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Bloom—is Result—to meet a Flower
And casually glance

Would scarcely cause one to suspect
The minor Circumstance

Assisting in the Bright Affair
So intricately done

Then offered as a Butterfly
To the Meridian—

To pack the Bud—oppose the Worm—
Obtain its right of Dew—

Adjust the Heat—elude the Wind—
Escape the prowling Bee

Great Nature not to disappoint
Awaiting Her that Day—

To be a Flower, is profound
Responsibility—

Emily Dickinson
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Abstract

Grasslands are critical ecosystems that provide essential ecological services, including biodiversity
conservation, carbon sequestration, water regulation, soil stabilization, and habitat provision for
wildlife. However, these ecosystems are increasingly threatened by land-use intensification,
climate change, and biodiversity loss. This thesis investigates the application of Unmanned Aerial
Vehicles (UAVs) and advanced data integration techniques to improve the monitoring and
management of grasslands, with a focus on biomass estimation and biodiversity assessment under
varying management practices.

The systematic review presented in this thesis consolidates current methodologies for UAV-
based biomass estimation, identifying key strengths, limitations, and emerging trends. It
emphasizes the growing potential of integrating structural, spectral, and textural image data to
address the challenges posed by grassland heterogeneity and complex vegetation dynamics. This
review provides a comprehensive framework for designing UAV-based monitoring systems and
serves as a foundation for the experimental studies conducted in subsequent chapters.

Experimental field studies were conducted over three years in a managed wet grassland to
monitor key ecosystem services, specifically biomass production and biodiversity, under different
cutting management regimes. The research demonstrated that disturbances such as molehills and
lodging can impact the relationship between canopy height and biomass, leading to potential
inaccuracies in UAV-derived models. Following this, the study explored the integration of UAV-
derived features—structural (e.g., canopy height), spectral (e.g., vegetation indices), and textural
metrics—to improve biomass estimation accuracy. By combining these features, the research
achieved improved predictive accuracy, highlighting the utility of UAV-derived multi-dimensional
data in capturing the complexity of grassland ecosystems.

Biodiversity assessment was another key focus of this thesis. The study investigated the
estimation of plant species richness in managed grasslands using UAV-derived data, focusing on
the influence of cutting regimes and spatial heterogeneity on prediction accuracy. The results
demonstrated that integrating structural, spectral, and texture features of the grassland extracted
from a UAV-based multi-spectral sensor improved the ability to estimate species richness,
particularly in systems with high cutting frequencies. Texture features of the grassland, in
particular, provided valuable insights into the spatial variability of vegetation structure, enabling
more accurate predictions in areas with more intensive management.

While the findings demonstrate the potential of UAV technologies for ecological monitoring,
several challenges remain. These include the complexity of data processing workflows, the need
for precise calibration and validation, and logistical constraints associated with field operations.
Overcoming these challenges will require the advancements in sensor technologies, more
accessible machine learning tools, and scalable frameworks to broaden the application of UAV-
based monitoring across diverse grassland ecosystems.

This thesis provides a comprehensive framework for integrating UAV-derived data into
grassland monitoring and management, offering valuable insights for both scientific research and
practical applications. By addressing the challenges identified, future research can refine these



approaches, supporting the conservation and sustainable management of grasslands under changing
environmental conditions.



Zusammenfassung

Griinlandsysteme sind entscheidende Okosysteme, die wesentliche dkologische Dienstleistungen
bereitstellen, darunter die Erhaltung der Biodiversitat, die Kohlenstoffspeicherung, die
Wasserregulierung, die Bodenstabilisierung und die Bereitstellung von Lebensrdumen fir
Wildtiere. Diese Okosysteme sind jedoch zunehmend durch die Intensivierung der Landnutzung,
den Klimawandel und den Verlust der biologischen Vielfalt bedroht. Diese Dissertation untersucht
die Anwendung von unbemannten Luftfahrzeugen (UAVs) und fortschrittlichen
Datenintegrationstechniken zur Verbesserung der Uberwachung und des Managements von
Grinlandsysteme, mit besonderem Schwerpunkt auf der Biomasseschédtzung und der Bewertung
der Biodiversitat unter verschiedenen Bewirtschaftungsregimen.

Die in dieser Arbeit prisentierte systematische Ubersicht fasst aktuelle Methoden zur UAV-
gestutzten Biomasseschatzung zusammen und identifiziert wesentliche Starken, Schwachen und
aufkommende Trends. Sie betont das wachsende Potenzial der Integration von strukturellen,
spektralen und texturalen Daten, um die Herausforderungen der Heterogenitdat von
Griinlandsysteme und der komplexen Vegetationsdynamik zu bewaltigen. Diese Ubersicht bietet
einen umfassenden Rahmen fiir die Entwicklung von UAV-gestiitzten Uberwachungssystemen und
bildet die Grundlage fur die experimentellen Studien in den folgenden Kapiteln.

Experimentelle Feldstudien wurden ber drei Jahre in einer bewirtschafteten Feuchtwiese
durchgefiihrt, um zentrale Okosystemleistungen, inshesondere die Biomasseproduktion und
Biodiversitat, unter verschiedenen Schnittregimen zu tiberwachen. Die Ergebnisse zeigten, dass
Storungen wie Maulwurfshiigel und Lagerung die Beziehung zwischen Kronenhthe und Biomasse
beeinflussen und zu potenziellen Ungenauigkeiten in UAV-Modellen fihren kénnen.
AnschlieBend wurde die Integration von UAV-abgeleiteten Merkmalen — strukturelle (z. B.
Kronenhohe), spektrale (z. B. Vegetationsindizes) und texturale Metriken — untersucht, um die
Genauigkeit der Biomasseschatzung zu verbessern. Durch die Kombination dieser Merkmale
konnte die VVorhersagegenauigkeit gesteigert werden, was den Nutzen multidimensionaler UAV -
Daten zur Erfassung der Komplexitdt von Griinlandsysteme unterstreicht.

Ein weiterer Schwerpunkt dieser Dissertation lag auf der Bewertung der Biodiversitat. Die
Studie untersuchte die Schéatzung des pflanzlichen Artenreichtums in bewirtschafteten
Grinlandsysteme mithilfe von UAV-Daten und analysierte dabei den Einfluss von Schnittregimen
und rdumlicher Heterogenitat auf die VVorhersagegenauigkeit. Die Ergebnisse zeigten, dass die
Integration von strukturellen, spektralen und texturalen Merkmalen ebenfalls die Fahigkeit zur
Schatzung des Artenreichtums verbesserte, insbesondere in Systemen mit hohen
Schnittfrequenzen. Insbesondere texturale Merkmale lieferten wertvolle Einblicke in die raumliche
Variabilitdt der Vegetationsstruktur und ermdoglichten genauere Vorhersagen in intensiver
bewirtschafteten Bereichen.

Obwohl die Ergebnisse das grof3e Potenzial von UAV-Technologien fir die ¢kologische
Uberwachung verdeutlichen, bestehen weiterhin Herausforderungen. Dazu gehoren die
Komplexitat der Datenverarbeitung, die Notwendigkeit praziser Kalibrierung und Validierung
sowie logistische Einschrankungen bei Feldoperationen. Die Bewadltigung dieser



Herausforderungen erfordert Fortschritte in der Sensortechnologie, benutzerfreundlichere
Werkzeuge fur maschinelles Lernen und skalierbare Rahmenbedingungen, um die Anwendung
UAV-gestiitzter Uberwachung auf unterschiedliche Graslandsysteme auszudehnen.

Diese Dissertation liefert einen umfassenden Rahmen fiir die Integration UAV-abgeleiteter
Daten in die Uberwachung und das Management von Griinlandsysteme. Sie bietet wertvolle
Erkenntnisse sowohl fur die wissenschaftliche Forschung als auch fiir praktische Anwendungen.
Durch die Bewiltigung der identifizierten Herausforderungen kann die zukiinftige Forschung diese
Ansatze weiter verfeinern und so den Erhalt und die nachhaltige Bewirtschaftung von
Grinlandsysteme unter sich verdndernden Umweltbedingungen unterstitzen.
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1 General introduction

Grasslands are defined as ecosystems predominantly covered by grasses, forbs, and other
herbaceous plants, with minimal tree coverage (White, Murray and Rohweder, 2000). They are one
of the most extensive terrestrial biomes, occurring in every continent except Antarctica, and include
various types such as prairies, steppes, pampas, savannas, and velds (Allen et al., 2011). Each type
is defined by specific climatic conditions, soil types, and fire regimes, which in turn influence their
ecological characteristics (Gibson and Newman, 2019).

The classification of grasslands within agricultural systems can be categorized into three
primary types: natural, semi-natural, and improved, each defined by the degree of human
intervention and the ecological processes that dominate their formation and maintenance (Lemaire,
Hodgson and Chabbi, 2011). Natural grasslands are primarily formed by natural processes such as
climate, fire, and wildlife grazing, though they are also utilized for livestock grazing. These areas
are typical of what one might envision as traditional grassland biomes (Parr et al. 2014).

Semi-natural grasslands are developed by human activity but still depend on natural processes
for their maintenance (Allen et al., 2011). These grasslands require regular human intervention
such as livestock grazing or hay cutting to prevent encroachment by shrubs and trees. Without such
management, semi-natural grasslands would gradually transition to other forms of vegetation, thus
losing their grassland characteristics (Bonari et al., 2017).

Compared to other two types, improved grasslands are the most intensively managed. They
are created by the deliberate modification of the natural landscape, including plowing, sowing of
high-yield agricultural grass varieties or non-native species and regular application of artificial
fertilizers (Bengtsson et al., 2019). These practices are aimed at maximizing productivity for
agricultural purposes, often at the cost of ecological diversity. Such grasslands are maintained
through intensive management practices that support high agricultural output but may also lead to
ecological imbalances if not carefully managed (Pilgrim et al., 2010).

Covering about 40% of the Earth's land surface, grasslands are essential to global biodiversity
and are among the most important carbon sinks, influencing the global carbon cycle (White,
Murray and Rohweder, 2000; Andrade et al., 2015). They play a critical role in water regulation
and are essential for the hydrological stability of many regions, supporting both human and wildlife
requirements (Bengtsson et al., 2019). Grasslands also provide important ecosystem services such
as erosion control, flood protection, and the support of diverse wildlife habitats, contributing
significantly to biodiversity conservation (Lemaire, Hodgson and Chabbi, 2011). Economically,
they are fundamental to the agricultural sector, occupying 70% of agricultural land globally and
offering a primary source of low-cost feed for the livestock industry, which is important for food
security and the livelihoods of millions (FAOStat, 2016; Van Den Pol et al., 2018). Culturally, they
offer recreational opportunities and contribute to the cultural tradition of communities (Hussain et
al., 2019). Despite their extensive utility, grasslands face significant threats from overgrazing,
urbanization, and climate change, which necessitate robust management and conservation
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strategies to maintain their ecological and economic functions (Le Clec’h et al., 2019; Huber et al.,
2022).

1.1 Wet grasslands: characteristics and ecological importance

Wet grasslands are dynamic and biologically diverse ecosystems within agricultural landscapes,
characterized by their semi-natural formation through processes such as drainage of other wetlands
or clearing of forests on floodplains (Dixon et al., 2014; Chris B. Joyce, Simpson and Casanova,
2016). These ecosystems are maintained by traditional management practices such as mowing for
hay and extensive grazing, which are essential for conserving their ecological integrity (Joyce and
Wade, 1998). Characterized by a variety of grasses and sedges, these lands experience periodic
flooding and maintain a high water table for much of the year, factors that significantly influence
their vegetation and associated biodiversity (Cop, Vidrih and Hacin, 2009).

The ecological importance of wet grasslands extends beyond biodiversity; they provide a
multitude of ecosystem services including flood attenuation, groundwater recharge, sediment
storage, nutrient removal, and erosion protection (Joyce and Wade, 1998). These services are
particularly valuable in regions susceptible to flooding or in need of water quality maintenance,
often characterized by their historical use in agriculture which has shaped regional identities and
conserved traditional land-use practices (Joyce, 2014).

Despite their ecological importance, wet grasslands across Europe have suffered from
intensive land use practices, including fertilization, artificial drainage, and fragmentation, leading
to significant ecological degradation (Rosenthal, 2006). Restoration efforts have focused on
reducing fertilizer input, increasing the water table, and extending land use, but recovering
biodiversity in these areas has proven challenging and slow (Joyce, 2014). Often, lands previously
subjected to intensive use remain deficient in species diversity for extended periods, despite
management adjustments aimed at increasing botanical diversity and structural complexity
(Rosenthal, 2010).

Research indicates that modifying management strategies, such as implementing less frequent
and later cutting regimes, along with reducing inorganic fertilizer application, can significantly
bolster the diversity of plant species in semi-natural wet grasslands (Tallowin, 1996). However,
the success of such strategies can be reduced by environmental stress factors that inherently limit
species richness (Cop, Vidrih and Hacin, 2009). The current challenge for conservationists and
land managers is to effectively balance traditional practices with innovative management strategies
to enhance biodiversity and sustain ecosystem services within changing environmental conditions
and historical impacts.
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1.2 Grassland monitoring

1.2.1 Techniques and importance

The continuous monitoring of grasslands is fundamental to understand their ecological dynamics
and effectively respond to environmental pressures (Alves Oliveira et al., 2022). Ecological
surveys, typically limited in spatial and temporal scope, struggle to comprehensively monitor
biodiversity and ecosystem changes across grassland areas (Fauvel et al., 2020). These limitations
highlight the need for advanced monitoring techniques that can extend beyond local assessments
and capture the broader environmental impacts affecting these ecosystems.

Monitoring grasslands facilitates sustainable management and conservation by providing
crucial data on biomass yield, quality, and floristic composition (Schucknecht et al., 2022). This
information is vital for managing the intensity of grassland use, ranging from extensive
management on marginal lands to intensive management practices that involve high fertilizer
inputs and frequent harvesting (Wengert et al., 2022). For example, extensive grasslands, which
are often harvested fewer times per year with a focus on conservation, contrast sharply with
intensively managed grasslands that prioritize yield and are harvested more frequently (Weiss et
al., 2001). This contrast in management strategies underscores the importance of regular and
detailed monitoring to maintain ecological balance and prevent overuse.

The degradation of grasslands —manifested as desertification, biodiversity loss, and a decline
in productivity—poses serious threats to both ecological security and socioeconomic development
(Zhao, Liu and Wu, 2020). Monitoring helps mitigate these threats by providing essential
information needed for strategic vegetation growth analysis and management planning (Jin et al.,
2019). Moreover, the preservation of grassland ecosystems requires a thorough mapping and
assessment of key traits such as above-ground biomass and biodiversity, which are crucial for
sustaining their ecological functions (Wachendorf, Fricke and Mdckel, 2018; Schucknecht et al.,
2020)

However, achieving detailed and accurate grassland monitoring at different scales remains a
challenge due to the lack of spatially explicit data (Schucknecht et al., 2022). Innovative
approaches such as remote sensing offer promising solutions by enabling cost-effective, rapid,
quantitative, and repeatable assessments across diverse and extensive landscapes (Wachendorf,
Fricke and Mdckel, 2018).

1.2.2 Challenges to estimate above-ground biomass

Biomass, specifically above-ground biomass (AGB), is a crucial indicator of grassland health,
productivity, and carbon cycling (Wang et al., 2014; Zhang et al., 2018; Shi et al., 2022). It serves
as a key metric for assessing the sustainability and ecological balance of grassland ecosystems,
making accurate estimation models essential for effective grassland management, livestock
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balancing, and eco-environmental protection (F. Zhao et al., 2014; Liang et al., 2016; Fan et al.,
2018; Shi et al., 2021). Furthermore, AGB plays a significant role in the carbon cycle by reflecting
the net primary productivity of grasslands, which is essential for understanding carbon
sequestration and how it affects climate regulation (Zhang et al., 2022).

Despite its importance, accurate quantification of AGB presents several technical and
methodological challenges. Traditional field-based methods of biomass sampling are highly labor-
intensive and time-consuming, especially when applied to large areas (Morais et al., 2021; Adar et
al., 2022; Alves Oliveira et al., 2022). These methods often involve destructive sampling, which
can affect the grassland itself and is not feasible for frequent monitoring (Gnyp et al., 2014).
Additionally, the prediction accuracy of biomass using traditional field methods can be low,
particularly over large, heterogeneous areas where environmental variables such as soil, climate,
and topography vary widely (Ghajar and Tracy, 2021; Wang et al., 2021)

The variability of biomass production within and across years adds another layer of
complexity. This variability arises from factors such as climate change, grazing pressure, and other
anthropogenic activities, which can influence the spatial and temporal distribution of biomass and
make consistent monitoring challenging (Taylor and Browning, 2021; Franceschini et al., 2022;
Zhang et al., 2022). Moreover, remote locations pose additional difficulties in terms of accessibility
and the ability to conduct regular surveys, further complicating the comprehensive monitoring of
grassland conditions (Schulze-Briininghoff, Wachendorf and Astor, 2021).

1.2.3 Plant species biodiversity: key to ecosystem health

Grasslands are a significant source of biodiversity, providing a range of ecosystem services
essential for the survival of plant and animal species and human life (Lamarque et al., 2011;
Dinnage et al., 2012). Biodiversity in grasslands contributes to the stability of plant productivity
over time, carbon storage, and pollinator abundance, making its preservation vital (Lemaire,
Hodgson and Chabbi, 2011; Bonari et al., 2017). Plant species diversity is a key component in
providing these ecosystem services, with species richness serving as a strong indicator of plant
diversity (Oldeland et al., 2010; van Qijen, Bellocchi and Hoglind, 2018). Additionally, the variety
of plant species present in grasslands is strongly influenced by long-term management practices,
with livestock grazing being a major driving force affecting vegetation dynamics, species
distribution, and landscape-scale biodiversity (Marriott et al., 2004; van Oijen, Bellocchi and
Hoglind, 2018).

Despite the critical role of biodiversity, traditional methods of its measurement are labor-
intensive, time-consuming, and costly, requiring extensive field sampling by experienced
biologists (Palmer et al., 2002; Wang and Gamon, 2019). These methods are also limited by
inconsistent data sets and the lack of standardized procedures, which makes it difficult to acquire
sufficient information on changing species distributions over time (Conti et al., 2021; Thornley et
al., 2023). Furthermore, grassland biodiversity faces numerous threats from urban development,
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agricultural practices, eutrophication, overgrazing, and climate change, all of which exacerbate the
challenge of effective monitoring (Hautier et al., 2014; Harrison, Gornish and Copeland, 2015). To
address these challenges, comprehensive and consistent monitoring is necessary to ensure the
conservation and sustainable management of grasslands (Rapinel et al., 2019).

1.3 Remote sensing and UAV: technological advances in ecological monitoring

Remote sensing is an important technology in ecology and conservation, enabling the observation
and monitoring of ecosystems from a distance (Atzberger, 2013; Ali etal., 2016; Tang et al., 2021).
Utilizing sensors mounted on various platforms, this technology captures data about the Earth's
surface, providing essential insights into environmental conditions without the need for direct
contact (Mulla, 2013). In grassland ecology, remote sensing plays a crucial role by facilitating the
continuous monitoring of vegetation dynamics, enabling assessments of ecosystem services, and
helping to define conservation strategies (Wachendorf, Fricke and Mdckel, 2018; Fauvel et al.,
2020). Traditional remote sensing platforms include satellites and aircraft, which offer the
advantage of wide-area coverage and rapid data collection (Zhang et al., 2018; Chao et al., 2019).
However, these methods often struggle with issues such as low spectral resolution and long
intervals between data captures, which can limit their effectiveness in capturing the detailed and
frequent data required for precise ecological management (Atzberger, 2013; Dusseux et al., 2015;
Zhang et al., 2018).

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, have significantly
enhanced the capabilities of remote sensing, especially in the context of ecological and
conservation research (Von Bueren et al., 2015; Eskandari et al., 2020; Tmusi¢ et al., 2020). UAVs
are particularly beneficial for their ability to provide high spatial and temporal resolution data,
which is critical for accurately capturing the fine-scale structural and temporal variations within
ecosystems (Shahbazi, Théau and Ménard, 2014; Possoch et al., 2016). These high-resolution
datasets are invaluable for detailed vegetation mapping, species identification, and monitoring the
rapid ecological changes that may occur due to environmental pressures or seasonal transitions
(Manfreda et al., 2018; Insua, Utsumi and Basso, 2019; Jenal et al., 2020; da Costa et al., 2021;
Plaza et al., 2021; Villoslada Pecifia et al., 2021).

Operating at lower altitudes than traditional remote sensing platforms, UAVs can gather
superior spectral data with minimal signal degradation, capturing hundreds of narrow-band spectral
channels that are essential for detailed phenotypic and physiological assessments (Atzberger, 2013;
Tian and Fu, 2022). The flexibility and cost-effectiveness of UAVs also allow for more frequent
and targeted data collection, enabling researchers to conduct time-series analyses that are crucial
for understanding long-term ecological trends and responses to environmental management actions
(Eskandari et al., 2020; Li et al., 2020; Wang et al., 2021).

Moreover, the adaptability of UAV platforms facilitates the integration of diverse sensing
technologies, from traditional photographic cameras to advanced multispectral and hyperspectral
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sensors, and even thermal and LiDAR sensors (Poley and McDermid, 2020; Tmusic et al., 2020;
Wang et al., 2021). This versatility allows for comprehensive ecological assessments across
multiple spectral domains, providing a deeper understanding of ecosystem health, plant phenology,
and species distribution (Michez et al., 2020; Villoslada et al., 2020; Villoslada Pecifia et al., 2021).
Such detailed and multi-dimensional data are pivotal for developing robust models of biomass, and
biodiversity, which are key metrics for assessing the sustainability and resilience of grassland
ecosystems.

1.3.1 Challenges in using proximal and remote sensing for grassland monitoring

One of the primary challenges in using proximal and remote sensing for grassland monitoring is
accurately estimating aboveground biomass through canopy height (CH) (Bareth et al., 2015;
Borra-Serrano et al., 2019; Lussem et al., 2019). Traditional techniques for measuring grassland
height, such as using a rising plate meter or a ruler stick, can be labor-intensive and time-consuming
(Bareth et al., 2015; Michez et al., 2020; Togeiro de Alckmin et al., 2021). Recent advancements
have allowed vegetation height to be derived efficiently from remote sensing sensors, particularly
through the use of three-dimensional (3D) data (Bendig et al., 2014; Nési et al., 2018; Wachendorf,
Fricke and Maockel, 2018; Rueda-Ayala et al., 2019; Wijesingha et al., 2019). However, their
application in grasslands remains limited due to the challenges in accurately distinguishing
vegetation from the ground in shorter plants (Bareth et al., 2015; Bareth and Schellberg, 2018;
Lussem et al., 2019) and the need for high-quality point cloud data to ensure accurate height
information (Bendig et al., 2015; Wijesingha et al., 2019).

Additionally, spectral data derived from remote sensing data, including vegetation indices
(VIs) such as the normalized difference vegetation index (NDVI), are crucial for assessing plant
and vegetation characteristics (Tucker, 1979; Carlson and Ripley, 1997). VIs highlight specific
properties of vegetation, aiding in mapping density and monitoring ecological changes (Sha et al.,
2018). Despite their usefulness, VIs can suffer from saturation problems in areas with high
vegetation cover, which can limit their accuracy in vegetation characteristics estimation (Zhang et
al., 2021). Other indices like the soil-adjusted vegetation index (SAVI) and the enhanced
vegetation index (EVI) have been developed to address specific issues such as soil background
effects and NDVI saturation, further refining biomass and plant biodiversity estimation models
(Rondeaux, Steven and Baret, 1996; Huete et al., 2002). Nevertheless, VIs remain a critical tool
for understanding vegetation dynamics and are often used in combination with other data types to
improve monitoring precision (Huete et al., 2002).

In addition to spectral data, image texture derived from high-resolution optical imagery
provides valuable information on vegetation structure. Image texture measures the variation in
pixel intensity within an image, which can serve as a proxy for vegetation heterogeneity and
structure (Culbert et al., 2009; Wood et al., 2012). Texture analysis techniques, such as the Grey
Level Co-occurrence Matrix (GLCM), incorporate both spectral and spatial information, enabling
finer distinctions of structural detail within grasslands (Barrett et al., 2014; Dos Reis et al., 2020;

7



CHAPTER |

Griiner, Wachendorf and Astor, 2020). However, these methods are computationally intensive and
require substantial processing power to achieve accurate results (Griiner, Wachendorf and Astor,
2020).

Integrating structural, spectral, and textural features from RS data can significantly enhance
the accuracy of biomass and biodiversity estimates. Combining canopy height models (CHM) with
vegetation indices (VIs) improves the precision of biomass estimation by providing a
comprehensive assessment of vegetation characteristics (Viljanen et al., 2018; Pranga et al., 2021).
This multi-faceted approach leverages the strengths of each data type, providing a more robust and
detailed understanding of ecological dynamics (Karunaratne et al., 2020). However, the complexity
and computational demands of integrating multiple data sources pose additional challenges.

1.4 Machine learning: advanced methods for ecological prediction

Machine learning (ML) has emerged as a powerful empirical method in the estimation of AGB and
plant biodiversity, significantly advancing the field over the past two decades (Zeng et al., 2021).
Various ML models, including random forest (RF), artificial neural networks (ANN), and support
vector machines (SVM), have been widely applied due to their ability to handle complex and
nonlinear relationships between predictive and objective variables (Morais et al., 2021). These
models offer greater accuracy and flexibility compared to traditional regression models, making
them particularly advantageous in ecosystem research (Wang et al., 2017; Eskandari et al., 2020).

This flexibility has led to the widespread adoption of ML techniques in grassland biomass
estimation and plant species biodiversity (Viljanen et al., 2018; Fauvel et al., 2020; De Rosa et al.,
2021; Pranga et al., 2021; Alves Oliveira et al., 2022; Muro et al., 2022). For instance, partial least
squares regression (PLSR) effectively explains relationships between hyperspectral data and
grassland traits, reducing the dimensionality of input datasets while maintaining predictive power
(Darvishzadeh et al., 2008; Capolupo et al., 2015). The RF model has also demonstrated high
performance in grassland AGB simulations, explaining 86% of observed data variation on the
Tibetan Plateau (Zeng et al., 2019). Muro et al. (2022) compared the performance of a deep neural
network (DNN) with a RF for spatial predictions of biomass production and plant biodiversity in
grasslands, demonstrating the potential of advanced ML models to enhance the accuracy and
efficiency of ecological predictions

Processing large quantities of data collected by UAV-based sensors necessitates robust
analytical frameworks, and ML algorithms are well-suited to this task. (Lussem et al., 2022). They
can manage multicollinearity and high-dimensional datasets, making them ideal for processing
complex remote sensing data (Wachendorf, Fricke and Mdckel, 2018). The evolution of ML
techniques has unlocked the potential to handle highly autocorrelated features from remote sensing
data, optimizing predictions of heterogeneous grassland biomass (Gruner, Wachendorf and Astor,
2020; Morais et al., 2021). Diverse ML methods, such as RF and SVM, have been particularly
effective in analyzing spectral data, offering enhanced capabilities for handling large, complex
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datasets (Eskandari et al., 2020; Morais et al., 2021). These methods have evolved from basic
indices and linear estimations to sophisticated ML-based approaches that optimize models by
extracting structural and spectral features from remote sensing datasets (Karunaratne et al., 2020;
Villoslada et al., 2020; K. Y. Li et al., 2021).

1.5 General Objective and research questions

The overarching objective of this thesis is to develop and validate innovative methodologies for
accurate estimation of aboveground biomass and biodiversity assessment in grassland ecosystems
using UAVs combined with advanced analytical techniques. This research aims to use UAV-
derived data to enhance ecological monitoring, improve management practices, and support
conservation efforts in grasslands. This thesis aims to answer the following four questions:

e Question 1 (Q1): What are the most effective UAV-based methods for estimating
aboveground biomass in grasslands, and what are their limitations and potential?

e Question 2 (Q2): How do field disturbances, such as lodging and molehills, impact the
accuracy of biomass estimation using UAV-derived canopy height models in grasslands?

e Question 3 (Q3): Can the integration of structural, spectral, and textural features from UAV
imagery improve the accuracy of biomass estimation models in heterogeneous grasslands?

e Question 4 (Q4): How can UAV-derived data be utilized to accurately assess species
richness and diversity in wet grassland ecosystems, and what are the implications for
conservation and management?

1.6 Structure of the thesis

This work is cumulative doctoral thesis and based on four peer-reviewed papers. The content is
structured as follow:

Chapter | provides the general introduction, setting the context for the research by
emphasizing the significance of accurate aboveground biomass estimation and biodiversity
assessment in grassland ecosystems, and highlighting the potential of UAVs to meet these needs.
It outlines the general objective and specific research questions, and gives an overview of the thesis
structure, explaining how each chapter contributes to the overall research objective.

Chapter Il is dedicated to a comprehensive review of existing methods for estimating AGB
in grasslands using UAVs. This review evaluates the strengths, limitations, and potential progresses
of UAV-based techniques in comparison to traditional ground-based methods. By synthesizing
current knowledge and identifying gaps in the literature, this chapter sets a solid foundation for the
experimental studies that follow.

In Chapter 111, the focus shifts to the impact of field disturbances such as lodging and
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molehills on the accuracy of UAV-derived biomass estimates. This study investigates how these
disturbances affect canopy height models and consequently biomass estimation. Through field data
collection and analysis, the chapter quantifies the impact of these disturbances in AGB estimation.

Chapter 1V explores the integration of structural, spectral, and textural features derived from
UAYV imagery to enhance AGB estimation accuracy. Advanced machine learning algorithms are
applied to combine these features into robust biomass estimation models. The chapter discusses
the methodology used, presents the results, and highlights the implications of integrating multiple
UAV-derived data types for biomass estimation accuracy.

Chapter V extends the application of UAV technology to biodiversity assessment in wet
grasslands. It utilizes UAV-derived structural, spectral, and textural data to assess species richness
and diversity. By employing machine learning techniques to integrate these features, the chapter
provides biodiversity assessments. The effectiveness of these methods is evaluated, and their
implications for conservation and management practices are discussed.

Chapter VI synthesizes the findings from the experimental studies, providing a cohesive
narrative that integrates the results and discusses their interactions and broader implications. The
practical implications of the research are explored, addressing how the findings contribute to the
field of ecological monitoring and suggesting directions for future research. The chapter also
critically examines the limitations of the studies, providing a balanced view of the research results.
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A REVIEW OF ESTIMATION METHODS FOR

ABOVEGROUND BIOMASS IN GRASSLANDS
USING UAV
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CHAPTER II

Abstract

Grasslands are one of the world’s largest ecosystems, accounting for 30% of total terrestrial
biomass. Considering that aboveground biomass (AGB) is one of the most essential ecosystem
services in grasslands, an accurate and faster method for estimating AGB is critical for managing,
protecting, and promoting ecosystem sustainability. Unmanned aerial vehicles (UAVS) have
emerged as a useful and practical tool for achieving this goal. Here, we review recent research
studies that employ UAVs to estimate AGB in grassland ecosystems. We summarize different
methods to establish a comprehensive workflow, from data collection in the field to data
processing. For this purpose, 64 research articles were reviewed, focusing on several features
including study site, grassland species composition, UAV platforms, flight parameters, sensors,
field measurement, biomass indices, data processing, and analysis methods. The results
demonstrate that there has been an increase in scientific research evaluating the use of UAVS in
AGB estimation in grasslands during the period 2018-2022. Most of the studies were carried out
in three countries (Germany, China, and USA), which indicates an urgent need for research in other
locations where grassland ecosystems are abundant. We found RGB imaging was the most
commonly used and is the most suitable for estimating AGB in grasslands at the moment, in terms
of cost—benefit and data processing simplicity. In 50% of the studies, at least one vegetation index
was used to estimate AGB; the Normalized Difference Vegetation Index (NDVI) was the most
common. The most popular methods for data analysis were linear regression, partial least squares
regression (PLSR), and random forest. Studies that used spectral and structural data showed that
models incorporating both data types outperformed models utilizing only one. We also observed
that research in this field has been limited both spatially and temporally. For example, only a small
number of papers conducted studies over a number of years and in multiple places, suggesting that
the protocols are not transferable to other locations and time points. Despite these limitations, and
in the light of the rapid advances, we anticipate that UAV methods for AGB estimation in
grasslands will continue improving and may become commercialized for farming applications in
the near future.

Keywords: photogrammetry; grassland monitoring; precision agriculture; biomass estimation;
vegetation indices; effective workflow.
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2.1 Introduction

Grasslands are among the largest ecosystems on the planet, playing an important ecological and
economic role and contributing to the food security of millions of people (Hopkins and Wilkins,
2006). According to FAO (FAOStat, 2016), grasslands cover 25% of the terrestrial surface,
equivalent to around 68% of the world’s agricultural areas. This makes grasslands an important
provider of ecosystem services in different parts of the world (Wang, Li and Bian, 2016; Bengtsson
etal., 2019). When properly managed, grasslands can effectively contribute to carbon sequestration
and improve air and water quality, nutrient cycling, and biodiversity, as well as food production
(Sala and Paruelo, 1997; Egoh et al., 2016; Bengtsson et al., 2019).

Grasslands store 30% of the world’s terrestrial biomass (Bar-On, Phillips and Milo, 2018).
Moreover, the provision of aboveground biomass (AGB) is one of the most important ecosystem
services in grasslands and constitutes the basis for increasing fodder productivity (Zhang et al.,
2018). Thus, a precise and rapid method for the estimation of AGB is critical for the management
and protection of grasslands (Psomas et al., 2011; F. Zhao et al., 2014; Jin et al., 2014) and for
enhancing the sustainability of these ecosystems (Yang et al., 2012).

Current approaches to estimating AGB can be classified as either ground-based or remote
sensing (RS) methods. Ground-based methods can be either destructive or non-destructive.
Destructive methods traditionally involve cutting the grass in the field, followed by drying and
weighing it in the laboratory (Yang, 2013). Although these measurements generate the most
accurate estimates of grassland biomass, they are time-consuming and labor-intensive (Nordberg
and Evertson, 2003).

Ground-based methods for non-destructive measurement of grassland AGB have been studied
for decades (Santillan, Ocumpaugh and Mott, 1979; Lussem, Schellberg and Bareth, 2020). These
approaches estimate AGB using equations relating biomass to measurable biophysical factors such
as plant height and plant density (’t Mannetje and Jones, 2000). Handheld devices are the most
straightforward instruments for measuring these biophysical factors (Lussem et al., 2019). The
most widely used and well-documented ground-based method for the non-destructive measurement
of AGB in grasslands is the rising plate meter (RPM) (Sanderson et al., 2001). These instruments
measure compressed sward height by integrating sward height and density over a specific area
(Wachendorf, Fricke and Mdckel, 2018). The ability of RPM-based compressed sward height to
estimate AGB grass using regression models is now well established (O’Sullivan, O’Keeffe and
Flynn, 1987; O’Donovan et al., 2002; Lopez Diaz, Roca-Fernandez and Gonzélez-Rodriguez,
2011). In view of this, farmers use RPM devices to create electromechanical models, which
produce accurate and reliable estimates (Bareth and Schellberg, 2018).

Despite the benefits of fast and regular assessments, the RPM method also has drawbacks,
including operator variability and paddock slope. Through uneven and undulating terrain, the RPM
method’s ability to measure grass height effectively can be impacted, frequently leading to
inaccurate measurements due to the RPM base not effectively touching the true ground surface
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(Barnetson, Phinn and Scarth, 2020). The RPM also presents limitations when the sward is high
and lacks a flat top structure, or when the grass sward is sparse and grows poorly and unevenly
(Viljanen et al., 2018). It is also not suitable for grasses with tender erect stems, including some
tropical grasses (Edvan et al., 2015). Additionally, RPM measurements are also point
measurements, and therefore, the within-paddock spatial variability of grassland biomass
production is not taken into account because only an average paddock estimate is observed
(Alvarez-Hess et al., 2021).

In recent years, RPM devices have become more sophisticated as technology has advanced.
Ultrasonic distance sensors are used in devices such as the GrassHopper (TrueNorth Technologies,
Shannon, Ireland) and the GrassOmeter (Monford AG Systems Ltd., Dublin, Ireland) (Lussem et
al., 2019). In addition to handheld devices, vehicle-mounted devices have also been developed.
Examples are the Pasture Meter (C-Dax Agricultural Solutions, Palmerston North, New Zealand)
and the Pasture Reader (Naroaka Enterprises, Narracan, Australia). These sensors can monitor
grass height while driving the vehicle through the center of a towing tunnel, where optical sensors
detect grass height, which is then calibrated to estimate AGB (Bareth and Schellberg, 2018).

Despite the benefits of fast and regular assessments provided by these sensing systems, there
are still several drawbacks. In particular, the precise estimation of AGB in large-scale grassland
ecosystems is difficult due to (1) limited spatial coverage, especially for handheld equipment,
hence limiting the within-field description of the variability of the sward, (2) the requirement for
heavy technical equipment, (3) limited access to the field due to grazing animals, (4) potential
disturbances at a greater frequency for repeated measurements for vehicle-mounted sensors, and
(5) applicability restrictions based on field conditions (e.g., soil moisture) (Bareth and Schellberg,
2018; Lussem et al., 2019).

RS-based methods offer potential for rapid and automated measurements to quantify both
structural and biochemical properties of the vegetation at high spatial and temporal resolution at a
range of spatial scales (Lussem et al., 2019). These methods include digital imaging (hyperspectral,
multispectral, optical (red—green-blue, RGB), radar), photogrammetry, laser scanning, and
combinations of various sensors on different platforms (Atzberger, 2013). Numerous studies have
evaluated the feasibility of using satellite RS to estimate plant parameters. Although satellite
platforms offer an effective way to collect data over large areas (Nordberg and Evertson, 2003),
using satellite imaging for calibrating and validating an AGB estimation model in grasslands may
be inefficient due to low spatial resolution (Zhang et al., 2018). Most satellite systems with high
spatial resolution (<5 m) are commercially operated, and therefore, image acquisition costs for
short revisit times can become a limiting factor (Manfreda et al., 2018). In a fragmented agricultural
landscape, as seem in some grassland fields, where the average field size is low, high-spatial-
resolution images are required (Dusseux et al., 2015). Additionally, the applicability of satellite
imagery can be significantly hampered and negatively impacted by weather conditions (cloud cover
obstructing free sight) (Whitcraft et al., 2015).

In recent years, unmanned aerial vehicles (UAVS), also known as remotely piloted aircraft
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systems, unmanned aircraft systems, or drones, have proven to be an important and viable tool for
measuring and estimating biophysical parameters at a scale appropriate to grassland distribution
(Dusseux et al., 2015). With flexibility, UAVs can be operated quickly, simply, and economically.
Most importantly, they can collect imagery data at high spatial, spectral, and temporal resolutions
at exactly the point in time when the information is needed. In fact, when surveying objects at small
(5 ha) to medium (5-50 ha) spatial scales, UAV-based photography outperforms alternative
imaging acquisition technologies, such as satellites and manned aerial systems. Specifically, in this
context, UAVs show higher temporal and spatial resolution as well as exhibit greater versatility at
a lower cost (Matese et al., 2015).

In the past ten years, the number of research articles describing UAV applications has
increased dramatically, with these studies encompassing a diversity of UAV types and applications
(Libran-Embid et al., 2020). More recently, there has been increased interest in applying UAV
remote sensing to the estimation of AGB in grasslands. In this context, structural features of
grasslands have been used for the estimation of grassland height and AGB (Bareth and Schellberg,
2018; Zhang et al., 2018; Lussem et al., 2019). Nevertheless, image-based approaches using UAV
to estimate forage biomass are still in their infancy (Possoch et al., 2016; Forsmoo et al., 2018;
Rueda-Ayala et al., 2019). In view of this, there is no standard process for planning, collecting, and
analyzing these data in order to extract AGB information. Considering the grassland’s inherent
properties, several aspects linked to data collection and analysis methodologies, as well as the study
species and study site, can affect the accuracy and prediction of the resulting models. The methods
often used to estimate AGB in grasslands by UAV imagery are similar to those used to monitor
arable crops (Schellberg et al., 2008). However, arable crops generally show lower heterogeneity
than grasslands. Grasslands often exhibit substantial spatio-temporal heterogeneity due to highly
diverse floristic compositions and co-occurrence of different phenological stages (Lussem et al.,
2019). This heterogeneity affects the assessment of AGB in grasslands using UAVs (Moeckel et
al., 2017). AGB estimation in grasslands may be inaccurate or imprecise if these aspects are not
taken into account.

A comprehensive review of the different methods and factors influencing the AGB estimation
in grasslands is therefore essential to understand how each stage of the process affects outcomes
so that subsequent data collection and analysis can produce accurate and reliable data. Although
the utility of UAVs is well known in biomass estimation in agriculture, recently developed
applications of UAVs to AGB estimation in grassland ecosystems have not yet been evaluated or
systematically reviewed. To date, the majority of review studies of UAV for biomass estimation in
agriculture have been broad, involving numerous fields and different remote sensing systems, and
the description of biomass estimation with little emphasis on grassland-specific properties. To
address this gap, we systematically review the use of UAVs in the estimation of AGB in grassland
ecosystems. We perform a comprehensive literature review of the topic to (1) give an overview on
common practices of the use of sensors, scale of work, ground truth methods, data processing, and
analysis methods and (2) to identify which spectral and structural data are most accurate with
respect to AGB estimation. We conclude by discussing the challenges and future prospects of UAV

15



CHAPTER II

remote sensing in AGB estimation in grassland ecosystems.

2.2 Materials and methods

Using the PRISMA protocol (Moher et al., 2009), we conducted a systematic review and meta-
analysis of studies that use Unmanned Aerial Vehicles (UAVS) to estimate biomass in grassland
systems. Figure 2.1 presents a flow diagram of the study selection process. In the identification
step, relevant literature was retrieved from Google Scholar and Web of Science using search terms

29 ¢

comprising keywords related to UAVs (“UAS”, “UAV”, “unmanned aerial system”, “unmanned
aerial vehicle) and to aboveground grassland biomass (“grass”, “grassland”, “pasture”, “forage”,
“biomass”, “aboveground biomass”, “above ground biomass”). The search was limited to English-
language research articles published from January 2011 to August 2022. We considered all types
of grassland systems. This review did not consider studies classified as review papers, book

chapters, reports, or Ph.D. theses.

Records identified from:
Google Scholar (n=114)
Web of Science (n=373)

Y

Records screened Records excluded
(n=487) (n=402)
A
Full-text articles assessed for Reports excluded:
eligibility Did not include attributes of interest
(n=85) (n=21)

[ Elegelibity ] [ Screening ] [ Identification ]

Studies included in this review:

(n=64)

Figure 2.1. PRISMA flow diagram for study selection.

A total of 487 articles were obtained as a result of the Google Scholar and Web of Sciences
searches. To be included in the review, a study was required to fulfill the following three criteria:
(1) the study uses UAV and no other system type; (2) it focuses on grassland ecosystem; (3) it
presents AGB estimation from UAV imagery. The articles identified in the first step were screened,
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and we consulted the title and abstract. After the screening phase, 85 research articles remained.
We confirmed each study’s eligibility by reading the full text, after which 21 studies were discarded
because they did not contain extractable data for the following four features of interest: site
attributes, biomass measures, UAV platform, and sensors. In total, 64 studies were retained, which
had extractable data for all four features. For each article, we extracted metadata (Appendix A),
including information related to the characteristics of the study site, grassland species composition,
UAV platforms, flight parameters, sensors, field measurement, biomass indices, data processing,
and analysis method.

2.3 Results and discussion

An automated search of Google Scholar and Web of Sciences resulted in a final set of 64 papers
that used UAV imagery to estimate AGB of grassland areas (Table Al, supplementary material).
The following sections provide a detailed description of meta-analysis findings, including general
features of the articles and biomass estimation data analysis.

2.3.1 General characteristics of studies

Figure 2.2a presents the locations of the 64 studies considered in this review. In total, grasslands
located in 15 countries were studied. Germany accounted for the largest number of studies (N =
14), followed by China (N = 10), the United States of America (USA) (N = 7), Australia (N = 5),
Belgium (N = 4), Finland (N = 5), Brazil (N = 4), Estonia (N = 3), and Norway (N = 3). Studies in
Canada, Ecuador, Ireland, Israel, Japan, Spain, South Korea, and Switzerland were represented by
one publication each.

Figure 2.2b presents the number of articles published annually from 2012 to 2022. The first
article, published in 2014 in the USA (Y. Zhao et al., 2014), used high-resolution imagery from a
UAV to estimate biomass in a natural grassland site in the USA. From 2014 to 2017, only six
papers were published, and subsequently, the number of publications increased steadily. Figure
2.2¢ shows only journals that published more than two papers. The most represented journals
include Remote Sensing (16 papers), Sensors (4 papers), and Ecological Indicator (4 papers).

Considering the representation by continents, thirty-two of the sixty-four studies were
conducted in European countries, twelve in Asia, eight in North America, seven in Oceania, and
only five in South America, and no studies were conducted in the African continent. Although there
are many significant areas of grassland in Europe and North America, which are often part of mixed
farmland systems, much of the world’s grassland area is located in the extensive natural grasslands
of Central Asia, Sub-Saharan and Southern Africa, North and South America, and Australia/New
Zealand. Considering the scenario above, the productivity of journal articles about UAV
applications for AGB biomass estimation in grassland regions with the largest representation of
this vegetation worldwide is generally low. Studies should preferably be carried out in grassland
biomes across several areas and continents (Van Der Merwe, Baldwin and Boyer, 2020). More
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numerous and diverse grassland systems should be studied in order to improve UAV applications
for AGB biomass estimation in grassland, particularly grasslands in regions that will be specifically
impacted by climate change (e.g., tropical regions) (Ali et al., 2016), which are currently
significantly under-represented in the available research survey.

(a) Geographical distribution of included papers in this review

Number of publications

15 4
10 5

5

(b) Number of publications per year (c) Number of publications per journal

12
2
1 1

2014 2015 2016 2017 ®=2018 ®2019 w2020 ®=2021 wm2022

21

16

I of Photogrammetry. I\%ard Geoinformation Scence == 2
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Figure 2.2. (a) Geographical distribution of included papers in this review. (b) Number of
publications per year. (¢) Number of publications per journal.

2.3.2 Characteristics of the study sites

Regarding the characteristics of the study sites, 64 articles reported the type of grassland. Of these,
34 studies investigated fields as experimental sites, 18 investigated naturalized grasslands, and 12
investigated grassland farms. In addition, 62 publications reported whether the site included mono
or multi-species grasslands. Of these, 46 publications studied multi-species grasslands, 15 studied
mono-species systems, and 1 studied both systems (mono and mixed grasses). Fertilization
conditions were described in 27 publications, of which only 3 studied organically fertilized
grasslands. Animal presence in the grasslands was reported in 14 studies, of which 9 analyzed the
effect of grazing activities on the biomass estimation.
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The heterogeneity of the experimental site is an important feature since many studies suggest
that increasing the species richness of grassland can reduce AGB estimation models’ performance.
According to Wijesingha et al. (2019), biomass prediction for species-poor and homogenous
grasslands had higher accuracy than biomass prediction for species-rich, diverse grasslands.
Michez et al.'s (2020) results also suggest that the low species diversity in their experimental site
(timothy-dominated pastures) probably improved the biomass modeling process. Griner et al.
(2021) reported that the high variability of the canopy surface in legume—grass mixtures results in
lower prediction accuracy compared with more homogeneous arable crops. They achieved r2
values of 0.46 and up to 0.87 depending on the sward composition for mixed legume—grass swards
and pure legumes and grass stands. Villoslada et al. (2020) indicated similar trends in modeling
accuracies, where sites characterized by the presence of more productive communities or a higher
herbage yield show lower prediction accuracies than short-sward sites.

The distinct plant architectures in heterogeneous grasslands may have an impact on image
acquisition due to poor modeling of plant extremities, resulting in a larger variability than
monocultures and reflecting in lower r? values (DiMaggio et al., 2020). It has also previously been
demonstrated that the complexity of sward structures, vegetation height, and plant species richness
all influence the spectral properties of training samples (Villoslada et al., 2020). The high
heterogeneity in some grassland fields can also intensify the mixed pixel effect, an important
remote sensing issue that affects the ability to monitor phenology (Adar et al., 2022). This, in turn,
influences the overall prediction accuracy. In addition, the potential for generalization of some
studies is limited because they are based on approaches using site-specific data, which makes the
relationships obtained difficult to transfer to other areas. Thus, study site selection should take into
account local and regional variations, with the goal of incorporating a fair representation range of
vegetation into the data collection process.

2.3.3 UAV data collection, UAV data processing, and analysis methods

In general, studies used a similar workflow to estimate AGB in grasslands using UAV data, as
shown in Figure 2.3. Even though not all studies followed all of the steps, the standard process was
adopted by many of the publications considered in this review. Typically, workflows included the
following steps: (1) UAV imagery recording concurrent with ground control points (GCP) and
ground-based field data collection; (2) UAV data processing, including pre-processing, creation of
photogrammetric 3D point clouds and/or orthomosaics, georeferencing of point clouds and
orthomosaics, creation of canopy height models (CHM) using digital terrain models (DTM) and
digital surface models (DSM) derivate from a digital elevation model (DEM), derivation of
structural, textural, and/or multispectral, hyperspectral, or RGB spectral index; (3) generation of
predictive AGB models using UAV-derived variables as predictors and ground-based AGB and/or
CHM, and/or vegetation index. The overall goal of the next sections is to provide a comprehensive
workflow description for AGB estimation in grasslands using UAV, with a specific focus on the
main elements of the three steps: (1) field data collection, (2) image pre-processing, and (3) data
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Figure 2.3. The data processing workflow by which grassland AGB model estimations are
generated using Structure from Motion photogrammetry and LiDAR.

2.3.3.1 Field data collection

Data sampling as ground-based data collection and UAV flight is a critical step in AGB estimation.
Some elements must be taken into consideration for an accurate data collection to ensure a reliable
result. Table A2 (supplementary material) presents a summary of field data information collected
from the papers reviewed. Items recorded include location, type of field, type of grassland, number
of sites, UAV platform, sensors, flight altitude, image front and side overlap, number of GCPs,
ground sample distance (GSD), frequency of data collection, biomass ground truth, total number
of biomass samples, biomass sample size, and canopy height measurement.
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Ground-based data collection

Field measurements, such as biomass sampling and plant height measurements, are established
methods for biomass estimation in grassland monitoring (Bareth et al., 2015). The quantitative
collection of data in the field is essential to establish, train, and evaluate biomass estimation models
derived from UAV images. Additionally, in grassland ecosystems, the accuracy of canopy height
and AGB estimation can be improved by using ground-measured data for calibration (Zhang et al.,
2021). Grasslands typically have heterogeneous vegetation, and species contribution and yield vary
in the field throughout the growing season, being influenced by different factors such as cutting
intensity, soil management, and fertilization (DiMaggio et al., 2020). For reliable and precise
biomass estimations in areas with such complex vegetation variety and high dynamics, sampling
should be performed on a frequent temporal basis and with a large number of samples (Franceschini
et al., 2022). Morais et al. (2021) reviewed the use of machine learning to estimate AGB in
grasslands and concluded that the size of the field sampling is the most important factor to improve
estimation accuracy, and increasing the size of the datasets should be one of the main priorities to
improve the estimation models.

Regarding the frequency of the sampling, most parts of the studies performed only one field
sampling (n = 25). The study of Borra-Serrano et al. (2019) had the highest sampling frequency,
with 22 collections in one year. The average number of field samples was 90, and the range was
between 13 and 1403. According to Geipel et al. (2021) the capacity of a model to perform well
when applied to new scenarios improves with the size and variation of the calibration dataset, and
many researchers have too small datasets to produce generalizable models. Qin et al. (2021)
concluded that, despite taking into account the spatial heterogeneity of AGB in vegetation patches,
they are unable to validate the applicability of inversion results for each grassland type due to the
small sample size. Capolupo et al. (2015) also suggest that a larger and more representative training
model sample size would improve model accuracy in their study. The intrinsic complexity and
repeatability of field trial design, as well as the small sample size, were also constraints in the study
of Lin et al. (2021).

Compared to crops, the heterogeneous sward structure with high spatiotemporal variability in
grasslands has the potential to alter the spatial distribution of biomass depending on the growth
stage. As the results indicate, most studies use data from a minimal time span (e.g., a fraction of
the growing season), limiting the ability to predict biomass in these complex and dynamic
environments. When biomass prediction models are calibrated to the site, year, and even
phenological stage of dominant plants, they become more robust (Cunliffe, Brazier and Anderson,
2016). In addition, the frequent collection of data over the course of the growing season could
ensure that the dataset is diverse and that the models can be applied to various locations (Van Der
Merwe, Baldwin and Boyer, 2020). In this sense, Lussem, Schellberg and Bareth (2020)
recommended evaluating different swards under varying conditions and sites over multiple years.
Pranga et al. (2021) evaluated several growth periods, but the observation period was only one year
with three cutting treatments. They also suggested that future research should incorporate data from
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other seasons/years, as well as different locations/conditions.

Regarding the AGB data collection method, samples were collected manually in 22 studies,
mechanically in 20, and both methods in two studies. In seven studies, the method to collect
samples was not specified, and in two studies, biomass samples were not directly collected but
estimated by RPM calibration. There were two main procedures to sample AGB on the ground,
collecting from quadrants or harvesting the entire plot. The sizes of the quadrants used for sampling
varied between papers from 0.01 to 1 m?. The most frequently used sizes were 0.25 m? (16 papers)
and 1 m? (13 papers). The mechanical collection was the method used for all studies that sampling
the entire plot and the size of the sampling ranged from 1 to 19.5 m2,

Morais et al.’s (2021) review concluded that the data collection procedure had a minimal
impact on AGB estimation in grassland using machine learning methods. In their study, the average
r> was lowest for the papers that used manual cutting (0.65) compared to mechanical harvesting
(0.75). However, these findings are not statistically significant and are primarily a result of the
different number of observations. We found comparable results, with an average r? for manual
cutting of 0.68, which was lower than the r? observed for mechanical harvesting (0.82). These
results can also indicate that the number of observations can have a greater impact on the accuracy
of AGB estimation than the collection procedure. In fact, similar to Morais et al.’s (2021) results,
we found that studies that employed manual cutting had both the lowest and greatest r? values (0.25
and 0.98). It should be noted, however, that the study with the lowest r? used 96 samples (Zhao et
al., 2022), whereas the study with the highest r? used 520 samples (Villoslada Pecifia et al., 2021).

The plant cutting height is possibly a significant factor to take into account when collecting
AGB samples in the field since it is challenging to cut vegetation right at ground level. Grassland
biomass is distributed vertically in a pyramidal pattern, with increased biomass density closer to
the ground (Tackenberg, 2007). In an Irish meadow, 40-60% of total biomass was distributed 0—
10 cm aboveground, 30% was 20-30 cm aboveground, and less than 20% was more than 30 cm
aboveground (Beltman et al., 2003). Only 17 of the studies included in this review reported the
cutting height, which ranged from 2 to 10 cm above the ground. However, just two studies
mentioned a height correction in the terrain model to compensate for the cutting height. In order to
reduce the impacts of any residual stubble, Borra-Serrano et al. (2019) used a correction factor of
5 cm to their baseline DTM. Karunaratne et al. (2020) applied a constant offset of 7 cm to baseline
DSM to compensate for the mowing height and pasture accumulation prior to the first measurement
period. In this way, considering the distribution pattern of biomass in grasslands, we recommend
that future models account for this factor to try to reduce discrepancies in reported results.

As for canopy height measurements, 29 studies did not mention the use of these data for
biomass estimation. At least three studies mentioned the use of canopy height data in the field for
biomass estimation but did not specify the data collection method. Of the 22 studies that used
canopy height for biomass estimation, 11 used a ruler, tape, or height stick. In eight studies, the
RPM was used to measure compressed canopy height. In three studies, field equipment such as a
ground-based platform (PhenoRover) (Gebremedhin et al., 2020), Lidar Laser Scan (Michez et al.,
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2019), and the Rapid Pasture Meter (machine) (Insua, Utsumi and Basso, 2019) was used.

Most studies using SfM (Structure from Motion) to derive canopy height models for grassland
have obtained reference measurements in the field with a height stick or a ruler and RPM since this
equipment is more accessible and easier to use than mechanical equipment. However, because
grassland plants differ significantly in canopy height, single or multiple tiller height measurements
using manual methods would inevitably result in uncertainty about canopy height (Li et al., 2020).
Batistoti et al. (2019) reported a high correlation between height measured with a ruler and a UAV
with a multispectral sensor (r> = 0.89).The canopy heights estimated from UAV imagery and those
measured using the ruler varied by about 8 cm. When comparing canopy surface models from UAV
with manual reference measurements from height sticks, Griner, Astor and Wachendorf (2019)
achieved r? values of 0.56 to 0.70 depending on the sward structure, species composition, and
growing stage, while Viljanen et al. (2018) report r? values of 0.61 to 0.93. Zhang et al. (2021) also
found that even though LiDAR-derived canopy height was lower than the ground-measured data,
it showed a strong correlation with the height measured with a ruler (r? = 0.92). Wang et al. (2017)
reported that when compared to ground data measured with a ruler, LiDAR consistently
overestimated the canopy height.

Because it effectively analyzes both canopy height and density, RPM is one of the most
frequently used techniques for physical measurements of grassland sward height and the
assessment of standing biomass (Vogel et al., 2019). Bareth et al. (2015) report r? of 0.89 between
RPM measurements and UAV-derived sward height. According to Lussem et al. (2019), the
performance of low-cost UAV-derived DSMs for estimating forage mass varies (r?> = 0.57-0.73)
depending on the harvest cut, but RPM measurements outperform the UAV model. However,
canopy density, architecture, and plant developmental stage limit the accuracy of linear connections
between RPM-based measurements and biomass. The results of some studies suggest that the
agreement between the RPM and the UAV-borne equipment for measuring canopy height varied
depending on canopy height and that the agreement was negatively impacted by low and high
canopy heights in general (Bendig et al., 2015; Viljanen et al., 2018; Borra-Serrano et al., 2019).
RPM measurements demonstrated lower accuracy in sparse swards or tall, non-uniform canopies
but better accuracy in dense swards and when the canopy has reached a height of 20-30 cm
(Viljanen et al., 2018). This inconsistency could be caused by the compression of the pasture
induced by the RPM and canopy closure at high canopy heights. In the case of low canopy heights,
this inconsistency may be caused by the ground being visible in the images, which reduces the
digital surface model as a result of the photogrammetry software’s point cloud interpolation.
Considering this, RPM seems more suitable for measuring low grasses in their early phases of
development.

Despite the significance of ground truth data for AGB model estimations, it is critical to
remember that the available methodologies for measuring AGB and canopy height ground-based
can also be subjective (Poley and McDermid, 2020). In addition, usually, ground truth data are
either measured at a few locations in the field or at a single point on a plot and therefore do not

23



CHAPTER II

necessarily provide a complete representation of the region of interest. In this way, in order to
improve the validity of the ground-measured biomass data, it is important to take into account the
limitations of the method and the biases of over- or under-estimate canopy height and AGB.

UAYV platforms

Multirotor platforms were the most commonly used UAV systems in the reviewed studies
(87.66%), among which the quadcopter was the most widely deployed (58.46%) (Figure 2.4). In a
review of studies on the use of UAVs and machine learning for agro-environment monitoring,
Eskandari et al. (2020) reported that fixed-wing models were the most used between 2015 and
2018. However, from 2018 to 2019, there was an increase in the use of quadcopter and hexacopter
models, and these became the most used. Multirotor UAVs have increased in popularity since they
are extremely versatile, with the ability to hover, rotate, and take images from nearly any angle.
However, multirotor UAVs also present some disadvantages. Due to their vertical takeoff and
landing and ability to hover, multirotor platforms demand more energy to fly, resulting in reduced
sustainability and shorter flight periods (Poley and McDermid, 2020). If the survey height is low,
backwash from the rotors may affect the vegetation being monitored by producing plant
movements (Willkomm, Bolten and Bareth, 2016). Multirotors are sometimes associated with
inadequate Global Positioning System (GPS) receivers, which can lead to decreased position
accuracy, particularly in hilly places where GPS coverage is limited (Eskandari et al., 2020). When
compared with fixed-wings, the most significant disadvantage of rotor UAVs is their short range
and flight time (Wang et al., 2021). Fixed-wing aircraft tend to have a faster top speed, a longer
flying time, and a greater range than rotorcraft. Fixed-wing systems are useful for collecting data
across broad areas for these reasons. Nonetheless, fixed-wing aircraft have less mobility and
require more landing space.
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Figure 2.4. UAV platform types utilized per article.

According the review study of Poley and McDermid (2020), there is no consistent difference
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in the accuracy of the biomass estimate model between studies using fixed-wing and multirotor
platforms, and the selection of UAV platform depends on the research objective. A fixed-wing
could be suitable if the study area is extensive, as in natural grasslands or larger grassland fields.
A multirotor would be preferable for smaller and more challenging places, such as small grasslands
and heterogeneous fields, where detailed vegetation imagery from a more stable platform is
required.

Flight parameters

Multiple interconnected elements during the UAV flight influence the quality of UAV-based
outputs and, consequently, the AGB estimation. Because the precision of the output terrain data is
determined by the accuracy of estimating tie points—and as a result, the reconstructed surface
geometry—flight altitude is an important parameter. Reduced flight height results in smaller
coverage areas, an increase in the number of flight missions required for a specific study site, and
potentially increased variability in environmental conditions (e.g., cloudiness, sun angle), which
complicates radiometric adjustment and decreases spectral accuracy. On the other hand, increasing
altitude shortens flight time and allows one to cover larger areas, which can be important for
maintaining relatively constant environmental conditions during the flight mission (Tmusi¢ et al.,
2020). Higher altitude flights produce sparser point spacing, resulting in a less detailed DSM. For
low-altitude flights, the result is a more irregularly shaped DSM, and these effects must be
considered (Colomina and Molina, 2014).

The 64 studies reviewed here deployed UAV flights at altitudes ranging from 2 to 120 m. The
two flights with the lowest altitudes of 2 m were carried out in two studies by Zhang et al. (2018,
2022) that evaluated the use of high-resolution images in generating quadratic models. The highest
altitude flight (120 m) was carried out by Wang et al. (2017) in a study testing if the relationship
between tallgrass AGB measurements and spectral data is constant at different image spatial
resolutions associated with different flight altitudes. The modal value for UAV altitude was 50 m
(23% of studies), followed by 30 m (16%), 20 m (14%), 120 m (10%), 40 m (8%), less than 10 m
(8%), 100 m (6%), 25 m (3%), 70 m (3%), 35 m (2%), 80 m (2%), 140 m (2%), 75 m (1%), 110 m
(1%), 115 m (1%), and 120 m (1%).

Considering that plants and particularly grass leaves can be as thin as 2 cm, a higher spatial
resolution may improve texture resolution and, as a result, biomass prediction accuracy. In the
studies addressed in this review, most of the flights were performed at altitudes considered low
(less than 100 m), with the most commonly used altitude being 50 m. Wang et al. (2014) reported
that surveying at 5 m above the canopy was more accurate than surveying at 20 or 50 m above the
canopy in atallgrass prairie ecosystem Griiner, Wachendorf and Astor’s (2020) study with different
flight heights of 50 and 20 m resulted in an image resolution of 2—4 c¢cm, which then had to be
resampled to 4.5 cm. These authors recommend that different ground resolutions should be avoided
in future studies to keep unified conditions for data analysis. Viljanen et al. (2018) employed 30
and 50 m flight heights to estimate AGB in a mixed grassland field. The results for the 30 m flights
produced lower reprojection errors (0.53-0.58) than the 50 m flights (0.783—1.25). The flights from
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a 30 m flying height also provided slightly better 3D RMSE (2.7-2.9 cm) than the 50 m flying
height (2.8-5.0 cm). Nési et al. (2018) estimated grassland AGB using two flying heights of 50
and 140 m. Their study suggested that although employing datasets from 140 m produced
promising results, adopting lower-height data can enhance AGB estimations.

The results obtained by DiMaggio et al. (2020) indicate that flying at 50 m height can increase
the area that is covered without considerably losing AGB estimation accuracy. The authors also
recommended testing different altitudes to understand the relationship between pixel resolution
and field data for AGB estimation. Karunaratne et al. (2020) also evaluated the influence of
different flight heights in their grassland AGB estimation models. The results indicate that the
model generated at 25 m outperformed the other flying altitude models. However, the authors
pointed out that, practically speaking, acquiring UAV data at a 100 m altitude provides a lot of
benefits for farm-scale applications: (a) more coverage of the land extent, (b) faster UAV data
acquisition, and (c) smaller file sizes that allow for faster pre- and post-processing of collected
datasets.

In this way, to establish best practice guidelines for using UAVs for on-farm applications and
to adapt to changing technological advancements, it is also necessary to better understand the
impacts of flying at various altitudes on the prediction quality of grassland AGB models. We also
recommend that considering the specifications of the employed sensor, researchers should establish
what GSD is necessary for identifying features of interest to AGB estimation. Then, in order to
balance the necessary spatial resolution, tolerable error, and point cloud density with the most
effective coverage of the study region, fly at the highest altitude where this GSD is possible (Poley
and McDermid, 2020).

The sequence in which the UAV flies also has an impact on data quality. The determination
of forward and side image overlap is an important part of mission planning, especially for SfM
photogrammetric reconstructions, which require features observed in multiple photos for building
digital models, orthomosaics, and 3D models. The percentage of image overlap can affect the
quality of the final SfM product, with more overlap leading to more precise final models. High
overlap, on the other hand, necessitates the acquisition of more photos, increasing data volumes
and computing time (Tmusi¢ et al., 2020). There are optimal overlap thresholds for specific
vegetation types based on the surveyed area’s specific characteristics and type of study. Agriculture
fields and grasslands, which have low feature diversity and a relatively flat topography, demand a
higher percentage of overlaps in order to extract tie points for the SfM algorithm (Eskandari et al.,
2020). Many studies examined in this review have employed considerable front and side overlap
(median of about 80-70%). In the majority of the studies, a forward overlap of 80% and a side
overlap of 60-75% resulted in high-quality orthoimages. The data are in agreement with the study
by Eskandari et al. (2020), which points out that the median for forward and side overlap is 80%
and 70%, respectively, for UAV flights carried out in grasslands. Viljanen et al.’s (2018) results
also confirmed the main conception that the large image forward and side overlaps of
approximately 80%, combined with self-calibration during photogrammetric processing, can
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provide a non-deformed photogrammetric block.
Sensor technology

UAVs’ ability to fly considerably closer to the ground than satellites or full-scale manned aircraft
expands the range of sensors available and the spectral imaging. The spectral data obtained by an
UAYV can be simple RGB (red—green—blue) from an off-the-shelf camera or more specialized when
employing multispectral, thermal, or even hyperspectral cameras. Among the studies reviewed
here, visible sensors (RGB) are the most commonly employed sensor technology (48% of studies),
followed by multispectral (29%), hyperspectral (16%), and LiDAR (Light Detection and Ranging)
(7%) (Figure 2.5a). In terms of resolution, the sensors used in sensing can be classified as high
resolution (between 0 and 10 cm), medium resolution (10 to 20 cm), and low resolution (more than
20 cm) (Eskandari et al., 2020). The most commonly used data sources across the research are of
high spatial resolution ranging from 0 to 10 cm (Figure 2.5b). Most studies (>80%) used data at
high spatial resolution (0 to 10 cm), with visible and multispectral images being the preferred image
types. Very few (<4%) studies used image data at low spatial resolution (>20 cm).
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Figure 2.5. (a) Number of studies per sensor technology. (b) Image spatial resolution vs. sensor
type.

The increasing number of UAVs equipped with RGB commercial cameras has facilitated
research using these low-cost sensors for grassland monitoring (Bareth and Schellberg, 2018;
Lussem, Schellberg and Bareth, 2020). Compared to multispectral, hyperspectral, or thermal
sensors, RGB sensors have a lower spectral resolution but a higher spatial resolution, and it is
possible to calculate vegetation indices and estimate plant height from the same set of photographs.
RGB sensors are also a more economical option, which is a significant benefit, especially for farm-
scale applications.

Near-infrared (NIR) multi- and hyperspectral sensors have become more commonly accessible
for UAVs over the past decade (Manfreda et al., 2018). Initially, researchers used modified off-
the-shelf RGB and near-infrared (NIR) cameras, as in the studies of F. Zhao et al. (2014), Lee et
al. (2015), and Fan et al. (2018). These modified off-the-shelf RGB cameras were then replaced
by specialized multispectral or hyperspectral cameras, which have decreased in cost and weight.
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Multispectral cameras, along with RGB cameras, are among the most commonly used sensors in
the studies examined (30%). Multispectral sensors (e.g., MicaSense RedEdge 3 camera, Micasense,
WA, USA) provide more spectral bands (e.g., red edge: 760 nm; near-infrared (NIR): 810 nm).
The advantages of obtaining more spectral information for vegetation applications at an extremely
high resolution collaborated for the increase in the use of multispectral sensors. The availability of
a downwelling light sensor and radiometric calibration target are also key advantages of
multispectral images. This allows the images to be radiometrically calibrated for repeatable and
exact measurements less affected by environmental factors (Pranga et al., 2021). Hyperspectral
sensors also measure reflectance in a wide range of spectral wavelengths. Such data are frequently
processed into 3D point clouds utilizing Structure from Motion (SfM) procedures to offer
information about the structure, texture, and variability of grassland areas (Poley and McDermid,
2020). This integration offers a lot of potential for accurate AGB estimation in grasslands.
Especially when specific or many wavelengths are desired, multispectral and hyperspectral sensors
can be used to obtain precise estimates of AGB. However, hyperspectral and multispectral sensors
are still significantly more expensive than digital RGB cameras, which may be a drawback in farm-
scale applications.

Even with the limitation on the spectral resolution range, the indices generated by RGB sensors
can be cost-effective and have been applied in grassland for biomass estimation with acceptable or
high levels of accuracy (Nasi et al., 2018; Lussem et al., 2019; Lussem, Schellberg and Bareth,
2020). When evaluating several sensor types for detecting biophysical properties of vegetation,
multiple studies discovered that RGB data from low-cost digital cameras produced AGB
estimations comparable to or better than data from more expensive multispectral or hyperspectral
sensors (Nasi et al., 2018; Griner, Astor and Wachendorf, 2019, 2021; Lussem et al., 2019). Few
studies compared results from different sensors among the articles investigated for this review.
However, in the studies that compared sensors, in most cases, there was no significant difference
in accuracy in AGB estimation between RGB and other sensors. Lussem et al. (2019) confirmed
the potential of RGB techniques in AGB grassland modeling, achieving equivalent performance
(r2 = 0.7) using RGB or multispectral VIs. Nasi et al. (2018) also stated that RGB can produce
good results for AGB grassland modeling, even though it is inferior to the results of hyperspectral
sensors. Compared with multispectral or hyperspectral imaging, the higher spatial resolution of
RGB imagery could probably influence its ability to predict vegetation biomass more accurately
(Griiner, Astor and Wachendorf, 2019, 2021).

The spectral resolution of UAV visible sensors is anticipated to continue to increase. Given
the affordable prices, this platform will continue to be heavily utilized in AGB estimates in
grasslands. However, because the passive optical sensors mostly collect data from the top of the
vegetation, there is little information available regarding the vertical structure of the vegetation,
which limits the biomass estimate’s accuracy. Another issue with optical imagery techniques is the
possibility of natural light saturation when detecting high-density biomass plants.

Compared to optical sensors, LIDAR is an active remote sensing technology that can capture

28



CHAPTER II

the vertical structure and height of vegetation as well as the three-dimensional coordinates of the
target (Figure 2.6) (Wang et al., 2021). LiDAR sensor is also unaffected by lighting conditions. In
grassland ecosystems, UAV LIiDAR has recently been employed to estimate canopy height and
AGB. The study of Wang et al. (2017) demonstrated that the LIiDAR sensor has high potential for
providing highly accurate grassland vegetation measurements, such as canopy height and fractional
cover, which can then be used to estimate AGB on a large scale. The authors, however, pointed out
that LIiDAR alone would underestimate grassland canopy height and that field data calibration is
required to achieve centimeter-level accuracy. Li et al. (2020) concluded that incorporating LIDAR
data considerably improved the performance of the spectral index in modeling and estimating AGB
in grasslands in a non-destructive manner. Zhang et al.’s (2021) results demonstrate that grassland
AGB can be estimated using UAV LiDAR data under various grazing intensities.

The study by Zhao et al. (2022) indicates that, despite the tremendous potential for grassland
AGB estimation, UAV LiDAR’s sensor has a propensity to miss canopy data at canopy tops in
grassland ecosystems. The canopy information loss can occur because UAV LiDAR collects data
using a top-to-bottom view, and laser pulses may not completely penetrate the vegetation canopy.
The challenge for UAV laser pulses to penetrate the canopy is further increased by the density of
grassland vegetation, which may be, in some cases, much higher than in a forest (Xu et al., 2020).
According to Zhang et al. (2021), the propensity of LiIDAR sensors to not completely penetrate the
high-density grassland canopy and the difficulty in receiving returns from the ground led to an
underestimation of most canopy heights and the majority of fractional covers in the LiDAR data.
As these attributes are used for AGB estimation, an underestimation in the data can lead to
limitations in AGB estimation from LiDAR data.

UAV-Spectral

UAV-LiDAR

Figure 2.6. A schematic illustration of the difference between LIDAR and spectral data capture
(adapted from Wang et al., 2021).

Despite these limitations, LIDAR has been shown to outperform image-based techniques in
terms of ground point capture and physical biomass parameter estimation (Madec et al., 2017),
making it a promising technology for AGB estimation in grasslands. Nevertheless, in practice, the
fact that commercial LiDAR sensors adapted for UAVs are still substantially more expensive than
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spectral sensors emphasizes the need to carefully evaluate the most cost-effective sensor for each
specific aim.

2.3.3.2 Image pre-processing

The data collected by the UAV cannot be utilized directly to estimate biomass. In this way, a
preprocessing step is usually included to guarantee that the data are suitable for further processing.
Images taken from a UAV flight can be converted into 3D data using SfM-based software. Then,
several objects can be classified from 3D data. Different companies have offered software solutions
for processing photographs captured by UAVSs, including functionalities for generating 3D spatial
data for use in GIS (Geographic Information Systems) platforms, digital terrain and elevation
models, generation of georeferenced orthophotos, and area and volume measurements. The
different SfM software packages use different algorithms and processing options, which can affect
the final outputs (Smith, Carrivick and Quincey, 2015). Of the 51 papers that mentioned the use of
processing software, 52% (28 papers) used Agisoft Metashape (Agisoft LLC, St. Petersburg,
Russia) to process UAV imagery data, followed by Pix4Dmapper (Pix4D, S.A., Lausanne,
Switzerland) with 32% (17 papers). Furthermore, five papers employed other software, such as
QGIS, ArcMap, and TerraScan.

None of the papers assessed in this review compared image preprocessing software, but
previous studies have used Agisoft Metashape and Pix4Dmapper programs and evaluated the
performance of both types of software. Kitagawa et al. (2018) captured characteristics from two
experiments and compared them. Agisoft Metashape exhibited a clearer image but poor
displacement extraction, whereas Pix4Dmapper had a z-value fluctuation but excellent
displacement extraction. Isacsson (2018) also examined the orthomosaic accuracies created from
the same survey using Pix4Dmapper and Agisoft Metashape and also found that using Agisoft
Metashape results in larger x and y position errors, whereas using Pix4Dmapper results in higher
z error. Fraser and Congalton (2018) compared the Agisoft Metashape and Pix4Dmapper software
packages over a forested area of 235.2 ha. They concluded that Agisoft Metashape produced more
detailed UAS-SfM outputs.

GCPs are high-visibility materials that are georeferenced using the Global Positioning System
(GPS) after they are placed in a visible site to provide a point of reference for determining the
position of the UAV in the area being photographed. By identifying GCPs with known coordinates
visible in the imagery, a transformation that describes the relationship between the point cloud
coordinate system and a real-world coordinate system can be used to georeference the point cloud
that results from the reconstruction of SfM data (Dandois and Ellis, 2013). Among the papers
evaluated in this review, at least 62% (N = 33) mentioned the use of GCPs for the geometric
correction of UAV images.

Reliable ground reference data are necessary for successful georeferencing (Eskandari et al.,
2020). Hence, the quantity and location of GCPs at the study site are crucial (Poley and McDermid,
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2020). The geometric accuracy of surface and terrain models created from UAV imagery is likely
to improve with more GCPs (Borra-Serrano et al., 2019; Wijesingha et al., 2019). In the study of
Wijesingha et al. (2019), the small number of GCP was pointed out as a possible reason for the
limitations of the DSM generated from the UAV data. The authors used only four GCP, which is
the minimum for proper geo-referencing. They concluded that increasing the number of GCPs
could increase the precision of SfM data and improve the model performance. It is also critical to
place GCPs correctly (Poley and McDermid, 2020). The use of ground control points only around
the edges of the study area rather than within plots can reduce the accuracy of surface and terrain
models, so more GCPs should be placed throughout the entire area of interest (Roth and Streit,
2018). Borra-Serrano et al. (2019) reported that as grasses grew taller, GCP targets became more
challenging to detect in imagery due to elongated plants. They recommended opening the area
around the targets to guarantee they can be seen in all images throughout the growing season.

After the geometric correction step, the georeferenced sparse cloud is converted into a dense
point cloud. The software computed the depth information by the image alignment for all points of
the images. In the last step of pre-processing, the dense point cloud can be exported in the form of
a DEM. DEMs are used to build a CHM of the grassland field (Figure 2.7). For this purpose, two
types of DEMs are usually built: (1) DTM, corresponding to the ground, and (2) DSM derived from
the imagery collected with the presence of canopy on the terrain.

CHM =DSM - DTM

Figure 2.7. Graphical illustration of relation between digital surface model (DSM), digital terrain
model (DTM), and canopy height model (CHM).

There are two main methods for extracting CHM information from UAV data. One method is
to generate both DSM and DTM in raster format. This method considers the difference between
DSM and DTM as the CHM Viljanen et al. (2018). This method is relatively simple, and since the
analysis is carried out using raster analysis, the calculation is quick. However, applying interpolated
DSMs and DTMs may lead to unwanted data smoothing. In the context of heterogeneous pasture
growth, the use of such datasets could lead to the loss of information regarding the variability of
CHM (Karunaratne et al., 2020). The second method uses the raw SfM point cloud dataset instead
of an interpolated DSM raster. To determine CHM for every single point in the point cloud, the
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difference between the interpolated DTM raster of the study region is used (Wijesingha et al.,
2019). Viljanen et al. (2018) evaluated both methods and concluded that both provided similar
DTMs and correlations to the AGB in grasslands.

A high-quality DTM with precise and accurate terrain representation is critical for extracting
reliable estimates of vegetation structure from UAV imagery and therefore produce a reliable AGB
estimation (Poley and McDermid, 2020). In areas with a dense vegetation canopy, such as some
grassland fields, producing high-quality DTMs can be challenging (Schucknecht et al., 2022).
Zhang et al. (2018) pointed out that the density of grassland influenced the quality of DTM
generated by an RGB sensor. An accurate DTM could not be produced because there were not
enough ground points if the vegetation density was too high, but it was simple to extract ground
points if it was moderate. In an ideal scenario, a reference DTM would be created beforehand when
there is no vegetation, but this is not feasible, for example, in natural grasslands (Théau et al.,
2021). When a DTM is unavailable to represent the bare ground, point cloud classification is a
frequently used technique to discriminate ground points (DTMs) and canopy height points (CHMSs)
from the same set of images (Nasi et al., 2018). Batistoti et al. (2019) also found a solution by
manually collecting GPS points to create the DTM, but this method is too time-consuming for large
grassland fields. Alternatively, hybrid approaches combining SfM-derived DSMs with DTMs
derived from LIiDAR sensors have been explored (Michez et al., 2020). Even so, special attention
should be paid to potential errors in the LIDAR DTM, which is primarily based on ground point
density and terrain variability. It is also important to notice that although producing input data such
as DTM is arelatively simple task with LIDAR, the costs to obtain such products are high compared
to RGB-only imagery (Castro et al., 2020).

2.3.3.3 Data analyses

The ability of UAV image-derived models to accurately predict AGB is influenced by a variety of
parameters connected to analysis methodologies. Table A3 (supplementary material) summarizes
the data analysis methods and essential results of the 64 papers considered in this review.

Most studies used statistical regression methods such as linear regression (LR), polynomial
regression (PR), stepwise linear regression (SWL), multiple linear regression (MLR), and partial
least squares regression (PLSR). LR was the most commonly used method (n = 25). PLSR was
used in 13 studies and MLR in 9 studies. Viljanen et al. (2018) obtained the highest r? value (r* =
0.98) with MLR in a mixed grass experimental site using an RGB and HS sensor. The lowest r?
value (r? = 0.25) was obtained by Zhao et al. (Zhao et al., 2022) with SWL to estimate AGB in a
mixed natural grassland field using a LIDAR sensor. Among the machine learning methods,
random forest (RF) was the most popular and was employed by 16 studies. The highest median r?
among all the papers assessed was obtained by Villoslada Pecifia et al. (2021) with RF and MLR
(0.981), followed by Oliveira et al. (2020) also using RF and MLR (0.97). RF has demonstrated
competitive accuracy in biomass estimation when compared to other estimation methods used in
agricultural applications (Nasi et al., 2018). Morais et al. (2021) reviewed the use of machine

32



CHAPTER II

learning to estimate biomass in grasslands. RF was also the method with the most applications,
followed by PLSR.

The results of the different studies are highly variable and difficult to compare since they
substantially depend on the type of grassland being monitored, the sensor (RGB, multispectral,
hyperspectral, LIDAR), the usage of ground data, and 3D data. In the case of Zhao et al. (2022) for
instance, the lower result can be explained by the loss of canopy information in UAV LiDAR,
which is an important factor influencing the estimation accuracy of AGB. Wang et al. (2017) found
comparable results (r? = 0.34) using a linear regression model and UAV LiDAR to estimate AGB
in an experimental grassland site. On the other hand, da Costa et al. (2021) estimated AGB in a
natural grassland using UAV LiDAR and simple linear regression but obtained a higher r? value
(r*=0.78).

Evaluating the result from different papers that use machine learning to estimate AGB in
grasslands, Morais et al. (2021) inferred that MLR has the greatest median r? (0.76), followed by
PLSR (0.75) and RF (0.69). We found similar results evaluating the papers that informed the r?
value for AGB estimation. Among the methods with more applications used in the papers evaluated
in this review, RF has the greatest median r? (0.798). However, it differed slightly from the other
methods, being followed by MLR (0.785), LR (0.78), and PLSR (0.776). Considering the small
difference among the statistical methods, we agree with Morais et al. (2021) that the accuracy of
the analyses depends more on the quantity and quality of the data from field samples than on the
type of statistical regression.

Among the papers assessed, at least 11 evaluated different regression methods for AGB
prediction models using the same dataset. LR, MLR, and PLSR were commonly evaluated with
other methods, probably because they are common regression techniques for predicting plant traits.
Askari et al. (2019) evaluated two regression techniques, PLSR and MLR, to estimate AGB using
a multispectral sensor in a mixed grassland. The authors concluded that both PLSR and MLR
techniques produced accurate models for AGB using only spectral data (r?> = 0.77 and 0.76,
respectively). The results from both techniques were considered robust enough to be employed,
although the PLSR produced better model outputs. Comparing statistical methods for analyzing
hyperspectral data from a grassland trial, Capolupo et al. (2015) also found that PLSR was more
effective at predicting AGB using specific vegetation indices. Lussem et al. (2022) evaluated PLSR
with other analysis methods, RF and support vector machine regression (SVR), with and without
a combination of both structural (sward height; SH) and spectral (vegetation indices and single
bands) features. In their study, however, the PLSR models were outperformed by the RF and SVR
models. PLSR also was outperformed by other analysis methods (SVR, RF, and cubist regression
(CBR)) in the study of Wengert et al. (2022) using spectral data from a hyperspectral sensor.

Borra-Serrano et al. (2019) also evaluated PLSR with different regression models and one
machine learning method (MLR, PCR, and RF) to estimate AGB using an RGB sensor in a
monoculture grassland trial. Using spectral and structural data, MLR outperformed both the
machine learning approach and other regression techniques in terms of AGB estimation. Geipel et
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al. (2021) evaluated two regression methods, powered partial least squares regression (PPLSR) and
LR, to estimate AGB using a hyperspectral sensor in a mixed grassland in an experimental site.
Their results showed that PPLSR modeling approach fitted with reflectance data produced models
with high AGB prediction accuracy (r? = 0.91). On the other hand, LR models using spectral indices
and canopy height as predictor variables did not achieve satisfactory prediction accuracies.

Inputs

The selection of parameter(s) acquired from UAV data is probably the main element impacting the
accuracy and prediction of AGB estimation in grasslands (Poley and McDermid, 2020). Spectral
and structural (e.g., height) characteristics of grasslands are the most frequent inputs for predicting
AGB using UAV data. Among the papers reviewed, 18 informed the use of only structural data as
input, and 18 used only spectral data. Other 15 papers used both, while 11 papers used spectral and
structural data combined with another data type. The study of Cunliffe, Brazier and Anderson,
(2016) using canopy height and canopy volume as inputs had the highest r? (0.95) value among
those that employed only structural data to estimate AGB. Among the studies that only used
spectral data, Villoslada Pecifia et al. (2021) had the highest value for r? (0.98). For those studies
that used both structural and spectral inputs, Oliveira et al. (2020) obtained the best results (r?> =
0.97) by evaluating different spectral indices and bands from a multispectral sensor, as well as eight
canopy metrics from an RGB sensor. The mean r? value was 0.74 for studies that used only
structural data, 0.77 for papers that only used spectral data, and 0.81 for papers that combined both
structural and spectral data.

All studies that only employed structural measures used RGB and LIiDAR data to generate
metrics that represented the structure of the vegetation, and the most commonly used structural
variable was canopy height. Some studies also used data such as vegetation volume, vegetation
cover, and density volume factor. For vegetation with sparser or more varied canopies, such as
grasslands, variables that reflect this heterogeneity, such as coefficient of variation, standard
deviation, or percentiles of height, can be significant (Poley and McDermid, 2020). Zhang et al.
(2018) observed a significant correlation between AGB in a natural grassland and logarithmic
regression using mean height derived from a UAV-RGB sensor (r? = 0.80). Wijesingha et al. (2019)
evaluated different canopy height metrics derived from a UAV-RGB sensor to estimate AGB in a
mixed grassland farm. The results showed that among the canopy height metrics, the 75th
percentile achieved the strongest explanatory power (r? = 0.63). da Costa et al. (2021) assessed
different structural metrics derived from LiDAR data to estimate AGB from a natural grassland in
the Brazilian savanna. The most accurate method employed metrics that represent canopy height
(H98TH = height 98th percentile) and coverage (COV = cover percentage of first return above 1.30
m). For the estimation of AGB in a mixed natural grassland, Barnetson, Phinn and Scarth (2020)
selected the maximum canopy height derived from a UAV-RGB sensor to closely approximate the
settling height of the RPM measure.

The majority of studies that employed only spectral data used multispectral sensors (n = 9),
followed by hyperspectral sensors (n = 3), RGB sensors (n = 3), and a fusion of different sensors
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(n = 3). These spectral datasets can be used as narrow bands or processed to derive a vegetation
index (VI). Vs (ratios or linear combinations of bands) have been widely used in remote sensing
research for vegetation identification, as they emphasize the differences in reflectance of the
vegetation. The use of vegetation indices to characterize and quantify biophysical parameters of
agricultural crops has two major advantages: (a) reducing the dimension of multispectral
information through a simple number while minimizing the impact of lighting and target
conditions, and (b) providing a number highly correlated to agronomic parameters. Several studies
have found strong relationships between biomass measurements and RS-derived VIs (Capolupo et
al., 2015; Askari et al., 2019; Jenal et al., 2020; Villoslada Pecifia et al., 2021). Based on this
relationship, a simple statistical methodology can be constructed to estimate plant biomass with
the most suitable VI and optimal regression results.

Table A4 (supplementary material) shows all 78 vegetation index formulations cited in at least
one study for AGB estimation in grassland. Among the articles examined in this review, at least 38
used vegetation indices for biomass estimation analysis. Of the top five, the Normalized Difference
Vegetation Index (NDVI) was the index used in most studies (N = 27), followed by Normalized
Difference Red Edge (NDRE) (N = 16), the Green Normalized Difference Vegetation Index
(GNDVI) (N = 14), the Green Chlorophyll Index (GCI) (N = 10), and the Modified Chlorophyll
Absorption in Reflectance Index (MCARI) (N =9).

The results show a wide variety of indices, some of which might be more specific to certain
indicators (e.g., Grassland Index, Plant Senescence Reflectance Index). However, most indices
were used only once, and a few studies have compared the efficiency of multiple indices. The
overall prevalence of NDVI was expected since this index is widely employed in various study
scales to represent green vegetation abundance and net primary productivity in grasslands.
Although it was the most used index and showed a good correlation for biomass estimation in a
few studies (Insua, Utsumi and Basso, 2019; Gebremedhin et al., 2020), NDVI also has some
limitations. NDVI presents sensitivity to the effects of soil brightness, soil color, atmosphere, and
leaf canopy shadow and shows saturation in high-density vegetation. In fact, in some studies, NDVI
did not perform better than preceding modeling strategies (K. Y. Li et al., 2021; Pranga et al., 2021;
Theau et al., 2021). The study of Geipel and Korsaeth (2017) showed that NDVI-based models
appeared to be saturated at the first harvest dates and did not achieve an acceptable prediction level.
This conclusion is similar to that of Karunaratne et al. (2020) and Togeiro de Alckmin et al. (2021),
who suggested that predicting dry biomass only based on NDVI (as in previous studies) is
ineffective. This is probably related to the saturation effect that occurs when the plant achieves
higher levels of leaf area index. Indeed, Pranga et al. (2021) reported that with leaf area index
(LAI) values larger than 3, NDVI exhibited a lower biomass estimation capability. EVI and
GNDVI, on the other hand, saturate less at increasing LAI values and have been identified as
significant predictive variables. In at least two studies comparing different vegetation indices to
estimate biomass in grasslands, GNDVI performed better than NDVI (K. Y. Li et al., 2021; Théau
etal., 2021).
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Furthermore, it is important to consider a diverse set of vegetation indices in order to avoid the
issues that come with less sensitive indices such as NDVI. When assessing various vegetation
indexes, it is also critical to consider saturation, sensitivity, plant growth phases, canopy structure,
and environmental impact (Jenal et al., 2020).

Recently, several methods investigated the integration of different data by combining spectral
and non-spectral data, and they found an improvement in the assessment of AGB in grasslands.
According to the study of Lussem et al. (2022), the combination of structural and spectral features
can improve the estimation accuracy for AGB in grasslands. Viljanen et al. (2018) reported that
using MLR and RF to combine structural and spectral information resulted in a small improvement
in AGB estimation. For the AGB estimation of perennial ryegrass in the study by Pranga et al.
(2021), the combination of spectral and structural characteristics from a multispectral camera
utilizing random forest produced the best results. When combining vegetative indices and 3D
features at various flight altitudes, Karunaratne et al. (2020) observed a consistent improvement of
AGB estimation.

The structural features, such as canopy height, were more significant for the AGB prediction
models than the spectral features when both were combined (Lussem et al., 2022). Michez et al.
(2019) obtained an RMSE of 0.09 kg m? by combining Vs and canopy height and concluded that
the canopy height had the highest significance in the multilinear regression model. Griner,
Wachendorf and Astor (2020) developed AGB estimation by comparing RF and PLS models of
spectral features with and without texture. They concluded that adding texture features improved
the estimation models significantly. When predicting AGB using a fused dataset (from the RGB
camera and the MS camera), Pranga et al. (2021) likewise discovered that the canopy height
characteristics were of the utmost significance; nevertheless, estimating the AGB with only the CH
features produced rRMSE of 30-35%. Comparatively, the rRMSE of the AGB estimation was
generally 10% lower.

It is important to note, however, that although these methods show promising results,
combining spectral and non-spectral data in an applied setting can be more challenging because it
requires employing several sensors or constructing complex data processing chains (Théau et al.,
2021).

2.4 Challenges and future prospects

UAV remote sensing for AGB estimation in grasslands is still challenging, mainly due to the
intrinsic characteristics of this ecosystem. The vegetation communities in grasslands are mainly
composed of a variety of site-specific plant species that can contrast in size and phenology stage.
Additionally, because grasslands are perennial, monitoring systems must be able to adapt to a wider
variety of measuring conditions (Franceschini et al., 2022). Future research should consider the
inherent characteristics of these ecosystems, seasons, management practices, data collection
parameters, and automation techniques in order to establish robust methods that can be transferred
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into management tools for grassland professionals (DiMaggio et al., 2020). We also strongly
recommend that future studies provide more information on the agronomic aspect of the research
area. A detailed overview of soil characteristics, spatial heterogeneity of species distribution,
climate, grassland classification, and management practices used enables independent analyses and
cross-study comparisons.

A significant constraint of UAV studies for AGB model estimation in grasslands is the low
number of sampling intervals or limited representativeness due to the small number of sites and
management intensities that can be assessed (Wengert et al., 2022). Furthermore, additional points
must be explored. For example, because most studies only consider one growing season, future
research could include more observations throughout different growing seasons. In this way,
researchers will produce more high-quality datasets describing the temporal dynamics of
vegetation in grassland ecosystems, which is recommended for improving AGB estimation models.
Models created using a dataset based on numerous years, different management practices, and
preferably multiple sites are more generalizable. As a result, they may better represent conditions
at other sites and over different years (Sinde-Gonzalez et al., 2021). Additionally, models should
also be validated on a range of grassland fields from diverse locations and years to improve their
practical applicability (Wengert et al., 2022).

Apart from data collection, data processing and analysis are major factors in using UAVs for
AGB estimation in grasslands. The processing of UAV data differs significantly from the
processing of satellite data, creating a new demand for data processing software and suitable
workflows. Additionally, image processing takes more time as spatial and spectral resolutions rise;
therefore, more effective methods must be designed. Future directions for AGB grassland estimate
may be accomplished by the ongoing reduction and cost-effectiveness of sensors, platforms, and
computer hardware, as well as strong algorithms.

2.5 Conclusions

The present manuscript provides a comprehensive review of the most recent results in the field of
UAYV for AGB estimation in grasslands. Several factors can have a significant impact on the
performance and generalizability of vegetation AGB estimation in grasslands throughout the data
collection to data processing and analysis. Our findings are summarized as follows:

e The frequency of publications on grassland AGB estimation with UAV has increased over
time and continues to rise, indicating the scientific community’s interest;

e The frequency of studies is poorly distributed around the world, with South American and
African grasslands appearing to be underrepresented. As a result, additional research should
be conducted on some important grassland areas;

e The type of grassland, the heterogeneity, and the growth stage can strongly influence the
AGB estimation model;
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e Collecting ground-based data is a crucial step in estimating AGB in grasslands. The
biomass sampling method seems to have a small influence on the accuracy of the AGB
model estimation, whereas the number of samples is one of the main factors to improve the
estimation accuracy;

e The measurement of canopy height is an important variable, especially for models that use
structural data as input. However, the methods for collecting canopy height at the field level
present limitations. RPM measurements demonstrated lower accuracy in sparse swards or
tall, non-uniform canopies, and a measuring tape is based on an “average height”, but
determined visually and rather subjective. The biases of each method must be taken into
account to reduce inconsistencies in the results;

e Quadcopters were the most widely used platform, accounting for almost 60% of all
platforms. Nevertheless, the type of platform has a low impact in AGB grassland
estimation, and the selection of the platform depends more on the research objective;

e The modal value for UAV flight altitude among the studies was 50 m. Adopting lower
altitude flights seems to enhance AGB estimations as this increase the spatial resolution.
For farm-scale applications, however, collecting UAV data at higher altitude offers more
advantages. We suggest flying at the highest altitude where the desirable GSD is possible;

e Large image forward and side overlaps of approximately 80%, combined with self-
calibration during photogrammetric processing, can provide better data quality;

e In terms of sensor type, RGB was the most commonly employed (48%). Despite MS and
HS sensor has the advantage to provide more spectral bands RGB data seems capable to
produce models with comparable accuracy. In terms of cost—benefit and data processing
simplicity, RGB sensors appear to be the most suitable for estimating AGB in grassland at
the moment. The emergence of reliable and cost-effective LIDAR and hyperspectral sensors
will have a significant impact on future research;

e  Forthe reliable estimation of vegetation structure in grasslands from UAV imagery, a high-
quality DTM with a precise and accurate representation of the terrain is necessary.
However, UAV-derived DTMs may underestimate or overestimate field terrain differences
depending on the canopy’s density and the spatial resolution of the image;

e The accuracy of georeferencing models increases when a larger number of ground control
points are equally distributed throughout the study area;

e Linear regression was the most commonly used regression model (n = 25). Random forest
was the most popular machine learning method (n = 16). The findings suggest that the
accuracy of the analysis methods is more dependent on the quantity and quality of data
from field samples rather than the method itself;

e  The most common inputs for AGB prediction in grasslands using UAV are spectral and
structural data. Canopy height metrics were the most used structural data. At least 68% of
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the articles used vegetation indices for biomass estimation, with NDVI being the most
commonly used. The results indicate that models that employed both data types (structural
and spectral) outperformed models that only used one.
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Abstract

Accurate estimation of biomass in grasslands is essential for understanding ecosystem health and
productivity. Unmanned Aerial Vehicles (UAVS) have emerged as valuable tools for biomass
estimation using canopy height models derived from high-resolution imagery. However, the impact
of field disturbances, such as lodging and molehills, on the accuracy of biomass estimation using
UAV-derived canopy height models remains underexplored. This study aimed to assess the
relationship between UAV-derived canopy height and both reference canopy height measurements
and dry biomass, accounting for different management systems and disturbance scenarios. UAV
data were collected using a multispectral camera, and ground-based measurements were obtained
for validation. The results revealed that UAV-derived canopy height models remained accurate in
estimating vegetation height, even in the presence of disturbances. However, the relationship
between UAV-derived canopy height and dry biomass was affected by disturbances, leading to
overestimation or underestimation of biomass depending on disturbance type and severity. The
impact of disturbances on biomass estimation varied across cutting systems. These findings
highlight the potential of UAV-derived canopy height models for estimating vegetation structure,
but also underscore the need for caution in relying solely on these models for accurate biomass
estimation in heterogeneous grasslands. Future research should explore strategies to enhance
biomass estimation accuracy by integrating additional data sources and accounting for field
disturbances.

Keywords: vegetation structure, monitoring, ecosystem services, remote sensing.
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3.1 Introduction

Grasslands are a crucial component of the earth's ecosystems, providing a wide range of ecosystem
services, including biomass production (Bengtsson et al., 2019). Biomass is a key indicator of the
productivity of grasslands and can be used for a variety of purposes, such as fodder production,
energetic use, and fiber production (Sala and Paruelo, 1997). The management system of grasslands
can significantly affect biomass production. Understanding this impact can aid in developing
sustainable land management practices that maximize the provision of ecosystem services (Zhao,
Liu and Wu, 2020). Accurate biomass estimation is essential for assessing the economic value of
grassland ecosystem services at regional and farm scales (Huber et al., 2022) as well as for
understanding the effects of land use change and intensification on grassland multifunctionality
(Schils et al., 2022). Moreover, assessing the spatial variability of multiple ecosystem services in
grasslands of different intensities can provide valuable insights for conservation and management
(Le Clec’h et al., 2019).

Different methods have been developed for measuring grassland biomass, each with its own
advantages and limitations (Harmoney et al., 1997; °t Mannetje and Jones, 2000). Direct
measurements such as destructive sampling provide highly accurate results but are time-consuming
and costly, especially when applied to large areas (Bareth and Schellberg, 2018; Lussem et al.,
2019). Another approach is the use of allometric equations, which relate biomass to easily
measurable variables such as sward or canopy height, which, in ground-level assessments, can be
obtained using tools such as rulers or rising plate meters (O’Donovan et al., 2002). These allometric
equations have been widely used and have proven to be reliable in many cases (O’Sullivan,
O’Keeffe and Flynn, 1987; Piggot, 1989; Hakl et al., 2012). However, the selection of the
appropriate method depends on the specific characteristics of the grassland and the research
question, as the reliability of the methods may be affected by surface heterogeneity and applied
management practices (Bazzo et al., 2023).

Another powerful tool for estimating biomass in grasslands can be remote sensing. Remote
sensing allows for collecting information on vegetation structure and biomass at a large scale
without the need for ground-based measurements (Dusseux et al., 2015). Unmanned Aerial
Vehicles (UAVs) have become increasingly popular for this purpose due to their ability to collect
high-resolution image data in a relatively short period of time. The data collected by UAVs can
provide detailed information on vegetation structure, including canopy height, canopy cover, and
leaf area index, which can be used to estimate biomass (Bazzo et al., 2023). The use of UAVs for
biomass estimation has been demonstrated in several studies (Lussem et al., 2019; Wijesingha et
al., 2019; Alvarez-Hess et al., 2021), and they have been shown to be a cost-effective and efficient
method for monitoring grassland ecosystems. Recent studies have shown that using canopy height
models derived from UAVSs is a reliable method for estimating grassland biomass. For example,
Lussem, Schellberg and Bareth (2020) and Bareth and Schellberg (2018) have demonstrated that
UAV canopy height data can be used to monitor biomass in grassland experiments effectively.
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Similarly, DiMaggio et al. (2020) and Borra-Serrano et al. (2019) have shown that UAV
imagery can be used for non-destructive biomass estimation of specific grass species such as
Lolium perenne. Cunliffe, Brazier and Anderson (2016) have also highlighted the potential of using
drone-acquired Structure-from-Motion (SfM) Photogrammetry for ultra-fine grain landscape-scale
quantification of dryland vegetation structure. Studies such as Batistoti et al. (2019) and
Wijesingha et al. (2019) have also investigated the use of UAVSs for estimating biomass and canopy
height in grassland environments. Overall, these studies provide strong evidence for the
effectiveness of UAV-derived canopy height models in estimating biomass in grasslands.

Despite the usefulness, field disturbances such as lodging and molehills can impact the
accuracy of biomass estimation using UAV-derived canopy height data. While previous studies
have demonstrated the utility of UAVs for biomass estimation, detailed investigations into how
these specific field conditions affect the performance of UAV-derived models are still limited. This
study focuses on analyzing the influence of disturbances on both canopy height and biomass
estimation across different management systems, providing insights that can enhance the accuracy
of UAV-based biomass models in disturbed and heterogeneous grassland environments.

To address these concerns, the objectives of this study are to: 1) assess the effect of field
disturbances on UAV-derived canopy height models and 2) investigate the impact of these
disturbances on aboveground biomass estimation using UAV-derived canopy height data for three
different management systems.

3.2 Material and methods

3.2.1 Study site and experimental design

The research site, "Koppel 17," is located 48 km northwest of Berlin near the village of Paulinenaue
(52°41'28" N, 12°44'16" E), in the federal state of Brandenburg (Fig. 3.1a). It encompasses an area
of 1.3 ha and is situated within the "Havellandisches Luch", a shallow, drained peatland complex
(Fig. 3.1b). The site features degraded peat soils with peat thickness ranging from 0.5 to 2.0 m,
where the topsoil has degraded, and the subsoil consists of alluvial sand layers up to 12 m in depth.
The area is characterized by a continental climate with an average temperature of 9.2 °C and an
average precipitation of 530 mm (Pohl et al., 2015).

In 2013, a seed mixture dominated by Festuca arundinacea was sown on the site. Furthermore,
on the 14th of August 2018, a reseeding was carried out in which Lolium perenne seed was sown
at a rate of around 20 kilograms per hectare. Fertilization practices were carefully managed to
address the nutrient requirements of the site. PK fertilization, including triple superphosphate and
potassium-magnesium sulfate, was applied each year in April to compensate for nutrient depletion
from plant uptake and soil processes. Additionally, N fertilization using ammonium sulfate was
implemented based on the specific nutrient requirements associated with the fen's ecological
characteristics and the observed nutrient removal rates from previous harvests.
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Figure 3.1. Study area located in Brandenburg, Germany (a), study site “Koppel 17” (b), design
of the field experiment divided into six vegetation zones and three cutting treatments and the 108
sampling points (c). This figure was originally published in Bazzo et al. (2024).

To assess the impact of sward height and maturity stage on biomass production, the site was
divided into three strips with an east-west orientation, each 16 m wide (Fig. 3.1c). To this end, the
strips were subjected to different utilization (cutting frequency) regimes to generate varying growth
heights and maturity stages of the grassland vegetation. In north-south orientation, the site is
additionally divided into six vegetation zones according to the existing species composition.
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3.2.2 Data acquisition

The data collection of the experimental field consists of two approaches: the canopy height
estimated through UAV data and field measurements on the ground. The methodology of both
methods is presented in the subsequent sections. Table 1 summarizes the date of AGB biomass
sampling in each field campaign with the number of sampling points in each cutting system.

Table 3.1. Days on which field measurements were conducted, along with the corresponding
number of samples and plots.

Cutting systems frequency Number of samples per
; date
Year of collection ~ Cutting date ™0™ Tree Four-
cut cut cut (n)
18 May X 36
17 Jun X X X 108
2022
03 Aug X X 72
14 Sep X X X 108
Total number of samples per 72 108 144 Ntotal= 324
treatment

UAYV data collection

The UAV used for data collection in this study was the DJI P4 Multispectral drone. It has a
multispectral camera that records data in five narrow spectral bands (Red, Green, Blue, NIR and
RedEdge) and an RGB camera for capturing conventional visible imagery. Although the UAV is
equipped with a multispectral sensor, only the RGB data were utilized for this study, given that our
primary objective was to evaluate the use of a Canopy Height Model rather than to analyze spectral
data. The higher resolution of the RGB images makes them more suitable for generating detailed
Digital Elevation Models (DEMSs) that provide a more accurate representation of the canopy
structure. In this study, the drone was flown at a height of 37 m aboveground level, leading to a
ground sample distance of two cm/pixel for the RGB images. The image overlap was
approximately 80 % forward and 60 % sideward. Camera settings were adjusted to one frame per
two seconds (0.5 Hz), with fixed aperture and exposure according to the lighting conditions. As a
result, the aperture and exposure settings varied between the acquisition dates. Four flights were
conducted with compatible dates with the reference sample field data collection (Table 1) to obtain
data for the plant height derived from the Canopy Surface Model. Another four additional flights
were conducted after harvest to capture the exact dimension and position of the cutting area in the
plots, since the mechanical harvest usually leads to slightly differences in the plot harvest area
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length (Table 3.2).

Table 3.2. Acquisition dates of UAV-derived data and ground control point errors (XYZ
direction) in cm.

e Xerror Yeror  zemor  XYeror Towleror oLy,

error (pix)
2022-05-16 1.648 2.437 0.668 2.943 3.018 0.708
2022-05-19 1.100 1.237 0.519 1.655 1.735 0.660
2022-06-14 0.643 0.660 0.364 0.922 0.991 0.785
2022-06-16 0.693 0.773 0.350 1.038 1.096 0.729
2022-08-02 0.960 0.484 1.089 1.075 1.530 0.655
2022-08-04 0.866 0.928 1.391 1.269 1.883 0.567
2022-09-14 0.970 0.586 1.156 1.133 1.619 0.722
2022-09-14 0.966 0.677 1.214 1.180 1.693 0.714
2022-09-29 0.969 0.928 0.302 1.342 1.376 0.736

*X, Y, Z error (cm) - difference in the corresponding direction between source (measured) value
and estimated by Agisoft for marker. **XY error (cm) - planar error for marker. ***Total error
(cm) - the distance between source and estimated location for marker.

Additionally, a bare-ground model was obtained from a flight on September 30, 2022. For
accurate geo-referencing, eleven ground control points were evenly distributed across the
experimental site with fixed positions throughout all growth seasons. The coordinates of the GCPs’
centers were obtained with a global navigation satellite system (GNSS) receiver (Viva GNSS GS
10, Leica Geosystems AG, Switzerland) an accuracy of approximately one centimeter in position
and one and a half centimeters in height.

Reference ground data collection

Compressed canopy height (RPM-CH) was measured with a self-constructed rising plate meter
(RPM). Disc diameter was 30 cm and disc weight was 238 g, resulting in a 3.4 kg/m2 pressure.
The plots (1.5 m x 1.5 m) were manually measured with the RPM at five different points. From the
five replicates per plot, an average RPM-CH value was calculated.

Fresh biomass samples were collected by harvesting the entire plot area mechanically by a
forage harvester model HEGE 212. The fresh biomass (FBM) weight for each harvested plot was
determined by weighing the clipped biomass per plot. Subsamples of each plot were taken, dried
in a forced air drier at 65°C to a constant weight, and reweighed to determine dry biomass (DBM)
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yield per unit ground area. Biomass values were upscaled to grams per m2. Owing to slightly
differing plot sizes, the area of each plot was double-checked on-site with a tape measure to
determine the correct upscaling factor per hectare and re-calculated based on a high-resolution
UAV-derived orthomosaic from all sampling dates.

The collected data from this experiment were affected by two types of disturbance: 1) lodging;
(Fig. 3.2a) and 2) mole hills (Fig. 3.2b). Each plot was assessed individually on all field campaign
dates to analyze field disturbances related to lodging. The assessment involved manually
classifying each plot based on the spatial extent of lodging. The lodging classification was then
used to group the plots into three categories: (1) no lodging, for plots that showed no signs of
lodging; (2) partial lodging, for plots with less than 50% of their grass area affected by lodging;
and (3) severe lodging, for plots with more than 50% of their grass area affected by lodging.

(b)

Figure 3.2. Occurrence of lodging in the field (a), presence of mole hills in the field (b).

As in most cases, the grass covered the presence of molehills; we analyzed the images captured
by the UAV after cutting to assess this disturbance (Fig. 2b). The plots were divided into two
categories: those with mole hills and those without. Using this methodology, we could accurately
identify the presence of molehills, even when they were not initially visible in the field.

3.2.3 Image data processing

The acquired images were processed in the SfM software Agisoft PhotoScan v.1.3 (Agisoft Ltd.,
St. Petersburg, Russia). After an initial image alignment, the GCPs were placed in the images for
accurate data georeferencing. Subsequently, the image alignment was run using ‘high’ quality
setting, and the dense point cloud was built using ‘high’ quality settings and ‘mild’ depth filtering
to preserve finer details of the sward (Viljanen et al., 2018). Based on the eleven validation GCPs
(VGCPs), error and RMSE were estimated for X, Y and Z coordinates for all the dates (Table 3.2).
A DSM (Digital Surface Model) was generated and exported from the point cloud as a TIFF file.
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The DSMs had a spatial resolution of two cm/pixel horizontally. The base model DSM (TO0) from
each sampling date was subtracted from the Digital Terrain Model (DTM) obtained through aerial
imaging of the bare ground after harvest to derive canopy height metrics. Canopy height metrics
were calculated in QGIS, using zonal statistics with a polygonal shape file that represented the
plots outline.

3.2.4 Statistical analyses

Statistical analysis was performed using R programming environment version 4.2.2 (R Core Team,
2022). To compare the performance of the mean UAV-derived canopy height model with the field
measurements of canopy height and dry biomass, linear regression analyses were performed. Six
scenarios, including the disentangled and joint effects of different disturbances, were investigated:
a) no lodging plus molehills, b) partial lodging plus molehills, c) severe lodging plus molehills, d)
no disturbances, e) partial lodging without molehills, and 6) severe lodging without molehills
(Table 3.3).

For the linear regression analyses, the R function “Im()” from the R package “stats” was
applied. For error estimation of the model, the coefficient of determination (R?), the relative root
mean square error (rRMSE), and the Pearson correlation coefficient (r) were computed.

3.3 Results

3.3.1 Orthomosaics and canopy surface models

The orthomosaics and Canopy Height Models (CHMs) for the four sampling events in 2022 are
presented in Figure 3.3. The sampling collection was conducted aligned with the cutting events,
with the number of samples varying according to the treatment and date as presented in Table 3.1.

On May 18 (Fig. 3.3ab), observation was limited to four-cut system plots, revealing relatively
low canopy heights indicative of early-season growth. On June 17 (Fig. 3cd) samples from all
treatments were gathered and the differentiation in canopy heights becomes evident. The four-cut
system areas, having undergone an earlier cut, presented a markedly reduced canopy height
compared to the two and three-cut systems which experienced their first cut of the year, resulting
in taller standing biomass.

In August (Fig. 3.3ef), the sampling included plots from the three- and four-cut systems, all of
which were in a regrowth phase. Despite this, the four-cut system plots exhibit taller canopies,
which may suggest a rapid recovery or a denser regrowth pattern.

By September 14 (Fig. 3.3gh), with samples taken from all cutting treatments, we observed a
more uniform canopy height across the plots. This final observation suggests an equilibration in
growth patterns, possibly due to the plants reaching a growth ceiling or similar recovery responses
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post the last cutting events, resulting in a more homogenized canopy structure across the treatments.

Canopy Height Model (m) %
. <=0.2 .0.2 -0.4 04-0.6 0.6-0.8 . <0.8 [_] Biomass sample plot area

Figure 3.3. Orthomosaics (left panels) and corresponding Canopy Height Models (CHMs) (right
panels) for survey dates in 2022: (a) and (b) May 18, (c) and (d) June 17 (e) and (f) August 03, (g)
and (h) September 14.
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3.3.2 Effect of field disturbances on UAV-derived canopy height models

A linear model was applied to assess the relationship between the UAV canopy height model and
the reference canopy height obtained from field measurements using an RPM device to assess the
effect of field disturbances on height estimation accuracy in grasslands. The results, displayed in
the graphs in Figure 3, revealed a high R2 (0.93) between the two models for the plots which were
not influenced by disturbances in the field (Fig. 3.4a). The positive slope of the regression line with
values smaller than one suggests that the UAV canopy height model tended to underestimate the
RPM canopy height slightly. When observations with disturbances such as lodging or molehills
were added (Fig. 3.4b), the R? slightly decreased to 0.92, and a lower rRMSE of 31.28% was
observed, suggesting that while disturbances introduce some variability, the UAV model maintains
a strong predictive relationship with the RPM measurements. The regression equation
demonstrated a similar trend to the graph in Figure 3.4a (i.e., no disturbance), with a slight
underestimation of the RPM canopy height by the UAV canopy height model. These findings imply
that disturbances in the field, while affecting the estimation error to some extent, did not notably
diminish the overall performance of the UAV-derived canopy height models.
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Figure 3.4. Relationship between UAV-derived Canopy Height Model and RPM Canopy Height
Model in the absence (a) and plus the presence of field disturbances (b).

Further analyses examined the relationship and regression lines between the canopy height
model and RPM canopy height under specific disturbance conditions (Table 3.3). The analyses
revealed consistently high R2 between the two models across different disturbance scenarios.

The results indicated that even when the disturbances were included in all six scenarios, they
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had a minimal effect on the correlation and regression lines. In all scenarios, the R? values between
RPM canopy height and UAV canopy height remained robustly above 0.91, as presented in Table
3.3. The relative RMSE values ranged from 32.5% to 38.1% for different disturbance scenarios,
indicating a strong predictive relationship regardless of the presence of disturbances.

Table 3.3. Comparison of relative RMSE, determination, and correlation coefficients between
UAV-derived Canopy Height Model and RPM Canopy Height Model under different lodging and
molehill disturbance scenarios.

Molehills Lodging rRMSE (%) R? r
Molehills No Lodging 38.1 0.92 0.96
Molehills Partial Lodging 32.7 0.93 0.96
Molehills Severe Lodging 33.9 0.92 0.96
No Molehills No Lodging 35.8 0.93 0.96
No Molehills Partial Lodging 32.5 0.93 0.96
No Molehills Severe Lodging 334 0.91 0.95

The regression lines also showed only minor variations, with the slope and intercept values
changing slightly (Figs. 3.5a-f). More specifically, the presence of severe lodging plus molehills
(Fig. 3.5¢) or partial lodging and molehills (Fig. 3.5b) had limited impact on the correlation and
regression lines. The R? values remained above 0.91, and the regression lines demonstrated similar
trends to the undisturbed scenario (Fig. 3.5d). Similarly, when disturbances were limited to severe
or partial lodging without molehills, the R2 and regression lines remained consistent with the
undisturbed scenario (Figs. 3.5 d-f).
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Figure 3.5. Relationship analyses of UAV-derived Canopy Height Model and RPM Canopy
Height Model under different field disturbance conditions. Regression lines depict observations
without any disturbance (black) and observations without disturbance plus observations without
disturbance plus observations with disturbance (red).

3.3.3 Effect of field disturbances on the correlation between UAV-derived canopy
height models and dry biomass

The impact of field disturbances on the relationship between dry biomass and UAV-derived canopy
height models was explored under the two conditions of no disturbances and with disturbances
(e.g., lodging and molehills). Contrary to the relationship between RPM canopy height and UAV-
derived height, the results indicated that the estimation of the UAV-derived dry biomass using
UAV-derived canopy height is more affected by field disturbances (Figs. 3.6 a, b). When there
were no disturbances in the field, there was a strong relationship between UAV canopy height and
observed dry biomass, with an Rz value of 0.89 (Fig. 3.6a). However, when disturbances such as
lodging and molehills were present, the R? value dropped to 0.75 (Fig. 3.6b). Besides, the intercept
and slope values differ noticeably between the two cases, indicating that such levels of disturbance
will lead to a substantial overestimation of the grassland dry biomass. The slope of the linear
regression line increases in the presence of disturbance. This indicates that for one m unit of UAV
canopy height, the presence of disturbance resulted in overestimation by up to 500 g m-2
(difference between the slopes 1830 and 1324).
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Figure 3.6. Effect of no disturbances (a) and field disturbances (b) on correlation between UAV
Canopy Height Model and Dry Biomass.

Further, we explored the relationship between observed dry biomass and the UAV canopy
height under different disturbance conditions, i.e., six previously mentioned scenarios (Figs. 3.5 a-
f). The results showed that the accuracy of UAV-derived dry biomass estimates is highly dependent
on the type and severity of field disturbances, as demonstrated in Table 3.4.

Table 3.4. Comparison of determination, and correlation coefficients between observed dry matter
and UAV-derived Canopy Height Model under different lodging and molehill disturbance
scenarios.

Molehills Lodging R? r
Molehills No Lodging 0.87 0.93
Molehills Partial Lodging 0.80 0.89
Molehills Severe Lodging 0.70 0.83
No Molehills No Lodging 0.89 0.94
No Molehills Partial Lodging 0.82 0.90
No Molehills Severe Lodging 0.76 0.87

The presence of molehills with different lodging scenarios (Figs. 3.7b, c) affects the
relationship between biomass and the UAV-derived canopy height model. In the presence of
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molehills and no lodging (Fig. 3.7a), the R? value decreases slightly from 0.89 to 0.87, and a minor
shift in the regression line. This suggests a small impact of molehills on biomass estimation.

In the scenarios of partial lodging and severe lodging with the presence of molehills (Figs.
3.7b, ¢), there is a decrease in R?and a noticeable shift in the regression line. In the case of severe
lodging and molehills, there is a more pronounced decrease and a shift in the regression line. This
highlights a substantial impact of both factors on biomass estimation, likely resulting from
significant changes in vegetation structure and ground surface characteristics. When examining
scenarios of partial and severe lodging without molehills, the results indicate a decrease in the
correlation between biomass and UAV-derived canopy height models compared to the undisturbed
scenario (Figs. 3.7¢, ).
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Figure 3.7. Relationship between observed dry matter and UAV-derived canopy height model
under different field disturbance conditions. Regression lines depict observations without any
disturbance (black) and observations without disturbance plus observations with disturbance (red).

3.3.4 Effect of cutting system and field disturbances on the relationship between
UAV-derived canopy height models and dry biomass.

Our results indicate that the presence of two disturbances, i.e., lodging and molehills, affect the
relationship between UAV canopy height and dry biomass differently depending on the cut system
(Figs. 3.8 a-f).

The results show that the intercepts and slopes of the regression lines vary among different
cutting systems and under different disturbance scenarios. In all cutting systems, the slope of the
linear regression line increases with the presence of disturbance. In the four cut system (Figs. 3.8
a, b), disturbances had a minimal effect, with the relationship showing only slight changes in slope.
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The three cut system experiences a decrease in biomass with disturbances, accompanied by a
steeper slope (Figs. 3.8 c, d). The two cut system shows an upward shift in biomass values and a
steeper slope when disturbances are present but with a decrease in R? value (Figs. 3.8 e, f). This
result suggest that disturbances can influence the intercept and slope, altering the biomass
estimation and potentially introducing biases.
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Figure 3.8. Effect of no disturbances (figs. a, ¢, e) and field disturbances (figs. b, d, f) on
relationship between UAV-derived canopy height models and observed dry biomass under
different cutting systems in a heterogeneous grassland.
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The comparison of the number of samples and the frequency of disturbances across treatments,
as presented in Table 3.5, provides additional insights. The variations in the number of samples
across the cutting treatments can be attributed to the different cutting frequencies. The four cut
system, with more frequent harvests, provided more sampling opportunities, resulting in a more
significant number of samples. Conversely, the two cut system, with fewer harvests, had a smaller
sample size.

Table 3.5. Total number of samples and frequency of different disturbances for each treatment.

Total Number of  Partial Lodging Full Lodging Molehills
Treatment
samples Frequency Frequency Frequency
2 cuts 72 33% 24% 52%
3 cuts 108 18% 22% 36%
4 cuts 144 8% 13% 20%

3.4 Discussion

The primary objective of this study was to assess the applicability of UAV canopy height models
as indicators of biomass in grassland environments, while also considering the potential influence
of disturbances. Although we fitted linear models to examine the relationship between canopy
height and biomass, the focus was not on developing a direct biomass estimation model but rather
on evaluating how disturbances, such as lodging and molehills, affect the predictive ability of these
models under varying conditions.

Several studies have evaluated the correlation between UAV-derived canopy height models
and ground-measured height across various vegetation types and environmental conditions
(Batistoti et al., 2019; Borra-Serrano et al., 2019; Gruner, Astor and Wachendorf, 2019; Lussem
et al., 2019). The relationship between the two measures has been found to be strong even with the
presence of disturbances, indicating that UAV-derived canopy height models can accurately
estimate vegetation height. For example, Lussem, Schellberg and Bareth (2020) found that lodging
in mature swards led to an underestimation of canopy height, despite a strong R value (0.75 - 0.96)
between UAV-derived and ground-based measurements. Similarly, Kimmerer and Noack (2023)
found as well a strong R? value (0.95) between UAV-derived canopy height measurements and
ground-based measurements. Yet, the accuracy of the measurements was affected by variations in
crop height and structure, as well as the presence of crop lodging.

Similarly, our results indicate that the UAV-derived canopy height model shows robustness in
estimating canopy height even in the presence of disturbances. Nonetheless, it is crucial to consider
a potential limitation. The estimated vegetation height by UAV-derived, in this case, is a result of
interpolation from a point cloud, indicating that it is more appropriate to consider it as an indicator
of the general shape of the vegetation canopy rather than an exact measurement of its height (Van
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Der Merwe, Baldwin and Boyer, 2020).

When disturbances such as lodging and molehills are present in the field, an impact on the
canopy structure is expected (Wilke et al., 2019). Lodging, for instance, can cause the canopy to
become more compact and horizontal, leading to an underestimation of the canopy height. In
contrast, molehills can cause localized variations in the canopy height, resulting in measurement
errors. Thus, despite the precision of UAVs in measuring the distance between the top of the canopy
and the ground, these measurements may not reflect the actual canopy height under certain
conditions where plants may be bent or compressed. Therefore, the interpretation of UAV-derived
canopy height measurements should always consider the specific ecological conditions of the field
in question.

In this case, the fundamental question is whether this vegetation height estimation method can
provide a consistent parameter for precise biomass estimation in grasslands, especially in highly
heterogeneous fields. Our findings suggest that while the relationship between the UAV-derived
canopy height model and the reference canopy height from field measurements may not be severely
impacted by these disturbances, the link between the UAV-derived canopy height model and
biomass can be adversely affected.

In recent years, several studies have been conducted to investigate the relationship between
UAV-derived canopy height and biomass in grasslands. Overall, there was a range of R? values,
reflecting associations between canopy height and biomass that varied from moderate (R? = 0.41—
0.59) to high (R2 = 0.76-0.88). Nonetheless, only a few authors highlight field disturbances as a
factor contributing to the decrease in biomass estimation accuracy. For example, Van Der Merwe,
Baldwin and Boyer (2020) noted that the accuracy of biomass estimation using UAV-derived
canopy height was reduced in areas with high levels of lodging. Lussem et al. (2019) suggest that
the high rodent activity in a few plots per growth led to higher uncertainties in canopy height
calculation, which, in some cases, resulted in negative sward height values and unreasonable
biomass values. Their decision to exclude these plots improved the biomass estimation, although
these disturbances are likely to occur in the field. Roth and Streit (2018) examined different cover
crops, including two clover species, and achieved an R? of 0.58. When plants, which were growing
close to the ground or even lodging, were excluded from the regression model, R? increased to
0.74. They concluded that all examined remotely-sensed characteristics lose their suitability as
biomass predictors if lodging occurs.

The reason for this is that the UAV-derived canopy height model uses the height of the plants
as a proxy for biomass, assuming that taller plants have more biomass. However, different
disturbances in the field can cause a reduction or increase in plant height without necessarily
affecting the amount of biomass. This means that UAV-derived canopy height models should be
interpreted with caution when disturbances such as lodging are present, as they can affect the
relationship between height and biomass. Despite this, our results for biomass estimation using
UAV-derived canopy height models (R? = 0.75) indicate that the estimates remain reasonably
accurate even in the presence of disturbances. UAV-based models can capture better the full spatial
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variability of biomass across the entire field, offering a more comprehensive view compared to
sample-based methods. Therefore, while careful interpretation is needed in disturbed areas, UAV-
derived canopy height models continue to be a valuable tool for biomass estimation in
heterogeneous grasslands.

We also observed that the cutting system may influence the relationship between dry biomass
and UAV-derived canopy height, likely due to variations in grass height and density across
treatments. Additionally, lodging could be a contributing factor to the variation in the association
between dry biomass and UAV-derived canopy height across different cutting systems.
Specifically, when grasslands are managed with cutting systems that lead to taller grasses, such as
the two and three cut systems, lodging is more likely to occur, where grass stems bend or break
due to their weight. Then, it is possible that irregular growth patterns caused by lodging and
molehills can lead to inaccurate representations of the actual canopy height, resulting in over- or
under-estimations of aboveground biomass.

The results are consistent with those of Borra-Serrano et al. (2019), indicating that the cutting
system and harvest day influence the correlation between UAV-derived canopy height and
biomass. Similarly, Lussem et al. (2019) found that biomass estimation accuracy was influenced
by the growth stage of the grassland, with higher accuracy achieved at early growth stages. Griner,
Astor and Wachendorf (2019) investigated the use of an SFM approach based on UAV imaging to
predict the biomass of heterogeneous temperate grasslands. They found that biomass estimation
accuracy was influenced by the grassland heterogeneity, with higher accuracy achieved in less
heterogeneous areas. Additionally, the study found that cutting frequency had an impact on the
accuracy of biomass estimation.

An additional consideration is the study design's impact on the results. This is because in order
to be able to simulate and evaluate different frequencies of cutting systems, the frequency of data
collection varies among the treatments. In this way, the number of samples and disturbance
frequency have been shown to influence sensitivity. A more significant number of samples allows
for a more representative analysis and increased statistical robustness. Higher frequencies of
disturbances can introduce variability and potentially affect the relationship between canopy height
and dry biomass. Consequently, the relationship and regression results may be more sensitive to
disturbances in treatments with less sample, such as the two cut system.

The number of points influenced by lodging can also impact the results and should be
considered when interpreting the findings. In the case of the two cut and three cut systems, which
have more sample points affected by lodging, lodging is expected to exert a more significant
influence on the overall results compared to the four cut system. The increased number of sample
points affected by lodging in the two and three cut system may introduce more variability into the
dataset. Ultimately, the balance between sample size, disturbance frequency, and lodging influence
can contribute to the sensitivity of the relationship.

Overall, the results highlight the need for innovative technigques to enhance biomass estimation
accuracy using UAV-derived canopy height models. To address this issue, we propose that new
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techniques should be tested to improve biomass estimation accuracy using UAV-derived canopy
height models. One approach is to incorporate other data sources, notably spectral reflectance data.
Such data can provide additional information about the health and vigor of the plants in conjunction
with ground-based measurements and broader agronomic considerations that can yield a more
comprehensive ecological perspective. Another approach is to develop more sophisticated models
that consider the effects of lodging on vegetation height and biomass. Advanced machine learning
algorithms could be employed to develop these models that can better account for the complex
impact of disturbances while also assimilating supplemental data sources, leading to more accurate
biomass estimation.

However, it is important to note that lodging quantification in mixed grasslands is challenging,
especially in contrast to graminoid monoculture crops like wheat or barley (Lussem, Schellberg
and Bareth, 2020). This is due to the diverse emergence of various species throughout the growing
season in grasslands, a diversity that varies both spatially and temporally. In this way, future
research should address these complexities to advance the accuracy of biomass estimation in real-
world grassland ecosystems.

3.5 Conclusion

Our results suggest that UAV-derived canopy height models can be useful for estimating biomass
in heterogeneous grasslands, but their accuracy can be affected by disturbances such as lodging
and molehills, which alter the height distribution of the canopy. The analysis revealed that while
these models are robust in estimating vegetation height, the correlation between canopy height and
dry biomass is more sensitive to disturbances, which can lead to over- or underestimation of
biomass. Furthermore, the impact of disturbances varied among different cutting systems,
highlighting the influence of management practices. However, despite these limitations, the UAV-
derived canopy height model still produced reasonably accurate biomass estimations (R? = 0.75)
and offers a significant advantage over sample-based methods by capturing the full spatial
variability of biomass across the entire field.

Nonetheless, these findings emphasize the need for caution when interpreting UAV-derived
canopy height data as direct biomass indicators, particularly in disturbed fields. Although UAV-
derived canopy height models have proven to be valuable tools for biomass estimation, particularly
in controlled environments, relying exclusively on these models in heterogeneous and disturbed
grasslands can introduce significant uncertainties. While previous studies have shown that
multispectral data can enhance biomass estimation by capturing additional vegetation
characteristics, the focus of this study was to evaluate the robustness of canopy height models using
only RGB data. However, the multispectral data collected will be explored in future work as part
of our broader objective to improve biomass estimation accuracy. By combining height-based and
spectral data, we aim to develop a more comprehensive and reliable framework for biomass
estimation in complex grassland ecosystem.
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Abstract

Monitoring grasslands presents significant challenges due to temporal and spatial dynamics in their
vegetation. This is particularly pronounced in wet grasslands, where moisture dynamics also impact
vegetation patterns. Recent advancements in data acquisition and analysis via Unmanned Aerial
Vehicles (UAVs) have shown potential for a more comprehensive understanding of vegetation
dynamics. However, current UAV-based methods focus predominantly on structural and spectral
data analysis. This often overlooks the horizontal heterogeneity within vegetation. This study
addresses this gap by integrating texture analysis, alongside structural and spectral data, to enhance
aboveground biomass (AGB) estimation. The research was conducted in a heterogeneous wet
grassland in eastern Germany under three different cutting frequencies. Regular UAV flights were
carried out to obtain RGB (Red, Green, and Blue) and multispectral images, analyzed alongside
ground-reference data from 108 plots, to evaluate canopy height and biomass. We tested the
performance of Random Forest and Partial Least Squares Regression models for AGB estimation
considering different combinations of features including canopy height model vegetation indices
and texture analysis. The results demonstrate that texture analysis when combined with traditional
spectral and structural data, enhances predictive accuracy, yielding the best R? values of up to 0.84
for AGB and reducing the relative root mean square errors to 26.6 %. The results underline the
potential of combining UAV-based features in AGB estimation of heterogeneous grassland
ecosystems offering a path forward for more effective ecological monitoring and sustainable
grassland management.

Keywords: remote sensing, vegetation, ecological monitoring, canopy height, texture, agriculture
digitalization
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4.1 Introduction

Grasslands are the world’s most extensive terrestrial ecosystem. They are pivotal in providing
ecological and economic services, including wildlife habitat, erosion control, carbon sequestration,
and sources for biofuels (Egoh et al., 2016; Bengtsson et al., 2019). Wet grasslands, a crucial subset
of these ecosystems, are especially vital for biodiversity conservation and water regulation (Chris
B. Joyce, Simpson and Casanova, 2016). Therefore, monitoring the status of wet grasslands is
important for understanding their ecological health, managing their biodiversity, and maintaining
hydrological balance (Cop, Vidrih and Hacin, 2009). Nevertheless, the complexity of these
environments introduces significant challenges for ecological assessment and monitoring,
demanding detailed and continuous approaches to ensure effective conservation and management
(Barrett et al., 2014).

Accurately estimating aboveground biomass (AGB) is essential for managing these
ecosystems, and facilitating informed land management decisions and ecological monitoring
practices (Jones and Donnelly, 2004; Le Clec’h et al., 2019). For example, knowing the biomass
levels can help farmers determine the optimal times for grazing or mowing, improving both yield
and pasture health (Psomas et al.,, 2011). Ecologically, monitoring AGB is crucial for
understanding carbon sequestration dynamics, as grasslands play a significant role in capturing and
storing carbon (Bengtsson et al., 2019). Moreover, it supports in maintaining biodiversity by
ensuring that different plant species have the opportunity to grow and thrive, thus supporting a
diverse ecosystem (Tilman, Wedin and Knops, 1996). Yet, traditional methods for assessing AGB,
such as physical measurements and visual evaluations, are labor-intensive and often fail to capture
the inherent spatial variability (Borra-Serrano et al., 2019). Furthermore, these methods are limited
in assessing intra-plot spatial variability, which is crucial for understanding grassland dynamics
(Bareth and Schellberg, 2018).

Satellite remote sensing has become a powerful tool for monitoring agroecosystems, including
wetlands (Schmidt and Skidmore, 2003; Klemas, 2011), over the past few decades. It allows for
the collection of data over large areas and at frequent intervals, providing valuable insights into
vegetation health, biomass estimation, and changes in land cover (Xue and Su, 2017). However,
satellite remote sensing has some limitations, such as lower spatial resolution and dependence on
clear-sky conditions for accurate image acquisition (Younes, Joyce and Maier, 2021).The advent
of UAV-based remote sensing offers a paradigm shift in grassland monitoring. High-resolution
UAYV image, including digital imaging and photogrammetry, presents an efficient alternative to
traditional methods, allowing for the acquisition of detailed data at various spatial and temporal
scales (Wachendorf, Fricke and Mdckel, 2018; Pranga et al., 2021). UAVs are particularly effective
in capturing small-scale heterogeneities that are often overlooked by traditional methods or satellite
remote sensing (Michez et al., 2020).

Regarding the image methods, UAVs are commonly used to produce 3-D data using structure
from motion photogrammetry and spectral information (Michez et al., 2020). Structure from
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motion photogrammetry in particular leverages structural information, with canopy height playing
a pivotal role in estimating biomass (Lussem et al., 2019). This process involves computing
vegetation height from a UAV photogrammetric Digital Surface Model (DSM) in conjunction with
a Digital Terrain Model (DTM) (Possoch et al., 2016). The canopy height data provides valuable
spatial insights into grassland vegetation traits such as mean, maximum, and median height
(Lussem et al., 2022).

While structural height data obtained from UAVs are crucial for understanding spatial patterns
of canopy height within grassland vegetation, this data alone cannot capture the biochemical
properties or the spectral diversity of species present which can be important for biomass
estimations (Griner, Astor and Wachendorf, 2021). To address these limitations, spectral sensors
come into play. These sensors quantitatively measure multi- and hyperspectral reflectance data and
enable the calculation of vegetation indices (VIs) (Moeckel et al., 2017) which could be employed
to estimate various grassland attributes, including biomass (Askari et al., 2019). These indices,
while informative, must be interpreted with caution as they can be influenced by background color
at low biomass levels and saturation at high biomass and LAl levels (Griner, Astor and
Wachendorf, 2021).

Another important feature that can be extracted from remote sensed images is the texture
analysis (Yue et al., 2019). Texture analysis refers to the study of spatial patterns and statistical
relationships among pixel gray-level values within a defined area of interest in an image (Haralick,
Shanmugam and Dinstein, 1973). These texture features provide additional data layers correlating
with vegetation's structural and heterogeneity characteristics (Dos Reis et al., 2020). In grassland
ecosystems, texture analysis has the potential to play a pivotal role in improving biomass
estimation, particularly for species with heterogeneous canopies (Griiner, Wachendorf and Astor,
2020).

With the recent development of artificial intelligence technology, it has become possible to
combine multiple systems’ features to predict a target property (e.g. biomass). Yet, there’s a
multitude of methods available and it's still unknown which features and how frequently the
corresponding data must be collected for reliable predictions. The latter is particularly important to
optimize management costs associated with equipment maintenance and data analysis to
effectively support decision making. It was also found that, although the integration of UAV-
derived structural and spectral data shows great promise, there is a lack of research conducted at
the real field level, incorporating management practices and covering multiple growing seasons
(Bazzo et al., 2023). This gap needs to be addressed to evaluate the practical benefits of this
integration in terms of improving biomass estimation and grassland management strategies.

Therefore, our study aims to evaluate UAV-feature integration techniques in a real-world
grassland field, to identify suitable techniques and remote-sensed features that allow reliable,
spatially explicit biomass predictions. By focusing on a heterogeneous grassland, our approach
addresses the challenges associated with spatial and temporal variability in vegetation growth and
composition. The specific objectives of this study are: (1) to develop aboveground biomass
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prediction models for a heterogeneous wet grassland for two growing seasons under three cutting
systems; (2) to compare the prediction accuracy of these models with and without the integration
of features; (3) to identify key variables of the resulting models.

4.2 Study site and experimental design

The research site is located approximately 48 kilometers northwest of Berlin, near the village of
Paulinenaue (52°41'28" N, 12°44'16" E), within the federal state of Brandenburg, Germany (Fig.
4.1a).
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Figure 4.1. (a) Study area located in the federal state Brandenburg, Germany (b) satellite image of
the study area from Google Earth Pro, and (c) design of the field experiment divided into three
cutting treatments and 108 sampling points.
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Encompassing an area of 1.3 hectares of a wet grassland within the "Havelldndisches Luch",
a shallow, drained fen peatland complex (Fig. 4.1b). The climate is classified as humid continental
with warm summer, characterized by an average annual temperature of 9.2 °C and mean annual
precipitation of 530 mm (Pohl et al., 2015).

In 2013, the study site was initially seeded with a mixture dominated by Festuca arundinacea,
followed by a reseeding with Lolium perenne in August 2018 at 20 kg/ha. Annual fertilization
practices were managed to address the nutrient requirements of the site, with PK fertilization in
April and N fertilization as required by the fen's ecological characteristics.

To represent the most typical farmers practice, the site was divided into three east-west-
oriented strips, each measuring approximately 16 meters in width and 200 meters in length (Fig.
4.1c). These strips were subjected to different cutting frequencies, to study the effects on grassland
vegetation growth and maturity. The treatments ranged from two to four cuts per year, aligned with
vegetation phenology and soil moisture conditions, facilitating a comprehensive analysis of
grassland dynamics over two years. The study encompassed 108 sampling points, divided into 36
plots per treatment. Throughout the two-year study period, field measurements were synchronized
with the cutting events.

4.3 Material and methods

Figure 4.2 depicts the schematic workflow of the methodologies used to fulfill the three objectives
of the research. These include four steps: 1) Data collection (section 3.1.); 2) image processing
(section 3.2.); 3) feature extraction (section 3.3.); and model development and statistical analysis
(section 3.4.).
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Figure 4.2. Schematic workflow of data acquisition, image processing, feature extraction, model
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4.3.1 Data collection

To obtain essential reference data, we conducted field measurements in 2022 and 2023. The data
collection involved two levels: UAV image collection and ground-based field measurements. Table
4.1 summarizes the date of sampling in each field campaign with the number of sampling points in
each cutting system.

Table 4.1. Days on which field measurements were conducted, along with the corresponding
number of samples and plots.

Cutting systems frequency Number of samples per
Year of collection Harvest date Two- Three- Four- date
cut cut cut (n)
18 May X 36
17 Jun X X X 108
2022
03 Aug X X 72
14 Sep X X X 108
16 May X 36
07 Jun X X 72
2023 21 Jun X 36
10 Aug X X 72
20 Sep X X X 108
Total number of samples per 144 216 288 Niotal= 648
treatment

4.3.1.1 UAV data collection

Data collection was performed with the DJI P4 Multispectral UAV, equipped with a multispectral
camera for capturing five spectral bands (Red, Green, Blue, NIR, and RedEdge) and an RGB
camera for standard visible image. The UAV was flown at an altitude of 37 meters, achieving a
two-centimeter resolution, with 80% forward and 60% sideward image overlap for extensive
coverage. Images were captured at two frames per second, with adjustable aperture and exposure
settings to match varying lighting conditions. Eleven ground control points (GCPs) were evenly
distributed across the experimental site to ensure precise geo-referencing, with their positions fixed
throughout all growth seasons. The coordinates of the GCPs' centers were determined using a
global navigation satellite system receiver (Viva GNSS GS 10, Leica Geosystems AG,
Switzerland), with an accuracy of 0.3 cm horizontally. We conducted nine flights aligning them
with compatible dates corresponding to the reference field data collection (Table 1). A bare-ground
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model was also generated during a dedicated flight conducted on September 30, 2022. This setup
supported the generation of a highly accurate Digital Surface Model (DSM), capturing the nuanced
topography of the study area.

4.3.1.2 Reference ground-based data collection

Our reference ground data collection involved the measurement of compressed canopy height,
AGB, and vegetation composition survey from the study plots. These methods are described as
follows:

Compressed Canopy Height: The variable was determined using a self-constructed rising plate
meter (Fig. 4.3a). Measurements were conducted manually within each plot, measuring 1.5 meters
by 1.5 meters at five distinct points to capture the structural heterogeneity (Fig. 4.3b). An average
of canopy height values was calculated from the five replicates within each plot.

@ | 0 o

Length £1.5m

®
O
O,

Width=1.5m

Figure 4.3. (a) In situ grass compressed canopy height measurements by a rising plate meter and
(b) schematic overview of point measurements inside the plot.

Aboveground Biomass Sampling: Fresh biomass samples were mechanically collected from each
plot using a forage harvester. The fresh biomass weight for each harvested plot was determined by
weighing the clipped biomass from each plot. Subsamples from each plot were extracted, dried in
a forced air drier maintained at 65 °C until reaching a constant weight, and reweighed to determine
dry biomass yield per unit ground area. Biomass values were converted to grams per square meter.
To account for slight variations in plot sizes, the area of each plot was validated on-site using a
tape measure, ensuring accurate upscaling factors per hectare. These calculations were further
refined based on a high-resolution UAV-based orthomosaic generated from data acquired on all
sampling dates.
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4.3.2 Image processing

The acquired images were processed using Agisoft PhotoScan v.1.3 (Agisoft Ltd. in St. Petersburg,
Russia). First, the images were aligned and then adjusted based on the GCPs' spatial information.
Next, the optimized cameras command was selected. Subsequently, the image alignment process
was executed with a 'high' quality setting to maximize the alignment’s precision. The outcome of
this step was the generation of a dense point cloud representing the 3-D structure of the vegetation
within the study area. In this process, we applied 'high' quality settings and 'mild’ depth filtering to
preserve fine details of the grassland vegetation, as recommended by Viljanen et al. (2018). The
datasets from the multi-spectral camera were then radiometrically calibrated by the calibrate
reflectance function using the calibration factors of the irradiance sensor and the gray reference
panel. From all flights, a DSM was generated from the dense point cloud and exported as a TIFF
file. The model obtained had a spatial resolution of two centimeters per pixel horizontally.

4.3.3 Features extraction from the remote sensing dataset

For each date, a polygonal shape file was created for the biomass sampling area per plot based on
an orthomosaic obtained directly after biomass sampling. These shape files were then used to
extract representative structural and spectral features from each plot. All the data extraction and
processing were done using the statistical computation software R version 4.3.1 and its
corresponding packages ‘raster’ and ‘sf’.

4.3.3.1 Canopy height features

For each sampling date, we generated a base Digital Surface Model (DSM) before cutting the grass
canopy. The UAV-based canopy height metrics were derived by subtracting the Digital Terrain
Model (DTM), obtained from aerial image of the 'bare ground' after harvest, from the DSM (DSM
- DTM). In our study 'bare ground' refers to the field condition after harvest, where grass stubbles
remain. These remaining stubbles are a common residue in agricultural practices. We extracted the
following metrics: mean, minimum, maximum, standard deviation, 90th, 75th, 50th (median), and
25th quartiles (CHmean, CHmin, CHmax, CHsd, CHQ90, CHq7s, CHgso, CHq2s, respectively). Linear
regression models were applied to assess the performance of UAV-based canopy height
measurements using the plot-level field measurements as ground-truth reference.

4.3.3.2 Vegetation indices

A total of 16 vegetation indices (V1) were calculated with spectral bands obtained for each flight
campaign (Table 4.2). These indices were selected based on their characterization of biochemical
and structural traits of vegetation to be comparable to existing studies. The respective shape files
from biomass samples were used to extract spectral features from each plot.
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Table 4.2. Vegetation indices derived from the visible-to-near-infrared spectral region.

Vegetation Index Equation
Blue Normalized Difference Vegetation (NIR — Blue)
Index (Yang et al., 2004) BNDVI =

Canopy Chlorophyll Concentration Index
(Jago, Cutler and Curran, 1999)

Chlorophyll Vegetation Index (Vincini,
Frazzi and D’ Alessio, 2008)

Enhanced Vegetation Index (Huete et al.,
1997)

Excess Green (M. Woebbecke et al., 1995)

Green Chlorophyll Index (Gitelson, Gritz
and Merzlyak, 2003)

Green Normalized Difference Vegetation
Index (Gitelson, Kaufman and Merzlyak,
1996)

Modified Chlorophyll Absorption in
Reflectance Index (Daughtry et al., 2000)

Modified Soil-Adjusted Vegetation Index
(Qietal., 1994)

Normalized Difference Red Edge (Barnes
et al., 2000)

Normalized Difference Vegetation Index
(Rouse et al., 1973)

Normalized Green Intensity (M.
Woebbecke et al., 1995)

Normalized Green Red Difference Index
(Tucker, 1979)

Optimization Soil-Adjusted Vegetation
Index (Rondeaux, Steven and Baret, 1996)

Renormalized Difference Vegetation Index
(Roujean and Breon, 1995)

Simple Ratio (Jordan, 1969)

(NIR + Blue)

<(NIR — RedEdge))
(NIR + RedEdge)

CCCI =

NDVI
VI NIR Red
= X
Green Green
NIR — Red
EVI =25x

NIR + 6 Red — 7.5 Blue + 1

ExG = 2 Green — Red — Blue

NIR
Gl = ( ) ~1
Green

NIR — Green

GNDVI = NIR + Green

MCARI = [((RedEdge — Red) — 0.2) x (RedEdge — Green)| X
(RedEdge)
Red
2NIR+1— /(2NIR +1)2—8 x (NIR — Red)
2

(NIR — RedEdge)
(NIR + RedEdge)

MSAVI =

NDRE =

NIR — Red

NDVI= NIk T Red

Green
Red + Green + Blue

NGI =

(Green — Red)

NGRD] = ———F——
(Green + Red)

NIR — Red
NIR + Red + 0.16

OSAVI =

NIR — Red
VNIR + Red
NIR
" Red

RDVI =

SR
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4.3.3.3 Texture features

Texture features were extracted from the generated MS orthomosaic using the R package
“glem” (Gray-Level Co-occurrence Matrix). Seven commonly used texture parameters were
calculated to provide insights into the spatial arrangement and variability in the image: contrast,
correlation, entropy, homogeneity, dissimilarity, second-moment, variance, and mean
(GLCMcontrast, GLCMentropy, GLCMhomogeneity, GLCMdissimiIarity, GLCMsecond-moment, GLCMvariance,
and GLCMmean, respectively).

4.3.4 Model development and statistical analysis

To test the predictive power of the extracted features, two machine learning algorithms were
employed: Random Forest (RF) and Partial Least Squares regression (PLS). These non-parametric
algorithms were selected to address the complexities inherent in our dataset and to align our
methods with those validated in similar studies (Oliveira et al., 2020; Pranga et al., 2021; Lussem
etal., 2022).

RF, an ensemble learning technique introduced by Breiman (2001), is particularly robust
against noise and well-suited for handling remote-sensing data, which are often influenced by
atmospheric conditions, clouds, and sensor noise. Its ability to provide accurate predictions for
regression tasks and its insensitivity to irrelevant predictors make it an excellent choice for
ecological studies, such as mapping plant communities or estimating biomass, where data may
include repeated observations and significant variability.

On the other hand, PLS is a multivariate analysis approach that has gained recognition as an
alternative to Stepwise Multiple Linear Regression, especially in analyzing of spectral data for
vegetation (Gong et al., 2016). The advantage of PLS lies in its capacity to handle multicollinearity
and non-linear relationships, which are prevalent in ecological data, allowing for constructing of
practical and empirically verified models for spectral analysis (Wang et al., 2019).

UAV-based canopy height (CH), vegetation indices (VIs), texture feature (GLCM), and their
combination were employed to predict dry matter yield on a plot basis. As a result, seven feature
combinations were tested and compared. First, we built a model using only one class of features:
1.CH, 2.VI and 3.GLCM. In the last stage, we combined structural (canopy height), spectral, and
texture information in four new models: 4.CH+VI, 5.CH+GLCM, and 6.VI+GLCM and
7.CH+VI+GLCM.

Table 4.3 presents the feature sets considered in the analysis. Statistical analysis was
performed in R. The package “caret” was chosen as a modeling framework, since it provides cross-
validation procedures and can be implemented in the machine learning algorithms selected for this
study.
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Table 4.3. A detailed description of feature sets with the corresponding total number of features
for the Canopy Height Model, Vegetation Indices, and GLCM texture parameters.

o Total Number of
Name Description Features Included
Features

A CHmean, CHmin, CHmax, CHq90,
CH Canopy Height Model 8
CHgrs, CHgso, CHgzs, CHsq

Vegetation indices visible to

Vi near-infrared spectrum See Table 4 10
GLCM texture features GLCMcontrast, GLCMentropy,
GLCM parameters for each image GLCMhomogeneity GLCMmean 35
band GLCMyissimitarity GLCMisecond-moment

4.3.4.1 Cross-validation

In our research, we applied a nested m cross-validation (CV) approach, partitioning the data into
three folds for the outer loop and three folds for the inner loop, chosen through a random splitting
process and following a similar methodology used by Pranga et al.( 2021). The inner loop’s
primary function was to calibrate the hyperparameter values and select the optimal model, while
the outer loop was dedicated to assessing the model’s predictive capabilities for different dataset
folds. We repeated this process five times to mitigate the impact of random variation. The nested
CV protocol and parameter tuning were executed in R, employing the ‘caret’ package.

Model performance was assessed using statistical metrics: Coefficient of Determination (R?),
absolute and relative Root Mean Square Error, RMSE, and rRMSE, respectively. ANOVAs,
followed by Tukey’s post hoc tests, were performed to identify whether a statistically significant
difference exists between the R?, rRMSE, and RMSE of compared models (datasets). We selected
a significance level of a = 0.05.

4.3.4.2 Hyper-parameter tuning

Hyper-parameter tuning was performed in both machine learning models (RF and PLS) to achieve
optimal performance as recommended in previous literature (Pranga et al., 2021). To this end, we
conducted a systematic optimization of the hyper-parameters for employing a grid search approach,
a systematic method of working through multiple combinations of hyper-parameter values to find
the best solution for our models. This involves creating a 'grid’ of all possible value combinations
for the hyper-parameters we want to tune and evaluating the model performance for each
combination to identify the most effective settings.

For the RF algorithm, we adjusted two key hyper-parameters: 'num.trees’, which is the number
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of trees in the forest, and 'nodesize’, the minimum size of the terminal nodes of the trees. The 'mtry'
parameter, which determines the number of variables randomly sampled as candidates at each split,
was set to its default value, which is the square root of the number of features in the dataset. The
grid search combined 'num.trees’ parameter values of 50,100, 250, and 500 and nodesize values of
1 to 5, resulting in 20 combinations.

For the PLS method, we tuned the number of components ('ncomp’) used in the model,
considering values from 1 to the maximum number of possible features. For example, in our model
with 59 features (7. CH + VI + GLCM), the 'ncomp' was tuned from 2 up to 59 to determine the
most effective number of components to use.

4.3.4.3 Variable importance

A conditional variable importance technique was implemented to interpret which predictor
variables were relevant while generating an RF and PLS model. The higher the importance score,
the more influential the predictor variable is. The relative importance of the predictor variables for
each treatment and all data sets using RF and PLS models was calculated based on both algorithms'
built-in feature importance measures, which are included in the ‘caret’ package of R, enabling the
most important variables in each model run to be interpreted.

For the RF model, the importance of each predictor was determined based on the increase in
mean square error when the values of the variable were permuted across the out-of-bag samples.
For the PLS model, importance was derived from the weights and coefficients of predictors within
PLS components, with higher absolute coefficients indicating greater significance to the model's
predictive strength.

4.4 Results

4.4.1 Comparison between the UAV-derived canopy height and the canopy height
measured with the rising plate meter

Correlations were established first between the UAV and RPM canopy height measures per
treatment for the two growing seasons. Examining the relationship between the pooled data for
UAV canopy height against RPM measurements for all sampling campaigns in 2022 and 2023
(Figs. 4.4a-b) revealed a consistent correlation across the three treatments. In 2022, the coefficient
of determination (R?) for two-cut, three-cut, and four-cut systems were 0.93, 0.94, and 0.77,
respectively. For 2023, the corresponding R? values were 0.89 for the two-cut, 0.90 for the three-
cut, and 0.78 for the four-cut system. The regression slopes for the UAV canopy height
measurements relative to RPM measurements were close to 1 for most treatments, especially for
the three-cut system in both years (0.96 in 2022 and 1.05 in 2023), which implies that the UAV
measurements were closely related to the ground-reference data. While the R2 values exhibit some
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consistency from year to year within each treatment, this pattern does not uniformly extend across
different cutting systems.
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Figure 4.4. Comparison of the mean canopy height using the rising plate meter (RPM) and the
mean UAV-derived canopy height for aggregate annual data of 2022 (a) and 20223 (b) in grassland
field with treatments (1) two-cut system (2) three-cut system and (3) four-cut system. The dashed
line represents a 1:1 ratiot system. The dashed line represents a 1:1 ratio.

4.4.2 Comparative evaluation of feature class performance for AGB prediction
across different cutting systems

Figures 4.5 and 4.6 show the performance of PLS and RF models built based on different feature
classes - individual classes of CH, VI, GLCM, and their combinations - for the estimation of AGB.
As shown, R2 (Fig. 4.5) and rRMSE (Fig. 4.6) and mean values (Table B1, supplementary material)
underscored significant differences among models. The performance of models based on individual
feature classes (CH, VI, and GLCM) varied remarkably across the different cutting systems.
Among these three models, the one based on CH features was generally a robust predictor regarding
both RF and PLS in most cutting systems. Comparing the performance of the other two models (VI
and GLCM) showed different performances depending on the cutting system or the algorithm for
modeling (PLS or RF). In the two-cut system, the RF model showed CH as a robust predictor with
an Rz of 0.71 and an rRMSE of 29.4 %, indicating a strong correlation with AGB (Figs. 4.5a and
4.6a). The VI feature class, with an R2 of 0.73 and an rRMSE of 29.19 %, displayed similar
predictive strength.

Overall, the models based on a combination of feature classes (CH+VI, CH+GLCM,
VI+GLCM, CH+VI+GLCM) showed a higher performance. Comparing these four models showed
that those, with the CH feature class included performed better. Across different cutting treatments,
feature combinations, particularly CH+VI+GLCM, consistently outperformed the individual-
feature models. Combining CH and VI into a single model resulted in a statistically significant
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increase in R? (0.78) and improved the rRMSE to 25.3 %, suggesting a pronounced enhancement
in prediction precision. The CH+VI+GLCM model for RF achieved an R? of 0.77 and an rRMSE
of 26.6 % and for PLS an R? of 0.73 and an rRMSE of 29.1 %, slightly enhancing the model
performance.
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Figure 4.5. Box-dot plots for coefficient of determination (R?) values for aboveground biomass
(AGB) prediction, using two distinct machine learning algorithms: Partial Least Squares
Regression (PLS) and Random Forest (RF). The models incorporate various feature classes,
including Canopy Height (CH), Vegetation Indices (V1), and texture features (GLCM), applied
across different grassland management treatments: two-cut (a), three-cut (b), and four-cut systems
(c), as well as a pooled data analysis combining all treatments (d). Uppercase letters compare
feature class performance within the same model: identical letters imply no significant differences
while differing letters signify significant differences. Lowercase letters evaluate differences
between the models for each feature class: identical letters indicate no significant differences, and
varying letters denote significant differences.
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Figure 4.6. Box-dot plots for rRMSE (%) values for aboveground biomass (AGB) prediction, using
two distinct machine learning algorithms: Partial Least Squares Regression (PLS) and Random
Forest (RF). The models incorporate various feature classes, including Canopy Height (CH),
Vegetation Indices (VI), and texture features (GLCM), applied across different grassland
management treatments: two-cut (a), three-cut (b), and four-cut systems (c), as well as a pooled
data analysis combining all treatments (d). Uppercase letters compare feature class performance
within the same model: identical letters imply no significant differences while differing letters
signify significant differences. Lowercase letters evaluate differences between the models for each
feature class: identical letters indicate no significant differences, and varying letters denote
significant differences.

The performance of models varied across cutting systems. The CH+VI+GLCM model in the
three-cut system showed superior prediction accuracy, indicated by R? values of 0.87 and 0.85 for
RF and PLS, respectively (Fig. 4.5b). It is also remarkable that in this treatment, the exclusive use
of CH (with mean R? value of 0.82 for RF and 0.81 for PLS), showed no significant statistical
difference compared to the models based on combined features. However, the CH+VI+GLCM
combination resulted in a lower rRMSE (32.6 % for RF and 34.9 % for PLS) (Fig. 4.6b, Table B1,
supplementary material). This picture was different in the four-cut system, in which the different
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combinations of CH, VI, and GLCM features provided the most accurate predictions with RF and
PLS, achieving R? values ranging from 0.69 to 0.77 (Fig. 4.5c, Table B1, supplementary material).
No statistical differences were observed among the feature combination groups for the PLS model.
For the RF model, the CH+GLCM and CH+VI+GLCM combinations were statistically superior.
Specifically, CH+VI+GLCM with RF showed significantly lower RMSE and rRMSE values (69.7
g/m2 and 29.4 %) (Fig. 4.6c).

When considering the pooled data from all cutting systems, CH+VI+GLCM demonstrated the
highest predictive accuracy regarding RF, with an R2? value of 0.84 (Fig. 4.5d, Table B,
supplementary material). The RMSE and rRMSE values for CH+VI+GLCM in the pooled data
were also lower (RMSE = 134.9 g/m?, rRMSE = 31.3 %) than for models based on individual
feature classes (Fig. 4.6d, Table B1, supplementary material).

4.4.3 Variable importance for AGB estimation

The PLS and RF models highlighted distinct predictor variables with varying degrees of
importance across the different cutting systems (Fig. 4.7ab). In the PLS model, CH metrics, such
as ‘CHgso’, ‘CHgqeo’, and ‘CHgrs’, obtained high importance scores, particularly in the pooled
dataset, indicating their strong influence on biomass estimation under varying cutting frequencies.
The texture variable ‘GLCMhomogencity NIR’ @S0 scored significantly, suggesting the relevance of
texture in biomass prediction. Contrastingly, the RF model emphasized a different set of predictors.
While CH variables like ‘CHggo’ and ‘CHmean’ maintained their influence, vegetation indices such
as Vincl emerged as key predictors across all treatments. Remarkably, texture measures like
‘GLCMyariance NiR> and ‘GLCMmean N> Were highly ranked in the four-cut system and pooled data,
reflecting the importance of NIR texture in these more complex systems.

Comparing treatments, the two-cut system showed a slightly higher importance score for
‘VInerol’, indicating its particular relevance in less frequently cut grasslands. In contrast, the three
and four-cut systems revealed a shift towards ‘GLCMasccond moment NiR* and ‘GLCMentropy NIR’,
aligning with the increased complexity of these systems.
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Top 10 Variables by Relative Importance for Biemass acress Treatments for PLS
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Figure 4.7. The relative importance of the top ten predictor variables as measured by the feature
importance metric for Partial Least Square (PLS) (a) and Random Forest (RF) (b) models
predicting aboveground biomass (AGB).

4.5 Discussion

In this study, a key objective was to assess the effectiveness of integrating UAV-derived features
for estimating AGB in heterogeneous wet grasslands. While the concurrent use of structural and
spectral data for AGB estimation in grasslands is increasingly recognized, the incorporation of
texture information from UAV imagery remains relatively unexplored. Our research represents a
pioneering effort in integrating structural, spectral, and texture features from UAV imagery to
estimate AGB in grassland environments.

4.5.1 Analysis of AGB models and their influencing factors

Our findings underscore the effectiveness of combining UAV-derived data types for AGB
estimation. Although the differences in accuracy among various feature combinations were small
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and often statistically not significant, models utilizing a fusion of features consistently surpassed
those relying on a single feature class. Our results align with the existing research trend, where
combining UAV-features data tends to enhance the precision of biomass estimation models. For
instance, Karunaratne et al. (2020) and Lussem et al. (2022) found that models incorporating both
structural and spectral data significantly improve the AGB prediction accuracy in grassland field
studies. Viljanen et al. (2018) demonstrated the effectiveness of combining height data with
vegetation indices, in a timothy-meadow fescue mixture. Pranga et al. (2021) observed similar
enhancements when applying this approach to perennial ryegrass. The study of Griner, Astor and
Wachendorf (2021) further emphasized the critical role of texture features, demonstrating that
combining structural data, along with multispectral and texture features from UAV high-resolution
image, significantly improved the accuracy of estimating aboveground biomass in legume-grass
mixtures.

Although our study exhibits a relatively higher rRMSE compared to some of the studies
mentioned, direct comparisons are challenging due to the distinct complexities of wet grasslands.
These ecosystems often present heterogeneous vegetation, varying micro topography and
fluctuating hydrological conditions, which contribute to the spatial and temporal variability of the
data. Most recent studies evaluating the combination of UAV-derived data types for AGB
estimation were conducted on controlled field trials, which inherently ensure more uniformity in
the data. Additionally, they often dealt with more homogeneous grasslands, typically comprising
one or a few species, which further contributes to uniformity. Moreover, these studies usually
encompass data from a single year, limiting the temporal variability in their data sets.

In contrast, our research was conducted in a permanent wet grassland spanning two years. This
setting inherently introduces more variation due to the complex and dynamic nature of wet
grasslands, subject to fluctuating environmental conditions and diverse plant communities. The
extended time frame of our study captures the inter-annual variability, which is often not addressed
in single-year studies. Such variability can significantly affect the results, as factors like weather
patterns, water levels, and plant growth cycles can vary substantially between years. Therefore,
while our rRMSE might be higher, it reflects the inherent complexity and heterogeneity in a more
natural, less controlled grassland ecosystem over an extended period, providing a more
comprehensive understanding of biomass estimation in such diverse environments.

Examining the performance of various models and feature classes, it is also crucial to consider
the impact of grassland management treatments on our model outcomes. The R?2 and RMSE values
variations reflect the complex dynamics introduced by different cutting frequencies. For instance,
in the two-cut system, the combination of CH+V1 yielded similar results to the combination of
CH+VI+GLCM. This suggests that the spectral information provided by vegetation indices
becomes particularly valuable in capturing the biomass variation in less frequently cut systems.
VIs offers critical information on the plant's health and vigor that canopy height alone does not
fully describe. In essence, the VI likely captures the biomass variation due to factors such as plant
nutrition and water content, which are not as readily apparent from structural data when cutting
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frequency is low.

Although the combination of CH+VI+GLCM leads to the best results in the three-cut system,
CH alone also shows good performance compared to the other cutting treatments. This could be
because this cutting system strikes a balance between vegetation regrowth and structural
uniformity. CH becomes a reliable indicator of biomass, as the plants have sufficient time to regrow
between the cuts, but the sward does not become too heterogeneous, which could happen with less
frequent cuts. This observation aligns with previous research, which has shown that in grassland
environments with moderately uniform canopies - such as those that result from intermediate
cutting frequencies - CH alone can provide a sufficient biomass estimation (Borra-Serrano et al.,
2019).

The simplicity of using CH alone is advantageous, as it often requires less data processing and
can be less labor-intensive compared to models that integrate additional spectral or textural
features, making it more practical for on-farm applications. While incorporating a full suite of
features, including 'CH+VI+GLCM', has the potential to enhance the model by adding spectral and
textural insights, it is essential to weigh the benefits against the increased complexity. If the
inclusion of additional data types does not significantly improve the model's performance, the
simpler CH alone model should be preferred.

Conversely, the most frequent cutting regime with four cuts produces a more uniform sward,
which should simplify the biomass estimation process. However, our findings suggest that adding
spectral information from VIs and texture features significantly enhances the model's performance
in the four-cut system. This enhanced performance may be because frequent cutting not only
standardizes canopy height but also prompts rapid regrowth and recovery of the grassland, which
can introduce subtle variations in plant health and density. These nuances are not easily detected
by CH measurements alone but can be effectively captured by the combination of CH with spectral
reflectance changes that are assessed with VIs.

Furthermore, including texture features becomes particularly important in the four-cut system.
Texture captures the spatial arrangement and frequency of patterns within the sward, providing
valuable information about the grassland's structural complexity that arises from the frequent
disturbances. This information can be crucial for understanding the ecosystem's response to
intensive cutting and for accurately estimating the biomass when the visual uniformity masks
underlying heterogeneity.

When examining the pooled data, we observe that the 'CH+VI+GLCM' feature combination
achieves the lowest relative root mean square error (rRMSE) at 31.3 % and the highest R2 value of
0.84, suggesting that this combination of features is robust across varying cutting frequencies. The
strength of the 'CH+VI+GLCM' model in the pooled data analysis indicates that each feature class
brings complementary information that is useful for AGB estimation, regardless of the treatment.
CH offers a baseline structural measure, VIs contribute spectral insights related to plant health, and
the texture features add a layer of spatial detail that captures the heterogeneity of the grassland.
The success of this feature combination in the pooled data underscores the model's adaptability to
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highly variable grassland conditions. Although the rRMSE is relatively high, this feature
combination could be widely applicable for diverse grassland ecosystems, providing a
comprehensive tool for AGB estimation in precision agriculture.

The variable importance analysis across our models reveals that canopy height metrics are vital
for AGB across almost all treatments, including the pooled data. This finding is consistent with
other studies, reinforcing the notion that CH is a fundamental attribute for biomass estimation
models (Michez et al., 2019; Pranga et al., 2021). The persistence of CH metrics as key variables
across various treatments underline their universal relevance and stability as biomass indicators,
even amidst the structural changes induced by different cutting frequencies.

While variable in their importance, spectral and texture features add depth to the models where
CH alone might not be sufficient, particularly in capturing the nuanced biological responses within
the grassland ecosystem. For instance, the inclusion of NDVI addresses the vitality of the
vegetation, and texture features such as GLCMhomogeneity NI €Ncapsulate the spatial heterogeneity,
which becomes increasingly relevant in less frequently cut systems. Knowing which variables are
most critical for each treatment provides a strategic foundation for model refinement, ensuring that
future models are scientifically robust and practically applicable for enhancing precision
agriculture practices.

4.5.2 Study limitations and opportunities for improvement

Despite the promising potential shown by UAV-based data combined features techniques, several
limitations persist. The high dependency on the frequency of data acquisition and the precision of
the measurements can introduce variability in the estimation accuracy. The time-sensitive nature
of UAV flights, influenced by weather conditions and logistical constraints, also poses challenges
in obtaining consistent datasets over extended periods.

The diversity of management strategies and the unique characteristics of wet grasslands also
lead to variability in the UAV-derived canopy height measurements. This is consistent with
previous studies which showed that different grassland management practices, such as varying
cutting frequencies, can significantly alter canopy structure and thus the UAV's ability to capture
height accurately (Lussem, Schellberg and Bareth, 2020). Our findings indicate that the lower R?
values for the UAV-derived canopy height and ground reference data were predominantly observed
within the four cut-system treatment, which typically exhibit reduced height due to more frequent
harvesting. This observation aligns with prior research indicating that photogrammetric canopy
height models provide more accurate height estimates during later growth stages but are less
accurate at the beginning of the growth, when the grass is short and the canopy is still sparse
(Viljanen et al., 2018; Karila et al., 2022).

Our research was further challenged by the inherent variability of the site's terrain, including
fluctuations in ground elevation, the presence of molehills, and uneven groundwater levels.
Coupled with the diversity in plant communities and instances of lodging in some treatment areas,
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these factors added layers of complexity to our data collection efforts.

In addition, interpreting the UAV-derived data required careful consideration of the complex
ecological processes occurring in grasslands. The dynamic nature of these ecosystems, shaped by
management practices such as frequency of cutting, demanded sophisticated analysis techniques
capable of adapting to these changing conditions.

4.6 Conclusion

Our study has demonstrated the effectiveness of integrating UAV-derived features for estimating
aboveground biomass (AGB) in heterogeneous wet grasslands. The developed prediction models
accurately estimated biomass in this complex system across two growing seasons, showing
differences in performance between the cutting systems. The models performed best in the most
intensively managed systems, and provided reliable estimates even in less managed systems. Our
results showed that the developed models performed comparably than those reported in studies
conducted in more homogeneous and controlled environments, such as field trials.

The integration of structural and spectral data, particularly canopy height, significantly
improved the prediction accuracy compared to single-feature models. Both RF (Random Forest)
and PLS (Partial Least Squares) algorithms demonstrated enhanced performance with the
integration of these features, although RF showed slightly better results in some instances. This
integration allowed us to capture the small-scale heterogeneities often missed by traditional
methods, providing a more detailed and accurate assessment of biomass.

Key variables identified in our analysis, such as canopy height features, were crucial for
accurate biomass estimation. Texture features were especially valuable in models where spatial
heterogeneity was a significant factor, such as in the most frequent cutting regimes. These features
provided additional layers of data that improved the overall precision of biomass estimates.
Therefore, texture analysis is highly recommended for scenarios with high spatial variability within
grassland vegetation to enhance model accuracy.

This study represents a significant advancement in grassland ecosystem monitoring,
demonstrating the performance of different methods that synergizes diverse UAV-derived features.
To advance the potential of UAV-derived data in grassland ecosystem assessments, future research
should focus on refining data processing algorithms to enhance the accuracy of feature extraction,
such as machine learning techniques for better segmentation and classification of vegetation types,
and improved photogrammetric methods for more accurate canopy height models. There is also a
need to expand the dataset to include more fields and multi-year data. This expansion would enable
testing the model's effectiveness in different grassland environments and refine it for broader
applications, ensuring its robustness and reliability across various ecological conditions.
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Abstract

Wet grasslands are crucial components of terrestrial ecosystems, known for their biodiversity and
provision of ecosystem services such as flood attenuation and carbon sequestration. Given their
ecological significance, monitoring biodiversity within these landscapes is of utmost importance
for effective conservation and management strategies. This study, conducted in a wet grassland of
Brandenburg, Germany, utilized unmanned aerial vehicles (UAVS) to facilitate the estimation of
species richness by the integration of remotely sensed canopy features such as canopy height (CH),
spectral data (Vegetation Indices, VI), and texture features (Gray-Level Co-occurrence Matrix,
GLCM) using two machine learning methods (Partial Least Square regression (PLS) and Random
Forest (RF)). Data was collected over two growing seasons under three different grass cutting
regimes, employing multispectral sensors to capture detailed vegetation characteristics. The
analysis revealed that the performance of the machine learning methods varied with the feature
combinations. Models combining VI and GLCM features demonstrated the highest predictive
accuracy, particularly in frequently cut grasslands, as indicated by higher R2 values (up to 0.52)
and lower root mean square errors (rRMSE as low as 34.9%). RF models generally outperformed
PLS models across different feature sets, with the CH+VI+GLCM combination yielding the best
results. These findings underscore the potential of spectral and textural data to effectively capture
the ecological dynamics of wet grasslands, providing valuable insights into biodiversity patterns.

Keywords: remote sensing, vegetation, ecological monitoring, multispectral, canopy height,
texture, agriculture digitalization
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5.1 Introduction

Wet grasslands are important yet vulnerable components of terrestrial ecosystems, playing a pivotal
role in biodiversity conservation and the provision of essential ecosystem services (Bullock and
Acreman, 2003; Bengtsson et al., 2019). Characterized by their rich species diversity, high
belowground carbon and hydrological dynamics, these landscapes serve crucial functions such as
flood attenuation, groundwater recharge, and carbon sequestration (Joyce and Wade, 1998; Fidelis,
Lyra and Pivello, 2013; Khaledi et al., 2024). Historically shaped by centuries of low-intensity
agricultural practices such as mowing and grazing, wet grasslands now face severe threats from
land-use changes, agricultural intensification, and abandonment (Joyce, 2014; Dengler et al.,
2020). The ongoing loss of these ecosystems, underscores an urgent need for effective monitoring
tools to preserve their ecological integrity (Cop, Vidrih and Hacin, 2009; Chris B Joyce, Simpson
and Casanova, 2016; Fauvel et al., 2020)

The effective conservation of wet grasslands depends on integrating agricultural benefits with
ecosystem support and regulatory functions (Tasset et al., 2019). Environmental changes caused
by agricultural management practices and alterations in groundwater levels can lead to variations
and losses in biodiversity (Schils et al., 2022; Guo et al., 2023). Considering that in wet grasslands,
plant communities serve as direct indicators of ecosystem health and services, the maintenance of
such communities is particularly critical (Rapinel et al., 2019; Wu et al., 2023). Thus, strategies
for effectively monitor species biodiversity are of vital importance in order to preserve the
ecological sustainability of these ecosystems (Dumont et al., 2012; VVan Vooren et al., 2018; Schils
etal., 2022).

Species richness serves as a direct proxy for a-diversity, which refers to the diversity within a
particular area or ecosystem and is measured by the number of species in that ecosystem (Rocchini
et al., 2021). This measure provides a clear indicator of the ecological condition and conservation
value of an ecosystem (Tian and Fu, 2022). It has long been used to inform various ecological
objectives, including productivity estimates, reserve network selections, and conservation planning
(Tilman, Wedin and Knops, 1996; Fleishman, Noss and Noon, 2006). However, measuring species
richness in the field is notoriously difficult, time-consuming, and often troubled by the need to
resolve numerous methodological issues such as determining the appropriate number of sampling
units, designing sampling strategies, and defining operational species communities (Chiarucci,
2007; Magurran, 2021). Moreover, traditional field-based methods for collecting species
information, while accurate, are costly and challenging to upscale to larger spatial extents required
for comprehensive monitoring (Lengyel et al., 2008; Fauvel et al., 2020).

Remote sensing technologies have increasingly become vital in biodiversity monitoring and
species conservation, primarily due to their ability to provide a continuous, scalable source of data
that captures various aspects of biodiversity across different scales (Mairota et al., 2015; Rocchini
et al., 2021; Chang, 2023). This is particularly advantageous where field-based data collection is
challenged by scale, cost, and accessibility (Palmer et al., 2002; Kamali et al., 2024). Among
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remote sensing tools, unmanned aerial vehicles (UAVSs) stand out by offering high-resolution data
at the leaf and canopy levels, which greatly enhances the potential for accurate mapping of plant
diversity in herbaceous communities (Rossi et al., 2022). UAVs also overcome the issue of cloud
cover that usually limits satellite monitoring in highly overcast conditions.

Although remote sensing has become an essential tool for biodiversity monitoring, its
application in grasslands remains less explored compared to crops and forests (Gholizadeh et al.,
2019; Thornley et al., 2023). Wet grasslands, specifically, present unique challenges due to their
hydrologic regimes and varied soil compositions, leading to significant variability in plant growth
forms (Taddeo, Dronova and Depsky, 2019; Sun et al., 2024). The dense and variable vegetation,
along with background factors such as soil, water, shadow, and litter, can interfere with spectral
signals, increasing the uncertainty of remote sensed biodiversity assessments (Gholizadeh et al.,
2019; Taddeo, Dronova and Harris, 2021). This complexity makes it difficult to accurately reflect
local plant diversity, emphasizing the need for advanced remote sensing techniques specific to
these ecosystems (Imran et al., 2021; Rossi et al., 2021).

Recent methods to estimating plant biodiversity using remote sensing primarily focus on
spectral data (Thornley et al., 2023; Sun et al., 2024). Because of its simple concept, the Spectral
Variation Hypothesis (SVH) method has been particularly investigated in recent years across
various ecosystems (Chitale, Behera and Roy, 2019; Rocchini et al., 2021). The SVH method
presumes that spatial heterogeneity captured in spectral data correlates with variations in
environmental and biological diversity (Thornley et al., 2023). This hypothesis suggests that more
heterogeneous habitats typically support a greater diversity of species (Rocchini et al., 2021).
However, there are significant challenges in applying SVH to estimate species richness. The
accuracy of these estimates can be undermined by the complexity of the community, the presence
of non-photosynthetic elements, and variations in canopy shadow patterns that may alter the
observed spectral diversity (Schweiger et al., 2015; Conti et al., 2021).

To fully exploit the extensive details contained in remote sensing images, novel information
retrieval methods need to expand beyond spectral features and incorporate spatial characteristics
such as texture (Zhang et al., 2020) and structural diversity (LaRue et al., 2023). Texture metrics,
for example, can be used as proxies for habitat heterogeneity (Hall-Beyer, 2017) since it allows
for the distinction between more homogeneous landscapes (associated with lower species richness)
and spectrally heterogeneous areas (indicating high species richness) (Wood et al., 2012).

In addition to spectral and texture features, structural diversity metrics can be a potential
feature for enhancing biodiversity estimates. The Height Variation Hypothesis (HVH) suggest that
greater vertical structure complexity increases biodiversity by providing more sub-habitats and
niches (Torresani et al., 2020). While extensively explored in forests, this approach remains
underutilized in grasslands (Tamburlin et al., 2021; LaRue et al., 2023). In grasslands, canopy
height has traditionally been studied for biomass estimation (Batistoti et al., 2019; Bazzo et al.,
2023), but it can also indicate species diversity due to significant variability in plant sizes and
growth forms, including grasses, herbaceous species, and small shrubs (Petermann and Buzhdygan,

87



CHAPTER V

2021). Wet grasslands, specially, with their distinct hydrologic regimes and soil compositions,
allow plants to exhibit variability in growth forms and canopy structures (Taddeo, Dronova and
Harris, 2021). By capturing the three-dimensional structure of vegetation, remote sensing can
provide a more comprehensive understanding of plant diversity in these ecosystems.

Recent studies suggest that the combination of multiple independent variables —such as
spectral, texture, and canopy height metrics—can significantly enhance the accuracy of
biodiversity estimates compared to models relying on a single type of data (Gholizadeh et al., 2018;
Taddeo, Dronova and Harris, 2021; Fu et al., 2024; Sun et al., 2024). This improvement is
attributed to the complementary information provided by these variables, which collectively
capture nuanced differences in plant biodiversity that may be influenced by factors such as early
successional stages or changes in plant composition resulting from various management practice.
Despite the potential of combining these metrics, to our knowledge, no previous studies have
concurrently utilized spectral, texture, and canopy height data to estimate biodiversity in wet
grasslands. Our work addresses this gap by exploring the synergistic effects of these diverse data
sources, aiming to develop and validate a robust and estimation model for plant diversity in these
complex ecosystems.

To overcome the challenge of integrating multiple variables for biodiversity indicators using
remote sensing data, machine learning provides an effective approach (Muro et al., 2022; Chang,
2023). Machine learning algorithms are especially useful for handling large datasets and
identifying complex relationships between distinct variables (Holloway and Mengersen, 2018;
Morais et al., 2021). This capability is particularly valuable when incorporating diverse data types
such as spectral, texture, and canopy height metrics. Two algorithms have been widely used in
agroecosystem monitoring: Random Forest (RF) and Partial Least Squares (PLS) regression. RF
has been widely used in ecological and remote sensing studies due to its robustness in managing
large datasets with numerous predictors and its ability to model complex interactions, providing
reliable estimates (Belgiu and Dragut, 2016; Viljanen et al., 2018). PLS regression, on the other
hand, helps in dimensionality reduction and is effective in dealing with multicollinearity, thereby
enhancing the interpretability of the model (Wachendorf, Fricke and Mdckel, 2018; Pranga et al.,
2021).

This study aims to develop and evaluate different data-driven models for estimating plant
biodiversity in a managed wet grassland using diverse data sources (spectral, textural and
structural) and two machine learning techniques (RF and PLS). To optimize the species-richness
assessment, we compare the prediction accuracy and identify the importance of the different
features depending on the cutting system and the ML model. We finally apply the optimized
methods to generate species richness maps for wet grasslands, providing insights into the strengths
and limitations of our approach in accurately estimating plant biodiversity.
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5.2 Material and methods

5.2.1 Study site and experimental design

The study area is situated approximately 48 kilometers northwest of Berlin, close to Paulinenaue
village (52°41'28" N, 12°44'16" E), in Brandenburg, Germany (Fig. 5.1a). The research was
conducted on a 1.3-hectare area within the "Havelldndisches Luch”, a peatland complex
characterized by shallow drained peat soils (see Fig. 5.1Db).
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Figure 5.1. (a) Study area located in the federal state Brandenburg, Germany and (b) satellite image
of the study area in from Google Earth Pro, and (c) design of the field experiment divided into six
vegetation zones, three cutting treatments and 108 sampling points.
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The peat soil profiles with varying thickness, ranging from 0.5 to 2.0 meters, with the topsoil
experiencing substantial degradation due to long-term drainage. Beneath the topsoil, a significant
subsoil layer comprises alluvial sand strata, reaching depths up to 12 meters. The climate in this
area is classified as humid continental with warm summer, with an average annual temperature of
9.2°C, and annual precipitation averaging 530 mm (Pohl et al., 2015).

The site was initially sowed in 2013 with a grass mixture dominated by Festuca arundinacea.
On August 14, 2018, reseeding was performed using Lolium perenne seeds at a rate of
approximately 20 kilograms per hectare. Fertilization practices were carefully managed to meet the
nutrient requirements of the site. PK fertilization, including triple superphosphate and potassium-
magnesium sulfate, was applied each year in April to compensate for nutrient depletion from plant
uptake and soil processes. Additionally, N fertilization using ammonium sulfate was implemented
based on the specific nutrient requirements associated with the fen's ecological characteristics and
the observed nutrient removal rates from previous harvests.

The study site was divided into six vegetation zones based on the dominant grass species
composition (Figure 5.1c). In May 2020, two vegetation samplings following the Braun-Blanquet
method were carried out in each vegetation area (Braun-Blanquet, 1932). According to this,
Festuca arundinacea, Holcus lanatus, Dactylis glomerata, Elymus repens and Lolium perenne
dominate the vegetation zone one. In vegetation zone two Elymus repens and Phalaris arundinacea
form the main part of the total vegetation in the southern area. In the northern area Phleum pratense,
Holcus lanatus and Poa trivialis occur accompanying a higher species richness. Vegetation zone
three is dominated by Festuca arundinacea, Holcus lanatus and Elymus repens. In vegetation zone
four Festuca arundinacea, Phleum pratense, Poa pratensis and Elymus repens dominate. The
vegetation zone five is mainly composed of Phalaris arundinacea, Poa trivialis, Elymus repens
and Alopecurus geniculatus. In the vegetation zone six Festuca arundinacea, Poa pratensis and
Elymus repens dominate. Towards the south the abundance of Phalaris arundinacea and Phleum
pratense increase.

To assess the impact of growth height and maturity stage, the site was further divided into
three strips with an east-west orientation, each 16 meters wide and 200 meters long. These strips
were subjected to different cutting frequencies to represent the most typical farmers practice and
thus enabling diverse growth stages and maturity levels in the grassland vegetation. Treatments are
summarized in Tab. 1, where treatment one involved two cuts for strip one, the first at peak maturity
in late June/early July and a second in early/mid-September. Treatment two for strip two had three
cuts, first in mid-June, second at the end of July/early August, and third in early/mid-September,
which coincides with three cuts of strip three. Treatment three's strip had four cuts between mid-
May and mid-September at four to six-week intervals, timed according to grass phenology and soil
moisture-related trafficability for the harvesting machine.

Overall, the study encompassed 108 sampling points, divided into 36 plots per treatment.
Throughout the two-year study period, field measurements were synchronized with the cutting
events.
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5.2.2 Data collection

In order to obtain essential reference data for our analysis, we conducted comprehensive field
measurements in 2022 and 2023. The data collection involved two primary levels: UAV image
collection and vegetation composition survey. The specific dates and the number of sampling
points for each cutting system are outlined in Table 5.1.

Table 5.1. Days on which field measurements were conducted, along with the corresponding
number of samples and plots.

Cutting systems Number of plots investigated
Harvest frequency for vegetation survey per date
Year of date Two- Three- Four- (n)
collection cut cut cut
18 May X 18
2022 17 Jun X X X 54
03 Aug X X 36
14 Sep X X X 53
16 May X 35
07 Jun X X 72
2023 21 Jun X 18
10 Aug X X 36
20 Sep X X X 54
Total number of samples Ntotal= 376

per treatment

5.2.2.1 UAV data collection

We utilized the DJI P4 Multispectral drone for data collection. This UAV is equipped with a
multispectral camera capable of capturing data in five narrow spectral bands (Red, Green, Blue,
NIR, and RedEdge), and an RGB camera for conventional visible imagery. During the course of
this research, the drone was flown at an altitude of 37 meters above ground level, resulting in a
resolution of two centimeters. The image overlap was approximately 80 % forward and 60 %
sideward to ensure comprehensive coverage. Camera settings were adjusted to capture images at a
rate of two frames per second, with fixed aperture and exposure settings tailored to the lighting
conditions at the time of each flight. Consequently, the aperture and exposure settings varied
between different acquisition dates. Eleven ground control points (GCPs) were evenly distributed
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across the experimental site to ensure precise geo-referencing, with their positions fixed throughout
all growth seasons. The coordinates of the GCPs' centers were determined using a global navigation
satellite system receiver (Viva GNSS GS 10, Leica Geosystems AG, Switzerland), with an
accuracy of 0.3 cm in the horizontal direction. We conducted nine flights (four in the first year and
five in the second year), aligning them with compatible dates corresponding to the reference field
data collection (Table 1). A bare-ground model was also generated during a dedicated flight
conducted on September 30, 2022.

5.2.2.2 Vegetation composition survey

For each field campaign vegetation surveys of the plots with a size of 1.5 meters by 1.5 meters
were carried out. Both the total cover of all plants as a percentage of total ground area and the cover
of the individual layers as well as the maximum and average plant heights were recorded. The
number of plant species and their cover-abundance were recorded in each layer applying the scale
of Luthardt et al. (2017), according to Wilmanns (1989) and Londo (1976).

Figure 5.2 presents the timeline and workflow for UAV data collection and vegetation
composition surveys conducted across different management systems during the study period.
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Figure 5.2. Timeline and workflow of UAV data collection, vegetation composition surveys, and
cutting events for different management systems (TO1: Two-cut system, T02: Three-cut system,
TO03: Four-cut system) across the study period (2022-2023).

5.2.3 Image processing

The acquired images were processed using Agisoft PhotoScan v.1.3, a Structure-from-Motion
(SfM) software developed by Agisoft Ltd. in St. Petersburg, Russia. The first step in image data
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processing involves the initial image alignment. During this phase, the acquired images were
subjected to a process that established their relative positions and orientations within a three-
dimensional space. To ensure the accuracy of the data and its precise alignment with real-world
coordinates, ground control points (GCPs) were placed in the images. These GCPs, positioned at
known locations within the experimental site, served as reference points for georeferencing. The
images were then adjusted based on the GCPs' spatial information. Next, the optimized cameras
command was selected. Subsequently, the image alignment process was executed with a ‘high'
quality setting to maximize the precision of the alignment. The outcome of this step was the
generation of a dense point cloud representing the 3-D structure of the vegetation within the study
area. In this process, we applied 'high' quality settings and 'mild’ depth filtering to preserve fine
details of the grassland vegetation, as recommended by Viljanen et al. (2018). The datasets from
the multi-spectral camera were then radiometrically calibrated by the calibrate reflectance function
using the calibration factors of the irradiance sensor and the gray reference panel. A DSM was
generated from the dense point cloud and exported as a TIFF file. The model obtained had a spatial
resolution of two centimeters per pixel horizontally.

5.2.4 Features extraction from the remote sensing dataset

For each field data collection event, we created a polygonal shape file for the plot sample area.
These shape files were then used to extract representative structural and spectral features from each
plot. We conducted all data extraction and processing using R statistical software version 4.3.1,
utilizing the ‘raster’ and ‘sf” packages.

5.2.4.1 Canopy height features

For each sampling date, we generated a base Digital Surface Model (DSM). The UAV-based
canopy height metrics were derived by subtracting the Digital Terrain Model (DTM), obtained
from aerial imagery of the 'bare ground' after harvest, from the DSM (DSM - DTM). It is important
to note that in our study 'bare ground' refers to the field condition after harvest, where grass stubbles
remain. These remaining stubbles are a common residue in agricultural practices. We extracted the
following metrics: mean, minimum, maximum, standard deviation, 90th, 75th, 50th (median), and
25th quartiles (CHmean, CHmin, CHmax, CHsd, CHgg0, CHq75, CHgso, CHq2s, respectively).

5.2.4.2 Vegetation indices

We computed a total of 16 vegetation indices (V1) using the spectral bands from the UAV
multispectral sensor. These indices were selected based on their characterization of biochemical
and structural traits of vegetation in order to be comparable to existing studies. Spectral features
for each plot were extracted using the plot shape files. Table 5.2 provides a list of the 16 Vs, based
on the visible and near-infrared regions.
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Table 5.2. Vegetation indices derived from the visible-to-near-infrared spectral region.

Vegetation Index

Equation

Blue Normalized Difference Vegetation Index
(Yang et al., 2004)

Canopy Chlorophyll Concentration Index
(Jago, Cutler and Curran, 1999)

Chlorophyll Vegetation Index (Vincini, Frazzi
and D’ Alessio, 2008)

Enhanced Vegetation Index (Huete et al.,
1997)

Excess Green (M. Woebbecke et al., 1995)

Green Chlorophyll Index (Gitelson, Gritz and
Merzlyak, 2003)

Green Normalized Difference Vegetation
Index (Gitelson, Kaufman and Merzlyak,
1996)

Modified Chlorophyll Absorption in
Reflectance Index (Daughtry et al., 2000)

Modified Soil-Adjusted Vegetation Index (Qi
etal., 1994)

Normalized Difference Red Edge (Barnes et
al., 2000)

Normalized Difference Vegetation Index
(Rouse et al., 1973)

Normalized Green Intensity (M. Woebbecke
etal., 1995)

Normalized Green Red Difference Index
(Tucker, 1979)

Optimization Soil-Adjusted Vegetation Index
(Rondeaux, Steven and Baret, 1996)

Renormalized Difference Vegetation Index
(Roujean and Breon, 1995)

Simple Ratio (Jordan, 1969)

MSAVI =

(NIR — Blue)
(NIR + Blue)

((NIR — RedEdge))
(NIR + RedEdge)

BNDVI =

CCCI = NDVI
vl NIR Red
= X
Green Green
NIR — Red
EVI =25x%

NIR + 6 Red — 7.5 Blue + 1
ExG = 2 Green — Red — Blue

NIR
GCI = ( ) -1
Green

NIR — Green
NIR + Green

GNDVI =

MCARI = [((RedEdge — Red) — 0.2)

X (RedEdge — Green)] X (W>
Red
2NIR+1— \/(2NIR+ 1)2 —8 x (NIR — Red)
2
NDRE — (NIR — RedEdge)
(NIR + RedEdge)
NIR — Red
NDVI'= NIR + Red
Green
NGT= Red + Green + Blue
NGRD] — (Green — Red)
(Green + Red)
NIR — Red
OSAVI = NIR+ Red + 0.16
RDVI = NIR — Red
" VNIR + Red
NIR
= Red
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5.2.4.3 Texture features

Texture features were extracted from multispectral (MS) orthomosaic using the R package
“glem” (Gray-Level Co-occurrence Matrix). We calculated seven widely recognized texture
parameters that assess the spatial patterns and variability within the image: contrast, correlation,
entropy, homogeneity, dissimilarity, second-moment, variance, and mean (GLCMcontrast,
GLCMentropy, GLCMhomogeneity, GLCMdissimiIarity, GLCMsecond-moment, GLCMvariance, and GLCMmean,
respectively).

5.2.5 Model development and statistical analysis

In this study, we used UAV-derived canopy height (CH), spectral data (VIs), and texture features
(GLCM), along with their combinations, to predict species count on a plot-by-plot basis. We
explored seven different combinations of these features. Initially, models were developed using
single feature classes: 1. CH, 2. VI, 3. GLCM. Subsequently, combinations of structural (canopy
height), spectral, and texture data were integrated into four additional models: 4. CH+VI, 5.
CH+GLCM, 6. VI+GLCM, and 7. CH+VI+GLCM. Table 5.3 lists the feature sets used in the
analysis. Statistical analyses were conducted using the R software, with the “caret” package
selected for its robust modeling capabilities, including cross-validation procedures and suitability
for the machine learning algorithms employed in this research.

Table 5.3. Detailed description of feature sets with corresponding total number of features for
Canopy Height Model, Vegetation Indices, and GLCM texture parameters.

Total Number of

Name Description Features Included
Features
CH Canopy Height Model CHmean, CHmin, CHmax, CHqgo, 8
CHgzs, CHgso, CHgzs, CHsa
VI V ion indi isibl
ege_tatlon indices visible to See Table 4 16
near-infrared spectrum
GLCM GLCM texture features GLCMcontrast, GLCMentropy,
parameters for each image GLCMhomogeneity GLCMmean 35
band GLCMdissimilarity GL CMsecond-moment

To evaluate the predictive capabilities of the extracted features, we utilized two machine
learning techniques: Random Forest (RF) and Partial Least Squares regression (PLS). These non-
parametric methods were chosen due to their proven effectiveness in handling the complex nature
of our dataset, aligning with methodologies validated in similar studies.

95



CHAPTER V

5.2.5.1 Cross-validation

In our research, we applied a nested cross-validation (CV) approach, partitioning the data into three
folds for the outer loop and three folds for the inner loop, chosen through a random splitting process
and following a similar methodology used by Pranga et al.( 2021). The inner loop’s primary
function was to calibrate the hyperparameter values and select the optimal model, while the outer
loop was dedicated to assessing the model’s predictive capabilities for different dataset folds. We
repeated this process five times to mitigate the impact of random variation. The nested CV protocol
and parameter tuning were executed in R, employing the ‘caret’ package.

Model performance was assessed using statistical metrics: Coefficient of Determination (R?),
absolute and relative Root Mean Square Error, RMSE and rRMSE, respectively. ANOVAS,
followed by Tukey’s post hoc tests, were performed to identify whether a statistically significant
difference exists between the R?, rRMSE, and RMSE of compared models (datasets). We selected
a significance level of a = 0.05.

5.2.5.2 Hyper-parameter tuning

Hyper-parameter tuning was performed in both machine learning models (RF and PLS) to achieve
optimal performance as recommended in previous literature. To this end, we conducted a
systematic optimization of the hyper-parameters for employing a grid search approach, a
systematic method of working through multiple combinations of hyper-parameter values to find
the best solution for our models. This involves creating a ‘grid’ of all possible value combinations
for the hyper-parameters we want to tune and evaluating the model performance for each
combination to identify the most effective settings.

For the RF algorithm, we adjusted two key hyper-parameters: 'num.trees’, which is the number
of trees in the forest, and 'nodesize’, the minimum size of the terminal nodes of the trees. The 'mtry’
parameter, which determines the number of variables randomly sampled as candidates at each split,
was set to its default value, which is the square root of the number of features in the dataset. The
grid search combined 'num.trees' parameter values of 50,100, 250, and 500 and nodesize values of
1 to 5, resulting in 20 combinations.

For the PLS method, we tuned the number of components ('ncomp’) used in the model,
considering values from 1 to the maximum number of possible features. For example, in our model
with 59 features (7. CH + VI + GLCM), the 'ncomp' was tuned from 2 up to 59 to determine the
most effective number of components to use.

5.2.5.3 Variable importance

A conditional variable importance technique was implemented to interpret which predictor
variables were relevant while generating a RF and PLS model. The higher the importance score,
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the more influential the predictor variable is.

The relative importance of the predictor variables for each treatment and all data sets using RF
and PLS models was calculated based on both algorithms' built-in feature importance measures,
which are included in the ‘caret’ package of R, enabling the most important variables in each model
run to be interpreted.

For the RF model, the importance of each predictor was determined based on the increase in
mean square error when the values of the variable were permuted across the out-of-bag samples.
This metric quantifies the extent to which the model's predictive accuracy decreases when the
variable's information is obscured, thus highlighting the variables that the model relies on most.

In the PLS model, feature importance is less straightforward to assess than in tree-based
methods like RF. However, we can evaluate the importance of the variables by examining the
weights and coefficients assigned to each predictor in the PLS components, which contribute to the
model’s predictive capabilities. Variables with more significant absolute coefficients in the PLS
model are considered more important as they significantly impact the response variable.

The workflow of the model development process, including feature integration, machine
learning, and performance evaluation, is illustrated in Figure 5.3.

Model Development Statistical Analysis
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Figure 5.3. Workflow of the model development and statistical analysis process. The diagram
illustrates the steps involved, from UAV data processing using individual feature classes (canopy
height, vegetation indices, and texture) to the integration of these features. Machine learning
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algorithms (Random Forest and Partial Least Squares) were applied, followed by cross-validation,
hyperparameter tuning, and evaluation of model performance through R? and rRMSE metrics.

5.3 Results

5.3.1 Average species richness by vegetation zone, cutting system and date

In 2022, species richness varied across the different cutting systems and vegetation zones. As
shown in Figure 5.4a, the two-cut and four-cut systems generally exhibited higher species richness
compared to the three-cut system.
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Figure 5.4. Species richness measured in the different cutting systems within six vegetation zones
during years a) 2022 and b) 2023.
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There were also variations between vegetation zones and dates. For instance, in May 2022,
Zones 1 and 3 had higher species richness across all cutting systems, while Zones 5 and 6
consistently showed lower species richness. By June and August, species richness increased
slightly in most zones, with peaks typically observed in the early months of the growing season.
This trend continued in 2023 (Figure 5.4b), where overall species richness was higher across all
cutting systems and zones compared to 2022. The four-cut system showed the highest species
richness, particularly in Zones 1 and 6, during the early months of May and June.

The annual mean species richness across the six vegetation zones for each cutting system is
summarized in Table 5.4. The four-cut system generally supported higher species richness,
particularly in Zones 1 and 6, with averages of 12.8 and 9.6 species, respectively (Table 5.4). The
three-cut system also showed improvements, with increases in Zones 1 and 6 compared to the
previous year. Zone 5 remained the area with the lowest species richness, although it also
experienced an increase compared to 2022.

Table 5.4. Annual mean species richness measured in six vegetation zones and three cutting
systems during the study period.

Year Cutting System Zone 1 Zone 2 Zone 3 Zone4  Zone5  Zoneb6

2022 Two-cut 8.1 4.0 7.5 6.8 3.7 3.6
Three-cut 7.2 4.7 7.8 6.2 3.0 4.3
Four-cut 8.4 5.1 9.5 6.5 4.8 7.6

2023 Two-cut 9.8 4.8 104 8.0 3.8 4.9
Three-cut 11.8 5.9 10.9 8.2 4.4 6.2
Four-cut 12.8 6.8 12.0 8.5 8.1 9.6

5.3.2 Comparative evaluation of feature class performance for species richness
across different cutting systems

The results were compared across three distinct grass cutting treatments and pooled data to discern
the influence of management practices on the predictive capability of the models. Box plots of R2
and rRMSE (Figures 5.5 and 5.6), and mean values (Table C1, supplementary material)
underscored significant differences within and between models and feature classes.

The results suggest that estimation of species richness pivoted towards texture and spectral
features. This was even more obvious in the PLS model of the two-cut system, where models based
on GLCM and VI established themselves with more robust correlations to species richness (Figs.
5.5a and 5.6a). This suggests that for predicting species richness, even with the prediction accuracy
relatively low for all models, textural and spectral aspects of the data can be more informative than
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structural height alone.

Model performances showed variable results among different cutting systems. The RF model
revealed a subtle trend: as cutting frequency increased, the predictive relevance of CH diminished,
highlighting texture and spectral indices as more consistent indicators of species diversity. Within
the two-cut system, models based on VI and GLCM or their combination exhibited the highest R2
values of 0.49 and 0.39, respectively, suggesting these features' better capability in capturing
species richness (Fig. 5.5a, Table C1, supplementary material). However, with increasing cutting
frequency, combining features from VI and GLCM led to better results. For the three-cut system,
the V1 features remained the best performer in the RF model, with an R? of 0.36 (Fig. 5.5b, Table
C1, supplementary material) and an rRMSE of 36.3 % (Fig. 5.6b, Table C1, supplementary
material). The CH+VI+GLCM combination, however, showed the lowest rRMSE of 37.50 %,
suggesting an enhanced precision. The PLS model presented similar results, with CH+VI+GLCM
achieving the highest R2 of 0.42 and an rRMSE of 37.5 %. A similar pattern was observed in the
four-cut system, where the CH+VI+GLCM combination stood out for both RF and PLS models,
with R2 values of 0.32 and 0.34 (Fig. 5.5¢, Table C1, supplementary material) and rRMSE values
of 33,0 % and 39,6 %, respectively (Fig. 5.6c, Table C1, supplementary material). For the
combined data from all treatments, the CH+VI+GLCM set in the RF model displayed high
accuracy with an R? of 0.30 (Fig. 5.5d, Table C1, supplementary material) and a favorable rRMSE
of 36,5 % (Fig. 5.6d, Table C1, supplementary material). The PLS model also produced solid
results for the same feature combination, yielding an R2 of 0.26 and an rRMSE of 38.7 % (Table
C1, supplementary material).
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Figure 5.5. Box-dot plots for R2 values for species richness prediction, using two distinct machine
learning algorithms: Partial Least Squares Regression (PLS) and Random Forest (RF). The models
incorporate various feature classes, including Canopy Height (CH), Vegetation Indices (VI), and
texture features (GLCM), applied across different grassland management treatments: two-cut (a),
three-cut (b), and four-cut systems (c), as well as a pooled data analysis combining all treatments
(d). Uppercase letters compare feature class performance within the same model: identical letters
imply no significant differences while differing letters signify significant differences. Lowercase
letters evaluate differences between the models for each feature class: identical letters indicate no
significant differences, and varying letters denote significant differences.

In the PLS model, VI alone appeared as the stronger predictor with R2 of 0.48 and a comparable
rRMSE of 35.8 % (Table C1, supplementary material). The aggregation of all three features
(CH+VI+GLCM) slightly increased R? to 0.52 while maintaining a similar rRMSE, underscoring
the integrated approach’s effectiveness.
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Figure 5.6. Box-dot plots for rRMSE (%) values for species richness prediction, using two distinct
machine learning algorithms: Partial Least Squares Regression (PLS) and Random Forest (RF).
The models incorporate various feature classes, including Canopy Height (CH), Vegetation Indices
(VI), and texture features (GLCM), applied across different grassland management treatments:
two-cut (a), three-cut (b), and four-cut systems (c), as well as a pooled data analysis combining all
treatments (d). Uppercase letters compare feature class performance within the same model:
identical letters imply no significant differences while differing letters signify significant
differences. Lowercase letters evaluate differences between the models for each feature class:
identical letters indicate no significant differences, and varying letters denote significant
differences.

5.3.3 Variable importance for species richness estimation across cutting systems

Overall, the variable importance scores for species richness estimation indicate less reliance on CH
features, especially for specific treatments (Fig. 5.7). Instead, the models demonstrate the
importance of spectral and textural features, underscoring their critical role in capturing the nuances
of species variability in grasslands subject to varying cutting frequencies. In the two-cut system,
textural features like ‘GLCMuyariance Nr* and VIs like ‘VIrpvi® and ‘VImsavi’ become more
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significant, emphasizing their predictive power in scenarios with less frequent cutting. This change
iIs further accentuated by the RF model, which demonstrates the strong significance of NIR textural
metrics - ‘GLCMmean N1R' and ‘GLCMuariance NIR” - 1N the three and four-cut systems as well as in
the pooled data. These textural factors have high importance ratings, illustrating how species
diversity and NIR texture are closely related in complex management systems.

(a) Two-Cut System 7 Three-Curt System | Four-Cut System Pooled Data
VI_RDVI- GLCM_variance NIR _ VI_SR VI_SR _
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Figure 5.7. The relative importance of the top ten predictor variables as measured by the feature
importance metric for Partial Least Square (PLS) (a) and Random Forest (RF) (b) models
predicting species richness.

The results of the treatment-specific analysis show that in the two-cut system VIs and NIR
texture variables are more significant than CH features. This trend is consistent in higher-frequency
cut systems, where indices such as ‘VInpre’ in the four-cut system for PLS and ‘Vlecl’ in the
pooled data for RF are significant, suggesting their enhanced sensitivity to species richness under
intensive management.

5.3.4 Mapping species richness using CH, VI, and GLCM features integration for
RF and PLS models

Maps were generated for all feature combinations and collection dates; however, due to the large
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volume of data, this paper presents maps using the integration of CH, VI, and GLCM features for
the five collection dates in 2023 to illustrate the results obtained. The species richness maps for
2023, shown in Figure 8, compare the RF and PLS models.

On May 16, the RF model (Figure 5.8b) shows higher resolution and more detailed variation
in species richness compared to the PLS model (Figure 5.8a). The highest species richness is found
in zones one and six and lower species number in zones two and five, which aligns with the field
data presented in Figure 2.

On June 7, the RF model (Figure 5.8d) shows a finer distinctions in species richness across the
zones compared to the PLS model (Figure 5.8c). Zones one, three, and six show higher species
richness and zones two and five with lower values, which is consistent with the patterns seen in the
field data. Both models (Figures 5.8e and f) show an increase in species richness across most zones
by June 21, 2023. Similar with previous dates and field data, zones one, three, and six continue to
exhibit the highest species richness.

The species richness starts to decline slightly on August 10, 2023 (Figures 5.8h and g).
Consistent with the temporal decline seen in the field data, the overall pattern indicates lower
species richness in zones two and five, while zones one and six continue to exhibit higher levels of
richness. By September 20, 2023, there is a further decline in species richness towards the end of
the growing season. The RF model (Figure 5.8j) captures more nuances variations compared to the
PLS model (Figure 5.8i). Zones one and six still show relatively higher species richness, while
zones two and five remain lower. These outcomes are consistent with the end-of-season field data.
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(a) PLS - 2023.05.16 (b) RF - 2023.05.16

(e) PLS - 2023.06.21 (f) RF - 2023.06.21
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Figure 5.8. Species richness maps for 2023 using the integration of CH, VI, and GLCM features
for Random Forest (RF) and Partial Least Squares (PLS) models across five collection dates: (a, b)
May 16, (c, d) June 7, (e, f) June 21, (g, h) August 10, and (i, j) September 20.
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5.4 Discussion

5.4.1 Integrating UAV-derived data for predicting plant species richness under
different cutting systems

The application of remote sensing techniques to detect patterns in plant richness is a growing field
of study (Viedma et al., 2012; Chitale, Behera and Roy, 2019; Fauvel et al., 2020; Imran et al.,
2021; Muro et al., 2022). Our proposed method to integrate multiple UAV-derived features —
spectral, textural, and structural — has proven to be an effective approach for improving the
prediction of species richness in grasslands. While spectral data alone, such as vegetation indices
(VIs), have traditionally been used to assess plant diversity, the inclusion of texture and structural
features provides a more comprehensive view of the ecosystem’s complexity. In our study, we
observed that combining VIs with texture and structural data generally improved model accuracy
(Table C1, supplementary material) although the extent of these improvements varied depending
on the management system and the complexity of the grassland ecosystem.

For a better classification of the following discussion, it should be taken into account that the
investigated grassland can be characterized as comparatively species-poor. Furthermore, the
species numbers are within a relatively small range of 3.0-12.8 (Table 5.4). This context helps
frame the application and effectiveness of remote sensing techniques in our study.

The R? coefficients achieved in our study (Fig. 5.5) are consistent with previous studies that
have applied multispectral and hyperspectral imagery for predicting species richness or other
biodiversity indicators, such as Simpson or Shannon indices. For instance, Fauvel et al. (2020)
reported an R2 of approximately 0.4 when predicting grassland plant diversity through satellite
image time series. Aneece et al. (2017) achieved the maximum R? value of the correlation between
the optical diversity and a-diversity of 0.43 in an artificial ecosystem. Wang et al. (2018b) achieved
an R2 up to 0.58 in an artificial grassland study, while Peng et al. (2019) observed a highest R2 of
0.40 in research focused on natural grasslands. Muro et al. (2022) reported the highest Rz of 0.43
using a Deep Neural Network (DNN) approach to predict species richness in temperate grasslands
from satellite imagery.

However, direct comparisons with other studies are difficult due to significant differences in
ecosystem types, sensor technologies, and methodological approaches. For instance, the majority
of research on grasslands have focused on relatively homogeneous or artificially established plant
communities, which differ substantially in structure and complexity from natural grassland
ecosystems (Imran et al., 2021). Moreover, few studies have investigated grasslands biodiversity
estimation under different management regimes (Imran et al., 2021; Rossi et al., 2021; Muro et al.,
2022). In terms of methodology, most studies have primarily relied on spectral data, such as
individual spectral bands or VIs, with only a few exploring the potential of textural features
(Viedma et al., 2012; Cabezas, Galleguillos and Perez-Quezada, 2016; Taddeo, Dronova and
Harris, 2021). To our knowledge, no studies have evaluated structural data related to canopy height,
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for species richness estimation in grasslands, which we have incorporated in our analysis.

The combination of spectral, textural, and structural features offers distinct advantages in
capturing the complexity of grassland ecosystems. Texture features, in particular, have been shown
to quantify spatial heterogeneity, which is often linked to habitat complexity and species diversity
(Culbert et al., 2009; Cabezas, Galleguillos and Perez-Quezada, 2016). In our study, the inclusion
of texture features derived from GLCM consistently improved model performance, especially in
more intensively managed systems, and particularly when combined with VIs. For instance, in the
three-cut system, adding GLCM to VIs increased the R2 of the RF model from 0.35 to 0.43, and
reduced the rRMSE from 43.16% to 41.30%. Similarly, in the four-cut system, the R? of the RF
model increased from 0.32 to 0.40, with a corresponding rRMSE decrease from 45.55% to 43.09%.
The PLS models exhibited comparable improvements, with the R? increasing by approximately 5%
and 7% in the three- and four-cut systems, respectively.

The local variance within pixels at a defined neighborhood, induced by different cutting
frequency system treatments in our study, could be better distinguished by texture variables when
compared to spectral signature variations alone. Additionally, compared to spectral bands and Vs,
image texture can also better inhibit saturation and handle high spatial heterogeneity, especially in
the late stages of crop growth (Sibanda et al., 2017; Taddeo, Dronova and Harris, 2021). Similar
findings were reported by Cabezas et al. (2016) who observed that combining texture metrics with
spectral indices enhanced the prediction of plant richness in wetland ecosystems. Taddeo et al.
(2021) also found that integrating texture data into models of managed grasslands improved
accuracy, especially in systems where management practices induced variations in vegetation
structure.

The incorporation of structural information, such as canopy height, provided mixed results in
our study. While canopy height provided valuable information about vertical vegetation structure
in some cases, its contribution to model performance varied depending on the management regime.
Specifically, canopy height contributed most significantly in systems with lower management
intensity (e.g. two-cut systems), where vertical growth is more pronounced and contributes to
greater ecological complexity. In contrast, frequent cutting in the three-cut and four-cut systems
limited plant development, resulting in lower model performance compared to the two-cut system.
In intensively managed systems or those with low biomass variability (e.g. four-cut systems) the
addition of canopy height had lower contribution to the models’ accuracy. The reduced structural
variability in these high-frequency cutting regimes made canopy height a less reliable predictor of
species richness. This suggests that in systems where the vertical structure is relatively uniform or
where the management regime minimizes height variability, canopy height may not provide
significant additional information. In these cases, the models benefited more from the integration
of spectral indices and texture features, which became crucial for capturing the finer-scale
differences in vegetation that structural data could not distinguish.

Beyond the statistical validation, the robustness of our models can also be qualitatively
assessed through the visual interpretation of the generated maps. The predicted spatial distribution
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of species richness aligns well with the field data map delineation (Fig 5.8), indicating higher
species richness in zones one and six and lower richness in zones two and five. Such spatial insights
offer crucial practical value, allowing for more targeted monitoring of species richness across
different management regimes.

5.4.1.1 Feature class performance for RF and PLS model

In this section we compare the performance of the both modelling approaches, RF and PLS. In our
analysis of individual treatments, it was evident that management intensity significantly affects the
performance of both predictive models. Specifically, we observed the highest efficacy in model
based estimation of species richness in the two-cut system. The PLS model, employing the
CH+VI+GLCM feature class, showed an R? of 0.52 and an rRMSE of 34.9 % (Table C1,
supplementary material), as compared to the R? of 0.48 and rRMSE of 36.5% of RF for the same
feature class.

In contrast, the three-cut and four-cut systems management present a more complex scenario,
where the increased cutting frequency may lead to a homogenized canopy structure. Especially in
the four-cut system, the shorter intervals between cuts do not allow plants to fully recover and reach
distinct phenological stages, thus limiting the effectiveness of remote sensing for species
differentiation. This is consistent with the findings of Gholizadeh et al. (2020), who suggested that
removing aboveground plant tissue, such as through frequent cutting or fire, can significantly
reduce plant diversity by preventing plants from reaching their developmental peaks.

In both the three-cut and four-cut systems, the Random Forest (RF) model outperformed the
PLS model. The superior performance of the RF model is likely due to its capacity to handle the
complexity and variability introduced by frequent cutting (Belgiu and Dragut, 2016). RF's ability
to manage this variability, particularly when texture features were integrated, resulted in more
accurate species richness predictions (Cabezas, Galleguillos and Perez-Quezada, 2016).

The analysis of pooled data, which combined all management treatments, revealed a decline
in model performance, particularly for models utilizing canopy height (CH) data. This decline is
likely due to competing variables holding different levels of relevance across management
scenarios, complicating the identification of clear patterns. While the RF model performed robustly
in individual treatments, it faced challenges in the pooled data, likely due to the dilution of
treatment-specific signals that weakened the model's predictive capacity.

Similarly, PLS models, despite maintaining consistent variable importance profiles with an
emphasis on texture and spectral features, also underperformed in pooled data models compared to
individual treatments. This indicates that pooling data dilutes the signals specific to each treatment,
reducing the impact of distinct spectral and textural characteristics that are essential for predicting
species richness within each management regime.

This difference in model effectiveness emphasizes grassland ecosystems' complexity and
underscores the necessity for management-specific modeling. Our study also suggests that
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ecological responses depend on the intensity of management and characteristics of each regime.
Furthermore, our models for species richness show a temporal dependency, indicating that the
impact of spectral bands and their texture metrics may differ in response to shifts in plant
physiology. This emphasizes the dynamic nature of vegetation responses and the importance of
models that can adapt to these temporal variations, especially when incorporating multitemporal
data.

5.4.1.2 Variables’ importance for RF and PLS models

The importance of predictive variables for species richness changed across different cutting
systems. In the two-cut system, structural variables, particularly canopy height (CH) metrics,
dominate the importance rankings. Seven out of the ten most important variables in the RF model
are CH-related, indicating that the physical structure of the canopy is a strong indicator of species
diversity in these less frequently disturbed systems. For the PLS model, while CH metrics remain
important, texture and spectral features such as 'GLCMmean_nir'and 'Vimsavi' also play a significant
role, emphasizing the utility of combining different data types.

As cutting frequency increases in the three-cut system, the importance of CH variables
decreases. In the RF model, only five CH-related variables remain among the top predictors, with
spectral and texture features gaining prominence. This shift is due to the homogenization of the
canopy structure caused by more frequent cutting, making variables such as 'Vlgci' and texture
metrics from the NIR band more relevant. For the PLS model, spectral indices such as 'NDVI' and
texture features like 'GLCMissimilarity NIR' DECOME more significant.

In the four-cut system, none of the top variables in the RF model are CH-related. Instead,
texture and spectral features dominate, with variables such as 'GLCMmean_r," 'GLCMuyariance_r," and
'Vinerol' becoming crucial. These features from the Red and NIR bands capture fine-scale
variations in vegetation essential for predicting species richness in highly disturbed systems. The
PLS model similarly emphasizes texture and spectral features, with 'GLCMuyariance NIR' and
'‘GLCMcontrast R' being among the top predictors. These results suggest that as management intensity
increases, the use of multidimensional data becomes essential for accurate predictions.

Despite the differences between models and the challenge of generalizing across pooled data,
a significant factor remains constant: within the most influential texture and spectral variables for
predicting species richness, a substantial proportion is associated with the Red, Red-edge and NIR
bands. The Red (630-690 nm), Red-edge (680-740 nm) and NIR (760-900 nm) bands are well-
recognized for their ability to capture vegetation structure, consistently featuring in models
predicting species diversity (Gould, 2000). The Red-edge portion of the electromagnetic spectrum
is particularly useful because of its high sensitivity to changes in chlorophyll content, which are
often induced by disturbances such as mowing (Filella and Pefiuelas, 1994). These disturbances
can cause reductions in leaf area distribution and leaf area index (LAI), leading to variations in the
vegetation's spectral signature that are better detected by Red-edge derivatives compared to
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traditional broadband vegetation indices (Sibanda et al., 2017). In our study, the Red, Red-edge
and NIR band's ability to capture these subtle changes in vegetation could possibly explain its
consistent prominence across different management regimes.

This observation is consistent with previous studies that focused on species richness
estimation. For instance, Rocchini (2007) underscored the NIR band's significance in
differentiating plant species, as demonstrated using the QuickBird satellite. Similarly, findings by
Blanco-Sacristan et al. (2019) and Imran et al. (2021) indicated that the spectral bands in the Red
region were particularly effective in estimating biodiversity in grassland ecosystems. The
consistent importance of these spectral bands across different management regimes suggests they
are reliable indicators for remote sensing-based biodiversity assessments. Therefore, these spectral
regions are promising focal points for future research on estimating species diversity through
spectral analysis.

5.4.2 Implication for ecological monitoring and study limitations

Grasslands are increasingly vulnerable to global changes, such as altered land use, climate
variability, and shifts in disturbance regimes. Understanding how grassland biodiversity responds
to various management interventions, such as mowing and grazing, is essential for efficiently
monitoring and managing current ecological conditions. By assessing the impact of different
management practices, we could better understand the present state of grassland ecosystems and
develop more effective strategies for promoting resilience and sustainability in these landscapes.
This knowledge will support informed decision-making aimed at preserving the biodiversity and
ecological services provided by grasslands.

The species richness maps generated using the integration of CH, VI, and GLCM features not
only provided spatially detailed variations in species richness, reflecting the observed patterns in
field data across different cutting regimes, but also serve as essential tools for conservation and
management efforts. Particularly, the predicted map derived from the first data collection
demonstrated the most distinct patterns in species richness variation. This better performance is
likely due to the timing of the data acquisition, which occurred before the implementation of the
first cut, thus the signal of each species in the matured grassland canopy becomes stronger
(Zlinszky et al., 2014).

As previous discussed in this study, the vegetation at this stage is more mature, leading to more
distinct structural and spectral differences between species, which facilitates greater accuracy in
remote sensing-based species differentiation. Similarly, Lu and He (2017) and Liu et al. (2024)
reported that remote sensing imagery obtained during the peak growth season, particularly in late
spring and summer, produced higher classification accuracies for grasslands, highlighting the
importance of collecting data during these optimal growth periods. For example, Lu and He (2017)
found that June, the peak period for Canadian grasslands, provided the highest accuracy (86%) in
plant classification. Tarantino et al. (2019) also emphasized the importance of aligning remote
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sensing data acquisition with the growing seasons of specific vegetation communities, concluding
that this approach enhances the interpretation and classification of vegetation. Finally, Zlinszky et
al. (2014), stressed that data acquisition should coincide with the mature phase of the meadows,
but occur before the first mowing, to ensure that the vegetation is fully developed, allowing for
more distinct differentiation between plant species.

By aligning data collection with key phenological moments, it becomes possible to capture
clearer distinctions in vegetation zones, which are otherwise harder to discern after management
interventions. Therefore, precise timing and careful consideration of vegetation development
stages are essential to enhance the effectiveness of biodiversity monitoring and management
planning in grassland ecosystems.

Despite the demonstrated potential of integrating UAV-derived data with machine learning
models for assessing species richness in managed wet grasslands, some limitations must be
acknowledged. The complexity of the wet grassland ecosystem, marked by variable hydrological
conditions and diverse management practices, posed significant challenges for remote sensing and
modeling species richness. The fluctuating hydrological conditions, combined with the dynamic
nature of plant communities and their interactions with various ecological factors, added
complexity to the task of accurately capturing the ecological dynamics. Moreover, site-specific
factors such as varying terrain elevation, molehills, uneven groundwater levels, and lodging in
some treatment areas added further complexity in data collection and analysis. Yet, the fact that we
found comparable performance metrics to other studies demonstrated the robustness of such data-
driven models when exposed to diverse conditions. The accuracy of our estimates was highly
dependent on the frequency and precision of data acquisition. The time-sensitive nature of UAV
flights campaigns, dictated by weather conditions and logistical constraints, posed challenges for
ensuring consistent data collection across extended periods.

Another option to explore is to use hyperspectral sensors that capture a wider range of spectral
bands, allowing for the identification of more subtle variations in plant spectral signatures. These
variations could be crucial for species classification, especially in complex ecosystems such as wet
grasslands, where spectral characteristics of plants may overlap in more general multispectral
bands. For structural data, we primarily explored canopy height, which was extracted from RGB
images using SfM software. Although this approach provided useful information about vegetation
structure, the use of a LIDAR sensor could offer more detailed insights into the three-dimensional
structure of the vegetation (Coverdale and Davies, 2023).

While species richness is a common and valuable metric, it may not fully capture the
complexity of grassland ecosystems functions. Recent studies conducted by Wang et al. (2018)
and Rossi et al. (2022) suggest that incorporating additional metrics, such as species evenness and
functional traits, improve the prediction of biodiversity using remote-sensing techniques. In our
study, we provided a framework for identifying the number of species across a managed field, but
the quality of species to associate with a particular evenness and functional traits is still a work in
progress. Future research should explore the inclusion of various plant diversity indices that
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incorporate species abundance and trait diversity to improve the accuracy of remote sensing models
for biodiversity estimation.

To enhance the applicability and interpretability of our models in wet grasslands, future
research should focus on synchronizing model complexity with advanced techniques from the field
of ecological informatics. Techniques such as machine learning algorithms optimized for large,
complex ecological datasets and network-based analyses that model species-environment
interactions offer promising avenues. These methodologies will be important in improving our
understanding of the complex interactions between species, environmental conditions, and
management practices. Fully exploiting the diverse features provided by UAV-derived data—such
as spectral, textural, and structural information—offers significant benefits for biodiversity
monitoring. While integrating these features may improve model accuracy, the growing number of
features sensors may impose an operational limit for data acquisition and processing. Identifying
the key features for data-driven applications enables the optimization and development of this
approach in a parsimonious way while also providing a better monitoring and prediction more of
how various management regimes affect species richness. By refining these methods, we can
develop more effective strategies for conserving wet grasslands and ensuring their resilience in the
face of changing environmental and land-use pressures.

5.5 Conclusion

This study evaluated the potential of integrating UAV-derived canopy height (CH), spectral data
(VI), and texture features (GLCM) to predict species richness in managed wet grasslands. The
findings emphasize a shift in the importance of data types with varying management intensities.
While CH provided foundational structural insights, it was the spectral (V1) and texture features
(GLCM) that consistently played a more decisive role in predicting species richness across
different cutting regimes.

The research demonstrated that in lower frequency cutting systems, such as the two-cut
treatment, models incorporating VI and GLCM offered significantly enhanced predictive accuracy,
achieving an increase in R? from 0.48 to 0.52 and a reduction in rRMSE from 36.5% to 34.9%
compared to models that did not integrate texture and spectral features. In systems with more
frequent cuts, the integration of VI and GLCM continued to provide superior model performance,
with improvements in R? from 0.39 to 0.45 and a reduction in rRMSE from 40.7% to 37.2%,
demonstrating the importance of these features in capturing fine-scale variations.

Overall, the integrated models that combined all three types of data generally provided the best
outcomes with an average R? improvement from 0.41 to 0.48 and a decrease in rRMSE from 39.2%
to 36.5% across the cutting systems. The superior performance of integrated models that combine
multiple data types suggests that a multidimensional approach is necessary to capture the full
complexity of these ecosystems. By integrating structural, spectral, and textural data, researchers
and practitioners can develop more comprehensive models that reflect the dynamic nature of wet
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grassland. Our study helps to identify the key variables and ML models to develop this
methodology in a parsimonious way for accurate assessments of biodiversity and the impacts of
different management practices in wet grasslands.
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CHAPTER VI

6.1 General discussion

This thesis explored the application of UAV-based sensors, vegetation indices and different
advanced statistical image processing methods to enhance the estimation of aboveground biomass
and biodiversity in grasslands. The studies presented in this thesis complement each other by
addressing different aspects of UAV-based ecological monitoring. The initial review established a
baseline for the understanding of UAV methods, while subsequent studies addressed specific
challenges such as field disturbances and data integration. The final study on species richness
assessment demonstrated the broader applicability of UAV technology and image processing,
extending its relevance beyond biomass estimation. Here, we synthesize the key findings, discuss
their interactions and implications, and suggest directions for future research.

6.1.1 Challenges in UAV-based biomass estimation in grassland ecosystems

Estimating biomass in grasslands presents unique challenges not commonly encountered in
cropping systems on arable land. Crops are typically planted in uniform rows and tend to have a
relatively homogeneous structure, making biomass estimation usually less challenging. In contrast,
grasslands exhibit high spatial and temporal variability due to the presence of multiple plant species
with different growth forms, phenology stage, heights, and densities. This heterogeneity
complicates the development of accurate biomass models.

Studies such as Griner, Wachendorf and Astor (2020) and Michez et al. (2020) indicated that
species-rich and structurally diverse grasslands yield lower prediction accuracies compared to
monocultures due to their complex canopy structures and species variability. Villoslada Pecifia et
al. (2021) also demonstrated that biomass estimation models perform better in homogeneous, short-
sward grasslands compared to high-yielding areas with significant structural heterogeneity. These
findings highlight the challenge of adapting biomass models to accommodate the variability
inherent in natural and managed grasslands.

The concept of "grassland” itself is broad, encompassing a range of ecosystems from managed
pastures to natural prairies and meadows. Each type of grassland has distinct characteristics that
influence biomass estimation. For example, a homogeneous pasture, which may be dominated by
one or two grass species, can be easier to model than a heterogeneous natural grassland with a
diverse mix of species and varying environmental conditions. Moreover, cultivated grasslands or
managed pastures typically show more uniformity and controlled conditions, facilitating easier
biomass estimation. In contrast, natural or permanent grasslands, with their complex interactions
and biodiversity, pose significant challenges for accurate biomass modeling. These systems are
influenced by numerous factors such as varying topography, soil types, and climatic conditions, all
of which must be accounted for in the models.

While UAV technology for biomass estimation aims to reduce the dependency on continuous
field sampling, reference field data collection remains an important component for calibrating and
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validating UAV-based biomass models. High-quality field reference data guarantees the reliability
of UAV-derived biomass estimates. However, collecting this data in grasslands is challenging due
to the often inaccessible and uneven terrain, dense vegetation, and the need for temporal
consistency to capture changes over time. To overcome these logistical challenges, effective field
reference data requires meticulous planning and execution.

Despite these inherent challenges, our review in the Chapter Il has identified a general
workflow commonly employed in UAV-based biomass estimation for grasslands. This workflow,
illustrated in Figure 2.3, involves several key steps: data acquisition using UAVS, pre-processing
of the collected data, model development, and subsequent validation against field reference data.
This systematic approach helps in standardizing the estimation process, though the specifics may
vary based on the type of grassland being studied.

According to the results of or review paper (Chapter Il) the primary methods for grassland
biomass estimation using UAV data rely on structural and spectral information. Structural data
often involve the use of Canopy Height Models (CHM). CHMs are advantageous due to their
relatively simple processing requirements and the ability to use RGB sensors, which are more
accessible and cost-effective than other sensor types (Possoch et al., 2016). However, the simplicity
of CHMs comes with limitations (Bareth et al., 2015). They rely on the assumption that there is a
direct relationship between canopy height and biomass, which may not always hold true
(Kimmerer, Noack and Bauer, 2023). Factors such as species diversity, vegetation structure, and
field disturbances can affect this relationship, leading to potential inaccuracies in biomass
estimation (Viljanen et al., 2018; Dos Reis et al., 2020).

To address these challenges, in the third chapter of this thesis, we investigated how common
field disturbances, such as lodging and mole hills, can affect the canopy height-biomass
relationship. The study found that areas affected by lodging showed discrepancies in canopy height
measurements, resulting in potential biases in biomass estimates. These results have important
implications for ecological monitoring and grassland management since lodging can happen
frequently and irregularly, requiring robust models that can account for such variations (Chauhan
etal., 2019; Tan et al., 2021; X. Li et al., 2021).

Previous studies have highlighted the influence of lodging on biomass estimation models.
Bendig et al. (2014) emphasized that lodging in barley fields reduces the accuracy of CHMs due
to the flattened canopy. Kiimmerer, Noack and Bauer (2023) also noted that conventional CHM
methods often overestimate canopy height in mixed or lodged stands, as only the tallest parts of
plants are considered, ignoring gaps and non-apical parts of the canopy. Similarly, Chao et al.
(2019) identified lodging in late growth stages as a significant limitation, leading to reduced crop
height measurements and weakening the relationship between biomass and plant height.

Incorporating disturbance effects into the calibration and validation processes of biomass
models is crucial (Zhang et al. 2023; Chauhan et al. 2019). Field reference data collected in
disturbed areas can help refine the models to better account for these variations. This ensures that
the models are robust and can provide accurate estimates under different field conditions (Li et al.
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2021). Additionally, the development of advanced algorithms to detect and adjust for disturbances
such as lodging is essential. These algorithms can be integrated into the data processing workflow
to automatically identify and correct for irregularities in the canopy structure, enhancing the
reliability of CHMs.

Understanding how disturbances affect biomass estimation can also inform grassland
management practices. For example, areas prone to molehills might require specific management
strategies to mitigate their impact on biomass estimates. In Germany and many other European
countries, moles (Talpa europaea) are protected by law under nature conservation regulations,
making it illegal to kill or trap them without specific authorization (Federal Ministry for the
Environment and Nature Conservartion, 2010). Consequently, non-lethal strategies such as soil
compaction to reduce mole activity or habitat modification to make areas less favorable for moles
are recommended for managing molehills in grasslands. Additionally, UAV-based monitoring can
help identify molehill-prone areas, enabling more targeted interventions to minimize their effect
on biomass estimations.

In addition to structural data, spectral data is a widely used method and offer distinct
advantages for estimating biomass in grasslands. Spectral data is particularly valuable for capturing
biochemical characteristics of plants, such as chlorophyll content and water stress, which are key
indicators of plant health and quality (Wachendorf, Fricke and Mdckel, 2018). For example, in
research applications focused on assessing forage quality, hyperspectral sensors provide detailed
information that is not achievable with RGB-based data (Barnetson, Phinn and Scarth, 2020; Zhao
et al., 2021). Similarly, spectral data is more suitable for monitoring stress factors, such as drought
or nutrient deficiencies, in large-scale grassland ecosystems (Barnes et al., 2000). However, this
approach presents several significant challenges that were highlighted in the review of literature in
Chapter Il. Spectral data often require the use of multispectral or hyperspectral sensors, which are
still more expensive compared to RGB sensors typically used for capturing structural data. This
increased cost can be a barrier for widespread application, particularly in large-scale or resource-
limited projects.

Moreover, the processing of multispectral and hyperspectral data is inherently more complex
and demands advanced technical expertise. Unlike RGB data, which can be relatively
straightforward to process, multispectral and hyperspectral data require more technical knowledge
to interpret the spectral signatures of vegetation. This complexity extends to the entire workflow,
from data acquisition to final analysis, necessitating a higher level of proficiency in remote sensing
and data processing techniques.

Another significant limitation of using spectral data is the necessity for reflectance calibration.
Accurate biomass estimation depends on the precise calibration of reflectance values, which
requires additional steps during both data capture and processing (Tmusic et al., 2020). In the field,
this involves placing calibration panels and capturing images of these panels at the beginning and
end of each UAV flight. This extra step increases the workload and operational complexity, as it
demands careful planning and execution to ensure the panels are positioned correctly and the
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images are captured under consistent conditions.

The post-processing phase also involves an additional calibration step to adjust the reflectance
values accurately. This process is labor-intensive and requires meticulous attention to detail to
ensure that the data is correctly calibrated. Despite these efforts, spectral data can still be heavily
influenced by changes in lighting conditions during image capture. Variability in natural light, such
as fluctuations in cloud cover or the angle of the sun, can introduce significant errors into the
reflectance data (de Souza, Scharf and Sudduth, 2010; Xue et al., 2023).

In regions such as our study area in Germany, where weather conditions are highly variable,
even short UAV flights (around 30 minutes) can experience substantial changes in illumination.
These fluctuations can affect the quality and consistency of the spectral data, making it challenging
to obtain reliable biomass estimates. The need for consistent lighting conditions adds another layer
of complexity to the already demanding process of using spectral data for biomass estimation.

Considering a practical context at the farm level, where larger areas are involved and waiting
for perfect weather conditions is not always feasible, and the need for higher technical expertise
for image processing, the use of spectral data becomes less viable than using structural data for
biomass estimation. However, spectral data offers greater applicability for estimating biomass
quality as it can capture more detailed information related to the biochemical characteristics of
plants, which are indicative of nutritional content (Oliveira et al., 2020; Franceschini et al., 2022).
This capability makes spectral data valuable for assessing aspects of biomass beyond mere
quantity, providing insights into plant health and quality.

One alternative, or rather a trend in current studies, for biomass estimation in grasslands is the
integration of different types of UAV-derived data to exploit the advantages and mitigate the
limitations of each type. According to the results of the review in Chapter Il of this thesis, recent
studies have increasingly utilized the integration of structural and spectral data. The findings
indicate that models employing both data types outperformed those using only one (Viljanen et al.,
2018; Lussem et al., 2022). This integration generally leads to better model accuracy, leveraging
the detailed structural information from CHMs and the biochemical data from spectral images
(Karunaratne et al., 2020; Pranga et al., 2021).

Despite the overall improved accuracy from data integration, this approach involves handling
larger and more complex datasets, which has led to an increasing tendency of employing more
robust algorithms to manage these models. Consequently, recent work on biomass estimation in
grasslands using remote sensing data has increasingly utilized machine learning algorithms. In the
review of Chapter I, we identified the main algorithms and types of features, which set the
foundation for the fourth chapter of this thesis.

In the fourth chapter, we then investigated the integration of UAV-derived features for biomass
estimation in a heterogeneous grasslands field, including texture features. The study concept was
resulted from our review in Chapter Il, which examined previous studies and identified the
potential benefits of combining texture analysis with structural and spectral data. Texture features
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describe the variations in intensity or color within an image, capturing the surface structure and
spatial arrangement of vegetation. These features provide additional data layers that are correlated
with the structural and heterogeneity characteristics of the vegetation, offering important
information into the spatial patterns of grasslands.

Few recent studies have explored the use of texture combined with other image-derived
features for biomass estimation in grassland. For instance, Griiner, Wachendorf and Astor (2020)
demonstrated that integrating spectral and texture features derived from UAV data improved
predictions of aboveground biomass in legume-grass mixtures, particularly by capturing variability
not accounted for by spectral data alone. In another study, Griiner, Astor and Wachendorf, (2021)
showed that texture metrics, when integrated with machine learning algorithms, enhanced the
robustness of biomass predictions in heterogeneous grasslands. Similarly, Dos Reis et al. (2020)
emphasized the utility of texture features from high-resolution satellite imagery for estimating
aboveground biomass and canopy height in pastures, showing their potential to enhance predictions
under varying environmental conditions.

While these studies highlight the advantage of integrating texture data with other features,
most were conducted in controlled field trial settings, where management practices are uniform
and environmental variability is minimal. Similar to many works that assessed the combination of
structural (CH) and spectral data (Karunaratne et al., 2020; Oliveira et al., 2020; Pranga et al.,
2021), these studies typically relied on data from a single growing season, which limits their
applicability to more complex grassland systems. In contrast, natural or permanent grassland fields
present a higher level of complexity due to their inherent variability, including diverse species
compositions, uneven terrain, fluctuating environmental conditions (e.g., soil and groundwater
levels), and differing management practices. Our experiment was carried out within a managed wet
grassland, which adds another layer of complexity compared to controlled field trials. Specifically,
the spatial variability of soil properties, groundwater levels, and the use of different cutting systems
introduced additional challenges for biomass estimation, reflecting the complexity of real-world
grassland dynamics. These factors make our study more demanding but also more representative
of real-world conditions. Due to these specific characteristics, our hypothesis was that integrating
various features from UAV data could improve model accuracy in such a complex environment.

The implications of using integrated features were mixed, depending on the specific
management practices and cutting regimes analyzed. While our results indicated that models
combining structural, spectral, and texture features (CH+VI+GLCM) generally outperformed those
relying on a single feature class, the improvements were not always statistically significant. For
instance, in the two-cut system, the inclusion of texture features added limited value compared to
CH+VI alone, suggesting that in less frequent cutting regimes, the spectral insights from vegetation
indices are already sufficient to capture biomass variability. Conversely, in the four-cut system, the
integration of all feature types (CH+VI+GLCM) led to meaningful improvements in both R? and
rRMSE, emphasizing the importance of texture features in capturing subtle structural variations
and spatial heterogeneity introduced by frequent cutting.
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While the combination of all feature classes showed potential, it is important to critically assess
the practical benefits of this approach. For example, CH alone performed comparably well under
the three-cut regime, likely due to the balance between structural uniformity and regrowth
dynamics. This suggests that in systems with moderately homogeneous canopies, simpler models
relying on CH alone may suffice, offering a cost-effective and less labor-intensive alternative for
on-farm applications.

6.1.2 Challenges in UAV-based species richness estimation in grassland
ecosystems

Estimating biodiversity in grasslands using remote sensing data presents several unique challenges.
Grassland ecosystems are inherently complex due to their high spatial heterogeneity, presenting
usually a mix of different species with various growth forms and phenological stages, leading to
diverse reflectance patterns that are challenging to interpret accurately using remote sensing
technologies.

Currently, most studies investigating plant biodiversity estimation in grasslands rely on the
Spectral Variation Hypothesis (SVH). Introduced by Palmer et al. (2002), the SVH states that the
spectral variability of a remote sensing image is linked to the species richness of the captured area.
Spectral variability, or spectral diversity, refers to the quantitative differences in the reflectance
spectra between the spatial units (pixels) in a remote sensing image. Palmer et al. (2002) developed
and tested this hypothesis in a tallgrass prairie preserve, a vegetation type known for its high species
richness and structural complexity. The study explored spatial extents ranging from small plots
(e.g., 10 m x 10 m) to larger areas of several hectares and emphasized the use of high-resolution
imagery, typically 1-5 meters per pixel, to effectively capture the fine-scale variability necessary
for linking spectral diversity to species richness. The basic assumption of SVH is that increased
spectral variability indicates an increased variety of habitats in the surveyed area, which can
support more species. Thus, spectral variability, which indirectly reflects the diversity of habitats,
can be used as an indicator for species richness.

The SVH has several advantages, including the ability to provide indirect estimates of
biodiversity using remote sensing data. This approach can cover large areas relatively quickly and
cost-effectively compared to traditional field-based methods. However, there are also notable
disadvantages. The spectral-to-species diversity relationship can be influenced by various factors,
including vegetation cover, habitat type, and spatial distribution patterns of species, seasonal
development of vegetation, and the spatial resolution of the remote sensing data. These factors can
introduce variability and potential biases in the estimates.

In the fifth chapter of this thesis, we hypothesized that integrating different UAV-derived
features, similar to the methodology proposed for improving biomass estimation accuracy, could
enhance the accuracy of species richness estimation in grasslands. We believed that combining
structural (CHM), spectral (\V1), and texture features would provide a more comprehensive dataset
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that captures the complex patterns within the ecosystem, leading to better species richness
estimates.

The results from previous studies suggest that seasonal development of vegetation
significantly influences species richness estimation using remote sensing data (Wang et al., 2018;
2016; Ludwig, Doktor, and Feilhauer, 2024; Gholizadeh et al., 2018; Taddeo, Dronova, and Harris,
2021; Muro et al., 2022). In our study, this may have been a contributing factor, as species richness
was estimated over two years under different cutting treatments, with the best results observed
during the peak growing season—defined as the period when vegetation typically reaches its
maximum height during the flowering stage. During this time, vegetation structure tends to be more
diverse, and spectral signals are more distinct, facilitating species differentiation.

This seasonal effect highlights the importance of selecting the optimal timing for remote
sensing-based biodiversity assessments, as the phenological stage of the vegetation can influence
the accuracy of species richness estimates. However, frequent cutting regimes may alter the timing
of flowering and biomass accumulation, potentially reducing the distinctiveness of the spectral
signals during the peak growing season. To address this, the approach may need to be adapted to
account for the modified phenological patterns caused by intensive management practices. For
instance, assessing species richness shortly before the first cut might yield more reliable results by
capturing vegetation at a less homogeneous stage.

Another source of uncertainty that must be considered is the varying phenology of different
species within the same sampling unit. While some species may still be actively growing, others
might already be in senescence, introducing spectral variability that can influence biodiversity
assessments. This temporal dynamic, noted by Gholizadeh et al. (2018), highlights the challenges
of applying this approach in ecosystems with diverse successional stages or under intensive
management practices. Thus, while the peak growing season may provide optimal conditions,
incorporating multi-temporal data across various phenological stages, as in our study, can offer a
more comprehensive understanding of species richness in heterogeneous grasslands, despite the
associated challenges.

Considering the challenges posed by phenological variability and seasonal dynamics, the
integration of structural, spectral, and texture features of the grassland proved to be an important
approach for improving the accuracy of species richness models. Spectral and texture features were
particularly valuable in more frequent cutting treatments, as texture features captured the structural
complexity of vegetation, which is critical in diverse grassland ecosystems. This integration
allowed us to capture the nuanced differences in vegetation that single data types might miss.

The influence of cutting frequency on feature importance revealed distinct patterns in our
models, reflecting the varying dynamics of grassland ecosystems under different management
intensities. In high-frequency cutting regimes, such as the three- and four-cut systems, the
homogenization of the canopy structure reduced the predictive power of structural variables like
canopy height. Instead, the models relied more on spectral features to capture subtle differences in
vegetation health and vigor, as well as texture metrics to account for residual variability induced
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by management practices (Cabezas, Galleguillos and Perez-Quezada, 2016; Imran et al., 2021;
Taddeo, Dronova and Harris, 2021). However, the accuracy of species richness estimation was
lower in these regimes, likely because the reduced structural variability limited the additional value
that spectral and texture features could provide.

In contrast, the two-cut system provided conditions where structural complexity was more
pronounced, allowing canopy height to emerge as a stronger predictor of species richness. The
capturing of higher structural variability also translated into improved model performance, with
higher R2 values and lower relative errors compared to the more intensively managed systems.
These findings emphasize the importance of aligning feature integration strategies with the
physiological and structural effects of different management regimes.

The practical implications of our findings are significant for conservation and management.
By accurately assessing species richness, land managers can make informed decisions to promote
biodiversity. For example, understanding the effects of different cutting regimes and their
interactions with soil conditions on species richness can help in planning site-specific management
practices that enhance biodiversity. Additionally, accurate species richness estimates can aid in
monitoring the effectiveness of conservation efforts and detecting changes in biodiversity over
time.

6.1.3 Practical implications

The integration of UAVSs with advanced sensors offers a cost-effective and efficient alternative to
traditional ecological monitoring methods. This combination facilitates rapid, non-destructive
assessments, particularly valuable for managing dynamic and heterogeneous grassland ecosystems.
However, UAVs alone are merely carriers; their effectiveness depends on the selection of
appropriate sensors (e.g., multispectral, hyperspectral) and the use of robust image processing
techniques to translate raw data into actionable insights. Current sensor technologies and
processing methods demonstrate the capability to monitor grassland biomass and species diversity
at small to medium scales with promising accuracy (Bazzo et al., 2023; Lyu et al., 2024). Scaling
up to larger areas, however, poses challenges, including flight time limitations, data processing
demands, and the impact of environmental variability.

To bring UAV-based grassland monitoring closer to practical implementation for farmers,
future advancements should focus on developing user-friendly systems with simplified data
acquisition and analysis pipelines. Further research should aim to improve the integration of real-
time processing capabilities and cloud-based platforms to make these tools accessible for
sustainable management and decision-making in grassland ecosystems.

6.1.4 Limitations and suggestions for future research

Several limitations need to be addressed to fully realize the potential of UAV-based ecological
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monitoring of grasslands:
Impact of field disturbances

While this thesis highlights the significance of field disturbances, such as molehills and lodging,
on biomass estimation, more advanced models are needed to address these variables effectively.
For instance, molehills can potentially be excluded from the data using high-resolution UAV
imagery and advanced image processing techniques that detect and remove small-scale anomalies.
In contrast, lodging poses a greater challenge due to its dynamic nature and irregular occurrence.
Developing time-series data from UAV flights during the grass growth period could help model
the temporal progression of lodging and allow for better extrapolation to the cutting day. A critical
next step would be to develop models capable of not only detecting these disturbances but also
incorporating their effects into the estimation process. By integrating disturbance detection and
their impacts into the calibration and validation of models, future studies can enhance the reliability
and accuracy of biomass and species richness estimations under real-world field conditions.

Generality of findings

The findings of this research are based on data collected from a single grassland field of relatively
small size and specific environmental conditions. While these results provide valuable insights,
their applicability to other ecosystems or geographical regions remains limited. Future research
should aim to generalize these findings by conducting similar studies in diverse grassland types,
including natural and cultivated systems, under varying environmental conditions such as
contrasting groundwater levels and weather patterns. Expanding the scope of research to include
larger and more heterogeneous study areas would also enhance the transferability of UAV-based
monitoring approaches to broader ecological and management contexts.

Temporal dynamics

Long-term studies are essential to assess the temporal dynamics of biomass and biodiversity in
response to environmental changes with respect to weather conditions. Understanding how
grassland growth and development changes over time will provide valuable insights for sustainable
management and conservation efforts.

Integration of additional data sources

The integration of structural, spectral, and textural features from UAV data has proven effective,
but there is potential to incorporate other data types. For example, hyperspectral imagery, LIDAR
data, and environmental sensors can provide additional layers of information, further enhancing
the accuracy and comprehensiveness of ecological assessments.

Machine learning and data analytics

Advanced machine learning algorithms have shown great promise in analyzing UAV-derived data
(Holloway and Mengersen, 2018; Morais et al., 2021). Future studies should continue to explore
and refine these algorithms, potentially incorporating deep learning techniques and automated data
processing workflows to handle the increasing volume and complexity of UAV data. Additionally,
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the development of large language models, such as ChatGPT, for agricultural applications presents
a unique opportunity to enhance data interpretation and decision-making. These models could be
adapted to provide contextual insights, assist in anomaly detection, and automate reporting
processes, making UAV-based systems more accessible and user-friendly for agricultural
stakeholders. Exploring the integration of such tools with machine learning frameworks could open
new avenues for efficient and scalable monitoring solutions.

6.2 Conclusions

This thesis demonstrates the potential of UAV-derived data in ecological monitoring, particularly
for grassland biomass estimation and biodiversity assessment. By utilizing advancements in remote
sensing and machine learning, the research addressed important gaps in current methodologies and
provided practical insights into the use of UAVs for studying managed wet grasslands.

The systematic review in Chapter Il highlighted the strengths and limitations of UAV-based
biomass estimation methods, establishing a robust foundation for subsequent experimental studies.
It highlighted the increasing focus on integrating structural, spectral, and textural data as a key
strategy for improving model accuracy for estimation of grass biomass. Chapter 111 evaluated the
impact of field disturbances, such as molehills and lodging, on biomass estimation, demonstrating
that these disturbances can significantly affect the relationship between canopy height and biomass.

Chapter 1V focused on the integration of multiple UAV-derived features for biomass
estimation in a heterogeneous grassland field. The study concluded that combining structural,
spectral, and texture features of grassland enhances model performance, particularly in capturing
the variability and complexity inherent in diverse grassland systems. This integrated approach
provided more robust estimates compared to using single data types, offering valuable insights for
ecological monitoring under varying management regimes.

Chapter V extended the scope of this research to biodiversity assessment, focusing on species
richness estimation. The results showed how phenological variability and management practices
affect model performance and demonstrated the benefits of combining different UAV-derived data
types in estimation floral diversity. This approach provided valuable insights for monitoring and
managing grassland biodiversity under varying ecological conditions and cutting frequencies.

While the potential of UAVs for ecological monitoring is evident, the thesis also identified
significant challenges. These include the complexity of processing large datasets, the need for
precise calibration of remote sensing models, and logistical constraints associated with UAV-based
fieldwork. Future research should focus on simplifying workflows, developing more accessible
analytical tools, and scaling these approaches for broader applications

This research provides a strong basis for future work aimed at improving UAV-based methods
and integrating them into ecological studies and management practices. By combining technical
improvements with ecological knowledge, it is possible to develop more effective tools for
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understanding and managing grassland ecosystems. This thesis contributes to these efforts by
presenting a comprehensive approach to applying UAV technology in grassland research and
supporting its use in both scientific and practical contexts.

125



References

’t Mannetje, L, and R M Jones. 2000. Field and Laboratory Methods for Grassland and Animal
Production Research. Wallingford: CABI Publishing.
https://doi.org/10.1079/9780851993515.0000.

Adar, Shay, Marcelo Sternberg, Tarin Paz-Kagan, Zalmen Henkin, Guy Dovrat, Eli Zaady, and Eli
Argaman. 2022. “Estimation of Aboveground Biomass Production Using an Unmanned Aerial
Vehicle (UAV) and VENuS Satellite Imagery in Mediterranean and Semiarid Rangelands.”
Remote Sensing Applications: Society and Environment 26 (April): 100753.
https://doi.org/10.1016/j.rsase.2022.100753.

Ali, Iftikhar, Fiona Cawkwell, Edward Dwyer, Brian Barrett, and Stuart Green. 2016. “Satellite

Remote Sensing of Grasslands: From Observation to Management.” Journal of Plant Ecology
9 (6): 649-71. https://doi.org/10.1093/jpe/rtw005.

Allen, V G, C Batello, E J Berretta, J Hodgson, M Kothmann, X Li, J. Mclvor, et al. 2011. “An
International Terminology for Grazing Lands and Grazing Animals.” Grass and Forage
Science. https://doi.org/10.1111/j.1365-2494.2010.00780.x.

Alvarez-Hess, P. S., A. L. Thomson, S. B. Karunaratne, M. L. Douglas, M. M. Wright, J. W. Heard,
J. L. Jacobs, E. M. Morse-McNabb, W. J. Wales, and M. J. Auldist. 2021. “Using Multispectral
Data from an Unmanned Aerial System to Estimate Pasture Depletion during Grazing.”
Animal Feed Science and Technology 275 (October 2020):  114880.
https://doi.org/10.1016/j.anifeedsci.2021.114880.

Alves Oliveira, Raquel, José Marcato Junior, Celso Soares Costa, Roope Nasi, Niko Koivuméki,
Oiva Niemelainen, Jere Kaivosoja, Laura Nyholm, Hemerson Pistori, and Eija Honkavaara.
2022. “Silage Grass Sward Nitrogen Concentration and Dry Matter Yield Estimation Using
Deep Regression and RGB Images Captured by UAV.” Agronomy 12 (6): 1352.
https://doi.org/10.3390/agronomy12061352.

Andrade, Bianca O., Christiane Koch, llsi I. Boldrini, Eduardo Vélez-Martin, Heinrich Hasenack,
Julia Maria Hermann, Johannes Kollmann, Valério D. Pillar, and Gerhard E. Overbeck. 2015.
“Grassland Degradation and Restoration: A Conceptual Framework of Stages and Thresholds
Iustrated by Southern Brazilian Grasslands.” Natureza & Conservagdo 13 (2): 95-104.
https://doi.org/10.1016/J.NCON.2015.08.002.

Aneece, Itiya P, Howard Epstein, and Manuel Lerdau. 2017. “Correlating Species and Spectral
Diversities Using Hyperspectral Remote Sensing in Early-Successional Fields.” Ecology and
Evolution 7 (10): 3475-88. https://doi.org/10.1002/ece3.2876.

Askari, Mohammad Sadegh, Timothy McCarthy, Aidan Magee, and Darren J. Murphy. 2019.
“Evaluation of Grass Quality under Different Soil Management Scenarios Using Remote
Sensing Techniques.” Remote Sensing 11 (15): 1-23. https://doi.org/10.3390/rs11151835.

126



Atzberger, Clement. 2013. “Advances in Remote Sensing of Agriculture: Context Description,
Existing Operational Monitoring Systems and Major Information Needs.” Remote Sensing 5
(2): 949-81. https://doi.org/10.3390/rs5020949.

Bar-On, Yinon M, Rob Phillips, and Ron Milo. 2018. “The Biomass Distribution on Earth.”
Proceedings of the National Academy of Sciences of the United States of America 115 (25):
6506—11. https://doi.org/10.1073/pnas.1711842115.

Bareth, Georg, Andreas Bolten, Jens Hollberg, Helge Aasen, Andreas Burkart, and Jirgen
Schellberg. 2015. “Feasibility Study of Using Non-Calibrated UAV-Based RGB Imagery for
Grassland Monitoring: Case Study at the Rengen Long-Term Grassland Experiment (RGE),
Germany.” DGPF Tagungsband 24:55-62.
http://www.dgpf.de/src/tagung/jt2015/proceedings/papers/07_DGPF2015_ Bareth_et_al.pdf.

Bareth, Georg, and Jiirgen Schellberg. 2018. “Replacing Manual Rising Plate Meter Measurements
with Low-Cost UAV-Derived Sward Height Data in Grasslands for Spatial Monitoring.” PFG
- Journal of Photogrammetry, Remote Sensing and Geoinformation Science 86 (3—4): 157-68.
https://doi.org/10.1007/s41064-018-0055-2.

Barnes, Edward, T R Clarke, S E Richards, Paul Colaizzi, Julio Haberland, M Kostrzewski, Peter
Waller, Christopher Choi, E Riley, and T L Thompson. 2000. “Coincident Detection of Crop
Water Stress, Nitrogen Status, and Canopy Density Using Ground Based Multispectral Data.”

Barnetson, Jason, Stuart Phinn, and Peter Scarth. 2020. “Estimating Plant Pasture Biomass and
Quality from UAV Imaging across Queensland’s Rangelands.” AgriEngineering 2 (4): 523—
43. https://doi.org/10.3390/agriengineering2040035.

Barrett, Brian, Ingmar Nitze, Stuart Green, and Fiona Cawkwell. 2014. “Assessment of Multi-
Temporal, Multi-Sensor Radar and Ancillary Spatial Data for Grasslands Monitoring in
Ireland Using Machine Learning Approaches.” Remote Sensing of Environment 152 (529):
109-24. https://doi.org/10.1016/j.rse.2014.05.018.

Batistoti, Juliana, José Marcato, Luis itavo, Edson Matsubara, Eva Gomes, Bianca Oliveira,
Mauricio Souza, et al. 2019. “Estimating Pasture Biomass and Canopy Height in Brazilian
Savanna Using UAV  Photogrammetry.” Remote Sensing 11 (20): 1-12.
https://doi.org/10.3390/rs11202447.

Bazzo, Clara Oliva Gongalves, Bahareh Kamali, Christoph Hutt, Georg Bareth, and Thomas
Gaiser. 2023. “A Review of Estimation Methods for Aboveground Biomass in Grasslands
Using UAV.” Remote Sensing 15 (3): 1-50. https://doi.org/10.3390/rs15030639.

Bazzo, Clara Oliva Gongalves, Bahareh Kamali, Murilo dos Santos Vianna, Dominik Behrend,
Hubert Hueging, Inga Schleip, Paul Mosebach, Almut Haub, Axel Behrendt, and Thomas
Gaiser. 2024. “Integration of UAV-Sensed Features Using Machine Learning Methods to
Assess Species Richness in Wet Grassland Ecosystems.” Ecological Informatics 83
(November):102813. https://doi.org/10.1016/J.ECOINF.2024.102813.

127



Belgiu, Mariana, and Lucian Dragut. 2016. “Random Forest in Remote Sensing: A Review of
Applications and Future Directions.” ISPRS Journal of Photogrammetry and Remote Sensing
114:24-31. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2016.01.011.

Beltman, B, Tom van den Broek, W Martin, M Cate, and S Giisewell. 2003. “Impact of Mowing

Regime on Species Richness and Biomass of a Limestone Hay Meadow in Ireland.” Bulletin
of the Geobotanical Institute ETH 69 (January):17-30.

Bendig, Juliane, Andreas Bolten, Simon Bennertz, Janis Broscheit, Silas Eichfuss, and Georg
Bareth. 2014. “Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived
from UAV-Based RGB Imaging.” Remote Sensing 6 (11): 10395-412.
https://doi.org/10.3390/rs61110395.

Bendig, Juliane, Kang Yu, Helge Aasen, Andreas Bolten, Simon Bennertz, Janis Broscheit, Martin
L. Gnyp, and Georg Bareth. 2015. “Combining UAV-Based Plant Height from Crop Surface
Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley.”
International Journal of Applied Earth Observation and Geoinformation 39 (July):79-87.
https://doi.org/10.1016/J.JAG.2015.02.012.

Bengtsson, J., J. M. Bullock, B. Egoh, C. Everson, T. Everson, T. O’Connor, P. J. O’Farrell, H. G.
Smith, and R. Lindborg. 2019. “Grasslands—More Important for Ecosystem Services than
You Might Think.” Ecosphere 10 (2). https://doi.org/10.1002/ecs2.2582.

Blackburn, Ryan C., Nicholas A. Barber, Anna K. Farrell, Robert Buscaglia, and Holly P. Jones.

2021. “Monitoring Ecological Characteristics of a Tallgrass Prairie Using an Unmanned Aerial
Vehicle.” Restoration Ecology 29 (S1). https://doi.org/10.1111/rec.133309.

Blanco-Sacristan, Javier, Cinzia Panigada, Giulia Tagliabue, Rodolfo Gentili, Roberto Colombo,
Monica Ladron de Guevara, Fernando T. Maestre, and Micol Rossini. 2019. “Spectral
Diversity Successfully Estimates the a-Diversity of Biocrust-Forming Lichens.” Remote
Sensing 11 (24): 1-16. https://doi.org/10.3390/rs11242942.

Bonari, Gianmaria, Karel Fajmon, Igor Malenovsky, David Zeleny, Jaroslav Holusa, Ivana
Jongepierova, Petr Kocarek, Ondiej Konvicka, Jan Uficaf, and Milan Chytry. 2017.
“Management of Semi-Natural Grasslands Benefiting Both Plant and Insect Diversity: The
Importance of Heterogeneity and Tradition.” Agriculture, Ecosystems & Environment 246
(August):243-52. https://doi.org/10.1016/J.AGEE.2017.06.010.

Borra-Serrano, Irene, Tom De Swaef, Hilde Muylle, David Nuyttens, Jirgen Vangeyte, Koen
Mertens, Wouter Saeys, Ben Somers, Isabel Roldan-Ruiz, and Peter Lootens. 2019. “Canopy
Height Measurements and Non-Destructive Biomass Estimation of Lolium Perenne Swards
Using UAV  Imagery.” Grass and Forage Science 74 (3): 356-69.
https://doi.org/10.1111/gfs.12439.

Braun-Blanquet, Josias. 1932. “Plant Sociology. The Study of Plant Communities.”

Breiman, Leo. 2001. “Random Forests.” Machine Learning 45 (1): 5-32.

128



https://doi.org/10.1023/A:1010933404324.

Broge, N H, and E Leblanc. 2001. “Comparing Prediction Power and Stability of Broadband and
Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy
Chlorophyll ~ Density.” Remote Sensing of Environment 76 (2): 156-72.
https://doi.org/https://doi.org/10.1016/S0034-4257(00)00197-8.

Bueren, S. K. Von, A. Burkart, A. Hueni, U. Rascher, M. P. Tuohy, and 1. J. Yule. 2015.
“Deploying Four Optical UAV-Based Sensors over Grassland: Challenges and Limitations.”
Biogeosciences 12 (1): 163—75. https://doi.org/10.5194/bg-12-163-2015.

Bullock, Andy, and Mike Acreman. 2003. “The Role of Wetlands in the Hydrological Cycle.”
Hydrology and Earth System Sciences 7 (3): 358-89.

Cabezas, Julian, Mauricio Galleguillos, and Jorge F. Perez-Quezada. 2016. “Predicting Vascular
Plant Richness in a Heterogeneous Wetland Using Spectral and Textural Features and a
Random Forest Algorithm.” IEEE Geoscience and Remote Sensing Letters 13 (5): 646-50.
https://doi.org/10.1109/LGRS.2016.2532743.

Camargo Neto, Joao. 2004. “A Combined Statistical-Soft Computing Approach for Classification
and Mapping Weed Species in Minimum -Tillage Systems.” PhD Dissertation, University of
Nebraska, Lincoln, NE.

Capolupo, Alessandra, Lammert Kooistra, Clara Berendonk, Lorenzo Boccia, and Juha
Suomalainen. 2015. “Estimating Plant Traits of Grasslands from UAV-Acquired
Hyperspectral Images: A Comparison of Statistical Approaches.” ISPRS International Journal
of Geo-Information 4 (4): 2792-2820. https://doi.org/10.3390/ijgi4042792.

Carlson, Toby N., and David A. Ripley. 1997. “On the Relation between NDVI, Fractional
Vegetation Cover, and Leaf Area Index.” Remote Sensing of Environment 62 (3): 241-52.
https://doi.org/10.1016/S0034-4257(97)00104-1.

Castro, Wellington, José Marcato Junior, Caio Polidoro, Lucas Prado Osco, Wesley Goncalves,
Lucas Rodrigues, Mateus Santos, et al. 2020. “Deep Learning Applied to Phenotyping of
Biomass in Forages with Uav-Based Rgb Imagery.” Sensors (Switzerland) 20 (17): 1-18.
https://doi.org/10.3390/s20174802.

Chang, Geba Jisung. 2023. “Biodiversity Estimation by Environment Drivers Using Machine/Deep
Learning for Ecological Management.” Ecological Informatics 78 (December):102319.
https://doi.org/10.1016/j.ecoinf.2023.1023109.

Chao, Zhenhua, Ning Liu, Peidong Zhang, Tianyu Ying, and Kaihui Song. 2019. “Estimation
Methods Developing with Remote Sensing Information for Energy Crop Biomass: A
Comparative Review.” Biomass and Bioenergy 122 (August 2018): 414-25.
https://doi.org/10.1016/j.biombioe.2019.02.002.

Chauhan, Sugandh, Roshanak Darvishzadeh, Mirco Boschetti, Monica Pepe, and Andrew Nelson.
2019. “Remote Sensing-Based Crop Lodging Assessment: Current Status and Perspectives.”

129



ISPRS Journal of Photogrammetry and Remote Sensing 151 (August 2018): 124-40.
https://doi.org/10.1016/j.isprsjprs.2019.03.005.

Chen, Jing M. 1996. “Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal
Applications.”  Canadian  Journal of Remote Sensing 22 (3): 229-42,
https://doi.org/10.1080/07038992.1996.10855178.

Chen, Pengfei, Nicolas Tremblay, Ji-Hua Wang, Wenjiang Huang, and Bao-Guo Li. 2010. “New
Index for Crop Canopy Fresh Biomass Estimation.” Guang Pu Xue Yu Guang Pu Fen Xi =
Guang Pu 30:512-17. https://doi.org/10.3964/j.issn.1000-0593(2010)02-0512-06.

Chiarucci, Alessandro. 2007. “To Sample or Not to Sample? That Is the Question... For the
Vegetation Scientist.” Folia Geobotanica 42 (2): 209-16.
https://doi.org/10.1007/BF02893887.

Chitale, V. S., M. D. Behera, and P. S. Roy. 2019. “Deciphering Plant Richness Using Satellite
Remote Sensing: A Study from Three Biodiversity Hotspots.” Biodiversity and Conservation
28 (8-9): 2183-96. https://doi.org/10.1007/s10531-019-01761-4.

Clec’h, Solen Le, Robert Finger, Nina Buchmann, Arjan S. Gosal, Lukas Hortnagl, Olivier
Huguenin-Elie, Philippe Jeanneret, Andreas Luscher, Manuel K. Schneider, and Robert Huber.
2019. “Assessment of Spatial Variability of Multiple Ecosystem Services in Grasslands of
Different Intensities.” Journal of Environmental Management 251 (October 2021).
https://doi.org/10.1016/j.jenvman.2019.109372.

Colomina, I., and P. Molina. 2014. “Unmanned Aerial Systems for Photogrammetry and Remote
Sensing: A Review.” ISPRS Journal of Photogrammetry and Remote Sensing 92:79-97.
https://doi.org/10.1016/j.isprsjprs.2014.02.013.

Conti, Luisa, Marco Malavasi, Thomas Galland, Jan Komarek, Ondiej Lagner, Carlos P. Carmona,
Francesco de Bello, Duccio Rocchini, and Petra Simova. 2021. “The Relationship between
Species and Spectral Diversity in Grassland Communities Is Mediated by Their Vertical
Complexity.” Applied Vegetation Science 24 (3). https://doi.org/10.1111/avsc.12600.

Cop, J, M Vidrih, and J Hacin. 2009. “Influence of Cutting Regime and Fertilizer Application on
the Botanical Composition, Yield and Nutritive Value of Herbage of Wet Grasslands in Central
Europe.” Grass and Forage Science 64 (4): 454-65.
https://doi.org/https://doi.org/10.1111/j.1365-2494.2009.00713.x.

Costa, Maira Beatriz Teixeira da, Carlos Alberto Silva, Eben North Broadbent, Rodrigo Vieira
Leite, Midhun Mohan, Veraldo Liesenberg, Jaz Stoddart, et al. 2021. “Beyond Trees: Mapping
Total Aboveground Biomass Density in the Brazilian Savanna Using High-Density UAV-
Lidar Data.” Forest Ecology and Management 491 (January).
https://doi.org/10.1016/j.foreco.2021.119155.

Coverdale, Tyler C., and Andrew B. Davies. 2023. “Unravelling the Relationship between Plant
Diversity and Vegetation Structural Complexity: A Review and Theoretical Framework.”

130



Journal of Ecology 111 (7): 1378-95. https://doi.org/10.1111/1365-2745.14068.

Crippen, Robert E. 1990. “Calculating the Vegetation Index Faster.” Remote Sensing of
Environment 34 (1): 71-73. https://doi.org/10.1016/0034-4257(90)90085-Z.

Culbert, Patrick D., Anna M. Pidgeon, Véronique St. Louis, Volker C. Radeloff, and Dallas Bash.
2009. “The Impact of Phenological Variation on Texture Measures of Remotely Sensed
Imagery.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 2 (4): 299-309. https://doi.org/10.1109/JSTARS.2009.2021959.

Cunliffe, Andrew M., Richard E. Brazier, and Karen Anderson. 2016. “Ultra-Fine Grain
Landscape-Scale Quantification of Dryland Vegetation Structure with Drone-Acquired
Structure-from-Motion Photogrammetry.” Remote Sensing of Environment 183:129-43.
https://doi.org/10.1016/j.rse.2016.05.0109.

D. Schleicher, Tyler, Walter C. Bausch, Jorge A. Delgado, and Paul D. Ayers. 2001. “Evaluation
and Refinement of the Nitrogen Reflectance Index (NRI) for Site-Specific Fertilizer
Management.” 2001 ASAE Annual Meeting. ASABE Paper No. 011151. St. Joseph, MI:
ASAE. https://doi.org/https://doi.org/10.13031/2013.7357.

Dandois, Jonathan P, and Erle C Ellis. 2013. “High Spatial Resolution Three-Dimensional

Mapping of Vegetation Spectral Dynamics Using Computer Vision.” Remote Sensing of
Environment 136:259-76. https://doi.org/https://doi.org/10.1016/j.rse.2013.04.005.

Darvishzadeh, Roshanak, Andrew Skidmore, Martin Schlerf, Clement Atzberger, Fabio Corsi, and
Moses Cho. 2008. “LAI and Chlorophyll Estimation for a Heterogeneous Grassland Using
Hyperspectral Measurements.” ISPRS Journal of Photogrammetry and Remote Sensing 63 (4):
409-26. https://doi.org/10.1016/J.ISPRSJPRS.2008.01.001.

Dash, J, and P J Curran. 2004. “The MERIS Terrestrial Chlorophyll Index.” International Journal
of Remote Sensing 25 (23): 5403-13. https://doi.org/10.1080/0143116042000274015.

Datt, Bisun. 1998. “Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll A+b, and Total
Carotenoid Content in Eucalyptus Leaves.” Remote Sensing of Environment 66 (2): 111-21.
https://doi.org/10.1016/S0034-4257(98)00046-7.

Daughtry, C. S.T., C. L. Walthall, M. S. Kim, E. Brown De Colstoun, and J. E. McMurtrey. 2000.
“Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance.”
Remote Sensing of Environment 74 (2): 229-39. https://doi.org/10.1016/S0034-
4257(00)00113-9.

Dengler, Jiirgen, Idoia Biurrun, Steffen Boch, Iwona Dembicz, and Péter Torok. 2020. “Grasslands
of the Palaearctic Biogeographic Realm: Introduction and Synthesis.” Encyclopedia of the
World’s Biomes 3:617-37.

DiMaggio, Alexandria M., Humberto L. Perotto-Baldivieso, J. Alfonso Ortega-S., Chase Walther,
Karelys N. Labrador-Rodriguez, Michael T. Page, Jose de la Luz Martinez, Sandra Rideout-
Hanzak, Brent C. Hedquist, and David B. Wester. 2020. “A Pilot Study to Estimate Forage

131



Mass from Unmanned Aerial Vehicles in a Semi-Arid Rangeland.” Remote Sensing 12 (15):
1-13. https://doi.org/10.3390/RS12152431.

Dinnage, Russell, Marc W Cadotte, Nick M Haddad, Gregory M Crutsinger, and David Tilman.
2012. “Diversity of Plant Evolutionary Lineages Promotes Arthropod Diversity.”
https://doi.org/10.1111/j.1461-0248.2012.01854.x.

Dixon, Adam P., D Faber-Langendoen, C Josse, J Morrison, and C J Loucks. 2014. “Distribution
Mapping of World Grassland Types.” Journal of Biogeography 41 (11): 2003-19.
https://doi.org/10.1111/jbi.12381.

Dumont, Bertrand, Nicolas Rossignol, Grégory Loucougaray, Pascal Carrere, Joél Chadoeuf,
Geéraldine Fleurance, Anne Bonis, et al. 2012. “When Does Grazing Generate Stable
Vegetation Patterns in Temperate Pastures?”” Agriculture, Ecosystems and Environment 153
(June):50-56. https://doi.org/10.1016/j.agee.2012.03.003.

Dusseux, P., L. Hubert-Moy, T. Corpetti, and F. Vertés. 2015. “Evaluation of SPOT Imagery for
the Estimation of Grassland Biomass.” International Journal of Applied Earth Observation
and Geoinformation 38:72—77. https://doi.org/10.1016/j.jag.2014.12.003.

Edvan, Ricardo L, Leilson R Bezerra, Carlo A T Marques, Maria Socorro S Carneiro, and Ronaldo
L Oliveira. 2015. “Methods for Estimating Forage Mass in Pastures in a Tropical Climate

Métodos Para Estimar a Massa de Forragem Em Pastagens Em Clima Tropical” 39 (1): 36—
45,

Egoh, Benis N, Janne Bengtsson, Regina Lindborg, James M Bullock, Adam P Dixon, and Mathieu
Rouget. 2016. “The Importance of Grasslands in Providing Ecosystem Services.” In Routledge
Handbook of Ecosystem Services, 421-41. New York, NY : Routledge, 2016.: Routledge.
https://doi.org/10.4324/9781315775302-37.

Eitel, ] U H, D S Long, P E Gessler, and A M S Smith. 2007. “Using In-situ Measurements to
Evaluate the New RapidEye™ Satellite Series for Prediction of Wheat Nitrogen Status.”
International Journal of Remote Sensing 28 (18): 4183-90.
https://doi.org/10.1080/01431160701422213.

Eskandari, Roghieh, Masoud Mahdianpari, Fariba Mohammadimanesh, Bahram Salehi, Brian
Brisco, and Saeid Homayouni. 2020. “Meta-analysis of Unmanned Aerial Vehicle (UAV)
Imagery for Agro-environmental Monitoring Using Machine Learning and Statistical
Models.” Remote Sensing 12 (21): 1-32. https://doi.org/10.3390/rs12213511.

Fan, Xinyan, Kensuke Kawamura, Tran Dang Xuan, Norio Yuba, Jihyun Lim, Rena Yoshitoshi,
Truong Ngoc Minh, Yuzo Kurokawa, and Taketo Obitsu. 2018. “Low-Cost Visible and near-
Infrared Camera on an Unmanned Aerial Vehicle for Assessing the Herbage Biomass and Leaf
Area Index in an Italian Ryegrass Field.” Grassland Science 64 (2): 145-50.
https://doi.org/10.1111/grs.12184.

FAOStat. 2016. “Database Collection of the Food and Agriculture Organization of the United

132



Nations.” www.fao.org/faostat.

Fauvel, Mathieu, Mailys Lopes, Titouan Dubo, Justine Rivers-Moore, Pierre Louis Frison, Nicolas
Gross, and Annie Ouin. 2020. “Prediction of Plant Diversity in Grasslands Using Sentinel-1
and -2 Satellite Image Time Series.” Remote Sensing of Environment 237 (February):111536.
https://doi.org/10.1016/J.RSE.2019.111536.

Federal Ministry for the Environment and Nature Conservartion. 2010. Act on Nature Conservation
and Landscape Management. Encyclopedic Dictionary of Landscape and Urban Planning.
Vol. 2009. https://doi.org/10.1007/978-3-540-76435-9_118.

Fidelis, Alessandra, Maria Fernanda di Santi Lyra, and Vania Regina Pivello. 2013. “Above-and

Below-ground Biomass and Carbon Dynamics in B Razilian C Errado Wet Grasslands.”
Journal of Vegetation Science 24 (2): 356-64.

Filella, 1., and J. Pefuelas. 1994. “The Red Edge Position and Shape as Indicators of Plant
Chlorophyll Content, Biomass and Hydric Status.” International Journal of Remote Sensing
15 (7): 1459-70. https://doi.org/10.1080/01431169408954177.

Fleishman, Erica, Reed F. Noss, and Barry R. Noon. 2006. “Utility and Limitations of Species
Richness Metrics for Conservation Planning.” Ecological Indicators 6 (3): 543-53.
https://doi.org/10.1016/j.ecolind.2005.07.005.

Forsmoo, Joel, Karen Anderson, Christopher J.A. Macleod, Mark E. Wilkinson, and Richard
Brazier. 2018. “Drone-Based Structure-from-Motion Photogrammetry Captures Grassland
Sward Height Variability.” Journal of Applied Ecology 55 (6): 2587-99.
https://doi.org/10.1111/1365-2664.13148.

Franceschini, Marston H.D., Rolf Becker, Florian Wichern, and Lammert Kooistra. 2022.
“Quantification of Grassland Biomass and Nitrogen Content through UAV Hyperspectral
Imagery—Active Sample Selection for Model Transfer.” Drones 6 (3): 1-22.
https://doi.org/10.3390/drones6030073.

Fraser, Benjamin T, and Russell G Congalton. 2018. “Issues in Unmanned Aerial Systems (UAS)
Data Collection of Complex Forest Environments.” Remote Sensing 10 (6).
https://doi.org/10.3390/rs10060908.

Fu, Yi, Xiaopeng Tan, Yunlong Yao, Lei Wang, Yuangi Shan, Yuehua Yang, and Zhongwei Jing.
2024. “Uncovering Optimal Vegetation Indices for Estimating Wetland Plant Species
Diversity.” Ecological Indicators 166 (July). https://doi.org/10.1016/j.ecolind.2024.112367.

Gebremedhin, Alem, Pieter Badenhorst, Junping Wang, Fan Shi, Ed Breen, Khageswor Giri,
German C. Spangenberg, and Kevin Smith. 2020. “Development and Validation of a
Phenotyping Computational Workflow to Predict the Biomass Yield of a Large Perennial
Ryegrass Breeding Field Trial.” Frontiers in Plant Science 11 (May): 1-16.
https://doi.org/10.3389/fpls.2020.00689.

Geipel, J., A. K. Bakken, M. Jorgensen, and A. Korsaeth. 2021. “Forage Yield and Quality

133



Estimation by Means of UAV and Hyperspectral Imaging.” Precision Agriculture 22 (5):
1437-63. https://doi.org/10.1007/s11119-021-09790-2.

Geipel, J., and A. Korsaeth. 2017. “Hyperspectral Aerial Imaging for Grassland Yield Estimation.”
Advances in Animal Biosciences 8 (2): 770-75. https://doi.org/10.1017/s2040470017000619.

Ghajar, Shayan, and Benjamin Tracy. 2021. “Proximal Sensing in Grasslands and Pastures.”
Agriculture (Switzerland) 11 (8). https://doi.org/10.3390/agriculture11080740.

Gholizadeh, Hamed, John A. Gamon, Christopher J. Helzer, and Jeannine Cavender-Bares. 2020.
“Multi-Temporal Assessment of Grassland a- and B-Diversity Using Hyperspectral Imaging.”
Ecological Applications 30 (7): 1-13. https://doi.org/10.1002/eap.2145.

Gholizadeh, Hamed, John A. Gamon, Philip A. Townsend, Arthur I. Zygielbaum, Christopher J.
Helzer, Gabriel Y. Hmimina, Rong Yu, Ryan M. Moore, Anna K. Schweiger, and Jeannine
Cavender-Bares. 2019. “Detecting Prairie Biodiversity with Airborne Remote Sensing.”
Remote Sensing of Environment 221 (February):38-49.
https://doi.org/10.1016/j.rse.2018.10.037.

Gholizadeh, Hamed, John A. Gamon, Arthur I. Zygielbaum, Ran Wang, Anna K. Schweiger, and
Jeannine Cavender-Bares. 2018. “Remote Sensing of Biodiversity: Soil Correction and Data
Dimension Reduction Methods Improve Assessment of a-Diversity (Species Richness) in
Prairiec  Ecosystems.” Remote Sensing of Environment 206 (March):240-53.
https://doi.org/10.1016/j.rse.2017.12.014.

Gianelle, D, and L Vescovo. 2007. “Determination of Green Herbage Ratio in Grasslands Using
Spectral Reflectance. Methods and Ground Measurements.” International Journal of Remote
Sensing 28 (5): 931-42. https://doi.org/10.1080/01431160500196398.

Gibson, David J., and Jonathan A. Newman. 2019. “Grasslands and Climate Change: An
Overview.”  Grasslands and  Climate  Change, no.  September,  3-18.
https://doi.org/10.1017/9781108163941.003.

Gitelson, Anatoly A. 2004. “Wide Dynamic Range Vegetation Index for Remote Quantification of
Biophysical Characteristics of Vegetation.” Journal of Plant Physiology 161 (2): 165-73.
https://doi.org/10.1078/0176-1617-01176.

Gitelson, Anatoly A., Yuri Gritz, and Mark N. Merzlyak. 2003. “Relationships between Leaf
Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive
Chlorophyll Assessment in Higher Plant Leaves.” Journal of Plant Physiology 160 (3): 271-
82. https://doi.org/10.1078/0176-1617-00887.

Gitelson, Anatoly A., Yoram J. Kaufman, and Mark N. Merzlyak. 1996. “Use of a Green Channel
in Remote Sensing of Global Vegetation from EOS-MODIS.” Remote Sensing of Environment
58 (3): 289-98. https://doi.org/10.1016/S0034-4257(96)00072-7.

Gitelson, Anatoly A., Yoram J. Kaufman, Robert Stark, and Don Rundquist. 2002. “Novel
Algorithms for Remote Estimation of Vegetation Fraction.” Remote Sensing of Environment

134



80 (1): 76-87. https://doi.org/10.1016/S0034-4257(01)00289-9.

Gitelson, Anatoly, Mark Merzlyak, and Olga Chivkunova. 2001. “Optical Properties and
Nondestructive Estimation of Anthocyanin Content in Plant Leaves.” Photochemistry and
Photobiology 74:38-45. https://doi.org/10.1562/0031-
8655(2001)074<0038:0PANEO>2.0.CO;2.

Gitelson, Anatoly, and Mark N. Merzlyak. 1994. “Spectral Reflectance Changes Associated with
Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral
Features and Relation to Chlorophyll Estimation.” Journal of Plant Physiology 143 (3): 286—
92. https://doi.org/10.1016/S0176-1617(11)81633-0.

Gnyp, Martin L., Yuxin Miao, Fei Yuan, Susan L. Ustin, Kang Yu, Yinkun Yao, Shanyu Huang,
and Georg Bareth. 2014. “Hyperspectral Canopy Sensing of Paddy Rice Aboveground
Biomass at Different Growth Stages.” Field Crops Research 155 (January):42-55.
https://doi.org/10.1016/j.fcr.2013.09.023.

Gobron, Nadine, Bernard Pinty, Michel Verstraete, and J.-L Widlowski. 2000. “Advanced
Vegetation Indices Optimized for Up-Coming Sensors: Design, Performance, and
Applications.” Geoscience and Remote Sensing, IEEE Transactions On 38:2489-2505.
https://doi.org/10.1109/36.885197.

Goel, Narendra S, and Wenhan Qin. 1994. “Influences of Canopy Architecture on Relationships

between Various Vegetation Indices and LAI and Fpar: A Computer Simulation.” Remote
Sensing Reviews 10 (4): 309-47. https://doi.org/10.1080/02757259409532252.

Gong, Zhe, Kensuke Kawamura, Naoto Ishikawa, Mizuki Inaba, and Dalai Alateng. 2016.
“Estimation of Herbage Biomass and Nutritive Status Using Band Depth Features with Partial
Least Squares Regression in Inner Mongolia Grassland, China.” Grassland Science 62 (1):
45-54. https://doi.org/10.1111/grs.12112,

Gould, W. 2000. “Remote Sensing of Vegetation, Plant Species Richness, and Regional
Biodiversity Hotspots.” Ecological Applications 10 (6): 1861-70.
https://doi.org/10.1890/1051-0761(2000)010[1861:RSOVPS]2.0.CO;2.

Grlner, Esther, Thomas Astor, and Michael Wachendorf. 2019. “Biomass Prediction of
Heterogeneous Temperate Grasslands Using an SFM Approach Based on UAV Imaging.”
Agronomy 9 (2). https://doi.org/10.3390/agronomy9020054.

Griner, Esther, Thomas Astor, and Michael Wachendorf. 2021. “Prediction of Biomass and N
Fixation of Legume—Grass Mixtures Using Sensor Fusion.” Frontiers in Plant Science 11.
https://doi.org/10.3389/fpls.2020.603921.

Griiner, Esther, Michael Wachendorf, and Thomas Astor. 2020. “The Potential of UAV-Borne
Spectral and Textural Information for Predicting Aboveground Biomass and N Fixation in
Legume-Grass Mixtures.” PLoS ONE 15 (6): 1-21.
https://doi.org/10.1371/journal.pone.0234703.

135



Guo, Yuxi, Elizabeth H Boughton, Stephanie Bohlman, Carl Bernacchi, Patrick J Bohlen, Raoul
Boughton, Evan DeLucia, et al. 2023. “Grassland Intensification Effects Cascade to Alter
Multifunctionality of Wetlands within Metaecosystems.” Nature Communications 14 (1):
8267. https://doi.org/10.1038/s41467-023-44104-2.

Guyot, G., and F. Baret. 1988. “Utilisation de La Haute Resolution Spectrale Pour Suivre 1’etat
Des Couverts Vegetaux.” Journal of Chemical Information and Modeling 53 (9): 1689-99.

Haboudane, Driss, John R. Miller, Elizabeth Pattey, Pablo J. Zarco-Tejada, and lan B. Strachan.
2004. “Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of
Crop Canopies: Modeling and Validation in the Context of Precision Agriculture.” Remote
Sensing of Environment 90 (3): 337-52. https://doi.org/10.1016/J.RSE.2003.12.013.

Hakl, J., Z. Hrevusova, M. Hejcman, and P. Fuksa. 2012. “The Use of a Rising Plate Meter to
Evaluate Lucerne (Medicago Sativa L.) Height as an Important Agronomic Trait Enabling
Yield Estimation.” Grass and Forage Science 67 (4): 589-96. https://doi.org/10.1111/j.1365-
2494.2012.00886.x.

Hall-Beyer, Mryka. 2017. “Practical Guidelines for Choosing GLCM Textures to Use in Landscape
Classification Tasks over a Range of Moderate Spatial Scales.” International Journal of
Remote Sensing 38 (5): 1312-38. https://doi.org/10.1080/01431161.2016.1278314.

Haralick, Robert M, K Shanmugam, and Its’Hak Dinstein. 1973. “Textural Features for Image
Classification.” IEEE Transactions on Systems, Man, and Cybernetics SMC-3 (6): 610-21.
https://doi.org/10.1109/TSMC.1973.4309314.

Harmoney, Keith R., Kenneth J. Moore, J. Ronald George, E. Charles Brummer, and James R.

Russell. 1997. “Determination of Pasture Biomass Using Four Indirect Methods.” Agronomy
Journal 89 (4): 665-72. https://doi.org/10.2134/agronj1997.00021962008900040020x.

Harrison, Susan P., Elise S. Gornish, and Stella Copeland. 2015. “Climate-Driven Diversity Loss
in a Grassland Community.” Proceedings of the National Academy of Sciences of the United
States of America 112 (28): 8672—77. https://doi.org/10.1073/pnas.1502074112.

Hart, Leonie, Olivier Huguenin-Elie, Roy Latsch, Michael Simmler, Sébastien Dubois, and
Christina Umstatter. 2020. “Comparison of Spectral Reflectance-Based Smart Farming Tools

and a Conventional Approach to Determine Herbage Mass and Grass Quality on Farm.”
Remote Sensing 12 (19): 1-19. https://doi.org/10.3390/rs12193256.

Hautier, Yann, Eric W Seabloom, Elizabeth T Borer, Peter B Adler, W Stanley Harpole, Helmut
Hillebrand, Eric M Lind, Andrew S MacDougall, Carly J Stevens, and Jonathan D Bakker.

2014. “Eutrophication Weakens Stabilizing Effects of Diversity in Natural Grasslands.”
Nature 508 (7497): 521-25.

Hernandez-Clemente, Rocio, Rafael M. Navarro-Cerrillo, Lola Suérez, Fermin Morales, and Pablo
J. Zarco-Tejada. 2011. “Assessing Structural Effects on PRI for Stress Detection in Conifer
Forests.” Remote Sensing of Environment 115 (9): 2360-75.

136



https://doi.org/10.1016/J.RSE.2011.04.036.

Hill, Michael J. 2013. “Vegetation Index Suites as Indicators of Vegetation State in Grassland and
Savanna: An Analysis with Simulated SENTINEL 2 Data for a North American Transect.”
Remote Sensing of Environment 137 (October):94-111.
https://doi.org/10.1016/J.RSE.2013.06.004.

Hollberg, Jens L, and Jirgen Schellberg. 2017. “Distinguishing Intensity Levels of Grassland
Fertilization Using Vegetation Indices.” Remote Sensing 9 Q).
https://doi.org/10.3390/rs9010081.

Holloway, Jacinta, and Kerrie Mengersen. 2018. “Statistical Machine Learning Methods and
Remote Sensing for Sustainable Development Goals: A Review.” Remote Sensing.
https://doi.org/10.3390/rs10091365.

Hopkins, A., and R. J. Wilkins. 2006. “Temperate Grassland: Key Developments in the Last
Century and Future Perspectives.” Journal of Agricultural Science 144 (6): 503-23.
https://doi.org/10.1017/S0021859606006496.

Huber, Robert, Solen Le’Clec’h, Nina Buchmann, and Robert Finger. 2022. “Economic Value of
Three Grassland Ecosystem Services When Managed at the Regional and Farm Scale.”
Scientific Reports 12 (1): 1-13. https://doi.org/10.1038/s41598-022-08198-w.

Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira. 2002. “Overview of
the Radiometric and Biophysical Performance of the MODIS Vegetation Indices.” Remote
Sensing of Environment 83 (1-2): 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2.

Huete, A. R., H. Q. Liu, K. Batchily, and W. Van Leeuwen. 1997. “A Comparison of Vegetation
Indices over a Global Set of TM Images for EOS-MODIS.” Remote Sensing of Environment
59 (3): 440-51. https://doi.org/10.1016/S0034-4257(96)00112-5.

Hussain, Raja Imran, Ronnie Walcher, Renate Eder, Brigitte Allex, Peter Wallner, Hans Peter
Hutter, Nicole Bauer, Arne Arnberger, Johann G Zaller, and Thomas Frank. 20109.
“Management of Mountainous Meadows Associated with Biodiversity Attributes, Perceived
Health Benefits and Cultural Ecosystem Services.” Scientific Reports 9 (1).
https://doi.org/10.1038/s41598-019-51571-5.

Imran, Hafiz Ali, Damiano Gianelle, Michele Scotton, Duccio Rocchini, Michele Dalponte,
Stefano Macolino, Karolina Sakowska, Cristina Pornaro, and Loris Vescovo. 2021. “Potential
and Limitations of Grasslands o-Diversity Prediction Using Fine-Scale Hyperspectral
Imagery.” Remote Sensing 13 (14): 2649. https://doi.org/10.3390/rs13142649.

Insua, Juan R., Santiago A. Utsumi, and Bruno Basso. 2019. “Estimation of Spatial and Temporal
Variability of Pasture Growth and Digestibility in Grazing Rotations Coupling Unmanned
Aerial Vehicle (UAV) with Crop Simulation Models.” PLoS ONE 14 (3): 1-21.
https://doi.org/10.1371/journal.pone.0212773.

Isacsson, Martin. 2018. “Snow Layer Mapping by Remote Sensing from Unmanned Aerial

137



Vehicles : A Mixed Method Study of Sensor Applications for Research in Arctic and Alpine
Environments.” Master Thesis, Royal Institute of Technology, Stockholm, Sweden.

Jago, Rosemary A., Mark E.J. Cutler, and Paul J. Curran. 1999. “Estimating Canopy Chlorophyll
Concentration from Field and Airborne Spectra.” Remote Sensing of Environment 68 (3): 217—
24. https://doi.org/10.1016/S0034-4257(98)00113-8.

Jenal, Alexander, Ulrike Lussem, Andreas Bolten, Martin Leon Gnyp, Jirgen Schellberg, Jorg
Jasper, Jens Bongartz, and Georg Bareth. 2020. “Investigating the Potential of a Newly
Developed UAV-Based VNIR/SWIR Imaging System for Forage Mass Monitoring.” PFG -
Journal of Photogrammetry, Remote Sensing and Geoinformation Science 88 (6): 493-507.
https://doi.org/10.1007/s41064-020-00128-7.

Jin, Xiao Hui, Min Jian Chen, Yu Miao Fan, Hao Duan, and Long Yan. 2019. “Influences of
Groundwater and Climatic Factors on Grassland in Xiliao River Plain, Northern China.”
Rangeland Ecology and Management 72 (3): 425-32.
https://doi.org/10.1016/j.rama.2018.12.004.

Jin, Yunxiang, Xiuchun Yang, Jianjun Qiu, Jinya Li, Tian Gao, Qiong Wu, Fen Zhao, Hailong Ma,
Haida Yu, and Bin Xu. 2014. “Remote Sensing-Based Biomass Estimation and Its Spatio-
Temporal Variations in Temperate Grassland, Northern China.” Remote Sensing 6 (2): 1496—
1513. https://doi.org/10.3390/rs6021496.

Jones, M. B., and Alison Donnelly. 2004. “Carbon Sequestration in Temperate Grassland
Ecosystems and the Influence of Management, Climate and Elevated CO2.” New Phytologist
164 (3): 423-39. https://doi.org/10.1111/j.1469-8137.2004.01201.X.

Jordan, Carl F. 1969. “Derivation of Leaf-Area Index from Quality of Light on the Forest Floor.”
Ecology 50 (4): 663-66. https://doi.org/https://doi.org/10.2307/1936256.

Joyce, Chris B. 2014. “Ecological Consequences and Restoration Potential of Abandoned Wet
Grasslands.” Ecological Engineering 66:91-102.
https://doi.org/10.1016/j.ecoleng.2013.05.008.

Joyce, Chris B., Matthew Simpson, and Michelle Casanova. 2016a. “Future Wet Grasslands:
Ecological Implications of Climate Change.” Ecosystem Health and Sustainability 2 (9): 1-
15. https://doi.org/10.1002/ehs2.1240.

Joyce, Chris B, Matthew Simpson, and Michelle Casanova. 2016b. “Future Wet Grasslands:
Ecological Implications of Climate Change.” Ecosystem Health and Sustainability 2 (9):
e01240. https://doi.org/https://doi.org/10.1002/ehs2.1240.

Joyce, Chris B, and P Max Wade. 1998. European Wet Grasslands: Biodiversity, Management and
Restoration.

Kamali, Bahareh, Seyed Hamid Ahmadi, Thomas Gaiser, Marion Buddeberg, and Claas Nendel.
2024. “Quest to Find Compromised Spatial and Temporal Resolutions for Integrating Remote
Sensing Data with an Agro-Ecosystem Model for Grasslands.” International Journal of

138



Applied Earth Observation and Geoinformation 128 (April):103705.
https://doi.org/10.1016/J.JAG.2024.103705.

Karila, Kirsi, Raquel Alves Oliveira, Johannes Ek, Jere Kaivosoja, Niko Koivuméki, Panu
Korhonen, Oiva Niemeldinen, et al. 2022. “Estimating Grass Sward Quality and Quantity
Parameters Using Drone Remote Sensing with Deep Neural Networks.”
https://doi.org/10.3390/rs14112692.

Karunaratne, Senani, Anna Thomson, Elizabeth Morse-McNabb, Jayan Wijesingha, Dani
Stayches, Amy Copland, and Joe Jacobs. 2020. “The Fusion of Spectral and Structural
Datasets Derived from an Airborne Multispectral Sensor for Estimation of Pasture Dry Matter
Yield at  Paddock  Scale with  Time.” Remote Sensing 12 (12).
https://doi.org/10.3390/rs12122017.

Khaledi, Valeh, Bahareh Kamali, Gunnar Lischeid, Ottfried Dietrich, Mariel F Davies, and Claas
Nendel. 2024. “Challenges of Including Wet Grasslands with Variable Groundwater Tables in
Large-Area Crop Production Simulations.” Agriculture (Switzerland) 14 (5).
https://doi.org/10.3390/agriculture14050679.

Kitagawa, Etsuji, Hirokazu Muraki, Kyouhei Yoshinaga, Jyunki Yamagishi, and Yakumi Tsumura.
2018. “Research on Shape Characteristic of 3D Modeling Software (StM/MVS) in UAV
Aerial Images.” Journal of Japan Society of Civil Engineers, Ser. F3 (Civil Engineering
Informatics) 74 (2): 11_143-11_148.

Klemas, Victor. 2011. “Remote Sensing of Wetlands: Case Studies Comparing Practical
Techniques.” Journal of Coastal Research 27 (3): 418-27.
https://doi.org/10.2112/JCOASTRES-D-10-00174.1.

Koppe, Wolfgang, Fei Li, Martin L Gnyp, Yuxin Miao, Liangliang Jia, Xinping Chen, Fusuo
Zhang, and Georg Bareth. 2010. “Evaluating Multispectral and Hyperspectral Satellite Remote
Sensing Data for Estimating Winter Wheat Growth Parameters at Regional Scale in the North
China Plain.” Photogrammetrie - Fernerkundung - Geoinformation 2010 (3): 167-78.
https://doi.org/10.1127/1432-8364/2010/0047.

Kimmerer, Robin, Patrick Ole Noack, and Bernhard Bauer. 2023. “Using High-Resolution UAV
Imaging to Measure Canopy Height of Diverse Cover Crops and Predict Biomass.” Remote
Sensing 15 (6). https://doi.org/10.3390/rs15061520.

Lamarque, Pénélope, Ulrike Tappeiner, Catherine Turner, Melanie Steinbacher, Richard D
Bardgett, Ute Szukics, Markus Schermer, and Sandra Lavorel. n.d. “Stakeholder Perceptions
of Grassland Ecosystem Services in Relation to Knowledge on Soil Fertility and Biodiversity.”
https://doi.org/10.1007/s10113-011-0214-0.

LaRue, Elizabeth A., Jonathan A Knott, Grant M Domke, Han Yh Chen, Qinfeng Guo, Masumi
Hisano, Christopher Oswalt, et al. 2023. “Structural Diversity as a Reliable and Novel
Predictor for Ecosystem Productivity.” Frontiers in Ecology and the Environment 21 (1): 33—
39. https://doi.org/10.1002/fee.2586.

139



Lee, Hyowon, Hyo-Jin Lee, Jong-Sung Jung, and Han-Jong Ko. 2015. “Mapping Herbage Biomass
on a Hill Pasture Using a Digital Camera with an Unmanned Aerial Vehicle System.” Journal
of The Korean Society of Grassland and Forage Science 35 (3): 225-31.
https://doi.org/10.5333/kgfs.2015.35.3.225.

Lemaire, Gilles, John Hodgson, and Abad Chabbi. 2011. Grassland Productivity and Ecosystem
Services. Cabi.

Lengyel, Szabolcs, Andrej Kobler, Lado Kutnar, Erik Framstad, Pierre Yves Henry, Valerija Babij,
Bernd Gruber, Dirk Schmeller, and Klaus Henle. 2008. “A Review and a Framework for the
Integration of Biodiversity Monitoring at the Habitat Level.” Biodiversity and Conservation.
https://doi.org/10.1007/s10531-008-9359-7.

Li, Fei, Cristiano Piasecki, Reginald J. Millwood, Benjamin Wolfe, Mitra Mazarei, and C. Neal
Stewart. 2020. “High-Throughput Switchgrass Phenotyping and Biomass Modeling by UAV.”
Frontiers in Plant Science 11 (October): 1-15. https://doi.org/10.3389/fpls.2020.574073.

Li, Kai Yun, Niall G. Burnside, Raul Sampaio de Lima, Miguel Villoslada Pecifia, Karli Sepp,
Ming Der Yang, Janar Raet, Ants Vain, Are Selge, and Kalev Sepp. 2021. “The Application
of an Unmanned Aerial System and Machine Learning Techniques for Red Clover-Grass
Mixture Yield Estimation under Variety Performance Trials.” Remote Sensing 13 (10).
https://doi.org/10.3390/rs13101994.

Li, Xiaohan, Xuezhang Li, Wen Liu, Benhui Wei, and Xianli Xu. 2021. “A UAV-Based
Framework for Crop Lodging Assessment.” European Journal of Agronomy 123 (November
2020): 126201. https://doi.org/10.1016/j.eja.2020.126201.

Liang, Tiangang, Shuxia Yang, Qisheng Feng, Baokang Liu, Renping Zhang, Xiaodong Huang,
and Hongjie Xie. 2016. “Multi-Factor Modeling of above-Ground Biomass in Alpine
Grassland: A Case Study in the Three-River Headwaters Region, China.” Remote Sensing of
Environment 186:164-72. https://doi.org/10.1016/j.rse.2016.08.014.

Libran-Embid, Felipe, Felix Klaus, Teja Tscharntke, and Ingo Grass. 2020. “Unmanned Aerial
Vehicles for Biodiversity-Friendly Agricultural Landscapes - A Systematic Review.” Science
of the Total Environment 732:139204. https://doi.org/10.1016/j.scitotenv.2020.139204.

Lin, Xingchen, Jianjun Chen, Peiging Lou, Shuhua Yi, Yu Qin, Haotian You, and Xiaowen Han.
2021. “Improving the Estimation of Alpine Grassland Fractional Vegetation Cover Using
Optimized Algorithms and Multi-Dimensional Features.” Plant Methods 17 (1): 1-18.
https://doi.org/10.1186/s13007-021-00796-5.

Liu, Wenhao, Wanqgiang Han, Guili Jin, Ke Gong, and Jian Ma. 2024. “Classification of Major
Species in the Sericite-Artemisia Desert Grassland Using Hyperspectral Images and Spectral
Feature Identification.” PeerJ 12 (7). https://doi.org/10.7717/peerj.17663.

Londo, G. 1976. “The Decimal Scale for Releves of Permanent Quadrats.” Vegetatio 33 (1): 61—
64. https://doi.org/10.1007/BF00055300.

140



Lopez Diaz, Julio Enrique, A | Roca-Ferndndez, and Antonio Gonzélez-Rodriguez. 2011.

“Measuring Herbage Mass by Non-Destructive Methods: A Review.” Journal of Agricultural
Science and Technology 1 (July):303-14.

Lu, Bing, and Yuhong He. 2017. “Species Classification Using Unmanned Aerial Vehicle (UAV)-
Acquired High Spatial Resolution Imagery in a Heterogeneous Grassland.” ISPRS Journal of
Photogrammetry and Remote Sensing 128 (June): 73-85.
https://doi.org/10.1016/J.1ISPRSJPRS.2017.03.011.

Lu, Hua, John Mack, Yongchao Yang, and Zhen Shen. 2014. “Structural Modification Strategies
for the Rational Design of Red/NIR Region BODIPYs.” Chem. Soc. Rev. 43 (13): 4778-4823.
https://doi.org/10.1039/C4CS00030G.

Ludwig, Antonia, Daniel Doktor, and Hannes Feilhauer. 2024. “Is Spectral Pixel-to-Pixel Variation
a Reliable Indicator of Biodiversity? A Systematic Assessment of the Spectral Variation
Hypothesis Highlights (for Review).” Remote Sensing of Environment 302 (January): 113988.
https://doi.org/10.1016/j.rse.2023.113988.

Lussem, Ulrike, Andreas Bolten, Ireneusz Kleppert, Jorg Jasper, Martin Leon Gnyp, Jurgen
Schellberg, and Georg Bareth. 2022. “Herbage Mass, N Concentration, and N Uptake of
Temperate Grasslands Can Adequately Be Estimated from UAV-Based Image Data Using
Machine Learning.” Remote Sensing 14 (13): 3066. https://doi.org/10.3390/rs14133066.

Lussem, Ulrike, Andreas Bolten, Jannis Menne, Martin Leon Gnyp, Jirgen Schellberg, and Georg
Bareth. 2019. “Estimating Biomass in Temperate Grassland with High Resolution Canopy
Surface Models from UAV-Based RGB Images and Vegetation Indices.” Journal of Applied
Remote Sensing 13 (03): 1. https://doi.org/10.1117/1.jrs.13.034525.

Lussem, Ulrike, Jiirgen Schellberg, and Georg Bareth. 2020. “Monitoring Forage Mass with Low-
Cost UAV Data: Case Study at the Rengen Grassland Experiment.” PFG - Journal of
Photogrammetry, Remote Sensing and Geoinformation Science 88 (5): 407-22.
https://doi.org/10.1007/s41064-020-00117-w.

Luthardt, V., O. Brauner, F. Dreger, S. Friedrich, H. Garbe, A.-K. Hirsch, T. Kabus, et al. 2017.
“Methodenkatalog Zum Monitoring-Programm Der Okosystemaren Umweltbeobachtung

(OUB) in Den Biosphirenreservaten Brandenburgs,” 226.
http://lanuweb.hnee.de/oeub/pdf/Methodenkatalog_TeilA_komplett 2017.pdf.

Lyu, Xin, Xiaobing Li, Dongliang Dang, Kai Wang, Chenhao Zhang, Wanyu Cao, and Anru Lou.
2024. “Systematic Review of Remote Sensing Technology for Grassland Biodiversity
Monitoring: Current Status and Challenges.” Global Ecology and Conservation 54
(October):e03196. https://doi.org/10.1016/J.GECCO.2024.E03196.

M. Woebbecke, D, G E. Meyer, K Von Bargen, and D A. Mortensen. 1995. “Color Indices for
Weed Identification Under Various Soil, Residue, and Lighting Conditions.” Transactions of
the ASAE 38 (1): 259-69. https://doi.org/https://doi.org/10.13031/2013.27838.

141



Madec, Simon, Fred Baret, Benoit de Solan, Samuel Thomas, Dan Dutartre, Stéphane Jezequel,
Matthieu Hemmerlé, Gallian Colombeau, and Alexis Comar. 2017. “High-Throughput
Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR
Estimates.” Frontiers in Plant Science 8 (November).
https://doi.org/10.3389/fpls.2017.02002.

Magurran, Anne E. 2021. “Measuring Biological Diversity.” Current Biology 31 (19): R1174-77.

Mairota, Paola, Barbara Cafarelli, Raphael K. Didham, Francesco P. Lovergine, Richard M. Lucas,
Harini Nagendra, Duccio Rocchini, and Cristina Tarantino. 2015. “Challenges and
Opportunities in Harnessing Satellite Remote-Sensing for Biodiversity Monitoring.”
Ecological Informatics 30:207—14. https://doi.org/10.1016/j.ecoinf.2015.08.006.

Manfreda, Salvatore, Matthew F. McCabe, Pauline E. Miller, Richard Lucas, Victor Pajuelo
Madrigal, Giorgos Mallinis, Eyal Ben Dor, et al. 2018. “On the Use of Unmanned Aerial
Systems for Environmental Monitoring.” Remote Sensing 10 (4).
https://doi.org/10.3390/rs10040641.

Marriott, Carol Ann, Michael Fothergill, Bernard Jeangros, Michele Scotton, and Frédérique
Louault. 2004. “Long-Term Impacts of Extensification of Grassland Management on
Biodiversity and Productivity in Upland Areas. A Review.” Agronomie 24 (8): 447-62.
https://doi.org/10.1051/agro:2004041.

Matese, Alessandro, Piero Toscano, Salvatore Filippo Di Gennaro, Lorenzo Genesio, Francesco
Primo Vaccari, Jacopo Primicerio, Claudio Belli, Alessandro Zaldei, Roberto Bianconi, and
Beniamino Gioli. 2015. “Intercomparison of UAV, Aircraft and Satellite Remote Sensing
Platforms  for  Precision  Viticulture.” Remote Sensing 7 (3): 2971-90.
https://doi.org/10.3390/rs70302971.

Merwe, Deon Van Der, Carol E. Baldwin, and Will Boyer. 2020. “An Efficient Method for
Estimating Dormant Season Grass Biomass in Tallgrass Prairie from Ultra-High Spatial

Resolution Aerial Imaging Produced with Small Unmanned Aircraft Systems.” International
Journal of Wildland Fire 29 (8): 696-701. https://doi.org/10.1071/WF19026.

Metternicht, G. 2003. “Vegetation Indices Derived from High-Resolution Airborne Videography
for Precision Crop Management.” International Journal of Remote Sensing 24 (14): 2855-77.
https://doi.org/10.1080/01431160210163074.

Meyer, George E, Timothy W Hindman, and Koppolu Laksmi. 1999. “Machine Vision Detection
Parameters for Plant Species Identification.” In Precision Agriculture and Biological Quality,
edited by George E Meyer and James A DeShazer, 3543:327-35. SPIE.
https://doi.org/10.1117/12.336896.

Michez, Adrien, Philippe Lejeune, Sébastien Bauwens, Andriamandroso Andriamasinoro Lalaina
Herinaina, Yannick Blaise, Eloy Castro Mufioz, Frédéric Lebeau, and Jerdme Bindelle. 2019.
“Mapping and Monitoring of Biomass and Grazing in Pasture with an Unmanned Aerial
System.” Remote Sensing 11 (5): 1-14. https://doi.org/10.3390/rs11050473.

142



Michez, Adrien, Lejeune Philippe, Knoden David, Cremer Sébastien, Decamps Christian, and
Jérome Bindelle. 2020. “Can Low-Cost Unmanned Aerial Systems Describe the Forage
Quality Heterogeneity? Insight from a Timothy Pasture Case Study in Southern Belgium.”
Remote Sensing 12 (10). https://doi.org/10.3390/rs12101650.

Moeckel, Thomas, Hanieh Safari, Bjorn Reddersen, Thomas Fricke, and Michael Wachendorf.
2017. “Fusion of Ultrasonic and Spectral Sensor Data for Improving the Estimation of Biomass
in Grasslands with Heterogeneous Sward Structure.” Remote Sensing 9 (1).
https://doi.org/10.3390/rs9010098.

Moher, David, Alessandro Liberati, Jennifer Tetzlaff, and Douglas G Altman. 2009. “Academia
and Clinic Annals of Internal Medicine Preferred Reporting Items for Systematic Reviews and
Meta-Analyses :”” Annals of Internal Medicine 151 (4): 264—69.

Morais, Tiago G., Ricardo F.M. Teixeira, Mario Figueiredo, and Tiago Domingos. 2021. “The Use
of Machine Learning Methods to Estimate Aboveground Biomass of Grasslands: A Review.”
Ecological Indicators 130 (October 2020): 108081.
https://doi.org/10.1016/j.ecolind.2021.108081.

Mulla, David J. 2013. “Twenty Five Years of Remote Sensing in Precision Agriculture: Key
Advances and Remaining Knowledge Gaps.” Biosystems Engineering 114 (4): 358-71.
https://doi.org/10.1016/J.BIOSYSTEMSENG.2012.08.0009.

Muro, Javier, Anja Linstadter, Paul Magdon, Stephan Wollauer, Florian A. Méanner, Lisa Maricia
Schwarz, Gohar Ghazaryan, Johannes Schultz, Zbyn¢k Malenovsky, and Olena Dubovyk.
2022. “Predicting Plant Biomass and Species Richness in Temperate Grasslands across
Regions, Time, and Land Management with Remote Sensing and Deep Learning.” Remote
Sensing of Environment 282 (March). https://doi.org/10.1016/j.rse.2022.113262.

Nési, Roope, Niko Viljanen, Jere Kaivosoja, Katja Alhonoja, Teemu Hakala, Lauri Markelin, and
Eija Honkavaara. 2018. “Estimating Biomass and Nitrogen Amount of Barley and Grass Using
UAV and Aircraft Based Spectral and Photogrammetric 3D Features.” Remote Sensing 10 (7):
1-32. https://doi.org/10.3390/rs10071082.

Nordberg, Maj Liz, and Joakim Evertson. 2003. “Monitoring Change in Mountainous Dry-Heath
Vegetation at a Regional Scale Using Multitemporal Landsat TM Data.” Ambio 32 (8): 502—
9. https://doi.org/10.1579/0044-7447-32.8.502.

O’Donovan, Mike, Pat Dillon, M Rath, and G Stakelum. 2002. “A Comparison of Four Methods
of Herbage Mass Estimation.” Irish Journal of Agricultural and Food Research 41:17-27.

O’Sullivan, M, W F O’Keeffe, and M J Flynn. 1987. “The Value of Pasture Height in the
Measurement of Dry Matter Yield.” Irish Journal of Agricultural Research 26 (1): 63-68.
http://www.jstor.org/stable/25556178.

Oijen, Marcel van, Gianni Bellocchi, and Mats H glind. 2018. “Effects of Climate Change on
Grassland Biodiversity and Productivity: The Need for a Diversity of Models.” Agronomy.

143



MDPI AG. https://doi.org/10.3390/agronomy8020014.

Oldeland, Jens, Dirk Wesuls, Duccio Rocchini, Michael Schmidt, and Norbert Jirgens. 2010.
“Does Using Species Abundance Data Improve Estimates of Species Diversity from Remotely
Sensed  Spectral  Heterogeneity?”  Ecological Indicators 10 (2): 390-96.
https://doi.org/10.1016/J.ECOLIND.2009.07.012.

Oliveira, Raquel Alves, Roope Nési, Oiva Niemelédinen, Laura Nyholm, Katja Alhonoja, Jere
Kaivosoja, Lauri Jauhiainen, et al. 2020. “Machine Learning Estimators for the Quantity and
Quality of Grass Swards Used for Silage Production Using Drone-Based Imaging
Spectrometry and Photogrammetry.” Remote Sensing of Environment 246 (May): 111830.
https://doi.org/10.1016/j.rse.2020.111830.

Palmer, Michael W, Peter G Earls, Bruce W Hoagland, Peter S White, and Thomas Wohlgemuth.
2002. “Quantitative Tools for Perfecting Species Lists.” Environmetrics 13:121-37.
https://doi.org/10.1002/env.516.

Pearson, R.~L., and L.~D. Miller. 1972. “Remote Mapping of Standing Crop Biomass for
Estimation of the Productivity of the Shortgrass Prairie.” In Remote Sensing of Environment,
VIII, 1355.

Peng, Yu, Min Fan, Lan Bai, Weiguo Sang, Jinchao Feng, Zhixin Zhao, and Ziye Tao. 2019.
“Identification of the Best Hyperspectral Indices in Estimating Plant Species Richness in
Sandy Grasslands.” Remote Sensing 11 (5). https://doi.org/10.3390/rs11050588.

Pereira, F. R.da S., J. P. de Lima, R. G. Freitas, A. A. Dos Reis, L. R.do Amaral, G. K.D.A.
Figueiredo, R. A.C. Lamparelli, and P. S.G. Magalhdes. 2022. “Nitrogen Variability
Assessment of Pasture Fields under an Integrated Crop-Livestock System Using UAV,
PlanetScope, and Sentinel-2 Data.” Computers and Electronics in Agriculture 193 (April
2021). https://doi.org/10.1016/j.compag.2021.106645.

Perry, Charles R., and Lyle F. Lautenschlager. 1984. “Functional Equivalence of Spectral
Vegetation Indices.” Remote Sensing of Environment 14 (1-3): 169-82.
https://doi.org/10.1016/0034-4257(84)90013-0.

Petermann, Jana S., and Oksana Y. Buzhdygan. 2021. “Grassland Biodiversity.” Current Biology
31 (19): R1195-1201. https://doi.org/10.1016/J.CUB.2021.06.060.

Piggot, G. J. 1989. “A Comparison of Four Methods for Estimating Herbage Yield of Temperate
Dairy Pastures.” New Zealand Journal of Agricultural Research 32 (1): 121-23.
https://doi.org/10.1080/00288233.1989.10423486.

Pilgrim, Emma S., Christopher J.A. Macleod, Martin S.A. Blackwell, Roland Bol, David V. Hogan,
David R. Chadwick, Laura Cardenas, et al. 2010. “Interactions Among Agricultural
Production and Other Ecosystem Services Delivered from European Temperate Grassland
Systems.” Advances in Agronomy 109 (C): 117-54. https://doi.org/10.1016/B978-0-12-
385040-9.00004-9.

144



Plaza, Javier, Marco Criado, Nilda Sanchez, Rodrigo Pérez-Sanchez, Carlos Palacios, and
Francisco Charfolé. 2021. “Uav Multispectral Imaging Potential to Monitor and Predict
Agronomic Characteristics of Different Forage Associations.” Agronomy 11 (9): 1-22.
https://doi.org/10.3390/agronomy11091697.

Pohl, M., M. Hoffmann, U. Hagemann, M. Giebels, E. Albiac Borraz, M. Sommer, and J. Augustin.
2015. “Dynamic C and N Stocks - Key Factors Controlling the C Gas Exchange of Maize in
Heterogenous Peatland.” Biogeosciences 12 (9): 2737-52. https://doi.org/10.5194/bg-12-
2737-2015.

Pol, A Van Den, Talea Becker, Adrian Botana Fernandez, Thia Hennessy, and Giovanni Peratoner.
2018. “Social and Economic Impacts of Grass Based Ruminant Production.” In Sustainable
Meat and Milk Production from Grasslands, 23:697—708.

Poley, Lucy G., and Gregory J. McDermid. 2020. “A Systematic Review of the Factors Influencing
the Estimation of Vegetation Aboveground Biomass Using Unmanned Aerial Systems.”
Remote Sensing 12 (7). https://doi.org/10.3390/rs12071052.

Possoch, M., S. Bieker, D. Hoffmeister, A. A. Bolten, J. Schellberg, and G. Bareth. 2016. “Multi-
Temporal Crop Surface Models Combined with the Rgb Vegetation Index from UAV-Based
Images for Forage Monitoring in Grassland.” International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences - ISPRS Archives 2016-Janua (June): 991—
98. https://doi.org/10.5194/isprsarchives-XLI-B1-991-2016.

Pranga, Joanna, Irene Borra-Serrano, Jonas Aper, Tom De Swaef, An Ghesquiere, Paul Quataert,
Isabel Roldan-Ruiz, Ivan A. Janssens, Greet Ruysschaert, and Peter Lootens. 2021.
“Improving Accuracy of Herbage Yield Predictions in Perennial Ryegrass with UAV-Based
Structural and Spectral Data Fusion and Machine Learning.” Remote Sensing 13 (17): 3459.
https://doi.org/10.3390/rs13173459.

Psomas, A., M. Kneubuhler, S. Huber, K. Itten, and N. E. Zimmermann. 2011. “Hyperspectral
Remote Sensing for Estimating Aboveground Biomass and for Exploring Species Richness
Patterns of Grassland Habitats.” International Journal of Remote Sensing 32 (24): 9007-31.
https://doi.org/10.1080/01431161.2010.532172.

Q1, J., A. Chehbouni, A. R. Huete, Y. H. Kerr, and S. Sorooshian. 1994. “A Modified Soil Adjusted
Vegetation Index.” Remote  Sensing of Environment 48 (2): 119-26.
https://doi.org/10.1016/0034-4257(94)90134-1.

Qin, Yu, Shuhua Yi, Yongjian Ding, Yan Qin, Wei Zhang, Yi Sun, Xiumin Hou, et al. 2021.
“Effects of Plateau Pikas’ Foraging and Burrowing Activities on Vegetation Biomass and Soil
Organic Carbon of Alpine Grasslands.” Plant and Soil 458 (1-2): 201-16.
https://doi.org/10.1007/s11104-020-04489-1.

R Core Team. 2022. “R: A Language and Environment for Statistical Computing.” Vienna,
Austria: R Foundation for Statistical Computing. https://www.r-project.org/.

145



Ramoelo, A., A. K. Skidmore, M. A. Cho, M. Schlerf, R. Mathieu, and I. M.A. Heitkdnig. 2012.
“Regional Estimation of Savanna Grass Nitrogen Using the Red-Edge Band of the Spaceborne
Rapideye Sensor.” International Journal of Applied Earth Observation and Geoinformation
19 (1): 151-62. https://doi.org/10.1016/j.jag.2012.05.009.

Rapinel, Sébastien, Cendrine Mony, Lucie Lecoq, Bernard Clément, Alban Thomas, and Laurence
Hubert-Moy. 2019. “Evaluation of Sentinel-2 Time-Series for Mapping Floodplain Grassland
Plant Communities.” Remote Sensing of Environment 223 (March):115-29.
https://doi.org/10.1016/j.rse.2019.01.018.

Reis, Aliny A. Dos, Jodo P.S. Werner, Bruna C Silva, Gleyce K.D.A. Figueiredo, Jodo F.G.
Antunes, Jalio C.D.M. Esquerdo, Alexandre C Coutinho, Rubens A.C. Lamparelli, Jansle V
Rocha, and Paulo S.G. Magalhaes. 2020. “Monitoring Pasture Aboveground Biomass and
Canopy Height in an Integrated Crop-Livestock System Using Textural Information from
Planetscope Imagery.” Remote Sensing 12 (16). https://doi.org/10.3390/RS12162534.

Richardson, A. J., and C. L. Wiegand. 1977. “Distinguishing Vegetation from Soil Background
Information.” Photogrammetric Engineering and Remote Sensing 43 (12): 1541-52.

Rocchini, Duccio. 2007. “Effects of Spatial and Spectral Resolution in Estimating Ecosystem a-
Diversity by Satellite Imagery.” Remote Sensing of Environment 111 (4): 423-34.
https://doi.org/10.1016/j.rse.2007.03.018.

Rocchini, Duccio, Nicole Salvatori, Carl Beierkuhnlein, Alessandro Chiarucci, Florian de
Boissieu, Michael Forster, Carol X. Garzon-Lopez, et al. 2021. “From Local Spectral Species
to Global Spectral Communities: A Benchmark for Ecosystem Diversity Estimate by Remote
Sensing.” Ecological Informatics 61 (November 2020).
https://doi.org/10.1016/j.ecoinf.2020.101195.

Rondeaux, Geneviéve, Michael Steven, and Frédéric Baret. 1996. “Optimization of Soil-Adjusted
Vegetation  Indices.” Remote Sensing of Environment 55 (2): 95-107.
https://doi.org/10.1016/0034-4257(95)00186-7.

Rosa, Daniele De, Bruno Basso, Matteo Fasiolo, Johannes Friedl, Bill Fulkerson, Peter R. Grace,
and David W. Rowlings. 2021. “Predicting Pasture Biomass Using a Statistical Model and
Machine Learning Algorithm Implemented with Remotely Sensed Imagery.” Computers and
Electronics in Agriculture 180 (October 2020): 105880.
https://doi.org/10.1016/j.compag.2020.105880.

Rosenthal, Gert. 2006. “Restoration of Wet Grasslands - Effects of Seed Dispersal, Persistence and
Abundance on Plant Species Recruitment.” Basic and Applied Ecology 7 (5): 409-21.
https://doi.org/10.1016/j.baae.2006.05.006.

Rosenthal, Gert. 2010. “Secondary Succession in a Fallow Central European Wet Grassland.”
Flora: Morphology, Distribution, Functional Ecology of Plants 205 (3): 153-60.
https://doi.org/10.1016/j.flora.2009.02.003.

146



Rossi, Christian, Mathias Kneubuhler, Martin Schiitz, Michael E. Schaepman, Rudolf M. Haller,
and Anita C. Risch. 2021. “Remote Sensing of Spectral Diversity: A New Methodological
Approach to Account for Spatio-Temporal Dissimilarities between Plant Communities.”
Ecological Indicators 130 (November):108106.
https://doi.org/10.1016/j.ecolind.2021.108106.

Rossi, Christian, Mathias Kneubuhler, Martin Schiitz, Michael E Schaepman, Rudolf M Haller,
and Anita C Risch. 2022. “Spatial Resolution, Spectral Metrics and Biomass Are Key Aspects
in Estimating Plant Species Richness from Spectral Diversity in Species-Rich Grasslands.”
Remote  Sensing in Ecology and Conservation 8 (3): 297-314.
https://doi.org/10.1002/rse2.244.

Roth, Lukas, and Bernhard Streit. 2018. “Predicting Cover Crop Biomass by Lightweight UAS-
Based RGB and NIR Photography: An Applied Photogrammetric Approach.” Precision
Agriculture 19 (1): 93-114. https://doi.org/10.1007/s11119-017-9501-1.

Roujean, Jean Louis, and Francois Marie Breon. 1995. “Estimating PAR Absorbed by Vegetation
from Bidirectional Reflectance Measurements.” Remote Sensing of Environment 51 (3): 375-
84. https://doi.org/10.1016/0034-4257(94)00114-3.

Rouse, John Wilson, Robert H Haas, John A Schell, and D W Deering. 1973. “Monitoring
Vegetation Systems in the Great Plains with ERTS.” In .

Rueda-Ayala, Victor P., José M. Pefia, Mats Hoglind, José M. Bengochea-Guevara, and Dionisio
Andujar. 2019. “Comparing UAV-Based Technologies and RGB-D Reconstruction Methods
for Plant Height and Biomass Monitoring on Grass Ley.” Sensors (Switzerland) 19 (3).
https://doi.org/10.3390/s19030535.

Sala, Osvaldo E., and Jos¢ M. Paruelo. 1997. “Ecosystem Services in Grasslands.” Nature’s
Services: Societal Dependence on Natural Ecosystems, 237-52.

Sanderson, Matt A, C Alan Rotz, Stanley W Fultz, and Edward B Rayburn. 2001. “Estimating
Forage Mass with a Commercial Capacitance Meter, Rising Plate Meter, and Pasture Ruler.”
Agronomy Journal 93 (6): 1281-86. https://doi.org/https://doi.org/10.2134/agronj2001.1281.

Santillan, R. A.; W. R. Ocumpaugh, and G. O. Mott. 1979. “ Estimating Forage Yield with a Disk
Meter 1 Agronomy Journal 71 (2): 71-74.
https://doi.org/10.2134/agronj1979.00021962007100010017x.

Schellberg, Jirgen, Michael J. Hill, Roland Gerhards, Matthias Rothmund, and Matthias Braun.
2008. “Precision Agriculture on Grassland: Applications, Perspectives and Constraints.”
European Journal of Agronomy 29 (2-3): 59-71. https://doi.org/10.1016/j.eja.2008.05.005.

Schils, René L.M., Conny Bufe, Caroline M. Rhymer, Richard M. Francksen, Valentin H. Klaus,
Mohamed Abdalla, Filippo Milazzo, et al. 2022. “Permanent Grasslands in Europe: Land Use
Change and Intensification Decrease Their Multifunctionality.” Agriculture, Ecosystems and
Environment 330 (January). https://doi.org/10.1016/j.agee.2022.107891.

147



Schmidt, K. S., and A. K. Skidmore. 2003. “Spectral Discrimination of Vegetation Types in a
Coastal  Wetland.” Remote  Sensing of Environment 85 (1) 92-108.
https://doi.org/10.1016/S0034-4257(02)00196-7.

Schucknecht, Anne, Alexander Kramer, Sarah Asam, Abraham Mejia-Aguilar, Noelia Garcia-
Franco, Max A. Schuchardt, Anke Jentsch, and Ralf Kiese. 2020. “Vegetation Traits of Pre-
Alpine  Grasslands in Southern Germany.” Scientific Data 7 (1): 1-11.
https://doi.org/10.1038/s41597-020-00651-7.

Schucknecht, Anne, Bumsuk Seo, Alexander Kramer, Sarah Asam, Clement Atzberger, and Ralf
Kiese. 2022. “Estimating Dry Biomass and Plant Nitrogen Concentration in Pre-Alpine
Grasslands with Low-Cost UAS-Borne Multispectral Data-a Comparison of Sensors,
Algorithms, and  Predictor  Sets.”  Biogeosciences 19  (10):  2699-2727.
https://doi.org/10.5194/bg-19-2699-2022.

Schulze-Briininghoff, Damian, Michael Wachendorf, and Thomas Astor. 2021. “Remote Sensing
Data Fusion as a Tool for Biomass Prediction in Extensive Grasslands Invaded by L.
Polyphyllus.” Remote Sensing in Ecology and Conservation 7 (2): 198-213.
https://doi.org/10.1002/rse2.182.

Schweiger, Anna K, Anita C Risch, Alexander Damm, Mathias Kneubihler, Rudolf Haller,
Michael E Schaepman, and Martin Schitz. 2015. “Using Imaging Spectroscopy to Predict
Above-Ground Plant Biomass in Alpine Grasslands Grazed by Large Ungulates.” Journal of
Vegetation Science 26 (1): 175-90. https://doi.org/10.1111/jvs.12214.

Sha, Zongyao, Yuwei Wang, Yongfei Bai, Yujin Zhao, Hua Jin, Ya Na, and Xiaoliang Meng. 2018.
“Comparison of Leaf Area Index Inversion for Grassland Vegetation through Remotely
Sensed Spectra by Unmanned Aerial Vehicle and Field-Based Spectroradiometer.” Journal of
Plant Ecology 12 (3): 395-408. https://doi.org/10.1093/jpe/rty036.

Shahbazi, Mozhdeh, Jérome Théau, and Patrick Ménard. 2014. “GIScience & Remote Sensing
Recent Applications of Unmanned Aerial Imagery in Natural Resource Management Recent

Applications of Unmanned Aerial Imagery in Natural Resource Management.”
https://doi.org/10.1080/15481603.2014.926650.

Shi, Yan, Jay Gao, Xilai Li, Jiexia Li, and Gary Brierley. 2022. “Effects of Disturbances on
Aboveground Biomass of Alpine Meadow in the Yellow River Source Zone, Western China.”
Ecology and Evolution 12 (3): 1-14. https://doi.org/10.1002/ece3.8640.

Shi, Yan, Jay Gao, Xilai Li, Jiexia Li, Daniel Marc G. Dela Torre, and Gary John Brierley. 2021.
“Improved Estimation of Aboveground Biomass of Disturbed Grassland through Including
Bare Ground and Grazing Intensity.” Remote Sensing 13 (12).
https://doi.org/10.3390/rs13112105.

Shorten, P. R., and M. R. Trolove. 2022. “UAV-Based Prediction of Ryegrass Dry Matter Yield.”
International Journal of Remote Sensing 43 (: 2393-2409.
https://doi.org/10.1080/01431161.2022.2058890.

148



Sibanda, Mbulisi, Onisimo Mutanga, Mathieu Rouget, and Lalit Kumar. 2017. “Estimating
Biomass of Native Grass Grown under Complex Management Treatments Using Worldview-
3 Spectral Derivatives.” Remote Sensing 9 (1). https://doi.org/10.3390/rs9010055.

Sims, Daniel A., and John A. Gamon. 2002. “Relationships between Leaf Pigment Content and
Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental
Stages.” Remote Sensing of Environment 81 (2-3): 337-54. https://doi.org/10.1016/S0034-
4257(02)00010-X.

Sinde-Gonzalez, lzar, Mariluz Gil-Docampo, Marcos Arza-Garcia, Jose Grefa-Sanchez, Diana
Yanez-Simba, Patricio Pérez-Guerrero, and Victor Abril-Porras. 2021. “Biomass Estimation
of Pasture Plots with Multitemporal UAV-Based Photogrammetric Surveys.” International
Journal of Applied Earth Observation and Geoinformation 101  (April).
https://doi.org/10.1016/j.jag.2021.102355.

Smith, M W, J L Carrivick, and D J Quincey. 2015. “Structure from Motion Photogrammetry in
Physical Geography.” Progress in Physical Geography: Earth and Environment 40 (2): 247—
75. https://doi.org/10.1177/0309133315615805.

Smith, R C G, J Adams, D J Stephens, and P T Hick. 1995. “Forecasting Wheat Yield in a
Mediterranean-Type Environment from the NOAA Satellite.” Australian Journal of
Agricultural Research 46 (1): 113-25. https://doi.org/10.1071/AR9950113.

Sousa, Celio, Carolina Souza, Lisiane Zanella, and Luis Carvalho. 2012. “Analysis of Rapideye’s
Red Edge Band for Image Segmentation and Classification.” Proceedings of the 4th GEOBIA,
Rio de Janeiro, Brazil 79 (518): 7-9.

Souza, Eduardo G. de, Peter C. Scharf, and Kenneth A. Sudduth. 2010. “Sun Position and Cloud
Effects on Reflectance and Vegetation Indices of Corn.” Agronomy Journal 102 (2): 734-44.
https://doi.org/10.2134/agronj2009.0206.

Sripada, Ravi. 2005. “Determining In-Season Nitrogen Requirements for Corn Using Aerial Color-
Infrared Photography.” Raleigh, NC: North Carolina State University.

Sripada, Ravi P, Ronnie W Heiniger, Jeffrey G White, and Alan D Meijer. 2006. “Aerial Color
Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn.”
Agronomy Journal 98 (4): 968-77. https://doi.org/https://doi.org/10.2134/agronj2005.0200.

Sun, Weiwei, Daosheng Chen, Zhouyuan Li, Saigiang Li, Siying Cheng, Xiaomeng Niu, Yimeng
Cai, et al. 2024. “Monitoring Wetland Plant Diversity from Space: Progress and Perspective.”
International Journal of Applied Earth Observation and Geoinformation. Elsevier.
https://doi.org/10.1016/j.jag.2024.103943.

Tackenberg, Oliver. 2007. “A New Method for Non-Destructive Measurement of Biomass, Growth
Rates, Vertical Biomass Distribution and Dry Matter Content Based on Digital Image
Analysis.” Annals of Botany 99 (4): 777-83. https://doi.org/10.1093/ach/mcm009.

Taddeo, Sophie, Iryna Dronova, and Nicholas Depsky. 2019. “Spectral Vegetation Indices of

149



Wetland Greenness: Responses to Vegetation Structure, Composition, and Spatial
Distribution.”  Remote  Sensing  of  Environment 234  (December):111467.
https://doi.org/10.1016/j.rse.2019.111467.

Taddeo, Sophie, Iryna Dronova, and Kendall Harris. 2021. “Greenness, Texture, and Spatial
Relationships Predict Floristic Diversity across Wetlands of the Conterminous United States.”
ISPRS Journal of Photogrammetry and Remote Sensing 175 (May):236-46.
https://doi.org/10.1016/J.1ISPRSJPRS.2021.03.012.

Tallowin, J R B. 1996. “Effects of Inorganic Fertilizers on Flower-Rich Hay Meadows: A Review
Using a Case Study on the Somerset Levels, UK.” In Grassland and Forage Abstracts,
66:147-52. CABI International, Wallingford, Oxon (CABI).

Tamburlin, Daniel, Michele Torresani, Enrico Tomelleri, Giustino Tonon, and Duccio Rocchini.
2021. “Testing the Height Variation Hypothesis with the R Rasterdiv Package for Tree Species
Diversity Estimation.” https://doi.org/10.3390/rs13183569.

Tan, Suiyan, Anders Krogh Mortensen, Xu Ma, Birte Boelt, and René Gislum. 2021. “Assessment
of Grass Lodging Using Texture and Canopy Height Distribution Features Derived from UAV
Visual-Band Images.” Agricultural and Forest Meteorology 308-309 (August).
https://doi.org/10.1016/j.agrformet.2021.108541.

Tang, Ze, Yangjian Zhang, Nan Cong, Li Wang, Yixuan Zhu, Zhaolei Li, and Guang Zhao. 2021.
“Remotely Piloted Aircraft Systems Remote Sensing Can Effectively Retrieve Ecosystem
Traits of Alpine Grasslands on the Tibetan Plateau at a Landscape Scale.” Remote Sensing in
Ecology and Conservation 7 (3): 382-96. https://doi.org/10.1002/rse2.196.

Tarantino, Cristina, Francesca Casella, Maria Adamo, Richard Lucas, Carl Beierkuhnlein, and
Palma Blonda. 2019. “Ailanthus Altissima Mapping from Multi-Temporal Very High
Resolution Satellite Images.” ISPRS Journal of Photogrammetry and Remote Sensing 147
(January):90-103. https://doi.org/10.1016/J.ISPRSJPRS.2018.11.013.

Tasset, E., T. Boulanger, S. Diquélou, P. Lainé, and S. Lemauviel-Lavenant. 2019. “Plant Trait to
Fodder Quality Relationships at Both Species and Community Levels in Wet Grasslands.”
Ecological Indicators 97 (October 2018): 389-97.
https://doi.org/10.1016/j.ecolind.2018.10.035.

Taylor, Shawn D., and Dawn M. Browning. 2021. “Multi-Scale Assessment of a Grassland
Productivity Model.” Biogeosciences 18 (6): 2213-20. https://doi.org/10.5194/bg-18-2213-
2021.

Théau, Jérdme, Etienne Lauzier-Hudon, Lydiane Aubé, and Nicolas Devillers. 2021. “Estimation

of Forage Biomass and Vegetation Cover in Grasslands Using UAV Imagery.” PLoS ONE 16
(1 January): 1-18. https://doi.org/10.1371/journal.pone.0245784.

Thornley, Rachael H, France F Gerard, Kevin White, and Anne Verhoef. 2023. “Prediction of
Grassland Biodiversity Using Measures of Spectral Variance: A Meta-Analytical Review.”

150



Remote Sensing. https://doi.org/10.3390/rs15030668.

Tian, Yuan, and Gang Fu. 2022. “Quantifying Plant Species a-Diversity Using Normalized
Difference Vegetation Index and Climate Data in Alpine Grasslands.” Remote Sensing 14 (19).
https://doi.org/10.3390/rs14195007.

Tilman, David, David Wedin, and Johannes Knops. 1996. “Productivity and Sustainability
Influenced by Biodiversity in Grassland Ecosystems.” Nature 379 (6567): 718-20.

Tmusi¢, Goran, Salvatore Manfreda, Helge Aasen, Mike R. James, Gil Gongalves, Eyal Ben-Dor,
Anna Brook, et al. 2020. “Current Practices in UAS-Based Environmental Monitoring.”
Remote Sensing 12 (6). https://doi.org/10.3390/rs12061001.

Togeiro de Alckmin, Gustavo, Lammert Kooistra, Richard Rawnsley, and Arko Lucieer. 2021.
“Comparing Methods to Estimate Perennial Ryegrass Biomass: Canopy Height and Spectral
Vegetation Indices.” Precision Agriculture 22 (1): 205-25. https://doi.org/10.1007/s11119-
020-09737-z.

Torresani, Michele, Duccio Rocchini, Ruth Sonnenschein, Marc Zebisch, Heidi C. Hauffe, Michael
Heym, Hans Pretzsch, and Giustino Tonon. 2020. “Height Variation Hypothesis: A New
Approach for Estimating Forest Species Diversity with CHM LiDAR Data.” Ecological
Indicators 117 (October):106520. https://doi.org/10.1016/J.ECOLIND.2020.106520.

Tucker, Compton J. 1979. “Red and Photographic Infrared Linear Combinations for Monitoring
Vegetation.” Remote Sensing of Environment 8 (2): 127-50. https://doi.org/10.1016/0034-
4257(79)90013-0.

Viedma, Olga, Ivan Torres, Beatriz Pérez, and Jos¢ M. Moreno. 2012. “Modeling Plant Species
Richness Using Reflectance and Texture Data Derived from QuickBird in a Recently Burned
Area of Central Spain.” Remote Sensing of Environment 119 (April): 208-21.
https://doi.org/10.1016/j.rse.2011.12.024.

Viljanen, Niko, Eija Honkavaara, Roope Nési, Teemu Hakala, Oiva Niemeldinen, and Jere
Kaivosoja. 2018. “A Novel Machine Learning Method for Estimating Biomass of Grass
Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices
Captured by a Drone.” Agriculture (Switzerland) 8 (5).
https://doi.org/10.3390/agriculture8050070.

Villoslada, M., T. F. Bergamo, R. D. Ward, N. G. Burnside, C. B. Joyce, R. G.H. Bunce, and K.
Sepp. 2020. “Fine Scale Plant Community Assessment in Coastal Meadows Using UAV Based
Multispectral ~ Data.”  Ecological Indicators 111 (November 2019): 105979.
https://doi.org/10.1016/j.ecolind.2019.105979.

Villoslada Peciia, M., T. F. Bergamo, R. D. Ward, C. B. Joyce, and K. Sepp. 2021. “A Novel
UAV-Based Approach for Biomass Prediction and Grassland Structure Assessment in Coastal
Meadows.” Ecological Indicators 122. https://doi.org/10.1016/j.ecolind.2020.107227.

Vifia, Andrés, Anatoly A Gitelson, Donald C Rundquist, Galina Keydan, Bryan Leavitt, and James

151



Schepers. 2004. “Monitoring Maize (Zea Mays L.) Phenology with Remote Sensing.”
Agronomy Journal 96 (4): 1139-47. https://doi.org/https://doi.org/10.2134/agronj2004.1139.

Vincini, M, E Frazzi, and P D’ Alessio. 2008. “A Broad-Band Leaf Chlorophyll Vegetation Index
at the Canopy Scale.” Precision Agriculture 9 (5): 303-19. https://doi.org/10.1007/s11119-
008-9075-z.

Vogel, Sebastian, Robin Gebbers, Marcel Oertel, and Eckart Kramer. 2019. “Evaluating Soil-
Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing.” Sensors
(Switzerland) 19 (20): 1-16. https://doi.org/10.3390/s19204593.

Vooren, Laura Van, Bert Reubens, Steven Broekx, Dirk Reheul, and Kris Verheyen. 2018.
“Assessing the Impact of Grassland Management Extensification in Temperate Areas on
Multiple Ecosystem Services and Biodiversity.” Agriculture, Ecosystems & Environment 267
(November):201-12. https://doi.org/10.1016/J.AGEE.2018.08.016.

Wachendorf, M., T. Fricke, and T. Mdckel. 2018. “Remote Sensing as a Tool to Assess Botanical
Composition, Structure, Quantity and Quality of Temperate Grasslands.” Grass and Forage
Science 73 (1): 1-14. https://doi.org/10.1111/gfs.12312.

Wang, Chuyuan, Kevin P. Price, Deon Van Der Merwe, Nan An, and Huan Wang. 2014.
“Modeling Above-Ground Biomass in Tallgrass Prairie Using Ultra-High Spatial Resolution
SUAS Imagery.” Photogrammetric Engineering and Remote Sensing 80 (12): 1151-59.
https://doi.org/10.14358/PERS.80.12.1151.

Wang, Dongliang, Xiaoping Xin, Quangin Shao, Matthew Brolly, Zhiliang Zhu, and Jin Chen.
2017. “Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using
Unmanned Aerial Vehicle Discrete Lidar.” Sensors (Switzerland) 17 (1): 1-109.
https://doi.org/10.3390/s17010180.

Wang, Jiyan, Ainong Li, and Jinhu Bian. 2016. “Simulation of the Grazing Effects on Grassland
Aboveground Net Primary Production Using DNDC Model Combined with Time-Series
Remote Sensing Data-a Case Study in Zoige Plateau, China.” Remote Sensing 8 (3).
https://doi.org/10.3390/rs8030168.

Wang, Ran, and John A. Gamon. 2019. “Remote Sensing of Terrestrial Plant Biodiversity.” Remote
Sensing of Environment 231 (September):111218. https://doi.org/10.1016/j.rse.2019.111218.

Wang, Ran, John A. Gamon, Anna K. Schweiger, Jeannine Cavender-Bares, Philip A. Townsend,
Arthur I. Zygielbaum, and Shan Kothari. 2018. “Influence of Species Richness, Evenness, and
Composition on Optical Diversity: A Simulation Study.” Remote Sensing of Environment 211
(September 2017): 218-28. https://doi.org/10.1016/j.rse.2018.04.010.

Wang, Ran, John A Gamon, Rebecca A Montgomery, Philip A Townsend, Arthur | Zygielbaum,
Keren Bitan, David Tilman, and Jeannine Cavender-Bares. 2016. “Seasonal Variation in the

NDVI-Species Richness Relationship in a Prairie Grassland Experiment (Cedar Creek).”
Remote Sensing 8 (2). https://doi.org/10.3390/rs8020128.

152



Wang, Tianhai, Yadong Liu, Minghui Wang, Qing Fan, Hongkun Tian, Xi Qiao, and Yanzhou L.i.
2021. “Applications of UAS in Crop Biomass Monitoring: A Review.” Frontiers in Plant
Science 12 (April): 1-16. https://doi.org/10.3389/fpls.2021.616689.

Wang, Zhihui, Philip A. Townsend, Anna K. Schweiger, John J. Couture, Aditya Singh, Sarah E.
Hobbie, and Jeannine Cavender-Bares. 2019. “Mapping Foliar Functional Traits and Their
Uncertainties across Three Years in a Grassland Experiment.” Remote Sensing of Environment
221 (December 2018): 405-16. https://doi.org/10.1016/j.rse.2018.11.016.

Weiss, M, D Troufleau, F Baret, H Chauki, L Prévot, A Olioso, N Bruguier, and N Brisson. 2001.
“Coupling Canopy Functioning and Radiative Transfer Models for Remote Sensing Data
Assimilation.” Agricultural and Forest Meteorology 108:113-28.

Wengert, Matthias, Jayan Wijesingha, Damian Schulze-Bruninghoff, Michael Wachendorf, and
Thomas Astor. 2022. “Multisite and Multitemporal Grassland Yield Estimation Using UAV-
Borne Hyperspectral Data.” Remote Sensing 14 (9). https://doi.org/10.3390/rs14092068.

Whitcraft, Alyssa K., Eric F. Vermote, Inbal Becker-Reshef, and Christopher O. Justice. 2015.
“Cloud Cover throughout the Agricultural Growing Season: Impacts on Passive Optical Earth
Observations.” Remote Sensing of Environment 156:438-47.
https://doi.org/10.1016/j.rse.2014.10.0009.

White, R, S Murray, and M Rohweder. 2000. “Grassland Ecosystems. Pilot Analysis of Global
Ecosystems.” World Resources Institute, Washington DC.

Wijesingha, Jayan, Thomas Moeckel, Frank Hensgen, and Michael Wachendorf. 20109.
“Evaluation of 3D Point Cloud-Based Models for the Prediction of Grassland Biomass.”
International Journal of Applied Earth Observation and Geoinformation 78 (October): 352—
59. https://doi.org/10.1016/j.jag.2018.10.006.

Wilke, Norman, Bastian Siegmann, Lasse Klingbeil, Andreas Burkart, Thorsten Kraska, Onno
Muller, Anna van Doorn, Sascha Heinemann, and Uwe Rascher. 2019. “Quantifying Lodging
Percentage and Lodging Severity Using a UAV-Based Canopy Height Model Combined with
an Objective Threshold Approach.” Remote Sensing 11 (5).
https://doi.org/10.3390/rs11050515.

Willkomm, M., A. Bolten, and G. Bareth. 2016. ‘“Non-Destructive Monitoring of Rice by
Hyperspectral in-Field Spectrometry and UAV-Based Remote Sensing: Case Study of Field-
Grown Rice in North Rhine-Westphalia, Germany.” International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 2016-
Janua (July): 1071-77. https://doi.org/10.5194/isprsarchives-XLI-B1-1071-2016.

Wilmanns, O. 1989. “C)kologische Pflanzensoziologie. Uni-Taschenbiicher, 269. 4. Aufl., 378 S.,
45 Abb., 17 Tab., 31 Tabell. Ubersichten. Quelle Und Meyer Verlag, Heidelberg, Wieshaden,
19809. ISBN 3-494-02168-6.” Feddes Repertorium 103 (1-2): 142.
https://doi.org/https://doi.org/10.1002/fedr.19921030123.

153



Wood, Eric M., Anna M. Pidgeon, Volker C. Radeloff, and Nicholas S. Keuler. 2012. “Image
Texture as a Remotely Sensed Measure of Vegetation Structure.” Remote Sensing of
Environment 121:516-26. https://doi.org/10.1016/j.rse.2012.01.003.

Wu, Liji, Huasong Chen, Dima Chen, Shaopeng Wang, Ying Wu, Bing Wang, Shengen Liu,
Linyan Yue, Jie Yu, and Yongfei Bai. 2023. “Soil Biota Diversity and Plant Diversity Both
Contributed to Ecosystem Stability in Grasslands.” Ecology Letters 26 (6): 858-68.
https://doi.org/10.1111/ele.14202.

Xu, Kexin, Yanjun Su, Jin Liu, Tianyu Hu, Shichao Jin, Qin Ma, Qiuping Zhai, et al. 2020.
“Estimation of Degraded Grassland Aboveground Biomass Using Machine Learning Methods
from Terrestrial Laser Scanning Data.” Ecological Indicators 108 (January):105747.
https://doi.org/10.1016/j.ecolind.2019.105747.

Xue, Beibei, Bo Ming, Jiangfeng Xin, Hongye Yang, Shang Gao, Huirong Guo, Dayun Feng,
Chenwei Nie, Keru Wang, and Shaokun Li. 2023. “Radiometric Correction of Multispectral
Field Images Captured under Changing Ambient Light Conditions and Applications in Crop
Monitoring” 7:223. https://doi.org/10.3390/drones7040223.

Xue, Jinru, and Baofeng Su. 2017. “Significant Remote Sensing Vegetation Indices: A Review of
Developments and Applications.” Journal of Sensors. https://doi.org/10.1155/2017/1353691.

Yang, Chenghai, James H. Everitt, Joe M. Bradford, and Dale Murden. 2004. “Airborne
Hyperspectral Imagery and Yield Monitor Data for Mapping Cotton Yield Variability.”
Precision Agriculture 5 (5): 445-61. https://doi.org/10.1007/s11119-004-5319-8.

Yang, Xiaohui. 2013. Assessing Responses of Grasslands to Grazing Management Using Remote
Sensing Approaches. Library and Archives Canada = Bibliothéque et Archives Canada.

Yang, Xiuchun, Bin Xu, Yunxiang Jin, Jinya Li, and Xiaohua Zhu. 2012. “On Grass Yield Remote
Sensing Estimation Models of China’s Northern Farming-Pastoral Ecotone.” Advances in
Intelligent and Soft Computing 141 (January):281-91. https://doi.org/10.1007/978-3-642-
27957-7_35.

Yang, Zhengwei, Patrick Willis, and Rick Mueller. 2008. “Impact of Band-Ratio Enhanced AWIFS
Image on Crop Classification Accuracy.” Proceedings of the 17th William Pecora Memorial
Remote Sensing Symposium.

Younes, Nicolas, Karen E. Joyce, and Stefan W. Maier. 2021. “All Models of Satellite-Derived
Phenology Are Wrong, but Some Are Useful: A Case Study from Northern Australia.”
International Journal of Applied Earth Observation and Geoinformation 97 (May):102285.
https://doi.org/10.1016/J.JAG.2020.102285.

Yue, Jibo, Guijun Yang, Qingjiu Tian, Haikuan Feng, Kaijian Xu, and Chengquan Zhou. 2019.
“Estimate of Winter-Wheat above-Ground Biomass Based on UAV Ultrahigh-Ground-
Resolution Image Textures and Vegetation Indices.” ISPRS Journal of Photogrammetry and
Remote Sensing 150 (April):226-44. https://doi.org/10.1016/J.1ISPRSJPRS.2019.02.022.

154



Zeng, Na, Xiaoli Ren, Honglin He, Li Zhang, Pan Li, and Zhongen Niu. 2021. “Estimating the
Grassland Aboveground Biomass in the Three-River Headwater Region of China Using
Machine Learning and Bayesian Model Averaging.” Environmental Research Letters 16 (11).
https://doi.org/10.1088/1748-9326/ac2e85.

Zeng, Na, Xiaoli Ren, Honglin He, Li Zhang, Dan Zhao, Rong Ge, Pan Li, and Zhongen Niu. 2019.
“Estimating Grassland Aboveground Biomass on the Tibetan Plateau Using a Random Forest
Algorithm.” Ecological Indicators 102 (July):479-87.
https://doi.org/10.1016/J.ECOLIND.2019.02.023.

Zhang, Ce, Peter M. Atkinson, Charles George, Zhaofei Wen, Mauricio Diazgranados, and France
Gerard. 2020. “Identifying and Mapping Individual Plants in a Highly Diverse High-Elevation
Ecosystem Using UAV Imagery and Deep Learning.” ISPRS Journal of Photogrammetry and
Remote Sensing 169 (November):280-91. https://doi.org/10.1016/j.isprsjprs.2020.09.025.

Zhang, Gan, Haifeng Yan, Dongyan Zhang, Huihui Zhang, Tao Cheng, Gensheng Hu, Shuhao
Shen, and Haifeng Xu. 2023. “Enhancing Model Performance in Detecting Lodging Areas in
Wheat Fields Using UAV RGB Imagery: Considering Spatial and Temporal Variations.”
Computers  and Electronics in  Agriculture 214  (October): 108297.
https://doi.org/10.1016/j.compag.2023.108297.

Zhang, Huifang, Yi Sun, Li Chang, Yu Qin, Jianjun Chen, Yan Qin, Jiaxing Du, Shuhua Yi, and
Yingli Wang. 2018. “Estimation of Grassland Canopy Height and Aboveground Biomass at
the Quadrat Scale Using Unmanned Aerial Vehicle.” Remote Sensing 10 (6).
https://doi.org/10.3390/rs10060851.

Zhang, Huifang, Zhonggang Tang, Binyao Wang, Baoping Meng, Yu Qin, Yi Sun, Yanyan lv,
Jianguo Zhang, and Shuhua Yi. 2022. “A Non-Destructive Method for Rapid Acquisition of
Grassland Aboveground Biomass for Satellite Ground Verification Using UAV RGB Images.”
Global Ecology and Conservation 33 (June 2021): e01999.
https://doi.org/10.1016/j.gecco.2022.e01999.

Zhang, Xiang, Yuhai Bao, Dongliang Wang, Xiaoping Xin, Lei Ding, Dawei Xu, Lulu Hou, and
Jie Shen. 2021. “Using Uav Lidar to Extract Vegetation Parameters of Inner Mongolian
Grassland.” Remote Sensing 13 (4): 1-18. https://doi.org/10.3390/rs13040656.

Zhao, Fen, Bin Xu, Xiuchun Yang, Yunxiang Jin, Jinya Li, Lang Xia, Shi Chen, and Hailong Ma.
2014. “Remote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net
Primary Productivity (NPP): A Case Study in the Xilingol Grassland of Northern China.”
Remote Sensing 6 (6): 5368-86. https://doi.org/10.3390/rs6065368.

Zhao, Xiaoxia, Yanjun Su, Tianyu Hu, Mengqi Cao, Xiaogiang Liu, Qiuli Yang, Hongcan Guan,
Lingli Liu, and Qinghua Guo. 2022. “Analysis of UAV Lidar Information Loss and Its
Influence on the Estimation Accuracy of Structural and Functional Traits in a Meadow
Steppe.” Ecological Indicators 135:108515. https://doi.org/10.1016/j.ecolind.2021.108515.

Zhao, Yonggan, Huancheng Pang, Jing Wang, Long Huo, and Yuyi Li. 2014. “Effects of Straw

155



Mulch and Buried Straw on Soil Moisture and Salinity in Relation to Sunflower Growth and
Yield.” Field Crops Research 161 (May): 16-25. https://doi.org/10.1016/j.fcr.2014.02.006.

Zhao, Yuanyuan, Zhifeng Liu, and Jianguo Wu. 2020. “Grassland Ecosystem Services: A
Systematic Review of Research Advances and Future Directions.” Landscape Ecology 35 (4):
793-814. https://doi.org/10.1007/s10980-020-00980-3.

Zhao, Yujin, Yihan Sun, Xiaoming Lu, Xuezhen Zhao, Long Yang, Zhongyu Sun, and Yongfei
Bai. 2021. “Hyperspectral Retrieval of Leaf Physiological Traits and Their Links to Ecosystem
Productivity in  Grassland Monocultures.” Ecological Indicators 122:107267.
https://doi.org/10.1016/j.ecolind.2020.107267.

Zlinszky, Andras, Anke Schroiff, Adam Kania, Balazs Deak, Werner Miicke, Agnes Vari, Balazs
Székely, and Norbert Pfeifer. 2014. “Categorizing Grassland Vegetation with Full-Waveform
Airborne Laser Scanning: A Feasibility Study for Detecting Natura 2000 Habitat Types.”
Remote Sensing 6 (9): 8056-87. https://doi.org/10.3390/rs6098056.

156



Appendix A. Supplementary material from article “A Review of
Estimation Methods for Aboveground Biomass in Grasslands Using

UAV”

Table A1l. Studies using UAV data to estimate grassland above ground biomass (AGB).

No. Title Ref Year Journal Main Objective
Modeling above-ground biomass (Wan ) To examine relationship between
. o . Photogrammetric o
in tallgrass prairie using ultra- get o herbaceous AGB for the tallgrass prairie and
1 ) ) ] 2014 Engineering & B ) i
high spatial resolution sUAS  al,, , its biophysical parameters derived from
i Remote Sensing . . L
imagery 2014) ultra-high-spatial-resolution imagery.
Estimating plant traits of (Capo To investigate the utility of hyperspectral
grasslands from UAV-acquired I Iz) International images acquired from UAYV for predicting
2 hyperspectral images: a of apl 2015 Journal of Geo-  vegetation traits in grasslands considering
comparison of statistical 201 5; Information the plant phenology and fertilization on
approaches. spectral data.
To devel imple and cost-effective low-
Mapping Herbage Biomass on a Journal of The © e,v copa S.I mp e ahd costetiee 1\./e ow
; . .. (Lee . altitude aerial platform system with a
Hill Pasture using a Digital Korean Society of g
3 . etal, 2015 commercial digital camera on an UAV
Camera with an Unmanned Grassland and . .
) . 2015) . system to collect images and estimate the
Aerial Vehicle System Forage Science . . .
herbage biomass using statistical analyses.
(Cunl
ltra-fi in land -scale iff
Ultra 1ne:= gral,“ andscape-seale 1 e,. To develop a new technique to quantify
quantification of dryland = Brazie , . . .
. ) Remote Sensing of ~ biomass and associated carbon stocks in
4  vegetation structure with drone- rand 2016 , .
. . Environment heterogeneous and dynamic short sward
acquired structure-from-motion Ande ..
semi-arid rangelands.
photogrammetry rson,
2016)
(Geip
1 To i i h ial AVi i
Hyperspectral aerial imaging for el and Advances in Animal mvestigate the P otential of UAV tmaging
5 . .2, Korsa 2017 o spectroscopy for in-season grassland yield
grassland yield estimation Biosciences S
eth, estimation.
2017)
To investigate if the canopy height, fraction
Modeling Aboveground Biomass (Wan cover, and aboveground biomass can be
in Hulunber Grassland get 2017 Sensors derived using models established from
Ecosystem by Using Unmanned al,, UAV-based discrete LIDAR data with
Aerial Vehicle Discrete Lidar  2017) desirable accuracy at quadrat and subplot
scales.
Low-cost visible and -
O.W €OSt VISIbTE and hear To demonstrate the use of a UAV system
infrared camera on an . . .
. . (Fan equipped with a low-cost visible and near-
unmanned aerial vehicle for ) . .
. . etal, 2018 Grassland Sciences infrared (V-NIR) camera to assess the spatial
assessing the herbage biomass e ) .
. . . 2018) variability in herbage biomass and LAl in an
and leaf area index in an Italian , _
. Italian ryegrass field.
ryegrass field
asi To devel d thodology f
Estimating biomass and nitrogen (Nasi . © ceve op and assess a METoco-ogy “ot
tal., 2018  Remote Sensing crop biomass and nitrogen estimation,
amount of barley and grass . .
2018) integrating spectral and 3D features that can
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using UAV and aircraft based
spectral and photogrammetric

A novel machine learning
method for estimating biomass (Vilja
of grass swards using a nen et

photogrammetric canopy height al,,
model, images and vegetation 2018)
indices captured by a drone.
Estimation of Grassland Canopy (Zhan
10 Height and Aboveground g et
Biomass at the Quadrat Scale  al,,
Using Unmanned Aerial Vehicle 2018)
Evaluation of grass quality ~ (Aska
1 under different soil management ri et
scenarios using remote sensing  al.,
techniques. 2019)
Estimating pasture biomass and (Batis
1 canopy height in Brazilian  toti et
savanna using UAV al.,
photogrammetry. 2019)
(Borra
Canopy height measurements -
13 and non-destructive biomass Serra
estimation of Lolium perenne  no et
swards using UAV imagery.  al,
2019)
(Griin
Biomass Prediction of Aer,
Heterogeneous Temperate ;:Sr
14 Grasslands Using an SfM Wach
Approach Based on UAV
. endor
Imaging £
2019)
Estimation of spatial and (Insua
temporal variability of pasture _’
. iqey Utsu
15 growth and digestibility in mi
grazing rotations coupling and
unmanned aerial vehicle (UAV)
with crop simulation models Basso,
2019)
Estimating biomass in temperate (Luss
16  grassland with high resolution o et

canopy surface models from

2018

2018

2019

2019

2019

2019

2019

2019

be extracted using airborne miniaturized
multispectral, hyperspectral, and color
(RGB) cameras.

To develop and assess a novel machine

learning technique for the estimation of

Agriculture canopy height and biomass of grass swards
utilizing multispectral photogrammetric

camera data.

To develop a novel method for estimating
Remote Sensing  the quadrat-scale aboveground biomass of

low-statute vegetation.

To evaluate the efficiency of hyperspectral
and multispectral (UAV and satellite)
remote sensing techniques for predicting
Remote Sensing and mapping grass biomass and crude
protein under conventional grassland
management in a temperate maritime
climate.
To estimate the canopy height using UAV
photogrammetry and to propose an
Remote Sensing ~ equation for the estimation of biomass of
Brazilian savanna (Cerrado) pastures based
on UAV canopy height.

To develop a methodology for monitoring
the spatial and temporal dynamics of
biomass accumulation of perennial ryegrass
plots throughout the growing season in an
affordable, easy-to-use, reliable, and non-

Grass and Forage
Science

destructive way using an RGB camera
mounted on a UAV.

To develop of prediction models for dry
matter yield in temperate grassland based
on canopy height data generated by UAV

RGB imaging over a whole growing season

Agronomy

including four cuts.

To monitor, assess and manage changes in
pasture growth, morphology, and
digestibility by integrating information from
an UAV and two process-based models.

PLOS One

To evaluate the potential of low-cost UAV-
based canopy surface models to monitor
sward height as an indicator of grassland

Journal of Applied
Remote Sensing
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17

18

19

20

21

22

23

24

25

UAV-based RGB images and  al.,,
vegetation indices 2019)

ich
Mapping and monitoring of (Mic

biomass and grazing in pasture .
with an unmanned aerial system 2019)
Comparing UAV-Based (Rued
Technologies and RGB-D a-
Reconstruction Methods for ~ Ayala
Plant Height and Biomass et al.,
Monitoring on Grass Ley 2019)

Evaluating soil-borne causes of
biomass variability in grassland
by remote and proximal sensing

Evaluation of 3D point cloud- ('Ylfas
based models for the prediction let%zl
of grassland biomass 201 9;
(Barn
Estimating Plant Pasture ;t;c;r;
Biomass and Quality from UAV and
Imaging across Queensland’s
Scarth
Rangelands
2020)
Deep learning applied to ~ (Castr
phenotyping of biomass in oet
forages with UAV-based RGB  al.,
imagery 2020)

A Pilot Study to Estimate Forage (DiM
Mass from Unmanned Aerial aggio

Vehicles in a Semi-Arid etal.,
Rangeland 2020)

Development and validation of a (Gebr
phenotyping computational emed
workflow to predict the biomass hin et
yield of a large perennial al.,
ryegrass breeding field trial =~ 2020)

The potential of UAV-borne (Griin
spectral and textural information er,
for predicting aboveground =~ Wach
biomass and N fixationin = endor
legume-grass mixtures f and

2019

2019

2019

2019

2020

2020

2020

2020

2020

biomass and compare with established
methods for biomass monitoring.

To evaluate the potential of UAV as a tool
for the characterization of pasture 3D
structure (sward height) and aboveground
biomass at a very fine spatial scale.

To evaluate aerial and on-ground methods
to characterize grass ley fields, composed of

Remote Sensing

different species mixtures and estimate plant
height, biomass and volume, using digital
grass models, and avoiding the unnecessary
destruction of the swards.

Sensors

To investigate the relationship between soil
characteristics and biomass production to
Sensors identify high- and low-yielding regions
within the field and their possible soil-borne
causes.
To evaluate 3D point clouds derived from a
International terrestrial laser scanner (TLS) and an UAV-
Journal of Applied borne SfM approach for grassland biomass
Earth Observation estimation over three grasslands with
and Geoinformation  different composition and management
practice in northern Hesse, Germany.

To demonstrate the use of UAV
hyperspectral remote sensing to detect both
AgriEngineering  crude protein and acid detergent fiber in a
range of native pastures across the
rangelands of Queensland, Australia.

To propose a deep learning approach to
estimate biomass in forage breeding
Sensors programs and pasture fields using only
UAV-RGB imagery and AlexNet and ResNet
deep learning architectures.

To develop a method to estimate forage
mass in rangelands using high-resolution
imagery derived from the UAV using a
South Texas pasture as a pilot site.

To validate a computational phenotyping
workflow for image acquisition, processing,

Frontiers in Plant  and analysis of spaced-planted perennial

Science ryegrass to estimate the biomass yield of
48,000 individual plants through NDVI and

plant height data extraction.
To develop harvestable biomass and

aboveground nitrogen fixation estimation
PLOS One models from UAV multispectral imaging of
legume—grass mixtures with varying legume

proportions (0-100%).

Remote Sensing
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2020)

Comparison of Spectral

Reflectance-Based Smart
. (Hart

Farming Tools and a
26 . etal.,
Conventional Approach to 2020)
Determine Herbage Mass and

Grass Quality on Farm

Investigating the potential of a (Jenal

7 newly developed UAV-based of dl
VNIR/SWIR imaging system for M

nay 2020)
forage mass monitoring
The fusion of spectral and (Karu
structural datasets derived from rat
)8 an airborne multispectral sensor o of
for estimation of pasture dry
. al.,
matter yield at paddock scale
L 2020)
with time
High-throughput switchgrass (Li et
29 phenotyping and biomass al.,
modeling by UAV 2020)
(Luss
em,

Monitoring Forage Mass with Schell
Low-Cost UAV Data: Case Study berg

30 at the Rengen Grassland and
Experiment Baret
h,
2020)
Can Low-Cost Unmanned Aerial _ .
. (Mich
Systems Describe the Forage oz of
31 Quality Heterogeneity? Insight
from a Timothy Pasture Case al,
Y 2020)

Study in Southern Belgium
Machine learning estimators for
the quantity and quality of grass (Olive

swards used for silage ira et

32
production using drone-based  al.,

imaging spectrometry and ~ 2020)
photogrammetry
An efficient method for (1\)/::
estimating dormant season grass orw
33 biomass in tallgrass prairie from .
ultra-high spatial resolution Bai q
aerial imaging produced with win

2020

2020

2020

2020

2020

2020

2020

2020

Remote Sensing

Journal of
Photogrammetry,
Remote Sensing and
Geoinformation
Science

Remote Sensing

Frontiers in Plant
Science

Journal of
Photogrammetry,

To evaluate two spectral reflectance-based
smart farming tools for determining herbage
mass and quality of multi-species
grasslands —a portable NIRS and a model to
analyze multispectral imagery.

To investigate the potential of a multi-
camera system with a novel approach to
extend spectral sensitivity from visible-to-
near-infrared (VNIR) to short-wave infrared
(SWIR) (400-1700 nm) for estimating forage
mass from an aerial carrier platform.

To develop empirical pasture dry matter
(DM) yield prediction models using an
UAV-borne sensor at four flying altitudes.

To exploit UAV-based imagery (LiDAR and
multispectral approaches) to measure plant
height, perimeter, and biomass yield in field-
grown switchgrass in order to make
predictions of bioenergy traits.

To investigate the potential of sward height

Remote Sensing and metrics derived from low-cost UAV image

Geoinformation
Science

Remote Sensing

data to predict forage yield.

To investigate the potential of off-the-shelf
UAS systems in modeling essential
parameters of pasture productivity in a
precision livestock context: sward height,
biomass, and forage quality.

To develop and assess a machine learning

Remote Sensing of technique for the estimation of the quantity

Environment

International
Journal of Wildland

Fire

and quality of grass swards based on drone
spectral imaging and photogrammetry.

To investigate the viability UAV image data
to estimate dormant season grassland
biomass, based on the assumption that
grassland canopy height correlates with
grassland biomass.
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34

35

36

37

38

39

40

41

small unmanned aircraft
systems.

Fine scale plant community
assessment in coastal meadows
using UAV based multispectral

data

Using multispectral data from an

unmanned aerial system to
estimate pasture depletion
during grazing

Monitoring ecological
characteristics of a tallgrass
prairie using an unmanned

aerial vehicle

Predicting pasture biomass
using a statistical model and
machine learning algorithm
implemented with remotely
sensed imagery

Forage yield and quality

estimation by means of UAV and

hyperspectral imaging

Prediction of Biomass and N
Fixation of Legume—-Grass
Mixtures Using Sensor Fusion

The Application of an
Unmanned Aerial System and
Machine Learning Techniques
for Red Clover-Grass Mixture

Yield Estimation Under Variety
Performance Trials

A novel UAV-based approach
for biomass prediction and
grassland structure assessment
in coastal meadows

and
Boyer

2020)
(Villo
slada
etal.,
2020)
(Alva
rez-
Hess
etal.,
2021)
(Black
burn
etal.,
2021)

(De
Rosa

etal.,
2021)

(Geip
el et
al.,
2021)
(Griin
er,
Astor
and
Wach
endor
f,
2021)

(K.Y.
Liet
al.,
2021)

(Villo
slada
Pecin
aet
al.,
2021)

2020

2021

2021

2021

2021

2021

2021

2021

To assess the potential of UAVs and
multispectral cameras for classifying and
fine-scale mapping of plant communities in
coastal meadows.

Ecological Indicators

To develop and validate empirical models to
estimate pasture depletion in paddocks
while cattle are grazing using an UAV-borne
multispectral sensor with rising plate meter

Animal Feed Science
and Technology

measurements as the reference data.

To evaluate the potential applications of
UAV derived data within restored tallgrass
prairies using an affordable sensor and
UAV.

To test the performance of an integrated
method combining remote sensing imagery

Restoration Ecology

Computers and acquired with a multispectral camera
Electronics in mounted on an UAYV, statistical models, and
Agriculture machine learning algorithms implemented

with publicly available data to predict future
pasture biomass loads.
To investigate the potential of in-season
Precision airborne hyperspectral imaging for the
Agriculture  calibration of robust forage yield and quality
estimation models.

To develop a multi-temporal estimation

Frontiers in Plant model for aboveground biomass and
Science nitrogen fixation of two legume-grass
mixtures.

To present a rapid, non-destructive, low-cost
Remote Sensing ~ framework for field-based red-clover DM
yield modeling.

To compare two temporal pre-harvest dry
matter prediction capabilities under one-
and two-year clover—grass cultivation fields
with three different treatments and compare
the performance of three machine learning
algorithms and their corresponding variable

Ecological Indicators

importance rankings in estimating clover—
grass mixture dry matter.
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UAYV Multispectral Imaging

Pl
Potential to Monitor and Predict (Plaza

42 tal., 2021
Agronomic Characteristics of o By
. L 021)
Different Forage Associations
Improving Accuracy of Herbage (Pran
Yield Predictions in Perennial aet
43 Ryegrass with UAV-Based & 2021
al.,
Structural and Spectral Data 2021)
Fusion and Machine Learning
Effects of plateau pikas’ foraging
and burrowing activitieson  (Qin
44 vegetation biomass and soil ~ etal., 2021
organic carbon of alpine 2021)
grasslands
Estimjating dry biomass‘and' (Schu
plant nitrogen concentration in
. . knec
pre-Alpine grasslands with low-
45 . tet 2021
cost UAS-borne multispectral Al
data—a comparison of sensors, y
. . 2022)
algorithms, and predictor sets.
(Schul
ze-
Briini
Remote sensing data fusion as a nghof
46 tool f.or biomass pre.dlctlon in £, 2021
extensive grasslands invaded by Wach
L. polyphyllus endor
f and
Astor,
2021)
Improved Estimation of
Aboveground Biomass of ~ (Shi et
47  Disturbed Grassland through  al, 2021
Including Bare Ground and ~ 2021)
Grazing Intensity
(Sind
. L e-
Biomass estimation of pasture Gonz
48  plots with multitemporal UAV- Alez of 2021
based photogrammetric surveys Al
2021)
Remotely piloted aircraft (Tang
49 systems remote sensing can  etal., 2021

effectively retrieve ecosystem 2021)

and Geoinformation

Remote Sensing in

To show a first screening of the potential of
airborne multispectral images captured with
UAVs for the monitoring and prediction of
several in situ agronomic parameters of
Agronomy different forage associations by exploring
the relationships between a few spectral
indices UAV-based and simultaneous field
measurements over several fields of forage
associations.
To examine the potential of UAV-based
structural and spectral features and their
Remote Sensing ~ combination in herbage yield predictions
across diploid and tetraploid varieties and

breeding populations of perennial ryegrass.

To quantitatively assess the foraging and

. burrowing effects of plateau pikas on

Plant and Soil oG b -
vegetation biomass and soil organic carbon

at plot scale.

To investigate the potential of low-cost UAS-

. , based multispectral sensors for estimating
Biogeosciences

; . aboveground biomass (dry matter) and
Discussions & (dry )

plant community nitrogen concentration of
managed pre-alpine grasslands.

To develop prediction models from sensor
Remote Sensing in data fusion for fresh and dry matter yield in
Ecology and
Conservation

extensively managed grasslands with
variable degrees of invasion by Lupinus

polyphyllus.

To estimate alpine meadow AGB from
multi-temporal drone images at a micro-
Remote Sensing scale and improve estimation accuracy in

relation to two types of external
disturbances (mowing-simulated grazing

and rodents).

International
Journal of Applied
Earth Observation

To investigate the use of multitemporal
UAV-based imagery and SfM
photogrammetry to estimate the AGB of
pastures at a fine spatial scale.

To propose a framework for monitoring
ecosystem traits by UAV visible remote
sensing, verify the feasibility in monitoring

Ecology and
Conservation
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50

51

52

53

54

55

56

57

58

traits of alpine grasslands on the
Tibetan Plateau at a landscape

scale
Théa
Estimation of forage biomass (u of
and vegetation cover in Al

grasslands using UAV imagery 20 2'1)

Zh
Using UAV LiDAR to Extract ea“
Vegetation Parameters of Inner 8
Mongolian Grassland al.,
& 2021)
Hype.rspec'tral ret.rieval of le'af (Zhao
physiological traits and their ol
links to ecosystem productivity "
. 2021)
in grassland monocultures.
A non-destructive method for
. s (Zhan
rapid acquisition of grassland
. get
aboveground biomass for 8
satellite ground verification 20 2'2)
using UAV RGB images
Analysis of UAV LIDAR
information loss and its
. o (Zhao
influence on the estimation
etal.,
accuracy of structural and
. o 2022)
functional traits in a meadow
steppe
Estimation of aboveground
biomass prod'uction.using an (Adar
unmanned aerial vehicle (UAV) tal
and VENUS satellite imagery in 202 2;
Mediterranean and semiarid
rangelands
Beyond trees: Mapping total ~ (da

aboveground biomass density in Costa
the Brazilian savanna using et al,,
high-density UAV-LiDAR data 2021)
Quantification of Grassland  (Fran
Biomass and Nitrogen Content ceschi

through UAV Hyperspectral — ni et
Imagery — Active Sample al.,
Selection for Model Transfer = 2022)

Estimating Grass Sward Quality (Karil
and Quantity Parameters Using a et
Drone Remote Sensing with al.,

Deep Neural Network 2022)

2021

2021

2021

2022

2022

2022

2022

2022

2022

ecosystem traits, quantify the contribution of
each band in prediction, validate the

prediction model, and generate high-spatial-
resolution maps of ecosystem traits.

To test and compare three approaches based
on multispectral imagery acquired by UAV
to estimate forage biomass or vegetation
cover in grasslands.

To investigate the ability of Riegl VUX-1 to
model the AGB at a 0.1 m pixel resolution in
the Hulun Buir grazing platform under
different grazing intensities.

PLOS One

Remote Sensing

To evaluate the remotely sensed retrieval of
plant physiological traits and test the links
between the intra- and inter-species trait
variations and ecosystem productivity based
on a grassland monoculture experiment.

Ecological Indicators

To develop and assess the vertical and
horizontal indices from UAV RGB images as
predictors of grassland AGB at quadrat scale

using the RF machine learning technique
and verify whether the indices and methods

Global Ecology and
Conservation

are suitable for different grassland
ecosystems over a large region.

To investigate how UAV LIDAR information
loss may occur and how it may influence the

estimation accuracy of grassland structural

Ecological Indicators and functional traits by comparing it with

terrestrial laser scanning (TLS) and field
measurements in a meadow steppe of
northern China.

To develop a synergistic UAV and satellite
imagery method to estimate AGB by
integrating high-resolution UAV data with
moderate resolution satellite data, and to
assess AGB under different grazing

Remote Sensing
Applications: Society
and Environment

pressures.
To assess the ability of high-density UAV-
Forest Ecology and LiDAR to estimate and map AGB across the

Management structurally complex vegetation formations
of the Cerrado in Brazil.
To evaluate the use of UAV hyperspectral
imagery for the quantification of forage yield
Drones and nitrogen nutrition status and implement

and validate a supervised approach for
model transfer.
To investigate the potential of novel neural
. network architectures for measuring the
Remote Sensing . . .
quality and quantity parameters of silage

grass swards, using drone RGB and
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59

60

61

62

63

Herbage Mass, N Concentration,
and N Uptake of Temperate
Grasslands Can Adequately Be
Estimated from UAV-Based
Image Data Using Machine
Learning

Silage Grass Sward Nitrogen
Concentration and Dry Matter
Yield Estimation Using Deep
Regression and RGB Images
Captured by UAV

Nitrogen variability assessment
of pasture fields under an
integrated crop-livestock system
using UAYV, PlanetScope, and
Sentinel-2 data

Effects of disturbances on
aboveground biomass of alpine
meadow in the Yellow River
Source Zone, Western China

UAV-based prediction of
ryegrass dry matter yield

Multisite and Multitemporal
Grassland Yield Estimation

(Luss
em et
al.,
2022)

(Alve

(Shi et
al.,
2022)

(Short
en
and
Trolo
ve,
2022)
(Wen
gert et

Using UAV-Borne Hyperspectral al.,

Data

2022)

2022

2022

2022

2022

2022

2022

Remote Sensing

Agronomy

Computers and
Electronics in
Agriculture

Ecology and
Evolution

International
Journal of Remote
Sensing

Remote Sensing

hyperspectral images, and compare the
results with the random forest (RF) method
and handcrafted features.

To estimate aboveground dry matter yield
(DMY), nitrogen concentration (N%), and
uptake (Nup) of temperate grasslands from
UAV-based image data using machine
learning (ML) algorithms.

To assess the suitability of CNN-based
approaches by comparing different deep
regression network architectures and
optimizers to estimate grass sward nitrogen
concentration (N) and dry matter yield
(DMY) using RGB images collected from a
drone.

To evaluate the spatial distribution of N in
pasture fields cultivated under an integrated
crop-livestock system (ICLS) using
unmanned aerial vehicle (UAV) and satellite
data.

To quantify the singular and combined
effects of artificial grazing and pika
disturbance severities on AGB and its
changes in an alpine grassland on the
Qinghai-Tibet Plateau, assessing the relative
importance of both disturbances.

To determine the accuracy of UAV-based
prediction of percentage cover, vegetation
volume, and DM yield in autumn from
ryegrass sub-plots and compared to the
current manual practice of harvesting,
drying, and weighing.

To develop and evaluate UAV-based models
with the goal of forage yield estimation of
eight grassland habitats along a gradient of
management intensities.
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Table A2. A summary of data field collection from papers assessed in the review.

Flight Overlap, Biomass  Total Biomass Canopy
. Type of Number UAV . Side GSD Frequency of  Ground Number of Height
Ref Local T f Fiel Al P 1
elerence oca ype of Field Grassland of Sites  Platform Sensors titude Overlap GC (cm/Pixel) Data Collection Truth  Biomass TP€ ) feasurem
(m) ze (m?)
(%) Data  Samples ent
(Alvarez-Hess Australia Grassland Mono 2 Quadcopter  MS 50 80/80 10 n/a 2 collections in RPM 529 n/a RPM
et al., 2021) Farm one year calibration
5 collections
(Adaretal., Natural . 15 to between April Not
2022) Israel Grassland Mixed 2 Quadcopter RGB n/a 80/80 20 n/a 2018 and April  specified 600 0.25 n/a
2020
(Askari et al Experimental 2.86 and 6 collections in Mechanic
v Ireland p . Mixed 1 Rotary MS  30and 120 75/75 n/a ) 2017, 2 collections 126 n/a n/a
2019) Site 11.29 . al
in 2018
(Barnetson, 5 collections 2019 . .
1 RGB h El
Phinn and Australia Natura Mixed 19 Hexacopter © 50 85/85 n/a 1 and 1 collection in Mechanic n/a 0.25 ectronic
Grassland and HS al RPM
Scarth, 2020) 2020
7 collections in
Batistoti et al. E i 1
(Batistoti et al, Brazil xpen.menta Mono 1 Quadcopter RGB 50 80/60 5 1.55 2017 and 8 N?F 66 n/a Ruler
2019) Site .. specified
collections in 2018
(Blackburn et Natural . . . 1 collection in
al,, 2021) USA Grassland Mixed 19 Fixed-wing ~ MS 122 80/75 n/a n/a 2017 Manual 190 0.01 n/a
(Borra-Serrano Belgium Exper%mental Mono 1 Dodeca- RCB 30 80/80 35 06 22 collections in n/a 154 1.05 RPM
et al., 2019) Site copter one year
(Capolupo et Germany Experl.mental Mono 1 Octocopter HS 70 n/a n/a ’ 2 collections in  Mechanic 120 1 RPM
al., 2015) Site one year al
(Castro et al., . Experimental 1 collection in  Mechanic
2020) Brazil Site Mono 1 Quadcopter RGB 18 81/61 n/a 0.5 2019 Al 330 4.5 n/a
(Cunliffe,
Brazier and Natural . 10 to 1 collection in Not
Anderson, USA Grassland Mixed 7 Hexacopter =~ RGB 15-20 70/65 18 0.4 to 0.7 2014 specified n/a 1 n/a
2016)
(da Costa et al., . Natural . . 1 collection in
2021) Brazil Grassland Mixed 1 Hexacopter LiDAR 100 n/a n/a n/a 2019 Manual 20 1 n/a
(De Rosa et al., . Grassland RPM
2021) Australia Farm n/a 2 Quadcopter  MS 80 n/a n/a 5 n/a calibration 504 n/a n/a
(DiMaggio et Natural . 30, 40, and 1 collection in
al,, 2020) USA Grassland Mixed 1 Quadcopter RGB 50 80/80 6 2.5 2018 Manual 20 0.25 n/a
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(Fanetal,, Japan Experimental
2018) P Site
(Franceschini et German Experimental

al,, 2022) Yo site
(Gebremedhin . Experimental
A 1
etal,2020) ‘ustraiia Site
(Geipel and Experimental
Korsaeth, 2017) \orVay Site
(Geipel et al.,, Experimental
2021) Norway Site
(Griiner, Astor
and German Experimental
Wachendorf, y Site
2019)
(Griiner,
Wachendorf German Experimental
and Astor, y Site
2020)
(Grtiner, Astor
and German Experimental
Wachendorf, ermany Site
2021)
(Hart et al., . Grassland
2020) Switzerland Farm
(Insua, Utsumi
land
and Basso, USA Gr;:;;n
2019)

Mono

Mono

Mono

Mono and
Mixed

Mixed

Mixed

Mixed

Mixed

Mixed

Mixed

Quadcopter

Octocopter

Quadcopter

Octocopter

Octocopter

Quadcopter

Quadcopter

Quadcopter

Quadcopter

Quadcopter

MS

RGB
and HS

MS

HS

HS

RGB

MS and
RGB

MS and
RGB

MS

MS and
LiDAR

100

20

50

50

20

20 and 50

n/a

50

100

50/50

n/

75/75

n/a

80/60

80/80

100/100

n/a

80/80

75/75

1 collection in Not
1 2
3 2016 specified 36
RGB=0.8
L1108 Izr;(;irsi 2 collections in Not 245
78 and 2014 and 3 in 2017 specified
15.6
480
Mangal dividual
3 collections in and P ?n s 'or
9 2 2018 mechanica calibration
and 500
plots for
validation
Manual
3 collections in and
n/a n/a 2016 mechanica 120
1
3 collections in
hani
n/a n/a 2016 and 3 Mecalamc 707
collections in 2017
0.07 to 4 collections in
7 0.08 2017 Manual 192
3 collections in
8 2 and 4 2018 Manual 144
3 collections in Not
7 n/a 2018 and § specified 140
collections in 2019 pea
4 collections in Mechanic
8 > 2018 al 162
2 collections in
Mechani
n/a 6 2015 and 2 ecalaruc n/a

collections in 2016

0.25 Not
specified
n/a n/a
Ground-
based
n/a platform
(PhenoRov
er)
n/a n/a
~9 n/a
0.25 Ruler
0.25 n/a
0.25 n/a

6.5and 1 n/a

Rapid
Pasture
Meter
(machine)
and ruler

0.25
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(Jenal et al.,

2020) Germany
(Karila et al., .
2022) Finland
(Karunaratne et .
al,, 2020) Australia
(Lee et al., 2015) Korea
(Li et al., 2020) USA
(Lietal,2021) Estonia
(Lussem et al., German
2019) Y
(Lussem,
Schellberg and Germany
Bareth, 2020)
(Lussem et al., German
2022) ermany
(Michez et al., .
2019) Belgium
(Michez et al., .
2020) Belgium
(Nasi et al., .
2018) Finland
(Oliveira et al., .
2020) Finland
(Alves Oliveira Finland

etal., 2022)

Experimental
Site

Experimental
Site

Grassland
Farm
Grassland
Farm
Experimental
Site
Experimental
Site
Experimental
Site

Experimental
Site

Experimental
Site

Experimental
Site

Experimental
Site

Experimental

Site

Experimental
Site

Experimental
Site

n/a

Mixed

Mono

Mixed

Mixed

Mixed

Mixed

Mixed

Mixed

Mixed

Mono

Mixed

Mixed

Mixed

Octocopter

Quadcopter

Quadcopter
Fixed-wing
Hexacopter
Fixed-wing

Quadcopter

Quadcopter

Octocopter

Octocopter

Quadcopter

Hexacopter

Quadcopter

Quadcopter

RGB

RGB
and HS

MS

MS and
RGB
MS and
LiDAR

MS

RGB

RGB

RGB

and MS

RGB
and HS

MS and
RGB

RGB
and HS

RGB
and HS

RGB

30

30 and 50

25,50, 75,
and 100

50

20

120

25

20

95

50

30

50 and 140

30 and 50

50

n/a

n/a

80/80

n/a

85/75

80/75

85/85

90

RGB =
80/80; MS =
75/70

80/80

n/a

73 and 93/65

and 82

84-87/65-81

n/a

16

n/a

10

n/a

n/a

12

15

12

n/a

n/a

1 collection in one Mechanic

year al
I;IGB B O_i’ 4 collections in  Mechanic
yper= 2017 al
cm
1.74,3.47, 4 collectionsin Mechanic
5.21, 6,94 2019 al
30 2 collections in Not
2014 specified
1 collection in
3 2019 Manual
10 2 collections in Not
2019 specified
0/ 9 collections in  Mechanic
a 2017 al
2 collections in
5 2014, 2 collections Mechanic
in 2015, and al
collections in 2016
RGB =07, °collectionsin 4 nic
MS =23 2018 and § al
™ collections in 2019
ai??l)\/I:SZ— 1 collection in Not
5 2017 specified
RGB=1 1 collection in  Mechanic
and M5 = 2019 al
2.5
RGB =
GB=1 1 collection in  Mechanic
and 5 HS 2016 al
=5and 14
HS=6
;1’(13(}33_, 3 collections in  Mechanic
0.64 and 2017 al
0.39
1 4 collections in Mechanic
2017 al

156

220

101

56

1320

144

n/a

140

832

40

29

32

108

96

0.54 x 5.46
m?
39(n=
96), ~19.5
(n=16),
45n=
108)

0.25

0.03

Individua
1 Plant

n/a

4.5

15

0.09

10.5

15

Different
sizes

n/a

n/a

n/a

n/a

Ruler

n/a

RPM

RPM

n/a

LiDAR
laser scans

Ruler

Ruler

n/a
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(Pereira et al., Brazil Grassland
2022) Farm
(Plaza et al., Spain Grassland
2021) P Farm
(Pranga et al., . Experimental
2021) Belgium Site
(Qin et al., . Natural
h
2021) China Grassland
(Rueda-Ayala Experimental
N
et al, 2019) orway Site
(Schucknecht et German Grassland
al,, 2021) Y Farm
(Schulze-
Briininghoff,
1
Wachendorf Germany Natura
Grassland
and Astor,
2021)
. . Natural
(Shi et al., 2021)  China Grassland
Natural
hi L hi
(Shietal., 2022) China Grassland
(Shorten and New Experimental
Trolove, 2022) Zealand Site
(Sinde-
Gonzalez et al., Ecuador Gr;ziz;nd
2021)
(Tang et al., . Natural
2021) China Grassland
(Théau et al., Experimental
d
2021) Canada Site

Mixed

Mixed

Mono

Mixed

Mixed

Mixed

Mixed

Mixed

Mixed

Mono

Mono

Mixed

Mixed

82

Quadcopter
Quadcopter

Hexacopter

Quadcopter

Quadcopter

Quadcopter
and Fixed-
wing

Quadcopter

Quadcopter

Quadcopter

Quadcopter

Quadcopter

Quadcopter

Quadcopter

MS

MS

MS and
RGB

RGB

RGB

MS

HS

RGB

RGB

RGB

RGB

RGB

MS and
RGB

115

43

RGB =40,
MS =30

20

30

Quadcopter
=70, Fixed-

wing =80

20

40

40

20

70

10

65

75/75 n/a
n/a 4
80/70 9
n/a n/a
90/60 n/a
Quadcopter
=80580, 4,
Fixed-wing
=75/75
80/60 6
n/a n/a
n/a n/a
n/a n/a
80/70 8
80/65 3
75/75 60

3 collections in

8 2019 Manual
3 7 collections in Not
2020 specified
RGB =04, 3collectionsin Mechanic
MS=1.8 2020 al
1 collection in
1 2017 and 1 Manual
collection in 2018
n/a 1 collection in Not
2017 specified
8.7-12.9 1 collection in Not
cm; 2018 specified
~20 for
spectral
images 3 collections in Not
and ~1 for 2018 specified
panchrom
atic band
1 collection in
1 2018 and 1 Manual

collection in 2019
1 collection in
2018, 1 collection
n/a n2019,and1  Manual

collection in 2020

n/a 2 collections in Not
one 2018 specified
1 collection in
3 2018 Manual
25 1 collection in one Manual
year
RGB=1.7, 2 collectionsin Mechanic
MS=6.4 2017 al

116

112

1403

300

20

n/a

223

432

648

370

54

623

99

1 n/a
0.125 n/a
7.83 n/a
0.25 n/a
1 RPM and
Ruler
0.25 RPM
1 n/a
1 n/a
1 n/a
15Mm=

300), 2.4 n/a
(n=70)

0.25 n/a

n/a Not
specified

0.25 n/a

168



(Van Der

1 collection in

M 3 Natural .
erwe USA awra Mixed 11  Quadcopter RGB 40 90/85  nla 1 2017andone  Manual  n/a 1 n/a
Baldwin and Grassland L
collection in 2018
Boyer, 2020)
RCB = RGB =
(Viljanen etal., _. Experimental . RGB 0.39and 4 collectionsin Mechanic RPM and
Finl M 1 4 = ~4
2018) inland Site ixed Quadcopter and HS 30 and 50 84/65, MS 5 0.64; MS = 2017 al 96 ruler
87/81
3and5
(Villoslada et . Natural . . . 1 collection in
al,, 2020) Estonia Grassland Mixed 3 Fixed-wing MS 120 n/a 11 10 2018 Manual 140 0.09 n/a
(Villoslada et . Natural . . . MS and RGB =35, 1 collectionin
E M F - 12 M 1 2 .
al,, 2021) stonia Grassland ixed 9 ixed-wing RGB 0 n/a n/a MS = 10 2019 anua 520 0.09 n/a
(Vogel et al., Grassland . 1 collection in Not
2019) Germany Farm Mixed 1 Hexacopter = RGB 100 70/70 n/a n/a 2016 specified 20 1 n/a
5m=0.09;
(Y. Zhao et al., Natural . 20m = 1 collection in
2014) USA Grassland Mixed n/a Hexacopter MS 5,20, and 50 n/a n/a 0.36,50 m 2013 Manual 13 0.1 n/a
=0.89
10-120 at
L E i 1 i Is of 1 collection i
(Wa;i;; A China xpe;l;fr;enta Mixed 1 Octocopter LiDAR ITSBZZ;; n/a n/a n/a <o ;OCIISOH M Manual 90 1 Ruler
120
Grassland
(Wengert et al., Farm And . 3 collections in
2022) Germany Natural Mixed 4 Octocopter HS 20 n/a 6 20 2018 Manual 320 1 n/a
Grassland
(Wijesingha et Grassland . 8 collections in Not
al,, 2019) Germany Farm Mixed 3 Quadcopter RGB 25 80/80 n/a n/a 2017 specified 194 1 n/a
. 40-110 (at .
(Zhang etal, China Experl.mental Mixed 1 Quadcopter LiDAR intervals of n/a n/a n/a 1 collection in Manual 96 0.25 Ruler
2021) Site 2018
10 m)
(Zh:;r(;%;)t al, China GT:s?lzil d Mixed 3 Quadcopter RGB 2 n/a n/a n/a 1 collze(;:lt;on ™ Manual 208 0.25 n/a
(Zhang et al., . Natural . 1 collection in Not
h Mixed dcopt RGB 2and 2 70/7 1 7 2
2018) China Grassland ixe 3 Quadcopter G and 20 0/70 n/a 2017 specified 5 0.25 n/a
(Zhao et al., . Experimental 1 collection in
2021) China Site Mono 1 Hexacopter ~ HS 30 n/a n/a 3 2018 Manual n/a 0.09 n/a
(Zhaoetal, Natural = ed 24 Fixed-wing LiDAR 100-120  80/80  n/a lLeollectioninone ool %6 1 Ruler
2022) Grassland year
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Table A3. Data analysis methods and essential results of the papers considered in this review.

Data Analysis Parameters

Data Analysis Methods

H 2
Reference Spectral Data Strlggttl;ral Other Data Terrseglr]rlz/éodel and r fzgrlr\}l I)Dlry Mass
AM plot data only (AP), AM plot
(Alvarez- 5 reflectance bands plus extreme data (APEX), small
Hess et al., - n/a polygon data only (SP), and small n/a SVR =0.45
and 15 spectral indices
2021) polygon plus extreme data
(SPEX)
(Adar et al., 12 reflectance bands n/a Mixed 'plxels from UAV and n/a SVR =076
2022) satellite, vegetation cover
(Asl;%rig)t al., 21 spectral indices n/a n/a n/a PLSR = 8;; MLR =
(Ba_rnetson, Canopy DTMs derlveq from LR and Automated
Phinn and n/a heiaht n/a ground point Machine Learnin
Scarth, 2020) g classification g
S DTM derived from
(Batistoti et n/a Car_10py n/a ground point LR =0.74
al., 2019) height classification
(Blackburn et 4 spectral bands and n/a n/a n/a Ridge Estimated Linear
al.,, 2021) 26 spectral indices models
(Borra- 7 canopy mE;II\SISaLrng of LR=0.67, MLR =0.81
Serrano et al., 10 spectral indices height GDD, AGDD between cuts g - d PLSR B 0’ 8 RF = 0 70’
2019) metrics ground points an =0.58, =0.
from leaf-off flights
(Capolupo et — _
al., 2015) 4 spectral indices n/a n/a n/a PLSR =0.83
(Castro et al., _
2020) n/a n/a n/a n/a CNNs =0.88
(Cupllffe, Qanopy DTM derived from
Brazier and height and - _
n/a Surface cover ground point LR =0.95
Anderson, Canopy classification
2016) volume
16 canopy . .
(da Costa et : . LiDAR point cloud _
al., 2021) n/a r:zlt?g[s Vegetation cover percentage classification LR=0.78
(De Rosa et NDVI n/a n/a n/a GAM = 0.60, RF = 0.68
al., 2021) R '
Mean
. . canopy DTM by selecting
(DiMaggio et n/a height and n/a the bare soil lowest LR =0.65
al., 2020) vegetation point
volume
(Fanetal., _
2018) DN of each band n/a n/a n/a MLR =0.84
(Franceschini Variable importance in the _
etal., 2022) DN of each band n/a projection (VIP) n/a PLSR =0.92
(Gebremedhi Mean plot _
n etal., 2020) NDVI height n/a n/a LR=0.81
(Geipel and — \iov/y REIP, and  Mean plot GPS measurements PPLSR, MLS and SLR =
Korsaeth, heiah n/a K h d
2017) Grassl eight taken on the groun 0.77
. DTM from
(Geipel et al., Mean plot . . PPLSR =0.91; SLR =
2021) NDVI and REIP height n/a interpolation of 067

ground points
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(Griner,

Astor and n/a Mean plot
Wachendorf, height
2019)
(Griner,
Wachendorf 4 spectral bands and n/a

and Astor, 13 spectral indices

2020)
(Griner,
Astor and - 15 crop
13 spectral indices surface
Wachendorf, height
2021) g
(Hart et al.,
2020) MSI reflectance maps n/a
(Insua Plant height
Utsumi and NDVI ?Efe?‘;s;;‘?g
Basso, 2019) height
(Jenal et al., 12 spectral indices and n/a
2020) spectral ground truth
RGB and HIS features
. (spectral bands, Canopy
(Karila etal, several handcrafted  height 3D
2022) .
vegetation, and features
spectral indexes)
(Karunaratne 5 spectral bands and 1&?'?\?
etal., 2020) 15 spectral indices gl
metrics
(Lee etal.,
2015) NDVI n/a
Plant canopy
(Lietal., oo perimeter
2020) 4 spectral indices and canopy
height
(Lietal, -
2021) 6 spectral indices n/a
Mean sward
height and
(Lussem et 6 spectral indices 9oth
al., 2019) P percentile of
the sward
height
(Lussem,
Schellberg n/a ShZ\;vahrtd
and Bareth, met?ics
2020)
(Lussem et 5 spectral bands and BhZ\;vahrtd
al., 2022) 19 spectral indices g
metrics

(Michez et 4 spectral bandsand 4 ~ Sward
al., 2019) spectral indices  height model

(Michez et 14 spectral indices Sward

al., 2020) height model
(Nasi et al., 39 spectral bands and 8r(]:;n(;]rtJy
2018) 13 spectral indices g
metrics

n/a

8 GLCM texture features

8 texture features of each spectral
band (4 bands) and 8 texture
features of mean CSH, FM, and

DM

Near-infrared reflectance

spectroscopy

Growth rate

n/a

n/a

4 flight altitudes

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

2 flight altitudes

DTM from
interpolation of LR=0.72
ground points
n/a PLSR =0.76, RF = 0.87
DTM from TLS RF =090
data
n/a LR =0.29
n/a LR=0.80
n/a LR =0.94

Deep pre-trained neural
network architectures
and CNNs =0.90

DTM from point
cloud classification

DTM from point

cloud classification RF=0.91
n/a LR=0.77
DTM from LiDAR LR = 0.93
data
RF =0.9, SVR =0.89,
n/a

ANN =0.99

DTM from leaf-off Bivariate and MLR =
flight 0.73

DTM from leaf-off

flight LR =0.86

DTM from leaf-off LR, PLSR, RF and SVM

flight =0.9

DTM from LiDAR Multivariate models =
data 0.49

DTM from LiDAR MLR = 0.74
data

DTM from point

cloud classification R a4 LR=0.78
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(Oliveira et 38 spectral bands and

al.,, 2020) 23 spectral indices
(Alves

Oliveira et n/a

al., 2022)

(Pereira et al., 5 spectral bands and

2022) 25 spectral indices
(Plaza et al., -
2021) 6 spectral indices
(Prangaetal., oo
2021) 21 spectral indices
(Qinetal.,
2021) Excess Green Index
(Rueda-Ayala
etal., 2019) n/a

(Schucknecht 9 spectral bands and
etal., 2021) 26 spectral indices

(Schulze-
Brininghoff,
Wachendorf

and Astor,
2021)

(Shi et al.,
2021)

(Shi et al.,
2022)

n/a

RGBVI

RGBVI

(Shorten and Mean spectral bands

Trolove, for vegetative and soil
2022) material
(Sinde-
Gonzélez et n/a
al., 2021)
(Tang et al Band mean and band
2321) " standard deviation of
DN values
(Théau et al., o
2021) 9 spectral indices
(Van Der
Merwe, a
Baldwin and
Boyer, 2020)
(Viljanen et S
al., 201g) © vegetation indices
(Villoslada et o
al., 2020) 13 vegetation indices
(Villoslada

Pecifia et al., 13 vegetation indices
2021)

8 canopy

height 2 flight altitudes
metrics
n/a n/a
n/a PlanetScope and Sentinel-2A
n/a n/a
3 canopy
height n/a
metrics
Fractlopal Pika tunnel length and diameter,
vegetation I
pika pile diameter
cover
Mean plot n/a
volume
In situ bulk
canopy n/a
height
Canopy
surface Terrestrial laser scanning data
height
n/a Bare ground
n/a Bare ground and mowing ration
Percent
vegetation
cover and n/a
forage
volume
Density
factor and n/a
volume
n/a n/a
Mean plot Vegetation cover classification
volume
Canopy
height model n/a
8 canopy
height n/a
metrics
n/a n/a
n/a n/a

DTM from point

cloud classification < and MLR =0.97

n/a CNNs =0.79
n/a RF=0.7
n/a PLSR =0.782
DTMs from ground-
based GPS PLSR, RF and SVM
interpolation
n/a LR =0.446
n/a LR =0.54
n/a GBM =0.59, RF = 0.67
n/a RF=0.81
n/a LR =0.88
n/a LR
DTM from
interpolation of LR =0.66

ground points

DTM from bare
ground

Descriptive statistic =
0.78

n/a PLSR =0.48
DTMs from ground-
based GPS
interpolation

DTM from
interpolation of
dense point clouds

DTM from bare
ground and DTM
from automatic
point classification

LR=0.94

LR=0.91

MLR =0.98, RF =0.97

n/a RF = 0.67
DTM from
interpolating the RF = 0981

points classified as
ground by the Cloth
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Reflectance of red,
(Vogel et al., green, and blue; hue:

2019) saturation, value, nfa
NDVI, and VARI
(Y. Zhao et
al., 2014) NDVI n/a
Mean and
maximum
canopy
(Wang etal., n/a height and
2017) .
fractional
canopy
cover
(Wengert et
al., 2022) 118 spectral bands n/a
Wijesingha et n/a 10hg?nr?tpy
al., 2019) gl
metrics
3 canopy
height
(Zhang et al., n/a metrics and
2021) Fractional
vegetation
cover
- Canopy
(Zhang et al., 6 color space |n_d|ces height model
and 3 vegetation -
2022) - from point
indices
clouds
5 canopy
(Zhang et al., .
2018) n/a helg_ht
metrics
(Zhao et al.,
2021) NDVI n/a
5 canopy
height
(Zhao et al., n/a T:;:)'CS’
2022) Py
cover and
canopy
volume

n/a

n/a

Different flight heights

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Simulation Filtering

algorithm
n/a LR =0.8119
n/a OLSR=0.4

DTM from LiDAR

data LR=0.34

PLSR = 0.45; RF =0.73,

na SVR = 0.74, CBR = 0.75

DTM from TLS

data LR =0.62
DTM from LiDAR MLR = 0.54
data
n/a RF=0.78
DTM from point
cloud ground point LR =0.76-0.78
classification
n/a PLSR =0.85
n/a SMR =0.25

1 SVR = support vector regression; PLSR = partial least squares regression; MLR =
multiple linear regression; LR = linear regression; RF = random forest; CNNs =
convolutional neural networks; GAM = generalized additive model; PPLSR = powered
partial least squares; ANN = artificial neural network; SVM = support vector machines;
GBM = gradient boosting machines; OLSR = ordinary least squares regression; CBR =
cubist regression.
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Table A4. Biomass indices used in the papers assessed in this review.

Vegetation Index Equation Papers
Anthocyanin Reflectance Index 1 1 1 (Karunaratne et al.,
(Gitelson, Merzlyak and ARI1 = (E) - ( Red e) 2020; Alvarez-Hess et
Chivkunova, 2001) g al., 2021)

Blue Normalized Difference (NIR — B)
BNDV] = ——+—— L tal., 2022
Vegetation Index (Yang et al., 2004) (NIR + B) (Lussem ef a )

Canopy Chlorophyll Concentration
Index (Jago, Cutler and Curran,
1999)

Chlorophyll Vegetation Index
(Vincini, Frazzi and D’ Alessio, 2008)

Colouration Index (Pearson and
Miller, 1972)

Datt1 (Datt, 1998)

Datt4 (Datt, 1998)

Difference Vegetation Index
(Tucker, 1979)

Enhanced Vegetation Index (Huete
et al., 1997)

Enhanced Vegetation Index 2 (Huete
et al., 2002)

Excess Green (M. Woebbecke et al.,
1995)

Excess Green Combined with
Canopy Height Model (Nasi et al.,
2018)

Excess Green-Red (Camargo Neto,
2004)

(NIR — Redge)
<(NIR + Redge))

NDVI

CGCI =

Vi NIR Red
= X
Green Green

_(R-B)

R
(NIR — RE)

(NIR —R)

CI

Dattl =

R
Datt4 = c * Redge

DVI = NIR — Red

NIR — Red

=2.0X
Evi=25 NIR + 6Red —7.5B + 1

2.5 x (NIR —R)
(NIR + (2.4 X R))

EVI2 =

ExG=2G—R-B

ExG + CHM

ExGR = ExG — ExR

(Karunaratne et al.,
2020; Alvarez-Hess et
al., 2021; Lussem et
al., 2022)
(Michez et al., 2019,
2020; Villoslada et al.,
2020; Villoslada
Pecina et al., 2021;
Pereira et al., 2022)

(Pranga et al., 2021)

(Théau et al., 2021)

(Villoslada et al., 2020;
Villoslada Pecina et
al., 2021)
(Villoslada et al., 2020;
Villoslada Pecina et
al., 2021)

(Li et al., 2020; Pranga
et al., 2021; Pereira et
al., 2022)
(Karunaratne et al.,
2020; Alvarez-Hess et
al., 2021; Lussem et
al., 2022)

(Nasi et al., 2018;
Viljanen et al., 2018;
Borra-Serrano et al.,
2019; Oliveira et al.,
2020; Pranga et al.,
2021; Qin et al., 2021;
Zhang et al., 2022)
(Viljanen et al., 2018;
Lussem et al., 2019;
Oliveira et al., 2020)
(Viljanen et al., 2018;
Borra-Serrano et al.,
2019; Oliveira et al.,
2020; Pranga et al.,
2021)
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Excess Red (Meyer et al., 1998)
(Meyer, Hindman and Laksmi, 1999)

GnyLi Vegetation Index (Bendig et
al., 2015)

Grassland Index (Bareth et al., 2015)

Green Atmospherically Resistant
Vegetation Index (Gitelson,
Kaufman and Merzlyak, 1996)

Green Chlorophyll Index (Gitelson,
Gritz and Merzlyak, 2003)

Green Difference Index (Sripada,
2005)

Green Difference Index (Gianelle
and Vescovo, 2007)

Green Difference Vegetation Index
(Sripada et al., 2006)

Green Index (H=hue, S=
saturation, V = brightness) (Carlson
and Ripley, 1997)

Green Infrared Percentage
Vegetation Index (Crippen, 1990)
Green Leaf Index (Gobron et al.,
2000)

Green Normalized Difference
Vegetation Index (Gitelson,
Kaufman and Merzlyak, 1996)

Green Ratio Vegetation Index
(Daughtry et al., 2000)(Sripada et al.,
2006)

Green Red Difference Index (Tucker,
1979)

Gnyli =

Gr

GARI =

GI=9><(

GLI =

ExR=14R—-G

Rg19 X Ri100 — Rogo X Ryi200

Rg19 X Ri100 + Rogo X Ry200

assl = RGBVI + CHM

NIR — (G — (B — Red))

NIR + (G — (B — Red))

GDI = NIR -G

GDI =NIR—R+G

GDVI =NIR - G

H x 3.14159
180

NIR
(NIR + G)
(2xG—-R—-B)
2xXG+R+B)

GIPVI =

NIR — G

NDVI = ———
GNDV NIR + G

GDVI = NIR
TG

D
|
=

GRVI = ——

(o)
+
=

>+3xS+V

(Viljanen et al., 2018;
Oliveira et al., 2020;
Pranga et al., 2021)

(Jenal et al., 2020)

(Nasi et al., 2018;
Lussem et al., 2019;
Oliveira et al., 2020)

(Pranga et al., 2021)

(Nasi et al., 2018;
Askari et al., 2019;
Griiner, Wachendorf
and Astor, 2020; Jenal
et al., 2020;
Karunaratne et al.,
2020; Oliveira et al.,
2020; Alvarez-Hess et
al., 2021; Griner,
Astor and
Wachendorf, 2021;
Pranga et al., 2021;
Pereira et al., 2022)
(Karunaratne et al.,
2020)
(Villoslada Pecifa et
al., 2021)
(Karunaratne et al.,
2020; Villoslada et al.,
2020; Alvarez-Hess et
al., 2021; Villoslada
Pecina et al., 2021)

(Zhang et al., 2022)

(Villoslada et al.,
2020)
(Pranga et al., 2021;
Pereira et al., 2022)
[29,45—
48,61,63,67,83,97,99—
101,120]
(Askari et al., 2019;
Karunaratne et al.,
2020; Alvarez-Hess et
al., 2021)
(Nasi et al., 2018;
Viljanen et al., 2018;
Michez et al., 2019,
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G — Red

G Red Edge Vegetation Ind =—

reen Re ge Vegetation Index GRVI,qge c -IG-Red
Greenness Red Edge GTreage = RedTCTB
Leaf Chlorophyll Index (Hollberg LCT = (NIR — Redge)
and Schellberg, 2017) ~ (NIR-R)

. , . (NIR)

Log Ratio (Théau et al., 2021) LogR"™ = log ®
Medium-Resolution Imaging
Spectrometer (MERIS) Terrestrial MTCI = (NIR — Redge)
Chlorophyll Index (Dash and "~ (Redge — R)

Curran, 2004)

Modified Chlorophyll Absorption in

2020; Oliveira et al.,
2020; Villoslada et al.,
2020; Plaza et al.,
2021)

(Plaza et al., 2021)

(Plaza et al., 2021)
(Askari et al., 2019)

(Théau et al., 2021)

(Capolupo et al., 2015;
Nasi et al., 2018;
Askari et al., 2019;
Jenal et al., 2020;
Karunaratne et al.,
2020; Oliveira et al.,
2020; Alvarez-Hess et
al., 2021; Pereira et al.,
2022)
(Capolupo et al., 2015;
Nasi et al., 2018;
Askari et al., 2019;
Griuner, Wachendorf
and Astor, 2020;

Reflectance Index (Daughtry et al., MCARI = [((Redge —R) - 0.2) X (Redge — G)] X ( Oliveira et al., 2020;
2000) Griiner, Astor and
Wachendorf, 2021;
Pranga et al., 2021;
Lussem et al., 2022;
Pereira et al., 2022)
Modified Chlorophyll Absorption in [1.5[2.5(Rm-r —Ryoq) — 1.3(Rm-r -
Reflectance Index 2 (Haboudane et MCARI2 = (Pereira et al., 2022)
al., 2004) [(ZRnir + 1)2 - (6Rnir - 5\/ Rred) - 5]
Combined Index with MCARI (Eitel (MCARI) .
et al., 2007) MCARI_MTVI2 = W (Pereira et al., 2022)
Modified Green Red Vegetation (Rg)? — (Rp)? (Vly anen et al., 2018;
Index (Bendig et al., 2014) MGRVI = (Rg)? + (Rp)? Michez et al., 2020;
’ Oliveira et al., 2020)
Modified Non-Linear Index (Yang, (NIR? —R)x (1+1) .
Willis and Mueller, 2008) & MNLI = e (Askari et al., 2019)
(Griiner, Wachendorf
and Astor, 2020;
Nkﬂ -1 Villoslada et al., 2020;
Modified Simple Ratio (Chen, 1996) MSR = NE Griiner, Astor and
& t1 Wachendorf, 2021; K.
Y. Lietal, 2021;
Lussem et al., 2022)
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Modified Soil-Adjusted Vegetation
Index (Qi et al., 1994)

Modified Triangular Vegetation
Index (Haboudane et al., 2004)

Second Modified Triangular

AVI

_ 2NRI+1— \J@NIR +1)* — 8 x (NIR — Red)

2

MTVI = 1.2[1.2(NIR — G) — 2.5(R — G)]

[1'5[2'5(Rnir - Rred) B 2-5(Rnir B

(Nasi et al., 2018; Jenal
et al., 2020; Oliveira et
al., 2020; Villoslada et
al., 2020; Pranga et al.,
2021; Théau et al.,
2021; Villoslada
Pecina et al., 2021;
Lussem et al., 2022;
Pereira et al., 2022)
(Nasi et al., 2018;
Askari et al., 2019;
Oliveira et al., 2020;
Lussem et al., 2022)

Vegetation Index (Haboudane et al., MTVIZ2 = (Pereira et al., 2022)
2004) [(Z-Rnir + 1)2 —6Ry; — 5\/ (Rrea) — 0-5]
Nitrogen Reflectance Index (D. (G-R) .
= A ., 201
Schleicher et al., 2001) NRI (G+R) (Askari et al., 2019)
Near-Infrared to Red Edge Ratio NIR
.RE = — L tal., 2022
(Ramoelo et al., 2012) NIR.RE RE (Lussem et al., 2022)
Non-Linear Index (Goel and Qin, (NIR? — R) )
= - ° A ., 201
1994) NLI NIRE TR (Askari et al., 2019)
Normalized Difference Red Ed (NIR — RE) [29,45-
8¢ NDRE = ——— 2 48,58,63,67,69,83,97,10
(Barnes et al., 2000) (NIR + RE) 0,101,104,112,120]
[18,29,42,45—
Normalized Difference Vegetation NDVI = NIR — R 48,56,61,63,66—
Index (Rouse et al., 1973) " NIR+R 69,73,84,85,97,99—
101,103-106,112,116]
Normalized Green Intensity (M. NCI = G (Plaza et al., 2021;
Woebbecke et al., 1995) " R+G+B Pranga et al., 2021)
(Lussem et al., 2019,
2022; Michez et al.,
2020; Villoslada ef al.
Normalized Green Red Difference (G-R) 020; Villosla ach i,
NGRDI = 2020; K. Y. Lietal,
Index (Tucker, 1979) (G+R) 2021; Pranga et al
2021; Pereira et al.,
2022)
Normalized Pigment Chlorophyll (R—B) .
NPCl = ——— P tal., 2022
Ratio Index (Pereira ef al., 2022) ¢ (R+B) (Pereira ef al., 2022)
Normalized Ratio Index (Koppe et Ro19 — Ri200
NRI = ——— 1 et al., 2020
al., 2010) Rg10 + R1z00 Jenal et a )
(Capolupo et al., 2015;
Nasi et al., 2018;
Vilj tal., 2018;
Optimization Soil-Adjusted wjanen 4
; NIR — R Jenal et al., 2020;
Vegetation Index (Rondeaux, Steven 0SAV] = ——— .
NIR + R+ 0.16 Oliveira et al., 2020;
and Baret, 1996) Théau ef al., 2021;
Lussem et al., 2022;
Pereira et al., 2022)
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Perpendicular Vegetation Index
(Richardson and Wiegand, 1977)

Photochemical Reflectance Index
(512.531) (Hernandez-Clemente et
al., 2011)

Plant Pigment Ratio Index Red
(Metternicht, 2003)

Plant Senescence Reflectance Index
(Hill, 2013)

Ratio Vegetation Index (Pearson and
Miller, 1972)

Red Difference Index (Tucker, 1979)

Red Edge Triangular Difference
Vegetation Index (core only) (Chen
et al., 2010)

Red Green Blue Vegetation Index
Excess (Bendig et al., 2015)

Red Edge Chlorophyll Index
(Gitelson, Gritz and Merzlyak, 2003)

Red Edge Inflection Point (Guyot
and Baret, 1988)

PVI = sin(a) NIR — cos(a) R

R512 - R531

PRI =
Rs17 + Rs34
(G-B)
PPRI =
(G +B)
pspr=R=G
" NIR
L
" R
RDI = NIR — R

RTVIcore = 100(NIR — Redge) — 10(NIR — G)

(Rg)* — (Rp — Re)
(Rg)* + (R — Rp)

RGBVI =

Rg70 + Rygo
REIP =700 + 40 X

- R700

R740 + R700

(Pranga et al., 2021)

(Nasi et al., 2018; Jenal

et al., 2020; Oliveira et

al., 2020; Pranga et al.,
2021)

(Lussem et al., 2022)

(Askari et al., 2019)

(Viljanen et al., 2018;
Jenal et al., 2020; Li et
al., 2020; Michez et al.,

2020; Oliveira et al.,

2020)
(Karunaratne et al.,
2020; Alvarez-Hess et
al., 2021)
(Karunaratne et al.,
2020; Villoslada et al.,
2020; Alvarez-Hess et
al., 2021; Villoslada
Pecifia et al., 2021)
(Nasi et al., 2018;
Lussem et al., 2019,
2022; Michez et al.,
2020; Oliveira et al.,
2020; Shi et al., 2021,
2022)
(Capolupo et al., 2015;
Nasi et al., 2018;
Askari et al., 2019;
Karunaratne et al.,

2020; Oliveira et al.,
2020; Alvarez-Hess et
al., 2021; Pereira et al.,

2022)
(Nasi et al., 2018; Jenal
et al., 2020; Oliveira et
al., 2020; Geipel et al.,
2021)

(Askari et al., 2019;
Griner, Wachendorf
and Astor, 2020;
Karunaratne et al.,

Red Edge Simple Ratio 2 (Gitelson NIR
and Megrzlyakp1994) ( SRz = Redge 2020; Alvarez-Hess et
’ al., 2021; Griiner,
Astor and
Wachendorf, 2021;
Pranga et al., 2021,
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Villoslada Pecifia et

al., 2021)
Z‘e,dz(})ildzg;e to Red Ratio (Ramoelo et RE.R = Rezge (Lussem ef a, 2022)
(Nasi et al., 2018;
Lussem et al., 2019,
2022; Griiner,
Renormalized Difference Vegetation RDVI = NIR — Red A‘:‘is:hzeg;)('n;fei;lldet
Index (Roujean and Breon, 1995) VNIR + Red ’ e
al., 2020; Oliveira et
al., 2020; Griiner,
Astor and
Wachendorf, 2021)
(Askari et al., 2019;
NIR Karunaratne et al.,
Simple Ratio (Jordan, 1969) SR = = 2020; Lussem et al.,
2022; Pereira et al.,
2022)
(Askari et al., 2019;
Griiner, Wachendorf
and Astor, 2020;
Karunaratne et al.,
2020; Villoslada et al.,
Soil Adjusted Vegetation Index SAV] = (1+L)x(NIR—R) 2020; Alvarez-Hess et
(Rondeaux, Steven and Baret, 1996) (NIR+R)+ L al., 2021; Griner,
Astor and
Wachendorf, 2021;
Pranga et al., 2021;
Théau et al., 2021;
Pereira et al., 2022)
igggral Ratio 3 (Sims and Gamon, SR3 = g (Askari et al., 2019)
Spectral Ratio 4 (Smith et al., 1995) SR4 = % (Askari et al., 2019)
Spectral Ratio 6 (Lu et al., 2014) SR6 = NI% (Askari et al., 2019)
Spectral Ratio 7 (Sousa et al., 2012) SR7 = R;‘fﬁe (Askari et al., 2019)
Transformed Vegetation Index 1 _ NDVI+05 .
(Perry and Lautenschlager, 1984) Vil = ABS (NDVI + 0.5) X JABS (NDVI +0.5) (Théau et al., 2021)
Tilangular Vegelaton Index (Broge VI = 05[120(NIR — 6) — 200(R — 6)] (Pereira tal, 2022)
Triangular Greenness Index (Pereira TGl = —0.5 [(Ayeq — Ablue)(Rred - Rgreen) (Pereira et al,, 2022)
etal., 2022) - (Ared - Agreen)(Rred - Rblue)]
Transformed Chlorophyll Redge
Absorption Reflectance Index TCARI = 3[((Redge — R) — 0.2) X (Redge — G)] X ( o ) (Pereira et al., 2022)
(Haboudane et al., 2004)
TCARI Combined Index With TCARI OSAV] — TCARI (Pereira et al,, 2022)
OSAVI (Haboudane et al., 2004) - 0SAVI 7
Visible Atmospherically Resistant T G—R (Lussem et al., 2019,
Index (Gitelson et al., 2002) G+R—-B 2022; Vogel et al.,
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Visible Atmospherically Resistant
Index Red Edge (Vifia et al., 2004)
Wide Dynamic Range Vegetation
Index (Gitelson, 2004)

(Redge —1.7R + 0.7B)

VARIrededge =

WDRVI =

(Redge + 2.3R + 1.3B)

« NIR — R

< NIR + R

2019; Michez et al.,

2020; Pranga et al.,

2021; Pereira et al.,
2022)

(Pereira et al., 2022)

(Pranga et al., 2021)
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Appendix B. Supplementary material from article “Grassland
Ecosystem Assessments: Integrating UAV-Derived Features for
Aboveground Biomass Estimation”

Table B1. Above Ground Biomass (AGB) estimates with learning algorithms, Random Forest (RF)
and Partial Least Squares Regression (PLS) based on: canopy height model (CH), Vegetation
Indices (VI), texture feature (GLCM) and combination of features: canopy height models plus VI
(CH+VI), canopy height models plus texture feature (CH+GLCM), VI plus texture feature
(VI+GLCM), canopy height models plus VI plus texture feature (CH+VI+GLCM). Models were
tested for all the treatments separated (two-cut, three-cut and four-cut system) and all treatment
combined (pooled data).

ceat RF PLS

é?asus:eess RMSE (g rRMSE " RMSE (g rRMSE o2

Treatment m?) (%) m2) (%)

CH 192.47 29.43 0.71 228.18 34.93 0.60
VI 190.15 29.19 0.73 213.86 32.77 0.66
GLCM 257.35 39.40 0.49 256.51 39.35 0.53
Two-cut CH+VI 165.02 25.26 0.78 200.10 30.78 0.73
CH+GLCM 175.76 26.84 0.76 204.53 31.29 0.70
VI+GLCM 204.78 31.37 0.71 206.81 31.69 0.69
CH+VI+GLCM  174.03 26.58 0.77 189.92 29.10 0.73
CH 151.87 37.64 0.82 158.01 39.19 0.81
Vi 196.12 48.71 0.71 246.35 61.12 0.54
GLCM 205.68 51.13 0.68 187.46 46.57 0.73
Three-Cut CH+VI 142.16 35.28 0.84 153,61 38.08 0.82
CH+GLCM 132.92 32.86 0.86 140.20 34.65 0.85
VI+GLCM 207.72 51.50 0.68 175.77 43.56 0.78
CH+VI+GLCM  131.79 32.56 0.87 141.13 34.94 0.85
CH 86.11 36.39 0.63 84.46 35.74 0.65
VI 94.02 39.63 0.58 96.07 40.61 0.58
GLCM 83.27 35.16 0.66 82.72 34.98 0.69
Four-cut CH+VI 76.49 32.31 0.71 80.68 34.07 0.70
CH+GLCM 69.84 29.47 0.77 72.23 30.56 0.76
VI+GLCM 80.97 34.18 0.69 81.99 34.68 0.69
CH+VI+GLCM  69.66 29.44 0.76 73.45 31.02 0.75
CH 157.18 36.49 0.78 174.25 40.24 0.74
VI 193.25 45.02 0.67 225.60 53.32 0.54
Booled GLCM 213.67 49.55 0.60 215.32 49.79 0.60
Dot CH+VI 140.14 32.49 0.83 157.05 36.46 0.79
CH+GLCM 135.46 31.38 0.84 165.10 38.21 0.77
VI+GLCM 190.58 44.38 0.69 186.90 43.39 0.70
CH+VI+GLCM  134.90 31.25 0.84 156.39 36.25 0.79
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Appendix C. Supplementary material from article “Integration of
UAV-sensed features using machine learning methods to assess
species richness in wet grassland ecosystems”

Table C1. Number of species estimated with learning algorithms, Random Forest (RF) and Partial
Least Squares Regression (PLS) based on: canopy height model (CH), Vegetation Indices (VI),
texture feature (GLCM) and combination of features: canopy height models plus Vegetation
Indices (CH+V1), canopy height models plus texture feature (CH+GLCM), Vegetation Indices plus
texture feature (VI+GLCM), canopy height models plus Vegetation Indices plus texture feature
(CH+VI+GLCM). Models were tested for all the treatments separated (two-cut system, three-cut
system and four-cut system) and all treatment combined (pooled data).

Features RF PLS
Classes RMSE  rRMSE R RMSE  rRMSE R
Treatment (n) (%) (n) (%)

CH 2.64 38.30 0.34 3.03 44.09 0.22
Vi 2.32 33.75 0.49 2.46 35.76 0.48
GLCM 2.58 37.43 0.39 2.49 36.33 0.49
Two-cut CH+VI 2.37 34.41 0.47 2.63 38.35 0.43
CH+GLCM 2.54 36.80 0.39 2.43 35.27 0.50
VI+GLCM 2.46 35.80 0.44 2.44 35.36 0.50
CH+VI+GLCM 2.47 35.85 0.43 2.39 34.92 0.52
CH 3.06 43.32 0.13 3.18 45.00 0.10
Vi 2.56 36.26 0.36 2.86 40.46 0.28
GLCM 2.67 37.70 0.31 2.66 37.50 0.36
Three-Cut CH+VI 2.61 36.87 0.35 2.95 41.67 0.30
CH+GLCM 2.68 37.86 0.31 2.80 39.64 0.32
VI+GLCM 2.62 37.07 0.34 2.66 37.69 0.42
CH+VI+GLCM 2.65 37.50 0.30 2.66 37.49 0.42
CH 2.93 34.14 0.25 3.74 43.02 0.27
Vi 2.90 33.60 0.30 3.21 37.13 0.32
GLCM 2.68 30.98 0.41 331 38.47 0.37
Four-cut CH+VI 2.81 32.48 0.31 3.43 39.94 0.32
CH+GLCM 2.84 32.85 0.31 3.49 40.43 0.29
VI+GLCM 2.75 31.90 0.41 3.39 39.26 0.36
CH+VI+GLCM 2.84 32.95 0.32 3.43 39.59 0.34
CH 3.23 42.31 0.09 3.27 42.86 0.04
Vi 2.73 35.86 0.32 2.95 38.63 0.22
Pooled GLCM 2.78 36.47 0.30 2.86 37.52 0.28
Data CH+VI 2.76 36.22 0.30 3.07 40.27 0.18
CH+GLCM 2.78 36.50 0.30 2.95 38.65 0.26
VI+GLCM 2.74 35.98 0.31 2.89 37.85 0.27
CH+VI+GLCM 2.78 36.50 0.30 2.95 38.65 0.26
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