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Bloom—is Result—to meet a Flower 

And casually glance 

Would scarcely cause one to suspect 

The minor Circumstance 

 

Assisting in the Bright Affair 

So intricately done 

Then offered as a Butterfly 

To the Meridian— 

 

To pack the Bud—oppose the Worm— 

Obtain its right of Dew— 

Adjust the Heat—elude the Wind— 

Escape the prowling Bee 

 

Great Nature not to disappoint 

Awaiting Her that Day— 

To be a Flower, is profound 

Responsibility— 

 

Emily Dickinson 
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Abstract 

Grasslands are critical ecosystems that provide essential ecological services, including biodiversity 

conservation, carbon sequestration, water regulation, soil stabilization, and habitat provision for 

wildlife. However, these ecosystems are increasingly threatened by land-use intensification, 

climate change, and biodiversity loss. This thesis investigates the application of Unmanned Aerial 

Vehicles (UAVs) and advanced data integration techniques to improve the monitoring and 

management of grasslands, with a focus on biomass estimation and biodiversity assessment under 

varying management practices. 

The systematic review presented in this thesis consolidates current methodologies for UAV-

based biomass estimation, identifying key strengths, limitations, and emerging trends. It 

emphasizes the growing potential of integrating structural, spectral, and textural image data to 

address the challenges posed by grassland heterogeneity and complex vegetation dynamics. This 

review provides a comprehensive framework for designing UAV-based monitoring systems and 

serves as a foundation for the experimental studies conducted in subsequent chapters. 

Experimental field studies were conducted over three years in a managed wet grassland to 

monitor key ecosystem services, specifically biomass production and biodiversity, under different 

cutting management regimes. The research demonstrated that disturbances such as molehills and 

lodging can impact the relationship between canopy height and biomass, leading to potential 

inaccuracies in UAV-derived models. Following this, the study explored the integration of UAV-

derived features—structural (e.g., canopy height), spectral (e.g., vegetation indices), and textural 

metrics—to improve biomass estimation accuracy. By combining these features, the research 

achieved improved predictive accuracy, highlighting the utility of UAV-derived multi-dimensional 

data in capturing the complexity of grassland ecosystems. 

Biodiversity assessment was another key focus of this thesis. The study investigated the 

estimation of plant species richness in managed grasslands using UAV-derived data, focusing on 

the influence of cutting regimes and spatial heterogeneity on prediction accuracy. The results 

demonstrated that integrating structural, spectral, and texture features of the grassland extracted 

from a UAV-based multi-spectral sensor improved the ability to estimate species richness, 

particularly in systems with high cutting frequencies. Texture features of the grassland, in 

particular, provided valuable insights into the spatial variability of vegetation structure, enabling 

more accurate predictions in areas with more intensive management. 

While the findings demonstrate the potential of UAV technologies for ecological monitoring, 

several challenges remain. These include the complexity of data processing workflows, the need 

for precise calibration and validation, and logistical constraints associated with field operations. 

Overcoming these challenges will require the advancements in sensor technologies, more 

accessible machine learning tools, and scalable frameworks to broaden the application of UAV-

based monitoring across diverse grassland ecosystems. 

This thesis provides a comprehensive framework for integrating UAV-derived data into 

grassland monitoring and management, offering valuable insights for both scientific research and 

practical applications. By addressing the challenges identified, future research can refine these 



 

approaches, supporting the conservation and sustainable management of grasslands under changing 

environmental conditions. 

 

 

  



Zusammenfassung 

Grünlandsysteme sind entscheidende Ökosysteme, die wesentliche ökologische Dienstleistungen 

bereitstellen, darunter die Erhaltung der Biodiversität, die Kohlenstoffspeicherung, die 

Wasserregulierung, die Bodenstabilisierung und die Bereitstellung von Lebensräumen für 

Wildtiere. Diese Ökosysteme sind jedoch zunehmend durch die Intensivierung der Landnutzung, 

den Klimawandel und den Verlust der biologischen Vielfalt bedroht. Diese Dissertation untersucht 

die Anwendung von unbemannten Luftfahrzeugen (UAVs) und fortschrittlichen 

Datenintegrationstechniken zur Verbesserung der Überwachung und des Managements von 

Grünlandsysteme, mit besonderem Schwerpunkt auf der Biomasseschätzung und der Bewertung 

der Biodiversität unter verschiedenen Bewirtschaftungsregimen. 

Die in dieser Arbeit präsentierte systematische Übersicht fasst aktuelle Methoden zur UAV-

gestützten Biomasseschätzung zusammen und identifiziert wesentliche Stärken, Schwächen und 

aufkommende Trends. Sie betont das wachsende Potenzial der Integration von strukturellen, 

spektralen und texturalen Daten, um die Herausforderungen der Heterogenität von 

Grünlandsysteme und der komplexen Vegetationsdynamik zu bewältigen. Diese Übersicht bietet 

einen umfassenden Rahmen für die Entwicklung von UAV-gestützten Überwachungssystemen und 

bildet die Grundlage für die experimentellen Studien in den folgenden Kapiteln. 

Experimentelle Feldstudien wurden über drei Jahre in einer bewirtschafteten Feuchtwiese 

durchgeführt, um zentrale Ökosystemleistungen, insbesondere die Biomasseproduktion und 

Biodiversität, unter verschiedenen Schnittregimen zu überwachen. Die Ergebnisse zeigten, dass 

Störungen wie Maulwurfshügel und Lagerung die Beziehung zwischen Kronenhöhe und Biomasse 

beeinflussen und zu potenziellen Ungenauigkeiten in UAV-Modellen führen können. 

Anschließend wurde die Integration von UAV-abgeleiteten Merkmalen – strukturelle (z. B. 

Kronenhöhe), spektrale (z. B. Vegetationsindizes) und texturale Metriken – untersucht, um die 

Genauigkeit der Biomasseschätzung zu verbessern. Durch die Kombination dieser Merkmale 

konnte die Vorhersagegenauigkeit gesteigert werden, was den Nutzen multidimensionaler UAV-

Daten zur Erfassung der Komplexität von Grünlandsysteme unterstreicht. 

Ein weiterer Schwerpunkt dieser Dissertation lag auf der Bewertung der Biodiversität. Die 

Studie untersuchte die Schätzung des pflanzlichen Artenreichtums in bewirtschafteten 

Grünlandsysteme mithilfe von UAV-Daten und analysierte dabei den Einfluss von Schnittregimen 

und räumlicher Heterogenität auf die Vorhersagegenauigkeit. Die Ergebnisse zeigten, dass die 

Integration von strukturellen, spektralen und texturalen Merkmalen ebenfalls die Fähigkeit zur 

Schätzung des Artenreichtums verbesserte, insbesondere in Systemen mit hohen 

Schnittfrequenzen. Insbesondere texturale Merkmale lieferten wertvolle Einblicke in die räumliche 

Variabilität der Vegetationsstruktur und ermöglichten genauere Vorhersagen in intensiver 

bewirtschafteten Bereichen. 

Obwohl die Ergebnisse das große Potenzial von UAV-Technologien für die ökologische 

Überwachung verdeutlichen, bestehen weiterhin Herausforderungen. Dazu gehören die 

Komplexität der Datenverarbeitung, die Notwendigkeit präziser Kalibrierung und Validierung 

sowie logistische Einschränkungen bei Feldoperationen. Die Bewältigung dieser 



 

Herausforderungen erfordert Fortschritte in der Sensortechnologie, benutzerfreundlichere 

Werkzeuge für maschinelles Lernen und skalierbare Rahmenbedingungen, um die Anwendung 

UAV-gestützter Überwachung auf unterschiedliche Graslandsysteme auszudehnen. 

Diese Dissertation liefert einen umfassenden Rahmen für die Integration UAV-abgeleiteter 

Daten in die Überwachung und das Management von Grünlandsysteme. Sie bietet wertvolle 

Erkenntnisse sowohl für die wissenschaftliche Forschung als auch für praktische Anwendungen. 

Durch die Bewältigung der identifizierten Herausforderungen kann die zukünftige Forschung diese 

Ansätze weiter verfeinern und so den Erhalt und die nachhaltige Bewirtschaftung von 

Grünlandsysteme unter sich verändernden Umweltbedingungen unterstützen. 
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1 General introduction 

Grasslands are defined as ecosystems predominantly covered by grasses, forbs, and other 

herbaceous plants, with minimal tree coverage (White, Murray and Rohweder, 2000). They are one 

of the most extensive terrestrial biomes, occurring in every continent except Antarctica, and include 

various types such as prairies, steppes, pampas, savannas, and velds (Allen et al., 2011). Each type 

is defined by specific climatic conditions, soil types, and fire regimes, which in turn influence their 

ecological characteristics (Gibson and Newman, 2019).  

The classification of grasslands within agricultural systems can be categorized into three 

primary types: natural, semi-natural, and improved, each defined by the degree of human 

intervention and the ecological processes that dominate their formation and maintenance (Lemaire, 

Hodgson and Chabbi, 2011). Natural grasslands are primarily formed by natural processes such as 

climate, fire, and wildlife grazing, though they are also utilized for livestock grazing. These areas 

are typical of what one might envision as traditional grassland biomes (Parr et al. 2014). 

Semi-natural grasslands are developed by human activity but still depend on natural processes 

for their maintenance (Allen et al., 2011). These grasslands require regular human intervention 

such as livestock grazing or hay cutting to prevent encroachment by shrubs and trees. Without such 

management, semi-natural grasslands would gradually transition to other forms of vegetation, thus 

losing their grassland characteristics (Bonari et al., 2017). 

Compared to other two types, improved grasslands are the most intensively managed. They 

are created by the deliberate modification of the natural landscape, including plowing, sowing of 

high-yield agricultural grass varieties or non-native species and regular application of artificial 

fertilizers (Bengtsson et al., 2019). These practices are aimed at maximizing productivity for 

agricultural purposes, often at the cost of ecological diversity. Such grasslands are maintained 

through intensive management practices that support high agricultural output but may also lead to 

ecological imbalances if not carefully managed (Pilgrim et al., 2010). 

Covering about 40% of the Earth's land surface, grasslands are essential to global biodiversity 

and are among the most important carbon sinks, influencing the global carbon cycle (White, 

Murray and Rohweder, 2000; Andrade et al., 2015). They play a critical role in water regulation 

and are essential for the hydrological stability of many regions, supporting both human and wildlife 

requirements (Bengtsson et al., 2019). Grasslands also provide important ecosystem services such 

as erosion control, flood protection, and the support of diverse wildlife habitats, contributing 

significantly to biodiversity conservation (Lemaire, Hodgson and Chabbi, 2011). Economically, 

they are fundamental to the agricultural sector, occupying 70% of agricultural land globally and 

offering a primary source of low-cost feed for the livestock industry, which is important for food 

security and the livelihoods of millions (FAOStat, 2016; Van Den Pol et al., 2018). Culturally, they 

offer recreational opportunities and contribute to the cultural tradition of communities (Hussain et 

al., 2019). Despite their extensive utility, grasslands face significant threats from overgrazing, 

urbanization, and climate change, which necessitate robust management and conservation 
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strategies to maintain their ecological and economic functions (Le Clec’h et al., 2019; Huber et al., 

2022). 

1.1 Wet grasslands: characteristics and ecological importance 

Wet grasslands are dynamic and biologically diverse ecosystems within agricultural landscapes, 

characterized by their semi-natural formation through processes such as drainage of other wetlands 

or clearing of forests on floodplains (Dixon et al., 2014; Chris B. Joyce, Simpson and Casanova, 

2016). These ecosystems are maintained by traditional management practices such as mowing for 

hay and extensive grazing, which are essential for conserving their ecological integrity (Joyce and 

Wade, 1998). Characterized by a variety of grasses and sedges, these lands experience periodic 

flooding and maintain a high water table for much of the year, factors that significantly influence 

their vegetation and associated biodiversity (Čop, Vidrih and Hacin, 2009). 

The ecological importance of wet grasslands extends beyond biodiversity; they provide a 

multitude of ecosystem services including flood attenuation, groundwater recharge, sediment 

storage, nutrient removal, and erosion protection (Joyce and Wade, 1998). These services are 

particularly valuable in regions susceptible to flooding or in need of water quality maintenance, 

often characterized by their historical use in agriculture which has shaped regional identities and 

conserved traditional land-use practices (Joyce, 2014). 

Despite their ecological importance, wet grasslands across Europe have suffered from 

intensive land use practices, including fertilization, artificial drainage, and fragmentation, leading 

to significant ecological degradation (Rosenthal, 2006). Restoration efforts have focused on 

reducing fertilizer input, increasing the water table, and extending land use, but recovering 

biodiversity in these areas has proven challenging and slow (Joyce, 2014). Often, lands previously 

subjected to intensive use remain deficient in species diversity for extended periods, despite 

management adjustments aimed at increasing botanical diversity and structural complexity 

(Rosenthal, 2010). 

Research indicates that modifying management strategies, such as implementing less frequent 

and later cutting regimes, along with reducing inorganic fertilizer application, can significantly 

bolster the diversity of plant species in semi-natural wet grasslands (Tallowin, 1996). However, 

the success of such strategies can be reduced by environmental stress factors that inherently limit 

species richness (Čop, Vidrih and Hacin, 2009). The current challenge for conservationists and 

land managers is to effectively balance traditional practices with innovative management strategies 

to enhance biodiversity and sustain ecosystem services within changing environmental conditions 

and historical impacts. 
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1.2 Grassland monitoring 

1.2.1 Techniques and importance 

The continuous monitoring of grasslands is fundamental to understand their ecological dynamics 

and effectively respond to environmental pressures (Alves Oliveira et al., 2022). Ecological 

surveys, typically limited in spatial and temporal scope, struggle to comprehensively monitor 

biodiversity and ecosystem changes across grassland areas (Fauvel et al., 2020). These limitations 

highlight the need for advanced monitoring techniques that can extend beyond local assessments 

and capture the broader environmental impacts affecting these ecosystems. 

Monitoring grasslands facilitates sustainable management and conservation by providing 

crucial data on biomass yield, quality, and floristic composition (Schucknecht et al., 2022). This 

information is vital for managing the intensity of grassland use, ranging from extensive 

management on marginal lands to intensive management practices that involve high fertilizer 

inputs and frequent harvesting (Wengert et al., 2022). For example, extensive grasslands, which 

are often harvested fewer times per year with a focus on conservation, contrast sharply with 

intensively managed grasslands that prioritize yield and are harvested more frequently (Weiss et 

al., 2001). This contrast in management strategies underscores the importance of regular and 

detailed monitoring to maintain ecological balance and prevent overuse. 

The degradation of grasslands —manifested as desertification, biodiversity loss, and a decline 

in productivity—poses serious threats to both ecological security and socioeconomic development 

(Zhao, Liu and Wu, 2020). Monitoring helps mitigate these threats by providing essential 

information needed for strategic vegetation growth analysis and management planning (Jin et al., 

2019). Moreover, the preservation of grassland ecosystems requires a thorough mapping and 

assessment of key traits such as above-ground biomass and biodiversity, which are crucial for 

sustaining their ecological functions (Wachendorf, Fricke and Möckel, 2018; Schucknecht et al., 

2020) 

However, achieving detailed and accurate grassland monitoring at different scales remains a 

challenge due to the lack of spatially explicit data (Schucknecht et al., 2022). Innovative 

approaches such as remote sensing offer promising solutions by enabling cost-effective, rapid, 

quantitative, and repeatable assessments across diverse and extensive landscapes (Wachendorf, 

Fricke and Möckel, 2018). 

1.2.2 Challenges to estimate above-ground biomass 

Biomass, specifically above-ground biomass (AGB), is a crucial indicator of grassland health, 

productivity, and carbon cycling (Wang et al., 2014; Zhang et al., 2018; Shi et al., 2022). It serves 

as a key metric for assessing the sustainability and ecological balance of grassland ecosystems, 

making accurate estimation models essential for effective grassland management, livestock 
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balancing, and eco-environmental protection (F. Zhao et al., 2014; Liang et al., 2016; Fan et al., 

2018; Shi et al., 2021). Furthermore, AGB plays a significant role in the carbon cycle by reflecting 

the net primary productivity of grasslands, which is essential for understanding carbon 

sequestration and how it affects climate regulation (Zhang et al., 2022). 

Despite its importance, accurate quantification of AGB presents several technical and 

methodological challenges. Traditional field-based methods of biomass sampling are highly labor-

intensive and time-consuming, especially when applied to large areas (Morais et al., 2021; Adar et 

al., 2022; Alves Oliveira et al., 2022). These methods often involve destructive sampling, which 

can affect the grassland itself and is not feasible for frequent monitoring (Gnyp et al., 2014). 

Additionally, the prediction accuracy of biomass using traditional field methods can be low, 

particularly over large, heterogeneous areas where environmental variables such as soil, climate, 

and topography vary widely (Ghajar and Tracy, 2021; Wang et al., 2021) 

The variability of biomass production within and across years adds another layer of 

complexity. This variability arises from factors such as climate change, grazing pressure, and other 

anthropogenic activities, which can influence the spatial and temporal distribution of biomass and 

make consistent monitoring challenging (Taylor and Browning, 2021; Franceschini et al., 2022; 

Zhang et al., 2022). Moreover, remote locations pose additional difficulties in terms of accessibility 

and the ability to conduct regular surveys, further complicating the comprehensive monitoring of 

grassland conditions (Schulze-Brüninghoff, Wachendorf and Astor, 2021). 

1.2.3 Plant species biodiversity: key to ecosystem health 

Grasslands are a significant source of biodiversity, providing a range of ecosystem services 

essential for the survival of plant and animal species and human life (Lamarque et al., 2011; 

Dinnage et al., 2012). Biodiversity in grasslands contributes to the stability of plant productivity 

over time, carbon storage, and pollinator abundance, making its preservation vital (Lemaire, 

Hodgson and Chabbi, 2011; Bonari et al., 2017). Plant species diversity is a key component in 

providing these ecosystem services, with species richness serving as a strong indicator of plant 

diversity (Oldeland et al., 2010; van Oijen, Bellocchi and Höglind, 2018).  Additionally, the variety 

of plant species present in grasslands is strongly influenced by long-term management practices, 

with livestock grazing being a major driving force affecting vegetation dynamics, species 

distribution, and landscape-scale biodiversity (Marriott et al., 2004; van Oijen, Bellocchi and 

Höglind, 2018). 

Despite the critical role of biodiversity, traditional methods of its measurement are labor-

intensive, time-consuming, and costly, requiring extensive field sampling by experienced 

biologists (Palmer et al., 2002; Wang and Gamon, 2019). These methods are also limited by 

inconsistent data sets and the lack of standardized procedures, which makes it difficult to acquire 

sufficient information on changing species distributions over time (Conti et al., 2021; Thornley et 

al., 2023). Furthermore, grassland biodiversity faces numerous threats from urban development, 
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agricultural practices, eutrophication, overgrazing, and climate change, all of which exacerbate the 

challenge of effective monitoring (Hautier et al., 2014; Harrison, Gornish and Copeland, 2015). To 

address these challenges, comprehensive and consistent monitoring is necessary to ensure the 

conservation and sustainable management of grasslands (Rapinel et al., 2019).  

1.3 Remote sensing and UAV: technological advances in ecological monitoring 

Remote sensing is an important technology in ecology and conservation, enabling the observation 

and monitoring of ecosystems from a distance (Atzberger, 2013; Ali et al., 2016; Tang et al., 2021). 

Utilizing sensors mounted on various platforms, this technology captures data about the Earth's 

surface, providing essential insights into environmental conditions without the need for direct 

contact (Mulla, 2013). In grassland ecology, remote sensing plays a crucial role by facilitating the 

continuous monitoring of vegetation dynamics, enabling assessments of ecosystem services, and 

helping to define conservation strategies (Wachendorf, Fricke and Möckel, 2018; Fauvel et al., 

2020). Traditional remote sensing platforms include satellites and aircraft, which offer the 

advantage of wide-area coverage and rapid data collection (Zhang et al., 2018; Chao et al., 2019). 

However, these methods often struggle with issues such as low spectral resolution and long 

intervals between data captures, which can limit their effectiveness in capturing the detailed and 

frequent data required for precise ecological management (Atzberger, 2013; Dusseux et al., 2015; 

Zhang et al., 2018). 

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, have significantly 

enhanced the capabilities of remote sensing, especially in the context of ecological and 

conservation research (Von Bueren et al., 2015; Eskandari et al., 2020; Tmušić et al., 2020). UAVs 

are particularly beneficial for their ability to provide high spatial and temporal resolution data, 

which is critical for accurately capturing the fine-scale structural and temporal variations within 

ecosystems (Shahbazi, Théau and Ménard, 2014; Possoch et al., 2016). These high-resolution 

datasets are invaluable for detailed vegetation mapping, species identification, and monitoring the 

rapid ecological changes that may occur due to environmental pressures or seasonal transitions 

(Manfreda et al., 2018; Insua, Utsumi and Basso, 2019; Jenal et al., 2020; da Costa et al., 2021; 

Plaza et al., 2021; Villoslada Peciña et al., 2021). 

Operating at lower altitudes than traditional remote sensing platforms, UAVs can gather 

superior spectral data with minimal signal degradation, capturing hundreds of narrow-band spectral 

channels that are essential for detailed phenotypic and physiological assessments (Atzberger, 2013; 

Tian and Fu, 2022). The flexibility and cost-effectiveness of UAVs also allow for more frequent 

and targeted data collection, enabling researchers to conduct time-series analyses that are crucial 

for understanding long-term ecological trends and responses to environmental management actions 

(Eskandari et al., 2020; Li et al., 2020; Wang et al., 2021). 

Moreover, the adaptability of UAV platforms facilitates the integration of diverse sensing 

technologies, from traditional photographic cameras to advanced multispectral and hyperspectral 
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sensors, and even thermal and LiDAR sensors (Poley and McDermid, 2020; Tmušić et al., 2020; 

Wang et al., 2021). This versatility allows for comprehensive ecological assessments across 

multiple spectral domains, providing a deeper understanding of ecosystem health, plant phenology, 

and species distribution (Michez et al., 2020; Villoslada et al., 2020; Villoslada Peciña et al., 2021). 

Such detailed and multi-dimensional data are pivotal for developing robust models of biomass, and 

biodiversity, which are key metrics for assessing the sustainability and resilience of grassland 

ecosystems. 

1.3.1 Challenges in using proximal and remote sensing for grassland monitoring 

One of the primary challenges in using proximal and remote sensing for grassland monitoring is 

accurately estimating aboveground biomass through canopy height (CH) (Bareth et al., 2015; 

Borra-Serrano et al., 2019; Lussem et al., 2019). Traditional techniques for measuring grassland 

height, such as using a rising plate meter or a ruler stick, can be labor-intensive and time-consuming 

(Bareth et al., 2015; Michez et al., 2020; Togeiro de Alckmin et al., 2021). Recent advancements 

have allowed vegetation height to be derived efficiently from remote sensing sensors, particularly 

through the use of three-dimensional (3D) data (Bendig et al., 2014; Näsi et al., 2018; Wachendorf, 

Fricke and Möckel, 2018; Rueda-Ayala et al., 2019; Wijesingha et al., 2019). However, their 

application in grasslands remains limited due to the challenges in accurately distinguishing 

vegetation from the ground in shorter plants (Bareth et al., 2015; Bareth and Schellberg, 2018; 

Lussem et al., 2019) and the need for high-quality point cloud data to ensure accurate height 

information (Bendig et al., 2015; Wijesingha et al., 2019). 

Additionally, spectral data derived from remote sensing data, including vegetation indices 

(VIs) such as the normalized difference vegetation index (NDVI), are crucial for assessing plant 

and vegetation characteristics (Tucker, 1979; Carlson and Ripley, 1997). VIs highlight specific 

properties of vegetation, aiding in mapping density and monitoring ecological changes (Sha et al., 

2018). Despite their usefulness, VIs can suffer from saturation problems in areas with high 

vegetation cover, which can limit their accuracy in vegetation characteristics estimation (Zhang et 

al., 2021). Other indices like the soil-adjusted vegetation index (SAVI) and the enhanced 

vegetation index (EVI) have been developed to address specific issues such as soil background 

effects and NDVI saturation, further refining biomass and plant biodiversity estimation models 

(Rondeaux, Steven and Baret, 1996; Huete et al., 2002). Nevertheless, VIs remain a critical tool 

for understanding vegetation dynamics and are often used in combination with other data types to 

improve monitoring precision (Huete et al., 2002). 

In addition to spectral data, image texture derived from high-resolution optical imagery 

provides valuable information on vegetation structure. Image texture measures the variation in 

pixel intensity within an image, which can serve as a proxy for vegetation heterogeneity and 

structure (Culbert et al., 2009; Wood et al., 2012). Texture analysis techniques, such as the Grey 

Level Co-occurrence Matrix (GLCM), incorporate both spectral and spatial information, enabling 

finer distinctions of structural detail within grasslands (Barrett et al., 2014; Dos Reis et al., 2020; 
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Grüner, Wachendorf and Astor, 2020).  However, these methods are computationally intensive and 

require substantial processing power to achieve accurate results (Grüner, Wachendorf and Astor, 

2020).  

Integrating structural, spectral, and textural features from RS data can significantly enhance 

the accuracy of biomass and biodiversity estimates. Combining canopy height models (CHM) with 

vegetation indices (VIs) improves the precision of biomass estimation by providing a 

comprehensive assessment of vegetation characteristics (Viljanen et al., 2018; Pranga et al., 2021). 

This multi-faceted approach leverages the strengths of each data type, providing a more robust and 

detailed understanding of ecological dynamics (Karunaratne et al., 2020). However, the complexity 

and computational demands of integrating multiple data sources pose additional challenges. 

1.4 Machine learning: advanced methods for ecological prediction 

Machine learning (ML) has emerged as a powerful empirical method in the estimation of AGB and 

plant biodiversity, significantly advancing the field over the past two decades (Zeng et al., 2021). 

Various ML models, including random forest (RF), artificial neural networks (ANN), and support 

vector machines (SVM), have been widely applied due to their ability to handle complex and 

nonlinear relationships between predictive and objective variables (Morais et al., 2021). These 

models offer greater accuracy and flexibility compared to traditional regression models, making 

them particularly advantageous in ecosystem research (Wang et al., 2017; Eskandari et al., 2020). 

This flexibility has led to the widespread adoption of ML techniques in grassland biomass 

estimation and plant species biodiversity (Viljanen et al., 2018; Fauvel et al., 2020; De Rosa et al., 

2021; Pranga et al., 2021; Alves Oliveira et al., 2022; Muro et al., 2022). For instance, partial least 

squares regression (PLSR) effectively explains relationships between hyperspectral data and 

grassland traits, reducing the dimensionality of input datasets while maintaining predictive power 

(Darvishzadeh et al., 2008; Capolupo et al., 2015). The RF model has also demonstrated high 

performance in grassland AGB simulations, explaining 86% of observed data variation on the 

Tibetan Plateau  (Zeng et al., 2019). Muro et al. (2022) compared the performance of a deep neural 

network (DNN) with a RF for spatial predictions of biomass production and plant biodiversity in 

grasslands, demonstrating the potential of advanced ML models to enhance the accuracy and 

efficiency of ecological predictions 

Processing large quantities of data collected by UAV-based sensors necessitates robust 

analytical frameworks, and ML algorithms are well-suited to this task. (Lussem et al., 2022). They 

can manage multicollinearity and high-dimensional datasets, making them ideal for processing 

complex remote sensing data (Wachendorf, Fricke and Möckel, 2018). The evolution of ML 

techniques has unlocked the potential to handle highly autocorrelated features from remote sensing 

data, optimizing predictions of heterogeneous grassland biomass (Grüner, Wachendorf and Astor, 

2020; Morais et al., 2021). Diverse ML methods, such as RF and SVM, have been particularly 

effective in analyzing spectral data, offering enhanced capabilities for handling large, complex 
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datasets (Eskandari et al., 2020; Morais et al., 2021). These methods have evolved from basic 

indices and linear estimations to sophisticated ML-based approaches that optimize models by 

extracting structural and spectral features from remote sensing datasets (Karunaratne et al., 2020; 

Villoslada et al., 2020; K. Y. Li et al., 2021). 

1.5 General Objective and research questions 

The overarching objective of this thesis is to develop and validate innovative methodologies for 

accurate estimation of aboveground biomass and biodiversity assessment in grassland ecosystems 

using UAVs combined with advanced analytical techniques. This research aims to use UAV-

derived data to enhance ecological monitoring, improve management practices, and support 

conservation efforts in grasslands. This thesis aims to answer the following four questions: 

 Question 1 (Q1): What are the most effective UAV-based methods for estimating 

aboveground biomass in grasslands, and what are their limitations and potential? 

 Question 2 (Q2): How do field disturbances, such as lodging and molehills, impact the 

accuracy of biomass estimation using UAV-derived canopy height models in grasslands? 

 Question 3 (Q3): Can the integration of structural, spectral, and textural features from UAV 

imagery improve the accuracy of biomass estimation models in heterogeneous grasslands? 

 Question 4 (Q4): How can UAV-derived data be utilized to accurately assess species 

richness and diversity in wet grassland ecosystems, and what are the implications for 

conservation and management? 

1.6 Structure of the thesis 

This work is cumulative doctoral thesis and based on four peer-reviewed papers. The content is 

structured as follow: 

Chapter I provides the general introduction, setting the context for the research by 

emphasizing the significance of accurate aboveground biomass estimation and biodiversity 

assessment in grassland ecosystems, and highlighting the potential of UAVs to meet these needs. 

It outlines the general objective and specific research questions, and gives an overview of the thesis 

structure, explaining how each chapter contributes to the overall research objective. 

Chapter II is dedicated to a comprehensive review of existing methods for estimating AGB 

in grasslands using UAVs. This review evaluates the strengths, limitations, and potential progresses 

of UAV-based techniques in comparison to traditional ground-based methods. By synthesizing 

current knowledge and identifying gaps in the literature, this chapter sets a solid foundation for the 

experimental studies that follow. 

In Chapter III, the focus shifts to the impact of field disturbances such as lodging and 
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molehills on the accuracy of UAV-derived biomass estimates. This study investigates how these 

disturbances affect canopy height models and consequently biomass estimation. Through field data 

collection and analysis, the chapter quantifies the impact of these disturbances in AGB estimation. 

Chapter IV explores the integration of structural, spectral, and textural features derived from 

UAV imagery to enhance AGB estimation accuracy. Advanced machine learning algorithms are 

applied to combine these features into robust biomass estimation models. The chapter discusses 

the methodology used, presents the results, and highlights the implications of integrating multiple 

UAV-derived data types for biomass estimation accuracy. 

Chapter V extends the application of UAV technology to biodiversity assessment in wet 

grasslands. It utilizes UAV-derived structural, spectral, and textural data to assess species richness 

and diversity. By employing machine learning techniques to integrate these features, the chapter 

provides biodiversity assessments. The effectiveness of these methods is evaluated, and their 

implications for conservation and management practices are discussed. 

Chapter VI synthesizes the findings from the experimental studies, providing a cohesive 

narrative that integrates the results and discusses their interactions and broader implications. The 

practical implications of the research are explored, addressing how the findings contribute to the 

field of ecological monitoring and suggesting directions for future research. The chapter also 

critically examines the limitations of the studies, providing a balanced view of the research results. 
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Abstract 

Grasslands are one of the world’s largest ecosystems, accounting for 30% of total terrestrial 

biomass. Considering that aboveground biomass (AGB) is one of the most essential ecosystem 

services in grasslands, an accurate and faster method for estimating AGB is critical for managing, 

protecting, and promoting ecosystem sustainability. Unmanned aerial vehicles (UAVs) have 

emerged as a useful and practical tool for achieving this goal. Here, we review recent research 

studies that employ UAVs to estimate AGB in grassland ecosystems. We summarize different 

methods to establish a comprehensive workflow, from data collection in the field to data 

processing. For this purpose, 64 research articles were reviewed, focusing on several features 

including study site, grassland species composition, UAV platforms, flight parameters, sensors, 

field measurement, biomass indices, data processing, and analysis methods. The results 

demonstrate that there has been an increase in scientific research evaluating the use of UAVs in 

AGB estimation in grasslands during the period 2018–2022. Most of the studies were carried out 

in three countries (Germany, China, and USA), which indicates an urgent need for research in other 

locations where grassland ecosystems are abundant. We found RGB imaging was the most 

commonly used and is the most suitable for estimating AGB in grasslands at the moment, in terms 

of cost–benefit and data processing simplicity. In 50% of the studies, at least one vegetation index 

was used to estimate AGB; the Normalized Difference Vegetation Index (NDVI) was the most 

common. The most popular methods for data analysis were linear regression, partial least squares 

regression (PLSR), and random forest. Studies that used spectral and structural data showed that 

models incorporating both data types outperformed models utilizing only one. We also observed 

that research in this field has been limited both spatially and temporally. For example, only a small 

number of papers conducted studies over a number of years and in multiple places, suggesting that 

the protocols are not transferable to other locations and time points. Despite these limitations, and 

in the light of the rapid advances, we anticipate that UAV methods for AGB estimation in 

grasslands will continue improving and may become commercialized for farming applications in 

the near future. 

Keywords: photogrammetry; grassland monitoring; precision agriculture; biomass estimation; 

vegetation indices; effective workflow. 
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2.1 Introduction 

Grasslands are among the largest ecosystems on the planet, playing an important ecological and 

economic role and contributing to the food security of millions of people (Hopkins and Wilkins, 

2006). According to FAO (FAOStat, 2016), grasslands cover 25% of the terrestrial surface, 

equivalent to around 68% of the world’s agricultural areas. This makes grasslands an important 

provider of ecosystem services in different parts of the world (Wang, Li and Bian, 2016; Bengtsson 

et al., 2019). When properly managed, grasslands can effectively contribute to carbon sequestration 

and improve air and water quality, nutrient cycling, and biodiversity, as well as food production 

(Sala and Paruelo, 1997; Egoh et al., 2016; Bengtsson et al., 2019). 

Grasslands store 30% of the world’s terrestrial biomass (Bar-On, Phillips and Milo, 2018). 

Moreover, the provision of aboveground biomass (AGB) is one of the most important ecosystem 

services in grasslands and constitutes the basis for increasing fodder productivity (Zhang et al., 

2018). Thus, a precise and rapid method for the estimation of AGB is critical for the management 

and protection of grasslands (Psomas et al., 2011; F. Zhao et al., 2014; Jin et al., 2014) and for 

enhancing the sustainability of these ecosystems (Yang et al., 2012). 

Current approaches to estimating AGB can be classified as either ground-based or remote 

sensing (RS) methods. Ground-based methods can be either destructive or non-destructive. 

Destructive methods traditionally involve cutting the grass in the field, followed by drying and 

weighing it in the laboratory (Yang, 2013). Although these measurements generate the most 

accurate estimates of grassland biomass, they are time-consuming and labor-intensive (Nordberg 

and Evertson, 2003). 

Ground-based methods for non-destructive measurement of grassland AGB have been studied 

for decades (Santillan, Ocumpaugh and Mott, 1979; Lussem, Schellberg and Bareth, 2020). These 

approaches estimate AGB using equations relating biomass to measurable biophysical factors such 

as plant height and plant density (’t Mannetje and Jones, 2000). Handheld devices are the most 

straightforward instruments for measuring these biophysical factors (Lussem et al., 2019). The 

most widely used and well-documented ground-based method for the non-destructive measurement 

of AGB in grasslands is the rising plate meter (RPM) (Sanderson et al., 2001). These instruments 

measure compressed sward height by integrating sward height and density over a specific area 

(Wachendorf, Fricke and Möckel, 2018). The ability of RPM-based compressed sward height to 

estimate AGB grass using regression models is now well established (O’Sullivan, O’Keeffe and 

Flynn, 1987; O’Donovan et al., 2002; López Díaz, Roca-Fernández and González-Rodríguez, 

2011). In view of this, farmers use RPM devices to create electromechanical models, which 

produce accurate and reliable estimates (Bareth and Schellberg, 2018).  

Despite the benefits of fast and regular assessments, the RPM method also has drawbacks, 

including operator variability and paddock slope. Through uneven and undulating terrain, the RPM 

method’s ability to measure grass height effectively can be impacted, frequently leading to 

inaccurate measurements due to the RPM base not effectively touching the true ground surface 
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(Barnetson, Phinn and Scarth, 2020). The RPM also presents limitations when the sward is high 

and lacks a flat top structure, or when the grass sward is sparse and grows poorly and unevenly 

(Viljanen et al., 2018). It is also not suitable for grasses with tender erect stems, including some 

tropical grasses (Edvan et al., 2015). Additionally, RPM measurements are also point 

measurements, and therefore, the within-paddock spatial variability of grassland biomass 

production is not taken into account because only an average paddock estimate is observed 

(Alvarez-Hess et al., 2021).  

In recent years, RPM devices have become more sophisticated as technology has advanced. 

Ultrasonic distance sensors are used in devices such as the GrassHopper (TrueNorth Technologies, 

Shannon, Ireland) and the GrassOmeter (Monford AG Systems Ltd., Dublin, Ireland) (Lussem et 

al., 2019). In addition to handheld devices, vehicle-mounted devices have also been developed. 

Examples are the Pasture Meter (C-Dax Agricultural Solutions, Palmerston North, New Zealand) 

and the Pasture Reader (Naroaka Enterprises, Narracan, Australia). These sensors can monitor 

grass height while driving the vehicle through the center of a towing tunnel, where optical sensors 

detect grass height, which is then calibrated to estimate AGB (Bareth and Schellberg, 2018). 

Despite the benefits of fast and regular assessments provided by these sensing systems, there 

are still several drawbacks. In particular, the precise estimation of AGB in large-scale grassland 

ecosystems is difficult due to (1) limited spatial coverage, especially for handheld equipment, 

hence limiting the within-field description of the variability of the sward, (2) the requirement for 

heavy technical equipment, (3) limited access to the field due to grazing animals, (4) potential 

disturbances at a greater frequency for repeated measurements for vehicle-mounted sensors, and 

(5) applicability restrictions based on field conditions (e.g., soil moisture) (Bareth and Schellberg, 

2018; Lussem et al., 2019). 

RS-based methods offer potential for rapid and automated measurements to quantify both 

structural and biochemical properties of the vegetation at high spatial and temporal resolution at a 

range of spatial scales (Lussem et al., 2019). These methods include digital imaging (hyperspectral, 

multispectral, optical (red–green–blue, RGB), radar), photogrammetry, laser scanning, and 

combinations of various sensors on different platforms (Atzberger, 2013). Numerous studies have 

evaluated the feasibility of using satellite RS to estimate plant parameters. Although satellite 

platforms offer an effective way to collect data over large areas (Nordberg and Evertson, 2003), 

using satellite imaging for calibrating and validating an AGB estimation model in grasslands may 

be inefficient due to low spatial resolution (Zhang et al., 2018). Most satellite systems with high 

spatial resolution (<5 m) are commercially operated, and therefore, image acquisition costs for 

short revisit times can become a limiting factor (Manfreda et al., 2018). In a fragmented agricultural 

landscape, as seem in some grassland fields, where the average field size is low, high-spatial-

resolution images are required (Dusseux et al., 2015). Additionally, the applicability of satellite 

imagery can be significantly hampered and negatively impacted by weather conditions (cloud cover 

obstructing free sight) (Whitcraft et al., 2015). 

In recent years, unmanned aerial vehicles (UAVs), also known as remotely piloted aircraft 
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systems, unmanned aircraft systems, or drones, have proven to be an important and viable tool for 

measuring and estimating biophysical parameters at a scale appropriate to grassland distribution 

(Dusseux et al., 2015). With flexibility, UAVs can be operated quickly, simply, and economically. 

Most importantly, they can collect imagery data at high spatial, spectral, and temporal resolutions 

at exactly the point in time when the information is needed. In fact, when surveying objects at small 

(5 ha) to medium (5–50 ha) spatial scales, UAV-based photography outperforms alternative 

imaging acquisition technologies, such as satellites and manned aerial systems. Specifically, in this 

context, UAVs show higher temporal and spatial resolution as well as exhibit greater versatility at 

a lower cost (Matese et al., 2015). 

In the past ten years, the number of research articles describing UAV applications has 

increased dramatically, with these studies encompassing a diversity of UAV types and applications 

(Librán-Embid et al., 2020). More recently, there has been increased interest in applying UAV 

remote sensing to the estimation of AGB in grasslands. In this context, structural features of 

grasslands have been used for the estimation of grassland height and AGB (Bareth and Schellberg, 

2018; Zhang et al., 2018; Lussem et al., 2019). Nevertheless, image-based approaches using UAV 

to estimate forage biomass are still in their infancy (Possoch et al., 2016; Forsmoo et al., 2018; 

Rueda-Ayala et al., 2019). In view of this, there is no standard process for planning, collecting, and 

analyzing these data in order to extract AGB information. Considering the grassland’s inherent 

properties, several aspects linked to data collection and analysis methodologies, as well as the study 

species and study site, can affect the accuracy and prediction of the resulting models. The methods 

often used to estimate AGB in grasslands by UAV imagery are similar to those used to monitor 

arable crops (Schellberg et al., 2008). However, arable crops generally show lower heterogeneity 

than grasslands. Grasslands often exhibit substantial spatio-temporal heterogeneity due to highly 

diverse floristic compositions and co-occurrence of different phenological stages (Lussem et al., 

2019). This heterogeneity affects the assessment of AGB in grasslands using UAVs (Moeckel et 

al., 2017). AGB estimation in grasslands may be inaccurate or imprecise if these aspects are not 

taken into account.  

A comprehensive review of the different methods and factors influencing the AGB estimation 

in grasslands is therefore essential to understand how each stage of the process affects outcomes 

so that subsequent data collection and analysis can produce accurate and reliable data. Although 

the utility of UAVs is well known in biomass estimation in agriculture, recently developed 

applications of UAVs to AGB estimation in grassland ecosystems have not yet been evaluated or 

systematically reviewed. To date, the majority of review studies of UAV for biomass estimation in 

agriculture have been broad, involving numerous fields and different remote sensing systems, and 

the description of biomass estimation with little emphasis on grassland-specific properties. To 

address this gap, we systematically review the use of UAVs in the estimation of AGB in grassland 

ecosystems. We perform a comprehensive literature review of the topic to (1) give an overview on 

common practices of the use of sensors, scale of work, ground truth methods, data processing, and 

analysis methods and (2) to identify which spectral and structural data are most accurate with 

respect to AGB estimation. We conclude by discussing the challenges and future prospects of UAV 
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remote sensing in AGB estimation in grassland ecosystems. 

2.2 Materials and methods 

Using the PRISMA protocol (Moher et al., 2009), we conducted a systematic review and meta-

analysis of studies that use Unmanned Aerial Vehicles (UAVs) to estimate biomass in grassland 

systems. Figure 2.1 presents a flow diagram of the study selection process. In the identification 

step, relevant literature was retrieved from Google Scholar and Web of Science using search terms 

comprising keywords related to UAVs (“UAS”, “UAV”, “unmanned aerial system”, “unmanned 

aerial vehicle”) and to aboveground grassland biomass (“grass”, “grassland”, “pasture”, “forage”, 

“biomass”, “aboveground biomass”, “above ground biomass”). The search was limited to English-

language research articles published from January 2011 to August 2022. We considered all types 

of grassland systems. This review did not consider studies classified as review papers, book 

chapters, reports, or Ph.D. theses.  

 
Figure 2.1. PRISMA flow diagram for study selection. 

 

A total of 487 articles were obtained as a result of the Google Scholar and Web of Sciences 

searches. To be included in the review, a study was required to fulfill the following three criteria: 

(1) the study uses UAV and no other system type; (2) it focuses on grassland ecosystem; (3) it 

presents AGB estimation from UAV imagery. The articles identified in the first step were screened, 
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and we consulted the title and abstract. After the screening phase, 85 research articles remained. 

We confirmed each study’s eligibility by reading the full text, after which 21 studies were discarded 

because they did not contain extractable data for the following four features of interest: site 

attributes, biomass measures, UAV platform, and sensors. In total, 64 studies were retained, which 

had extractable data for all four features. For each article, we extracted metadata (Appendix A), 

including information related to the characteristics of the study site, grassland species composition, 

UAV platforms, flight parameters, sensors, field measurement, biomass indices, data processing, 

and analysis method.  

2.3 Results and discussion 

An automated search of Google Scholar and Web of Sciences resulted in a final set of 64 papers 

that used UAV imagery to estimate AGB of grassland areas (Table A1, supplementary material). 

The following sections provide a detailed description of meta-analysis findings, including general 

features of the articles and biomass estimation data analysis. 

2.3.1 General characteristics of studies 

Figure 2.2a presents the locations of the 64 studies considered in this review. In total, grasslands 

located in 15 countries were studied. Germany accounted for the largest number of studies (N = 

14), followed by China (N = 10), the United States of America (USA) (N = 7), Australia (N = 5), 

Belgium (N = 4), Finland (N = 5), Brazil (N = 4), Estonia (N = 3), and Norway (N = 3). Studies in 

Canada, Ecuador, Ireland, Israel, Japan, Spain, South Korea, and Switzerland were represented by 

one publication each.  

Figure 2.2b presents the number of articles published annually from 2012 to 2022. The first 

article, published in 2014 in the USA (Y. Zhao et al., 2014), used high-resolution imagery from a 

UAV to estimate biomass in a natural grassland site in the USA. From 2014 to 2017, only six 

papers were published, and subsequently, the number of publications increased steadily. Figure 

2.2c shows only journals that published more than two papers. The most represented journals 

include Remote Sensing (16 papers), Sensors (4 papers), and Ecological Indicator (4 papers). 

Considering the representation by continents, thirty-two of the sixty-four studies were 

conducted in European countries, twelve in Asia, eight in North America, seven in Oceania, and 

only five in South America, and no studies were conducted in the African continent. Although there 

are many significant areas of grassland in Europe and North America, which are often part of mixed 

farmland systems, much of the world’s grassland area is located in the extensive natural grasslands 

of Central Asia, Sub-Saharan and Southern Africa, North and South America, and Australia/New 

Zealand. Considering the scenario above, the productivity of journal articles about UAV 

applications for AGB biomass estimation in grassland regions with the largest representation of 

this vegetation worldwide is generally low. Studies should preferably be carried out in grassland 

biomes across several areas and continents (Van Der Merwe, Baldwin and Boyer, 2020). More 
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numerous and diverse grassland systems should be studied in order to improve UAV applications 

for AGB biomass estimation in grassland, particularly grasslands in regions that will be specifically 

impacted by climate change (e.g., tropical regions) (Ali et al., 2016), which are currently 

significantly under-represented in the available research survey. 

Figure 2.2. (a) Geographical distribution of included papers in this review. (b) Number of 

publications per year. (c) Number of publications per journal. 

2.3.2 Characteristics of the study sites 

Regarding the characteristics of the study sites, 64 articles reported the type of grassland. Of these, 

34 studies investigated fields as experimental sites, 18 investigated naturalized grasslands, and 12 

investigated grassland farms. In addition, 62 publications reported whether the site included mono 

or multi-species grasslands. Of these, 46 publications studied multi-species grasslands, 15 studied 

mono-species systems, and 1 studied both systems (mono and mixed grasses). Fertilization 

conditions were described in 27 publications, of which only 3 studied organically fertilized 

grasslands. Animal presence in the grasslands was reported in 14 studies, of which 9 analyzed the 

effect of grazing activities on the biomass estimation. 
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The heterogeneity of the experimental site is an important feature since many studies suggest 

that increasing the species richness of grassland can reduce AGB estimation models’ performance. 

According to Wijesingha et al. (2019), biomass prediction for species-poor and homogenous 

grasslands had higher accuracy than biomass prediction for species-rich, diverse grasslands. 

Michez et al.'s (2020) results also suggest that the low species diversity in their experimental site 

(timothy-dominated pastures) probably improved the biomass modeling process. Grüner et al. 

(2021) reported that the high variability of the canopy surface in legume–grass mixtures results in 

lower prediction accuracy compared with more homogeneous arable crops. They achieved r2 

values of 0.46 and up to 0.87 depending on the sward composition for mixed legume–grass swards 

and pure legumes and grass stands. Villoslada et al. (2020) indicated similar trends in modeling 

accuracies, where sites characterized by the presence of more productive communities or a higher 

herbage yield show lower prediction accuracies than short-sward sites.  

The distinct plant architectures in heterogeneous grasslands may have an impact on image 

acquisition due to poor modeling of plant extremities, resulting in a larger variability than 

monocultures and reflecting in lower r2 values (DiMaggio et al., 2020). It has also previously been 

demonstrated that the complexity of sward structures, vegetation height, and plant species richness 

all influence the spectral properties of training samples (Villoslada et al., 2020). The high 

heterogeneity in some grassland fields can also intensify the mixed pixel effect, an important 

remote sensing issue that affects the ability to monitor phenology (Adar et al., 2022). This, in turn, 

influences the overall prediction accuracy. In addition, the potential for generalization of some 

studies is limited because they are based on approaches using site-specific data, which makes the 

relationships obtained difficult to transfer to other areas. Thus, study site selection should take into 

account local and regional variations, with the goal of incorporating a fair representation range of 

vegetation into the data collection process. 

2.3.3 UAV data collection, UAV data processing, and analysis methods 

In general, studies used a similar workflow to estimate AGB in grasslands using UAV data, as 

shown in Figure 2.3. Even though not all studies followed all of the steps, the standard process was 

adopted by many of the publications considered in this review. Typically, workflows included the 

following steps: (1) UAV imagery recording concurrent with ground control points (GCP) and 

ground-based field data collection; (2) UAV data processing, including pre-processing, creation of 

photogrammetric 3D point clouds and/or orthomosaics, georeferencing of point clouds and 

orthomosaics, creation of canopy height models (CHM) using digital terrain models (DTM) and 

digital surface models (DSM) derivate from a digital elevation model (DEM), derivation of 

structural, textural, and/or multispectral, hyperspectral, or RGB spectral index; (3) generation of 

predictive AGB models using UAV-derived variables as predictors and ground-based AGB and/or 

CHM, and/or vegetation index. The overall goal of the next sections is to provide a comprehensive 

workflow description for AGB estimation in grasslands using UAV, with a specific focus on the 

main elements of the three steps: (1) field data collection, (2) image pre-processing, and (3) data 
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analyses. 

 

 
Figure 2.3. The data processing workflow by which grassland AGB model estimations are 

generated using Structure from Motion photogrammetry and LiDAR. 

2.3.3.1 Field data collection 

Data sampling as ground-based data collection and UAV flight is a critical step in AGB estimation. 

Some elements must be taken into consideration for an accurate data collection to ensure a reliable 

result. Table A2 (supplementary material) presents a summary of field data information collected 

from the papers reviewed. Items recorded include location, type of field, type of grassland, number 

of sites, UAV platform, sensors, flight altitude, image front and side overlap, number of GCPs, 

ground sample distance (GSD), frequency of data collection, biomass ground truth, total number 

of biomass samples, biomass sample size, and canopy height measurement. 
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Ground-based data collection 

Field measurements, such as biomass sampling and plant height measurements, are established 

methods for biomass estimation in grassland monitoring (Bareth et al., 2015). The quantitative 

collection of data in the field is essential to establish, train, and evaluate biomass estimation models 

derived from UAV images. Additionally, in grassland ecosystems, the accuracy of canopy height 

and AGB estimation can be improved by using ground-measured data for calibration (Zhang et al., 

2021). Grasslands typically have heterogeneous vegetation, and species contribution and yield vary 

in the field throughout the growing season, being influenced by different factors such as cutting 

intensity, soil management, and fertilization (DiMaggio et al., 2020). For reliable and precise 

biomass estimations in areas with such complex vegetation variety and high dynamics, sampling 

should be performed on a frequent temporal basis and with a large number of samples (Franceschini 

et al., 2022). Morais et al. (2021) reviewed the use of machine learning to estimate AGB in 

grasslands and concluded that the size of the field sampling is the most important factor to improve 

estimation accuracy, and increasing the size of the datasets should be one of the main priorities to 

improve the estimation models. 

Regarding the frequency of the sampling, most parts of the studies performed only one field 

sampling (n = 25). The study of  Borra-Serrano et al. (2019) had the highest sampling frequency, 

with 22 collections in one year. The average number of field samples was 90, and the range was 

between 13 and 1403. According to Geipel et al. (2021) the capacity of a model to perform well 

when applied to new scenarios improves with the size and variation of the calibration dataset, and 

many researchers have too small datasets to produce generalizable models. Qin et al. (2021) 

concluded that, despite taking into account the spatial heterogeneity of AGB in vegetation patches, 

they are unable to validate the applicability of inversion results for each grassland type due to the 

small sample size. Capolupo et al. (2015) also suggest that a larger and more representative training 

model sample size would improve model accuracy in their study. The intrinsic complexity and 

repeatability of field trial design, as well as the small sample size, were also constraints in the study 

of Lin et al. (2021).  

Compared to crops, the heterogeneous sward structure with high spatiotemporal variability in 

grasslands has the potential to alter the spatial distribution of biomass depending on the growth 

stage. As the results indicate, most studies use data from a minimal time span (e.g., a fraction of 

the growing season), limiting the ability to predict biomass in these complex and dynamic 

environments. When biomass prediction models are calibrated to the site, year, and even 

phenological stage of dominant plants, they become more robust (Cunliffe, Brazier and Anderson, 

2016). In addition, the frequent collection of data over the course of the growing season could 

ensure that the dataset is diverse and that the models can be applied to various locations (Van Der 

Merwe, Baldwin and Boyer, 2020). In this sense, Lussem, Schellberg and Bareth (2020) 

recommended evaluating different swards under varying conditions and sites over multiple years. 

Pranga et al. (2021) evaluated several growth periods, but the observation period was only one year 

with three cutting treatments. They also suggested that future research should incorporate data from 
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other seasons/years, as well as different locations/conditions.  

Regarding the AGB data collection method, samples were collected manually in 22 studies, 

mechanically in 20, and both methods in two studies. In seven studies, the method to collect 

samples was not specified, and in two studies, biomass samples were not directly collected but 

estimated by RPM calibration. There were two main procedures to sample AGB on the ground, 

collecting from quadrants or harvesting the entire plot. The sizes of the quadrants used for sampling 

varied between papers from 0.01 to 1 m2. The most frequently used sizes were 0.25 m2 (16 papers) 

and 1 m2 (13 papers). The mechanical collection was the method used for all studies that sampling 

the entire plot and the size of the sampling ranged from 1 to 19.5 m2.  

Morais et al.’s (2021) review concluded that the data collection procedure had a minimal 

impact on AGB estimation in grassland using machine learning methods. In their study, the average 

r2 was lowest for the papers that used manual cutting (0.65) compared to mechanical harvesting 

(0.75). However, these findings are not statistically significant and are primarily a result of the 

different number of observations. We found comparable results, with an average r2 for manual 

cutting of 0.68, which was lower than the r2 observed for mechanical harvesting (0.82). These 

results can also indicate that the number of observations can have a greater impact on the accuracy 

of AGB estimation than the collection procedure. In fact, similar to Morais et al.’s (2021) results, 

we found that studies that employed manual cutting had both the lowest and greatest r2 values (0.25 

and 0.98). It should be noted, however, that the study with the lowest r2 used 96 samples (Zhao et 

al., 2022), whereas the study with the highest r2 used 520 samples (Villoslada Peciña et al., 2021). 

The plant cutting height is possibly a significant factor to take into account when collecting 

AGB samples in the field since it is challenging to cut vegetation right at ground level. Grassland 

biomass is distributed vertically in a pyramidal pattern, with increased biomass density closer to 

the ground (Tackenberg, 2007). In an Irish meadow, 40–60% of total biomass was distributed 0–

10 cm aboveground, 30% was 20–30 cm aboveground, and less than 20% was more than 30 cm 

aboveground (Beltman et al., 2003). Only 17 of the studies included in this review reported the 

cutting height, which ranged from 2 to 10 cm above the ground. However, just two studies 

mentioned a height correction in the terrain model to compensate for the cutting height. In order to 

reduce the impacts of any residual stubble, Borra-Serrano et al. (2019) used a correction factor of 

5 cm to their baseline DTM. Karunaratne et al. (2020) applied a constant offset of 7 cm to baseline 

DSM to compensate for the mowing height and pasture accumulation prior to the first measurement 

period. In this way, considering the distribution pattern of biomass in grasslands, we recommend 

that future models account for this factor to try to reduce discrepancies in reported results. 

As for canopy height measurements, 29 studies did not mention the use of these data for 

biomass estimation. At least three studies mentioned the use of canopy height data in the field for 

biomass estimation but did not specify the data collection method. Of the 22 studies that used 

canopy height for biomass estimation, 11 used a ruler, tape, or height stick. In eight studies, the 

RPM was used to measure compressed canopy height. In three studies, field equipment such as a 

ground-based platform (PhenoRover) (Gebremedhin et al., 2020), Lidar Laser Scan (Michez et al., 
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2019), and the Rapid Pasture Meter (machine) (Insua, Utsumi and Basso, 2019) was used. 

Most studies using SfM (Structure from Motion) to derive canopy height models for grassland 

have obtained reference measurements in the field with a height stick or a ruler and RPM since this 

equipment is more accessible and easier to use than mechanical equipment. However, because 

grassland plants differ significantly in canopy height, single or multiple tiller height measurements 

using manual methods would inevitably result in uncertainty about canopy height (Li et al., 2020). 

Batistoti et al. (2019) reported a high correlation between height measured with a ruler and a UAV 

with a multispectral sensor (r2 = 0.89).The canopy heights estimated from UAV imagery and those 

measured using the ruler varied by about 8 cm. When comparing canopy surface models from UAV 

with manual reference measurements from height sticks, Grüner, Astor and Wachendorf (2019) 

achieved r2 values of 0.56 to 0.70 depending on the sward structure, species composition, and 

growing stage, while Viljanen et al. (2018) report r2 values of 0.61 to 0.93. Zhang et al. (2021) also 

found that even though LiDAR-derived canopy height was lower than the ground-measured data, 

it showed a strong correlation with the height measured with a ruler (r2 = 0.92). Wang et al. (2017) 

reported that when compared to ground data measured with a ruler, LiDAR consistently 

overestimated the canopy height.  

Because it effectively analyzes both canopy height and density, RPM is one of the most 

frequently used techniques for physical measurements of grassland sward height and the 

assessment of standing biomass (Vogel et al., 2019). Bareth et al. (2015) report r2 of 0.89 between 

RPM measurements and UAV-derived sward height. According to Lussem et al. (2019), the 

performance of low-cost UAV-derived DSMs for estimating forage mass varies (r2 = 0.57–0.73) 

depending on the harvest cut, but RPM measurements outperform the UAV model. However, 

canopy density, architecture, and plant developmental stage limit the accuracy of linear connections 

between RPM-based measurements and biomass. The results of some studies suggest that the 

agreement between the RPM and the UAV-borne equipment for measuring canopy height varied 

depending on canopy height and that the agreement was negatively impacted by low and high 

canopy heights in general (Bendig et al., 2015; Viljanen et al., 2018; Borra-Serrano et al., 2019). 

RPM measurements demonstrated lower accuracy in sparse swards or tall, non-uniform canopies 

but better accuracy in dense swards and when the canopy has reached a height of 20–30 cm 

(Viljanen et al., 2018). This inconsistency could be caused by the compression of the pasture 

induced by the RPM and canopy closure at high canopy heights. In the case of low canopy heights, 

this inconsistency may be caused by the ground being visible in the images, which reduces the 

digital surface model as a result of the photogrammetry software’s point cloud interpolation. 

Considering this, RPM seems more suitable for measuring low grasses in their early phases of 

development. 

Despite the significance of ground truth data for AGB model estimations, it is critical to 

remember that the available methodologies for measuring AGB and canopy height ground-based 

can also be subjective (Poley and McDermid, 2020). In addition, usually, ground truth data are 

either measured at a few locations in the field or at a single point on a plot and therefore do not 
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necessarily provide a complete representation of the region of interest. In this way, in order to 

improve the validity of the ground-measured biomass data, it is important to take into account the 

limitations of the method and the biases of over- or under-estimate canopy height and AGB. 

UAV platforms  

Multirotor platforms were the most commonly used UAV systems in the reviewed studies 

(87.66%), among which the quadcopter was the most widely deployed (58.46%) (Figure 2.4). In a 

review of studies on the use of UAVs and machine learning for agro-environment monitoring, 

Eskandari et al. (2020) reported that fixed-wing models were the most used between 2015 and 

2018. However, from 2018 to 2019, there was an increase in the use of quadcopter and hexacopter 

models, and these became the most used. Multirotor UAVs have increased in popularity since they 

are extremely versatile, with the ability to hover, rotate, and take images from nearly any angle. 

However, multirotor UAVs also present some disadvantages. Due to their vertical takeoff and 

landing and ability to hover, multirotor platforms demand more energy to fly, resulting in reduced 

sustainability and shorter flight periods (Poley and McDermid, 2020). If the survey height is low, 

backwash from the rotors may affect the vegetation being monitored by producing plant 

movements (Willkomm, Bolten and Bareth, 2016). Multirotors are sometimes associated with 

inadequate Global Positioning System (GPS) receivers, which can lead to decreased position 

accuracy, particularly in hilly places where GPS coverage is limited (Eskandari et al., 2020). When 

compared with fixed-wings, the most significant disadvantage of rotor UAVs is their short range 

and flight time (Wang et al., 2021). Fixed-wing aircraft tend to have a faster top speed, a longer 

flying time, and a greater range than rotorcraft. Fixed-wing systems are useful for collecting data 

across broad areas for these reasons. Nonetheless, fixed-wing aircraft have less mobility and 

require more landing space.  

 
Figure 2.4. UAV platform types utilized per article. 

According the review study of Poley and McDermid (2020), there is no consistent difference 
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in the accuracy of the biomass estimate model between studies using fixed-wing and multirotor 

platforms, and the selection of UAV platform depends on the research objective. A fixed-wing 

could be suitable if the study area is extensive, as in natural grasslands or larger grassland fields. 

A multirotor would be preferable for smaller and more challenging places, such as small grasslands 

and heterogeneous fields, where detailed vegetation imagery from a more stable platform is 

required.  

Flight parameters  

Multiple interconnected elements during the UAV flight influence the quality of UAV-based 

outputs and, consequently, the AGB estimation. Because the precision of the output terrain data is 

determined by the accuracy of estimating tie points—and as a result, the reconstructed surface 

geometry—flight altitude is an important parameter. Reduced flight height results in smaller 

coverage areas, an increase in the number of flight missions required for a specific study site, and 

potentially increased variability in environmental conditions (e.g., cloudiness, sun angle), which 

complicates radiometric adjustment and decreases spectral accuracy. On the other hand, increasing 

altitude shortens flight time and allows one to cover larger areas, which can be important for 

maintaining relatively constant environmental conditions during the flight mission (Tmušić et al., 

2020). Higher altitude flights produce sparser point spacing, resulting in a less detailed DSM. For 

low-altitude flights, the result is a more irregularly shaped DSM, and these effects must be 

considered (Colomina and Molina, 2014).  

The 64 studies reviewed here deployed UAV flights at altitudes ranging from 2 to 120 m. The 

two flights with the lowest altitudes of 2 m were carried out in two studies by Zhang et al. (2018, 

2022) that evaluated the use of high-resolution images in generating quadratic models. The highest 

altitude flight (120 m) was carried out by Wang et al. (2017) in a study testing if the relationship 

between tallgrass AGB measurements and spectral data is constant at different image spatial 

resolutions associated with different flight altitudes. The modal value for UAV altitude was 50 m 

(23% of studies), followed by 30 m (16%), 20 m (14%), 120 m (10%), 40 m (8%), less than 10 m 

(8%), 100 m (6%), 25 m (3%), 70 m (3%), 35 m (2%), 80 m (2%), 140 m (2%), 75 m (1%), 110 m 

(1%), 115 m (1%), and 120 m (1%).  

Considering that plants and particularly grass leaves can be as thin as 2 cm, a higher spatial 

resolution may improve texture resolution and, as a result, biomass prediction accuracy. In the 

studies addressed in this review, most of the flights were performed at altitudes considered low 

(less than 100 m), with the most commonly used altitude being 50 m. Wang et al. (2014) reported 

that surveying at 5 m above the canopy was more accurate than surveying at 20 or 50 m above the 

canopy in a tallgrass prairie ecosystem Grüner, Wachendorf and Astor’s (2020) study with different 

flight heights of 50 and 20 m resulted in an image resolution of 2–4 cm, which then had to be 

resampled to 4.5 cm. These authors recommend that different ground resolutions should be avoided 

in future studies to keep unified conditions for data analysis. Viljanen et al. (2018) employed 30 

and 50 m flight heights to estimate AGB in a mixed grassland field. The results for the 30 m flights 

produced lower reprojection errors (0.53–0.58) than the 50 m flights (0.783–1.25). The flights from 
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a 30 m flying height also provided slightly better 3D RMSE (2.7–2.9 cm) than the 50 m flying 

height (2.8–5.0 cm). Näsi et al. (2018) estimated grassland AGB using two flying heights of 50 

and 140 m. Their study suggested that although employing datasets from 140 m produced 

promising results, adopting lower-height data can enhance AGB estimations. 

The results obtained by DiMaggio et al. (2020) indicate that flying at 50 m height can increase 

the area that is covered without considerably losing AGB estimation accuracy. The authors also 

recommended testing different altitudes to understand the relationship between pixel resolution 

and field data for AGB estimation. Karunaratne et al. (2020) also evaluated the influence of 

different flight heights in their grassland AGB estimation models. The results indicate that the 

model generated at 25 m outperformed the other flying altitude models. However, the authors 

pointed out that, practically speaking, acquiring UAV data at a 100 m altitude provides a lot of 

benefits for farm-scale applications: (a) more coverage of the land extent, (b) faster UAV data 

acquisition, and (c) smaller file sizes that allow for faster pre- and post-processing of collected 

datasets.  

In this way, to establish best practice guidelines for using UAVs for on-farm applications and 

to adapt to changing technological advancements, it is also necessary to better understand the 

impacts of flying at various altitudes on the prediction quality of grassland AGB models. We also 

recommend that considering the specifications of the employed sensor, researchers should establish 

what GSD is necessary for identifying features of interest to AGB estimation. Then, in order to 

balance the necessary spatial resolution, tolerable error, and point cloud density with the most 

effective coverage of the study region, fly at the highest altitude where this GSD is possible (Poley 

and McDermid, 2020). 

The sequence in which the UAV flies also has an impact on data quality. The determination 

of forward and side image overlap is an important part of mission planning, especially for SfM 

photogrammetric reconstructions, which require features observed in multiple photos for building 

digital models, orthomosaics, and 3D models. The percentage of image overlap can affect the 

quality of the final SfM product, with more overlap leading to more precise final models. High 

overlap, on the other hand, necessitates the acquisition of more photos, increasing data volumes 

and computing time (Tmušić et al., 2020). There are optimal overlap thresholds for specific 

vegetation types based on the surveyed area’s specific characteristics and type of study. Agriculture 

fields and grasslands, which have low feature diversity and a relatively flat topography, demand a 

higher percentage of overlaps in order to extract tie points for the SfM algorithm (Eskandari et al., 

2020). Many studies examined in this review have employed considerable front and side overlap 

(median of about 80–70%). In the majority of the studies, a forward overlap of 80% and a side 

overlap of 60–75% resulted in high-quality orthoimages. The data are in agreement with the study 

by Eskandari et al. (2020), which points out that the median for forward and side overlap is 80% 

and 70%, respectively, for UAV flights carried out in grasslands. Viljanen et al.’s (2018) results 

also confirmed the main conception that the large image forward and side overlaps of 

approximately 80%, combined with self-calibration during photogrammetric processing, can 
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provide a non-deformed photogrammetric block. 

Sensor technology 

UAVs’ ability to fly considerably closer to the ground than satellites or full-scale manned aircraft 

expands the range of sensors available and the spectral imaging. The spectral data obtained by an 

UAV can be simple RGB (red–green–blue) from an off-the-shelf camera or more specialized when 

employing multispectral, thermal, or even hyperspectral cameras. Among the studies reviewed 

here, visible sensors (RGB) are the most commonly employed sensor technology (48% of studies), 

followed by multispectral (29%), hyperspectral (16%), and LiDAR (Light Detection and Ranging) 

(7%) (Figure 2.5a). In terms of resolution, the sensors used in sensing can be classified as high 

resolution (between 0 and 10 cm), medium resolution (10 to 20 cm), and low resolution (more than 

20 cm) (Eskandari et al., 2020). The most commonly used data sources across the research are of 

high spatial resolution ranging from 0 to 10 cm (Figure 2.5b). Most studies (>80%) used data at 

high spatial resolution (0 to 10 cm), with visible and multispectral images being the preferred image 

types. Very few (<4%) studies used image data at low spatial resolution (>20 cm). 

 
Figure 2.5. (a) Number of studies per sensor technology. (b) Image spatial resolution vs. sensor 

type. 

The increasing number of UAVs equipped with RGB commercial cameras has facilitated 

research using these low-cost sensors for grassland monitoring (Bareth and Schellberg, 2018; 

Lussem, Schellberg and Bareth, 2020). Compared to multispectral, hyperspectral, or thermal 

sensors, RGB sensors have a lower spectral resolution but a higher spatial resolution, and it is 

possible to calculate vegetation indices and estimate plant height from the same set of photographs. 

RGB sensors are also a more economical option, which is a significant benefit, especially for farm-

scale applications.  

Near-infrared (NIR) multi- and hyperspectral sensors have become more commonly accessible 

for UAVs over the past decade (Manfreda et al., 2018). Initially, researchers used modified off-

the-shelf RGB and near-infrared (NIR) cameras, as in the studies of F. Zhao et al. (2014), Lee et 

al. (2015), and Fan et al. (2018). These modified off-the-shelf RGB cameras were then replaced 

by specialized multispectral or hyperspectral cameras, which have decreased in cost and weight. 
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Multispectral cameras, along with RGB cameras, are among the most commonly used sensors in 

the studies examined (30%). Multispectral sensors (e.g., MicaSense RedEdge 3 camera, Micasense, 

WA, USA) provide more spectral bands (e.g., red edge: 760 nm; near-infrared (NIR): 810 nm). 

The advantages of obtaining more spectral information for vegetation applications at an extremely 

high resolution collaborated for the increase in the use of multispectral sensors. The availability of 

a downwelling light sensor and radiometric calibration target are also key advantages of 

multispectral images. This allows the images to be radiometrically calibrated for repeatable and 

exact measurements less affected by environmental factors (Pranga et al., 2021). Hyperspectral 

sensors also measure reflectance in a wide range of spectral wavelengths. Such data are frequently 

processed into 3D point clouds utilizing Structure from Motion (SfM) procedures to offer 

information about the structure, texture, and variability of grassland areas (Poley and McDermid, 

2020). This integration offers a lot of potential for accurate AGB estimation in grasslands. 

Especially when specific or many wavelengths are desired, multispectral and hyperspectral sensors 

can be used to obtain precise estimates of AGB. However, hyperspectral and multispectral sensors 

are still significantly more expensive than digital RGB cameras, which may be a drawback in farm-

scale applications. 

Even with the limitation on the spectral resolution range, the indices generated by RGB sensors 

can be cost-effective and have been applied in grassland for biomass estimation with acceptable or 

high levels of accuracy (Näsi et al., 2018; Lussem et al., 2019; Lussem, Schellberg and Bareth, 

2020). When evaluating several sensor types for detecting biophysical properties of vegetation, 

multiple studies discovered that RGB data from low-cost digital cameras produced AGB 

estimations comparable to or better than data from more expensive multispectral or hyperspectral 

sensors (Näsi et al., 2018; Grüner, Astor and Wachendorf, 2019, 2021; Lussem et al., 2019). Few 

studies compared results from different sensors among the articles investigated for this review. 

However, in the studies that compared sensors, in most cases, there was no significant difference 

in accuracy in AGB estimation between RGB and other sensors. Lussem et al. (2019) confirmed 

the potential of RGB techniques in AGB grassland modeling, achieving equivalent performance 

(r2 = 0.7) using RGB or multispectral VIs. Näsi et al. (2018) also stated that RGB can produce 

good results for AGB grassland modeling, even though it is inferior to the results of hyperspectral 

sensors. Compared with multispectral or hyperspectral imaging, the higher spatial resolution of 

RGB imagery could probably influence its ability to predict vegetation biomass more accurately 

(Grüner, Astor and Wachendorf, 2019, 2021).  

The spectral resolution of UAV visible sensors is anticipated to continue to increase. Given 

the affordable prices, this platform will continue to be heavily utilized in AGB estimates in 

grasslands. However, because the passive optical sensors mostly collect data from the top of the 

vegetation, there is little information available regarding the vertical structure of the vegetation, 

which limits the biomass estimate’s accuracy. Another issue with optical imagery techniques is the 

possibility of natural light saturation when detecting high-density biomass plants.  

Compared to optical sensors, LiDAR is an active remote sensing technology that can capture 
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the vertical structure and height of vegetation as well as the three-dimensional coordinates of the 

target (Figure 2.6) (Wang et al., 2021). LiDAR sensor is also unaffected by lighting conditions. In 

grassland ecosystems, UAV LiDAR has recently been employed to estimate canopy height and 

AGB. The study of Wang et al. (2017) demonstrated that the LiDAR sensor has high potential for 

providing highly accurate grassland vegetation measurements, such as canopy height and fractional 

cover, which can then be used to estimate AGB on a large scale. The authors, however, pointed out 

that LiDAR alone would underestimate grassland canopy height and that field data calibration is 

required to achieve centimeter-level accuracy. Li et al. (2020) concluded that incorporating LiDAR 

data considerably improved the performance of the spectral index in modeling and estimating AGB 

in grasslands in a non-destructive manner. Zhang et al.’s (2021) results demonstrate that grassland 

AGB can be estimated using UAV LiDAR data under various grazing intensities.  

The study by Zhao et al. (2022) indicates that, despite the tremendous potential for grassland 

AGB estimation, UAV LiDAR’s sensor has a propensity to miss canopy data at canopy tops in 

grassland ecosystems. The canopy information loss can occur because UAV LiDAR collects data 

using a top-to-bottom view, and laser pulses may not completely penetrate the vegetation canopy. 

The challenge for UAV laser pulses to penetrate the canopy is further increased by the density of 

grassland vegetation, which may be, in some cases, much higher than in a forest (Xu et al., 2020). 

According to Zhang et al. (2021), the propensity of LiDAR sensors to not completely penetrate the 

high-density grassland canopy and the difficulty in receiving returns from the ground led to an 

underestimation of most canopy heights and the majority of fractional covers in the LiDAR data. 

As these attributes are used for AGB estimation, an underestimation in the data can lead to 

limitations in AGB estimation from LiDAR data. 

 

 

Figure 2.6. A schematic illustration of the difference between LiDAR and spectral data capture 

(adapted from Wang et al., 2021). 

Despite these limitations, LiDAR has been shown to outperform image-based techniques in 

terms of ground point capture and physical biomass parameter estimation (Madec et al., 2017), 

making it a promising technology for AGB estimation in grasslands. Nevertheless, in practice, the 

fact that commercial LiDAR sensors adapted for UAVs are still substantially more expensive than 
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spectral sensors emphasizes the need to carefully evaluate the most cost-effective sensor for each 

specific aim.  

2.3.3.2 Image pre-processing 

The data collected by the UAV cannot be utilized directly to estimate biomass. In this way, a 

preprocessing step is usually included to guarantee that the data are suitable for further processing. 

Images taken from a UAV flight can be converted into 3D data using SfM-based software. Then, 

several objects can be classified from 3D data. Different companies have offered software solutions 

for processing photographs captured by UAVs, including functionalities for generating 3D spatial 

data for use in GIS (Geographic Information Systems) platforms, digital terrain and elevation 

models, generation of georeferenced orthophotos, and area and volume measurements. The 

different SfM software packages use different algorithms and processing options, which can affect 

the final outputs (Smith, Carrivick and Quincey, 2015). Of the 51 papers that mentioned the use of 

processing software, 52% (28 papers) used Agisoft Metashape (Agisoft LLC, St. Petersburg, 

Russia) to process UAV imagery data, followed by Pix4Dmapper (Pix4D, S.A., Lausanne, 

Switzerland) with 32% (17 papers). Furthermore, five papers employed other software, such as 

QGIS, ArcMap, and TerraScan. 

None of the papers assessed in this review compared image preprocessing software, but 

previous studies have used Agisoft Metashape and Pix4Dmapper programs and evaluated the 

performance of both types of software. Kitagawa et al. (2018) captured characteristics from two 

experiments and compared them. Agisoft Metashape exhibited a clearer image but poor 

displacement extraction, whereas Pix4Dmapper had a z-value fluctuation but excellent 

displacement extraction. Isacsson (2018) also examined the orthomosaic accuracies created from 

the same survey using Pix4Dmapper and Agisoft Metashape and also found that using Agisoft 

Metashape results in larger x and y position errors, whereas using Pix4Dmapper results in higher 

z error. Fraser and Congalton (2018) compared the Agisoft Metashape and Pix4Dmapper software 

packages over a forested area of 235.2 ha. They concluded that Agisoft Metashape produced more 

detailed UAS-SfM outputs.  

GCPs are high-visibility materials that are georeferenced using the Global Positioning System 

(GPS) after they are placed in a visible site to provide a point of reference for determining the 

position of the UAV in the area being photographed. By identifying GCPs with known coordinates 

visible in the imagery, a transformation that describes the relationship between the point cloud 

coordinate system and a real-world coordinate system can be used to georeference the point cloud 

that results from the reconstruction of SfM data (Dandois and Ellis, 2013). Among the papers 

evaluated in this review, at least 62% (N = 33) mentioned the use of GCPs for the geometric 

correction of UAV images. 

Reliable ground reference data are necessary for successful georeferencing (Eskandari et al., 

2020). Hence, the quantity and location of GCPs at the study site are crucial (Poley and McDermid, 
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2020). The geometric accuracy of surface and terrain models created from UAV imagery is likely 

to improve with more GCPs (Borra-Serrano et al., 2019; Wijesingha et al., 2019). In the study of 

Wijesingha et al. (2019), the small number of GCP was pointed out as a possible reason for the 

limitations of the DSM generated from the UAV data. The authors used only four GCP, which is 

the minimum for proper geo-referencing. They concluded that increasing the number of GCPs 

could increase the precision of SfM data and improve the model performance. It is also critical to 

place GCPs correctly (Poley and McDermid, 2020). The use of ground control points only around 

the edges of the study area rather than within plots can reduce the accuracy of surface and terrain 

models, so more GCPs should be placed throughout the entire area of interest (Roth and Streit, 

2018). Borra-Serrano et al. (2019) reported that as grasses grew taller, GCP targets became more 

challenging to detect in imagery due to elongated plants. They recommended opening the area 

around the targets to guarantee they can be seen in all images throughout the growing season. 

After the geometric correction step, the georeferenced sparse cloud is converted into a dense 

point cloud. The software computed the depth information by the image alignment for all points of 

the images. In the last step of pre-processing, the dense point cloud can be exported in the form of 

a DEM. DEMs are used to build a CHM of the grassland field (Figure 2.7). For this purpose, two 

types of DEMs are usually built: (1) DTM, corresponding to the ground, and (2) DSM derived from 

the imagery collected with the presence of canopy on the terrain. 

 

 
Figure 2.7. Graphical illustration of relation between digital surface model (DSM), digital terrain 

model (DTM), and canopy height model (CHM). 

There are two main methods for extracting CHM information from UAV data. One method is 

to generate both DSM and DTM in raster format. This method considers the difference between 

DSM and DTM as the CHM Viljanen et al. (2018). This method is relatively simple, and since the 

analysis is carried out using raster analysis, the calculation is quick. However, applying interpolated 

DSMs and DTMs may lead to unwanted data smoothing. In the context of heterogeneous pasture 

growth, the use of such datasets could lead to the loss of information regarding the variability of 

CHM (Karunaratne et al., 2020). The second method uses the raw SfM point cloud dataset instead 

of an interpolated DSM raster. To determine CHM for every single point in the point cloud, the 
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difference between the interpolated DTM raster of the study region is used (Wijesingha et al., 

2019). Viljanen et al. (2018) evaluated both methods and concluded that both provided similar 

DTMs and correlations to the AGB in grasslands. 

A high-quality DTM with precise and accurate terrain representation is critical for extracting 

reliable estimates of vegetation structure from UAV imagery and therefore produce a reliable AGB 

estimation (Poley and McDermid, 2020). In areas with a dense vegetation canopy, such as some 

grassland fields, producing high-quality DTMs can be challenging (Schucknecht et al., 2022). 

Zhang et al. (2018) pointed out that the density of grassland influenced the quality of DTM 

generated by an RGB sensor. An accurate DTM could not be produced because there were not 

enough ground points if the vegetation density was too high, but it was simple to extract ground 

points if it was moderate. In an ideal scenario, a reference DTM would be created beforehand when 

there is no vegetation, but this is not feasible, for example, in natural grasslands (Théau et al., 

2021). When a DTM is unavailable to represent the bare ground, point cloud classification is a 

frequently used technique to discriminate ground points (DTMs) and canopy height points (CHMs) 

from the same set of images (Näsi et al., 2018). Batistoti et al. (2019) also found a solution by 

manually collecting GPS points to create the DTM, but this method is too time-consuming for large 

grassland fields. Alternatively, hybrid approaches combining SfM-derived DSMs with DTMs 

derived from LiDAR sensors have been explored (Michez et al., 2020). Even so, special attention 

should be paid to potential errors in the LiDAR DTM, which is primarily based on ground point 

density and terrain variability. It is also important to notice that although producing input data such 

as DTM is a relatively simple task with LiDAR, the costs to obtain such products are high compared 

to RGB-only imagery (Castro et al., 2020). 

2.3.3.3 Data analyses  

The ability of UAV image-derived models to accurately predict AGB is influenced by a variety of 

parameters connected to analysis methodologies. Table A3 (supplementary material) summarizes 

the data analysis methods and essential results of the 64 papers considered in this review. 

Most studies used statistical regression methods such as linear regression (LR), polynomial 

regression (PR), stepwise linear regression (SWL), multiple linear regression (MLR), and partial 

least squares regression (PLSR). LR was the most commonly used method (n = 25). PLSR was 

used in 13 studies and MLR in 9 studies. Viljanen et al. (2018) obtained the highest r2 value (r2 = 

0.98) with MLR in a mixed grass experimental site using an RGB and HS sensor. The lowest r2 

value (r2 = 0.25) was obtained by Zhao et al. (Zhao et al., 2022) with SWL to estimate AGB in a 

mixed natural grassland field using a LiDAR sensor. Among the machine learning methods, 

random forest (RF) was the most popular and was employed by 16 studies. The highest median r2 

among all the papers assessed was obtained by Villoslada Peciña et al. (2021) with RF and MLR 

(0.981), followed by Oliveira et al. (2020) also using RF and MLR (0.97). RF has demonstrated 

competitive accuracy in biomass estimation when compared to other estimation methods used in 

agricultural applications (Näsi et al., 2018). Morais et al. (2021) reviewed the use of machine 
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learning to estimate biomass in grasslands. RF was also the method with the most applications, 

followed by PLSR. 

The results of the different studies are highly variable and difficult to compare since they 

substantially depend on the type of grassland being monitored, the sensor (RGB, multispectral, 

hyperspectral, LiDAR), the usage of ground data, and 3D data. In the case of Zhao et al. (2022) for 

instance, the lower result can be explained by the loss of canopy information in UAV LiDAR, 

which is an important factor influencing the estimation accuracy of AGB. Wang et al. (2017) found 

comparable results (r2 = 0.34) using a linear regression model and UAV LiDAR to estimate AGB 

in an experimental grassland site. On the other hand, da Costa et al. (2021) estimated AGB in a 

natural grassland using UAV LiDAR and simple linear regression but obtained a higher r2 value 

(r2 = 0.78).  

Evaluating the result from different papers that use machine learning to estimate AGB in 

grasslands, Morais et al. (2021) inferred that MLR has the greatest median r2 (0.76), followed by 

PLSR (0.75) and RF (0.69). We found similar results evaluating the papers that informed the r2 

value for AGB estimation. Among the methods with more applications used in the papers evaluated 

in this review, RF has the greatest median r2 (0.798). However, it differed slightly from the other 

methods, being followed by MLR (0.785), LR (0.78), and PLSR (0.776). Considering the small 

difference among the statistical methods, we agree with Morais et al. (2021) that the accuracy of 

the analyses depends more on the quantity and quality of the data from field samples than on the 

type of statistical regression. 

Among the papers assessed, at least 11 evaluated different regression methods for AGB 

prediction models using the same dataset. LR, MLR, and PLSR were commonly evaluated with 

other methods, probably because they are common regression techniques for predicting plant traits. 

Askari et al. (2019) evaluated two regression techniques, PLSR and MLR, to estimate AGB using 

a multispectral sensor in a mixed grassland. The authors concluded that both PLSR and MLR 

techniques produced accurate models for AGB using only spectral data (r2 = 0.77 and 0.76, 

respectively). The results from both techniques were considered robust enough to be employed, 

although the PLSR produced better model outputs. Comparing statistical methods for analyzing 

hyperspectral data from a grassland trial, Capolupo et al. (2015) also found that PLSR was more 

effective at predicting AGB using specific vegetation indices. Lussem et al. (2022) evaluated PLSR 

with other analysis methods, RF and support vector machine regression (SVR), with and without 

a combination of both structural (sward height; SH) and spectral (vegetation indices and single 

bands) features. In their study, however, the PLSR models were outperformed by the RF and SVR 

models. PLSR also was outperformed by other analysis methods (SVR, RF, and cubist regression 

(CBR)) in the study of Wengert et al. (2022) using spectral data from a hyperspectral sensor.  

Borra-Serrano et al. (2019) also evaluated PLSR with different regression models and one 

machine learning method (MLR, PCR, and RF) to estimate AGB using an RGB sensor in a 

monoculture grassland trial. Using spectral and structural data, MLR outperformed both the 

machine learning approach and other regression techniques in terms of AGB estimation. Geipel et 
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al. (2021) evaluated two regression methods, powered partial least squares regression (PPLSR) and 

LR, to estimate AGB using a hyperspectral sensor in a mixed grassland in an experimental site. 

Their results showed that PPLSR modeling approach fitted with reflectance data produced models 

with high AGB prediction accuracy (r2 = 0.91). On the other hand, LR models using spectral indices 

and canopy height as predictor variables did not achieve satisfactory prediction accuracies. 

Inputs 

The selection of parameter(s) acquired from UAV data is probably the main element impacting the 

accuracy and prediction of AGB estimation in grasslands (Poley and McDermid, 2020). Spectral 

and structural (e.g., height) characteristics of grasslands are the most frequent inputs for predicting 

AGB using UAV data. Among the papers reviewed, 18 informed the use of only structural data as 

input, and 18 used only spectral data. Other 15 papers used both, while 11 papers used spectral and 

structural data combined with another data type. The study of Cunliffe, Brazier and Anderson, 

(2016) using canopy height and canopy volume as inputs had the highest r2 (0.95) value among 

those that employed only structural data to estimate AGB. Among the studies that only used 

spectral data, Villoslada Peciña et al. (2021) had the highest value for r2 (0.98). For those studies 

that used both structural and spectral inputs, Oliveira et al. (2020) obtained the best results (r2 = 

0.97) by evaluating different spectral indices and bands from a multispectral sensor, as well as eight 

canopy metrics from an RGB sensor. The mean r2 value was 0.74 for studies that used only 

structural data, 0.77 for papers that only used spectral data, and 0.81 for papers that combined both 

structural and spectral data. 

All studies that only employed structural measures used RGB and LiDAR data to generate 

metrics that represented the structure of the vegetation, and the most commonly used structural 

variable was canopy height. Some studies also used data such as vegetation volume, vegetation 

cover, and density volume factor. For vegetation with sparser or more varied canopies, such as 

grasslands, variables that reflect this heterogeneity, such as coefficient of variation, standard 

deviation, or percentiles of height, can be significant (Poley and McDermid, 2020). Zhang et al. 

(2018) observed a significant correlation between AGB in a natural grassland and logarithmic 

regression using mean height derived from a UAV-RGB sensor (r2 = 0.80). Wijesingha et al. (2019) 

evaluated different canopy height metrics derived from a UAV-RGB sensor to estimate AGB in a 

mixed grassland farm. The results showed that among the canopy height metrics, the 75th 

percentile achieved the strongest explanatory power (r2 = 0.63). da Costa et al. (2021) assessed 

different structural metrics derived from LiDAR data to estimate AGB from a natural grassland in 

the Brazilian savanna. The most accurate method employed metrics that represent canopy height 

(H98TH = height 98th percentile) and coverage (COV = cover percentage of first return above 1.30 

m). For the estimation of AGB in a mixed natural grassland, Barnetson, Phinn and Scarth (2020) 

selected the maximum canopy height derived from a UAV-RGB sensor to closely approximate the 

settling height of the RPM measure. 

The majority of studies that employed only spectral data used multispectral sensors (n = 9), 

followed by hyperspectral sensors (n = 3), RGB sensors (n = 3), and a fusion of different sensors 
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(n = 3). These spectral datasets can be used as narrow bands or processed to derive a vegetation 

index (VI). VIs (ratios or linear combinations of bands) have been widely used in remote sensing 

research for vegetation identification, as they emphasize the differences in reflectance of the 

vegetation. The use of vegetation indices to characterize and quantify biophysical parameters of 

agricultural crops has two major advantages: (a) reducing the dimension of multispectral 

information through a simple number while minimizing the impact of lighting and target 

conditions, and (b) providing a number highly correlated to agronomic parameters. Several studies 

have found strong relationships between biomass measurements and RS-derived VIs (Capolupo et 

al., 2015; Askari et al., 2019; Jenal et al., 2020; Villoslada Peciña et al., 2021). Based on this 

relationship, a simple statistical methodology can be constructed to estimate plant biomass with 

the most suitable VI and optimal regression results. 

Table A4 (supplementary material) shows all 78 vegetation index formulations cited in at least 

one study for AGB estimation in grassland. Among the articles examined in this review, at least 38 

used vegetation indices for biomass estimation analysis. Of the top five, the Normalized Difference 

Vegetation Index (NDVI) was the index used in most studies (N = 27), followed by Normalized 

Difference Red Edge (NDRE) (N = 16), the Green Normalized Difference Vegetation Index 

(GNDVI) (N = 14), the Green Chlorophyll Index (GCI) (N = 10), and the Modified Chlorophyll 

Absorption in Reflectance Index (MCARI) (N = 9). 

The results show a wide variety of indices, some of which might be more specific to certain 

indicators (e.g., Grassland Index, Plant Senescence Reflectance Index). However, most indices 

were used only once, and a few studies have compared the efficiency of multiple indices. The 

overall prevalence of NDVI was expected since this index is widely employed in various study 

scales to represent green vegetation abundance and net primary productivity in grasslands. 

Although it was the most used index and showed a good correlation for biomass estimation in a 

few studies (Insua, Utsumi and Basso, 2019; Gebremedhin et al., 2020), NDVI also has some 

limitations. NDVI presents sensitivity to the effects of soil brightness, soil color, atmosphere, and 

leaf canopy shadow and shows saturation in high-density vegetation. In fact, in some studies, NDVI 

did not perform better than preceding modeling strategies (K. Y. Li et al., 2021; Pranga et al., 2021; 

Théau et al., 2021). The study of Geipel and Korsaeth (2017) showed that NDVI-based models 

appeared to be saturated at the first harvest dates and did not achieve an acceptable prediction level. 

This conclusion is similar to that of Karunaratne et al. (2020) and Togeiro de Alckmin et al. (2021), 

who suggested that predicting dry biomass only based on NDVI (as in previous studies) is 

ineffective. This is probably related to the saturation effect that occurs when the plant achieves 

higher levels of leaf area index. Indeed, Pranga et al. (2021) reported that with leaf area index 

(LAI) values larger than 3, NDVI exhibited a lower biomass estimation capability. EVI and 

GNDVI, on the other hand, saturate less at increasing LAI values and have been identified as 

significant predictive variables. In at least two studies comparing different vegetation indices to 

estimate biomass in grasslands, GNDVI performed better than NDVI (K. Y. Li et al., 2021; Théau 

et al., 2021). 
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Furthermore, it is important to consider a diverse set of vegetation indices in order to avoid the 

issues that come with less sensitive indices such as NDVI. When assessing various vegetation 

indexes, it is also critical to consider saturation, sensitivity, plant growth phases, canopy structure, 

and environmental impact (Jenal et al., 2020). 

Recently, several methods investigated the integration of different data by combining spectral 

and non-spectral data, and they found an improvement in the assessment of AGB in grasslands. 

According to the study of Lussem et al. (2022), the combination of structural and spectral features 

can improve the estimation accuracy for AGB in grasslands. Viljanen et al. (2018) reported that 

using MLR and RF to combine structural and spectral information resulted in a small improvement 

in AGB estimation. For the AGB estimation of perennial ryegrass in the study by Pranga et al. 

(2021), the combination of spectral and structural characteristics from a multispectral camera 

utilizing random forest produced the best results. When combining vegetative indices and 3D 

features at various flight altitudes, Karunaratne et al. (2020) observed a consistent improvement of 

AGB estimation. 

The structural features, such as canopy height, were more significant for the AGB prediction 

models than the spectral features when both were combined (Lussem et al., 2022). Michez et al. 

(2019) obtained an RMSE of 0.09 kg m2 by combining VIs and canopy height and concluded that 

the canopy height had the highest significance in the multilinear regression model. Grüner, 

Wachendorf and Astor (2020) developed AGB estimation by comparing RF and PLS models of 

spectral features with and without texture. They concluded that adding texture features improved 

the estimation models significantly. When predicting AGB using a fused dataset (from the RGB 

camera and the MS camera), Pranga et al. (2021) likewise discovered that the canopy height 

characteristics were of the utmost significance; nevertheless, estimating the AGB with only the CH 

features produced rRMSE of 30–35%. Comparatively, the rRMSE of the AGB estimation was 

generally 10% lower. 

It is important to note, however, that although these methods show promising results, 

combining spectral and non-spectral data in an applied setting can be more challenging because it 

requires employing several sensors or constructing complex data processing chains (Théau et al., 

2021). 

2.4 Challenges and future prospects 

UAV remote sensing for AGB estimation in grasslands is still challenging, mainly due to the 

intrinsic characteristics of this ecosystem. The vegetation communities in grasslands are mainly 

composed of a variety of site-specific plant species that can contrast in size and phenology stage. 

Additionally, because grasslands are perennial, monitoring systems must be able to adapt to a wider 

variety of measuring conditions (Franceschini et al., 2022). Future research should consider the 

inherent characteristics of these ecosystems, seasons, management practices, data collection 

parameters, and automation techniques in order to establish robust methods that can be transferred 
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into management tools for grassland professionals (DiMaggio et al., 2020). We also strongly 

recommend that future studies provide more information on the agronomic aspect of the research 

area. A detailed overview of soil characteristics, spatial heterogeneity of species distribution, 

climate, grassland classification, and management practices used enables independent analyses and 

cross-study comparisons. 

A significant constraint of UAV studies for AGB model estimation in grasslands is the low 

number of sampling intervals or limited representativeness due to the small number of sites and 

management intensities that can be assessed (Wengert et al., 2022). Furthermore, additional points 

must be explored. For example, because most studies only consider one growing season, future 

research could include more observations throughout different growing seasons. In this way, 

researchers will produce more high-quality datasets describing the temporal dynamics of 

vegetation in grassland ecosystems, which is recommended for improving AGB estimation models. 

Models created using a dataset based on numerous years, different management practices, and 

preferably multiple sites are more generalizable. As a result, they may better represent conditions 

at other sites and over different years (Sinde-González et al., 2021). Additionally, models should 

also be validated on a range of grassland fields from diverse locations and years to improve their 

practical applicability (Wengert et al., 2022). 

Apart from data collection, data processing and analysis are major factors in using UAVs for 

AGB estimation in grasslands. The processing of UAV data differs significantly from the 

processing of satellite data, creating a new demand for data processing software and suitable 

workflows. Additionally, image processing takes more time as spatial and spectral resolutions rise; 

therefore, more effective methods must be designed. Future directions for AGB grassland estimate 

may be accomplished by the ongoing reduction and cost-effectiveness of sensors, platforms, and 

computer hardware, as well as strong algorithms. 

2.5 Conclusions 

The present manuscript provides a comprehensive review of the most recent results in the field of 

UAV for AGB estimation in grasslands. Several factors can have a significant impact on the 

performance and generalizability of vegetation AGB estimation in grasslands throughout the data 

collection to data processing and analysis. Our findings are summarized as follows:  

 The frequency of publications on grassland AGB estimation with UAV has increased over 

time and continues to rise, indicating the scientific community’s interest; 

 The frequency of studies is poorly distributed around the world, with South American and 

African grasslands appearing to be underrepresented. As a result, additional research should 

be conducted on some important grassland areas; 

 The type of grassland, the heterogeneity, and the growth stage can strongly influence the 

AGB estimation model; 
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 Collecting ground-based data is a crucial step in estimating AGB in grasslands. The 

biomass sampling method seems to have a small influence on the accuracy of the AGB 

model estimation, whereas the number of samples is one of the main factors to improve the 

estimation accuracy; 

 The measurement of canopy height is an important variable, especially for models that use 

structural data as input. However, the methods for collecting canopy height at the field level 

present limitations. RPM measurements demonstrated lower accuracy in sparse swards or 

tall, non-uniform canopies, and a measuring tape is based on an “average height”, but 

determined visually and rather subjective. The biases of each method must be taken into 

account to reduce inconsistencies in the results; 

 Quadcopters were the most widely used platform, accounting for almost 60% of all 

platforms. Nevertheless, the type of platform has a low impact in AGB grassland 

estimation, and the selection of the platform depends more on the research objective; 

 The modal value for UAV flight altitude among the studies was 50 m. Adopting lower 

altitude flights seems to enhance AGB estimations as this increase the spatial resolution. 

For farm-scale applications, however, collecting UAV data at higher altitude offers more 

advantages. We suggest flying at the highest altitude where the desirable GSD is possible; 

 Large image forward and side overlaps of approximately 80%, combined with self-

calibration during photogrammetric processing, can provide better data quality; 

 In terms of sensor type, RGB was the most commonly employed (48%). Despite MS and 

HS sensor has the advantage to provide more spectral bands RGB data seems capable to 

produce models with comparable accuracy. In terms of cost–benefit and data processing 

simplicity, RGB sensors appear to be the most suitable for estimating AGB in grassland at 

the moment. The emergence of reliable and cost-effective LiDAR and hyperspectral sensors 

will have a significant impact on future research; 

 For the reliable estimation of vegetation structure in grasslands from UAV imagery, a high-

quality DTM with a precise and accurate representation of the terrain is necessary. 

However, UAV-derived DTMs may underestimate or overestimate field terrain differences 

depending on the canopy’s density and the spatial resolution of the image; 

 The accuracy of georeferencing models increases when a larger number of ground control 

points are equally distributed throughout the study area;  

 Linear regression was the most commonly used regression model (n = 25). Random forest 

was the most popular machine learning method (n = 16). The findings suggest that the 

accuracy of the analysis methods is more dependent on the quantity and quality of data 

from field samples rather than the method itself; 

 The most common inputs for AGB prediction in grasslands using UAV are spectral and 

structural data. Canopy height metrics were the most used structural data. At least 68% of 
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the articles used vegetation indices for biomass estimation, with NDVI being the most 

commonly used. The results indicate that models that employed both data types (structural 

and spectral) outperformed models that only used one. 
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Abstract 

Accurate estimation of biomass in grasslands is essential for understanding ecosystem health and 

productivity. Unmanned Aerial Vehicles (UAVs) have emerged as valuable tools for biomass 

estimation using canopy height models derived from high-resolution imagery. However, the impact 

of field disturbances, such as lodging and molehills, on the accuracy of biomass estimation using 

UAV-derived canopy height models remains underexplored. This study aimed to assess the 

relationship between UAV-derived canopy height and both reference canopy height measurements 

and dry biomass, accounting for different management systems and disturbance scenarios. UAV 

data were collected using a multispectral camera, and ground-based measurements were obtained 

for validation. The results revealed that UAV-derived canopy height models remained accurate in 

estimating vegetation height, even in the presence of disturbances. However, the relationship 

between UAV-derived canopy height and dry biomass was affected by disturbances, leading to 

overestimation or underestimation of biomass depending on disturbance type and severity. The 

impact of disturbances on biomass estimation varied across cutting systems. These findings 

highlight the potential of UAV-derived canopy height models for estimating vegetation structure, 

but also underscore the need for caution in relying solely on these models for accurate biomass 

estimation in heterogeneous grasslands. Future research should explore strategies to enhance 

biomass estimation accuracy by integrating additional data sources and accounting for field 

disturbances. 

Keywords: vegetation structure, monitoring, ecosystem services, remote sensing.  
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3.1 Introduction 

Grasslands are a crucial component of the earth's ecosystems, providing a wide range of ecosystem 

services, including biomass production (Bengtsson et al., 2019). Biomass is a key indicator of the 

productivity of grasslands and can be used for a variety of purposes, such as fodder production, 

energetic use, and fiber production (Sala and Paruelo, 1997). The management system of grasslands 

can significantly affect biomass production. Understanding this impact can aid in developing 

sustainable land management practices that maximize the provision of ecosystem services (Zhao, 

Liu and Wu, 2020). Accurate biomass estimation is essential for assessing the economic value of 

grassland ecosystem services at regional and farm scales (Huber et al., 2022) as well as for 

understanding the effects of land use change and intensification on grassland multifunctionality 

(Schils et al., 2022). Moreover, assessing the spatial variability of multiple ecosystem services in 

grasslands of different intensities can provide valuable insights for conservation and management 

(Le Clec’h et al., 2019).  

Different methods have been developed for measuring grassland biomass, each with its own 

advantages and limitations (Harmoney et al., 1997; ’t Mannetje and Jones, 2000). Direct 

measurements such as destructive sampling provide highly accurate results but are time-consuming 

and costly, especially when applied to large areas (Bareth and Schellberg, 2018; Lussem et al., 

2019). Another approach is the use of allometric equations, which relate biomass to easily 

measurable variables such as sward or canopy height, which, in ground-level assessments, can be 

obtained using tools such as rulers or rising plate meters (O’Donovan et al., 2002). These allometric 

equations have been widely used and have proven to be reliable in many cases (O’Sullivan, 

O’Keeffe and Flynn, 1987; Piggot, 1989; Hakl et al., 2012). However, the selection of the 

appropriate method depends on the specific characteristics of the grassland and the research 

question, as the reliability of the methods may be affected by surface heterogeneity and applied 

management practices (Bazzo et al., 2023). 

Another powerful tool for estimating biomass in grasslands can be remote sensing. Remote 

sensing allows for collecting information on vegetation structure and biomass at a large scale 

without the need for ground-based measurements (Dusseux et al., 2015). Unmanned Aerial 

Vehicles (UAVs) have become increasingly popular for this purpose due to their ability to collect 

high-resolution image data in a relatively short period of time. The data collected by UAVs can 

provide detailed information on vegetation structure, including canopy height, canopy cover, and 

leaf area index, which can be used to estimate biomass (Bazzo et al., 2023). The use of UAVs for 

biomass estimation has been demonstrated in several studies (Lussem et al., 2019; Wijesingha et 

al., 2019; Alvarez-Hess et al., 2021), and they have been shown to be a cost-effective and efficient 

method for monitoring grassland ecosystems. Recent studies have shown that using canopy height 

models derived from UAVs is a reliable method for estimating grassland biomass. For example, 

Lussem, Schellberg and Bareth (2020) and  Bareth and Schellberg (2018) have demonstrated that 

UAV canopy height data can be used to monitor biomass in grassland experiments effectively.  
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Similarly, DiMaggio et al. (2020) and  Borra-Serrano et al. (2019) have shown that UAV 

imagery can be used for non-destructive biomass estimation of specific grass species such as 

Lolium perenne. Cunliffe, Brazier and Anderson (2016) have also highlighted the potential of using 

drone-acquired Structure-from-Motion (SfM) Photogrammetry for ultra-fine grain landscape-scale 

quantification of dryland vegetation structure. Studies such as Batistoti et al. (2019) and  

Wijesingha et al. (2019) have also investigated the use of UAVs for estimating biomass and canopy 

height in grassland environments. Overall, these studies provide strong evidence for the 

effectiveness of UAV-derived canopy height models in estimating biomass in grasslands. 

Despite the usefulness, field disturbances such as lodging and molehills can impact the 

accuracy of biomass estimation using UAV-derived canopy height data. While previous studies 

have demonstrated the utility of UAVs for biomass estimation, detailed investigations into how 

these specific field conditions affect the performance of UAV-derived models are still limited. This 

study focuses on analyzing the influence of disturbances on both canopy height and biomass 

estimation across different management systems, providing insights that can enhance the accuracy 

of UAV-based biomass models in disturbed and heterogeneous grassland environments. 

To address these concerns, the objectives of this study are to: 1) assess the effect of field 

disturbances on UAV-derived canopy height models and 2) investigate the impact of these 

disturbances on aboveground biomass estimation using UAV-derived canopy height data for three 

different management systems. 

3.2 Material and methods 

3.2.1 Study site and experimental design 

The research site, "Koppel 17," is located 48 km northwest of Berlin near the village of Paulinenaue 

(52°41'28" N, 12°44'16" E), in the federal state of Brandenburg (Fig. 3.1a). It encompasses an area 

of 1.3 ha and is situated within the "Havelländisches Luch", a shallow, drained peatland complex 

(Fig. 3.1b). The site features degraded peat soils with peat thickness ranging from 0.5 to 2.0 m, 

where the topsoil has degraded,  and the subsoil consists of alluvial sand layers up to 12 m in depth. 

The area is characterized by a continental climate with an average temperature of 9.2 °C and an 

average precipitation of 530 mm (Pohl et al., 2015).  

In 2013, a seed mixture dominated by Festuca arundinacea was sown on the site. Furthermore, 

on the 14th of August 2018, a reseeding was carried out in which Lolium perenne seed was sown 

at a rate of around 20 kilograms per hectare. Fertilization practices were carefully managed to 

address the nutrient requirements of the site. PK fertilization, including triple superphosphate and 

potassium-magnesium sulfate, was applied each year in April to compensate for nutrient depletion 

from plant uptake and soil processes. Additionally, N fertilization using ammonium sulfate was 

implemented based on the specific nutrient requirements associated with the fen's ecological 

characteristics and the observed nutrient removal rates from previous harvests. 
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Figure 3.1. Study area located in Brandenburg, Germany (a), study site “Koppel 17” (b), design 

of the field experiment divided into six vegetation zones and three cutting treatments and the 108 

sampling points (c). This figure was originally published in Bazzo et al. (2024). 

To assess the impact of sward height and maturity stage on biomass production, the site was 

divided into three strips with an east-west orientation, each 16 m wide (Fig. 3.1c). To this end, the 

strips were subjected to different utilization (cutting frequency) regimes to generate varying growth 

heights and maturity stages of the grassland vegetation. In north-south orientation, the site is 

additionally divided into six vegetation zones according to the existing species composition. 

a b 

c 
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3.2.2 Data acquisition 

The data collection of the experimental field consists of two approaches: the canopy height 

estimated through UAV data and field measurements on the ground. The methodology of both 

methods is presented in the subsequent sections. Table 1 summarizes the date of AGB biomass 

sampling in each field campaign with the number of sampling points in each cutting system. 

 

Table 3.1. Days on which field measurements were conducted, along with the corresponding 

number of samples and plots. 

 

Cutting date 

Cutting systems frequency Number of samples per 

date 

(n) 

Year of collection Two-

cut 

Three-

cut 

Four-

cut 

2022 

18 May   X 36 

17 Jun X X X 108 

03 Aug  X X 72 

14 Sep X X X 108 

Total number of samples per 

treatment 

72 108 144 ntotal= 324 

 

UAV data collection 

The UAV used for data collection in this study was the DJI P4 Multispectral drone. It has a 

multispectral camera that records data in five narrow spectral bands (Red, Green, Blue, NIR and 

RedEdge) and an RGB camera for capturing conventional visible imagery. Although the UAV is 

equipped with a multispectral sensor, only the RGB data were utilized for this study, given that our 

primary objective was to evaluate the use of a Canopy Height Model rather than to analyze spectral 

data. The higher resolution of the RGB images makes them more suitable for generating detailed 

Digital Elevation Models (DEMs) that provide a more accurate representation of the canopy 

structure. In this study, the drone was flown at a height of 37 m aboveground level, leading to a 

ground sample distance of two cm/pixel for the RGB images. The image overlap was 

approximately 80 % forward and 60 % sideward. Camera settings were adjusted to one frame per 

two seconds (0.5 Hz), with fixed aperture and exposure according to the lighting conditions. As a 

result, the aperture and exposure settings varied between the acquisition dates. Four flights were 

conducted with compatible dates with the reference sample field data collection (Table 1) to obtain 

data for the plant height derived from the Canopy Surface Model. Another four additional flights 

were conducted after harvest to capture the exact dimension and position of the cutting area in the 

plots, since the mechanical harvest usually leads to slightly differences in the plot harvest area 
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length (Table 3.2). 

Table 3.2. Acquisition dates of UAV-derived data and ground control point errors (XYZ 

direction) in cm. 

Date 
X error 

(cm)* 

Y error 

(cm)* 

Z error 

(cm)* 

XY error 

(cm)** 

Total error 

(cm)*** 

RMSE 

reprojection 

error (pix) 

2022-05-16 1.648 2.437 0.668 2.943 3.018 0.708 

2022-05-19 1.100 1.237 0.519 1.655 1.735 0.660 

2022-06-14 0.643 0.660 0.364 0.922 0.991 0.785 

2022-06-16 0.693 0.773 0.350 1.038 1.096 0.729 

2022-08-02 0.960 0.484 1.089 1.075 1.530 0.655 

2022-08-04 0.866 0.928 1.391 1.269 1.883 0.567 

2022-09-14 0.970 0.586 1.156 1.133 1.619 0.722 

2022-09-14 0.966 0.677 1.214 1.180 1.693 0.714 

2022-09-29 0.969 0.928 0.302 1.342 1.376 0.736 

*X, Y, Z error (cm) - difference in the corresponding direction between source (measured) value 

and estimated by Agisoft for marker. **XY error (cm) - planar error for marker. ***Total error 

(cm) - the distance between source and estimated location for marker. 

 

Additionally, a bare-ground model was obtained from a flight on September 30, 2022. For 

accurate geo-referencing, eleven ground control points were evenly distributed across the 

experimental site with fixed positions throughout all growth seasons. The coordinates of the GCPs’ 

centers were obtained with a global navigation satellite system (GNSS) receiver (Viva GNSS GS 

10, Leica Geosystems AG, Switzerland) an accuracy of approximately one centimeter in position 

and one and a half centimeters in height. 

Reference ground data collection 

Compressed canopy height (RPM-CH) was measured with a self-constructed rising plate meter 

(RPM). Disc diameter was 30 cm and disc weight was 238 g, resulting in a 3.4 kg/m2 pressure. 

The plots (1.5 m x 1.5 m) were manually measured with the RPM at five different points. From the 

five replicates per plot, an average RPM-CH value was calculated. 

Fresh biomass samples were collected by harvesting the entire plot area mechanically by a 

forage harvester model HEGE 212. The fresh biomass (FBM) weight for each harvested plot was 

determined by weighing the clipped biomass per plot. Subsamples of each plot were taken, dried 

in a forced air drier at 65°C to a constant weight, and reweighed to determine dry biomass (DBM) 
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yield per unit ground area. Biomass values were upscaled to grams per m2. Owing to slightly 

differing plot sizes, the area of each plot was double-checked on-site with a tape measure to 

determine the correct upscaling factor per hectare and re-calculated based on a high-resolution 

UAV-derived orthomosaic from all sampling dates. 

The collected data from this experiment were affected by two types of disturbance: 1) lodging; 

(Fig. 3.2a) and 2) mole hills (Fig. 3.2b). Each plot was assessed individually on all field campaign 

dates to analyze field disturbances related to lodging. The assessment involved manually 

classifying each plot based on the spatial extent of lodging. The lodging classification was then 

used to group the plots into three categories: (1) no lodging, for plots that showed no signs of 

lodging; (2) partial lodging, for plots with less than 50% of their grass area affected by lodging; 

and (3) severe lodging, for plots with more than 50% of their grass area affected by lodging.  

(a)  (b) 

Figure 3.2. Occurrence of lodging in the field (a), presence of mole hills in the field (b). 

 

As in most cases, the grass covered the presence of molehills; we analyzed the images captured 

by the UAV after cutting to assess this disturbance (Fig. 2b). The plots were divided into two 

categories: those with mole hills and those without. Using this methodology, we could accurately 

identify the presence of molehills, even when they were not initially visible in the field. 

3.2.3 Image data processing 

The acquired images were processed in the SfM software Agisoft PhotoScan v.1.3 (Agisoft Ltd., 

St. Petersburg, Russia). After an initial image alignment, the GCPs were placed in the images for 

accurate data georeferencing. Subsequently, the image alignment was run using ‘high’ quality 

setting, and the dense point cloud was built using ‘high’ quality settings and ‘mild’ depth filtering 

to preserve finer details of the sward (Viljanen et al., 2018). Based on the eleven validation GCPs 

(vGCPs), error and RMSE were estimated for X, Y and Z coordinates for all the dates (Table 3.2).  

A DSM (Digital Surface Model) was generated and exported from the point cloud as a TIFF file. 
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The DSMs had a spatial resolution of two cm/pixel horizontally. The base model DSM (T0) from 

each sampling date was subtracted from the Digital Terrain Model (DTM) obtained through aerial 

imaging of the bare ground after harvest to derive canopy height metrics. Canopy height metrics 

were calculated in QGIS, using zonal statistics with a polygonal shape file that represented the 

plots outline. 

3.2.4 Statistical analyses 

Statistical analysis was performed using R programming environment version 4.2.2 (R Core Team, 

2022). To compare the performance of the mean UAV-derived canopy height model with the field 

measurements of canopy height and dry biomass, linear regression analyses were performed. Six 

scenarios, including the disentangled and joint effects of different disturbances, were investigated: 

a) no lodging plus molehills, b) partial lodging plus molehills, c) severe lodging plus molehills, d) 

no disturbances, e) partial lodging without molehills, and 6) severe lodging without molehills 

(Table 3.3).  

For the linear regression analyses, the R function “lm()” from the R package “stats” was 

applied. For error estimation of the model, the coefficient of determination (R²), the relative root 

mean square error (rRMSE), and the Pearson correlation coefficient (r) were computed. 

3.3 Results 

3.3.1 Orthomosaics and canopy surface models  

The orthomosaics and Canopy Height Models (CHMs) for the four sampling events in 2022 are 

presented in Figure 3.3. The sampling collection was conducted aligned with the cutting events, 

with the number of samples varying according to the treatment and date as presented in Table 3.1.  

On May 18 (Fig. 3.3ab), observation was limited to four-cut system plots, revealing relatively 

low canopy heights indicative of early-season growth. On June 17 (Fig. 3cd) samples from all 

treatments were gathered and the differentiation in canopy heights becomes evident. The four-cut 

system areas, having undergone an earlier cut, presented a markedly reduced canopy height 

compared to the two and three-cut systems which experienced their first cut of the year, resulting 

in taller standing biomass. 

In August (Fig. 3.3ef), the sampling included plots from the three- and four-cut systems, all of 

which were in a regrowth phase. Despite this, the four-cut system plots exhibit taller canopies, 

which may suggest a rapid recovery or a denser regrowth pattern. 

By September 14 (Fig. 3.3gh), with samples taken from all cutting treatments, we observed a 

more uniform canopy height across the plots. This final observation suggests an equilibration in 

growth patterns, possibly due to the plants reaching a growth ceiling or similar recovery responses 
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post the last cutting events, resulting in a more homogenized canopy structure across the treatments. 

 

Figure 3.3. Orthomosaics (left panels) and corresponding Canopy Height Models (CHMs) (right 

panels) for survey dates in 2022: (a) and (b) May 18, (c) and (d) June 17 (e) and (f) August 03, (g) 

and (h) September 14. 
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3.3.2 Effect of field disturbances on UAV-derived canopy height models 

A linear model was applied to assess the relationship between the UAV canopy height model and 

the reference canopy height obtained from field measurements using an RPM device to assess the 

effect of field disturbances on height estimation accuracy in grasslands. The results, displayed in 

the graphs in Figure 3, revealed a high R² (0.93) between the two models for the plots which were 

not influenced by disturbances in the field (Fig. 3.4a). The positive slope of the regression line with 

values smaller than one suggests that the UAV canopy height model tended to underestimate the 

RPM canopy height slightly.  When observations with disturbances such as lodging or molehills 

were added (Fig. 3.4b), the R² slightly decreased to 0.92, and a lower rRMSE of 31.28% was 

observed, suggesting that while disturbances introduce some variability, the UAV model maintains 

a strong predictive relationship with the RPM measurements. The regression equation 

demonstrated a similar trend to the graph in Figure 3.4a (i.e., no disturbance), with a slight 

underestimation of the RPM canopy height by the UAV canopy height model. These findings imply 

that disturbances in the field, while affecting the estimation error to some extent, did not notably 

diminish the overall performance of the UAV-derived canopy height models. 

 

 
Figure 3.4. Relationship between UAV-derived Canopy Height Model and RPM Canopy Height 

Model in the absence (a) and plus the presence of field disturbances (b). 

Further analyses examined the relationship and regression lines between the canopy height 

model and RPM canopy height under specific disturbance conditions (Table 3.3). The analyses 

revealed consistently high R² between the two models across different disturbance scenarios. 

The results indicated that even when the disturbances were included in all six scenarios, they 
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had a minimal effect on the correlation and regression lines. In all scenarios, the R² values between 

RPM canopy height and UAV canopy height remained robustly above 0.91, as presented in Table 

3.3. The relative RMSE values ranged from 32.5% to 38.1% for different disturbance scenarios, 

indicating a strong predictive relationship regardless of the presence of disturbances. 

Table 3.3. Comparison of relative RMSE, determination, and correlation coefficients between 

UAV-derived Canopy Height Model and RPM Canopy Height Model under different lodging and 

molehill disturbance scenarios. 

Molehills Lodging rRMSE (%) R2 r 

Molehills No Lodging 38.1 0.92 0.96 

Molehills Partial Lodging 32.7 0.93 0.96 

Molehills Severe Lodging 33.9 0.92 0.96 

No Molehills No Lodging 35.8 0.93 0.96 

No Molehills Partial Lodging 32.5 0.93 0.96 

No Molehills Severe Lodging 33.4 0.91 0.95 

 

The regression lines also showed only minor variations, with the slope and intercept values 

changing slightly (Figs. 3.5a-f). More specifically, the presence of severe lodging plus molehills 

(Fig. 3.5c) or partial lodging and molehills (Fig. 3.5b) had limited impact on the correlation and 

regression lines. The R2 values remained above 0.91, and the regression lines demonstrated similar 

trends to the undisturbed scenario (Fig. 3.5d). Similarly, when disturbances were limited to severe 

or partial lodging without molehills, the R² and regression lines remained consistent with the 

undisturbed scenario (Figs. 3.5 d-f).  
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Figure 3.5. Relationship analyses of UAV-derived Canopy Height Model and RPM Canopy 

Height Model under different field disturbance conditions. Regression lines depict observations 

without any disturbance (black) and observations without disturbance plus observations without 

disturbance plus observations with disturbance (red). 

3.3.3 Effect of field disturbances on the correlation between UAV-derived canopy 

height models and dry biomass  

The impact of field disturbances on the relationship between dry biomass and UAV-derived canopy 

height models was explored under the two conditions of no disturbances and with disturbances 

(e.g., lodging and molehills). Contrary to the relationship between RPM canopy height and UAV-

derived height, the results indicated that the estimation of the UAV-derived dry biomass using 

UAV-derived canopy height is more affected by field disturbances (Figs. 3.6 a, b). When there 

were no disturbances in the field, there was a strong relationship between UAV canopy height and 

observed dry biomass, with an R² value of 0.89 (Fig. 3.6a). However, when disturbances such as 

lodging and molehills were present, the R² value dropped to 0.75 (Fig. 3.6b). Besides, the intercept 

and slope values differ noticeably between the two cases, indicating that such levels of disturbance 

will lead to a substantial overestimation of the grassland dry biomass. The slope of the linear 

regression line increases in the presence of disturbance. This indicates that for one m unit of UAV 

canopy height, the presence of disturbance resulted in overestimation by up to 500 g m-2 

(difference between the slopes 1830 and 1324). 
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Figure 3.6. Effect of no disturbances (a) and field disturbances (b) on correlation between UAV 

Canopy Height Model and Dry Biomass. 

 

Further, we explored the relationship between observed dry biomass and the UAV canopy 

height under different disturbance conditions, i.e., six previously mentioned scenarios (Figs. 3.5 a-

f). The results showed that the accuracy of UAV-derived dry biomass estimates is highly dependent 

on the type and severity of field disturbances, as demonstrated in Table 3.4.  

 

Table 3.4. Comparison of determination, and correlation coefficients between observed dry matter 

and UAV-derived Canopy Height Model under different lodging and molehill disturbance 

scenarios. 

Molehills Lodging R2 r 

Molehills No Lodging 0.87 0.93 

Molehills Partial Lodging 0.80 0.89 

Molehills Severe Lodging 0.70 0.83 

No Molehills No Lodging 0.89 0.94 

No Molehills Partial Lodging 0.82 0.90 

No Molehills Severe Lodging 0.76 0.87 

 

The presence of molehills with different lodging scenarios (Figs. 3.7b, c) affects the 

relationship between biomass and the UAV-derived canopy height model. In the presence of 
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molehills and no lodging (Fig. 3.7a), the R² value decreases slightly from 0.89 to 0.87, and a minor 

shift in the regression line. This suggests a small impact of molehills on biomass estimation. 

In the scenarios of partial lodging and severe lodging with the presence of molehills (Figs. 

3.7b, c), there is a decrease in R2 and a noticeable shift in the regression line. In the case of severe 

lodging and molehills, there is a more pronounced decrease and a shift in the regression line. This 

highlights a substantial impact of both factors on biomass estimation, likely resulting from 

significant changes in vegetation structure and ground surface characteristics. When examining 

scenarios of partial and severe lodging without molehills, the results indicate a decrease in the 

correlation between biomass and UAV-derived canopy height models compared to the undisturbed 

scenario (Figs. 3.7e, f).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Relationship between observed dry matter and UAV-derived canopy height model 

under different field disturbance conditions. Regression lines depict observations without any 

disturbance (black) and observations without disturbance plus observations with disturbance (red). 

3.3.4 Effect of cutting system and field disturbances on the relationship between 

UAV-derived canopy height models and dry biomass. 

Our results indicate that the presence of two disturbances, i.e., lodging and molehills, affect the 

relationship between UAV canopy height and dry biomass differently depending on the cut system 

(Figs. 3.8 a-f).  

The results show that the intercepts and slopes of the regression lines vary among different 

cutting systems and under different disturbance scenarios. In all cutting systems, the slope of the 

linear regression line increases with the presence of disturbance. In the four cut system (Figs. 3.8 

a, b), disturbances had a minimal effect, with the relationship showing only slight changes in slope. 
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The three cut system experiences a decrease in biomass with disturbances, accompanied by a 

steeper slope (Figs. 3.8 c, d). The two cut system shows an upward shift in biomass values and a 

steeper slope when disturbances are present but with a decrease in R2 value (Figs. 3.8 e, f). This 

result suggest that disturbances can influence the intercept and slope, altering the biomass 

estimation and potentially introducing biases. 

 

 
Figure 3.8. Effect of no disturbances (figs. a, c, e) and field disturbances (figs. b, d, f) on 

relationship between UAV-derived canopy height models and observed dry biomass under 

different cutting systems in a heterogeneous grassland. 
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The comparison of the number of samples and the frequency of disturbances across treatments, 

as presented in Table 3.5, provides additional insights. The variations in the number of samples 

across the cutting treatments can be attributed to the different cutting frequencies. The four cut 

system, with more frequent harvests, provided more sampling opportunities, resulting in a more 

significant number of samples. Conversely, the two cut system, with fewer harvests, had a smaller 

sample size. 

Table 3.5. Total number of samples and frequency of different disturbances for each treatment. 

Treatment 
Total Number of 

samples 

Partial Lodging 

Frequency 

Full Lodging 

Frequency 

Molehills 

Frequency 

2 cuts 72 33% 24% 52% 

3 cuts 108 18% 22% 36% 

4 cuts 144 8% 13% 20% 

3.4 Discussion 

The primary objective of this study was to assess the applicability of UAV canopy height models 

as indicators of biomass in grassland environments, while also considering the potential influence 

of disturbances. Although we fitted linear models to examine the relationship between canopy 

height and biomass, the focus was not on developing a direct biomass estimation model but rather 

on evaluating how disturbances, such as lodging and molehills, affect the predictive ability of these 

models under varying conditions. 

Several studies have evaluated the correlation between UAV-derived canopy height models 

and ground-measured height across various vegetation types and environmental conditions 

(Batistoti et al., 2019; Borra-Serrano et al., 2019; Grüner, Astor and Wachendorf, 2019; Lussem 

et al., 2019). The relationship between the two measures has been found to be strong even with the 

presence of disturbances, indicating that UAV-derived canopy height models can accurately 

estimate vegetation height. For example, Lussem, Schellberg and Bareth (2020) found that lodging 

in mature swards led to an underestimation of canopy height, despite a strong R2 value (0.75 - 0.96) 

between UAV-derived and ground-based measurements. Similarly, Kümmerer and Noack (2023) 

found as well a strong R2 value (0.95) between UAV-derived canopy height measurements and 

ground-based measurements. Yet, the accuracy of the measurements was affected by variations in 

crop height and structure, as well as the presence of crop lodging. 

Similarly, our results indicate that the UAV-derived canopy height model shows robustness in 

estimating canopy height even in the presence of disturbances. Nonetheless, it is crucial to consider 

a potential limitation. The estimated vegetation height by UAV-derived, in this case, is a result of 

interpolation from a point cloud, indicating that it is more appropriate to consider it as an indicator 

of the general shape of the vegetation canopy rather than an exact measurement of its height (Van 
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Der Merwe, Baldwin and Boyer, 2020).  

When disturbances such as lodging and molehills are present in the field, an impact on the 

canopy structure is expected (Wilke et al., 2019). Lodging, for instance, can cause the canopy to 

become more compact and horizontal, leading to an underestimation of the canopy height. In 

contrast, molehills can cause localized variations in the canopy height, resulting in measurement 

errors. Thus, despite the precision of UAVs in measuring the distance between the top of the canopy 

and the ground, these measurements may not reflect the actual canopy height under certain 

conditions where plants may be bent or compressed. Therefore, the interpretation of UAV-derived 

canopy height measurements should always consider the specific ecological conditions of the field 

in question. 

In this case, the fundamental question is whether this vegetation height estimation method can 

provide a consistent parameter for precise biomass estimation in grasslands, especially in highly 

heterogeneous fields. Our findings suggest that while the relationship between the UAV-derived 

canopy height model and the reference canopy height from field measurements may not be severely 

impacted by these disturbances, the link between the UAV-derived canopy height model and 

biomass can be adversely affected.  

In recent years, several studies have been conducted to investigate the relationship between 

UAV-derived canopy height and biomass in grasslands. Overall, there was a range of R² values, 

reflecting associations between canopy height and biomass that varied from moderate (R² = 0.41–

0.59) to high (R² = 0.76–0.88). Nonetheless, only a few authors highlight field disturbances as a 

factor contributing to the decrease in biomass estimation accuracy. For example, Van Der Merwe, 

Baldwin and Boyer (2020) noted that the accuracy of biomass estimation using UAV-derived 

canopy height was reduced in areas with high levels of lodging. Lussem et al. (2019) suggest that 

the high rodent activity in a few plots per growth led to higher uncertainties in canopy height 

calculation, which, in some cases, resulted in negative sward height values and unreasonable 

biomass values. Their decision to exclude these plots improved the biomass estimation, although 

these disturbances are likely to occur in the field. Roth and Streit (2018) examined different cover 

crops, including two clover species, and achieved an R2 of 0.58. When plants, which were growing 

close to the ground or even lodging, were excluded from the regression model, R2 increased to 

0.74. They concluded that all examined remotely-sensed characteristics lose their suitability as 

biomass predictors if lodging occurs.  

The reason for this is that the UAV-derived canopy height model uses the height of the plants 

as a proxy for biomass, assuming that taller plants have more biomass. However, different 

disturbances in the field can cause a reduction or increase in plant height without necessarily 

affecting the amount of biomass. This means that UAV-derived canopy height models should be 

interpreted with caution when disturbances such as lodging are present, as they can affect the 

relationship between height and biomass. Despite this, our results for biomass estimation using 

UAV-derived canopy height models (R² = 0.75) indicate that the estimates remain reasonably 

accurate even in the presence of disturbances. UAV-based models can capture better the full spatial 
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variability of biomass across the entire field, offering a more comprehensive view compared to 

sample-based methods. Therefore, while careful interpretation is needed in disturbed areas, UAV-

derived canopy height models continue to be a valuable tool for biomass estimation in 

heterogeneous grasslands.  

We also observed that the cutting system may influence the relationship between dry biomass 

and UAV-derived canopy height, likely due to variations in grass height and density across 

treatments. Additionally, lodging could be a contributing factor to the variation in the association 

between dry biomass and UAV-derived canopy height across different cutting systems. 

Specifically, when grasslands are managed with cutting systems that lead to taller grasses, such as 

the two and three cut systems, lodging is more likely to occur, where grass stems bend or break 

due to their weight. Then, it is possible that irregular growth patterns caused by lodging and 

molehills can lead to inaccurate representations of the actual canopy height, resulting in over- or 

under-estimations of aboveground biomass. 

The results are consistent with those of Borra-Serrano et al. (2019), indicating that the cutting 

system and harvest day influence the correlation between UAV-derived canopy height and 

biomass. Similarly, Lussem et al. (2019) found that biomass estimation accuracy was influenced 

by the growth stage of the grassland, with higher accuracy achieved at early growth stages. Grüner, 

Astor and Wachendorf (2019) investigated the use of an SFM approach based on UAV imaging to 

predict the biomass of heterogeneous temperate grasslands. They found that biomass estimation 

accuracy was influenced by the grassland heterogeneity, with higher accuracy achieved in less 

heterogeneous areas. Additionally, the study found that cutting frequency had an impact on the 

accuracy of biomass estimation. 

An additional consideration is the study design's impact on the results. This is because in order 

to be able to simulate and evaluate different frequencies of cutting systems, the frequency of data 

collection varies among the treatments. In this way, the number of samples and disturbance 

frequency have been shown to influence sensitivity. A more significant number of samples allows 

for a more representative analysis and increased statistical robustness. Higher frequencies of 

disturbances can introduce variability and potentially affect the relationship between canopy height 

and dry biomass. Consequently, the relationship and regression results may be more sensitive to 

disturbances in treatments with less sample, such as the two cut system. 

The number of points influenced by lodging can also impact the results and should be 

considered when interpreting the findings. In the case of the two cut and three cut systems, which 

have more sample points affected by lodging, lodging is expected to exert a more significant 

influence on the overall results compared to the four cut system. The increased number of sample 

points affected by lodging in the two and three cut system may introduce more variability into the 

dataset. Ultimately, the balance between sample size, disturbance frequency, and lodging influence 

can contribute to the sensitivity of the relationship. 

Overall, the results highlight the need for innovative techniques to enhance biomass estimation 

accuracy using UAV-derived canopy height models. To address this issue, we propose that new 
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techniques should be tested to improve biomass estimation accuracy using UAV-derived canopy 

height models. One approach is to incorporate other data sources, notably spectral reflectance data. 

Such data can provide additional information about the health and vigor of the plants in conjunction 

with ground-based measurements and broader agronomic considerations that can yield a more 

comprehensive ecological perspective. Another approach is to develop more sophisticated models 

that consider the effects of lodging on vegetation height and biomass. Advanced machine learning 

algorithms could be employed to develop these models that can better account for the complex 

impact of disturbances while also assimilating supplemental data sources, leading to more accurate 

biomass estimation. 

However, it is important to note that lodging quantification in mixed grasslands is challenging, 

especially in contrast to graminoid monoculture crops like wheat or barley (Lussem, Schellberg 

and Bareth, 2020). This is due to the diverse emergence of various species throughout the growing 

season in grasslands, a diversity that varies both spatially and temporally. In this way, future 

research should address these complexities to advance the accuracy of biomass estimation in real-

world grassland ecosystems. 

3.5 Conclusion  

Our results suggest that UAV-derived canopy height models can be useful for estimating biomass 

in heterogeneous grasslands, but their accuracy can be affected by disturbances such as lodging 

and molehills, which alter the height distribution of the canopy. The analysis revealed that while 

these models are robust in estimating vegetation height, the correlation between canopy height and 

dry biomass is more sensitive to disturbances, which can lead to over- or underestimation of 

biomass. Furthermore, the impact of disturbances varied among different cutting systems, 

highlighting the influence of management practices. However, despite these limitations, the UAV-

derived canopy height model still produced reasonably accurate biomass estimations (R² = 0.75) 

and offers a significant advantage over sample-based methods by capturing the full spatial 

variability of biomass across the entire field. 

Nonetheless, these findings emphasize the need for caution when interpreting UAV-derived 

canopy height data as direct biomass indicators, particularly in disturbed fields. Although UAV-

derived canopy height models have proven to be valuable tools for biomass estimation, particularly 

in controlled environments, relying exclusively on these models in heterogeneous and disturbed 

grasslands can introduce significant uncertainties. While previous studies have shown that 

multispectral data can enhance biomass estimation by capturing additional vegetation 

characteristics, the focus of this study was to evaluate the robustness of canopy height models using 

only RGB data. However, the multispectral data collected will be explored in future work as part 

of our broader objective to improve biomass estimation accuracy. By combining height-based and 

spectral data, we aim to develop a more comprehensive and reliable framework for biomass 

estimation in complex grassland ecosystem. 
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Abstract 

Monitoring grasslands presents significant challenges due to temporal and spatial dynamics in their 

vegetation. This is particularly pronounced in wet grasslands, where moisture dynamics also impact 

vegetation patterns. Recent advancements in data acquisition and analysis via Unmanned Aerial 

Vehicles (UAVs) have shown potential for a more comprehensive understanding of vegetation 

dynamics. However, current UAV-based methods focus predominantly on structural and spectral 

data analysis. This often overlooks the horizontal heterogeneity within vegetation. This study 

addresses this gap by integrating texture analysis, alongside structural and spectral data, to enhance 

aboveground biomass (AGB) estimation. The research was conducted in a heterogeneous wet 

grassland in eastern Germany under three different cutting frequencies. Regular UAV flights were 

carried out to obtain RGB (Red, Green, and Blue) and multispectral images, analyzed alongside 

ground-reference data from 108 plots, to evaluate canopy height and biomass. We tested the 

performance of Random Forest and Partial Least Squares Regression models for AGB estimation 

considering different combinations of features including canopy height model vegetation indices 

and texture analysis. The results demonstrate that texture analysis when combined with traditional 

spectral and structural data, enhances predictive accuracy, yielding the best R² values of up to 0.84 

for AGB and reducing the relative root mean square errors to 26.6 %. The results underline the 

potential of combining UAV-based features in AGB estimation of heterogeneous grassland 

ecosystems offering a path forward for more effective ecological monitoring and sustainable 

grassland management. 

Keywords: remote sensing, vegetation, ecological monitoring, canopy height, texture, agriculture 

digitalization 
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4.1 Introduction 

Grasslands are the world’s most extensive terrestrial ecosystem. They are pivotal in providing 

ecological and economic services, including wildlife habitat, erosion control, carbon sequestration, 

and sources for biofuels (Egoh et al., 2016; Bengtsson et al., 2019). Wet grasslands, a crucial subset 

of these ecosystems, are especially vital for biodiversity conservation and water regulation (Chris 

B. Joyce, Simpson and Casanova, 2016). Therefore, monitoring the status of wet grasslands is 

important for understanding their ecological health, managing their biodiversity, and maintaining 

hydrological balance (Čop, Vidrih and Hacin, 2009). Nevertheless, the complexity of these 

environments introduces significant challenges for ecological assessment and monitoring, 

demanding detailed and continuous approaches to ensure effective conservation and management 

(Barrett et al., 2014).  

Accurately estimating aboveground biomass (AGB) is essential for managing these 

ecosystems, and facilitating informed land management decisions and ecological monitoring 

practices (Jones and Donnelly, 2004; Le Clec’h et al., 2019). For example, knowing the biomass 

levels can help farmers determine the optimal times for grazing or mowing, improving both yield 

and pasture health (Psomas et al., 2011). Ecologically, monitoring AGB is crucial for 

understanding carbon sequestration dynamics, as grasslands play a significant role in capturing and 

storing carbon (Bengtsson et al., 2019). Moreover, it supports in maintaining biodiversity by 

ensuring that different plant species have the opportunity to grow and thrive, thus supporting a 

diverse ecosystem (Tilman, Wedin and Knops, 1996). Yet, traditional methods for assessing AGB, 

such as physical measurements and visual evaluations, are labor-intensive and often fail to capture 

the inherent spatial variability (Borra-Serrano et al., 2019). Furthermore, these methods are limited 

in assessing intra-plot spatial variability, which is crucial for understanding grassland dynamics 

(Bareth and Schellberg, 2018).  

Satellite remote sensing has become a powerful tool for monitoring agroecosystems, including 

wetlands (Schmidt and Skidmore, 2003; Klemas, 2011), over the past few decades. It allows for 

the collection of data over large areas and at frequent intervals, providing valuable insights into 

vegetation health, biomass estimation, and changes in land cover (Xue and Su, 2017). However, 

satellite remote sensing has some limitations, such as lower spatial resolution and dependence on 

clear-sky conditions for accurate image acquisition (Younes, Joyce and Maier, 2021).The advent 

of UAV-based remote sensing offers a paradigm shift in grassland monitoring. High-resolution 

UAV image, including digital imaging and photogrammetry, presents an efficient alternative to 

traditional methods, allowing for the acquisition of detailed data at various spatial and temporal 

scales (Wachendorf, Fricke and Möckel, 2018; Pranga et al., 2021). UAVs are particularly effective 

in capturing small-scale heterogeneities that are often overlooked by traditional methods or satellite 

remote sensing (Michez et al., 2020). 

Regarding the image methods, UAVs are commonly used to produce 3-D data using structure 

from motion photogrammetry and spectral information (Michez et al., 2020). Structure from 
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motion photogrammetry in particular leverages structural information, with canopy height playing 

a pivotal role in estimating biomass (Lussem et al., 2019). This process involves computing 

vegetation height from a UAV photogrammetric Digital Surface Model (DSM) in conjunction with 

a Digital Terrain Model (DTM) (Possoch et al., 2016). The canopy height data provides valuable 

spatial insights into grassland vegetation traits such as mean, maximum, and median height 

(Lussem et al., 2022). 

While structural height data obtained from UAVs are crucial for understanding spatial patterns 

of canopy height within grassland vegetation, this data alone cannot capture the biochemical 

properties or the spectral diversity of species present which can be important for biomass 

estimations (Grüner, Astor and Wachendorf, 2021). To address these limitations, spectral sensors 

come into play. These sensors quantitatively measure multi- and hyperspectral reflectance data and 

enable the calculation of vegetation indices (VIs) (Moeckel et al., 2017) which could be employed 

to estimate various grassland attributes, including biomass (Askari et al., 2019). These indices, 

while informative, must be interpreted with caution as they can be influenced by background color 

at low biomass levels and saturation at high biomass and LAI levels (Grüner, Astor and 

Wachendorf, 2021). 

Another important feature that can be extracted from remote sensed images is the texture 

analysis (Yue et al., 2019). Texture analysis refers to the study of spatial patterns and statistical 

relationships among pixel gray-level values within a defined area of interest in an image (Haralick, 

Shanmugam and Dinstein, 1973). These texture features provide additional data layers correlating 

with vegetation's structural and heterogeneity characteristics (Dos Reis et al., 2020). In grassland 

ecosystems, texture analysis has the potential to play a pivotal role in improving biomass 

estimation, particularly for species with heterogeneous canopies (Grüner, Wachendorf and Astor, 

2020). 

With the recent development of artificial intelligence technology, it has become possible to 

combine multiple systems’ features to predict a target property (e.g. biomass). Yet, there’s a 

multitude of methods available and it's still unknown which features and how frequently the 

corresponding data must be collected for reliable predictions. The latter is particularly important to 

optimize management costs associated with equipment maintenance and data analysis to 

effectively support decision making. It was also found that, although the integration of UAV-

derived structural and spectral data shows great promise, there is a lack of research conducted at 

the real field level, incorporating management practices and covering multiple growing seasons 

(Bazzo et al., 2023). This gap needs to be addressed to evaluate the practical benefits of this 

integration in terms of improving biomass estimation and grassland management strategies.  

Therefore, our study aims to evaluate UAV-feature integration techniques in a real-world 

grassland field, to identify suitable techniques and remote-sensed features that allow reliable, 

spatially explicit biomass predictions. By focusing on a heterogeneous grassland, our approach 

addresses the challenges associated with spatial and temporal variability in vegetation growth and 

composition. The specific objectives of this study are: (1) to develop aboveground biomass 
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prediction models for a heterogeneous wet grassland for two growing seasons under three cutting 

systems; (2) to compare the prediction accuracy of these models with and without the integration 

of features; (3) to identify key variables of the resulting models. 

4.2 Study site and experimental design 

The research site is located approximately 48 kilometers northwest of Berlin, near the village of 

Paulinenaue (52°41'28" N, 12°44'16" E), within the federal state of Brandenburg, Germany (Fig. 

4.1a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. (a) Study area located in the federal state Brandenburg, Germany (b) satellite image of 

the study area from Google Earth Pro, and (c) design of the field experiment divided into three 

cutting treatments and 108 sampling points. 
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Encompassing an area of 1.3 hectares of a wet grassland within the "Havelländisches Luch", 

a shallow, drained fen peatland complex (Fig. 4.1b). The climate is classified as humid continental 

with warm summer, characterized by an average annual temperature of 9.2 °C and mean annual 

precipitation of 530 mm (Pohl et al., 2015). 

In 2013, the study site was initially seeded with a mixture dominated by Festuca arundinacea, 

followed by a reseeding with Lolium perenne in August 2018 at 20 kg/ha. Annual fertilization 

practices were managed to address the nutrient requirements of the site, with PK fertilization in 

April and N fertilization as required by the fen's ecological characteristics. 

To represent the most typical farmers practice, the site was divided into three east-west-

oriented strips, each measuring approximately 16 meters in width and 200 meters in length (Fig. 

4.1c). These strips were subjected to different cutting frequencies, to study the effects on grassland 

vegetation growth and maturity. The treatments ranged from two to four cuts per year, aligned with 

vegetation phenology and soil moisture conditions, facilitating a comprehensive analysis of 

grassland dynamics over two years. The study encompassed 108 sampling points, divided into 36 

plots per treatment. Throughout the two-year study period, field measurements were synchronized 

with the cutting events.  

4.3 Material and methods  

Figure 4.2 depicts the schematic workflow of the methodologies used to fulfill the three objectives 

of the research. These include four steps: 1) Data collection (section 3.1.); 2) image processing 

(section 3.2.); 3) feature extraction (section 3.3.); and model development and statistical analysis 

(section 3.4.).  
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Figure 4.2. Schematic workflow of data acquisition, image processing, feature extraction, model 

development, and statistical analysis. 
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4.3.1 Data collection 

To obtain essential reference data, we conducted field measurements in 2022 and 2023. The data 

collection involved two levels: UAV image collection and ground-based field measurements. Table 

4.1 summarizes the date of sampling in each field campaign with the number of sampling points in 

each cutting system. 

Table 4.1. Days on which field measurements were conducted, along with the corresponding 

number of samples and plots. 

 

Harvest date 

Cutting systems frequency Number of samples per 

date 

(n) 

Year of collection Two-

cut 

Three-

cut 

Four-

cut 

2022 

18 May   X 36 

17 Jun X X X 108 

03 Aug  X X 72 

14 Sep X X X 108 

2023 

16 May   X 36 

07 Jun X X  72 

21 Jun   X 36 

10 Aug  X X 72 

20 Sep X X X 108 

Total number of samples per 

treatment 

144 216 288 ntotal= 648 

4.3.1.1 UAV data collection 

Data collection was performed with the DJI P4 Multispectral UAV, equipped with a multispectral 

camera for capturing five spectral bands (Red, Green, Blue, NIR, and RedEdge) and an RGB 

camera for standard visible image. The UAV was flown at an altitude of 37 meters, achieving a 

two-centimeter resolution, with 80% forward and 60% sideward image overlap for extensive 

coverage. Images were captured at two frames per second, with adjustable aperture and exposure 

settings to match varying lighting conditions. Eleven ground control points (GCPs) were evenly 

distributed across the experimental site to ensure precise geo-referencing, with their positions fixed 

throughout all growth seasons. The coordinates of the GCPs' centers were determined using a 

global navigation satellite system receiver (Viva GNSS GS 10, Leica Geosystems AG, 

Switzerland), with an accuracy of 0.3 cm horizontally. We conducted nine flights aligning them 

with compatible dates corresponding to the reference field data collection (Table 1). A bare-ground 
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model was also generated during a dedicated flight conducted on September 30, 2022. This setup 

supported the generation of a highly accurate Digital Surface Model (DSM), capturing the nuanced 

topography of the study area. 

4.3.1.2 Reference ground-based data collection 

Our reference ground data collection involved the measurement of compressed canopy height, 

AGB, and vegetation composition survey from the study plots. These methods are described as 

follows: 

Compressed Canopy Height: The variable was determined using a self-constructed rising plate 

meter (Fig. 4.3a). Measurements were conducted manually within each plot, measuring 1.5 meters 

by 1.5 meters at five distinct points to capture the structural heterogeneity (Fig. 4.3b). An average 

of canopy height values was calculated from the five replicates within each plot. 

 

 

 

 

 

 

 

 

Figure 4.3. (a) In situ grass compressed canopy height measurements by a rising plate meter and 

(b) schematic overview of point measurements inside the plot. 

Aboveground Biomass Sampling: Fresh biomass samples were mechanically collected from each 

plot using a forage harvester. The fresh biomass weight for each harvested plot was determined by 

weighing the clipped biomass from each plot. Subsamples from each plot were extracted, dried in 

a forced air drier maintained at 65 °C until reaching a constant weight, and reweighed to determine 

dry biomass yield per unit ground area. Biomass values were converted to grams per square meter. 

To account for slight variations in plot sizes, the area of each plot was validated on-site using a 

tape measure, ensuring accurate upscaling factors per hectare. These calculations were further 

refined based on a high-resolution UAV-based orthomosaic generated from data acquired on all 

sampling dates. 



CHAPTER IV 

70 

4.3.2 Image processing 

The acquired images were processed using Agisoft PhotoScan v.1.3 (Agisoft Ltd. in St. Petersburg, 

Russia). First, the images were aligned and then adjusted based on the GCPs' spatial information. 

Next, the optimized cameras command was selected. Subsequently, the image alignment process 

was executed with a 'high' quality setting to maximize the alignment’s precision. The outcome of 

this step was the generation of a dense point cloud representing the 3-D structure of the vegetation 

within the study area. In this process, we applied 'high' quality settings and 'mild' depth filtering to 

preserve fine details of the grassland vegetation, as recommended by Viljanen et al. (2018). The 

datasets from the multi-spectral camera were then radiometrically calibrated by the calibrate 

reflectance function using the calibration factors of the irradiance sensor and the gray reference 

panel. From all flights, a DSM was generated from the dense point cloud and exported as a TIFF 

file. The model obtained had a spatial resolution of two centimeters per pixel horizontally.  

4.3.3 Features extraction from the remote sensing dataset 

For each date, a polygonal shape file was created for the biomass sampling area per plot based on 

an orthomosaic obtained directly after biomass sampling. These shape files were then used to 

extract representative structural and spectral features from each plot. All the data extraction and 

processing were done using the statistical computation software R version 4.3.1 and its 

corresponding packages ‘raster’ and ‘sf’. 

4.3.3.1 Canopy height features 

For each sampling date, we generated a base Digital Surface Model (DSM) before cutting the grass 

canopy. The UAV-based canopy height metrics were derived by subtracting the Digital Terrain 

Model (DTM), obtained from aerial image of the 'bare ground' after harvest, from the DSM (DSM 

- DTM). In our study 'bare ground' refers to the field condition after harvest, where grass stubbles 

remain. These remaining stubbles are a common residue in agricultural practices. We extracted the 

following metrics: mean, minimum, maximum, standard deviation, 90th, 75th, 50th (median), and 

25th quartiles (CHmean, CHmin, CHmax, CHsd, CHq90, CHq75, CHq50, CHq25, respectively). Linear 

regression models were applied to assess the performance of UAV-based canopy height 

measurements using the plot-level field measurements as ground-truth reference. 

4.3.3.2 Vegetation indices 

A total of 16 vegetation indices (VI) were calculated with spectral bands obtained for each flight 

campaign (Table 4.2). These indices were selected based on their characterization of biochemical 

and structural traits of vegetation to be comparable to existing studies. The respective shape files 

from biomass samples were used to extract spectral features from each plot.  
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Table 4.2. Vegetation indices derived from the visible-to-near-infrared spectral region. 

Vegetation Index Equation 

Blue Normalized Difference Vegetation 

Index (Yang et al., 2004) 𝐵𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝐵𝑙𝑢𝑒)

(𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒)
 

Canopy Chlorophyll Concentration Index 

(Jago, Cutler and Curran, 1999) 𝐶𝐶𝐶𝐼 =  
(

(𝑁𝐼𝑅 − 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)
(𝑁𝐼𝑅 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)

)

𝑁𝐷𝑉𝐼
 

Chlorophyll Vegetation Index (Vincini, 

Frazzi and D’Alessio, 2008) 𝐶𝑉𝐼 =
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
×

𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

Enhanced Vegetation Index (Huete et al., 

1997) 𝐸𝑉𝐼 = 2.5 ×
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6 𝑅𝑒𝑑 − 7.5 𝐵𝑙𝑢𝑒 + 1
 

Excess Green (M. Woebbecke et al., 1995) 𝐸𝑥𝐺 = 2 𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒 

Green Chlorophyll Index (Gitelson, Gritz 

and Merzlyak, 2003) 𝐺𝐶𝐼 = (
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
) − 1 

Green Normalized Difference Vegetation 

Index (Gitelson, Kaufman and Merzlyak, 

1996) 
𝐺𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

Modified Chlorophyll Absorption in 

Reflectance Index (Daughtry et al., 2000) 

 𝑀𝐶𝐴𝑅𝐼 = [((𝑅𝑒𝑑𝐸𝑑𝑔𝑒 − 𝑅𝑒𝑑) − 0.2) × (𝑅𝑒𝑑𝐸𝑑𝑔𝑒 − 𝐺𝑟𝑒𝑒𝑛)] ×

(
𝑅𝑒𝑑𝐸𝑑𝑔𝑒

𝑅𝑒𝑑
) 

Modified Soil-Adjusted Vegetation Index 

(Qi et al., 1994) 𝑀𝑆𝐴𝑉𝐼 =  
2 𝑁𝐼𝑅 + 1 − √(2 𝑁𝐼𝑅 + 1)2 − 8 ×  (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

2
  

Normalized Difference Red Edge (Barnes 

et al., 2000) 𝑁𝐷𝑅𝐸 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)
 

Normalized Difference Vegetation Index 

(Rouse et al., 1973) 𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

Normalized Green Intensity (M. 

Woebbecke et al., 1995) 𝑁𝐺𝐼 =
𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒
 

Normalized Green Red Difference Index 

(Tucker, 1979) 𝑁𝐺𝑅𝐷𝐼 =
(𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑)

(𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑)
 

Optimization Soil-Adjusted Vegetation 

Index (Rondeaux, Steven and Baret, 1996) 𝑂𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.16
 

Renormalized Difference Vegetation Index 

(Roujean and Breon, 1995) 𝑅𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

√𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

Simple Ratio (Jordan, 1969) 𝑆𝑅 =
𝑁𝐼𝑅

𝑅𝑒𝑑
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4.3.3.3 Texture features  

Texture features were extracted from the generated MS orthomosaic using the R package 

“glcm” (Gray-Level Co-occurrence Matrix). Seven commonly used texture parameters were 

calculated to provide insights into the spatial arrangement and variability in the image: contrast, 

correlation, entropy, homogeneity, dissimilarity, second-moment, variance, and mean 

(GLCMcontrast, GLCMentropy, GLCMhomogeneity, GLCMdissimilarity, GLCMsecond-moment, GLCMvariance, 

and GLCMmean, respectively).  

4.3.4 Model development and statistical analysis  

To test the predictive power of the extracted features, two machine learning algorithms were 

employed: Random Forest (RF) and Partial Least Squares regression (PLS). These non-parametric 

algorithms were selected to address the complexities inherent in our dataset and to align our 

methods with those validated in similar studies (Oliveira et al., 2020; Pranga et al., 2021; Lussem 

et al., 2022). 

RF, an ensemble learning technique introduced by Breiman (2001), is particularly robust 

against noise and well-suited for handling remote-sensing data, which are often influenced by 

atmospheric conditions, clouds, and sensor noise. Its ability to provide accurate predictions for 

regression tasks and its insensitivity to irrelevant predictors make it an excellent choice for 

ecological studies, such as mapping plant communities or estimating biomass, where data may 

include repeated observations and significant variability. 

On the other hand, PLS is a multivariate analysis approach that has gained recognition as an 

alternative to Stepwise Multiple Linear Regression, especially in analyzing of spectral data for 

vegetation (Gong et al., 2016). The advantage of PLS lies in its capacity to handle multicollinearity 

and non-linear relationships, which are prevalent in ecological data, allowing for constructing of 

practical and empirically verified models for spectral analysis (Wang et al., 2019). 

UAV-based canopy height (CH), vegetation indices (VIs), texture feature (GLCM), and their 

combination were employed to predict dry matter yield on a plot basis. As a result, seven feature 

combinations were tested and compared. First, we built a model using only one class of features: 

1.CH, 2.VI and 3.GLCM. In the last stage, we combined structural (canopy height), spectral, and 

texture information in four new models: 4.CH+VI, 5.CH+GLCM, and 6.VI+GLCM and 

7.CH+VI+GLCM. 

Table 4.3 presents the feature sets considered in the analysis. Statistical analysis was 

performed in R. The package “caret” was chosen as a modeling framework, since it provides cross-

validation procedures and can be implemented in the machine learning algorithms selected for this 

study. 
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Table 4.3. A detailed description of feature sets with the corresponding total number of features 

for the Canopy Height Model, Vegetation Indices, and GLCM texture parameters. 

Name Description Features Included 
Total Number of 

Features 

CH Canopy Height Model  
CHmean, CHmin, CHmax, CHq90, 

CHq75, CHq50, CHq25, CHsd 
8 

VI 
Vegetation indices visible to 

near-infrared spectrum 
See Table 4 16 

GLCM 

GLCM texture features 

parameters for each image 

band 

GLCMcontrast, GLCMentropy, 

GLCMhomogeneity GLCMmean 

GLCMdissimilarity GLCMsecond-moment 

35 

4.3.4.1 Cross-validation 

In our research, we applied a nested m cross-validation (CV) approach, partitioning the data into 

three folds for the outer loop and three folds for the inner loop, chosen through a random splitting 

process and following a similar methodology used by Pranga et al.( 2021). The inner loop’s 

primary function was to calibrate the hyperparameter values and select the optimal model, while 

the outer loop was dedicated to assessing the model’s predictive capabilities for different dataset 

folds. We repeated this process five times to mitigate the impact of random variation. The nested 

CV protocol and parameter tuning were executed in R, employing the ‘caret’ package. 

Model performance was assessed using statistical metrics: Coefficient of Determination (R²), 

absolute and relative Root Mean Square Error, RMSE, and rRMSE, respectively. ANOVAs, 

followed by Tukey’s post hoc tests, were performed to identify whether a statistically significant 

difference exists between the R², rRMSE, and RMSE of compared models (datasets). We selected 

a significance level of α = 0.05. 

4.3.4.2 Hyper-parameter tuning 

Hyper-parameter tuning was performed in both machine learning models (RF and PLS) to achieve 

optimal performance as recommended in previous literature (Pranga et al., 2021). To this end, we 

conducted a systematic optimization of the hyper-parameters for employing a grid search approach, 

a systematic method of working through multiple combinations of hyper-parameter values to find 

the best solution for our models. This involves creating a 'grid' of all possible value combinations 

for the hyper-parameters we want to tune and evaluating the model performance for each 

combination to identify the most effective settings. 

For the RF algorithm, we adjusted two key hyper-parameters: 'num.trees', which is the number 
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of trees in the forest, and 'nodesize', the minimum size of the terminal nodes of the trees. The 'mtry' 

parameter, which determines the number of variables randomly sampled as candidates at each split, 

was set to its default value, which is the square root of the number of features in the dataset. The 

grid search combined 'num.trees' parameter values of 50,100, 250, and 500 and nodesize values of 

1 to 5, resulting in 20 combinations.  

For the PLS method, we tuned the number of components ('ncomp') used in the model, 

considering values from 1 to the maximum number of possible features. For example, in our model 

with 59 features (7. CH + VI + GLCM), the 'ncomp' was tuned from 2 up to 59 to determine the 

most effective number of components to use. 

4.3.4.3 Variable importance 

A conditional variable importance technique was implemented to interpret which predictor 

variables were relevant while generating an RF and PLS model. The higher the importance score, 

the more influential the predictor variable is. The relative importance of the predictor variables for 

each treatment and all data sets using RF and PLS models was calculated based on both algorithms' 

built-in feature importance measures, which are included in the ‘caret’ package of R, enabling the 

most important variables in each model run to be interpreted.  

For the RF model, the importance of each predictor was determined based on the increase in 

mean square error when the values of the variable were permuted across the out-of-bag samples. 

For the PLS model, importance was derived from the weights and coefficients of predictors within 

PLS components, with higher absolute coefficients indicating greater significance to the model's 

predictive strength. 

4.4 Results 

4.4.1 Comparison between the UAV‐derived canopy height and the canopy height 

measured with the rising plate meter 

Correlations were established first between the UAV and RPM canopy height measures per 

treatment for the two growing seasons. Examining the relationship between the pooled data for 

UAV canopy height against RPM measurements for all sampling campaigns in 2022 and 2023 

(Figs. 4.4a-b) revealed a consistent correlation across the three treatments. In 2022, the coefficient 

of determination (R²) for two-cut, three-cut, and four-cut systems were 0.93, 0.94, and 0.77, 

respectively. For 2023, the corresponding R² values were 0.89 for the two-cut, 0.90 for the three-

cut, and 0.78 for the four-cut system. The regression slopes for the UAV canopy height 

measurements relative to RPM measurements were close to 1 for most treatments, especially for 

the three-cut system in both years (0.96 in 2022 and 1.05 in 2023), which implies that the UAV 

measurements were closely related to the ground-reference data. While the R² values exhibit some 
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consistency from year to year within each treatment, this pattern does not uniformly extend across 

different cutting systems. 

 
Figure 4.4. Comparison of the mean canopy height using the rising plate meter (RPM) and the 

mean UAV-derived canopy height for aggregate annual data of 2022 (a) and 20223 (b) in grassland 

field with treatments (1) two-cut system (2) three-cut system and (3) four-cut system. The dashed 

line represents a 1:1 ratiot system. The dashed line represents a 1:1 ratio. 

4.4.2 Comparative evaluation of feature class performance for AGB prediction 

across different cutting systems 

Figures 4.5 and 4.6 show the performance of PLS and RF models built based on different feature 

classes - individual classes of CH, VI, GLCM, and their combinations - for the estimation of AGB. 

As shown, R² (Fig. 4.5) and rRMSE (Fig. 4.6) and mean values (Table B1, supplementary material) 

underscored significant differences among models. The performance of models based on individual 

feature classes (CH, VI, and GLCM) varied remarkably across the different cutting systems. 

Among these three models, the one based on CH features was generally a robust predictor regarding 

both RF and PLS in most cutting systems. Comparing the performance of the other two models (VI 

and GLCM) showed different performances depending on the cutting system or the algorithm for 

modeling (PLS or RF). In the two-cut system, the RF model showed CH as a robust predictor with 

an R² of 0.71 and an rRMSE of 29.4 %, indicating a strong correlation with AGB (Figs. 4.5a and 

4.6a). The VI feature class, with an R² of 0.73 and an rRMSE of 29.19 %, displayed similar 

predictive strength. 

Overall, the models based on a combination of feature classes (CH+VI, CH+GLCM, 

VI+GLCM, CH+VI+GLCM) showed a higher performance. Comparing these four models showed 

that those, with the CH feature class included performed better. Across different cutting treatments, 

feature combinations, particularly CH+VI+GLCM, consistently outperformed the individual-

feature models. Combining CH and VI into a single model resulted in a statistically significant 
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increase in R² (0.78) and improved the rRMSE to 25.3 %, suggesting a pronounced enhancement 

in prediction precision. The CH+VI+GLCM model for RF achieved an R² of 0.77 and an rRMSE 

of 26.6 % and for PLS an R² of 0.73 and an rRMSE of 29.1 %, slightly enhancing the model 

performance.  

 

Figure 4.5. Box-dot plots for coefficient of determination (R²) values for aboveground biomass 

(AGB) prediction, using two distinct machine learning algorithms: Partial Least Squares 

Regression (PLS) and Random Forest (RF). The models incorporate various feature classes, 

including Canopy Height (CH), Vegetation Indices (VI), and texture features (GLCM), applied 

across different grassland management treatments: two-cut (a), three-cut (b), and four-cut systems 

(c), as well as a pooled data analysis combining all treatments (d). Uppercase letters compare 

feature class performance within the same model: identical letters imply no significant differences 

while differing letters signify significant differences. Lowercase letters evaluate differences 

between the models for each feature class: identical letters indicate no significant differences, and 

varying letters denote significant differences. 
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Figure 4.6. Box-dot plots for rRMSE (%) values for aboveground biomass (AGB) prediction, using 

two distinct machine learning algorithms: Partial Least Squares Regression (PLS) and Random 

Forest (RF). The models incorporate various feature classes, including Canopy Height (CH), 

Vegetation Indices (VI), and texture features (GLCM), applied across different grassland 

management treatments: two-cut (a), three-cut (b), and four-cut systems (c), as well as a pooled 

data analysis combining all treatments (d). Uppercase letters compare feature class performance 

within the same model: identical letters imply no significant differences while differing letters 

signify significant differences. Lowercase letters evaluate differences between the models for each 

feature class: identical letters indicate no significant differences, and varying letters denote 

significant differences. 

The performance of models varied across cutting systems. The CH+VI+GLCM model in the 

three-cut system showed superior prediction accuracy, indicated by R² values of 0.87 and 0.85 for 

RF and PLS, respectively (Fig. 4.5b). It is also remarkable that in this treatment, the exclusive use 

of CH (with mean R² value of 0.82 for RF and 0.81 for PLS), showed no significant statistical 

difference compared to the models based on combined features. However, the CH+VI+GLCM 

combination resulted in a lower rRMSE (32.6 % for RF and 34.9 % for PLS) (Fig. 4.6b, Table B1, 

supplementary material). This picture was different in the four-cut system, in which the different 
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combinations of CH, VI, and GLCM features provided the most accurate predictions with RF and 

PLS, achieving R² values ranging from 0.69 to 0.77 (Fig. 4.5c, Table B1, supplementary material). 

No statistical differences were observed among the feature combination groups for the PLS model. 

For the RF model, the CH+GLCM and CH+VI+GLCM combinations were statistically superior. 

Specifically, CH+VI+GLCM with RF showed significantly lower RMSE and rRMSE values (69.7 

g/m² and 29.4 %) (Fig. 4.6c). 

When considering the pooled data from all cutting systems, CH+VI+GLCM demonstrated the 

highest predictive accuracy regarding RF, with an R² value of 0.84 (Fig. 4.5d, Table B1, 

supplementary material). The RMSE and rRMSE values for CH+VI+GLCM in the pooled data 

were also lower (RMSE = 134.9 g/m², rRMSE = 31.3 %) than for models based on individual 

feature classes (Fig. 4.6d, Table B1, supplementary material). 

4.4.3 Variable importance for AGB estimation 

The PLS and RF models highlighted distinct predictor variables with varying degrees of 

importance across the different cutting systems (Fig. 4.7ab). In the PLS model, CH metrics, such 

as ‘CHq50’, ‘CHq90’, and ‘CHq75’, obtained high importance scores, particularly in the pooled 

dataset, indicating their strong influence on biomass estimation under varying cutting frequencies. 

The texture variable ‘GLCMhomogeneity_NIR’ also scored significantly, suggesting the relevance of 

texture in biomass prediction. Contrastingly, the RF model emphasized a different set of predictors. 

While CH variables like ‘CHq90’ and ‘CHmean’ maintained their influence, vegetation indices such 

as VINGI emerged as key predictors across all treatments. Remarkably, texture measures like 

‘GLCMvariance_NIR’ and ‘GLCMmean_NIR’ were highly ranked in the four-cut system and pooled data, 

reflecting the importance of NIR texture in these more complex systems. 

Comparing treatments, the two-cut system showed a slightly higher importance score for 

‘VINGRDI’, indicating its particular relevance in less frequently cut grasslands. In contrast, the three 

and four-cut systems revealed a shift towards ‘GLCMsecond_moment_NIR’ and ‘GLCMentropy_NIR’, 

aligning with the increased complexity of these systems.  
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Figure 4.7. The relative importance of the top ten predictor variables as measured by the feature 

importance metric for Partial Least Square (PLS) (a) and Random Forest (RF) (b) models 

predicting aboveground biomass (AGB). 

4.5 Discussion 

In this study, a key objective was to assess the effectiveness of integrating UAV-derived features 

for estimating AGB in heterogeneous wet grasslands. While the concurrent use of structural and 

spectral data for AGB estimation in grasslands is increasingly recognized, the incorporation of 

texture information from UAV imagery remains relatively unexplored. Our research represents a 

pioneering effort in integrating structural, spectral, and texture features from UAV imagery to 

estimate AGB in grassland environments.  

4.5.1 Analysis of AGB models and their influencing factors  

Our findings underscore the effectiveness of combining UAV-derived data types for AGB 

estimation. Although the differences in accuracy among various feature combinations were small 

(a) 

(b) 
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and often statistically not significant, models utilizing a fusion of features consistently surpassed 

those relying on a single feature class. Our results align with the existing research trend, where 

combining UAV-features data tends to enhance the precision of biomass estimation models. For 

instance, Karunaratne et al. (2020) and Lussem et al. (2022) found that models incorporating both 

structural and spectral data significantly improve the AGB prediction accuracy in grassland field 

studies. Viljanen et al. (2018) demonstrated the effectiveness of combining height data with 

vegetation indices, in a timothy-meadow fescue mixture. Pranga et al. (2021) observed similar 

enhancements when applying this approach to perennial ryegrass. The study of Grüner, Astor and 

Wachendorf (2021) further emphasized the critical role of texture features, demonstrating that 

combining structural data, along with multispectral and texture features from UAV high-resolution 

image, significantly improved the accuracy of estimating aboveground biomass in legume-grass 

mixtures.  

Although our study exhibits a relatively higher rRMSE compared to some of the studies 

mentioned, direct comparisons are challenging due to the distinct complexities of wet grasslands. 

These ecosystems often present heterogeneous vegetation, varying micro topography and 

fluctuating hydrological conditions, which contribute to the spatial and temporal variability of the 

data. Most recent studies evaluating the combination of UAV-derived data types for AGB 

estimation were conducted on controlled field trials, which inherently ensure more uniformity in 

the data. Additionally, they often dealt with more homogeneous grasslands, typically comprising 

one or a few species, which further contributes to uniformity. Moreover, these studies usually 

encompass data from a single year, limiting the temporal variability in their data sets. 

In contrast, our research was conducted in a permanent wet grassland spanning two years. This 

setting inherently introduces more variation due to the complex and dynamic nature of wet 

grasslands, subject to fluctuating environmental conditions and diverse plant communities. The 

extended time frame of our study captures the inter-annual variability, which is often not addressed 

in single-year studies. Such variability can significantly affect the results, as factors like weather 

patterns, water levels, and plant growth cycles can vary substantially between years. Therefore, 

while our rRMSE might be higher, it reflects the inherent complexity and heterogeneity in a more 

natural, less controlled grassland ecosystem over an extended period, providing a more 

comprehensive understanding of biomass estimation in such diverse environments. 

Examining the performance of various models and feature classes, it is also crucial to consider 

the impact of grassland management treatments on our model outcomes. The R² and RMSE values 

variations reflect the complex dynamics introduced by different cutting frequencies. For instance, 

in the two-cut system, the combination of CH+VI yielded similar results to the combination of 

CH+VI+GLCM. This suggests that the spectral information provided by vegetation indices 

becomes particularly valuable in capturing the biomass variation in less frequently cut systems. 

VIs offers critical information on the plant's health and vigor that canopy height alone does not 

fully describe. In essence, the VI likely captures the biomass variation due to factors such as plant 

nutrition and water content, which are not as readily apparent from structural data when cutting 
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frequency is low. 

Although the combination of CH+VI+GLCM leads to the best results in the three-cut system, 

CH alone also shows good performance compared to the other cutting treatments. This could be 

because this cutting system strikes a balance between vegetation regrowth and structural 

uniformity. CH becomes a reliable indicator of biomass, as the plants have sufficient time to regrow 

between the cuts, but the sward does not become too heterogeneous, which could happen with less 

frequent cuts. This observation aligns with previous research, which has shown that in grassland 

environments with moderately uniform canopies - such as those that result from intermediate 

cutting frequencies - CH alone can provide a sufficient biomass estimation (Borra-Serrano et al., 

2019). 

The simplicity of using CH alone is advantageous, as it often requires less data processing and 

can be less labor-intensive compared to models that integrate additional spectral or textural 

features, making it more practical for on-farm applications. While incorporating a full suite of 

features, including 'CH+VI+GLCM', has the potential to enhance the model by adding spectral and 

textural insights, it is essential to weigh the benefits against the increased complexity. If the 

inclusion of additional data types does not significantly improve the model's performance, the 

simpler CH alone model should be preferred. 

Conversely, the most frequent cutting regime with four cuts produces a more uniform sward, 

which should simplify the biomass estimation process. However, our findings suggest that adding 

spectral information from VIs and texture features significantly enhances the model's performance 

in the four-cut system. This enhanced performance may be because frequent cutting not only 

standardizes canopy height but also prompts rapid regrowth and recovery of the grassland, which 

can introduce subtle variations in plant health and density. These nuances are not easily detected 

by CH measurements alone but can be effectively captured by the combination of CH with spectral 

reflectance changes that are assessed with VIs. 

Furthermore, including texture features becomes particularly important in the four-cut system. 

Texture captures the spatial arrangement and frequency of patterns within the sward, providing 

valuable information about the grassland's structural complexity that arises from the frequent 

disturbances. This information can be crucial for understanding the ecosystem's response to 

intensive cutting and for accurately estimating the biomass when the visual uniformity masks 

underlying heterogeneity. 

When examining the pooled data, we observe that the 'CH+VI+GLCM' feature combination 

achieves the lowest relative root mean square error (rRMSE) at 31.3 % and the highest R² value of 

0.84, suggesting that this combination of features is robust across varying cutting frequencies. The 

strength of the 'CH+VI+GLCM' model in the pooled data analysis indicates that each feature class 

brings complementary information that is useful for AGB estimation, regardless of the treatment. 

CH offers a baseline structural measure, VIs contribute spectral insights related to plant health, and 

the texture features add a layer of spatial detail that captures the heterogeneity of the grassland. 

The success of this feature combination in the pooled data underscores the model's adaptability to 
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highly variable grassland conditions. Although the rRMSE is relatively high, this feature 

combination could be widely applicable for diverse grassland ecosystems, providing a 

comprehensive tool for AGB estimation in precision agriculture. 

The variable importance analysis across our models reveals that canopy height metrics are vital 

for AGB across almost all treatments, including the pooled data. This finding is consistent with 

other studies, reinforcing the notion that CH is a fundamental attribute for biomass estimation 

models (Michez et al., 2019; Pranga et al., 2021). The persistence of CH metrics as key variables 

across various treatments underline their universal relevance and stability as biomass indicators, 

even amidst the structural changes induced by different cutting frequencies. 

While variable in their importance, spectral and texture features add depth to the models where 

CH alone might not be sufficient, particularly in capturing the nuanced biological responses within 

the grassland ecosystem. For instance, the inclusion of NDVI addresses the vitality of the 

vegetation, and texture features such as GLCMhomogeneity_NI encapsulate the spatial heterogeneity, 

which becomes increasingly relevant in less frequently cut systems. Knowing which variables are 

most critical for each treatment provides a strategic foundation for model refinement, ensuring that 

future models are scientifically robust and practically applicable for enhancing precision 

agriculture practices. 

4.5.2 Study limitations and opportunities for improvement 

Despite the promising potential shown by UAV-based data combined features techniques, several 

limitations persist. The high dependency on the frequency of data acquisition and the precision of 

the measurements can introduce variability in the estimation accuracy. The time-sensitive nature 

of UAV flights, influenced by weather conditions and logistical constraints, also poses challenges 

in obtaining consistent datasets over extended periods. 

The diversity of management strategies and the unique characteristics of wet grasslands also 

lead to variability in the UAV-derived canopy height measurements. This is consistent with 

previous studies which showed that different grassland management practices, such as varying 

cutting frequencies, can significantly alter canopy structure and thus the UAV's ability to capture 

height accurately (Lussem, Schellberg and Bareth, 2020). Our findings indicate that the lower R² 

values for the UAV-derived canopy height and ground reference data were predominantly observed 

within the four cut-system treatment, which typically exhibit reduced height due to more frequent 

harvesting. This observation aligns with prior research indicating that photogrammetric canopy 

height models provide more accurate height estimates during later growth stages but are less 

accurate at the beginning of the growth, when the grass is short and the canopy is still sparse 

(Viljanen et al., 2018; Karila et al., 2022). 

Our research was further challenged by the inherent variability of the site's terrain, including 

fluctuations in ground elevation, the presence of molehills, and uneven groundwater levels. 

Coupled with the diversity in plant communities and instances of lodging in some treatment areas, 
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these factors added layers of complexity to our data collection efforts.  

In addition, interpreting the UAV-derived data required careful consideration of the complex 

ecological processes occurring in grasslands. The dynamic nature of these ecosystems, shaped by 

management practices such as frequency of cutting, demanded sophisticated analysis techniques 

capable of adapting to these changing conditions. 

4.6 Conclusion 

Our study has demonstrated the effectiveness of integrating UAV-derived features for estimating 

aboveground biomass (AGB) in heterogeneous wet grasslands. The developed prediction models 

accurately estimated biomass in this complex system across two growing seasons, showing 

differences in performance between the cutting systems. The models performed best in the most 

intensively managed systems, and provided reliable estimates even in less managed systems. Our 

results showed that the developed models performed comparably than those reported in studies 

conducted in more homogeneous and controlled environments, such as field trials. 

The integration of structural and spectral data, particularly canopy height, significantly 

improved the prediction accuracy compared to single-feature models. Both RF (Random Forest) 

and PLS (Partial Least Squares) algorithms demonstrated enhanced performance with the 

integration of these features, although RF showed slightly better results in some instances. This 

integration allowed us to capture the small-scale heterogeneities often missed by traditional 

methods, providing a more detailed and accurate assessment of biomass. 

Key variables identified in our analysis, such as canopy height features, were crucial for 

accurate biomass estimation. Texture features were especially valuable in models where spatial 

heterogeneity was a significant factor, such as in the most frequent cutting regimes. These features 

provided additional layers of data that improved the overall precision of biomass estimates. 

Therefore, texture analysis is highly recommended for scenarios with high spatial variability within 

grassland vegetation to enhance model accuracy. 

This study represents a significant advancement in grassland ecosystem monitoring, 

demonstrating the performance of different methods that synergizes diverse UAV-derived features. 

To advance the potential of UAV-derived data in grassland ecosystem assessments, future research 

should focus on refining data processing algorithms to enhance the accuracy of feature extraction, 

such as machine learning techniques for better segmentation and classification of vegetation types, 

and improved photogrammetric methods for more accurate canopy height models. There is also a 

need to expand the dataset to include more fields and multi-year data. This expansion would enable 

testing the model's effectiveness in different grassland environments and refine it for broader 

applications, ensuring its robustness and reliability across various ecological conditions. 
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Abstract 

Wet grasslands are crucial components of terrestrial ecosystems, known for their biodiversity and 

provision of ecosystem services such as flood attenuation and carbon sequestration. Given their 

ecological significance, monitoring biodiversity within these landscapes is of utmost importance 

for effective conservation and management strategies. This study, conducted in a wet grassland of 

Brandenburg, Germany, utilized unmanned aerial vehicles (UAVs) to facilitate the estimation of 

species richness by the integration of remotely sensed canopy features such as canopy height (CH), 

spectral data (Vegetation Indices, VI), and texture features (Gray-Level Co-occurrence Matrix, 

GLCM) using two machine learning methods (Partial Least Square regression (PLS) and Random 

Forest (RF)). Data was collected over two growing seasons under three different grass cutting 

regimes, employing multispectral sensors to capture detailed vegetation characteristics. The 

analysis revealed that the performance of the machine learning methods varied with the feature 

combinations. Models combining VI and GLCM features demonstrated the highest predictive 

accuracy, particularly in frequently cut grasslands, as indicated by higher R² values (up to 0.52) 

and lower root mean square errors (rRMSE as low as 34.9%). RF models generally outperformed 

PLS models across different feature sets, with the CH+VI+GLCM combination yielding the best 

results. These findings underscore the potential of spectral and textural data to effectively capture 

the ecological dynamics of wet grasslands, providing valuable insights into biodiversity patterns. 

 

Keywords: remote sensing, vegetation, ecological monitoring, multispectral, canopy height, 

texture, agriculture digitalization 
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5.1 Introduction 

Wet grasslands are important yet vulnerable components of terrestrial ecosystems, playing a pivotal 

role in biodiversity conservation and the provision of essential ecosystem services (Bullock and 

Acreman, 2003; Bengtsson et al., 2019). Characterized by their rich species diversity, high 

belowground carbon and hydrological dynamics, these landscapes serve crucial functions such as 

flood attenuation, groundwater recharge, and carbon sequestration (Joyce and Wade, 1998; Fidelis, 

Lyra and Pivello, 2013; Khaledi et al., 2024). Historically shaped by centuries of low-intensity 

agricultural practices such as mowing and grazing, wet grasslands now face severe threats from 

land-use changes, agricultural intensification, and abandonment (Joyce, 2014; Dengler et al., 

2020). The ongoing loss of these ecosystems, underscores an urgent need for effective monitoring 

tools to preserve their ecological integrity (Čop, Vidrih and Hacin, 2009; Chris B Joyce, Simpson 

and Casanova, 2016; Fauvel et al., 2020) 

The effective conservation of wet grasslands depends on integrating agricultural benefits with 

ecosystem support and regulatory functions (Tasset et al., 2019). Environmental changes caused 

by agricultural management practices and alterations in groundwater levels can lead to variations 

and losses in biodiversity (Schils et al., 2022; Guo et al., 2023). Considering that in wet grasslands, 

plant communities serve as direct indicators of ecosystem health and services, the maintenance of 

such communities is particularly critical (Rapinel et al., 2019; Wu et al., 2023). Thus, strategies 

for effectively monitor species biodiversity are of vital importance in order to preserve the 

ecological sustainability of these ecosystems (Dumont et al., 2012; Van Vooren et al., 2018; Schils 

et al., 2022). 

Species richness serves as a direct proxy for α-diversity, which refers to the diversity within a 

particular area or ecosystem and is measured by the number of species in that ecosystem (Rocchini 

et al., 2021). This measure provides a clear indicator of the ecological condition and conservation 

value of an ecosystem (Tian and Fu, 2022). It has long been used to inform various ecological 

objectives, including productivity estimates, reserve network selections, and conservation planning 

(Tilman, Wedin and Knops, 1996; Fleishman, Noss and Noon, 2006). However, measuring species 

richness in the field is notoriously difficult, time-consuming, and often troubled by the need to 

resolve numerous methodological issues such as determining the appropriate number of sampling 

units, designing sampling strategies, and defining operational species communities (Chiarucci, 

2007; Magurran, 2021). Moreover, traditional field-based methods for collecting species 

information, while accurate, are costly and challenging to upscale to larger spatial extents required 

for comprehensive monitoring (Lengyel et al., 2008; Fauvel et al., 2020).  

Remote sensing technologies have increasingly become vital in biodiversity monitoring and 

species conservation, primarily due to their ability to provide a continuous, scalable source of data 

that captures various aspects of biodiversity across different scales (Mairota et al., 2015; Rocchini 

et al., 2021; Chang, 2023). This is particularly advantageous where field-based data collection is 

challenged by scale, cost, and accessibility (Palmer et al., 2002; Kamali et al., 2024). Among 
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remote sensing tools, unmanned aerial vehicles (UAVs) stand out by offering high-resolution data 

at the leaf and canopy levels, which greatly enhances the potential for accurate mapping of plant 

diversity in herbaceous communities (Rossi et al., 2022). UAVs also overcome the issue of cloud 

cover that usually limits satellite monitoring in highly overcast conditions. 

Although remote sensing has become an essential tool for biodiversity monitoring, its 

application in grasslands remains less explored compared to crops and forests (Gholizadeh et al., 

2019; Thornley et al., 2023). Wet grasslands, specifically,  present unique challenges due to their 

hydrologic regimes and varied soil compositions, leading to significant variability in plant growth 

forms (Taddeo, Dronova and Depsky, 2019; Sun et al., 2024). The dense and variable vegetation, 

along with background factors such as soil, water, shadow, and litter, can interfere with spectral 

signals, increasing the uncertainty of remote sensed biodiversity assessments (Gholizadeh et al., 

2019; Taddeo, Dronova and Harris, 2021). This complexity makes it difficult to accurately reflect 

local plant diversity, emphasizing the need for advanced remote sensing techniques specific to 

these ecosystems (Imran et al., 2021; Rossi et al., 2021). 

Recent methods to estimating plant biodiversity using remote sensing primarily focus on 

spectral data (Thornley et al., 2023; Sun et al., 2024). Because of its simple concept, the Spectral 

Variation Hypothesis (SVH) method has been particularly investigated in recent years across 

various ecosystems (Chitale, Behera and Roy, 2019; Rocchini et al., 2021). The SVH method 

presumes that spatial heterogeneity captured in spectral data correlates with variations in 

environmental and biological diversity (Thornley et al., 2023). This hypothesis suggests that more 

heterogeneous habitats typically support a greater diversity of species (Rocchini et al., 2021). 

However, there are significant challenges in applying SVH to estimate species richness. The 

accuracy of these estimates can be undermined by the complexity of the community, the presence 

of non-photosynthetic elements, and variations in canopy shadow patterns that may alter the 

observed spectral diversity (Schweiger et al., 2015; Conti et al., 2021).  

To fully exploit the extensive details contained in remote sensing images, novel information 

retrieval methods need to expand beyond spectral features and incorporate spatial characteristics 

such as texture (Zhang et al., 2020) and structural diversity (LaRue et al., 2023). Texture metrics, 

for example, can be used as proxies for habitat heterogeneity  (Hall-Beyer, 2017) since it allows 

for the distinction between more homogeneous landscapes (associated with lower species richness) 

and spectrally heterogeneous areas (indicating high species richness) (Wood et al., 2012).  

In addition to spectral and texture features, structural diversity metrics can be a potential 

feature for enhancing biodiversity estimates. The Height Variation Hypothesis (HVH) suggest that 

greater vertical structure complexity increases biodiversity by providing more sub-habitats and 

niches (Torresani et al., 2020). While extensively explored in forests, this approach remains 

underutilized in grasslands (Tamburlin et al., 2021; LaRue et al., 2023). In grasslands, canopy 

height has traditionally been studied for biomass estimation (Batistoti et al., 2019; Bazzo et al., 

2023), but it can also indicate species diversity due to significant variability in plant sizes and 

growth forms, including grasses, herbaceous species, and small shrubs (Petermann and Buzhdygan, 
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2021). Wet grasslands, specially, with their distinct hydrologic regimes and soil compositions, 

allow plants to exhibit variability in growth forms and canopy structures (Taddeo, Dronova and 

Harris, 2021). By capturing the three-dimensional structure of vegetation, remote sensing can 

provide a more comprehensive understanding of plant diversity in these ecosystems. 

Recent studies suggest that the combination of multiple independent variables —such as 

spectral, texture, and canopy height metrics—can significantly enhance the accuracy of 

biodiversity estimates compared to models relying on a single type of data (Gholizadeh et al., 2018; 

Taddeo, Dronova and Harris, 2021; Fu et al., 2024; Sun et al., 2024). This improvement is 

attributed to the complementary information provided by these variables, which collectively 

capture nuanced differences in plant biodiversity that may be influenced by factors such as early 

successional stages or changes in plant composition resulting from various management practice. 

Despite the potential of combining these metrics, to our knowledge, no previous studies have 

concurrently utilized spectral, texture, and canopy height data to estimate biodiversity in wet 

grasslands. Our work addresses this gap by exploring the synergistic effects of these diverse data 

sources, aiming to develop and validate a robust and estimation model for plant diversity in these 

complex ecosystems. 

To overcome the challenge of integrating multiple variables for biodiversity indicators using 

remote sensing data, machine learning provides an effective approach (Muro et al., 2022; Chang, 

2023). Machine learning algorithms are especially useful for handling large datasets and 

identifying complex relationships between distinct variables (Holloway and Mengersen, 2018; 

Morais et al., 2021). This capability is particularly valuable when incorporating diverse data types 

such as spectral, texture, and canopy height metrics. Two algorithms have been widely used in 

agroecosystem monitoring: Random Forest (RF) and Partial Least Squares (PLS) regression. RF 

has been widely used in ecological and remote sensing studies due to its robustness in managing 

large datasets with numerous predictors and its ability to model complex interactions, providing 

reliable estimates (Belgiu and Drăguţ, 2016; Viljanen et al., 2018). PLS regression, on the other 

hand, helps in dimensionality reduction and is effective in dealing with multicollinearity, thereby 

enhancing the interpretability of the model (Wachendorf, Fricke and Möckel, 2018; Pranga et al., 

2021). 

This study aims to develop and evaluate different data-driven models for estimating plant 

biodiversity in a managed wet grassland using diverse data sources (spectral, textural and 

structural) and two machine learning techniques (RF and PLS). To optimize the species-richness 

assessment, we compare the prediction accuracy and identify the importance of the different 

features depending on the cutting system and the ML model. We finally apply the optimized 

methods to generate species richness maps for wet grasslands, providing insights into the strengths 

and limitations of our approach in accurately estimating plant biodiversity. 
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5.2 Material and methods  

5.2.1 Study site and experimental design 

The study area is situated approximately 48 kilometers northwest of Berlin, close to Paulinenaue 

village (52°41'28" N, 12°44'16" E), in Brandenburg, Germany (Fig. 5.1a). The research was 

conducted on a 1.3-hectare area within the "Havelländisches Luch", a peatland complex 

characterized by shallow drained peat soils (see Fig. 5.1b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. (a) Study area located in the federal state Brandenburg, Germany and (b) satellite image 

of the study area in from Google Earth Pro, and (c) design of the field experiment divided into six 

vegetation zones, three cutting treatments and 108 sampling points.  
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The peat soil profiles with varying thickness, ranging from 0.5 to 2.0 meters, with the topsoil 

experiencing substantial degradation due to long-term drainage. Beneath the topsoil, a significant 

subsoil layer comprises alluvial sand strata, reaching depths up to 12 meters. The climate in this 

area is classified as humid continental with warm summer, with an average annual temperature of 

9.2°C, and annual precipitation averaging 530 mm (Pohl et al., 2015). 

The site was initially sowed in 2013 with a grass mixture dominated by Festuca arundinacea. 

On August 14, 2018, reseeding was performed using Lolium perenne seeds at a rate of 

approximately 20 kilograms per hectare. Fertilization practices were carefully managed to meet the 

nutrient requirements of the site. PK fertilization, including triple superphosphate and potassium-

magnesium sulfate, was applied each year in April to compensate for nutrient depletion from plant 

uptake and soil processes. Additionally, N fertilization using ammonium sulfate was implemented 

based on the specific nutrient requirements associated with the fen's ecological characteristics and 

the observed nutrient removal rates from previous harvests. 

The study site was divided into six vegetation zones based on the dominant grass species 

composition (Figure 5.1c). In May 2020, two vegetation samplings following the Braun-Blanquet 

method were carried out in each vegetation area (Braun-Blanquet, 1932). According to this, 

Festuca arundinacea, Holcus lanatus, Dactylis glomerata, Elymus repens and Lolium perenne 

dominate the vegetation zone one. In vegetation zone two Elymus repens and Phalaris arundinacea 

form the main part of the total vegetation in the southern area. In the northern area Phleum pratense, 

Holcus lanatus and Poa trivialis occur accompanying a higher species richness. Vegetation zone 

three is dominated by Festuca arundinacea, Holcus lanatus and Elymus repens. In vegetation zone 

four Festuca arundinacea, Phleum pratense, Poa pratensis and Elymus repens dominate. The 

vegetation zone five is mainly composed of Phalaris arundinacea, Poa trivialis, Elymus repens 

and Alopecurus geniculatus. In the vegetation zone six Festuca arundinacea, Poa pratensis and 

Elymus repens dominate. Towards the south the abundance of Phalaris arundinacea and Phleum 

pratense increase. 

To assess the impact of growth height and maturity stage, the site was further divided into 

three strips with an east-west orientation, each 16 meters wide and 200 meters long.  These strips 

were subjected to different cutting frequencies to represent the most typical farmers practice and 

thus enabling diverse growth stages and maturity levels in the grassland vegetation. Treatments are 

summarized in Tab. 1, where treatment one involved two cuts for strip one, the first at peak maturity 

in late June/early July and a second in early/mid-September. Treatment two for strip two had three 

cuts, first in mid-June, second at the end of July/early August, and third in early/mid-September, 

which coincides with three cuts of strip three. Treatment three's strip had four cuts between mid-

May and mid-September at four to six-week intervals, timed according to grass phenology and soil 

moisture-related trafficability for the harvesting machine. 

Overall, the study encompassed 108 sampling points, divided into 36 plots per treatment. 

Throughout the two-year study period, field measurements were synchronized with the cutting 

events.  
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5.2.2 Data collection 

In order to obtain essential reference data for our analysis, we conducted comprehensive field 

measurements in 2022 and 2023. The data collection involved two primary levels: UAV image 

collection and vegetation composition survey. The specific dates and the number of sampling 

points for each cutting system are outlined in Table 5.1. 

Table 5.1. Days on which field measurements were conducted, along with the corresponding 

number of samples and plots. 

 

Harvest 

date 

Cutting systems 

frequency 

Number of plots investigated 

for vegetation survey per date 

(n) Year of 

collection 

Two-

cut 

Three-

cut 

Four-

cut 

2022 

18 May   X 18 

17 Jun X X X 54 

03 Aug  X X 36 

14 Sep X X X 53 

2023 

16 May   X 35 

07 Jun X X  72 

21 Jun   X 18 

10 Aug  X X 36 

20 Sep X X X 54 

Total number of samples 

per treatment 

   ntotal= 376 

5.2.2.1 UAV data collection 

We utilized the DJI P4 Multispectral drone for data collection. This UAV is equipped with a 

multispectral camera capable of capturing data in five narrow spectral bands (Red, Green, Blue, 

NIR, and RedEdge), and an RGB camera for conventional visible imagery. During the course of 

this research, the drone was flown at an altitude of 37 meters above ground level, resulting in a 

resolution of two centimeters. The image overlap was approximately 80 % forward and 60 % 

sideward to ensure comprehensive coverage. Camera settings were adjusted to capture images at a 

rate of two frames per second, with fixed aperture and exposure settings tailored to the lighting 

conditions at the time of each flight. Consequently, the aperture and exposure settings varied 

between different acquisition dates. Eleven ground control points (GCPs) were evenly distributed 
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across the experimental site to ensure precise geo-referencing, with their positions fixed throughout 

all growth seasons. The coordinates of the GCPs' centers were determined using a global navigation 

satellite system receiver (Viva GNSS GS 10, Leica Geosystems AG, Switzerland), with an 

accuracy of 0.3 cm in the horizontal direction. We conducted nine flights (four in the first year and 

five in the second year), aligning them with compatible dates corresponding to the reference field 

data collection (Table 1). A bare-ground model was also generated during a dedicated flight 

conducted on September 30, 2022.  

5.2.2.2 Vegetation composition survey 

For each field campaign vegetation surveys of the plots with a size of 1.5 meters by 1.5 meters 

were carried out. Both the total cover of all plants as a percentage of total ground area and the cover 

of the individual layers as well as the maximum and average plant heights were recorded. The 

number of plant species and their cover-abundance  were recorded in each layer  applying the scale 

of Luthardt et al. (2017), according to Wilmanns (1989) and Londo (1976).  

Figure 5.2 presents the timeline and workflow for UAV data collection and vegetation 

composition surveys conducted across different management systems during the study period. 

 
Figure 5.2. Timeline and workflow of UAV data collection, vegetation composition surveys, and 

cutting events for different management systems (T01: Two-cut system, T02: Three-cut system, 

T03: Four-cut system) across the study period (2022-2023). 

5.2.3 Image processing 

The acquired images were processed using Agisoft PhotoScan v.1.3, a Structure-from-Motion 

(SfM) software developed by Agisoft Ltd. in St. Petersburg, Russia. The first step in image data 
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processing involves the initial image alignment. During this phase, the acquired images were 

subjected to a process that established their relative positions and orientations within a three-

dimensional space. To ensure the accuracy of the data and its precise alignment with real-world 

coordinates, ground control points (GCPs) were placed in the images. These GCPs, positioned at 

known locations within the experimental site, served as reference points for georeferencing. The 

images were then adjusted based on the GCPs' spatial information. Next, the optimized cameras 

command was selected. Subsequently, the image alignment process was executed with a 'high' 

quality setting to maximize the precision of the alignment. The outcome of this step was the 

generation of a dense point cloud representing the 3-D structure of the vegetation within the study 

area. In this process, we applied 'high' quality settings and 'mild' depth filtering to preserve fine 

details of the grassland vegetation, as recommended by Viljanen et al. (2018). The datasets from 

the multi-spectral camera were then radiometrically calibrated by the calibrate reflectance function 

using the calibration factors of the irradiance sensor and the gray reference panel. A DSM was 

generated from the dense point cloud and exported as a TIFF file. The model obtained had a spatial 

resolution of two centimeters per pixel horizontally.  

5.2.4 Features extraction from the remote sensing dataset 

For each field data collection event, we created a polygonal shape file for the plot sample area. 

These shape files were then used to extract representative structural and spectral features from each 

plot. We conducted all data extraction and processing using R statistical software version 4.3.1, 

utilizing the ‘raster’ and ‘sf’ packages. 

5.2.4.1 Canopy height features 

For each sampling date, we generated a base Digital Surface Model (DSM). The UAV-based 

canopy height metrics were derived by subtracting the Digital Terrain Model (DTM), obtained 

from aerial imagery of the 'bare ground' after harvest, from the DSM (DSM - DTM). It is important 

to note that in our study 'bare ground' refers to the field condition after harvest, where grass stubbles 

remain. These remaining stubbles are a common residue in agricultural practices. We extracted the 

following metrics: mean, minimum, maximum, standard deviation, 90th, 75th, 50th (median), and 

25th quartiles (CHmean, CHmin, CHmax, CHsd, CHq90, CHq75, CHq50, CHq25, respectively). 

5.2.4.2 Vegetation indices 

We computed a total of 16 vegetation indices (VI) using the spectral bands from the UAV 

multispectral sensor. These indices were selected based on their characterization of biochemical 

and structural traits of vegetation in order to be comparable to existing studies. Spectral features 

for each plot were extracted using the plot shape files. Table 5.2 provides a list of the 16 VIs, based 

on the visible and near-infrared regions. 
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Table 5.2. Vegetation indices derived from the visible-to-near-infrared spectral region. 

Vegetation Index Equation 

Blue Normalized Difference Vegetation Index 

(Yang et al., 2004) 𝐵𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝐵𝑙𝑢𝑒)

(𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒)
 

Canopy Chlorophyll Concentration Index 

(Jago, Cutler and Curran, 1999) 
𝐶𝐶𝐶𝐼 =  

(
(𝑁𝐼𝑅 − 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)
(𝑁𝐼𝑅 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)

)

𝑁𝐷𝑉𝐼
 

Chlorophyll Vegetation Index (Vincini, Frazzi 

and D’Alessio, 2008) 𝐶𝑉𝐼 =
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
×

𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

Enhanced Vegetation Index (Huete et al., 

1997) 𝐸𝑉𝐼 = 2.5 ×
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6 𝑅𝑒𝑑 − 7.5 𝐵𝑙𝑢𝑒 + 1
 

Excess Green (M. Woebbecke et al., 1995) 𝐸𝑥𝐺 = 2 𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒 

Green Chlorophyll Index (Gitelson, Gritz and 

Merzlyak, 2003) 𝐺𝐶𝐼 = (
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
) − 1 

Green Normalized Difference Vegetation 

Index (Gitelson, Kaufman and Merzlyak, 

1996) 
𝐺𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

Modified Chlorophyll Absorption in 

Reflectance Index (Daughtry et al., 2000) 
𝑀𝐶𝐴𝑅𝐼 = [((𝑅𝑒𝑑𝐸𝑑𝑔𝑒 − 𝑅𝑒𝑑) − 0.2)

× (𝑅𝑒𝑑𝐸𝑑𝑔𝑒 − 𝐺𝑟𝑒𝑒𝑛)] × (
𝑅𝑒𝑑𝐸𝑑𝑔𝑒

𝑅𝑒𝑑
) 

Modified Soil-Adjusted Vegetation Index (Qi 

et al., 1994) 𝑀𝑆𝐴𝑉𝐼 =  
2 𝑁𝐼𝑅 + 1 − √(2 𝑁𝐼𝑅 + 1)2 − 8 × (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

2
 

Normalized Difference Red Edge (Barnes et 

al., 2000) 𝑁𝐷𝑅𝐸 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)
 

Normalized Difference Vegetation Index 

(Rouse et al., 1973) 𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

Normalized Green Intensity (M. Woebbecke 

et al., 1995) 𝑁𝐺𝐼 =
𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒
 

Normalized Green Red Difference Index 

(Tucker, 1979) 𝑁𝐺𝑅𝐷𝐼 =
(𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑)

(𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑)
 

Optimization Soil-Adjusted Vegetation Index 

(Rondeaux, Steven and Baret, 1996) 𝑂𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.16
 

Renormalized Difference Vegetation Index 

(Roujean and Breon, 1995) 𝑅𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

√𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

Simple Ratio (Jordan, 1969) 
𝑆𝑅 =

𝑁𝐼𝑅

𝑅𝑒𝑑
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5.2.4.3 Texture features  

Texture features were extracted from multispectral (MS) orthomosaic using the R package 

“glcm” (Gray-Level Co-occurrence Matrix). We calculated seven widely recognized texture 

parameters that assess the spatial patterns and variability within the image: contrast, correlation, 

entropy, homogeneity, dissimilarity, second-moment, variance, and mean (GLCMcontrast, 

GLCMentropy, GLCMhomogeneity, GLCMdissimilarity, GLCMsecond-moment, GLCMvariance, and GLCMmean, 

respectively).  

5.2.5 Model development and statistical analysis  

In this study, we used UAV-derived canopy height (CH), spectral data (VIs), and texture features 

(GLCM), along with their combinations, to predict species count on a plot-by-plot basis. We 

explored seven different combinations of these features. Initially, models were developed using 

single feature classes: 1. CH, 2. VI, 3. GLCM. Subsequently, combinations of structural (canopy 

height), spectral, and texture data were integrated into four additional models: 4. CH+VI, 5. 

CH+GLCM, 6. VI+GLCM, and 7. CH+VI+GLCM. Table 5.3 lists the feature sets used in the 

analysis. Statistical analyses were conducted using the R software, with the “caret” package 

selected for its robust modeling capabilities, including cross-validation procedures and suitability 

for the machine learning algorithms employed in this research. 

 

Table 5.3. Detailed description of feature sets with corresponding total number of features for 

Canopy Height Model, Vegetation Indices, and GLCM texture parameters. 

Name Description Features Included 
Total Number of 

Features 

CH Canopy Height Model  CHmean, CHmin, CHmax, CHq90, 

CHq75, CHq50, CHq25, CHsd 
8 

VI Vegetation indices visible to 

near-infrared spectrum 
See Table 4 16 

GLCM GLCM texture features 

parameters for each image 

band 

GLCMcontrast, GLCMentropy, 

GLCMhomogeneity GLCMmean 

GLCMdissimilarity GLCMsecond-moment 

35 

 

To evaluate the predictive capabilities of the extracted features, we utilized two machine 

learning techniques: Random Forest (RF) and Partial Least Squares regression (PLS). These non-

parametric methods were chosen due to their proven effectiveness in handling the complex nature 

of our dataset, aligning with methodologies validated in similar studies. 
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5.2.5.1 Cross-validation 

In our research, we applied a nested cross-validation (CV) approach, partitioning the data into three 

folds for the outer loop and three folds for the inner loop, chosen through a random splitting process 

and following a similar methodology used by Pranga et al.( 2021). The inner loop’s primary 

function was to calibrate the hyperparameter values and select the optimal model, while the outer 

loop was dedicated to assessing the model’s predictive capabilities for different dataset folds. We 

repeated this process five times to mitigate the impact of random variation. The nested CV protocol 

and parameter tuning were executed in R, employing the ‘caret’ package. 

Model performance was assessed using statistical metrics: Coefficient of Determination (R²), 

absolute and relative Root Mean Square Error, RMSE and rRMSE, respectively. ANOVAs, 

followed by Tukey’s post hoc tests, were performed to identify whether a statistically significant 

difference exists between the R², rRMSE, and RMSE of compared models (datasets). We selected 

a significance level of α = 0.05. 

5.2.5.2 Hyper-parameter tuning 

Hyper-parameter tuning was performed in both machine learning models (RF and PLS) to achieve 

optimal performance as recommended in previous literature. To this end, we conducted a 

systematic optimization of the hyper-parameters for employing a grid search approach, a 

systematic method of working through multiple combinations of hyper-parameter values to find 

the best solution for our models. This involves creating a 'grid' of all possible value combinations 

for the hyper-parameters we want to tune and evaluating the model performance for each 

combination to identify the most effective settings. 

For the RF algorithm, we adjusted two key hyper-parameters: 'num.trees', which is the number 

of trees in the forest, and 'nodesize', the minimum size of the terminal nodes of the trees. The 'mtry' 

parameter, which determines the number of variables randomly sampled as candidates at each split, 

was set to its default value, which is the square root of the number of features in the dataset. The 

grid search combined 'num.trees' parameter values of 50,100, 250, and 500 and nodesize values of 

1 to 5, resulting in 20 combinations.  

For the PLS method, we tuned the number of components ('ncomp') used in the model, 

considering values from 1 to the maximum number of possible features. For example, in our model 

with 59 features (7. CH + VI + GLCM), the 'ncomp' was tuned from 2 up to 59 to determine the 

most effective number of components to use. 

5.2.5.3 Variable importance 

A conditional variable importance technique was implemented to interpret which predictor 

variables were relevant while generating a RF and PLS model. The higher the importance score, 
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the more influential the predictor variable is.  

The relative importance of the predictor variables for each treatment and all data sets using RF 

and PLS models was calculated based on both algorithms' built-in feature importance measures, 

which are included in the ‘caret’ package of R, enabling the most important variables in each model 

run to be interpreted. 

For the RF model, the importance of each predictor was determined based on the increase in 

mean square error when the values of the variable were permuted across the out-of-bag samples. 

This metric quantifies the extent to which the model's predictive accuracy decreases when the 

variable's information is obscured, thus highlighting the variables that the model relies on most. 

In the PLS model, feature importance is less straightforward to assess than in tree-based 

methods like RF. However, we can evaluate the importance of the variables by examining the 

weights and coefficients assigned to each predictor in the PLS components, which contribute to the 

model’s predictive capabilities. Variables with more significant absolute coefficients in the PLS 

model are considered more important as they significantly impact the response variable. 

The workflow of the model development process, including feature integration, machine 

learning, and performance evaluation, is illustrated in Figure 5.3. 

 

Figure 5.3. Workflow of the model development and statistical analysis process. The diagram 

illustrates the steps involved, from UAV data processing using individual feature classes (canopy 

height, vegetation indices, and texture) to the integration of these features. Machine learning 
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(a) (b) 

algorithms (Random Forest and Partial Least Squares) were applied, followed by cross-validation, 

hyperparameter tuning, and evaluation of model performance through R² and rRMSE metrics. 

5.3 Results 

5.3.1 Average species richness by vegetation zone, cutting system and date 

In 2022, species richness varied across the different cutting systems and vegetation zones. As 

shown in Figure 5.4a, the two-cut and four-cut systems generally exhibited higher species richness 

compared to the three-cut system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Species richness measured in the different cutting systems within six vegetation zones 

during years a) 2022 and b) 2023. 
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There were also variations between vegetation zones and dates. For instance, in May 2022, 

Zones 1 and 3 had higher species richness across all cutting systems, while Zones 5 and 6 

consistently showed lower species richness. By June and August, species richness increased 

slightly in most zones, with peaks typically observed in the early months of the growing season. 

This trend continued in 2023 (Figure 5.4b), where overall species richness was higher across all 

cutting systems and zones compared to 2022. The four-cut system showed the highest species 

richness, particularly in Zones 1 and 6, during the early months of May and June. 

The annual mean species richness across the six vegetation zones for each cutting system is 

summarized in Table 5.4.  The four-cut system generally supported higher species richness, 

particularly in Zones 1 and 6, with averages of 12.8 and 9.6 species, respectively (Table 5.4). The 

three-cut system also showed improvements, with increases in Zones 1 and 6 compared to the 

previous year. Zone 5 remained the area with the lowest species richness, although it also 

experienced an increase compared to 2022. 

Table 5.4. Annual mean species richness measured in six vegetation zones and three cutting 

systems during the study period. 

Year Cutting System Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 

2022 Two-cut 8.1 4.0 7.5 6.8 3.7 3.6 

Three-cut 7.2 4.7 7.8 6.2 3.0 4.3 

Four-cut 8.4 5.1 9.5 6.5 4.8 7.6 

2023 Two-cut 9.8 4.8 10.4 8.0 3.8 4.9 

 Three-cut 11.8 5.9 10.9 8.2 4.4 6.2 

 Four-cut 12.8 6.8 12.0 8.5 8.1 9.6 

5.3.2 Comparative evaluation of feature class performance for species richness 

across different cutting systems 

The results were compared across three distinct grass cutting treatments and pooled data to discern 

the influence of management practices on the predictive capability of the models. Box plots of R² 

and rRMSE (Figures 5.5 and 5.6), and mean values (Table C1, supplementary material) 

underscored significant differences within and between models and feature classes. 

The results suggest that estimation of species richness pivoted towards texture and spectral 

features. This was even more obvious in the PLS model of the two-cut system, where models based 

on GLCM and VI established themselves with more robust correlations to species richness (Figs. 

5.5a and 5.6a). This suggests that for predicting species richness, even with the prediction accuracy 

relatively low for all models, textural and spectral aspects of the data can be more informative than 
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structural height alone. 

Model performances showed variable results among different cutting systems. The RF model 

revealed a subtle trend: as cutting frequency increased, the predictive relevance of CH diminished, 

highlighting texture and spectral indices as more consistent indicators of species diversity. Within 

the two-cut system, models based on VI and GLCM or their combination exhibited the highest R² 

values of 0.49 and 0.39, respectively, suggesting these features' better capability in capturing 

species richness (Fig. 5.5a, Table C1, supplementary material). However, with increasing cutting 

frequency, combining features from VI and GLCM led to better results. For the three-cut system, 

the VI features remained the best performer in the RF model, with an R² of 0.36 (Fig. 5.5b, Table 

C1, supplementary material) and an rRMSE of 36.3 % (Fig. 5.6b, Table C1, supplementary 

material). The CH+VI+GLCM combination, however, showed the lowest rRMSE of 37.50 %, 

suggesting an enhanced precision. The PLS model presented similar results, with CH+VI+GLCM 

achieving the highest R² of 0.42 and an rRMSE of 37.5 %. A similar pattern was observed in the 

four-cut system, where the CH+VI+GLCM combination stood out for both RF and PLS models, 

with R² values of 0.32 and 0.34 (Fig. 5.5c, Table C1, supplementary material) and rRMSE values 

of 33,0 % and 39,6 %, respectively (Fig. 5.6c, Table C1, supplementary material). For the 

combined data from all treatments, the CH+VI+GLCM set in the RF model displayed high 

accuracy with an R² of 0.30 (Fig. 5.5d, Table C1, supplementary material) and a favorable rRMSE 

of 36,5 % (Fig. 5.6d, Table C1, supplementary material). The PLS model also produced solid 

results for the same feature combination, yielding an R² of 0.26 and an rRMSE of 38.7 % (Table 

C1, supplementary material). 
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Figure 5.5. Box-dot plots for R² values for species richness prediction, using two distinct machine 

learning algorithms: Partial Least Squares Regression (PLS) and Random Forest (RF). The models 

incorporate various feature classes, including Canopy Height (CH), Vegetation Indices (VI), and 

texture features (GLCM), applied across different grassland management treatments: two-cut (a), 

three-cut (b), and four-cut systems (c), as well as a pooled data analysis combining all treatments 

(d). Uppercase letters compare feature class performance within the same model: identical letters 

imply no significant differences while differing letters signify significant differences. Lowercase 

letters evaluate differences between the models for each feature class: identical letters indicate no 

significant differences, and varying letters denote significant differences. 

In the PLS model, VI alone appeared as the stronger predictor with R² of 0.48 and a comparable 

rRMSE of 35.8 % (Table C1, supplementary material). The aggregation of all three features 

(CH+VI+GLCM) slightly increased R² to 0.52 while maintaining a similar rRMSE, underscoring 

the integrated approach's effectiveness. 
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Figure 5.6. Box-dot plots for rRMSE (%) values for species richness prediction, using two distinct 

machine learning algorithms: Partial Least Squares Regression (PLS) and Random Forest (RF). 

The models incorporate various feature classes, including Canopy Height (CH), Vegetation Indices 

(VI), and texture features (GLCM), applied across different grassland management treatments: 

two-cut (a), three-cut (b), and four-cut systems (c), as well as a pooled data analysis combining all 

treatments (d). Uppercase letters compare feature class performance within the same model: 

identical letters imply no significant differences while differing letters signify significant 

differences. Lowercase letters evaluate differences between the models for each feature class: 

identical letters indicate no significant differences, and varying letters denote significant 

differences. 

5.3.3 Variable importance for species richness estimation across cutting systems 

Overall, the variable importance scores for species richness estimation indicate less reliance on CH 

features, especially for specific treatments (Fig. 5.7). Instead, the models demonstrate the 

importance of spectral and textural features, underscoring their critical role in capturing the nuances 

of species variability in grasslands subject to varying cutting frequencies. In the two-cut system, 

textural features like ‘GLCMvariance_NIR’ and VIs like ‘VIRDVI’ and ‘VIMSAVI’ become more 
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significant, emphasizing their predictive power in scenarios with less frequent cutting. This change 

is further accentuated by the RF model, which demonstrates the strong significance of NIR textural 

metrics - ‘GLCMmean_NIR’ and ‘GLCMvariance_NIR’ - in the three and four-cut systems as well as in 

the pooled data. These textural factors have high importance ratings, illustrating how species 

diversity and NIR texture are closely related in complex management systems. 

 
Figure 5.7. The relative importance of the top ten predictor variables as measured by the feature 

importance metric for Partial Least Square (PLS) (a) and Random Forest (RF) (b) models 

predicting species richness. 

The results of the treatment-specific analysis show that in the two-cut system VIs and NIR 

texture variables are more significant than CH features. This trend is consistent in higher-frequency 

cut systems, where indices such as ‘VINDRE’ in the four-cut system for PLS and ‘VIGCI’ in the 

pooled data for RF are significant, suggesting their enhanced sensitivity to species richness under 

intensive management. 

5.3.4 Mapping species richness using CH, VI, and GLCM features integration for 

RF and PLS models 

Maps were generated for all feature combinations and collection dates; however, due to the large 

(a) 

(b) 
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volume of data, this paper presents maps using the integration of CH, VI, and GLCM features for 

the five collection dates in 2023 to illustrate the results obtained. The species richness maps for 

2023, shown in Figure 8, compare the RF and PLS models. 

On May 16, the RF model (Figure 5.8b) shows higher resolution and more detailed variation 

in species richness compared to the PLS model (Figure 5.8a). The highest species richness is found 

in zones one and six and lower species number in zones two and five, which aligns with the field 

data presented in Figure 2. 

On June 7, the RF model (Figure 5.8d) shows a finer distinctions in species richness across the 

zones compared to the PLS model (Figure 5.8c). Zones one, three, and six show higher species 

richness and zones two and five with lower values, which is consistent with the patterns seen in the 

field data. Both models (Figures 5.8e and f) show an increase in species richness across most zones 

by June 21, 2023. Similar with previous dates and field data, zones one, three, and six continue to 

exhibit the highest species richness. 

The species richness starts to decline slightly on August 10, 2023 (Figures 5.8h and g). 

Consistent with the temporal decline seen in the field data, the overall pattern indicates lower 

species richness in zones two and five, while zones one and six continue to exhibit higher levels of 

richness. By September 20, 2023, there is a further decline in species richness towards the end of 

the growing season. The RF model (Figure 5.8j) captures more nuances variations compared to the 

PLS model (Figure 5.8i). Zones one and six still show relatively higher species richness, while 

zones two and five remain lower. These outcomes are consistent with the end-of-season field data. 
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Figure 5.8. Species richness maps for 2023 using the integration of CH, VI, and GLCM features 

for Random Forest (RF) and Partial Least Squares (PLS) models across five collection dates: (a, b) 

May 16, (c, d) June 7, (e, f) June 21, (g, h) August 10, and (i, j) September 20. 
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5.4 Discussion 

5.4.1 Integrating UAV-derived data for predicting plant species richness under 

different cutting systems 

The application of remote sensing techniques to detect patterns in plant richness is a growing field 

of study (Viedma et al., 2012; Chitale, Behera and Roy, 2019; Fauvel et al., 2020; Imran et al., 

2021; Muro et al., 2022). Our proposed method to integrate multiple UAV-derived features – 

spectral, textural, and structural – has proven to be an effective approach for improving the 

prediction of species richness in grasslands. While spectral data alone, such as vegetation indices 

(VIs), have traditionally been used to assess plant diversity, the inclusion of texture and structural 

features provides a more comprehensive view of the ecosystem’s complexity. In our study, we 

observed that combining VIs with texture and structural data generally improved model accuracy 

(Table C1, supplementary material) although the extent of these improvements varied depending 

on the management system and the complexity of the grassland ecosystem. 

For a better classification of the following discussion, it should be taken into account that the 

investigated grassland can be characterized as comparatively species-poor. Furthermore, the 

species numbers are within a relatively small range of 3.0-12.8 (Table 5.4). This context helps 

frame the application and effectiveness of remote sensing techniques in our study. 

The R² coefficients achieved in our study (Fig. 5.5) are consistent with previous studies that 

have applied multispectral and hyperspectral imagery for predicting species richness or other 

biodiversity indicators, such as Simpson or Shannon indices. For instance, Fauvel et al. (2020) 

reported an R² of approximately 0.4 when predicting grassland plant diversity through satellite 

image time series. Aneece et al. (2017) achieved the maximum R2 value of the correlation between 

the optical diversity and α-diversity of 0.43 in an artificial ecosystem. Wang et al. (2018b) achieved 

an R² up to 0.58 in an artificial grassland study, while Peng et al. (2019) observed a highest R² of 

0.40 in research focused on natural grasslands. Muro et al. (2022) reported the highest R² of 0.43 

using a Deep Neural Network (DNN) approach to predict species richness in temperate grasslands 

from satellite imagery. 

However, direct comparisons with other studies are difficult due to significant differences in 

ecosystem types, sensor technologies, and methodological approaches. For instance, the majority 

of research on grasslands have focused on relatively homogeneous or artificially established plant 

communities, which differ substantially in structure and complexity from natural grassland 

ecosystems (Imran et al., 2021). Moreover, few studies have investigated grasslands biodiversity 

estimation under different management regimes (Imran et al., 2021; Rossi et al., 2021; Muro et al., 

2022). In terms of methodology, most studies have primarily relied on spectral data, such as 

individual spectral bands or VIs, with only a few exploring the potential of textural features 

(Viedma et al., 2012; Cabezas, Galleguillos and Perez-Quezada, 2016; Taddeo, Dronova and 

Harris, 2021). To our knowledge, no studies have evaluated structural data related to canopy height, 
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for species richness estimation in grasslands, which we have incorporated in our analysis. 

The combination of spectral, textural, and structural features offers distinct advantages in 

capturing the complexity of grassland ecosystems. Texture features, in particular, have been shown 

to quantify spatial heterogeneity, which is often linked to habitat complexity and species diversity 

(Culbert et al., 2009; Cabezas, Galleguillos and Perez-Quezada, 2016). In our study, the inclusion 

of texture features derived from GLCM consistently improved model performance, especially in 

more intensively managed systems, and particularly when combined with VIs. For instance, in the 

three-cut system, adding GLCM to VIs increased the R² of the RF model from 0.35 to 0.43, and 

reduced the rRMSE from 43.16% to 41.30%. Similarly, in the four-cut system, the R² of the RF 

model increased from 0.32 to 0.40, with a corresponding rRMSE decrease from 45.55% to 43.09%. 

The PLS models exhibited comparable improvements, with the R² increasing by approximately 5% 

and 7% in the three- and four-cut systems, respectively.  

The local variance within pixels at a defined neighborhood, induced by different cutting 

frequency system treatments in our study, could be better distinguished by texture variables when 

compared to spectral signature variations alone. Additionally, compared to spectral bands and VIs, 

image texture can also better inhibit saturation and handle high spatial heterogeneity, especially in 

the late stages of crop growth (Sibanda et al., 2017; Taddeo, Dronova and Harris, 2021). Similar 

findings were reported by Cabezas et al. (2016) who observed that combining texture metrics with 

spectral indices enhanced the prediction of plant richness in wetland ecosystems. Taddeo et al. 

(2021) also found that integrating texture data into models of managed grasslands improved 

accuracy, especially in systems where management practices induced variations in vegetation 

structure.  

The incorporation of structural information, such as canopy height, provided mixed results in 

our study. While canopy height provided valuable information about vertical vegetation structure 

in some cases, its contribution to model performance varied depending on the management regime. 

Specifically, canopy height contributed most significantly in systems with lower management 

intensity (e.g. two-cut systems), where vertical growth is more pronounced and contributes to 

greater ecological complexity. In contrast, frequent cutting in the three-cut and four-cut systems 

limited plant development, resulting in lower model performance compared to the two-cut system. 

In intensively managed systems or those with low biomass variability (e.g. four-cut systems) the 

addition of canopy height had lower contribution to the models’ accuracy. The reduced structural 

variability in these high-frequency cutting regimes made canopy height a less reliable predictor of 

species richness. This suggests that in systems where the vertical structure is relatively uniform or 

where the management regime minimizes height variability, canopy height may not provide 

significant additional information. In these cases, the models benefited more from the integration 

of spectral indices and texture features, which became crucial for capturing the finer-scale 

differences in vegetation that structural data could not distinguish.  

Beyond the statistical validation, the robustness of our models can also be qualitatively 

assessed through the visual interpretation of the generated maps. The predicted spatial distribution 
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of species richness aligns well with the field data map delineation (Fig 5.8), indicating higher 

species richness in zones one and six and lower richness in zones two and five. Such spatial insights 

offer crucial practical value, allowing for more targeted monitoring of species richness across 

different management regimes. 

5.4.1.1 Feature class performance for RF and PLS model 

In this section we compare the performance of the both modelling approaches, RF and PLS. In our 

analysis of individual treatments, it was evident that management intensity significantly affects the 

performance of both predictive models. Specifically, we observed the highest efficacy in model 

based estimation of species richness in the two-cut system. The PLS model, employing the 

CH+VI+GLCM feature class, showed an R² of 0.52 and an rRMSE of 34.9 % (Table C1, 

supplementary material), as compared to the R² of 0.48 and rRMSE of 36.5% of RF for the same 

feature class. 

In contrast, the three-cut and four-cut systems management present a more complex scenario, 

where the increased cutting frequency may lead to a homogenized canopy structure. Especially in 

the four-cut system, the shorter intervals between cuts do not allow plants to fully recover and reach 

distinct phenological stages, thus limiting the effectiveness of remote sensing for species 

differentiation. This is consistent with the findings of Gholizadeh et al. (2020), who suggested that 

removing aboveground plant tissue, such as through frequent cutting or fire, can significantly 

reduce plant diversity by preventing plants from reaching their developmental peaks. 

In both the three-cut and four-cut systems, the Random Forest (RF) model outperformed the 

PLS model. The superior performance of the RF model is likely due to its capacity to handle the 

complexity and variability introduced by frequent cutting (Belgiu and Drăguţ, 2016). RF's ability 

to manage this variability, particularly when texture features were integrated, resulted in more 

accurate species richness predictions (Cabezas, Galleguillos and Perez-Quezada, 2016). 

The analysis of pooled data, which combined all management treatments, revealed a decline 

in model performance, particularly for models utilizing canopy height (CH) data. This decline is 

likely due to competing variables holding different levels of relevance across management 

scenarios, complicating the identification of clear patterns. While the RF model performed robustly 

in individual treatments, it faced challenges in the pooled data, likely due to the dilution of 

treatment-specific signals that weakened the model's predictive capacity. 

Similarly, PLS models, despite maintaining consistent variable importance profiles with an 

emphasis on texture and spectral features, also underperformed in pooled data models compared to 

individual treatments. This indicates that pooling data dilutes the signals specific to each treatment, 

reducing the impact of distinct spectral and textural characteristics that are essential for predicting 

species richness within each management regime. 

This difference in model effectiveness emphasizes grassland ecosystems' complexity and 

underscores the necessity for management-specific modeling. Our study also suggests that 
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ecological responses depend on the intensity of management and characteristics of each regime. 

Furthermore, our models for species richness show a temporal dependency, indicating that the 

impact of spectral bands and their texture metrics may differ in response to shifts in plant 

physiology. This emphasizes the dynamic nature of vegetation responses and the importance of 

models that can adapt to these temporal variations, especially when incorporating multitemporal 

data. 

5.4.1.2 Variables’ importance for RF and PLS models 

The importance of predictive variables for species richness changed across different cutting 

systems. In the two-cut system, structural variables, particularly canopy height (CH) metrics, 

dominate the importance rankings. Seven out of the ten most important variables in the RF model 

are CH-related, indicating that the physical structure of the canopy is a strong indicator of species 

diversity in these less frequently disturbed systems. For the PLS model, while CH metrics remain 

important, texture and spectral features such as 'GLCMmean_NIR' and 'VIMSAVI' also play a significant 

role, emphasizing the utility of combining different data types. 

As cutting frequency increases in the three-cut system, the importance of CH variables 

decreases. In the RF model, only five CH-related variables remain among the top predictors, with 

spectral and texture features gaining prominence. This shift is due to the homogenization of the 

canopy structure caused by more frequent cutting, making variables such as 'VIGCI' and texture 

metrics from the NIR band more relevant. For the PLS model, spectral indices such as 'NDVI' and 

texture features like 'GLCMdissimilarity_NIR' become more significant. 

In the four-cut system, none of the top variables in the RF model are CH-related. Instead, 

texture and spectral features dominate, with variables such as 'GLCMmean_R,' 'GLCMvariance_R,' and 

'VINGRDI' becoming crucial. These features from the Red and NIR bands capture fine-scale 

variations in vegetation essential for predicting species richness in highly disturbed systems. The 

PLS model similarly emphasizes texture and spectral features, with 'GLCMvariance_NIR' and 

'GLCMcontrast_R' being among the top predictors. These results suggest that as management intensity 

increases, the use of multidimensional data becomes essential for accurate predictions. 

Despite the differences between models and the challenge of generalizing across pooled data, 

a significant factor remains constant: within the most influential texture and spectral variables for 

predicting species richness, a substantial proportion is associated with the Red, Red-edge and NIR 

bands. The Red (630–690 nm), Red-edge (680–740 nm) and NIR (760–900 nm) bands are well-

recognized for their ability to capture vegetation structure, consistently featuring in models 

predicting species diversity (Gould, 2000). The Red-edge portion of the electromagnetic spectrum 

is particularly useful because of its high sensitivity to changes in chlorophyll content, which are 

often induced by disturbances such as mowing (Filella and Peñuelas, 1994). These disturbances 

can cause reductions in leaf area distribution and leaf area index (LAI), leading to variations in the 

vegetation's spectral signature that are better detected by Red-edge derivatives compared to 
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traditional broadband vegetation indices (Sibanda et al., 2017). In our study, the Red, Red-edge 

and NIR band's ability to capture these subtle changes in vegetation could possibly explain its 

consistent prominence across different management regimes. 

This observation is consistent with previous studies that focused on species richness 

estimation. For instance, Rocchini (2007) underscored the NIR band's significance in 

differentiating plant species, as demonstrated using the QuickBird satellite. Similarly, findings by 

Blanco-Sacristán et al. (2019) and Imran et al. (2021) indicated that the spectral bands in the Red 

region were particularly effective in estimating biodiversity in grassland ecosystems. The 

consistent importance of these spectral bands across different management regimes suggests they 

are reliable indicators for remote sensing-based biodiversity assessments. Therefore, these spectral 

regions are promising focal points for future research on estimating species diversity through 

spectral analysis. 

5.4.2 Implication for ecological monitoring and study limitations 

Grasslands are increasingly vulnerable to global changes, such as altered land use, climate 

variability, and shifts in disturbance regimes. Understanding how grassland biodiversity responds 

to various management interventions, such as mowing and grazing, is essential for efficiently 

monitoring and managing current ecological conditions. By assessing the impact of different 

management practices, we could better understand the present state of grassland ecosystems and 

develop more effective strategies for promoting resilience and sustainability in these landscapes. 

This knowledge will support informed decision-making aimed at preserving the biodiversity and 

ecological services provided by grasslands. 

The species richness maps generated using the integration of CH, VI, and GLCM features not 

only provided spatially detailed variations in species richness, reflecting the observed patterns in 

field data across different cutting regimes, but also serve as essential tools for conservation and 

management efforts. Particularly, the predicted map derived from the first data collection 

demonstrated the most distinct patterns in species richness variation. This better performance is 

likely due to the timing of the data acquisition, which occurred before the implementation of the 

first cut, thus the signal of each species in the matured grassland canopy becomes stronger 

(Zlinszky et al., 2014).  

As previous discussed in this study, the vegetation at this stage is more mature, leading to more 

distinct structural and spectral differences between species, which facilitates greater accuracy in 

remote sensing-based species differentiation. Similarly, Lu and He (2017) and Liu et al. (2024) 

reported that remote sensing imagery obtained during the peak growth season, particularly in late 

spring and summer, produced higher classification accuracies for grasslands, highlighting the 

importance of collecting data during these optimal growth periods. For example, Lu and He (2017) 

found that June, the peak period for Canadian grasslands, provided the highest accuracy (86%) in 

plant classification. Tarantino et al. (2019) also emphasized the importance of aligning remote 
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sensing data acquisition with the growing seasons of specific vegetation communities, concluding 

that this approach enhances the interpretation and classification of vegetation. Finally, Zlinszky et 

al. (2014), stressed that data acquisition should coincide with the mature phase of the meadows, 

but occur before the first mowing, to ensure that the vegetation is fully developed, allowing for 

more distinct differentiation between plant species. 

By aligning data collection with key phenological moments, it becomes possible to capture 

clearer distinctions in vegetation zones, which are otherwise harder to discern after management 

interventions. Therefore, precise timing and careful consideration of vegetation development 

stages are essential to enhance the effectiveness of biodiversity monitoring and management 

planning in grassland ecosystems. 

Despite the demonstrated potential of integrating UAV-derived data with machine learning 

models for assessing species richness in managed wet grasslands, some limitations must be 

acknowledged. The complexity of the wet grassland ecosystem, marked by variable hydrological 

conditions and diverse management practices, posed significant challenges for remote sensing and 

modeling species richness. The fluctuating hydrological conditions, combined with the dynamic 

nature of plant communities and their interactions with various ecological factors, added 

complexity to the task of accurately capturing the ecological dynamics. Moreover, site-specific 

factors such as varying terrain elevation, molehills, uneven groundwater levels, and lodging in 

some treatment areas added further complexity in data collection and analysis. Yet, the fact that we 

found comparable performance metrics to other studies demonstrated the robustness of such data-

driven models when exposed to diverse conditions. The accuracy of our estimates was highly 

dependent on the frequency and precision of data acquisition. The time-sensitive nature of UAV 

flights campaigns, dictated by weather conditions and logistical constraints, posed challenges for 

ensuring consistent data collection across extended periods.  

Another option to explore is to use hyperspectral sensors that capture a wider range of spectral 

bands, allowing for the identification of more subtle variations in plant spectral signatures. These 

variations could be crucial for species classification, especially in complex ecosystems such as wet 

grasslands, where spectral characteristics of plants may overlap in more general multispectral 

bands. For structural data, we primarily explored canopy height, which was extracted from RGB 

images using SfM software. Although this approach provided useful information about vegetation 

structure, the use of a LiDAR sensor could offer more detailed insights into the three-dimensional 

structure of the vegetation (Coverdale and Davies, 2023). 

While species richness is a common and valuable metric, it may not fully capture the 

complexity of grassland ecosystems functions. Recent studies conducted by Wang et al. (2018) 

and Rossi et al. (2022) suggest that incorporating additional metrics, such as species evenness and 

functional traits, improve the prediction of biodiversity using remote-sensing techniques. In our 

study, we provided a framework for identifying the number of species across a managed field, but 

the quality of species to associate with a particular evenness and functional traits is still a work in 

progress. Future research should explore the inclusion of various plant diversity indices that 
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incorporate species abundance and trait diversity to improve the accuracy of remote sensing models 

for biodiversity estimation. 

To enhance the applicability and interpretability of our models in wet grasslands, future 

research should focus on synchronizing model complexity with advanced techniques from the field 

of ecological informatics. Techniques such as machine learning algorithms optimized for large, 

complex ecological datasets and network-based analyses that model species-environment 

interactions offer promising avenues. These methodologies will be important in improving our 

understanding of the complex interactions between species, environmental conditions, and 

management practices. Fully exploiting the diverse features provided by UAV-derived data—such 

as spectral, textural, and structural information—offers significant benefits for biodiversity 

monitoring. While integrating these features may improve model accuracy, the growing number of 

features sensors may impose an operational limit for data acquisition and processing. Identifying 

the key features for data-driven applications enables the optimization and development of this 

approach in a parsimonious way while also providing a better monitoring and prediction more of 

how various management regimes affect species richness. By refining these methods, we can 

develop more effective strategies for conserving wet grasslands and ensuring their resilience in the 

face of changing environmental and land-use pressures. 

5.5 Conclusion 

This study evaluated the potential of integrating UAV-derived canopy height (CH), spectral data 

(VI), and texture features (GLCM) to predict species richness in managed wet grasslands. The 

findings emphasize a shift in the importance of data types with varying management intensities. 

While CH provided foundational structural insights, it was the spectral (VI) and texture features 

(GLCM) that consistently played a more decisive role in predicting species richness across 

different cutting regimes. 

The research demonstrated that in lower frequency cutting systems, such as the two-cut 

treatment, models incorporating VI and GLCM offered significantly enhanced predictive accuracy, 

achieving an increase in R² from 0.48 to 0.52 and a reduction in rRMSE from 36.5% to 34.9% 

compared to models that did not integrate texture and spectral features. In systems with more 

frequent cuts, the integration of VI and GLCM continued to provide superior model performance, 

with improvements in R² from 0.39 to 0.45 and a reduction in rRMSE from 40.7% to 37.2%, 

demonstrating the importance of these features in capturing fine-scale variations. 

Overall, the integrated models that combined all three types of data generally provided the best 

outcomes with an average R² improvement from 0.41 to 0.48 and a decrease in rRMSE from 39.2% 

to 36.5% across the cutting systems. The superior performance of integrated models that combine 

multiple data types suggests that a multidimensional approach is necessary to capture the full 

complexity of these ecosystems. By integrating structural, spectral, and textural data, researchers 

and practitioners can develop more comprehensive models that reflect the dynamic nature of wet 
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grassland. Our study helps to identify the key variables and ML models to develop this 

methodology in a parsimonious way for accurate assessments of biodiversity and the impacts of 

different management practices in wet grasslands. 
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6.1 General discussion 

This thesis explored the application of UAV-based sensors, vegetation indices and different 

advanced statistical image processing methods to enhance the estimation of aboveground biomass 

and biodiversity in grasslands. The studies presented in this thesis complement each other by 

addressing different aspects of UAV-based ecological monitoring. The initial review established a 

baseline for the understanding of UAV methods, while subsequent studies addressed specific 

challenges such as field disturbances and data integration. The final study on species richness 

assessment demonstrated the broader applicability of UAV technology and image processing, 

extending its relevance beyond biomass estimation. Here, we synthesize the key findings, discuss 

their interactions and implications, and suggest directions for future research. 

6.1.1 Challenges in UAV-based biomass estimation in grassland ecosystems 

Estimating biomass in grasslands presents unique challenges not commonly encountered in 

cropping systems on arable land. Crops are typically planted in uniform rows and tend to have a 

relatively homogeneous structure, making biomass estimation usually less challenging. In contrast, 

grasslands exhibit high spatial and temporal variability due to the presence of multiple plant species 

with different growth forms, phenology stage, heights, and densities. This heterogeneity 

complicates the development of accurate biomass models. 

Studies such as Grüner, Wachendorf and Astor (2020) and Michez et al. (2020) indicated that 

species-rich and structurally diverse grasslands yield lower prediction accuracies compared to 

monocultures due to their complex canopy structures and species variability. Villoslada Peciña et 

al. (2021) also demonstrated that biomass estimation models perform better in homogeneous, short-

sward grasslands compared to high-yielding areas with significant structural heterogeneity. These 

findings highlight the challenge of adapting biomass models to accommodate the variability 

inherent in natural and managed grasslands. 

The concept of "grassland" itself is broad, encompassing a range of ecosystems from managed 

pastures to natural prairies and meadows. Each type of grassland has distinct characteristics that 

influence biomass estimation. For example, a homogeneous pasture, which may be dominated by 

one or two grass species, can be easier to model than a heterogeneous natural grassland with a 

diverse mix of species and varying environmental conditions. Moreover, cultivated grasslands or 

managed pastures typically show more uniformity and controlled conditions, facilitating easier 

biomass estimation. In contrast, natural or permanent grasslands, with their complex interactions 

and biodiversity, pose significant challenges for accurate biomass modeling. These systems are 

influenced by numerous factors such as varying topography, soil types, and climatic conditions, all 

of which must be accounted for in the models. 

While UAV technology for biomass estimation aims to reduce the dependency on continuous 

field sampling, reference field data collection remains an important component for calibrating and 
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validating UAV-based biomass models. High-quality field reference data guarantees the reliability 

of UAV-derived biomass estimates. However, collecting this data in grasslands is challenging due 

to the often inaccessible and uneven terrain, dense vegetation, and the need for temporal 

consistency to capture changes over time. To overcome these logistical challenges, effective field 

reference data requires meticulous planning and execution. 

Despite these inherent challenges, our review in the Chapter II has identified a general 

workflow commonly employed in UAV-based biomass estimation for grasslands. This workflow, 

illustrated in Figure 2.3, involves several key steps: data acquisition using UAVs, pre-processing 

of the collected data, model development, and subsequent validation against field reference data. 

This systematic approach helps in standardizing the estimation process, though the specifics may 

vary based on the type of grassland being studied. 

According to the results of or review paper (Chapter II) the primary methods for grassland 

biomass estimation using UAV data rely on structural and spectral information. Structural data 

often involve the use of Canopy Height Models (CHM). CHMs are advantageous due to their 

relatively simple processing requirements and the ability to use RGB sensors, which are more 

accessible and cost-effective than other sensor types (Possoch et al., 2016). However, the simplicity 

of CHMs comes with limitations (Bareth et al., 2015). They rely on the assumption that there is a 

direct relationship between canopy height and biomass, which may not always hold true 

(Kümmerer, Noack and Bauer, 2023). Factors such as species diversity, vegetation structure, and 

field disturbances can affect this relationship, leading to potential inaccuracies in biomass 

estimation (Viljanen et al., 2018; Dos Reis et al., 2020). 

To address these challenges, in the third chapter of this thesis, we investigated how common 

field disturbances, such as lodging and mole hills, can affect the canopy height-biomass 

relationship. The study found that areas affected by lodging showed discrepancies in canopy height 

measurements, resulting in potential biases in biomass estimates. These results have important 

implications for ecological monitoring and grassland management since lodging can happen 

frequently and irregularly, requiring robust models that can account for such variations (Chauhan 

et al., 2019; Tan et al., 2021; X. Li et al., 2021). 

Previous studies have highlighted the influence of lodging on biomass estimation models. 

Bendig et al. (2014) emphasized that lodging in barley fields reduces the accuracy of CHMs due 

to the flattened canopy. Kümmerer, Noack and Bauer (2023) also noted that conventional CHM 

methods often overestimate canopy height in mixed or lodged stands, as only the tallest parts of 

plants are considered, ignoring gaps and non-apical parts of the canopy. Similarly, Chao et al. 

(2019) identified lodging in late growth stages as a significant limitation, leading to reduced crop 

height measurements and weakening the relationship between biomass and plant height. 

Incorporating disturbance effects into the calibration and validation processes of biomass 

models is crucial (Zhang et al. 2023; Chauhan et al. 2019). Field reference data collected in 

disturbed areas can help refine the models to better account for these variations. This ensures that 

the models are robust and can provide accurate estimates under different field conditions (Li et al. 
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2021). Additionally, the development of advanced algorithms to detect and adjust for disturbances 

such as lodging is essential. These algorithms can be integrated into the data processing workflow 

to automatically identify and correct for irregularities in the canopy structure, enhancing the 

reliability of CHMs. 

Understanding how disturbances affect biomass estimation can also inform grassland 

management practices. For example, areas prone to molehills might require specific management 

strategies to mitigate their impact on biomass estimates. In Germany and many other European 

countries, moles (Talpa europaea) are protected by law under nature conservation regulations, 

making it illegal to kill or trap them without specific authorization (Federal Ministry for the 

Environment and Nature Conservartion, 2010). Consequently, non-lethal strategies such as soil 

compaction to reduce mole activity or habitat modification to make areas less favorable for moles 

are recommended for managing molehills in grasslands. Additionally, UAV-based monitoring can 

help identify molehill-prone areas, enabling more targeted interventions to minimize their effect 

on biomass estimations. 

In addition to structural data, spectral data is a widely used method and offer distinct 

advantages for estimating biomass in grasslands. Spectral data is particularly valuable for capturing 

biochemical characteristics of plants, such as chlorophyll content and water stress, which are key 

indicators of plant health and quality (Wachendorf, Fricke and Möckel, 2018). For example, in 

research applications focused on assessing forage quality, hyperspectral sensors provide detailed 

information that is not achievable with RGB-based data (Barnetson, Phinn and Scarth, 2020; Zhao 

et al., 2021). Similarly, spectral data is more suitable for monitoring stress factors, such as drought 

or nutrient deficiencies, in large-scale grassland ecosystems (Barnes et al., 2000). However, this 

approach presents several significant challenges that were highlighted in the review of literature in 

Chapter II. Spectral data often require the use of multispectral or hyperspectral sensors, which are 

still more expensive compared to RGB sensors typically used for capturing structural data. This 

increased cost can be a barrier for widespread application, particularly in large-scale or resource-

limited projects. 

Moreover, the processing of multispectral and hyperspectral data is inherently more complex 

and demands advanced technical expertise. Unlike RGB data, which can be relatively 

straightforward to process, multispectral and hyperspectral data require more technical knowledge 

to interpret the spectral signatures of vegetation. This complexity extends to the entire workflow, 

from data acquisition to final analysis, necessitating a higher level of proficiency in remote sensing 

and data processing techniques. 

Another significant limitation of using spectral data is the necessity for reflectance calibration. 

Accurate biomass estimation depends on the precise calibration of reflectance values, which 

requires additional steps during both data capture and processing (Tmušić et al., 2020). In the field, 

this involves placing calibration panels and capturing images of these panels at the beginning and 

end of each UAV flight. This extra step increases the workload and operational complexity, as it 

demands careful planning and execution to ensure the panels are positioned correctly and the 
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images are captured under consistent conditions. 

The post-processing phase also involves an additional calibration step to adjust the reflectance 

values accurately. This process is labor-intensive and requires meticulous attention to detail to 

ensure that the data is correctly calibrated. Despite these efforts, spectral data can still be heavily 

influenced by changes in lighting conditions during image capture. Variability in natural light, such 

as fluctuations in cloud cover or the angle of the sun, can introduce significant errors into the 

reflectance data (de Souza, Scharf and Sudduth, 2010; Xue et al., 2023). 

In regions such as our study area in Germany, where weather conditions are highly variable, 

even short UAV flights (around 30 minutes) can experience substantial changes in illumination. 

These fluctuations can affect the quality and consistency of the spectral data, making it challenging 

to obtain reliable biomass estimates. The need for consistent lighting conditions adds another layer 

of complexity to the already demanding process of using spectral data for biomass estimation. 

Considering a practical context at the farm level, where larger areas are involved and waiting 

for perfect weather conditions is not always feasible, and the need for higher technical expertise 

for image processing, the use of spectral data becomes less viable than using structural data for 

biomass estimation. However, spectral data offers greater applicability for estimating biomass 

quality as it can capture more detailed information related to the biochemical characteristics of 

plants, which are indicative of nutritional content (Oliveira et al., 2020; Franceschini et al., 2022). 

This capability makes spectral data valuable for assessing aspects of biomass beyond mere 

quantity, providing insights into plant health and quality. 

One alternative, or rather a trend in current studies, for biomass estimation in grasslands is the 

integration of different types of UAV-derived data to exploit the advantages and mitigate the 

limitations of each type. According to the results of the review in Chapter II of this thesis, recent 

studies have increasingly utilized the integration of structural and spectral data. The findings 

indicate that models employing both data types outperformed those using only one (Viljanen et al., 

2018; Lussem et al., 2022). This integration generally leads to better model accuracy, leveraging 

the detailed structural information from CHMs and the biochemical data from spectral images 

(Karunaratne et al., 2020; Pranga et al., 2021). 

Despite the overall improved accuracy from data integration, this approach involves handling 

larger and more complex datasets, which has led to an increasing tendency of employing more 

robust algorithms to manage these models. Consequently, recent work on biomass estimation in 

grasslands using remote sensing data has increasingly utilized machine learning algorithms. In the 

review of Chapter II, we identified the main algorithms and types of features, which set the 

foundation for the fourth chapter of this thesis. 

In the fourth chapter, we then investigated the integration of UAV-derived features for biomass 

estimation in a heterogeneous grasslands field, including texture features. The study concept was 

resulted from our review in Chapter II, which examined previous studies and identified the 

potential benefits of combining texture analysis with structural and spectral data. Texture features 
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describe the variations in intensity or color within an image, capturing the surface structure and 

spatial arrangement of vegetation. These features provide additional data layers that are correlated 

with the structural and heterogeneity characteristics of the vegetation, offering important 

information into the spatial patterns of grasslands. 

Few recent studies have explored the use of texture combined with other image-derived 

features for biomass estimation in grassland. For instance, Grüner, Wachendorf and Astor (2020) 

demonstrated that integrating spectral and texture features derived from UAV data improved 

predictions of aboveground biomass in legume-grass mixtures, particularly by capturing variability 

not accounted for by spectral data alone. In another study, Grüner, Astor and Wachendorf, (2021) 

showed that texture metrics, when integrated with machine learning algorithms, enhanced the 

robustness of biomass predictions in heterogeneous grasslands. Similarly, Dos Reis et al. (2020) 

emphasized the utility of texture features from high-resolution satellite imagery for estimating 

aboveground biomass and canopy height in pastures, showing their potential to enhance predictions 

under varying environmental conditions.  

While these studies highlight the advantage of integrating texture data with other features, 

most were conducted in controlled field trial settings, where management practices are uniform 

and environmental variability is minimal. Similar to many works that assessed the combination of 

structural (CH) and spectral data (Karunaratne et al., 2020; Oliveira et al., 2020; Pranga et al., 

2021), these studies typically relied on data from a single growing season, which limits their 

applicability to more complex grassland systems. In contrast, natural or permanent grassland fields 

present a higher level of complexity due to their inherent variability, including diverse species 

compositions, uneven terrain, fluctuating environmental conditions (e.g., soil and groundwater 

levels), and differing management practices. Our experiment was carried out within a managed wet 

grassland, which adds another layer of complexity compared to controlled field trials. Specifically, 

the spatial variability of soil properties, groundwater levels, and the use of different cutting systems 

introduced additional challenges for biomass estimation, reflecting the complexity of real-world 

grassland dynamics. These factors make our study more demanding but also more representative 

of real-world conditions. Due to these specific characteristics, our hypothesis was that integrating 

various features from UAV data could improve model accuracy in such a complex environment. 

The implications of using integrated features were mixed, depending on the specific 

management practices and cutting regimes analyzed. While our results indicated that models 

combining structural, spectral, and texture features (CH+VI+GLCM) generally outperformed those 

relying on a single feature class, the improvements were not always statistically significant. For 

instance, in the two-cut system, the inclusion of texture features added limited value compared to 

CH+VI alone, suggesting that in less frequent cutting regimes, the spectral insights from vegetation 

indices are already sufficient to capture biomass variability. Conversely, in the four-cut system, the 

integration of all feature types (CH+VI+GLCM) led to meaningful improvements in both R² and 

rRMSE, emphasizing the importance of texture features in capturing subtle structural variations 

and spatial heterogeneity introduced by frequent cutting. 
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While the combination of all feature classes showed potential, it is important to critically assess 

the practical benefits of this approach. For example, CH alone performed comparably well under 

the three-cut regime, likely due to the balance between structural uniformity and regrowth 

dynamics. This suggests that in systems with moderately homogeneous canopies, simpler models 

relying on CH alone may suffice, offering a cost-effective and less labor-intensive alternative for 

on-farm applications. 

6.1.2 Challenges in UAV-based species richness estimation in grassland 

ecosystems 

Estimating biodiversity in grasslands using remote sensing data presents several unique challenges. 

Grassland ecosystems are inherently complex due to their high spatial heterogeneity, presenting 

usually a mix of different species with various growth forms and phenological stages, leading to 

diverse reflectance patterns that are challenging to interpret accurately using remote sensing 

technologies. 

Currently, most studies investigating plant biodiversity estimation in grasslands rely on the 

Spectral Variation Hypothesis (SVH). Introduced by Palmer et al. (2002), the SVH states that the 

spectral variability of a remote sensing image is linked to the species richness of the captured area. 

Spectral variability, or spectral diversity, refers to the quantitative differences in the reflectance 

spectra between the spatial units (pixels) in a remote sensing image. Palmer et al. (2002) developed 

and tested this hypothesis in a tallgrass prairie preserve, a vegetation type known for its high species 

richness and structural complexity. The study explored spatial extents ranging from small plots 

(e.g., 10 m × 10 m) to larger areas of several hectares and emphasized the use of high-resolution 

imagery, typically 1–5 meters per pixel, to effectively capture the fine-scale variability necessary 

for linking spectral diversity to species richness. The basic assumption of SVH is that increased 

spectral variability indicates an increased variety of habitats in the surveyed area, which can 

support more species. Thus, spectral variability, which indirectly reflects the diversity of habitats, 

can be used as an indicator for species richness. 

The SVH has several advantages, including the ability to provide indirect estimates of 

biodiversity using remote sensing data. This approach can cover large areas relatively quickly and 

cost-effectively compared to traditional field-based methods. However, there are also notable 

disadvantages. The spectral-to-species diversity relationship can be influenced by various factors, 

including vegetation cover, habitat type, and spatial distribution patterns of species, seasonal 

development of vegetation, and the spatial resolution of the remote sensing data. These factors can 

introduce variability and potential biases in the estimates.  

In the fifth chapter of this thesis, we hypothesized that integrating different UAV-derived 

features, similar to the methodology proposed for improving biomass estimation accuracy, could 

enhance the accuracy of species richness estimation in grasslands. We believed that combining 

structural (CHM), spectral (VI), and texture features would provide a more comprehensive dataset 
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that captures the complex patterns within the ecosystem, leading to better species richness 

estimates. 

The results from previous studies suggest that seasonal development of vegetation 

significantly influences species richness estimation using remote sensing data (Wang et al., 2018; 

2016; Ludwig, Doktor, and Feilhauer, 2024; Gholizadeh et al., 2018; Taddeo, Dronova, and Harris, 

2021; Muro et al., 2022).  In our study, this may have been a contributing factor, as species richness 

was estimated over two years under different cutting treatments, with the best results observed 

during the peak growing season—defined as the period when vegetation typically reaches its 

maximum height during the flowering stage. During this time, vegetation structure tends to be more 

diverse, and spectral signals are more distinct, facilitating species differentiation. 

This seasonal effect highlights the importance of selecting the optimal timing for remote 

sensing-based biodiversity assessments, as the phenological stage of the vegetation can influence 

the accuracy of species richness estimates. However, frequent cutting regimes may alter the timing 

of flowering and biomass accumulation, potentially reducing the distinctiveness of the spectral 

signals during the peak growing season. To address this, the approach may need to be adapted to 

account for the modified phenological patterns caused by intensive management practices. For 

instance, assessing species richness shortly before the first cut might yield more reliable results by 

capturing vegetation at a less homogeneous stage. 

Another source of uncertainty that must be considered is the varying phenology of different 

species within the same sampling unit. While some species may still be actively growing, others 

might already be in senescence, introducing spectral variability that can influence biodiversity 

assessments. This temporal dynamic, noted by Gholizadeh et al. (2018), highlights the challenges 

of applying this approach in ecosystems with diverse successional stages or under intensive 

management practices. Thus, while the peak growing season may provide optimal conditions, 

incorporating multi-temporal data across various phenological stages, as in our study, can offer a 

more comprehensive understanding of species richness in heterogeneous grasslands, despite the 

associated challenges. 

Considering the challenges posed by phenological variability and seasonal dynamics, the 

integration of structural, spectral, and texture features of the grassland proved to be an important 

approach for improving the accuracy of species richness models. Spectral and texture features were 

particularly valuable in more frequent cutting treatments, as texture features captured the structural 

complexity of vegetation, which is critical in diverse grassland ecosystems. This integration 

allowed us to capture the nuanced differences in vegetation that single data types might miss. 

The influence of cutting frequency on feature importance revealed distinct patterns in our 

models, reflecting the varying dynamics of grassland ecosystems under different management 

intensities. In high-frequency cutting regimes, such as the three- and four-cut systems, the 

homogenization of the canopy structure reduced the predictive power of structural variables like 

canopy height. Instead, the models relied more on spectral features to capture subtle differences in 

vegetation health and vigor, as well as texture metrics to account for residual variability induced 
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by management practices (Cabezas, Galleguillos and Perez-Quezada, 2016; Imran et al., 2021; 

Taddeo, Dronova and Harris, 2021). However, the accuracy of species richness estimation was 

lower in these regimes, likely because the reduced structural variability limited the additional value 

that spectral and texture features could provide. 

In contrast, the two-cut system provided conditions where structural complexity was more 

pronounced, allowing canopy height to emerge as a stronger predictor of species richness. The 

capturing of higher structural variability also translated into improved model performance, with 

higher R² values and lower relative errors compared to the more intensively managed systems. 

These findings emphasize the importance of aligning feature integration strategies with the 

physiological and structural effects of different management regimes.  

The practical implications of our findings are significant for conservation and management. 

By accurately assessing species richness, land managers can make informed decisions to promote 

biodiversity. For example, understanding the effects of different cutting regimes and their 

interactions with soil conditions on species richness can help in planning site-specific management 

practices that enhance biodiversity. Additionally, accurate species richness estimates can aid in 

monitoring the effectiveness of conservation efforts and detecting changes in biodiversity over 

time. 

6.1.3 Practical implications 

The integration of UAVs with advanced sensors offers a cost-effective and efficient alternative to 

traditional ecological monitoring methods. This combination facilitates rapid, non-destructive 

assessments, particularly valuable for managing dynamic and heterogeneous grassland ecosystems. 

However, UAVs alone are merely carriers; their effectiveness depends on the selection of 

appropriate sensors (e.g., multispectral, hyperspectral) and the use of robust image processing 

techniques to translate raw data into actionable insights. Current sensor technologies and 

processing methods demonstrate the capability to monitor grassland biomass and species diversity 

at small to medium scales with promising accuracy (Bazzo et al., 2023; Lyu et al., 2024). Scaling 

up to larger areas, however, poses challenges, including flight time limitations, data processing 

demands, and the impact of environmental variability. 

To bring UAV-based grassland monitoring closer to practical implementation for farmers, 

future advancements should focus on developing user-friendly systems with simplified data 

acquisition and analysis pipelines. Further research should aim to improve the integration of real-

time processing capabilities and cloud-based platforms to make these tools accessible for 

sustainable management and decision-making in grassland ecosystems. 

6.1.4 Limitations and suggestions for future research 

Several limitations need to be addressed to fully realize the potential of UAV-based ecological 
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monitoring of grasslands: 

Impact of field disturbances 

While this thesis highlights the significance of field disturbances, such as molehills and lodging, 

on biomass estimation, more advanced models are needed to address these variables effectively. 

For instance, molehills can potentially be excluded from the data using high-resolution UAV 

imagery and advanced image processing techniques that detect and remove small-scale anomalies. 

In contrast, lodging poses a greater challenge due to its dynamic nature and irregular occurrence. 

Developing time-series data from UAV flights during the grass growth period could help model 

the temporal progression of lodging and allow for better extrapolation to the cutting day. A critical 

next step would be to develop models capable of not only detecting these disturbances but also 

incorporating their effects into the estimation process. By integrating disturbance detection and 

their impacts into the calibration and validation of models, future studies can enhance the reliability 

and accuracy of biomass and species richness estimations under real-world field conditions. 

Generality of findings  

The findings of this research are based on data collected from a single grassland field of relatively 

small size and specific environmental conditions. While these results provide valuable insights, 

their applicability to other ecosystems or geographical regions remains limited. Future research 

should aim to generalize these findings by conducting similar studies in diverse grassland types, 

including natural and cultivated systems, under varying environmental conditions such as 

contrasting groundwater levels and weather patterns. Expanding the scope of research to include 

larger and more heterogeneous study areas would also enhance the transferability of UAV-based 

monitoring approaches to broader ecological and management contexts. 

Temporal dynamics 

Long-term studies are essential to assess the temporal dynamics of biomass and biodiversity in 

response to environmental changes with respect to weather conditions. Understanding how 

grassland growth and development changes over time will provide valuable insights for sustainable 

management and conservation efforts. 

Integration of additional data sources 

The integration of structural, spectral, and textural features from UAV data has proven effective, 

but there is potential to incorporate other data types. For example, hyperspectral imagery, LiDAR 

data, and environmental sensors can provide additional layers of information, further enhancing 

the accuracy and comprehensiveness of ecological assessments. 

Machine learning and data analytics 

Advanced machine learning algorithms have shown great promise in analyzing UAV-derived data 

(Holloway and Mengersen, 2018; Morais et al., 2021). Future studies should continue to explore 

and refine these algorithms, potentially incorporating deep learning techniques and automated data 

processing workflows to handle the increasing volume and complexity of UAV data. Additionally, 
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the development of large language models, such as ChatGPT, for agricultural applications presents 

a unique opportunity to enhance data interpretation and decision-making. These models could be 

adapted to provide contextual insights, assist in anomaly detection, and automate reporting 

processes, making UAV-based systems more accessible and user-friendly for agricultural 

stakeholders. Exploring the integration of such tools with machine learning frameworks could open 

new avenues for efficient and scalable monitoring solutions. 

6.2 Conclusions 

This thesis demonstrates the potential of UAV-derived data in ecological monitoring, particularly 

for grassland biomass estimation and biodiversity assessment. By utilizing advancements in remote 

sensing and machine learning, the research addressed important gaps in current methodologies and 

provided practical insights into the use of UAVs for studying managed wet grasslands. 

The systematic review in Chapter II highlighted the strengths and limitations of UAV-based 

biomass estimation methods, establishing a robust foundation for subsequent experimental studies. 

It highlighted the increasing focus on integrating structural, spectral, and textural data as a key 

strategy for improving model accuracy for estimation of grass biomass. Chapter III evaluated the 

impact of field disturbances, such as molehills and lodging, on biomass estimation, demonstrating 

that these disturbances can significantly affect the relationship between canopy height and biomass. 

Chapter IV focused on the integration of multiple UAV-derived features for biomass 

estimation in a heterogeneous grassland field. The study concluded that combining structural, 

spectral, and texture features of grassland enhances model performance, particularly in capturing 

the variability and complexity inherent in diverse grassland systems. This integrated approach 

provided more robust estimates compared to using single data types, offering valuable insights for 

ecological monitoring under varying management regimes. 

Chapter V extended the scope of this research to biodiversity assessment, focusing on species 

richness estimation. The results showed how phenological variability and management practices 

affect model performance and demonstrated the benefits of combining different UAV-derived data 

types in estimation floral diversity. This approach provided valuable insights for monitoring and 

managing grassland biodiversity under varying ecological conditions and cutting frequencies. 

While the potential of UAVs for ecological monitoring is evident, the thesis also identified 

significant challenges. These include the complexity of processing large datasets, the need for 

precise calibration of remote sensing models, and logistical constraints associated with UAV-based 

fieldwork. Future research should focus on simplifying workflows, developing more accessible 

analytical tools, and scaling these approaches for broader applications 

This research provides a strong basis for future work aimed at improving UAV-based methods 

and integrating them into ecological studies and management practices. By combining technical 

improvements with ecological knowledge, it is possible to develop more effective tools for 
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understanding and managing grassland ecosystems. This thesis contributes to these efforts by 

presenting a comprehensive approach to applying UAV technology in grassland research and 

supporting its use in both scientific and practical contexts. 
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Appendix A. Supplementary material from article “A Review of 

Estimation Methods for Aboveground Biomass in Grasslands Using 

UAV” 

Table A1. Studies using UAV data to estimate grassland above ground biomass (AGB). 

No. Title Ref Year Journal Main Objective 

1 

Modeling above-ground biomass 

in tallgrass prairie using ultra-

high spatial resolution sUAS 

imagery 

(Wan

g et 

al., 

2014) 

2014 

Photogrammetric 

Engineering & 

Remote Sensing 

To examine relationship between 

herbaceous AGB for the tallgrass prairie and 

its biophysical parameters derived from 

ultra-high-spatial-resolution imagery. 

2 

Estimating plant traits of 

grasslands from UAV-acquired 

hyperspectral images: a 

comparison of statistical 

approaches. 

(Capo

lupo 

et al., 

2015) 

2015 

International 

Journal of Geo-

Information 

To investigate the utility of hyperspectral 

images acquired from UAV for predicting 

vegetation traits in grasslands considering 

the plant phenology and fertilization on 

spectral data. 

3 

Mapping Herbage Biomass on a 

Hill Pasture using a Digital 

Camera with an Unmanned 

Aerial Vehicle System 

(Lee 

et al., 

2015) 

2015 

Journal of The 

Korean Society of 

Grassland and 

Forage Science 

To develop a simple and cost-effective low-

altitude aerial platform system with a 

commercial digital camera on an UAV 

system to collect images and estimate the 

herbage biomass using statistical analyses. 

4 

Ultra-fine grain landscape-scale 

quantification of dryland 

vegetation structure with drone-

acquired structure-from-motion 

photogrammetry 

(Cunl

iffe, 

Brazie

r and 

Ande

rson, 

2016) 

2016 
Remote Sensing of 

Environment 

To develop a new technique to quantify 

biomass and associated carbon stocks in 

heterogeneous and dynamic short sward 

semi-arid rangelands. 

5 
Hyperspectral aerial imaging for 

grassland yield estimation 

(Geip

el and 

Korsa

eth, 

2017) 

2017 
Advances in Animal 

Biosciences 

To investigate the potential of UAV imaging 

spectroscopy for in-season grassland yield 

estimation. 

6 

Modeling Aboveground Biomass 

in Hulunber Grassland 

Ecosystem by Using Unmanned 

Aerial Vehicle Discrete Lidar 

(Wan

g et 

al., 

2017) 

2017 Sensors 

To investigate if the canopy height, fraction 

cover, and aboveground biomass can be 

derived using models established from 

UAV-based discrete LIDAR data with 

desirable accuracy at quadrat and subplot 

scales. 

7 

Low-cost visible and near-

infrared camera on an 

unmanned aerial vehicle for 

assessing the herbage biomass 

and leaf area index in an Italian 

ryegrass field 

(Fan 

et al., 

2018) 

2018 Grassland Sciences 

To demonstrate the use of a UAV system 

equipped with a low-cost visible and near-

infrared (V-NIR) camera to assess the spatial 

variability in herbage biomass and LAI in an 

Italian ryegrass field. 

8 
Estimating biomass and nitrogen 

amount of barley and grass 

(Näsi 

et al., 

2018) 

2018 Remote Sensing 

To develop and assess a methodology for 

crop biomass and nitrogen estimation, 

integrating spectral and 3D features that can 
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using UAV and aircraft based 

spectral and photogrammetric 

be extracted using airborne miniaturized 

multispectral, hyperspectral, and color 

(RGB) cameras. 

9 

A novel machine learning 

method for estimating biomass 

of grass swards using a 

photogrammetric canopy height 

model, images and vegetation 

indices captured by a drone. 

(Vilja

nen et 

al., 

2018) 

2018 Agriculture 

To develop and assess a novel machine 

learning technique for the estimation of 

canopy height and biomass of grass swards 

utilizing multispectral photogrammetric 

camera data. 

10 

Estimation of Grassland Canopy 

Height and Aboveground 

Biomass at the Quadrat Scale 

Using Unmanned Aerial Vehicle 

(Zhan

g et 

al., 

2018) 

2018 Remote Sensing 

To develop a novel method for estimating 

the quadrat-scale aboveground biomass of 

low-statute vegetation. 

11 

Evaluation of grass quality 

under different soil management 

scenarios using remote sensing 

techniques. 

(Aska

ri et 

al., 

2019) 

2019 Remote Sensing 

To evaluate the efficiency of hyperspectral 

and multispectral (UAV and satellite) 

remote sensing techniques for predicting 

and mapping grass biomass and crude 

protein under conventional grassland 

management in a temperate maritime 

climate. 

12 

Estimating pasture biomass and 

canopy height in Brazilian 

savanna using UAV 

photogrammetry. 

(Batis

toti et 

al., 

2019) 

2019 Remote Sensing 

To estimate the canopy height using UAV 

photogrammetry and to propose an 

equation for the estimation of biomass of 

Brazilian savanna (Cerrado) pastures based 

on UAV canopy height. 

13 

Canopy height measurements 

and non-destructive biomass 

estimation of Lolium perenne 

swards using UAV imagery. 

(Borra

-

Serra

no et 

al., 

2019) 

2019 
Grass and Forage 

Science 

To develop a methodology for monitoring 

the spatial and temporal dynamics of 

biomass accumulation of perennial ryegrass 

plots throughout the growing season in an 

affordable, easy-to-use, reliable, and non-

destructive way using an RGB camera 

mounted on a UAV. 

14 

Biomass Prediction of 

Heterogeneous Temperate 

Grasslands Using an SfM 

Approach Based on UAV 

Imaging 

(Grün

er, 

Astor 

and 

Wach

endor

f, 

2019) 

2019 Agronomy 

To develop of prediction models for dry 

matter yield in temperate grassland based 

on canopy height data generated by UAV 

RGB imaging over a whole growing season 

including four cuts. 

15 

Estimation of spatial and 

temporal variability of pasture 

growth and digestibility in 

grazing rotations coupling 

unmanned aerial vehicle (UAV) 

with crop simulation models 

(Insua

, 

Utsu

mi 

and 

Basso, 

2019) 

2019 PLOS One 

To monitor, assess and manage changes in 

pasture growth, morphology, and 

digestibility by integrating information from 

an UAV and two process-based models. 

16 

Estimating biomass in temperate 

grassland with high resolution 

canopy surface models from 

(Luss

em et 
2019 

Journal of Applied 

Remote Sensing 

To evaluate the potential of low-cost UAV-

based canopy surface models to monitor 

sward height as an indicator of grassland 
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UAV-based RGB images and 

vegetation indices 

al., 

2019) 

biomass and compare with established 

methods for biomass monitoring. 

17 

Mapping and monitoring of 

biomass and grazing in pasture 

with an unmanned aerial system 

(Mich

ez et 

al., 

2019) 

2019 Remote Sensing 

To evaluate the potential of UAV as a tool 

for the characterization of pasture 3D 

structure (sward height) and aboveground 

biomass at a very fine spatial scale. 

18 

Comparing UAV-Based 

Technologies and RGB-D 

Reconstruction Methods for 

Plant Height and Biomass 

Monitoring on Grass Ley 

(Rued

a-

Ayala 

et al., 

2019) 

2019 Sensors 

To evaluate aerial and on-ground methods 

to characterize grass ley fields, composed of 

different species mixtures and estimate plant 

height, biomass and volume, using digital 

grass models, and avoiding the unnecessary 

destruction of the swards. 

19 

Evaluating soil-borne causes of 

biomass variability in grassland 

by remote and proximal sensing 

 2019 Sensors 

To investigate the relationship between soil 

characteristics and biomass production to 

identify high- and low-yielding regions 

within the field and their possible soil-borne 

causes. 

20 

Evaluation of 3D point cloud-

based models for the prediction 

of grassland biomass 

(Wijes

ingha 

et al., 

2019) 

2019 

International 

Journal of Applied 

Earth Observation 

and Geoinformation 

To evaluate 3D point clouds derived from a 

terrestrial laser scanner (TLS) and an UAV-

borne SfM approach for grassland biomass 

estimation over three grasslands with 

different composition and management 

practice in northern Hesse, Germany. 

21 

Estimating Plant Pasture 

Biomass and Quality from UAV 

Imaging across Queensland’s 

Rangelands 

(Barn

etson, 

Phinn 

and 

Scarth

, 

2020) 

2020 AgriEngineering 

To demonstrate the use of UAV 

hyperspectral remote sensing to detect both 

crude protein and acid detergent fiber in a 

range of native pastures across the 

rangelands of Queensland, Australia. 

22 

Deep learning applied to 

phenotyping of biomass in 

forages with UAV-based RGB 

imagery 

(Castr

o et 

al., 

2020) 

2020 Sensors 

To propose a deep learning approach to 

estimate biomass in forage breeding 

programs and pasture fields using only 

UAV-RGB imagery and AlexNet and ResNet 

deep learning architectures. 

23 

A Pilot Study to Estimate Forage 

Mass from Unmanned Aerial 

Vehicles in a Semi-Arid 

Rangeland 

(DiM

aggio 

et al., 

2020) 

2020 Remote Sensing 

To develop a method to estimate forage 

mass in rangelands using high-resolution 

imagery derived from the UAV using a 

South Texas pasture as a pilot site. 

24 

Development and validation of a 

phenotyping computational 

workflow to predict the biomass 

yield of a large perennial 

ryegrass breeding field trial 

(Gebr

emed

hin et 

al., 

2020) 

2020 
Frontiers in Plant 

Science 

To validate a computational phenotyping 

workflow for image acquisition, processing, 

and analysis of spaced-planted perennial 

ryegrass to estimate the biomass yield of 

48,000 individual plants through NDVI and 

plant height data extraction. 

25 

The potential of UAV-borne 

spectral and textural information 

for predicting aboveground 

biomass and N fixation in 

legume-grass mixtures 

(Grün

er, 

Wach

endor

f and 

2020 PLOS One 

To develop harvestable biomass and 

aboveground nitrogen fixation estimation 

models from UAV multispectral imaging of 

legume–grass mixtures with varying legume 

proportions (0–100%). 



160 

Astor, 

2020) 

26 

Comparison of Spectral 

Reflectance-Based Smart 

Farming Tools and a 

Conventional Approach to 

Determine Herbage Mass and 

Grass Quality on Farm 

(Hart 

et al., 

2020) 

2020 Remote Sensing 

To evaluate two spectral reflectance-based 

smart farming tools for determining herbage 

mass and quality of multi-species 

grasslands—a portable NIRS and a model to 

analyze multispectral imagery. 

27 

Investigating the potential of a 

newly developed UAV-based 

VNIR/SWIR imaging system for 

forage mass monitoring 

(Jenal 

et al., 

2020) 

2020 

Journal of 

Photogrammetry, 

Remote Sensing and 

Geoinformation 

Science 

To investigate the potential of a multi-

camera system with a novel approach to 

extend spectral sensitivity from visible-to-

near-infrared (VNIR) to short-wave infrared 

(SWIR) (400–1700 nm) for estimating forage 

mass from an aerial carrier platform. 

28 

The fusion of spectral and 

structural datasets derived from 

an airborne multispectral sensor 

for estimation of pasture dry 

matter yield at paddock scale 

with time 

(Karu

narat

ne et 

al., 

2020) 

2020 Remote Sensing 

To develop empirical pasture dry matter 

(DM) yield prediction models using an 

UAV-borne sensor at four flying altitudes. 

29 

High-throughput switchgrass 

phenotyping and biomass 

modeling by UAV 

(Li et 

al., 

2020) 

2020 
Frontiers in Plant 

Science 

To exploit UAV-based imagery (LiDAR and 

multispectral approaches) to measure plant 

height, perimeter, and biomass yield in field-

grown switchgrass in order to make 

predictions of bioenergy traits. 

30 

Monitoring Forage Mass with 

Low-Cost UAV Data: Case Study 

at the Rengen Grassland 

Experiment 

(Luss

em, 

Schell

berg 

and 

Baret

h, 

2020) 

2020 

Journal of 

Photogrammetry, 

Remote Sensing and 

Geoinformation 

Science 

To investigate the potential of sward height 

metrics derived from low-cost UAV image 

data to predict forage yield. 

31 

Can Low-Cost Unmanned Aerial 

Systems Describe the Forage 

Quality Heterogeneity? Insight 

from a Timothy Pasture Case 

Study in Southern Belgium 

(Mich

ez et 

al., 

2020) 

2020 Remote Sensing 

To investigate the potential of off-the-shelf 

UAS systems in modeling essential 

parameters of pasture productivity in a 

precision livestock context: sward height, 

biomass, and forage quality. 

32 

Machine learning estimators for 

the quantity and quality of grass 

swards used for silage 

production using drone-based 

imaging spectrometry and 

photogrammetry 

(Olive

ira et 

al., 

2020) 

2020 
Remote Sensing of 

Environment 

To develop and assess a machine learning 

technique for the estimation of the quantity 

and quality of grass swards based on drone 

spectral imaging and photogrammetry. 

33 

An efficient method for 

estimating dormant season grass 

biomass in tallgrass prairie from 

ultra-high spatial resolution 

aerial imaging produced with 

(Van 

Der 

Merw

e, 

Bald

win 

2020 

International 

Journal of Wildland 

Fire 

To investigate the viability UAV image data 

to estimate dormant season grassland 

biomass, based on the assumption that 

grassland canopy height correlates with 

grassland biomass. 
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small unmanned aircraft 

systems. 

and 

Boyer

, 

2020) 

34 

Fine scale plant community 

assessment in coastal meadows 

using UAV based multispectral 

data 

(Villo

slada 

et al., 

2020) 

2020 Ecological Indicators 

To assess the potential of UAVs and 

multispectral cameras for classifying and 

fine-scale mapping of plant communities in 

coastal meadows. 

35 

Using multispectral data from an 

unmanned aerial system to 

estimate pasture depletion 

during grazing 

(Alva

rez-

Hess 

et al., 

2021) 

2021 
Animal Feed Science 

and Technology 

To develop and validate empirical models to 

estimate pasture depletion in paddocks 

while cattle are grazing using an UAV-borne 

multispectral sensor with rising plate meter 

measurements as the reference data. 

36 

Monitoring ecological 

characteristics of a tallgrass 

prairie using an unmanned 

aerial vehicle 

(Black

burn 

et al., 

2021) 

2021 Restoration Ecology 

To evaluate the potential applications of 

UAV derived data within restored tallgrass 

prairies using an affordable sensor and 

UAV. 

37 

Predicting pasture biomass 

using a statistical model and 

machine learning algorithm 

implemented with remotely 

sensed imagery 

(De 

Rosa 

et al., 

2021) 

2021 

Computers and 

Electronics in 

Agriculture 

To test the performance of an integrated 

method combining remote sensing imagery 

acquired with a multispectral camera 

mounted on an UAV, statistical models, and 

machine learning algorithms implemented 

with publicly available data to predict future 

pasture biomass loads. 

38 

Forage yield and quality 

estimation by means of UAV and 

hyperspectral imaging 

(Geip

el et 

al., 

2021) 

2021 
Precision 

Agriculture 

To investigate the potential of in-season 

airborne hyperspectral imaging for the 

calibration of robust forage yield and quality 

estimation models. 

39 

Prediction of Biomass and N 

Fixation of Legume–Grass 

Mixtures Using Sensor Fusion 

(Grün

er, 

Astor 

and 

Wach

endor

f, 

2021) 

2021 
Frontiers in Plant 

Science 

To develop a multi-temporal estimation 

model for aboveground biomass and 

nitrogen fixation of two legume–grass 

mixtures. 

40 

The Application of an 

Unmanned Aerial System and 

Machine Learning Techniques 

for Red Clover-Grass Mixture 

Yield Estimation Under Variety 

Performance Trials 

(K. Y. 

Li et 

al., 

2021) 

2021 Remote Sensing 

To present a rapid, non-destructive, low-cost 

framework for field-based red-clover DM 

yield modeling. 

41 

A novel UAV-based approach 

for biomass prediction and 

grassland structure assessment 

in coastal meadows 

(Villo

slada 

Peciñ

a et 

al., 

2021) 

2021 Ecological Indicators 

To compare two temporal pre-harvest dry 

matter prediction capabilities under one- 

and two-year clover–grass cultivation fields 

with three different treatments and compare 

the performance of three machine learning 

algorithms and their corresponding variable 

importance rankings in estimating clover–

grass mixture dry matter. 
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42 

UAV Multispectral Imaging 

Potential to Monitor and Predict 

Agronomic Characteristics of 

Different Forage Associations 

(Plaza 

et al., 

2021) 

2021 Agronomy 

To show a first screening of the potential of 

airborne multispectral images captured with 

UAVs for the monitoring and prediction of 

several in situ agronomic parameters of 

different forage associations by exploring 

the relationships between a few spectral 

indices UAV-based and simultaneous field 

measurements over several fields of forage 

associations. 

43 

Improving Accuracy of Herbage 

Yield Predictions in Perennial 

Ryegrass with UAV-Based 

Structural and Spectral Data 

Fusion and Machine Learning 

(Pran

ga et 

al., 

2021) 

2021 Remote Sensing 

To examine the potential of UAV-based 

structural and spectral features and their 

combination in herbage yield predictions 

across diploid and tetraploid varieties and 

breeding populations of perennial ryegrass. 

44 

Effects of plateau pikas’ foraging 

and burrowing activities on 

vegetation biomass and soil 

organic carbon of alpine 

grasslands 

(Qin 

et al., 

2021) 

2021 Plant and Soil 

To quantitatively assess the foraging and 

burrowing effects of plateau pikas on 

vegetation biomass and soil organic carbon 

at plot scale. 

45 

Estimating dry biomass and 

plant nitrogen concentration in 

pre-Alpine grasslands with low-

cost UAS-borne multispectral 

data–a comparison of sensors, 

algorithms, and predictor sets. 

(Schu

cknec

ht et 

al., 

2022) 

2021 
Biogeosciences 

Discussions 

To investigate the potential of low-cost UAS-

based multispectral sensors for estimating 

aboveground biomass (dry matter) and 

plant community nitrogen concentration of 

managed pre-alpine grasslands. 

46 

Remote sensing data fusion as a 

tool for biomass prediction in 

extensive grasslands invaded by 

L. polyphyllus 

(Schul

ze-

Brüni

nghof

f, 

Wach

endor

f and 

Astor, 

2021) 

2021 

Remote Sensing in 

Ecology and 

Conservation 

To develop prediction models from sensor 

data fusion for fresh and dry matter yield in 

extensively managed grasslands with 

variable degrees of invasion by Lupinus 

polyphyllus. 

47 

Improved Estimation of 

Aboveground Biomass of 

Disturbed Grassland through 

Including Bare Ground and 

Grazing Intensity 

(Shi et 

al., 

2021) 

2021 Remote Sensing 

To estimate alpine meadow AGB from 

multi-temporal drone images at a micro-

scale and improve estimation accuracy in 

relation to two types of external 

disturbances (mowing-simulated grazing 

and rodents). 

48 

Biomass estimation of pasture 

plots with multitemporal UAV-

based photogrammetric surveys 

(Sind

e-

Gonz

ález et 

al., 

2021) 

2021 

International 

Journal of Applied 

Earth Observation 

and Geoinformation 

To investigate the use of multitemporal 

UAV-based imagery and SfM 

photogrammetry to estimate the AGB of 

pastures at a fine spatial scale. 

49 

Remotely piloted aircraft 

systems remote sensing can 

effectively retrieve ecosystem 

(Tang 

et al., 

2021) 

2021 

Remote Sensing in 

Ecology and 

Conservation 

To propose a framework for monitoring 

ecosystem traits by UAV visible remote 

sensing, verify the feasibility in monitoring 
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traits of alpine grasslands on the 

Tibetan Plateau at a landscape 

scale 

ecosystem traits, quantify the contribution of 

each band in prediction, validate the 

prediction model, and generate high-spatial-

resolution maps of ecosystem traits. 

50 

Estimation of forage biomass 

and vegetation cover in 

grasslands using UAV imagery 

(Théa

u et 

al., 

2021) 

2021 PLOS One 

To test and compare three approaches based 

on multispectral imagery acquired by UAV 

to estimate forage biomass or vegetation 

cover in grasslands. 

51 

Using UAV LiDAR to Extract 

Vegetation Parameters of Inner 

Mongolian Grassland 

(Zhan

g et 

al., 

2021) 

2021 Remote Sensing 

To investigate the ability of Riegl VUX-1 to 

model the AGB at a 0.1 m pixel resolution in 

the Hulun Buir grazing platform under 

different grazing intensities. 

52 

Hyperspectral retrieval of leaf 

physiological traits and their 

links to ecosystem productivity 

in grassland monocultures. 

(Zhao 

et al., 

2021) 

2021 Ecological Indicators 

To evaluate the remotely sensed retrieval of 

plant physiological traits and test the links 

between the intra- and inter-species trait 

variations and ecosystem productivity based 

on a grassland monoculture experiment. 

53 

A non-destructive method for 

rapid acquisition of grassland 

aboveground biomass for 

satellite ground verification 

using UAV RGB images 

(Zhan

g et 

al., 

2022) 

2022 
Global Ecology and 

Conservation 

To develop and assess the vertical and 

horizontal indices from UAV RGB images as 

predictors of grassland AGB at quadrat scale 

using the RF machine learning technique 

and verify whether the indices and methods 

are suitable for different grassland 

ecosystems over a large region. 

54 

Analysis of UAV LIDAR 

information loss and its 

influence on the estimation 

accuracy of structural and 

functional traits in a meadow 

steppe 

(Zhao 

et al., 

2022) 

2022 Ecological Indicators 

To investigate how UAV LIDAR information 

loss may occur and how it may influence the 

estimation accuracy of grassland structural 

and functional traits by comparing it with 

terrestrial laser scanning (TLS) and field 

measurements in a meadow steppe of 

northern China. 

55 

Estimation of aboveground 

biomass production using an 

unmanned aerial vehicle (UAV) 

and VENμS satellite imagery in 

Mediterranean and semiarid 

rangelands 

(Adar 

et al., 

2022) 

2022 

Remote Sensing 

Applications: Society 

and Environment 

To develop a synergistic UAV and satellite 

imagery method to estimate AGB by 

integrating high-resolution UAV data with 

moderate resolution satellite data, and to 

assess AGB under different grazing 

pressures.  

56 

Beyond trees: Mapping total 

aboveground biomass density in 

the Brazilian savanna using 

high-density UAV-LiDAR data 

(da 

Costa 

et al., 

2021) 

2022 
Forest Ecology and 

Management 

To assess the ability of high-density UAV-

LiDAR to estimate and map AGB across the 

structurally complex vegetation formations 

of the Cerrado in Brazil.  

57 

Quantification of Grassland 

Biomass and Nitrogen Content 

through UAV Hyperspectral 

Imagery—Active Sample 

Selection for Model Transfer 

(Fran

ceschi

ni et 

al., 

2022) 

2022 Drones 

To evaluate the use of UAV hyperspectral 

imagery for the quantification of forage yield 

and nitrogen nutrition status and implement 

and validate a supervised approach for 

model transfer. 

58 

Estimating Grass Sward Quality 

and Quantity Parameters Using 

Drone Remote Sensing with 

Deep Neural Network 

(Karil

a et 

al., 

2022) 

2022 Remote Sensing 

To investigate the potential of novel neural 

network architectures for measuring the 

quality and quantity parameters of silage 

grass swards, using drone RGB and 
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hyperspectral images, and compare the 

results with the random forest (RF) method 

and handcrafted features. 

59 

Herbage Mass, N Concentration, 

and N Uptake of Temperate 

Grasslands Can Adequately Be 

Estimated from UAV-Based 

Image Data Using Machine 

Learning 

(Luss

em et 

al., 

2022) 

2022 Remote Sensing 

To estimate aboveground dry matter yield 

(DMY), nitrogen concentration (N%), and 

uptake (Nup) of temperate grasslands from 

UAV-based image data using machine 

learning (ML) algorithms. 

60 

Silage Grass Sward Nitrogen 

Concentration and Dry Matter 

Yield Estimation Using Deep 

Regression and RGB Images 

Captured by UAV 

(Alve

s 

Olivei

ra et 

al., 

2022) 

2022 Agronomy 

To assess the suitability of CNN-based 

approaches by comparing different deep 

regression network architectures and 

optimizers to estimate grass sward nitrogen 

concentration (N) and dry matter yield 

(DMY) using RGB images collected from a 

drone. 

61 

Nitrogen variability assessment 

of pasture fields under an 

integrated crop-livestock system 

using UAV, PlanetScope, and 

Sentinel-2 data 

(Perei

ra et 

al., 

2022) 

2022 

Computers and 

Electronics in 

Agriculture 

To evaluate the spatial distribution of N in 

pasture fields cultivated under an integrated 

crop–livestock system (ICLS) using 

unmanned aerial vehicle (UAV) and satellite 

data. 

62 

Effects of disturbances on 

aboveground biomass of alpine 

meadow in the Yellow River 

Source Zone, Western China 

(Shi et 

al., 

2022) 

2022 
Ecology and 

Evolution 

To quantify the singular and combined 

effects of artificial grazing and pika 

disturbance severities on AGB and its 

changes in an alpine grassland on the 

Qinghai–Tibet Plateau, assessing the relative 

importance of both disturbances. 

63 
UAV-based prediction of 

ryegrass dry matter yield 

(Short

en 

and 

Trolo

ve, 

2022) 

2022 

International 

Journal of Remote 

Sensing 

To determine the accuracy of UAV-based 

prediction of percentage cover, vegetation 

volume, and DM yield in autumn from 

ryegrass sub-plots and compared to the 

current manual practice of harvesting, 

drying, and weighing. 

64 

Multisite and Multitemporal 

Grassland Yield Estimation 

Using UAV-Borne Hyperspectral 

Data 

(Wen

gert et 

al., 

2022) 

2022 Remote Sensing 

To develop and evaluate UAV-based models 

with the goal of forage yield estimation of 

eight grassland habitats along a gradient of 

management intensities. 
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Table A2. A summary of data field collection from papers assessed in the review. 

Reference Local Type of Field 
Type of 

Grassland 

Number 

of Sites 

UAV 

Platform 
Sensors 

Flight 

Altitude 

(m) 

Overlap, 

Side 

Overlap 

(%) 

GCP 
GSD 

(cm/Pixel) 

Frequency of 

Data Collection 

Biomass 

Ground 

Truth 

Data 

Total 

Number of 

Biomass 

Samples 

Biomass 

Sample 

Size (m2) 

Canopy 

Height 

Measurem

ent 

(Alvarez-Hess 

et al., 2021) 
Australia 

Grassland 

Farm 
Mono 2 Quadcopter MS 50 80/80 10 n/a 

2 collections in 

one year 

RPM 

calibration  
529 n/a RPM 

(Adar et al., 

2022) 
Israel 

Natural 

Grassland 
Mixed 2 Quadcopter RGB n/a 80/80 

15 to 

20 
n/a 

5 collections 

between April 

2018 and April 

2020 

Not 

specified 
600 0.25 n/a 

(Askari et al., 

2019) 
Ireland 

Experimental 

Site 
Mixed 1 Rotary MS 30 and 120 75/75 n/a 

2.86 and 

11.29  

6 collections in 

2017, 2 collections 

in 2018 

Mechanic

al  
126 n/a n/a 

(Barnetson, 

Phinn and 

Scarth, 2020) 

Australia 
Natural 

Grassland 
Mixed 19 Hexacopter 

RGB 

and HS 
50 85/85 n/a 1 

5 collections 2019 

and 1 collection in 

2020 

Mechanic

al  
n/a 0.25 

Electronic 

RPM 

(Batistoti et al., 

2019) 
Brazil 

Experimental 

Site 
Mono 1 Quadcopter RGB 50 80/60 5 1.55 

7 collections in 

2017 and 8 

collections in 2018 

Not 

specified 
66 n/a Ruler 

(Blackburn et 

al., 2021) 
USA 

Natural 

Grassland 
Mixed 19 Fixed-wing MS 122 80/75 n/a n/a 

1 collection in 

2017 
Manual  190 0.01 n/a 

(Borra-Serrano 

et al., 2019) 
Belgium 

Experimental 

Site 
Mono 1 

Dodeca-

copter 
RGB 30 80/80 35 0.6 

22 collections in 

one year 
n/a 154 1.05 RPM 

(Capolupo et 

al., 2015) 
Germany 

Experimental 

Site 
Mono 1 Octocopter HS 70 n/a n/a 2 

2 collections in 

one year 

Mechanic

al  
120 12 RPM 

(Castro et al., 

2020) 
Brazil 

Experimental 

Site  
Mono 1 Quadcopter RGB 18 81/61 n/a 0.5 

1 collection in 

2019 

Mechanic

al 
330 4.5 n/a 

(Cunliffe, 

Brazier and 

Anderson, 

2016) 

USA 
Natural 

Grassland 
Mixed 7 Hexacopter RGB 15–20 70/65 

10 to 

18 
0.4 to 0.7 

1 collection in 

2014 

Not 

specified 
n/a 1 n/a 

(da Costa et al., 

2021) 
Brazil 

Natural 

Grassland 
Mixed 1 Hexacopter LiDAR 100 n/a n/a n/a 

1 collection in 

2019 
Manual  20 1 n/a 

(De Rosa et al., 

2021) 
Australia 

Grassland 

Farm 
n/a 2 Quadcopter MS 80 n/a n/a 5 n/a 

RPM 

calibration 
504 n/a n/a 

(DiMaggio et 

al., 2020) 
USA 

Natural 

Grassland 
Mixed 1 Quadcopter RGB 

30, 40, and 

50 
80/80 6 2.5 

1 collection in 

2018 
Manual  20 0.25 n/a 
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(Fan et al., 

2018) 
Japan 

Experimental 

Site 
Mono 1 Quadcopter MS 100 50/50 13 2 

1 collection in 

2016 

Not 

specified 
36 0.25 

Not 

specified 

(Franceschini et 

al., 2022) 
Germany 

Experimental 

Site 
Mono 1 Octocopter 

RGB 

and HS 
30 n/ 4 to 8 

RGB = 0.8 

and 1.5; 

Hyper = 

7.8 and 

15.6 

2 collections in 

2014 and 3 in 2017 

Not 

specified 
245 n/a n/a 

(Gebremedhin 

et al., 2020) 
Australia 

Experimental 

Site 
Mono 1 Quadcopter MS 20 75/75 9 2 

3 collections in 

2018 

Manual 

and 

mechanica

l  

480 

individual 

plants for 

calibration 

and 500 

plots for 

validation 

n/a 

Ground-

based 

platform 

(PhenoRov

er) 

(Geipel and 

Korsaeth, 2017) 
Norway 

Experimental 

Site 

Mono and 

Mixed 
1 Octocopter HS 50 n/a n/a n/a 

3 collections in 

2016 

Manual 

and 

mechanica

l  

120 n/a n/a 

(Geipel et al., 

2021) 
Norway 

Experimental 

Site 
Mixed 2 Octocopter HS 50 80/60 n/a n/a 

3 collections in 

2016 and 3 

collections in 2017 

Mechanic

al  
707 ~ 9 n/a 

(Grüner, Astor 

and 

Wachendorf, 

2019) 

Germany 
Experimental 

Site 
Mixed 1 Quadcopter RGB 20 80/80 7 

0.07 to 

0.08 

4 collections in 

2017 
Manual  192 0.25 Ruler 

(Grüner, 

Wachendorf 

and Astor, 

2020) 

Germany 
Experimental 

Site  
Mixed 1 Quadcopter 

MS and 

RGB 
20 and 50 100/100 8 2 and 4 

3 collections in 

2018 
Manual  144 0.25 n/a 

(Grüner, Astor 

and 

Wachendorf, 

2021) 

Germany 
Experimental 

Site 
Mixed 1 Quadcopter 

MS and 

RGB 
n/a n/a 7 n/a 

3 collections in 

2018 and § 

collections in 2019 

Not 

specified 
140 0.25 n/a 

(Hart et al., 

2020) 
Switzerland 

Grassland 

Farm 
Mixed 6 Quadcopter MS 50 80/80 8 5 

4 collections in 

2018 

Mechanic

al  
162 6.5 and 1 n/a 

(Insua, Utsumi 

and Basso, 

2019) 

USA 
Grassland 

Farm 
Mixed 2 Quadcopter 

MS and 

LiDAR 
100 75/75 n/a 6 

2 collections in 

2015 and 2 

collections in 2016 

Mechanic

al  
n/a 0.25 

Rapid 

Pasture 

Meter 

(machine) 

and ruler 
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(Jenal et al., 

2020) 
Germany 

Experimental 

Site 
n/a 1 Octocopter RGB 30 n/a 16 4 

1 collection in one 

year 

Mechanic

al  
156 

0.54 × 5.46 

m2 
n/a 

(Karila et al., 

2022) 
Finland 

Experimental 

Site 
Mixed 1 Quadcopter 

RGB 

and HS 
30 and 50 n/a n/a 

RGB = 0.8, 

Hyper = 4 

cm 

4 collections in 

2017 

Mechanic

al  
220 

3.9 (n = 

96), ~19.5 

(n = 16), 

4.5 (n = 

108) 

n/a 

(Karunaratne et 

al., 2020) 
Australia 

Grassland 

Farm 
Mono 1 Quadcopter MS 

25, 50, 75, 

and 100 
80/80 10 

1.74, 3.47, 

5.21, 6,94 

4 collections in 

2019 

Mechanic

al  
101 0.25 n/a 

(Lee et al., 2015) Korea 
Grassland 

Farm 
Mixed 1 Fixed-wing 

MS and 

RGB 
50 n/a n/a 30 

2 collections in 

2014 

Not 

specified 
56 0.03 n/a 

(Li et al., 2020) USA 
Experimental 

Site 
Mixed 1 Hexacopter 

MS and 

LiDAR 
20 85/75 7 3 

1 collection in 

2019 
Manual  1320 

Individua

l Plant 
Ruler 

(Li et al., 2021) Estonia 
Experimental 

Site 
Mixed 2 Fixed-wing MS 120 80/75 n/a 10 

2 collections in 

2019 

Not 

specified 
144 n/a n/a 

(Lussem et al., 

2019) 
Germany 

Experimental 

Site 
Mixed 1 Quadcopter RGB 25 85/85 12 n/a 

9 collections in 

2017 

Mechanic

al  
n/a 4.5 RPM 

(Lussem, 

Schellberg and 

Bareth, 2020) 

Germany 
Experimental 

Site 
Mixed 1 Quadcopter RGB 20 90 15 2 

2 collections in 

2014, 2 collections 

in 2015, and 

collections in 2016 

Mechanic

al  
140 15 RPM 

(Lussem et al., 

2022) 
Germany 

Experimental 

Site 
Mixed 1 Octocopter 

RGB 

and MS 
95 

RGB = 

80/80; MS = 

75/70 

15 
RGB = 0.7, 

MS = 2.3 

3 collections in 

2018 and § 

collections in 2019 

Mechanic

al  
832 3 n/a 

(Michez et al., 

2019) 
Belgium 

Experimental 

Site  
Mixed 1 Octocopter 

RGB 

and HS 
50 80/80 8 

RGB = 2 

and MS = 

5 

1 collection in 

2017 

Not 

specified 
40 0.09 

LiDAR 

laser scans 

(Michez et al., 

2020) 
Belgium 

Experimental 

Site 
Mono 1 Quadcopter 

MS and 

RGB 
30 n/a 12 

RGB = 1 

and MS = 

2.5 

1 collection in 

2019 

Mechanic

al  
29 10.5 Ruler 

(Näsi et al., 

2018) 
Finland 

Experimental 

Site 
Mixed 2 Hexacopter 

RGB 

and HS 
50 and 140 

73 and 93/65 

and 82 
32 

RGB = 1 

and 5 HS 

= 5 and 14 

1 collection in 

2016 

Mechanic

al 
32 15 Ruler 

(Oliveira et al., 

2020) 
Finland 

Experimental 

Site 
Mixed 4 Quadcopter 

RGB 

and HS 
30 and 50 84–87/65–81 n/a 

HS = 6 

and 3, 

RGB = 

0.64 and 

0.39 

3 collections in 

2017 

Mechanic

al  
108 

Different 

sizes 
n/a 

(Alves Oliveira 

et al., 2022) 
Finland 

Experimental 

Site 
Mixed 1 Quadcopter RGB 50 n/a n/a 1 

4 collections in 

2017 

Mechanic

al  
96 ~ 4 n/a 
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(Pereira et al., 

2022) 
Brazil 

Grassland 

Farm 
Mixed 1 Quadcopter MS 115 75/75 n/a 8 

3 collections in 

2019 
Manual  116 1 n/a 

(Plaza et al., 

2021) 
Spain 

Grassland 

Farm 
Mixed 1 Quadcopter MS 43 n/a 4 3 

7 collections in 

2020 

Not 

specified 
112 0.125 n/a 

(Pranga et al., 

2021) 
Belgium 

Experimental 

Site 
Mono 1 Hexacopter 

MS and 

RGB 

RGB = 40, 

MS = 30 
80/70 9 

RGB = 0.4, 

MS = 1.8 

3 collections in 

2020 

Mechanic

al  
1403 7.83 n/a 

(Qin et al., 

2021) 
China 

Natural 

Grassland 
Mixed 82 Quadcopter RGB 20 n/a n/a 1 

1 collection in 

2017 and 1 

collection in 2018 

Manual  300 0.25 n/a 

(Rueda-Ayala 

et al., 2019) 
Norway 

Experimental 

Site 
Mixed 2 Quadcopter RGB 30 90/60 n/a n/a 

1 collection in 

2017 

Not 

specified 
20 1 

RPM and 

Ruler 

(Schucknecht et 

al., 2021) 
Germany 

Grassland 

Farm 
Mixed 3 

Quadcopter 

and Fixed-

wing 

MS 

Quadcopter 

= 70, Fixed-

wing = 80 

Quadcopter 

= 80/80, 

Fixed-wing 

= 75/75 

10 
8.7–12.9 

cm;  

1 collection in 

2018 

Not 

specified 
n/a 0.25 RPM 

(Schulze-

Brüninghoff, 

Wachendorf 

and Astor, 

2021) 

Germany 
Natural 

Grassland  
Mixed 4 Quadcopter HS 20 80/60 6 

~20 for 

spectral 

images 

and ~1 for 

panchrom

atic band 

3 collections in 

2018 

Not 

specified 
223 1 n/a 

(Shi et al., 2021) China 
Natural 

Grassland 
Mixed 1 Quadcopter RGB 40 n/a n/a 1 

1 collection in 

2018 and 1 

collection in 2019 

Manual  432 1 n/a 

(Shi et al., 2022) China 
Natural 

Grassland 
Mixed 1 Quadcopter RGB 40 n/a n/a n/a 

1 collection in 

2018, 1 collection 

in 2019, and 1 

collection in 2020 

Manual  648 1 n/a 

(Shorten and 

Trolove, 2022) 

New 

Zealand 

Experimental 

Site 
Mono 1 Quadcopter RGB 20 n/a n/a n/a 

2 collections in 

one 2018 

Not 

specified 
370 

1.5 (n = 

300), 2.4 

(n = 70) 

n/a 

(Sinde-

González et al., 

2021) 

Ecuador 
Grassland 

Farm 
Mono 1 Quadcopter RGB 70 80/70 8 3 

1 collection in 

2018 
Manual  54 0.25 n/a 

(Tang et al., 

2021) 
China 

Natural 

Grassland 
Mixed 4 Quadcopter RGB 10 80/65 3 2.5 

1 collection in one 

year 
Manual  623 n/a 

Not 

specified 

(Théau et al., 

2021) 
Canada 

Experimental 

Site 
Mixed 1 Quadcopter 

MS and 

RGB 
65 75/75 60 

RGB = 1.7, 

MS = 6.4 

2 collections in 

2017 

Mechanic

al  
99 0.25 n/a 
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(Van Der 

Merwe, 

Baldwin and 

Boyer, 2020) 

USA 
Natural 

Grassland 
Mixed 11 Quadcopter RGB 40 90/85 n/a 1 

1 collection in 

2017 and one 

collection in 2018  

Manual  n/a 1 n/a 

(Viljanen et al., 

2018) 
Finland 

Experimental 

Site 
Mixed 1 Quadcopter 

RGB 

and HS 
30 and 50 

RGB = 

84/65, MS = 

87/81 

5 

RGB = 

0.39 and 

0.64; MS = 

3 and 5 

4 collections in 

2017 

Mechanic

al  
96 ~ 4 

RPM and 

ruler 

(Villoslada et 

al., 2020) 
Estonia 

Natural 

Grassland 
Mixed 3 Fixed-wing MS 120 n/a 11 10 

1 collection in 

2018 
Manual  140 0.09 n/a 

(Villoslada et 

al., 2021) 
Estonia 

Natural 

Grassland 
Mixed 9 Fixed-wing 

MS and 

RGB 
120 n/a n/a 

RGB = 3.5, 

MS = 10 

1 collection in 

2019 
Manual  520 0.09 n/a 

(Vogel et al., 

2019) 
Germany 

Grassland 

Farm 
Mixed 1 Hexacopter RGB 100 70/70 n/a n/a 

1 collection in 

2016 

Not 

specified 
20 1 n/a 

(Y. Zhao et al., 

2014) 
USA 

Natural 

Grassland 
Mixed n/a Hexacopter MS 5, 20, and 50 n/a n/a 

5 m = 0.09; 

20 m = 

0.36, 50 m 

= 0.89 

1 collection in 

2013 
Manual  13 0.1 n/a 

(Wang et al., 

2017) 
China 

Experimental 

Site 
Mixed 1 Octocopter LiDAR 

10–120 at 

intervals of 

10 m and 

120 

n/a n/a n/a 
1 collection in 

2015 
Manual  90 1 Ruler 

(Wengert et al., 

2022) 
Germany 

Grassland 

Farm And 

Natural 

Grassland 

Mixed 4 Octocopter HS 20 n/a 6 20 
3 collections in 

2018 
Manual  320 1 n/a 

(Wijesingha et 

al., 2019) 
Germany 

Grassland 

Farm 
Mixed 3 Quadcopter RGB 25 80/80 n/a n/a 

8 collections in 

2017 

Not 

specified 
194 1 n/a 

(Zhang et al., 

2021) 
China 

Experimental 

Site 
Mixed 1 Quadcopter LiDAR 

40–110 (at 

intervals of 

10 m) 

n/a n/a n/a 
1 collection in 

2018 
Manual  96 0.25 Ruler 

(Zhang et al., 

2022) 
China 

Natural 

Grassland 
Mixed 3 Quadcopter RGB 2 n/a n/a n/a 

1 collection in 

2018 
Manual  208 0.25 n/a 

(Zhang et al., 

2018) 
China 

Natural 

Grassland 
Mixed 3 Quadcopter RGB 2 and 20 70/70 n/a 1 

1 collection in 

2017 

Not 

specified 
75 0.25 n/a 

(Zhao et al., 

2021) 
China 

Experimental 

Site 
Mono 1 Hexacopter HS 30 n/a n/a 3 

1 collection in 

2018 
Manual  n/a 0.09 n/a 

(Zhao et al., 

2022) 
China 

Natural 

Grassland  
Mixed 24 Fixed-wing LiDAR 100~120 80/80 n/a 1 

1 collection in one 

year 
Manual  96 1 Ruler 
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Table A3. Data analysis methods and essential results of the papers considered in this review. 

Reference 

Data Analysis Parameters Data Analysis Methods 

and r2 from Dry Mass 

(DM) 1 
Spectral Data 

Structural 

Data 
Other Data 

Terrain Model 

Source 

(Alvarez-

Hess et al., 

2021) 

5 reflectance bands 

and 15 spectral indices 
n/a 

AM plot data only (AP), AM plot 

plus extreme data (APEX), small 

polygon data only (SP), and small 

polygon plus extreme data 

(SPEX) 

n/a SVR = 0.45 

(Adar et al., 

2022) 
12 reflectance bands  n/a 

Mixed pixels from UAV and 

satellite, vegetation cover 
n/a SVR = 0.76 

(Askari et al., 

2019) 
21 spectral indices n/a n/a n/a 

PLSR = 0.77, MLR = 

0.76 

(Barnetson, 

Phinn and 

Scarth, 2020) 

n/a 
Canopy 

height 
n/a 

DTMs derived from 

ground point 

classification 

LR and Automated 

Machine Learning 

(Batistoti et 

al., 2019) 
n/a 

Canopy 

height 
n/a 

DTM derived from 

ground point 

classification 

LR = 0.74 

(Blackburn et 

al., 2021) 

4 spectral bands and 

26 spectral indices 
n/a n/a n/a 

Ridge Estimated Linear 

models 

(Borra-

Serrano et al., 

2019) 

10 spectral indices 

7 canopy 

height 

metrics 

GDD, ∆GDD between cuts 

DTMs from 

interpolation of 

ground points and 

from leaf-off flights 

LR = 0.67, MLR = 0.81, 

PLSR = 0.58, RF = 0.70 

(Capolupo et 

al., 2015) 
4 spectral indices n/a n/a n/a PLSR = 0.83 

(Castro et al., 

2020) 
n/a n/a n/a n/a CNNs = 0.88 

(Cunliffe, 

Brazier and 

Anderson, 

2016) 

n/a 

Canopy 

height and 

Canopy 

volume 

Surface cover 

DTM derived from 

ground point 

classification 

LR = 0.95 

(da Costa et 

al., 2021) 
n/a 

16 canopy 

height 

metrics  

Vegetation cover percentage 
LiDAR point cloud 

classification 
LR = 0.78 

(De Rosa et 

al., 2021) 
NDVI n/a n/a n/a GAM = 0.60, RF = 0.68 

(DiMaggio et 

al., 2020) 
n/a 

Mean 

canopy 

height and 

vegetation 

volume 

n/a 

DTM by selecting 

the bare soil lowest 

point 

LR = 0.65 

(Fan et al., 

2018) 
DN of each band n/a n/a n/a MLR = 0.84 

(Franceschini 

et al., 2022) 
DN of each band n/a 

Variable importance in the 

projection (VIP) 
n/a PLSR = 0.92 

(Gebremedhi

n et al., 2020) 
NDVI 

Mean plot 

height 
n/a n/a LR = 0.81 

(Geipel and 

Korsaeth, 

2017) 

NDVI, REIP, and 

GrassI 

Mean plot 

height 
n/a 

GPS measurements 

taken on the ground 

PPLSR, MLS and SLR = 

0.77 

(Geipel et al., 

2021) 
NDVI and REIP 

Mean plot 

height 
n/a 

DTM from 

interpolation of 

ground points 

PPLSR = 0.91; SLR = 

0.67 
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(Grüner, 

Astor and 

Wachendorf, 

2019) 

n/a 
Mean plot 

height 
n/a 

DTM from 

interpolation of 

ground points 

LR = 0.72 

(Grüner, 

Wachendorf 

and Astor, 

2020) 

4 spectral bands and 

13 spectral indices 
n/a 8 GLCM texture features n/a PLSR = 0.76, RF = 0.87 

(Grüner, 

Astor and 

Wachendorf, 

2021) 

13 spectral indices 

15 crop 

surface 

height 

8 texture features of each spectral 

band (4 bands) and 8 texture 

features of mean CSH, FM, and 

DM 

DTM from TLS 

data 
RF = 0.90 

(Hart et al., 

2020) 
MSI reflectance maps n/a 

Near-infrared reflectance 

spectroscopy 
n/a LR = 0.29 

(Insua, 

Utsumi and 

Basso, 2019) 

NDVI 

Plant height 

and average 

ruler sward 

height 

Growth rate n/a LR = 0.80 

(Jenal et al., 

2020) 

12 spectral indices and 

spectral ground truth 
n/a n/a n/a LR = 0.94 

(Karila et al., 

2022) 

RGB and HIS features 

(spectral bands, 

several handcrafted 

vegetation, and 

spectral indexes) 

Canopy 

height 3D 

features 

n/a 
DTM from point 

cloud classification 

Deep pre-trained neural 

network architectures 

and CNNs = 0.90 

(Karunaratne 

et al., 2020) 

5 spectral bands and 

15 spectral indices 

10 plant 

height 

metrics 

4 flight altitudes 
DTM from point 

cloud classification 
RF = 0.91 

(Lee et al., 

2015) 
NDVI n/a n/a n/a LR = 0.77 

(Li et al., 

2020) 
4 spectral indices 

Plant canopy 

perimeter 

and canopy 

height 

n/a 
DTM from LiDAR 

data 
LR = 0.93 

(Li et al., 

2021) 
6 spectral indices n/a n/a n/a 

RF = 0.9, SVR = 0.89, 

ANN = 0.99 

(Lussem et 

al., 2019) 
6 spectral indices 

Mean sward 

height and 

90th 

percentile of 

the sward 

height 

n/a 
DTM from leaf-off 

flight 

Bivariate and MLR = 

0.73 

(Lussem, 

Schellberg 

and Bareth, 

2020) 

n/a 

5 sward 

height 

metrics 

n/a 
DTM from leaf-off 

flight 
LR = 0.86 

(Lussem et 

al., 2022) 

5 spectral bands and 

19 spectral indices 

8 sward 

height 

metrics 

n/a 
DTM from leaf-off 

flight 

LR, PLSR, RF and SVM 

= 0.9 

(Michez et 

al., 2019) 

4 spectral bands and 4 

spectral indices 

Sward 

height model 
n/a 

DTM from LiDAR 

data 

Multivariate models = 

0.49 

(Michez et 

al., 2020) 
14 spectral indices 

Sward 

height model 
n/a 

DTM from LiDAR 

data 
MLR = 0.74 

(Näsi et al., 

2018) 

39 spectral bands and 

13 spectral indices 

8 canopy 

height 

metrics 

2 flight altitudes 
DTM from point 

cloud classification 
RF and LR = 0.78 
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(Oliveira et 

al., 2020) 

38 spectral bands and 

23 spectral indices 

8 canopy 

height 

metrics 

2 flight altitudes 
DTM from point 

cloud classification 
RF and MLR = 0.97 

(Alves 

Oliveira et 

al., 2022) 

n/a n/a n/a n/a CNNs = 0.79 

(Pereira et al., 

2022) 

5 spectral bands and 

25 spectral indices 
n/a PlanetScope and Sentinel-2A n/a RF = 0.7 

(Plaza et al., 

2021) 
6 spectral indices n/a n/a n/a PLSR = 0.782 

(Pranga et al., 

2021) 
21 spectral indices 

3 canopy 

height 

metrics 

n/a 

DTMs from ground-

based GPS 

interpolation 

PLSR, RF and SVM 

(Qin et al., 

2021) 
Excess Green Index 

Fractional 

vegetation 

cover 

Pika tunnel length and diameter, 

pika pile diameter 
n/a LR = 0.446 

(Rueda-Ayala 

et al., 2019) 
n/a 

Mean plot 

volume 
n/a n/a LR = 0.54 

(Schucknecht 

et al., 2021) 

9 spectral bands and 

26 spectral indices 

In situ bulk 

canopy 

height 

n/a n/a GBM = 0.59, RF = 0.67 

(Schulze-

Brüninghoff, 

Wachendorf 

and Astor, 

2021) 

n/a 

Canopy 

surface 

height 

Terrestrial laser scanning data n/a RF = 0.81 

(Shi et al., 

2021) 
RGBVI n/a Bare ground n/a LR = 0.88 

(Shi et al., 

2022) 
RGBVI n/a Bare ground and mowing ration n/a LR 

(Shorten and 

Trolove, 

2022) 

Mean spectral bands 

for vegetative and soil 

material 

Percent 

vegetation 

cover and 

forage 

volume 

n/a 

DTM from 

interpolation of 

ground points 

LR = 0.66 

(Sinde-

González et 

al., 2021) 

n/a 

Density 

factor and 

volume 

n/a 
DTM from bare 

ground 

Descriptive statistic = 

0.78 

(Tang et al., 

2021) 

Band mean and band 

standard deviation of 

DN values 

n/a n/a n/a PLSR = 0.48 

(Théau et al., 

2021) 
9 spectral indices 

Mean plot 

volume 
Vegetation cover classification 

DTMs from ground-

based GPS 

interpolation 

LR = 0.94 

(Van Der 

Merwe, 

Baldwin and 

Boyer, 2020) 

n/a 
Canopy 

height model 
n/a 

DTM from 

interpolation of 

dense point clouds 

LR = 0.91 

(Viljanen et 

al., 2018) 
8 vegetation indices 

8 canopy 

height 

metrics 

n/a 

DTM from bare 

ground and DTM 

from automatic 

point classification 

MLR = 0.98, RF = 0.97 

(Villoslada et 

al., 2020) 
13 vegetation indices n/a n/a n/a RF = 0.67 

(Villoslada 

Peciña et al., 

2021) 

13 vegetation indices n/a n/a 

DTM from 

interpolating the 

points classified as 

ground by the Cloth 

RF = 0.981 
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Simulation Filtering 

algorithm 

(Vogel et al., 

2019) 

Reflectance of red, 

green, and blue; hue: 

saturation, value, 

NDVI, and VARI 

n/a n/a n/a LR = 0.8119 

(Y. Zhao et 

al., 2014) 
NDVI n/a n/a n/a OLSR = 0.4 

(Wang et al., 

2017) 
n/a 

Mean and 

maximum 

canopy 

height and 

fractional 

canopy 

cover 

Different flight heights 
DTM from LiDAR 

data 
LR = 0.34 

(Wengert et 

al., 2022) 
118 spectral bands n/a n/a n/a 

PLSR = 0.45; RF = 0.73, 

SVR = 0.74, CBR = 0.75 

Wijesingha et 

al., 2019) 
n/a 

10 canopy 

height 

metrics 

n/a 
DTM from TLS 

data 
LR = 0.62 

(Zhang et al., 

2021) 
n/a 

3 canopy 

height 

metrics and 

Fractional 

vegetation 

cover 

n/a 
DTM from LiDAR 

data 
MLR = 0.54 

(Zhang et al., 

2022) 

6 color space indices 

and 3 vegetation 

indices 

Canopy 

height model 

from point 

clouds 

n/a n/a RF = 0.78 

(Zhang et al., 

2018) 
n/a 

5 canopy 

height 

metrics 

n/a 

DTM from point 

cloud ground point 

classification 

LR = 0.76–0.78 

(Zhao et al., 

2021) 
NDVI n/a n/a n/a PLSR = 0.85 

(Zhao et al., 

2022) 
n/a 

5 canopy 

height 

metrics, 

canopy 

cover and 

canopy 

volume 

n/a n/a SMR = 0.25 

1 SVR = support vector regression; PLSR = partial least squares regression; MLR = 

multiple linear regression; LR = linear regression; RF = random forest; CNNs = 

convolutional neural networks; GAM = generalized additive model; PPLSR = powered 

partial least squares; ANN = artificial neural network; SVM = support vector machines; 

GBM = gradient boosting machines; OLSR = ordinary least squares regression; CBR = 

cubist regression. 
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Table A4. Biomass indices used in the papers assessed in this review. 

Vegetation Index Equation Papers 

Anthocyanin Reflectance Index 1 

(Gitelson, Merzlyak and 

Chivkunova, 2001) 

𝐴𝑅𝐼1 = (
1

𝐺
) − (

1

𝑅𝑒𝑑𝑔𝑒
) 

(Karunaratne et al., 

2020; Alvarez-Hess et 

al., 2021)  

Blue Normalized Difference 

Vegetation Index (Yang et al., 2004) 
𝐵𝑁𝐷𝑉𝐼 =

(𝑁𝐼𝑅 − 𝐵)

(𝑁𝐼𝑅 + 𝐵)
 (Lussem et al., 2022)  

Canopy Chlorophyll Concentration 

Index (Jago, Cutler and Curran, 

1999) 
𝐶𝐺𝐶𝐼 =  

(
(𝑁𝐼𝑅 − 𝑅𝑒𝑑𝑔𝑒)
(𝑁𝐼𝑅 + 𝑅𝑒𝑑𝑔𝑒)

)

𝑁𝐷𝑉𝐼
 

(Karunaratne et al., 

2020; Alvarez-Hess et 

al., 2021; Lussem et 

al., 2022) 

Chlorophyll Vegetation Index 

(Vincini, Frazzi and D’Alessio, 2008) 
𝐶𝑉𝐼 =

𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
×

𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

(Michez et al., 2019, 

2020; Villoslada et al., 

2020; Villoslada 

Peciña et al., 2021; 

Pereira et al., 2022) 

Colouration Index (Pearson and 

Miller, 1972) 
𝐶𝐼 =

(𝑅 − 𝐵)

𝑅
 (Pranga et al., 2021) 

Datt1 (Datt, 1998) 𝐷𝑎𝑡𝑡1 =
(𝑁𝐼𝑅 − 𝑅𝐸)

(𝑁𝐼𝑅 − 𝑅)
 (Théau et al., 2021) 

Datt4 (Datt, 1998) 𝐷𝑎𝑡𝑡4 =
𝑅

𝐺
∗ 𝑅𝑒𝑑𝑔𝑒 

(Villoslada et al., 2020; 

Villoslada Peciña et 

al., 2021) 

Difference Vegetation Index 

(Tucker, 1979) 
𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝑒𝑑 

(Villoslada et al., 2020; 

Villoslada Peciña et 

al., 2021) 

Enhanced Vegetation Index (Huete 

et al., 1997) 
𝐸𝑉𝐼 = 2.5 ×

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6𝑅𝑒𝑑 − 7.5𝐵 + 1
 

(Li et al., 2020; Pranga 

et al., 2021; Pereira et 

al., 2022) 

Enhanced Vegetation Index 2 (Huete 

et al., 2002) 
𝐸𝑉𝐼2 =

2.5 × (𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + (2.4 × 𝑅))
 

(Karunaratne et al., 

2020; Alvarez-Hess et 

al., 2021; Lussem et 

al., 2022) 

Excess Green (M. Woebbecke et al., 

1995) 
𝐸𝑥𝐺 = 2 𝐺 − 𝑅 − 𝐵 

(Näsi et al., 2018; 

Viljanen et al., 2018; 

Borra-Serrano et al., 

2019; Oliveira et al., 

2020; Pranga et al., 

2021; Qin et al., 2021; 

Zhang et al., 2022) 

Excess Green Combined with 

Canopy Height Model (Näsi et al., 

2018) 

𝐸𝑥𝐺 + 𝐶𝐻𝑀 

(Viljanen et al., 2018; 

Lussem et al., 2019; 

Oliveira et al., 2020) 

Excess Green-Red (Camargo Neto, 

2004) 
𝐸𝑥𝐺𝑅 = 𝐸𝑥𝐺 − 𝐸𝑥𝑅 

(Viljanen et al., 2018; 

Borra-Serrano et al., 

2019; Oliveira et al., 

2020; Pranga et al., 

2021) 
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Excess Red (Meyer et al., 1998) 

(Meyer, Hindman and Laksmi, 1999) 
𝐸𝑥𝑅 = 1.4 𝑅 − 𝐺 

(Viljanen et al., 2018; 

Oliveira et al., 2020; 

Pranga et al., 2021) 

GnyLi Vegetation Index (Bendig et 

al., 2015) 
𝐺𝑛𝑦𝐿𝑖 =

𝑅910 × 𝑅1100 − 𝑅980 × 𝑅1200

𝑅910 × 𝑅1100 + 𝑅980 × 𝑅1200

 (Jenal et al., 2020) 

Grassland Index (Bareth et al., 2015) 𝐺𝑟𝑎𝑠𝑠𝐼 = 𝑅𝐺𝐵𝑉𝐼 + 𝐶𝐻𝑀 

(Näsi et al., 2018; 

Lussem et al., 2019; 

Oliveira et al., 2020) 

Green Atmospherically Resistant 

Vegetation Index (Gitelson, 

Kaufman and Merzlyak, 1996) 

𝐺𝐴𝑅𝐼 =
𝑁𝐼𝑅 − (𝐺 − (𝐵 − 𝑅𝑒𝑑))

𝑁𝐼𝑅 + (𝐺 − (𝐵 − 𝑅𝑒𝑑))
 (Pranga et al., 2021) 

Green Chlorophyll Index (Gitelson, 

Gritz and Merzlyak, 2003) 
𝐺𝐶𝐼 = (

𝑁𝐼𝑅

𝐺
) − 1 

(Näsi et al., 2018; 

Askari et al., 2019; 

Grüner, Wachendorf 

and Astor, 2020; Jenal 

et al., 2020; 

Karunaratne et al., 

2020; Oliveira et al., 

2020; Alvarez-Hess et 

al., 2021; Grüner, 

Astor and 

Wachendorf, 2021; 

Pranga et al., 2021; 

Pereira et al., 2022) 

Green Difference Index (Sripada, 

2005) 
𝐺𝐷𝐼 = 𝑁𝐼𝑅 − 𝐺 

(Karunaratne et al., 

2020) 

Green Difference Index (Gianelle 

and Vescovo, 2007) 
𝐺𝐷𝐼 = 𝑁𝐼𝑅 − 𝑅 + 𝐺 

(Villoslada Peciña et 

al., 2021) 

Green Difference Vegetation Index 

(Sripada et al., 2006) 
𝐺𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝐺 

(Karunaratne et al., 

2020; Villoslada et al., 

2020; Alvarez-Hess et 

al., 2021; Villoslada 

Peciña et al., 2021) 

Green Index (H = hue, S = 

saturation, V = brightness) (Carlson 

and Ripley, 1997) 

𝐺𝐼 = 9 × (
𝐻 × 3.14159

180
) + 3 × 𝑆 + 𝑉 (Zhang et al., 2022) 

Green Infrared Percentage 

Vegetation Index (Crippen, 1990) 
𝐺𝐼𝑃𝑉𝐼 =

𝑁𝐼𝑅

(𝑁𝐼𝑅 + 𝐺)
 

(Villoslada et al., 

2020) 

Green Leaf Index (Gobron et al., 

2000) 
𝐺𝐿𝐼 =

(2 × 𝐺 − 𝑅 − 𝐵)

(2 × 𝐺 + 𝑅 + 𝐵)
 

(Pranga et al., 2021; 

Pereira et al., 2022) 

Green Normalized Difference 

Vegetation Index (Gitelson, 

Kaufman and Merzlyak, 1996) 

𝐺𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 

[29,45–

48,61,63,67,83,97,99–

101,120] 

Green Ratio Vegetation Index 

(Daughtry et al., 2000)(Sripada et al., 

2006) 

𝐺𝐷𝑉𝐼 =
𝑁𝐼𝑅

𝐺
 

(Askari et al., 2019; 

Karunaratne et al., 

2020; Alvarez-Hess et 

al., 2021) 

Green Red Difference Index (Tucker, 

1979)  
𝐺𝑅𝑉𝐼 =  

𝐺 − 𝑅

𝐺 + 𝑅
 

(Näsi et al., 2018; 

Viljanen et al., 2018; 

Michez et al., 2019, 
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2020; Oliveira et al., 

2020; Villoslada et al., 

2020; Plaza et al., 

2021) 

Green Red Edge Vegetation Index 𝐺𝑅𝑉𝐼𝑒𝑑𝑔𝑒 =
𝐺 − 𝑅𝑒𝑑

𝐺 + 𝑅𝑒𝑑
 (Plaza et al., 2021) 

Greenness Red Edge 𝐺𝑟𝑟𝑒𝑑𝑔𝑒 =
𝐺

𝑅𝑒𝑑 + 𝐺 + 𝐵
 (Plaza et al., 2021) 

Leaf Chlorophyll Index (Hollberg 

and Schellberg, 2017) 
𝐿𝐶𝐼 =

(𝑁𝐼𝑅 − 𝑅𝑒𝑑𝑔𝑒)

(𝑁𝐼𝑅 − 𝑅)
 (Askari et al., 2019) 

Log Ratio (Théau et al., 2021) 𝐿𝑜𝑔𝑅ℎ = 𝑙𝑜𝑔
(𝑁𝐼𝑅)

(𝑅)
 (Théau et al., 2021) 

Medium-Resolution Imaging 

Spectrometer (MERIS) Terrestrial 

Chlorophyll Index (Dash and 

Curran, 2004) 

𝑀𝑇𝐶𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝑒𝑑𝑔𝑒)

(𝑅𝑒𝑑𝑔𝑒 − 𝑅)
 

(Capolupo et al., 2015; 

Näsi et al., 2018; 

Askari et al., 2019; 

Jenal et al., 2020; 

Karunaratne et al., 

2020; Oliveira et al., 

2020; Alvarez-Hess et 

al., 2021; Pereira et al., 

2022) 

Modified Chlorophyll Absorption in 

Reflectance Index (Daughtry et al., 

2000) 

 𝑀𝐶𝐴𝑅𝐼 = [((𝑅𝑒𝑑𝑔𝑒 − 𝑅) − 0.2) × (𝑅𝑒𝑑𝑔𝑒 − 𝐺)] × (
𝑅𝑒𝑑𝑔𝑒

𝑅𝑒𝑑
) 

(Capolupo et al., 2015; 

Näsi et al., 2018; 

Askari et al., 2019; 

Grüner, Wachendorf 

and Astor, 2020; 

Oliveira et al., 2020; 

Grüner, Astor and 

Wachendorf, 2021; 

Pranga et al., 2021; 

Lussem et al., 2022; 

Pereira et al., 2022) 

Modified Chlorophyll Absorption in 

Reflectance Index 2 (Haboudane et 

al., 2004) 

𝑀𝐶𝐴𝑅𝐼2 =  
[1.5[2.5(𝑅𝑛𝑖𝑟 − 𝑅𝑟𝑒𝑑) − 1.3(𝑅𝑛𝑖𝑟 − 𝑅𝑔𝑟𝑒𝑒𝑛)]]

√[(2𝑅𝑛𝑖𝑟 + 1)2 − (6𝑅𝑛𝑖𝑟 − 5√𝑅𝑟𝑒𝑑) − 5]

 
(Pereira et al., 2022) 

Combined Index with MCARI (Eitel 

et al., 2007) 
𝑀𝐶𝐴𝑅𝐼_𝑀𝑇𝑉𝐼2 =  

(𝑀𝐶𝐴𝑅𝐼)

(𝑀𝑇𝑉𝐼2)
 (Pereira et al., 2022) 

Modified Green Red Vegetation 

Index (Bendig et al., 2014) 
𝑀𝐺𝑅𝑉𝐼 =

(𝑅𝐺)2 − (𝑅𝑅)2

(𝑅𝐺)2 + (𝑅𝑅)2
 

(Viljanen et al., 2018; 

Michez et al., 2020; 

Oliveira et al., 2020) 

Modified Non-Linear Index (Yang, 

Willis and Mueller, 2008) 
𝑀𝑁𝐿𝐼 =  

(𝑁𝐼𝑅2 − 𝑅) × (1 + 𝐿)

𝑁𝐼𝑅2 + 𝑅 + 𝐿
 (Askari et al., 2019) 

Modified Simple Ratio (Chen, 1996) 𝑀𝑆𝑅 =

𝑁𝐼𝑅
𝑅

− 1

√𝑁𝐼𝑅
𝑅

+ 1

 

(Grüner, Wachendorf 

and Astor, 2020; 

Villoslada et al., 2020; 

Grüner, Astor and 

Wachendorf, 2021; K. 

Y. Li et al., 2021; 

Lussem et al., 2022) 
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Modified Soil-Adjusted Vegetation 

Index (Qi et al., 1994) 𝑀𝑆𝐴𝑉𝐼 =  
2 𝑁𝑅𝐼 + 1 −  √(2 𝑁𝐼𝑅 + 1)2 − 8 ×  (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

2
  

(Näsi et al., 2018; Jenal 

et al., 2020; Oliveira et 

al., 2020; Villoslada et 

al., 2020; Pranga et al., 

2021; Théau et al., 

2021; Villoslada 

Peciña et al., 2021; 

Lussem et al., 2022; 

Pereira et al., 2022) 

Modified Triangular Vegetation 

Index (Haboudane et al., 2004) 
𝑀𝑇𝑉𝐼 = 1.2[1.2(𝑁𝐼𝑅 − 𝐺) − 2.5(𝑅 − 𝐺)] 

(Näsi et al., 2018; 

Askari et al., 2019; 

Oliveira et al., 2020; 

Lussem et al., 2022) 

Second Modified Triangular 

Vegetation Index (Haboudane et al., 

2004) 

𝑀𝑇𝑉𝐼2 =  
[1.5[2.5(𝑅𝑛𝑖𝑟 − 𝑅𝑟𝑒𝑑) − 2.5(𝑅𝑛𝑖𝑟 − 𝑅𝑔𝑟𝑒𝑒𝑛)]]

√[(2. 𝑅𝑛𝑖𝑟 + 1)2 − 6𝑅𝑛𝑖𝑟 − 5√(𝑅𝑟𝑒𝑑) − 0.5]

 
(Pereira et al., 2022) 

Nitrogen Reflectance Index (D. 

Schleicher et al., 2001) 
𝑁𝑅𝐼 =

(𝐺 − 𝑅)

(𝐺 + 𝑅)
 (Askari et al., 2019) 

Near-Infrared to Red Edge Ratio 

(Ramoelo et al., 2012) 
𝑁𝐼𝑅. 𝑅𝐸 =  

𝑁𝐼𝑅

𝑅𝐸
 (Lussem et al., 2022) 

Non-Linear Index (Goel and Qin, 

1994)  
𝑁𝐿𝐼 =  

(𝑁𝐼𝑅2 − 𝑅)

𝑁𝐼𝑅2 + 𝑅
 (Askari et al., 2019) 

Normalized Difference Red Edge 

(Barnes et al., 2000) 
𝑁𝐷𝑅𝐸 =

(𝑁𝐼𝑅 − 𝑅𝐸)

(𝑁𝐼𝑅 + 𝑅𝐸)
 

[29,45–

48,58,63,67,69,83,97,10

0,101,104,112,120] 

Normalized Difference Vegetation 

Index (Rouse et al., 1973) 
𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

[18,29,42,45–

48,56,61,63,66–

69,73,84,85,97,99–

101,103–106,112,116] 

Normalized Green Intensity (M. 

Woebbecke et al., 1995) 
𝑁𝐺𝐼 =

𝐺

𝑅 + 𝐺 + 𝐵
 

(Plaza et al., 2021; 

Pranga et al., 2021) 

Normalized Green Red Difference 

Index (Tucker, 1979) 
𝑁𝐺𝑅𝐷𝐼 =

(𝐺 − 𝑅)

(𝐺 + 𝑅)
 

(Lussem et al., 2019, 

2022; Michez et al., 

2020; Villoslada et al., 

2020; K. Y. Li et al., 

2021; Pranga et al., 

2021; Pereira et al., 

2022) 

Normalized Pigment Chlorophyll 

Ratio Index (Pereira et al., 2022) 
𝑁𝑃𝐶𝐼 =

(𝑅 − 𝐵)

(𝑅 + 𝐵)
 (Pereira et al., 2022) 

Normalized Ratio Index (Koppe et 

al., 2010) 
𝑁𝑅𝐼 =  

𝑅910 − 𝑅1200

𝑅910 + 𝑅1200

 (Jenal et al., 2020) 

Optimization Soil-Adjusted 

Vegetation Index (Rondeaux, Steven 

and Baret, 1996) 

𝑂𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 0.16
 

(Capolupo et al., 2015; 

Näsi et al., 2018; 

Viljanen et al., 2018; 

Jenal et al., 2020; 

Oliveira et al., 2020; 

Théau et al., 2021; 

Lussem et al., 2022; 

Pereira et al., 2022) 
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Perpendicular Vegetation Index 

(Richardson and Wiegand, 1977) 
𝑃𝑉𝐼 = sin(𝑎) 𝑁𝐼𝑅 − cos(𝑎) 𝑅 (Pranga et al., 2021) 

Photochemical Reflectance Index 

(512.531) (Hernández-Clemente et 

al., 2011) 

𝑃𝑅𝐼 =  
𝑅512 − 𝑅531

𝑅512 + 𝑅531

 

(Näsi et al., 2018; Jenal 

et al., 2020; Oliveira et 

al., 2020; Pranga et al., 

2021) 

Plant Pigment Ratio Index Red 

(Metternicht, 2003) 
𝑃𝑃𝑅𝐼 =

(𝐺 − 𝐵)

(𝐺 + 𝐵)
 (Lussem et al., 2022) 

Plant Senescence Reflectance Index 

(Hill, 2013) 
𝑃𝑆𝑅𝐼 =

𝑅 − 𝐺

𝑁𝐼𝑅
 (Askari et al., 2019) 

Ratio Vegetation Index (Pearson and 

Miller, 1972) 
𝑅𝑉𝐼 =  

𝑁𝐼𝑅

𝑅
 

(Viljanen et al., 2018; 

Jenal et al., 2020; Li et 

al., 2020; Michez et al., 

2020; Oliveira et al., 

2020) 

Red Difference Index (Tucker, 1979) 𝑅𝐷𝐼 = 𝑁𝐼𝑅 − 𝑅 

(Karunaratne et al., 

2020; Alvarez-Hess et 

al., 2021) 

Red Edge Triangular Difference 

Vegetation Index (core only) (Chen 

et al., 2010) 

𝑅𝑇𝑉𝐼𝑐𝑜𝑟𝑒 = 100(𝑁𝐼𝑅 − 𝑅𝑒𝑑𝑔𝑒) − 10(𝑁𝐼𝑅 − 𝐺) 

(Karunaratne et al., 

2020; Villoslada et al., 

2020; Alvarez-Hess et 

al., 2021; Villoslada 

Peciña et al., 2021) 

Red Green Blue Vegetation Index 

Excess (Bendig et al., 2015) 
𝑅𝐺𝐵𝑉𝐼 =

(𝑅𝐺)2 − (𝑅𝐵 − 𝑅𝑅)

(𝑅𝐺)2 + (𝑅𝐵 − 𝑅𝑅)
 

(Näsi et al., 2018; 

Lussem et al., 2019, 

2022; Michez et al., 

2020; Oliveira et al., 

2020; Shi et al., 2021, 

2022) 

Red Edge Chlorophyll Index 

(Gitelson, Gritz and Merzlyak, 2003) 
𝑅𝑒𝐶𝐼 = (

𝑁𝐼𝑅

𝑅𝑒𝑑𝑔𝑒
) − 1 

(Capolupo et al., 2015; 

Näsi et al., 2018; 

Askari et al., 2019; 

Karunaratne et al., 

2020; Oliveira et al., 

2020; Alvarez-Hess et 

al., 2021; Pereira et al., 

2022) 

Red Edge Inflection Point (Guyot 

and Baret, 1988) 𝑅𝐸𝐼𝑃 = 700 + 40 ×  

𝑅670 + 𝑅780

2
− 𝑅700

𝑅740 + 𝑅700

 

(Näsi et al., 2018; Jenal 

et al., 2020; Oliveira et 

al., 2020; Geipel et al., 

2021) 

Red Edge Simple Ratio 2 (Gitelson 

and Merzlyak, 1994) 
𝑆𝑅2 =  

𝑁𝐼𝑅

𝑅𝑒𝑑𝑔𝑒
 

(Askari et al., 2019; 

Grüner, Wachendorf 

and Astor, 2020; 

Karunaratne et al., 

2020; Alvarez-Hess et 

al., 2021; Grüner, 

Astor and 

Wachendorf, 2021; 

Pranga et al., 2021; 
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Villoslada Peciña et 

al., 2021) 

Red Edge to Red Ratio (Ramoelo et 

al., 2012) 
𝑅𝐸. 𝑅 =  

𝑅𝑒𝑑𝑔𝑒

𝑅
 (Lussem et al., 2022) 

Renormalized Difference Vegetation 

Index (Roujean and Breon, 1995) 
𝑅𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝑒𝑑

√𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

(Näsi et al., 2018; 

Lussem et al., 2019, 

2022; Grüner, 

Wachendorf and 

Astor, 2020; Jenal et 

al., 2020; Oliveira et 

al., 2020; Grüner, 

Astor and 

Wachendorf, 2021) 

Simple Ratio (Jordan, 1969) 𝑆𝑅 =
𝑁𝐼𝑅

𝑅
 

(Askari et al., 2019; 

Karunaratne et al., 

2020; Lussem et al., 

2022; Pereira et al., 

2022) 

Soil Adjusted Vegetation Index 

(Rondeaux, Steven and Baret, 1996) 
𝑆𝐴𝑉𝐼 =

(1 + 𝐿) × (𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅) + 𝐿
 

(Askari et al., 2019; 

Grüner, Wachendorf 

and Astor, 2020; 

Karunaratne et al., 

2020; Villoslada et al., 

2020; Alvarez-Hess et 

al., 2021; Grüner, 

Astor and 

Wachendorf, 2021; 

Pranga et al., 2021; 

Théau et al., 2021; 

Pereira et al., 2022) 

Spectral Ratio 3 (Sims and Gamon, 

2002) 
𝑆𝑅3 =

𝑅

𝐺
 (Askari et al., 2019) 

Spectral Ratio 4 (Smith et al., 1995) 𝑆𝑅4 =
𝐺

𝑅
 (Askari et al., 2019) 

Spectral Ratio 6 (Lu et al., 2014) 𝑆𝑅6 =
𝑅

𝑁𝐼𝑅
 (Askari et al., 2019) 

Spectral Ratio 7 (Sousa et al., 2012) 𝑆𝑅7 =
𝑅𝑒𝑑𝑔𝑒

𝑁𝐼𝑅
 (Askari et al., 2019) 

Transformed Vegetation Index 1 

(Perry and Lautenschlager, 1984) 
𝑇𝑉𝐼1 =  

𝑁𝐷𝑉𝐼 + 0.5

𝐴𝐵𝑆 (𝑁𝐷𝑉𝐼 + 0.5)
 ×  √𝐴𝐵𝑆 (𝑁𝐷𝑉𝐼 + 0.5) (Théau et al., 2021) 

Triangular Vegetation Index (Broge 

and Leblanc, 2001) 
𝑇𝑉𝐼 = 0.5[120(𝑁𝐼𝑅 − 𝐺) − 200(𝑅 − 𝐺)] (Pereira et al., 2022) 

Triangular Greenness Index (Pereira 

et al., 2022) 

𝑇𝐺𝐼 = −0.5 [(𝜆𝑟𝑒𝑑 − 𝜆𝑏𝑙𝑢𝑒)(𝑅𝑟𝑒𝑑 − 𝑅𝑔𝑟𝑒𝑒𝑛)

− (𝜆𝑟𝑒𝑑 − 𝜆𝑔𝑟𝑒𝑒𝑛)(𝑅𝑟𝑒𝑑 − 𝑅𝑏𝑙𝑢𝑒)] 
(Pereira et al., 2022) 

Transformed Chlorophyll 

Absorption Reflectance Index 

(Haboudane et al., 2004) 

𝑇𝐶𝐴𝑅𝐼 = 3[((𝑅𝑒𝑑𝑔𝑒 − 𝑅) − 0.2) × (𝑅𝑒𝑑𝑔𝑒 − 𝐺)] × (
𝑅𝑒𝑑𝑔𝑒

𝑅𝑒𝑑
) (Pereira et al., 2022) 

TCARI Combined Index With 

OSAVI (Haboudane et al., 2004) 
TCARI_OSAVI =  

𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼
 (Pereira et al., 2022) 

Visible Atmospherically Resistant 

Index (Gitelson et al., 2002) 
𝑉𝐴𝑅𝐼 =  

𝐺 − 𝑅

𝐺 + 𝑅 − 𝐵
 

(Lussem et al., 2019, 

2022; Vogel et al., 
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2019; Michez et al., 

2020; Pranga et al., 

2021; Pereira et al., 

2022) 

Visible Atmospherically Resistant 

Index Red Edge (Viña et al., 2004) 
𝑉𝐴𝑅𝐼𝑟𝑒𝑑𝑒𝑑𝑔𝑒 =  

(𝑅𝑒𝑑𝑔𝑒 − 1.7𝑅 + 0.7𝐵)

(𝑅𝑒𝑑𝑔𝑒 + 2.3𝑅 + 1.3𝐵)
 (Pereira et al., 2022) 

Wide Dynamic Range Vegetation 

Index (Gitelson, 2004) 
𝑊𝐷𝑅𝑉𝐼 =

∝ 𝑁𝐼𝑅 − 𝑅

∝ 𝑁𝐼𝑅 + 𝑅
 (Pranga et al., 2021) 
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Appendix B. Supplementary material from article “Grassland 

Ecosystem Assessments: Integrating UAV-Derived Features for 

Aboveground Biomass Estimation” 

Table B1. Above Ground Biomass (AGB) estimates with learning algorithms, Random Forest (RF) 

and Partial Least Squares Regression (PLS) based on: canopy height model (CH), Vegetation 

Indices (VI), texture feature (GLCM) and combination of features: canopy height models plus VI 

(CH+VI), canopy height models plus texture feature (CH+GLCM), VI plus texture feature 

(VI+GLCM), canopy height models plus VI plus texture feature (CH+VI+GLCM). Models were 

tested for all the treatments separated (two-cut, three-cut and four-cut system) and all treatment 

combined (pooled data). 

 
Treatment 

Features 

Classes 

RF PLS 

RMSE (g 

m-2) 

rRMSE 

(%) 
R2 

RMSE (g 

m-2) 

rRMSE 

(%) 
R2 

Two-cut 

CH 192.47 29.43 0.71 228.18 34.93 0.60 

VI 190.15 29.19 0.73 213.86 32.77 0.66 

GLCM 257.35 39.40 0.49 256.51 39.35 0.53 

CH+VI 165.02 25.26 0.78 200.10 30.78 0.73 

CH+GLCM 175.76 26.84 0.76 204.53 31.29 0.70 

VI+GLCM 204.78 31.37 0.71 206.81 31.69 0.69 

CH+VI+GLCM 174.03 26.58 0.77 189.92 29.10 0.73 

Three-Cut 

CH 151.87 37.64 0.82 158.01 39.19 0.81 

VI 196.12 48.71 0.71 246.35 61.12 0.54 

GLCM 205.68 51.13 0.68 187.46 46.57 0.73 

CH+VI 142.16 35.28 0.84 153.61 38.08 0.82 

CH+GLCM 132.92 32.86 0.86 140.20 34.65 0.85 

VI+GLCM 207.72 51.50 0.68 175.77 43.56 0.78 

CH+VI+GLCM 131.79 32.56 0.87 141.13 34.94 0.85 

Four-cut 

CH 86.11 36.39 0.63 84.46 35.74 0.65 

VI 94.02 39.63 0.58 96.07 40.61 0.58 

GLCM 83.27 35.16 0.66 82.72 34.98 0.69 

CH+VI 76.49 32.31 0.71 80.68 34.07 0.70 

CH+GLCM 69.84 29.47 0.77 72.23 30.56 0.76 

VI+GLCM 80.97 34.18 0.69 81.99 34.68 0.69 

CH+VI+GLCM 69.66 29.44 0.76 73.45 31.02 0.75 

Pooled 

Data 

CH 157.18 36.49 0.78 174.25 40.24 0.74 

VI 193.25 45.02 0.67 225.60 53.32 0.54 

GLCM 213.67 49.55 0.60 215.32 49.79 0.60 

CH+VI 140.14 32.49 0.83 157.05 36.46 0.79 

CH+GLCM 135.46 31.38 0.84 165.10 38.21 0.77 

VI+GLCM 190.58 44.38 0.69 186.90 43.39 0.70 

CH+VI+GLCM 134.90 31.25 0.84 156.39 36.25 0.79 
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Appendix C. Supplementary material from article “Integration of 

UAV-sensed features using machine learning methods to assess 

species richness in wet grassland ecosystems” 

Table C1. Number of species estimated with learning algorithms, Random Forest (RF) and Partial 

Least Squares Regression (PLS) based on: canopy height model (CH), Vegetation Indices (VI), 

texture feature (GLCM) and combination of features: canopy height models plus Vegetation 

Indices (CH+VI), canopy height models plus texture feature (CH+GLCM), Vegetation Indices plus 

texture feature (VI+GLCM), canopy height models plus Vegetation Indices plus texture feature 

(CH+VI+GLCM). Models were tested for all the treatments separated (two-cut system, three-cut 

system and four-cut system) and all treatment combined (pooled data). 

 
Treatment 

Features 

Classes 

RF PLS 

RMSE 

(n) 

rRMSE 

(%) 
R2 

RMSE 

(n) 

rRMSE 

(%) 
R2 

Two-cut  

CH 2.64 38.30 0.34 3.03 44.09 0.22 

VI 2.32 33.75 0.49 2.46 35.76 0.48 

GLCM 2.58 37.43 0.39 2.49 36.33 0.49 

CH+VI 2.37 34.41 0.47 2.63 38.35 0.43 

CH+GLCM 2.54 36.80 0.39 2.43 35.27 0.50 

VI+GLCM 2.46 35.80 0.44 2.44 35.36 0.50 

CH+VI+GLCM 2.47 35.85 0.43 2.39 34.92 0.52 

Three-Cut  

CH 3.06 43.32 0.13 3.18 45.00 0.10 

VI 2.56 36.26 0.36 2.86 40.46 0.28 

GLCM 2.67 37.70 0.31 2.66 37.50 0.36 

CH+VI 2.61 36.87 0.35 2.95 41.67 0.30 

CH+GLCM 2.68 37.86 0.31 2.80 39.64 0.32 

VI+GLCM 2.62 37.07 0.34 2.66 37.69 0.42 

CH+VI+GLCM 2.65 37.50 0.30 2.66 37.49 0.42 

Four-cut  

CH 2.93 34.14 0.25 3.74 43.02 0.27 

VI 2.90 33.60 0.30 3.21 37.13 0.32 

GLCM 2.68 30.98 0.41 3.31 38.47 0.37 

CH+VI 2.81 32.48 0.31 3.43 39.94 0.32 

CH+GLCM 2.84 32.85 0.31 3.49 40.43 0.29 

VI+GLCM 2.75 31.90 0.41 3.39 39.26 0.36 

CH+VI+GLCM 2.84 32.95 0.32 3.43 39.59 0.34 

Pooled 

Data 

CH 3.23 42.31 0.09 3.27 42.86 0.04 

VI 2.73 35.86 0.32 2.95 38.63 0.22 

GLCM 2.78 36.47 0.30 2.86 37.52 0.28 

CH+VI 2.76 36.22 0.30 3.07 40.27 0.18 

CH+GLCM 2.78 36.50 0.30 2.95 38.65 0.26 

VI+GLCM 2.74 35.98 0.31 2.89 37.85 0.27 

CH+VI+GLCM 2.78 36.50 0.30 2.95 38.65 0.26 

 


