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Abstract 

 

Globally, agricultural production systems need to become more sustainable to meet 
future food demand without overexploiting natural resources. Northwestern India, a 
region with highly intensive agricultural production, is facing a rapid decline in 
groundwater levels due to excessive water use for irrigation. This dissertation 
investigates laser-assisted land levelling technology (LLL) that reduces water use for 
irrigation and has been adopted in northwestern India to manage groundwater 
depletion. The study examines three interrelated research questions: 1) Why are 
farmers adopting LLL technology, 2) How did farmers access this technology, and 3) 
What impact does LLL technology adoption have on groundwater levels? The study uses 
primary data from 1661 households in 84 villages to determine why and how farmers 
adopt the technology. Further, combining village-level survey data from 291 villages 
with monthly observational well data and climate data for 21 years, the study also 
estimates the effect of LLL adoption on groundwater in northwestern India.  

LLL is popular and widely adopted in northwestern India, with 93 % of farmers 
aware of the technology and 84% adopting it in their farms. Analysis based on qualitative 
interviews and estimation based on regressions and causal machine learning shows that 
the widespread adoption of LLL is due to positive perceptions about this technology and 
other co-benefits, such as a marginal increase in yield and preference for levelled fields. 
The findings highlight the need to recognise farmers' perceptions and co-benefits, 
integrate them with benefits designed by researchers, and foster feedback loops and 
knowledge co-creation to promote LLL adoption.  

The emergence of private service providers, an institutional mechanism for 
renting technology, facilitates the adoption of LLL on small plots and among small farm 
owners. Regression analysis shows that the number of service providers is positively 
associated with adoption rates, particularly on smaller plots and farms. Promoting 
individual service providers increases the access of small farm owners to LLL technology 
through flexible on-demand services and competitive rental markets.  

Furthermore, the analysis reveals that LLL adoption slows down the effect of 
groundwater decline in northwestern India. Applying a staggered difference-in-
difference approach, the study shows that the adoption of LLL at the village level has 
reduced the decline in groundwater levels by 3.7 meters in the month succeeding the 
use of technology. However, adopting LLL is not enough to stop or reverse overall 
groundwater decline. Several technological and policy options that could impact the 
behaviour of farmers towards saving water for irrigation in agriculture are discussed. 

This dissertation contributes to understanding the adoption and impact of LLL 
technology for groundwater sustainability in three ways. First, it provides insights into 
designing new dissemination strategies based on farmers' experience. Second, it 
discusses new institutional approaches – individual service providers, for supporting the 
adoption of technology by smallholder farmers. Third, it examines the extent to which 
the adoption of technology at the farm level transforms into system-level effects in 
terms of the actual impact on groundwater savings, reducing the negative externalities 
of groundwater exploitation for agriculture.  



Zusammenfassung 

 
Weltweit müssen die landwirtschaftlichen Produktionssysteme nachhaltiger werden, 
um den künftigen Nahrungsmittelbedarf zu decken, ohne die natürlichen Ressourcen 
übermäßig zu beanspruchen. Der Nordwesten Indiens, eine Region mit sehr intensiver 
landwirtschaftlicher Produktion, ist mit einem rapiden Rückgang des 
Grundwasserspiegels konfrontiert. In dieser Dissertation werden Implikationen der 
Laser-Landnivellierungstechnologie (LLL) untersucht, die den Wasserverbrauch für die 
Bewässerung reduziert und im Nordwesten Indiens eingesetzt wird. Speziell werden drei 
Forschungsfragen adressiert: 1) Warum wenden Landwirte die LLL Technologie an, 2) 
Wie erhalten Landwirte Zugang zu der Technologie, und 3) Welche Auswirkungen hat 
die Technologie auf das Grundwasser? Die Studie verwendet Primärdaten von 1661 
Haushalten aus 84 Dörfern, um herauszufinden, warum und wie die Landwirte die 
Technologie anwenden. Durch die Kombination von Umfragedaten auf Dorfebene aus 
291 Dörfern mit monatlichen Beobachtungsdaten von Brunnen und Klimadaten über 20 
Jahre hinweg schätzt die Studie die Auswirkungen der Einführung von LLL auf das 
Grundwasser im Nordwesten Indiens.  

LLL ist im Nordwesten Indiens weit verbreitet und wird von vielen Landwirten 
angewendet. 93 % der Landwirte kennen die Technologie und 84 % wenden sie in ihren 
Betrieben an. Die Analyse basierend auf qualitativen Interviews und Schätzungen auf 
der Grundlage von Regressionen und Kausalanalyse mit maschinellem Lernen zeigt, dass 
die weit verbreitete Nutzung auf eine positive Wahrnehmung der Technologie sowie 
andere Nebeneffekte wie einer marginalen Ertragssteigerung und einer Präferenz für 
geebnete Felder zurückzuführen ist.  

Das Aufkommen privater Dienstleistungsanbieter, ein institutioneller 
Mechanismus für die Vermietung von Technologie, erleichtert die Einführung von LLL 
bei kleinen Parzellen und Landwirten.  Die Anzahl der Dienstleistungsanbieter korreliert 
positiv mit der Verbreitungsrate, insbesondere bei kleineren Parzellen und Betrieben. 
Die Förderung von Dienstleistungsanbietern verbessert den Zugang durch flexible, 
bedarfsgerechte Dienstleistungen und wettbewerbsintensive Mietmärkte.  

Die Einführung von LLL verlangsamt den Grundwasserrückgang im Nordwesten 
Indiens. Unter Anwendung eines „gestaffelten“ (staggered) Differenzierungsmodells 
zeigt die Studie, dass die Einführung von LLL auf Dorfebene den Rückgang des 
Grundwasserspegels um 3,7 Meter verringert hat. Die Einführung von LLL reicht jedoch 
nicht aus, um den Rückgang des Grundwassers aufzuhalten oder umzukehren. Weitere 
notwendige technologische und politische Maßnahmen werden diskutiert. 

Diese Dissertation trägt in dreierlei Hinsicht zum Verständnis der Verbreitung 
und den Auswirkungen der LLL-Technologie auf die Nachhaltigkeit des Grundwassers 
bei. Erstens liefert sie Einblicke in die Entwicklung neuer Verbreitungsstrategien auf der 
Grundlage der Erfahrungen der Landwirte. Zweitens erörtert sie neue institutionelle 
Ansätze - individuelle Dienstleister - zur Unterstützung der Anwendung von 
Technologien durch Kleinbauern. Drittens wird untersucht, inwieweit sich die 
Einführung der Technologie auf Betriebsebene auf die Systemebene auswirkt, d. h. auf 
die tatsächliche Einsparung von Grundwasser und die Verringerung der negativen 
externen Effekte der Grundwassernutzung durch die Landwirtschaft.  
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Chapter 1 : Introduction   

 

1.1 Motivation and relevance 

 

The Green Revolution increased agricultural productivity and ensured food security in 

developing countries (Evenson & Gollin, 2003; Gollin et al., 2021). In the 1960s, the 

Green Revolution era started with the transfer of agricultural technologies that were 

successful in developed countries to developing countries by the Consortium of 

International Agricultural Research (CGIAR) institutes in collaboration with the National 

Agricultural Research and Education (NARES) system (Pingali, 2012).  The technologies 

promoted during the Green Revolution era were primarily improved high-yielding crop 

varieties responsive to fertilizer and irrigation (Gollin et al., 2021; Pingali, 2012). 

However, over time, due to the Green Revolution, the agricultural production systems 

in developing countries intensified and resulted in negative externalities such as 

biodiversity loss and groundwater depletion, raising questions over sustainability of 

these intensive production systems (Devineni et al., 2022; Kamau et al., 2023; Zabel et 

al., 2019).   

Moreover, the current agricultural production systems are becoming 

increasingly unsustainable due to the increasing demand for food and overexploitation 

of natural resources. The global population is expected to reach 9.7 billion in 2050 and 

about 10.4 billion in the mid-2080s (UN, 2024). At the current population growth rate 

and socio-economic development, global food demand is projected to increase by 35% 

to 56% between 2010 and 2050 (Van Dijk et al., 2021). This increase in food demand 

puts additional pressure on existing natural resources such as groundwater (Boretti & 

Rosa, 2019). In this context, the challenge is to transition towards a more sustainable 

food system, which can meet the future food demand, without overexploiting the 

resources or negatively affecting the environment (Davis et al., 2019).   

The northwestern part of India is characterized by an intensive agricultural 

production system, coupled with an alarming rate of groundwater depletion (Perez et 

al., 2024). The region encompassing the states of Punjab, Haryana, and Western Uttar 

Pradesh is considered an extremely high water depletion region globally (Seo et al., 
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2023). During the Green Revolution, the cropping system in northwestern India shifted 

from low water-intensive crops like millet with mixed farming to high water-intensive 

crops like rice and sugarcane (Bjornlund & Bjornlund, 2024). Unlike traditional rice-

growing regions where rice is grown in wetlands, in northwestern India, rice is grown 

under flooded water through irrigation.  The widespread cultivation of rice-wheat 

cropping systems using flood irrigation has led to a rapid decline in groundwater (Joseph 

et al., 2022; Shekhar et al., 2020). This decline is not only affecting yields, but could result 

in a 68% decline in cropping intensity (multiple cropping in the same plot), threatening 

local livelihoods and food security (Jain et al., 2021a).   

 

 

Figure 1.1: Global depletion of groundwater 

Note: Extent of depletion is consumptive withdrawal of water on average in cm/yr for the period 
1979-2019  
Source: World Resource Institute, Aqueduct project 4.0 (Kuzma et al., 2023).  

 

There are different solutions proposed and experimented in northwestern India 

to mitigate groundwater decline. First, a regulatory solution banning transplanting of 

rice crops before June 10th in Punjab (Punjab Preservation of Sub-soil Act 2009) and 

Haryana (Haryana Prevention of Sub-soil Act 2009). This is to prevent farmers from 

transplanting the rice crop with irrigation water before the onset of the rainy season.   

Though a few earlier studies showed positive effects (Singh, 2009; Tripathi et al., 2016), 

Northwestern 

India 
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recent studies have shown negative long-term effects of the policy on groundwater due 

to ‘rebound effects’; farmers increasing the area under rice and pumping capacity 

resulting in over-extraction of groundwater  (Kishore et al., 2024; Sekhri, 2012). 

Additionally, the late transplanting of rice due to irrigation has reduced the time 

available to prepare the land for wheat crop after rice cultivation, which in-turn has led 

to stubble burning (Kant et al., 2022).  Second, a recently piloted policy intervention on 

incentivizing water saving through payments, the World Bank Project on ‘save water 

make money’ (Pani Bachao Paise Kamao in Hindi), compensates farmers  for reduced 

water use for irrigation. Though the pilot-version of the project has shown a positive 

impact of the incentive schemes on groundwater conservation (Mitra et al., 2023), an 

earlier scaled-up version of a similar project has shown no impact due to lack of access 

to affordable water saving technologies (Fishman et al., 2016).  

Third, crop diversification- diversifying or switching to other crops with lower 

water requirements is a widely promoted solution (Chakraborti et al., 2023; Kamau et 

al., 2023). Despite several efforts to diversify the cropping system, the existing price 

support mechanism (minimum support price) disincentives farmers from switching to 

alternative crops (Chatterjee et al., 2024). Fourth, a promising technology-based 

solution is the direct-seeded rice (DSR), which is still in the early stages of adoption 

(Brown et al., 2021; Mishra et al., 2017). Though field trials have shown positive effects, 

and the government has introduced incentive systems, the DSR technology has not been 

widely adopted due to lack of demand by farmers and limited supply of DSR renting 

services by service providers (Brown et al., 2021).  

In this study, I examine a technology solution- laser land levelling- also called 

laser-assisted precision land levelling (LLL). This technology was invented in the United 

Stated of America (USA) in the 1970s, and later adopted in different parts of the world 

(Figure 1.2).  LLL was subsequently manufactured and disseminated in Italy, Russia, 

Egypt, India, Pakistan, China, Iran, Vietnam, Cambodia, Nepal, and Tajikistan, among 

others (Chen et al., 2022). There is a growing interest in promoting this technology in 

other parts of south-east Asia, especially in Indonesia, Philippines, Myanmar, Sri Lanka, 

Cambodia and Vietnam (CGIAR Research Program on Rice, 2019a, 2019b). LLL was 
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introduced and promoted in northwestern India in 2001 by the CGIAR, Indian Council of 

Agricultural Research (ICAR) institutes and State Agricultural Universities (SAUs) as a 

solution for groundwater depletion in the region (Jat et al., 2006, 2009).  

 
Figure 1.2: Global diffusion of laser land levelling technology 

Note: *The technology was reintroduced to south-east Asian countries in 2019 after the initial 
field trials by the International Rice Research Institute (IRRI) in 2001.  

 

Land levelling is a land preparatory operation before crop sowing to ensure uniform 

water distribution. This is especially important for rice-wheat cropping systems, where 

the water is maintained at a certain depth (Jat et al., 2009; Nguyen-Van-Hung et al., 

2022). Using LLL on the farm results in a smoother surface (± 2cm), reducing the water 

required for irrigation (Figure 1.3).  It’s postulated that the individual water savings from 

the farm would result in aggregate savings in the groundwater (Jat et al., 2006).  

 

 

Figure 1.3: LLL mechanism for saving groundwater 
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1.2 Problem statement and research questions  

 

There are three puzzling questions with respect to the adoption of LLL in northwestern 

India. First, based on the existing literature on the adoption of LLL, the main advantage 

is the technology’s ability to save water for irrigation. However, in northwestern India, 

the cost of electricity for irrigation is either negligible or even free, and the extraction 

cost of water is low. So, are farmers adopting the technology to save groundwater, or 

are there possibly other reasons? Second, the adoption rate of LLL technology is higher 

(~80%) than that of most other resource conservation technologies (D’Souza & Mishra, 

2018; Fuglie & Kascak, 2001). What is unique about LLL compared to other resource 

conservation technologies? Third, LLL is an indivisible technology, i.e. unlike seed or 

fertiliser, the technology cannot be divided based on individual farmer demand (Lu et 

al., 2016). Indivisible technologies are often not rapidly and widely adopted by 

smallholder farmers. 

The existing literature on the adoption of LLL focuses on assessing the factors 

determining the early stages of adoption (Ali et al., 2018; Aryal et al., 2018a, 2020; Pal 

et al., 2022; Sheikh et al., 2022). These studies focus on understanding demand-side 

factors such as farm and farmer characteristics (e.g. farm size, soil fertility, cropping 

system, age, education, gender) or household characteristics (e.g. household size, off-

farm income, access to credit) (Ali et al., 2018; Aryal et al., 2018a, 2020; Pal et al., 2022; 

Sheikh et al., 2022).  However, adoption is a dynamic process that starts before the 

actual decision to use a technology for the first time and continues even after the first 

use of the technology. Understanding the adoption process post-initial hurdles of 

adoption is important in order to address possible adoption constraints effectively 

(Ishtiaque et al., 2024).  

Moreover, studies on the impact of the adoption of LLL focused on impact of 

LLL adoption on water saving and yield at the farm level (Aryal et al., 2018a, 2020; 

Lybbert et al., 2018). However, studies assessing the impact of water-saving 

technologies have shown that the water savings at the farm level may not translate into 

meaningful reductions at groundwater or aquifer level (Fishman et al., 2023; Joseph et 
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al., 2022; Pfeiffer & Lin, 2014). So, has LLL technology really resulted in saving of 

groundwater at scale? To address these knowledge gaps in the literature, I have phrased 

three research questions, which are structured as three separate chapters of this 

dissertation.  

1. Why are farmers adopting LLL technology? 

2. How were farmers able to access the technology (indivisible nature)?   

3. What is the effect of the adoption of LLL on groundwater levels? 

Chapter two focuses on why farmers are adopting LLL technology, specifically at the 

later stage of adoption, after overcoming the initial hurdles of knowledge and 

information (Roger, 2003). It assesses the farmers’ perception regarding the benefits 

designed by the technology developers, such as irrigation water saving and yield, to 

understand how these perceptions influence farmers' decision to continue using the 

technology. Furthermore, the exploration extends beyond the binary notion of 

adoption, as the technology is adopted at different frequencies/intervals over time. 

Understanding the factors motivating farmers to continue adopting technology could 

help in designing similar technologies and policies for promoting sustainable agricultural 

intensification. 

Chapter three discusses the institutional mechanism for renting LLL, which 

made the technology accessible to farmers. The analysis explores the relationship 

between the adoption of LLL and the number of service providers the farmer has access 

to. The study quantifies the relationship between land size and accessibility of 

technology by interacting the number of service providers with the plot and farm size. 

This study helps in understanding supply-side factors, particularly private service 

providers, for renting LLL in the adoption of technology by farmers.  

Chapter four estimates the impact of LLL adoption on groundwater levels. 

Here, adoption is evaluated at the village level. Technology diffusion in the region 

occurred over a period of 21 years in a staggered manner. This staggered diffusion is 

exploited as an identification strategy to estimate the impact. Since 100% of the villages 

in the region have adopted the technology over time, the analysis provides an 
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opportunity to measure the technology impact at its full adoption potential and to 

compare effects with those of other policy alternatives.  

Overall, this work focuses on an in-depth analysis of technology that could help 

solve groundwater sustainability issues. The three research questions addressed provide 

a holistic understanding of the technology and help designing policies and strategies for 

dissemination of LLL technology in other regions of India and beyond. The study also 

provides lessons for developing other resource conservation technologies.   

 
1.3 Study area and data collection 

 

1.3.1 Study area context 

We collected data from three states in the northwestern region of India: Punjab, 

Haryana, and Western Uttar Pradesh (Figure 1.4). The region is part of the Indo-Gangetic 

deltaic plains, characterised by multiple rivers (Ganges, Yamuna, Sutlej, Chenab), alluvial 

soil deposited by the river under zone 5 and zone 6 of agro-climatic zone: Upper-

Gangetic plains and Trans-Gangetic plains. The climate is semiarid, with temperatures 

ranging from 70 C to 420 C and average rainfall between 70 cm to 125 cm. The main crops 

cultivated in the region are rice, wheat, sugarcane, cotton and maize. Private tube wells 

and canals are the main sources of irrigation.  

 

1.3.2 Data collection 

In this section, I provide a summary of the different types of data collected and my 

contribution in this process. My study is associated with two projects of the 

International Maize and Wheat Improvement Center (CIMMYT) namely; Project 1. 

Farmer Adoption and Impacts of Resource Conservation Technologies (Zero Tillage and 

Laser Leveler) in Punjab funded by the Standing Panel on Impact Assessment (SPIA), 

Project 2. Farmer Adoption and Impacts of Resource Conservation Technologies in 

Western Uttar Pradesh funded by the Indian Council of Agricultural Research. In addition 

to these projects, I conducted my own survey (Project 3) using my PhD funding support 

from Arbeitsgemeinschaft Tropische und Subtropische Agrarforschung (ATSAF) e.V.  



 

8 

 

 

Figure 1.4: Study area visualizing groundwater depletion and timeline of the surveys 

Note: Extent of depletion is consumptive withdrawal of water on average in cm/yr for the period 1979-2019  
Source: World Resource Institute, Aqueduct project 4.0 (Kuzma et al., 2023).  
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For my PhD, I was involved in three surveys associated with the three projects 

mentioned above: first in Punjab, second in western Uttar Pradesh and third in Haryana. The 

details of the timeline and the duration of the survey are provided in Figure 1.4.  

The first survey was carried out in four districts (Ludhiana, Fatehgarh, Patiala and 

Sangrur) in Punjab state associated with Project 1. Survey 1 had four components: qualitative 

interviews, a quantitative household survey, measuring irrigation water discharge by pumps 

in a sub-sample, and a village-level survey. I conducted eight qualitative interviews with 

farmers and LLL service providers. These interviews were explorative in nature, and the 

objective was to understand the prevailing cropping practices, groundwater use, and 

technology adoption mechanism. A verbal consent was obtained from all respondents before 

the interview. Dr. Vijesh V Krishna received ethical clearance for this study from the Institute 

Review Committee (IRB) of CIMMYT. I transcribed and translated the recorded interviews and 

used the data for analysis in Chapter two.  

The questionnaire for the household survey was designed by Dr. Vijesh V Krishna, and 

I contributed to designing the section of the questionnaire on LLL. After the qualitative 

interviews, the household survey questionnaire was finalised, and a piloting of the 

questionnaire was done in one of the non-sample villages. The finalized questionnaire was 

then coded in Open Data Kit (ODK), and tablets were used for the interviews. Twenty 

enumerators from the region who could speak Punjabi, along with two supervisors were hired 

for the survey using a survey agency, SurveyJena. I was involved in enumerator training and 

monitoring during the survey.  

In the household survey, data on the household, plot/farm characteristics, adoption 

of LLL technology (duration, frequency, share of cultivated area) and many other details were 

collected. The sampling frame of the survey was based on a household survey conducted by 

CIMMYT in 2018 (See Keil et al. 2019). I calculated the power of sample size based on the 

decided sample.  In addition to the household survey, a village-level survey was conducted in 

52 sample villages of the household survey and 70 additional villages in four other districts of 

Punjab.  

The second survey, associated with Project 2, was done in four districts (Baghpat, 

Shamli, Muzaffarnagar, Muzaffarnagar, and Saharanpur) in western Uttar Pradesh. The 

ethical clearance for this survey was submitted to IRB of CIMMYT through Dr. Vijesh V Krishna. 
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Survey 2 had six components: qualitative interviews, a village-level census, a household 

survey, measuring irrigation water discharge by pumps in a sub-sample, a service provider 

survey and a village-level survey. For the qualitative part, I interviewed eight farmers and 

service providers. For the household survey, I conducted the selection of households from 

the village census list, re-designing the questionnaire based on the questionnaire from Survey 

1. The survey tool was designed by me in ODK and surveyed using tablets. We hired another 

20 enumerators through a survey agency who could speak Hindi from the region. Further 

details of the sampling procedure and survey are given in chapter three.  

The village-level survey was carried out with three key informants in each village and 

a survey of laser land leveller service providers (1-2 per village or in the vicinity of the sampled 

village). The questionnaire was developed and programmed in ODK, and three enumerators 

did the survey. I was directly involved in monitoring the enumerators in Bahpat and Shamli 

districts and visited one-third of the villages in the village-level survey. Additionally, I also 

visited two villages in western Uttar Pradesh and collected water pump velocity data using an 

ultra-sonic flow meter and volumetric methods.  

There were a few major challenges in Surveys 1 and 2, which had some implications 

for the data collected.  First, the survey period coincided with the farmer's protest in the 

region (Jodhka, 2021). This led to severe trust and suspicion among farmers of anyone visiting 

the village for the survey. Additionally, the data on water, horsepower (hp) of the irrigation 

pump used, and stubble burning are of sensitive nature since there are regulations that can 

mean some of the farmers’ practices are actually illegal (Krishna & Mkondiwa, 2023).  These 

issues were known to some extent before the survey, but after the experience in Survey 1, 

additional efforts such as to build trust among the community by doing three rounds of visits 

were done in Survey 2. In the first round, we visited the village head and collected basic details 

of the village. The second visit involved a focus group discussion and a census of the 

households in the village. During the third visit, we surveyed the sampled households.  

The third survey (Survey 3) was a village-level survey in Haryana funded through 

Project 3. I obtained the ethical clearance for the survey from the Center for Development 

Research (ZEF). We surveyed 137 villages from six districts in Haryana. Chapter four mentions 

the details of the sampling and information collected. For chapter four, we combined the 

village-level data collected from survey 1 and survey 2, making the total sample size 291 
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villages. I also collected secondary data on the monthly groundwater levels from the Central 

Groundwater Board (CGWB) for the period from 2000 to 2021. In addition, I also extracted 

monthly weather (rainfall) from the Climate Hazards Center, University of California Santa 

Barbara- Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) (CHIRPS, 

n.d.).  

 

1.4 Dissertation outline 

 

The dissertation is further structured into five chapters. In Chapter two, we examine how the 

benefits designed by the technology developers affect adoption decisions and how the 

perceived benefits play a role in adoption in Punjab, India. Chapter three focuses on how LLL 

technology was widely adopted in northwestern India and specifically probes the role of 

private service providers. Chapter four is on the impact of the adoption of LLL on groundwater 

levels in northwestern India. Chapter five provides the overall conclusion and discusses policy 

implications and limitations of the study. 
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Chapter 2 :  Perceived and designed benefits of resource conservation technologies: 

insights from adoption of laser land levellers in India1  

 

Abstract  

Farmers often adopt resource conservation technologies for different reasons, 
including profitability but also other benefits around social, psychological, and behavioral 
norms. During initial product development, some of these benefits may have been explicitly 
targeted, while other benefits may not have been initially targeted but can nevertheless, have 
strong influence on the question of whether farmers adopt a technology or not. In this paper, 
we analyze different benefits that can explain the adoption of laser land levelling (LLL), a 
resource conservation technology widely adopted in northwestern India. We use primary 
data from 1021 households randomly selected from 52 villages in Punjab, northwestern India. 
Using an embedded mixed approach employing qualitative interviews and machine learning 
causal forests, we aim to better understand and estimate different benefits of LLL adoption. 
Unlike previous studies that looked at one-time binary adoption decisions, we also consider 
differential effects depending on the frequency of technology adoption. The study reveals 
that LLL impacts yield increase and water savings less than initially thought. However, farmers' 
favorable perceptions, along with factors like electricity availability, compatibility with other 
technologies, and its aesthetic appeal, have led to broader adoption of the technology. The 
implications of the study findings for technology development, use and dissemination are 
discussed.   
 

Keywords: mixed method, embedded QUAN(qual) approach, frequency of use, machine 
learning  causal forest 
JEL codes: N5, O13, Q15, Q25

                                                      
1 This is a joint paper with Martin C. Parlasca. A previous version was presented at an organized 

symposium titled “Technology and policies for groundwater management in South Asia”, at the International 
Conference of Agricultural Economists (ICAE), New Delhi, India on August 3, 2024.  

Subash Surendran-Padmaja developed the research idea, collected and analyzed the data, and wrote 
the manuscript with support from Martin C. Parlasca. The coding in the software package R was assisted by 
Maxwell Mkondiwa. 
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2.1 Introduction 

  

In a linear technology transfer system, technologies are developed and transferred to 

farmers with the intention of offering benefits such as increasing yield, reducing cost, or 

improving net income (Ogundari & Bolarinwa, 2018). Among farmers, profitability is 

often the key factor driving adoption decisions (Michler et al., 2019; Wang et al., 2023). 

This is one reason resource conservation technologies are less frequently adopted ( 

D’Souza & Mishra, 2018; Fuglie & Kascak, 2001). Surprisingly, LLL, a resource 

conservation technology designed to reduce water use during rice cultivation, has seen 

widespread adoption in northwestern India (Aryal et al., 2020; Villalba et al., 2024). This 

is unexpected, particularly because the financial cost of water extraction in the region is 

very low, making water-saving technologies less financially compelling. 

While profitability is an important motivator, adoption decisions are also 

influenced by other factors such as perception, social norms, and behavioral values 

(Okello et al., 2019; Shang et al., 2021). In this paper, we explore the reasons behind the 

adoption of LLL and the roles that both designed benefits and farmers' perceived 

benefits play in this process. To date, research on LLL has predominantly focused on the 

technical advantages offered by the technology, with little attention given to how 

farmers' attitudes and perceptions influence adoption (Caffaro et al., 2020; Swart et al., 

2023). 

This article addresses two key questions: 1) How do the benefits designed by 

the technology developers affect adoption decisions? and 2) What role do perceived 

benefits play in the adoption of LLL? To investigate these questions, we employ a mixed 

method, combining data from a survey of 1,021 farm households in Punjab, India, with 

qualitative insights from in-depth interviews with eight farmers. Additionally, we 

examine the effect of different frequency of LLL use, a factor that is highly praxis 

relevant, but often overlooked in previous studies, which typically treat adoption as a 

one-time decision. Recommendations for LLL use vary, suggesting application every 

three to five years, depending on crop and system (Aryal et al., 2018a; Chen et al., 2022; 
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Nguyen-Van-Hung et al., 2022). We estimate the impact of different usage frequencies 

on both yield and water savings.  

Doing so, this article aims to contribute to the literature in two significant ways. 

First, it investigates technology adoption from both the perspectives of technology 

developers and farmers, offering insights into how these perspectives influence 

adoption. Second, the study employs innovative methodologies, including mixed 

methods and machine learning causal forest analysis, to better understand the complex 

factors behind LLL adoption.  

The remainder of the paper is structured as follows: the conceptual and 

analytical framework section outlines the key concepts and hypotheses, followed by the 

data and methodology section, which describes the study area, household survey, and 

interviews. Results from the qualitative and quantitative analyses are then presented 

and discussed before concluding with a summary of findings, limitations, and policy 

implications. 

 

2.2 Conceptual framework 

 

In the classical adoption literature model, farmers' decision-making is modelled based 

on the key behavioral assumption of profit maximization (Feder et al., 1985). However, 

technology adoption is a dynamic learning process involving learning by using and 

learning from others (Sunding & Zilberman, 2001). The drivers of adoption can depend 

on the stage of adoption of learning process (Pannell, 2007). While profit maximization 

is an important consideration in the later stages of adoption, social and cognitive 

considerations play an important role in the early stages (Weersink & Fulton, 2020).  

Though improved profitability and lower risk are important for farmers, they 

may not be the only objectives (Weersink, 2018); rather, farmers' goals are 

heterogeneous. Barnes et al., (2019) showed that in addition to profit maximization, 

farmers' attitudes towards a technology and information support influence the adoption 

of precision agricultural technologies. Based on this literature, we have conceptualized 
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two hypotheses testing both profit maximization and other heterogeneous goals and 

perceptions of farmers.  

First, we hypothesize: 

H1a: The adoption of laser levelling technology is influenced by farmers' positive 

perceptions about the benefits of the technology.  

H1b: The adoption of laser levelling technology is influenced by heterogeneous goals 

of the farmer.  

Perceptions regarding the benefits of a technology are formed by either 

learning from others, demonstration, or one's own experience (Mottaleb, 2018). LLL was 

introduced in the region in 2001, and nearly all farmers are aware of the technology or 

have used it at least once. Therefore, farmers have experience and an established 

perception of technology. We additionally explore other goals or factors, technology-

specific or contextual factors not previously captured in the literature. For hypothesis 

H1b, since we do not use any a priori assumption regarding factors in this case, this sub-

hypothesis is explorative. We use both qualitative and quantitative approaches to 

examine the hypothesis.  

Second, we hypothesize: 

H2a: The adoption of LLL is positively associated with an increase in the yield of rice 

and wheat 

H2b: The adoption of LLL is positively associated with savings in irrigation water in rice 

and wheat.  

To test these hypotheses, we follow the profit maximization assumption. 

Instead of profits, studies have used physical output (yield) or imputed shadow values 

to the unmarketed production, assuming that the output can be stored or sold (Emerick 

et al., 2016; Evenson & Gollin, 2003). Unlike other agricultural technologies, since LLL is 

adopted at different frequencies, we test how the different frequencies of adoption 

influence the yield and irrigation water use by quantifying the magnitude of the effect.  
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2.3 Materials and methods 

 

2.3.1 Study area and sampling  

This study focuses on the Punjab state of northwestern India, which has India's fastest 

groundwater depletion zones (CGWB, 2021). Four districts in Punjab (Ludhiana, 

Fatehgarh Sahib, Sangrur, and Patiala) were selected since farmers in these districts 

grow rice and wheat following the rice-wheat cropping system (Figure 2.1). In the rice-

wheat cropping system, rice is planted in June-July and harvested in November, followed 

by wheat sown in November and harvested in February-March. LLL is done from April to 

May before rice planting.  

 

 

Figure 2.1: Study area 

Note: The study districts are highlighted in light-blue colour.  
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For the study, we conducted eight qualitative interviews with farmers and laser 

land service providers in June 2021. The details of the interview respondents are 

provided in Appendix 1 Table 6.1. The responses are referred in the manuscript based 

on the number given in column 1 of the Appendix 1 Table 6.1. Followed by a qualitative 

survey, we surveyed 1021 households selected randomly from 52 villages in four 

selected districts of Punjab from June to August 2021. From the surveyed household, we 

collected data on household and farm characteristics, LLL adoption, and service 

provision. We collected details of the bio-physical characteristics and input-output data 

of crops cultivated on the largest plots for the last two seasons before the survey.  

Additionally, we collected village-level data from a key informant’s survey in all the 

villages (52 key-informant survey).   

We focus on two main outcomes: yield (kg/ha) and irrigation hours per hectare 

(h/ha) of the crops grown in Punjab, India. We asked the farmers the total production 

of rice and wheat for the largest plot and divided it by the area of the plot to calculate 

yield (kg/ha). To calculate the total hours of irrigation, we asked farmers to state the 

number of irrigation and hours required for irrigation for each plot in a crop season. We 

multiplied the number of irrigation and hours of irrigation to calculate the total hours. 

Then, we divided them by the plot area to get irrigation hours per hectare (h/ha). The 

crop-wise information was collected for one major plot per household (1021 plots). 

To assess the benefits of using LLL, we considered the frequency of using LLL 

technology. The frequency of adoption is classified into four categories: 1) last year, 

2020-21, 2) once in the last three years, 3) before the last three years, and 4) never used 

LLL. So instead of comparing the plots with different frequencies of use from a time-

series data, we are measuring the outcome (yield/irrigation use) of a plot at time (t) with 

plots levelled in t vs t-n, where n is the lagged time. This approach is used since we have 

a cross-sectional data on outcome, with the knowledge about when the plot levelled 

last time. One of the main challenges in using this approach is identifying the causal 

effect, as cross-sectional data limits the ability to control for time-varying confounding 

variables.  
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2.3.2 Analytical framework 

 

2.3.2.1 Mixed method approach- embedding QUAN(qual) approach 

 Using mixed-method approaches in studies quantifying impact can deepen the 

understanding of the mechanism behind impact (Nakasone et al., 2024). But unlike 

Nakasone et al., (2024), we use an embedded research design, Quan(qual)—a 

predominantly quantitative study with qualitative data (Fetters & Tajima, 2022). The 

advantage of the embedded approach over the simple comparison of qualitative and 

quantitative data is that it offers more nuanced and actionable insights compared to 

isolated analyses.  

We use insights from qualitative surveys at the start of the study to design the 

quantitative survey and at the end to triangulate the results from the quantitative 

analysis (Figure 2.2). In-depth, unstructured interview focused on the guiding questions 

regarding farmers’ crop cultivation practices and irrigation systems, why they use the 

LLL technology and how they access it. Follow-up questions were based on respondents’ 

responses. The objective of the qualitative surveys was to understand farmers’ 

prevailing practices and opinions.  

 

 

Figure 2.2: Mixed method embedded QUAN(qual) approach used in the study 

Source: Developed by authors based on American Psychological Association, (2020) 
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The interviews were conducted in Punjabi/Hindi, and took between 30 to 60 

minutes. A verbal consent was sought before the interview and the interviews were 

audio-recorded and translated into English. We manually open-coded the translated 

interview texts, using a deductive approach in coding, in which we selected the part of 

the interviews that relates to the benefits of the technology (Saldana, 2015). The 

deductive approach in coding is useful in order to better understand the nuanced 

context and perception of the technology among farmers.  

 

2.3.2.2 Model specifications for quantifying benefits 

To assess the different benefits, we regress the frequency of levelling (K) with the 

outcome variable controlling for covariates. We start with a simple model OLS model in 

a matrix form as Eq. 2.1. 

𝑌 =  𝜏𝑊 +  𝜃𝑋 +  𝜀  Eq. 2.1 

Where 𝑌 is the vector of outcomes (Yield, irrigation hours), 𝑊 is the matrix of 

treatment variable (frequency of levelling), 𝜏 is the vector of treatment effects for k-1 

treatment groups, 𝑋 is a matrix of control variables: household head, household, plot 

level, institutional, and village level characteristics, and 𝜃 is the vector representing the 

coefficient of variable in the matrix. These variables are selected based on the existing 

studies which explored the factors affecting adoption  (Ali et al., 2018; Aryal et al., 

2018b, 2020; Sheikh et al., 2022).  𝜀 is the error term independently distributed with 

zero mean and finite variance. The average treatment effect on the treated (ATT) can be 

estimated from the coefficients of the treatment variable. 

 

2.3.4.3 Effect estimation using machine learning causal forests 

The treatment effect estimated using the linear model (Eq. 2.1) and an OLS estimator is 

based on three assumptions: 1) 𝑊 is unconfounded given 𝑋, 2) the cofounders 𝑋 have 

a linear effect on 𝑌, and 3) the treatment effect 𝜏 is constant. We have built an 

identification strategy for the first assumption by defining our research questions and 

hypothesis, collecting relevant data, and identifying and controlling for confounding 

variables (Lewbel, 2019). Our identification strategy is, therefore, based on the 
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assumption of selection-on-observables, the effect is identified if we have controlled for 

all the confounders.  

However, treatment effects may also be biased due to misspecification of 

functional forms (Storm et al., 2020). Machine learning techniques like random forest 

have shown to be useful in this context (Chernozhukov et al., 2024). Instead of relying 

on parametric specifications we, therefore, use machine learning methods. Machine 

learning algorithms combine the best practices from semi-parametric statistics for 

estimation with machine learning for prediction. To this end, we use causal forest, a 

machine learning casual inference learning method that extends random forest 

(Breiman, 2001). Random forest can specify subgroups and run separate regressions for 

each subgroup to obtain different estimates of 𝜏, relaxing the assumption of constant 

treatment effects.  

In a random forest model, several decision trees are built using a bootstrapped 

random sample and a subset of the variables (X). The splitting of the sub-groups (leaves) 

is done greedily based on the variable values that maximize the squared difference in 

subgroup means. This process is repeated for n trees, and an average of prediction from 

each tree gives the estimate of outcome (𝑌). Similarly, in causal forests, instead of 

decision trees, causal trees are built using an ‘honest’ data-splitting approach to 

maximize the treatment effect across groups without overfitting (Athey & Imbens, 

2016).  Causal forest estimates the treatment effect (𝜏) for a target sample 𝑋=𝑥 referred 

to as conditional average treatment effect (CATE) by estimating a residual-on-residual 

regression on samples with similar treatment effects (Athey et al., 2019; Wager & Athey, 

2018).  

To estimate CATE, we use the generalized random forest (grf) package, 

specifically the multi-arm causal forest package developed by Athey et al., (2019); Athey 

& Imbens, (2016).  First, we use the honest split of data by 50% for training and testing 

tests. We use the default setting in the grf package for hyperparameters. Second, we 

estimate the CATE of LLL on outcomes (yield and irrigation hours). Third, to understand 

which variables are critical for estimating treatment effect, we employ the variable 

importance statistics in the grf package in R and visualize using variable importance plots 
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(Appendix Figure 6.1). Fourth, we compute the best linear for CATE using forest 

prediction (on testing data) and mean forest prediction to check the quality of the 

random forest estimate (Chernozhukov et al., 2024). More detailed steps involved in 

estimating CATE using the grf package are detailed by (Mulungu et al., 2024).  

There are several advantages of using a machine learning approach over 

conventional approaches in estimating treatment effects (Wager & Athey, 2018).  First, 

classical quasi-experimental approaches such as nearest-neighbour matching and kernel 

matching perform well only with a small set of covariates and break down when a more 

significant number of covariates are used. Machine learning approaches such as causal 

forest perform better in settings with many covariates and complex interactions among 

covariates  (Stetter et al., 2022). Moreover, the specific advantage of using the machine 

learning causal forest model is that it could also account for multi-collinearity in the data 

by splitting it into subsets. The algorithm is less reliant on the assumptions of the 

conventional models regarding the presence of unobserved confounders.  The machine 

learning causal model is ‘doubly robust’; the estimators are unbiased in determining 

whether the specification of at least one model (treatment or control model) is correct 

(Chernozhukov et al., 2024).  

 

2.4 Results and discussion 

 

2.4.1 Descriptive analysis 

The data collected from the survey is classified based on outcome (yield and irrigation 

hours), treatment (frequency of levelling) and control variables. The summary of control 

variables used for this study is shown in Table 2.1. The distribution of yield and irrigation 

of wheat and rice crop is give in Figure 2.3. The average yield of rice is 7131 kg/ha and 

wheat is 4884 kg/ha. The average hours of irrigation in rice plots are 416 h/ha and wheat 

plots is 6 h/ha. The average values of the irrigation hours in rice is higher than the 

estimations from previous studies, example Srivastava et al., (2015) estimated the 

average hours of irrigation in case of rice is 285 h/ha.  The distribution of the data shows 

they are not normally distributed. The non-normal distribution of outcome variable such  
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Table 2.1: Descriptive statistics for the control variables used in the analyses  

Variable name Mean  Standard deviation 

Village-specific variables (n = 52)   
Share of adopters  36.40  18.78 
Groundwater level 104.52  38.52 
Crop diversity – Kharif  0.273  0.104 
Crop diversity –  Rabi 0.33  0.15 
Distance to district headquarters (HQ) 2.32  2.03 
Household-specific variables (n = 1021)   
Age of household head (HH) 52.544  13.206 
Education of HH 7.334  4.622 
Non-marginalised caste 0.94  
Majority religion  0.95  
Number of plots 1.66  0.84 
Total cultivated area 2.72  2.63 
Total adult members in the household 4.35  1.58 
Women share 43.63  15.37 
Non-farm employment 0.07  
Asset index 2.31e-09  1.69 
Service providers in 2020-21 2.89  2.27 
Discount on first use of LLL 0.02  
Access to information from (dummy)   
 Government extension agency                          0.44  
 Krishi Vigyan Kendra or KVK  0.49  
 Progressive farmer  0.58  
 Non-Governmental Organisation or NGO 0.15  
 Farmer collective  0.48  
 Input dealer  0.46  
Plot-specific variables (n =1664)   
Plot area 6.92  6.44 
Soil type 

 
 

 Clayey 0.45  
 Loamy  0.50  
 Sandy 0.05  
Soil erosion 0.04  
Waterlogging 0.12  
Soil fertility 

 
 

 Low fertile 0.02  
 Medium fertile 0.36  
 High fertile 0.62  
Rice crop variety$ 0.55  
Rice crop duration$ 0.09  
Wheat crop variety$ 0.93  
Wheat nitrogen application$ 183.08  61.61 
Pump house power (hp) 14.80  5.41 

Note: $The number is only based on the main plot in which the crop is cultivated. The 

description of the variables is given in Appendix Table 6.2.  
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as yield is commonly observed in agricultural data (Baul et al., 2024). The issue of non-
normal data may be due to measurement error, population characteristics or 
heteregenous treatment effects (Okorie et al., 2023).  
 

a. Rice yield b. Wheat yield c. Rice irrigation d. Wheat irrigation 

    

Figure 2.3: Distribution of yield and irrigation of wheat and rice crop in Punjab, India 

Note: Violin plot is a combination of a kernel density plot and box plot showing the distribution 
of outcome variable for the largest plot cultivated in the rice and wheat growing season. The 
skewness and kurtosis normality test show that the data is not normally distributed.  
 

The frequency of adoption of LLL technology at the plot level is given in Table 

2.2. Irrespective of the difference in the plot numbers across crops and outcomes, we 

observe a similar pattern of frequency of technology use. About 30-40% of the plots 

were levelled in the year in which the data was collected (2020-21), and 30% of them 

were levelled in last three years before 2020-21, and 10% of them were levelled before 

last three years (before 2018) and about 20-27% of the plots were never levelled. This 

pattern reveals that about 60-70% of the plots were levelled once in last four years. This 

is in-line with the recommended use of LLL once in three to four years (Aryal et al., 

2018b; Chen et al., 2022; Nguyen-Van-Hung et al., 2022).   
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Table 2.2: Frequency of technology use in rice and sugarcane plots in Punjab, India 

Levelling 
frequency 

Rice (% share) Wheat (%share) 

 Plots from 
which the yield 
data was 
collected 

Plots from 
which the 
irrigation data 
was collected 

Plots from 
which the yield 
data was 
collected 

Plots from 
which the 
irrigation data 
was collected 

Never 27.90 23.91  24.88  19.35 
Before three 
years 

10.03 10.37  10.65  10.84 

Last three 
years 

29.00 30.57  29.85  29.84 

2020-21 33.07 35.15  34.63  39.97 
N 1007 916 1005 1421 

Note: The levelling frequency is based on the last year in which the levelling was carried out in 
the plot. Yield data was collected data from the farmer's largest plot in each season. The 
figures in parentheses are percentages. N= number of plots.  

 

2.4.2 Perception of farmers towards the effect of LLL 

During the qualitative interview, all the farmers responded that LLL reduces water use 

and increases yield. Rice crops need standing water and with the eight-hour schedule of 

electricity availability, farmers irrigate every day for the first 60 days (two-thirds of the 

crop period). Farmers know the amount of water required to irrigate their plots and use 

submersible water pumps with horsepower according to the plot area. If the land is 

undulated, they must irrigate more to maintain the water level at six inches. One of the 

interviewed farmer stated, “Before using LLL, it takes 3 to 4 hours to irrigate an acre (2.3 

acre=1 hecatre) of land… after LLL (used in the plot), it takes two hours.” The reduction 

in water use is expressed as hours required to irrigate the field. 

The second benefit mentioned was higher crop yield. We asked the farmers 

how levelling could help in increasing the yield. Farmers narrated two pathways in which 

levelling leads to an increase in crop yield. First, levelling would result in a uniform 

distribution of fertilizer, which could increase yield. In undulated land, when the water 

level goes down, the plants in the exposed land get affected, and when the water level 

is high, the submerged plant dies. These pathways were noted in the technology's 

agronomic field experiments. It improves the uniform application of water, resulting in 

better crop standing, reduced water stress, survival of seedlings and improved nutrient-
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water interactions, leading to increased yield (Jat et al., 2006). These results imply that 

the farmers have realized the benefits researchers envisaged while designing the 

technology.  

In the interviews, farmers also explained other benefits of using the 

technology. The technology suits machinery such as mechanical rice transplanters and 

direct-seeded rice transplanters. Mechanized rice transplanting is emerging in the 

region and has led to increased use of LLL. The plots are also levelled using LLL to create 

beds for sowing vegetable crops like cabbage and potato. These benefits, which 

emerged from the narratives in the in-depth interview, were not discussed in the 

existing literature.  

 

 

Figure 2.4: Perception of farmers towards the effect of LLL technology 

 

Following qualitative interviews in the primary survey we quantified the 

perceived benefits mentioned by the farmers. In the survey, we asked the farmers to 

categorize the benefits from LLL (income, yield, cost of cultivation and irrigation water 

use) into four categories (“reduces”, “increases”, “no change” and “don’t know”). The 

share of responses in these four categories is given in Figure 2.4. About 80% of the 
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respondents stated that the LLL increases farm income and crop yield. About 53% of the 

respondents also stated it reduces the cost of cultivation. The reduction in the cost of 

cultivation could be due to the reduced use of fertilizer. One respondent farmer 

mentioned, “In a non-levelled land, 2.5 bags of fertilizer (urea) is required, while in a 

levelled land, two bags are enough.” About 94% of the respondents also stated that LLL 

reduces water use. The qualitative survey and quantitative data, therefore, suggest that 

farmers have different benefits from using LLL.  

Even though farmers' perceived use of LLL seems to reduce irrigation hours, 

the preference for saving water as a motivation factor for adopting LLL is puzzling since 

electricity is free. In 1997, free electricity and free canal water were introduced to 

support farmers in Punjab (Gupta, 2023; Sarkar & Das, 2014). Since free electricity was 

introduced, farmers switched from canal to groundwater. About three-fourths of the 

total irrigated area in Punjab is irrigated using groundwater. In the interview, farmer 

stated that the process of irrigation as  

The pumping (for irrigation) depends on availability of electricity. To avoid 

overloading the grid connection, electricity is made available (by the government) 

on a rotation basis (3-day rotation) for eight hours each day. In the last two years, 

we have created a WhatsApp group that informs about the shifts. The pumps have 

automatic switches that turn on the pumps for irrigation when electricity is 

available.  

With the changes in the policy, the government and farmers have created new 

institutions and mechanisms. Though electricity is free, there is a sense of constraint and 

preparedness ensuring that water is available for irrigation.  

Farmers also stated various specific reasons for adopting LLL. One of the 

farmers stated that the field looked good after levelling. The benefit of the farm looking 

tidy (levelled) is considered a sign of skilled farming, a bourdieusian perspective (Burton, 

2012; Gosnell et al., 2019). Burton, (2012) conducted a cross-cultural study of Germany 

and Scotland on ‘tidy’ features such as straight colour and evenly coloured fields. He 

concluded the relationship between how farmers perceive ‘tidy’ landscapes as a sign of 

skilled farming. Gosnell et al., (2019) similarly observed the relationship of aesthetics as 
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a norm with the ‘good farmer’ in the case of climate-smart regenerative agriculture. We 

observed that farmers view levelling as ‘looking good’, and we infer that this is one of 

the reason for the wide-spread adoption of LLL since it is related to the norm of a ‘good 

farmer’ or skilled farmer.  Another farmer responded that with levelling he could reduce 

the width of the bund. Another farmer who cultivates responded that levelling helps 

create raised beds for cultivating potatoes. This validates our hypothesis that adoption 

is not only a question of productivity but is influenced by the heterogenous goals of 

farmers.  

 

2.4.3 Quantifying the magnitude of benefits from LLL  

 

We calculated the average yield and irrigation hours of rice and wheat crops reported 

by farmers and compared them at different frequencies of LLL (Figure 2.5).  The average 

rice yield for plots levelled before three years (7150 kg/ha), last three years (7167 

kg/ha), and 2020-21 (7226 kg/ha) are statistically significantly different from the plots in 

which LLL has never used [base category] (6951 kg/ha). The mean difference in rice yield 

for the three frequency levels compared to the base category is 200 kg/ha, 216 kg/ha 

and 276 kg/ha. Based on this estimation, the average increase in yield is 3-4 % from the 

average yield in the base category. Assuming the market prices in 2020-21 (~0.26 $ per 

kg of rice), the rice yield gain (200 kg/ha= ~42$) could cover 80% of the cost of levelling 

(53$ @10$ h/ha). This back of the envelope estimations suggest that there are yield 

gains from technology which could partially cover the cost of using the technology. 

The average hours of irrigation in rice are lowest for plots levelled in 2020-21 

(400 h/ha), followed by levelled before three years (422 h/ha) and last three years (428 

h/ha). The average difference is 22 h/ha in plots levelled in 2020-21 compared to the 

base category (“never”).  These differences are somewhat smaller than the estimates 

from the previous studies (Ali et al., 2018; Aryal et al., 2018b; Larson et al., 2016; Lybbert 

et al., 2018; Pal et al., 2022; Sheikh et al., 2022). 
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a. Rice yield b. Rice irrigation 

 
 

c. Wheat yield e. Wheat irrigation 

  

Figure 2.5: Yield and irrigation by frequency of LLL in rice and sugarcane in northwest 

India 

Note: The average values are shown in the plot with a 95% confidence interval. The average 
values are given in Appendix Table 6.3.  

 

We estimate the average effect of the frequency of LLL by controlling for other 

factors using OLS regression. The coefficients from the model for the variable on the 

frequency of LLL give us the average treatment effects. The effect on rice yield is positive 

but statistically non-significant if levelling is done in the last three years (53.99 kg/ha) 

and last year, 2020-21 (85.4 kg/ha). The irrigation hour in rice was negative for the plots 

in which levelling was done in 2020-21. There was no statistically significant increase in 

the yield of wheat. However, the irrigation hours were negative in all frequencies of 

levelling but statistically significant for plots levelled in 2020-21.  

The effect estimates from the OLS model are lower than the average difference 

in frequency of levelling compared with the base category in the summary statistics 
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(Figure 2.5). This may be caused by imprecise estimates due to non-normal outcomes 

(Baul et al., 2024; Esen et al., 2024).  

Next, we estimate the conditional average treatment effect using a machine-

learning causal forest approach (Table 2.3). The estimates show that the average effect 

plots levelled in the last three years (233.8 kg/ha) and last year (2020-21) (242.43 kg/ha) 

had a statistically significant effect. In the in-depth interview, a farmer also stated that 

the effect of LLL on rice yield was 100 to 200 kg/ha.  Even in CATE estimates, we do not 

find a statistically significant effect in the case of rice irrigation and wheat yield. Plots 

levelled in the last three years and 2020-21 have statistically significantly lower hours of 

irrigation. The estimates from CATE are higher than the estimates from OLS but lower 

than the effects reported in previous studies based on filed experiments (Jat et al., 2015) 

observational studies (Ali et al., 2018; Aryal et al., 2020; Larson et al., 2016; Pal et al., 

2022; Sheikh et al., 2022)and randomized control trails (Lybbert et al., 2018) in India. 

The distribution of CATE values by quartiles (4 quartiles) is shown in Figure 2.6. 

There is a noticeable variability with each quartile. The range of CATE values is widest in 

the case of the first and fourth quartile in all outcomes. This indicates that there is a 

substantial heterogeneity in the treatment effect. The CATE values for rice yield and rice 

and wheat irrigation hours are right-skewed. This indicates that the distribution is not 

normal, and could be influenced by certain covariates across the quartiles. Such 

heterogeneous effects of technology are important for understanding the effects of 

technology (Stetter et al., 2022).  
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Table 2.3: Magnitude of effect of LLL  

Levelling  

frequency 

Rice yield (kg/ha) Rice Irrigation  

(h/ha) 

Wheat(kg/ha) Wheat Irrigation (h/ha) 

 OLS CATE OLS CATE OLS CATE OLS CATE 

Before three years  25.858 

(112.733) 

45.307 

(138.585) 

-0.380 

(17.340) 

2.523 

(16.828) 

21.877 

(75.458) 

-40.399 

(80.172) 

-0.411 

(0.356) 

-0.464 

(0.296) 

Last three years  130.245 

(87.049) 

215.193** 

(95.597) 

-0.472 

(13.390) 

13.723 

(14.919) 

-0.600 

(59.029) 

-86.709 

(71.433) 

-0.196 

(0.278) 

-0.598** 

(0.237) 

Last year 

 (2020-21) 

187.506** 

(86.476) 

227.463** 

(96.019) 

-25.423* 

(13.261) 

-9.457 

(13.097) 

-11.638 

(58.223) 

-136.266 

(72.132) 

-0.351 

(0.273) 

-0.666** 

(0.221) 

Note: OLS- Ordinary least square (Refer appendix Table 6.4 for full model) CATE- Conditional average treatment effect (Refer Appendix Figure 6.1 for 
variable importance plot). The figures in the parenthesis are standard errors. ** shows significance at 5%, *Shows significance at 10%.  
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a. Rice yield b. Rice irrigation (h/ha) 

 

 

 

 

c. Wheat yield (kg/ha) d. Wheat irrigation(h/ha) 

  

 

Figure 2.6: Distribution of CATE estimates of yield and irrigation by frequency of LLL in 

rice and wheat 

 

We test for the robustness of the CATE estimates using best linear fit mean forest 

prediction and differential forest prediction (Table 2.4). The coefficient of the mean for 

prediction is close to one, and significance shows that the estimates are robust and well-
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calibrated. However, the coefficient from the differential forest prediction is not 

significant for all the outcomes. The estimates for the upper and lower quartiles are 

imprecise and we exercise caution in drawing inferences from these sub-groups.  

Though the machine learning causal approach helps increase the precision of 

estimates, overall, the effect of LLL on yield and irrigation is lower. We find statistically 

significant results in the case of rice yield to the extent of 3-5% for plots levelled once in 

the last three years and last year (2020-21). However, the difference in the yield 

estimate for levelling every year and levelling once every three years is not statistically 

significant. This suggests that levelling more than once in three years may not offer many 

benefits in terms of yields.  

 

Table 2.4: Evaluation of quality of the causal forest estimates 

 Rice yield Rice Irrigation Wheat yield Wheat irrigation 

Mean forest 
prediction 

1.001** 
(0.550) 

1.025** 
(0.566) 

1.109 
(0.952) 

0.978** 

(0.470) 
Differential 
forest 
prediction 

-0.174 
(1.019) 

-1.637 
(1.432) 

-246.727 
(15.178) 

0.097 
(1.022) 

Note: Stand errors in parenthesis are one-sided heteroskedasticity-robust standard errors. ** 
shows significance at 5%.  
 

With respect to irrigation, we did not find any statistically significant results. 

This differs from previous studies showing a significant impact of LLL on reducing 

irrigation hours. One plausible explanation is that if we measured the irrigation hours 

based on farmers' responses. Abay et al., (2023) have discussed the issue of 

measurement errors and misperceptions in self-reported data by farmers on plot size 

and argue that farmers are misperceiving rather than misreporting.  Since there are 

multiple irrigation schedules over a period of time, it would also lead to recall bias. Self-

reported irrigation hour is the common approach used in studies that assessed the 

impact of LLL on water saving (Aryal et al., 2018b, 2020; Lybbert et al., 2018). An 

alternative to this approach is quantifying water use using measurement devices, e.g., a 

flow meter (Knapp et al., 2018)). Our study tried to use an ultra-sonic flow meter to 

check the water flow velocity from the pumps. However, among the 30 samples we 

collected, we faced several challenges in collecting data, due to resistance of farmers 
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from collecting such data, since water use is a politically a highly sensitive topic in the 

region.  Rusted tubes, inaccessible pumps, availability of electricity due to the rotation 

of power caused further issue in using the ultra-sonic flow meters.  

 

2.5 Conclusion and policy implication 

 

This paper used LLL as a case study to understand why farmers adopt resource 

conservation technologies. We used a mixed-method approach to assess why farmers 

are adopting the technology, which allowed the exploration of factors that were not 

previously considered. We find that the effect of LLL on designed benefits such as 

increased yield and water saving is lower than previously estimated. However, farmers’ 

positive perceptions about the benefits and other factors, such as electricity availability, 

compatibility of LLL with other technologies, and aesthetic value, have resulted in wider 

technology adoption. These findings provide new insights beyond the traditional notion 

of designed benefits and profit maximization as the key drivers behind technology 

adoption.  

Before generalizing the findings for policy, a few limitations must be 

considered. First, our study is based on cross-section data, and the challenges of 

measuring the outcomes, especially irrigation hours, must be considered before drawing 

inferences. Future studies could explore alternative approaches for measuring irrigation 

water in challenging settings. Second, the insights from the qualitative data need to be 

explored further to understand the role of technology development and extension 

institutions in shaping perceptions of technology.  

Our study provides three key insights on technology development, use, and 

dissemination. First, technology development is a continuous process, so even after the 

farmers adopt a technology, further studies are required to evaluate potentials and 

other co-benefits. Second, our findings indicate that farmers interact with technology, 

and their perception is based on their experience evaluating the designed benefits and 

the context in which they work. Third, the institutions involved in disseminating 

technology could also use other benefits realized by farmers to promote the technology. 
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Our study shows that even in the case of linear technology transfer, there is a scope for 

a feedback loop and the co-creation of knowledge.  
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Chapter 3 : Private service provision contributes to widespread innovation adoption 

among smallholder farmers: Laser land levelling technology in northwestern India1   

 

Abstract  

Adoption of indivisible technologies – like agricultural machinery – is challenging since 
it's not easily divisible and costly, differentiating it from many other agricultural 
technologies, such as new seeds and fertilisers. This study investigates key institutional 
factors promoting the adoption of laser land levelling (LLL), a water saving technology 
that has gained wide popularity among farmers in northwestern India. The main 
objective is to evaluate how individual private service providers, offering LLL on a rental 
basis to farmers, are pivotal to technology dissemination among smallholders with 
fragmented plots. Plot-level data from 1,661 households across 84 villages in Punjab and 
western Uttar Pradesh in India were collected and used to analyse farmers’ LLL 
technology perceptions and adoption decisions. Regression models were developed to 
estimate the role of local service provision for LLL adoption while controlling for farm, 
household, and other contextual variables. The analysis pays particular attention to the 
heterogeneous effects of service provision on farmers with different farm and plot sizes. 
The data and estimates reveal that local access to a larger number of service providers 
is associated with higher rates of LLL adoption among farmers. The effect of service 
providers on adoption varies by farm and plot size: it is larger on smaller farms/plots. 
The findings suggest that a conducive institutional environment that accommodates the 
specific needs of different farm sizes can speed up innovation adoption. Our study, for 
the first time, shows that individual service provision is an alternative institutional 
mechanism for re-evaluating traditional agricultural technology scaling models for wider 
and more inclusive adoption.    
 
Keywords: adoption, agricultural machinery; indivisible agricultural technology, 
smallholder farmers 
JEL codes: O13, Q13, Q15, Q25 
 
 

                                                      
1 This chapter is a joint paper with Martin C. Parlasca, Matin Qaim, and Vijesh V.Krishna. A 

previous version of the chapter is published as a journal article: Surendran-Padmaja, S., Parlasca, M.C., 
Qaim, M. & Krishna, V.V. 2025. Private service provision contributes to widespread innovation adoption 
among smallholder farmers: Laser land levelling technology in northwestern India. Agricultural Water 
Management. 312: 109411. https://doi.org/10.1016/j.agwat.2025.109411 and as a ZEF Discussion Paper: 
Surendran-Padmaja, S., Parlasca, M.C., Qaim, M. & Krishna, V.V. 2024. Private service provision 
contributes to widespread innovation adoption among smallholder farmers: Laser land levelling 
technology in northwestern India. ZEF-Discussion Paper on Development Policy No. 346, Center for 
Development Research, Bonn, May, 2024. A previous version was also presented at an organized 
symposium titled “Technology and policies for groundwater management in South Asia”, at the 
International Conference of Agricultural Economists (ICAE), New Delhi, India on August 3, 2024.  

Subash Surendran-Padmaja developed the research concept, collected and analyzed the data, 
and wrote the paper with support from the other co-authors. 

 

https://doi.org/10.1016/j.agwat.2025.109411
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3.1 Introduction 

 

Agricultural technologies are critical for efficient and sustainable farming. Yet, the 

adoption of new technologies is sometimes slow and limited, especially among 

smallholder farmers. Technologies involving agricultural machinery are often 

particularly challenging for smallholders to adopt (Belton et al., 2024; Ruzzante et al., 

2021). One key reason is that machinery is not easily divisible, which differentiates it 

from many other agricultural technologies, such as new seeds and fertilisers. Indivisible 

technologies are often costly and cannot be tested in small quantities for gaining more 

experience before fully adopting them (Lu et al., 2016). Hence, adoption rates of many 

indivisible technologies remain low in the small farm sector. One exception is LLL, a 

water saving technology, more formally also known as laser-assisted precision land 

levelling, which is widely adopted in northwestern India (Aryal et al., 2020; Villalba et 

al., 2024).  

Adoption of indivisible technologies can be facilitated through service 

providers that rent out machinery (Keil et al., 2019, 2021; Lu et al., 2016). Different types 

of institutions can act as service providers, including farmer co-operatives, custom hiring 

centres, or private enterprises (Daum et al., 2021; Jones-Garcia & Krishna, 2021; 

Mottaleb et al., 2019; Villalba et al., 2024). Previous research shows that farmers are 

willing to pay for land levelling operations (Lybbert et al., 2018; Paudel et al., 2023), 

suggesting that service providers can play an important role in the adoption of LLL 

technology.  However, linkages between private service provision and actual adoption 

decisions of farmers are so far poorly understood (Gulati et al., 2017; Schut et al., 2020; 

Van Loon et al., 2020). 

The availability of rental services for LLL makes the technology accessible to 

farmers who cannot or do not want to own the equipment themselves. In this study, 

we, therefore, first ask the question of how the availability of private service providers 

in the local context influences farmers’ use of LLL technology. We hypothesise that a 

larger number of service providers locally available leads to higher adoption rates of LLL. 

However, private service providers may not make LLL technology equally accessible to 
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all types of farmers. In particular, service providers may prefer offering their services to 

larger farms and larger plots to exploit economies of scale. In addition, farmers with 

small land holdings may be liquidity-constrained and risk-averse, making them less 

attractive business partners for private service providers (Hu et al., 2022). Hence, we are 

also interested in analysing whether the availability of service provision has differential 

effects on LLL adoption among smaller and larger farms and plots. 

To address our research questions, we use plot-level data from 1,661 farm 

households across 84 villages in the states of Punjab and western Uttar Pradesh, located 

in northwestern India. We add to the literature in several ways. First, while a few studies 

on LLL adoption exist, all primarily focus on demand-side drivers of adoption, such as 

farm and farmer characteristics (e.g. farm size, soil fertility, cropping system, age, 

education, gender) or household characteristics (e.g. household size, off-farm income, 

access to credit) (Ali et al., 2018; Aryal et al., 2018b, 2020; Pal et al., 2022; Sheikh et al., 

2022). We are particularly interested in the role of private service providers as a 

potential supply-side driver of adoption. Second, much of the existing technology 

adoption literature looks at farmers’ adoption decision as a one-time choice. However, 

often adoption is a process that starts before the actual decision to use a technology for 

the first time and also continues afterwards. Such dynamics need to be understood in 

order to be able to address possible adoption constraints effectively (Ishtiaque et al., 

2024). We explore some of the relevant dynamics by analysing the timing of LLL 

adoption, farmers’ perceptions of technology effects, as well as the frequency of 

technology use, given that land preparation and levelling decisions have to be made 

repeatedly. 

The remainder of this article is structured as follows. In section 3.2, we provide 

some more background on the LLL technology and how it was introduced in the Indian 

context. In section 3.3, we discuss the theoretical framework of the technology adoption 

analysis, whereas in section 3.4 we introduce the empirical approach. The empirical 

results are presented and discussed in section 3.5, while section 3.6 concludes. 
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3.2 LLL technology and service providers

LLL technology was developed in the USA in the 1970s, and subsequently manufactured 

and disseminated in other countries including Italy, Russia, Egypt, India, Pakistan, China, 

Iran, Vietnam, Cambodia, Nepal, and Tajikistan, among others (Chen et al., 2022). In 

India, the technology was introduced in 2001 by the International Maize and Wheat 

Improvement Center (CIMMYT) and the International Rice Research Institute (IRRI) 

along with national partners (Indian Council of Agricultural Research and State 

Agricultural Universities), with the primary objective to solve the issue of rapidly 

declining groundwater levels (Aryal et al., 2018b). In the northern parts of India, rice was 

introduced as a major crop during the Green Revolution in the 1960s and is typically 

grown under submerged conditions, needing substantial amounts of irrigation water 

(Evenson & Gollin, 2003). The over-extraction of groundwater for agriculture in 

northwestern India has resulted in the region having the world's largest 'groundwater 

footprint', with potentially serious consequences for future agricultural production 

potentials (Jain et al., 2021a).  

Land levelling is an operation undertaken by farmers before growing a crop. It 

facilitates a more uniform distribution of water and fertilisers, which is essential for 

efficient input use and high yields (Chen et al., 2022; Jat et al., 2006). Proper land 

levelling is particularly important in rice-wheat systems in which flood irrigation is used 

and where a certain water depth must be maintained for rice cultivation (Jat et al., 2006; 

Nguyen-Van-Hung et al., 2022). Unlike the traditional approach of land levelling, namely 

to use wooden or iron planks, LLL technology is more precise: with its precision-guided 

system, LLL can achieve a smoother surface (± 2cm) (Jat et al., 2006). LLL technology 

consists of a tractor-mounted bucket scrapper with a receiver, a control box in the 

tractor, and an independent transmitter on a tripod (Figure 3.1). 

Purchasing LLL technology is costly, which is seen as an important adoption 

hurdle for smallholder farmers (Larson et al., 2016). One often-used policy strategy to 

address accessibility issues is to establish a system of renting out the technology through 

co-operatives. However, in northwestern India, LLL technology is mainly accessed 
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through private service providers who are oftentimes farmers themselves (Aryal et al., 

2018b; Gulati et al., 2017). In Punjab and western Uttar Pradesh, the government under 

the Sub-Mission on Agricultural Mechanization, offers subsidies of about 80% and 50% 

to both co-operatives and individual farmers for purchasing LLL technology. These 

subsidies facilitated a rapid increase in the number of LLL machinery in Punjab and 

western Uttar Pradesh, from less than 1,000 in 2003 to more than 90,000 in 2015 (GoI, 

2023; Jat et al., 2006;  Sidhu et al., 2008). The strong demand for this technology has led 

to the designing, assembling, and local manufacturing of LLL machinery in the region 

(Paudel et al., 2023).   

 

 

Figure 3.1: Laser land levelling technology operated at night in northwestern India,   

highlighting the demand for the technology 

Photo source: Dr. Anirudh Mar (Special arrangement)  
Note: The technology consists of a tractor-mounted bucket scrapper with a receiver, a control 
box in the tractor, and an independent transmitter on a tripod. The transmitter transfers signals 
as a laser beam (which is why the technology is called laser land leveller) to the receiver attached 
to the bucket scrapper, which removes or adds soil using a hydraulic system. The tractor 
operator can further adjust the levels using the control box in the tractor. See Rickman (2002) 
for more details.  
For a video animation, see:  https://www.youtube.com/watch?v=kRAwyr6oK7Q 

 

https://www.youtube.com/watch?v=kRAwyr6oK7Q
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3.3 Theoretical background 

 

The earliest literature explaining the adoption of indivisible technologies is the threshold 

model by David, (1996). The threshold model assumes that farmers can adopt a 

technology only through own purchase; in this model, farmers will only adopt when they 

exceed a certain critical level of land holding. However, Feder et al., (1985) observed 

that the adoption of indivisible technologies by smallholders can also happen through 

rental services. Sunding & Zilberman, (2001) proposed the generalised threshold model, 

addressing limitations of the traditional threshold model. The generalised threshold 

model considers that farmers are heterogeneous and that the adoption process is 

dynamic. It further assumes that technology adoption through renting can be a risk-

reducing strategy. Building on the generalised threshold model, Lu et al., (2016) 

developed a framework accounting for heterogeneity in land size and conditions in 

which renting of technology by service providers emerges. 

In their framework, Lu et al., (2016) hypothesise that farm size and land quality 

influence the threshold at which the decision to own or rent a technology becomes 

profitable for farmers. That is, farmers with small land holdings can access the 

technology by renting instead of purchasing it. In our study, we test this hypothesis 

empirically by exploring the relationship between the availability of rental services for 

the technology and farmers’ LLL adoption. We expand the literature on the effect of 

rental services on technology adoption and – in this connection – also explore the role 

of land size. 

 

3.4 Material and methods 

 

3.4.1 Study area, sampling and data 

We collected data from farmers in the regions of Punjab and western Uttar Pradesh in 

northwestern India. Both regions are known for their rapid depletion of groundwater 

resources (CGWB, 2021). The study sites encompass eight districts, including Ludhiana, 

Fatehgarh Sahib, Sangrur, and Patiala in Punjab, and Saharanpur, Baghpat, Shamli, and 

Muzaffarnagar in western Uttar Pradesh (Figure 3.2). We selected these districts 
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purposively to reflect different conditions and cropping patterns. Punjab is known for its 

rice-wheat cropping system, whereas most farmers in western Uttar Pradesh practice a 

more diversified system, including sugarcane, rice, and wheat. Most previous work on 

LLL adoption and impacts focuses on the rice-wheat system alone (Aryal et al., 2015, 

2018b, 2020; Gulati et al., 2017; Larson et al., 2016; Lybbert et al., 2018; Paudel et al., 

2023). 

 

Figure 3.2: Map of study area showing groundwater extraction rates at the district 

level 

Source: Developed by authors based on data on groundwater extraction from the Central 

Ground Water Board (CGWB), Hyderabad, India.  

 

The study districts in Punjab and western Uttar Pradesh share similar 

socioeconomic attributes, fall in the same climate zone (semi-arid temperate), and have 

similar soil characteristics. However, they differ in terms of irrigation policies and 

groundwater extraction levels. The Punjab Preservation of Subsoil Water Act of 2009 

mandates delayed rice sowing in Punjab to conserve water (Tripathi et al., 2016). Such 

a policy is not in place in western Uttar Pradesh. Additionally, irrigation electricity tariffs 

vary between the two states; Punjab offers free irrigation electricity in eight-hour blocks, 
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whereas western Uttar Pradesh applies a fixed rate based on pump horsepower (Sidhu 

et al., 2020). The study districts have different groundwater extraction rates. In Punjab, 

all four districts are classified as “overexploited”, whereas in western Uttar Pradesh, one 

is classified as “overexploited”, one as “critical”, one as “semi-critical”, and one as “safe” 

(Figure  3.2). 

For the study, we conducted a survey of 1,661 farm households in the eight 

districts. In Punjab, the survey was implemented from June to August 2021, and in 

western Uttar Pradesh from October to December 2021. In the two states and eight 

districts, villages and farm households were selected randomly. In Punjab, we cover 52 

villages and 1,021 farm households. In western Uttar Pradesh, we cover 32 villages and 

640 farm households. 

In each household, we carried out structured personal interview to collect 

detailed data on farm and household characteristics, the adoption of LLL technology at 

the plot level, perceived impacts of LLL, and the availability of service providers in the 

village or nearby. Detailed biophysical attributes of each plot and crop cultivation data 

for the two most recent seasons prior to the survey were also compiled. In addition, 

detailed input and output data were collected from all plots under cultivation by the 

sample households (a total of 3,369 plots).  

 

3.4.2 Empirical framework   

 

We use the farm household survey data to analyse LLL diffusion among farmers in 

Punjab and western Uttar Pradesh over time, as well as farmers’ perceptions about the 

impacts of this technology on crop yields, the use of water and other inputs, and crop 

profits. These analyses use simple descriptive statistics. 

In addition, we use regression models to examine determinants of LLL adoption 

with a particular focus on the role of private service providers. For this, we estimate a 

probit model as follows: 

𝑃(𝑌𝑖 = 1) = Φ (𝛽0 +  𝛽1𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑖 +  𝜃𝑿𝑖𝑘 +  𝜇𝑖) Eq. 3.1 
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where 𝑃(𝑌𝑖 = 1) is the probability of LLL adoption on plot i. This binary 

outcome variable takes the value of one if the farmer used LLL on plot i in the season 

prior to the survey (2020/21), and zero otherwise. Note that we also run an alternative 

adoption model in which LLL was used in any of the three previous seasons, given that 

most farmers do not use LLL every year. The key explanatory variable is 

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑖, which is the self-reported number of LLL service providers available 

within the village of the farmer cultivating plot i, or sufficiently nearby such that the LLL 

service could be used. The main coefficient of interest is 𝛽1. A positive 𝛽1 would support 

our first hypothesis (H1) that a larger number of service providers locally available leads 

to higher adoption of LLL. 𝑿𝑖𝑘, a vector of k control variables at the plot, household, and 

village level that may also influence LLL adoption (see details below). Φ(. ) in Eq. 3.1 is 

the probability distribution function of the standard normal distribution. 

Next, we are interested in understanding whether the availability of service 

providers has differential technology adoption effects for smaller and larger plots and 

farms. Specifically, we test the hypothesis (H2) that an increasing number of service 

providers locally available reduces possible differences in adoption between smaller and 

larger farms and plots. To test this hypothesis, we use the following two probit models 

with additional interaction terms: 

 

𝑃(𝑌𝑖 = 1) = Φ (𝛾0 +  𝛾1𝑃𝑙𝑜𝑡 𝑠𝑖𝑧𝑒𝑖 +  𝛾2𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑖 +

 𝛾3 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑖 × 𝑃𝑙𝑜𝑡 𝑠𝑖𝑧𝑒𝑖 +  Γ𝑿𝑖𝑘 +  𝜀𝑖)    

Eq. 3.2 

𝑃(𝑌𝑖 = 1) = Φ (𝛿0 + 𝛿1𝐹𝑎𝑟𝑚 𝑠𝑖𝑧𝑒𝑖 + 𝛿2𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑖 +

𝛿3𝐹𝑎𝑟𝑚 𝑠𝑖𝑧𝑒 × 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑖 + ∆𝑿𝑖𝑘 +  𝜀𝑖)   

Eq. 3.3 

 

In Eq. 3.2 we introduce 𝑃𝑙𝑜𝑡 𝑠𝑖𝑧𝑒𝑖 and an interaction term between 𝑃𝑙𝑜𝑡 𝑠𝑖𝑧𝑒𝑖 

and 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑖. A positive (negative) coefficient 𝛾1 would indicate that LLL 

adoption is more (less) likely on larger plots. A positive (negative) interaction coefficient 

𝛾3 would indicate that the effect of a larger number of LLL service providers is bigger 

(smaller) on large than on small plots. Eq. 3.3 follow the same structure but looks at farm 

size instead of plot size. Plot size and farm size are not the same, as most farms cultivate 

more than one plot. 
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In addition to looking at the individual coefficients of plot and farm size and 

the interaction terms in Eq. 3.2 and Eq. 3.3, we also calculate the marginal effects of 

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑖 on LLL adoption as follows: 

 

𝜕𝑃(𝑌𝑖 = 1)

𝜕𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑖
= 𝛾2Φ (𝑿𝑖) +  𝛾3𝑃𝑙𝑜𝑡 𝑠𝑖𝑧𝑒𝑖Φ (𝑿𝑖) 

Eq. 3.4 

𝜕𝑃(𝑌𝑖 = 1)

𝜕𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑖
= 𝛿2Φ (𝑿𝑖) +   𝛿3𝐹𝑎𝑟𝑚 𝑠𝑖𝑧𝑒𝑖 Φ (𝑿𝑖) 

Eq. 3.5 

 

These marginal effects are calculated at the mean values of the covariates 𝑿𝑖. 

We show these effects graphically for different numbers of service providers. 

 

3.4.3 Control variables 

 

The control variables (𝑿𝑖) used in our regression models are chosen based on the 

existing literature on LLL adoption (Ali et al., 2018; Aryal et al., 2018; Aryal et al., 2020; 

Sheikh et al., 2022). These variables, their units of measurement, and sample mean 

values are shown in Table 3.1. 

Roger, (2003) suggests that the spread of innovation is affected by various 

social factors, such as gender, caste, and class, as well as societal norms. Ali et al., (2018) 

find evidence supporting this idea, demonstrating associations between various 

socioeconomic factors and the adoption of LLL. Aryal et al., (2018) highlight that farmers 

with more education tend to have better access to information about new technologies, 

making them more likely to adopt. The caste system, which still plays a significant role 

in India's social hierarchy, can either facilitate or hinder access to information, markets, 

and resources, thus also potentially affecting technology adoption (Krishna et al., 2019). 

Additionally, household wealth was shown to influence technology adoption, mostly in 

a positive way (Aryal et al., 2018b). Such variables are also included in our regression 

models. 
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Table 3.1: Descriptive statistics of explanatory variables 

Variable name 
 

Description Mean (Std. 
deviation) 

Village-specific 
variables (n = 84) 

  

Share of adopters  Share of LLL adopters in the village (minus the 
household) in the reference year (2020-21) 

0.28 
(0.18) 

Groundwater level Groundwater depth at the village level (meters) 27.11 
(12.04) 

Crop diversity – 
Kharif  

Crop diversity in the Kharif season (Simpson 
index#) 

0.32 
(0.15) 

Crop diversity –  
Rabi 

Crop diversity in the Rabi season (Simpson 
index#) 

0.39 
(0.16) 

Distance to district 
HQ 

Distance from village centre to district 
headquarters (km) 

19.04 
(16.81) 

Household-specific 
variables (n = 
1661) 

  

Age of HH Age of the household head 53.48 
(13.34) 

Education of HH Number of years of education of the household 
head 

7.50 
(4.68) 

Non-marginalised 
caste 

The household belongs to one of the non-
marginalized castes (dummy) 

0.69 

Majority religion  The religion of the household is a major religion 
in the state (dummy) 

0.59 

Number of plots The total number of plots cultivated by 
household  

2.03 
(1.17) 

Farm size Area cultivated by the household (ha) 5.43 
(6.98) 

Total adult 
members in the 
household 

Number of adult members in the household 4.48 
(1.78) 

Women share Share of adult women in the total number of 
adults in the household  

0.46 
(0.14) 

Non-farm 
employment 

A household member is employed in non-farm 
activities (dummy) 

0.29 

Asset index Asset index estimated from 20 agricultural 
productive items 

0.00 
(1.73) 

Service providers 
in 2020/21 

Number of service providers the household has 
access to in 2020-21 

2.30 
(2.18) 

Discount on first 
use of LLL 

The household received a subsidy for the first 
event of adoption (dummy) 

0.02 
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Variable name 
 

Description Mean (Std. 
deviation) 

Access to 
information from 
(dummy) 

The household accessed information in the last 
12 months (2020-21) (dummy) from the given 
source 

 

 Government extension agency  0.38 
 Krishi Vigyan Kendra or KVK  0.44 
 Progressive farmer  0.64 
 Non-Governmental Organisation or NGO 0.15 
 Farmer collective  0.39 
 Input dealer  0.65 

Plot-specific 
variables  
(n = 3365) 

  

Plot size The size of the plot (ha) 3.12 
(3.20) 

Service provider 
distance 

Distance of plots from the LLL service provider 
(km) 

2.87 
(2.25) 

Soil type Soil type in the plot (dummy)  
 

 Clayey 0.33 
 Loamy  0.65 
 Sandy 0.02 
Soil erosion The plot is affected by soil erosion (dummy) 0.06 
Waterlogging The plot is affected by waterlogging (dummy) 0.10 

 
Soil fertility Soil fertility status in the plots (farmer 

assessment; dummy) 
 

 Low fertile 0.04 
 Medium fertile 0.35 
 High fertile 0.61 
Crop in Kharif Crops grown in the plot during the Kharif season 

(June to October) 2021 (dummy) 
 

 Non-Basmati rice 0.51 
 Sugarcane  0.30 
 Basmati rice 0.09 
 Other crops 0.09 

Western Uttar 
Pradesh 

The plot is in western Uttar Pradesh (dummy) 0.50 

Note:  Further details with variables by state are shown in Appendix Table 6.1. #Simpson index 

(SI) is calculated using the formula 𝑆𝐼 = 1 −  ∑ 𝑃𝑖
2, where 𝑃𝑖 is the share of crop i in the total 

crop area (0 means full specialization and 1 means maximum diversification). 
 
 

In terms of plot-level characteristics, we include soil type, slope, fertility, and 

waterlogging. Studies show that soil fertility and slope can influence the decision to 
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adopt LLL and other water-conservation technologies significantly (Abdulai & Huffman, 

2014; Ali et al., 2018; Aryal et al., 2018b). Households facing water scarcity are also more 

likely to adopt LLL (Ali et al., 2018). 

In terms of institutional factors, we consider various variables such as subsidies 

for first-time use of LLL and the availability of formal and informal extension services. 

Subsidies are measured as a binary variable, indicating whether or not any discounts are 

or were available for first-time users (Jones-Garcia & Krishna, 2021). Access to extension 

services, which offer training on various agricultural practices, is often linked to 

technology adoption (Aryal et al., 2018b; di Falco et al., 2011). However, in Pakistan, Ali 

et al., (2018) found no significant relationship between access to extension services and 

LLL adoption. Finally, we include village-level characteristics, such as the diversity of 

crops grown during the Kharif (June to October) and Rabi (November to April) seasons 

and the distance of the village to the district headquarters.  

 

3.5 Results and discussion 

 

We start by exploring farmers’ awareness and adoption of LLL technology descriptively. 

Then, we analyse farmers’ perceptions about the effects of LLL technology, before 

presenting and discussing the regression results. 

 

3.5.1 Awareness of the technology  

 

LLL technology has gained widespread recognition in northwestern India, with 93% of 

the sample farmers in Punjab and 96% in western Uttar Pradesh being aware of it 

(Appendix Table 6.5). This high level of awareness is largely due to various public-sector 

initiatives like field demonstrations and participatory research trials conducted in the 

past (Jat et al., 2006; Sidhu et al., 2008). Surveys conducted 15 years ago already 

indicated the presence of LLL technology in many villages across northwestern India, 

even though technology adoption was still limited at that time (Krishna et al., 2012). 

Today, LLL technology adoption is high. Of the farmers being aware of LLL technology, 

84% in Punjab and 85% in western Uttar Pradesh had already used it at some point at 
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the time of our survey. In Punjab, 4% of the farmers knowing LLL technology own the 

machinery themselves and also act as private service providers. In western Uttar 

Pradesh, only around 1% of the farmers reported to own LLL machinery themselves. 

 

3.5.2 Adoption of the technology 

 

In the survey, we asked farmers about when LLL and related services became first 

available in their villages and when they started using this technology themselves. Figure 

3.3 shows that availability and adoption follow a parallel growth trend over time in both 

regions, whereby adoption occurs with a slight delay. This delay is consistent with 

Krishna et al., (2012), who showed that LLL technology was available in many villages in 

the late 2000s but not yet widely adopted at that time. Early adopters already used the 

technology back then, but more widespread adoption only started after 2010. Education 

programs spearheaded by the Department of Farm Power and Machinery of the Punjab 

Government, which began around 2007 and were then upscaled in later years, may have 

played some role for wider technology adoption. These education programs targeted 

farmers, machinery operators, and also leaders of local cooperative societies (Sidhu et 

al., 2008). 

In Punjab, the majority of the LLL adopters use service providers from within 

the same villages, accounting for around 60% of the total (Appendix Table 6.6). As 

mentioned, in western Uttar Pradesh fewer farmers own LLL machinery, so service 

providers often come from outside the village. In both regions, most of the service 

providers are private enterprises, mostly farmers themselves. Co-operative societies 

and larger custom hiring centres play some role for LLL services in other parts of India 

(Villalba et al., 2024), but their role in Punjab and western Uttar Pradesh is small. The 

reason is probably that many farmers in Punjab and western Uttar Pradesh own a 

tractor, so buying additional LLL equipment and also renting it or providing the service 

to others is easier than in regions where very few farmers own a tractor. 
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Figure 3.3: Cumulative share of LLL adopters in northwestern India, 2000-2020 

Note: We restructured the data from a cross-sectional form to a panel form for the years 2000 

to 2021 based on farmer recall, with a new dummy variable equal to one since the laser land 

leveller was first accessible in the village and adopted in the respondent’s farm. WUP – 

western Uttar Pradesh.  

 

Rental charges for LLL machines and services have shown a consistent increase 

between 2018 and 2021 (Appendix Table 6.6). In Punjab, the rental fee was Rs. 800 

(~$11) per hour in 2021, slightly higher than the Rs. 750 (~$10) charged in western Uttar 

Pradesh. During the survey, respondents were also asked whether they received any 

discounts from service providers for their first-time use. While no public programs to 

subsidize LLL services were in place, 1-2% of the sampled farmers reported to have 

received such discounts for their initial use. Private service providers have their own 

pricing strategies and may offer discounts to increase their customer base. In their study 

in eastern districts of India, Lybbert et al., (2018) found that offering a first-hour service 

discount can be an effective strategy to increase the likelihood of LLL adoption among 

smallholders. 
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Figure 3.4: Share of LLL adopters based on the frequency of technology use 

Source: Primary data collected by authors (2021).  

 

Figure 3.4: Share of LLL adopters based on the frequency of technology use 

Figure 3.4 looks at the frequency of LLL use among sample farmers. Around 

72% of the farmers in Punjab and 74% of the farmers in western Uttar Pradesh have 

used LLL at least once in their life. However, in Punjab the technology seems to be used 

more frequently: 63% of the farmers used the technology during the three years prior 

to the survey (2018-2021) and 37% used in in the last season (2020/21). These usage 

rates in Punjab are higher than those observed in western Uttar Pradesh (42% and 17%, 

respectively). One reasons for the less frequent use of LLL in western Uttar Pradesh is 

the widespread cultivation of sugarcane. Sugarcane is kept in the field for two years, the 

first year and the ratoon year, meaning that a crop rotation with either wheat or rice 

takes at least three years to complete. Other possible reasons may relate to differential 

impacts or perceived impacts of LLL technology, which we analyse below. 

 

3.5.3 Farmers’ perceptions of technology effects 

 

In the survey, we also asked farmers about their perceptions of technology effects, 

especially on how LLL influences their farming operations, with a particular focus on 
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their main Kharif season crops. These perceptions are summarised in Table 3.2, 

separately for Punjab and western Uttar Pradesh. Farmers’ perceptions of LLL are quite 

positive, which is unsurprising given the high adoption rates and is also in line with 

previous research (Dessart et al., 2019). In both states, most farmers consider LLL to be 

yield- and income-increasing, and almost all farmers feel that the technology reduces 

the quantity of irrigation water use. These views are largely consistent with available 

impact research, suggesting that LLL can increase yields by about 5% and reduce 

irrigation water usage by 25% (Ali et al., 2018; Aryal et al., 2020; Larson et al., 2016; 

Lybbert et al., 2018; Pal et al., 2022; Sheikh et al., 2022). Field-trial results suggest that 

LLL-related yield gains in rice and wheat can even be higher (Jat et al., 2006). 

Table 3.2: Perceived impacts of LLL adoption on farming in northwestern India (share 

of adopters) 

  Punjab  
(n = 755) 

Western Uttar Pradesh 
(n = 344) 

Perceived effects of LLL 
adoption on:  R
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Farm income 0.03 0.79 0.17 0.01 0.02 0.64 0.34 0.00 
Grain yield 0.04 0.78 0.17 0.01 0.01 0.87 0.12 0.01 
Cost of cultivation 0.26 0.53 0.20 0.00 0.38 0.27 0.34 0.00 
Irrigation water use 0.94 0.05 0.01 0.00 0.98 0.01 0.02 0.00 
Weed infestation 0.51 0.08 0.40 0.02 0.57 0.01 0.42 0.00 
Burning of Kharif crop 
residue 0.32 0.31 0.35 0.02 0.28 0.01 0.70 0.02 
Land use intensity 0.21 0.47 0.28 0.04 0.01 0.22 0.76 0.01 

Note: n- number of adopters 

 

Despite the positive overall perceptions of LLL in both Punjab and western 

Uttar Pradesh, some differences between the states can also be observed in Table 3.2. 

For instance, a greater proportion of farmers in Punjab (79%) than in western Uttar 

Pradesh (64%) reported increases in farm income due to LLL. In contrast, a higher 

percentage of farmers in western Uttar Pradesh (87%) than in Punjab (78%) reported 

grain yield increases. These differences suggest that there may be regional disparities 
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not only in terms of perceptions but possibly also in terms of actual impacts of LLL 

technology, which could have an influence on regional adoption rates. 

 

3.5.4 The role of service providers 

 

We now present and discuss the regression results, with a particular focus on how the 

availability of service providers influences farmers’ LLL adoption. Results from the probit 

model explained in Eq. 3.1 above are summarised in Table 3.3, column (1). The number 

of LLL service providers in or nearby the individual farmer’s village is positively 

associated with LLL adoption in 2020/21, even though the coefficient is not statistically 

significant. The marginal effects for different numbers of service providers are shown in 

Figure 3.5a. We see a slight increase in predicted adoption probability with an increasing 

number of service providers, yet with relatively large confidence intervals. These 

patterns suggest that the effects of service providers may be heterogenous, which we 

will further explore below. 

Relevant control variables were included in estimation with the more detailed 

results shown in Appendix Table 6.7. Various socioeconomic variables are positively and 

significantly associated with LLL adoption, including involvement in non-farm 

employment, wealth (asset ownership), and discounts on the first-time use of LLL 

services. A few village-level variables are also positively associated with individual LLL 

adoption, namely the proportion of LLL adopters in the village and proximity to the 

district centre. These results are plausible and consistent with earlier research on LLL 

adoption in India (Aryal et al., 2015; Ali et al., 2018; Lybbert et al., 2018; Pal et al., 2021; 

Villalba et al., 2024). Most of the plot characteristics (e.g., soil type, soil fertility) and 

farmer characteristics (e.g., age, education) are not statistically significant. 
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Table 3.3: Probit model on determinants of LLL adoption (2020/21) 

 (1) (2) (3) 
Model 1  Model 2  Model 3  

Service providers in 2020/21 0.021    0.040**|#      0.032*|### 
(0.014) (0.019) (0.017) 

Plot size  -0.015 2.E-04|#  
(0.010) (0.014)  

Plot size x Number of service 
providers (interaction) 

 -0.007#  
 (0.005)  

Farm size         -0.013**|### 
  (0.005) 

Farm size x Number of service 
providers (interaction) 

    -0.003### 
  (0.002) 

Household-level controls Yes Yes Yes 
Plot-level controls Yes Yes Yes 
Village-level controls Yes Yes Yes 
Model intercept -1.160*** -1.179*** -1.355*** 

(0.373) (0.374) (0.375) 
LR Chi2 393.18*** 395.37*** 403.98*** 
Observations$ 2,815 2,815 2,815 
    
Marginal effects of the variables 
interacted 

   

Service providers in 2020/21 0.006 0.005 0.005 
 (0.004) (0.004) (0.004) 
Plot size -0.005 -0.005*  
 (0.003) (0.003)  
Farm size     -0.006*** 
   (0.002) 

Note: *** shows significance at 1%, ** shows significance at 5%, and * shows significance at 
10%. ###shows joint significance at 1%, and #shows joint significance at 10%.  $The analysis is 
based on plot-level data from Punjab and western Uttar Pradesh, excluding households owning 
LLL machinery themselves (124 plots). In western Uttar Pradesh, we dropped plots on which 
sugarcane ratoon crop was grown in 2020/21 because levelling cannot be done before the 

sugarcane ratoon crop (436 plots). Full model results are provided in Appendix Table 6.7.  
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5a. 5b. 

 

 
5c.  

 

 

Figure 3.5: Marginal effects of the number of service providers on LLL adoption 

 

Source: Estimated from regression models (1) to (3) in Table 3.3.  

Note: The figure shows marginal effects calculated at sample mean values and adjusted 

predictions with 95% confidence intervals. The vertical axis shows the predicted probability of 

LLL adoption. In panels 5b and 5c, predictions are shown for the 10th (p10), 25th(p25), 50th(p50), 

75th(p75) and 90th(p90) percentile values of plot size and farm size(total cultivated area), 

respectively. 

 

3.5.5 Heterogenous effects of service providers 

 

As explained, we are also interested in understanding whether the local 

availability of service providers has differential effects on LLL adoption by plot and farm 

size. The results from the probit models explained in Eq. 3.2 and Eq. 3.3 are summarised 

in Table 3.3, columns (2) and (3). In model (2), we include plot size and an interaction 

term between plot size and the number of service providers locally available. Both 

variables are not significant individually, but they are jointly significant with the number 
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of service providers. In model (2), the effect of the number of service providers is now 

also significant and larger than in model (1), suggesting the following interpretation: 

when controling for plot size and interaction effects, the number of service providers 

locally available influences LLL adoption positively. Further, the negative interaction 

term coefficient suggests that the positive adoption effect of service providers 

decreases with increasing plot size, or, in other words, the service provider effect is 

larger on small plots than on large plots. 

To provide more clarity, using the estimates from model (2), we plot the 

marginal effects of service provision on adoption for different plot sizes in Figure 3.5b 

As can be seen, the number of service providers has a larger positive effect on LLL 

adoption on smaller plots than on larger plots. In other words, the proliferation of 

service providers in the local contexts makes the technology more accessible to farmers 

with small plots. These results support our hypotheses H1 and H2. 

Model (3) in Table 3.3 (column 3) and Fig. 5c show alternative estimates where 

farm size (area cultivated) is used instead of plot size. The effects are consistent with 

those of model (2). The number of service providers is positively and significantly 

associated with LLL adoption, but the negative interaction term coefficient suggests that 

this effect is primarily observed among smaller farms. Interestingly, farm size as such 

has a significantly negative association with LLL adoption, meaning that larger farms are 

somewhat less likely to adopt LLL technology than smaller farms. This negative 

association may be related to larger farms already having higher yields and easier access 

to irrigation water, which would lower the marginal benefits of LLL and thus decrease 

their incentives to adopt. However, a more detailed analysis of the impacts of LLL on 

small and large farms is beyond the scope of this study and would deserve further 

scrutiny in follow-up research. 

The analysis in Table 3.3 captures the determinants of LLL adoption in 2020/21, 

corresponding to the last season prior to the survey. However, even adopters do not use 

LLL technology in every season. The frequency of LLL use depends on several local 

agroecological factors (Nguyen-Van-Hung et al., 2022). In Table 3.4, we estimate the 

same probit models but now redefining the adoption variable to look at LLL use in any 
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of the three years prior to the survey (2018/19 to 2020/21). The findings in Table 3.4 are 

similar to those in Table 3.3. When controlling for plot size and farm size, the number of 

service providers has a positive effect on LLL adoption, especially among the smaller 

farms and those with smaller plots. These results underscore the importance of 

customizing agricultural support services to the specific needs of different farm sizes. 

This is the first study which shows the role of individual service providers as an 

institutional mechanism for the adoption of invisible technology.  

 

Table 3.4: Probit model on determinants of LLL adoption in at least one of the previous 

three years (2018/19-2020/21)  

 (1) (2) (3) 

Model 1  Model 2  Model 3  

Service providers in 2020/21 -0.003 0.013# 0.024### 
(0.012) (0.016) (0.015) 

Plot size 0.018** 0.030***|#  
(0.008) (0.011)  

Plot size x Number of service 
providers (interaction) 

 -0.006#  
 (0.004)  

Farm size   0.010***|### 
  (0.004) 

Farm size x Number of service 
providers (interaction) 

  -0.005***|### 
  (0.002) 

Household-level controls Yes Yes Yes 
Plot-level controls Yes Yes Yes 
Village-level controls Yes Yes Yes 
LR Chi2 521.34*** 523.73*** 527.66*** 
Observations$ 3,237 3,237 3,237 

Marginal effects of the variables 
interacted 

   

Service providers in 2020/21 -0.001 -0.002 -0.004 
 (0.004) (0.004) (0.004) 
Plot size 0.006**  0.006**  
 (0.003) (0.003)  
Farm size   8.E-05 
   (0.001) 

Note: *** shows significance at 1%, ** shows significance at 5%, and * shows significance at 10%. 
### shows joint significance at 1%, and # shows joint significance at 10%. $The analysis is based on 
plot-level data from Punjab and western Uttar Pradesh, excluding households owning LLL 

machinery themselves (124 plots). Full model results are provided in Appendix Table 6.8.  
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3.6 Summary and conclusion 

In this article, we have used LLL as an example to better understand how 

private service providers can facilitate inclusive dissemination of indivisible technologies 

among smallholder farmers with fragmented plots. We have analysed how improved 

access to LLL renting services, measured by the number of service providers locally 

available either in the village or nearby, influences individual technology adoption and 

use. We hypothesised that (H1) a larger number of service providers would lead to more 

adoption, and that (H2) this effect would also and especially be observed for small farms 

and small plots. The study results confirm these two hypotheses. Our regression 

estimates show that the number of service providers is positively associated with the 

likelihood of LLL adoption and that the marginal effect of service providers is larger on 

small farms and plots than on large farms and plots. In other words, small farms and 

plots benefit over-proportionally from better access to LLL service provision. Important 

to note is that the service providers in northwestern India are predominantly private 

enterprises, mostly farmers themselves and are different from custom hiring centers 

and co-operatives. 

Our findings presents a first-hand compelling case for re-evaluating traditional 

agricultural technology scaling models to include individual service providers for 

broader and more inclusive adoption. From a policy perspective, policies that promote 

transparent service provision in competitive rental markets can therefore help to foster 

smallholder-inclusive technological change. More generally, our results suggest that an 

institutional environment that accommodates the specific needs of different types of 

farms can enhance broad-based innovation in the small farm sector, thus contributing 

to sustainable productivity growth and environmental efficiency. 

A few limitations of our study should be mentioned. First, our regression 

estimates show associations between the number of service providers and LLL adoption, 

which should not be interpreted as rigorously-identified causal effects. Second, the 

results from northwestern India cannot simply be generalized to other countries and 

regions. In Punjab and western Uttar Pradesh, many farmers own a tractor, which 

facilitates the purchase of LLL equipment and the emergence of competitive rental 
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markets. The ramifications may be different in settings where most farmers do not own 

a tractor. Third, while LLL is an indivisible technology, its characteristics may be peculiar. 

For instance, LLL is typically not used by farmers every year, so farmers who own the 

machinery are particularly interested to also rent it out to others for more efficient use. 

Follow-up research with data from other regions and referring to other types of 

technologies may be useful to further add to our understanding of how the adoption of 

indivisible technologies in the small farm sector can be promoted through suitable 

institutional mechanisms. 
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Chapter 4 : Laser land levelling technology mitigates groundwater decline in 

northwestern India1 

 

Abstract  

 
Groundwater levels are declining globally due to intensive extraction for agriculture. 
While various technologies and policies have been introduced to slow down this decline, 
their effectiveness is debated because water savings at the farm level do not always 
translate into improvements at the groundwater level. We assess the impact of laser-
assisted precision land levelling, a technology that reduces irrigation water use, one of 
the most successful technologies in the post-Green Revolution era with respect to area 
under adoption and the number of adopters in northwestern India and Pakistan. We 
combine primary data collected from 291 villages in northwestern India with 
groundwater data from 3286 observational wells for a period of 21 years (2000-21). 
Since the technology was introduced in villages at different times, we employ a 
staggered difference-in-difference approach to estimate the effect of laser land levelling 
(LLL) adoption at the village on the groundwater level. We find a rapid decline in 
groundwater levels in the study region by up to 20 meters from 2000-21. Our analysis 
shows that the adoption of LLL has reduced groundwater decline by 3.7 meters in May, 
the month directly succeeding in the use of technology. This finding suggests that LLL 
mitigated the effect of groundwater decline in northwestern India. We relate this effect 
to the widespread adoption of LLL and the fact that the technology directly changes 
farmers' irrigation practices. Yet, considering the intensity of the extraction rates, 
technology alone cannot solve the current decline in groundwater in northwestern 
India. 
 

Keywords: groundwater conservation, sustainable production system; agricultural 
technology, staggered difference in difference 
JEL codes: O13, Q14, Q16, Q25 
 
 
 
 
 
 
 
 
 

                                                      
1 This is a joint paper with Christoph Kubitza, Trevor Tisler, Vijesh V Krishna, and Matin Qaim. 

Subash Surendran-Padmaja developed the research idea, collected and analyzed the data, and wrote the 
paper with support from the other co-authors. 
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4.1 Introduction 

 

Globally, the groundwater as permanent aquifer storage is declining at a rate of 17 

km3/year (Hasan et al., 2023). The depletion of groundwater is primarily due to the 

withdrawal of groundwater for irrigation (Wada et al., 2014). This decline is a major 

threat to global food security, not only in the countries growing crops based on irrigation 

systems but also in those importing, since 11% of the non-renewable groundwater is 

embedded in the international trade of crop commodities (Dalin et al., 2017). 

Northwestern India is experiencing one of the fastest rates of groundwater depletion in 

the world (Seo et al., 2023). Under the current scenario, modelling results show that in 

the overexploited regions in northwestern India, groundwater levels could decline at a 

rate of 2.8 m/year (Shekhar et al., 2020). The widespread cultivation of rice-wheat 

cropping systems, combined with extensive flood irrigation, subsidy on electricity for 

irrigation is attributed as the primary driver of this rapid groundwater depletion (Joseph 

et al., 2022). While heavily input-intensive, these cropping systems are essential to local 

food security and contribute to 63% of the calorie intake of the people in the region 

(DeFries et al., 2015). The declining groundwater level is, however, already negatively 

impacting crop yields (Bhattarai et al., 2021) and increase in energy required for 

extraction and investment for deepening groundwater wells (Sayre & Taraz, 2019). With 

the current rate of groundwater decline will result in a 68% reduction in cropping 

intensity based on estimates, which is a major threat for local livelihoods and food 

security (Jain et al., 2021b).    

Several technologies and policies exist to address the groundwater decline 

caused by agricultural production in India (Devineni et al., 2022; Kumar et al., 2022). Two 

widely studied policy-based solutions include banning the sowing of rice crops before 

June (Kishore et al., 2024; Tripathi et al., 2016) and incentivising water savings using 

payments (Fishman et al., 2016; Mitra et al., 2023). Their impact on groundwater decline 

has been ambiguous, with studies showing positive (Mitra et al., 2023; Tripathi et al., 

2016), negative (Kishore et al., 2024; Sekhri, 2012), and no effects (Fishman et al., 2016). 

Another widely promoted solution is diversifying or switching to crops with lower water 
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requirements (Chakrabortty et al., 2023). Despite several efforts to diversify the 

cropping system, India's prevailing price support mechanism provides little incentive for 

farmers to switch to alternative crops (Chatterjee et al., 2024). Given this policy 

framework, interim solutions are needed that can be integrated into the existing 

cropping system.  

This study examines a technological intervention—laser-assisted precision 

land levelling or laser land levelling (LLL)—as an alternative possible solution for 

addressing groundwater decline. LLL is a precision guide system used to level the land 

during the land preparation before the sowing of crops. The levelled land ensures 

uniform water distribution, which reduces water wastage (Lybbert et al., 2018). Existing 

studies show that adopting LLL leads to water savings of 25% at the farm level (Aryal et 

al., 2018b, 2020; Lybbert et al., 2018). The technology has been promoted since 2001 by 

the Consortium of International Agricultural Research Centers (CGIAR), including the 

International Rice Research Institute (IRRI) and the International Maize and Wheat 

Improvement Center (CIMMYT), in collaboration with the Indian Council of Agricultural 

Research (ICAR) and State Agricultural Universities in northwestern India (Aryal et al., 

2018b). LLL can be easily integrated into the existing farming system, as land levelling is 

already a common practice in the region. Laser land leveller is an indivisible technology, 

i.e., unlike new seeds and fertilisers, the technology cannot be tested in small quantities 

and owning the technology is not economically viable for farmers with small 

landholdings (Lu et al., 2016). In response, farmers adopt LLL by renting in the 

technology from individual private service providers.  Though there are no data on the 

number of service providers, the number of LLL machinery in Punjab and western Uttar 

Pradesh increased from less than 1,000 in 2003 to more than 90,000 in 2015 (Surendran-

Padmaja et al., 2024). Parallelly, local designing, assembling, and manufacturing of LLL 

machinery emerged in the region (Paudel et al., 2023).  As a result, approximately 80% 

of farmers in northwestern India had adopted this technology, with varying levels of 

frequency and intensity, as of 2021 (Surendran-Padmaja et al., 2024).  

While several technologies have been proposed for groundwater conservation, 

their efficacy is often questioned, as water savings at the farm level may not translate 
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into meaningful reductions at the groundwater or aquifer level. For example, Joseph et 

al. (2022) show that introducing water-saving drip irrigation does not change the 

groundwater depletion trends in northwestern India. Similarly, Fishman et al. (2023) 

show that introducing drip irrigation does not reduce the hours spent pumping irrigation 

water, as farmers switch to different crops and trade the surplus water. Pfeiffer and Lin 

(2014) have also noted that increasing water efficiency in crops may not reduce 

groundwater extraction as farmers shift to water-intensive crops or expand irrigated 

acreage. This phenomenon is recognised as the ‘rebound effect’ or Jevons paradox, 

where the increase in efficiency on resource use will generate an increase in 

consumption of the resources (Alcott, 2005). Rebound effects have already been 

observed, for example, in the case of agriculture and soil management technologies and 

policies (Paul et al., 2019; Wheeler et al., 2020).   

To address the lack of studies going beyond the farm level and to consider 

potential rebound effects with respect to the widely popular LLL, we assess the effect of 

the technology on groundwater declines at the village level. Hence, we move from crop- 

or farm-level effectiveness to system-wide effectiveness, the technology's ability to 

reduce groundwater decline at scale, which is its intended goal. The study also makes 

two additional contributions to the literature. First, our study is unique in that it 

investigates a technology with a relatively high adoption rate in small-scale farming, 

which is uncommon due to typical barriers to technology adoption. This provides an 

opportunity to assess whether a technology that has reached its full adoption potential 

can have a measurable impact at larger scales. Second, the technology co-exists with 

other policy solutions, which allows us to compare it with other policy alternatives.  

Our analysis primarily focuses on the causal estimate of the adoption of LLL 

technology on groundwater. We merge primary survey data collected from 291 Indian 

villages on technology adoption with spatial data on groundwater and precipitation. We 

leverage the variation in adoption timing across villages to estimate its impact. Our 

analysis shows that the adoption of LLL has reduced groundwater by 3.7 meters in the 

months, directly succeeding in the use of technology. Considering a groundwater decline 

of 20 m over study period from 2020-21 and an average reduction in groundwater 
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decline of 3.7 meters, using the technology could have resulted in an 18% reduction in 

groundwater depletion. Our study hence suggests that LLL has a potential effect in 

saving groundwater. However, considering the intensity of the extraction rates, 

technology alone cannot solve the current decline in groundwater in northwestern 

India. 

 

4.2 Data 

We use three datasets for empirical analysis: (1) primary data collected 

through a village-level survey of key informants in the northwestern India in 2021 and 

2023, (2) monthly weather (rainfall) data extracted from the Climate Hazards Center, 

University of California Santa Barbara-Climate Hazards Group InfraRed Precipitation 

with Station data (CHIRPS) (CHIRPS, n.d.) (3) monthly groundwater level data collected 

by the Central Groundwater Board (CGWB) of Government of India. Groundwater level 

is the depth at which groundwater is found below the groundwater surface measured 

in meters (m).   

  

 

Figure 4.1: Study area villages in northwestern India 

Note: In Punjab, Western Uttar Pradesh, and two districts of Haryana, the surveys were 
conducted in 2021-22 and 2022. In four districts of Haryana, the survey was conducted in 
2022-23.  
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For the village-level survey, we collected data from 291 randomly selected 

villages across 17 districts in the northwestern Indian states of Punjab, Haryana, and 

Western Uttar Pradesh. These 17 districts, chosen from a total of 70, were purposively 

selected as they are key areas for rice-wheat cropping systems. The village sample is 

hence representative for the rice-wheat growing region of northwestern India. The data 

were collected using tablets with the Open Data Kit (ODK) software. We restructured 

the data from a cross-sectional form to a panel form for 2000 to 2021, with a new 

dummy variable equal to one for the years since the laser land leveller was first adopted 

in the village. We have shown a visual representation of the sampled villages in Figure 

4.1. We use the village-level GPS coordinates collected during the survey to extract the 

rainfall data from the CHIRPS database. 

 

a. One-to-one match b. Average of all 
nearest 
observational wells  

c. One-to-one match 
within aquifers 

   
Legend 

 
Figure 4.2: Different approaches of matching observation wells with sample villages 

Since we do not have the village-level groundwater data, we used the 

groundwater level data recorded by the nearest observational well of CGWB as a proxy 

for the village-level groundwater level. We merged the village-level survey with 

groundwater level data using the GPS locations, matching the village with the nearest 

observation well (Figure 4.2a). We also use a sub-set of data matching the villages with 
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the nearest observational well with two cut-off distances (15 km and 20 km). We used 

the geonear package in Stata software to merge the dataset based on the nearest GPS 

points (Picard, 2010). We dropped the observation wells where data were missing for 

all the months. We used different approaches of matching observational well with 

sample well for robustness (Figure 4.2). First, instead of matching the village with a 

single observational well (one-to-one match), we also estimated an average of the 

nearest observational wells by allocating the nearest observation wells to each village 

(Figure 4.2b). A single well observation could be biased due to the type of well and 

topography. Second, we also constrained the matching based on the same aquifers 

(Figure 4.2c). We used the aquifer shape files from CGWB to identify the aquifer where 

the village and observational well are situated.  

In the groundwater level dataset, CGWB has been collecting monthly water 

table levels from roughly 3286 observation wells in the study region. The monthly 

observation is not frequent, i.e., data are unavailable for many months over the period, 

leading to missing data problems in the dataset. Previous studies assessing the effect of 

groundwater level using CGWB data have used an average of several months before and 

after the monsoon season as a pre-monsoon and post-monsoon (Gupta, 2023; Tripathi 

et al., 2016). Since the water table level is seasonal and fluctuates even between 

months, we use monthly data for the months of January, May, August, and November 

similar to Sekhri, (2012) from 2000 to 2021. Though the selection of months is based on 

data availability, these months coincide with the crop-growing season (Figure 4.3). The 

region's two main crop production systems are rice-wheat and sugarcane-wheat. LLL is 

mostly performed from April to May before planting rice in the rice-wheat production 

system and from March to April before planting sugarcane in the sugarcane-wheat 

production system. Rice is planted (transplanted) in early June and harvested in 

November, followed by wheat grown in November and harvested in March.  

In the sugarcane-wheat production system, sugarcane is planted in May and 

after 9-10 months harvested the following January (Figure 4.3). This is followed by a 

ratoon sugarcane crop harvested in November. Subsequently, wheat is planted in 

November and harvested in February of the following year. The groundwater level in 
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May reflects the immediate impact of LLL on the initial irrigation stages, such as land 

preparation and puddling, for rice and sugarcane planting. The groundwater level in 

August, on the other hand, provides insight into the effect of LLL on rice irrigation and 

its subsequent impact on groundwater levels. Groundwater levels in November and 

January are expected to exhibit only a limited impact of LLL, as the effects of rainfall 

would likely have already diluted the technology's influence. These effects may even 

affect the data from August since the monsoon season in the region is starting in June. 

 

a. Rice-Wheat production system  b. Sugarcane-wheat production 
system 

 
 

Figure 4.3: Major crop production systems in northwestern India 

Using four different time points throughout the year also allows us to account 

for the mitigating effects of lateral groundwater flows on our estimates. Villages that 

overexploit their water resources may exhibit lower groundwater levels compared to 

neighbouring villages that adopt water-saving technologies. However, due to 

hydrological processes and the characteristics of aquifers in northwestern India, 

groundwater will eventually flow into the overexploited areas over time, restoring 

equilibrium. This process dilutes the observable impact of water-saving technologies on 

groundwater levels within the respective village over time and we expect more muted 

impacts for the months of November and January. Therefore, it is crucial to conduct 

measurements during different months throughout the year to capture these dynamics. 

 

4.3 Estimation strategy 

To estimate the impact of laser levelling technology on ground water table in 

a non-randomized experiment (observational data) setting, we control for factors likely 
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to affect both treatment and outcome. We can hence first estimate the following basic 

Eq. 4.1: 

 

𝑊𝑖𝑡 =  𝛼𝑖 +  𝛽𝐷𝑖𝑡 + 𝛿𝑅𝑖𝑡 +  ∅𝑃𝑖𝑡 +  𝑢𝑖 +  𝑒𝑖𝑡  Eq. 4.1 

 

Where, 𝑊𝑖𝑡 is the groundwater level (depth in meters) for village i at time t. 𝐷𝑖𝑡 

is the dummy variable, which is one for every year since the LLL technology was adopted 

in the village. 𝑅𝑖𝑡 is the total rainfall (mm) for the months preceding and including the 

month of observation of groundwater level, and 𝑃𝑖𝑡 is a dummy variable capturing policy 

changes that affect irrigation patterns such as the introduction of the Punjab 

Preservation of Sub-soil Water Act in 2009 which bans sowing of rice before 10th June 

every year and the Haryana Preservation of Sub Soil Water Act in 2009 which prohibits 

sowing of nursery and transplanting of rice before notified dates. However, Punjab 

started implementing its law in 2006 by rationing the electricity (Sekhri, 2012). For 

Punjab, we designate the years after 2006 as the post-policy period, while for Haryana, 

the post-policy period begins with the years after 2009. 𝛽 is the coefficient of interest 

showing the effect of adopting the LLL technology.  𝑢𝑖  is the within-entity error term, 𝑒𝑖𝑡 

is the overall error term. For January, the treatment variable lagged by one year since 

the effect of adoption would be only visible the season after the technology was used 

(see Figure 4.3).  

To reduce the potential bias from unobserved characteristics, the canonical 

difference-in-difference (DiD) model is a common standard if panel data are available. 

In the DiD approach, the treatment dummy interacts with a time dummy (pre-post), 

which can be extended to the two-way fixed effects (TWFE) model if additional unit or 

periods are added. However, if adoption did not happen in the same year but rather in 

a staggered manner, these models can be severely biased. Although previous studies 

have used TWFE for staggered adoption, recent literature has criticised this approach. 

Roth et al. (2023) have reviewed the shortcomings of using TWFE in such settings and 

summarised different alternative methods. The main criticisms of using canonical DiD 

are: i) in case of treatment effect heterogeneity (staggered treatment), the coefficients 
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of the TWFE model might not accurately reflect the true treatment effect since one 

combines both comparisons of treated and not-yet-treated units (clean comparison) 

with comparisons of later-treated units and earlier-treated units (forbidden comparison) 

due to leads and lags, ii) in such cases the parallel trend assumption is also violated. 

Recent studies suggest several alternative approaches to the canonical DiD (Borusyak et 

al., 2024; Callaway & Sant’Anna, 2021; De Chaisemartin & D’Haultfœuille, 2020; 

Goodman-Bacon, 2021; Sun & Abraham, 2021).  

We choose the approach of Callaway & Sant’Anna (2021), which allows us to 

examine the impact of LLL having only a binary treatment but a dynamic effect since the 

village area where the technology is adopted increases due to a staggered rollout of the 

technology. The approach also allows testing for conditional parallel trends and is 

flexible in aggregating the results with small-size cohorts. Callaway & Sant’Anna (2021) 

also assume in their staggered DiD approach that the treatment is irreversible and that 

there is negligible anticipation of treatment. The empirical model is denoted as Eq. 4.2:  

 

𝑊 =  𝛼1
𝑔,𝑡

+  𝛼2
𝑔,𝑡

. 𝐺𝑔 + 𝛼3
𝑔,𝑡

. 1{𝑇 = 𝑡} + 𝛽𝑔,𝑡. (𝐺𝑔 ∗ 1{𝑇 = 𝑡})

+  𝜋. 𝑋 +  𝜀𝑔,𝑡 

Eq. 4.2 

 

where 𝑊 is the outcome of interest for a village in treatment group period g 

and time period t, where 𝑡 = 1, …  𝕋. 𝐺𝑔 is a dummy variable equal to one if a unit is first 

treated in the period g. Treatment is determined when a village adopts the technology, 

1{𝑇 = 𝑡} is a dummy variable equal to one if the village adopts the technology at time 

t. We compare ‘not yet treated’ villages with treated villages since all the villages 

become treated by 2021. The advantage of using this approach is that the treatment 

and control villages are comparable.  

The average treatment effect is estimated with a conditional parallel trend 

based on a comparison of ‘not-yet-treated’ following a doubly robust method (Callaway 

& Sant’Anna, 2021). The group-time treatment effect is estimated by Eq. 4.3.  

 

𝐴𝑇𝑇(𝑔, 𝑡) =  𝔼[𝑊𝑡(𝑔) −  𝑊𝑡(0)|𝐺𝑔 = 1] Eq. 4.3 
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where ATT(g,t) is the expected difference between the outcome of interest for 

treated villages at time t and the counterfactual outcome at time t.  Since we use ‘not 

yet treated’ as the control group (henceforth comparison group), the composition of the 

group changes over time. To interpret the coefficients, we summarize the aggregate 

group-time treatment effects into a single parameter as Eq. 4.4:  

 

𝜃𝑔𝑠(𝑔) =  
1

𝕋 − 𝑔 + 1
 ∑ 𝐴𝑇𝑇(𝑔, 𝑡)

𝕋

𝑡=𝑔

 
Eq. 4.4 

 

where 𝜃𝑔𝑠(𝑔) is the aggregated group-specific effect for villages treated in 

period g for all post-treatment periods. The overall aggregation of treatment effects 

across all groups is estimated using Eq. 4.5. 

𝜃𝑔𝑠
𝑜 =  ∑ 𝜃𝑔𝑠(𝑔)𝑃(𝐺 = 𝑔|𝐺 ≤ 𝕋)

𝕋

𝑔𝜖𝔾

 
Eq. 4.5 

 

where 𝜃𝑔𝑠
𝑜  is the average effect of the adoption of LLL in the village. 𝑃(𝐺 =

𝑔|𝐺 ≤ 𝕋) is the weight giving preference to larger groups. Additionally, we again control 

for other confounding variables, such as rainfall and policy changes. The summary of 

variables used in the model is given in Appendix Table 6.9. Since study is a observational 

study, we henceforth refer treatment as post-adoption and control as pre-adoption.  

The interpretation of our results depends on three assumptions. First, we 

assume a linear increase in the adoption rate, which becomes stable over time. This 

assumption would be violated if some village dis-adopts the technology. However, 

based on village survey data, we see that the adoption rates increased over time. The 

second assumption is regarding parallel trends; we assume that the post-adoption and 

comparison groups have the same trend in groundwater level during the pre-adoption 

period. We test for the difference in the groundwater level trend of the post-adoption 

and comparison group in the pre-adoption period. The third assumption is that there is 

no spill-over effect, i.e., the adoption of LLL in the post-adoption village does not result 

in changes in the groundwater level in the pre-adoption village. This is a strong 
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assumption, as the effect could be bidirectional, especially if the post-adoption and pre-

adoption  villages are geographically close, so we might be underestimating the impact. 

Felbermayr et al., (2022) estimating the effect of weather anomalies, shows that 

spillover effects are very local and dissipate beyond the nearest region. We assume that 

the adoption of technology across villages happened in a diffusion pattern; the villages 

nearby are likely to be adopted in adjacent years. If this assumption holds true, the spill-

over effect would be negligible. We tested this assumption by checking for spatial 

correlation between adoption years in adjacent villages using Moran’s I coefficient 

(Deng et al., 2022).  

 

4.4 Results and Discussion 

 

4.4.1 Adoption and diffusion of laser land levelling in villages 

 

Since the introduction of the LLL technology in 2001 in India (Aryal et al., 

2018b), the adoption in villages has increased rapidly but in a staggered manner (Figure 

4.4). The trends in the adoption of LLL over the period show that widespread adoption 

of the technology only happened after 2010. Education programs spearheaded by the 

Department of Farm Power and Machinery of the Punjab Government, which began 

around 2007 and were then upscaled in later years that targeted farmers, machinery 

operators, and also leaders of local cooperative societies could explain the wider 

technology adoption post-2010 (Surendran-Padmaja et al., 2024).  

In general, the nature of technology and institutional innovations play a major 

role in technology diffusion. The laser LLL technology is accessed by most farmers from 

service providers who are farmers themselves in the same village or neighbouring village 

(Aryal et al., 2018b).  This has contributed to the diffusion of the technology in villages 

in a staggered fashion (Figure 4.5).  
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Figure 4.4: Cumulative share of adoption of laser land levelling in villages over the 

years in northwestern India 

Note: We restructured the data from a cross-sectional form to a panel form for the years 2000 
to 2021 based on key-informant survey, with a new dummy variable equal to one since the laser 
land leveller was first accessible in the village. WUP – western Uttar Pradesh.  
 
 

 

Figure 4.5: Diffusion of laser land levelling in villages in northwestern India 

Note: The dots represent villages, and the colour gradient shows the year in which the 
technology was adopted in the village. The contours depict the diffusion pattern of technology 
by year. Moran’s I values were significant at 1%, indicating that there is spatial autocorrelation 
between the village adoption years.  

0

10

20

30

40

50

60

70

80

90

100

C
u

m
u

lt
at

iv
e 

sh
ar

e 
(%

) 
o

f 
vi

lla
ge

s

Punjab Western Uttar Pradesh

Haryana Northwest India



 

72 

 

4.4.2 Trends in groundwater level 

We visualised the trend in the groundwater level in our sample for different 

months, comparing villages that adopted LLL (post-adopted village) and villages that did 

not adopt by a particular year  (pre-adopted village) (Figure 4.6). Overall, the depth of 

groundwater is increasing, depicting declining groundwater levels over time.  

Figure 4.6: Trend in average groundwater level in the pre-adopted and post-adopted 

villages 

Note: Data based on one-to-one matching of village and observational wells.  

 

For the month of November, the average groundwater level in 2000 was 6.5 

meters, which increased to 14 meters by 2021 in the pre-adopted villages. This suggests 

that from 2001 to 2021, the groundwater levels in the research region were declining at 

a rate of one meter per year. This estimate is lower compared to the estimates from 

other studies (MacAllister et al., 2022; Shekhar et al., 2020). However, it is important to 

note that groundwater depletion is not uniform across the region. Joshi et al. (2021) 

analysed the groundwater depletion of northwestern India from 1974 to 2010 and 

demonstrated that depletion rates varied significantly across different areas and are 
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found to be correlated with use of submersible pump, alluvial deposition architecture, 

and canals.  However, comparing the average groundwater levels in treated and no-yet 

treated villages using the mean of the reference year should be interpreted with caution. 

For example, the effect of laser land leveling on groundwater levels may take several 

years to materialize after initial adoption since village-wide adoption is likely to stretch 

across several years, diluting the observable trends shown in Figure 4.6. 

 

4.4.3 Effect of village-level adoption of laser land levelling on groundwater 

We estimate the village-level adoption of LLL on groundwater levels using the staggered 

DiD approach of Callaway & Sant’Anna (2021) (Table 4.1). We estimate the effect 

separately for different months, controlling for rainfall and policy factors. The estimates 

using the staggered DiD approach using a regression estimator show negative and 

statistically significant effects on groundwater decline in May. On average, the 

groundwater decline in the villages during the month of May, where the technology was 

adopted over a period of time, was reduced by 3.7 meters (Panel A). This is expected 

since May is immediately after LLL and the crops grown, both rice and wheat, have a 

higher water usage during this period. We find a similar estimate in case of the sub-

sample of data with cut-off distance between village and observational well as 15 km 

and 20 km distance. These cut-offs were used to retain both a reasonable number of 

observational wells to run regressions for the different regions as well as exclude distant 

wells. Restricting the distance to below 15 km yielded an insufficient number of 

observations.  For the month of August, the coefficient is negative but statistically 

insignificant in the case with no cut-off distance. However, we find a significant 

reduction of the groundwater decline in water levels in the sub-sample data with cut-

off distance between village and observational well of 15 km and 20 km distance (Panel 

B & C).  

As expected, the months of November and January show no significant effects, 

likely because the impact of rainfall and the soil's hydrological processes may have 

diluted the technology's impact. Since both post-adoption and pre-adoption village wells 

are in the same aquifer, water lateral flow happens between the post-adoption and pre-
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adoption village wells in the inter-year period. Wang et al. (2020) show that in deep 

aquifers, the groundwater lateral flow could replenish groundwater depression cones 

caused by over-exploitation.  

Table 4.1: Effect of laser land levelling on groundwater level 

 (1) (2) (3) (4) 
 January May August November 

Panel A: Without cut-off distance 
Laser land levelling 0.887 -3.729*** -2.449 0.030 
 (0.758) (1.134) (1.542) (0.780) 
Rainfall Yes Yes Yes Yes 
Policy dummies Yes Yes Yes Yes 
Observations 1603 2473 1565 3838 

Panel B: Distance between village and observation well (cut-off 20 km) 
Laser land levelling 1.145 -3.878*** -3.106* -0.272 
 (0.812) (1.061) (1.669) (0. .766) 
Rainfall Yes Yes Yes Yes 
Policy dummies Yes Yes Yes Yes 
Observations 1426 2282 1406 3571 

Panel C: Distance between village and observation well (cut-off 15 km) 
Laser land levelling 0.777 -4.019*** -3.899** -0.479 
 (0.869) (1.033) (1.740) (0.733) 
Rainfall Yes Yes Yes Yes 
Policy dummies Yes Yes Yes Yes 
Observations 1298 2142 1295 3368 

Note: The observation unit is a village. The outcome variable is village level groundwater level. 
The estimates are from staggered DiD model using outcome regression estimator based on 
ordinary least squares. The estimates are group averages with conditional parallel trend 
assumptions and have not yet been treated as a control. Estimated using csdid package in stata. 
The outcome variable is village level groundwater level. Units that were always treated are 
omitted. The estimates are based on one-to-one matching of village and observation wells 
(Figure 4.2a). *** shows significance at 1%, ** shows significance at 5%, and * shows significance 
at 10%.  
 

Similarly, Zeng et al. (2016) show that the offset of the over-exploited region 

by recharge through groundwater lateral flow is higher in plains compared to 

mountains. Joshi et al. (2018) show that aquifers in northwestern India are characterised 

as thick and plain with distinct lateral flows and argue that these recharge processes 

should be integrated in groundwater management plans. Overall, these lateral flows are 

an important component of groundwater recharge in the same aquifer (de Graff, 2022; 

Joshi et al., 2018; Wang et al., 2020; Zeng et al., 2016) and increasing the time gap 
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between groundwater level measurement and the post-adoption through LLL could 

attenuate the observable impact over time. It has to be noted that the inter-year and 

seasonal effect on water level as a result of technology use is yet to be explored, as 

authors note that seasonality plays an important role in the groundwater table in the 

region (Tripathi et al., 2016).  

 

4.4.4 Robustness and sensitivity checks 

We consider a couple of issues that could affect our estimates and grouped them into 

four major categories: i) selection of observation wells, ii) recall bias, iii) missing data, 

and iii) parallel trends.  

Selection of observation wells 

As outlined in the methodology section (Figure 4.2b, Figure 4.2c), we did two additional 

estimations.  First, apart from one-to-one matching, where we selected one 

observational well nearest to the village, we took an average of a number of wells in the 

proximity of the village. This is done to avoid the bias of generalizing the groundwater 

level based on single-well observation. However, the challenge with selecting a cluster 

of observational wells near the village is that multiple villages could share the same 

wells. To address this issue, we clustered the observational wells to villages so that the 

wells were mutually exclusive for villages, and the average of the wells was estimated. 

The second challenge is that wells located far from villages could be included in the 

calculation of the average, potentially distorting the results. Unlike in Table 4.1, where 

one-to-one matching is used, we instead matched the average groundwater depth from 

multiple wells near each village with village-level adoption data for Table 4.2 (see Figure 

4.2). In addition, we again use a distance cut-off of 15 km and 20 km between the village 

and observational wells.  The results show that with a 15 km cut-off distance, we observe 

a significant reduction of 1.7 m in May and 1.8 m in November. While these results align 

with our previous findings, we note the absence of significant results for a 20 km cut-off 

distance. This discrepancy may arise from biasing the groundwater level estimates for 

villages with nearby wells by including wells located too far from the village. 
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We further estimated the effect by selecting the one nearest well and defining 

that this well had to be exclusive for the respective village. We again find a statistically 

significant groundwater savings to an extent of 3 m in May (Appendix Table 6.10).  Due 

to the reduced number of observations resulting from the strict selection criteria for 

observation wells, these results should be interpreted with caution. However, these 

robustness checks confirm that our estimation for the month of May is robust to 

alternative approaches.  

Table 4.2: Effect of LLL on groundwater with average values for observation well data 

 (1) (2) (3) (4) 
 January May August November 

Panel A: Distance between village and observation well (<20 km) 
Laser land levelling -0.839 0.119 0.423 -0.420 
 (0.732) (0.663) (0.700) (0.558) 
Rainfall Yes Yes Yes Yes 
Policy dummies Yes Yes Yes Yes 
Observations 787 1140 798 1895 

Panel B: Distance between village and observation well (<15 km) 
Laser land levelling 1.388 -1.707*** 0.216 -1.891*** 
 (0.898) (0.560) (0.685) (0.679) 
Rainfall Yes Yes Yes Yes 
Policy dummies Yes Yes Yes Yes 
Observations 666 1006 691 1085 

Note: The observation unit is a village. The outcome variable is village level groundwater level. 
The estimates are from staggered DiD model using outcome regression estimator based on 
ordinary least squares.  The estimates are group averages with conditional parallel trend 
assumptions and have not yet been treated as a control. Estimated using csdid package in stata. 
Units that were always treated are omitted. *** shows significance at 1%, ** shows significance at 
5%, and * shows significance at 10%. 
 

In a second robustness check, we constrained the matching of the village and 

observational well within the aquifer using a map of aquifers within the region. Using 

the one-to-one matching approach, we found that 85% of the villages and observation 

wells were located within the same aquifers. To estimate the effects within aquifers, we 

utilised the average observation well data within a 15 km cut-off, focusing on villages 

and observation wells matched within the same aquifers (Table 4.3). For the month of 

May, the estimates closely align with the previous results presented in Table 4.2, Panel 

C. We find, however, a statistically significant positive effect for the month of January 

(2.5 m), which we cannot explain. However, we note that for the month of January, any 
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meaningful results are unlikely since the effect of LLL is likely to be diluted by 

hydrological processes in the soil and the monsoon season. We also suggest that reverse 

causality—where larger annual groundwater declines trigger LLL adoption—could have 

produced this specific result. In general, our model could involve reverse causality, with 

greater groundwater declines leading to LLL adoption as a response. However, this 

would imply a consistent positive relationship between LLL adoption and groundwater 

decline, which our analysis does not support. Overall, reverse causality would only 

dampen the negative effect observed across most specifications for the key month of 

May. 

Table 4.3: Effect of LLL on groundwater with 15 km cut-off distance matching within-

aquifer 

 (1) (2) (3) (4) 
 January May August November 

Laser land levelling 2.485** -1.474** -0.117 0.675 
 (0.999) (0.552) (0.729) (0.688) 
Rainfall Yes Yes Yes Yes 
Policy dummies Yes Yes Yes Yes 
Observations 549 872 603 1470 

Note: The observation unit is a village. The outcome variable is village level groundwater level. 
The estimates are from staggered DiD model using outcome regression estimator based on 
ordinary least squares.  The estimates are group averages with conditional parallel trend 
assumptions and have not yet been treated as a control. Estimated using csdid package in stata. 
Units that were always treated are omitted. The estimates are based on Table 4.2. Panel C: 
Distance between village and observation well (<15 km). *** shows significance at 1%, ** shows 
significance at 5%, and * shows significance at 10%.  
 

Recall bias  

The data on the first year of LLL adoption at the village level was collected using a key 

informant survey from each village. Beegle et al. (2012) and Wollburg et al. (2021) have 

discussed potential issues and reliability of recall data with long time intervals. To test if 

respondents provide consistent answers, we collected data from three key informants 

in each village in Haryana and western Uttar Pradesh on the first year LLL was adopted 

in the village. We used the Kruskal-Wallis equality-of-populations rank to test for 

differences in responses between the key informants (Appendix Table 6.11). The test 

shows that there is no statistically significant difference in the responses of key 
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informants in Haryana and western Uttar Pradesh, which suggests that our data are not 

suffering from individual recall bias. 

Missing data 

One issue with the panel data used in this analysis is the presence of missing values in 

the observational well data. Appendix Table 6.12 gives the extent of missing data 

calculated as the share of missing data in the total data points for 291 villages for 21 

years (6338 data points). The missing data vary across the months, with the highest 

share missing for August (61%) and the lowest for November (30%).  

Table 4.4: Effect of LLL on groundwater with imputation of missing groundwater data 

 (1) (2) (3) (4) 
 January May August November 

Panel A: Imputing missing data with district-level values 
Laser land levelling 0.983 -2.264* -2.915** -0.078 
 (0.632) (1.84) (1.141) (0.791) 
Rainfall Yes Yes Yes Yes 
Policy dummies Yes Yes Yes Yes 
Observations 3337 3760 3487 4521 

Panel B: Imputing missing data with district-level values and moving average 
Laser land levelling -2.425*** -3.878*** -3.953*** -1.691*** 
 (0.457) (0.588) (0.615) (0.556) 
Rainfall Yes Yes Yes Yes 
Policy dummies Yes Yes Yes Yes 
Observations 4484 4578 4471 5287 

Panel C: Imputing missing data with district-level values (cut-off 15km) 
Laser land levelling 0.652 -2.474*** -3.700*** -0.644 
 (0.677) (1.038) (1.093) (0.769) 
Rainfall Yes Yes Yes Yes 
Policy dummies Yes Yes Yes Yes 
Observations 2830 3560 3009 3936 
Panel D: Imputing missing data with district-level values and moving average (cut-off 15km) 

Laser land levelling -2.571*** -3.960*** -4.130*** -1.900*** 
 (0.492) (0.592) (0.630) (0.571) 
Rainfall Yes Yes Yes Yes 
Policy dummies Yes Yes Yes Yes 
Observations 3813 4258 3837 4588 

Note: The observation unit is a village. The outcome variable is village level groundwater level. 
The estimates are from staggered DiD model using outcome regression estimator based on 
ordinary least squares.  The estimates are group averages with conditional parallel trend 
assumption and have not yet been treated as a control. Estimated using csdid package in stata. 
The estimates are based on one-to-one matching of village and observation wells (Figure 4.2a). 
*** shows significance at 1%, ** shows significance at 5%, and * shows significance at 10%.  
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To account for the missing data, we imputed missing value using two 

approaches; first, we imputed the missing value with district-level average values 

provided by CGWB. Even with the imputed, the share of missing data was 20-30% 

(Appendix Table 6.13). We further took a moving average of district-level imputed value, 

reducing the share of missing data to 2-14% across the four different months. We 

estimated the effect of the adoption of LLL at the groundwater level using a staggered 

DiD model using two datasets: one with imputed values based on district-level data only 

and another with additional imputed values using a moving average approach (Table 

4.4).  The estimate again confirms our previous models. For Panel B, we even had 

significant effects across all four months. However, we caution that using a moving 

average is not ideal for a DiD setting. Additionally, the values for November and January 

remain smaller compared to those for May and August, supporting our assumption that 

the impact of LLL is most reliably assessed for May and, to some extent, for August. We 

conduct an additional robustness check using a cut-off of 15km for the imputed data in 

Panel C & D that confirms our previous findings. 

Parallel trends 

LLL, once introduced in the village, spread over the total cultivated area in the village. 

So, the effect of the adoption of LLL on groundwater in our village-level models is likely 

to increase after first initial adoption over time, eventually stabilizing once the adoption 

reaches its full potential. To visualise this dynamic effect, effects over time, we present 

event-study plots (Figure 4.7). We use a dataset with imputed values based on district 

level data to have sufficient data points and a cut-off of 15km to avoid using observation 

wells which are too far away from the surveyed villages (Table 4.4, Panel C). The x-axis 

is the length of the period of adoption, where negative values are periods before the 

adoption of technology and positive values after the adoption. The y-axis depicts the 

effect size, i.e., the average treatment effect of the treated (ATT). The y-axis values 

closer to zero and non-significant indicate that the parallel-trend assumption is fulfilled. 

The negative y-values after the zero-period of adoption show the effect of technology 

adoption on groundwater decline. The figure shows that the effects are growing over 

time for the months of May and August. This suggests that over time, the effects of 
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technology adoption are becoming more pronounced. This trend is reasonable because, 

as LLL is initially introduced in a village, the proportion of land that has been levelled—

and thus contributes to groundwater savings—gradually increases. As more farmers 

adopt the technology and implement it across larger areas, the cumulative impact on 

groundwater conservation becomes more significant. 

 

a. January b. May 

 

  
c. August d. November 

 

 

 

 
Figure 4.7: Event-study plot to test parallel pre-adoption trends  

Note: The x-axis is the length of the technology introduction, where negative values are periods 
before the adoption of technology and positive values after the adoption. The y-axis depicts the 
effect size, i.e., the average treatment effect on the treated (ATT). The dark points in the graph 
are estimated ATT values, and the boxes are confidence intervals at 95%. The blue colour 
represents the pre-adoption period, and the red colour represents the post-adoption period.  
 
 

4.5 Conclusion  

In this study, we investigate the impact of LLL, a technology-driven approach to address 

the rapid groundwater decline in northwestern India. We analyse how the village-level 

adoption of LLL impacted groundwater levels proxied by observational well data. Our 
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estimates show that the adoption of LLL led to a significant decrease in groundwater 

decline in May, the month following the use of technology, ranging from 1.4 to 4 m, 

while our preferred model suggests 3.7 m.  This suggests that the adoption of LLL has 

led to reduction in the water pumped for irrigation. Based on this average treatment 

effect, adopting the technology could have resulted in up to 20% reduction in 

groundwater depletion based on a decline of 20 m in groundwater levels over the study 

period, while more conservative estimates suggest a reduction by 7%. Multiple 

robustness checks confirm the direction and significance of the effect. We do not 

observe a consistent effect of technology use in the successive months, particularly 

November and January. This could suggest increased water usage in the months 

following May, potentially in response to LLL. However, this pattern has not been 

documented in any previous studies. We therefore assume that the null effects 

observed, particularly in November and January, result from monsoon rains and 

hydrological processes that dilute the immediate impact of the technology. In particular 

lateral flows below the surface, where groundwater is moving to overexploited areas 

from regions under less pressure, can over extended time gaps between groundwater 

measurement and LLL attenuate observable impacts in one village, though the seasonal 

effects on water levels remain underexplored. Overall, our analysis suggests that LLL has 

successfully reduced groundwater decline in the region at larger scales.  

The effect of LLL on groundwater savings is in particular notable comparing it 

to the often ineffective efforts documented in literature for other policies and 

technology solutions in the region. Sekhri (2012) shows that the regulation for delaying 

rice transplantation in Punjab and Haryana resulted even in an increase in groundwater 

decline. Sekhri (2012) argues that farmers might have responded to the policy by 

increasing the irrigation after mid-June transplanting. This result is similar to a recent 

study by Kishore et al. (2024) which show a similar adverse effect due to a government 

policy delaying rice transplanting where significant expansion of the area under rice and 

the extraction capacity of pumps post-policy implementation lead to increased water 

extraction. These policies were hence mostly ineffective since farmers did not reduce 

their overall irrigation but only delayed irrigation or changed other cropping practices 
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to maximise their returns from farming. LLL, however, achieved significant reductions in 

groundwater decline since, by design, it saves the groundwater required for irrigation. 

Our results suggest that technologies and policies aimed at reducing the groundwater 

decline should focus on directly changing the behaviour of the farmers with respect to 

irrigation.   

LLL was only effective since it was widely adopted by most farmers in the 

region. The energy costs for pumping groundwater are small, and farmers would have 

little incentive to adopt a technology that only saves energy costs. However, the 

technology also has other important co-benefits. Studies documented a significant 

increase in yield and income (Lybbert et al., 2018), while others noted that the aesthetic 

appeal of levelled fields further motivated adoption (Surendran-Padmaja & Parlasca, 

2024). This suggests that within a market where farmers have little incentive to save 

irrigation water, aligning other benefits with saving groundwater is essential. Our 

findings highlight that LLL could be an important technology for different regions to 

address groundwater challenges, even in settings where the economic costs of using 

additional irrigation water are low. 

However, in northwestern India, the extent to which water is saved using LLL 

technology is not enough to stop or reverse the decline of groundwater. The estimated 

current rate of groundwater decline in the region is higher than the estimated savings 

by LLL. Since the adoption rates are at their potential maximum, there is little scope to 

increase the benefits of the adoption of technology. Our study shows that, at best, 

technology could slow down the decline. It is, hence, pivotal to develop other 

technology—and policy-based solutions to address the decline in groundwater. 

Specifically, policies that raise the energy costs of groundwater use for irrigation, 

coupled with measures to offset the potential negative impacts on farmers' incomes, 

could encourage more sustainable resource use. While the intensive cropping systems 

in northwestern India have played a key role in ensuring the country's food security, 

their high resource intensity is now threatening both future food production and 

environmental sustainability in the long term. This study highlights how technological 

solutions can contribute to more sustainable agricultural systems. 
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Chapter 5 : General conclusion 

 

5.1 Summary of the dissertation 

 

The Green Revolution significantly increased the productivity of food crops and ensured 

food security in developing countries through the intensification of agricultural 

production systems. However, this intensification has led to negative environmental 

consequences, such as groundwater depletion, which threatens the sustainability of 

agricultural production systems. Additionally, existing agricultural production systems 

are becoming unsustainable due to rising food demand and groundwater exploitation. 

To meet future food needs, transitioning to more sustainable agricultural production 

systems that fulfil food and nutritional needs while minimizing negative environmental 

impacts is essential. There are technology and policy-based solutions that could help 

improve existing systems. This dissertation focuses on northwestern India, one of the 

world’s highest intensified agricultural production systems with alarming groundwater 

depletion rates. We studied the adoption and impact of laser land leveling (LLL) 

technology, a technology-based solution that reduces water use for irrigation adopted 

in northwestern India.   

In this dissertation, we explored three related research questions: 1) Why are 

farmers adopting LLL technology, 2) How were the farmers able to access the LLL 

technology, and 3) What is the effect of adopting LLL technology on groundwater levels? 

First, we analyzed how the perception of the individual farmer and the benefits designed 

by the technology developers influence the adoption of the technology. We collected 

primary quantitative survey data from 1021 farming households and conducted 

qualitative interviews in Punjab, India. We used a mixed method approach employing 

qualitative interviews and regression and a machine learning causal forest approach for 

quantitative analysis. The study finds that while LLL impacts yield and water savings less 

than expected, farmers' perceptions, electricity availability, and technology 

compatibility have encouraged widespread adoption.  

Second, we investigated the role of private service providers in the adoption 

of LLL. Using plot-level data from 1661 households across 84 villages in Punjab and 
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western Uttar Pradesh, we estimated the relationship between the number of service 

providers and the adoption of LLL, controlling for farm, household, and other contextual 

factors. The study particularly focused on the heterogeneous effect of the service 

provision on farm and plot sizes. The results show that a larger number of service 

providers is associated with a higher rate of LLL adoption. However, the effect of service 

providers on adoption vary by farm and plot size and are larger for smaller farms/plots, 

thus enabling small plot owners and farmers to adopt the technology.   

Next, we estimated the effect of the LLL adoption on village groundwater 

levels. We combined primary data from 291 villages on LLL adoption with groundwater 

data from 3286 observation wells and rainfall data for a period of 21 years (2000-21). 

We leveraged the variation in the adoption timing across the villages and employed a 

staggered difference-in-difference approach to estimate the impact of LLL adoption on 

groundwater. We find that the adoption of LLL has resulted in a decline in the 

groundwater level to an extent of 3.7 m in May, the month succeeding the use of the 

technology. The results suggest that LLL technology mitigates the groundwater decline 

in northwestern India.  

 

5.2 Policy implications 

 

Based on the findings from this dissertation, three specific policy points are 

recommended:   

 

1. Considering designed, perceived and co-benefits for LLL technology 

dissemination efforts 

In a conventional, linear technology dissemination framework, technologies are 

developed by researchers and transferred to farmers without any cross-learning. Our 

findings show that in the case of LLL technology adoption, beyond the benefits designed 

by the researchers, farmers realise new benefits (co-benefits) and perceive benefits 

based on their experience. Research and development institutions developing the 

technology should probe these co-benefits and understand farmers' perceptions of the 

technology. Investigating technology adoption in the later stages of adoption provides 
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scope for a feedback loop and the co-creation of knowledge. Policies promoting LLL 

technologies in other regions and countries should first consider identifying 

unanticipated co-benefits and perceived benefits by farmers and then bundling them 

with benefits designed by the researchers to drive adoption.  

 

2. Promoting private service provider as an institutional mechanism for ensuring 

inclusive adoption of technology 

Traditionally, co-operatives and custom-hiring centres, a centralized model, are 

promoted as institutional mechanisms for adopting indivisible technologies like 

agricultural machinery. Our findings present a compelling case for promoting individual 

service providers to scale LLL technology adoption inclusively. A shift from the 

traditional, centralized model to a service-based, on-demand, flexible model could 

improve the access and affordability of technology for smallholders. Policies such as low-

interest loans and grants could promote private individual service providers. This could 

also create a competitive rental market and foster smallholder-inclusive technological 

change.   

 

3. Laser land levelling as a solution for mitigating groundwater decline  

The adoption of LLL technology has led to a statistically significant reduction in the 

decline of groundwater in May, the month following the application of the technology. 

Unlike the existing regulatory policy on delayed rice transplantation, which 

inadvertently increases the groundwater decline, LLL likely changes the behaviour of 

farmers and reduces groundwater used for irrigation. Hence, policies focused on 

resource conservation must holistically address farmers' incentives, integrating 

economic, behavioural and environmental aspects. However, technology alone might 

not be enough to mitigate the decline of groundwater, so we emphasise the need for 

further research on water conservation policies and technologies for sustainable 

groundwater management in northwestern India. Promoting LLL slows the rapidly 

declining groundwater levels and thus ensures environmental sustainability.  
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5.3 Overall conclusion, limitations and further research needs 

 

The study concludes that LLL adoption has reduced the extent of groundwater decline 

in northwestern India. This was possible due to wide adoption of the technology by the 

farmers in the region. Farmers adopted the technology because of its co-benefits, such 

as increased yield, positive perceptions about the benefits, constraints in electricity 

availability, compatibility of LLL with other technologies, and the aesthetic value 

associated with the levelling of farms. The demand for the technology was met with the 

emergence of new institutional mechanisms– individual private service providers, who 

facilitated higher accessibility, resulting in higher adoption among small plot owners and 

farmers. The adoption of LLL has reduced the decline of groundwater to the extent of 

3.7 meters in May. However, the estimated groundwater saving rate due to the 

adoption of LLL is insufficient to stop or reverse the decline of groundwater in 

northwestern India. Hence, developing other technology- and policy-based solutions or 

combining both are necessary for managing the groundwater decline. The study 

demonstrates LLL as a technological solution for sustainable agricultural production and 

provides insights into technical and institutional support for promoting the technology.    

The study has a few limitations and scope for further research. Chapter two 

and Chapter three rely on cross-sectional data, where the establishment of causality is 

difficult. So, we used regression models and claimed only association, not causation. For 

Chapter 2, there were challenges in accurately measuring irrigation hours, and future 

research could explore alternative measurement approaches. Further, the insights from 

qualitative data require further exploration to understand the role of technology 

development and extension institutions in shaping farmer perceptions. The results from 

Chapters two and three are context-specific to northwestern India, where factors like 

widespread tractor ownership facilitate LLL adoption and competitive rental markets; 

these dynamics may not apply in regions where tractor ownership is uncommon. 

Moreover, LLL’s unique characteristics, such as its infrequent use and the tendency of 

machinery owners to rent it out, may limit the generalizability of findings to other 

technologies. Follow-up research across diverse regions and technologies is necessary 

to enhance the understanding of how indivisible technologies can be effectively adopted 
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in small farm settings. In Chapter four, the effect of the adoption of LLL was only visible 

in May and not in other months. Though we argue that this could be due to the 

hydrological process, lateral flows of groundwater, wherein groundwater moves from a 

less exploited area to an overexploited area, these inter-seasonal effects are yet to be 

explored.  
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Chapter 6 Appendices 

 

Appendix 1. Appendix to Chapter 2  

Table 6.1: Details of experts of the qualitative interview 

Respondent 
number 

Respondent details 

F1 The farmer is 40 years old and has cultivated rice and wheat crops 
on 22 hectares of land for the last 25 years. He rents LLL from 
other farmers/service providers. 

F2 The farmer is 38 years old and has been cultivating rice and wheat 
crops on 15 hectares of land (7.5 ha of owned land and 7.5 hectares 
of leased land) for 20 years of farming. He rents LLL from his 
relative.  

F3 The farmer is 35 years old and cultivates rice and wheat on 7.5 
hectares of land. In 2016, he bought a laser land leveller without an 
agricultural subsidy and rented it to another farmer (service 
provider).  

F4 The farmer is 30 years old and has cultivated rice and wheat crops 
on his 4 hectares of land. He brought a laser land leveller without 
an agricultural subsidy and rented it to another farmer. He rents the 
laser land leveller to two to three villages with a service area of 120 
hectares.  

F5 The farmer is 41 years old and has cultivated rice and wheat crops 
on 12 hectares (of which 3.6 hectares are leased land) for the last 
20 years. He rents LLL from other farmers/service providers.  

F6 The farmer is 28 years old and has cultivated rice and wheat crops 
on 4 hectares (of which 2 hectares are leased land) of land for the 
last 10 years. He rents LLL from other farmers/service providers. 

F7 The farmer is 42 years old with 30 acres of land and has cultivated 
rice and wheat crops on 12 hectares (of which 8 hectares are 
leased land) for the last 20 years. He rents LLL from a cooperative. 

F8 The farmer is 28 years old with 30 acres of land and has cultivated 
rice and wheat crops on 13 hectares (of which 8.8 hectares are 
leased land) 
for the last 20 years. In 2019, he brought a laser land leveller 
without subsidy and rented it to another farmer (service provider). 
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Table 6.2: Description of the variables used in the model 

Variable name Description 

Village-specific variables (n = 52) 
Share of adopters  Share of laser leveller adopters in the village (minus the 

household) in the reference year (2020-21) 
Groundwater level Groundwater depth at the village level (meters) 
Crop diversity – Kharif  Crop diversity in the Kharif season (Simpson index#) 

Crop diversity –  Rabi Crop diversity in the Rabi season (Simpson index#) 

Distance to district HQ Distance from the village center to the district headquarters 
(km) 

Household-specific variables (n = 1021) 

Age of HH Age of the household head 

Education of HH Number of years of education of the household head 

Non-marginalised caste The household belongs to one of the non-marginalized castes 
(dummy) 

Majority religion  The religion of the household is a major religion in the state 
(dummy) 

Number of plots The total number of plots cultivated by household  

Total cultivated area Area cultivated by the household (ha) 

Total adult members in 
the household 

Number of adult members in the household 

Women share Share of adult women in the total number of adults in the 
household  

Non-farm employment A household member is employed in non-farm activities 
(dummy) 

Asset index Asset index estimated from 20 agricultural productive items 

Service providers in 
2020-21 

Number of service providers the household has access to in 
2020-21 

Discount on first use of 
LLL 

The household received a subsidy for the first event of adoption 
(dummy) 

Access to information 
from (dummy) 

The household accessed information in the last 12 months 
(2020-21) (dummy) from the given source 

Plot-specific variables (n =1664) 

Plot area The area of the plot in hectares 

Soil type Soil type in the plot (dummy)  

Soil erosion The plot is affected by soil erosion (dummy) 

Waterlogging The plot is affected by waterlogging (dummy) 

Soil fertility Soil fertility status in the plots (farmer assessment; dummy) 

Rice crop variety$ If the rice crop variety cultivated in the plot is Pusa 44 (dummy) 

Rice crop duration$ If the rice variety is a short duration (dummy)  

Wheat crop variety$ If the rice crop variety cultivated in the plot is HD 3086 (dummy) 

Wheat nitrogen 
application$ 

Quantity of nitrogen fertiliser applied in the wheat plot (kg/ha) 

Pump hp Horsepower of the submersible pump used for irrigation 
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Table 6.3: Summary of outcomes variables by treatment 

  Rice yield 
(kg/ha) 

Rice irrigation 
(h/ha) 

Wheat 
yield(kg/ha) 

Wheat 
irrigation 
(h/ha) 

Never 6950.74 422.50 4836.44 6.79 

  (1047.07) (146.16) (678.99) (3.20) 
Before three 
years 7150.44 422.86 4944.89 6.66 

  (1044.68) (138.12) (607.18) (2.76) 

Last three years 7167.06 428.36 4926.11 6.74 

  (930.50) (131.70) (644.59) (3.06) 

2020-21 7226.35 400.26 4888.60 6.05 

  (871.10) (145.67) (650.54) (2.89) 
Note: The figure in parenthesis are standard deviations  
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Table 6.4: Estimates from ordinary least square regression 

 

Variables Rice yield 
(kg/ha) 

Rice irrigation 
(h/ha) 

Wheat yield 
(kg/ha) 

Wheat irrigation 
(h/ha) 

Frequency of LLL         
Before three 
years 25.858 -0.380 21.877 -0.411 

  (112.733) (17.340) (75.579) (0.356) 

Last three years 130.245 -0.472 -0.601 -0.196 

  (87.049) (13.390) (59.029) (0.278) 
Last year (2020-
21) 187.506** -25.423* -11.638 -0.351 

  (86.476) (13.261) (58.223) (0.273) 
Household-level 
variables 

        

Age of HH -1.672 -0.333 0.323 0.007 

  (2.589) (0.394) (1.761) (0.008) 

Education of HH -3.195 -1.270 9.553* -0.033 

  (7.399) (1.140) (5.039) (0.024) 
Non-
marginalised 
caste   40.966 -24.084 128.289 -0.146 

  
(140.862) (22.337) (94.371) (0.457) 

Majority religion -102.875 -4.572 -46.913 0.0911 

  (155.780) (24.285) (103.637) (0.495) 
Total adult 
members in the 
household 8.902 -2.692 -13.554 -0.171*** 

  (20.788) (3.167) (14.074) (0.066) 

Women share 1.853 0.493 0.870 -0.001 

  (1.992) (0.305) (1.349) (0.006) 
Non-farm 
employment -87.268 18.621 -26.284 0.381 

  (120.595 (18.329) (81.720) (0.386) 

Asset index 53.693** 0.019 33.376** -0.073 

  (21.190) (3.283) (14.357) (0.069) 

Number of plots 35.998 6.689 -10.178 -0.871*** 

  (40.005) (6.178) (27.390) (0.131) 
Service provider 
number -3.005 -0.708 19.064** 0.058 

  (114.093) (17.519) (8.701) (0.045) 

Discount on first 
use of LLL -383.607* 1.416 -271.157** -0.107 

  (206.924) (32.470) (140.126) (0.715) 
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Variables Rice yield 
(kg/ha) 

Rice irrigation 
(h/ha) 

Wheat yield 
(kg/ha) 

Wheat irrigation 
(h/ha) 

Access to 
information 
from          

Government 
extension 

agency -198.537*** -39.292*** -55.688 -0.310 

  (72.948) (11.151) (49.516) (0.233) 

KVK 210.259*** -9.155 -17.724 -0.518** 

  (74.114) (11.337) (50.412) (0.235) 
Progressive 

farmer -87.145 -46.065*** 14.022 0.257 

  (63.650) (9.711) (43.098) (0.203) 

NGO 161.920* 8.135 13.101 0.759*** 

  (91.923) (14.092) (62.611) (0.292) 
Farmer 

collective  -56.888 48.076*** 66.664 -0.254 

  (67.741) (10.341) (45.832) (0.214) 

Input dealer 103.505 -42.255*** 8.588 -0.332 

  (63.490) (9.687) (43.154) (0.203) 
Plot-level 
characteristics         

Plot area -16.040 -2.677 -4.630 0.266*** 

  (12.873) (1.994) (8.605) (0.040) 
Soil type 
[Loamy-Sandy] 
(reference: clay) -103.260 8.962 -6.192 0.112 

  (65.015) (9.969) (44.037) (0.207) 
Soil fertility 
(reference: low 
fertile)         

Medium fertile 482.066** -50.852 -91.822 -0.749 

  (229.191) (38.688) (157.745) (0.810) 

High fertile 582.560** -23.195 -26.239 -0.062 

  (228.167) (38.539) (157.643) (0.810) 

Soil erosion  16.197 -10.059 -45.999 1.097** 

  (155.248) (23.650) (103.611) (0.486) 

Water logging  -44.689 13.806 -151.310** 0.287 

  (93.964) (14.446) (63.293) (0.302) 

Crop variety 141.714** -19.928** -11.135 -0.236 

  (65.693) (9.989) (44.406) (0.210) 

Crop duration -340.493*** 6.15888   
  (114.093) (17.519)   
Nitrogen use     0.2538 0.005*** 

      (0.353) (0.002) 

Pump Hp   -0.70787   -0.041 

    (1.182)   (0.025) 
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Variables Rice yield 
(kg/ha) 

Rice irrigation 
(h/ha) 

Wheat yield 
(kg/ha) 

Wheat irrigation 
(h/ha) 

Village level 
characteristics         
Groundwater 
level -4.008** 0.512** -1.903** -0.0004 

  (1.569) (0.244) (1.068) (0.005) 
Crop diversity – 
Kharif  -485.089 -77.966 -27.528 -0.840 

  (344.970) (52.323) (237.494) (1.103) 
Crop diversity – 
Rabi  615.250** -39.095 268.333 -0.999 

  (280.070) (42.815) (188.975) (0.893) 
Share of 
adopters  -2.024 0.203 -0.977 -0.006 

  (1.944) (0.298) (1.334) (0.006) 
Distance to 
district HQ 0.838 -0.633 5.135** 0.032*** 

  (3.057) (0.471) (2.079) (0.010) 
Districts 
(reference: 
Patiala)         

Ludhiana -193.703 68.746*** -489.547*** -0.086 

  (117.966) (18.743) (99.492) (0.477) 

Patiala 234.025 -9.422 -569.833*** -1.115** 

  (156.041) (23.986) (113.107) (0.557) 

Sangrur 642.607*** -8.228 -476.893*** -0.841** 

  (145.846) (22.793) (75.116) (0.353) 

Model intercept 6718.620*** 536.357*** 5115.205*** 9.127*** 

  (395.623) (63.449) (303.566) (1.457) 

R2 0.155 0.143 0.123 0.182 

Observations$ 964 914 1001 925 

Note: $Sub-sample from the largest plot in which the crop is cultivated. *** shows significance at 1%, ** 
shows significance at 5%, and * shows significance at 10%. 
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a. Rice yield b. Rice irrigation 

 
 

c. Wheat yield d. Wheat irrigation 

 

 

 

 

Figure 6.1: Variable importance plots from machine learning casual forest model 

Note: Variable importance plots provide insights into the influential variable in 
estimating treatment effects; the higher the value, the more frequently the variable is 
used to split trees. Unlike OLS coefficients, which provide a single global effect estimate 
of each variable, variable importance plots capture non-linearity and interactions.  
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Appendix 2. Appendix to Chapter 3  

Table 6.5: Knowledge and adoption of LLL in northwestern India (% of farmers) 

  

Status Punjab (rice-wheat 
system) 

Western Uttar 
Pradesh 

(sugarcane-
rice/wheat system) 

1 Heard of technology, but don’t 
know how it works  

2.63 0.33 

2 Know how it works, but I have 
never seen it working  

0.32 0.17 

3 Know how it works and have seen 
it only in field demonstrations 

1.26 0.66 

4 Know how it works and have seen 
it in other farmers’ fields  

10.85 13.79 

5 User/non-service-provider 79.56 84.05 

6 User/service-provider 4.11 0.83 

7 Non-user/service-provider 0.95 0.00 

8 Others 0.32 0.17 

  Heard about laser land levelling$ 92.94 94.06 

 Used the technology (row no. 5+6) 83.67 84.88 

Note: Rows numbered 1 to 8 are calculated based on the respondents who know about 
the technology (Punjab N=949; western Uttar Pradesh N=616).  $Calculated based on 
household level sample data (Punjab N =1021; western Uttar Pradesh N=640). Used the 
technology refers to adoption at least once any time in the past. 
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Table 6.6: LLL technology trends in northwestern India (2018-2021) 

LLL usage characteristics Punjab (rice-wheat system) Western Uttar Pradesh  
(sugarcane-rice/wheat 
system) 

  2018 2019 2020 2021 2018 2019 2020 2021 
User (% of farmers)                 

Before Kharif 87.15 85.49 93.07 91.88 87.79 83.44 82.89 84.81 
Before Rabi 12.15 13.99 6.93 7.81 12.21 16.56 17.11 15.19 
Both before  

Kharif and Rabi 
0.69 0.50 0.00 0.31 0.00 0.00 0.00 0.00 

Service provider (% of 
farmers) 

                

Own 3.82 4.15 4.82 5.63 2.91 0.00 5.26 5.06 
Relative 2.08 1.04 2.11 1.25 0.00 0.00 0.00 1.27 

Private / Within village 62.50 58.55 65.06 57.19 26.74 26.49 39.47 34.18 
Private / Outside village 29.51 32.64 25.9 34.69 70.35 73.51 55.26 59.49 

Farmer co-operative 2.08 3.11 2.11 1.25 0.00 0.00 0.00 0.00 
The mean number of 
service providers locally 
available 

1.67 1.72 1.66 2.15 2.05 2.48 2.47 2.44 

Mean rental charge 
(Indian Rupees in 
current price) 

698.0 723.2 774.3 801.8 650.9 664.9 717.4 747.2 

Note: Calculated based on the sub-sample of adopters (Punjab N =755; western Uttar Pradesh 
N=510).  
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Table 6.7: Probit model on determinants of LLL adoption (2020/21, full model results) 

 (1) (2) (3) 
Model 1  Model 2  Model 3  

Service provision and interaction variables    
Service providers in 2020-21 0.021    0.040**|#      0.032*|### 

(0.014) (0.019) (0.017) 
Plot size  -0.015 2.E-04|#  

(0.010) (0.014)  
Plot size x Number of service providers 
(interaction) 

 -0.007#  
 (0.005)  

Farm size         -0.013**|### 
  (0.005) 

Farm size x Number of service providers 
(interaction) 

    -0.003### 
  (0.002) 
   

Household-level variables    

Age of HH -0.004 -0.004 -0.003 
 (0.002) (0.002) (0.002) 
Education of HH 0.006 0.006 0.008 
 (0.006) (0.006) (0.006) 
Non-marginalised caste   0.063 0.061 0.065 

(0.083) (0.083) (0.083) 
Majority religion -0.164 -0.160 -0.158 

(0.170) (0.170) (0.170) 
Total adult members in the household 0.009 0.008 0.014 

(0.015) (0.015) (0.015) 
Women share -0.001 -0.001 -2.94E-04 

(0.002) (0.002) (0.002) 
Non-farm employment 0.291*** 0.287*** 0.317*** 

(0.080) (0.080) (0.080) 
Asset index 0.093*** 0.095*** 0.105*** 

(0.021) (0.021) (0.021) 
Number of plots -0.002 -0.003 0.022 

(0.024) (0.024) (0.025) 
Discount on first use of LLL 0.755*** 0.759*** 0.785*** 
 (0.190) (0.190) (0.192) 
Access to information from     

Government extension agency 0.093 0.092 0.105 
 (0.065) (0.065) (0.065) 
KVK 0.049 0.048 0.040 
 (0.064) (0.064) (0.065) 
Progressive farmer -0.029 -0.029 -0.027 
 (0.060) (0.060) (0.060) 
NGO 0.029 0.030 0.021 
 (0.084) (0.084) (0.085) 
Farmer collective  -0.090 -0.094 -0.089 
 (0.061) (0.061) (0.061) 
Input dealer 0.029 0.030 0.032 

 (0.068) (0.068) (0.068) 
Plot-level characteristics    

Service provider distance -0.010 -0.010 -0.010 
 (0.013) (0.013) (0.013) 
Soil type (reference: clay)    
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 (1) (2) (3) 
Model 1  Model 2  Model 3  

Loamy -0.008 -0.010 -0.011 
(0.063) (0.063) (0.063) 

Sandy -0.055 -0.060 -0.043 
(0.170) (0.170) (0.170) 

Soil fertility (reference: low fertile)    
Medium fertile -0.073 -0.074 -0.051 

(0.145) (0.145) (0.145) 
High fertile -0.090 -0.091 -0.072 

(0.138) (0.138) (0.138) 
Soil erosion  0.161 0.154 0.153 

(0.116) (0.117) (0.117) 
Water logging  0.069 0.071 0.076 

(0.087) (0.087) (0.087) 
Crop in Kharif (reference: Basmati rice)    

Non-Basmati rice 0.126 0.131 0.151 
(0.136) (0.136) (0.136) 

Sugarcane 0.220* 0.215* 0.226* 
(0.116) (0.116) (0.116) 

Others 0.036 0.046 0.053 
(0.130) (0.130) (0.129) 

Western Uttar Pradesh -0.269 -0.269 -0.165 
(0.238) (0.238) (0.240) 

Village level characteristics    

Groundwater level 2.01E-04 1.59E-04 2.51E-04 
(0.001) (0.001) (0.001) 

Crop diversity – Kharif  -0.131 -0.143 -0.126 
(0.254) (0.255) (0.255) 

Crop diversity – Rabi  -0.017 -0.018 -0.018 
(0.270) (0.270) (0.270) 

Share of adopters  0.023*** 0.023*** 0.023*** 
(0.002) (0.002) (0.002) 

Distance to district HQ 0.002 0.001 0.002 
(0.002) (0.002) (0.002) 

   
Model intercept -1.160*** -1.179*** -1.355*** 

(0.373) (0.374) (0.375) 
LR Chi2 393.18*** 395.37*** 403.98*** 
Observations$ 2,815 2,815 2,815 

Note: *** shows significance at 1%, ** shows significance at 5%, and * shows significance at 10%. ### shows 
joint significance at 1%, and # shows joint significance at 10%.  $The analysis is based on plot-level data 
from Punjab and Western Uttar Pradesh, excluding households owning LLL machinery themselves (124 
plots). In Western Uttar Pradesh, we dropped plots in which the sugarcane ratoon crop was grown in 
2020/21 because levelling cannot be done before the sugarcane ratoon crop (436 plots). 

 

 

 

 



 

116 

 

Table 6.8: Probit model on LLL adoption in at least one of the previous three years 

(2018/19 to 2020/21, full model results) 

 (1) (2) (3) 
Model 1  Model 2  Model 3  

Service provision and interaction variables    
Service providers in 2020/21 -0.003 0.013# 0.024### 

(0.012) (0.016) (0.015) 
Plot size 0.018** 0.030***|#  

(0.008) (0.011)  
Plot size x Number of service providers 
(interaction) 

 -0.006#  
 (0.004)  

Farm size   0.010***|### 
  (0.004) 

Farm size x Number of service providers 
(interaction) 

  -0.005***|### 
  (0.002) 

Service provider distance 0.016 0.015 0.014 
(0.011) (0.011) (0.011) 

   
Household-level variables    

Age of HH -0.005*** -0.005*** -0.005*** 
 (0.002) (0.002) (0.002) 
Education of HH 0.010* 0.010* 0.010* 
 (0.005) (0.005) (0.005) 
Non-marginalised caste   0.074 0.072 0.074 

(0.066) (0.066) (0.066) 
Majority religion 0.049 0.051 0.052 

(0.171) (0.171) (0.171) 
Total adult members in the household 0.002 0.001 0.001 

(0.012) (0.012) (0.013) 
Women share -0.003* -0.003* -0.003* 

(0.002) (0.002) (0.002) 
Non-farm employment 0.176*** 0.172*** 0.172*** 

(0.063) (0.063) (0.063) 
Asset index 0.140*** 0.140*** 0.148*** 

(0.020) (0.020) (0.020) 
Number of plots -0.044** -0.045** -0.059*** 

(0.019) (0.019) (0.020) 
Discount on first use of LLL 1.019*** 1.017*** 1.010*** 
 (0.230) (0.230) (0.232) 
Access to information from     

Government extension agency 0.070 0.072 0.066 
 (0.057) (0.057) (0.057) 
KVK -0.105* -0.106* -0.094* 
 (0.056) (0.056) (0.056) 
Progressive farmer -0.040 -0.041 -0.050 
 (0.055) (0.055) (0.055) 
NGO 0.092 0.092 0.085 
 (0.075) (0.075) (0.076) 
Farmer collective  0.102* 0.100* 0.100* 
 (0.053) (0.053) (0.053) 
Input dealer 0.137** 0.138** 0.138** 

 (0.066) (0.066) (0.066) 
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 (1) (2) (3) 
Model 1  Model 2  Model 3  

Plot-level characteristics    
Service provider distance  0.016 0.015 0.014 
 (0.011) (0.011) (0.011) 
Soil type (reference: clay)    

 Loamy 0.018 0.013 0.006 
(0.057) (0.057) (0.057) 

Sandy 0.050 0.044 0.039 
(0.167) (0.167) (0.168) 

Soil fertility (reference: low fertile)    
Medium fertile 0.068 0.070 0.074 

(0.124) (0.124) (0.125) 
High fertile 0.052 0.054 0.057 

(0.119) (0.119) (0.119) 
Soil erosion  0.167 0.163 0.160 

(0.102) (0.102) (0.102) 
Water logging  0.105 0.108 0.122 

(0.080) (0.080) (0.080) 
Crop in Kharif (reference: Basmati rice)    

Non-Basmati rice 0.233** 0.237** 0.225* 
(0.118) (0.118) (0.118) 

Sugarcane -0.064 -0.068 -0.076 
(0.092) (0.092) (0.092) 

Others -0.110 -0.106 -0.143 
(0.110) (0.110) (0.109) 

Western Uttar Pradesh 0.352 0.354 0.376* 
(0.223) (0.223) (0.225) 

Village level characteristics    

Groundwater level 0.004*** 0.004*** 0.003*** 
(0.001) (0.001) (0.001) 

Crop diversity – Kharif  0.349 0.330 0.349 
(0.220) (0.221) (0.220) 

Crop diversity – Rabi  -0.249 -0.245 -0.278 
(0.250) (0.250) (0.251) 

Share of adopters  0.023*** 0.023*** 0.023*** 
(0.002) (0.002) (0.002) 

Distance to district HQ 0.002 0.002 0.002 
(0.002) (0.002) (0.002) 

Model intercept -1.130*** -1.142*** -1.085*** 
(0.340) (0.340) (0.342) 

LR Chi2 521.34*** 523.73*** 527.66*** 
Observations$ 3,237 3,237 3,237 

  Note: *** shows significance at 1%, ** shows significance at 5%, and * shows significance at 10%. 
### shows joint significance at 1%, and # shows joint significance at 10%. $The analysis is based on 
plot-level data from Punjab and Western Uttar Pradesh, excluding households owning LLL 
machinery themselves (124 plots).  
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Appendix 3. Appendix to Chapter 4 

Table 6.9: Summary of variables used in the model 

Variable   Mean Std. Dev. Min Max Observations 

Laser land levelling 
(1= Adopted, 0=not) 

Overall 0.477 0.500 0.000 1.000 N =    6338 

  Between   0.169 0.000 1.000 n =     291 

  Within   0.470 -0.477 1.386 bar = 21.780 

Outcome variable: 
Groundwater level 
(m) 

            

January Overall 16.514 9.933 0.450 163.000 N =    2827 

  Between   7.713 1.553 32.496 n =     291 

  Within   6.226 -4.568 151.770 bar = 9.715 

May Overall 17.038 10.878 0.620 168.710 N =    3233 

  Between   7.785 2.462 38.386 n =     291 

  Within   7.575 -9.229 156.324 T =   11.11 

August Overall 17.301 12.809 0.130 171.920 N =    2455 

  Between   9.115 1.094 51.126 n =     291 

  Within   8.845 -11.851 158.709 bar = 8.436 

November Overall 15.059 10.669 0.400 196.000 N =    4452 

  Between   7.008 1.541 30.625 n =     291 

  Within   7.990 -10.043 185.844 T =  15.299 

Rainfall in lagged 
months (cm) 

            

December (t-1) to 
January 

Overall 37.9955 19.946 6.759 134.705 N =    6338 

  Between   8.030 20.949 58.358 n =     291 

  Within   18.2602 -2.961 114.342 bar = 21.780 

February to May Overall 84.941 47.217 19.858 330.022 N =    6338 

  Between   15.529 48.921 125.438 n =     291 

  Within   44.597 -5.807 291.383 bar = 21.780 

June to August Overall 435.983 266.997 77.948 1743.220 N =    6338 

  Between   119.126 263.239 770.853 n =     291 

  Within   239.360 -127.59 1409.599 bar = 21.780 

September to 
November 

Overall 158.34 113.626 21.580 628.870 N =    6338 

  Between   32.3646 87.184 236.252 n =     291 

  Within   108.994 -4.849 584.490 bar = 21.780 
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Variable   Mean Std. Dev. Min Max Observations 

Policy dummies (1= 
period after policy 
implementation, 
0=otherwise) 

Overall 0.569 0.495 0.000 1.000 N =    6338 

  Between   0.203 0.000 0.682 n =     291 

  Within   0.454 -0.112 0.978 bar = 21.780 

Distance to the 
nearest observation 
well (km) 

Overall 6.901 5.872 0.026 44.784 N =    6338 

  Between   4.098 0.403 23.904 n =     291 

  Within   4.292 -11.384 41.175 bar = 21.780 

Note: Based one-to-one matching of village and observation wells (Figure 4.2a). N = total number 
of observation, n= number of villages, bar = the overall mean of the variable combining both the 
within and between variation.  
 
 
 

Table 6.10: Effect of LLL on groundwater using matching village with nearest 

observation wells with strict cut-off criteria 

 (1) (2) (3) (4) 
 January May August November 

Laser land levelling -0.839 -3.600*** -0.397 -12.460*** 
 (0.529) (1.972) (0.743) (3.084) 
Rainfall Yes Yes Yes Yes 
Policy Yes Yes Yes Yes 
Observations 171 309 162 701 

Note: The observation unit is a village. The estimates are group averages with conditional parallel 
trend assumption and not yet treated as control. Estimated using csdid package in stata. The 
estimates are group averages with conditional parallel trend assumptions and have not yet been 
treated as a control. Outcome regression estimator based on ordinary least squares. Unit that 
were always treated are omitted. The estimates are based on matching the village with the 
nearest observation wells, accounting for mutually exclusive wells, and dropping the 
observational well in which data is missing.  
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Table 6.11: Comparing responses of key informants  

State Chi-squared Chi-squared with ties 

Haryana 3.374 3.406 
 (0.185) (0.182) 
Western Uttar Pradesh 1.495 1.544 
 (0.473) (0.462) 

Note: Kruskal-Wallis equality-of-populations rank test. The figure in the parenthesis is in 
probability value (p-value). 
 
 
 
 

Table 6.12: Share of missing data in observational well data 

Groundwater data Missing Observed Total Missing share 

January 3511 2827 6338 55.40 
May 3105 3233 6338 48.99 
August 3883 2455 6338 61.27 
November 1886 4452 6338 29.76 

Note: Based on the one-to-one matching dataset.  
 
 
 
 

Table 6.13: Share of missing data after imputation 

Groundwat
er data 

Observations 
after imputing 
with the 
district 
average 

Missing share 
after imputing 
with the 
district 
average (%) 

Observations 
after imputing 
with the district 
average and 
moving average 

Missing share 
after imputing 
with the district 
average and 
moving average 
(%) 

January 4,442 30 5,544 13 
May 4,604 27 5,683 10 
August 4,400 31 5,426 14 
November 5,028 21 6,239 1.6 

 
 
 
 
 
 
 
 
 
 

 




