions for the multi-class classification of harvest-readiness
based on time series data. In scenario 5, data collection, processing, and evaluation are conducted
at multiple time points up to t days before the first harvest date T1.

improve with the additional information about plant development. To reduce the
workload, it is worthwhile to explore whether there are specific time points or
developmental stages that positively influence classification accuracy.
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Chapter 2

Classification based on Initial
Time Series

For classification based on single time points, we assume that the time inter-
val between image acquisition and harvest must be kept short, as factors such
as weather still change the development considerably [226]. No prior knowledge
about previous plant development is given in this case. In this experiment, we
want to investigate whether the use of time series information for the classification
of harvest-readiness as described in scenario 4 is more beneficial than the use of
individual time points, investigated in Part II because the use of time series in-
tegrates the temporal development of the plants into the model. We also address
whether it is worth integrating early acquisition times to increase model accuracy
or whether it is sufficient to use time points close to harvest.

2.1 Experimental Setup
We use image time series data from field 2 of the GrowliFlowerR dataset introduced
in Sec. 3.2.3, showing the development of cauliflower from planting to harvest. The
dataset contains information about planting and harvest day for each cauliflower
plant. The planting day is used to derive the day after planting (DAP) for each
image in the time series, which represents the age of the plant. Harvesting took
place on four dates. The images in the dataset are georeferenced and have the
same resolution and scale. Due to different weather conditions at different DAPs,
factors such as exposure and soil irrigation differ at various points in time.

We prepare the data in the same way as for our experiments based on single
input images, described in Chap. 2. For this task, we used images right before
harvest, as shown in Fig. 2.1 highlighted in orange, and divided into the classes
Ready and Not-ready for harvest. For this experiment, we refer to these images
as basic images. For our time series classification approach, we extend the basic
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Figure 2.1: Visualization of cauliflower image time series, with a length of T = 11, presenting
various potential harvest days HD, indicated by the blue frames, whereby a row illustrates an
individual time series. (a) shows an example of generating multiple time series for an individual
plant. In this example, a plant is observed and labeled as Not-ready for harvest on days HD1,
HD2, and HD3, shifting to Ready for harvest on harvest day HD4, indicated by the grey dashed
frame. Each time series is shifted by one image for HD1 to HD4, reflecting the progression over
time. The variability in potential harvest days results in differences among the basic images
within the time series, indicated by the orange frame. Consequently, the corresponding images
at day after planting (DAP) also shift accordingly. Only non-transparent images are utilized
as input for constructing the time series. For plants deemed Ready for harvest on HD1, there
exists only one plausible time series since harvesting occurs on that specific day. Equivalently, for
plants harvested on HD2 and HD3, there are two and three conceivable time series, respectively.
This method of generating time series remains applicable across varying time series lengths. (b)
shows time series of four different plants representing the four harvest days. This illustration
compares Ready and Not-ready for harvest plants. Figure source: Kierdorf et al. [9].

images by T − 1 images acquired chronologically before the used basic image,
resulting in a time series with T individual time points. Each image within the
time series represents a different developmental stage of the plant. We vary T for
later experiments with T ∈ {1, 2, . . . , 11}, resulting in time series with different
temporal lengths. We denote these time series as initial time series (iTS).

Example image time series with a length of T = 11 for one specific plant are
shown in Fig. 2.1a. The presented plant is observed and labeled as Not-ready
for harvest on harvest days HD1, HD2, and HD3, shifting to Ready for harvest on
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CHAPTER 2. CLASSIFICATION BASED ON INITIAL TIME SERIES

harvest day HD4. Each time series corresponds to one of the harvest days. If a
plant is classified as Not-ready for harvest on a given harvest day, it is reclas-
sified for the next harvest day. The variability in potential harvest days results
in differences among the baseline images within the time series, indicated by the
orange frame. As we align the time series with these baseline images, the tempo-
ral start and end points of the series shift towards the harvest day, depicted by
non-transparent images. For plants deemed Ready for harvest on HD1, there exists
only one plausible time series since harvesting occurs on that specific day. Equiv-
alently, for plants harvested on HD2 and HD3, there are two and three conceivable
time series, respectively. This method of generating time series remains applicable
across varying time series lengths. Thus, we can generate up to four time series
for a specific plant, dependent on the harvest day. The images are aligned by
DAP and illustrate which DAP is used for classification regarding the potential
harvest days. Since the basic images were taken on different DAPs depending on
the potential harvest day, iTS contain different stages of development. Fig. 2.1b
compares four different plants, each labeled with a different harvest day. We use
information about available developmental stages of cauliflower according to Feller
et al. [211], as listed in Tab. 2.1. For this experiment, we relate the developmental
stage to the DAP.

We compare three types of models to investigate whether using time series
information to classify harvest-readiness is more beneficial than using individual
time points. In the first model, we use the ResNet-designed model structure for
time series data but use single time points as input and denote this model as our
baseline. As a reference to the baseline, we use the ResNet183 model for single
image inputs without the additional linear layer, investigated in Part II. For both
models, we use the basic images as input. As the third model type, we use our
designed network and iTS as input. For all model types, we calculate the oaAcc
and bcAcc and compare them across the different types of models.

We train one time series model for each input time series length T . We nor-
malize the input images before feeding them into the model. The training for
each model consists of at least 60 epochs and stops if validation accuracy does
not increase significantly over 10 epochs. We use a batch size of 16 and the Adam
optimizer with a learning rate of 1e−5. The learning rate is reduced using a sched-
uler with a step size of 20 and a factor γ of 0.1. We adjust the weight decay and
linear layer mentioned earlier for each model through hyperparameter tuning. We
consider weight decays α in the range of [1e−1, 1e−3] and scaling factors λ in the
range of [2, 4]. As the final model of training, we select the model with the highest
validation accuracy. For reproducibility, we set all used seeds to 0. We run our
experiments on an AMD EPYC 7742 64-Core processor and an NVIDIA A100
PCIe graphic card with 40 GB hBM2 RAM. The runtime of the model with the
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Figure 2.2: The plot opposes the baseline model accuracies for single time point inputs to the
accuracies achieved in our further investigations in Part II (TP), to our computed initial time
series (iTS) accuracies, and to the selective time series (sTS) accuracies. The plot shows the
overall (oaAcc) and balanced class accuracy (bcAcc) for different time series lengths. For sTS,
time points are excluded starting from right to left. Figure source: Kierdorf et al. [9].

most input features with T = 11 is 14 minutes.

2.2 Experimental Results
The comparison between the accuracies of our baseline and the reference for single
time point classification investigated in Chap. 2 of Part II shows that incorporat-
ing an additional linear layer into the model leads to a general improvement in
the achieved accuracies for single time point inputs (see yellow lines in Fig. 2.2
compared to orange markers). Furthermore, we find that using iTS input data
enhances model accuracy compared to the baseline in nearly all cases. When
adding successive time points, we achieve higher accuracies for seven out of ten
time series models, a similar accuracy in one case, and lower accuracies in two
cases compared to our baseline. The increasing trend is noticeable initially but
decreases between T = 4 and T = 8 and then increases again at T = 9 to reach
a maximum value of 85.7%. The maximum increase in accuracy compared to the
baseline is approximately 4% for a time series length of T = 11.

2.3 Discussion
We demonstrate that the use of time series information enhances the predictive
accuracy of the model, even when the cauliflower curd is not visible in any image
within the series. Kierdorf et al. [8] demonstrate that it is possible to determine
harvest-readiness even when the curd is occluded by the canopy. Using explain-
able machine learning through the Grad-CAM technique, they showed that the
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ResNet18 model’s decision is influenced by specific image features. These features
primarily include the leaves at the center of the plant, which protect the curd.
Since we also use a ResNet18-based model architecture, we expect these insights
to be applicable to time series data. Furthermore, information on the plant’s de-
velopment over time provides additional features that are utilized for predicting
harvest-readiness and thus increase the accuracy.

We attribute the decrease in accuracy to the fact that not every time point
in the data set provides relevant information to the model. Some time points
may exhibit redundancy or correlation and share the contribution to the output.
Generally, this could be because there is no significant visual growth of the plants
between two acquisition days. Particularly in the later stages of development, the
plants no longer grow visibly but continue to develop the curd internally. Another
reason could be that additional time points negatively impact the accuracy by
confusing the model. This may be due to irrelevant features or noise in the data
[225], such as slightly blurry images, that occur when processing the raw data
into orthophotos [7]. By examining the time points added for specific time series
lengths, we find that time points within the DAP interval [44, 65] are more likely
to harm the accuracy. The increase in accuracy can be attributed to adding new
informative features by adding additional images.

2.4 Conclusion
In this experiment, we classify image time series of cauliflower plants, depicting
the temporal development concerning their harvest-readiness. For this purpose, we
use a ResNet18 model as an encoder and integrate the plant age through positional
encoding to improve the discrimination between young and underdeveloped plants.
In our experimental investigations, we demonstrate that models based on image
time series data exhibit superior accuracy than the baseline model, which only
considers a single time point as input. This improvement can be attributed to the
integration of additional plant development information.
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Chapter 3

Classification based on the
Selection of Time Points with
GroupSHAP

In this experiment, we investigate how single time points within a time series
contribute to the classification result and how excluding time points affects the
model accuracy. The basis for this experiment is built on scenario 4. Literature
has shown that excluding features (here time points) based on feature selection
can improve the model accuracy [227]–[229]. We connect the time points with
the BBCH developmental stages according to Feller et al. [211] and investigate
with GroupSHAP whether certain developmental stages have a low contribution
to model accuracy and can, therefore, be omitted from data collection to conserve
resources.

3.1 Experimental Setup
This experiment is a follow-up experiment on the time-series investigation. We
use the same data, model architecture, and training setup as used in the previous
experiment described in Sec. 2.1. We take the iTS model with T = 11 calculated
in our first time series experiment and (i) calculate the entity contribution of the
time points using GroupSHAP. We (ii) exclude the time point with the lowest
mean absolute GroupSHAP from iTS overall harvest days since it has the most
neutral contribution (closest to 0). In theory, the day with the lowest contribution
would have to be excluded separately for each HD to receive the highest model
accuracy, as different DAPs are contained in the time series of the different HDs.
In practice, however, concerning resource-saving data acquisition, not only selected
parts of the field are flown over, but the entire field, so that certain points in time
must be completely excluded. Therefore, we exclude the time points with the
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lowest mean absolute contribution across all time points and, thus, exclude the
mean macro developmental state over the whole field. We denote the new time
series with the selected time points as sTS. Next, we calculate (iii) a new model
using the sTS and recalculate the accuracies. We repeat (i)-(iii) using the most
recently determined sTS instead of iTS.

We specify that the first three and last four acquisition days are always included
in the time series. Keeping the last four acquisition days is important because it
allows us to determine whether the class Ready or Not-ready for harvest can
be derived in the coming days. Without these time points, there is no reference
point for predicting harvest-readiness. If we classify a plant as Ready, it will be
ready for harvest within the coming days, i.e., the last image in the time series
is the last one before harvesting. Including the time points close to harvest has
proven to be beneficial in maintaining stable results despite weather fluctuations.
Another reason for always including these seven time points is to minimize data
bias towards a specific HD and maintain similar data for all models, we only
consider time points for exclusion where an image can be excluded from each HD.
The excluded days show, on average, the same developmental stage per time point
(see Tab. 2.2). Different plant developments average out over the entire field. We
assume that this will also be the case for the following growing seasons. For the
experiment, fixing the seven time points allows only the calculation of sTS for time
series length T ∈ [4, 10].

3.2 Experimental Results
Comparing the sTS versus iTS model accuracies, we achieve higher accuracies at
all time series lengths (Fig. 2.2). Compared to the best iTS model with T = 11, the
accuracies maintain a similar or higher level with the exclusion of selective entities.
The oaAcc and bcAcc for sTS models have their maximum at 89.3% and 89.1%
for a time series length of 7. This indicates that excluding specific DAPs leads to a
positively developing accuracy. Thus, we observe that GroupSHAP helps to select
relevant entities to increase model accuracy. The sTS model accuracies perform
with lower accuracy for shorter time series (< 6TPs), indicating that informative
entities with a positive overall impact on the accuracy are excluded. This is because
our approach uses the criterion of the lowest mean absolute value for exclusion.
However, the lowest mean absolute value can also make a positive contribution to
the predictions, which means that the exclusion results in a reduction in accuracy.
The exclusion of entities, therefore, only makes sense up to a certain point to
achieve the best model accuracy. Furthermore, we observe that a sTS of length
5 achieves the same accuracy as using 11 initial time points. This indicates that
feature selection can save time and costs in data acquisition and processing to
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Figure 3.1: Visual example of GroupSHAP values for time series lengths T of (a) T = 11 and (b)
T = 10. The fixed time points are not shown, as they are not excluded. One violin plot shows the
distribution of GroupSHAP values per time point, more explicitly per day after planting (DAP).
The first four plots represent the set of GroupSHAP values classifying data of harvest day (HD)
1 to 4. The light blue plot represents the combination of the four sets. The red-marked DAPs
represent the days with the lowest mean absolute GroupSHAP value. The red-marked number in
the combination plot is excluded in the next selective time series model. Figure source: Kierdorf
et al. [9].

obtain the same result as acquiring data over the whole growing period.

Fig. 3.1 shows the distribution of GroupSHAP values for sTS lengths with
T ∈ [10, 11]. For a deeper analysis, the GroupSHAP values are separated for
the potential harvest days. In addition, a total overview of a combination of all
HDs is given in light blue. All five plots are related to class Ready for harvest.
Independent of the time series length, the model tends to classify Ready for harvest
for later potential harvest days, as the number of plants ready for harvest increases
over time. This also applies to shorter time series lengths. Since, in practice, the
entire field is flown over, and it is only worth eliminating an entire acquisition
day, we only consider the combination plots concerning excluding time points.
It turns out that on average, for T = 11, DAP 50 (macro stage 40) and for
T = 10 DAP 65 (mean macro stage 43) must be excluded. The order in which
the DAPs are excluded continues with 57, 44, 22, 27, and 35. From a biological
perspective, the initial stages of sorting occur when the plant is in the phenological
development of macro stage 4 and micro stages 1-3 (according to BBCH by Feller
et al. [211]). During these stages, curd development occurs, and the curd starts
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growing, reaching a diameter of up to 6 cm. In the corresponding image data, there
are minimal visual changes compared to earlier images, as the growth happens
internally within the plant. The current appearance of the plant, which is used in
the model’s decision-making, is therefore determined from the images that display
the most robust plant development. In contrast, the development stages of the
days with the highest contribution (DAP 22, 27, and 35) are at the beginning of
macro stage 3, when the main shoot begins to develop. Taking a closer look at
the first two excluded acquisition time points, 50 and 65, we observe that these
time points occur more frequently in the database for sTS models of length 7 and
8. Since these time points do not have a supposed positive contribution to the
predictions, this explains the drop in the iTS curve.

From our observations, we conclude that the selective choice of time points
improves the model’s accuracy and can reduce the effort in data acquisition in the
future. We obtain the best model using sTS with seven time points within a time
series with oaAcc of 89.3% and bcAcc of 89.1%. We achieve an oaAcc of 76.3%
and bcAcc of 76.7% with the same model on a test set. Weighing the effort of data
acquisition against achievable model accuracy, we achieve an oaAcc of 85.2% and
bcAcc of 84.7% on validation data and oaAcc of 78.9% and bcAcc of 78.9% on the
test set when using 4 time points.

3.3 Discussion
Based on the accuracy curves for iTS and sTS, we observe that the exclusion of
specific DAPs improves accuracy. This demonstrates that GroupSHAP effectively
selects relevant entities to enhance model accuracy. However, excluding too many
features can result in the loss of valuable information essential for accurate pre-
dictions; thus, it is important to limit exclusions to maintain higher accuracies.
In addition, we have identified that shorter time series, including selected time
points, yield similar accuracies compared to longer time series without time point
selection. This suggests that feature selection can reduce time and costs in data
acquisition and processing while achieving the same results as acquiring data over
the entire growing period.

We note that selected time points are those where the model’s decision-making
relies on images that exhibit the most distinct visual plant development and where
the main shoot begins to develop. In contrast, time points characterized by con-
tinued internal head development within the plant and less external growth are ex-
cluded. The frequent presence of acquisition time points 50 and 65 in the database
for sTS models of lengths 7 and 8, which do not contribute positively to predic-
tions, may explain the decline in the iTS curve as well. For iTS, we hypothesize
that certain time points negatively impact accuracy due to irrelevant features or
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noise in the data, such as slightly blurry images. This insight also applies to sTS
models and might be another explanation for the low contribution of the time
points.

It is important to note that our statement regarding the order of DAP ex-
clusion may change depending on the development of the plants in response to
external conditions. If the field develops on average one week earlier, this shift
applies to the entire field, resulting in a corresponding adjustment of all harvest
days and development stages. When generalizing to other fields and farms, it is
important to consider the development stages rather than solely relying on the
DAP time point. Although we have not yet tested the trained model on another
cauliflower farm, preliminary results indicated that the available data in the field of
cauliflower harvest-readiness estimation is not sufficient to generalize and transfer
the classification model to other fields. The effects of varying weather, lighting,
and irrigation must be accounted for to ensure generalizability. However, altering
colors in the HSV color space to simulate changes in exposure and soil conditions
can inadvertently modify the perceived biological properties of the plants. For
instance, a color change might make healthy leaves appear diseased, or conversely,
diseased leaves appear healthy.

GroupSHAP provides valuable insights, yet there are limitations that need to
be addressed. One of the primary constraints is the high complexity and substan-
tial computational time. The method evaluates the contribution of each feature
across numerous permutations, resulting in high computational complexity, par-
ticularly with large datasets and complex models. To mitigate this issue, parallel
computation on multiple GPUs can be utilized. By distributing the computa-
tional workload across multiple GPUs, the time required for processing can be
significantly reduced. Additionally, the method is sensitive to data quality. The
explanations generated by GroupSHAP heavily depend on the quality of the input
data. Noisy, incomplete, or biased data can lead to incorrect attributions and
interpretations. However, GroupSHAP can also be utilized to identify such issues
within the data, as this data should make a small contribution to the final predic-
tion. High data quality from the beginning can be ensured through in-depth data
cleaning and validation to guarantee accurate and reliable results.

3.4 Conclusion
We use the interpretation technique GroupSHAP to investigate the contribution
of single time points within a time series to the model’s prediction of cauliflower
harvest-readiness and how excluding time points with the lowest mean average
contribution affects the model’s accuracy. We show that the explainable machine
learning method GroupSHAP effectively facilitates the selection of time points
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from time series that contribute highly to the result and, thus, improve the models.
Our findings can be utilized in new data acquisition methods to control the

data acquisition frequency. For instance, data acquisition could be increased dur-
ing the interval of leaf and shoot development and less during the stage when the
curd has reached 30% of the expected size, as plant development mainly takes
place in the interior of the plant at this time. However, it is important to con-
tinuously observe the development from year to year and make adjustments as
necessary, considering any variations in the development. To enhance general-
ization, it is imperative to collect additional data reflecting diverse weather and
lighting conditions and additional data stemming from diverse developmental pro-
cesses concerning the temporal occurrence of growth phases throughout the year,
which can subsequently be assimilated into the model framework. Additionally,
the findings in the application of cauliflower cultivation can be used to estimate the
costs and benefits and determine whether the gain in accuracy justifies acquiring
data weeks in advance. Our approach is adaptable and can be extended to other
plant varieties or analogous time series analysis tasks.
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Chapter 5

Overall Conclusion

This thesis presents significant advancements in the field of harvest-readiness pre-
diction for cauliflower, addressing the critical need for accurate and non-invasive
methods to determine optimal harvest times. The traditional challenges in cauli-
flower cultivation, such as the labor-intensive and subjective nature of manual har-
vesting, have been effectively tackled through innovative image-based approaches
and advanced machine learning techniques. The foundation for this relies on the
availability of open-source plant-specific datasets. Although there is a notable gap
in the availability of these datasets, this work has made a significant contribution
to reducing this gap by publishing an open-source image dataset, GrowliFlower,
showing different developmental stages of georeferenced cauliflower plants. The
experiments listed in this thesis demonstrate that image-based monitoring and
analysis provide an efficient foundation for predicting cauliflower harvest-readiness.
The provided dataset GrowliFlower is an initial step towards achieving this goal.
However, due to the limited time period of the project in which this thesis is con-
ducted, the dataset lacks diversity in terms of weather conditions, time intervals
between acquisition dates, and plant varieties sown for an extended feature domain
and ensured generalizability.

Our research demonstrates that integrating drone-based monitoring with deep
learning models enables automated and precise predictions of harvest-readiness.
Despite potential errors arising from field variability and limited training data, our
comprehensive assessment and comparison of different models, like convolution-
based Residual Networks and attention-based Vision Transformers, have provided
valuable insights into forecasting times and prediction goals. The application
of interpretable machine learning, particularly through the analysis of saliency
maps, has allowed us to derive reliability scores for each classification result. This
methodology informs farmers, enhancing their decision-making process and im-
proving the accuracy of model predictions for unseen data.

The investigations of time series data for plant phenotyping have further con-
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tributed to our understanding of the decision-making process on harvest-readiness
prediction, highlighting the importance of careful selection of acquisition days to
increase model accuracy. The use of the interpretation technique GroupSHAP has
identified key acquisition days and developmental stages that positively influence
model performance, especially for our case. By focusing on these critical time
points, we have demonstrated that it is possible to achieve significant improve-
ments in accuracy while reducing the frequency of data collection, thus enhancing
the efficiency of future agricultural practices.

Further insights gained during our work indicate that interpretable machine
learning significantly enhances model performance, often surpassing the accuracy
gains from hyperparameter tuning, which is time-intensive due to repeated retrain-
ing. Therefore, interpretable machine learning offers a more efficient approach to
improving models.

Furthermore, it has been demonstrated that farmers’ decisions and the eco-
nomic situation significantly influence field workers’ harvest decisions. Therefore,
we recommend that the determination of harvest-readiness integrate both the vi-
sual assessment of the plants and economic factors.

5.1 Key Contributions
Our first contribution addresses the gap in the availability of plant-specific datasets
by presenting GrowliFlower, an agricultural dataset focused on developing cauliflower
plants. This dataset encompasses image time series of georeferenced cauliflower
plants, coupled with phenological development data over time, derived from refer-
ence data. Additionally, it includes instance segmentation masks of plant compo-
nents like plant instances, leaf instances or stem instances. This dataset facilitates
the development of machine learning models for phenotyping traits analysis, en-
abling tasks such as harvest-readiness prediction, growth analysis, leaf counting,
and more. GrowliFlower is crucial to this work, serving as the primary basis
for all experimental investigations and analyses. It has been demonstrated that
GrowliFlower provides a robust foundation for analyzing cauliflower’s harvest-
readiness. By creating and using GrowliFlower, additional challenges have been
identified, which should be considered to improve approaches in future studies.
Over several years of data collection, challenges have emerged due to various fac-
tors such as different cultivation varieties (varying degrees of self-coverage), the
influence of field and plant handling by workers, and the impact of field size on
harvest runs (whether the entire field is examined or not). The variation in these
aspects particularly affects the generalizability of models and should be addressed
in further data collection efforts.

Our second contribution diverges from previous methods that relied on statis-
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tical analyses of temperature and geometric properties. Instead, we utilize image-
based analyses of harvest-readiness to investigate forecasting times and differen-
tiate between two prediction tasks: binary classification of harvest-readiness and
multi-class classification of harvest-readiness with respect to specific harvest days.
For our use case, we demonstrate that even with a larger lead time, our approach
achieves comparable accuracy to models using development stages closer to the
harvest.

Our third contribution is the development of a framework for the reliability
assessment of classification predictions. We calculate a reliability score using in-
terpretable and unsupervised machine learning techniques that can be used to
disseminate the reliability of predictions to the end user and adjust model predic-
tions accordingly. This framework operates post-hoc during inference time and
does not require human interaction, ensuring seamless integration into existing
workflows.

Our fourth contribution involves the analysis of harvest-readiness prediction
based on image time series data, integrating the developmental stages of cauliflower.
We demonstrate that incorporating additional information improves the resulting
model accuracies. This approach enhances predictive performance by leveraging
the temporal progression of plant growth, thereby providing more accurate and
reliable harvest-readiness predictions.

Our fifth contribution is the derivation of the acquisition time points in a time
series and, consequently, the developmental stages of cauliflower plants at these
time points, contributing to high model accuracy in predicting harvest-readiness.
We utilize the interpretable machine learning method GroupSHAP for this pur-
pose. The selective identification of developmental stages enables us to recom-
mend reduced data collection for future datasets, assuming adaptations to varying
growth patterns and climatic conditions.

5.2 Open Source Contributions
In the scope of this thesis, our dataset GrowliFlower is published open-source and
can be found and downloaded on the PhenoRoam website:

• https://phenoroam.phenorob.de/

Based on the number of downloads and citations, it is evident that the dataset
is being well-received within both the Machine Learning and plant science com-
munities. This uptake suggests a favorable reception and indicates a high level
of interest in the dataset. Such acceptance will likely stimulate further research
efforts and applications and potentially foster novel innovations across both disci-
plines.
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Chapter 6

What’s next

Based on the knowledge and experience gathered during this thesis, we identify
several challenges and open questions. Additionally, we propose ideas to address
these challenges and provide solutions to the questions raised.

First, we have identified a lack of generalizability in the harvest-readiness pre-
diction of cauliflower across different fields. Future data collection should focus
on capturing diverse data within the cauliflower domain, including diverse tempo-
ral periods within a year, across multiple years, and encompassing various fields
and varieties. Such an endeavor would go beyond the current scope of the project
within which this thesis was conducted. The recordings’ lighting conditions should
be improved to reduce variance over time. Additionally, insights gained from time
series analyses can be utilized to capture more targeted growth stages. We also
recommend examining the entire field section for harvest-ready plants to minimize
human bias in the reference data, if applicable in real economic implementation.

In addition to increased data collection, methodological approaches can also
solve the challenges. One way to deal with the varying visual appearances of dif-
ferent fields and align them is to use domain transfer techniques. Style transfer
Machine Learning (ML) offers several methods to transfer the style of one image
to another without changing the latter’s content. This can be achieved using tech-
niques such as Generative Adversarial Networks (GANs) [230], [231] or diffusion
models [232], [233]. Another approach to improve the accuracy of the models is
the use of domain-specific pretrained models [234] on plant data, which also has
the advantage of reducing the number of required labeled images.

The high dependency of cauliflower growth on climate continues to pose chal-
lenges for accurately predicting harvest-readiness. Similarly, the significant eco-
nomic influences on the harvest time point add to these challenges. Agricultural
market dynamics influence the harvest decisions of farmers and their field workers
and cannot be determined solely based on the visual appearance of the plants.
Furthermore, maximizing yield does not always contribute to economic profit, as
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spatial competition with neighboring farmers must also be considered. Future
research should focus on informed ML [235] and investigate whether integrating
weather forecasting models and economic models can improve accuracy and foster
generalizability.

Throughout our work, we have observed no direct neighborhood relationship
regarding growth between the plants. Plants grow heterogeneously even when they
are in close proximity. However, it has become evident during the work within
this thesis that geographical location or neighborhood impacts growth. One cause
could be, for example, soil conditions and nutrients that may be evenly distributed
in the immediate area but unevenly over the whole field [236]. Based on the refer-
ence plots, we can see that plants within a single plot develop differently, but their
development is more similar than plants from a different reference plot. Hence,
we propose that further investigation into the correlation between geographical in-
formation and harvest-readiness be conducted in future studies and subsequently
integrated into modeling frameworks.

So far, our work has focused on approaches using classification models to de-
termine the harvest-readiness of cauliflower. However, this problem can also be
addressed using regression models. The advantage of this approach is that re-
gression models are able to predict time points between the designated harvest
days. References are based on the harvest runs of field workers, not on the actual
harvest-readiness, which can occur between the harvest runs.

Another direction in which future work can be advanced is the generation of
unseen cauliflower curds and the subsequent derivation of geometric properties.
For this, the defoliation dataset GrowliFlowerD can serve as a basis. We have
already employed this approach in our work published by Kierdorf et al. [14],
where we used GANs to generate a likely scenario behind the leaves to improve
the estimation of the amount of harvest. In first experiments using a pix2pix GAN
[104], we observe that we obtain sufficient results with the defoliated cauliflower
data, as shown in Fig. 6.1, provided that (i) enough data are available, (ii) the
center of the plant is not manually occluded by external cauliflower leaves, (iii)
background and outer plant leaves stay similar between pre and post defoliation,
and (iv) the resolution and contrast of the post-defoliation images are of high
quality. Unfortunately, there is insufficient data for fields 1 and 2, the majority
of images showing defoliated plants are blurry due to camera settings that failed
to take into account the strong contrast between the white curd and the green
plant. The example in Fig. 6.1 therefore represents a sample from the training
set and may not be fully representative, but it demonstrates the potential of this
approach.

In this thesis, we demonstrate that interpretable ML can be used to derive the
reliability of predictions and the contribution of different acquisition time points
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(a) Real (occluded). (b) Real (defoliated). (c) Generated (defoliated).

Figure 6.1: Example of generating the occluded curd under the canopy based on the GrowliFlow-
erD dataset. This example is generated using a pix2pix Generative Adversarial Network [104]
and illustrates the real image showing the occluded cauliflower in (a), the real image showing
the defoliated cauliflower in (b), and the generated image showing the defoliated plant.

and plant development states to model accuracy. Future work could expand the
experiments using data-centric ML [237] to focus more closely on individual maps,
investigating which features in the RGB space lead to unreliable predictions or
negatively impact model accuracy. This approach may help to improve the foun-
dational dataset by identifying which data samples exhibit higher uncertainty and
understanding the underlying reasons.

Further work can investigate whether using multi-spectral data enhances the
prediction of cauliflower harvest-readiness. Multi-spectral data provide insights
into the physiological states of plants, such as their health status, nutrient con-
tent, and stress levels. Despite the farmer employing a robust stress management
system, the plants are still affected by abiotic stresses such as intense sunlight,
temperature fluctuations, and wind gusts. These factors may be reflected in the
multi-spectral data and potentially influence harvest-readiness prediction. By in-
corporating multi-spectral imaging, researchers can more accurately assess how
these abiotic stresses impact cauliflower development and may improve the preci-
sion of harvest-readiness predictions.

In the direction of time series analysis, a methodologically interesting approach
could be the use of Graph Neural Networkss (GNNs) [238], which has proven to
be promising in this and other areas [239]. GNNs provide a unique advantage
when the time series data is represented as graphs, capturing the relationships and
dependencies between different time points within the time series more effectively.
Within the graph, a node could represent time points within the time series, and
edges represent their temporal dependencies.

Before image-based harvest-readiness prediction using machine learning can
be practically applied in the future, several of the aforementioned challenges must
first be investigated and addressed.
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(a) Field 1 (b) Field 2

Figure 2: Location of GCPs in fields 1 and 2. Figure source: Kierdorf et al. [7].

Table 1: Monitored abiotic and biotic stresses.

Abbreviation Meaning Abbreviation Meaning
P plant L leaf/leaves
nP no plant wL without leaves
Pl plant lying down oL old leaves
wP whole plant yL yellowish leaves
2P 2 plants rL reddish leaves
bb blind bud pgL pale green leaves
pd planted too deep pygL pale yellowish green leaves
A aphids present sg stunted growth with many shoots
C coal fleas present dT damage to leaves caused by tractor
F flies present
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(a) (b)

Figure 3: Visual overview of (a) reference plots for in-situ measurements in field 1 and (b) the
respective design of reference plot 4 (including reference plants and ordering of reference plant
numbers). The plot design is valid for all reference plots in field 1. Figure source: Kierdorf et al.
[7].

(a) Field 1 (b) Field 2

Figure 4: Separation of plants within fields 1 and 2 in GrowliFlowerT in training (blue), validation
(yellow), and testing (red) sets. For field 1, the two planting days are separated using dark colors
for July, 28th, 2020 and light colors for July, 29th, 2020. Figure source: Kierdorf et al. [7].
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(a) Field 1 (b) Field 2

Figure 5: Separation of reference plants in fields 1 and 2 in GrowliFlowerR in training (blue),
validation (yellow), and testing (red) sets. Figure source: Kierdorf et al. [7].

(a) Field 1 (b) Field 2

Figure 6: Separation of defoliated plants in fields 1 and 2 in GrowliFlowerD in training (blue),
validation (yellow), and testing (red) sets. Figure source: Kierdorf et al. [7].
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