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ABSTRACT  

Hydrologic modelling has become a vital tool for formulating policies to plan and manage 
water resources sustainably. However, inadequate or non-available hydro-meteorological 
datasets significantly hinder its application in ungauged basins. This issue has highlighted 
critical research gaps and deprived such regions of the advantages of continuous hydrologic 
modelling for understanding and mitigating hydrologic extremes and developing and managing 
water resources infrastructure. The major objectives of this study are to: (1) evaluate the ability 
of remotely-sensed precipitation products to capture rainfall dynamics across different 
locations in Nigeria, (2) assess the mesoscale hydrologic model (mHM) streamflow simulation 
within a multi/uni-variable calibration framework, driven by gridded precipitation datasets, (3) 
evaluate the regionalization of mHM parameters from donor to ungauged basins for streamflow 
predictions, and (4) model actual evapotranspiration and soil moisture across Nigeria using 
mHM parameters acquired when constrained using only streamflow data. 

The ability of several gridded precipitation products (CHIRPS, PERSIANN-CDR and 
TAMSAT) to replicate rainfall characteristics at 24 climatic stations distributed across Nigeria 
was evaluated against in-situ measurements. The results indicate that all products well captured 
the observed annual cycle and spatial trends across selected locations. Statistical assessment 
reveals that the CHIRPS dataset was consistent with observations across most climatic stations, 
accurately reproducing local rainfall characteristics. Next, various gridded precipitation 
products within a uni- and multi-variable calibration framework were employed to evaluate the 
performance of the mHM across four different data-scarce basins in Nigeria. This model 
utilizing CHIRPS and ERA5 rainfall datasets as input, consistently generated acceptable Kling-
Gupta efficiency (KGE) values (0.5 < KGE < 0.75) for streamflow simulation during model 
validation under both calibration frameworks. However, constraining model parameters in both 
calibration schemes did not significantly improve model simulations in all selected study 
domains. Furthermore, the transferability of optimized mHM parameter sets from gauged to 
ungauged domains was assessed under a multi-domain modelling configuration. Optimized 
mHM streamflow simulations, driven by CHIRPS, ERA5 and MSWEP precipitation datasets, 
demonstrated significant improvement (KGE > 0.5) across all modelling domains compared to 
using mHM default parameters. Subsequently, the optimized model parameters were 
transferred to three independent basins for streamflow prediction. Acceptable streamflow 
simulation using regionalized mHM parameter sets was shown only in one basin, presenting a 
KGE of 0.54. Lastly, optimized mHM parameter sets derived from distinct basin-precipitation 
configurations were utilized to simulate actual evapotranspiration (aET) and soil moisture 
across three agro-climatic zones in Nigeria. Spatial patterns of mean annual aET for all mHM 
configurations exhibited similar trends with observations (GLEAM and FLUXNET). CHIRPS-
driven aET simulations demonstrated satisfactory correlation scores (r > 0.5) with the GLEAM 
datasets. Similarly, all mHM setups showcased comparable trends in the annual aET cycle, 
with acceptable model fits (KGE > 0.7) observed in the Sahel region. The monthly temporal 
variation of soil moisture anomaly exhibited acceptable agreements (r > 0.8) across all agro-
climatic zones. This study represents the first evaluation of mHM under sparse input data 
constraints in Nigeria. The results of this study not only align with the objectives of the 
International Association of Hydrological Sciences initiative on prediction in ungauged basins 
but also address the challenges of hydrologic modelling in Nigeria (and in regions with similar 
climatic conditions).  
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Bewertung der Übertragbarkeit hydrologischer Parameter auf Einzugsgebiete mit 
eingeschränkter Mess- und Datenverfügbarkeit in Nigeria 

KURZFASSUNG  

Die hydrologische Modellierung ist ein wichtiges Instrument für die Erarbeitung von Strategien zur 
nachhaltigen Bewirtschaftung von Wasserressourcen. Defizite der Datenverfügbarkeit behindern 
jedoch die Anwendung hydrologischer Modelle in Einzugsgebieten ohne meteo-hydrologische 
Messsysteme. Dieses Problem hat kritische Forschungslücken aufgezeigt, die darin bestehen, dass in 
diesen Gebieten die Vorteile hydrologischer Modellierung nicht genutzt werden können, um ein 
Verständnis für das Entstehen hydrologischer Extremsituationen zu gewinnen und um Konzepte für die 
Entwicklung von Wasserinfrastruktur zu erarbeiten. Wesentliche Ziele dieser Studie sind: (1) die 
Eignung von Produkten der Fernerkundungs-basierten Quantifizierung des Niederschlags für die 
Erfassung der räumlich-zeitlichen Dynamik des Niederschlags in verschiedenen Regionen Nigerias 
einzuschätzen, (2) die Qualität der Abflusssimulation mit dem mesoskaligen Hydrologischen Modell 
mHM bei Nutzung Fernerkundungs-basierter Niederschlagsprodukte und Anwendung uni- sowie multi-
variabler Kalibrierungsansätze zu bewerten, (3) die Übertragbarkeit von mHM-Parametern von 
Einzugsgebieten mit Messsystemen auf solche ohne Monitoring zu beurteilen (im Hinblick auf 
Abflussvorhersagen), und (4) die aktuelle Evapotranspiration und Bodenfeuchte für Nigeria zu 
modellieren unter Nutzung von mHM-Parametern, die aus der Kalibrierung des Modells nur unter 
Verwendung von Abflussdaten ermittelt wurden. 

Die Eignung raster-basierter Niederschlagsprodukte (CHIRPS, PERSIANN-CDR, TAMSAT), um die 
Niederschlagseigenschaften von 24 über Nigeria verteilten Klimastationen wiederzugeben, wurde 
anhand von In-situ-Messungen bewertet. Die Ergebnisse zeigen, dass alle Produkte den beobachteten 
Jahresverlauf und die räumlichen Trends des Niederschlags an den Stationen gut erfassen. Die 
statistische Auswertung belegt, dass der CHIRPS-Datensatz mit den Beobachtungen an den meisten 
Klimastationen übereinstimmt und die lokalen Niederschlagsverhältnisse genau wiedergibt. Als 
Nächstes wurden verschiedene raster-basierte Niederschlagsprodukte mit ein- und mehrvariablen 
Kalibrierungsansatz verwendet, um die Leistungsfähigkeit des mHM-Modells in vier Einzugsgebieten 
mit eingeschränkter Datenlage zu bewerten. Dieses Modell mit CHIRPS- und ERA5-
Niederschlagsdaten als Input, erzeugte bei der Modellvalidierung (Abflusssimulation) in beiden 
Kalibrierungsansätzen durchweg akzeptable Werte der Kling-Gupta-Effizienz KGE (0,5 < KGE < 
0,75). Die Einschränkung der Modellparameter in beiden Kalibrierungsschemata führte nicht zu einer 
signifikanten Verbesserung der Modellsimulationen in allen Untersuchungsgebieten. Weiterhin wurde 
die Übertragbarkeit der optimierten mHM-Parametersätze von Gebieten mit Messwerten auf solche 
ohne in einer Multi-Domain-Modellierungskonfiguration untersucht. Optimierte mHM-
Abflusssimulationen, die CHIRPS-, ERA5- und MSWEP-Niederschlagsdaten nutzten, ermöglichten in 
allen Modellierungsbereichen signifikante Verbesserungen (KGE > 0,5) im Vergleich zur Verwendung 
der mHM-Standardparameter. Anschließend wurden die optimierten Modellparameter auf drei 
unabhängige Einzugsgebiete zur Simulation des Abflusses übertragen. Allerdings konnte lediglich in 
einem Einzugsgebiet mit regionalisierten mHM-Parametersätzen der Abfluss mit akzeptabler 
Zuverlässigkeit simuliert werden (KGE von 0,54). Schließlich wurden optimierte mHM-
Parametersätze, die aus verschiedenen Einzugsgebiet-Niederschlags-Konfigurationen abgeleitet 
wurden, zur Simulation der aktuellen Evapotranspiration (aET) und der Bodenfeuchte in drei agro-
klimatischen Zonen Nigerias verwendet. Die räumlichen Muster der mittleren jährlichen aET für alle 
mHM-Konfigurationen wiesen ähnliche Trends wie die Beobachtungen auf (GLEAM und FLUXNET). 
AET-Simulationen mit CHIRPS zeigten zufriedenstellende Korrelationswerte (r > 0,5) mit den 
GLEAM-Datensätzen. Alle mHM-Setups zeigten vergleichbare Trends im jährlichen aET-Verlauf, 
wobei in der Sahelzone akzeptable Modellanpassungen (KGE > 0,7) beobachtet wurden. Die zeitliche 
Variation der Bodenfeuchteanomalie (monatliche Auflösung) wies in allen agro-klimatischen Zonen 
akzeptable Übereinstimmungen (r > 0,8) auf. Die Studie stellt die erste Einschätzung der Eignung des 



 

iv 
 

mHM bei knappen Eingangsdaten in Nigeria dar. Die Ergebnisse dieser Studie stehen im Einklang mit 
den Zielen der Initiative der International Association of Hydrological Sciences zur Modellierung von 
Einzugsgebieten ohne Messsysteme und stellen eine Antwort auf die Herausforderungen der 
hydrologischen Modellierung in Nigeria (und Regionen mit ähnlichen klimatischen Bedingungen) dar. 
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1 General Introduction 
1.1 Background 

This chapter presents a general introduction, beginning with the underlying background and a 
brief overview of critical studies that motivate the research.  

Nigeria, the most populated nation in Africa, is highly vulnerable to the adverse impacts of 
climate variability because of its high exposure and low adaptive capacity (Akinsanola et al., 
2018; Almazroui et al., 2020). Pervasive poverty, a weak economy, and dependence on rain-
fed farming exacerbate this vulnerability, resulting in a reliance on food imports to feed its two 
hundred million people (Ogungbenro & Morakinyo, 2014). The fifth assessment report of the 
Intergovernmental Panel on Climate Change (IPCC AR5) predicts a temperature rise of about 
1.5 – 2.5 °C by 2025 over West Africa for the different carbon emissions representative 
pathways (Almazroui et al., 2020; Epule et al., 2021). Such an increase in the earth’s surface 
temperature will lead to an increase in evapotranspiration and rainfall variability, resulting in 
significant altercations in the hydrologic cycle (Awotwi et al., 2021; Todzo et al., 2020). 
Knowledge of a region's water resource availability is vital for policy-makers in the context of 
effective water resource management (Choi et al., 2023). Flooding is considered one of the 
most devastating environmental threats in the world and has continued to occur more frequently 
in recent years (Echendu, 2023; Umar & Gray, 2023). Between 1998 and 2017, floods 
accounted for 43.4% of natural disasters globally, causing the second-highest economic 
damage, valued at about US$656 billion and affecting approximately 2 billion people 
(Belvederesi et al., 2022). Persistent rainfall events have wreaked havoc in many parts of 
Nigeria, resulting in severe physical, environmental and economic consequences, and most 
importantly causing loss of human lives (Gbode et al., 2019). Usman et al. (2018) reported that 
annual flood occurrence in Nigeria over the last two decades has resulted in the loss of about 
1,763 human lives and damages to properties worth billions of US$. Specifically, the 2012 
floods led to the loss of about 363 human lives, displaced over 2.3 million persons, and caused 
the loss of properties, which is estimated to cost about US$16.9 billion (Echendu, 2023). 
Nigeria is also prone to droughts due to the high variability of rainfall occasioned by the 
latitudinal movement of the intertropical convergence zone. However, significant droughts 
have not occurred in the Sahel since the 1970 Great Sahelian drought, which left millions of 
persons starving (Hassan et al., 2019). Nevertheless, there is a tendency for its occurrence in 
the future due to observed climate variability (Shiru et al., 2018, 2020). The northern region 
(Sahel) of Nigeria is characterized by a short wet season, thereby exposing this region to 
droughts and desertification (Hassan et al., 2019). Overall, the observed and projected 
variability in the dynamics of climatic variables (rainfall and temperature) over Nigeria poses 
grave consequences for a population that is solely dependent on rain-fed farming. The situation 
is further exacerbated by the existing weak governance structures and economic conditions. 
These factors have led to a downsizing of commercial farming to a subsistence scale, resulting 
in substantial adverse effects on the national economy (Poméon et al., 2018a). Global 
agriculture is rain-fed-dominated and practised on about 80% of global cropland, resulting in 
about 60% of global food production (Ringler et al., 2022). This pattern of predominantly rain-
red agriculture is also reflected in the Nigerian agricultural production system but the low 
adaptive capacity and dearth of water resources infrastructure have resulted in severe impacts 
on national food security.  
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Accurate modelling of major hydrologic processes is crucial for water resources management, 
planning, development, flood prediction, drought warnings and operational hydrology 
(Chathuranika et al., 2022; Guo et al., 2021). In the face of a growing threat from rising global 
air temperature, hydrologic modelling and predictions are poised to play a major role, exerting 
significant influence on deriving sound and evidence-based management decisions and 
enabling the development of resilient adaptative strategies for potential future scenarios (Taia 
et al., 2023). However, issues related to the unavailability/poor quality of hydrological 
modelling data requirements and hydro-meteorological observations limit model applications, 
especially in ungauged basins (Dembélé et al., 2020a; Tarek et al., 2021). Ungauged regions, 
characterized by poor observation system networks, vandalized gauging instruments, 
inaccessible terrains, and a shortage of skilled human resources, suffer from a lack/incomplete 
time series of hydrological data (Fasipe & Izinyon, 2021). This challenge of hydrologic system 
modelling in ungauged basins is identified as a significant problem in the field of hydrology 
and has become an important research area in eco-hydrology (Golian et al., 2021; Guo et al., 
2021). The possibilities of hydrological instrumentation in many regions, especially developing 
countries (e.g., Nigeria) and remote terrains for accurate estimation of hydrological variables 
resulted in the launch of the International Association of Hydrologic Sciences (IAHS) 
Scientific Initiative for Predictions in Ungauged Basins (PUB) (Sivapalan et al., 2003). The 
PUB initiatives mobilized the scientific community towards gaining improved knowledge on 
the components of the hydrologic system (hydrologic processes, model parameters, and 
climatic datasets) for a gauged basin and utilizing this knowledge to make predictions in 
ungauged basins. Hydrological regionalization methods have been widely adopted to solve 
problems of prediction in ungauged basins (Farfán & Cea, 2023; Golian et al., 2021; Guo et 
al., 2021; Pool et al., 2021; Qi et al., 2022; Singh et al., 2022; Tarek et al., 2021). However, the 
transferability of hydrologic model parameters calibrated in gauged basins to simulate 
hydrologic processes in ungauged basins has in some cases yielded unacceptable results and 
accuracies (Guo et al., 2021). Simulation results are affected mainly by hydrological model 
structure, hydrological data availability, climate characteristics and choice of regionalization 
methods (Pool et al., 2021; Yang et al., 2023). The choice of regionalization method (e.g., 
similarity-based, hydrological signature-based or regression-based) plays a significant role in 
producing acceptable hydrological predictions in ungauged basins (Song et al., 2022).  

Performance Evaluation of Gridded Precipitation Products 

The advancements in information and computing technologies (ICT) have led to the 
development of satellite-based, gauge-based interpolations, and reanalysis precipitation 
products, which provide extensive spatial coverage of continuous climate observations even 
over rugged or uninhabited landscapes (Le Coz & Van De Giesen, 2020; Li et al., 2021). Their 
popularity is attributed to their free availability, particularly in developing regions that face 
challenges of non-existent, poor quality or sparse ground-based climate observation networks 
(Akinyemi et al., 2019; Irvem & Ozbuldu, 2019). However, its performance in most cases has 
been deemed unacceptable, especially in complex landscapes characterized by high spatio-
temporal variability in precipitation and poor gauge networks (An et al., 2020; Dembélé et al., 
2020a; Satgé et al., 2019). While satellite precipitation products are affected by retrieval 
algorithms, faulty sensors, and systemic bias, uncertainties in reanalysis products result from 
model forcing parameters and model physics (Dembélé et al., 2020a; Le Coz & Van De Giesen, 
2020). These inherent uncertainties have necessitated the evaluation of these datasets using in-
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situ gauge-based observations before utilizing them for climate research. Many studies have 
evaluated gridded precipitation products over different regions of the world with substantial 
differences in accuracies of the temporal dynamics of precipitation events. In regions where 
quality stream discharge observations can be obtained, gridded precipitation products can be 
evaluated through the hydrological modelling method, as presented by Nhi et al. (2019), Musie 
et al. (2019), Alemayehu et al. (2018), Tarek et al. (2020), Raimonet et al. (2017), Dembélé et 
al. (2020b) and Oyerinde et al. (2017). However, this approach is not feasible in basins 
challenged by scarcity or poor-quality discharge observations. In the absence of gauged 
streamflow records, in-situ or gauged-based precipitation products have also proven successful 
in evaluating gridded precipitation products for scientific studies (An et al., 2020; Belay et al., 
2019; Camberlin et al., 2019; Hassan et al., 2020; Satgé et al., 2020; Trinh-Tuan et al., 2019; 
Zandler et al., 2019). These studies demonstrated varying magnitudes of performances for all 
these selected precipitation products. It has been shown that discrepancies in replicating hydro-
climatic observations were observed more in complex terrains or regions with poor hydro-
climatic gauge networks (Zandler et al., 2019).  

Improving Hydrologic Simulations Through Multi-Variate Calibration  

Hydrological model calibration is a widely accepted process performed to achieve a 
representative model, often conducted at the outlet of a basin (Desai et al., 2021; Taia et al., 
2023). This involves constraining the model parameter range to identify the best parameter set 
which represents the basin hydrological processes (Rajib et al., 2018). In many instances, 
hydrological models are constrained by relying only upon streamflow observations, often 
ignoring other crucial hydrologic variables (e.g., evapotranspiration, soil moisture, total water 
storage) (Budhathoki et al., 2020; Koppa et al., 2019). However, utilizing only streamflow 
observations for hydrological model parameterization does not reflect information about a 
basin spatial heterogeneity, which exists naturally in every hydrologic system (Dembélé et al., 
2020b). It is worth noting that acceptable basin-streamflow simulation may be obtained using 
only a streamflow-constrained hydrologic model but this approach might result in a 
misrepresentation of other internal basin's hydrological processes (e.g., evapotranspiration, soil 
moisture) (Rajib et al., 2018). Knowledge of other major hydrologic processes rather than 
solely streamflow is required for integrated water resources management. Studies have shown 
that constraining a model with datasets from multiple components of the hydrologic system in 
a multivariable framework has the potential to improve hydrologic simulation performance 
(Golian et al., 2021; Shah et al., 2021). However, this can result in over-
parameterization/equifinality and produce similar hydrologic responses through a combination 
of different parameter sets (Guo et al., 2021; Koppa et al., 2019; Rakovec et al., 2016a; Shah 
et al., 2021). Problems of model equifinality have been noted as one of the biggest challenges 
facing hydrological modelling (Beven, 2001; Golian et al., 2021; Loritz et al., 2021; Shah et 
al., 2021). Multi-variable calibration can be a daunting task, especially in data-limited regions 
characterized by sparse gauge networks (Taia et al., 2023). In this regard, freely available and 
fine-resolution remotely sensed products may be employed as an alternative. Notwithstanding 
that these satellite products offer free and cost-effective hydro-meteorologic measurements, 
their use is greatly associated with high uncertainties which impact simulation results. 
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Parameter Regionalization for Hydrologic Prediction in Ungauged Basins 

Achieving reliable prediction of streamflow in ungauged basins has been a significant 
challenge in hydrology, given its importance in applied hydrology (e.g., for water resources 
infrastructures) and water resources development and management (Golian et al., 2021; Yang 
et al., 2023). Recent advancements in process and physically-based hydrologic models to cope 
with the availability of fine-resolution model-input datasets (DEM, soil and land use maps) 
have resulted in more computational requirements and model complexity but have not 
improved hydrologic process representations (Beven, 2001, 2002). This author also noted that 
despite the existence of complex hydrologic models, the issue of model over-parameterization, 
particularly at the mesoscale, remains unresolved. This is even more daunting in ungauged 
basins characterized by complex heterogeneous landscapes, where parameter values are 
unknown. In many developing regions, the decreasing efforts to instrument basins pose a 
significant challenge for hydrologic model calibration, a trend more likely to persist even in 
the future (Qi et al., 2022; Yang et al., 2023). Scientific reports from the IAHS PUB initiative 
acknowledged that parameter regionalization is best suited to make hydrologic predictions in 
data-sparse basins (Arsenault et al., 2019; Farfán & Cea, 2023; Pool et al., 2021; Singh et al., 
2022; Song et al., 2022; Tarek et al., 2021). Several studies (Golian et al., 2021; Qi et al., 2022; 
Samaniego et al., 2019) have shown the feasibility of parameter transfer from gauged to 
ungauged basins, although with varying magnitude of performances. To date, researchers are 
still experimenting with different regionalization schemes, such as physical similarity, spatial 
proximity, and regression-based, in a bid to find a suitable method (Song et al., 2022). 
Furthermore, most regionalization methods assume lumped parameter values, such as the 
hydrologic response unit of the SWAT model (Arnold et al., 1998; Bieger et al., 2017; Wagner 
et al., 2022) without explicitly accounting for subbasin heterogeneity/variability necessary for 
capturing land surface characteristics (Samaniego et al., 2011; Song et al., 2022). The 
effectiveness of any regionalization scheme in hydrology relies on factors such as the choice 
of hydrological model, the approach to linking model parameters and the basin's physical 
descriptors, and the selection of objective functions for parameter optimization (Golian et al., 
2021). A regionalization method which incorporates these factors will have the potential to 
produce satisfactory simulations across scales, locations and hydrological variables other than 
that used for parameter value estimation (Mizukami et al., 2017; Rakovec et al., 2019; Rakovec 
et al., 2016a; Samaniego et al., 2017). The Multiscale Parameter Regionalization (MPR) 
(Samaniego et al 2010), incorporated within the mesoscale Hydrologic Model (mHM) (Kumar 
et al., 2013; Samaniego et al., 2010) structure explicitly addresses these issues (Rakovec et al., 
2019). Few studies (Dembélé et al., 2022; Dembélé et al., 2020a; Dembélé et al., 2020b; 
Poméon et al., 2018a) have tested the mHM-MPR within sub-Saharan Africa (SSA) with 
successful results. On the other hand, the mHM has been applied successfully in over 400 
European basins (Rakovec et al., 2016b), across the continental United States (Rakovec et al., 
2019) and global scale (Shrestha et al., 2024). Considering the limitations associated with the 
paucity of hydro-meteorologic data in Nigeria, the fully distributed hydrologic mHM tool is 
well suited for its dynamic climate and complex terrain. 
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1.2 Research Questions 

This section addresses the fundamental research questions that will drive this study. They are 
described as follows: 

1. How well do certain selected gridded precipitation products perform at the synoptic-station 
level in Nigeria? 

Studies have shown that gridded precipitation products exhibit varying performances over 
complex landscapes. In this study, the performances of several gridded products (CHIRPS, 
PERSIANN-CDR and TAMSAT) against in-situ rain gauge records obtained at different 
synoptic stations across three agro-climatic regions of Nigeria were evaluated at a point-to-
pixel basis. This research question is addressed in Chapter 2: 

2. To what extent does the mesoscale Hydrologic Model (mHM) accurately replicate the 
temporal variability of observed streamflow under data-limited conditions? 

mHM, which initially incorporated the MPR scheme, is gaining popularity because of its 
capability to perform spatially distributed hydrologic simulations at the mesoscale. The MPR 
technique ensures the generation of consistent parameter sets, permitting their transferability 
across different scales and locations. Additionally, the mHM offers compatibility with 
remotely sensed gridded datasets as model inputs, a valuable advantage in regions 
characterized by a paucity of hydro-climatic datasets. In this stage, several other gridded 
precipitation products were introduced to expand the range of products and provide a 
comprehensive performance evaluation in hydrological modelling. The inclusion of ERA5 
(reanalysis data), GPCC (gauge-based), CPC (multi-source) and MSWEP (multi-source), 
alongside CHIRPS, allows for the evaluation of products characterized by a variety of data 
sources and spatio-temporal resolutions. Incorporating state-of-the-art datasets such as ERA5 
and MSWEP ensures that this evaluation leverages the most advanced and accurate datasets. 
Using these products complements earlier assessments and helps validate the robustness and 
reliability of mHM across a diverse range of precipitation inputs. The mHM was set up across 
diverse basins, utilizing different gridded rainfall products (CHIRPS, CPC, ERA5, GPCC, 
MSWEP) and employing a multi-calibration and single-variable calibration approach. 
Streamflow simulation performance for both calibration approaches was evaluated. This 
research question is addressed in Chapter 3. 

3. How reliable is the MPR technique for parameter transferability to ungauged basins? 

Nigeria is characterized by sparse hydro-meteorological gauge networks, which have impacted 
hydrological model calibrations and water resources management. The MPR regionalization 
scheme, incorporated within the mHM structure, retains sub-grid variability of model 
parameters and facilitates parameter transfer from gauged to ungauged basins. A hydrological 
evaluation of the satellite and re-analysis products on different basins was performed. Next, 
mHM was constrained over multi-domain (i.e., two basins), and streamflow records were 
utilized during mHM calibration. The model parameter set from this stage was transferred to 
independent basins that were not used during calibration and assessed for streamflow 
simulation. This research question is addressed in Chapter 4: 
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4. How effectively does mHM simulate evapotranspiration and soil moisture on a regional 
scale when utilizing calibrated parameters obtained at the basin level?  

Nigeria's current model-input data limitation is expected to persist as a significant issue in the 
future. There is, hence, a critical need to further evaluate the transferability of mHM parameters 
from a smaller domain to a larger domain under data-sparse conditions. In this section, distinct 
mHM parameter sets obtained post-calibration at the basin scale, and considering various 
basin-rainfall combinations were determined. Subsequently, these parameter sets were utilized 
to configure mHM for actual evapotranspiration and soil moisture simulations across three 
agro-climatic regions in Nigeria. Temporal dynamics of mHM simulations were compared 
against their observed counterparts at seasonal, monthly and annual periods. This research 
question is addressed in Chapter 5. 

1.3 Study Objectives 

The main focus of this research is to explore the capability of mHM for hydrologic prediction 
in ungauged basins. Certain parts of this study have been disseminated as scientific articles in 
peer-reviewed open-access journals and presented at several academic conferences. The mHM 
codes (Samaniego et al., 2021) and input datasets used in this study can be obtained freely from 
their various repositories. 

Specific objectives include: 

1. To evaluate the performances of gridded precipitation products across synoptic 
station data in Nigeria. 

2. To assess mHM streamflow simulation within a multi-calibration framework, 
utilizing gridded precipitation datasets in four (4) data-scarce basins. 

3. To assess the transferability of optimized mHM parameters from gauged to 
ungauged basins for streamflow prediction.  

4. To evaluate mHM actual evapotranspiration and soil moisture simulations on a 
larger domain utilizing parameter sets obtained post-calibration at a smaller 
domain. 

1.4 Structure of the Study 

This study is structured into various chapters. Chapter 1 discusses the general introduction and 
justifies the motivation for and the relevance of this research. Chapter 2 presents a performance 
evaluation of selected gridded precipitation products at various synoptic station levels in 
Nigeria. Chapter 3 evaluates the mHM ability for streamflow prediction in data-sparse basins. 
Chapter 4 focuses on assessing the MPR technique for parameter transfer across several basins 
in Nigeria. Chapter 5 presents a multi-variable evaluation of hydrologic simulations in diverse 
climatic and landscape conditions using a streamflow-calibrated mHM. In chapter 6, a general 
conclusion is given. Chapters 2, 3 and 4 have been published in peer-reviewed journals. A draft 
paper on Chapter 5 has been produced and is being prepared for submission. The publications 
are listed below, while this dissertation includes sightly modified versions as chapters. 

Chapter 2: Ogbu, K. N., Hounguè, N. R., Gbode, I. E., and Tischbein, B. (2020). 
Performance evaluation of satellite-based rainfall products over Nigeria. Climate, 8(10). 
https://doi.org/10.3390/cli8100103 
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Chapter 3: Ogbu, K.N., Rakovec, O., Samniego L., Okafor, G.C., Tischbein B, and Meresa, 
H. (2024). Evaluating the skill of the mesoscale Hydrologic Model (mHM) for discharge 
simulation in sparsely-gauged basins in Nigeria. Proc. IAHS, 385, 211-218, 
https://doi.org/10.5194/piahs-385-211-2024   

Chapter 4: Ogbu, K. N., Rakovec, O., Shrestha, P. K., Samaniego, L., Tischbein, B. and 
Meresa, H. (2022). Testing the mHM Reliability for Parameter Transferability across 
Locations in North-Central Nigeria. Hydrology, 9(158), 1–23. 
https://doi.org/10.3390/hydrology9090158 
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2 Performance Evaluation of Satellite-Based Rainfall Products over Nigeria 

This chapter is published as Ogbu, K. N., Hounguè, N. R., Gbode, I. E., & Tischbein, B. 
(2020). Performance evaluation of satellite-based rainfall products over Nigeria. Climate, 
8(10). https://doi.org/10.3390/cli8100103 

Abstract: Understanding the variability of rainfall is important for sustaining rain-dependent 
agriculture and driving the local economy of Nigeria. The paucity and inadequate rain gauge 
networks across Nigeria make satellite-based rainfall products (SRPs), which offer a complete 
spatial and consistent temporal coverage, a promising option. However, the accuracy of these 
products must be ascertained before use in water resource development and planning. In this 
study, the performances of Climate Hazards Group Infrared Precipitation with Station data 
(CHIRPS), Precipitation estimation from Remotely Sensed Information using Artificial Neural 
Networks–Climate Data Record (PERSIANN-CDR), and Tropical Applications of 
Meteorology using SATellite data and ground-based observations (TAMSAT) were evaluated 
to investigate their ability to reproduce long term (1983–2013) observed rainfall characteristics 
derived from twenty-four (24) gauges in Nigeria. Results show that all products captured the 
observed annual cycle and spatial trends in all selected stations well. Statistical evaluation of 
the SRPs performance shows that CHIRPS agree more with observations in all climatic zones 
by reproducing the local rainfall characteristics. However, the performance of PERSIANN and 
TAMSAT varies with season and across the climatic zones. Findings from this study highlight 
the benefits of using SRPs to augment or fill gaps in the distribution of local rainfall data, which 
is critical for water resources planning, agricultural development, and policy making. 

Keywords: Gauge rainfall, Satellite rainfall Product; CHIRPS; PERSIANN; TAMSAT 

2.1 Introduction 

Over the last decades, occurrences of hydrologic extremes, such as flooding and droughts, have 
increased due to human-induced climate change in West Africa. These impacts have led to 
tremendous socio-economic losses in already vulnerable communities and, most often, resulted 
in the deaths of human beings and livestock (Dembélé & Zwart, 2016; Fall et al., 2021). The 
economies of local agrarian communities have been mainly affected because of their 
dependence on rain-fed agriculture (Pellarin et al., 2020; Usman et al., 2018). Sustaining water 
resources development for improved agricultural production under varying climatic conditions 
and extreme climatic events has proved more challenging due to the paucity of recorded climate 
data (Gebrechorkos et al., 2018). Consequently, sparse gauge networks do not allow for 
realistic temporal and spatial climate characteristics representation, as is evident in the 
scientific literature from this region. Funding issues and lack of serious efforts have limited 
installations and maintenance of adequate gauge networks below the standard recommended 
by the World Meteorological Organization (Le Coz & Van De Giesen, 2020).  

The advent of satellite and remote sensing technologies has resulted in the availability of high-
quality satellite-based rainfall products. Its use and application are beginning to gain popularity 
in Africa due to the scarcity of ground-based climate stations (Akinyemi et al., 2019). These 
authors noted several inherent limitations in using rain gauge data, including incomplete 
datasets and lack of spatial and temporal representation have made satellite-based rainfall data 
more attractive, especially in ungauged regions. Previous studies (Akinyemi et al., 2019; Dinku 
et al., 2018; Usman et al., 2018) in many parts of Africa have shown that these products can 
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reproduce local rainfall characteristics and could be an alternative in areas with a paucity of 
observed weather records. However, there is still a need to properly evaluate these products 
across different climatic situations to ascertain their accuracy and to provide valuable results 
to end-users and model developers. 

In 1997, the Tropical Rainfall Measuring Mission (TRMM), developed by the National 
Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency 
(JAXA), became the first-generation satellite rainfall product (Satgé et al., 2019). The Climate 
Hazards Group InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 2015), 
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–
Climate Data Record (PERSIANN-CDR) (Ashouri et al., 2015) and Tropical Applications of 
Meteorology Using SATellite and ground-based observations (TAMSAT) (Maidment et al., 
2014, 2017; Tarnavsky et al., 2014) were modified from the TRMM and other satellite rainfall 
missions to deliver rainfall estimates with high spatial and temporal resolution and quality. The 
recent rainfall estimates from CHIRPS, PERSIANN, and TAMSAT consist of rainfall datasets 
from the early 1980s to the present; covering a larger period than the first-generation satellite 
rainfall products. Satellite-based rainfall estimates are obtained through indirect measurements 
from microwave (MW) or infrared (IR) radiation, from low-orbiting and geostationary 
satellites, respectively (Ayehu et al., 2018). The MW approach uses an empirical relationship 
to directly detect atmospheric liquid water content by penetrating clouds, while the IR method 
utilize an indirect relationship to estimate atmospheric liquid water content from the top of the 
cloud temperature (Ayehu et al., 2018; Romilly & Gebremichael, 2011). These authors noted 
that most satellite-based rainfall products combine MW and IR approaches in others to reduce 
their inherent limitations and to produce representative results, which are highly acceptable for 
applications in hydrologic modelling and drought simulations. The satellite rainfall products 
considered in this study produce rainfall estimates using a combination of both MW and IR 
approaches. 

Recently, there has been an increase in the assessment of the quality of gridded rainfall datasets 
in Africa. Larbi et al. (2018) evaluated the ability of the CHIRPS gridded rainfall data to 
reproduce the climatology of the Vea Catchment in Ghana. In Burkina Faso, a study by 
Dembélé & Zwart (2016) investigated the performance of CHIPRS, PERSIANN, TAMSAT, 
TRMM, Africa Rainfall estimate Climatology (ARC 2.0), African Rainfall Estimation (RFE 
2.0), and African Rainfall Climatology, and time-series using synoptic station data for the 
period 2001–2014. Due to the high uncertainty associated with these interpolated datasets, it is 
essential to evaluate the characteristics and pattern of the satellite rainfall datasets at the local 
scale (Hassan et al., 2020). The mean annual and seasonal rain cycle is necessary to check the 
performance of gridded datasets in estimating the amount of rainfall (Dembélé & Zwart, 2016). 
Information on the standardized precipitation index (SPI) is used to assess the frequency of wet 
and dry days and is essential for water resources management (Hassan et al., 2020; Larbi et al., 
2018). The trend analysis of rainfall is essential to understand its pattern in the past and to be 
able to infer future patterns. Over the years, there has been a reduction in the number of ground-
based meteorological stations in Sub-Saharan Africa due to political and financial instability 
(Poméon et al., 2018a; Usman et al., 2018). In Nigeria, 70% of the total number of rain gauges 
within the River Niger basin became non-functional between 1985 and 2004 (Oyerinde et al., 
2017). This deterioration of existing gauge networks also occurs in other parts of the country. 
It poses a severe challenge to water resources development and climate change research in 
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Africa’s most populous nation. The use of remotely sensed rainfall data is gaining popularity 
to supplement existing (or replace missing) climate data and support solving water resource-
related problems and policy making. However, studies showing which satellite-based rainfall 
products best suit Nigeria's heterogeneous topography and multi-climate regions are still 
lacking in the literature. Local evaluation of remotely sensed data is necessary before utilization 
by government agencies because of their inherent uncertainties and limitations, especially in 
developing countries bedevilled with a paucity of ground-truth data for adequate calibration 
and bias reductions (Akinyemi et al., 2019; Ayehu et al., 2018). Few studies (Akinyemi et al., 
2019; Hassan et al., 2020; Usman et al., 2018) have attempted to validate the capability of some 
satellite-based rainfall products in Nigeria. However, these studies are region-specific, with no 
study in the literature showcasing satellite rainfall evaluation over Nigeria stretching over 
different climatic settings. In the northeastern part of Nigeria, the ability of satellite rainfall 
products to reproduce rainfall trends from 1981–2015 showed satisfactory results at decadal, 
monthly, and seasonal time scales (Usman et al., 2018). In southwestern Nigeria, a comparison 
of satellite and observed rainfall datasets from 1998 to 2016 also showed encouraging results 
(Akinyemi et al., 2019). However, owing to the poor state of climate gauge networks in Nigeria, 
assessing the performances of many of the existing satellite rainfall products for Nigerian 
conditions is lacking in the literature.  

This study attempts to complement the aforementioned few studies on satellite rainfall product 
evaluation in Nigeria by evaluating the performance of three products using twenty-four (24) 
ground-based stations located all over Nigeria. The selected products were based on rainfall 
datasets, which use a combination of MW and IR methods and are bias-corrected with rain 
gauge data. This study aims to evaluate the capability of three satellite rainfall products 
(CHIRPS, PERSIANN–CDR, and TAMSAT) to reproduce local rainfall characteristics 
(seasonal and annual climatology) in Nigeria. We also aim to assess the gridded datasets' utility 
in reproducing inter-annual rainfall variability for the period 1983–2013. The Pearson 
coefficient of correlation (r), root mean square error (RMSE), and percent bias (PBIAS) were 
used to evaluate the performance of these satellite products over Nigeria. The remaining part 
of this study is structured as follows: Section 2.2 describes the data and methods, the findings 
are presented and discussed in Section 2.3, and the conclusions are made in Section 2.4. 

2.2 Materials and Methods         

Nigeria, the most populous country in West Africa, has a land area of about 923,770 km2 and 
is situated between Latitudes 4°–14° N and Longitudes 2°–14° E, as shown in Figure 2.1. The 
widely varying climatic pattern experienced in Nigeria is partly influenced by the presence of 
the Atlantic Ocean to the southern part and the Sahara Desert to the northern part (Akande et 
al., 2017). The climate pattern is also affected by distinct relief systems, such as lowlands, 
highlands, and plateaus, as depicted in Figure 2.1. The major climatic zones divided 
latitudinally are Guinea (4°–8° N), Savannah (8°–11° N), and Sahel (11°–14° N) (Ogungbenro 
& Morakinyo, 2014). The spatial variability of Nigeria’s climate is greatly influenced by the 
movement of the Inter-tropical Discontinuity (ITD), a narrow zone of trade-wind confluence 
between the southwest trade wind from the Atlantic Ocean and northeast trade wind from the 
Sahara Desert (Abatan et al., 2016).  

The Guinea region experiences a mean annual rainfall of about 1575–2533 mm, and the 
Savannah region is characterized by a mean annual rainfall of about 897–1535 mm, while the 



 

11 
 

Sahel region receives a mean annual rainfall of about 434–969 mm (Gbode et al., 2019). These 
authors noted that the Guinea and Savannah regions are characterized by a bimodal rainy 
season due to the abrupt non-linear latitudinal shift of the rainfall band from a quasi-stationary 
position of 5° N to about 10o N. This process paves the way for the unimodal rainy season in 
Sahel from June to October, with the climatological peak in August. The Guinea and Savannah 
regions experience rainy seasons during March to May (MAM), June–August (JJA), and 
September–November (SON) seasons, while the Sahel is majorly characterized by a peak 
rainfall during the July–August (JAS) season. However, all regions experience widespread 
rainfall events from June to September (JJAS) due to more active convective activities 
accompanying the deep monsoon flow defined by the northward migration and surface position 
of the ITD.   

           

Figure 2.1: Digital Elevation Map of Nigeria (in m.a.s.l) showing synoptic station locations 
within Guinea Coast, Savannah, and Sahel climatic zones (Gbode et al., 2019)  

2.2.1 Rainfall Data Description 

Gauge Rainfall 

This study used twenty-four synoptic rainfall stations distributed across Nigeria, as shown in 
Figure 2.1 and Table 2.1. Daily observed rainfall data for the period 1983-2013 for these 
synoptic stations, located across the three climatic regions, were obtained from the Nigeria 
Meteorological Agency (NiMet) database and used for evaluating the performance of the 
satellite rainfall products. However, the climatic stations are not evenly distributed within the 
three climatic zones. Five stations are found within the Sahel, eight are within the savannah, 
and eleven are located within the Guinea climatic zone. The altitudes of the stations vary from 
about 40 m to 1160 m above sea level.  
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Table 2.1: Meteorological Stations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

        

      

Satellite Rainfall 

The advent of satellite observing platforms in the late twentieth century has brought many 
benefits by providing more spatially complete datasets that help advance our knowledge in 
atmospheric science and other environmental-related disciplines. Improved spatiotemporal 
resolution of satellite rainfall products is helpful as input in hydrologic modelling, especially 
in developing nations and data-scarce regions such as Nigeria. Table 2.2 shows an overview of 
the three gridded satellite rainfall products, freely available on the internet and assessed against 
gauged rainfall data in this study. These three products under consideration in this study 
showed satisfactory results out of a total of ten products, which were evaluated in a large-scale 
regional study in West Africa (Poméon et al., 2017). 

 
 
 

Station Region Longitude (N) Latitude (E) Elevation (m) 

Asaba Guinea coast 6.73 6.18 60 

Awka  7.07 6.22 100 

Benin  5.63 6.33 80 

Calabar  8.32 4.95 80 

Enugu  7.48 6.43 300 

Ibadan   3.90 7.39 200 

Ijebu  3.93 6.82 60 

Ikeja  3.33 6.58 40 

Ikom  8.70 5.97 40 

Iseyin  3.60 7.97 300 

Lokoja  6.73 7.80 180 

Bauchi  Savannah  9.82 10.28 600 

Bida  6.01 9.08 140 

Gombe  11.17 10.29 440 

Ibi  9.75 8.18 120 

Ilorin   4.57 8.53 280 

Jos   8.90 9.92 1,160 

Kaduna  7.44 10.52 580 

Minna  6.55 9.62 280 

Gusau Sahel  6.67 12.17 420 

Kano   8.52 12.00 460 

Katsina  7.53 13.00 440 

Maiduguri   13.27 11.88 280 

Nguru  10.45 12.88 340 
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Table 2.2 Overview of Satellite Rainfall Products. 

Satellite 

product 

Temporal 

coverage 

Spatial 

coverage 
Instrument 

Spatial 

Resolution 

Temporal 

resolution  

CHIRPS 1981–present 50° N – 50° S MW, IR, RG 0.05° Daily  

PERSIANN–

CDR 
1983–present 60° N – 60° S MW, IR, RG 0.25° Daily  

TAMSAT 1983–present Africa IR, RG 0.0375° Daily  
MW = microwave imager, IR = infrared, RG = rain gauge, CHIRPS = Climate Hazards Group InfraRed 
Precipitation with Station data; PERSIANN–CDR = Precipitation Estimation from Remotely Sensed Information 
using Artificial Neural Networks–Climate Data Record, TAMSAT = Tropical Applications of Meteorology using 
SATellite data and ground-based observations.  

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) data (Funk et al., 
2015) was developed by scientists from the Climate Hazard Group at the University of 
California, Santa Barbara, in conjunction with the United States Geological Survey (USGS), 
specifically for monitoring droughts and to analyze shifts in rainfall in the data-sparse African 
continent. Information on the data inputs used in developing CHIRPS is extensively reported 
in the literature (Funk et al., 2015). 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–
Climate Data Record (PERSIANN–CDR; hereafter PERSIANN) was developed by the Center 
for Hydrometeorology and Remote Sensing group of the University of California, Irvine, in 
conjunction with the National Oceanic and Atmospheric Administration (NOAA) (Dembélé & 
Zwart, 2016). 

Tropical Applications of Meteorology using SATellite data and ground-based observations 
(TAMSAT) was developed at the University of Reading and integrates about four thousand 
stations across Africa (Poméon et al., 2017). Information on its development is well 
documented in several studies (Maidment et al., 2014; Tarnavsky et al., 2014).  

2.2.2 Quality Control 

Quality control and homogeneity tests were performed on all observed datasets using 
RClimDex and RHtests software packages in a previous study by Gbode et al. (2019). Quality 
control was performed to remove erroneous values in the data series, such as negative rainfall 
values or days with daily rainfall values greater than 200 mm, and replaced with -99. A 
homogeneity test is essential to correct anomalies that might result from a change in station 
location and faulty gauging equipment (Wang et al., 2010; Wang & Feng, 2013). Quality 
control checks were also performed on all of the satellite rainfall datasets using RClimDex 
software. The permission to use this software package was obtained upon request from the 
model developers (http//:www.etccdi.pacificclimate.org). Before use in this study, missing 
and/or erroneous values within these datasets were replaced with -99.  

2.2.3 Methodology 

Daily rainfall data (1983–2013) were extracted from three satellite rainfall products using 
geographic coordinates of the twenty-four synoptic stations (Table 2.1) and processed for 
comparison with observed data. The satellite data were all extracted at grid points closest to 
the location of each synoptic station. The rainfall amounts were characterized into mean 
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seasonal, annual, and inter-annual variations to evaluate how well the selected remotely sensed 
rainfall datasets reproduced observed rainfall characteristics from 1983 to 2013. Daily values 
were aggregated to monthly values for all datasets under study. Aggregated rainfall values for 
March to May (early rainfall season), June to August (mid-rainfall season), and September to 
November (late rainfall season) were processed, and their mean was determined to represent 
mean seasonal rainfall for the different seasons. Consequently, rainfall amounts for June–
September were also aggregated, and the mean for this period was obtained to represent the 
JJAS season. The JJAS season is the only period in Nigeria when all climatic zones receive 
rainfall, and it is highly influenced by the Intertropical Convergence Zone (ITCZ) oscillations.  

Climatological and statistical evaluations of CHIRPS, PERSIANN, and TAMSAT were 
conducted against observed datasets. Spatial rainfall patterns representing seasonal climatology 
(MAM, JJA, and SON) of satellite products were assessed against observed datasets. Annual 
cycle and inter-annual variability for all locations (Figure 2.1) were evaluated against observed 
(gauged) data. The ability of the satellite rainfall products to reproduce observed extreme 
events (wet and dry spells) at the selected twenty-four climate stations was evaluated using the 
standardized precipitation index (SPI) (McKee et al., 1993). The SPI is based on the probability 
of rainfall for a given period and is applied in hydro-meteorological studies to monitor drought 
conditions. The SPI is calculated by fitting a rainfall time series to a probability distribution, 
which is then normalized so that the mean SPI for that location is zero (McKee et al., 1993). 
These authors further stated that positive SPI values imply greater than median rainfall while 
negative values signify lower than median rainfall.  

A comparison of monthly rainfall cumulative distribution frequency (CDF) for all satellite 
product datasets against gauged datasets was performed at all stations to evaluate their 
deviations from observed/gauged patterns. Furthermore, trend analysis was conducted using 
the Mann–Kendall (MK) test statistic (Kendall, 1975) to detect monotonic changes in the 
rainfall time series at a 5% significance level. This statistic tests whether to accept that there is 
a monotonic trend (alternative hypothesis, Ha) or to reject the null hypothesis (Ho), which 
states that no trend is present in the time series data   (Adeyeri et al., 2019). The MK statistic 
has been used extensively in hydro-meteorological studies (Adeyeri et al., 2019; Akinsanola et 
al., 2018; Okafor & Ogbu, 2018) for analyzing monotonic changes in time series data. The MK 
statistic is stated as: 

𝑆 = ∑
ୀଵ ∑ 𝑆𝑔𝑛

ୀାଵ ൫𝑥 − 𝑥൯       (2.1) 

Where, xj and xi are sequential data values; n is length of datasets. The Signum (Sgn) function 
is given as: 

𝑆𝑔𝑛൫𝑥 − 𝑥൯ = ቐ

1 if 𝑥 > 𝑥

0 if 𝑥 = 𝑥

−1 if 𝑥 < 𝑥

       (2.2) 

The statistics (S), the mean E(S), and the variance V(S) can be estimated as (Adeyeri et al., 
2019): 

𝐸(𝑆) = 0          (2.3) 

𝑉(𝑆) =
ଵ

ଵ଼
{𝑛(𝑛 − 1)(2𝑛 − 1) − ∑ 𝑡


ୀଵ [(𝑡 − 1)(2𝑡 + 5)]}   (2.4) 
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Where, ti is the extent of any given tie. The standardized test statistic, Z is stated as:  

𝑍 =

⎩
⎨

⎧
ௌିଵ

ඥ(ௌ)
 if 𝑆 > 0

0 if 𝑆 = 0
ௌାଵ

ඥ(ௌ)
 if 𝑆 < 0

         (2.5) 

The remotely sensed rainfall datasets were validated for mean seasonal (for JJAS season) and 
annual rainfall using the Pearson correlation coefficient (r), root mean square error (RMSE), 
and percent bias (PBIAS) and were presented by showing their spatial patterns. The equations 
representing these statistical models are shown below, as reported in other studies (Ayugi et 
al., 2020; Dembélé & Zwart, 2016; Knoben et al., 2019; Poméon et al., 2017; Pool et al., 2018).  

𝑟 =
∑ (ைିைሜ )(ெିெሜ )

సభ

ට∑ (ைିைሜ )మ
సభ

ට∑ ൫ெିெ൯
మ

సభ

        (2.6) 

𝑅𝑀𝑆𝐸 = ට
ଵ


∑ (𝑀 − 𝑂)

ଶ
ୀଵ         (2.7) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (ைିெ)×(ଵ)

సభ

∑ (ை)
సభ

        (2.8) 

Where, O and M are rain gauge and model values, respectively, O and M are mean rain gauge 
and model values respectively, n = number of data pairs, α = measure of flow variability error, 
β = bias term. 

The spatial distribution of climate variables is vital for understanding hydrological processes 
(Hofstra et al., 2008). This study used the inverse weighting distance (IDW) interpolation 
method to present the spatial distribution of rainfall characteristics. This method was adopted 
due to its popularity and wide applications in hydrology (Chen et al., 2017; Yang et al., 2015). 
The IDW interpolation technique assumes that the weight between an observed and unobserved 
point decreases exponentially as their distance increases. The characteristics of the interpolated 
cells were controlled by applying the variable search radius and adopting the default number 
of input points in the ArcMap window. The IDW function in ArcMap version 10.3 was used 
in this study and is implemented as follows (Chen et al., 2017): 

𝑌(𝑋) = ∑ 𝜆

ୀଵ 𝑌(𝑋)        (2.9) 

𝜆 =
ௗ

షು

∑ ௗ
షು


సభ

, ∑ 𝜆

ୀଵ = 1        (2.10) 

Where, Y(Xo) = interpolated value at point Xo; Y(Xi) = observed value at point Xi; n = number 
of observations; λ = weight; P = power; dio = distance between unknown point and known 
point. 

2.3 Results and Discussion 
2.3.1 Seasonal Climatology 

The mean seasonal climatology results for March to May (MAM), June to August (JJA), and 
from September to November (SON), as well as the June to September (JJAS) period, during 
which the monsoon and associated rainfall widely dominate the West African region, are 
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presented in this section. Evaluation of the JJAS period is critical because about 60% of the 
West African population depends on rain-fed agriculture for their source of livelihood (Poméon 
et al., 2018a). These classifications were computed using data from 1983 to 2013 compared to 
in-situ datasets, as shown in Figure 2.1. These comparisons assessed the difference between 
observed and remotely sensed rainfall datasets.  

The spatial distribution of mean MAM, JJA, and SON seasons for observed (gauged), CHIRPS, 
PERSIANN, and TAMSAT data are presented in Figure 2 (a) - (c). As depicted in Figure 2.2(a) 
(MAM season), all products captured the high rainfall in the south and the low rainfall in 
northeast Nigeria. The lowest gauged seasonal rainfall for this period was about 5 mm at Nguru, 
while the highest amount of 232 mm was in Calabar, as expected, as the latter station is located 
on the Guinea coast, closer to the Atlantic Ocean. At the same time, the former is situated in 
the Sahel. Though the products performed reasonably well in capturing the seasonal rainfall 
within the Savannah and Sahel regions, they poorly reproduced observed amounts in the 
Guinea Coast region. All products overestimated MAM seasonal amounts by 1 - 23 mm for 
Guinea coast (Ikom), Savannah (Bida and Kaduna), and Sahel (Nguru) while underestimations 
occurred within the range of 2 - 52 mm in Guinea (Benin, Calabar, Enugu, Ibadan, Iseyin), 
Savannah (Bauchi), and Sahel (Kano, Katsina, Lokoja). 

  

Figure 2.2(a) Spatial distribution of March-May (MAM) mean rainfall (mm/month) over 
Nigeria 
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Figure 2.2(b): Spatial distribution of June–August (JJA) mean rainfall (mm/month) over 
Nigeria. 

 

 

Figure 2.2(c): Spatial distribution of September–November (SON) mean rainfall (mm/month) 
over Nigeria. 

During the JJA (Figure 2.2b), the seasonal spatial pattern of rainfall amount for all products 
was consistent with observed datasets. All products recorded low seasonal rainfall amounts in 
Nguru and high amounts in Calabar. Specifically, all of the models showed underestimations 
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in Guinea (Asaba, Awka, Benin, Ibadan, and Ijebu), Savannah (Bauchi and Bida), and Sahel 
(Gombe and Kano). The CHIRPS product agrees more with the observed data than the 
PERSIANN and TAMSAT datasets in capturing the spatial distribution pattern during the JJA 
season.   

During the SON season (Figure 2.2c), all products could also reproduce the spatial and seasonal 
rainfall pattern over Nigeria, with the highest rainfall recorded in the south and the lowest in 
the north. The observed seasonal amount was overestimated in many locations across the three 
climatic zones. 

Generally, all the rainfall products' spatial and seasonal patterns were consistent with the 
gauged (observed) dataset for all considered seasons. This revealed that all the products 
captured the seasonal south-north rainfall oscillations tightly coupled with the ITCZ latitudinal 
migration. 

2.3.2 Annual Cycle of Mean Monthly Rainfall 

The annual cycles (1983 - 2013) of mean monthly rainfall at twenty-four (24) point-based 
synoptic station scales were compared to corresponding point-based datasets for the satellite-
based products in the Sahel, Savannah, and Guinea coast climate zones as shown in Figure 
2.3(a-c), respectively. The magnitude of the errors of the satellite-based products from 
observed data for all locations is presented in Table 2.3. Results showed that satellite product 
datasets could capture trends and peaks at all synoptic locations, with error deviations ranging 
from 3 to 60 mm. This shows that the latitudinal oscillations of the ITCZ from southern 
latitudes to northern latitudes, which results in convective processes, were well captured by all 
satellite-based products.  

In the Sahel region (e.g., Nguru station, Figure 2.3a), the products underestimated observed 
rainfall peak at Gusau and Kano synoptic stations, with CHIRPS producing the lowest RMSE 
(Table 2.3) values of 13.5 mm and 35.6 mm, respectively. All gridded products produced a 
good model fit with minimal residuals ranging from 3 mm to 11 mm for Maiduguri and Nguru 
synoptic stations. At Katsina, the rainfall peak was over-predicted by all products with RMSE 
values of 12 mm, 15 mm, and 17 mm for TAMSAT, CHIRPS, and PERSIANN, respectively. 

The seasonal cycle was reasonably captured by all the entire products in the Savanna zone. The 
mean seasonal cycle at the Jos climate station is depicted in Figure 2.3b. CHIRPS and 
TAMSAT datasets represent the peaks better than PERSIANN, especially in Ilorin and Minna. 
Overestimations of rainfall peaks by all satellite products were observed at Bida, Ibi, Ilorin, 
Kaduna, and Jos, with RMSE values ranging from 7-26 mm. Generally, CHIRPS and 
TAMSAT presented lower RMSE values ranging from 7.2-20.8 mm compared to higher values 
by the PERSIANN, which ranges from 12.3-23.2 mm.  

Contrary to results from the Sahel and Savannah regions, more significant biases were detected 
for all of the products in all the locations within the Guinea region, except at Iseyin (Figure 
2.3c) and Lokoja, as shown in Table 2.3. This notable difference can be partly explained by the 
region's heterogeneous land use and land cover, as well as the Atlantic Ocean's presence at the 
country's south border, which significantly influences rainfall processes. The satellite rainfall 
datasets showed a wide range of error magnitudes from 9.2 to 60.1 mm. All products recorded 
RMSE > 10 mm values at all synoptic stations, except for minimal RMSE <10 mm values 
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recorded by CHIRPS at Lokoja. All satellite products overestimated (underestimated) rainfall 
peak at Ikom (Benin), showing a significant RMSE value > 29 mm.  

It is also important to note that all the satellite-based products showed strong agreement (r > 
0.9) with gauged datasets at all locations for mean monthly data in Figure 2.3. Generally, the 
CHIRPS and TAMSAT datasets performed better in capturing the unimodal and bimodal 
annual rainfall patterns as influenced by the ITCZ for all locations studied. Unimodal and 
bimodal rainfall patterns as a result of oscillations of the ITCZ from 15° S to 15° N (Ayugi et 
al., 2020) were well represented by all satellite products in all climatic zones of Nigeria. In a 
previous study (Akinyemi et al., 2019), the performance of CHIRPS rainfall estimates 
compared to gauge records for six stations in southwest Nigeria showed strong relationships 
with high correlation (r) values greater than 0.70. The CHIRPS also showed strong 
relationships with gauge data at monthly and seasonal time resolutions in a study (Usman et 
al., 2018) conducted in the Sudano-Sahelian zone of Nigeria. In another study (Gebrechorkos 
et al., 2018) in East Africa (Ethiopia, Kenya, and Tanzania), CHIRPS was reported as the 
preferential data source for climate change and hydrological studies in ungauged locations. 
These authors noted that CHIRPS was more accurate than African Rainfall Climatology, 
version 2.0, (ARC), Observational-Reanalysis Hybrid (ORH), and Regional Climate Models 
(RCMs) in reproducing mean monthly rainfall amounts over East Africa. Dinku et al. (2018) 
across East Africa (Ethiopia, Kenya, Somalia, Uganda, Rwanda, and Tanzania) reported a 
strong relationship with CHIRPS, TAMSAT, and gauge data with correlation values greater 
than 0.9 at monthly time steps.  

   

Figure 2.3a: Mean Monthly Rainfall Data at Nguru Climatic Station in the Sahel Zone. 
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Figure 2.3b: Mean Monthly Rainfall Data at Jos Climatic Station in the Savannah Zone. 

 

Figure 2.3c: Mean Monthly Rainfall Data at Iseyin Climatic Station in the Guinea Coast Zone. 
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Table 2.3 Root mean square error (RMSE) values (in mm) for all products with respect to 
gauged datasets. 

Station Region CHIRPS PERSIANN–CDR TAMSAT 

Asaba Guinea coast 28.3 28.3 23.6 

Awka  19.1 22.8 22.8 

Benin  29.4 49.1 35.5 

Calabar  22.1 45.9 30.8 

Enugu  12.9 24.2 11.8 

Ibadan   21.1 18.1 11.7 

Ijebu  20.4 34.1 14.8 

Ikeja  21.2 27.0 20.6 

Ikom  60.1 31.2 50.2 

Iseyin  9.6 10.0 11.2 

Lokoja  9.2 12.4 12.7 

Bauchi  Savannah  15.9 20.7 17.7 

Bida  8.1 14.7 7.2 

Gombe  15.8 12.3 20.8 

Ibi  13.8 15.1 12.1 

Ilorin   11.2 23.2 7.7 

Jos   9.5 20.3 10.4 

Kaduna  13.3 18.9 16.2 

Minna  8.7 26.0 7.5 

Gusau Sahel  13.5 15.2 37.7 

Kano   35.6 45.7 48.5 

Katsina  15.7 16.5 11.7 

Maiduguri   6.8 4.8 11.4 

Nguru  3.0 8.7 3.9 
 

2.3.3 Inter-Annual Rainfall Anomaly 

The capabilities of CHIRPS, PERSIANN, and TAMSAT products to reproduce observed year-
to-year rainfall anomalies using standardized precipitation index (SPI) within the three climatic 
zones are shown in Figures 2.4(a-c) by using a single station in each zone for illustrations. The 
SPI at annual resolutions were estimated differently using rainfall records for gauge and 
satellite-based rainfall products at point-based location scale for the period 1983-2013. Table 
2.4 presents the correlation scores between each satellite product and gauge data for all 
locations within the study area at the annual time step. All products exhibited moderate 
agreement with gauged datasets with correlation values greater than 0.5 (r > 0.5), except at 
locations within the Sahel region (Katsina; TAMSAT in Gusau), Savannah region (Bida, Ilorin, 
Jos and Kaduna; PERSIANN at Bauchi; PERSIANN and TAMSAT at Ibi and Gombe), and 
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the Guinea coast region (Calabar and Ikom; CHIRPS at Benin; PERSIANN at Asaba and 
Ibadan), as shown in Table 2.4.  

Table 2.4 Correlation of Annual Rainfall Anomalies for Satellite Products with Respect to 
Gauge Data. 

Station Region CHIRPS PERSIANN–

CDR 

TAMSAT 

Asaba Guinea coast 0.56 0.38 0.49 

Awka  0.54 0.47 0.56 

Benin  0.37 0.66 0.56 

Calabar  0.44 0.40 0.41 

Enugu  0.77 0.61 0.75 

Ibadan   0.67 0.41 0.68 

Ijebu  0.61 0.63 0.69 

Ikeja  0.62 0.60 0.63 

Ikom  0.24 0.36 0.25 

Iseyin  0.67 0.57 0.48 

Lokoja  0.65 0.50 0.46 

Bauchi  Savannah  0.68 0.43 0.55 

Bida  0.28 0.11 0.23 

Gombe  0.55 0.42 0.44 

Ibi  0.56 0.10 0.05 

Ilorin   0.43 0.11 0.23 

Jos   0.36 0.43 0.29 

Kaduna  0.31 0.13 0.40 

Minna  0.56 0.69 0.50 

Gusau Sahel  0.48 0.48 0.02 

Kano   0.76 0.83 0.76 

Katsina  0.37 0.36 0.32 

Maiduguri   0.74 0.71 0.64 

Nguru  0.75 0.64 0.59 
 

SPI results for Kastina, Bida, and Ikom stations are shown in Figures 2.4a, 2.4b, and 2.4c, 
respectively. For the period of rainfall time series considered, and in many locations, the 
CHIRPS dataset exhibited satisfactory performance over PERSIANN and TAMSAT in 
reproducing the year-year variations of rainfall anomalies. The unsatisfactory correlation found 
in most of the locations may be attributed to the presence of large-scale forcings on local 
climatic conditions (Akinsanola et al., 2018).  
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Figure 2.4a: Inter-annual variations of SPI at Kastina in the Sahel climatic zone. 

 

Figure 2.4b: Inter-annual variations of SPI at Bida in the Savannah climatic zone. 
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Figure 2.4c: Inter-annual variations of standardized precipitation index (SPI) at Ikom in the 
Guinea coast climatic zone. 

2.3.4 Empirical Cumulative Distribution Frequency  

The ability of satellite-based rainfall products to reproduce the frequency of gauged monthly 
rainfall amounts from 1983 to 2013 is evaluated using the empirical cumulative distribution 
function (ECDF) plots. Comparisons of the ECDFs of mean monthly rainfall at a point-based 
scale for gauged and satellite products within Sahel, Savannah, and Guinea Coast climatic 
zones are shown in Figures 2.5(a-c) using one station in each climatic zone. Generally, similar 
patterns of gauged monthly rainfall distributions in all locations were captured by the satellite 
products. The frequency of monthly rainfall within the Sahel climatic zone was significantly 
overestimated by all products at the Kano synoptic station (Figure 2.5a) in the range of 200 - 
400 mm/month. TAMSAT and PERSIANN exhibited overestimation (100-200 mm/month) at 
Gusau and Katsina, respectively. However, all products showed close monthly rainfall 
probabilities to gauged datasets at Maiduguri and Nguru. 
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Figure 2.5a: Empirical cumulative distribution function (ECDF) of mean monthly rainfall in 
Kano within the Sahel climatic zone. 

In the Savannah region, both CHIRPS and TAMSAT captured overall frequencies of observed 
values at all locations, although with slight margins, as shown in Figure 2.5b. The PERSIANN 
showed consistent frequencies with gauged datasets but underestimated the mean monthly 
rainfall frequency at Ibi, Ilorin, Jos, Kaduna, and Minna by 150 - 300 mm/month.  

 

Figure 2.5b: ECDF of mean monthly rainfall in Bauchi within the Savannah climatic zone. 

In the Guinea coast climatic zone, the entire product showed consistent frequencies, except at 
Ikom (Figure 2.5c), where CHIRPS and TAMSAT significantly underestimated rainfall 
frequency in the 200 - 400 mm/month range. Conversely, all products overestimated rainfall at 
more than 200 mm/month (at Asaba, Benin, Awka, Ibadan, Ijebu, and Iseyin) and more than 
400 mm/month (at Calabar). 
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Figure 2.5c: ECDF of mean monthly rainfall in Ikom within the Guinea coast climatic zone. 

2.3.5 Trend Analysis 

Table 2.5 shows the p-values result of the non-parametric Mann-Kendall method used to assess 
significant trends at annual and seasonal (MAM, JJAS, and SON) time scales. The test was 
performed for all datasets at all synoptic stations under consideration in this study. In the Sahel, 
all the satellite products and gauged datasets exhibited significant positive trends in the annual 
rainfall series, except for Gusau, where only TAMSAT and PERSIANN showed similar 
consistency. MAM in-situ rainfall features a positive significant trend in Katsina, which is 
accurately replicated by the PERSIANN dataset. This significant positive trend was also 
observed at Gusau (PERSIANN and TAMSAT), Maiduguri (CHIRPS), and Nguru (CHIRPS 
and PERSIANN). The JJAS observed rainfall showed an increasingly significant trend, which 
aligns with all satellite product datasets in this zone, except for Gusau (gauge, CHIRPS, and 
TAMSAT were insignificant). During the SON season, observed data from Kano and 
Maiduguri exhibited a significant trend replicated by PERSIANN and TAMSAT, as seen in 
Table 2.5. 

All satellite-based products and local rainfall annual series in Savannah showed a significant 
positive trend at Bauchi. TAMSAT exhibited a significant increasing trend at all locations 
within this zone. The same was observed for PERSIANN at Bida, Jos, Kaduna, and Minna, 
while CHIRPS showed the same trend in Jos. Both CHIRPS and TAMSAT indicated a 
significant increasing trend at the seasonal scale, as seen in the gauged rainfall at Bauchi during 
the JJAS period. During the SON period, significant positive trends exhibited by the gauge 
time series at Ibi and Ilorin were reproduced by all satellite products, while in Minna, only 
PERSIANN and TAMSAT could successfully replicate the gauged increasing significant 
trend. Many of the products replicated seasonal observed trends in most locations but with 
different levels of accuracy, as presented in Table 2.5. 

Over the Guinea coast, TAMSAT consistently exhibited significant positive trends in all 
locations at the annual time step (Table 2.5), and it was consistent with gauged data recorded 
at Benin, Calabar, Enugu, and Ijebu. From Table 5, significant positive trends shown in the 
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gauge time series were also replicated by PERSIANN (at Ijebu) and CHIRPS (at Calabar). At 
the seasonal scale during the MAM period (Table 2.5), TAMSAT exhibited significant positive 
trends in all stations within the Guinea coast, except in Iseyin. This significant trend was only 
exhibited in the gauged time series at Benin. For the high monsoon period (JJAS season), 
gauged data at Calabar exhibited the same significant positive trends as CHIRPS and 
TAMSAT. Moreover, observed data at Ibadan, Ijebu, and Iseyin showed the same significant 
positive trends with all satellite products during the SON season. Similar significant positive 
trends were also exhibited between gauge, PERSIANN, and TAMSAT datasets in Enugu and 
Ikeja and between gauged data and TAMSAT at Benin in the same season. 

Table 2.5. Mann-Kendall Statistic (Z) at Annual and mean Seasonal Time Series. JJAS = June 
- September.  

Station Data Annual MAM JJAS SON Climatic 

Zone 

Gusau Observed 0.20 0.92 –0.95 –0.82 Sahel  

 CHIRPS  0.82 –0.31 0.82 0.71  

 PERSIANN  2.65 2.26 2.14 2.69  

 TAMSAT 2.51 2.60 1.39 2.53  

Kano Observed 3.81 1.56 3.74 2.86  

 CHIRPS 2.35 0.92 2.41 1.33  

 PERSIANN  3.09 1.94 3.37 2.35  

 TAMSAT 3.03 1.14 3.03 2.46  

Katsina Observed 3.06 2.67 2.58 1.36  

 CHIRPS 2.31 0.74 2.34 1.22  

 PERSIANN  3.71 2.58 2.43 2.04  

 TAMSAT 3.16 1.43 0.00 1.58  

Maiduguri Observed 3.64 0.73 3.26 1.97  

 CHIRPS 2.11 2.11 2.07 1.22  

 PERSIANN  3.26 1.73 3.26 2.44  

 TAMSAT 3.60 1.04 3.37 2.87  

Nguru Observed 2.58 0.48 2.75 0.89  

 CHIRPS 2.45 2.14 2.28 1.29  

 PERSIANN  3.74 2.14 3.77 2.58  

 TAMSAT 3.88 1.34 3.88 2.21  

Bauchi  Observed 3.94 –0.64 4.08 1.87 Savannah  

 CHIRPS 2.11 –0.95 2.18 0.44  

 PERSIANN  2.01 1.33 1.94 2.31  

 TAMSAT 2.94 1.16 3.03 2.35  

Bida Observed 0.48 –0.88 0.17 1.05  

 CHIRPS 0.03 –0.41 –0.85 0.61  

 PERSIANN  2.55 2.58 0.75 2.79  
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 TAMSAT 2.51 2.60 1.39 2.53  

Gombe Observed 0.65 –1.63 0.58 0.85  

 CHIRPS 1.33 0.17 1.29 1.87  

 PERSIANN  1.39 0.51 1.67 3.20  

 TAMSAT 4.22 1.19 3.74 3.06  

Ibi Observed 0.00 –0.54 –0.85 2.11  

 CHIRPS 0.99 –0.30 0.07 2.11  

 PERSIANN 1.33 2.17 –0.48 3.23  

 TAMSAT 1.71 2.62 2.38 2.84  

Ilorin Observed 0.41 –0.10 0.00 2.24  

 CHIRPS 1.33 –0.75 0.51 3.63  

 PERSIANN 1.67 1.46 –0.17 3.23  

 TAMSAT 2.71 1.63 1.16 2.75  

Jos Observed 1.50 0.37 0.08 1.73  

 CHIRPS 1.97 –0.20 2.35 0.00  

 PERSIANN  2.45 2.52 1.43 1.84  

 TAMSAT 3.84 2.65 3.60 2.28  

Kaduna  Observed 1.60 0.71 0.92 1.80  

 CHIRPS 0.92 –0.03 0.20 0.14  

 PERSIANN 3.43 1.70 2.75 2.72  

 TAMSAT 4.01 2.69 3.06 2.33  

Minna Observed 1.53 0.31 1.56 2.65  

 CHIRPS 0.75 0.37 –0.34 1.77  

 PERSIANN  3.09 2.62 0.82 2.86  

 TAMSAT 3.20 2.99 1.92 3.33  

Asaba Observed 0.31 0.75 –0.73 0.27 Guinea  

 CHIRPS 1.60 1.29 0.10 1.70  

 PERSIANN  0.24 1.16 –2.28 1.02  

 TAMSAT 3.30 3.16 1.80 3.03  

Awka Observed 1.73 1.80 –0.92 0.88  

 CHIRPS 1.09 0.74 –0.17 2.24  

 PERSIANN  0.51 1.90 –2.41 2.10  

 TAMSAT 3.81 3.71 1.87 3.16  

Benin Observed 2.31 2.86 1.12 2.67  

 CHIRPS 0.17 0.92 –0.31 1.12  

 PERSIANN  0.37 1.12 –1.67 1.50  

 TAMSAT 3.09 3.21 1.63 3.06  

Calabar Observed 2.65 0.88 2.11 0.54  

 CHIRPS 2.41 0.10 2.44 –0.24  
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 PERSIANN  1.09 1.77 –1.94 –1.70  

 TAMSAT 3.94 3.23 0.03 2.41  

Enugu  Observed 2.28 1.12 1.19 4.39  

 CHIRPS 1.12 1.70 0.51 1.84  

 PERSIANN 1.05 2.28 –1.53 2.62  

 TAMSAT 3.57 3.94 1.94 3.23  

Ibadan  Observed 1.09 0.20 1.36 2.31  

 CHIRPS 0.54 –0.99 0.00 2.31  

 PERSIANN  1.16 0.48 –0.10 3.16  

 TAMSAT 2.78 2.18 0.61 3.23  

Ijebu Observed 3.17 0.25 2.45 2.57  

 CHIRPS 1.77 0.14 0.54 2.24  

 PERSIANN  2.04 0.446 –0.24 3.06  

 TAMSAT 3.47 2.58 0.88 2.82  

Ikeja Observed 1.83 0.84 0.81 2.78  

 CHIRPS 1.05 0.41 0.07 0.20  

 PERSIANN  1.35 0.24 –0.24 2.21  

 TAMSAT 3.91 2.55 1.53 2.69  

Ikom Observed 1.67 0.65 –0.17 1.73  

 CHIRPS -0.03 0.20 –1.56 0.85  

 PERSIANN  0.88 2.35 –2.75 2.41  

 TAMSAT 3.40 2.41 1.70 2.86  

Iseyin Observed 1.05 0.10 0.03 2.04  

 CHIRPS 1.90 –0.20 0.00 2.79  

 PERSIANN  2.04 0.71 0.37 3.54  

 TAMSAT 3.16 1.56 0.53 3.30  

Lokoja Observed 0.68 1.46 –0.48 0.99  

 CHIRPS 0.85 –0.27 0.34 1.60  

 PERSIANN  0.37 1.63 –1.43 2.21  

 TAMSAT 2.48 2.99 1.05 2.48  
A positive (negative) Z-value indicates an increasing (decreasing) trend. Bold values indicate a significant trend 
at a 95% confidence interval 

2.3.6 Seasonal Evaluation of Satellite Rainfall Products 

The capability of the satellite products to reproduce local rainfall characteristics at the synoptic 
station level was assessed using statistical methods. Results of these statistics at mean seasonal 
and annual time resolution for 1985 - 2013 are presented as spatial plots produced using the 
IDW interpolation method. The suitability of satellite products is dependent not only on low 
RMSE and PBIAS values but also on a strong correlation coefficient between gauge and model 
values (Akinsanola et al., 2018).  
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Inter-Annual Variation of Mean Seasonal Rainfall 

The JJAS period was selected for evaluating the performance of the satellite products because, 
during this period, all three climatic zones in Nigeria experienced rainfall (Adeniyi & Dilau, 
2015). Each satellite product was compared against gauge datasets using statistics: r, RMSE, 
and PBIAS, and are presented in Figures 2.6, 2.7, and 2.8, respectively. Within the Sahel 
(Figure 2.6), CHIRPS and PERSIANN performed satisfactorily, exhibiting good correlations 
(r > 0.5) against gauge data, except in Kastina (where r < 0.4). However, TAMSAT presented 
weak correlations (in Kastina and Gusau), with an r-value of -0.01 at Gusau. Results also 
indicate statistical significance at a 95% confidence level for all products except in Kastina. 
The spatial plot of the satellite product bias (Figure 2.7) exhibits low bias in the range of -33.6 
to 23.1% and RMSE (Figure 2.8) of 86 to 104 mm in Kano. 

Results within the Savannah zone (Figure 2.6) show that the gridded products generally were 
unsuitable for simulating seasonal JJAS rainfall. Only the CHIRPS product reliably showed a 
strong correlation (r > 0.5) in Bauchi, Gusau, Ilorin, and Ibi but was not suitable (r < 0.5) at 
Bida, Kaduna, and Minna. PERSIAN and TAMSAT exhibited weak correlations (r < 0.4) at 
all locations, except that TAMSAT performed well at Bauchi (r = 0.6). However, low bias 
(Figure 2.7) and RMSE (Figure 2.8) were mainly prevalent over the Savanna zone. 

In the Guinea coast zone (Figure 2.6), CHIRPS was more suitable and showed reasonable 
correlation with gauge datasets except at Ikom, where it exhibited a weak correlation (r = 0.07) 
in comparison to PERSIANN (r = 0.3) and TAMSAT (0.1). Consequently, the correlation 
between CHIRPS and gauge was significant at a 95% confidence level, except at Ikom and 
Calabar. Furthermore, CHIRPS and TAMSAT exhibit bias of 26.3% and 20.3%, respectively. 
The RMSE values above 78 mm were observed in Benin, Calabar, and Ikom and were 
consistent for all products. Generally, the CHIRPS products showed good results during the 
JJAS rainfall season compared to other products under study. 

 

Figure 2.6. Correlation Coefficient of Mean JJAS Rainfall. 
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Figure 2.7. Percent bias (PBIAS) of mean JJAS rainfall. 

 

Figure 2.8. Root mean square error (RMSE) of mean JJAS rainfall. 

Inter-Annual Variation of Mean Annual Rainfall 

The results in this section reveal the inter-annual variation of annual rainfall (mm/year) of all 
products. Findings from Figure 2.9 show that CHIRPS can reproduce observed annual rainfall 
with good correlation values (r > 0.4) at Bida, Ikom, Kaduna, and Katsina. The PERSIANN 
and TAMSAT data did not well capture a more significant portion of the Savannah zone. The 
northwest region of the Sahel zone was also poorly represented by the TAMSAT product, 
exhibiting a low correlation of less than 0.4. 
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Figure 2.9. Correlation coefficient of annual rainfall (mm/year) over Nigeria. 

Figure 2.10 depicts the spatial plot of satellite product bias from gauge datasets. Both CHIRPS 
and TAMSAT show the same pattern of bias, with model overestimations of gauge datasets 
visible in southwestern and northeastern Nigeria. Both products overestimated gauge records 
in Savannah and the northwestern region of Nigeria.  

 

Figure 2.10. Percent bias (PBIAS) of annual rainfall (mm/year) over Nigeria. 

The RMSE pattern (Figure 2.11) for all satellite products shows a gradient from south to north, 
with RMSE values above 300 mm within the Guinea zone (Benin, Calabar, Ikom) and Sahel 
(Kano).  
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Figure 2.11: Root mean square error (RMSE) of annual rainfall (mm/year) over Nigeria. 

2.4 Conclusion 

Recently, the easy accessibility of high-quality satellite rainfall products over Africa has stirred 
up research activities in rainfall-dependent sectors. Most applications at regional scales showed 
promising results and underscored the utility of these products in data-scarce regions. In this 
study, the capabilities of the CHIRPS, PERSIANN, and TAMSAT to reproduce local rainfall 
characteristics in Nigeria from 1983 to 2013 were evaluated at a point-pixel scale. Using 
statistical approaches, satellite product performances were analyzed at seasonal, inter-seasonal, 
and inter-annual time scales.  

Findings from the spatial distribution of seasonal rainfall showed that all of the products 
followed the same pattern, depicting the south (high) to north (low) gradient of rainfall amount. 
All products visibly captured this trend during the early (MAM) and late (SON) seasons, but 
poorly reproduced it during the wet rainfall period (JJA and JJAS). The satellite products 
captured the unimodal and bimodal trend of rainfall peaks, with high RMSE values observed 
in locations within the Guinea Coast climatic zone. The products with varying magnitude of 
accuracy simulated the inter-annual variations of local rainfall anomaly. The pattern of 
frequency of monthly rainfall occurrence was also in agreement with gauge datasets, but with 
varying accuracy. It is worth noting that CHIRPS performed better than other products in 
reproducing local rainfall climatology in most locations. 

Within the Sahel, a significant increasing trend was accurately reproduced by all products at 
the annual time series except at Gusau, where only CHIRPS and gauge datasets exhibited a 
similar trend. At the seasonal time series, variations in capturing significant trends exist at 
different locations and for different products. Generally, product evaluation statistics show that 
CHIRPS scored high correlations (r > 0.5) in many of the locations within all zones. However, 
poor agreements between all products against observed data are seen around the southern and 
northwestern axis of Nigeria. 
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3 Evaluating the skill of the mesoscale Hydrologic Model (mHM) for discharge 
simulation in sparsely-gauged basins in Nigeria 

This chapter is published as Ogbu, K.N., Rakovec, O., Samaniego L., Okafor, G.C., Tischbein 
B, and Meresa, H. (2024). Evaluating the skill of the mesoscale Hydrologic Model (mHM) for 
discharge simulation in sparsely-gauged basins in Nigeria. Proc. IAHS, 385, 211-218, 
https://doi.org/10.5194/piahs-385-211-2024  

Abstract: Predictive hydrologic modelling to understand and support agricultural water 
resources management and food security policies in Nigeria is demanding due to the paucity 
of hydro-meteorological measurements. This study assessed the skill of using different 
remotely sensed rainfall products in a multi-calibration framework for evaluating the mesoscale 
hydrologic Model (mHM) performance across four different data-scarce basins in Nigeria. 
Grid-based rainfall estimates obtained from several sources were used to drive the mHM in 
different basins in Nigeria. Model calibration was first performed using only discharge records 
and a combination of discharge and actual evapotranspiration forced with different gridded 
rainfall products. The mHM forced with CHIRPS produced reasonable Kling-Gupta efficiency 
KGE) results (0.5 > KGE < 0.85) under both calibration frameworks. However, constraining 
model parameters under a multi-calibration arrangement showed no significant discharge 
simulation improvement in this study. Results show the utility of the mHM for discharge 
simulation in data-sparse basins in Nigeria. 

Keywords: UPH20, MPR, discharge, CHIRPS 

3.1 Introduction 

Modelling of hydrologic systems is crucial to understanding how climatic variables drive 
hydrologic responses, which are highly sensitive to land use/cover changes and population 
dynamics. Model-based quantifying the components of the water balance provides strategic 
information to policymakers and water resources managers for developing key water resources 
management projects (Nesru et al., 2020). In Nigeria, in-situ measurement of hydrologic 
variables is primarily constrained by financial instability, weak institutions and political 
instability, resulting in a steady decline and uneven distributions of existing hydro-
meteorological networks (Adeoti, 2020; Poméon et al., 2018a). Precipitation is a critical driver 
in the hydrologic system, affecting other hydrologic processes' spatial and temporal variability. 
Gridded rainfall products provide continuous and spatially homogenous estimates and have 
become an alternative, especially in data-scarce regions (Ayehu et al., 2018). However, their 
ability to reproduce observed hydrologic processes is a pre-condition for use in water resources 
modelling (Dembélé et al., 2020a).  

The availability of remotely sensed datasets (elevation, soil, land use/cover, climatic variables) 
led to the development of complex hydrologic models. However, these efforts did not impact 
model results (Poméon et al., 2018a). This is because the traditional model calibration method 
involving determining the best model parameter set could reproduce observed hydrologic 
variables but misrepresent critical watershed processes (Rajib et al., 2018). The importance of 
understanding hydrologic processes and improving their mathematical representation is well 
highlighted during the International Association of Hydrologic Sciences (IAHS) scientific 
decade (2003 – 2012) (Hrachowitz et al., 2013). To overcome the problems of over-
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parameterization and equifinality, the Mesoscale Parameter Regionalization (MPR) proposed 
by Samaniego et al. (2010) presents a technique which links model parameters at a coarser 
scale with their counterparts at a finer resolution using pedotransfer functions, whereby only 
the global parameters that define these relationships are obtained through calibration. 
Compared with other regionalization methods (e.g. standard regionalization), MPR showed 
superiority in preserving the spatial variability of state variables and overall performance of 
model hydrologic processes simulation (Kumar et al., 2010; Samaniego et al., 2010). The MPR 
technique reduces the number of free mHM calibration parameters and seeks to address 
Question 20 (reducing model uncertainty) of the Unsolved Problems in Hydrology (UPH 20) 
(Blöschl et al., 2019). In this study, the critical research question is: What is the performance 
of the mHM-MPR technique in reproducing the temporal variation of the streamflow process 
under a paucity of input-data conditions?  This is the second attempt to apply the mHM for 
hydrologic modelling in data-scarce basins and the first time within Nigeria. This study 
assessed the suitability of using gridded-rainfall products in a multi-calibration framework for 
evaluating the performance of mHM for river discharge simulations across four different data-
scarce basins in Nigeria.  

3.2 Methodology 
3.2.1 Study area 

The study area consists of four river basins located in the northern part of Nigeria (Lat 4° – 14° 
N, Lon 2° – 14° E), which were selected based on the availability of discharge data: Jamaare 
(13929.711 km2), Hadejia (16820.336 km2), Kaduna (64848.594 km2) and Oroo (4500.174 
km2) as shown in Figure 3.1. Rainfall in this region is unimodal and is impacted by the 
latitudinal movement of the Inter-Tropical Discontinuity (ITD).  Jamaare, Hadejia, and Kaduna 
basins receive an annual mean rainfall of about 434 – 969 mm, while the Oroo basin is 
characterized by an annual mean of 897 – 1535 mm (Gbode et al., 2019; Ogbu et al., 2020).  

  

Figure 3.1: Study locations - Jamaare, Hadejia, Kaduna and Oroo River Basins 



 

36 
 

3.2.2 The Mesoscale Hydrologic Model (mHM) 

mHM is a grid-based, process-based and fully distributed hydrologic model which simulates 
various hydrologic processes (evapotranspiration, infiltration, surface and subsurface runoff, 
etc.) that are formulated based on the HBV and VIC models (Kumar et al., 2013; Samaniego 
et al., 2010). Spatial-temporal simulations of hydrologic processes in the mHM are processed 
at the grid/cell scale. Three levels of gridded information are required for mHM set-up: Level-
0 (basin characteristics), Level-1 (dominant hydrological processes) and Level-2 
(meteorological datasets), to account for sub-grid variability (Kumar et al., 2013). The MPR 
proposed by Samaniego et al. (2010) is the main feature in the mHM model and serves to bridge 
the gap between observations and the basin scale (Rakovec et al., 2019).The MPR involves a 
two-step parameterization procedure (Figure 3.2); (1) model parameters at Level-0 are 
regionalized by linking them with their corresponding basin characteristics through linear or 
non-linear transfer functions; (2) In this stage, effective parameters are obtained by linking the 
regionalized parameters with their corresponding one at Level-0 through an upscaling operator. 
The primary goal of the MPR is to derive global model parameters that are spatially seamless, 
scale-independent and transferable across locations (Rakovec et al., 2019). 

 

Figure 3.2: Schematic diagram of MPR (Samaniego et al., 2010)  

3.2.3 Data 

In this study, mHM was set up using grid-based meteorological, soil, land use and 
morphological datasets.  Rainfall estimates were obtained from the Climate Hazards Group 
InfraRed Precipitation with Station data (CHIRPS), Climate Prediction Center (CPC), 
European Center for Medium-Range Weather Forecast (ECMWF) Reanalysis 5th Generation 
(ERA5), Global Precipitation Climatological Center (GPCC) and Multi-Source Weighted 
Ensemble Precipitation (MSWEP) and used as model forcing. Potential evapotranspiration was 
computed with the Hargreaves method using daily temperature data obtained from the ERA5 
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product. These climatic products were selected based on their performances in previous studies 
(Dembélé et al., 2020b; Hounguè et al., 2021; Ogbu et al., 2020; Poméon et al., 2017) within 
the West African region. Soil attributes for six different soil layers were extracted from the 
Harmonized World Soil Database, version 1.2, while Land use and cover information were 
obtained from the Globecover product. Slope, aspect, flow accumulation and flow direction 
were derived from a 90 m resolution digital elevation model obtained from the Shuttle Radar 
Topographic Mission database. mHM calibration and validation were performed using 
discharge (Q) and actual evapotranspiration information obtained from the German-developed 
Global Runoff Data Center (GRDC) and Global Land Evaporation Amsterdam Model 
(GLEAM) databases, respectively. 

3.2.4 Model Set-up 

mHM version 5.11 (Samaniego et al., 2021) was set up in four data-scarce basins with varying 
rainfall inputs for each setup. In the first case, calibration and validation were performed using 
only Qobs. In the second case, they were performed using Qobs and AET. Simulation and 
calibration periods vary for all basins due to the paucity of data and significant gaps in existing 
discharge time series. Discharge (Q) optimization was performed using the Dynamically 
Dimensioned Search (DDS) (Tolson & Shoemaker, 2007) algorithm (4,000 iterations), based 
on the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009; Kling et al., 2012) metric at a daily 
time step. Best model parameter sets are obtained with the DDS algorithm by using about 10 – 
20% of the number of iterations required by the Shuffle Complex Evolution optimization 
method  (Rakovec et al., 2019). The KGE is an improved version of Nash Sutcliffe Efficiency 
(NSE) and constitutes correlation (r), variability and mean bias, as shown in Equation 3.1.  

𝐾𝐺𝐸 = 1 − ඥ(𝑟 − 1)ଶ + (∝ −1)ଶ + (𝛽 − 1)ଶ      (3.1) 

Where, r = linear correlation, α = measure of flow variability error, β = bias 

The multivariable calibration, using Q and domain average AET (Equation 3.2), was used to 
complement Qobs and assess if a more realistic result would be achieved.  

𝑆𝑂ଷ = [1 − 𝐾𝐺𝐸(𝑄)] × 𝑅𝑀𝑆𝐸൫basin ETAതതതതതതതതതതതതത൯     (3.2) 

Where, SO30 = mHM objective function Number 30,  

KGE = Kling-Gupta Efficiency,  

RMSE  ETAbasin   = root mean square error sof the basin average actual ET simulation. 

3.3 Results and Discussion 
3.3.1 Model Performance for Discharge 

Generally, model results varied across rainfall datasets for all domains during calibration and 
validation periods for Qobs simulation (Figure 3.3). Daily discharge simulations showed 
reasonable results (KGE > 0.5) in all domains except for MSWEP (in Hadejia), GPCC (in 
Oroo) and CPC (in Kaduna) during model calibration. On the other hand, validation results 
showed KGE > 0.5 in Jamaare Basin (for ERA5, CHIRPS and CPC) and Oroo Basin (for 
CHIRPS). 
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Figure 3.3: Qobs calibration and validation for gridded products in each basin 

An example of daily mHM simulated hydrographs for the Jamaare River Basin during model 
calibration (Figure 3.4) and validation (Figure 3.5) showed an acceptable fit with the Qobs time 
series. However, the KGE value decreased from 0.85 (during model calibration) to 0.61 (during 
model validation) (see Figures 3.4 and 3.5). 

 

 

Figure 3.4: Daily hydrograph simulation when calibration is performed using only Qobs for 
Jamaare 

 

Figure 3.5: Daily hydrograph simulation when validation is performed using only Qobs for 
Jamaare 

3.3.2 Model Performance for Qobs and AET Model Calibration Scheme 

In the Qobs/AET model calibration setup, daily streamflow simulations exhibited the same 
trend, if not slightly worse, as in the Qobs model calibration scheme (see Figure 3.6). This 
result is similar to a previous mHM study (Poméon et al., 2018a) in West Africa, with the Qobs 
model calibration scheme showing improved discharge predictions. Unsatisfactory KGE 
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results (< 0.5) were obtained in Oroo Basin (driven by GPCC) and Kaduna Basin (forced with 
GPCC) during model calibration. For the validation period, discharge simulations showed 
acceptable results (SO30 > 0.5) in Oroo (driven by CHIRPS), Hadejia (CPC and MSWEP) and 
Jamaare (ERA5, CHIRPS, 0.51). We showed example hydrographs for the Jamaare River 
Basin produced using Qobs/AET model calibration setup (Figure 3.7) and for model validation 
(Figure 3.8). For this example, the SO30 value decreased from 0.85 (calibration) to 0.64 
(validation), while correlation followed the same trend from 0.85 – 0.78.  

 

Figure 3.6: Calibration and validation results for gridded products using Qobs/AET calibration 
setup 

 

Figure 3.7: Optimized daily hydrograph simulation using Qobs/AET mHM model setup for 
Jamaare 

 

Figure 3.8: Daily hydrograph validation using Qobs/AET mHM model setup for Jamaare 

3.3.3 Discussion 

The flow simulation performances driven by the different gridded rainfall products under the 
different optimization frameworks vary across the different domains, which are modelled in 
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this study. Overall, the simulated streamflow exhibited acceptable KGE values (KGE > 0.50) 
during calibration periods compared to model validation for most rainfall products. These poor 
performances could be attributed to gaps in discharge observations, which exist more within 
validation periods. Minor KGE improvements were achieved when mHM was calibrated with 
both Qobs and AET, yet only evident in Hadejia and Jamaare basins and do not reflect mHM 
robustness for this study. This poor performance in discharge simulation displayed when model 
parameters are constrained under a multivariable calibration scheme was also reported in 
another study (Poméon et al., 2018a) conducted within the West Africa region. Visual 
inspection of simulated and observed hydrographs showed that the CHIRPS outperformed 
other rainfall products in mimicking observed discharge trends, as shown in Figures 3.4, 3.5, 
3.7 and 3.8. The performances of the CHIRPS dataset in most of the domains are in line with 
its ability to reproduce observed rainfall at a point-to-pixel scale in the West African region, as 
shown in several studies (Dembélé & Zwart, 2016; Ogbu et al., 2020; Poméon et al., 2017). In 
this study, satisfactory KGE scores obtained in most domains while using remotely sensed 
rainfall datasets, especially during model calibration, could be attributed to implementing the 
MPR technique within the mHM structure, which reduced the number of free calibration 
parameters while preserving its spatial variability.  

3.4 Conclusion 

In this study, the discharge simulation skill of the mHM was evaluated in four data-limited 
basins located in Nigeria under multivariable optimization setups. The MPR technique, which 
integrates the spatial heterogeneity of a domain's physiographic characteristics and overcomes 
the problem of model over-parameterization, is well suited for application in this data-scarce 
region. Notwithstanding the significant gaps in Qobs, the reanalysis product (ERA5) and the 
satellite rainfall dataset (CHIRPS) were consistent in satisfactory discharge simulations in most 
domains. However, significant improvements in discharge simulations were not observed when 
mHM was calibrated using Qobs and AET. Currently, the mHM lacks a reservoir component 
and several dams within the study domains were not included during model setups. 
Furthermore, mHM accepts only three land use and land cover classes (impervious, pervious, 
and forest), which do not sufficiently represent the existing classes. This study presents the 
utility of different gridded-rainfall datasets for discharge simulation in data-scarce regions in 
Nigeria. However, the government should prioritise investments in hydro-climatic 
instrumentations at all levels in Nigeria, as remote-sensing rainfall products can only 
complement in-situ records. 
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4 Testing the mHM-MPR Reliability for Parameter Transferability across Locations 
in North-Central Nigeria 

This chapter is published as: Ogbu, K. N., Rakovec, O., Shrestha, P. K., Samaniego, L., 
Tischbein, B. and Meresa, H. (2022). Testing the mHM-MPR Reliability for Parameter 
Transferability across Locations in North-Central Nigeria. Hydrology, 9(158), 1–23. 
https://doi.org/10.3390/hydrology9090158 

Abstract: Hydrologic modelling in Nigeria is plagued by non-existent or paucity of hydro-
meteorological/morphological records, which has detrimental impacts on sustainable water 
resource management and agricultural production. Nowadays, freely accessible remotely 
sensed products are used as inputs in hydrologic modelling, especially in regions with deficient 
observed records. Therefore, utilizing the fine-resolution spatial coverage offered by these 
products in a parameter regionalization method that supports sub-grid variability is appropriate. 
This study assessed the transferability of optimized model parameters from a gauged to an 
ungauged basin using the mesoscale Hydrologic Model-Multiscale Parameter Regionalization 
(mHM-MPR) technique. The ability of the fifth generation European Centre for Medium-
Range Weather Forecasts Reanalysis product (ERA5), Climate Hazards Group InfraRed 
Precipitation with Station data (CHIRPS), Global Precipitation Climatology Centre (GPCC), 
and Multi-Source Weighted-Ensemble Precipitation (MSWEP) gridded rainfall products to 
simulate observed discharge in three basins was first assessed. After that, the CHIRPS rainfall 
product was used in three multi-basin mHM setups. Optimized model parameters were then 
transferred to independent basins, and the reproduction of observed discharges was assessed. 
Kling-Gupta Efficiency (KGE) scores improved when mHM runs were performed using 
optimized parameters compared to default parameters for discharge simulations. Optimized 
mHM runs performed reasonably (KGE > 0.4) for all basins and rainfall products. However, 
only one basin showed a satisfactory KGE value (KGE = 0.54) when optimized parameters 
were transferred to an ungauged basin. This study underscores the utility of the mHM-MPR 
tool for parameter transferability during discharge simulation in data-scarce regions. 

Keywords: CHIRPS; streamflow; mHM; MPR 

4.1 Introduction  

The declining economic conditions in many sub-Saharan African (SSA) countries have resulted 
in about 50 - 60% of their workforce depending on agriculture (subsistence farming) as a source 
of livelihood (Poméon et al., 2018a). A nation’s agricultural sector is essential for ensuring 
food security, mental health, the health of its population, economic stability, and national 
development. In Sub-Saharan Africa (SSA), the agriculture production per capita trend has 
declined since 1960, resulting in 30% of its population being food insecure (Bjornlund et al., 
2020). Farming is characterised mainly by rain-fed agriculture and is practised at the 
subsistence level. Sub-Saharan African countries import considerable wheat, vegetable oil, and 
fertilizer from Ukraine and Russia. Unfortunately, the ongoing Ukraine–Russian war has 
disrupted food importation, thereby increasing already high food prices and worsening food 
security for millions of the population. In the era of increasing global warming, rainfall 
variability, and more frequent hydrologic extremes (flood and drought), the source of 
livelihood of a great majority of the population in this region is threatened (Dembélé & Zwart, 
2016). Based on a study analyzing rainfall observations over West Africa, these authors noted 
that the average annual rainfall during 1970 - 2009 was below the annual average recorded 
from 1900–1970. Other studies (Chapman et al., 2020; Emediegwu et al., 2022; Ofori et al., 
2021) projected significant and extensive impacts of climate change on agriculture due to 
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reductions in the length of farming seasons, shifts in seasonality, more severe dry spells, heat 
stress, and an increase in water-stress risks. 

The availability of high-quality rainfall data is essential for water-related research and to 
support policy-making in designing and managing water infrastructure (Akinsanola et al., 
2018; Caldera et al., 2016; Dembélé & Zwart, 2016; Hounguè et al., 2021; Ogbu et al., 2020). 
An analysis of annual rainfall data in Nigeria for a period of 72 years (1916–1987) showed a 
decreasing trend over southern, middle belt, and northern Nigeria (Anyadike, 1993). Many 
studies (Adeyeri et al., 2019; Akande et al., 2017; Animashaun et al., 2020; Okafor & Ogbu, 
2018; Usman et al., 2018) reported significant variability in rainfall trends in different regions 
in Nigeria. In recent decades, economic instability, weak government institutions, and 
inadequate infrastructure have led to a decline in rainfall-monitoring networks across this 
region, posing great insecurity to water resource planning and management (Poméon et al., 
2018a). Additionally, the growing Nigerian population, expansion of urban areas, insufficient 
water governance, and lack of adequate water laws have hindered the effective implementation 
of integrated water resources management (IWRM), resulting in more water-related issues 
(Ezenwaji et al., 2015; Ngene et al., 2021). Furthermore, the unavailability of observational 
hydro-meteorological data has impeded hydrologic-related research efforts and consequently 
is increasingly exposing the population to risks of extreme hydrologic events, hunger, and 
economic instability (Shiru et al., 2021).  

The emergence of gridded rainfall products at high spatio-temporal resolution and the 
development of distributed hydrological modelling procedures have created possibilities for 
water resource modelling in ungauged basins (Camici et al., 2020; Dembélé et al., 2020a; Ogbu 
et al., 2020). Spatial rainfall data provide homogenous spatial coverage over inaccessible 
locations and has an advantage over in situ gauged data. However, the application of remotely 
sensed rainfall data for research and operational hydrology in Nigeria is scarce in published 
works of literature to date. Many studies (Camberlin et al., 2019; Contractor et al., 2015; 
Dembélé et al., 2020b; Hassan et al., 2020; Mbaye et al., 2016; Nhi et al., 2019; Raimonet et 
al., 2017; Trinh-Tuan et al., 2019) have shown that gridded rainfall datasets can satisfactorily 
replicate observed spatio-temporal characteristics of gauged in situ records, although with 
reported inconsistencies. Detailed reviews of the characteristics and performance of gridded 
rainfall data are found in the literature (Dinku et al., 2018; Hersbach et al., 2020; Sun et al., 
2018). However, notwithstanding the advances in the development of gridded rainfall products, 
they are rarely applied in operational hydrology due to inherent biases (Bitew & Gebremichael, 
2011; Dembélé et al., 2020a), hence the need for validation to identify which product suits a 
specific region or locality.  

Realistic hydrologic simulations and forecasting are constrained mainly by hydrologic model 
complexity and input-data requirements (Samaniego et al., 2011). The paucity of hydro-
meteorological records in data-scarce regions has hindered hydrologic modelling applications. 
However, many studies (Fujihara et al., 2014; Poméon et al., 2018b; Schuol et al., 2008; Xie 
et al., 2012) have shown success in utilizing global meteorological datasets for water balance 
analysis in SSA. These freely available datasets have proven to be suitable alternatives and 
have aided realistic hydrologic process simulation and a better understanding of hydrologic 
systems (Poméon et al., 2017). However, the utilization of remotely sensed data has increased 
model complexity and, consequently, the need for higher computational power (Kumar et al., 
2010), which is not always available in developing countries (Tegegne et al., 2017). 
Furthermore, fully distributed hydrologic models exist to cope with available high-resolution 
inputs, but the issue of realistic process representation persists (Beven, 2001). Many authors 
(Beven, 2001, 2002; Kumar et al., 2010) noted that problems of model nonlinearity, scale, 
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uniqueness, uncertainty, and equifinality had not been satisfactorily addressed by the 
development of these complex distributed hydrologic models and their application at the 
mesoscale. Issues of over-parameterization and equifinality of feasible solutions aid the 
production of unreliable hydrologic outputs even when a good fit between observed and 
simulated discharge is achieved, creating uncertainties (Schoups et al., 2008). Even when 
model parameters can be deduced through optimization these values cannot be transferred to 
ungauged basins or to other scales other than that used during model calibration (Kumar et al., 
2013; Ocio et al., 2019; Samaniego et al., 2010). It is against this background that the 
International Association of Hydrologic Sciences (IAHS) in 2012 initiated the Scientific 
Decade of Prediction in Ungauged Basins (PUB) in their efforts to encourage more hydrologic 
research aimed toward the understanding of hydrologic processes, especially in data-scarce 
basins (Hrachowitz et al., 2013).   

Parameterization techniques that are geared toward reducing the number of free parameters and 
model complexity have been developed in the past (Golian et al., 2021; Kumar et al., 2013; 
Samaniego et al., 2010). For example, the soil and water assessment tool (SWAT) (Arnold et 
al., 1998) the model employs the hydrologic response unit (HRU) technique, where a unique 
land use, soil, and slope area is homogeneously grouped before model calibration. The 
hydrologic water balance is then modelled at the HRU level, as shown in many studies 
(Bizuneh et al., 2021; Guug et al., 2020; Ndulue et al., 2018; Odusanya et al., 2019; Xie et al., 
2012; Zettam et al., 2020). However, a significant drawback of this approach is that those 
model parameters are not directly linked to physical basin properties (Kumar et al., 2013). 
Alternatively, distributed hydrologic models can also be parameterized using the multiscale 
parameter regionalization (MPR) method (Samaniego et al., 2010). In this technique, a 
distributed hydrologic model can be calibrated by connecting the model parameters to the 
basin’s physical characteristics by assuming a priori-defined relationship, e.g., pedotransfer 
function (Hundecha & Bárdossy, 2004; Rakovec et al., 2016a). Several studies (Kumar et al., 
2013; Samaniego et al., 2010)  reported that the strength of the MPR method lies in its ability 
to account for sub-grid variability of soil, land use, and elevation characteristics to support the 
transfer of model parameters to other scales or ungauged basins other than those used during 
model calibration. 

The mesoscale Hydrologic Model (mHM) (Kumar et al., 2013; Samaniego et al., 2010) 
employs the MPR technique to aid the transferability of parameters to other scales and 
ungauged basins. Detailed information on the MPR-mHM is explicitly explained by Kumar et 
al. (2013) and Samaniego et al. (2010). The mHM model has been successfully applied in over 
220 basins in Germany (Zink et al., 2017), 300 pan-European Union basins (Samaniego et al., 
2019), the continental United States (Rakovec et al., 2019), as well as in South East Asia (Saha 
et al., 2021). In contrast, there were only a few applications of the mHM on the African 
continent at the time of writing this paper. In a study (Poméon et al., 2018a) in a few West 
African basins, mHM produced satisfactory results. Additionally, mHM was used to model 
hydrological processes in the Volta River Basin, Ghana (Dembélé et al., 2022; Dembélé et al., 
2020b). Applying mHM in any basin within Nigeria has not been undertaken before or is not 
evident in scientific published literature. In light of this information and given the sparse 
network of hydro-meteorological facilities that exist in Nigeria at present, this study employs 
the mHM-MPR technique for hydrologic simulation under data-scarce conditions. This 
approach is appropriate considering the challenges to water resources development in Nigeria 
due to recent modifications in the climate system and its impact on rain-fed agriculture. 
Furthermore, the unavailability of in situ input datasets for realistic hydrologic modelling in 
Nigeria and the need to apply distributed hydrologic models to take advantage of existing high-
resolution spatial datasets will support reliable simulation of hydrologic extremes (flood and 
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droughts). We believe that the ability of the MPR method to support sub-grid variability and 
effective landscape representation can address the challenge of estimating reliable hydrologic 
model parameters at the mesoscale in Nigeria. This study addresses the following research 
questions: 

1. What is the performance of gridded rainfall datasets over Nigeria? 
2. How does mHM perform across selected basins when forced with different gridded 

rainfall datasets? 
3. What is the performance of mHM when parameters are transferred from gauged to 

ungauged basins? 

4.2 Methods 
4.2.1 Study Area 

Nigeria is located between latitude 4° -14° N and longitude 2° -14° E (Figure 4.1). It is bordered 
in the north by the Sahara Desert and south by the Atlantic Ocean. Its geographical position 
gave rise to InterTropical Discontinuity (ITD), which controls the weather throughout the year. 
The ITD is the region of lowest atmospheric pressure, which separates the dry northeast trade 
winds from the Sahara Desert from the wet southwest monsoon from the Atlantic Ocean 
(Akande et al., 2017). Three major climatic zones are subdivided latitudinally, as presented by 
Omotosho & Abiodun (2007) exist in Nigeria: Guinea coast (Latitude 4 - 8° N), Savannah (8 - 
11° N), and Sahel (11 - 14° N). Distinct climate characteristics over these regions are described 
in an earlier study (Gbode et al., 2019; Ogbu et al., 2020).   

 

Figure 4.1. Map of Nigeria showing synoptic stations over three distinct climatic regions. 

The study basins are the Kaduna (64,848 km2), Hadejia (16,820 km2), and Jamaare (13,929 
km2) River Basin systems, which are located in the semi-arid north-central region of Nigeria 
(Figure 4.2). This region is characterized by sparse vegetation with scattered shrubs occasioned 
by frequent droughts and high rainfall variability (Adeyeri et al., 2019; Odunuga et al., 2011). 
Most inhabitants dwelling in the Hadejia–Jamaare river basin are involved in cattle rearing, 
irrigated agriculture, cropland farming, and trading as sources of income (Adeyeri et al., 2019). 
During monsoon periods (April - September), farmers cultivate major crops, including 
sorghum, maize, millet, yams, soybean, and irrigated rice in the dry season (October - March). 
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The Kaduna River is a critical water supply to the metropolis's inhabitants and for irrigated 
agriculture (Okafor & Ogbu, 2018). Both the Hadejia and Jamaare rivers discharge into Lake 
Chad but take their sources from both the Kano highlands and Jos Plateau, respectively 
(Odunuga et al., 2011). Constructions of large-scale projects (e.g., dams) on these rivers 
(Shiroro dam on the Kaduna River; Tiga and Challawa Gorge dams on the Hadejia-Jamaare 
river system)  (Adeyeri et al., 2019; Odunuga et al., 2011; Okafor & Ogbu, 2018) have 
impacted water flows and subsequently affected the micro-climate within the region. These 
dams were not represented during the modelling process due to the lack of a dam/reservoir 
component in mHM. The mean annual rainfall cycle over the north-central region of Nigeria 
is about 700 - 800 mm, with uni-modal peak in August. All study basins are located within the 
same agro-climatic region and are characterized by karstic geological formations and sparse 
vegetation as a result of long periods of dry season and short periods of monsoon season. The 
major differences between these basins are varied topography (Figure 4.2) and anthropogenic 
activities on the landscape. Large urban centers characterized by high human population and 
economic activities exist majorly within the Kaduna and Hadejia basins.  

 

Figure 4.2. DEM for Kaduna (Basin No. 572), Hadejia (GRDC No. 1837410), and Jamaare 
river basins (GRDC No. 1837250) (U.S Geological Survey, 2010).  
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4.2.2 The mHM Structure: Description 

The mesoscale Hydrologic Model (mHM) is a grid-based, spatially explicit process-based 
hydrologic model forced with hourly or daily precipitation, temperature, and potential 
evapotranspiration datasets (Kumar et al., 2013; Samaniego et al., 2010). Its mathematical 
formulations are based on numerical approximations of dominant hydrologic processes as 
found in Hydrologiska Byrans Vattenbalansavdelning (HBV) (Lindström et al., 1997) and 
Variable Infiltration Capacity (VIC) (Liang et al., 1994) models. The major components 
modelled in mHM include canopy interception, snow accumulation, soil moisture dynamics, 
infiltration, surface runoff, evapotranspiration, deep percolation, baseflow and flow routing, 
and groundwater storage (Samaniego et al., 2011). This study estimated potential 
evapotranspiration (PET) using temperature information obtained from ERA5 and read into 
mHM with aspect correction. A six-layer (50 mm, 150 mm, 300 mm, 500 mm, 1000 mm, and 
2000 mm) infiltration capacity approach was used to calculate soil moisture in the root zone. 
Runoff routing from upper to lower grids through river networks was generated using the 
Muskingum-Cunge method or the kinematic wave equation. The next version of mHM will 
also have a full Richard’s and soil-temperature module for better integration with a fully 
distributed groundwater model. mHM currently has several modules for PET estimation and a 
forward operator to assimilate CRNS observations. Interested readers can find a detailed mHM 
description in the previously published literature (Kumar et al., 2013; Samaniego et al., 2010). 
mHM code is open source and is published in an online repository - sgit.ufz.de/mHM. Version 
5.11.0, accessed on 06.10.2020 was used for this research. 

To describe the spatial dynamics of hydrologic processes per grid cell during hydrologic 
simulation, mHM requires at most 28 parameters (see Appendix A). Three mHM levels (Level-
0, Level-1 and Level-2) represent the spatial variability of state and input variables. Level-0 
has the finest resolution and comprises morphological data such as elevation, land use, and 
slope, while Level-2 has the coarsest resolution and contains meteorological forcing data of 
precipitation, temperature, and evapotranspiration. Level-1 represents the dominant hydrologic 
processes and model outputs. Few mHM parameters (e.g., β2, β4, β9, β11, β12, and β14 are 
assumed as global parameters because they do not exhibit spatial variability and, as such, are 
not regionalized (Samaniego et al., 2010).  

Estimating each of the 28 mHM parameters for each grid modelling cell through calibration 
will result in over-parameterization (Kumar et al., 2010). To reduce the number of free 
calibrated parameters vis à vis the prediction uncertainty, MPR was employed to translate high-
resolution input data variables into model parameters using transfer functions and upscaling 
operators (Samaniego et al., 2010). This is performed in two steps, as reported in Kumar et al. 
(2013). In the first stage, mHM parameters evaluated at the input data scale (Level-0) are 
coupled with basin physical properties (e.g., terrain, soil texture, land cover, geology, etc.) 
through a priori established linear or non-linear transfer functions and a set of global 
parameters. In the final stage, these high-resolution parameters are upscaled to produce fields 
of effective parameters at the required hydrologic modelling spatial scale (Level-1) using 
upscaling operators such as arithmetic mean, geometric mean, or harmonic mean. Kumar et al. 
(2010) summarized these two steps as follows: 

𝛽(𝑡) = 𝛰ൻ𝛽(𝑡)      ∀𝑗 ∈ 𝑖ൿ

          (4.1) 
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𝛽(𝑡) = 𝑓൫𝑢(𝑡)()൯         (4.2) 

where p = number of model parameters; uj = v-dimensional predictor vector for cell j at Level-

0, which is contained by cell i at Level-1;  
ipjp ijt         = upscaling operator applied 

for regionalization of the parameter, p; γ = s-dimensional vector of global parameters to be 
calibrated; v and s denote the total number of basin predictors and the total number of free 
parameters to be calibrated, respectively. 

This procedure generates quasi-scale independent parameters which characterize sub-grid 
variability. In the end, approximately 64 global parameters were established over the whole 
modelling domain instead of independently estimating parameters at each grid cell. The 
advantage of this approach lies in the reduction of model complexity and over-
parameterization, allowing transferability of model parameters across catchments and 
improving model sub-grid variability and overall hydrologic simulation performance 
(Samaniego et al., 2010). A calibration technique was then performed to adjust these 
parameters to simulate realistic historical hydrologic variables. Interested readers can find a 
detailed description of mHM in previous studies (Kumar et al., 2013; Rakovec et al., 2019; 
Samaniego et al., 2017). The mHM regionalization technique is superior to other 
regionalization schemes by reducing the dimensionality of parameter space while maintaining 
sub-grid variability.  In a study (Samaniego et al., 2010) to assess the performance of the MPR 
and the Standard Regionalization (SR) methods using a distributed hydrologic model, MPR 
results showed superiority in many aspects. Furthermore, the MPR method was also tested with 
other hydrologic models over large continental domains with satisfactory results (Imhoff et al., 
2020; Mizukami et al., 2017; Samaniego et al., 2017).  

4.2.3 Data and Inputs 

Morphological Datasets 

Digital elevation model (DEM) data at a resolution of 0.002° was obtained from the Global 
Multi-resolution Terrain Elevation Data (GMTED2010) (U.S Geological Survey, 2010). 
ArcMap geographical information system (GIS) was used to process the study basins' slope, 
flow direction, aspect, and flow accumulation. Geological properties at 0.5° were obtained 
from the Global Lithological Map (GliM) version 1.0 database (Hartmann & Moosdorf, 2012). 

Soil information related to physical properties, including soil depth, bulk density, sand, and 
clay content, was obtained from SoilGrids database (Hengl et al., 2017) at a resolution of 250 
m for different soil layers and used during the model setup.  

In the mHM, land use data is aggregated and restricted to three (3) major classes: coniferous 
and mixed forest (class 1); impervious areas such as settlements, highways, and industrial parks 
(class 2); pervious areas representing fallow lands, agricultural lands, and pastures (class 3), 
using information obtained from the European Space Agency (ESA) at 300 m spatial resolution 
(Bontemps et al., 2011). The monthly gridded leaf area index (LAI) was obtained from the 
Global Inventory Modeling and Mapping Studies (GIMMS) at 8 km spatial resolution (Zhu et 
al., 2013).  
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Meteorological Data 

Four gridded precipitation products (ERA5, CHIRPS, GPCC, and MSWEP) (Table 4.1) 
comprising satellite, reanalysis, and gauge datasets were evaluated at the synoptic station scale 
(grid-to-point analysis) and over three distinct climatic regions in Nigeria. These products were 
selected based on their performance in previous studies (Dembélé & Zwart, 2016; Ogbu et al., 
2020; Poméon et al., 2017) in the West African sub-region. These studies further noted that the 
GPCC, for example, satisfactorily captures the high variability that characterizes West African 
rainfall events. This robustness by the GPCC is unsurprising as its development incorporates 
gauge records obtained from national meteorological agencies. Thermal infrared imagery and 
in situ station data are incorporated to develop CHIRPS gridded observations. MSWEP was 
produced by merging in situ gauge, satellite, and reanalysis rainfall estimates, while ERA5 was 
developed from historical records using advanced modelling and data assimilation systems. 
Daily rainfall data (1983 - 2013) from 24 synoptic stations (see Figure 4.1) were obtained from 
the Nigeria Meteorological (NiMet) Agency and used as references to evaluate these gridded 
datasets at the climatic region scale. The selection of this period (1983–2013) is a consequence 
of missing data for many locations. Statistical metrics such as the Kling-Gupta efficiency 
(KGE) (Gupta et al., 2009), Pearson correlation coefficient (r), per cent bias (PBIAS), and root 
mean square error (RMSE) (Moriasi et al., 2015) were used to assess model performance 
against in situ gauge observations. The KGE addresses several limitations of the NSE and is 
based on the decomposition of NSE into three components (correlation, variability (α), and 
bias (β)). KGE values range from -∞ to 1, and KGE = 1 designate perfect agreement between 
predictions and observations. Beta (β) is the ratio of the mean of the predicted values to the 
observed values. It has an ideal value of 1 (i.e., ideal β = 1), while alpha (α) is the ratio between 
the standard deviation of the predicted value and observed values. The ideal value for α = 1. 
Pearson’s correlation coefficient describes the degree of collinearity between model-simulated 
and observed time series records and ranges from −1 to 1. No relationship exists between 
predicted and observed data when r = 0. On the other hand, a perfect positive or negative 
relationship exists when r = 1 or −1, respectively. PBIAS quantify the likelihood of predicted 
values deviating from their observed counterparts. In this case, PBIAS = 0 indicates accurate 
model prediction, while negative and positive values signify model overestimation and 
underestimation biases, respectively. RMSE measures the standard deviations of the prediction 
errors. A smaller RMSE value designates better model performance.  

𝐾𝐺𝐸 = 1 − ඥ(𝑟 − 1)ଶ + (𝛼 − 1)ଶ + (𝛽 − 1)ଶ     (4.3) 

where r is the linear correlation between simulation and observation, α is the flow variability, 
and β is the bias ratio. 

𝑟 =
∑ ൫ைିை൯൫ௌିௌ൯

భ

ට∑ ൫ைିை൯
మ
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మ

భ

భ

        (4.4) 

𝑃𝐵𝐼𝐴𝑆 =
∑ ைିௌ


భ

∑ ை

సభ

× 100        (4.5) 

where O and S are observed and simulated values, respectively, and i is time steps. 
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Table 4.1 Precipitation products evaluated in this study 

 

Discharge Data 

Daily discharge data for study basins obtained from the database of the World Meteorological 
Organization German Global Runoff Data Center (GRDC) and Nigerian Hydrological Services 
Agency (NHISA) were used for mHM calibrations and validation (Table 4.2). GRDC 
documents river discharge data on behalf of the World Meteorological Organization and with 
the permission of national governments. The problem of missing data necessitated the use of 
different periods for each study basin during model calibration. The GRDC station No. 
1837250 is hereafter named Basin 250, while GRDC Station No. 1837410 is hereafter named 
Basin 410 to correspond with the 3-digit Basin 572. We acknowledge the policy guiding the 
dissemination of GRDC data as documented on 
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html;jsessionid=D0D2
E24F2991D2AE1C9FA4BEF25C995A.live11311/ accessed on 6 October 2020. 

Table 4.2. Daily discharge data. 

*Obtained from Nigeria Hydrological Services Agency (NHISA). 

Hydrological Modeling Framework 

To guarantee some level of trust in the mHM results in this study, a modelling experiment was 
developed where the model output (discharge) was assessed for 12 different simulation runs 
while varying precipitation datasets (CHIRPS, ERA5, GPCC, and MSWEP) across 3 river 
basins and using default model parameters. Due to limited climate data availability, potential 
evapotranspiration was computed by applying the Hargreaves–Samani method (Hargreaves & 
Samani, 1985) driven with ERA5 daily mean temperature and daily temperature ranges for all 
model setups. Firstly, hydrologic simulations for each river basin were performed, forced 
separately with each gridded precipitation product while using default model parameter values. 
Secondly, all model setups were calibrated for discharge simulation using each gridded 
precipitation dataset. Performance in discharge simulations for different model setups (i.e., 

Precipitation 
Product 

Data Sources 
Spatial  
Coverage 

Spatial  
Resolution 

ERA5 Reanalysis Global 0.25° 

CHIRPS Satellite, gauge, reanalysis 50° N - 50° S 0.05° 

GPCC Gauge 90° N - 90° S 1.0° 

MSWEPv2.2 Satellite, gauge, reanalysis Global 0.1° 

Basin Name 
GRDC Station 

No 
Period of  
Coverage 

Station Name Source 

Jamaare 1837250 (250) 1983 - 1997 Kotagum GRDC 

Hadejia 1837410 (410) 1987 - 1991 Wudil GRDC 

Kaduna * 572 1989 - 1995 Wuya NHISA, Nigeria 
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different precipitation datasets) was assessed using the Kling–Gupta efficiency  (Kling et al., 
2012) metric (Equation (4.3). The choice of the KGE method stems from the fact that it 
addresses the limitations of NSE and is now the preferred choice for model calibration and 
evaluation (Knoben et al., 2019). Popular optimization algorithms which produce optimal 
solutions include shuffled complex evolution (Duan et al., 1993), adaptive simulation 
annealing (Ingber, 1993), particle swarm optimization (Eberhart & Kennedy, 1995), covariance 
matrix adaptation evolution strategy (Hansen, 2007), and dynamically dimensioned search 
(DDS) (Tolson & Shoemaker, 2007), algorithm. The DDS algorithm is more effective and 
well-suited for computationally intensive hydrologic modelling than the shuffled complex 
evolution (SCE) optimization method. The DDS provides an automatic and faster stochastic 
neighbourhood search method for finding the best parameter combinations within a user-set 
number of iterations during distributed hydrologic modelling (Tolson & Shoemaker, 2007). 
Once the best-performed gridded dataset is established, it is used in the next stage of modelling 
experimentation. Thirdly, a multi-basin mHM setup was developed by setting up the mHM for 
three different basin combinations (Basins 250 + 410, Basins 572 + 410, Basins 250 + 572) 
using only CHIRPS datasets to infer unique model parameter sets for every basin combination. 
Optimized parameter sets obtained from the two-basin combinations were used to simulate 
discharge in an independent third basin. This approach is necessary to assess the feasibility of 
transferring mHM-optimized parameters to a different basin for stream discharge simulation. 

4.3 Results and Discussion 
4.3.1 Gridded Precipitation Rainfall Product Performance 

Daily gridded precipitation estimates (1983 - 2013) were obtained on a grid-to-point scale using 
the location of synoptic weather stations, as shown in Figure 4.1. Taylor diagrams depicting 
time series of daily gauge rainfall compared to grid-based products for stations within the 
Sahel, Savannah, and Guinea coast regions are presented in Figures 4.3 – 4.5, respectively. 
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Figure 4.3: Taylor diagram of synoptic stations within the Sahel climatic zone. 

 

Figure 4.4: Taylor diagram of synoptic stations within Savannah climatic region. 



 

52 
 

 

Figure 4.5: Taylor Diagram of Synoptic Stations within Guinea coast region. 

Correlation and RMSE values for some selected synoptic stations within each of the three 
climatic zones, as presented in Figure 4.3 (Sahel), Figure 4.4 (Savannah) and Figure 4.5 
(Guinea), show varying results without any particular order at daily temporal resolution. In the 
Sahel, only GPCC was able to record satisfactory correlation (r > 0.5) and RMSE (RMSE > 
12) for all locations under consideration. This trend was also the same in the Savannah region, 
with correlation values above 0.6 (i.e., r > 0.6) and lower RMSE values (RMSE > 9). In the 
Guinea coast region, an acceptable result (r > 0.9, RMSE > 5) was only obtained in Lokoja 
(Figure 4.5). 

GPCC showed consistently satisfactory performances compared to in situ station data, mainly 
in the Sahel (Figure 4.3) and Savannah (Figure 4.4) regions. Similar studies (Ogunjo et al., 
2022; Salaudeen et al., 2021) exhibited the same performance when the GPCC dataset was 
evaluated against synoptic stations in Nigeria. These authors attributed the GPCC 
performances to integrating in situ gauge rainfall records in its algorithm during development.  

The general performances of the GPCC in many of the locations agree with the results of 
(Ogunjo et al., 2022) in their study to evaluate the performances of three gridded rainfall 
products over Nigeria. This performance is attributed mainly to incorporating in situ rainfall 
observations within the GPCC computational algorithm. Other studies (Poméon et al., 2017; 
Zandler et al., 2019) showed similar trends concerning the GPCC’s ability to reproduce station 
records.  

The mean annual cycle of all precipitation datasets over each climatic zone was evaluated for 
gauge and gridded rainfall data records. Results over the Sahel, Savannah, and Guinea coast 
regions are presented in Figure 4.6, and the error indices are shown in Figure 4.7. 
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Figure 4.6. Mean annual cycle over the Sahel, Savannah, and Guinea coast region. 

 

Figure 4.7: Error Indices for rainfall products. 

The annual precipitation cycle of mean monthly rainfall for each of the three climatic regions 
implies that all grid-based products could reproduce observed rainfall trends and peaks, though 
with a varying magnitude of errors, as seen in Figure 4.7. This also signifies that these grid-
based products captured the latitudinal oscillations of convective processes from southern 
latitudes to northern latitudes well, which characterize the West African monsoon. 
Furthermore, rainfall seasonality in all regions was well-reproduced by grid products under 
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consideration in this study; the unimodal rainfall peak was reproduced in the Sahel and 
Savannah regions, while all grid-based products in the Guinea Coast region showed bimodal 
peaks. All gridded datasets recorded high KGE (KGE ≥ 0.8) and NSE values (NSE ≥ 0.8) in 
all climatic regions but were not presented in this study. Low RMSE (<10 mm) and bias (±6%) 
values were recorded by the CHIRPS gridded data in all locations and showed its ability to 
reproduce the West African monsoon with low error margins. The acceptable performance of 
the CHIRPS dataset in this study is in agreement with other studies (Akinyemi et al., 2019; 
Dembélé et al., 2020a; Satgé et al., 2019) carried out over the SSA region. 

All precipitation products in the Savannah and Guinea coast regions (Figure 4.6) showed a 
nearly similar trend compared to in situ observations to those presented for the Sahel region. 
Satgé et al. (2020) suggested that mismatches between satellite rainfall datasets and 
observations, as is evident in the Sahel and Guinea coast regions (Figure 4.6), could be 
attributed to differences in reporting times for all datasets. In their study (Satgé et al., 2019, 
2020), satellite-based rainfall products (e.g., CHIRPS, MSWEP) showed overall better 
performance over reanalysis products which is in agreement with our findings in this study. In 
the Sahel, ERA5 gave RMSE > 25 and PBIAS > 20% (Figure 7) against lower values obtained 
for other products.  

4.3.2 Default and Optimized Model Results 

During mHM exploratory runs, discharge simulations were performed using default model 
parameters while varying precipitation inputs across the three study basins. Twelve default 
model runs were conducted to evaluate simulated discharge results against observed discharge. 
The result of exploratory mHM simulations using default parameter values is shown in Table 
4.3. To assess which gridded precipitation input reproduced gauged discharge time series, 
mHM was calibrated for each river basin while varying precipitation inputs. KGE values during 
optimized mHM runs are also shown in Table 4.3. 

Table 4.3 KGE results for default and optimized mHM discharge simulations. 

Simulation Using Default mHM  
Parameters 

Simulation Using Optimized mHM 
Parameters 

Forcing 

Jamaare 
(Basin 
250) 

Hadejia 
(Basin 410) 

Kaduna  
(Basin 572) 

Jamaare 
(Basin 250) 

Hadejia 
(Basin 
410) 

Kaduna  
(Basin 572) 

 

0.68 −1.18 −2.22 0.79 0.66 0.51 CHIRPS 

0.06 0.68 −1.78 0.75 0.64 0.44 ERA5 

0.65 −0.53 −1.78 0.76 0.74 0.52 MSWEP 

0.42 −1.34 −1.50 0.45 0.63 0.49 GPCC 

 

Discharge simulations in the Jamaare (Basin 250), Hadejia (Basin 410), and Kaduna (Basin 
572) basins using default mHM parameters while varying precipitation inputs, as presented in 
Table 4.3, generally show poor KGE results. Acceptable KGE values, as recommended by 
Knoben et al. (2019), were obtained for discharge simulation in the Jamaare River basin when 
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forced with CHIRPS (KGE = 0.68) and MSWEP (KGE = 0.65). In the Hadejia and Kaduna 
River basins, none of the gridded rainfall products showed satisfactory results except ERA5 in 
the Hadejia basin (KGE = 0.68). Using KGE = 0 as a threshold between good and bad model 
simulation in this study, negative KGE scores (KGE < 0) obtained mainly in the Hadejia and 
Kaduna basins designate poor model performance. Additionally, none of the poor-performing 
basins provided a KGE value greater than −0.41, and, as such, this signifies that the result did 
not improve upon using the mean, as reported by Knoben et al. (2019). Overall, the results of 
the mHM exploratory (using default parameter values) indicate unacceptable performance in 
almost all modelled basins. These poor KGE results obtained using default parameters are 
similar to those obtained in another mHM application (Poméon et al., 2018a) in West African 
Basins. The study of Poméon et al. (2018a) and our research share similarities; both applied 
mHM in West African Basins, and potential evapotranspiration data were read with an aspect-
driven correction. Both studies produced poor KGE values when mHM was driven with GPCC 
product in all basins using the default model setup. In this study, default mHM simulation 
results forced with each meteo forcing are vague and unclear. Stream discharge dynamics were 
mostly captured in the Jamaare basin. Poor results in the Hadejia and Kaduna basins could be 
attributed to the misrepresentation of dams/reservoirs in these locations.  

On the other hand, optimized mHM discharge simulations showed significant improvements 
when compared with results from the default mHM parameter simulations. Satisfactory 
calibrated discharge results were produced by CHIRPS (KGE > 0.5) in all three basins, with 
ERA5 in Jamaare (KGE = 0.75) and Hadejia (KGE = 0.64). MSWEP produced a KGE > 0.5 
in the three basins, while GPCC provided a KGE value of = 0.63 in the Hadejia River basin. 
Compared with default mHM parameter simulation, optimized discharge simulation results 
(KGE values) showed an increase of 15.85% in Jamaare, 155.62% for Hadejia, and 123.11% 
in the Kaduna basin when forced with CHIRPS. For ERA5, a decrease of 6.43% was obtained 
in Hadejia, while an increase of 1155.44% and 124.98% were observed in the Jamaare and 
Kaduna basins, respectively. These improvements in discharge results, when compared to those 
from default mHM runs, were also obtained when optimizations were performed with MSWEP 
(17.31 - 241.1%) and GPCC (4.57 - 132.64%) forcings in the three basins. Optimized KGE 
results for all meteorologic products indicate agreement between simulations and observations. 
It is clear from this study that the calibrated mHM model performed well for discharge 
simulations. This performance is consistent with the studies of Poméon et al. (2018a) and 
Dembélé et al. (2020b), which showed acceptable discharge simulations in West African basins 
using optimized model parameter values. There was no clear pattern concerning high-
performing rainfall products across all basins under consideration. As presented in Table 4.3 
(for optimized mHM parameters), CHIRPS exhibited the highest KGE in the Jamaare basin, 
while MSWEP was best at performing in the Hadejia and Kaduna basins. Therefore, no 
particular rainfall products performed best across all locations. This finding aligns with the 
studies of  Beck et al. (2017) and Dembélé et al. (2020a). These authors recommend rainfall 
product performance evaluation to select the most suitable dataset for a specific location. 

Daily hydrographs of simulated discharge against observations at Jamaare (Basin 250), Hadejia 
(Basin 410), and Kaduna (Basin 572) forced with the CHIRPS dataset are shown in Figure 4.8, 
respectively. Model performances for the three basins revealed acceptable values, but 
simulated peak flows in the Hadejia and Kaduna basins were not successfully captured. These 
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variations could be attributed to the quality of gauged station observations and the high 
uncertainties inherent in gridded precipitation records. 

  

Figure 4.8: Hydrographs for Jamaare, Hadejia, and Kaduna basins forced with CHIRPS 
dataset. 

Generally, daily hydrographs obtained using optimized parameters forced with the CHIRPS 
dataset for Jamaare (Basin 250), Hadejia (Basin 410), and Kaduna (Basin 572) show acceptable 
fits between observed and simulated discharge. High correlation values (r > 0.5) were recorded 
across the three hydrographs, with Basin 250 showing high KGE (KGE = 0.79) and correlation 
(r = 0.86) scores. Peak and low simulated flow followed the observed trend recorded in the 
Jamaare Basin more satisfactorily than displayed in the Kaduna and Hadejia Basins. The study 
by Poméon et al. (2018a) also showed poor trend and peak flow representations in some of the 
West African basins under their consideration. These authors further observed discrepancies in 
mHM flow simulations in basins located within the same region. In this study, our hydrographs 
(Figure 4.8) also showed that optimized mHM performs acceptably in the Jamaare basin and 
poorly in the Hadejia and Kaduna basins. We agree with  Poméon et al. (2018a) that several 
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factors could be responsible: (1) several dams/reservoirs which exist within the Hadejia and 
Kaduna basins were not represented in mHM. The Shiroro dam, located in the Kaduna basin, 
has a total reservoir capacity of 7,000,000,000 m3. The Challawa Gorge and Tiga Dams in the 
Hadejia basin contain reservoirs that have a total volume of 930,000,000 m3 and 1,968,000,000 
m3, respectively. In addition to these large dams located in these two basins, many other 
medium-sized dams are also existing in this region. Consequently, mHM lacks a reservoir 
component and does not simulate reservoirs and water abstracted for irrigation or domestic 
water supply purposes. (2) Secondly, data gaps and insufficient discharge time series impact 
model performance. Generally, improvements in KGE values from uncalibrated to optimized 
mHM runs underscore the benefit of the MPR technique for discharge simulation in the study 
region. 

4.3.3 Multi-Basin Optimization 

A multi-basin mHM, comprising two basins (Basin 1 and Basin 2) each, was set up. A total of 
three different multi-basin combinations (Basins 250 + 410, Basins 572 + 410, and Basins 250 
+ 572) were created and forced with the CHIRPS precipitation product. Each of these model 
setups was calibrated using KGE as the objective function. Optimized model parameters were 
transferred to a different basin, which was not considered during model parameterization. 
Model evaluation was performed by assessing mHM capability in reproducing observed 
discharge in an independent basin using optimized model values from the multi-basin setup 
which is shown in Table 4.4. KGE values for each of the multi-basins (Basin 1 and Basin 2) 
combinations are presented in Table 4.4. 

Table 4.4. Optimized mHM results (KGE) from multi-basin combinations. 

Basin Multi-Basin Combinations Meteo 

 Basin 250 + Basin 410 Basin 572 + Basin 410 Basin 250 + Basin 572 

CHIRPS 1 0.33 0.51 −0.03 

2 0.64 0.51 0.58 

Having calibrated each of the multi-basin mHM setups for discharge simulation, optimized 
parameter values from Basin 250 + 410 were transferred to Basins 572 for discharge 
simulation. Additionally, calibrated mHM parameters from Basins 572 + 410 were used for 
flow simulation in Basin 250, while optimized parameters from Basin 250 + 572 were 
transferred to Basin 410. KGE results of these discharge simulations are provided in Table 4.5. 
Optimized model parameters from basin combination comprising of Basins 250 + 572 
produced accepted KGE values (see Table 4.5). 

Table 4.5 mHM validation results on independent basins. 

Metric Single Basin mHM Simulation Meteo 

 Basin 572 Basin 250 Basin 410 
CHIRPS 

KGE 0.024519 −0.12124 0.54387 
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Hydrographs of daily, monthly and annual flow cycles for Basin 410 (Hadejia River Basin) are 
shown in Figure 4.9. Hydrographs for Basin 572 and Basin 250 are not presented because they 
exhibited unsatisfactory KGE scores. The final values of optimized global parameters for all 
three basin setups are presented in Appendix B. 

 

Figure 4.9. Hydrograph for Discharge Validation using mHM parameters from the 
independent model setup. 

Optimized mHM parameters from different multi-basins were transferred to an independent 
basin to evaluate the predictive skill of mHM for discharge simulation in ungauged basins. 
KGE values obtained during optimization of multi-basin mHM runs forced with CHIRPS are 
shown in Table 4.3. Results from Table 4.5 for Basin 410 revealed an acceptable KGE (KGE 
= 0.54) when mHM was evaluated using optimized parameters which were obtained after 
calibration in Basin 250 + Basin 572. The daily discharge (Figure 4.9) shows a slight 
underestimation of observed discharge but with acceptable performance (KGE = 0.66, r = 
0.78). The more desirable agreement exhibited at the monthly temporal resolution is a result of 
averaging the daily time series over the simulation period. This is comparable to a study by 
Zink et al. (2017) at a daily time step, observed and simulated discharge exhibited a similar 
trend but with clear peak flow mismatches. 

Overall, the feasibility of transferring mHM-optimized parameters across different locations 
exhibited promising results only in the Hadejia basin. However, our study could not fully 
demonstrate the effectiveness of transferring optimized parameter sets to ungauged basins 
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although these basins exist in the same agro-climatic region. This observation is also reported 
by Zelelew & Alfredsen (2014). These authors attributed this inconsistency to input data 
uncertainties, parameters interactions and model structure. In our case, integrating model 
parameter sets from two basins, which increased the parameter search space, failed to improve 
simulation results in the Jamaare and Kaduna basins. The acceptable KGE score obtained in 
the Hadejia basin by using an optimized parameter set from Kaduna and Jamaare could also be 
attributed to their domain size. The area of Kaduna Basin is about four times the size of either 
Jamaare or Hadejia Basin. Therefore, changes in soil, elevation and land use may have also led 
to inconsistencies in model performance. mHM does not incorporate a dynamic crop growth 
component and recognizes only three land use classes (forest, pervious and impervious). These 
factors could have contributed to the mismatch in peak flow simulations. Furthermore, the 
poor-performing basins could be attributed to uncertainties inherent in the individual basins 
that constitute the multi-basin setups. 

4.4 Conclusion 

Sparse and non-existent hydro-meteorological gauging networks have hindered hydrologic 
modelling in Nigeria. This has major implications for water and agricultural management at 
the mesoscale and at a period when hydrologic extremes (flood and drought) occasioned by 
climate variability occur annually in Nigeria. This study evaluates the skill of mHM for the 
transferability of model parameters from gauged to ungauged regions. After evaluating four 
grid-based precipitation products, the CHIRPS precipitation dataset was selected as model 
forcing to evaluate the robustness of the mHM regionalization scheme in data-sparse basins 
located in Northern Nigeria. Our results showed acceptable discharge simulations by using 
optimized parameters in contrast to default model parameters. The CHIRPS datasets produced 
satisfactory results during default and optimized mHM discharge simulations. For optimized 
mHM runs, CHIRPS and MSWEP products exhibited acceptable performance with KGE > 0.6 
across all basins under consideration. The sub-grid variability at the level in morphological 
input datasets, which characterizes the MPR technique is a major factor for satisfactory flow 
simulation in all basins. However, this result was not achieved when optimized parameter sets 
were obtained in a multi-basin configuration and transferred to an independent basin. Only the 
Hadejia river basin showed acceptable results when mHM was evaluated using optimized 
model parameter values from another location. This inconsistency in model performance can 
be caused by poor representation of dam/reservoirs, lack of a plant module within the mHM 
structure and uncertainties inherent in model inputs. 

There is a need for further mHM studies in Nigeria to exhaustively investigate the performance 
of model parameter transferability to ungauged basins. The paucity of discharge records limited 
such applicability in this aspect. It will be interesting to assess mHM hydrologic simulation 
performance in the same region driven by ground-measured rainfall data. This approach will 
reinforce the scientific understanding of the utility of the model robustness for discharge 
simulation in Nigeria. In addition, a multi-variable calibration scheme should be incorporated 
to constrain the model’s internal state. This research seeks to encourage and stir interest within 
the Nigerian scientific community, watershed managers and government institutions or 
policymakers on the feasibility and applicability of the mHM scheme to support water 
resources management and policy-making in the light of the hydro-meteorological deficits. 
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5 Multivariate Assessment of Hydrologic Simulations in Diverse Climatic Regions 
Using a Streamflow-Calibrated Mesoscale Hydrologic Model 

Abstract: The sparse and unavailability of hydro-meteorological observations in Nigeria has 
hindered hydrologic model calibration and significantly impacted applied hydrology. The goal 
of this study was to evaluate the feasibility of using model parameters obtained by constraining 
the mesoscale hydrologic model (mHM) with solely streamflow records for the simulation of 
actual evapotranspiration (aET) and soil moisture (SM). For this purpose, six (6) distinct 
calibrated model parameter sets were employed, derived during the calibration of mHM for 
various basins and driven by different gridded rainfall datasets (CHIRPS and ERA5). Model 
simulations were compared to gridded aET (GLEAM and FLUXNET) and ESA CCI soil 
moisture observations at various temporal resolutions spanning 1982 to 2011. Seasonal aET 
trends and magnitudes over three climatic regions in Nigeria were evaluated using the non-
parametric Mann-Kendall test and Sens Slope estimator. The Pearson correlation coefficient 
was utilized to measure the agreement between standardized soil moisture simulation and the 
ESA CCI dataset. The spatial pattern of mean annual aET climatology for all simulations agrees 
with observations, presenting an increasing trend from northern to southern Nigeria. While 
mHM configurations forced with ERA5 demonstrated weak correlation (r < 0.5) when 
compared with FLUXNET, satisfactory agreements (r > 0.5) were exhibited by all CHIRPS-
driven models in comparison to the GLEAM datasets. All mHM setups replicated similar 
trends of observed annual aET cycles over the modelled domains. However, higher KGE scores 
in the Sahel region of northern Nigeria signify a robust agreement between aET simulations 
and observations in this region, than in the southern (Guinea savannah) part of Nigeria. 
Simulated monthly soil moisture anomaly captured the temporal variability (r > 0.8) of surface 
soil moisture across the distinct climatic regions and the entire Nigeria domain. Results 
underscore the feasibility of using mHM parameters calibrated using streamflow for hydrologic 
simulations in Nigeria. 

Keywords: mHM, soil moisture, actual evapotranspiration, CHIRPS, ERA5 

5.1 Introduction 

The importance of hydrologic modelling application as a tool to support decision and policy-
making for sustainable water resources management and planning, environmental pollution 
control, the reduction of hydro-meteorological risks, food security, and climate change 
adaptation scenarios cannot be overemphasized today (Holmes et al., 2023; Ricard et al., 2013). 
However, the adaptability of complex hydrologic models vis-à-vis limited data availability 
poses a significant challenge to the production of high-performance predictions, especially in 
developing countries (Odusanya et al., 2021). This is a result of such regions being largely 
characterized by limited/sparse hydro-meteorological monitoring networks, heterogeneous 
landscapes with significant variations in climate systems and unavailability of spatio-temporal 
hydro-meteorological observation systems (Odusanya et al., 2019; Poméon et al., 2018a). 
However, the advancements in the field of remote sensing resulted in sophisticated space-borne 
sensors for the production of hydrologic input datasets at high spatial-temporal resolutions (He 
et al., 2023).  Notwithstanding the utility and availability of these spatial-temporal datasets, 
their use for water resource development, especially in sub-Saharan Africa (SSA), is grossly 
under-utilized to model water resource variability and support policy decisions in this sector. 
The rapidly developing SSA region grapples with challenges in water resources sustainability 
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and availability, impacting hydropower generation, and rain-fed/irrigated agriculture, with 
significant negative economic implications for the entire region (Kwakye & Bárdossy, 2020).  

Evapotranspiration and soil moisture are major components of the land phase of the hydrologic 
budget (Lai et al., 2023). These variables play significant roles in hydrologic studies such as 
groundwater recharge, agricultural water management, flood forecasting, and climate 
modelling, and are crucial for predicting other hydrologic processes (Fatima et al., 2023; Taia 
et al., 2023). In semi-arid regions such as the savannah-sahel region of SSA, evapotranspiration 
and soil moisture studies are critical for vegetation growth/crop growth modelling and play an 
important role towards food security. Accurate estimation of these hydrologic variables is 
important for the determination of crop water requirements, resulting in efficient irrigation 
practices and improved crop yields (Ajjur & Al-Ghamdi, 2021). Nigeria is the most populous 
nation in Africa but faces threats of unsustainable agricultural production with a score of below 
50% on the Global Food Security Index (Wudil et al., 2023). Information on water variability 
in this region is important for developing critical reservoirs and irrigation projects to achieve 
food sustainability and overall economic development. 

The availability and application of fully distributed, physically-based hydrologic models have 
not necessarily translated to improved simulation results due to the difficulty of model 
parameter estimation (Golian et al., 2021; Qi et al., 2022). This is even more challenging in 
sparsely instrumented regions (e.g., Nigeria), where limited or unavailability of observational 
data presents a bottleneck for hydrologic model parameter calibration and poses a challenge to 
applied hydrology. Many basins exist in Nigeria where the construction of hydrologic 
structures and irrigation facilities are proposed, but no gauging stations exist. In this situation, 
model applications can employ regionalization methods, aiming to transfer model parameter 
sets from gauged to ungauged domains (Arsenault et al., 2019; Qi et al., 2022; Singh et al., 
2022; Tarek et al., 2021).  

Realistic hydrologic model application stems from the proper representation of hydrologic 
inputs within the modelling framework and the accurate estimation of model parameters. The 
utility of a hydrologic model is not only evaluated in its ability to reproduce observed state and 
flux variables but also in its ability to simulate observed events using parameters obtained from 
hydrologically similar domains (Qi et al., 2022; Smith et al., 2016). This procedure is important 
for verifying a model's suitability to reproduce dominant hydrologic processes in a hydrologic 
domain (Holmes et al., 2023). Qi et al. (2022) proposed parameter regionalization as the most 
common technique to facilitate hydrologic simulations in ungauged basins. Several reviews 
summarized regionalization methods for continuous hydrologic simulation (Parajka et al., 
2013; Pool et al., 2021; Qi et al., 2022; Farfán & Cea, 2023).  

The mesoscale hydrologic model (mHM) has emerged as a powerful tool for simulating state 
and flux water variables and has been successfully applied in different regions, i.e., North 
America (Rakovec et al., 2019), Europe (Kumar et al., 2010, 2013; Samaniego et al., 2017, 
2019; Zink et al., 2017), West Africa (Dembélé et al., 2022; Dembélé et al., 2020a; Dembélé 
et al., 2020b; Ogbu et al., 2022; Poméon et al., 2018a), and Asia (Saha et al., 2021; Samaniego 
et al., 2011). A regionalization method, the multiscale parameter regionalization (MPR) is 
implemented within the mHM structure to decrease the dimensionality of model parameter 
space. A hydrologic assessment conducted by Kumar et al. (2013) across 45 German basins to 
evaluate the transferability of model parameters to ungauged basins revealed that the MPR 
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technique demonstrated reliability and effectiveness in replicating observed hydrologic states 
and fluxes across various temporal and spatial resolutions. In some West Africa basins 
characterized by sparse hydro-climatic networks, Poméon et al. (2018a) showed the efficacy 
of the MPR technique in transferring model parameters across various scales, achieving 
acceptable replication of hydrologic observations. Given the persistent challenges with the 
availability of hydroclimatic datasets in Nigeria and anticipating this trend to continue into the 
near future, there is a need to test the MPR scheme for hydrologic simulations in Nigeria. In a 
pioneering effort employing this technique, this study evaluated the performance of simulated 
hydrologic variables across distinct agro-climatic zones in Nigeria, using mHM parameters 
calibrated with streamflow at the basin scale.    

This study aims to evaluate the simulation of actual evapotranspiration (aET) and surface soil 
moisture (SM), using calibrated mHM parameters across the entire Nigeria domain, and 
employing remotely sensed precipitation records. These parameters were calibrated based on 
only runoff data from three different basins, which exhibit divergent physical and climatic 
characteristics. Six different model parameter sets based on different basin-rainfall 
combinations were used to set up the mHM for the Nigeria domain. Comparisons of simulated 
aET and SM were assessed at different agro-climatic zones within the country against observed 
datasets. The transferability of calibrated model parameters between domains with divergent 
physical, climatic and topographic characteristics was also evaluated. The goal is to contribute 
to the International Association of Hydrologic Sciences (IAHS) scientific initiative, Prediction 
in Ungauged Basins (PUB) (Hrachowitz et al., 2013), by investigating the feasibility of model 
parameter transferability to support hydrologic modelling studies in data-limited regions like 
Nigeria. 

5.2 Methods 
5.2.1 Study Area and Datasets 

Nigeria, located in SSA, is bounded by Cameroun in the east, the Republic of Benin in the 
west, the Niger Republic in the north and the Atlantic Ocean in the south (refer to Fig. 5.1). 
The spatio-temporal variation of climatic changes in Nigeria results in two (2) climate seasons 
(wet and dry seasons) influenced by the cool air from the Atlantic Ocean and the tropical 
continental air mass from the Sahara Desert (Ogunjo et al., 2022). The impact of the West 
African Monsoons over Nigeria is largely witnessed in the variability of rainfall patterns from 
the southern to the northern part of the country. For this study, the distinct agro-climatic zones 
as reported by Gbode et al. (2019), Omotosho and Abiodun (2007) and (Abiye et al., 2019) 
were adopted and used for evaluating mHM simulation performances. These zones are Guinea 
(latitude 4° – 8° N), Savannah (latitude 8 – 11° N) and Sahel (latitude 11° – 14° N), and 
characterize the distinct land use and climate of each region. The Guinea zone lies in the 
southern part of Nigeria and experiences a bi-modal rainy season with a mean annual rainfall 
of 1,575 – 2,533 mm (Gbode et al., 2019). The two other regions experience a unimodal rainy 
season trend, with the semi-arid region of the Savannah zone characterized by a reduction in 
mean annual rainfall in comparison to the Guinea zone with an average annual amount ranging 
from 897 – 1,533 mm. The Sahel area experiences a further reduction in rainfall amount 
resulting in an average annual amount of 434 – 969 mm (Gbode et al., 2019; Oguntunde et al., 
2011). 
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Observed discharge records from three basins located within the Savannah-Sahel region (see 
Fig. 5.1) were used for mHM calibration (Ogbu et al., 2022). These basins are the Jamaare, 
Hadejia and Kaduna River Basins with a total land area of 13,929 km2, 16,820 km2 and 64,848 
km2, respectively. Rainfall in the Savannah-Sahel region exhibits a unimodal pattern with a 
peak around August (Ogbu et al., 2020). Agricultural activities, including crop farming, animal 
husbandry, etc., are more widespread in this zone and support the economic viability of the 
region. The average annual rainfall within the region (Savannah-Sahel) ranges from 434 to 
1,533 mm, and the vast arable land makes it a very important food-producing area in Nigeria, 
boasting more than half of the wheat, maize and sorghum produced in the country. 
Communities within these basins depend on the numerous existing river systems for domestic 
water supplies, transportation, irrigation, industrial uses, fishing, etc. (Ogbu et al., 2022; Okafor 
& Ogbu, 2018). 

   

Figure 5.1: Map of Nigeria showing hydrologic basins used for mHM calibrations 

Morphological (elevation, land use, leaf area index, soil, and slope) and climatic (rainfall and 
temperature) datasets were used to set up the fully distributed mHM. Stream discharge data 
obtained from the Global Runoff Data Centre (GRDC) database were used for model 
calibration at the basin scale. A previous study by Ogbu et al. (2022) described mHM data 
requirements (refer to Table 5.1) for the Jamaare, Hedejia and Kaduna River basins. Model 
parameters obtained post-calibration for these basins were used to parameterize mHM over the 
entire Nigeria domain for actual evapotranspiration and surface soil moisture simulations.  
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Table 5.1: Datasets for mesoscale Hydrologic Model (mHM) setup 
Variable Product Spatial 

Resolution 
Temporal 
Resolution 

References 

Climate Data     
Rainfall CHIRPS v2.0 0.05° Daily (Dinku et al., 2018; Funk et 

al., 2015) 
Temperature  ERA5 0.25° Daily (Hersbach et al., 2020) 
Morphological 
Data 

    

Elevation GMTED 0.002° Static (U.S Geological Survey, 
2010) 

Soil SoilGrid 0.002° Static (Hengl et al., 2017) 
Landuse Globcover 2009 0.002° Static (Bontemps et al., 2011) 
Geology GLIM v1.0 0.5° Static (Hartmann & Moosdorf, 

2012) 
Leaf area index GIMMS 0.08° Static (Zhu et al., 2013) 
In-situ data     
Streamflow - Point Daily GRDC database 
Remotely sensed 
dataset 

    

Actual 
Evapotranspiration 

GLEAM v3.2a 
FLUXNET 

0.25° Monthly (Jung et al., 2011; Martens et 
al., 2017)  

Surface soil 
moisture 

ESA CCI SM 0.25° Monthly (Gruber et al., 2019) 

*CHIRPS – Climate Hazards Group InfraRed Precipitation with Station data; ERA5 – 5th generation of ECMWF 
(European Centre for Medium-Range Weather Forecasts) Reanalysis; GLEAM – Global Land Evaporation 
Amsterdam Model: GLIM, Global Lithological Map; GMTED – Global Multi-resolution Terrain Elevation Data; 
ESA CCI SM – European Space Agency Climate Change Initiative Soil Moisture. 

Actual evapotranspiration (aET) data, which includes water evaporation from the soil surface, 
vegetation surfaces, water bodies, and vegetation transpiration, was obtained from the Global 
Land Evaporation Amsterdam Model (GLEAM) (Martens et al., 2017) and Flux Network 
(FLUXNET) observations (Jung et al., 2011). Evapotranspiration represents about 60% of 
terrestrial precipitation and constitutes the second-largest flux of the hydrologic cycle (Rakovec 
et al., 2016b). GLEAM relies on remote sensing data incorporating measurements from 
meteorological data, satellites, and land surface models. In contrast, the gridded FLUXNET 
data are typically collected at the site level, with measurements coming from flux towers 
located in specific ecosystems. These datasets were obtained at a spatial resolution of 0.25° 
and processed for the period 1982 – 2011 at monthly temporal resolution. Interested readers 
can refer to Jung et al. (2011) for a detailed description of the algorithm used to process the 
FLUXNET dataset. 

In this study, the European Space Agency Climate Change Initiative (ESA CCI) soil moisture 
data (Gruber et al., 2019) is used to represent soil moisture at depths ranging from 50 – 2,000 
mm, covering six (6) soil horizons for a period of 1982 – 2011. Accurate hydrological 
modelling of soil moisture is important for portioning rainfall into evapotranspiration and 
runoff. Soil moisture is a major hydrologic process and determines the vegetation 
characteristics of a region (Rakovec et al., 2019). The ESA CCI dataset is derived from satellite 
retrievals using two active sensors (advanced scatterometer and ERS active microwave 
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instrument) and four (4) passive sensors (SMMR, SSM/I, TMI and AMSR-E) (Gruber et al., 
2019). 

5.2.2 mHM: Overview 

The mHM is a spatially explicit, process-based and fully distributed grid-based hydrologic 
model (Kumar et al., 2010; Samaniego et al., 2010). It is based on the numerical 
approximations of dominant hydrologic processes as represented in the Hydrologiska Byråns 
Vattenbalansavdelning (HBV) (Lindström et al., 1997) and Variable Infiltration Capacity 
(VIC) (Liang et al., 1994) models. The mHM can simulate the following hydrologic processes: 
canopy interception, infiltration, surface runoff, soil moisture, evapotranspiration, subsurface 
flow, soil moisture and flood routing (Rakovec et al., 2019). Net rainfall is determined by 
partitioning rainfall into soil moisture and percolation using a non-linear separation scheme. A 
six-layer (50 mm, 150 mm, 300 mm, 500 mm, 1,000 mm, 2,000 mm) soil infiltration capacity 
scheme was used to calculate the daily dynamics of soil moisture considering rainfall, 
evapotranspiration and percolation. Runoff is routed from upstream cells to downstream cells 
following river networks using the multiscale Routing Model (mRM) (Thober et al., 2019), 
based on the Muskingum-Cunge (Cunge, 1969) formula. The Muskingum-Cunge method is 
the most popular method for calculating hydrologic river routing and is known to reflect natural 
basin conditions (Tu et al., 2020). The computation of its parameters depends on the mean 
physical characteristics of the flow wave and the river channel. This is expressed as: 
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Where, K = storage constant (hr); Δx = increment in space (m); Ck = flow celerity (m/s); Q = 
flow discharge (m3/s); A = cross-sectional area of the channel (m2); X = weighting factor 
(dimensionless); B = width of the water surface (m); S0 = bed slope (dimensionless) 

The Hargreaves and Samani (Hargreaves & Samani, 1985) method was used for computing 
reference evapotranspiration in this study due to the extensive data requirements of the Food 
and Agricultural Organization (FAO) Penman-Monteith method. Evapotranspiration was 
computed using daily temperature observations obtained from ERA5 datasets. This is 
computed as: 

𝐸𝑇 = 0.0023 × 0.408 × 𝑅 × (𝑇௩ + 17.8) × (𝑇௫ − 𝑇).ହ    (5.3) 

Where, ETo = Reference evapotranspiration (mm/day); Ra = extraterrestrial radiation (MJ.m2.d-

1); Tav = mean daily temperature (°C); Tmx = daily maximum temperature (°C); Tmn = daily 
minimum temperature (°C); 0.0023 = empirical temperature Hargreaves constant; 17.8 = 
empirical temperature Hargreaves constant; 0.5 = empirical Hargreaves exponent.  

The spatial-temporal dynamics of hydrologic processes are simulated at the grid-scale level 
and require about twenty-eight parameters at each grid, which are inferred during calibration. 
Calibrating these parameters for each cell during simulation would result in over-
parameterization problems and significant predictive uncertainty. A regionalization scheme - 
the multiscale parameter regionalization (MPR) was incorporated within the mHM framework 
aimed at overcoming model over-parameterization, accounting for sub-grid variability and 
transfer of global parameters to ungauged domains (Kumar et al., 2013; Samaniego et al., 2010; 
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Schweppe et al., 2022). The primary aim of the MPR technique is to enable the estimation of 
effective model parameters that reflect basin characteristics influencing dominant hydrologic 
processes (Samaniego et al., 2010). Three levels of gridded observations are needed during 
mHM setup to represent the spatial variability of state and input variables: Level-0 represents 
basin characteristics (elevation, slope, land use, soil, etc.), Level-1 describes the dominant 
hydrological processes and the geological formation of the study domain, and Level-2 
represents climatic forcing (evapotranspiration, rainfall and temperature) (Kumar et al., 2010). 
Detailed information about the mHM scheme can be found in Samaniego et al. (2010). 

5.2.3 Modelling Experimental Design 

The mHM (v5.11, https://mhm.pages.ufz.de/mhm/stable/index.html) was previously set up 
independently for three basins - Jamaare (hereafter referred to as #250), Hadejia (hereafter 
referred to as #410) and Kaduna basins (hereafter referred to as #572) (Ogbu et al., 2022), 
located within the Savannah-Sahel region of Nigeria (see Figure 5.1), to simulate daily 
observed stream discharge at their different outlets. Daily meteorological datasets of rainfall 
and temperature were obtained from the Climate Hazards Group Infrared Precipitation with 
Station (CHIRPS) data and the 5th Generation ECMWF Re-Analysis (ERA5) global database 
and used separately as model forcing for each mHM setup. mHM runs were independently 
performed over three basins using two gridded rainfall datasets (CHIRPS and ERA5) as model 
forcing. A spin-up period of one year was used to establish an initial period of state variables. 
Model calibrations for only streamflow were performed using the Dynamically Dimensioned 
Search (DDS) (Tolson & Shoemaker, 2007) algorithm. According to these authors, the DDS 
method is well suited to computationally expensive and highly parameterized hydrologic 
models and was designed to establish practical solutions to model calibration issues rather than 
providing a globally optimal solution. Calibrated model parameter sets for each basin-rainfall 
data mHM setup were obtained using the framework presented in Figure 5.2. Detailed 
information on model setup and calibration for these basins can be found in Ogbu et al. (2022). 
Initial model parameter ranges were based on the default mHM configuration. Large gaps 
(missing values) in observed historical streamflow records for the different basins did not allow 
for a uniform calibration period. 

 

Figure 5.2:  mesoscale Hydrologic Model (mHM) Rainfall-Basin Parameter Combination 
(from Stage 1)  
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The workflow for this study consists of two stages – Stage 1 and Stage 2 (see Figure 5.3). In 
the first stage (Stage 1), the mHM model was calibrated for different basins and driven by 
CHIRPS and ERA5 gridded rainfall datasets, as described in the previous section and reported 
extensively in Ogbu et al. (2022).  Stage 2 (see Figure 5.3) is an extension of a previous study 
(Ogbu et al., 2022) depicted by Stage 1 (see Figure 5.3). In Stage 2, model parameter sets 
obtained after calibration in Stage 1 were used to set up a new model for the entire Nigeria 
domain to simulate soil moisture and actual evapotranspiration at a monthly timescale from 
1982 - 2011. A description of model input datasets, hydrological variables of soil moisture, and 
actual evapotranspiration used for model performance evaluation are shown in Table 5.1. 
Comparative performance between model-simulated and observed datasets of soil moisture and 
actual evapotranspiration was evaluated over three different agro-climatic regions of Nigeria, 
at annual, monthly and seasonal temporal resolutions. 

 

Figure 5.3: Schematic diagram of study workflow  

5.2.4 Model Performance Evaluation 

In this study, the predictive ability of mHM was assessed by evaluating the transferability of 
parameterized values across spatial and temporal scales. This involves examining its 
performance over a period and within a modelling domain larger than that used during 
calibration. mHM-simulated actual evapotranspiration (aET) was evaluated against 
observations obtained from GLEAM v3.2a (referred to hereafter as GLEAM) and FLUXNET 
products. Additionally, we compared surface soil moisture, representing the first soil layer of 
mHM-simulated soil moisture (SM), to the observed ESA CCI soil moisture dataset. These 
remotely sensed datasets have been utilized in various hydro-climatic studies (Adeyeri & 
Ishola, 2021; Dembélé et al., 2020a; Odusanya et al., 2019; Poméon et al 2018a; 2018b) in 
West Africa, they contribute to a better understanding of the variability of hydrological 
variables and its potential impacts on water resource availability in the region. Model 
simulations, derived from six unique mHM configurations obtained through different rainfall 
data-basin mHM combinations, were compared to observations (aET and SM) at various 
temporal scales. 

The mHM's performance in reproducing observed aET and soil moisture across the entire 
domain and in three agro-climatic regions was evaluated. In the initial step, the annual 
climatology of simulated and observed aET over 30 years (1982 – 2011) was determined by 
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obtaining mean estimates over the entire modelling domain and at each agro-climatic region. 
Additionally, simulated aET results over the entire domain were assessed for the monsoon 
(June – September) and dry (January – March) seasons. These periods were selected as they 
align with the period when Nigeria experience wet and dry seasons, justifying their selection. 
This seasonal period agrees with a recent aET study over the West Africa region (Adeyeri & 
Ishola, 2021).  

Several studies (Ayugi et al., 2020; Holmes et al., 2023; Moriasi et al., 2015) have proposed 
various statistical metrics to assess the comparison of hydrologic simulations to observations. 
In this study, various performance metrics such as the modified Kling Gupta Efficiency (KGE), 
root mean square error (RMSE), and percent bias (PBIAS) were employed to assess the 
performance of mHM simulations.  The agreement between simulated and observed datasets 
was assessed using the Kling and Gupta efficiency (KGE) (Gupta et al., 2009; Kling et al., 
2012) statistic: 

𝐾𝐺𝐸 = 1 − ඥ(𝑟 − 1)ଶ + (𝛽 − 1)ଶ + (𝛾 − 1)ଶ      (5.4) 
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        (5.7) 

Where, KGE is the modified KGE statistic (dimensionless), r is the correlation coefficient 
between the simulated and observed variable, β is the bias ratio (dimensionless), γ is the 
variability ratio (dimensionless), CV is the coefficient of variation (dimensionless), μ is the 
mean of the variable of interest, and s and o represent simulated and observed variables, σ is 
the standard deviation of the variable of interest.  

The advantage of the KGE as an improvement over the Nash Sutcliffe efficiency (NSE) is 
underscored by its decomposition into correlation (r), bias (β) and variability (γ) components 
(Kling et al., 2012; Knoben et al., 2019; Pool et al., 2018; Qi et al., 2022). KGE values close 
to 1 indicate a perfect match between simulated and observed datasets. 

The percent bias (PBIAS) assesses the average inclination of the simulated values to either 
exceed or fall short of their observed counterparts (Zettam et al., 2020). Negative values 
indicate an underestimation in simulated values, whereas positive values signify an 
overestimation. The PBIAS is estimated as: 

𝑃𝐵𝐼𝐴𝑆 =
∑ ைିௌ


సభ

∑ ை

సభ

× 100        (5.8) 

RMSE measures how dispersed simulation errors are on the regression line. Lower RMSE 
values reflect high performance. The RMSE is calculated as: 

𝑅𝑀𝑆𝐸 = ට
∑ (ைିௌ)మ

సభ


        (5.9) 

Where, Oi is the observed data; Si is the simulated data; n is the number of data points 
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Trends in the seasonal aET over the entire domain and the three climatic regions were also 
computed using the Mann-Kendall (MK) test (Kendall, 1975; Mann, 1945). The MK test, a 
widely utilized non-parametric approach for identifying significant trends in hydro-
climatological observations, offers the advantage of being insensitive to extreme values and 
not necessitating adherence to any specific statistical distribution of the data (Aschale et al., 
2023). Investigations for trends in hydro-climatic variables have been investigated in different 
studies within the West African subregion (Adeyeri & Ishola, 2021; Akinsanola et al., 2018; 
Gbode et al., 2019; Ogbu et al., 2020). Statistically significant trends between simulated and 
observed mean seasonal time series were compared to evaluate mHM ability to capture and 
reproduce observed temporal patterns. Significant discrepancies highlight biases in mHM 
simulation and the need for improvement. The Mann-Kendall test statistics (S) is calculated as 
(Frimpong et al., 2022):  

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥 − 𝑥

ୀାଵ )ିଵ

ୀଵ          (5.10) 

Where, n = total number of data points; xi and xj = data values at time j and i; and sgn function, 
given as: 

𝑠𝑔𝑛 ൫𝑥 − 𝑥൯ = ቐ

+1. 𝑖𝑓 𝑥 − 𝑥 > 0

0, 𝑖𝑓𝑥 − 𝑥 = 0

−1, 𝑖𝑓 𝑥 − 𝑥 < 0

      (5.11) 

The variance of the MK statistics is computed as follows: 

𝑉𝑎𝑟 (𝑆) =
(ିଵ)(ଶାହ)ି∑ ௧(௧భିଵ)(ଶ௧భାହ)

సభ

ଵ଼
      (5.12) 

Where, m = number of tied groups; ti = number of data points in the ith group. A tied group is 
a collection of sample data points that share identical values. Therefore, the summation term 
in the numerator is applicable only when the time series includes tied values. 
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⎩
⎪
⎨

⎪
⎧

ௌିଵ

ඥ(ௌ)
, 𝑖𝑓 𝑆 > 0
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ௌାଵ

ඥ(ௌ)
, 𝑖𝑓 𝑆 < 0

        (5.13) 

The null hypothesis, indicating no significant trend, is accepted when the test statistics Zs is not 
statistically significant. Increasing trends signify positive Zs values, whereas negative Zs values 
indicate decreasing trends. This study evaluated trend results at the 95% confidence level (5% 
significant level).  

The slope of the trend line was determined using the non-parametric Theil-Sen estimator (Sen, 
1968). This is obtained by calculating the median of all possible slopes between pairs of data 
points in a time series record. This estimator is given by (Aschale et al., 2023): 

𝛽 = 𝑀𝑒𝑑𝑖𝑎𝑛 ቀ
௫ି௫ೕ

ି
ቁ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 > 𝑗       (5.14) 

Where, xi and xj = data points at times i and j, respectively. β > 0 indicates an increasing trend.  

Spatial estimates of mHM simulated surface soil moisture were aggregated at all distinct agro-
climatic regions and the whole domain and compared to the ESA CCI datasets at monthly 
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temporal resolutions. The soil moisture anomaly (expressed as a z-score) was determined by 
subtracting the long-term mean and then dividing by the standard deviation as demonstrated in 
the study by Suribabu & Sujatha (2019).  

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
௫ି௫̅

ఙ
          (5.15) 

Where, x = monthly soil moisture data; �̅� = mean soil moisture:  σ = standard deviation of 
monthly data. 

The Standardized anomaly values indicate how many standard deviations the soil moisture 
values deviate from the historical mean soil moisture (Suribabu & Sujatha, 2019; Xu et al., 
2018). Negative values signify values lower than the historical mean, while positive values 
indicate values higher than the soil moisture mean during the period under study. Correlation 
scores between mHM-surface soil moisture simulation and observations were used to evaluate 
the performance of mHM in replicating temporal patterns of historical observations, providing 
insights into the model’s ability to reproduce soil moisture dynamics across different climatic 
regions and for the entire domain.  

5.3 Results and Discussion 

In this section, aET and surface soil moisture simulations are presented. These simulations used 
unique mHM-calibrated parameters derived from various rainfall data-basin mHM 
configurations. The assessment covers the entire domain and three distinct agro-climatic 
regions, with evaluations carried out on both annual, monthly and seasonal timescales for aET. 
However, the evaluation for soil moisture simulation was conducted only on a monthly 
temporal resolution. 

5.3.1 Annual Climatology 

The spatial climatology of mean annual total aET simulations for all mHM configurations is 
presented in Figure 5.4. The overall increase in mean annual aET was most prominent in the 
southward direction across all simulations, demonstrating strong agreement with both 
observations (GLEAM and FLUXNET). This same trend was reported by Adeyeri and Ishola 
(2021) and (Jung et al., 2019) in an assessment study of various aET products over West Africa. 
However, upon visual inspection of Figure 5.4, it is evident that all aET simulations exhibit a 
strong similar pattern to the observed datasets only in northern Nigeria (Fig. 4). The spatial 
mean of annual aET for GLEAM was overestimated by 151.65 mm, 15.16 mm, 150.04 mm, 
84.74 mm, 57.41 mm, and 138.86 for CHIRPS_250, CHIRPS_410, CHIRPS_572, ERA5_250, 
ERA5_410, and ERA5_572, respectively. For the FLUXNET dataset, the mean spatial annual 
aET was underestimated by CHIRPS_410 (86.26 mm), ERA5_250 (16.79 mm), and 
ERA5_410 (44.12 mm). Additionally, it was overestimated by 50.12 mm, 48.51 mm and 37.33 
mm for CHIRPS_250, CHIRPS_572 and ERA5_572, respectively. Although there are 
similarities in the spatial aET pattern compared to observations, significant biases are primarily 
found in the Guinea region (southern part), indicating poor simulation performances in this 
region for all mHM configurations. 
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Figure 5.4:  Spatial fields of mean annual annual total  actual evapotranspiration (aET) across 
Nigeria (1982 – 2011) 

Since evaporation processes are linked with rainfall process, differences in replicating aET 
pattern in the Guinea region were also displayed when performances of gridded precipitation 
products were evaluated across Nigeria (Ogbu et al., 2020). Weak agreement of aET 
simulations in the southern part of Nigeria can also be attributed to the potential 
evapotranspiration (PET) method employed. The PET was estimated using the Hargreaves and 
Samani method (Hargreaves & Samani, 1985), which utilizes only temperature records for 
calculating evapotranspiration. An mHM study (Rakovec et al., 2019) across the continental 
USA show that leaf area index, stomatal conductance, and root dept models employed within 
the mHM structure are significant factors that may affect mHM-aET simulations, especially in 
regions characterized by high rainfall events. These factors could also have contributed to the 
model's poor performance in the highly vegetated areas of southern Nigeria, i.e., the Guinea 
region. 

In Figure 5.5, Pearson correlation coefficients (r) are depicted, originating from the assessment 
of the mean annual total aET across the entire modelling domain, in comparison to both 
GLEAM and FLUXNET products. All aET simulations from various mHM setups 
demonstrated satisfactory correlation (0.5 > r < 0.7) compared to the GLEAM product. 
However, when compared to FLUXNET aET observations, all mHM setups forced with ERA5 
(ERA5_250, ERA5_410 and ERA5_572) exhibited poor correlation results (r < 0.3), while 
those driven by the CHIRPS rainfall dataset demonstrated satisfactory outcomes (0.7 > r < 0.8). 
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Figure 5.5: Taylor diagram showing the correlation of all mesoscale hydrologic model (mHM) 
simulations against observations (GLEAM and FLUXNET) 

All mHM-aET simulations exhibited more acceptable correlations with GLEAM datasets than 
against the FLUXNET product (Fig. 5.5). This satisfactory agreement with the GLEAM dataset 
is consistent with results from another mHM application in the Volta River region of West 
Africa (Poméon et al., 2018a). The reanalysis precipitation (ERA5) driven-mHM aET 
simulation indicated poor agreement with the FLUXNET. The limited presence of aET flux 
towers in Africa may have impacted its use for the evaluation of evapotranspiration simulation 
(Weerasinghe et al., 2020). Notwithstanding the use of FLUXNET for aET simulation in this 
study, none of the flux tower sites are located in Nigeria (Weerasinghe et al., 2020). Its choice 
of use in this study is based on its popularity as a reference variable for assessing the 
performance of remotely-sensed evapotranspiration models, as shown in various studies 
(Adeyeri & Ishola, 2021; Dzikiti et al., 2019; Liu et al., 2023; Weerasinghe et al., 2020; Xie et al., 2023; 
Zhu et al., 2022).  

5.3.2 Annual Cycle of Monthly aET 

Figure 5.6 depicts how the various mHM setups demonstrate their ability to reproduce the 
bimodal actual evapotranspiration pattern over the Guinea region and the unimodal pattern over 
the Savannah, Sahel, and the entire domain of Nigeria.  Our results show that all the simulations 
driven by unique model parameter sets could capture the mean monthly temporal pattern of 
aET, including peaks, compared to the GLEAM and FLUXNET datasets. The bimodal aET 
peaks exhibited by all mHM configurations in the Guinea region (Figure 5.6) agree with the 
temporal aET pattern simulated by the Soil and Water Assessment Tool (SWAT) employed in 
the study by Odusanya et al. (2019)  for the Ogun River basin of southwestern Nigeria (Guinea 
region). The single aET peak observed in the Sahel and Savannah regions reflects their seasonal 
rainfall patterns in these regions and agrees with a report by Ogbu et al. (2020). The annual 
rainfall cycle in Nigeria is impacted by the West African Monsoon, exhibiting latitudinal shifts 
of peak rainfall periods. This North-South oscillation of the Inter Tropical Convergence Zone 
(ITCZ), which characterizes the rainfall peaks in the distinct climatic zones of Nigeria is 
reflected in the temporal aET patterns in these regions. Compared to reference aET 
observations (GLEAM and FLUXNET), all mHM configurations replicated low aET rates in 
the north and higher rates in the southern region of Nigeria. mHM aET peaks in the Guinea 
and Savannah regions of Nigeria are consistent with the mean monthly climatology over the 
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West African regional climatic zones (Jung et al., 2019). Overall, all mHM configurations 
demonstrated a strong seasonality across all climatic regions and the whole domain of Nigeria, 
with a close match between mHM aET simulations and observations in the Sahel region, in 
comparison to the two other regions (Fig. 5.6). 

 

Figure 5.6: Annual cycle of monthly actual evapotranspiration (aET) in three different climatic 
regions of Nigeria (1982 – 2011) 

The statistical evaluation for all mHM-setup simulations compared to observations at mean 
monthly temporal resolutions (1982 – 2011) is presented in Table 5.2. These results are shown 
for various climatic regions, the Nigeria domain and aET observations obtained from GLEAM 
and FLUXNET products. The temporal dynamics of simulated aET replicated the pattern of 
both GLEAM and FLUXNET, presenting correlation coefficients of above 0.5 (i.e., r > 0.5) 
for most mHM aET simulation configurations (see Table 5.2). Low correlation coefficients (r 
≤ 0.5) were observed in the Guinea region for CHIRPS_572 and ERA5_572 mHM setups 
compared to GLEAM and FLUXNET.  
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Table 5.2: Performance metrics of actual evapotranspiration (aET) simulations compared with 
GLEAM and FLUXNET 

  
 

GLEAM 
 

FLUXNET   
  

KGE r Beta Gamma RMSE KGE r Beta Gamma RMSE 

Guinea CHIRPS-250 0.46 0.79 1.11 0.52 11 0.41 0.62 0.95 0.55 10.37 

CHIRPS-410 -0.75 0.68 0.94 2.72 22.11 -0.86 0.96 0.81 2.85 23.88 

CHIRPS-572 0.24 0.47 1.12 0.46 13.31 0.25 0.46 0.96 0.49 11.16 

ERA5-250 0.71 0.81 1.13 0.83 12.33 0.84 0.9 0.97 0.87 5.67 

ERA5-410 0.19 0.75 1.09 1.78 16.27 0.13 0.97 0.94 1.87 11.15 

ERA5-572 0.10 0.38 1.19 0.37 18.14 0.2 0.48 1.02 0.39 10.67 

Savannah CHIRPS-250 0.46 0.96 1.31 0.56 20.99 0.46 0.82 1.13 0.51 22.08 

CHIRPS-410 0.39 0.82 1.03 1.58 25.34 0.54 0.99 0.9 1.44 13.36 

CHIRPS-572 0.36 0.96 1.32 0.45 22.83 0.37 0.83 1.15 0.41 23.42 

ERA5-250 0.85 0.92 1.12 1.02 13.8 0.93 0.98 0.97 0.93 7.29 

ERA5-410 0.54 0.87 1.05 1.44 21.02 0.67 0.99 0.91 1.32 9.73 

ERA5-572 0.4 0.87 1.23 0.46 20.38 0.37 0.82 1.07 0.42 22.35 

Sahel CHIRPS-250 0.86 0.98 1.13 0.94 8.46 0.94 0.98 1.06 1 6.36 

CHIRPS-410 0.71 0.93 1.01 1.23 14.84 0.64 0.98 0.95 1.36 11.07 

CHIRPS-572 0.88 0.95 1.08 0.94 10.16 0.96 0.97 1.02 0.99 7.37 

ERA5-250 0.89 0.98 1.01 1.11 7.5 0.81 0.99 0.95 1.18 5.17 

ERA5-410 0.73 0.96 1.01 1.27 12.39 0.65 0.99 0.95 1.35 9.39 

ERA5-572 0.7 0.95 1.06 0.71 11.03 0.74 0.92 1 0.75 12.45 

Whole 
domain 

CHIRPS-250 0.58 0.97 1.22 0.65 14.34 0.66 0.93 1.06 0.67 11.52 

CHIRPS-410 0.49 0.89 1.02 1.5 17.94 0.45 0.99 0.89 1.54 12.37 

CHIRPS-572 0.51 0.95 1.22 0.56 15.55 0.57 0.96 1.06 0.58 11.92 

ERA5-250 0.86 0.95 1.12 0.95 10.33 0.97 0.99 0.98 0.98 4.16 

ERA5-410 0.68 0.92 1.08 1.3 14.79 0.66 0.99 0.94 1.34 7.78 

ERA5-572 0.44 0.93 1.2 0.48 16.23 0.48 0.87 1.05 0.5 15.55 

 r, beta, and gamma are components of the KGE model 

In the Guinea region, only the aET results from the ERA5_250 mHM setup yielded satisfactory 
KGE values (KGE > 0.70) in comparison to observations from the GLEAM and FLUXNET 
products (Table 5.2). This signifies that the temporal pattern was captured, exhibiting a low 
RMSE value (RMSE = 12.33) when compared against aET from the GLEAM dataset and 
RMSE = 5.67 against that from the FLUXNET dataset. However, simulations obtained from 
other mHM setups within this region showed poor performance. However, a high correlation 
(r > 0.5) between simulations and observations across most of the poor-performing models (for 
KGE) indicates the existence of model bias and the inability to capture the spread of observed 
datasets, thereby resulting in unacceptable KGE scores. The temporal dynamics of simulated 
aET exhibit about 2.5 times larger variability than both GLEAM and FLUXNET observations 
for CHIRPS_410 mHM configuration in this region. Other mHM configurations presented the 
same patterns in reproducing temporal variabilities of observations.  

For the Savannah region, acceptable KGE scores (KGE > 0.5) were exhibited by ERA5_250 
and ERA5_410 mHM configurations against observations from the GLEAM and FLUXNET 
aET products (Table 5.2). These results also showed acceptable correlations (r > 0.8) with 
reasonable error margins (RMSE < 21 mm). Also, the annual cycle of aET obtained using 
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CHIRPS_410 mHM setup also gave KGE = 0.54 and exhibited high correlation (r = 0.99) and 
RMSE = 13.36 mm compared with the FLUXNET dataset. KGE scores across all mHM setups 
in this region showed a slight improvement compared to the Guinea region.  

Model performance in the Sahel for all mHM simulations compared to both observed datasets 
(GLEAM and FLUXNET) showed acceptable results across all performance metrics employed 
in this study (Table 5.2). In comparison to the GLEAM datasets, KGE values range from 0.70 
– 0.89 and 0.65 – 9.94 in relation to the FLUXNET observations.  

For the whole domain of aET simulations, the performance of the model followed no particular 
order. mHM setups parameterized using CHIRPS_410 and ERA5_572 resulted in a KGE < 0.5 
in comparison to aET observations from the GLEAM and FLUXNET products (Tab. 5.2).  

Generally, aET simulation results in the Sahel replicated the temporal annual cycle of measured 
aET in terms of acceptable KGE and correlation scores. Model performance values in the 
Guinea region were lower than that in the Sahel as the former is characterized by a more humid 
climate with mean annual rainfall > 1500 mm compared to the drier climate in the latter (with 
annual precipitation between 434 mm to 969 mm) (Gbode et al., 2019). Biases in rainfall 
pattern representation over this region are reflected in most gridded precipitation products 
evaluated over this area, thereby translating to unacceptable aET simulations. Previous studies   
on gridded precipitation assessment over Nigeria revealed the inability of CHIRPS and ERA5 
precipitation products to reasonably capture the temporal dynamics of precipitation over the 
Guinea region (Ogbu et al., 2020, 2022). However, all mHM configurations presented 
satisfactory RMSE values (< 25 mm) values across all modelled domains, which align with 
acceptable thresholds recommended by  Moriasi et al. (2015). Yet, lower RMSE values (RMSE 
< 15 mm) were mainly observed across all mHM configurations applied in the Sahel region. 
Compared to the GLEAM datasets, all simulated aET values across all modelled domains 
exhibit model overestimations (beta > 1.0), except for the CHIRPS_410 mHM configuration. 

5.3.3 Seasonal Trend Analysis of aET 

The Mann-Kendall (MK) test was employed to analyze aET trends in the dry (January – March) 
and rainy seasons (June - September) across the entire domain of Nigeria and the three distinct 
regions (Guinea, Savannah and Sahel). The MK test results were assessed at a 95% confidence 
interval and a significance level (α) of 0.05 (Table 5.3). 
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Table 5.3: Mann-Kendall test for Dry and Rainy Seasons in Nigeria (1982 – 2011) 
  JFM JJAS 
Region Observation Z-value p-value Sen's slope Z-value p-value Sen's 

slope 
Guinea GLEAM -1.00 0.32 -0.58 1.39 0.16 0.44 
 FLUXNET 1.57 0.12 0.44 3.78 0.0002 0.24 
 CHIRPS-250 3.03 0.002 0.46 -0.25 0.80 -0.06 
 CHIRPS-410 1.00 0.32 0.40 0.50 0.62 0.20 
 CHIRPS -572 3.35 0.001 0.73 -0.14 0.89 -0.03 
 ERA5-250 -2.36 0.02 -0.90 -0.64 0.52 -0.14 
 ERA5-410 -2.07 0.04 -1.49 -0.04 0.97 -0.01 
 ERA5-572 -2.00 0.05 -0.32 -1.82 0.07 -0.23 
Savannah GLEAM -2.07 0.04 -0.63 2.0 0.05 0.61 
 FLUXNET 0.68 0.5 0.06 2.28 0.02 0.28 
 CHIRPS-250 2.57 0.01 0.58 0.46 0.64 0.13 
 CHIRPS-410 -0.46 0.64 -0.08 1.25 0.21 0.36 
 CHIRPS-572 3.28 0.001 0.74 0.79 0.43 0.15 
 ERA5-250 -2.60 0.01 -0.67 -3.18 0.001 -0.79 
 ERA5-410 -3.43 0.001 -0.92 -2.93 0.003 -0.71 
 EAR5-572 -1.18 0.24 -0.64 -2.64 0.01 -0.99 
Sahel GLEAM 1.96 0.05 0.26 2.39 0.02 0.51 
 FLUXNET 0.14 0.89 0.007 0.57 0.57 0.23 
 CHIRPS-250 2.43 0.02 0.43 3.39 0.001 1.16 
 CHIRPS-410 2.53 0.01 0.14 3.18 0.001 1.29 
 CHIRPS-572 2.93 0.003 0.43 3.35 0.001 1.22 
 ERA5-250 0.25 0.80 0.07 -1.86 0.06 -1.03 
 ERA5-410 -0.18 0.86 -0.03 -1.25 0.21 -0.98 
 EAR5-572 0.32 0.75 0.16 -1.75 0.08 -0.87 
Whole 
Nigeria 

GLEAM -1.25 0.21 -0.30 2.14 0.03 0.49 
FLUXNET 0.75 0.45 0.09 2.0 0.05 0.27 

 CHIRPS-250 3.60 0.0003 0.53 2.18 0.02 0.48 
 CHIRPS-410 1.00 0.32 0.11 2.71 0.01 0.72 
 CHIRPS-572 3.82 0.0001 0.62 2.57 0.01 0.52 
 ERA5-250 -2.21 0.03 -0.50 -2.28 0.02 -0.65 
 ERA5-410 -2.82 0.01 -0.77 -1.93 0.05 -0.60 
 EAR5-572 -0.75 0.45 -0.27 -2.78 0.01 -0.75 

*Bold p-value = significant trend. 

In the Sahel, the positive significant trend shown by the aET observations obtained from the 
GLEAM product was replicated by all CHIRPS-driven mHM setups in both seasons under 
consideration (Tab 5.3). The GLEAM dataset revealed a statistically significant increase in dry 
season aET at a confidence level of 95.1%, with a magnitude of 0.26 mm. This observed trend 
was reproduced by CHIRPS_250 (0.43 mm), CHIRPS_410 (0.14 mm), and CHIRPS_572 (0.43 
mm) during the same season. In the rainy season, the GLEAM aET observations also showed 
a statistically significant increase, supported by a 98% confidence level and a magnitude of 
0.13 mm. This upward trend during the rainy season was also corroborated by simulations from 
the CHIRPS_250 (1.16 mm), CHIRPS_410 (1.29 mm), CHIRPS_572 (1.22 mm), signifying 
consistent patterns across the datasets in this region.    

In the Savannah region, GLEAM observations showed a statistically significant decrease (at a 
96% confidence level) in dry season aET, registering a magnitude of 0.63 mm observed from 
1982 – 2011 (Tab. 5.3). This trend was exhibited by simulations from ERA5_250 (magnitude 
of 0.67 mm) and ERA5_410 (magnitude of 0.92 mm) mHM setups during the same season. 
However, during the rainy season, the statistically significant increases indicated by the 
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GLEAM (95% confidence level) and FLUXNET (98% confidence level) datasets were not 
observed in any of the mHM aET-simulation setups. All mHM setups forced with ERA5 
showed a statistically significant decrease, with various magnitudes ranging from 0.71 - 0.99 
mm.  

In the Guinea region, the statistically significant increase (99.98% confidence level) observed 
in the FLUXNET aET data (JJAS season) was not replicated in any of the various mHM setups 
considered in this study (Table 5.3). These results imply a poor replication of seasonal aET 
trend for all mHM configurations in this region.    

Across the entire domain, both GLEAM and FLUXNET revealed a statistically significant 
increase during the rainy season (Table 5.3). GLEAM exhibited a positive increase of 0.49 mm 
at a 97% confidence level. Similarly, FLUXNET demonstrated a positive increase at a 95% 
confidence level, with a magnitude of 0.27 mm. Notably, only the aET results from 
CHIRPS_250 (with a magnitude of 0.48 mm), CHIRPS_410 (with a magnitude of 0.72 mm), 
and CHIRPS_572 (magnitude of 0.52) mHM setups were able to reproduce a comparable 
increasing trend. Conversely, all mHM setups driven by ERA5 rainfall datasets simulated 
statistically negative trends in seasonal (JJAS) aET observations.  

5.3.4 Temporal Seasonal Pattern 

Figure 5.7 presents the ability of all mHM setups to simulate temporal seasonal annual totals 
of aET over the three regions and the entire domain as Taylor diagrams. Results are shown for 
both the dry season (January to March, Fig. 5.7a & 5.7b) and the wet season (June to 
September, Fig. 5.7c & 5.7d).  

The correlation performance scores of all mHM setups varied across the modelled domains 
during the dry season (JFM) (Fig 5.7a – b). Temporal correlations with the GLEAM dataset 
were less than 0.40 for CHIRPS_572 in Guinea, Savannah and the entire domain (Fig 5.7a). 
This trend of low correlation (r = 0.38) was also observed for ERA5_572 in the Guinea region. 
The mHM setups also showed unacceptable correlation performance with FLUXNET aET 
observations in the same season (JFM). Low correlation (r < 0.40) was observed in the Guinea 
region (CHIRPS_572, ERA5_250, ERA5_410, ERA5_572), Savannah (CHIRPS_250, 
CHIRPS_572, ERA5_250, ERA5_410, ERA5_572), and the entire domain (CHIRPS_250, 
CHIRPS_572, ERA5_250, ERA5_410, ERA5_572). However, all mHM setups showed an 
acceptable correlation (r ≥ 0.5) in the Sahel region with both GLEAM and FLUXNET aET-
observations. 
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Figure 5.7: Correlation coefficients of seasonal annual total actual evapotranspiration (aET) 
for the three climatic regions of Nigeria and the whole modelling domain: (a) January – 
March(JFM) season in comparison to GLEAM; (b) JFM season in comparison to FLUXNET; 
(c) June – September (JJAS) season in comparison to GLEAM; (d) JJAS season in comparison 
to FLUXNET. 

During the wet season (JJAS, Fig. 5.7c & d), total aET simulations in various regions showed 
correlations of 0.50 and above in comparison to reference observations. When compared with 
aET-GLEAM (Figure 5.7c), acceptable correlations (r > 0.50) were observed in the Guinea 
(ERA5_250, ERA5_410) and Savannah regions (CHIRPS_250, CHIRPS_410, CHIRPS_572) 
as well as in the entire domain (CHIRPS_250 and CHIRPS_572). In contrast to the FLUXNET 
product, only CHIRPS_250 and CHIRPS_410 demonstrated correlations of 0.52 and 0.51, 
respectively. In the simulations of rainy season aET (Figure 5.7c & d), weak negative 
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correlations (r < 0) were identified when compared to GLEAM data (in the Savannah and Sahel 
regions and the entire domain), and FLUXNET data (Guinea, Savannah and Sahel). These 
findings indicate a moderate correlation with observed datasets but highlight the challenge of 
simulating total wet season aET, particularly with the ERA5-driven mHM. 

5.3.5 Soil Moisture Anomaly 

The simulated surface SM from the different mHM configurations (refer to Fig. 5.3) was also 
evaluated against SM observations obtained from the ESA CCI product for the three agro-
climatic regions of Nigeria and the entire domain. Monthly spatial means of SM estimates for 
the different domains were estimated and standardized from 1982 to 2011. Figure 5.8 shows 
that all mHM configurations reasonably captured the monthly dynamics of observed SM 
anomalies in terms of the temporal pattern but with significant peak mismatches. This trend 
was observed in all modelled domains, with significant peak mismatch shown for CHIRPS_410 
and ERA5_410 mHM configurations. Poor quality and insufficient stream gauge records used 
in constraining model parameters during calibration could have impacted estimated final 
parameter values. In addition, the ESA CCI SM observation was rescaled to align to the range 
of the Global Land Data Assimilation System SM field and does not represent absolute actual 
SM (Rakovec et al., 2016b). 

 

Figure 5.8: Monthly soil moisture anomaly (z-score) in the three different climatic zones of 
Nigeria and the whole domain. 

Figure 5.9 shows the model performance of SM across different climatic regions and the entire 
domain in terms of Pearson correlation values (r). In all mHM soil moisture simulations, 
correlation scores were high (r > 0.8) across all modelling domains (Fig. 5.9). The ERA5_572 
model setup achieved the lowest correlation (0.80 ≥ r ≥ 0.84) across all the different climatic 
regions considered in this study. The coefficient of determination (R2) showed a strong fit 
between mHM SM simulations and the ESA CCI dataset, ranging from 0.64 to 0.97 across all 
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different domains in this study.  The ERA5_572 model setup yielded an R2 value of 0.64. The 
range of low RMSE values (0.17 - 0.61) across the three different climatic regions and mHM 
configurations implies satisfactory overall model performance and an indication that the 
simulated soil moisture is close to the observed values and reflects the moisture conditions of 
the regions. Across all different agro-climatic regions of Nigeria, all calibrated mHM setups 
performed well in reproducing observed temporal trends of surface SM.  

 

Figure 5.9: Correlation of mesoscale hydrologic model (mHM) surface soil moisture 
simulation against ESA CCI soil moisture 

5.4 Conclusion 

An evaluation of mHM simulations for aET and surface SM employing six unique mHM-
calibrated parameter sets derived from various rainfall data-basin configurations was 
conducted across three agro-climatic regions in Nigeria. Calibrated mHM parameter sets 
obtained in a previous study (Ogbu et al., 2022) at the basin scale were used to assess mHM 
flux and state variables simulation on a much larger domain. The spatial annual total 
climatology of aET simulations across different mHM setups demonstrated a notable increase 
in the southward direction. They agreed with the spatially observed trends of the GLEAM and 
FLUXNET datasets. All mHM configurations were able to reproduce the bimodal (in the 
Guinea region) and unimodal (in the Savannah and Sahel regions) annual cycle of aET patterns 
in Nigeria, exhibiting reasonable performances of r > 0.8. The performance of annual total aET 
across the entire country shows satisfactory correlation scores (r > 0.5) for all mHM 
configurations with the GLEAM product. However, this ability deteriorates (r < 0.5) when 
mHM setups forced with ERA5 are compared against FLUXNET observations. The temporal 
variability trend of the annual aET cycle is well reproduced over all domains by all model 
configurations. This satisfactory mHM performance is well exhibited in the Sahel region (KGE 
> 0.7) but degenerates southward towards the Guinea region (0.1 > KGE > -0.7). Unsatisfactory 
aET-mHM performance in Guinea may be related to the inability mHM to capture the high 
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temporal dynamics of precipitation in this region. The significant positive trend exhibited by 
the GLEAM-aET observations was replicated by all CHIRPS-driven mHM setups in wet and 
dry seasons in the Sahel region of Nigeria. This consistency was demonstrated by the ERA5-
driven mHM configurations in the Savannah region, but results deteriorated in the Guinea 
region. The simulated annual seasonal aET exhibits strong agreement with mostly the GLEAM 
observations during the dry season than in the wet season. The unavailability of flux tower sites 
in Nigeria may have increased uncertainties in using FLUXNET for aET evaluation. Evaluation 
of surface SM shows reasonable agreement (r > 0.9) across all domains. This reflects a 
reasonable replication of SM seasonality in the three distinct climatic regions of Nigeria. 

This is the inaugural application of the fully distributed mHM constrained against only 
streamflow at the basin scale in Nigeria for the simulation of aET and SM on a larger domain 
and across distinct climatic regions of Nigeria. The multiscale parameter regionalization 
technique incorporated within the mHM structure allows for parameter transfer to ungauged 
regions without recalibration. Results reveal that acceptable agreement with observed data was 
predominantly observed in the Sahel region and aligns with the location of the basins used 
during parameter calibration. In this study, mHM constrained with only streamflow can 
produce reliable aET and SM simulation results in the Sahel. However, the unavailability of 
good-quality discharge records in the southern region of Nigeria did not allow for a robust 
model calibration process. Due to the lack of discharge data, especially in parts of the Savannah 
and Guinea regions, the incorporation of flux and state variables during mHM calibration is 
recommended to improve simulation results. This approach may further advance the 
hydrologic modelling results, and support applied hydrology in Nigeria and other data-scarce 
regions. Further investigations in this regard are essential for improving the accuracy and 
reliability of mHM simulations in capturing complex dynamics of hydrologic processes which 
exist under conditions in Nigeria and similar data-scarce regions.  
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6 Overall Conclusions 

Dense and reliable hydro-meteorological monitoring networks are paramount for practical 
studies in hydrologic systems management. The unavailability of high-quality continuous 
hydro-meteorological datasets with adequate spatio-temporal resolution poses a significant 
challenge for hydrologic modelling, particularly in developing regions. Unfortunately, this 
trend of declining instrumentation in waterways and climate observation systems is expected 
to persist due to challenges such as poor government systems, vandalization, and 
discontinuation of government projects by subsequent administrations. This development has 
negatively affected the realistic application and calibration of hydrologic models to support 
decision-making in operational hydrology. Recently, the easy and free accessibility of high-
quality remote sensing datasets and the development of complex hydrologic models have 
ignited increased research activities in water resources modelling. However, these efforts have 
not contributed much to realistic hydro-meteorologic variables simulations owing to inherent 
biases in remote sensing products and hydrologic model structure. Conducting a region-
specific assessment of remotely sensed climatic variables is necessary to estimate the 
magnitude of bias and evaluate its overall quality. Furthermore, mathematical representations 
of complex hydrologic processes may result in model over-parameterization and consequently 
impact effective parameter calibrations, particularly in data-limited regions. 

The effective utilization of high-performing satellite-gridded climatic datasets, along with a 
parameter regionalization technique that preserves a basin´s heterogenous characteristics´, 
holds great potential for hydrologic modelling in ungauged basins. In addition, hydrologic 
variables not considered during calibration can be independently used for model evaluation. 
The primary aim of this study is to evaluate the parameter transferability skill of the mesoscale 
Hydrologic Model (mHM) for hydrologic simulation under conditions of limited input datasets. 
This study contributes to the International Association of Hydrologic Sciences (IAHS) 
initiative of Prediction in Ungauged Basins (PUB). 

The following paragraphs summarise major conclusions from each main chapter (2, 3, 4, and 
5) according to the formulated research questions. The study's contributions and 
recommendations will also be presented.   

1. How well do certain selected gridded precipitation products perform in Nigeria? 

The performance of three different satellite-based precipitation products in replicating spatial 
and temporal dynamics of local rainfall characteristics was evaluated at the point-to-pixel scale. 
Data from CHIRPS, PERSIANN and TAMSAT were extracted and compared to in-situ records 
from 24 synoptic stations distributed across three agro-climatic regions in Nigeria. The selected 
products were assessed for performance at seasonal, monthly and annual scales. Findings show 
that seasonal rainfall patterns were similar, depicting an increasing gradient southward in the 
country. However, the wet seasons were poorly replicated. All products captured the temporal 
annual precipitation cycle but with significant biases in locations within the Guinea Coast 
region. All products could reproduce the monthly and inter-annual rainfall patterns, although 
with varying accuracy. Generally, performances were more successful in the Sahel region 
(northern Nigeria) than in the country's south. The CHIRPS rainfall products performed better 
than other satellite rainfall products in this study. 
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2. To what extent does the mesoscale Hydrologic Model (mHM) accurately replicate the 
temporal variability of observed streamflow under data-limited conditions? 

Limited hydro-metrological data pose a significant challenge for hydrologic modelling in 
ungauged regions. To evaluate the mHM capability for streamflow calibration and validation, 
the mHM was set up across four distinct data-sparse basins. Five gridded precipitation products 
comprising satellite, gauge and reanalysis datasets were used as model forcings under a 
univariate (only streamflow) and multivariate (streamflow and actual evapotranspiration) 
calibration framework. All the precipitation products for both calibration frameworks 
presented acceptable streamflow simulation (KGE > 0.5) in the Jamaare River basin. Only the 
CHIRPS, CPC and ERA5 datasets maintained the same trend (KGE > 0.5) in the same basin 
during model validation. Data gaps in all streamflow observations limited effective calibration 
and evaluation of the mHM´s robustness. About 50% of the missing data characterize the 
Jamaare River basin, while other basins feature worse situations. Using results from the 
Jamaare basin as a case study, the CHIRPS product exhibited the best results under both 
calibration frameworks. On the other hand, ERA5 performed better during validation and for 
both calibration frameworks. Overall, results from the multivariate calibration approach did 
not indicate significant superiority under this data-scare circumstance.  

3. How reliable is the Multiscale Parameter Regionalization (MPR) technique for model 
parameter transfer to ungauged basins? 

A significant strength of the mHM is its ability to utilize gridded datasets in netcdf file format 
as direct inputs. This is most suitable in ungauged regions where remote datasets can be an 
alternative for setting up a hydrologic model. The mHM incorporates a regionalization scheme, 
MPR, to address the model over-parameterisation problem and maintain sub-basin 
heterogeneity. The effectiveness of transferring mHM parameters across locations and scales 
has been evaluated in many developed regions with satisfactory results. The main aim was to 
assess the transferability of optimized mHM parameters from gauged to ungauged basins for 
streamflow simulation using gridded rainfall datasets. In a default mHM simulation, 12 mHM 
configurations comprised three different basins and four precipitation forcings. Model runs 
were performed using default mHM parameters and then constrained using each basin´s 
streamflow records. Subsequently, the most performing precipitation product was utilized to 
optimize a multi-basin mHM. Calibrated parameters obtained from each mHM set-up were 
then used to simulate streamflow on an independent basin. Hydrological evaluation of the 
gridded precipitation products revealed that the CHIRPS products are the most performing 
datasets under existing conditions. mHM optimization results exhibited satisfactory streamflow 
simulation results when forced with MSWEP or CHIRPS. However, parameter transfer to an 
independent basin resulted in an acceptable simulation in one basin. Unacceptable performance 
was attributed to the unavailability of a reservoir component within the mHM structure. 
Significant gaps in streamflow observations could have impacted the parameter calibration 
process.   

4. How effectively does mHM simulate evapotranspiration and soil moisture on a 
regional scale when utilizing calibrated parameters obtained at the basin level? 

This study evaluated the feasibility of performing mHM simulation for independent variables 
using optimized parameters obtained by constraining mHM parameters with streamflow data. 
The mHM actual evapotranspiration and soil moisture simulations were evaluated using 
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parameters obtained when mHM was constrained with streamflow observations. Six distinct 
parameter sets were obtained when mHM was forced separately with CHIRPS and ERA5 
precipitation products across three different basins. These parameters were used to set up mHM 
over the entire Nigeria domain for aET and SM simulation at monthly temporal resolutions. 
Simulations were compared against two aET (GLEAM and FLUXNET) and SM (ESA CCI) 
gridded products on different temporal resolutions across three distinct agro-climatic regions. 
Spatial annual patterns of aET presented an increasing trend from north to southern Nigeria, 
and agreed with observations. However, aET simulations agreed more with the GLEAM 
product than the FLUXNET. Sparse flux towers across the African continent, with none located 
in Nigeria, could be the reason for the poor representation of accurate aET datasets over this 
region. CHIRPS-driven mHM exhibited satisfactory aET performance in comparison to the 
ERA5-driven mHM. Improved aET simulations were observed more in the Sahel (northern 
Nigeria) than in the southern region. Simulated monthly surface soil moisture across Nigeria's 
agro-climatic regions agreed with observed counterparts.  

Using station observations and a hydrologic modelling approach effectively assessed the 
performance of gridded rainfall products. Satisfactory simulation results obtained during 
univariate and multivariate calibration frameworks indicate the feasibility of the mHM-MPR 
technique for hydrologic predictions in data-sparse regions. The preservation of basin 
variability aided by the MPR was responsible for the model’s performance under data-limited 
conditions.  
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7. Synthesis 

The findings presented in this study underscore the critical role of gridded precipitation rainfall 
products as forcings for the mHM in addressing the challenges posed by the scarcity of hydro-
meteorological datasets in Nigeria. Each chapter complements and contributes to a greater 
understanding of the performances of these products over Nigeria as well as the utility of the 
mHM for continuous hydrological modelling in data-sparse regions. Adequate knowledge of 
rainfall variability is necessary for sustaining rain-dependent agriculture and driving the local 
economy of Nigeria. This information is critical for modelling hydrologic processes and 
monitoring the implications of water management scenarios. The unavailability of a 
comprehensive climatic gauge network necessitated the choice of gridded precipitation 
observations as a suitable alternative for modelling rainfall-runoff processes.   

Realistic hydrologic modelling for understanding local and regional water resource variability 
depends significantly on the driving precipitation data and the structure of the hydrologic 
model. All gridded rainfall products evaluated showed great skill in capturing annual rainfall 
cycles and spatial trends of observations across different agro-climatic zones in Nigeria. 
However, the CHIRPS product displayed higher consistency in replicating the dynamics of 
rainfall patterns across selected locations in Nigeria. Other gridded rainfall products, such as 
the reanalysis ERA5, MSWEP and GPCC, also showed reliability, especially in Northern 
Nigeria. Gridded precipitation products do not entirely replace in-situ observations. Still, they 
have demonstrated the ability to effectively replicate the local rainfall cycle, especially in 
regions with limited climatic information. Information from these gridded datasets can likely 
be used to fill in missing gaps in station data. However, evaluations at a daily temporal 
resolution presented lower performance than results from monthly, seasonal and annual 
periods.   

Significant efforts towards developing remotely sensed precipitation products were partly 
inspired by the need to fulfil the climatic data requirement for continuous hydrologic 
modelling, especially in regions plagued by inadequate instrumentation networks and 
inaccessible terrains.  When evaluated within a hydrologic modelling framework in four 
Sahelian basins in Nigeria, the utility of these products demonstrated that they can be used as 
mHM forcings. Furthermore, product evaluations under uni and multi-calibration schemes 
presented nearly the same results and exhibited no significant change in stream discharge 
simulation. The CHIRPS product again proved to be reliable, producing reasonable KGE 
scores under both calibration frameworks, demonstrating its applicability in hydrologic 
modelling.  Using both in-situ precipitation data and hydrologic modelling to evaluate the skill 
of gridded precipitation products provides a comprehensive evaluation framework. It ensures 
a robust assessment for selecting the most accurate and reliable dataset for the study domain. 
This ensures that the dataset can support studies involving water resources management, 
hydrologic extreme risks mitigations and climate change impact research. 

The information from the comparative analysis of remotely sensed precipitation products 
provides valuable insights into their performance. Also, results contribute to the broader 
knowledge of how different data sources can impact their predictive skills. This is also 
necessary to guide the selection of appropriate datasets for rainfall-runoff process modelling. 
The regionalization method employed in the mHM model is an innovative methodology to 
overcome the problem of over-parameterization and facilitate the transfer of optimal model 
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parameters from gauged to ungagued basins. This technique enhances the accuracy of 
hydrologic simulations and contributes to understanding parameter regionalization in 
hydrologic science. The improved KGE score (> 0.5) during streamflow prediction in one of 
the study basins further underscores its reliability in enhancing model simulation performance. 

Results also showed that critical challenges of model calibration in ungauged regions can be 
overcome by transferring optimized parameters across scales.  mHM parameters from different 
setups obtained when constrained with only streamflow at the basin scale successfully 
simulated actual evapotranspiration (aET) and surface soil moisture across Nigeria. Simulated 
spatial patterns of mean annual aET climatology present an increasing trend southwards from 
Northern (Sahel) Nigeria. This trend aligns with observations extracted from the GLEAM and 
FLUXNET aET products. However, CHIRPS-driven mHM showed a better correlation than 
ERA5-driven mHM. These improved scores were mainly observed across the Sahel region. 
The more humid Guinea region did not produce acceptable results due to the more variable and 
dynamic monsoon climate. Furthermore, the temporal variability of simulated monthly soil 
moisture across the three distinct agro-climatic regions agreed (r > 0.8) with observations. 
These results underscore the feasibility of reliable mHM hydrologic simulation in areas with 
similar data-limited characteristics.  

Study results benefit sustainable water resources management and crop production planning in 
regions limited by hydro-climatic data, such as Nigeria. By providing a reliable framework for 
realistic hydrologic simulation, this research supports an informed decision-making process for 
stakeholders and policymakers in the water resources and agriculture sectors. The successful 
implementation of the mHM modelling tool in this region offers other hydrologic modellers 
awareness of the information needed to address the challenges of hydrologic predictions with 
limited observed data.  
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8. Outlook 

This study evaluated the feasibility of mHM hydrologic parameter transferability to ungauged 
domains under data-limited conditions in Nigeria. The significant findings underscored the 
potential for setting up the mHM with gridded precipitation products for hydrologic process 
monitoring with sparse in-situ data. Overall, results contribute to the scientific understanding 
of rainfall variability and hydrological processes in regions characterized by sparse hydro-
climatic variables. This effort is aimed to provide a basis for future studies on rainfall-runoff 
modelling and model transferability across multiple temporal and spatial scales. This chapter 
highlights the implications of the study findings suggests future research options, and study 
limitations.  

Gridded precipitation datasets provide consistent and fine-resolution rainfall data that is useful 
for the timely detection and monitoring of droughts. This information is necessary to develop 
hydrologic extreme (drought and flood) warning systems for disaster mitigation. This proactive 
measure produces information needed to mitigate the impacts of climate change on agriculture 
and water resources. Effective agricultural management practices and realistic crop growth 
simulation can benefit from high-quality rainfall data. Such information is essential for 
optimizing crop planting schedules and efficient irrigation and fertiliser application, resulting 
in better food security. Driving the mHM model with gridded precipitation datasets can 
significantly enhance water management by providing reliable model inputs to support policy-
making in regions without ground-based observations. The information gained through 
hydrologic modelling is essential for managing and sustaining watershed management 
practices, flood control and water supply structures. The ability to transfer optimized 
parameters to ungauged domains shows the robustness of the mHM model. Robust model 
configurations tend to improve hydrologic predictions and watershed management practices in 
regions characterized by sparse hydro-climatic station networks. Research results provide 
helpful information for decision-makers on the benefits of remotely sensed datasets for water 
resources management and agriculture. Insights on river dynamics, flood risks, soil moisture 
variabilities and drought conditions are helpful for decision-makers when formulating policies 
to mitigate the impacts of extreme hydrologic events. Decision-makers must leverage 
hydrologic results to ensure that water or agriculture-related policies are science-based and 
effective in sustaining and preserving ecosystems. 

Future studies should focus on enhancing the quality and resolution of gridded precipitation 
products, especially across sub-Saharan Africa. National governments should contribute to this 
effort by increasing the density of hydro-climatic networks, which are critical for the 
calibrations and validations of these products. Refining hydrologic models to accurately 
represent land surface systems better is essential. This includes a feedback structure between 
human activities and hydrologic processes and integraton of critical model components (e.g., 
land/agricultural management practices, crop growth, lakes/wetlands, and reservoirs).  

The hydrologic framework adopted in this study can help decision-makers formulate science-
based water management decisions. Gridded datasets are a better alternative in regions with 
sparse or limited in-situ observations. This can improve the monitoring of water resources, 
preparedness for hydrologic extremes, and sustainable agricultural practices. Improving hydro-
climatic data instrumentation and hydrologic model implementation and ensuring efficient and 
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transparent collaboration between local communities, government agencies, and researchers is 
critical for the development and sustainability of hydrologic system balance.  

Sensor limitations and data processing algorithms primarily impact the accuracies of remotely 
sensed precipitation products. Therefore, there is a need for continuous validation of these 
products to ensure their reliability. The unavailability of hydrometric data in other regions of 
Nigeria poses a significant challenge for mHM applications outside the Sahel region. Three 
major categories of land use cover (impervious, pervious and forest) are used in mHM to 
represent morphological datasets. These efforts could have lumped other land use classes that 
significantly impact hydrologic processes. Also, dams, reservoirs, and critical hydraulic 
structures that impact runoff and evaporation were not modelled by mHM when performing 
these simulations. Basins considered in this study contained various sizes of reservoir projects, 
which, if represented, could have improved simulation results. A functional crop growth 
module is also lacking in the mHM, which could have realistically simulated crop 
evapotranspiration and soil moisture. More studies are recommended to explore the 
transferability of mHM parameters to other regions with similar geographic conditions and 
explore its limitations under different hydrologic frameworks.   
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Appendices 

Appendix A: mHM Parameters 

β1 Effective maximum canopy storage (mm). 

β2 Threshold temperature for phase transition snow/rain (°C). 

β3 Degree day factor during rainless days. 

β4 Rate of increase of the degree day factor per unit of precipitation (d-1 °C-1). 

β5 Maximum degree day factor reached during rainy days. 

βk
6 Maximum soil moisture content. 

β7 Parameter that determines the relative contribution of rain or snowmelt to runoff. 

β8 Critical value of soil ice content above which the soil is practically impermeable. 

β9 Shape factor of the distribution. 

β10 ATI threshold below which unfrozen water content reaches its minimum. 

β11 ATI  threshold above which no frozen water exist. 

β12 Minimum fraction of unfrozen water content. 

β13 Weighing multiplier ranging from 0.1 to 1. 

β14 Maximum ponding retention in impervious areas. 

β15 Permanent wilting point. 

β16 Soil moisture limit above which the actual transpiration is equated with the PET. 

βk
17 Fraction of roots in the Kth horizon. 

β18 Maximum holding capacity of the second reservoir (unsaturated zone). 

β19 Fast-recession constant. 

β20 Slow recession constant. 

β21 Exponent that quantifies the degree of non-linearity of the cell response. 

β22 Effective percolation rate. 

β23 Baseflow recession rate. 

β24 Fraction of the groundwater recharge that might be gained or lost either as deep 
percolation or as inter-catchment groundwater flow in nonconservative catchments. 

β25 Duration of the TUH. 

β26 Muskingum travel time parameter. 

β27 Muskingum attenuation parameter. 

β28 Aspect correction factor of the PET. 
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Appendix B: Parameter for mHM Setups 

Parameters lower 
bound 

upper 
bound 

default ERA 
250 

ERA 
410 

ERA 
572 

Chirps 
250 

Chirps 
410 

Chirps 
572 

Interception          
canopyInterceptionFactor  0.150 0.400 0.150 0.167 0.301 0.151 0.230 0.189 0.153 
Soil Moisture          
orgMatterContent_forest 0.000 20.000 5.030 8.334 17.660 1.480 10.230 14.178 1.188 
orgMatterContent_impervious 0.000 1.000 0.698 0.526 0.094 0.229 0.749 0.071 0.498 
orgMatterContent_pervious 0.000 4.000 3.815 0.059 2.225 0.494 2.337 3.986 0.098 
PTF_lower66_5_constant 0.646 0.951 0.800 0.866 0.683 0.950 0.861 0.947 0.929 
PTF_lower66_5_clay 0.0001 0.003 0.001 0.001 0.002 0.003 0.002 0.003 0.003 
PTF_lower66_5_Db -0.373 -0.187 -0.250 -0.195 -0.197 -0.195 -0.320 -0.190 -0.240 
PTF_higher66_5_constant 0.536 1.123 0.804 0.885 1.086 0.635 0.724 1.120 0.569 
PTF_higher66_5_clay -0.006 0.005 -0.001 -0.001 0.001 0.003 0.005 0.005 0.0002 
PTF_higher66_5_Db -0.551 -0.091 -0.341 -0.546 -0.461 -0.282 -0.536 -0.134 -0.402 
PTF_Ks_constant -1.200 -0.285 -1.003 -0.566 -0.307 -0.332 -0.707 -0.828 -0.633 
PTF_Ks_sand 0.006 0.026 0.016 0.008 0.009 0.014 0.007 0.026 0.0219 
PTF_Ks_clay 0.003 0.013 0.003 0.004 0.01 0.012 0.012 0.009 0.007 
rootFractionCoefficient_forest 0.900 0.999 0.949 0.993 0.924 0.998 0.998 0.902 0.998 
rootFractionCoefficient_impervious 0.900 0.950 0.950 0.948 0.922 0.950 0.949 0.940 0.950 
rootFractionCoefficient_pervious 0.001 0.090 0.002 0.036 0.013 0.001 0.001 0.088 0.002 
infiltrationShapeFactor 1.000 4.000 1.039 1.278 3.936 1.023 1.090 1.008 1.007 
Direct sealed area runoff          
imperviousStorageCapacity 0.000 5.000 0.008 0.464 0.072 0.647 0.344 0.708 0.150 
Potential evapotranspiration          
minCorrectionFactorPET 0.700 1.300 0.900 1.160 0.828 1.109 0.965 1.055 1.299 
maxCorrectiobFactorPET 0.000 0.200 0.100 0.185 0.002 0.041 0.114 0.036 0.195 
aspectTresholdPET 160.0 200.0 180.0 160.1 197.9 161.9 167.58 161.4 187.45 
Interflow          
interflowStorageCapacityFactor 75.000 200.00 198.66 199.07 159.37 196.76 199.69 187.78 174.90 
interflowRecession_slope 0.000 10.000 8.257 8.23 7.278 7.284 6.563 7.522 2.491 
fastInterflowRecession_forest 1.000 3.000 2.963 2.936 2.944 2.997 2.970 2.926 2.237 
slowInterflowRecession_Ks 1.000 30.000 1.534 1.317 9.501 8.286 7.295 4.158 2.072 
exponentSlowInterflow 0.050 0.300 0.051 0.061 0.252 0.071 0.053 0.231 0.067 
Percolation          
rechargeCoefficient 0.000 50.000 49.884 49.875 13.665 24.788 49.534 19.288 18.819 
rechargeFactor_karstic -5.000 5.000 -2.778 3.34 2.017 0.873 -2.856 3.640 2.302 
Routing           
muskingumTravelTime_constant 0.310 0.350 0.350 0.348 0.314 0.332 0.349 0.341 0.338 
muskingumTravelTime_riverLength 0.070 0.080 0.080 0.080 0.074 0.071 0.073 0.079 0.080 
muskingumTravelTime_riverSlope 1.950 2.100 2.100 2.099 2.067 2.060 2.081 2.095 2.081 
muskingumTravelTime_impervious 0.090 0.110 0.099 0.109 0.107 0.100 0.094 0.099 0.110 
muskingumAttenuation_riverSlope 0.010 0.500 0.013 0.010 0.013 0.442 0.481 0.191 0.028 
Geology          
GeoParam(1,:) 1.000 1000.0 986.47 913.22 759.06 52.974 943.57 974.02 436.87 
GeoParam(2,:) 1.000 1000.0 977.00 894.22 999.88 599.25 934.24 988.70 543.13 

 

 

 

 

 

 


