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Abstract 

Agroforestry systems are vital for sustainable development in Africa, offering significant benefits such 
as enhanced agricultural productivity, biodiversity conservation, and climate resilience. This study 
provides a detailed analysis of the past, present, and potential future distributions of agroforestry 
across the African continent using high-resolution geospatial datasets and predictive modeling 
techniques. Between 2000 and 2020, agroforestry areas have expanded in some, while declining in 
other locations across Africa. Overall, at the continental level, net economic losses due to decline in 
the extent of agroforestry systems between 2000 and 2020 made up an equivalent of 14 billion USD. 
Economic projections point at consistently positive returns from future investments into agroforestry 
expansion in northern Africa, the northern part of the Sahel region, horn of Africa, and southern Africa. 
However, there is a strong heterogeneity across the continent in terms of economic viability of 
agroforestry expansion investments, requiring targeted prioritization to those areas with higher long-
term returns. Projections to 2050 indicate that targeted policies and investments can not only prevent 
agroforestry losses under the business-as-usual trends but also help maximize benefits from 
agroforestry expansion where it makes the most sense. 

 

Keywords: Agroforestry, Africa, geo-spatial mapping, Climate change, Ecosystem services, Livelihoods, 
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1 Introduction 

Agroforestry is gaining recognition as an important tool for tackling both land degradation and rural 
development challenges. This is especially true in Africa, where 59% of the population lives in rural 
areas, relying heavily on natural resources for their livelihoods (World Bank, 2021). Degradation of 
soils, which form the productive base of rural households in Africa, is a critical problem (Barbier & 
Hochard, 2018). In recent decades, soil degradation has become a significant driver of poverty and 
food insecurity (Mirzabaev et al., 2021), and vulnerability to social and climate change (Barbier & 
Hochard, 2018). This degradation, largely due to unsustainable land management practices, has led to 
negative social, economic and ecological impacts. Addressing this through widespread agroforestry 
solutions is seen as a critical step towards sustainable development in Africa, particularly in the 
context of increasing biomass demand and climate change. 

Forest and agroforestry systems deliver multiple direct and indirect benefits (Angelsen et al., 2014; 
(Wunder et al., 2014). Direct benefits include enhanced crop productivity through the integration of 
trees in cropping systems (Bado et al., 2021; Mbow et al., 2020), provision of nutritious fodder for 
livestock (Chakeredza et al., 2007), and improved household nutrition through the cultivation of fruit 
trees (Jemal et al., 2021). Agroforestry has shown to improve soil erosion attributed to the 
improvement of soil water regulation and soil texture, compared to conventional monoculture 
systems (Ngaba et al., 2024). Additionally, agroforestry reduces labor demands for fuelwood collection 
(Beyene et al., 2019). 

Indirectly, agroforestry contributes to ecosystem services like carbon sequestration, erosion control, 
water regulation, nutrient cycling, and biodiversity conservation (Kuyah et al., 2019; Baumüller et al., 
2020). Its climate change mitigation potential is substantial, as agroforestry systems sequester 
significantly more carbon than treeless systems, helping offset emissions (Tschora & Cherubini, 2020). 
Moreover, agroforestry supports climate adaptation by reducing soil erosion, improving moisture 
retention, and diversifying farmers' income sources (Mirzabaev et al., 2021). These benefits position 
agroforestry as a promising solution for both climate change and land degradation (IPCC, 2019). 

In Africa, agroforestry has taken center stage in scientific and policy discourses. In the past, 
agroforestry has also experienced an increase in adoption in some parts of Africa (Garrity et al., 2010). 
Despite the recognized benefits of agroforestry, its uptake has not been widespread due to challenges 
such as lack of support for agroforestry systems through public policies (Bishaw, 2013), limited 
investment in the sector compared to intensified farming systems, and the failure of extension 
services, which limits the possibility of scaling up innovations in agroforestry for improved land use 
systems (Mbow et al., 2014). Further challenges include lack of technical knowledge, delayed returns 
on investments and insecure land tenure rights (Olsson et al., 2019; Russell & Franzel, 2004). 

To effectively harness the benefits of agroforestry and build a compelling policy case for its adoption, 
a comprehensive understanding of its potential expansion across the African continent is essential. 
Identifying the costs and benefits associated with agroforestry systems is also critical. An economic 
assessment of costs and benefits of agroforestry can facilitate decision-making and policy action. 
Mirzabaev et al. (2021) have proposed an approach which demonstrates the usefulness of such 
assessment of costs and benefits of land restoration to guide and support policy formulation, in the 
Sahel and China, respectively.  

While several studies have attempted to map the extent of agroforestry using various types of remote 
sensing data and classification techniques (Lesiv et al., 2022; Rizvi et al., 2020), inconsistencies on the 
definition of agroforestry exist when it comes to mapping. These methodological inconsistencies and 
a lack of clear classification systems for agroforestry practices complicate the assessment of their 
benefits (Golicz et al., 2023). Some simplified definitions refer to the main components of agroforestry 
such as trees, crops and/or animals (Gordon & Newman, 2018), while others are broader and refer to 
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spatio-temporal management patterns and ecological interactions that can generate ecosystem goods 
and services, including socioeconomic and environmental benefits (Young, 1983). 

Agroforestry systems incorporate or use naturally existing trees and shrubs in cropping and pastoral 
systems with the purpose of attaining synergies between these perennial and annual elements in an 
integrated manner (Nair, 1993b). In this study, we define agroforestry as the integration of trees, crops 
and/or livestock on the same management unit. To capture the diversity within African agroforestry, 
we focus on three main types of agroforestry: (i) Agrisilviculture, a production technique which 
combines the growing of agricultural crops with simultaneously raised and protected tree crops; (ii) 
Silvipasture, which integrates livestock, forage, and trees within a single land management unit; and 
(iii) Agrisilvipasture, an integrated land use system that combines agriculture, forestry, and cattle in 
the same unit. This typology supports a comprehensive approach to understanding the extent and 
function of agroforestry systems across Africa. It also avoids the pitfall of previous large scale 
agroforestry mapping studies typically overlays only agricultural land using cropland and percent tree 
cover maps, without accounting for pasture areas (Brandt et al., 2025). 

Currently, no readily available data exists which provides the needed information on these dimensions 
of agroforestry in cropping systems at necessary detail. To our knowledge, no study to date has 
investigated the past, current and future of agroforestry zones at the scale of the African continent. 
Producing high-resolution and up-to-date maps of agroforestry and its temporal dynamics for the 
African continent that accurately captures all dimensions of agroforestry remains a critical gap. 
Previous studies such as von Maydell’s (1987) work, have examined agroforestry in specific African 
regions, particularly dry zones, but lacked a continent-wide perspective and the incorporation of 
spatial analyses via remote sensing. Our study advances this field by leveraging state-of-the-art 
geospatial datasets, including those for tree cover (Buchhorn, Smets, et al., 2020; Hansen, 2013) 
animal density (Gilbert et al., 2018) and land use-land cover (C3S & CDS, 2019; ESA, 2017). In contrast 
to prior approaches that either downscaled or upscaled single tree cover products, we generated new 
tree cover maps for 2000, 2010, and 2020 by training on data from (Buchhorn, Smets, et al., 2020) and 
applying it to reflectance bands from Hansen (2013).  

Our study contributes to the above-mentioned research gaps through four objectives. First, we aim to 
map and analyze the spatiotemporal dynamics of agroforestry systems across Africa in their past, 
present, and future distributions. Second, we assess the direct and indirect economic benefits of 
agroforestry to African people. Finally, we aim to evaluate the economic potential for agroforestry 
expansion in Africa. 
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2 Conceptual framework  

Agroforestry systems provide a wide range of ecosystem services. For this reason, this assessment 
uses the total economic value (TEV) framework, assigning value to all ecosystem services provided by 
forests and agroforestry systems. The TEV approach classifies ecosystem services into three categories 
by the nature of their values: use values, non-use values, and option values (Nkonya et al., 2016). Use 
value consists of direct and indirect use values. The direct use values comprise marketed outputs 
containing priced consumption (e.g. food crops, timber products, ecological tourism, etc.) as well as 
un-priced benefits such as local culture and recreation. The indirect use value includes ecosystem 
functions and services which usually do not have market prices such as water purification, CO2 
sequestration, enhanced micro-climate, biodiversity, water level, etc. (Table 1). 

Non-use value is made up of bequest, altruistic and existence values, all of which are un-priced 
benefits. The option value includes both marketable outputs and ecosystem services for future direct 
or indirect use. It is usually quite difficult to measure the non-use and indirect use values as they are 
rarely traded in markets. 

The TEV framework considers the monetary values of all ecosystem services, both marketed 
ecosystem services and non-marketed ecosystem services following the classification of ecosystem 
services based on the Millennium Ecosystem Assessment (Millennium Ecosystem Assessment, 2005). 
The Millennium Ecosystem Assessment classifies ecosystem services into 22 types under provisioning, 
regulating, habitat, and cultural ecosystem services (Table 1). Provisioning ecosystem services are the 
values of food production, water provision, the extraction of medicinal, genetic, and ornamental 
resources, and have market prices. On the other hand, regulating, habitat, and cultural ecosystem 
services are mostly not traded in the markets and do not have market prices, they are non-marketed 
common pool ecosystem services. Their economic values are obtained through various valuation 
approaches such as contingent valuation, travel cost, replacement cost methods, damage cost 
avoided and other methods (Nkonya et al., 2016).  

Table 1: Millennium Ecosystem Assessment classification of ecosystem services (Millenium 
Ecosystem Assessment, 2005) 

Provisioning services 

Food, Water, Raw materials, Genetic resources, 
Medicinal resources, Ornamental resources 

Regulating services 

Air quality regulation, Climate regulation, 
Disturbance moderation, Regulation of water 
flows, Waste treatment, Erosion prevention, 
Nutrient cycling, Pollination, Biological control 

Habitat services 

Nursery service, Genetic diversity 

Cultural services 

Esthetic information, Recreation, Inspiration, 
Spiritual experience, Cognitive development 
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3 Methods and Data 

This study combines remote sensing, machine learning and geospatial modelling to analyze the 
distribution, change and projection of agroforestry systems across Africa. To estimate the direct and 
indirect benefits of agroforestry, we use the TEV framework.  

3.1 Mapping of agroforestry systems 

The main agroforestry systems were mapped by combining different raster layers of trees, livestock 
and croplands in Africa for the years 2000, 2010 and 2020 – following the definition of Nair (1993a). 
These layers which were initially at different resolutions, were resampled to a uniform 1 km resolution 
using a bilinear method for trees and livestock and nearest neighbor for croplands in R. The trees and 
livestock layers were continuous variables, and the croplands layer was categorical. To generate 
presence/absence data for each study year, thresholds were applied to the respective layers: (1) 
livestock presence was defined by a threshold of 1 Tropical Livestock Unit (TLU) per pixel; (2) tree 
cover was identified where at least 1% of the pixel (equivalent to 1 ha in a 1 km² area) was covered by 
trees, following Zomer et al. (2014); and (3) crops presence was determined by the classification of all 
cropland pixels. 

Combining these layers resulted in the identification of three primary agroforestry systems, as defined 
by Nair et al. (2021): agrisilviculture (trees and crops), silvipasture (trees and livestock), and 
agrisilvipasture (trees, crops, and livestock).  

Field data for the three corresponding agroforestry classes were used to validate the agroforestry map 
of the year 2020 across the Africa continent. These data were rasterized to the same pixel size of 1km 
to allow a pixel-by-pixel comparison. 

3.2 Acquisition and processing of geospatial data  

Various datasets, summarized in Table 2, were used to map agroforestry and its variation across Africa 
for the study years 2000, 2010 and 2020. These data include layers on protected areas, wetlands, 
climate (i.e., rainfall and temperature), vegetation (i.e., forest cover, tree cover, croplands), 
topography (i.e., elevation), livestock, human population density and soil properties. These data were 
respectively used according to the overall methodology in three processing steps: (i) the spatial 
clustering of the African continent to identify the relevant countries for ground-truth data collection, 
(ii) the masking of areas without agroforestry and (iii) the mapping of the three main agroforestry 
systems.  

Table 2: List of datasets and extracted features used for the Agroforestry mapping in Africa 

Name Variable(s) Dataset / Product Format and 
Resolution Year(s) 

Protected 
Areas 

Terrestrial and Inland 
Waters Protected Areas 

World Database on 
Protected Areas (UNEP-
WCMC, 2021) 

Polygons, 
Continent level 2021  

Wetlands  

Global Lakes and 
Wetlands Database 
(GLWD) (Lehner & Dolk, 
2004) 

Polygons, 
Continent level 2004 

Climate data Rainfall CHIRPS dataset (Funk et 
al., 2015)  Raster, 0.05° 1981-

2021 
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Temperature 
WorldClim version 2.1 
dataset (Fick & Hijmans, 
2017) 

 Raster, 1km 1975-
2000 

Digital 
Elevation 
Model 

Elevation Digital Elevation Model 
(USGS-NASA 2000) Raster, 30m 2000 

Vegetation 
products 

Land cover 
Land use and land cover 
(ESA, 2017 & C3S-CDS, 
2019)  

Raster, 300m 

2000, 
2010 
and 
2020 

Total Biomass 
Production 

Total Biomass Production 
dataset of WaPOR 2.1 
(FAO, 2020) 

Raster, 1km 2020 

Spectral Reflectance 
bands 

Hansen et al., (2013) 
Global Forest Change v1.9 
(2000-2021) 

Raster, 30m 

2000, 
2010 
and 
2020 

Forest cover 
Forest cover fraction 
layer of (VITO-CGLS) 
(CGLS, 2019) 

Raster, 100 m 2019 

Livestock 
products Livestock density 

Gridded Livestock of the 
World – Latest – (GLW 3) 
(Robinson et al., 2014) 

 Raster, 10 km 2010 

Continental 
Population 

Human Population 
density 

Africa Continental 
Population Datasets 
(CIESIN, 2018) 

 Raster, 1km 
2000 
and 
2020 

Continental 
Soil 
properties 

Soil Organic Carbon 
Soil Texture 

SoilGrids datasets - ISRIC 
Data Hub (Hengl et al., 
2017) 

 Raster, 250m  

 

3.3 Geospatial data for clustering of the African Continent  

Seven environmental variables were used to compute a pixel-based clustering of the African 
continent. The layers are presented in (Annex 1). 

3.4 Masking potential areas without agroforestry 

All areas without agroforestry were masked across Africa in 2000, 2010 and 2020, using four layers 
related to the protected areas: forests, lakes, wetlands and urban areas. The World Database on 
Protected Areas (WDPA) dataset (UNEP-WCMC and IUCN, personal communication, 2022) was used 
to mask out all protected areas potentially not involved in agroforestry. These masks of protected 
areas included national parks, Ramsar sites, private areas and hunter zones. The masks of forests, 
wetlands, settlements and water bodies were extracted from annual Land Cover maps of the 
European Space Agency Climate Change Initiative (ESA-CCI) (ESA, 2017), and the Copernicus Climate 
Change Service Data (C3S-CDS) (Copernicus, 2021) with a spatial resolution of 300m. Finally, the whole 
mask was applied to the agroforestry maps to exclude non-agroforestry areas for the years 2000, 2010 
and 2020.  
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3.5 Data Extraction 

Geospatial data related to the three main components of agroforestry systems, namely cropland, tree 
cover and livestock, were processed and extracted individually to carry out the agroforestry systems 
mapping. 

Cropland layer 

To extract the cropland layer, we utilized Land Use Land Cover (LULC) products from ESA-CCI (2017) 
and C3S-CDS (2021) databases. This layer included categories for rainfed, irrigated, and mosaic 
croplands (Figure 1). The LULC products encompass 22 classes with a spatial resolution of 300 meters. 
For mapping purposes, we reclassified these layers into six categories, following the 
Intergovernmental Panel on Climate Change (IPCC) approach, and resampled them to a resolution of 
1 kilometer. The final maps and reclassified categories can be found in the supplementary materials, 
(Annex 2). Figure 1 illustrates the LULC map of 2020 and extracted areas/mask of non-agroforestry 
areas across Africa. 

Figure 1: Land use and land cover map of 2020 and extracted areas/mask of non-agroforestry 
areas across Africa. The LULC map was simplified here into 6 major classes 

 

Livestock production 

We used the Gridded Livestock of the World - Latest - 2010 (GLW 3) database for livestock related 
data. This global dataset, developed by the Food and Agriculture Organization (FAO) Animal 
Production and Health Division in collaboration with the Oxford Environmental Research Group 
(Robinson et al., 2007), provides estimates for various species, including cattle, buffalo, sheep, goats, 
pigs, chickens, and other poultry. The GLW database facilitates global and sub-national mapping of 
these species, with estimates per square kilometer at an approximate resolution of 10 kilometers. The 
resulting maps are based on modeling empirical relationships between livestock densities and various 
environmental, demographic, and climatic variables within similar agro-ecological zones. The GLW 3 
is the latest version generated using a Random Forest model (Gilbert et al., 2018) offers global data 
for the year 2010 at a spatial resolution of 0.083333 decimal degrees (roughly 10 kilometers at the 
equator). In this study, we focused on four species: sheep, goats, cattle, and horses. Using data from 
FAO Statistics, we calculated the growth rates of these species between 2010 and 2020, as well as 
between 2000 and 2010, using the following formula: 



7 
 

 
Where GR is the growth rate, Valuen+1 is the livestock population of the last year and Valuen is the 
livestock population of the first year. 

Using the growth rate of each species, the corresponding number of heads was calculated for the 
years 2000 (1) and 2020 (2) using the following equations: 

Number of head of animals = Number in 2010 / (1+GR)                                   (1) 

Number of head of animals = Number in 2010 + (Number in 2010 * GR)         (2) 

These spatialized data at the scale of Africa allowed to convert the number of heads of animals into 
tropical livestock units (TLU) using the specific coefficient of each species. The combined data of 
animals is presented in Figure 2. 

Figure 2: Distribution of livestock density across Africa (Total livestock units of horses, goats, 
sheep and cattle) 

 

 

Tree/shrub cover fraction data 

To model the tree cover for the years 2000, 2010 and 2020, we used the Global Forest Change (GFC) 
v1.9 database (2000-2021) developed by Hansen et al. (2013) as well as the Copernicus Global Land 
Service (CGLS) tree and shrub cover fraction of the year 2019 (Buchhorn, Smets, et al., 2020). The 
reflectance bands of the GFC database were used to calculate spectral indices which constituted the 
main predicting variables of the tree/shrub cover while the CGLS dataset served to extract the 
reference data. Considering the computational requirements at the scale of our analysis (30m 
resolution, 3 years, the whole of Africa), we leverage the readily available and preprocessed 
reflectance composites for the years 2000, 2010 and 2020 from the GFC database 

This tree cover modeling was undertaken due to the unavailability of the percent tree cover layers for 
2010 and 2020 from the Hansen et al. (2013) dataset. To address this, we utilized the readily accessible 
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and preprocessed reflectance composites for 2000, 2010, and 2020 from the GFC database, which 
provided a consistent and reliable basis for our analysis. 

Forest cover fraction  

The CGLS was used to identify areas with tree presence and to build a training dataset. The CGLS is a 
component of the Land Monitoring Core Service (LMCS) of Copernicus, the European flagship Earth 
observation program. This service aims to provide systematic monitoring of the land surface and has 
been producing annual land cover maps at 100 m resolution (CGLS_LC100) since 2015 (Buchhorn, 
Lesiv, et al., 2020). 

3.6 Spectral indices and computation of woody cover layer   

Four spectral indices were computed using the 2000, 2010 and 2021 spectral bands provided by 
Hansen et al. (2013). Knowing that the Landsat-8 Operational Land Imager (OLI) and the Landsat-7 
Enhanced Thematic Mapper Plus (ETM+) can be used as complementary data (Li et al., 2013) and that 
Normalized Difference Vegetation Index (NDVI) was demonstrated to be similar between OLI and 
ETM+ (Huntington et al., 2016), we used the following spectral indices (see formula in Table 3): 

1. The Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974) corresponds to the 
normalized difference of the visible red (RED) to near-infrared (NIR) reflectance and is a 
measure of the photosynthetic activity of vegetation. Its value ranges from -1 to 1 where high 
values indicate vegetation greenness, while low values indicate non-vegetated areas (Nguyen 
et al., 2021).  

2. The Normalized Difference Infrared Index (NDII) (Hardisky et al., 1984) is the normalized 
difference between the NIR and the shortwave infrared (SWIR) bands. It is mainly used to 
account for the moisture content of the vegetation (Wilson & Norman, 2018). 

3. The Normalized Difference Water Index (NDWI2) (Gao, 1996) was derived from the 
reflectance of the NIR and shortwave infrared (SWIR) bands. The combination of these two 
spectral bands improves the accuracy of determining vegetation water content by eliminating 
variations induced by internal leaf structure and leaf dry matter content. 

4. The Modified Bare soil Index (MBI) was proposed by Nguyen et al. (2021) for the detection of 
bare soils using SWIR and NIR wavelengths. 

Table 3: Spectral indices used in this study 

Vegetation Index  Formula Reference 
Normalized Difference 
Vegetation Index (NDVI) 

𝑁𝑁𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑅𝑅𝑅𝑅

 (Rouse et al., 1974) 

Normalized Difference 
Infrared Index (NDII) 

𝑁𝑁𝑁𝑁𝑁𝑁 −  𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 +  𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁

 (Hardisky et al., 1984) 

Normalized Difference 
Water Index 2 (NDWI2) 

𝑁𝑁𝑁𝑁𝑁𝑁 −  𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁2
𝑁𝑁𝑁𝑁𝑁𝑁 +  𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁2

 (Gao, 1996) 

Modified Bare Soil Index 
(MBI) 

𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1 −  𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁2 −  𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1 +  𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁2 +  𝑁𝑁𝑁𝑁𝑁𝑁

 + 0.5 (Nguyen et al., 2021) 

 
The woody cover mapping was carried out using Random Forest (RF) regression modeling (Breiman, 
2001) via the Google Earth Engine (GEE) platform, a cloud-based computing platform that allows, at 
planetary scale, geospatial data retrieval, processing and analyses (Gorelick et al., 2017). The RF 
algorithm was used due to its proven efficiency for woody cover mapping (Anchang et al., 2020; 
Nagelkirk & Dahlin, 2020). The woody cover modeling was carried out in three main phases. In the 
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first phase, data pre-processing was conducted to obtain a time series suitable for analysis. We began 
by importing image composites from the Global Forest Change v1.9 dataset, followed by filtering to 
limit the image collection to specific years, a defined study area, and target spectral bands.  

The second phase focused on all image processing tasks required to obtain the satellite based 
explanatory variables. These involved the calculation of four vegetation indices – including (NDII, 
NDWI2, NDVI, MBI), and the compilation of the four spectral bands (RED, NIR, SWIR1, SWIR2) to 
generate a set of eight variables for each target year.  

In the third and final phase, data preparation and model calibration were performed to train the RF 
regression model. Woody cover samples were randomly extracted from the CGLS’ forest cover 
product of 2020 and imported into GEE as a shapefile asset. In total, 7943 sample points were 
extracted and randomly divided into training points (80%, 6348 points) and validation points (20%, 
1595 points). Using a pixel-based approach, the RF regression model was calibrated using the GEE 
default number of predictors available to divide each node (mtry), and the 500 regression trees 
(ntree). The model’s accuracy was assessed using measures such as the root mean square error 
(RMSE), the relative RMSE (RRMSE) and the coefficient of determination (R2). The description of these 
parameters is presented in Table 4. The RF model calibrated for 2020 was subsequently applied to 
estimate tree cover for 2000 and 2010.  

Table 4: Accuracy evaluation parameters and their formulas. N: total number of samples, Yi: 
measured value, Yi': estimated value and 𝑌𝑌: average of the measured values 

Accuracy measure Formula 
Root Mean Square Error (RMSE) 

𝑁𝑁𝑅𝑅𝑆𝑆𝑅𝑅 = �∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌′𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

Relative RMSE (RRMSE) 𝑁𝑁𝑁𝑁𝑅𝑅𝑆𝑆𝑅𝑅 =
𝑁𝑁𝑅𝑅𝑆𝑆𝑅𝑅
𝑌𝑌

× 100 

Coefficient of Determination (R2) 
𝑁𝑁2 = 1 −

∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌′𝑖𝑖)2𝑁𝑁
𝑖𝑖=1
∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌)2𝑁𝑁
𝑖𝑖=1

 

 

3.7 Ground reference data collection 

A clustering of the African continent was done by stacking the seven environmental variables in one 
layer. The classification process was carried out with the k-means algorithm via the Google Earth 
Engine platform. According to the expected number of four countries for ground truthing, a clustering 
product was generated with four classes. The cluster raster was then filtered using the Sieve algorithm 
in QGIS with a threshold of 20,000 (i.e., pixels groups smaller than this size were merged with the 
surrounding class). Based on the four obtained classes, the four countries, namely Cameroon, Kenya, 
Senegal and Zambia, were selected for collection of ground reference data (Figure 3). 

Ground truthing in this study served as a critical validation step to ensure the accuracy of agroforestry 
mapping across Africa. By collecting field data from four representative countries—Cameroon, Kenya, 
Senegal, and Zambia— we were able to verify the classification of agroforestry systems derived from 
remote sensing data. This process involved comparing ground observations with mapped agroforestry 
classes, such as agrisilviculture, silvipasture, and agrisilvipasture, to refine the model and improve its 
predictive accuracy. Ground truthing thus helped to mitigate potential biases in remote sensing 
analysis and enhanced the reliability of the spatial mapping outputs for agroforestry systems across 
the continent. 
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Figure 3: Location of countries for reference data collection 

 

3.8 Land use-land cover data collection and processing  

The LULC data were collected in each of the four selected countries where a sampling strategy based 
on an agro-ecological or bioclimatic zoning was used to select sites to visit (with a minimum distance 
of about 10 km). In each site, the different agroforestry cover types were inventoried using a digital 
form and/or identification sheet, depending on the country, and a Global Positioning System (GPS) 
device. Visited classes were fully or partially walked to create a representative polygon or to take (with 
GPS) several landmarks which helped to digitize a representative polygon. As a result, each visited 
point was categorized into the three main agroforestry classes as defined by Nair (1985, 1993a): 
agrisilviculture, silvipasture and agrisilvipasture. High-definition digital photos with embedded 
geographic coordinates were also taken to illustrate and characterize the landscapes visited.  

3.9 Evaluation of the Agroforestry mapping accuracy 

The accuracy of agroforestry maps was assessed using the ground reference data and based on the 
overall accuracy and kappa coefficient which were computed from a confusion matrix including the 
three agroforestry classes.   

 

3.10 Change analysis, future projections and tree cover variation 
scenarios in agroforestry areas  

The change analysis and projection of agroforestry areas were performed using the Modules for Land 
Use Change Evaluation (MOLUSCE) plugin via QGIS software (Gismondi, 2013). This plugin was chosen 
for its effectiveness in computing post-change analysis and its suitability for modelling transition 
potential and future projections (El-Tantawi et al., 2019). It includes well known algorithms such as 
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the Artificial Neural Network (ANN) and the Monte Carlo Cellular Automata (CA). The methodological 
workflow of the process is presented in Figure 4, and consisted of three main steps: 

i) The post-change analysis including change detection into study intervals e.g. 2000 – 2010 and 2010 
– 2020, which compute a post-transition probability matrix and area change of the agroforestry 
categories (types) between the initial and the final year 

ii) The transition potential modelling was conducted using an Artificial Neural Network-Multilayer 
Perceptron method (ANN-MLP) with the transition probability matrix, area change and maps of 
elevation, population density, rainfall, soil organic carbon and temperature as predicting variables. For 
all study periods, the ANN-MLP process was run with 100 iterations, a neighborhood value of 3×3 
pixels, a learning rate of 0.001, 12 hidden layers, and a momentum of 0.05; and 

iii) The retrospective simulation of African agroforestry areas using the CA algorithm and the validation 
of the model using a kappa coefficient (Cohen, 1960) as well as a comparison of actual and projected 
agroforestry maps. This model was validated based on the simulated map of 2020 using historical 
layers of 2000 and 2010.  

Figure 4: Overall workflow of change analysis and future projection of agroforestry system 

 
We employed three distinct scenarios to map potential variations in agroforestry-related tree cover 
across Africa. Scenario 1 assumes a modest increase of 2% in tree cover by 2050, reflecting a baseline 
(i.e. Business as Usual) improvement related to rainfall-driven changes. This assumption was made 
based on Zhang et al. (2023), who observed an overall increase in woody cover across African drylands 
by the end of the 21st century (corresponding to 5% in average in 2100). Scenario 2 envisions a 5% 
increase in tree cover by 2050, representing a more ambitious yet plausible level of restoration and 
reforestation efforts. This scenario is aimed to express African ambitions in Nationally Determined 
Contributions (NDC) where more than half the countries on the continent (28 out of 54) have pledged 
to ecologically restore a total of 1,130,000 km2 of land, and much of this restoration will rely on tree 
planting. Finally, Scenario 3 projects a substantial 10% increase, indicating a transformative scale of 
restoration activities. These scenarios reflect varying levels of commitment and ecological outcomes, 
highlighting the potential for tree cover expansion under different restoration intensities and policy 
implementations. Current agroforestry tree cover in Africa is estimated at 3,123,801 km², with 
significant opportunities for scaling restoration initiatives. 

Agroforestry images
(2000, 2010 & 2020)

Geospatial variables
(Elevation, Population density,
Rainfall, Soil organic carbon,

Temperature)

Change detection

Transition matrix

Cellular Automata
Simulation
(CA model)

Future Simulation
(2030-2040-2050)

Transition potential
modelling

(ANN-MLP)

Agroforestry 2020
(Actual vs Projected)

Kappa validation
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3.11 Economic valuation of Agroforestry systems 

The TEV framework was employed to assess the value of agroforestry ecosystem services. This 
approach provides a comprehensive valuation by integrating both use and non-use benefits derived 
from these systems. 

Key data sources included: 

• Remote sensing and agroforestry mapping (presented above) 

• Economic values of ecosystem services: Ecosystems services valuation database (ESVD), 
Mirzabaev et al. (2025) and primary data collection 

• Costs of agroforestry establishment and maintenance: ECON-WOCAT (Mirzabaev et al. 2021) 
and ZEF-ELD datasets (Nkonya et al., 2016), supported by primary data collection 

Values of ecosystem benefits from agroforestry systems 
Based on the Ecosystems services valuation database (ESVD), Mirzabaev et al., 2025, and primary data 
collection, we have identified values of agroforestry ecosystem services in pastoral, cropped, and 
mixed systems (Annex 4), as well as of other ecosystems such as forests, grasslands, wetlands, and 
croplands, which were taken as the basis for economic analysis. 

Costs of establishing agroforestry systems 
An economic assessment of costs and benefits of agroforestry can help promote climate smart 
agroforestry solutions, expand the knowledge about them, and facilitate decision-making and policy 
action. Weighing the costs and benefits against each other enables a promotion of the most 
worthwhile policy choices contributing to social welfare and safeguarding the environment. We have 
compiled a dataset to capture the economic value of ecosystem services generated by agroforestry 
systems in Africa. This dataset represents the first extensive compilation of costs and benefits of 
agroforestry systems in Africa and contributes to closing the information gap of economic profitability 
of this practice.  

The dataset is based on a systematic literature review (SLR) as well as focus group discussions (FGDs) 
conducted in selected countries across Africa. This work builds on previous ZEF research on the 
economics of ecosystem restoration in the Sahel by Mirzabaev et al. (2021). The SLR followed a 
defined review protocol with predetermined selection criteria. The review was carried out using the 
Scopus database. To include grey literature, a second review was conducted with Google. 

The publication period for both Scopus and Google search was set to 2000-2022. The keywords for 
the SLR are displayed in Table 5 and contained the constant “agroforestry”, as well as terms referring 
to monetary values and country contexts. Additional economic data from the WOCAT SLM database 
(https://qcat.wocat.net/en/wocat/) was included to expand the findings. Only publications in English 
were considered. A total number of 750 papers was compiled. After a content review, 65 papers 
containing monetary values on agroforestry were retained. In addition, 33 sources on costs of 
agroforestry in Africa originated from the ECON-WOCAT dataset (https://qcat.wocat.net/en/wocat/), 
while nine sources were collected from the grey literature review. The FGDs were conducted by the 
Centre de Suivi Écologique (CSE) and International Centre of Insect Physiology and Ecology (ICIPE) in 
Senegal and Kenya in 2022, added further 102 supplementary value sources. In total, the 209 sources 
delivered 490 data points providing monetary information on costs and benefits of agroforestry 
systems in various locations in Africa (Table 6). 

https://qcat.wocat.net/en/wocat/
https://qcat.wocat.net/en/wocat/
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Table 5: List of keywords used for SLR 

Agroforestry, AND economic AND costs, AND benefits, AND Africa 

agroforestry, AND economic AND costs, AND benefits, AND [African country name] 

agroforestry, AND income, AND Africa 

agroforestry, AND income, AND [African country name] 

agroforestry, AND economic, AND Africa 

agroforestry, AND economic, AND [African country name] 

agroforestry, AND costs, AND Africa 

agroforestry, AND costs, AND [African country name] 

  

Table 6: Compiled data from SLR and FGDs 

Scopus results 750 

Scopus results after content review Yes No 
65 685 

 

Grey Literature 9 
Additional Data entries WOCAT 33 
FGDS Senegal 68 
FGDs Kenya 34 
Total of Sources 209 
Amount of Data points 490 

 
Data provided in the literature was presented in different currencies and expressed at different times, 
hence, a harmonization of values had to be carried out. For this purpose, two approaches can be 
considered. First, values will be transformed into USD and following accounting for inflation will be 
based on USD inflation rates. Second, inflation accounting will be performed on the local currency to 
bring all values to the same year and subsequently values will be converted to USD. Turner et al. (2019) 
recommends inflating the local currencies for non-tradable goods and services. Since most of the 
values recorded remain in the regional market, such as e.g., crops and timber, or are non-tradable 
goods like labour, the second approach was chosen. For this purpose, the World Bank's inflation and 
GDP deflator indicator for each country was used. Local currencies value in 2020 were then converted 
to USD using average exchange rates for 2020. Data harmonization resulted in all values being 
expressed in USD 2020 (Table 7). 

Table 7: Descriptive statistics of key variables 

Statistical Measure 
Total Costs 
(USD 2020) 

Establishment 
Costs (USD 2020) 

Maintenance 
Costs (USD 2020) 

Benefits 
(USD 2020) 

Mean 1,081 832 345 2,799 
Median 372 192 31 780 
Minimum 0.02 0 0 0 
Maximum 24,572 21,272 6,642 44,025 
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Analytical approach 

Firstly, we estimated the gains and losses from changes in the areas of agroforestry systems between 
2000 and 2020. This was done using the values of ecosystem services from different agroforestry 
systems as shown in Annex 4. Secondly, we modelled the costs and benefits of expanding agroforestry 
systems during the period of 2020 to 2050 under 2%, 5%, and 10% agroforestry expansion scenarios.  
The following parameters were considered in the modelling (Table 8). Three types of agroforestry 
systems—agrisilviculture, silvipasture, and agrisilvipasture—were evaluated under the same discount 
rate of 10% and a survival rate of planted trees at 60%. Each system is analyzed over a 30-year period, 
from 2020 to 2050, with the growth of each practice staged in a staggered manner: during the first 
five years, they are at 20% of their full potential in terms of ecosystem service delivery, during the 
second five years they rise to 80%, and for the remaining 20 years they operate at 100% potential. 

Table 8: Parameters used in the economic modelling of agroforestry expansion 

Parameters 
Agroforestry in 

croplands 
(Agrisilviculture) 

Agroforestry in 
pastures 

(Silvipasture) 

Agroforestry in 
croplands+pastures 

(Agrisilvipasture) 

Discount rate 10% 10% 10% 

Survival rate 60% 60% 60% 

Time horizon 
30 years 

2020-2050 

30 years 

2020-2050 

30 years 

2020-2050 

Staggered entrance 
into full potential 

First 5 years (20% of the full potential),  
2nd 5 years (80% of the potential),  

remaining 20 years (100% of the potential) 
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4 Results 

4.1 Accuracy assessment for woody cover and agroforestry mapping 

Woody cover mapping 

The Random Forest model was trained using variables of the year 2020 where most of the eight 
predicting variables appeared to be very important for the tree cover modelling with an importance 
higher than 50%. The relationships between the observed and predicted tree cover showed a good 
prediction performance with R² = 0.85, RRMSE = 46.7% using 1595 testing samples which correspond 
to 20% of the whole dataset (Figure 5). 

Figure 5: Relationships between observed and predicted tree cover using the Random Forest 
regression model 

 

Agroforestry mapping 

Agroforestry maps were validated using the ground reference data collected from Kenya and Senegal. 
The total reference data contained 3228 samples but due to small distance between them compared 
to the 1km resolution of the agroforestry map, only 810 samples were considered in this validation 
process (Figure 6). The overall accuracy of the mapping was about 0.64 with a kappa coefficient of 
0.33.  This indicates a fair agreement between the ground and predicted data as defined by Cohen 
(1960). However, no prediction was made for the agrisilviculture class at the scale of the validation 
dataset. This can be explained to the weak spatial distribution of this class and the small number of 
reference samples due its difficulty to be defined on the field. Some confusion was made between 
silvipasture and agrisilvipasture classes during the mapping. This could be related to the crop layer by 
(ESA, 2017) which did not capture small size and isolated croplands across the continent.   
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Figure 6: Confusion matrix between reference and predicted agroforestry classes 

 

4.2 Variation of past and current African agroforestry systems 

The three main agroforestry classes (silvipasture, agrisilvipasture and agrisilviculture) were mapped 
across the whole African continent for the years 2000, 2010 and 2020 (Figure 7). The results show a 
spatial predominance of silviculture, followed by agrisilvipasture and lastly, agrisilviculture across all 
years (Table 9). Notably, silvipasture coverage consistently decreased over the three periods, from 
40.62% in 2000 to 38.98% in 2010, and 37.78% in 2020. In contrast, agrisilviculture and agrisilvipasture 
areas showed slight variation, maintaining around 0.04% and 9.70% coverage, respectively. These 
trends were further underscored by the annual rate of change (Table 9), which showed a decrease 
across agrisilviculture (-0.52%), silvipasture (-0.35%), and agrisilvipasture (-0.15%). 
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Figure 7: Map of the three main agroforestry classes in Africa in (a) 2000, (b) 2010 and (c) 
2020 

 
 

Table 9: Agroforestry area statistics and annual rate of change between 2000 and 2020 

Agroforestry 
Class 

2000 2010 
2020 Annual Rate of 

Change 

 sq. km %  sq. km %  sq. km %  sq. km % 

Non-Agroforestry 16,581,306 49.47 17,186,075 51.28 17,637,731 52.62 52,821.25 0.32 
Agrisilviculture 12,832 0.04 12,069 0.04 11,488 0.03 -67.2 -0.52 
Silvipasture 13,613,790 40.62 13,066,419 38.98 12,661,263 37.78 -47,626.35 -0.35 
Agrisilvipasture 3,309,331 9.87 3,252,696 9.70 3,206,777 9.57 -5127.7 -0.15 

 

4.3 Change variation into agroforestry systems 

The evolution of agroforestry areas between 2000-2020 is presented in the change map in Figure 8 
(see Annex 3 for changes between 2020-2030 and 2030-2040). Our results reveal limited changes in 
agroforestry (see non-agroforestry layer), indicating a small change in land use during the last two 
decades. Among the changes observed, the loss of agroforestry areas outweighed its gains, as 
highlighted in Figure 8 and Table 10. Notable losses were concentrated in the Sahara, Horn of Africa, 
and southwestern Namibia and South Africa. In contrast, gains in agroforestry, particularly 
agrisilviculture, were observed along the southern boundary of the Sahara Desert. 

Silvipasture emerged as the most dynamic land-use category, experiencing the highest turnover in 
both losses and gains. Overall, these maps indicate a decrease in agroforestry areas by 2020 compared 
to 2000, with pronounced declines near the Sahara and the northern Sahelian belt.  
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Figure 8: Change map of agroforestry between 2000 – 2020   

 

Table 10: Matrix of land use changes among agroforestry classes 

Agroforestry Class Non-Agroforestry Agrisilviculture Silvipasture Agrisilvipasture 
Non-Agroforestry 0.00 0.06 14.54 1.32 
Agrisilviculture 0.10 0.00 0.01 0.01 
Silvipasture 53.95 0.00 0.00 12.21 
Agrisilvipasture 6.09 0.00 11.73 0.00 
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4.4 Performance of the Cellular Automata projection model 

The performance of the Cellular Automata projection model was assessed by comparing the predicted 
and the reference map of 2020. Table 11 presents validation statistics and the predicted and observed 
agroforestry maps of the year 2020. The predicted map of 2020 was obtained using the CA model 
based on maps of 2000 and 2010 along with the predicting spatial variables and applying the ANN-
MLP for the transition potential model (validation kappa of 0.91). 

The final dataset contained a total of 33,517,259 pixels where 32,918,935 pixels were correctly 
classified, giving an overall accuracy of 94.88%, and an overall kappa of 0.91. The non-agroforestry 
class showed the highest misclassification with -0.89% followed by the Silvipasture class with 0.74% 
and the Agrisilviculture class with 0.14%. Negligible errors were observed for the Agrisilviculture class 
with 0.002%. of pixel being misclassified. 

Table 11: Statistics of reference and projected agroforestry classification pixels for 2020 

Agroforestry 
Class 

Reference Projected % of 
Correctne

ss 

Kappa Value 

 sq. km %  sq. km % 
ANN-
MLP 

CA-
Validation 

Non-
Agroforestry 17,637,731 52.62 

17,338,56
9 

51.7
3 

94.88 0.91 0.91 

Agrisilviculture 11,488 0.03 12,053 0.04 

Silvipasture 12,661,263 37.78 
12,913,98

4 
38.5

3 

Agrisilvipasture 3,206,777 9.57 3,252,653 9.70 

 

4.5 Agroforestry projection  

Agroforestry areas of the year 2030, 2040 and 2050 were projected using CA models based on maps 
of corresponding periods along with predicting spatial variables and applying the ANN-MLP for the 
transition probability modelling. Two date maps from 2010-2020, 2020-2030 and 2030-2040 were 
used to project the agroforestry areas for the years 2030, 2040 and 2050, respectively. The area 
statistics with kappa validation of the transition model are presented in Table 12 while the projection 
maps of the year 2030, 2040 and 2050 are presented in Figure 9 and changes in Figure 10. Silvipasture 
areas exhibited a continuous decline across the three forecast years, decreasing from 36.32% to 
35.61% and subsequently to 35.10%. Correspondingly, non-agroforestry areas expanded, accounting 
for 54.08%, 54.79%, and 55.29% across the same timeframes. Meanwhile, agrisilviculture and 
agrisilvipasture areas remained relatively stable, constituting approximately 0.03% and 9.57%, 
respectively, throughout the projection period. 
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Table 12: Statistics of projected agroforestry areas for 2030, 2040 and 2050 

Agroforestry 
Class 

2030 2040 2050 

 sq. km % 
kapp

a  sq. km % 
kapp

a  sq. km % kappa 

Non-
Agroforestry 

18127185 54.08 0.84 1836348
0 

54.79 0.90 1853312
5 

55.2
9 

0.99 

Agrisilvi-
culture 

11429 0.03 11429 0.03 11426 0.03 

Silvipasture 
12171875 36.32 1193558

5 
35.61 1176594

4 
35.1

0 

Agrisilvi-
pasture 

3206770 9.57 3206765 9.57 3206764 9.57 

Total 33517259 100.00 
3351725

9 
100.0

0 
3351725

9 
100.
00 

Figure 9: Projected Agroforestry areas in Africa for the year a) 2030, b) 2040 and c) 2050. 

 

 

An overall decrease was observed between 2000 and 2020 for all tree cover categories in agroforestry 
areas. This decrease was particularly higher between 2000 and 2010 for the categories >20% and >30% 
with the silvipasture and agrisilvipasture classes. For the same period 2000-2010, a slight increase was 
noted for tree cover above 10% with the silvipasture class. 

For the three scenarios, a slight decrease was observed by 2050 for the agrisilviculture class 
considering the tree cover categories >10% and >30%. No variation was noted for >20% category for 
the same agroforestry class. This indicates that, despite the restoration effort that could be made 
under scenario 3, the agrisilviculture class will no longer develop. The same behaviour was observed 
for the silvipasture class under the baseline Scenario 1 with the categories >20% and >30% (Figure 10). 

In general, ambitious restoration effort adopted under Scenario 2 or Scenario 3 could allow significant 
improvement of tree cover in agrisilvipasture and silvipasture areas by 2050. 
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Figure 10: Tree cover increasing scenarios in African agroforestry areas by 2050 

 

4.6 Investment costs and returns from restoration scenarios  

Figure 11 and Figure 12 show the financial impacts of agroforestry expansion and loss across 
subregions in Africa. North Africa achieved the biggest positive gains in terms of the expansion of 
agroforestry in pastoral systems (about 2.8 billion USD) and also recorded the highest level of net 
losses which equaled -12 billion USD. West Africa was the only sub-region with a net gain. Overall, at 
the continental level, net economic losses due to decline in the extent of agroforestry systems 
between 2000 and 2020 made up an equivalent of 14 billion USD. 

Figure 11: Agroforestry expansion and loss by subregions in Africa during 2000-2020 
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Figure 12: Investment costs and returns from annual 2% agroforestry increase 

 
 

Economic viability varies substantially depending on the scale of expansion. For a modest annual 
increase of 2%, the total investment cost of 38.8 billion USD generates a return of 55.7 billion USD, 
with high-return regions concentrated in Northern and Eastern Africa. However, in parts of Central 
Africa, which exhibit lower BCRs, agroforestry expansion faces challenges in terms of economic 
viability (Figure 12). Further scenarios of 5% and 10% expansion of agroforestry systems across the 
continent reinforce these trends (Figures 13 and 14). Under these scenarios, expansion of agroforestry 
systems still provides positive economic returns in most areas across northern Africa, the northern 
part of the Sahel region, horn of Africa, and southern Africa, while investments into expansion of 
agroforestry systems do not yield positive returns in southern Sahel, central Africa, and parts of 
Eastern Africa. These findings show that careful targeting and prioritization of efforts is needed 
towards those areas which exhibit higher returns from agroforestry expansion.   
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Figure 13: Investment costs and economic viability of agroforestry expansion across Africa (5% 
scenario) 

 
 

Figure 14: Investment costs and economic viability of agroforestry expansion across Africa (10% 
scenario) 
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5 Discussion 

5.1 Suited approach for mapping agroforestry across Africa 

The overlaying of different raster layers of trees, livestock and crops extent enabled us to map the 
main agroforestry systems across the African continent as defined by Nair (1993a). A random forest 
model was trained and applied on reflectance bands from Hansen (2013) to obtain tree cover maps 
of the year 2000, 2010 and 2020. Most predictor variables significantly contributed to tree cover 
mapping accuracy, except for NIR and the MBI, each under 50% importance. The NDII proved the most 
critical variable, likely due to its effectiveness in tracking vegetation moisture—a key factor for Africa’s 
largely grazed landscapes (Wilson and Norman, 2018). While the model’s performance was fair (R² = 
0.85; RRMSE = 46.7%), it successfully illustrated spatio-temporal changes in tree cover, aligning with 
earlier work (Hansen, 2013). 

The spatiotemporal change analysis of the African agroforestry areas showed decreases between 
2000 and 2020 at annual rate of change of -0.52% (agrisilviculture), -0.35% (silvipasture) and -0.15% 
(agrisilvipasture). Simulations toward the year 2030, 2040 and 2050 with the MOLUSCE plugin into the 
QGIS software predicted continued declines in agroforestry areas under the business-as-usual trends. 
This decrease in agroforestry areas is mainly related to the reduction of tree cover in agricultural lands 
as observed by Zomer et al. (2016) who found that the largest decreases in per hectare biomass carbon 
were found in countries in West and Central Africa from 2000 to 2010. 

The decline in agroforestry is shown in studies for other world regions. India experienced a severe 
decline in large agroforestry trees, with approximately 11% of large trees disappearing by 2018, 
attributed to changing cultivation practices that view trees as detrimental to crop yields (Brandt et al., 
2024). In Europe, agroforestry areas decreased by 47% from 2009 to 2018, primarily due to reduced 
outdoor grazing and livestock numbers (Rubio-Delgado et al., 2023).  Declining resin productivity and 
rising timber prices are prompting farmers to cut mature agroforests in Sumatra, Indonesia, although 
tree planting activities continue. This suggests a shift in land use driven by economic factors (Kusters 
et al., 2008). 

As agroforestry systems are increasingly recognized for their contributions to food security, 
biodiversity conservation, and climate change mitigation, the contraction of these systems may signal 
missed opportunities for sustainable development. Further, the comparison with global trends shows 
that Africa's challenges mirror those observed elsewhere, driven by shifts in agricultural practices and 
grazing intensity. 

Future projections to 2050 suggest a continuation of these trends unless targeted interventions are 
implemented. The projected increase in non-agroforestry areas, combined with the stabilization of 
agrisilviculture and agrisilvipasture, underscores the need for policies that actively promote 
agroforestry expansion, particularly in regions where economic and ecological benefits are 
substantial. 

 

5.2 Economic valuation of agroforestry 

The findings underscore the significant variability in economic outcomes associated with agroforestry 
expansion across Africa, emphasizing the need for regionally tailored strategies to optimize 
investment returns. 

Agroforestry landscapes in Africa are very heterogenous. Agroforestry expansion is very profitable in 
many parts of Africa but not in each and every context. Current levels of agroforestry adoption in 
Africa can be significantly expanded, especially in cropping systems. Nevertheless, there are some 
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economic, institutional and policy barriers that are currently hindering more rapid and wider adoption 
of agroforestry practices. 

Compared to other forms of technological innovations, such as new crop varieties or adoption of 
chemical fertilizers, agroforestry innovations are more complex, requiring the management of at least 
two species (crops and trees) and their interactions (Baumüller et al., 2020; Nair, 1993). This calls for 
supporting agroforestry expansion through targeted training and extension. National extension agencies 
need to be helped by non-governmental organizations in extending agroforestry-related training 
programs to farmers and pastoralists. More investments are needed to be directed to research and 
development for finetuning the existing agroforestry solutions to specific conditions of various settings 
across Africa (Bartlett, 2021). More attention needs to be given to socio-economic monitoring and 
assessments of agroforestry adoption and its ensuing impacts on rural livelihoods and sustainable 
development dimensions. 

A major challenge for farmers wishing to adopt agroforestry practices is that it requires longer 
planning horizons (Mbow et al., 2020). When fully matured, agroforestry systems will allow farmers 
to save on fertilizer costs by increasing soil nitrogen and soil organic matter through improved carbon 
sequestration (Bayala et al., 2018). The profits from adopting agroforestry will reach their full amounts 
only after trees have matured – which takes considerable time. In some cases, it will take up to 10 
years to reach break-even relative to initial investments (Mirzabaev et al., 2021). De Guisti et al. (2019) 
show that agroforestry was not considered as more profitable than cropping systems without trees in 
Kenya, however, farmers still invested in agroforestry as a source of fuelwood and a way of saving to 
deal with future risks. Fuelwood sourcing was also a major factor for agroforestry adoption in Malawi 
(Toth et al., 2019). This situation calls for public and development partner investments because the 
public goods values of ecosystem services provided by agroforestry practices will not attract private 
investments at sufficient scale unless there are further incentives established, such as through carbon 
farming and trading systems (Mirzabaev et al., 2021). 

To promote agroforestry effectively, land use regulations should be fine-tuned with an agroforestry-
oriented perspective. This does not necessarily require the creation of new government agencies 
dedicated solely to agroforestry. Instead, it calls for improved coordination mechanisms among 
existing government institutions, particularly those in the agricultural and forestry sectors, to facilitate 
and streamline agroforestry development (Bartlett, 2021; Baumüller et al., 2020). 

A lack of secure land tenure is a significant barrier to the expansion of agroforestry practices (Olsson 
et al., 2019). This challenge is exacerbated in regions where government regulations prohibit the 
cutting of trees, even on privately owned agroforestry plantations, creating disincentives for 
landowners to invest in such systems (Baumüller et al., 2020). Conversely, investments in agroforestry 
can enhance land tenure security, particularly for female land users (Benjamin et al., 2021). For 
example, in Malawi, female land users in male-headed households were found to be more likely to 
invest in agroforestry practices, such as planting trees, compared to their counterparts in female-
headed households. This behavior reflects a strategy to assert and secure their access rights to land in 
relation to their husbands' rights (Benjamin et al., 2021). 

The expansion of agroforestry in Africa can be accompanied by developing modern value webs for 
agroforestry products as part of African strategies for bioeconomy development (Callo-Concha et al., 
2020; Dietz et al., 2018; Oguntuase and Adu, 2021). Increasing use of agroforestry biomass for 
bioeconomy development should be accompanied by accelerated innovations increasing the 
productivity of agroforestry systems in order to avoid negative impacts on food security and 
sustainable natural resource use (von Braun, 2018).  
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5.3 Limitations 

1. While high-resolution datasets were used, the uniform 1 km resolution may not fully capture fine-
scale variations in agroforestry systems, especially in heterogeneous landscapes. This could affect 
the precision of mapping smaller-scale agroforestry practices. 

2. Ground reference data were collected from only four countries (Cameroon, Kenya, Senegal, and 
Zambia), which may not fully represent the diversity of agroforestry systems across the entire 
African continent. 

3. Data layers for different variables (e.g., tree cover, livestock density, and cropland) are derived 
from different time periods and sources. This could lead to mismatches and inaccuracies in 
temporal analyses. 

4. The economic valuation relies on benefit transfer approaches using available datasets, with 
currently unavoidable uncertainty in terms of capturing costs and benefits for those locations for 
which no data is available for model calibration.  

5. The CA projection model assumes uniform transition probabilities across regions, potentially 
oversimplifying complex socio-economic and environmental drivers of agroforestry dynamics. 
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6 Conclusion 

Agroforestry systems represent a large share of land use in Africa. They play a crucial role in 
sustainable development, offering a wide array of direct and indirect benefits, from food security and 
biodiversity preservation to enhanced climate resilience. While we identify potentials of agroforestry 
growth, our findings reveal a decline in agroforestry areas over recent decades, leading to net losses 
that were equivalent to 14 billion US dollars over the period of 2000 to 2020. Projections indicate that 
this trend may continue, with agroforestry areas expected to decline further, unless policy action is 
taken for safeguarding and restoring agroforestry systems. 

The economic benefits of agroforestry underscore its value as a high-return investment for Africa. 
Regions with robust agroforestry systems demonstrate increased agricultural productivity, diversified 
income sources, and improved resilience against climate variability. These economic returns, 
however, are spatially variable. For agroforestry to meet its full potential, strategic investments and 
supportive policies must be prioritized, focusing on enhancing adoption in profitable areas and 
overcoming institutional and economic barriers. 

In many rural African settings, institutional factors such as land tenure insecurity, lack of agroforestry 
research and extension support, and lack of access to long-term funding serve as major barriers for 
agroforestry expansion. To provide an enabling environment for the development of agroforestry 
systems in Africa, national policy needs to revise land use regulations (including for communal lands) 
as well as the institutional frameworks through an agroforestry lens. Development partners can play 
a critical role in promoting agroforestry in Africa by capacity building and strengthening, expanding 
access to finance, as well as supporting research for developing and refining agroforestry options. 

Ultimately, these results highlight the critical need for agroforestry to be integral to Africa's 
environmental and economic strategies. Through a tailored approach to policy and investment, 
agroforestry can drive substantial economic, social, and ecological gains, supporting Africa's 
sustainable development trajectory in the face of climate challenges. 
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Annex 

Annex 1: Environmental variables  

Figure A1: Environmental variables used for clustering the African continent 

 
 

Annex 2: Final classification maps and categories 

Figure A2: Land use and land cover maps after reclassification using original datasets  
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Table A1: Land use and land cover classes after reclassification using original datasets 

NB_LAB Rclass 
Rclass_
code LCCOwnLabel 

190 Builtup area 1 Urban areas 
10 Cropland 2 Cropland, rainfed 
20 Cropland 2 Cropland, irrigated or post-flooding 

40 Cropland 2 
Mosaic natural vegetation (tree, shrub, herbaceous cover) 
(>50%) / cropland (<50%)  

50 Forest 3 Tree cover, broadleaved, evergreen, closed to open (>15%) 
60 Forest 3 Tree cover, broadleaved, deciduous, closed to open (>15%) 

61 Forest 3 
Tree cover, broadleaved, deciduous, closed (>40%) 
 

62 Forest 3 Tree cover, broadleaved, deciduous, open (15-40%) 
70 Forest 3 Tree cover, needleleaved, evergreen, closed to open (>15%) 
71 Forest 3 Tree cover, needleleaved, evergreen, closed (>40%) 
72 Forest 3 Tree cover, needleleaved, evergreen, open (15-40%) 
80 Forest 3 Tree cover, needleleaved, deciduous, closed to open (>15%) 
81 Forest 3 Tree cover, needleleaved, deciduous, closed (>40%) 
82 Forest 3 Tree cover, needleleaved, deciduous, open (15-40%) 
90 Forest 3 Tree cover, mixed leaf type (broadleaved and needleleaved) 

160 Forest 3 Tree cover, flooded, fresh or brakish water 
170 Forest 3 Tree cover, flooded, saline water 

11 Grassland 4 Herbaceous cover 
110 Grassland 4 Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 
130 Grassland 4 Grassland 
150 Grassland 4 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 
153 Grassland 4 Sparse herbaceous cover (<15%) 
180 Grassland 4 Shrub or herbaceous cover, flooded, fresh/saline/brakish water 
200 Grassland 4 Bare areas 
201 Grassland 4 Consolidated bare areas 
202 Grassland 4 Unconsolidated bare areas 

30 Shrubland 4 
Mosaic cropland (>50%) / natural vegetation (tree, shrub, 
herbaceous cover) (<50%) 

12 Shrubland 5 Tree or shrub cover 
100 Shrubland 5 Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 
120 Shrubland 5 Shrubland 
121 Shrubland 5 Shrubland evergreen 
122 Shrubland 5 Shrubland deciduous 
151 Shrubland 5 Sparse tree (<15%) 
152 Shrubland 5 Sparse shrub (<15%) 
210 Water 6 Water bodies 
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Annex 3: Agroforestry in 2030, 2040, 2050 

Figure A3: Map of changed areas for the study periods a) 2030, b) 2040 and c) 2050
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Annex 4: Total economic values of agroforestry and other land uses 

Table A2: Total economic values of agroforestry and other land uses and covers in Africa (USD 
per hectare, values for 2020) 
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