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Zusammenfassung

A utonome Fahrzeuge besitzen das Potenzial, den Verkehr grundlegend
zu verändern. Sie werden Unfälle aufgrund menschlichen Versagens
reduzieren und Mobilität für alle zugänglich machen. Reale Umgebun-
gen stellen aufgrund von wechselnden Licht- und Wetterverhältnissen

sowie der komplexen Interaktion der Verkehrsteilnehmer eine große Herausfor-
derung für autonome Fahrzeuge dar. Die Fähigkeit unterschiedlichste Szenarien
handhaben zu können ist entscheidend, um Unfälle zu vermeiden und Verkehrsteil-
nehmer bestmöglich zu schützen. Eine zuverlässige Wahrnehmung der Umgebung
ist dabei eine wesentliche Grundlage für sichere autonome Fahrfunktionen.

Intelligente Wahrnehmungssysteme autonomer Fahrzeuge umfassen verschie-
dene Sensoren wie Kameras, LiDAR-Scanner und Radarsensoren, um die Stärken
der verschiedenen Modalitäten zu kombinieren. LiDAR-Scanner und Kameras
stoßen bei widrigen Wetterbedingungen wie Regen, Nebel oder Schnee an ihre
Grenzen. Radarsensoren hingegen behalten auch unter diesen Bedingungen ihre
Funktionalität und sind daher für eine verlässliche Wahrnehmung der Umgebung
und somit eine sichere Mobilität entscheidend. Im Gegensatz zu hochauflösenden
Lidar-Scannern und Kameras liefern sie jedoch spärliche Punktwolken und werden
aufgrund von Mehrwegeausbreitung und Interferenzen erheblich durch Rauschen
beeinträchtigt. Daher werden spezielle Algorithmen benötigt, die mit spärlichen
und verrauschten Radar-Punktwolken umgehen können, um die wertvollen Infor-
mationen, die Radarsensoren liefern, effektiv zu nutzen. Diese umfassen neben der
Position auch die Doppler-Geschwindigkeit sowie den Radarquerschnitt, der von
der Oberfläche, dem Material und der Form der Objekte abhängt. Dies ermöglicht
die Unterscheidung zwischen bewegten und statischen Objekten, unterstützt die
Klassifizierung und trägt zu einem verbesserten Verständnis der Umgebung bei.

Das Ziel dieser Arbeit ist die Entwicklung neuer und wirkungsvoller Ansät-
ze, um das Szenenverständnis von autonomen Fahrzeugen auf Basis von Radar-
Punktwolken in realen Umgebungen zu verbessern. Dabei untersuchen wir ver-
schiedene, aufeinander aufbauende Aufgabenstellungen. Wir beginnen mit der
semantischen Segmentierung, um Informationen über die Objektklassen in Radar-
Punktwolken zu extrahieren. Die Einbindung spezifischer Radarinformationen wie
der Doppler-Geschwindigkeit und des Radarquerschnitts resultiert in einem op-
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timierten Algorithmus, der auch bei spärlichen Punktwolken zuverlässig funktio-
niert. Neben den semantischen Informationen ist auch die Unterscheidung zwi-
schen der statischen Umgebung und bewegten Objekten für eine sichere Navigati-
on unerlässlich. Daher entwickeln wir einen neuartigen Ansatz zur Segmentierung
bewegter Objekte, der davon profitiert, dass eine binäre Klassifizierung die Genau-
igkeit im Vergleich zur allgemeinen semantischen Segmentierung erhöht. Auf der
Grundlage der zuverlässigen Segmentierung von bewegten Objekten untersuchen
wir die Erkennung von Instanzen, um individuelle Objekte innerhalb einer Szene
zu unterscheiden. Die sich daraus ergebende Aufgabe der Segmentierung beweg-
ter Instanzen verfeinert das Verständnis und schließt das Wissen über die Anzahl
der Verkehrsteilnehmer ein, um komplexe Aufgaben wie die Kollisionsvermeidung
zu lösen. Wir beziehen zeitliche Informationen aus aufeinanderfolgenden Radar-
Punktwolken ein, um ein detailliertes räumliches und zeitliches Verständnis der
Umgebung zu erhalten. Darüber hinaus entwickeln wir einen neuen Ansatz, der
die extrahierten Informationen nutzt, um klassenunabhängige Instanzzuweisun-
gen durchzuführen.

Die Segmentierung bewegter Instanzen führt zu herausragenden Ergebnissen
und bildet damit einen idealen Ausgangspunkt, um das Szenenverständnis weiter
zu verbessern. Zunächst verwenden wir die Detektionen und extrahieren zusätzli-
che Erscheinungsmerkmale sowie geometrische Beziehungen, um Instanzen über
die Zeit zu assoziieren und zu verfolgen. Unsere Instanzzuordnung funktioniert,
auch bei der Verfolgung von weit entfernten Objekten, die aus einzelnen Punkten
bestehen, zuverlässig. In einem weiteren Ansatz prädizieren wir die semantische
Klasse der bewegten Instanzen, da diese Information für viele Funktionen uner-
lässlich ist. Wir entwickeln hierzu einen neuartigen Ansatz, der die semantischen
Klassen der einzelnen Agenten vorhersagt und die Informationen zur Optimierung
der Instanzzuweisung nutzt.

Abschließend lässt sich festhalten, dass unsere Ansätze zu wesentlichen Fort-
schritten des Szenenverständnisses in verschiedenen Umgebungen beitragen. Die
neuartigen Methoden sind entscheidend, um Radar-Punktwolken zuverlässig zu
verarbeiten und lassen sich auf reale Daten übertragen. Zudem ist der Bench-
mark zur Segmentierung bewegter Instanzen öffentlich zugänglich, um die weite-
re Forschung zu unterstützen. Alle in dieser Arbeit vorgestellten Ansätze wurden
in begutachteten Konferenzbeiträgen und Zeitschriftenartikeln veröffentlicht und
tragen zur Weiterentwicklung des radarbasierten Szenenverständnisses in realen
Umgebungen bei.
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Abstract

A utonomous vehicles have the potential to revolutionize transportation
by reducing accidents caused by human errors, improving efficiency,
and enhancing mobility for everyone. The dynamic real-world envi-
ronments impose several challenges, including varying lighting con-

ditions, adverse weather, and interactions with diverse road users. Handling
versatile scenarios is critical to prevent accidents and, for example, protect vul-
nerable road users as good as possible. Therefore, the reliable perception of the
surroundings under changing conditions is a fundamental task for safe navigation
in dynamic real-world environments.

Common perception stacks of modern autonomous driving systems comprise
different sensors such as cameras, LiDARs, and radar sensors to leverage the
advantages and mitigate the limitations of the individual modalities. LiDARs
and cameras are useful sensors and provide detailed information most of the
time. However, both sensor modalities face limitations under adverse weather,
including rain, fog, and snow. Therefore, radar sensors, which work under these
conditions, are critical to enable safe mobility. Radar sensors provide sparse point
clouds to locate and identify objects within the surroundings of the autonomous
vehicle. Each point in the cloud also contains additional information, such as
the Doppler velocity, which is the radial velocity of the object, and the radar
cross section, which quantifies the electromagnetic energy that is scattered back
to radar by an object and depends on the surface, the material, and the shape of
the objects. Consequently, the radar point clouds include relevant information to
differentiate between moving and static instances and classify the versatile objects
within the environment. However, radar scans are substantially affected by noise
due to multi-path propagation, interference, and sensor limitations. Therefore,
dedicated algorithms capable of handling sparse and noisy radar point clouds
are fundamental to extracting high-level information. This includes achieving
semantic understanding of the environment, which is a critical component for
ensuring safe and robust autonomous driving functions.

The main contributions of this thesis are novel and impactful approaches that
process radar point clouds to improve scene understanding of autonomous vehi-
cles in real-world environments. We focus on several tasks that contribute to
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the perception and understanding of the environment. We start with semantic
segmentation to extract information about the corresponding classes of objects
in radar point clouds. We optimize the algorithm by including specific radar in-
formation such as the Doppler velocity and radar cross section to work reliably
for sparse point clouds and enhance performance by reducing information loss.
Besides the semantic information, the differentiation between static environment
and moving objects is essential to navigate safely. Therefore, we propose a novel
approach to address moving object segmentation, which benefits from the fact
that a binary classification simplifies the overall segmentation compared to gen-
eral semantic segmentation. The task is well suited for radar data because of
the provided Doppler velocity. To deal with the noise, we introduced dedicated
algorithms that explicitly exploit the Doppler velocity within each module to
differentiate between moving and static detections. Based on the reliable seg-
mentation of moving objects, we investigate how many agents are present. The
resulting task of moving instance segmentation refines the understanding and in-
cludes the knowledge of the number of traffic participants to perform complex
tasks such as collision avoidance. We incorporate temporal information from con-
secutive radar scans to derive a detailed spatio-temporal understanding of the
scene, which is essential for online and dynamic path planning. Moreover, we
propose a novel approach that utilizes extracted information to perform class-
agnostic instance assignments within sparse and noisy radar data to derive the
information for individual instances.

Since moving instance segmentation leverages the advantages of radar sensors
and leads to exceptional results, the predictions are ideal for enhancing scene
understanding further. First, we extract the appearance and geometric features
of the instances to track them over time, which is essential for path planning. Our
instance association works reliably, including the tracking of distant objects that
only comprise one point. We utilize the moving instance predictions and predict
the semantics of the individual instances. The semantic class of the instance
provides additional information, which is essential for operating safely. Hence,
we propose a novel approach that predicts the semantic classes of the individual
agents and utilizes the information to refine the instance assignment.

In sum, our approaches show superior performance on diverse benchmarks,
including diverse environments, and provide optimized modules to enhance scene
understanding. In addition, we made the moving instance segmentation bench-
mark publicly available to support further research. All our proposed approaches
presented in this thesis were published in peer-reviewed conference papers and
journal articles, contributing to the advancements of radar-based scene under-
standing in real-world environments.
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Chapter 1

Introduction

T he advent of autonomous robots and vehicles marks a fundamental
transformation of the industry and changes our everyday lives. The
applications of autonomous vehicles for transportation are versatile,
from retail warehouse and delivery robots, which automate the distri-

bution of goods, enhancing the efficiency of production and facilitating last-mile
logistics, to autonomous vehicles, which operate independently in real-world en-
vironments, increasing efficiency, reducing accidents, and enabling mobility for
everyone. The improvement of safety in real-world environments especially makes
autonomous vehicles valuable to society.

Globally, traffic accidents claim 1.35 million lives annually, making them the
leading cause of death among children and young adults [228]. Aiming to reduce
these fatalities by minimizing critical errors caused by human failures positions
autonomous vehicles as a promising technology to make mobility safer. To oper-
ate independently or with minimal human intervention, automated vehicles and
robots rely on the precise perception of the environment and a safe driving strat-
egy, including path planning and the accurate control and actuation of the vehicle
to perform tasks reliably. The tasks are strongly interconnected, and thus, the
precision and reliability of the perception algorithms are crucial to reducing fail-
ures in planning and execution. The perception system is complex and must work
in diverse and dynamic environments, including rural roads, crowded streets, and
highways. Furthermore, the systems must work reliably under changing lighting
conditions, diverse traffic scenarios, and weather conditions. Perception systems
of autonomous vehicles aim to ensure robustness against these external factors,
permanently preserving high accuracy. To achieve this, the sensor setup of highly
automated vehicles is versatile, incorporating LiDARs, cameras, and radars. The
redundant sensor setup of autonomous cars with different modalities aims to
reduce the risk of critical malfunctions by combining the advantages of the in-
dividual sensors. While camera and LiDAR processing have made tremendous

1



Radar point cloud

LiDAR point cloud
and velocity

Figure 1.1: Overview of camera, LiDAR, and radar data for an urban street scene. The images
on the left include the projected radar (middle) and LiDAR point clouds (bottom), which are
colored according to the distance to the actual sensor. The 3D point cloud of the scene on the
right combines LiDAR and radar data.

progress in recent years, strengthening the overall scene understanding, these
sensors face inherent limitations in adverse weather. Radar sensors work reliably
under adverse weather conditions, including rain, fog, and snow, making them in-
dispensable by overcoming the limitations of cameras and LiDARs. Furthermore,
changing lighting conditions do not affect radar sensors, making them robust for
various applications. Therefore, processing radar data separately from LiDAR
data is key to enhancing the overall scene understanding.

Compared to LiDAR point clouds, the data of automotive radar sensors are
sparse point clouds, as illustrated in Figure 1.1. Furthermore, radar data is af-
fected by noise due to multi-path propagation, sensor noise, signal processing
artifacts, and interference. However, besides the position information of the in-
dividual points, the radar data includes specific information about the objects
within the environment, such as the radar cross section and the Doppler velocity.
The radar cross section value depends on the surface, the material, and the shape
of the object and measures how detectable an object is by the radar. Hence, it
helps to differentiate between various objects. The Doppler velocity, the radial
velocity between the sensor and the detected object, is essential to identify mov-
ing agents. Knowing which parts of the environment are moving and which are
static is crucial for many tasks, including safe path planning, localization, and
mapping. The significant advantage of measuring the Doppler velocity is that
the moving parts are directly identifiable within a single point cloud. In contrast,
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other sensors, such as cameras and LiDARs, usually require the processing of
sequences of data to identify moving objects, resulting in increased latency.

The scene understanding of autonomous vehicles incorporates multiple tasks
such as segmentation, instance assignment, and tracking of objects to operate
safely in real-world environments. The primary goal is to extract all relevant
information, such as the semantic class of the traffic participants, to leverage the
full potential of consecutive downstream tasks. Whereas geometric information
about objects was sufficient for the early implementations of adaptive cruise con-
trol [226], achieving higher levels of autonomy today requires more complex scene
understanding to handle versatile driving scenarios.

The tremendous advancements in artificial intelligence and the evolution of
deep learning techniques for processing sensor data have driven significant im-
provements in semantic scene understanding. While the primary focus has been
on dense data provided by cameras and LiDARs, enabling successful applications,
extending these techniques to radar presents unique challenges due to the sparsity
of radar point clouds. To address this, the aggregation of multiple radar point
clouds is often used to achieve competitive performance, resulting in densification
that simplifies the task. However, for real-world applications, instantaneous pro-
cessing remains essential due to the strict latency requirements of driving tasks.
This is particularly critical for applications like collision avoidance, which require
immediate feedback. Additionally, the processing of aggregated point clouds re-
sults in repetitive processing of the individual detections, significantly increasing
memory and computational demands.

Addressing these challenges, this thesis focuses on extracting meaningful se-
mantic information from measurements taken at a single time step, such as a
radar point cloud of the environment. Furthermore, we leverage radar-specific
properties such as direct motion information to identify moving agents within
the vehicle’s surroundings and overcome the limitations of camera and LiDAR
data processing. This highlights the importance of the processing of radar data
for safe and reliable functionalities.

Overall, we propose dedicated algorithms to enhance point-based radar pro-
cessing and harness their potential to improve scene understanding. The goal is
to develop radar-based algorithms that work safely and reliably under adverse
weather and compensate for the limitations of other sensor modalities. Further-
more, radar sensors are already available in series production vehicles due to their
low cost, making these advancements practical, widely accessible, and particularly
relevant to society by reducing accidents. We split the remainder of the thesis
into two parts. In Part I, we address the segmentation of radar point clouds
focusing on dynamic objects. In Part II, we exploit the predictions and utilize
them to solve subordinate tasks, enhancing the scene understanding.
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1.1 Main Contributions

The main contributions of this thesis are novel approaches that utilize single-
scan radar data to improve the perception of autonomous vehicles, resulting in
improved scene understanding. The proposed methods incorporate radar-specific
information within advanced algorithms to leverage the full potential of the sen-
sor modality and improve overall performance. Before we elaborate on the in-
dividual approaches in detail, we introduce the basic techniques of radar signal
processing and deep neural networks, which are key techniques to understand our
contributions and the foundation of our approaches in Chapter 2 and Chapter 3,
respectively. In Chapter 4, we introduce the related work to derive central as-
pects of existing methods in the field of point cloud processing for autonomous
vehicles. We divide our approaches into two parts to explore the different as-
pects of the perception tasks. In Part I of our main contributions, we elaborate
on the segmentation of sparse radar point clouds to improve the performance of
radar-based perception tasks. Starting with Chapter 5, we focus on multi-class
semantic information of moving objects. We present an optimized network to
address the difficulties of sparse and noisy radar data. The improvements focus
on extracting valuable information from individual scans, where a single point
can represent whole instances, such as pedestrians or distant vehicles. Therefore,
the learning process of the neural network for single-scan processing requires the
extraction of meaningful features to enhance the performance. The proposed
method generates more precise semantic segmentation results by leveraging the
full potential of radar data within the optimized modules.

On top of exploiting the general semantic information from sparse radar point
clouds, in Chapter 6, we address the problem of long-tailed data distribution and
answer the question of which type of semantic information is more useful for
different tasks. Specifically, we differentiate between moving and non-moving
objects, such as driving cars and moving pedestrians, from static or non-moving
objects, such as buildings, vegetation, and parked cars. Compared to other sen-
sor modalities, radar sensors provide unique advantages, such as direct Doppler
velocity measurements, which allow us to overcome the limitations of aggregated
input data processing, which induce latency. By leveraging these strengths, we
propose a single-scan approach for more efficient perception. We incorporate ded-
icated modules to explicitly utilize the Doppler velocity information within the
neural network to enhance moving object segmentation.

Since radar point clouds are prone to noise from multi-path propagation, sen-
sor noise, and interference, exploring the Doppler velocity information alone is
insufficient for advanced moving object segmentation. Temporal information is
helpful to identify noisy detections as these points fluctuate over time. Therefore,
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temporal information is essential to improve performance, but the aggregation of
scans over time is not desired due to latency issues. In Chapter 7, we propose an
efficient module to enrich the current scan with temporal information to improve
the moving object segmentation and reduce latency. Furthermore, we introduce
advanced instance segmentation modules to incorporate the instance information
within our network and identify the individual moving agents within the surround-
ings of the autonomous vehicle. The difficulty of moving instance segmentation
is that all objects belong to the same semantic class. Hence, the differentiation
of the instances has to work reliably without relying on class-dependent infor-
mation. Our optimized approach addresses this challenge and leads to superior
segmentation performance.

Based on predicting the semantic classes from the sparse and noisy input point
clouds, Part II focuses on exploring the moving instance predictions to solve ad-
ditional tasks necessary for the overall scene understanding. In Chapter 8, we
concentrate on tracking moving instances over time, a central capability of the
perception algorithms to enable safe and reliable path planning. The difficulties of
tracking moving agents primarily result from the sparse input data and occlusion
artifacts, making the correct association of instances over time challenging. We
propose combining the geometric and appearance features of individual agents to
derive precise representations and improve temporal associations. Our optimized
neural network learns temporal displacements of the instances and generates ac-
curate association scores to ensure reliable tracking.

Despite the exceptional results for moving object and moving instance segmen-
tation for sparse and noisy radar data, the actual semantic class is essential for
scene understanding, particularly for interacting with other traffic participants.
We introduce our method in Chapter 9 to predict the semantic classes of the mov-
ing instance predictions. We propose a dedicated algorithm to extract meaningful
features from the filtered point clouds and refine the segmentation results leverag-
ing the advantage of the semantic information. Our two-step approach combines
the benefits of moving instance segmentation and the subsequent processing by
an improved neural network to enhance the overall performance.

In Chapter 10, we conclude and provide an outlook for future work to fur-
ther improve scene understanding for autonomous vehicles. Overall, this thesis
presents novel approaches to processing single-scan, sparse, and noisy radar data,
tackling multiple challenges to enhance scene understanding. We study the prop-
erties of radar data in detail, propose dedicated modules, and solve various tasks
to improve performance, making an essential step toward reliable and safe algo-
rithms for autonomous vehicles.
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Chapter 2

Fundamentals of Automotive
Radar

T he sensor suites of autonomous vehicles are versatile to increase re-
dundancy and work under all driving conditions. Radar data signal
processing is fundamental for safe and reliable autonomous mobility
due to the robustness under adverse weather, as explained in Chap-

ter 1. Consequently, we aim to leverage radar data to enhance the overall scene
understanding of autonomous vehicles. We derive an overview of the radar sen-
sor data in the following chapter to understand the properties and advantages of
the sensor modality. For completeness, we examine the radar signal processing
to obtain the fundamentals that influence the final radar point cloud. We focus
on the basic techniques related to the automotive industry. In Section 2.1, we
introduce the automotive radar sensor in detail, including the basic specifications.
In Section 2.2, we explain the radar equation, which combines all parameters and
factors that need to be considered to detect an object within the surroundings of
a self-driving vehicle. Section 2.3 focuses on radar signal processing to derive the
range, Doppler velocity, and angle measurements. Finally, we elaborate on noise
in radar data in Section 2.3.5 and the point cloud extraction in Section 2.3.6.

2.1 Automotive Radar Sensors
Radar is an acronym for radio detection and ranging, which means radars emit
electromagnetic waves to detect and locate objects. Compared to other sensor
modalities, the significant advantages are robustness under adverse weather, pen-
etration of material, long-range sensing capabilities, and radar-specific sensor in-
formation. Consequently, radar sensors have a long-lasting history in the automo-
tive industry. The first ideas for radar-based collision avoidance systems emerged
in the 1960s [139, 149] resulting in increasing interest and research and develop-
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ment [64, 137, 149]. The first operational sensors were deployed in the 1990s to
reduce severe accidents [52]. Today, radar sensors are an integral part of advanced
driver assistance systems, including versatile applications such as adaptive cruise
control, lane changing assistant, collision mitigation, and rear cross-traffic alert,
increasing safety in real-world traffic scenarios. Due to the low cost compared
to LiDARs, multiple radars are already installed in today’s vehicles to enable
a 360° coverage of the environment. The sensor setup includes short-range radars
on the side of the vehicle sensing up to 30 m, mid-range radars at the corners of
the vehicle sensing up to 150 m, and front-facing long-range radars sensing up
to 400 m.

Over the past decades, radar sensor design and signal processing have devel-
oped. The commonly used frequency band within the automotive industry, for ex-
ample, increased from 24.05-24.25 GHz to 76-81 GHz, resulting in a smaller wave-
length, which typically reduces the required antenna size. As a result, the com-
pact sensor design enables the integration of multiple sensors. The resulting wave-
length of the emitted electromagnetic wave is around 3.8 mm, which influences,
among others, atmospheric attenuation. In contrast to cameras and LiDARs,
where the wavelength is in the nanometer range, radar signals are less absorbed
or scattered by small particles, allowing them to propagate through rain, fog,
and snow. Besides the robustness under adverse weather, the specification and
design of the radar sensor determine the performance of the radar sensors, which
we elaborate on in this chapter. In the following section, we introduce the radar
equation to explain the fundamental properties of radar signal transmission.

2.2 Radar Equation
The radar equation [11] is the fundamental formula that describes the relationship
of the received power dependent on the characteristics of the transmitted signal,
the environment, and the detected object. The overall process starts with the
transmission of a signal, where the radar sensor includes at least one transmitting
antenna that emits electromagnetic radiation. The objects in the field of view
of the radar, the so-called targets, reflect the radar waves in multiple directions.
The energy that is reflected towards the radar sensor is collected by the receiving
antenna and processed in signal processing to extract relevant information.

The process starts with the emission of the power Pt by an isotropic radar
antenna that emits uniformly in all directions and distributes energy over the
surface of 4πR2 of an imaginary sphere where the radius corresponds to the
range R to the sensor. Since radar antennas of automotive radar sensors are
directive, the power increases in a particular direction. Therefore, the gain Gt

measures the increased power radiated towards the desired direction compared
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to an isotropic antenna. The radar beam represents the sector with the highest
power concentration, where a narrower, more sharply defined beam has a higher
gain. The size of the beam depends on several variables, including the wavelength
and the aperture diameter. Since the wavelength of automotive radars is fixed
to a frequency band, the aperture diameter is essential, where a larger diameter
results in a smaller beam and, thus, higher gain. However, the size of the aperture
is limited due to design constraints within the vehicle, resulting in a trade-off.
Furthermore, we need to consider that a larger radar beam results in a wider
field of view, which is important to cover larger areas of the surroundings but
reduces the antenna gain. The resulting power density at a target from a directive
automotive antenna is PtGt/4πR

2.
The target intercepts only a portion of the incident power and reflects it.

The power density of the echo signal depends on numerous factors such as size,
geometry, surface, material, and the direction of incidence of the radar beam
summarized in the radar cross section σ of the target. The radar cross section
quantifies the detectability of the respective target. Consequently, large objects,
such as trucks, typically have larger radar cross section values compared to smaller
objects, such as pedestrians. We assume in the simple case that the reflected
signal also emits uniformly in all directions, resulting in the distribution over
the surface of a sphere 4πR2. The received reflected power Pr depends on the
effective area of the receiving antenna, denoted as Ae. Since the signal is reflected,
refracted, or scattered in various directions, the receiving antenna captures only a
fraction of the transmitted energy. The resulting basic radar equation summarizes
the signal transmission for the received power Pr as follows:

Pr =Pt (GtAe) σ

(
1

4πR2

)2

, (2.1)

where the first term, Pt, represents the transmitting power of the radar. The sec-
ond term (GtAe) covers the characteristics of the radar sensor. The third term,
the radar cross section σ, describes the object, and the fourth term represents
the outward and return path of the signal. This basic radar equation empha-
sizes the important aspects of radar sensors relevant to this thesis. For practical
applications, different aspects, including sensor noise, attenuation caused by at-
mospheric effects, multi-path propagation, and the penetration of the material,
including the dome of the sensor, need to be considered to derive a comprehensive
sensor model.

The major takeaway from the radar equation is that the received power de-
creases to the power of four by the range R. Consequently, distant targets are
challenging to detect. Furthermore, the radar cross section, which describes the
detectability of the object, is independent of the distance. Therefore, the radar
cross section can help to classify targets because it depends on the properties of
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Figure 2.1: Overall working principle of a radar sensor. The transmitted signal is generated by
frequency modulation and passed through a power splitter and power amplifier before being
emitted by the transmitting antenna. The received signal is processed by a low noise amplifier
and mixed with the transmitted signal. The resulting output is first amplified and filtered
before being converted by an analog-to-digital converter for consecutive signal processing.

the target, such as the material, the shape, and the size. As a result, the approxi-
mation of the radar cross section of the target dependent on the transmitted and
received power plays a central role in radar signal processing [9]. Furthermore,
we can conclude that distant objects with small radar cross sections are partic-
ularly difficult to detect. Moreover, the beam width increases with the distance
to the sensor, resulting in larger spatial coverage and reduced angular resolution,
making the differentiation of closely spaced objects harder. Consequently, the de-
tection and separation of distant objects is more difficult. To extract additional
information about the target, we process the received signal, which we expand
on in the following sections.

2.3 Radar Signal Processing
Deriving critical information about objects in the surroundings of autonomous
vehicles from radar signals involves complex signal processing. To understand
the central principles, we first introduce the range and Doppler estimation for a
single target in Section 2.3.1 to derive the basic formulas before presenting signal
processing for multiple targets in Section 2.3.2. In Section 2.3.3, we present the
angle estimation. Additionally, we elaborate on the specific properties of the
radar data in Section 2.3.4 and Section 2.3.5.

2.3.1 Range and Doppler Estimation: Single Target
Signal processing is necessary for locating the radar target and extracting addi-
tional properties of the target, such as the Doppler velocity [225]. The processing
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Figure 2.2: Transmitted and received signal frequency for the simple case of the detection of a
single static object (top) and the frequency difference between these signals (bottom) for one
chirp.

depends on the emission of the radar signal itself. On a basic level, we differen-
tiate between pulsed and continuous wave radars. A pulsed radar transmits a
short pulse and pauses the emission to listen for an echo signal, whereas a contin-
uous wave radar continuously emits a radar signal. Current automotive radars
fall into the second category and use frequency modulations resulting in so-called
frequency modulated continuous wave radars [224].

Automotive radar sensors nowadays include multiple transmitting and receiv-
ing antennas. To understand the concepts, we first introduce the basic building
blocks of the radar sensor for one transmitting and receiving antenna. The fre-
quency modulation often increases the frequency linearly, resulting in so-called
chirps, as depicted in the overall system diagram in Figure 2.1. To generate the
modulated signal, radar sensors utilize chirp generators and voltage-controlled
oscillators. The signal passes an amplifier before being radiated through the
transmitting antenna. The receiver antenna listens to the echo signal. After the
low-noise amplifier, the signal is mixed with the current signal in the mixer. The
mixed signal is amplified and passed through a low-pass filter. The analog-to-
digital converter transforms the signal. We process the output signal to obtain
information on the radar targets.

We first assume the simple case of detecting a single static object without a
relative radial velocity. Therefore, we consider a single chirp of a sawtooth signal
to derive a detailed explanation of the dependencies of the measurements, as
visualized in Figure 2.2. We obtain the functions for the transmitted and received
signals, which form the basis for the signal processing procedure. The frequency
modulation of the transmitted signal starts with the carrier frequency fc, which
is the lowest frequency in the signal. The linear modulation, which is the most
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common in automotive radar sensors, is defined by the frequency bandwidth B

and the duration of a chirp tc. The frequency will increase over time t by the
bandwidth and reach the maximum after the duration of the chirp, resulting in
the frequency function f(t) as follows:

f(t) = fc +
B

tc
t, (2.2)

where the maximum frequency is defined by the sum of the carrier frequency and
the bandwidth. The instantaneous phase Φ(t) [5] of the transmitted signal, which
is the phase of the signal at any given moment in time, depends on the initial
phase ϕTx , and the frequency resulting in:

Φ(t) = 2π

∫ t

0

f(t̂) dt̂+ ϕTx = 2π

(
fct+

B

2tc
t2
)
+ ϕTx . (2.3)

Combining the information, the transmitted signal with an amplitude ûTx can
be expressed as:

uTx(t) = ûTx cos(Φ(t)), (2.4)

where we can substitute the instantaneous phase according to Equation (2.3). The
transmitted and received signals have the same frequency as displayed in Fig-
ure 2.2. The static case does not include a relative movement and, hence, no
change in frequency due to the Doppler effect. Due to the time of flight to the
object and back to the sensor, the signal is received after a time difference τ . In
terms of the distance R, τ can be calculated as:

τ =
2R

c0
, (2.5)

where c0 = 3· 108 m/s is the speed of light, and due to the fact that the signal
needs to travel to the object and back, we add the factor of two. It is worth
mentioning that radar applications traversing the atmosphere need to consider
atmospheric effects that influence the speed of light, which is not the case for
automotive radars. We can express the frequency of the received signal fRx based
on the time difference τ and the frequency of the transmitted signal, as follows:

fRx(t) = fTx(t− τ). (2.6)

Since the time delay results in a frequency difference between the transmitted
and received signal, we can substitute τ by the so-called beat frequency fb(t):

fRx(t) = fTx(t)− fb(t). (2.7)
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The constant beat frequency during the chirp is known as fb, visualized in Fig-
ure 2.2. These beat frequencies fb and the time delay τ are related to the band-
width and the duration of a chirp as:

fb
τ

=
B

tc
, (2.8)

which can be derived from the geometrical relations of the triangle. We substi-
tute τ , following Equation (2.5) and solve the equation for R resulting in:

R =
fb c0 tc
2B

. (2.9)

Therefore, we can calculate the distance of the radar detection based on the
beat frequency and the parameters of the radar sensor. To determine the beat
frequency, we mix the transmitted and the received signals. The signal obtained
at the receiver antenna is identical to the emitted signal except for the time delay
and the amplitude. According to Equation (2.4), the instantaneous phase Φ is
affected by the time delay, resulting in the function for the received signal:

uRx(t) = ûRx cos [2π (fTx(t)− fb(t)) t+ ϕRx ] . (2.10)

The resulting mixed signal um(t) of the transmitted and received signal is:

um(t) = uTx(t)uRx(t)

= ûTx cos [2πfTx(t)t+ ϕTx ] ûRx cos [2πfTx(t)t− 2πfb(t)t+ ϕRx ] .
(2.11)

The mixing results in the combination of addition and subtraction of the sig-
nals because of the cosine property of cos(α) cos(β) = 1

2
[cos(α− β) + cos(α + β)].

Consequently, the resulting equation for the mixed signal is:

um(t) =
1

2
ûTx ûRx (cos [ϕTx + 2π fb(t) t− ϕRx ] +

cos [4π fTx(t) t− 2π fb(t) t+ ϕTx + ϕRx ]) .
(2.12)

The mixed signal includes a low-frequency and a high-frequency component.
The low frequency, which equals the difference of the frequencies known as the
beat frequency, explained in Equation (2.7), is much smaller compared to the
high-frequency component. Therefore, only the low-frequency component will
remain after processing the signal by a low-pass filter. The resulting mixed signal
after the filtering can be expressed as:

um,lf (t) = ûTx ûRx

1

2
cos [2π fb(t) t+ ϕTx − ϕRx ]

= ûM cos [2π fb(t) t+ ϕM ] .
(2.13)

The filtered signal only includes the beat frequency, which is required to cal-
culate the distance of the target, according to Equation (2.9). To determine the
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Figure 2.3: The transmitted and received signal frequency for the simple case of the detection
of a static and moving single object with a radial velocity (top) and the frequency difference
between the signals for the moving object (bottom) for a single chirp.

frequency based on the mixed and filtered signal, we can transform the function
from the time to the frequency domain by a Fourier transform. The resulting
frequency spectrum includes information about the frequency components of the
signal and the respective amplitudes. Since the radar sensor signal processing
results in a signal that mainly depends on the beat frequency, we can identify
the frequency as the peak in the frequency spectrum after the Fourier transform
and calculate the distance of the target.

Before further elaborating on the signal processing, we assume that the de-
tected object is moving with a relative radial velocity with respect to the radar.
The Doppler shift of the frequency directly influences the beat frequency, as de-
picted in Figure 2.3. The relative radial velocity causes a change in frequency due
to the Doppler effect. The so-called Doppler frequency fD combines the frequency
change to the target and back to the sensor, resulting in:

fD = 2
vr
c0
fc, (2.14)

where we assume vr ≪ c0. The resulting beat frequency fb, including a Doppler
frequency, is:

fb =
B

tc

2R

c0
− fD. (2.15)

Replacing fD with Equation (2.14) results in:

fb =
B

tc

2R

c0
− 2

vr
c0
fc, (2.16)

which illustrates that the beat frequency for a moving target depends on the
Doppler velocity and the distance to the sensor. The Doppler velocity and ra-
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Figure 2.4: Transmitted and received signal frequency for the frequency modulated continuous
wave radar (top) and the fast chirp adaptation (bottom), including a relative moving object
and a static object. The beat frequency fb comprises the frequency difference based on the
distance fbR indicated by the time delay τ and the Doppler frequency fD.

dial distance are coupled, resulting in the so-called range-Doppler coupling. The
coupling prevents determining both range and Doppler velocity using a single
chirp. When multiple targets are present, each target contributes a unique beat
frequency corresponding to the specific range and Doppler velocity of the ob-
ject. The superposition of the beat frequencies makes it challenging to decouple
the range and Doppler velocity for each target, which complicates the resolution
of range-Doppler coupling. However, the detection of multiple targets in the
surroundings of a self-driving vehicle is essential for scene understanding. A com-
mon solution to resolve the coupling for multiple targets is the fast chirp sequence
method, which we introduce in the following.

2.3.2 Range and Doppler Estimation: Multiple Targets

The detection of multiple targets is fundamental for radar signal processing in
automotive applications. Therefore, we need to solve the range-Doppler coupling
for multiple targets as mentioned in Section 2.3.1. One solution is the fast chirp
sequence approach, which reduces the time of the individual chirps to get a near-
stationary observation of the environment during the duration of the individual
chirps. Hence, the influence of the Doppler effect is mitigated within one chirp
since Doppler frequency fD is much smaller than the part of the beat frequency
which results from the distance of the object fb,R as depicted in Figure 2.4. To
recover the important information on the Doppler velocity of the object, we need
to utilize a sequence of chirps. The Doppler velocity causes a change in the phase
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ceived Rx signal. The beat frequency fb corresponds to a specific range of the target. To derive
the information, we process the beat frequency by the range-FFT, resulting in the sinc func-
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specific distances.

of the received signal over the sequence of chirps, enabling the effective resolution
of the range-Doppler coupling.

We start the signal processing to determine the distance of the target based
on the beat frequency. The first processing step focuses on the so-called fast
time, the duration of an individual chirp. To obtain the distance R, we follow the
same approach as in Section 2.3.1, including the mixing, the low-pass filtering,
and the Fourier transform to determine the beat frequency. We utilize the fast
Fourier transform (FFT) to efficiently compute the frequency of the discrete signal
obtained after the analog-to-digital conversion. To illustrate the processing, we
assume the simple case of one target. The mixed signal, described by the beat
frequency, is a rectangular function. The Fourier transform of this signal F (f)
leads to the sinc function described as:

sinc(x) = sin(π x)
π x

, (2.17)

where x = fb tc resulting in F (f) = A sinc(fb tc). The amplitude A depends on
the received power. The signal includes a main lobe and several side lobes [227].
The main lobe is the frequency we are interested in since it relates to the corre-
sponding beat frequency, which depends on the respective distances. To derive
the frequency by the FFT, we sample s points during the duration of the chirp.
The results of the FFT are s evenly spaced frequency bins. For the explained
example, the resulting outputs of the FFT are the values of the sinc function at
the center of the frequency bins, as visualized in Figure 2.5. Since the range de-
pends on the beat frequency, the bins can be directly transferred into range bins,
also known as range cells, according to Equation (2.9). As a result, we obtain the
range measurement for the target as range cells. It is important to note that the
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Figure 2.6: Radar signal processing in the fast time results in the range information for the
individual radar targets represented in discrete range-cells. The real distance changes over time
due to the Doppler velocity vr.

case depicted in Figure 2.5 assumes an ideal scenario where no frequency compo-
nent is spread into the neighboring bins, and only a single target is considered.

We compute the range-FFT for each chirp in the sequence, as depicted in Fig-
ure 2.6. The target appears in the same range cell over the sequence of chirps.
However, the distance of the target changes due to the relative velocity. There-
fore, we can extract the information about the Doppler velocity from a sequence
of Nc chirps. The result of the range-FFT over the sequence of chirps for a tar-
get with relative velocity results in a phase shift between the consecutive chirps,
which accumulates linearly over the sequence of chirps. This linear phase pro-
gression corresponds to a single frequency, the Doppler frequency. Consequently,
the result of the range-FFT over the sequence of chirps varies due to Doppler
frequency. Based on the Doppler frequency, we can determine the resulting ra-
dial velocity following Equation (2.14). Consequently, we apply a second FFT,
the Doppler-FFT, which focuses on slow time, the duration of the sequence of
chirps Tseq = Nc tc, to determine the Doppler velocity of the object. We perform
the Doppler-FFT over Nc chirps, resulting in Nc frequency bins. The result-
ing range-Doppler matrix has s rows for the range cells and Nc columns for the
Doppler velocity, the speed cells. The consecutive processing resolves the range-
Doppler coupling, and the fast chirp sequence approach enables the detection of
multiple targets, resulting in a range-Doppler matrix, as depicted in Figure 2.7.

While range and Doppler information provide important information for scene
understanding, they are insufficient for fully localizing targets within the environ-
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Figure 2.7: Signal processing of the sequence of chirps includes the fast time over the individual
chirps to obtain the range and the slow time over the whole sequence of chirps to determine
the Doppler velocity of the individual targets.

ment. Doppler velocity is particularly valuable for identifying moving objects, but
without angular information, the exact position of a target cannot be resolved.
Angle estimation is necessary to locate targets precisely within the scene. In the
following section, we introduce the methods for estimating angular information,
extending the sensor data for comprehensive scene understanding.

2.3.3 Angle Estimation
The signal processing to determine the Doppler and range requires a single trans-
mitting and receiving antenna. To receive precise angular measurements, the
common approaches in the automotive domain [11] rely on multiple receiving an-
tennas, as depicted in Figure 2.8. We assume that the radial distance R to the
object is much larger than the distance of the individual antennas d. Therefore,
the transmitting and receiving signals can be modeled as planar waves. The clos-
est receiving antenna to the object first receives the echo signal. This means that,
for the second receiving antenna, the received signal needs to travel an additional
distance ∆s, which depends on the incident angle α of the signal and the distance
d between the two antennas, as follows:

∆s = d sin(α). (2.18)

The distance ∆s increases for the consecutive receiving antennas. As a result,
the received echo includes an additional phase difference ϕa, which can be derived
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Figure 2.8: Radar sensors include multiple receiving antennas to derive the angle based on the
additional distance ∆s = d sin(α) of the emitted signal to the antennas. The planar wavefront
assumption is valid if the distance of the target is much larger than the distance of the antennas
d. The angle α is the angle of incident.

as follows:

ϕa =
2π

λ
d sin(α), (2.19)

where λ is the wavelength of the signal. Therefore, we can measure the phase
difference ϕa and calculate the angle of the received signal, resulting in:

α = sin−1

(
ϕaλ

2πd

)
. (2.20)

The measured phase difference ϕa and the angle α have a non-linear relation-
ship due to sin−1, which results in a decreasing sensitivity if α increases. Hence,
the angle estimation is more error-prone if the angle to the line of sight increases.
Furthermore, the phase difference is linear proportional to the distance d of the
antennas, resulting in [0, ϕa, 2ϕa, . . . , (NRx − 1)ϕa] for the respective NRx receiv-
ing antennas. Consequently, we can extract the spatial phase difference over NRx

receiving antennas. We perform a third FFT to capture the spatial frequency cor-
responding to the phase shift over the range-Doppler bins of multiple antennas to
obtain the direction of arrival, which is the angle of the target. The angular res-
olution is directly proportional to the number of sampling points, corresponding
to the number of receiving antennas, which we elaborate on in detail in Sec-
tion 2.3.4. To increase the resolution, the radar sensors require more receiving
antennas, which usually results in a bigger sensor. However, larger sensors face
packaging problems because of the limited space within the vehicle, reducing the
resolution.

The standard approach is the multiple-input multiple-output setup to increase
the angular resolution. Instead of transmitting the signal by one antenna, the
setup uses multiple transmitting and receiving antennas as depicted in Figure 2.9.
The distance of the transmitting antennas, in this example, is four times the dis-
tance of the receiving antennas. The signal of the second transmitting antenna
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Figure 2.9: Automotive radar sensors combine multiple receiving and transmitting antennas in
a multiple-input multiple-output setup to increase angular resolution.
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Figure 2.10: The multiple-input multiple-output setup is extended to a 2D array to measure
elevation and azimuth angles.

travels an additional distance to the target of 4d sin(α) before the closest receiv-
ing antenna receives the echo signal. Hence, this results in an additional phase
difference at the receiving antennas of [4ϕa,5ϕa,6ϕa,7ϕa]. The result is the same
as in a setup with one transmitting and eight receiving antennas, which is why
the multiple-input multiple-output setup results in so-called virtual antennas. If
the antennas are appropriately placed, we can add a virtual antenna for each
receiving antenna, which depends on the echo signal of the second transmitting
antenna. From a hardware perspective, we still need to integrate more anten-
nas, but the resolution can be increased by a larger factor than by implementing
more receiving antennas. However, we need to differentiate between the received
signals to assign them to the corresponding transmitting antennas. Therefore,
signal modulation, such as binary phase modulation [56] or time division multi-
plexing [264], is required to generate separable signals.

The multiple-input multiple-output setup can be extended to a 2D antenna
array, enabling the measurement of azimuth and elevation angles, as depicted
in Figure 2.10. The same principles apply where an additional FFT is required
to measure both angles. The resolution of the radar sensor is still limited by the
number of antennas and, hence, the size of the radar sensor itself. Therefore,
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a trade-off between azimuth and elevation resolution is often made. To gain a
detailed understanding of the factors influencing the resolution, we outline the
dependencies in the following.

2.3.4 Resolution and Ambiguities
The signal processing of radar sensors, including the Doppler velocity, the range,
and the angular measurements, provides precise information about the environ-
ment for automotive applications. To understand the nature of radar data, we
need to consider the measurement resolution and ambiguities in the signal process-
ing. The resolution describes the ability to differentiate between closely related
objects in the respective measurement dimensions. Furthermore, the cyclic prop-
erties of the FFT can result in ambiguities. Therefore, the sensor parameters
and the signal processing directly influence the detection capabilities. To obtain
a detailed understanding, we introduce the range resolution, the maximum un-
ambiguous range, the velocity resolution, the maximum unambiguous velocity,
and the angular resolution in the following. We focus on the final resolution and
ambiguities as these are key aspects of understanding radar data.

There are two major concepts that determine the resolution and ambigui-
ties. First, the Nyquist-Shannon theorem [191], which states that a sampling
rate fsample of at least two times the frequency f is required to capture all parts
of the signal with a maximum frequency fmax such that fsample > 2 fmax. Second,
the bin resolution of the FFT is given by the ratio of the sampling frequency fsample

and the number of sampling points Nsample.
For the range measurement, we collect s samples over the duration of a chirp tc,

resulting in a sampling frequency fsample = s/tc. Since we utilize Nsample = s

sampling points for the range-FFT, the resulting frequency bin resolution is 1/tc.
Two objects are, hence, separable in distance if the difference of the corresponding
beat frequencies is separated by at least one frequency bin. Consequently, to
resolve two objects, the frequency difference ∆fb must be greater than the bin
width of the FFT. We combine Equation (2.9) with the derived formulas, resulting
in:

∆fb =
2B∆R

c0 tc
>

1

tc
. (2.21)

We simplify this inequality to derive the resulting range resolution:

∆R >
c0
2B

, (2.22)

which depends on the bandwidth B of the transmitted signal. Hence, radar
frequency bands that enable higher bandwidths are preferable. Therefore, the
current radar sensors for automotive applications operate in the frequency band
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of 76-81 GHz because the possible bandwidth is larger compared to other more
restricted frequency bands to enhance the range resolution. For example, the
resolution of automotive radars with a bandwidth B of 1 GHz is 15 cm.

Besides the resolution, it is important to consider the maximum unambiguous
range in signal processing. The maximum unambiguous range depends on the
sampling rate of the analog-to-digital converter. Following the Nyquist-Shannon
theorem, the sampling frequency has to be larger than twice the maximum fre-
quency in the spectrum fmax

b . The resulting maximum unambiguous range is:

Rmax <
c0 tc
4B

fADC
sample. (2.23)

Increasing the chirp duration tc and the sampling frequency of the analog-to-
digital converter fADC

sample increases the maximum unambiguous range. However,
the maximum range is also restricted by the transmission and reception of the
radar signal itself, summarized in the radar equation in Section 2.2. Since the
received signal power is reduced by the factor R4, the difficulty is to separate
the received signal from background noise for distant objects. Therefore, the
maximum unambiguous range should be close to the physical detection limit so
as not to restrict the range further.

To derive the Doppler velocity resolution, we follow the same principles as
for the range resolution. The sampling frequency is defined by the chirp dura-
tion resulting in fsample = 1/tc. The number of sampling points Nsample equals
the number of chirps Nc. Consequently, the bin resolution of the Doppler-FFT
is 1/Nctc. Therefore, the radial velocity of two targets is distinguishable if the
difference of the corresponding Doppler frequencies ∆fD is separated by at least
one frequency bin. Following Equation (2.14), we derive the expression for the
Doppler velocity resolution as follows:

∆fD = 2
∆vr
c0

fc >
1

Nc tc
. (2.24)

Thus, the Doppler velocity resolution simplifies to:

∆vr >
c0

2fcNc tc
, (2.25)

where we can summarize the duration of the sequence of chirps Tseq = Nc tc.
Therefore, the Doppler velocity resolution depends on the carrier frequency fc,
the number of chirps Nc, and the chirp duration tc. To improve the velocity reso-
lution, we can increase the carrier frequency, increase the number of chirps Nc, or
increase the chirp duration tc. The resulting velocity resolution for an automotive
radar with a carrier frequency of 79 GHz and a sequence duration of 10 ms is, for
example, ∆vr = 0.19m/s. However, different approaches exist to further increase
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Figure 2.11: The result of the angle-FFT can be displayed as a rotating phasor. The angle
estimation is unambiguous as long the phase shift is smaller than π.

the range and the velocity resolution, such as the fast orthogonal search [130] to
estimate frequency components at a higher resolution.

The signal processing based on the FFT inherently imposes a maximum unam-
biguous Doppler velocity. Following the Niquist-Shannon theorem, the sampling
frequency fsample = 1/tc must be twice as big as the maximum Doppler frequency
ensuring fsample > 2 fD,max. Hence, we can derive the maximum unambiguous
Doppler velocity by substituting fD,max = 1/2 tc in Equation (2.14) resulting in:

vrmax <
fD,max c0

2 fc
(2.26)

vrmax <
c0

4 fc tc
. (2.27)

This aligns with the explanation that to cover higher frequencies resulting
from higher velocities, the sampling frequency, determined by 1/tc, must be
higher, resulting in a smaller chirp duration. The maximum unambiguous ve-
locity of modern automotive radar sensors often lies in the range of [−25, 25]m/s.
Since oncoming traffic easily exceeds the unambiguous velocity, signal processing
often incorporates counter measurements, such as tracking algorithms [120], to
verify the correct velocity. The velocity measurements are derived over multiple
time steps to confirm the actual radial velocity by correlating the motion and
previous positions.

The signal processing to calculate the angle depends on the phase shift be-
tween the individual antennas, as explained in Section 2.3.3. We determine the
unambiguous angle based on the requirement that the assignment of the phase
shift to the corresponding angle is clear, which is given as long ∆ϕa < π. If the
phase difference is larger than π, we cannot unambiguously resolve the angle be-
cause a positive or negative angle from the boresight might cause the same phase
difference, as depicted in Figure 2.11. As a result, following Equation (2.19), the
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largest unambiguous angle αmax is:

αmax < sin−1

(
λ

2d

)
. (2.28)

The unambiguous angle depends on the spacing of the antennas where the
spacing of d = λ/2 results in the maximum unambiguous angle of αmax = ±90°.
Therefore, the spacing of the antennas is important for the maximum unambigu-
ous angle, which also influences the dimensions of the radar.

For the angular resolution, the signal processing includes the angle-FFT, and
hence, the spatial sampling frequency influences the resolution, as explained be-
fore. Two objects with an angle of arrival of α and α + ∆α result in a phase
difference of:

∆ϕa =
2πd

λ
(sin(α +∆α)− sin(α)), (2.29)

according to Equation (2.19). For small ∆α, we can use the following approxima-
tion:

sin(α +∆α)− sin(α) ≈ cos(α)∆α. (2.30)

According to this approximation, we derive the expression for ∆ϕa as:

∆ϕa ≈ 2πd

λ
cos(α)∆α. (2.31)

The Nyquist-Shannon theorem must be fulfilled to separate the two signals,
resulting in ∆ϕa > 2π/NRx , where NRx is the number of receiving antennas. The
resulting angular resolution is:

∆α >
λ

NRx d cos(α) , (2.32)

where the resolution of the angle depends on the angle itself. The highest res-
olution is achieved when α = 0°. For the specific angles, the resolution further
depends on the antenna size given by NRx d. Assuming the spacing of d = λ/2 for
the maximum coverage, the resolution is proportional to the number of receiving
antennas. Therefore, we need to increase the number of receiving antennas to
increase the angular resolution. As a result, the maximum antenna size within
autonomous vehicles restricts the maximum resolution. However, besides the
number of physical antennas, virtual antennas are included in the multiple-input
multiple-output setup, enhancing the effective number of antennas and making
the advanced setup valuable. To further improve the angular resolution, algo-
rithms such as ESPRIT [178], 2D ESPRIT [284], and MUSIC [185] exist. The
angular resolution of the FFT does not depend on the distance. However, the
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spatial resolution decreases with the distance to the target because of the increas-
ing beam width as introduced in Section 2.2. The final angular resolution of the
radar depends on both the distance and the angle.

Different aspects need to be considered to mitigate ambiguities and improve
resolution within each measurement dimension. Automotive radar sensors vary
widely in design and parameter setups, and hence, the data is versatile with dif-
ferent resolutions and ambiguities. Compared to LiDARs, the range and angular
resolution are much lower, leading to less precise information and making the
interpretation of radar data more challenging.

2.3.5 Clutter and Noise
Clutter and noise are key challenges in radar signal processing because they de-
grade the overall system performance. Noise has various sources, such as sensor
noise and interference of signals. The term clutter [198] refers to all unwanted
radar returns that may limit the performance of the desired application, includ-
ing multi-path propagation. The term clutter varies with applications such as
weather, surveillance, and automotive radars, considering different radar returns
as clutter. For automotive applications, for example, ground reflection can be con-
sidered as clutter. However, ground reflections can be important for free space
detection and the identification of static parts of the environment. We introduce
the most important sources of noise and clutter for our targeted applications in
the following.

Each sensor measurement is affected by noise [211], which is usually a ran-
dom, unwanted disturbance within the original signal. Noise comprises internal
noise, such as thermal noise, and environmental noise, including interference with
other systems. Random fluctuation in the signals negatively influences the sig-
nal processing. Therefore, noise can lead to false positives and false negatives
by increasing or decreasing the signal power. Consequently, noise affects range,
Doppler, and angular measurements, posing challenges to signal processing.

Radar signals which interact with an object are reflected, refracted, or scat-
tered as mentioned in Section 2.2. The reflected radar signal is often not directly
backscattered to the radar sensor itself. These signals interact further with ob-
jects within the surrounding of the vehicle, causing multiple reflections before
being scattered back to the radar sensor, resulting in so-called multi-path prop-
agation. Metal surfaces such as guardrails, fences, and gates are good reflectors
that can cause strong reflections from other objects, resulting in ghost detections.
The reason is that we can only determine the incident angle of the received signal
and not the exact propagation. As laid out earlier, the signal processing estimates
an object in the direction of the received echo signal. Due to the correspondence
between the time of flight from emitting the signal and receiving the echo, the
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Figure 2.12: Signal processing noise for the fast Fourier transform arises from side lobes and the
misalignment between the beat frequency and the center of the frequency bin. The neighboring
bins include noise and do not correspond to real targets.

estimated distance is prone to error because only the direct path of a signal is
considered in the signal processing, leading to clutter. On the one hand, an issue
arises from the fact that these ghost objects have properties similar to the actual
detected object, such as the Doppler velocity or radar cross section values, mak-
ing their identification challenging. On the other hand, multi-path reflections
can have benefits, such as the detection of occluded objects, and thus provide
additional information to enhance scene understanding.

The radar signal processing based on the FFT is another source of noise. To
highlight this issue, we visualize the Fourier transform of the mixed signal from a
detected object in Figure 2.12. As explained in Section 2.3, the Fourier transform
of the beat frequency leads to the sinc function, denoted as sinc(x). The main
lobe is the frequency we are interested in since it relates to the corresponding
information we try to extract, such as the range. However, the main lobe often
does not correspond perfectly with the resolution of our frequency bins, result-
ing in detection in neighboring bins. Additionally, the side lobes can result in
detections that do not correspond to actual targets. Especially if more than one
reflected signal is present, interference can result in higher side lobes, making dif-
ferentiation even more difficult. The problem is more severe if one of the reflected
signals is strong, making the identification of true targets challenging. As a result,
the bins include noise and clutter, and only a fraction relate to true targets. This
noise directly results from the limitations of the signal processing itself.

Additionally, the interference of multiple signals can lead to amplification or
destruction of the echoes, which can, for example, increase the power but also
lead to missing detection. The ambiguities introduced in Section 2.3.4 can lead
to errors and may persist in the final radar data if the signal processing does not
resolve the correct values. As a result, radar data contains noisy and ambiguous
information, requiring optimized algorithms to achieve good performance.
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Figure 2.13: Example of the cell-averaging constant false alarm rate algorithm. We evaluate
the cell under test (blue), surrounded by the guard cells (red), to estimate the level of noise
from the neighboring cells (green) in a sliding window approach.

2.3.6 Radar Point Cloud Extraction

The result of the radar signal processing is a multi-dimensional data cube that
includes the range, the Doppler velocity, and the angle estimation. However,
the data cube covers the whole field of view, and as introduced in the previous
section, most of the cells are occupied by noise instead of true targets. Therefore,
we process the data cube to reduce the data stream, focusing on the essential
radar data, which is necessary for downstream tasks such as scene understanding.
To filter the data and extract point-wise detection, the most common algorithm
is the constant false alarm rate [175].

The extraction aims to identify peaks within the data that have a high ampli-
tude compared to background noise since these likely correspond to radar returns
from real objects. One approach to setting a detection threshold is to reduce the
threshold with increasing distance, accounting for attenuation effects described
in Section 2.2, where the received power decreases proportionally to R4. However,
the noise levels vary, and more advanced algorithms are required to identify the
radar targets.

The cell-averaging constant false alarm rate [10], for example, evaluates the
cells of the data cube individually in a sliding window approach depicted in Fig-
ure 2.13. We evaluate the cell under test against the noise level around the cell.
To cover the broad peaks of the main lobe, the direct neighboring cells, the so-
called guard cells, are excluded from the evaluation of the noise level to prevent
incorrect estimates of the noise. The other cells are then averaged to calculate
the noise level within this local area. The cell under test is extracted as a target
if the peak is higher than the expected noise level of the neighboring cells. As
the name already states, there are still false alarms within the extracted targets,
resulting in noisy detections. This issue arises from strong multi-path reflections,
interference, and sensor noise, as stated in Section 2.3.5.

The results of the constant false alarm rate algorithm are the extracted peaks,
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which can be transferred into point clouds. Each peak typically corresponds to
one point. The points are represented within the polar coordinate frame of the
respective sensor because the results of the FFTs are the range, the azimuth,
and the elevation information. A two-dimensional antenna array is required to
measure the elevation of the object. Consequently, sensors with a one-dimensional
antenna array only measure the azimuth angle and the range, providing 2D spatial
information.

A common approach is to transfer these polar point coordinates into Carte-
sian coordinates xC , yC , and zC within the radar sensor frame. Depending on the
measurement dimension, we differentiate between different radar sensors. The
radar sensors that cover 3D coordinates are called 4D radar sensors, whereas sen-
sors that do not measure elevation angles are called 3D radar sensors, where the
additional dimension covers the Doppler velocity. Furthermore, each point, often
referred to as a target or detection, usually includes radar cross section values.
These values provide information about the shape, material, and size of objects,
which influence their detectability, as explained in Section 2.2. The resulting
radar point cloud provides rich information about the environment. However,
the field of view of individual sensors is limited. To comprehensively cover the
surroundings of the vehicle, integrating multiple sensors is essential for providing
the necessary information required by advanced driving functions. In the next
section, we introduce the concept of combining point clouds of individual sensors
to create a unified representation of the environment.

2.3.7 Automotive Radar Data
Automated driving functions require precise information about the environment.
Since the field of view of individual sensors is limited, multiple sensors are required
to cover the surroundings. The extracted radar point clouds of the individual
sensors are represented in the sensor coordinate system, which limits consistent
spatial interpretation. Therefore, we need to transform the radar point clouds
into a common coordinate system to combine and process data from multiple
sensors and ensure spatial alignment, as depicted in Figure 2.14. Moreover, we
can utilize ego-motion measurements to compensate for the motion of the vehicle
itself, ensuring more accurate velocity estimations. We introduce both concepts
in the following.

The two central approaches to combine data within one coordinate system are
the transformation into a car coordinate system and a global coordinate system.
The origin of the car coordinate system is normally placed at the center of the
rear axle, with the x-axis pointing in the forward direction. The y-axis points to
the left of the vehicle, resulting in a z-axis pointing upwards for a right-handed
coordinate system. The origin of the global coordinate system is often aligned
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with the car coordinates system after the start of the vehicle. The car coordinate
system then moves through the global coordinate system. We determine the
position of the vehicle within the global coordinate system by the odometry and
the information from the global navigation satellite system.

In general, the transformation from one coordinate system into another can
be done by homogeneous transformation where the transformation matrix H is
defined as:

H =


tx

Rrot ty
tz

0 0 0 1

 , (2.33)

where Rrot is the product of the rotation matrices for the roll, the pitch, and the
yaw angle. The advantage of the homogenous transformation is that it combines
translation and rotation in a single matrix, enabling the combination of multiple
transformations through matrix multiplication. We can derive the transforma-
tion matrices from the sensor coordinate system and the car coordinate system
by calibration. Furthermore, global navigation satellite system data, online simul-
taneous localization and mapping algorithms [2, 15, 28, 266], and wheel encoders
can be combined to derive the transformation from the car coordinate system
into the global coordinate system. Moreover, the sensors provide the transforma-
tion between successive poses in the trajectory of the vehicle enabling accurate
temporal data alignment.

The representation within the car coordinates system is fundamental to derive
a meaningful understanding of the sensor data. Additionally, the transformation
between the individual scans in the global coordinate system is important to
align temporal scans because the car moves over time. Therefore, precise infor-
mation about the individual transformations is essential to achieve valuable scene
understanding.

The global position information and the odometry information typically in-
clude the speed in the driving direction and the yaw rate around the center of the
rear axle. The information about the movement of the vehicle is valuable to iden-
tify the moving and static parts of the environment because ego-motion results in
Doppler velocity in the radar signal processing. We compensate for ego-motion
to generate a point cloud in which all static points ideally have a Doppler velocity
of zero, while moving objects, such as cars, retain their true radial velocity. For
the basic derivation of the ego-motion compensated Doppler velocity, we include
the yaw rate ψ̇ and the velocity in the x-axis of the car vxcar. The radial velocity of
static objects is the projection of the velocity of the sensor in the radial direction
of the target. We first need to derive the sensor velocity vxsens and vysens based
on the velocity of the vehicle. The sensor velocity depends on the offsets xoff

sens
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Figure 2.14: Overview of real-world radar data of four radar sensors combined within one
common coordinate system. The reference image illustrates the scene and includes privacy-
preserving colored masks. In the image of the point cloud, the points are colored according to
the radar cross section values. The polygons correspond to the objects. The colors of the objects
in the images correspond if the object is visible. Data from the RadarScenes[189] dataset.

and yoff
sens of the sensors to the origin of the car coordinate system. We use the

calibration information to obtain the values and calculate the sensor velocities,
resulting in:

vxsens = vxcar − yoff
sens ψ̇, (2.34)

vysens = xoff
sensψ̇, (2.35)

where the x- and y-axis are parallel to the car coordinate system. The velocity of
the individual points is derived by subtracting the apparent radial velocity of the
car vego

r from the measured Doppler velocity vcomp
r = vr − vego

r . Since the points
appear at different azimuth angles α, we have to calculate the compensation for
each point separately, projecting the ego-motion onto the radial velocity. Further-
more, we need to consider in the calculation if the sensor coordinate system is
rotated by an angle β in comparison to the car coordinate system. The projected
radial velocity for the individual points is given by:

vego
r = −(vxsens cos(α + β) + vysens sin(α + β)), (2.36)

where the minus accounts for the fact that the radar moves toward the static
object. However, the compensation is often not perfect, and the resolution of the
azimuth measurement influences the final result. Furthermore, the radar point
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cloud includes noise, which, for example, are points that have a Doppler velocity
vector unrelated to actual objects as visualized in Figure 2.14. For simplicity, we
refer to the ego-motion-compensated Doppler velocity as v in the remainder of
this thesis.

The resulting radar point cloud of multiple sensors provides the necessary
information about the surroundings, including ego-motion compensated Doppler
velocity and radar cross section values. However, these point clouds are sparse,
include noise, and have limited resolution, posing challenges for processing, and
traditional heuristic-based methods often fall short of addressing the complexity
of signal processing. To overcome these limitations, advanced algorithms are re-
quired to harness the potential of radars and ensure reliable scene understanding.
In the following chapter, we introduce the basics of machine learning that are
essential to this thesis.
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Chapter 3

Fundamentals of Deep Learning

M achine learning drives development across various industries, lead-
ing to advancements from natural language processing up to au-
tonomous driving [113]. The ability to utilize large amounts of
data to learn patterns from data and infer the rules themselves

without explicit programming is key for successful applications of machine learn-
ing approaches to solve dedicated tasks [143]. Data-driven algorithms are able to
solve difficult tasks that are too complex for rule-based systems, including human-
designed heuristic methods. Therefore, state-of-the-art scene understanding ap-
proaches use machine learning algorithms utilizing vast amounts of sensor data
to address challenging tasks such as the identification of objects and instances
within point clouds. We introduce an overview of machine learning techniques in
the following to understand the foundations of this thesis.

Machine learning algorithms can be categorized into supervised learning, un-
supervised learning, and reinforcement learning methods, depending on the task
and application. We focus on supervised learning techniques [148], where the
training data D consists of input features xi and output values yi, resulting in
the dataset D = {(xi, yi) | i = 1, 2, . . . , ND} for ND input-output pairs. The
ground truth mapping of the input and output values combines the input data
with the corresponding output labels. For example, to segment a vehicle within
an image or point cloud, a human annotator selects the pixels or points corre-
sponding to the respective object. Machine learning aims to derive the desired
mapping from the given data. Hence, the model infers a function from the labeled
dataset during the training. The goal is to solve the desired task and learn the
accurate mapping to perform well on unseen data, resulting in a good generaliza-
tion. To evaluate such behavior, we split the labeled dataset into three parts: the
training set Dtrain, the validation set Dval, and the test set Dtest. We train the
algorithm on a training dataset and evaluate the performance of the adaptations
of our approach during the development on the validation set to derive advanced
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algorithms. The final performance evaluation is conducted on the unseen test
dataset. In supervised learning, we differentiate between classification and re-
gression approaches [24]. For classification, the outputs yi are discrete labels or
categories, such as the corresponding class of a pixel or a point, whereas for re-
gression methods, the outputs are continuous numerical values. However, both
methods require an annotated training dataset to derive the mapping function
for the desired task.

Conventional machine learning algorithms first transfer the raw input data
into a suitable internal representation, often called a feature space, where individ-
ual training samples are feature vectors, which the system then utilizes to predict
the output. Therefore, human experts design rule-based features to extract mean-
ingful representation from the input data, including methods such as clustering
of point clouds, which hopefully are useful for the algorithm to solve the desired
task and generalize well. However, the performance is limited due to hand-crafted
feature engineering and the rule-based design of the feature representation, which
requires domain knowledge to capture expressive representations [146]. From the
early days, research focused on replacing hand-engineered feature extraction with
algorithms that automatically learn suitable representations from the data itself
and leverage the advantages of data-driven methods.

Inspired by the theory of biological networks, Rosenblatt [177] proposed the
perceptron, which uses mathematical functions to process the input data and
directly predict a binary output. The perceptron is one of the first methods to
utilize data to infer the rules directly from the input to solve the given task by
minimizing the difference between the desired and actual output. However, the
representation learning capability of these early approaches [177] is limited, and
hand-crafted features are often mandatory to achieve acceptable performance.
Consequently, research focused on advanced algorithms that overcome the limi-
tations and improve accuracy. Major breakthroughs, including the backpropaga-
tion of errors to calculate the gradients and update the parameters of the algo-
rithms [114, 115, 179, 180], the introduction of dedicated architectures [80, 116],
and optimized training methods [78, 79] paved the way for so-called neural net-
works. Neural networks consist of hierarchically organized simple processing units,
the neurons, that extend the capabilities of the perceptrons and are effective in
directly learning suitable representations from the given input data. As a re-
sult, these approaches overcome the shortcomings of rule-based approaches and
outperform other machine learning algorithms [78] and even surpass humans in
large-scale image recognition [75, 181]. Consequently, these methods became the
primary solution for various tasks, including perception algorithms. To derive a
detailed understanding of the architecture of the methods, we present the basic
concepts of neural networks in the following section.
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Figure 3.1: Illustration of a simple neural network with two neurons h1 and h2 to extract the
feature from the two input values x1 and x2. The data is processed to obtain the prediction y1
in the output layer.

3.1 Neural Networks

Neural networks are machine learning models that process the raw input data
and derive meaningful hierarchical representations to solve complex tasks. In-
ternal parameters are updated during the training process to learn the mapping
between inputs and outputs. The foundation for the development of neural net-
works includes the pioneering work of Rumelhart et al. [179], which introduced
the multi-layer architecture [179] consisting of multiple perceptrons and non-linear
functions to extract suitable internal representations. This groundbreaking work
is the foundation of modern neural networks with hierarchical architectures, in-
cluding multiple layers, to extract increasingly abstract and complex features to
solve non-linear real-world tasks. A neural network consists of an input and out-
put layer and at least one hidden layer, as illustrated in Figure 3.1. The input
layer operates as an interface and provides the data to the neurons in the hidden
layers. The neurons are the central building blocks, performing the computations
of the network and include the parameters that are adjusted during training to
map the input to the desired output. The output layer produces the final pre-
dictions of the neural network. The architecture of the neural network defines
the interconnections of the layers and the neurons. The combination of the ar-
chitecture and the processing within the individual neurons defines the function
of the neural network. To understand the overall concept and derive a solid
understanding, we start by introducing the calculation for a single neuron.

For simplicity, we assume the processing of the inputs x1 ∈ R and x2 ∈ R
to determine a single output value y1 ∈ R, as visualized in Figure 3.2. We first
multiply the input values with the corresponding weights w1 ∈ R and w2 ∈ R
and add the bias b ∈ R before passing the result through a non-linear activation
function a : R→ R to determine the output. To capture diverse representations
within the network, the layers incorporate multiple neurons. We can summarize
the operation of the layer l consisting of multiple neurons by efficient matrix-based
computations. We multiply the input vector xl−1 = [x1, . . . , xdin ]

⊤ ∈ Rdin , which
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Figure 3.2: Illustration of a single neuron with the inherent weights w1 and w2 and the bias b to
process the two inputs x1 and x2. The sum of the linear operations is followed by a non-linear
activation function a : R→ R to determine the output.

is the output of the previous layer l − 1, with the weight matrix Wl ∈ Rdin×dout

and add the bias vector bl ∈ Rdout , where the weight matrix and the bias vector
summarizes all individual weights and biases of the respective neurons in the
layer l. The bias vector is important to shift the activation function and extend
the learning capabilities of the layer. The non-linear activation function a is
applied element-wise to derive the output features xl ∈ Rdout , resulting in:

xl = a
(
xl−1Wl + bl

)
. (3.1)

The non-linear property of the activation function is fundamental since linear
functions can only represent linear transformations. Therefore, a cascade of lin-
ear functions within multiple layers can be represented by a single affine function,
resulting in the collapse of the network into a single linear transformation inca-
pable of solving complex real-world tasks. Two popular activation functions [62]
are the sigmoid function defined as f (x) = (1 + exp (−x))−1, the rectified linear
unit specified by f (x) = max (0, x). Additionally, state-of-the-art networks use a
modification of the rectified linear unit activation function, such as the Gaussian
error linear unit [77] to improve the generalization performance.

The non-linear activation functions in the hidden layers are fundamental for
regression and classification tasks. However, to build the neural network for the
specific task, the output layer utilizes different activation functions to derive con-
tinuous values for regression and discrete values for classification. For regression
tasks, the linear activation function is convenient for predicting continuous values.
For classification, we aim to obtain a probability distribution over the classes to
map the input data to the corresponding output. Therefore, we want to have for
each class 1, . . . , C a probability pi where

∑C
i=1 pi = 1 and 0 ≤ pi ≤ 1. State-of-

the-art networks use the softmax function that exactly does this. The softmax
function σ processes the input vector z = (z1, . . . , zC), to derive the output vec-
tor s resulting in σ : RC → RC , i.e. σ(z) = s where the individual components si
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Figure 3.3: Architecture of a residual building block. The features of the skip connection are
added to the processed output features of the fully connected layers.

are calculated as follows:

si =
exp(zi)∑C
j=1 exp(zj)

. (3.2)

The output vector s can be transformed into hard class prediction by the
arg max function, which selects the class based on the highest probability. As a
result, we can map the input values to a class prediction using a neural network.
The overall network with multiple layers can be summarized as a function f to
process the input x to derive the desired output y resulting in y = f(x;θ) where θ
are the parameters of the network, including the weights and the bias of all neu-
rons within all layers. The selection of the number of parameters is important
because it influences the capacity to learn complex patterns in the data. To scale
the parameters, we can adjust the number of neurons within the individual layer,
which is known as the width of the model or the number of hidden layers resem-
bling the depth of the network. Therefore, the scaling of the depth and the width
plays a central role in the architecture design of a neural network. Theoretical
results support the development of deep architectures by showing that deep rep-
resentation can be exponentially more efficient than shallow architectures that
are insufficiently deep [18, 19, 71]. The idea of deep architectures is that we
extract slightly more abstract features within the consecutive layers to derive de-
tailed representations to solve complex tasks. However, to leverage the potential
of deep architectures, different architectural adaptations [23, 75] are important.
One of the fundamental developments for deep architectures is residual building
blocks with skip connections [75], depicted in Figure 3.3. The skip connection
passes information across layers within the residual block to preserve the features
and enable the network to combine the information of multiple representations.

Besides the architecture of the individual building blocks, the interconnections
of the layers influence the overall function of the neural network. Different ap-
proaches exist, e.g., the fully connected neural network connects all neurons of the
previous layer with all neurons of the following layer. We emphasize that, while
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the simple architecture introduced in this section serves to illustrate the concepts,
numerous advanced neural network architectures exist [113]. In Section 3.3, we
present specific architectures for scene understanding that are relevant to this
thesis.

The architecture is important to learn representative features. However, from
the architecture itself, we do not derive a good mapping of the input and output
values with a good generalization. Therefore, we need to optimize the individual
parameters of the network to reduce errors in the mapping. The optimization of
the parameters is performed during training, which makes the training essential
to achieve good performance. To understand the difficulties and introduce state-
of-the-art approaches, we draw the details of the training of deep neural networks
in the next section.

3.2 Training of Deep Neural Networks

So far, we have introduced neural networks as a general class of parametric non-
linear functions that map an input to an output depending on the architecture
and parameters. The training of the neural network focuses on the key aspects of
adjusting the parameters, such as the weights and biases of the neurons, to solve
the given task accurately. Therefore, we require information on how to adjust
the weights and biases of the neurons to reduce the error of the predictions of
the network. The resulting training is an optimization procedure to learn the
mapping y = f(x;θ) based on a predefined loss function which measures the error
between the ground truth and the predictions. Consequently, the training of a
supervised method requires an annotated dataset proving the ground truth for a
specific input and the desired output, such as the class labels of a specific point
within a point cloud. During the training, the network adjusts the parameters θ

in a way that minimizes the errors between the predictions and the ground truth
values and, hence, improves the accuracy of the mapping.

The starting point is to define a loss function that accurately resembles the
training target. Therefore, the loss function depends on the task and differs
for classification and regression. The primary objective of the training is not
only to minimize training errors but also to achieve a good generalization for
unseen data. The training criterion functions as a surrogate for the generalization,
and thus, an appropriate training criterion and parameterization related to the
task is key for good performance. Therefore, the loss l(f(xi;θ), yi) measures the
error for the prediction and the ground truth value derived from the training
dataset Dtrain = {(xi, yi) | i = 1, 2, . . . , N}, which depends on the neural network
architecture and the parameters θ. The cost function L summarizes the loss for
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the training dataset resulting in:

L(θ) = 1

N

N∑
i=1

l(f(xi;θ), yi), (3.3)

where N is the number of input-output pairs of the training set. For regression,
the loss functions utilize a distance measure to calculate the error between the
ground truth values and the outputs of the neural network. Standard loss func-
tions are the mean absolute error loss and mean squared error loss. However,
the primary goal for supervised learning to enhance scene understanding is the
classification of the environment. For classification, the commonly used loss func-
tion is the cross-entropy loss, which minimizes the negative log-likelihood of the
softmax output. Therefore, it is the maximum likelihood estimate [106] of the
parameter given the training dataset. As a result, the cross-entropy loss penalizes
predictions with a low probability for the correct class as follows:

LCE = − 1

|Dtrain|
∑

(x,y)∈Dtrain

1

C

C∑
i=1

yi log(si), (3.4)

where si are the individual output values of the softmax function s = σ (f(x;θ)),
see Equation (3.2), and yi are the individual ground truth values. For the ground
truth, we utilize a one-hot encoding, which is a vector of the length of C where
each element is zero except for the true class of the respective input. Additionally,
optimized loss functions exist, including the focal Tversky loss [1] to deal with
class imbalance in the dataset.

The common property of the loss functions is the measurement of the error
between the predictions and ground truth value depending on the parameter of
the network. The adaptation of the parameters of the network modifies the pre-
diction and the corresponding loss. The minimization of the cost function hence
results in an optimized parameter setting, which solves the task more accurately.
To update the parameters and converge to an appropriate solution, we utilize
gradient-based optimization algorithms [174], which we introduce in the follow-
ing section.

3.2.1 Gradient Descent Optimization
Training deep neural networks aims to minimize the loss function by adjusting
the parameters to achieve a solution that generalizes well to unseen data. Due
to the large number of parameters with cascaded non-linear functions in the
hidden layer, the loss function is non-convex [24]. The primary challenge of
training deep neural networks lies in the cost function, which has an enormous
number of local minima, plateaus, and equivalent minima due to non-unique
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solutions [46, 61], making a global optimization infeasible. Therefore, we adjust
the network parameters based on gradient descent optimization. The idea is to
take small steps in the direction of the steepest descent, which is the negative
gradient of the loss function with respect to the parameters. As a result, we can
update the parameters and minimize the loss. This is an iterative process with
the goal of converging to a good minimum with high accuracy for the task.

The process starts with the initialization of the parameters to calculate the
output of the network in the forward path, given the input from the training
dataset. The resulting loss measures the difference between the prediction and
the ground truth. We calculate the gradients ∇L(θ) of the loss with respect to
all the parameters in the network to derive the individual parameter updates to
minimize the loss, which is known as backpropagation [179]. Consequently, the
backpropagation starts from the output and uses the chain rule to calculate the
first-order partial derivatives of the loss function with respect to the individual
weights and biases in the network. Based on the partial derivatives, we update
all parameters according to the direction of the steepest descent as follows:

θ ← θ − γ∇L, (3.5)

where γ > 0 is a hyperparameter specifying the step size known as the learn-
ing rate. The straightforward application of the gradient descent optimization
requires the calculation of the cost function over the whole dataset as introduced
in Equation (3.3). Consequently, for large datasets that are commonly used for
scene understanding with thousands of training samples, the calculation of the
gradient is computationally expensive. Therefore, different methods exist that
reduce the number of samples to calculate the gradients efficiently, such as the
mini-batch gradient descent [25]. In machine learning, this method is also known
as stochastic gradient descent. However, the original stochastic gradient descent
algorithm utilizes only one sample, corresponding to one input point cloud and
the corresponding outputs, to calculate the gradients, whereas, in the training of
deep neural networks, we normally use a mini-batch of B samples. The advantage
of the mini-batch gradient descent is that the parameter updates are less noisy
compared to the original stochastic gradient descent and, hence, lead to faster
convergence and better generalization. In practice, we calculate the parameter
updates based on a mini-batch, resulting in:

θ ← θ − γ 1

B

B∑
i=1

∇l(f(xi;θ), yi), (3.6)

where B is normally much smaller than N samples of the complete training set.
As a result, for the training with a finite dataset, we iterate over all mini-batches
within the dataset, which is called an epoch. The complete training of the neural
networks requires several epochs to converge.
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The advantage of the mini-batch compared to the vanilla gradient descent is
that it has more frequent but noisier updates. The noisy updates especially help
to escape local minima and saddle points. The appropriate selection of the batch
size is important, as mini-batch sizes that are too small may limit the convergence.
Furthermore, the parameter updates with respect to the loss depend on the cen-
tral hyperparameter γ, which is why it is crucial to tune the learning rate for good
performance [17]. If the learning rate is too large, it leads to oscillation around
the minimum, and the training criterion will not converge, resulting in unsatis-
factory results. In contrast, a learning rate that is too small leads to very slow
learning or even no convergence. Additionally, a constant learning rate, which
leads to a good convergence, is challenging to find. Therefore, state-of-the-art ap-
proaches utilize a learning rate scheduler that adopts the learning rate during the
training process. The idea is to speed up the training in the beginning by a larger
learning rate and later enable convergence to a minimum by a smaller learning
rate. To enforce such behavior, different learning rate schedulers, including step
decay, exponential decay, and cosine decay schedulers [20, 132] exist.

The selection of the learning rate decay depends on different hyperparame-
ters, which need to be defined in advance, and the learning rate is fixed for all
parameters. To overcome these limitations, adaptive gradient descent algorithms,
including Adam [96] and AdamW [133], leverage the power of adaptive learning
rates algorithms to identify individual learning rates for each parameter. The
individual learning rate parameters are adjusted based on estimates of the first
and second moments of the gradients, leading to faster convergence and higher
efficiency.

Gradient-based optimization comes with several challenges, including vanish-
ing and exploding gradients, which both make the adaptation of parameters chal-
lenging. Therefore, several techniques are important for the training of deep
neural networks. One solution to induce a more stable behavior of the gradients
and accelerate training is normalization [182], including batch normalization [88],
which normalizes the activation at the specific layer for one mini-batch to enhance
convergence. Furthermore, deep neural networks benefit from the residual con-
nection and the rectified linear unit activation function introduced in Section 3.1.
This activation function keeps the gradient for positive values intact, and the
residual connection enables the gradient propagation into a deeper layer through
the skip connection, reducing the problem of vanishing gradients.

3.2.2 Regularization
The optimization of the parameters during the network training does not neces-
sarily lead to satisfactory results. The problem is that the number of parameters
influences the learning capacity of the model. A model with too few parameters
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can fail to learn the desired mapping to solve the task. The model cannot obtain a
sufficiently low training error and does not generalize well, which is known as un-
derfitting. Neural networks with a high capacity can learn the mapping, resulting
in a low training error. However, they might memorize the training data rather
than learn a generalizable solution, especially when the dataset is small, which
is known as overfitting. The selection of the model with the best generalization
is not trivial. Therefore, the common approach is to use a model with a higher
capacity to solve the underlying task and apply techniques to prevent overfitting,
collectively known as regularization [105]. The goal is to control the complexity
of the model and learn the underlying mapping to solve the desired task accu-
rately. We focus on the most important regularization techniques relevant to the
remainder of this thesis. For a comprehensive overview, we refer readers to the
excellent surveys about regularization techniques [105, 145].

One of the earliest regularization techniques is the weight norm penalty or
weight decay [70, 103, 111, 144]. The underlying principle is that neural net-
works with large weights tend to overfit since small changes in the input data can
result in large changes in the predictions. Therefore, the AdamW optimizer [133]
incorporates the weight decay step and the adaptive gradient mechanism sepa-
rately to utilize the advantage of both.

Early stopping [147, 162] is another form of regularization that monitors the
training and validation error. Deep neural networks decrease the training error
continuously. The validation error decreases first before increasing again due
to overfitting to the training set. Therefore, the optimal solution with good
generalization is achieved before the validation error increases again. At this
point, the difference between the training and the validation error is small, with
the best performance on unseen data. The early stopping selects this model as a
regularization step.

Large models that are trained on insufficiently large datasets tend to overfit
easily. Therefore, data augmentation is essential to generate synthetic but real-
istic training samples to extend the training dataset. Since labeling real-world
data is tedious and often requires domain expertise, labeling additional training
data comes with huge costs. Therefore, the goal is to augment samples to extend
the training data, which represents the actual data distribution, to prevent over-
fitting and improve generalization. The standard data augmentation [199, 282]
techniques include, among others, the rotation, scaling, flipping, and jittering of
the input data. The selection of the data augmentations strongly depends on the
application because not all modifications are suitable to generate synthetic but
reasonable data. For example, flipping the input image in character recognition
is not suitable because the label might not be valid anymore, e.g., think of the
letters b and d. Therefore, the selection of appropriate modifications is essen-
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tial to enhance generalization performance. Consequently, the neural network
architecture, the training, and specific regularization techniques are important to
improve the accuracy.

3.3 Transformers
Fully connected neural networks are the foundation of different successful deep
learning models. However, the performance for feature extraction, focusing on
local patterns and dependencies, is limited. Several works introduce specialized
architectures to derive meaningful representations and solve complex tasks. One
example is convolutional neural networks [112], which efficiently capture spatial
representations in image data, resulting in successful practical applications such
as image classification [102]. Convolutional neural networks are highly effective in
extracting features from a local receptive field and exhibit excellent performance
in various computer vision applications. However, the capabilities to capture
global dependencies and contextual information are limited. Therefore, in recent
years, transformer-based methods have achieved remarkable results within various
tasks, from natural language processing [26, 212] to computer vision [29, 36, 50,
97, 254] and point cloud scene understanding [65, 160, 187, 196, 242, 262, 271].

Complex tasks require understanding the context, such as spatial and rela-
tional information, and learning dependencies within the input data to achieve
high accuracy. The core mechanism of the transformer, the self-attention [212]
proposed by Vaswani et al., enables the network to weigh the importance of the
input data and extract meaningful features to learn dependencies and relation-
ships. For the processing of point clouds, the relationship of which point belongs
to the same object or the same class is essential to achieve good performance in
scene understanding. The self-attention mechanism comes with various advan-
tages compared to previous state-of-the-art approaches. Two important benefits
are that the mechanism is permutation invariant and does not depend on the
number of input elements. In comparison, the input of a fully connected neural
network introduced in Section 3.1 is a one-dimensional feature vector. Therefore,
the input data, such as the features of the point cloud, are flattened into a vector
to process the data. The first processing layer of the fully connected neural net-
work requires the same number of neurons as the dimension of the input feature
vector. Since the number of parameters within the networks scales quadrati-
cally with the number of neurons, the number of parameters grows rapidly for
large-scale input data, and the training is challenging [113]. Furthermore, the
interconnections of neurons in a fully connected neural network are fixed. Con-
sequently, the neurons focus on the processing of specific features, where the
order of the input element matters, and thus, the processing is not permutation
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Figure 3.4: Transformer layer with scaled dot-product attention for the processing of point
clouds. The transformer layer processes the point-wise features X = [x1, . . . , xN ]⊤ ∈ RN×D to
obtain the queries Q ∈ RN×Dk , keys K ∈ RN×Dk and values V ∈ RN×Dk . The attention scores
calculated from the queries and keys weight the information of the values to derive the output
features Xd

out ∈ RN×Dk .

invariant. However, point clouds are unordered data, and the number of points
can vary, limiting the performance of fully connected networks. Therefore, the
processing of point clouds requires advanced algorithms such as transformers to
solve complex tasks. We first introduce the transformer layer, including the self-
attention mechanism in the following, as it is the essential building block of the
transformers.

The transformer layer first encodes the inputs into three representations: the
queries, keys, and values. The idea is similar to a retrieval process, where the
queries are mapped against the set of keys. We retrieve the information associated
with the keys in the form of values that correspond to the best mappings. The
goal is to learn meaningful internal representations and relationships based on
the attention mechanism such that points belonging to the same class exchange
information and derive similar features, resulting in reliable classification.

The calculation starts with the encoding of the input features X into the
queries Q ∈ RN×Dk , keys K ∈ RN×Dk , and values V ∈ RN×Dk , visualized in Fig-
ure 3.4. We assume that the input is a point cloud with N points and the resulting
point-wise features X = [x1, . . . , xN ]

⊤ ∈ RN×D. We derive the encoding of the
input features as follows:

Q = XWQ, K = XWK , V = XWV , (3.7)

where the matrices WQ ∈ RD×Dk , WK ∈ RD×Dk , and WV ∈ RD×Dk are learned
linear projections or the weight matrices of fully connected layers. The advantage
of encoding the features of individual inputs in the matrix format is that the
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processing is independent of the number of points, and we can parallelize the
computations. To relate the queries and keys, the scalar attention calculates
the dot-product between the queries Q and keys K to calculate the attention
weights Ad ∈ RN×N , resulting in:

Ad = softmax
(

QK⊤
√
Dk

)
, (3.8)

where the factor
√
Dk is used to scale the attention weights, and the softmax

function is applied row-wise. The scaling is important for the processing with
a softmax function because the dot product grows large in magnitude for high-
dimensional key and query vectors, pushing the softmax into regions with small
gradients, resulting in vanishing gradients that can slow down the training process,
as explained in Section 3.2.1. The softmax function converts the scaled dot-
product into the attention weights, which are probability values that connect the
individual points within the point cloud. Consequently, the weights encode the
relationship of the individual points within the point clouds. We calculate the
output features Xout ∈ RN×Dk by simple matrix multiplication of the attention
weights and values to extract meaningful features and aggregate the information.
The inputs to the transformer layer are the features of all points where the number
of points does not change during the processing within the transformer layer.
Hence, the dot-product attention obtains the relationship of all points to each
other, and we derive updated features for the individual points.

The matrix Ad relates all the queries and the keys and derives an overall under-
standing of the input, independent of the set of input data and regardless of the
order. However, an understanding of the local context, such as the relationship
of nearby points, is important for scene understanding in order to relate objects.
Therefore, the position information obtained from the cartesian coordinates is key
to recognize spatial relationships within the input data. Transformers leverage
positional encodings [212, 271] to integrate the position information and adapt
the attention to local structures. The standard encodings are manually crafted
based on sine and cosine functions or range values [270]. To directly integrate the
provided 3D information of the point clouds, the positional encoding leverages
the relative distance of the points to derive meaningful features and relationships.
The input data therefore uses the position information within the features but
also as additional position information P = [p1, . . . , pN ]

⊤ ∈ RN×3 of the individ-
ual N points. We process the relative positions ri,j = pi − pj, 1 ≤ i, j ≤ N by an
multi-layer perception (MLP), including two fully connected layers with weight
matrices Wd

R1
∈ R3×3 and Wd

R2
∈ R3×1 an activation function a such as the

rectified linear unit [150], resulting in:

Rd
i,j = a((ri,j Wd

R1
)Wd

R2
), (3.9)
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where Rd ∈ RN×N . The goal of processing the relative positions is to have a train-
able and parametric positional encoding to learn a suitable internal representation
and to extract valuable features to solve the task. The resulting positional encod-
ing Rd is added to the dot-product of the queries and keys before deriving the
final attention weights. The resulting weighting hence includes spatial relation-
ships. The output features, which are the weighted information obtained from
the values, result in the following:

Xd
out = softmax

(
QK⊤
√
Dk

+ Rd

)
V. (3.10)

The attention weights of all points within the position cloud result in the cal-
culation of dependencies in the form of queries and keys from points in distances
of more than a hundred meters. The problem of global attention is that the
calculations scale quadratically with the number of input points, and hence, the
processing leads to unacceptable memory consumption and computational cost.
To reduce the calculations and focus on the important information within the
individual attention blocks, we limit the self-attention to local areas. We derive
the local area for each individual point within the point cloud by the k nearest
neighbor (kNN) algorithm. The encoding of the queries, keys, and values remains
the same. However, we sample and group the vectors according to the local areas
with k = Nl points. The resulting queries and key and values matrices include
the local information resulting in Qk,Kk, and Vk ∈ RN×N l×DK .

The dot product attention focuses on the weighting of the information based
on the encoded queries and keys by a one-dimensional attention weight Ad

i,j ∈ R.
However, the weighting of all feature channels by the same attention weight can
limit the ability to capture rich interaction and detailed relationships of the input
data. For example, we want to differentiate between static and moving vehicles
within the environment. The encoded features about the shape and location
of the vehicle can help to derive object information, but for the differentiation,
the velocity information is key and should be waited differently. Therefore, vec-
tor attention incorporates attention weights for each individual feature channel,
resulting in attention weights Ai,j ∈ RDK . Consequently, we replace the dot-
product in the transformer layer with a relation function such as subtraction, as
visualized in Figure 3.5. Since the dimension of the attention weight corresponds
to the dimension of the values, we modify the positional encoding to add the
information to the individual weightings. Since the weighting of the feature chan-
nels comes with additional computational costs, the restriction to local areas is
important. We determine Qk,Kk, and Vk ∈ RN×N l×DK by kNN search followed
by sample and grouping. We utilize the same indices of the local areas to cal-
culate the positional encoding. Based on the relative positions ri,j, we compute
the positional encoding for all points R ∈ RN×N l×DK by an MLP [271], including
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Figure 3.5: The transformer layer with vector attention and positional encoding for local neigh-
borhoods. The transformer layer processes the point-wise features X ∈ RN×D to obtain the
queries Q ∈ RN×Dk , keys K ∈ RN×Dk and values V ∈ RN×Dk . We sample the encodings
according to the local areas determined by kNN search followed by sample and grouping. The
relation function of the vector attention is subtraction to obtain an individual weighting of the
feature channels. The positional encoding R is added to the attention weights and the values to
include fine-grained position information. The output features Xout and point coordinates Pout

are passed to the consecutive layer.

two fully connected layers with weight matrices WR1 ∈ R3×3 and WR2 ∈ R3×DK ,
batch normalization [89], and rectified linear unit activation function [150]. The
processing of the positional encoding adopts the feature dimensions and enables
the learnable adaptation of the weighting for each feature channel. The combina-
tion of the vector attention in the form of subtraction and the positional encoding
results in the attention weights, which we determine as follows:

Ai,j = (Qk
i,j −Kk

i,j) + Ri,j. (3.11)

We apply the softmax function to each feature dimension within the local
area individually and process the attention weights by an MLP with two fully
connected layers, where each layer is followed by batch normalization [89] to de-
rive the final attention weights Âi,j. The processing of the attention weights by
an MLP enables the network to adapt the weighting to capture complex relation-
ships. The weighting controls the aggregation of the information from the values.
Instead of directly multiplying the weights with the values, we also add positional
encoding, which is an additional feature that can support scene understanding.
We calculate the output features by the sum of the element-wise multiplication,
indicated by ⊙, as:

Xout
i =

N l∑
j=1

Âi,j ⊙ (Vk
i,j + Ri,j), (3.12)
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where we aggregate the information within the local areas. The aggregated
features Xout are often processed by additional learned linear projections such
as MLPs to derive the final output feature representations of the transformer
layer. The output features include the relationship of all points within the local
neighborhood. Therefore, compared to dot-product attention, local vector atten-
tion reduces the receptive field of the individual point to local areas. The features
of all points are updated and enriched with information. Besides the features, the
transformer layer outputs point coordinates to calculate the positional encoding
within consecutive layers. The self-attention mechanism is essential to extract
valuable features and solve complex tasks. However, the local restriction limits
the respective information within the individual layers. Therefore, the architec-
ture of the network plays an important role in deriving meaningful hierarchical
representations for scene understanding. In the following section, we elaborate
on the most common approach, the encoder-decoder architecture.

3.3.1 Encoder-Decoder Architecture
The feature extraction within the transformer layer is the foundation of the strong
learning capabilities of transformers. The encoder-decoder architecture is key to
deriving hierarchical features and combining the information to solve complex
tasks. The encoder first transforms the input into a compact but expressive in-
ternal representation. Therefore, the dimension of the input is reduced, which is,
in our case, the number of points. To capture detailed information within the re-
duced number of points, we commonly increase the feature channels. We perform
the encoding in consecutive steps within the different levels of the architectures,
known as stages S1, . . . S4, as illustrated in Figure 3.6. The stages consist of at
least one transformer block. However, multiple transformer blocks can be stacked
within the individual stages to increase the depth of the network. The transformer
block includes as a central building block the transformer layer, which is often
embedded into two fully connected layers, including a skip connection resulting
in a residual block introduced in Section 3.1. The residual connection reduces
vanishing gradients for deep neural networks, allowing the gradient to propagate
into deeper layers.

The number of points, represented as features and point coordinates, remains
the same during processing in the transformer layers. For the downsampling of the
point cloud, the encoder commonly uses farthest point sampling to derive a subset
of points based on the distance to cover the geometric space evenly. To derive the
features for the subsampled point cloud, we utilize kNN search with k = Nd and
max pooling [166] to combine the local features. From stage SL to stage SL+1,
most approaches sample NSL+1

points from NSL
points where NSL+1

= NSL
/4.

The cardinality of the point cloud, the number of points, is often reduced by a
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Figure 3.6: Encoder-decoder architecture of a transformer with skip connection to process point
clouds. The final fully connected layers process the features and predict the output. The tuples
denote the number of points and the feature channels within the individual stages.

factor of 4 [166, 271], resulting in [N,N/4, N/16, N/64] points for four stages,
where N is the number of input points. Due to the downsampling of the point
cloud, the consecutive transformer layer within the next stage captures a larger
area within the point cloud. Therefore, we can extract slightly more abstract
features within consecutive layers to derive an overall understanding of the scene.
We commonly increase the number of channels Di within consecutive stages to
encode this information.

To solve point-based perception tasks, the encoded features need to be pro-
jected to the original number of points. Hence, during upsampling, we need to
project the features of the downsampled point cloud onto the higher-resolution
point cloud of the encoder provided through skip connections, as visualized in Fig-
ure 3.6. The features of the encoder are important to extract a versatile represen-
tation combining features from different layers. However, the cardinality of the
point clouds differs because the point cloud of the skip connection includes more
points compared to the point cloud, which needs to be upsampled. Hence, the
difficulty is aligning the information and combining the respective features of the
individual points. For the upsampling, the common approach is trilinear interpo-
lation based on an inverse distance weighted average [166]. We determine k = 3

neighbors of the points of the encoder of the stage SL−1 within the points in the
decoder of stage SL based on the kNN algorithm. For each point, the features
of the corresponding neighbors are weighted and added to the features of the
encoder stage. The final point-wise features after encoding and decoding include
the combined information of the individual stages for each point in the input
point cloud. Intuitively, the idea of the encoder is to provide higher semantic in-
formation within each encoder stage. The decoder gradually recovers the spatial
information within the stages while refining the information for each point. The
encoder and decoder form the core of the network architecture, often referred
to as the backbone, important for extracting features and generating meaningful
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internal representations. To derive the final class prediction or continuous values
for regression, the architecture includes several fully connected layers that reduce
the feature channels to the desired output size, e.g., for classification, the output
channels correspond to the number of classes. The training of the transformer
then follows the common methods introduced in Section 3.2. Additionally, reg-
ularization techniques such as data augmentation play a critical role in training
deep transformer architectures.

Transformers offer a robust approach to point cloud processing by combin-
ing flexibility, adaptability, and strong feature extraction capabilities to enhance
accuracy for point cloud-based scene understanding. However, the processing de-
pends on the specific input data. Hence, dedicated architectures are essential to
enhance scene understanding and achieve reasonable accuracy. In the following
chapter, we present state-of-the-art approaches for point cloud processing and
elaborate on the advantages and limitations of the respective methods.
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Chapter 4

Related Work

T here is extensive research in the field of autonomous mobility focus-
ing on scene understanding. Spatial and semantic information about
the environment is the foundation for many applications, making au-
tonomous driving more safe and reliable. Over the past years, sig-

nificant advancements have been made in different sensor modalities, such as
cameras, LiDARs, and radars, mainly due to deep learning-based approaches.
Starting with AlexNet [102] in 2012, neural networks gained attention, surpass-
ing traditional methods in image processing by leveraging data to learn complex
relationships as explained in Chapter 3. Spatial understanding especially bene-
fits from depth information. Therefore, there has been tremendous progress in
point cloud processing [66, 152, 268], focusing on LiDAR and radar sensors in
recent years. The primary focus of research was LiDAR data [22] due to data
availability [13], spatio-temporal consistency, and high angular resolution, which
enhance human interpretability. However, with the improvements in radar sen-
sor technology [202], open-source datasets [158, 189], and the advantage to work
under adverse weather, radar technology gained attention, and learning-based
radar signal processing evolved vastly. Since LiDARs and radars primarily pro-
vide point-wise data, breakthroughs within the individual modalities can often
enhance the overall scene understanding.

We divide this chapter into two sections to structure the work relevant to our
approaches in Part I and Part II, respectively. In Section 4.1, we first introduce
approaches that focus on point-wise perception tasks, such as segmentation and
classification. Section 4.2 builds upon the previously introduced works and uti-
lizes their predictions for tracking and enhancing segmentation performance by
additional refinement modules.
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4.1 Point Cloud Scene Understanding
The scene understanding for autonomous vehicles includes various tasks, such
as semantic segmentation, instance segmentation, scene flow estimation, and
panoptic segmentation. The individual solutions for point cloud processing often
benefit from each other and contribute to the enhancement of scene understand-
ing. To provide a complete overview and structure the extensive related work,
we differentiate between projection-based, voxel-based, point-based, transformer-
based, and hybrid approaches. While we target radar-based scene understanding,
the research on point-based scene understanding includes a large body of work
for LiDAR processing. To provide a complete overview, we discuss methods of
point cloud processing [67, 265] for LiDAR and radar data. Furthermore, different
methods benefit from each other, and hence, we do not specifically differentiate
between the topics covered in this thesis, such as moving object segmentation,
moving instance segmentation, or panoptic segmentation, but cover a variety of
the research landscapes in the subject of automotive applications. However, we
concentrate on point cloud-based methods using LiDAR and radar data, and
for an overview of camera-based approaches, we refer to the following excellent
survey [142].

4.1.1 Projection-Based Approaches
The early approaches for point cloud processing are projection-based methods [33,
43, 95, 100, 107, 141, 229, 204, 201] projecting the point clouds into two-dimensional
grid representations. Hence, these input representations can be processed by suc-
cessful convolutional neural networks [116]. As a result, the advancements and
efficacy of these methods in image processing are directly applicable to point
cloud processing without further adaptations. One of the first methods proposed
by Wu et al., SqueezeSeg [230], projects the LiDAR point clouds onto a sphere to
derive a dense, grid-based representation for the frontal view. The height of the
grid representation corresponds to the number of LiDAR channels, and the final
point-wise predictions are obtained by backprojecting the grid representations to
the point cloud. Milioto et al. [141] propose to first project the de-skewed point
cloud into a range representation to address the shortcomings of the previous
approaches, including discretization errors and blurry outputs. Therefore, this
approach includes a post-processing step to recover consistent semantic informa-
tion. Cortinhal et al. [43] adopted the post-processing steps and improved the
modules of SalsaNet [4] by residual dilated convolution stacks. The optimized
architecture reduces the runtime and enhances segmentation performance. How-
ever, these approaches do not include temporal information, which is important
when identifying moving objects in LiDAR data. Therefore, Chen et al. [33]
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addressed this issue by first projecting the LiDAR point clouds into 2D range
images and determining the residual images of previous scans as multi-scan in-
put to perform moving object segmentation on the SemanticKITTI [13] dataset.
Kim et al. [95] adopted the approach and improved moving object segmentation
in LiDAR data utilizing an attention-based fusion module to combine seman-
tic and motion features. Sun et al. [204] extend the residual image processing
into a dual approach to deal separately with appearance features from the range
image and motion information from residual images. However, iteratively process-
ing multiple range images results in repeating computations of individual scans
throughout the whole network, which is computationally disadvantageous. Fur-
thermore, the range representation results in occlusion artifacts among instances,
which limits the performance in 3D scene understanding.

To keep the range information intact, Zhang et al. [263] project the point cloud
along the gravitational axis into a Cartesian bird’s-eye-view representation. The
resulting input image is processed by a U-Net [176] before predicting point-wise
semantic classes obtained by nearest neighbor interpolation. Yang et al. [247] em-
ploy a similar bird’s-eye-view input representation for object detection, including
an optimized decoding loss for object localization. Since the grid cells combine
the information of multiple points, Lang et al. [110] first extract learned repre-
sentations before processing the bird’s-eye-view image to enhance performance.
Baur et al. [12] process two consecutive scans to include temporal information
and propose a self-supervised training approach to extract scene flow information
and to improve generalization to previously unseen data. Wu et al. [233] extend
the temporal information to five scans and add dedicated loss functions to pre-
serve spatial and temporal consistency. For scene flow estimation and moving
object segmentation, especially in LiDAR data, temporal information is crucial
since most sensors do not provide velocity information. However, the projection
into bird’s-eye-view results in a sparse representation compared to range view
images, where most of the grid cells are not occupied. Therefore, Chen et al. [34]
propose a hybrid approach to combine multiple representations to incorporate
the complementary information of the different views to enhance performance.
Qui et al. [168] adopt the input representation and explore the complementary
information from a geometric perspective during the representation learning by
proposing a geometric flow network for semantic segmentation. The features of
the range view and bird’s-eye-view are first aligned using geometric information
of the corresponding views and then combined by an advanced fusion scheme
to continuously exchange the features within the backbone to enhance accuracy.
However, the point distribution of point clouds changes along the radial axis,
which is not covered by the Cartesian bird’s-eye-view representation, resulting in
unevenly distributed points in the occupied cells. Therefore, Zhang et al. [267]
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proposed PolarNet, which uses a polar bird’s-eye-view representation to enhance
performance and account for the changing distribution of the points along the
radial axis. The Panoptic-PolarNet [277] approach by Zhou et al. adopts the
representation and incorporates an adaptive point cloud pruning technique and
instance augmentation to address panoptic segmentation.

However, all projections-based methods face several limitations, including dis-
cretization artifacts and backprojection errors, which can harm accuracy. Since
the target processing of sparse and noisy radar data includes limited information,
the additional loss of information is impractical for radar-based scene understand-
ing. Furthermore, the range image representation comes with several limitations
for radars, including the missing elevation information of 3D radars and the lim-
ited coverage of sparse point clouds. Consequently, projection-based methods
often face limitations for radar-based scene understanding.

4.1.2 Voxel-based Approaches
Voxel-based approaches address the shortcomings of projection-based methods
by preventing backprojection errors and keeping the 3D information of the point
clouds intact. Zhou and Tuzel [276] propose one of the first approaches to perform
object detection in LiDAR point clouds by dividing the point cloud into an equally
spaced voxel representation, preserving the height information. To reduce the
computational burden, the number of points within the voxels is reduced by
random sampling. The resulting input is processed by 3D convolutions to enhance
performance over projection-based methods. Tchapmi et al. [208] process point
clouds by a 3D fully convolutional network [131] to predict point-wise semantic
classes. However, the point cloud is represented as coarse voxels to reduce the
computational burden. Therefore, additional processing steps are required to
derive point-wise prediction, such as trilinear interpolation. Furthermore, the
predictions are processed by a connected conditional random field to enhance
consistency and provide fine-grained semantics at object boundaries.

To omit the information loss due to sampling strategies of the input voxels,
Meng et al. [138] process the voxel-based input point cloud using a variational
auto-encoder with a radial basis function to capture the local geometric distribu-
tion. Wang et al. [222] address this issue by voxelizing the point clouds as dense
cuboids and leveraging atrous 3D convolutions and attention-based aggregation
to enhance feature extraction. This preserves detailed structural information and
adaptively selects informative features from different abstraction levels. However,
the minimum voxel size is limited due to increased computational cost, and there-
fore, discretization artifacts constrain the accuracy. Since outdoor point clouds
are sparse and vary in density, just a small percentage of voxels are occupied. In
comparison to the projection-based method, the proportion of occupied cells is
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even smaller, making it inefficient to apply fully convolutional neural networks.

To reduce the computational burden, Graham et al. [63] propose submanifold
sparse convolutional networks that only generate outputs for occupied voxels.
Therefore, the voxel size can be reduced to enhance the accuracy by capturing
fine-grained information. Chen et al. [32] adopt the optimized backbone archi-
tecture and propose a multi-task learning approach that predicts center shift
vectors to support clustering in finding instance boundaries in a post-processing
step. Vu et al. propose Softgroup [214], which improves instance predictions by an
advanced grouping algorithm to avoid error propagation from hard semantic pre-
dictions. The processing of point clouds with sparse convolutions enhances scene
understanding. However, for tasks such as moving object segmentation, temporal
information is essential, as mentioned in Section 4.1.1. Therefore, Choy et al. [41]
introduce the 4-dimensional spatio-temporal Minkowski convolutional neural net-
work to process a sequence of point clouds. Mersch et al. [140] utilized the
Minkowski engine and proposed a receding horizon strategy to incorporate new
scans in an online fashion and refine predictions by Bayesian filtering to enhance
LiDAR moving object segmentation. However, incorporating temporal informa-
tion by aggregating scans over time and processing the point cloud throughout the
network increases the computational cost. Consequently, other approaches exist
to enhance the accuracy without relying on aggregated point clouds. Following
Polarnet [267] by Zhang et al., Zhu et al. [283] introduce cylindrical partitioning,
which does not alter the 3D topology compared to the 2D approach and pro-
cesses the features by asymmetrical 3D convolutions. Furthermore, to alleviate
the interference of lossy label encoding for voxels, the method optimizes the point
predictions by a point-wise module. Hong et al. [82] adopt the cylinder convolu-
tion and propose a dynamic shifting module to cluster instances of varying size in
complex autonomous driving scenes with non-uniform point cloud distributions.
The final panoptic predictions are derived by consensus-driven fusion, unifying
the semantic and instance segmentation predictions.

However, the refinement module and the consensus-driven fusion are required
to compensate for false predictions often resulting from lossy feature and label
encoding within the voxels. Even with the application of sparse convolutions, the
voxel size is often limited due to increased latency. To mitigate the effect of lossy
encoding, other methods [118, 168] directly incorporate multiple representations,
such as bird’s-eye-view representation with fine-grained voxel features, to reduce
runtime and improve accuracy. Therefore, Liong et al. [124] utilize a vanilla late
fusion to combine the prediction of the range view and bird’s-eye-view LiDAR
point cloud representations to leverage the individual strengths and provide more
robust predictions. However, the late fusion does not include any information ex-
change within the network to improve the feature extraction. Therefore, Li et al.

55



4.1. Point Cloud Scene Understanding

propose Panoptic-PHNet [118], which combines the features of the voxel and
bird’s-eye-view representation within the instance and semantic segmentation
branch to incorporate the complementary information within the feature extrac-
tion. The idea is to combine global and fine-grained information to enhance the
accuracy. Additionally, this approach models the interaction between foreground
objects to improve the offset regression for instance assignments. To enrich the
features with fine-grained information, Tang et al. [207] propose a lightweight 3D
module that combines the sparse convolutions with a high-resolution point-based
branch to enrich the voxel representation with point-based features. Additionally,
the network architecture is optimized by a neural architecture search to reduce
inference time and preserve high accuracy.

Xu et al. [244] go one step further and combine the voxel-based method with
point- and projection-based encodings, utilizing a gated fusion module to adap-
tively merge the features. Su et al. [203] adopt the backbone and propose a
unified network for panoptic segmentation. The optimized method uses a set of
point-level classifiers to directly predict instance groupings and the corresponding
semantic class in an end-to-end manner, leading to state-of-the-art performance
in the panoptic segmentation of LiDAR point clouds. Since voxel-based meth-
ods inherently introduce discretization artifacts and information loss, the hybrid
methods [48, 128, 192] utilize point-wise information to alleviate the lossy en-
coding. The information loss is especially harmful to the processing of sparse
radar point clouds [255], where the information is rare. Hence, these approaches
focus on dense LiDAR point clouds. To overcome the limitations, point-based ap-
proaches directly process the unordered point cloud to extract valuable features,
which we introduce in the following section.

4.1.3 Point-Based Approaches
Point-based approaches [164, 272] overcome the lossy encoding of aforementioned
paradigms by directly processing the point clouds and keeping the spatial infor-
mation intact. One of the first works proposed by Haykin and Deng [72] utilizes
hand-crafted features to train a classifier to distinguish between several major
classes of radar returns, including birds, ground, and aircraft. However, the pre-
processing and feature selection for the training of the neural network are complex.
Therefore, deep learning approaches nowadays directly extract features from the
input data to enhance accuracy [155].

The pioneering work of Qi et al., the PointNet [164], utilizes shared multi-
layer perceptrons (MLPs) to process the input point cloud and aggregate nearby
information by max pooling operations. Wang et al. [219] process the input
point cloud by multiple PointNet layers and extends the approach by instance
fusion for semantic segmentation and semantics awareness for instance segmenta-
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tion to benefit from the advantages of the individual task and enhance accuracy.
PointNet does not capture local structures, which limits the ability to recognize
fine-grained patterns and the ability to generalize to complex scenes. The succes-
sor proposed by Qi et al., PointNet++ [166], addresses these shortcomings and
introduces a hierarchical feature extraction to learn local features with increasing
contextual scale. The features are combined from multiple scales based on local
point densities to account for the non-uniform distribution of the points. The
overall architecture improves the segmentation performance, especially for sparse
point clouds.

Hence, several approaches [163, 167, 193, 221] adopted the method, such as
Schumann et al. [188], who optimized the architecture to process sparse and
noisy radar point clouds. Since radar data is sparser than downsampled indoor
point clouds, the parameters of the individual modules are adjusted to capture
valuable features for objects comprising only a few radar points. Furthermore,
to increase the density of the input, the radar scans are aggregated over 500 ms.
However, the ability to capture local structures of sparse radar point clouds is
limited. To circumvent this, Schumann et al. [190] include additional features and
exploit strong temporal relationships by adding a memory module that iteratively
updates the information about the past point clouds. The temporal information
further enhances segmentation performance even though the aggregated scans
already include points from different time steps. However, for sparse outdoor data,
the aggregation of multiple scans is key to including temporal information and
extracting valuable features from the surroundings [269]. Nevertheless, processing
aggregated point clouds through the whole network comes with an increased
computational cost and memory consumption.

Puy et al. [163] propose to use the PointNet++ backbone to process two con-
secutive point clouds in parallel to estimate the scene flow on point clouds. The
correspondence of the points within the two point clouds is determined by graph
matching via optimal transport. The scene flow predictions can be leveraged to
segment moving objects by selecting points based on a threshold. Liu et al. [126]
utilize supervised learning based on simulated data to ensure correct correspon-
dences within the dataset, leading to good generalization capability on real-world
data. Wang et al. [221] adopt the approach and propose additional loss func-
tions to enhance the scene flow prediction by considering point-to-plane match-
ing in LiDAR point clouds. Since LiDAR point clouds usually do not provide
the Doppler velocity, the moving object segmentation requires at least two point
clouds, which increases the computational cost. In contrast, Dubey et al. [51]
adopt the approach of Danzer et al. [45] and process single-scan radar point clouds
to perform instance segmentation of moving objects. The multi-task learning
framework uses uncertainty [92] to combine multiple tasks, including the clas-
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sification and direction field estimation for each point. However, the approach
drastically restricts the region of interest to the near field to simplify the task by
omitting sparse regions of the radar data, as explained in Chapter 2.

Using encoder-decoder structures, the point-based methods benefit from ef-
fective sampling strategies [85, 234, 248, 249] to enhance feature extraction and
reduce computational cost. The most frequently used methods for small-scale
point clouds are farthest point sampling [166] and inverse density sampling [234].
However, these methods do not include a learnable weighting to combine the
features to learn meaningful representations. Hence, Yang et al. [248] propose
a new feed-forward neural module to overcome the limitation and aggregate an
arbitrarily sized feature vector based on learnable weights. Hu et al. [85] address
the latency issue and utilize random point sampling to achieve remarkably high
efficiency for large-scale point cloud segmentation. However, random sampling
eliminates points, which is unacceptable for sparse radar data because instances
might comprise only a single point.

Besides the direct processing of point clouds by MLPs, another way to ex-
ploit stronger connections of the individual points is graph-based methods [119,
109, 200], which conduct message passing on the constructed graphs. The graphs
capture the organization of 3D point clouds efficiently, and the resulting represen-
tation can be processed by graph convolutions [122]. Wang et al. [220] construct a
local neighborhood graph and process the edge features by MLPs, which connect
the neighboring pairs of points. Te et al. [209] construct a graph by connecting
each point with all other points in the point cloud to extract global relationships.
The graph Laplacian matrix that describes the connectivity of features is updated
in each layer according to the corresponding learned features, which enables it to
adaptively capture the structure of the graph. The interconnection of each indi-
vidual point increases the computational costs. Therefore, to process large-scale
outdoor point clouds, Landrieu and Simonovsky [109] propose super-point graphs
that include rich edge features that encode the contextual relationship between
object parts. The compressing of the data into super-points is essential to utilize
learning-based edge-conditioned convolutions [173] and optimized gated recurrent
units [40] that are otherwise infeasible for dense outdoor scenes. The construc-
tion of the super-points and the encoding of the features is not trivial. Hence,
Shi and Rajkumar [194] replaced the super-point embedding by processing the
voxel downsampled point cloud to reduce computational cost. Han et al. propose
OccuSeg [68], which directly utilizes a voxel-based approach to process the input
point cloud before grouping the input voxels into super-voxels using a graph-based
segmentation approach [57]. To enhance the grouping for instance segmentation,
the graph incorporates the occupancy information. Razani et al. [171] cluster only
foreground classes, leveraging the semantic predictions to construct a graph for
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instance segmentation. The grouping of the clusters depends on the edge weights
predicted by a graph convolutional neural network. Super-voxel or super-point
clusters are essential for reducing the computational burden. However, these rep-
resentations are often inappropriate for sparse point clouds, where single detection
can represent complete instances.

Therefore, kernel-based convolutions [37, 210, 245] process point clouds on a
per-point basis and extract features for individual points. Wu et al. [234] use
an MLP to approximate a weight function and compute translation-invariant
and permutation-invariant features on any point cloud. Thomas et al. propose
KPConv [210], which directly defines an explicit convolution without an interme-
diate representation where the kernel weights of KPConv are located in Euclidean
space defined by kernel points. The location of the kernel can be learned by the
network, enabling deformable convolutions that can adapt to the point cloud
geometry. Nobis et al. [153] extend the KPConv [210] approach and exploit the
time dimension of multiple radar scans to perform object detection. The resulting
features are processed by long short-term memory cells [195] to incorporate the
time dependencies on the global features. The encoded features are then upsam-
pled to the original point resolution by three-nearest neighbor upsampling and
processed by MLPs to derive the final predictions. Gasperini et al. [59] extend
the KPConv backbone with class-agnostic segmentation and learnable clustering
to achieve panoptic segmentation. However, to achieve competitive results, the
approach adds class-dependent post-processing, including the clustering of split
instances of the same semantic class.

Xu et al. [245] aim to address the shortcomings of the KPConv approach
and propose a flexible method for kernel design and weight learning. In con-
trast to KPConv, the weight matrices are derived from a weight bank without
requiring the location estimation of the kernel points. Furthermore, the pro-
posed ScoreNet associates relative positions with different weight matrices, which
enhances flexibility. To capture strong relationships within local areas, differ-
ent approaches [156, 213, 241, 249] utilize the self-attention mechanism [212] to
leverage the limitations and further improve the accuracy. Fan et al. propose
P4Transformer [55], which combines 4D point-based convolutions with video-
level self-attention to merge related local areas spatially and temporally. The
point-based method benefits from the transformer-based module since the self-
attention mechanism is invariant to permutation and is thus inherently suitable
for capturing strong local and global dependencies and extracting valuable fea-
tures in point clouds, as introduced in Section 3.3. Therefore, the point-based
approaches are often outperformed by attention-based approaches [271], which
extract robust dependency information that is helpful for sparse and noisy radar
point clouds, which we elaborate on in the following section.
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4.1.4 Transformer-Based Approaches
Transformer-based approaches exploit the self-attention mechanism [212, 241,
249], as introduced in Section 3.3, and achieve remarkable results within vari-
ous tasks, from natural language processing [26, 212] to computer vision [29, 36,
97, 170, 254] and point cloud understanding [65, 129, 160, 169, 196, 242, 262, 278].
The exceptional results within different point-based perception tasks [134] benefit
from the strong feature extraction capability.

Guo et al. propose PCT [65] to enable attention-based point cloud processing.
The input point cloud is first processed by a neighbor embedding to map the
point cloud into a high-dimensional feature space and incorporate local informa-
tion. The resulting features are processed by global transformer blocks to learn
semantic information. Furthermore, PCT optimized the dot-product attention
mechanism inspired by the Laplacian matrix in graph convolutional networks to
reduce the influence of noise and to sharpen the attention weights. The posi-
tional encoding is removed since the input data already comprises the position
information detailed in the coordinates. In contrast to the single-scale processing
of PCT, Han et al. [69] utilize cross-level cross-scale cross-attention to capture
interactions between and within different scales of the point cloud to enhance
the feature representation. Therefore, the input point cloud is split into three
subsets with decreasing resolution, which increases the receptive field. The com-
bined output features, thus, include different geometric and semantic information
to enhance the accuracy. Hui et al. [87] follow a similar approach and suggest a
pyramid point transformer network that adaptively learns the spatial relationship
of different sets of neighboring points by grouped self-attention. The grouping
mechanism includes multiple keys and queries to derive different attention maps
to enhance the discrimination of local features.

To leverage the full potential of transformed-based approaches, Yu et al. [253]
propose a pre-training strategy inspired by BERT [49]. The point cloud is first
divided into several local point patches, which are encoded into discrete point
tokens containing meaningful local information. The pre-training task is to pre-
dict the corresponding tokens of randomly masked-out patches. The resulting
transformer is then fine-tuned on the downstream task, leading to better general-
ization compared to transformers without pre-training. The encoding of patches
and the resulting global attention induces large computational costs depending
on the number of patches, where smaller patches are desired to enhance accuracy.

Zhao et al. [271] propose an encoder-decoder architecture with local attention
based on k nearest neighbors (kNN). The optimized architecture utilizes vector
attention [270], which enables an individual weighting of the feature channels by
subtracting keys and queries. This enables a more fine-grained weighting com-
pared to commonly used dot-product attention. Furthermore, relative positional
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encoding is added to enhance accuracy and keep position information through-
out the network [121]. The approach uses max pooling to downsample the point
cloud to increase the receptive field. The features in the decoder are then mapped
to the higher-resolution point cloud via trilinear interpolation to derive semantic
segmentation results. Wu et al. [236] optimize the approach and propose group
vector attention to reduce the number of parameters by dividing the channels
into several groups. Moreover, the improved positional encoding and partition-
based pooling enhance the segmentation accuracy. The succeeding approach of
Wu et al. [235] adopts the sampling strategy and leverages the power of scale
by reducing the complex design and accuracy of the algorithm and increasing
the number of learnable parameters. Therefore, the neighbor search by kNN is
replaced with a point cloud serialization to efficiently increase the receptive field
and enhance accuracy. To further optimize the runtime, Park et al. [160] replace
the sampling algorithms with centroid-aware voxelization and devoxelization tech-
niques. Furthermore, the network includes a lightweight local self-attention mod-
ule, which incorporates continuous positional information. The neighboring vox-
els can be quickly derived via voxel-hashing, reducing the complexity compared
to the kNN search.

Zhang et al. [260] adopt the voxel representation and add an additional
point branch. The voxels are processed by sparse window attention within non-
overlapping 3D voxels. The point branch enriches the voxel features by capturing
global context information to enhance the overall performance. To increase the
receptive fields of the attention mechanism within the voxels, Lai et al. [242]
utilize a stratified key-sampling strategy within the grid representation inspired
by the work of Liu et al., the Swin Transformer [127]. For the attention mecha-
nism, nearby points are sampled densely and distant points sparsely to include
long-range contexts at a low computational cost. Furthermore, the first layer
point embedding by a KPConv layer improves accuracy and facilitates conver-
gence. Contextual relative positional encoding [232] is added to the queries, keys,
and values to adaptively capture position information to enhance semantic seg-
mentation performance. To transfer the cubic window approach to large-scale
outdoor point clouds, Wang et al. [215] extend the approach of He et al. [73] and
partition the sparse voxels into a series of size-equivalent and window-bounded
subsets to calculate the attention in parallel. He et al. [74] optimize the runtime
of the approach and address the computational overhead in sorting and padding
the voxels by directly performing attention on voxel sets with variable lengths,
resulting in a better trade-off between accuracy and speed.

Grid representations do not cover the varying sparsity properties of outdoor
point clouds. Therefore, Lai et al. propose SphereFormer [108], which utilizes a ra-
dial window self-attention that partitions the space into multiple non-overlapping
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narrow and long windows. The narrow window directly aggregates informa-
tion from dense close points to the sparse distant ones. The radial windows
use an exponential splitting approach to yield fine-grained positional encoding.
The dynamic feature selection enhances feature extraction, improving semantic
segmentation accuracy. Sun et al. [206] utilize sparse voxel attention, includ-
ing cross-window correlation with multi-scale feature fusion. Additionally, the
method uses a modified CenterNet head [252, 275] to perform object detection.
Mask3D [187] by Schult et al. directly predicts instance masks from 3D point
clouds to replace the hand-selected voting schemes based on center predictions.
The instance queries are iteratively learned from point cloud features at multiple
scales. The final mask module predicts a semantic class and an instance heatmap
for each query. To enhance the panoptic segmentation, Xiao et al. [239] propose
position-aware segmentation to guide the mask prediction and query update pro-
cesses. This enables the queries to concentrate on specific positions to distinguish
small and geometrically similar instances, leading to an improved panoptic seg-
mentation performance. Kolodiazhnyi et al. [99] go one step further and unify
semantic, instance, and panoptic segmentation within one network. The method
includes a novel super-point query selection to enhance accuracy. Furthermore,
the commonly used bipartite matching strategy [187, 205] based on a Hungarian
algorithm [104] is replaced by a disentangled matching to reduce training time
and make it more stable. Despite the tremendous progress and improved segmen-
tation performance, one serious drawback of mask-based approaches is that the
number of masks needs to exceed the maximum number of instances within the
scene, which leads to a computational overhead.

Overall, transformer-based approaches enable strong feature extraction from
unordered point clouds, enhancing the overall segmentation performance. How-
ever, state-of-the-art methods often focus on dense input data and do not account
for the specific properties of radar data, neglecting important information. Since
radar data is sparse compared to LiDAR point clouds, handling individual points
is essential. This highlights the need for dedicated approaches that leverage the
potential of radars, incorporate additional information, and propose dedicated
modules to improve attention-based processing and scene understanding.
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4.2 Exploiting Predictions to Enhance Scene
Understanding

The prediction and classification of the environment are essential tasks for scene
understanding, as elaborated in the previous section. These approaches provide
an accurate prediction of the semantic classes and the instances and include the
differentiation of moving and static objects. However, the precise information
about how many agents are present and the differentiation of static and moving
objects are often insufficient to perform complex driving tasks. Therefore, it
is important to process predictions to provide additional information. In the
following section, we focus on two common methods, including the tracking of
instances and additional refined semantic and instance predictions, which are
both useful in enriching the information to enable safe driving behavior. We
introduce the respective related work in the following sections.

4.2.1 Tracking Approaches

The tracking of objects within the surroundings of a self-driving vehicle is im-
portant to reliably interact with other traffic participants. The primary solution
to track instances is the tracking-by-detection paradigm [58], which utilizes in-
stance or object prediction to perform the tracking within a second step. To
provide a comprehensive overview, we include methods that address tracking in
an end-to-end manner.

Early approaches utilize multiple point clouds to associate objects and perform
the tracking. Wang et al. [218] take two consecutive point clouds and predict
the point-wise association tracking displacement to capture the movement of the
bounding boxes of objects. This method includes a refinement module to improve
the association features and enhance the predictions. The final associations of
the bounding boxes are determined by the intersection over union. To limit
the possible location, several approaches define a template matching to match
a template and a respective search area to localize the object and perform the
tracking within this predefined region. Qi et al. [165] employ an end-to-end
network and operate on sampled seeds instead of 3D bounding boxes to reduce
search space by a large margin. Cui et al. propose LTTR [44], which utilizes the
self-attention mechanism to capture the attention changes of the object during
tracking and improve feature fusion. The cross-attention mechanism determines
the similarity among regions from search and template point clouds to capture
the relations between the two point clouds. The approach includes voxel-based
random sampling to reduce the number of points and capture meaningful features.
Zhou et al. [273] replaced the random sampling with relation-aware sampling to
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preserve the relevant points. Furthermore, the transformer-based feature fusion
is extended with a coarse-to-fine matching of the bounding boxes to enhance
tracking accuracy.

Another approach to improve feature representation is Siamese networks,
which share the weights for the encoding of the point clouds. Giancola et al. [60]
propose one of the first Siamese trackers for 3D object tracking in LiDAR point
clouds. Therefore, the individual objects are encoded into a high-dimensional
latent space. To determine the tracking IDs, the cosine similarity between the
respective latent vectors is calculated before assigning the most similar object
to the tracks. The decoder part of the approach includes a shape-completion
network to ensure a meaningful latent representation and regularize the Siamese
tracker. However, the approach struggles to capture complex geometric struc-
tures of the potential target because the templates are limited and do not align
with the large variations of the potential search areas. To overcome this limita-
tion, Hui et al. [86] propose to directly learn the target completion model from
the samples of the search areas to enhance the feature extraction of the potential
target and suppress the background information. Additionally, the approach uses
the voxel to bird’s-eye-view target localization to enhance tracking performance in
sparse point clouds. However, for sparse radar data, shape completion is difficult,
and intermediate representation induces information loss, limiting the accuracy.

To extend the information, including point-wise predictions, 4D panoptic seg-
mentation unifies instance segmentation and tracking [94], incorporating spatial
and temporal information about the environment. Aygün et al. [7] recently in-
troduced LiDAR-based 4D panoptic segmentation by grouping points in the 4D
continuum using clustering and assigning a semantic class to each point. The
object instances are modeled via Gaussian probability distributions located at
the predicted instance centers. The point embedding vectors are evaluated under
these Gaussian probability distributions to assign the points to their respective
instance. 4D-StOP [101] by Kreuzberg et al. replaces the Gaussian representa-
tion and models tracklets as spatio-temporal object proposals. The proposals
are first generated by a center-based voting technique before utilizing learned
geometric features to aggregate the proposals to form tracklets. The geometric
feature association further enhances performance compared to simple geometric
matching by incorporating additional information. Zhu et al. [280] extend the
approach and propose rotation-equivariance predictions to learn more robust fea-
tures. Therefore, the backbone utilizes E2PN [279] convolution layers, and the
learning targets are formulated as equivariant vector fields, which enhance gener-
alization capability. Hong et al. propose 4D-DS-Net [81], an optimized dynamic
shifting clustering approach on predicted center offsets to handle non-uniform
point cloud distributions and varying instance sizes. Additionally, this approach
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optimizes the semantic predictions by consensus-driven fusion, selecting the most
frequent semantic label for all points within the instance. Agarwalla et al. [3]
extend CenterPoint [252] by Yin et al. and replace the center offset predictions
with point-wise velocity offset predictions to associate the objects in concatenated
point clouds by greedy nearest-neighbor association. Despite the encouraging re-
sults, aggregated scan processing entails a computational burden and induces
latency.

Tracking-by-detection algorithms are the most common approaches [35, 47,
159] to work on a sequential scan basis. These algorithms first obtain object
detections in the current frame and associate them across time, which can be
formulated as bipartite graph matching. The data association is often based on
a cost matrix, which can be solved by the Hungarian method [104] or greedy-
matching algorithms [252]. The cost matrix is a similarity matrix that compares
existing tracks with newly identified objects based on appearance or geometric
features. To incorporate motion information, filtering algorithms [16, 38, 223]
such as the Kalman filter [91] or particle filter [6] utilize real-world physical
models to estimate the state transition of instances. Weng et al. introduce
AB3DMOT [223], which provides a compact baseline for multi-object tracking,
utilizing a 3D Kalman filter to update the trajectory and determine the associa-
tion based on the 3D IoU as the cost function. However, IoU-based association is
inappropriate for radar signal processing because instances comprise single points
where no overlap exists.

Chiu et al. [38] enhance performance by utilizing the Mahalanobis distance
to determine the association and exploit the covariance matrices for state estima-
tion. Wu et al. [231] combine appearance features from the backbone network,
geometric features of the bounding boxes, and the motion cost by associating
motion vectors to perform the association. To enhance the feature representa-
tion, CA-Net [136] by Marcuzzi et al. proposes a contrastive approach. The goal
of the contrastive loss [93] is to learn that encodings of the same instance, at
different time steps, lie close together and far from encodings belonging to other
instances. Furthermore, the association module incorporates motion cues based
on a center cost to associate instances across scans. Combining geometric and
learned appearance features enhances accuracy. CXTrack [246] by Xu et al. and
MotionTrack [261] by Zhang et al. utilize attention-based similarity features to
track single and multi-objects, respectively. However, MotionTrack struggles to
associate objects based on attention due to the sparsity of the point clouds, which
is more severe for noisy radar data. Additionally, transformer-based approaches
often neglect the valuable geometric features that can enhance tracking perfor-
mance. To process sparse and noisy radar data, we need to explore the available
information to reduce false associations.

65



4.2. Exploiting Predictions to Enhance Scene Understanding

4.2.2 Refinement
Prediction refinement includes algorithms to adjust bounding boxes, optimize se-
mantic predictions, and correct instance segmentation. Precise perception algo-
rithms are key to enhance scene understanding. The refinement of the prediction
often helps to leverage the full potential of learning-based approaches. We intro-
duce different refinement approaches to illustrate versatile applications. Besides
the optimization of the predictions, the refinement also includes improved feature
extractions by refining the internal representations. Jiang et al. [90] combine
semantic, centroid-aware, and instance-aware features to enhance performance.
The refined features are processed to perform point-wise instance assignments in
an end-to-end manner. The candidates are masked with a suppression module to
handle the problem of redundant instance assignment. Another approach by Zhou
et al. is Refine-Net [274], which utilizes multiple refinement modules to combine
additional information from multiple feature representations to enhance accuracy.
Xiang et al. [237] transfer the feature refinement approach to semantic segmen-
tation and propose an explicit and retrospective refining process that establishes
semantic relationships across different decoding stages of the backbone pyramid
layers. A cross-attention block summarizes the features to aggregate semantic
contexts from nearby points. Furthermore, the introduced gating mechanism
controls the information flow to prevent the propagation of erroneous informa-
tion within the local areas and selectively retain valuable semantic features to
enhance performance. Lui et al. [127] propose a similar approach to improve 3D
object detection by refining the spatial encodings of an object candidate within
each decoder stage. Therefore, the predicted location of the bounding box is up-
dated within the stages to refine the spatial encoding of the same object utilizing
the attention mechanism. These refined representations are updated within the
consecutive stages to generate accurate object detection results.

The feature refinement comes with a larger computational burden since the
whole point cloud is processed to enhance performance. To reduce latency, patch
refinement [117] first extracts local areas in the bird’s-eye-view representation to
reduce the number of points and perform heavy computation within restricted
areas. The individual patches are encoded with a higher voxel resolution to en-
hance the representation and perform the 3D object detection. Hou et al. [84]
directly predict the 3D bounding boxes and only refine the prediction inside the
boxes to reduce computations and improve instance segmentation. Yi et al. [251]
adopt the axis-aligned bounding box predictions to extract region features within
these areas. The processing of the regions of interest utilizes PointNet layers to
perform classification, regression, and segmentation within different heads. Fur-
thermore, the approach enforces geometric understanding and reduces the blind
box proposals that do not correspond to a single object. The refinement of the
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bounding boxes includes predicting the relative center and size adjustments [172],
and the segmentation is derived by predicting a point-wise binary mask for each
category label [76]. STD [250] by Yang et al. further enhances the recall for pro-
posal generation by utilizing spherical anchors based on points. Shi et al. [193]
process the input point cloud to derive a small number of precise 3D proposals
in a bottom-up manner via segmenting the point cloud into foreground and back-
ground points. The regions of interest, which consist of the foreground points, are
utilized to derive relative residuals in the refinement step. The residuals update
the size and location prediction of the input proposals to improve object detec-
tion. The refinement utilizes canonical coordinates to learn local spatial features,
which are combined with point-wise semantic features of the backbone to achieve
accurate box refinement and additional confidence prediction. Liang et al. [123]
propose a graph representation to overcome shortcomings from grouping-based
instance segmentation methods such as fragmented objects. Therefore, a seman-
tic superposition tree is constructed based on the learned semantic features of the
points. The refinement module prunes the super-points that may belong to other
instances or the background to improve performance. ScoreNet [90] by Jiang
et al. evaluates the generated proposals to derive the final instance predictions.
Vu et al. [214] group instances using soft semantic scores to enhance accuracy and
avoid error propagation from hard semantic predictions to instance segmentation.
The additional top-down refinement module refines and classifies the instance pro-
posals from the corresponding backbone features. Therefore, the false positive
predictions introduced by wrong semantic predictions are suppressed, leading to
better instance segmentation, especially for ambiguous objects.

Wang et al. [217] utilize the instance information to further enhance the seman-
tic segmentation. The instance-based refinement algorithm refines the network
predictions by incorporating additional information, such as the temporal consis-
tency of the outputs. Furthermore, the point-wise predictions within an instance
are aligned to derive optimized results. However, the refinement includes multiple
hyperparameters which need to be optimized individually. More recently, Kolo-
diazhnyi et al. [98] utilized a fully sparse convolutional cluster-free network for
3D instance segmentation. The approach follows previous works [251] and selects
the features based on predicted 3D bounding boxes to refine the predictions. The
resulting regions of interest of the individual instances are processed by a tiny
U-Net to solve a binary segmentation task to assign foreground and background
labels. Therefore, the instance segmentation is optimized by the mask-based
predictions to enhance accuracy. However, the performance is limited due to
possible error accumulation from inaccurate box predictions to the refinement
phase. Hence, Shin et al. [197] propose a coarse-to-fine approach based on spher-
ical representation to avoid excessive size estimation of axis-aligned bounding
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boxes. Additionally, the approach handles coarse detection as a soft reference
to enable more access to the refinement while excluding unnecessary background
points. This allows the correction of both false positive and false negative pre-
dictions by utilizing spherical coordinates and predicting a single radial delta for
each point to move it along the radial axis to the instance center. The resulting
points within the centroid represent the optimized instance predictions.

Nevertheless, the refinement mainly focuses on optimizing the same objective,
neglecting the fact that some tasks are inherently easier to perform. Further-
more, the refinement often utilizes voxel representations, which harm accuracy
in radar-based scene understanding due to discretization artifacts. Addressing
these limitations and integrating radar-specific modules is key to improving per-
formance.

The perception tasks for scene understanding are diverse, and different func-
tionalities need to focus on different aspects. The variety of related work high-
lights the importance of dedicated algorithms to enable safe autonomous driving.
The major focus of research is the processing of LiDAR data, which are denser
but face limitations under adverse weather. To address these gaps, we introduce
novel approaches to enhance the scene understanding by leveraging the unique
properties of radar data in the following chapters.
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Learning-Based Segmentation of
Moving Objects in Radar Data
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Chapter 5

Semantic Segmentation of
Moving Objects

A utonomous vehicles require to understand their surroundings accu-
rately to safely navigate in dynamic, real-world environments across
diverse scenarios, including adverse weather conditions. To achieve
holistic perception and enhance safety, sensor suites of autonomous

vehicles are versatile to explore redundant information of individual sensors such
as cameras, LiDARs, or radars, as introduced in Chapter 1. Cameras and LiDAR
sensors capture the environment precisely but face limitations under adverse
weather such as fog, rain, and snow. Radar sensors work under these conditions
and provide superior reliability. As a result, processing radar data is essential to
ensure safe autonomous mobility across all scenarios.

The applications of radar sensors are versatile. In this chapter, we investigate
the semantic segmentation of moving objects in radar point clouds, which is es-
sential for safe path planning and navigation. Semantic segmentation provides
important information for adapting to the motion of other objects in the environ-
ment and preventing collisions. Semantic segmentation of moving objects requires
differentiating between detections of moving and static objects and assigning a
class label to each radar detection, as illustrated in Figure 5.1. Therefore, the
task differentiates, for example, between parked and moving cars and assigns the
class labels static and car, respectively.

Compared to LiDAR point clouds, radar point clouds are inherently more
sparse due to lower resolution and sampling density. They are also noisier, with
sensor noise and multi-path propagation further degrading signal quality, as ex-
plained in Chapter 2. However, radar sensors provide additional information,
such as the Doppler velocity, to directly indicate moving objects, making the sen-
sor inherently suitable for single-scan processing. Furthermore, the radar cross
section values support the differentiation and classification of the detections.
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Figure 5.1: Our method performs semantic segmentation of moving objects (bottom) from
sparse, single-scan radar point clouds (top), exploiting additional information, including the
Doppler velocity and the radar cross section. In the bottom image, each color represents a
different semantic class for moving objects (static is grey).

Most state-of-the-art methods for estimating semantics from radar data, such
as approaches proposed by Scheiner et al. [184], Schumann et al. [190], and
Zhang et al. [269], rely on the aggregation of information over multiple scans
to accurately perform semantic segmentation. Additionally, other sensor modal-
ities, such as cameras and LiDARs, strongly depend on aggregating input data
to reliably differentiate between moving and static detections. However, aggrega-
tion inherently introduces latency, making it often unsuitable for tasks requiring
immediate information about the vehicle’s vicinity, such as collision avoidance.
Li et al. [118] and Xu et al. [244] utilize voxel representations to process LiDAR
data to reduce computational complexity. However, voxel-based methods inher-
ently introduce discretization artifacts and information loss, which is especially
harmful to the processing of sparse radar point clouds. To overcome these limita-
tions, we investigate the point-wise processing of single radar point clouds in this
chapter. Moreover, we exploit additional radar sensor information to enhance
performance.
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The main contribution of our approach is a new method for accurate, single-
scan, radar-only semantic segmentation of moving objects. It takes sparse point
cloud representations of radar scans as input and outputs a semantic label for
each point. To extract discriminative point-wise features, we build on the self-
attention mechanism, a fully attentive neural network with our novel Gaussian
transformer layer, and our attentive up- and downsampling modules as central
building blocks. We modify the transformer layer and enable the decoupling via
the usage of a Gaussian function. Furthermore, our attentive sampling enables
the capturing of complex local structures and progressively increases the receptive
field of individual points. We combine these building blocks in our new backbone,
called the Gaussian Radar Transformer, to enhance feature extraction on sparse
and noisy radar point clouds.

In sum, we make three key claims in this chapter: Firstly, our approach demon-
strates state-of-the-art performance for semantic segmentation of moving objects
in sparse, single-scan radar point clouds without aggregating multiple scans and
without exploiting temporal dependencies. Secondly, the Gaussian transformer
layer and the attentive upsampling and downsampling modules improve feature
extraction by decoupling individual points and enlarging the receptive field to
enhance accuracy. Thirdly, our fully attentive network is able to extract discrim-
inable features from additional sensor information, such as Doppler velocity and
radar cross section.

5.1 Our Approach to Semantic Segmentation

The goal of our approach is to achieve accurate semantic segmentation of moving
objects in single-scan, sparse radar point clouds to enhance scene understanding of
autonomous vehicles. To accomplish this, we introduce a point-based framework
to directly process the input point cloud, omitting information loss by building
upon the successful self-attention mechanism throughout the network. Figure 5.2
depicts our Gaussian Radar Transformer. We adopt the encoder-decoder struc-
ture proposed by Zhao et al. in the Point Transformer [271]. We replace each
module and use our Gaussian transformer layer, introduced in Section 5.1.1, as
the central building block of each stage, which enables decoupled fine-grained
feature aggregation. Furthermore, we introduce attentive up- and downsampling
modules to enlarge the receptive field and extract discriminative features in Sec-
tion 5.1.4 and in Section 5.1.3, respectively.
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Figure 5.2: Architecture of our Gaussian Radar Transformer for semantic segmentation of moving objects. The fully connected layer first increases the
dimension of the per-point features. The Gaussian transformer block incorporates our Gaussian transformer layer in a residual block to extract discriminative
features from sparse radar data. Our optimized attentive downsampling and attentive upsampling further improve the feature extraction. The final fully
connected layer predicts the semantic class for the individual points in the single-scan radar point cloud. The tuples denote the number of points and
feature channels.
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Figure 5.3: The design of the Gaussian transformer layer replaces the softmax function with a
Gaussian function to enable an individual weighting of the points. The fully connected layer
encodes the features as queries Q, keys K, and values V. The positional encoding R incorporates
precise geometric information.

5.1.1 Gaussian Transformer Layer
In sparse radar point clouds, individual reflections contain essential information
for downstream tasks such as semantic segmentation of moving objects. Small
objects such as pedestrians might only comprise a single detection, making the
point-based processing crucial. Therefore, the processing of sparse radar data
must extract valuable features to enhance performance but also enable single-
scan processing.

To tackle this problem and enable independent and precise feature aggrega-
tion, we introduce the Gaussian transformer layer based on the Point Transformer
layer [271] including vector self-attention as illustrated in Figure 5.3. Contrary to
other approaches, including the Point Transformer [271], which focuses on dense
point clouds, we do not utilize the softmax function, introduced in Section 3.3,
which is defined as:

si =
exp(zi)∑Ngtl
j=1 exp(zj)

. (5.1)

The softmax function leads to a coupling of the points since individual out-
puts si, which can be interpreted as probabilities, are dependent on all inputs zj
with j ∈ {1, . . . , Ngtl}. The size of the local neighborhood further influences the
weighting, which leads to a dilemma since large local areas increase the receptive
field but make the coupling more severe. Furthermore, the coupling of the individ-
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ual weights is the reason why the softmax function is not scale-invariant, and the
additional weighting factor for dot-product attention introduced in Section 3.3 is
required.

The backpropagation of the loss L through the softmax function to obtain
the partial derivative ∂L

∂zj
to determine the gradients at the input is dependent on

all output values. The calculation of the chain rule of derivatives for the softmax
can be expressed by the Jacobian matrix Jsoftmax as follows:

∂L
∂z = Jsoftmax

∂L
∂s . (5.2)

If the output values grow in magnitude, the gradients diminish since the
Jacobian converges to a zero matrix. Hence, the error propagation is restricted,
which can slow down the learning process. In contrast, we argue that points
belonging to the same class should aggregate the information, whereas points
belonging to different classes reduce the information aggregation to a minimum,
both of which can lead to a close to zero Jacobian matrix. To overcome this
limitation, we replace the softmax function with a Gaussian function g, which is
executed on every dimension of the vector for vector self-attention.

The input to our Gaussian transformer layer contains the information about
the individual points within the single current scan P at time t. This comprises
the point coordinates P = [p1, . . . , pN ]

⊤ ∈ RN×2,, where pi ∈ R2 and the point-
wise features X = [x1, . . . , xN ]

⊤ ∈ RN×D, where xi ∈ RD for N points in the
scan. The input features are first encoded as queries Q, keys K, and values V, as
follows:

Q = XWQ, K = XWK , V = XWV , (5.3)

where WQ ∈ RD×D, WK ∈ RD×D and WV ∈ RD×D are the weights of the
fully connected layers. We follow the point transformer approach and arrange
the query, keys, and values as a matrix, which are sampled according to the
local neighborhoods to reduce computational cost. We utilize the k nearest
neighbor (kNN) [166] algorithm with k = Ngtl points to derive for each point
the respective information, resulting in Qk, Kk, and Vk ∈ RN×Ngtl×D. To in-
corporate fine-grained position information within the attention mechanism, we
process the relative positions ri,j by two fully connected layers with weight matri-
ces Wp

1 ∈ R2×2 and Wp
2 ∈ R2×D and the Gaussian error linear unit [77] activation

function to determine the relative positional encoding R ∈ RN×Ngtl×D [271]. We
adopt subtraction as a relation function to calculate the attention weights and
replace the softmax function with the Gaussian g function:

Ai,j = g((Qk
i,j −Kk

i,j) + Ri,j), (5.4)
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to assess fine-grained information flow for sparse radar point clouds. We intro-
duce parameters of the Gaussian function, such as the mean and the variance
in Section 5.2. Since the Gaussian function is applied to each dimension of the
matrix individually, the points are decoupled, which enables precise information
aggregation to enhance feature extraction and performance. As a result, the in-
formation of points belonging to the same class is ideally aggregated, and the
information of points belonging to different classes is not mixed to improve fea-
ture extraction. For points belonging to the same class, the attention weight to
weigh the features should be high, and for points belonging to different classes,
the weights should be low.

Moreover, the partial derivative of the Gaussian function depends on a single
output value sj. Hence, vanishing gradients may influence individual points but
not whole local areas, which can be seen by the chain rule of derivatives:

∂L
∂zj

=
∂L
∂sj

∂sj
∂zj

. (5.5)

To derive the output Xout, we calculate the sum of the element-wise multipli-
cation:

Xout
i =

Ngtl∑
j=1

Ai,j ⊙Vk
i,j, (5.6)

without further processing by a fully connected layer, reducing computational cost
in contrast to other approaches [271]. We pass the output features and the point
coordinates to the consecutive module. We do not modify the point coordinates
to keep fine-grained position information in deeper layers.

5.1.2 Gaussian Transformer Block
Our Gaussian transformer layer is embedded into the center of the Gaussian
transformer block, which is a residual block, similar to the Point Transformer
block [271], with two fully connected layers processing the input and the out-
put features. We replace the activation function with the Gaussian error linear
unit after each fully connected layer and utilize batch normalization [88]. The
Gaussian transformer block processes the single-scan point clouds, including the
point coordinates and point-wise features. The features of the individual points
are enriched by the information aggregation within the block enhanced by the
Gaussian transformer layer. We add the processed output features to the features
of the skip connection to reduce vanishing gradients. The point coordinates are
utilized to calculate the positional encoding but are not further transformed to
keep detailed position information within the whole network.
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Figure 5.4: Detailed design of the attentive downsampling (a) and attentive upsampling (b)
module of our Gaussian Radar Transformer. The downsampling samples a subset of the input
point cloud PSL

of the respective stage SL. The attentive upsampling combines the information
of the point cloud of the skip connection Pskip and the point cloud PSL

, which has to be
upsampled.

5.1.3 Attentive Downsampling Layer

Our Gaussian Radar Transformer follows an encoder-decoder structure to derive
meaningful fine-to-coarse feature representations, as elaborated in Section 3.3.1.
The goal is to increase the receptive field within the encoder and combine the
information of different levels within the decoder of the network. To reduce
the cardinality of the point cloud PSL+1

⊂ PSL
and thereby the number of

points NSL
, we process the point cloud by the attentive downsampling layer in

each stage SL, depicted in Figure 5.4 (a). Our approach aims to enable ade-
quate sampling and feature processing by applying the self-attention mechanism
throughout the network. In contrast to commonly used max pooling [166] the
idea is to keep the information within the point cloud intact. The max pooling
leads to information loss, which can harm accuracy, especially for sparse radar
point clouds. To reduce computational complexity, we follow Yang et al. [248]
and calculate the attention weights by a single fully connected layer with the
weight matrix Wf

SL
∈ R(DSL

+2)×DSL and no direct representation of keys, queries,
and values. Furthermore, the calculation does not include a softmax and Gaus-
sian function to reduce computations. We concatenate the input features X and
the point coordinates P to include positional information to calculate the atten-
tion weights Ai,j. We normalize the attention weights over the whole point cloud
within the local neighborhood to amplify the contribution of valuable points. We
use farthest point sampling and the kNN algorithm to sample the point for the
downsampling operation. The final weights are multiplied with the input features
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within local areas, with k = Nd points resulting in:

Xdown
i =

Nd∑
j=1

Ai,j ⊙Xi,j. (5.7)

The features are fed into another fully connected layer with layer normaliza-
tion [243] and a Gaussian error linear unit activation function. In contrast to
Point Transformer [271], which utilizes farthest point sampling and max pool-
ing [166], our attentive downsampling includes the information of nearby points,
which we assume as valuable for sparse point clouds.

5.1.4 Attentive Upsampling Layer
To deduce discriminative features, we argue that the upsampling and feature con-
catenation of the skip connection are crucial to further enhance performance. The
common method for upsampling, also utilized by Point Transformer [271], is an in-
terpolation of the k = 3 nearest neighbors based on an inverse distance weighted
average [166]. The interpolated points are concatenated with the features of
the points, which are passed through the skip connection. The inverse distance
weighted average does not include further feature-based information. Hence, the
interpolation combines the features only based on their relative position. This is
reasonable for dense point clouds because nearby points often belong to the same
class.

However, this might be problematic for sparse point clouds, especially for
small instances, which are represented by single points. Therefore, we consider
upsampling as an important part to improve feature extraction and propose the
attentive upsampling layer. The upsampling layer, which is illustrated in Fig-
ure 5.4 (b), first processes the features of the skip connection Xskip and the pro-
ceeding Gaussian transformer block X by two separate fully connected layers
with layer normalization and Gaussian error linear unit activation function. To
propagate the points from PSL

to PSL−1
where PSL

⊂ PSL−1
with NSL

≤ NSL−1
,

we feed the position information of the two point sets and the corresponding fea-
tures into our attentive upsampling layer. We calculate the k nearest neighbors
of the individual points for the point set of the skip connection Pskip within the
point cloud, which has to be upsampled PSL

. The attention mechanism enables
information aggregation of larger local areas since the attention weights will con-
trol the information flow and not reduce the discriminability, which is possible if
large local regions are interpolated. To integrate the positional information, we
calculate the relative position of the kNN of the two point sets given by:

ri,j = pi − pj, (5.8)
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where pj ∈ Pskip and pi ∈ PSL
. The relative distances are further sampled ac-

cording to the nearest neighbors, resulting in the relative distances Ri,j, which
are concatenated with the features. Following our downsampling layer, we calcu-
late the attention weights directly by processing the concatenated features with a
fully connected layer and normalizing the weights within the local neighborhood
defined by Nu points over the whole point cloud. We combine the features by
summation. The output is processed by a fully connected layer with layer nor-
malization and Gaussian error linear unit activation function to derive the final
output of the attentive upsampling layer.

The self-attention mechanism turns into an inter-attention between the two
point clouds to enable attentive feature aggregation. The upsampling is repeated
until we have broadcasted the features to the original set of points. We optimize
the information aggregation by determining the weighting based on the relative
position and the features. We emphasize that the sampling steps are essential
for appropriate feature extraction of transformer architectures for sparse point
clouds.

5.2 Implementation Details
The input is a sparse radar point cloud with N points, feature dimension D,
and batch size b. Each point pi is defined by two spatial coordinates xCi and yCi .
Additionally, the radar sensors provide the ego-motion compensated Doppler ve-
locity vi and the radar cross section σi resulting in a 4-dimensional input vec-
tor xi =

[
xCi , y

C
i , σi, vi

]⊤. To simplify the batch processing for the varying sizes of
the radar data, we utilize zero padding to derive a fixed number of input points
of N = 1024.

We construct our architecture based on the self-attention mechanism. The
central building blocks are the Gaussian transformer layer and the attentive
down- and upsampling modules to extract discriminative features for point cloud
understanding. The backbone adopts the U-Net architecture of Point Trans-
former [271] with an encoder-decoder architecture, including skip connections.
First, we directly extract features of the sparse input point cloud by a Gaussian
transformer block and increase the per-point feature dimension to 32. The result-
ing features are progressively down-sampled by four consecutive stages where
each reduces the cardinality of the point cloud by a factor of two, resulting
in [N/2, N/4, N/8, N/16] points. The per-point features are further gradually
increased to 64, 128, 256, and 512. The individual stages include the Gaus-
sian transformer block and attentive downsampling modules in the encoder part,
which are replaced by attentive upsampling modules in the decoder part of
the network. The per-point features maps of the final decoder layer are pro-
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cessed by an MLP with two fully connected layers to obtain point-wise semantic
classes Psem = {psem

1 , . . . , psem
N }, where psem

i ∈ {1, . . . , C}.
We implement the Gaussian Radar Transformer in PyTorch [161]. To train

the network, we utilize the stochastic gradient descent optimizer with an initial
learning rate of 0.05, a momentum of 0.9, and a cosine annealing learning rate
scheduler [132]. The batch size b is set to 32. The loss combines the Lovász
loss [21] and weighted cross-entropy. We follow Schumann et al. [190] and set the
weights of the cross-entropy loss for dynamic objects to 8.0 and for static to 0.5 to
account for the class imbalance of the dataset. For the attentive sampling opera-
tions, we define k = 9 for the kNN operation, and for the Gaussian transformer
layer, we restrict the local area to Ngtl = 16. We define g(x) as:

g(x) = exp
(
−x2

2

)
, (5.9)

such that for x = 0 the attention weight is g(x) = 1. The idea to scale the
Gaussian function is that weights smaller than one result in an attenuation effect,
which we argue is not optimal for feature extraction of sparse radar point clouds.
Therefore, the replacement of the softmax function includes the advantage that
the sum of all attention weights within the local area is not bound to one. We
apply data augmentation, including scaling, rotation around the origin, jitter
augmentation of the coordinate features, and instance augmentation, to improve
generalization.

5.3 Experimental Evaluation
The main focus of this chapter is to enhance the semantic segmentation of mov-
ing objects in sparse and noisy radar point clouds. We present our experiments
to show the capabilities of our method and to support our key claims that our
approach achieves state-of-the-art performance in semantic segmentation of mov-
ing objects in single-scan radar point clouds without exploration of temporal
dependencies or the aggregation of scans. Moreover, we demonstrate that the
Gaussian transformer layer and the attentive up- and downsampling modules
improve feature extraction and contribute to the final performance. Our fully
attentive network is able to extract valuable features from the Doppler velocity
and radar cross section provided by the radar sensor.

5.3.1 Experimental Setup
We train and evaluate our method on RadarScenes [189], which is the only large-
scale, open-source radar dataset including point-wise annotations for varying sce-
narios. The dataset consists of 158 annotated sequences. We use the recom-
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mended 130 sequences for training and split the remaining 28 sequences into val-
idation (sequences: 6, 42, 58, 85, 99, 122) and test set. The RadarScenes dataset
provides individual point clouds for the four radar sensors. The measurements are
from the near-range mode of the 77 GHz automotive radar sensors, which cover
detections in a range of up to 100 m. Two sensors are mounted at ±85 ◦ and two
sensors at ±25 ◦ with respect to the driving direction. Since the field-of-view of
the sensors is restricted to certain areas, we derive detailed information about
the surroundings by merging the individual sensor data from the four sensors
into a single radar point cloud. The measurement times and ground truth pose
information of a differential global positioning system are given, which enables
a transformation into a common coordinate system. We always aggregate four
scans consecutive scans and compensate for the relative movement, resulting in
the final input point clouds with transformed local coordinates. To evaluate the
performance, Schumann et al. [189] propose the point-wise macro-averaged F1

scores based on all five moving object classes and the static background class
resulting in C = 6 classes. We further report the intersection over union (IoU)
and mean intersection over union (mIoU) defined as:

IoU =
TP

TP + FN + FP , (5.10)

mIoU =
1

C

C∑
i=1

IoUi, (5.11)

where the true positives (TP), false positives (FP), and false negative (TP) pre-
dictions are summarized in these metrics, which are common for semantic seg-
mentation tasks [13]. We train each network using its specific hyperparameters
with two Nvidia RTX A6000 GPUs over 50 epochs on the training set and report
the results on the test set. We conduct all ablation studies on the validation
set. Since the Point Transformer does not provide semantic segmentation results
for the RadarScenes dataset, we transfer the approach to the radar domain. For
more details on the training regime, we refer to the original paper [271].

5.3.2 Semantic Segmentation of Moving Objects
The first experiment presents the performance of our approach on the RadarScenes
test set to investigate the claim that we achieve state-of-the-art results for seman-
tic segmentation of moving objects in sparse and noisy radar point clouds without
the aggregation of scans or the exploration of temporal dependencies. In this
experiment, we compare our Gaussian Radar Transformer with the recent and
high-performing Point Transformer by Zhao et al. [271] as well as the baselines
provided by Schumann et al. [188, 190]. We selected Point Transformer as a ref-
erence since the method meets the following requirements: (1) single-scan input
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Method Input mIoU F1 static car pedestrian pedestrian
group

bike truck static car pedestrian pedestrian
group

bike truck

RadarPNv1 [188] 61.0 74.3 98.7 58.2 36.0 58.7 58.4 56.1 99.4 73.6 52.9 74.0 73.8 71.9
RadarPNv2 [190] aggregation 61.9 75.0 98.7 63.8 38.8 58.5 51.0 61.0 99.4 77.9 55.9 73.8 67.5 75.8
Point Voxel Transformer [260] 45.9 57.5 99.3 47.5 7.3 47.5 54.6 19.2 99.6 64.4 13.6 64.4 70.6 32.2
Point Transformer [271] 55.6 68.1 99.3 58.1 15.2 56.8 55.1 48.9 99.6 73.5 26.4 72.5 71.1 65.6
Gaussian Radar Transformer

single-scan
68.5 79.8 99.4 69.6 36.3 71.2 71.2 62.8 99.7 82.1 53.2 83.2 83.2 77.1

Table 5.1: Semantic segmentation results of moving objects on the RadarScenes test set in terms of IoU and F1 scores. The results of RadarPNv1 [188] and
RadarPNv2 [190] are calculated based on the reported confusion matrix. Our method outperforms state-of-the-art segmentation approaches and enhances
IoU compared to aggregation-based methods for most of the classes. The best results are in bold.
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Figure 5.5: Qualitative results of the Point Transformer [271] and our Gaussian Radar Trans-
former on the test set of RadarScenes [189]. The left column is from sequence 93 (rain), and
the right is from sequence 14 (fog). In the images of the predictions, the color represents the
predicted semantic class of moving objects (static is grey). The colors in the images correspond
with the ground truth if the object is visible. The camera images are anonymized and shown
for reference.

for comparability; (2) point-based method, since the voxelization leads to dis-
cretization artifacts and hence a loss of information, see Point Voxel Transformer
in Table 5.1; (3) very good performance on different benchmarks including seman-
tic scene understanding. Furthermore, the Point Transformer [271] utilizes vector
attention, which is beneficial for point cloud understanding because the weight-
ing of individual channels enables a fine-grained weighting of the corresponding
features.

Our Gaussian Radar Transformer outperforms the existing methods in terms
of mIoU and F1 score, as displayed in Table 5.1. We achieved superior perfor-
mance in five of the six classes, except for pedestrians. We assume that individual
detection in radar scans contains important information, which is why point-
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# Attentive
downsampling

Attentive
upsampling

Gaussian transformer
layer

F1 mIoU

A 74.0 61.0
B ✓ 77.0 64.7
C ✓ 77.3 65.5
D ✓ ✓ 78.8 66.8
E ✓ ✓ ✓ 79.4 68.3

Table 5.2: Influence of the different components of the approach in terms of mIoU and F1 score
on the RadarScenes validation set. The Gaussian transformer layer, the attentive downsampling,
and the attentive upsampling contribute to the improved performance. The best results are in
bold.

based methods enhance performance compared to Point Voxel Transformer. The
combination of the dual branch processing of the voxelized point cloud and the
point-based transformer branch hence sufferers from information loss due to dis-
cretization artifacts. The baselines exploit temporal dependencies of consecutive
radar scans within a memory feature map, utilize additional global coordinates,
or densify the point clouds by aggregation. The baselines utilize an aggregation
of multiple point clouds to incorporate the detection over 500 ms. Since the radar
sensors operate at around 17 Hz, the aggregation includes up to 10 scans of the
four individual radar sensors. However, the exact comparison of the results is dif-
ficult because Schumann et al. work on a subset of the officially released dataset.
Nevertheless, the IoU for the class pedestrian indicates that the exploration of
temporal information is beneficial for small instances. We suspect that the con-
sistent detection of pedestrians over the whole sequence, which is difficult for
strict single-scan approaches, further improves the performance. Despite that,
the Gaussian Radar Transformer considerably improves the IoU for the class
pedestrian as opposed to Point Transformer by more than 19 absolute percentage
points. Figure 5.5 shows some qualitative results on the test set. Notably, our
approach achieves superior performance under adverse weather, including rain
and fog. Furthermore, we observe that the radar signal processing of single scan
inputs is able to detect distant pedestrians comprising only one detection.

5.3.3 Ablation Studies on Method Components

The first ablation study presented in this section is designed to support our second
claim that our proposed self-attention modules each contribute to the advance-
ments in the segmentation performance of the Gaussian Radar Transformer. To
assess the influence of the different components of our fully attentive backbone,
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we evaluate the performance in terms of mIoU and F1 score on the validation
set. To replace our proposed modules, we follow commonly used network designs.
We substitute the Gaussian function with the softmax function and keep the rest
of the Gaussian transformer layer as it is. For the attentive downsampling, we
utilize local max pooling, and we exchange attentive upsampling using trilinear
interpolation based on an inverse distance weighted average. Table 5.2 summa-
rizes the influence of different components on the performance in terms of mIoU
on the validation set.

In configuration (A), we replace each module with its substitute, which leads
to a noticeable decrease in mIoU. We suspect that the commonly used modules
are highly optimized for denser point clouds but struggle to capture fine-grained
information from sparse and noisy radar point clouds. In (B), we add attentive
downsampling, see Section 5.1.3, which introduces a smooth information exchange
within the downsampling step of individual points, visibly improving the results.
Furthermore, the information loss within deeper layers due to max pooling is dis-
advantageous for sparse point clouds. In (C), we add the attentive upsampling
module to enlarge the receptive field and include encoded feature information
to optimize the information aggregation, see Section 5.1.4. The larger receptive
field resulting from the increased local area from three (trilinear) to nine points
improves the F1 score by 3.3 and the mIoU by 4.5 absolute percentage points.
Although the attentive upsampling only affects the features of the decoder part,
it leads to an additional improvement of mIoU by 0.8 absolute percentage points
compared to attentive upsampling in (B). We assume that the interpolation of
the features results in an exchange of features of different classes, which makes
it difficult to reliably perform the semantic segmentation. In (D), we add the
attentive up- and downsampling, which further enhance the performance. This
shows the importance of attentive sampling modules for sparse radar point cloud
processing. In (E), we utilize the fully attentive network to illustrate the improve-
ment due to the usage of the Gaussian function by decoupling individual points,
see Section 5.1.1, resulting in the best performance. In conclusion, the Gaussian
function and the attentive up- and downsampling are essential to extract valuable
features from sparse and noisy radar point clouds.

5.3.4 Ablation Studies on Input Features
The third experiment evaluates the performance depending on the provided in-
formation by the radar sensor and demonstrates that our approach is capable
of capturing complex local structures within the features to enhance mIoU. For
this experiment, we utilize our Gaussian Radar Transformer and add to the posi-
tion information of xC and yC coordinates, the ego-motion compensated Doppler
velocity v, the radar cross section σ, or both. Table 5.3 displays the influence
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Input Features F1 mIoU

x =
[
xC , yC

]
56.0 43.7

x =
[
xC , yC , σ

]
63.7 50.1

x =
[
xC , yC , v

]
75.0 62.0

x =
[
xC , yC , σ, v

]
79.4 68.3

Table 5.3: Influence of the different input features in terms of mIoU and F1 score on the
RadarScenes validation set. The radar features, including the spatial location, radar cross
section σ, and Doppler velocity v, are essential to enhance scene understanding. The best
results are in bold.

of the input features x on the validation set performance. As we presume, the
ego-motion compensated Doppler velocity is especially valuable for semantic seg-
mentation of moving objects since the feature inherently distinguishes between
moving and non-moving parts of the environment, resulting in an increase of mIoU
of 18.2 absolute percentage points. Moreover, we further improve the mIoU if we
add the radar cross section features σ, because it depends on the material, the
surface, and the shape of the object, which is valuable to differentiate between
different classes. However, it is remarkable that the network still identifies mov-
ing objects and correctly assigns a semantic class based on the spatial coordinates.
We assume that most of the objects appear in similar places, and the attention
mechanism is capable of detecting local clusters, such as cars driving in front
of the ego-vehicle. This illustrates the strong generalization capability of our
Gaussian Radar Transformer. Nevertheless, the best performance is achieved
by including radar cross section, and ego-motion compensated Doppler velocity,
suggesting that our approach extracts valuable features for the downstream task
from additional sensor information.

5.3.5 Runtime
The primary focus of our approach is to achieve state-of-the-art performance for
single-scan radar signal processing. However, the runtime and the memory con-
sumption of the algorithm play an important role in real-world applications. We
investigate the input representation of the radar point cloud to derive a detailed
evaluation of the runtime and the performance in terms of mIoU. The processing
of the point cloud in batches requires that the input vectors have the same size
to concatenate the input data along the batch dimension. However, radar point
clouds largely differ in the number of points N depending on the surroundings
of the vehicle. Our approach utilizes zero padding to align the number of input
points, but that increases the computational burden because artificial points are
included in the processing steps. Therefore, we adopt the advanced batching pro-
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RadarScenes [189] training set validation set test set

number of scans 175, 918 7, 062 27, 849

number of moving objects 630, 851 21, 143 95, 392

average number of points per scan 569 559 534

Table 5.4: The number of scans, the number of moving instances, and the average number of
points per scan in the RadarScenes training, validation, and test set.

posed by Zhao et al. [271] to always keep the original number of points as input
data. The algorithm combines the individual scans within one large vector. The
transition from one scan to the other scan is defined by a scalar, which corre-
sponds to the number of points within each scan. As a result, we can use this
information and split the concatenated scans into individual scans to calculate,
for example, the nearest neighbors in parallel.

Furthermore, we investigate the proposed dataset split for the single scan
processing. The RadarScenes dataset includes four radar sensors as explained
in Section 5.3.1, and the data is ordered according to the recording time of the
individual sensor. The sensors are equal and operate at the same frequency.
However, due to internal processes or latencies in the processing of the packages,
the resulting data stream is asynchronous at some points in time. Therefore, not
for all time steps is the aggregation of four consecutive scans useful because this
might include two point clouds of the same radar sensor. This is also important
for the runtime because the latency between different sensors is ideally smaller
than the time between two consecutive scans of the same sensor. Therefore, we
aggregate, in this case, only the point clouds of different radar sensors, resulting
in less than four point clouds leading to sparser input data. Since the resulting
point clouds are recorded within a short time frame of around 50 ms, we do
not compensate for additional movement. We summarize the number of scans
and the number of moving objects for the individual dataset splits in Table 5.4.
Additionally, 87% of the points with an absolute ego-motion compensated Doppler
velocity larger than 0.1 m/s are noise and hence belong to the static class. The
sparsity and noisiness demonstrate that reliable scene understanding in radar
data is more challenging compared to typically used 3D LiDAR data.

We evaluate the performance regarding mIoU and runtime and report the
results in Table 5.5. The sparse representation and the advanced batch process-
ing both harm the accuracy of the semantic segmentation. We argue that the
aggregation of four scans and the zero padding help to improve accuracy. The ad-
vantage of the padded point clouds is that during the downsampling, these points
are also removed, and the resulting point clouds are more dense, resulting in a
downsampling factor smaller than two within the individual stage. However, the
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Model parameters (M) mean runtime (ms) mIoU

Gaussian Radar Transformer 8.4 123.0 68.5

Gaussian Radar Transformer (optimized) 8.4 24.0 56.9

Table 5.5: Evaluation of the mean runtime, number of parameters, and performance in terms
of mIoU of the Gaussian Radar Transformer on an Nvidia RTX A6000 GPU based on 1000
randomly sampled point clouds of the RadarScenes dataset. We optimize the Gaussian Radar
Transformer in terms of the runtime to enable real-time processing.

runtime-optimized model still outperforms state-of-the-art approaches, which use
dense representation and zero padding. More importantly, the runtime is reduced
by utilizing advanced batching and the sparse input representation. The resulting
approach is applicable for online processing, which is important for tasks requir-
ing immediate feedback. As a result, we consider runtime to be an important
factor and utilize the sparse representations within the following chapters.

In summary, our evaluation supports our claim that our method provides
competitive semantic segmentation performance of moving objects in single-scan,
sparse radar point clouds. At the same time, our method exploits self-attention
modules, which enhance performance in multi-dimensional radar data processing,
outperforming state-of-the-art approaches. Thus, we support all our claims with
this experimental evaluation.

5.4 Conclusion
Scene understanding is crucial for autonomous vehicles in dynamic environments
to make future state predictions, avoid collisions, and plan paths. Camera and
LiDAR perception algorithms have made tremendous progress in recent years
but face limitations under adverse weather conditions. To leverage the full po-
tential of multi-modal sensor suites, radar sensors are essential for safety-critical
tasks and are already installed in most new vehicles today. In this chapter, we
presented a novel approach to perform semantic segmentation of moving objects
in sparse, noisy, single-scan radar point clouds obtained from automotive radar
sensors to enhance the perception of the environment. Instead of aggregating
multiple scans to densify the point clouds, we propose a novel approach based
on the self-attention mechanism to accurately perform single-scan segmentation.
We propose the Gaussian transformer layer, which replaces the softmax normal-
ization with a scaled Gaussian function to decouple the contribution of individual
points. To tackle the challenge of the transformer to capture long-range depen-
dencies, we incorporate attentive up- and downsampling modules. This approach
enlarges the receptive field and captures strong spatial relations. The resulting
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5.4. Conclusion

approach exploits the self-attention mechanism throughout the whole network.
This allows us to successfully segment moving objects and improve feature extrac-
tion. We implemented and evaluated our approach on the RadarScenes dataset,
providing comparisons to other methods and supporting all claims made in this
chapter. The experiments suggest that the proposed architecture achieves good
performance on semantic segmentation of moving objects within single-scan point
clouds and shows superior segmentation quality in diverse environments, even
without exploiting temporal information. We assessed the different parts of our
approach and compared them to other existing techniques. Overall, our approach
outperforms state of the art both in F1 score and mIoU, taking a step forward
towards sensor redundancy for semantic segmentation for autonomous robots and
vehicles.
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Chapter 6

Moving Object Segmentation

T he semantic segmentation of moving objects in sparse and noisy point
clouds provides essential information for scene understanding. The
differentiation of moving and static objects is especially important for
safely navigating in dynamic, real-world environments. However, in-

corporating semantic information into the perception task comes with several
limitations. Firstly, the number of points within the radar point clouds that
belong to different semantic classes is unevenly distributed. Therefore, training
deep neural networks is challenging since class imbalance can result in a bias
in the trained model, which negatively impacts performance. Several methods
exist to overcome the class imbalance problem, including optimized loss function
and training strategies. Despite that, the segmentation performance of underrep-
resented classes is often limited, including the most vulnerable road users, like
pedestrians. Secondly, the restricted number of semantic classes does not cover
real-world long-tailed class distribution. State-of-the-art datasets [158, 189] typ-
ically include the most common classes, such as cars, trucks, pedestrians, and
two-wheelers, which do not cover a real-world data distribution with a variety
of classes of objects which might appear on the road such as strollers, animals,
wheelchairs and scooters. Therefore, the limitation to specific classes poses a
serious restriction for safety-relevant applications.

Additionally, the annotation process for a limited set of classes is not trivial,
as the exact classification of objects within these classes is often unclear. For
example, different annotators classify a medium-sized vehicle as a truck or car,
which can result in inconsistencies within the training dataset, leading to per-
formance degradation. To address both problems and overcome the inherent
limitations, we address the task of moving object segmentation in radar point
clouds. This task only requires the differentiation between the detection of mov-
ing and static objects. Moving detections comprise all possible moving objects
within the surroundings of the autonomous vehicle, incorporating occasionally
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Figure 6.1: Our learning-based approach enhances moving object segmentation and reduces
false positive predictions (bottom) from noisy, single-scan radar point clouds (top) compared
to a velocity threshold determined on the validation set (middle).

appearing objects. Static or non-moving objects include the static environment,
such as buildings and vegetation, but also parked vehicles. Additionally, the an-
notation process is simplified to derive the supervised labels for moving object
segmentation because no differentiation between the semantic classes is required,
reducing the labeling cost. Consequently, binary classification of moving and
static objects comes with several advantages, and for most downstream tasks,
such as collision avoidance, the correct semantic class of the object, such as car
or truck, is not critical.

State-of-the-art methods for moving object segmentation for LiDAR and cam-
era data rely on the extraction of temporal dependencies in videos [55] or aggre-
gated residuals between previous scans [95]. Processing multiple scans, as done
by Chen et al. [33] and Sun et al. [204], induces latency, which is unsuitable for

92



6. Moving Object Segmentation

a task requiring immediate information about the environment, such as collision
warning. Furthermore, these approaches utilize 2D range image representations,
which are inappropriate for radar sensors that do not provide height information.
Mersch et al. [140] and Wang et al. [217] utilize a voxel-based approach to keep
the 3D information of the point clouds intact and enhance moving object seg-
mentation. However, these approaches also rely on the aggregation of multiple
scans to identify moving objects reliably. We exceed these limitations and focus
on the single scan processing of radar data. Moreover, the single-scan processing
reduces the memory requirements, which is beneficial for real-world applications.

A drawback is that radar scans are affected by noise due to multi-path prop-
agation, ego-motion, and sensor noise, as introduced in Section 2.3.5. The noisy
measurements frequently lead to false positives and make simple methods that
identify moving objects based on a Doppler velocity threshold [183] unacceptable,
as visualized in Figure 6.1. In this chapter, we aim to investigate how additional
sensor information, such as the Doppler velocity, can be exploited by learning-
based approaches to reliably identify moving objects in the environment. Fur-
thermore, the radar cross section, which depends on the material properties and
the structure of the detection, supports the differentiation of closely connected
objects. We investigate the processing of single, sparse radar point clouds by ex-
ploiting additional and valuable radar sensor information, including the Doppler
velocity and radar cross section.

The main contribution of this chapter is a novel learning-based approach that
accurately predicts moving objects in sparse, single-scan radar point clouds. Our
approach, called Radar Velocity Transformer, predicts the semantic label of mov-
ing or non-moving for each point in the input radar scan. To classify the individ-
ual detection and extract valuable point-wise features, we introduce the velocity
encoding in each module of our network. The encoding of the velocity enhances
performance by injecting important information throughout the network. We
optimize the feature aggregation in the decoder part with our transformer-based
upsampling to adaptively merge features and capture complex local structures in
sparse point clouds. Furthermore, we reorganized the RadarScenes [189] dataset,
providing semantic classes for individual detection, which we transfer into moving
and non-moving labels, establishing a single-scan benchmark.

For this approach, we make two key claims in this chapter: (i) Our approach
is able to accurately perform moving object segmentation in single-scan, noisy
radar point clouds and enhance the state of the art in moving object segmentation
without exploiting temporal dependencies; (ii) The velocity encoding throughout
the network and the transformer-based upsampling are essential to derive highly
discriminative features and adaptively aggregate information to enhance accuracy.
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Figure 6.2: Architecture of our Radar Velocity Transformer for moving object segmentation. The fully connected layer first increases the dimension of the
per-point features. The velocity transformer block incorporates the velocity transformer layer in a residual block to extract discriminative features from
sparse radar data. Our downsampling and optimized transformer-based upsampling further improve the feature extraction. The final fully connected layer
predicts the semantic class for the individual points in the single-scan radar point cloud.
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6. Moving Object Segmentation

6.1 Our Approach to Moving Object
Segmentation

The goal of our approach is to achieve precise moving object segmentation in
single-scan, sparse radar point clouds to enhance the environmental perception
of autonomous vehicles. Figure 6.2 illustrates our Radar Velocity Transformer,
which is a transformer-based framework that builds upon the successful self-
attention mechanism [212] and directly processes the input point cloud to omit in-
formation loss. We incorporate the valuable Doppler velocity information within
each module and use the so-called velocity transformer layer as the central build-
ing block of each encoder-decoder stage. Furthermore, we introduce transformer-
based upsampling modules to adaptively combine local context information to
enable fine-grained feature extraction.

6.1.1 Velocity Transformer Layer
In sparse radar point clouds, the information of individual detections can be of
great benefit for solving downstream tasks such as moving object segmentation.
Therefore, we follow Section 5.1.1 and introduce a velocity transformer layer to
enhance feature extraction, as illustrated in Figure 6.3. Furthermore, the Doppler
velocity is of central interest in determining moving objects, and the encoding of
the velocity within the individual layers can help to perceive this information
throughout the whole network.

In addition to the point coordinates P and the point-wise features X, we
include the Doppler velocities v = [v1, . . . , vN ]

⊤ ∈ RN , where vi ∈ R, as sep-
arate inputs to our network. The idea is to support accurate moving object
segmentation based on the relative velocity encoding Rv

i,j ∈ RN×Nvtl since this
enables the differentiation of nearby points and the identification of moving ob-
jects, where Nvtl is the number of points within the local areas. We determine
the neighbors within the local area by kNN search with k = Nvtl. Hence, we
first determine the relative velocities rvi,j = vi − vj of the neighboring points. We
process the resulting relative velocities by two fully connected layers with weight
matrices Wv

1 ∈ R1×1, and Wv
2 ∈ R1×D, and the Gaussian error linear unit as

an activation function [77]. We derive the encoded representation of the input
features X following our Gaussian transformer layer, introduced in Section 5.1.1.
We adopt the kNN algorithm with k = Nvtl of the relative velocity encoding to
derive the sampled queries Qk, keys Kk, and values Vk ∈ RN×Nvtl×D.

For the positional encoding, we adopt our approach and process the relative
position rpi,j = pi− pj by an MLP, including two fully connected layers, to derive
the positional encoding R ∈ RN×Nvtl×D. In contrast to our Gaussian transformer
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Figure 6.3: Design of the velocity transformer layer incorporates the vector attention mechanism,
the velocity encoding, and the positional encoding. The fully connected layers with weight
matrix WQ, WK , WV encode the features as queries Q, keys K, and values V. We use the kNN
algorithm to determine local areas and sample and group the encodings accordingly to derive
the sampled queries Qk, keys Kk, and values Vk. The positional encoding Rp incorporates
precise geometric information. Furthermore, we include the velocity encoding Rv and process
the Doppler velocities by two fully connected layers and Gaussian error linear unit activation
function to provide important motion information for moving object segmentation. The output
features Xout combine the information to derive meaningful representations.

layer, the attention scores Ai,j integrate the relative velocity encoding Rv
i,j. We

calculate the attention weights based on the vector attention of the queries and
the keys, the relative positional encoding Rp

i,j, and the relative velocity encod-
ing Rv

i,j, enabling fine-grained information aggregation within local areas. The
final attention weights are determined by the softmax function:

Ai,j = softmax((Qk
i −Kk

j ) + Rp
i,j + Rv

i,j), (6.1)

where we normalize the weights within the local areas for each individual feature.
We do not utilize the Gaussian function because the softmax function reduces
the runtime due to optimized implementations. Further, the focus is to enhance
the segmentation performance by incorporating the velocity information. We add
the relative velocity encoding to the values and the relative positional encoding
to derive the combined values Vc

i,j = Vk
i,j + Rp

i,j + Rv
i,j, which include and up-

date the valuable information throughout the network. To derive the weighted
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Figure 6.4: Detailed design of the downsampling module of our Radar Velocity Transformer.
The input features XSL

of stage SL are processed by a fully connected layer before we sample
and group the points based on the farthest point sampling and the kNN algorithm. The features,
the Doppler velocities, and the point coordinates are concatenated. We process the resulting
matrix by max pooling and a fully connected layer to derive the features of the downsampled
point cloud.

features Xout, we calculate the sum of the element-wise multiplication:

Xout
j =

Nvtl∑
i=1

Ai,j ⊙Vc
i , (6.2)

within the local areas. The aggregated features, which are enriched by the ve-
locity encoding, are directly processed by the following module to reduce the
computational cost within the velocity transformer layer.

6.1.2 Velocity Transformer Block
Our velocity transformer block is a residual block [75], similar to the point
transformer block [271] and the Gaussian transformer block, introduced in Sec-
tion 5.1.2, that embeds the velocity transformer layer in the center of two fully
connected layers. We add layer normalization [243] and a Gaussian error linear
unit activation function for each fully connected layer. The features XSL

of the
individual stages SL are processed by the velocity transformer layer and the fully
connected layers to enrich the information of individual points within local areas.
The velocity vSL

and position data PSL
are utilized to determine the relative en-

codings but are not further transformed to keep unaltered information throughout
the network.

6.1.3 Downsampling Layer
The downsampling layer reduces the cardinality of the point cloud PSL+1

⊂ PSL

after each stage SL and has to keep the most relevant information intact, as in-
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6.1. Our Approach to Moving Object Segmentation

troduced in Section 3.3.1. Following Qi et al. [166], we adapt the max pooling
operation depicted in Figure 6.4. We first process the feature vector XSL

by a
fully connected layer. To derive the local areas, we sample and group the points
using the farthest point sampling and kNN algorithm. The features and the
Doppler velocity values are sampled and grouped accordingly. To also induce
valuable velocity information in the downsampling, we concatenate the features,
the position, and the velocity information. Afterward, we apply max pooling to
aggregate the information and process the feature vector by a fully connected
layer. We reduce the number of points NSL

by a factor of 2 and keep the po-
sition PSL+1

and velocity information vSL+1
of the downsampled point cloud to

enrich the information in deeper layers.

6.1.4 Transformer-based Upsampling Layer
The common upsampling method interpolates the k = 3 nearest neighbors based
on an inverse distance weighted average [166] and combines these with the fea-
tures of the skip connection. Especially at the boundaries of moving objects,
straightforward interpolation can result in a combination of features of different
classes, which can harm the extraction of discriminative features, as explained
in the previous chapter. Furthermore, the specific properties of the detections,
including the Doppler velocity, are not considered during feature aggregation,
which also applies to the Gaussian Radar Transformer. Hence, we argue that
the upsampling and aggregation of the features in the decoder part of the net-
work are crucial to enhance accuracy, especially for sparse point clouds. We
propose a transformer-based upsampling layer to leverage the full potential of
transformer-based approaches and utilize the velocity encoding within the full
network visualized in Figure 6.5. In contrast to the attentive upsampling layer,
introduced in Section 5.1.4, we incorporate an individual weighting of the features
to improve the feature extraction for moving object segmentation.

The idea is to enable the network to learn how to concatenate important infor-
mation by inter-attention to extract valuable features. Building on the attentive
sampling, introduced in Section 5.1.4, the inter-attention leverages the full po-
tential of the transformer architecture. The inputs are the output point cloud
of the previous velocity transformer block Pup, with the number of points Nup,
which has to be upsampled, and the point cloud of the skip connection Pskip,
where Nup ≤ Nskip.

Inspired by our velocity transformer layer and Gaussian transformer layer, we
first encode the features Xup as keys Kup, and values Vup and the features Xskip

as queries Qskip. To determine the relative position and velocity encoding, we
calculate the kNN for the point cloud of the skip connection Pskip within the
point cloud Pup, where k = Ntus.
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Figure 6.5: Detailed design of the transformer-based upsampling module of our Radar Velocity
Transformer. The features Xup are encoded as keys Kup and values Vup, and the features Xskip
as queries Qskip. We determine three individual attention weights utilizing the softmax func-
tion for the relation of queries and keys Qskip − Kup, the relative positional encoding Rp and
the relative velocity encoding Rv. The attention weights weigh the respective features. The
combined and aggregated features are processed by a fully connected layer and added to the
features of the point cloud of the skip connection to derive the upsampled features X̂out,up. The
output includes the point coordinates Pskip and velocity information vskip.

In the sample and grouping module, we compute the relative position and
velocity of the correspondent points of the two point clouds. We determine the
encodings by two fully connected layers with the Gaussian error linear unit acti-
vation function. In contrast to the velocity transformer layer, we calculate indi-
vidual attention weights for the relation of queries and keys Aqk

i,j ∈ RN×Ntus×DSL ,
the relative positional encoding Ap

i,j ∈ RN×Ntus×9, and the relative velocity encod-
ing Av

i,j ∈ RN×Ntus×3 to enable fine-grained information aggregation and enhance
accuracy. The individual attention weights are determined by the softmax func-
tion as follows:

Aqk
i,j =softmax(Qskip

i,j −Kup
i,j), (6.3)

Ap
i,j =softmax(Rp

i,j), (6.4)
Av

i,j =softmax(Rv
i,j). (6.5)

We concatenate the individual attention weights to derive the final attention
scores Âi,j = (Aqk

i,j,A
p
i,j,Av

i,j) where Âi,j ∈ RN×Ntus×DSL
+12. To weight the respec-

tive information, the values Vup are concatenated with Rp
i,j and the velocity encod-

ing Rv
i,j resulting in the combined values V̂c

i,j = (Vup
i,j ,R

p
i,j,Rv

i,j) ∈ RN×Ntus×DSL
+12.
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6.1. Our Approach to Moving Object Segmentation

To derive the weighted features Xout,up, we calculate the sum of the element-
wise multiplication:

Xout,up
j =

Ntus∑
i=1

Âi,j ⊙ V̂c
i , (6.6)

within local areas. We process the aggregated features Xout,up ∈ RN×DSL
+12 by a

fully connected layer to compress the features to the input feature dimension DSL

with a learnable weight matrix Wup ∈ R(DSL
+12)×DSL :

X̂out,up = Xout,upWup, (6.7)

where X̂out,up are the updated features for the upsampled point cloud. The fully
connected layer enables the information exchange of the individual parts and
reduces the complexity of the succeeding modules.

The final output of the transformer-based upsampling layer is the sum of
the features Xskip and X̂out,up, which incorporates the valuable information of
both point clouds to derive discriminative features. The final output includes
the point coordinates Pskip and the velocity information vskip to keep the position
and motion information intact. Inter-attention enables an adequate exchange of
information, leveraging the properties of each point to overcome the limitations
of interpolation. Furthermore, the position and velocity information is encoded
within the upsampling process to enhance performance.

6.1.5 Network Architecture

We build our network architecture based on the widely-used U-Net [166, 271] with
an encoder-decoder architecture including skip connections as illustrated in Fig-
ure 6.2. The input to the network are the features xi, the position information pi

with two spatial coordinates xCi , yCi , and the ego-motion compensated Doppler
velocity vi. The features include the position, the velocity, and additionally, the
radar cross section σi resulting in a 4-dimensional vector xi =

[
xCi , y

C
i , σi, vi

]⊤.
The inputs are first processed by an MLP before being passed to the first veloc-
ity transformer layer. The per-point features DSL

are gradually increased within
each stage from 32 to 64, 128, 256, and 512. The sampling operations change
the cardinality by a factor of 2, resulting in [N,N/2, N/4, N/8, N/16] points for
the respective stage. The final output is determined by an MLP with two fully
connected layers to obtain per-point logit values for the binary classification of
moving and static points. The individual stages of our architecture each comprise
one single velocity transformer block to build an efficient network.
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6.2 Implementation Details
The Radar Velocity Transformer is implemented in PyTorch [161]. We train our
model over 50 epochs with the AdamW [132] optimizer with an initial learning rate
of 0.0005 and a cosine annealing learning rate scheduler [132]. We combine the
Lovász loss [21] and the weighted cross-entropy for which we follow the approach
by Schumann et al. [190] and set the weights for moving objects to 8.0 and
for static ones to 0.5. The local areas for the velocity transformer layer are
set to Nvtl = 16 and for the transformer-based upsampling to Ntus = 12. We
train the network with one Nvidia A100 GPU and a batch size of 128. To reduce
overfitting, we further apply data augmentation, including jitter, scaling, rotation,
and instance augmentation.

6.3 Experimental Evaluation
The main focus of this chapter is accurate, single-scan moving object segmentation
in sparse and noisy radar point clouds. We present our experiments to show the
capabilities of our method to segment moving objects reliably. The results of our
experiments also support our key claims, which are: Our approach (i) segments
moving objects in radar point clouds more precisely compared to state-of-the-art
methods and (ii) the velocity encoding and the transformer-based upsampling
enhance the accuracy by incorporating valuable information throughout the net-
work.

6.3.1 Experimental Setup
As in Chapter 5, we utilize the RadarScenes [189] dataset to train and evaluate
our model. We use the same training, validation, and test split to ensure compara-
bility. We transfer the semantic labels into binary labels, differentiating between
moving and static objects. Following Chen et al. [33], we utilize the intersection
over union (IoU) [54], introduced in Section 5.3.1, to evaluate the methods.

6.3.2 Moving Object Segmentation Performance
The first experiment evaluates the performance of our approach, and its outcome
supports the claim that our approach enhances state-of-the-art moving object
detection in sparse and noisy radar point clouds by utilizing only single scans.

To compare the results, we select the recently best-performing point-based
segmentation method, our Gaussian Radar Transformer trained on only static
and moving detections, introduced in Chapter 5, the Stratified Transformer [242]
by Xin et al., which utilizes single scans, the 4DMOS network [140] by Mersch
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Method Input IoU

Threshold |vi| > t single-scan 35.1
4DMOS [140] multiple-scan 73.1
Stratified Transformer [242] single-scan 74.6
Gaussian Radar Transformer (Chapter 5) single-scan 79.1
Our Radar Velocity Transformer single-scan 81.3

Table 6.1: Moving object segmentation results on the RadarScenes test set in terms of IoU for
the moving class. The threshold t = 0.92m/s is determined on the validation set and afterward
applied to the test set [183]. Our approach outperforms state-of-the-art approaches for moving
object segmentation. The learning-based methods are superior compared to a simple threshold
due to the noise in radar data. The best results are in bold.

et al. for LiDAR moving object segmentation which does not use the range rep-
resentation because this is incompatible with the 2D coordinates, and a simple
threshold for the velocity determined on the validation set [183]. For specific
information on the training regime of the two networks, we refer to the original
papers [140, 242].

The Radar Velocity Transformer outperforms the existing approaches, and the
learning-based methods are superior compared to the threshold-based method, as
displayed in Table 6.1. The difference between the learning-based approaches
and the threshold-based method illustrates the necessity of advanced models
to perform moving object segmentation in noisy radar point clouds. Addition-
ally, the transformer-based methods enhance performance compared to the voxel-
based 4DMOS, which suggests that discretization artifacts lead to information
loss that cannot be compensated by additional temporal information of consecu-
tive radar scans. The feature input vector of Stratified Transformer and Radar
Velocity Transformer both contain valuable velocity information. However, our
Radar Velocity Transformer considerably improves the IoU for moving objects
by 6.7 absolute percentage points. Furthermore, we are able to outperform the
Gaussian Radar Transformer, which illustrates that the velocity encoding and
transformer-based upsampling enhance segmentation performance. Additionally,
our approach performs well under adverse weather conditions, as illustrated in Fig-
ure 6.6. We reliably detect distant pedestrians and occluded vehicles within com-
plex driving scenarios.

The strong performance for moving object segmentation benefits from radar
data, which includes Doppler velocity information. Furthermore, the binary clas-
sification reduces class imbalance and addresses long-tailed class distributions.
As a result, we enhance the performance compared to semantic segmentation in
the previous chapter. To illustrate the advancement, we transfer the predictions
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Figure 6.6: Qualitative results of the Stratified Transformer [242] and our Radar Velocity
Transformer on the test set of RadarScenes [189]. Red points indicate moving objects and black
points belong to static objects.

of our Radar Velocity Transformer into the true semantic class, resulting in a
mIoU of over 90 %, which shows the benefits of moving object segmentation.

6.3.3 Ablation Study on Network Components
The second experiment, the ablation study on network components, evaluates the
influence of the velocity encoding and transformer-based upsampling on the per-
formance to support our second claim that our proposed modules each contribute
to the improvements in terms of IoU. The combined results of the ablation study
on the validation set are listed in Table 6.2.

To assess the benefits of transformer-based upsampling, we replace the mod-
ule with the commonly used trilinear interpolation based on an inverse distance
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# velocity
encoding

transformer-based
upsampling

IoU

[A] 73.4
[B] ✓ 75.2
[C] ✓ 75.6
[D] ✓ ✓ 77.4

Table 6.2: Influence of the different components in terms of IoU for moving objects on the
RadarScenes validation set. Transformer-based upsampling and velocity encoding are both
important in enhancing moving object segmentation. The best results are in bold.

weighted average [166]. Since the velocity encoding is new and the information
of the velocity of the individual detection is present in the feature vector x, we
remove the velocity encoding to evaluate the influence on the IoU.

Ablation [A], we replace the upsampling and remove the velocity encoding,
which leads to a decrease in IoU by 4 absolute percentage points. In ablation [B],
we add the transformer-based upsampling, which enables an adaptive feature ag-
gregation of the two point clouds and leads to an improvement of IoU by 1.8
absolute percentage points. In comparison to ablation [A], we add the velocity
encoding throughout the network in [C], which enhances performance. We as-
sume that the velocity encoding is highly valuable since the fine-grained Doppler
velocity information may be lost in high-level features of deeper layers. Hence,
the specific task of moving object segmentation benefits from the velocity en-
coding. The final model of our Radar Velocity Transformer, represented in [D],
further enhances the IoU by using both velocity encoding and transformer-based
upsampling. We conclude that the velocity encoding supports the aggregation of
the features for the upsampling and hence leads to the best results.

As an additional experiment, we replaced the concatenation of the transformer-
based upsampling with an addition in our final Radar Velocity Transformer. The
obtained IoU of 75.3 % indicates that the concatenation leads to a more fine-
grained weighting of the individual channels and improves performance. Addi-
tionally, we exploit transformer-based downsampling. However, this does not
improve the overall performance, and hence, we keep the max pooling since it is
more efficient and does not mix information, which is suitable for the downsam-
pling for the task of moving object segmentation.

6.3.4 Runtime

Finally, we analyze the runtime of our approach and show that our approach runs
fast enough to support online processing in the vehicle, which is important for
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6. Moving Object Segmentation

model parameters (M) mean runtime (ms)

4DMOS [140] 1.8 14.0
Stratified Transformer [242] 8.0 34.4
Gaussian Radar Transformer (Chapter 5) 8.4 24.0

Ours 3.4 12.0

Table 6.3: Evaluation of the number of parameters and mean runtime of the models on an
Nvidia RTX A6000 GPU based on 1000 randomly sampled point clouds of the RadarScenes
validation set. Our approach has a lower runtime than other state-of-the-art approaches.

deployment. We tested our approach and the baselines on an AMD Threadripper
CPU with an Nvidia RTX A6000 GPU, as explained in Section 5.3.5. Our im-
plementations include an optimized farthest point sampling and kNN algorithm
in C++ to speed up the inference and preserve consistency within the chapters.
We report the results of all approaches in Table 6.3. The mean runtime is 0.012 s,
which is equal to 83 Hz, and thus over 4x faster than the frame rate of 17 Hz
of the sensor. Furthermore, our Radar Velocity Transformer runs faster than
the Stratified transformer, 4DMOS, and our Gaussian Radar Transformer. It
is remarkable that 4DMOS achieves comparable runtime but uses denser point
clouds. Therefore, the voxelization and optimized 4D convolutions are beneficial.
However, the voxelization leads to worse performance in terms of IoU, which is
why the point-based approaches are preferable. Furthermore, our Radar Velocity
Transformer uses fewer parameters than the Stratified Transformer and Gaussian
Radar Transformer, which reduces memory requirements.

In summary, our evaluation supports our statement that our method provides
competitive moving object segmentation performance in sparse, single-scan radar
processing. At the same time, our method efficiently incorporates the Doppler
velocity information within the individual modules of the network, outperforming
state-of-the-art approaches. Thus, we support all our claims with this experimen-
tal evaluation.

6.4 Conclusion
In this chapter, we presented a novel approach to accurately perform single-scan
moving object segmentation in the domain of radar data. The awareness of mov-
ing objects in the surroundings of a self-driving vehicle is essential for safe and
reliable autonomous navigation. The interpretation of LiDAR and camera data
achieves exceptional results but typically requires accumulating and processing
temporal sequences of data in order to extract motion information. In contrast,
radar sensors, which are already installed in most recent vehicles today, can over-
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come this limitation as they directly provide the Doppler velocity of the detections
and, hence, incorporate instantaneous motion information within a single scan.
The key to our Radar Velocity Transformer is to incorporate the valuable velocity
information throughout each module of the network, thereby enabling the pre-
cise segmentation of moving and non-moving objects. Additionally, we propose a
transformer-based upsampling, which enhances performance by adaptively com-
bining information and overcoming the limitation of interpolation of sparse point
clouds. Our novel transformer-based approach does not rely on exploiting tempo-
ral dependencies to identify moving objects and enables us to perform single-scan
moving object segmentation in sparse radar scans accurately. Finally, we create
a new radar moving object segmentation benchmark based on the RadarScenes
dataset and compare our approach to other state-of-the-art methods.

The experiments and the comparisons to other approaches support all claims
made in this chapter and suggest that our architecture achieves superior perfor-
mance on moving object segmentation in noisy, single-scan point clouds obtained
from automotive radars. The sensors used for recording the RadarScenes dataset
are series sensors already implemented in vehicles, which makes our approach
applicable without additional cost. Overall, our approach outperforms the state-
of-the-art methods and proposes advanced modules for radar data processing,
taking a step forward towards reliable single-scan moving object segmentation
and sensor redundancy for autonomous vehicles.
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Chapter 7

Moving Instance Segmentation

I n the previous chapter, we introduced our approach to segment moving
objects within sparse and noisy radar data. Moving object segmentation
focuses on the classification of the individual detections as moving and
static but lacks valuable information about the number of agents present

within the surroundings of a self-driving vehicle. To navigate safely, information
about the instances plays a crucial role in handling interactions with other traffic
participants and influences the decision-making for specific maneuvers in path
planning, such as lane changes or overtaking. Therefore, knowledge about the
agents is mandatory for safety-relevant applications.

In this chapter, we focus on the problem of moving instance segmentation in
sparse and noisy radar point clouds, as depicted in Figure 7.1. The task combines
instance segmentation and moving object segmentation into a panoptic problem,
including the differentiation of object instances, such as parked and moving cars.
The moving instances represent the “things” and the static points the “stuff”.
For many tasks, the information, if an object is moving in combination with
the velocities, is often sufficient, substantially simplifying the labeling efforts as
explained in Chapter 6.

Furthermore, semantic information can be exploited to reason about the mo-
bility of objects, but it also entails the aforementioned “long-tail” problem; i.e.,
no matter how much data we collect, we will always have semantic classes that
are underrepresented or not even covered by the training data. Therefore, we re-
strict the instance segmentation within the moving or non-moving instances that
are essential for autonomous driving and allow it to potentially cover long-tail
classes.

State-of-the-art methods often address the task of moving instance segmen-
tation separately as moving object segmentation [33] and instance segmenta-
tion [125]. Chen et al. [33] and Kim et al. [95] focus on moving object seg-
mentation and pass aggregated scans through the whole network, which induces
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Figure 7.1: Our approach combines moving object segmentation (b) and instance segmenta-
tion (c) to solve the panoptic task of moving instance segmentation from sparse radar point
clouds (a). The reference image in (d) illustrates the scene and includes privacy-preserving
colored masks. In the image of the point cloud (c), each color represents a different instance of
moving objects (static is grey). The colors in (c) and (d) correspond if the object is visible.

latency and is disadvantageous for a task requiring immediate feedback, such as
collision avoidance. Recent instance segmentation approaches, as proposed by
Schult et al. [187], Vu et al. [214], and Xie et al. [240], work on single inputs,
neglecting the temporal information, and do not differentiate between moving
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7. Moving Instance Segmentation

and static objects. The temporal information is especially helpful for radar point
clouds since per-scan data is sparse. Furthermore, most noise points are directly
identifiable within the temporal domain because these points fluctuate over time.
In addition, Gasperini et al. [59] and Li et al. [118] rely on specific semantic la-
bels to perform instance segmentation, which are absent in the context of moving
instance segmentation since all objects belong to the moving class. Our approach
aims to overcome these limitations and exploits the valuable temporal information
in an effective manner.

The main contribution of this chapter is a novel approach that combines mov-
ing object segmentation and instance segmentation within a single network and
accurately predicts moving instances in sparse and noisy radar point clouds. Our
approach, called Radar Instance Transformer, predicts for each point in the input
radar scan if it is moving or static and assigns an instance ID to each moving
detection. Thus, we unify moving object segmentation of Chapter 6 and instance
segmentation. To reliably identify moving instances, we efficiently incorporate the
temporal information within the single current scan by our sequential attentive
feature encoding module without passing aggregated scans through the whole net-
work. We optimize the network architecture in terms of efficiency and accuracy by
processing the point cloud with the original resolution throughout the network
to keep as much information as possible and enrich the points with high-level
features. We utilize local and global attention to include instance information
and propose a graph-based instance assignment to improve performance. In con-
trast to typical LiDAR approaches, our individual modules tackle the challenges
of sparsity and noise of radar point clouds that make radar data interpretation
comparably challenging. Besides, we extended the RadarScenes dataset and trans-
ferred it into the first moving instance segmentation benchmark for point clouds
and published it publicly at https://doi.org/10.5281/zenodo.10203864.

In sum, we make five claims in this chapter: First, our approach shows state-of-
the-art performance for moving instance segmentation in sparse and noisy radar
point clouds without passing multiple scans through the whole network, reduc-
ing the memory requirements compared to aggregation approaches. Second, our
sequential attentive feature encoding extracts valuable temporal information by
enriching the features of individual points to enhance accuracy. Third, our atten-
tive instance transformer head is able to incorporate essential instance informa-
tion, which improves the overall performance. Fourth, our attention-based graph
partitioning enhances instance assignments without requiring class-dependent se-
mantic information. Fifth, our backbone enables valuable feature extraction for
sparse radar point clouds by processing the full-resolution point cloud, i.e., the
original number of points throughout the network, to enhance the accuracy and
reduce the number of parameters.
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Figure 7.2: Detailed design of each module of our Radar Instance Transformer. (a) The sequential attentive feature encoding module combines the pose-
aligned point clouds and their corresponding features using the current scan into a featurized point cloud, where the features encode temporal information.
(b) This aggregated feature volume is then processed in a multi-pathway transformer backbone, where the transformer layers process the information
at different resolutions and aggregate per-point features. (c) The per-point features are then used to estimate the semantics PMOS and perform graph
partitioning for instance alignment based on the global similarity quantity Sglob. The local similarity Sloc includes the differentiation of instances and the
static environment. The tuples denote the number of points and feature channels.
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7. Moving Instance Segmentation

7.1 Our Approach to Moving Instance
Segmentation

Our goal is to achieve precise moving instance segmentation in a sequence of noisy,
sparse radar point clouds to enhance scene interpretation of autonomous vehi-
cles. Figure 7.2 illustrates the overall architecture of our Radar Instance Trans-
former, which is a point-based framework and builds upon the self-attention mech-
anism [212]. We incorporate temporal relationships in a computationally efficient
way to enrich the features of the current point cloud, as detailed in Section 7.1.1.
In Section 7.1.2, we propose a new backbone with four stages S, processing the
enriched full-resolution point cloud throughout the network to extract valuable
features and omit information loss. We utilize local and global information de-
rived from self-attention to improve the panoptic task of instance association and
semantic segmentation, which we explain in Section 7.1.3. Finally, our graph-
based instance assignment, detailed in Section 7.1.4, incorporates global instance
information to enhance accuracy.

7.1.1 Sequential Attentive Feature Encoding

Temporal information is essential to enhance scene interpretation in sparse and
noisy radar point clouds. Especially for moving instance segmentation, the tem-
poral relationship helps to identify agents reliably. Additionally, temporal de-
pendencies support the differentiation of moving and static detections, including
noise directly identifiable in the temporal domain due to the often changing ap-
pearance in sequences of scans. In contrast to other approaches [95, 140] that
pass multiple point clouds through the whole network, we propose the sequential
attentive feature encoding module to efficiently enrich the features of a single
point cloud with temporal information. Therefore, the previous scans are only
processed within the sequential attentive feature encoding module, and we only
pass the current scan through the whole network. Consequently, we do not in-
crease the number of points that need to be processed by the network. The goal
is to adaptively combine the temporal information of the previous scans with the
features of the current point cloud, hence reducing the computational burden but
still keeping important information.

The input to our sequential attentive feature encoding module is the cur-
rent scan P t at time t and T previous scans P t−T , . . . ,P t−1 of a sequence of
radar scans, as depicted in Figure 7.2. As explained in Section 5.1.1, the current
scan P t includes the point coordinates P and point-wise features X with input
feature dimension D. Additionally, we aggregate the previous scans into a single
scan, which comprises the Nt−T + · · · +Nt−1 points of all the combined T scans
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Figure 7.3: The sequential attentive feature encoding module enriches the current point
cloud Pt, which includes the point coordinates P and point-wise features X, with the infor-
mation of the previous point clouds Pp, which include the point coordinates Pp and point-wise
features Xp. After the KPConv layer [210], we extract the queries Q, keys K, and values V.
The final attention weights A combine vector attention with relative positional encoding R to
derive valuable temporal information from the previous point clouds.

with point coordinates Pp and point-wise features Xp. We keep the original num-
ber of points for each individual point cloud. To align the previous scans with the
current scan locally, we assume that the homogeneous relative pose transforma-
tion Ht

t−1 ∈ R4×4 between point cloud P t and P t−1 is given. The transformation
can be derived from global navigation satellite systems, online simultaneous lo-
calization and mapping algorithms [2, 15, 28, 266], or using wheel encoders and
inertial measurement units, as explained in Section 2.3.7. In our work, we use the
provided vehicle odometry and differential global positioning system information.
The alignment helps to combine the information of the related instances over
time and supports the identification of noise within a sequence of scans. The
idea is to align the static points within the sequence of scans and learn to identify
noise points due to their changing appearance over time. Additionally, moving
instances change their location over time, and small displacements of the respec-
tive detections can help identify moving instances. Since the data association of
individual radar points within unprocessed point clouds is difficult [238, 242], we
first process the point-wise features of the current scan X and the features of the
previous scans Xp with a KPConv layer [210] to extract higher dimensional fea-
tures xi ∈ RD1 , as depicted in Figure 7.3. The aggregated features of the previous
scans and the features of the current scan are processed by a separate KPConv
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7. Moving Instance Segmentation

layer. The resulting features are still point-wise features with dimension D1. To
adaptively combine the features and extract temporal information, we introduce
an intra-attention module that is inspired by our Gaussian transformer layer,
introduced in Section 5.1.1, and the transformer-based upsampling module, in-
troduced in Section 6.1.4. We first encode the features of the previous scans Xp

as values V and keys K and the features of the current scan X as queries Q. In
contrast to our previous approaches, we increase the feature dimension of the
encoding to D2 to enable fine-grained information aggregation resulting in the
weight matrices WQ ∈ RD1×D2 , WK ∈ RD1×D2 , and WV ∈ RD1×D2 .

Since temporal information is present within the local neighborhood, we re-
strict the intra-attention of the current scan and the aligned previous scans to
local areas, similar to our transformer-based upsampling. To determine the local
areas, we calculate the k nearest neighbors with k = Nrit for the points in the
current point cloud P t within the aligned past point clouds Pp. This results in
the combination of the respective detections over time. To extract the related
information of the queries, values, and keys within the local areas, we utilize the
sample and grouping algorithm [166] resulting in Qk,Kk, and Vk ∈ RN×Nrit×D2 .
The queries comprise the repeated entries of the current point cloud, and the keys
and values include the encoded features of the past point clouds, which belong
to the corresponding local neighbors of the N points of the current point cloud.

As described in Section 6.1.4, we include the relative positional encoding.
However, we adjust the feature dimensions to include more fine-grained posi-
tion information. We compute the positional encoding R ∈ RN×Nrit×D2 by an
MLP, including two fully connected layers with weight matrices WR1 ∈ R3×3

and WR2 ∈ R3×D2 , batch normalization [89], and rectified linear unit activation
function [150]. To calculate the attention weights A ∈ RN×Nrit×D2 for the individ-
ual points, we follow our previous approaches and combine the vector attention
and positional encoding to derive a fine-grained weighting of the individual fea-
ture channels. The attention weights connect the detections in the current scan
with the detections in the aligned previous scans.

In contrast to the previous chapters, we process the attention weights by
an MLP with two fully connected layers, where each layer is followed by batch
normalization [89] to derive the final attention weights Âi,j. We apply the softmax
function to each feature of the points within the local area. To aggregate the
weighted features Xtemp, which comprise the temporal information of previous
scans encoded as values, we calculate the sum of the element-wise multiplication,
indicated by ⊙, as:

Xtemp
i =

Nrit∑
j=1

Âi,j ⊙ (Vk
i,j + Ri,j). (7.1)

We include the positional encoding as before because it provides valuable
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information about the local areas and their appearance over time. The idea is
that static objects remain in the same location, whereas moving objects change
position within a sequence of scans, which both can be represented within the
positional encoding. To combine the information within the current scan, we
concatenate the temporal features Xtemp ∈ RN×D2 and the features of the current
scan X ∈ RN×D1 after the KPConv layer resulting in the temporal enriched fea-
tures XSAFE ∈ RN×(D1+D2) of our sequential attentive feature encoding module.
Besides the features, the output point cloud PSAFE includes the point coordi-
nates PSAFE, where PSAFE = P. The number of points N equals the number
of points in the current point cloud. In contrast to aggregation, the number of
points processed by the backbone remains the same. The point coordinates are
not processed to include fine-grained position information within the consecutive
network. The sequential attentive feature encoding module is model-agnostic and
can be applied to different backbones.

7.1.2 Backbone
With our backbone design, we aim to keep the full resolution, i.e., the original
number of points of the current scan throughout the network, and thus avoid infor-
mation loss and extract valuable features from sparse radar scans, as illustrated
in Figure 7.2. Contrary to the widely-used U-Net [166, 271] with an encoder-
decoder architecture including skip connection, introduced in Section 3.3.1, we
process the full-resolution point cloud in parallel to the downsampled feature
maps and enrich the information in the original point cloud with high-level fea-
tures. In contrast to 3D LiDAR scans, the sparsity of radar data enables pro-
cessing full-resolution point clouds but also requires keeping as much information
as possible to enhance performance. To handle the changing number of points
in radar scans, we adopt the advanced batching algorithm [271], which handles
the batch of point clouds as a concatenated vector to always keep the original
number of points. Compared to the first parallel network for image analysis, the
HRNet [216], we reduce the processing of the high-level features to a minimum
and do not keep the parallel tracks throughout the network. Considering that
the processing of these features is computationally expensive, HRNet reduces the
input size to keep the parallel feature extraction, which is in contrast to our
approach that preserves the information of the point cloud. Consequently, our
design reduces the number of parameters and computational complexity.

The input point cloud PSAFE of our backbone includes the temporally enriched
features XSAFE and the position information P of the current scan. The dimension
of the features for the stages SL with L = 1, . . . , 4 areDSL

, whereDS1 = (D1+D2),
DS2 = 2DS1 , DS3 = 2DS2 , and DS4 = 2DS3 . The individual building blocks
of our backbone are the commonly used transformer blocks as well as up- and
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downsampling layers. In contrast to the Gaussian Radar Transformer and Radar
Velocity Transformer, introduced in Chapter 5 and in Chapter 6, we focus on
the design of the backbone structure instead of the specific layers. The idea is
to achieve better performance by optimizing the arrangement of the layers and
reducing the computation within the transformer blocks.

The stages S1, S2, S3, and S4 comprise 6, 4, 2, and 1 transformer blocks,
respectively. The transformer block is a residual block that follows the design
of the Stratified Transformer block [242], where we replace the window attention
with the Point Transformer layer [271] since it is computationally more efficient.
Within the block, we first process the input features by layer normalization [8]
before feeding the features and position information into the transformer layer.
The resulting output is processed by two fully connected layers, including the
Gaussian error linear unit [77] activation function and layer normalization. We
add the features of the residual path to the updated features to determine the
output features.

The transformer layer adopts the basic vector attention, introduced in Sec-
tion 3.3. Therefore, we encode the features XSAFE as values, keys, and queries. In
contrast to our sequential attentive feature encoding module, we do not increase
the dimension of the encodings by the learned linear projections. Hence, we set
the input and output dimensions of the fully connected layers to DSL

. As a re-
sult, we need to adjust the output dimension of WR2 to DSL

. We calculate the
final output features of the transformer layer based on Equation (7.1). The point
coordinates are not further processed to keep the information intact and improve
the features with fine-grained position information within consecutive blocks.

For the downsampling, we follow Section 3.3.1 and utilize farthest point sam-
pling to derive a subset of points based on the distance to cover the geometric
space evenly. Our idea is to minimize computational effort during sampling,
thereby reducing runtime and improving accuracy through our optimized net-
work architecture. We utilize kNN search with k = Nd and max pooling [166] to
combine the local features. The top level does not include downsampling since
we want to keep the original number of points. From stage SL to stage SL+1,
we sample NSL+1

points where NSL+1
= NSL

/2. We reduce the cardinality of
the point cloud by a factor of 2 instead of 4 [166, 271] to keep more information
since radar point clouds are sparse, resulting in [N,N/2, N/4, N/8] points for
the four stages, where N is the number of points in the current scan. Based on
the local areas, we aggregate the features and process them by a fully connected
layer with weight matrix Wdown

SL
∈ RDSL

×DSL+1 where DSL+1
= 2DSL

and layer
normalization. Afterward, we apply max pooling to derive the high-level features
of the downsampled point cloud and pass the features and the point coordinates
of the sampled points to the consecutive stage.
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Figure 7.4: Detailed design of the computation of the attentive similarity matrices Sloc and Sglob.
The module incorporates essential instance information derived from the point coordinates P of
the current point cloud and point-wise features Xb extracted in the backbone. The calculation
is based on the dot-product attention, including the queries Qb, keys Kb, and the relative
positional encoding R.

For the upsampling, we adopt the trilinear interpolation based on an inverse
distance weighted average [166]. We determine k = 3 neighbors of the points
of stage SL−1 within the downsampled points of stage SL based on the kNN
algorithm. We process the features of stage SL by a fully connected layer with
weight matrix Wup

SL
∈ RDSL

×DSL−1 where DSL−1
= DSL

/2 and layer normalization
to adjust the dimensions of the features of the two stages. We interpolate the
resulting features and add them to the features of the current stage SL−1, which we
additionally process by a fully connected layer with Wup

SL−1
∈ RDSL−1

×DSL−1 and
layer normalization. The upsampled features are processed within the succeeding
stages to integrate the information iteratively. Subsequently, we add high-level
features to the full-resolution point cloud of stage S1 to derive the final output
features of our backbone Xb ∈ RN×DS1 . The advanced network architecture
enables the extraction of valuable features for sparse radar point clouds to enhance
performance.

7.1.3 Moving Instance Transformer Head

Our moving instance transformer head combines moving object segmentation
with instance segmentation to derive the final panoptic output, as detailed in Fig-
ure 7.2. For moving instance segmentation, currently moving agents, such as cars,
bikes, and trucks, belong to the same moving class without further differentiation.
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For many tasks, the information of being a moving object in combination with
the velocities is often sufficient, simplifying the labeling efforts. However, state-
of-the-art approaches for panoptic segmentation and instance segmentation rely
on specific semantic labels to enhance accuracy [32, 59, 118, 214]. To overcome
current limitations and further incorporate instance information, we propose a
new attention-based module to reliably identify moving instances in sparse and
noisy radar point clouds.

First, we determine the prediction for per-point moving object segmenta-
tion PMOS = {pMOS

1 , . . . , pMOS
N }, where pMOS

i ∈ {static,moving} using an MLP,
as visualized in Figure 7.4. To identify points belonging to the same instances,
our idea is to deduce an attentive similarity quantity Si,j ∈ R based on the
self-attention mechanism. Therefore, we process the output features of the back-
bone Xb by two fully connected layers to encode the features as keys Kb and
queries Qb, with Wb

Q ∈ RDS1
×DS1 and Wb

K ∈ RDS1
×DS1 , as introduced in Chap-

ter 5. Following our previous approaches, we determine the local neighborhoods
by kNN with k = Na and aggregate the information resulting in queries Qb∗ and
keys Kb∗ ∈ RN×Na×S1 . Additionally, we calculate the relative positions within
the resulting local areas. However, we reduce the dimensionality of the relative
positional encoding Rb by a fully connected layer with weight matrix Wb

R ∈ R3×1

and rectified linear unit activation function [150]. To condense the important
information within a scalar value for the local similarity quantity, we calculate
the dot-product attention Aloc ∈ RN×Na for the keys and queries, resulting in:

Aloc
i,j =Qb∗

i,jKb∗
i,j

⊤ + Rb
i,j. (7.2)

The goal is to have local similarity quantities close to 1 for all points within
the local area that belong to the same instance and values close to 0 for different
instances. Therefore, we replace the softmax function with the sigmoid function
to determine the final local similarity quantity Sloc as:

Sloc
i,j = sigmoid(Aloc

i,j ) =
1

1 + exp(−Aloc
i,j )

. (7.3)

The resulting local similarity matrix Sloc ∈ RN×Na includes a similarity quan-
tity for all N points of the current point cloud. The ground truth of the local
similarity matrix can be directly derived from the indices of the kNN algorithm
and the ground truth instance IDs. Since the focus is to extract valuable infor-
mation for moving instances, we set the similarity quantity for two points within
the local area that both belong to the static class to 0, which we elaborate in
more detail in Section 7.3.5.

The restriction to local areas induces the problem that often not all points that
belong to one instance have an attentive similarity quantity. To overcome this
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limitation, we introduce the global attentive similarity quantity Sglob for moving
detections. Hence, the second part of our instance transformer head combines the
prediction of the moving object segmentation and our local similarity quantity.
Since computing the global similarity, including all points, comes with a large
computational burden, we first select the Nmov points that we predict as moving.
In contrast to Cheng et al. [36], we select all moving predictions, not just those
predicted within the same mask, which corresponds to the foreground region
for each query. We already encoded the features as keys Kb and queries Qb

for the local attentive similarity such that no additional encoding is required.
We sample and group the global moving predictions for the queries and keys,
resulting in Qb∗∗,Kb∗∗ ∈ RNmov×Nmov×S1 . We use the dot-product to derive the
global attention weights Aglob ∈ RNmov×Nmov as:

Aglob
i,j =Qb∗∗

i,j Kb∗∗
i,j

⊤. (7.4)

We remove the relative positional encoding because the values largely differ
in magnitude compared to the local similarity and, at least in our experience
detailed in Section 7.3.5, do not provide important information to differentiate
instances in the global context. We follow Equation (7.3) to calculate the final
global similarity quantity Sglob ∈ RNmov×Nmov . We construct the ground truth
matrix for the global similarity matrix based on the moving object predictions.

The attentive similarity modules are differentiable and can be learned in an
end-to-end manner. We emphasize that our attention-based similarity quantity
encodes essential information for moving instance association and moving object
segmentation in noisy radar point clouds. Incorporating global information sup-
ports the extraction of discriminative features, especially for sparse point cloud
processing. The computation of the local and global similarity quantities is model-
agnostic and can be combined with different backbones.

7.1.4 Graph-based Instance Assignment
The final part of our instance transformer head is the graph-based instance as-
signment module. It utilizes the predictions PMOS and the global similarity ma-
trix Sglob, which includes a similarity quantity for each pair of moving predictions
to derive the final instance IDs. The key idea is to overcome the limitations
of the direct assignment since the global similarity matrix may include multiple
instance assignments and different similarity quantities for different instances,
which are difficult to solve. Furthermore, we want to remove the semantic class
dependencies mentioned in Section 7.1.3 to derive the final instances.

We first construct a radius graph G = (V , E) based on the prediction of
moving detections and the position information to take into account that sparse
and noisy radar point clouds differ in density. The moving detections within
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7. Moving Instance Segmentation

the individual scans represent the vertices V = {1, . . . , Nmov} of the graph. We
derive the set of m edges E by connecting each moving point with the neighboring
points, which lie within the spatial radius rg. The graph can be represented by
the square adjacency matrix Aadj ∈ RNmov×Nmov , where Aadj

i,j = 1, if ||pi−pj|| ≤ rg
and otherwise Aadj

i,j = 0. To derive the instance IDs, we partition the graph
into G1, . . . , Gk′ disjoint subgraphs, where k′ is not given in advance because
the number of instances within a scan is unknown. Based on the constructed
graph, our idea is that individual instances have highly interconnected nodes and
points belonging to different instances are sparsely connected. To exploit this
property, we partition the graph by maximizing the modularity via a spectral
approach [151].

The modularity depends on the number of edges falling within clusters minus
the approximated expected number of random edges in an equivalent network,
including the same number of nodes. Each node has the same degree, but the
edges are randomly attached. For the case of two clusters, li = 1 if vertex i

belongs to the first cluster and li = −1 if it belongs to the second one. The
modularity is:

Q =
1

4m

∑
i,j

(
Aadj

i,j −
kikj
2m

)
lilj, (7.5)

where ki and kj are the degrees, the number of edges incident to a vertex, of the
corresponding vertices. The adjacency matrix Aadj

i,j contains information about
the actual number of edges, and the factor kikj

2m
is the approximated expected

number of edges between vertices i and j if the edges are placed randomly. The
modularity can be further expressed by the modularity matrix Bi,j = Aadj

i,j −
kikj
2m

as:
Q =

1

4m
l⊤Bl, (7.6)

where l is the vector of the elements li. To correctly divide the network into
more than two clusters, we construct a modularity matrix Bsub for each subgraph
resulting in:

Bsub
i,j = Aadj

i,j −
kikj
2m
− δi,j

[
ksub
i − ki

dsub

2m

]
, (7.7)

where ksub
i is the degree of the node i within the subgraph, dsub is the sum of all

degrees ki of the nodes in the specific subgraph, and δi,j is the Kronecker delta,
which is 1 if both nodes belong to the same subgraph and zero otherwise. We
calculate the subgraph modularity Qsub following Equation (7.6) to determine the
additional contribution to the total modularity Q.

The modularity matrix B always depends on the adjacency matrix Aadj. Since
the plain radius graph leads to interconnections of nearby instances, represented
in Aadj, we optimize the cluster assignment by including additional information
about the vertices. Our global attentive similarity matrix Sglob directly provides
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this valuable information since the similarity quantities differentiate between in-
stances. Hence, we calculate the element-wise product of both matrices as:

Aadj
attn = Sglob ⊙Aadj, (7.8)

to resolve the issue and derive the final attention-based adjacency matrix Aadj
attn

for the instance assignment. The modularity, which now incorporates the addi-
tional instance information in Equation (7.7), is optimized by spectral modularity
maximization. The optimization stops if any proposed split for all the subgraphs
has a negative or no effect on the modularity. The final partitions represent our
instance IDs. The partitioning is class-independent and incorporates attention-
based instance information.

7.2 Implementation Details
We implemented our Radar Instance Transformer in PyTorch [161] and train our
network with one Nvidia A100 GPU and a batch size b of 64 over 100 epochs. We
utilize the AdamW [132] optimizer with an initial learning rate of 0.001 and drop
the learning rate by a factor of 10 after 60 and 80 epochs to train our model. We
use the binary cross-entropy loss to learn the local Sloc and global Sglob similarity
matrix for instance association. For the moving object segmentation output, we
utilize the focal Tversky loss [1].

The individual scans, which are the input to our network, are sparse radar
point clouds with N points and feature dimension D. The RadarScenes [189]
dataset comprises two spatial coordinates and the Doppler velocity, whereas the
View-of-Delft dataset [158] also includes the elevation information. Each sequence
consists of T + 1 scans, and the batch size b is the number of input sequences.
For RadarScenes, we extend the coordinates xCi , yCi with the coordinate zCi = 0

to apply the pose transformation mentioned in Section 7.1.1. In addition to the
position information and the Doppler velocity vi, the radar sensors provide the
radar cross section σi, resulting in input vector xi =

[
xCi , y

C
i , z

C
i , σi, vi

]⊤.
We first increase the per-point features to D1 = 16 before we apply the intra-

attention to enrich the current point cloud with temporal information. We in-
crease the dimension in our sequential attentive feature encoding module and
set D2 = 32 resulting in an output feature dimension of 48, which is kept for the
full-resolution stage DS1 = 48 and gradually increased to DS2 = 96, DS3 = 192,
and DS4 = 384 during downsampling. We set Nrit = Nd = Na = 12, where Nrit

represents the local area in the transformer layers, Nd the local neighborhood for
downsampling, and Na the local area for the attentive local similarity quantity.

The input sequence consists of the current point cloud and T = 2 previous
scans, which we further elaborate in Section 7.3.4. We pad missing previous
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scans as zeros to always include T + 1 scans as input. The padded scans com-
prise a set of 1, 024 points where we set the features to zero. The padding is
adopted until T + 1 scans are available. To reduce overfitting during training,
we apply data augmentation [245], including Gaussian jittering (variance of 0.01),
scaling (×0.95, ×1.05), shifting (±0.1 m), and random flipping of the point cloud.

7.3 Experimental Evaluation

The main focus of this chapter is to achieve reliable moving instance segmenta-
tion in sparse and noisy radar point clouds. We present our experiments to show
the capabilities of our method and to support our key claims, including that our
approach achieves state-of-the-art performance in moving instance segmentation
without processing multiple scans throughout the whole network. Our sequential
attentive feature encoding module improves prediction performance by efficiently
incorporating temporal information. In addition, the attentive instance trans-
former head enhances the overall performance of moving instance segmentation
by including local and global instance knowledge. Our attention-based graph
clustering enhances semantic class-independent instance assignments. The opti-
mized backbone architecture extracts discriminable features from sparse radar
point clouds by enriching individual detection with high-level features to improve
performance.

7.3.1 Experimental Setup

As in Chapter 5, we perform our evaluation on the RadarScenes dataset. We use
the same training, validation, and test split to ensure comparability. Additionally,
we evaluate our method on the medium-sized View-of-Delft dataset [158] to illus-
trate the generalization capabilities of our method. Furthermore, we assemble
the annotations of the RadarScenes dataset to establish the new task of moving
instance segmentation, which we introduce in Section 7.3.2. For the View-of-Delft
dataset, we keep the original training and validation split. We transfer the bound-
ing box labels into point-wise annotations, including the differentiation between
moving and static instances. We utilize the panoptic quality (PQ) [14] to evaluate
the combined task of semantic segmentation and instance segmentation. Addi-
tionally, we report the segmentation quality (SQ), the recognition quality (RQ),
and the intersection over union (IoU). To derive a detailed evaluation, we further
differentiate between the static and moving classes.
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(a) training set

(b) validation set

(c) test set

Figure 7.5: Statistics of the moving instance segmentation benchmark based on the RadarScenes
dataset. The statistics are conducted individually for the training (a), the validation (b), and
the test set (c). The left column illustrates the number of moving instances within a scan, and
the right column shows the size of the moving instances, which correspond to the number of
points.

7.3.2 Moving Instance Segmentation Benchmark

We utilize the dataset split introduced in Section 5.3.5 to establish the moving
instance segmentation benchmark. The semantic annotations for the moving
agents comprise the car, large vehicle, two-wheeler, pedestrian, and pedestrian
group class in the original dataset. We transfer the semantic classes into moving
and static annotations. Additionally, we transfer the track IDs into instance
labels for the individual scans. The resulting annotations include an instance ID
and a semantic class for each point. To illustrate the diversity of the dataset, we
show in Figure 7.5 histograms of the number of instances within a scan and the
size of the instances, which is equal to the number of points per instance. The
number of moving instances within a scan displays the diversity of scenes with
changing numbers of agents.
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model PQ mIoU SQ RQ PQmov IoUmov SQmov RQmov PQstat IoUstat SQstat RQstat

Threshold |vi| > vt + HDBSCAN [27] 59.7 65.2 88.3 64.6 23.7 35.1 80.9 29.3 95.7 95.2 95.7 100.0
Threshold |vi| > vt + mean shift [42] 57.2 65.2 90.4 61.0 18.7 35.1 85.1 22.0 95.7 95.2 95.7 100.0
4DMOS [140] + HDBSCAN [27] 71.3 86.0 93.1 75.0 43.7 73.1 87.3 50.1 98.9 99.0 98.9 100.0
4DMOS [140] + mean shift [42] 79.0 86.0 95.9 81.9 59.1 73.1 92.7 63.7 98.9 99.0 98.9 100.0
Point Voxel Transformer [262] + HDBSCAN [27] 70.3 84.7 91.8 74.6 41.9 70.7 84.9 49.3 98.7 98.8 98.7 100.0
Point Voxel Transformer [262] + mean shift [42] 76.3 84.7 94.6 79.4 53.9 70.7 90.7 59.9 98.7 98.8 98.7 100.0
Stratified Transformer [242] + HDBSCAN [27] 71.2 87.3 92.1 75.5 43.5 75.2 85.2 51.1 98.9 99.0 98.9 100.0
Stratified Transformer [242] + mean shift [42] 78.4 87.3 94.8 81.7 57.9 75.2 90.8 63.7 98.9 99.0 98.9 100.0
Gaussian Radar Transformer (Chapter 5) + HDBSCAN [27] 73.2 89.1 92.9 77.3 47.3 79.1 86.8 54.5 99.0 99.1 99.0 100.0
Gaussian Radar Transformer (Chapter 5) + mean shift [42] 81.1 89.1 95.9 84.1 63.3 79.1 92.7 68.2 99.0 99.1 99.0 100.0
DS-Net [82] 62.0 82.2 94.2 64.4 25.9 66.1 90.3 28.7 98.1 98.2 98.1 100.0
Mask3D [187] 80.4 84.3 96.4 83.0 62.0 69.8 94.0 66.0 98.8 98.9 98.8 100.0

Ours 86.5 92.6 96.9 89.0 73.6 85.7 94.4 78.0 99.4 99.4 99.4 100.0

Table 7.1: Moving instance segmentation results on the RadarScenes test set in terms of PQ, SQ, RQ, and IoU scores. Our Radar Instance Transformer
outperforms the existing methods, especially in terms of PQ and IoU. The best results are in bold.
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7.3.3 Moving Instance Segmentation
The first experiment evaluates the performance of our approach, and its outcome
supports the claim that we achieve state-of-the-art results for moving instance
segmentation in sparse and noisy radar point clouds. We compare our Radar In-
stance Transformer to recent and high-performing networks with a strong perfor-
mance on different benchmarks, including 4DMOS [140] by Mersch et al. for mov-
ing object, Stratified Transformer [242] by Xin et al., our Gaussian Radar Trans-
former introduced in Chapter 5, and Point Voxel Transformer [262] by Zhang et al.
for semantic, Mask3D [187] by Schult et al. for instance, and DS-Net [82] by Hong
et al. for panoptic segmentation. We select the Gaussian Radar Transformer in-
troduced in Chapter 5 as a baseline because the model includes more parameters
to learn additional features for instance segmentation. This provides an advan-
tage over the Radar Velocity Transformer discussed in the previous chapter. We
added the two approaches [82, 187] based on the fact that the clustering has to be
class-agnostic because all instances belong to the moving class. Additionally, the
methods do not include range image representations since RadarScenes does only
provide x and y coordinates. To derive panoptic labels, we extend Mask3D [187]
with state-of-the-art post-processing for mask predictions [36], which applies a
threshold on the mask predictions to derive the instance IDs. We extend the
semantic and moving object segmentation approaches [140, 242, 262] with com-
monly used clustering algorithms, namely HDBSCAN [27] and mean shift [42],
to group points into instances.

Furthermore, we add a threshold-based baseline that first identifies moving
detections based on the ego-motion compensated Doppler velocities where thresh-
old vt = 0.92m/s and utilizes the clustering algorithms to group the detected
point into moving instances. To reliably detect the most vulnerable road users,
the pedestrians, we have to identify instances that comprise just a single detec-
tion. Therefore, we optimize the hyperparameters and set the minimum clus-
ter size for HDBSCAN to 1. For mean shift, we optimize the bandwidth bms

based on the overall performance on the validation set, resulting in 3.5, 4.5, 5.0,
and 4.5 for 4DMOS, Stratified Transformer, Point Voxel Transformer, and Gaus-
sian Radar Transformer, respectively. To reliably detect larger objects, we addi-
tionally implement an offset prediction head [83] to support the clustering and
enhance accuracy for point-based methods.

The offset prediction head combines two fully connected layers, batch nor-
malization [89], and a rectified linear unit [150] to regress offset to the instance
centers. We concatenate the features of the respective backbone Xb and the co-
ordinates P to include fine-grained position information. The offsets O ∈ RN×3

point from the point coordinates P ∈ RN×3 to the instance centers C ∈ RN×3. We
derive the center based on the ground truth instance IDs and point coordinates.
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model PQmov SQmov RQmov IoUmov

Stratified Transformer [242] 22.8 78.1 29.3 55.6
Gaussian Radar Transformer (Chapter 5) 26.0 79.4 32.7 62.3
Ours 26.9 79.1 34.0 63.3

Table 7.2: Moving instance segmentation results on the View-of-Delft [158] validation set in
terms of PQmov, SQmov, RQmov, and IoUmov scores. Our Radar Instance Transformer outper-
forms the existing methods in terms of PQ and IoU. The best results are in bold.

The loss function for offset regression can be expressed as follows:

Loff =
1

N

N∑
i=1

∥oi − (ci − pi)∥1, (7.9)

where N is the number of points in the current point cloud.
Our Radar Instance Transformer outperforms the existing methods, especially

in terms of PQ and IoU for the moving instances, as displayed in Table 7.1. The
velocity threshold-based baseline further illustrates the difficulties of the task and
underlines the necessity of learning-based approaches. The major problem is the
noise, which leads to false positive predictions of the moving class, as mentioned
in the previous section. The learning-based approaches improve IoUmov by more
than 30 absolute percentage points. DS-Net utilizes the optimized dynamic shift-
ing module for instance clustering to handle complex point distributions. How-
ever, point-based approaches [242, 262] clearly exceed the voxel-based method,
which underlines that minimizing discretization artifacts enhances performance.
Point Voxel Transformer includes a point-based branch, which helps to reduce
the negative effect. On the contrary, 4DMOS [140] enhances performance by
aggregating scans and prediction smoothing over time. However, the instance
assignment is difficult. We assume that the problems result from the fact that all
instances belong to the same class, which makes offset prediction and clustering
more complex due to the missing differentiation of the semantic class. Never-
theless, algorithms that do not depend on semantic labels are more generally
applicable and potentially cover the long-tail classes.

The dedicated mask predictions of Mask3D [187] overcome this limitation and
improve PQ. However, our Radar Instance Transformer enhances PQmov by 10
absolute percentage points compared to Mask3D, which is a strong improvement.
The Stratified Transformer performs well without temporal information. Partic-
ularly, the mean shift algorithm performs well since the restriction of a cluster
size of one for HDBSCAN makes it difficult to cluster larger objects reliably.
However, even in the semantic segmentation, our Radar Instance Transformer
enhances the IoUmov by more than 9 absolute percentage points, which again

125



7.3. Experimental Evaluation

static moving instances

re
fe

re
nc

e
G

au
ss

ia
n

R
ad

ar

Tr
an

sfo
rm

er
O

ur
s

50m 50m

50m50m

Figure 7.6: Qualitative results of our Radar Instance Transformer and our Gaussian Radar
Transformer on the test set of RadarScenes. The camera images are anonymized and shown for
reference. The left column is from sequence 14 (fog), and the right is from sequence 93 (rain).
In the images of the predictions, each color represents a different instance of moving objects.
The colors in the images correspond if the object is visible.

illustrates the superiority of our method. Moreover, we even surpass our other
radar-specific method, the Gaussian Radar Transformer, by more than 5 absolute
percentage points in terms of IoUmov.

To further illustrate the generalization capability of our model, we evaluate
the three best-performing methods in terms of IoUmov on the View-of-Delft val-
idation set. Table 7.2 shows the superior performance of our method compared
to our Gaussian Radar Transformer and Stratified Transformer. To enable a fair
comparison, we utilize the IoU since both baselines are developed for semantic
segmentation. The Stratified Transformer achieves an IoUstat of 98.1, whereas
our methods achieve an IoUstat of 98.4. Nevertheless, our approach enhances
the IoUmov by 1 absolute percentage point compared to the best-performing
radar-specific method and by more than 7 absolute percentage points compared
to Stratified Transformer. We observe that the relative transformations to align
the point clouds are more precise in the RadarScenes dataset. We assume that
this might be one reason why the improvements are more limited, as detailed
in Section 7.3.4. Overall, the approaches perform well in both moving instance
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Figure 7.7: Qualitative results of our Radar Instance Transformer on the RadarScenes test set.
The reference camera images are anonymized. The illustration of the instance predictions and
the ground truth instances have the same color. The colors in the image correspond if the object
is visible. The results illustrate the performance within different scenes, including a rural road
on a rainy day (a) and an urban environment with multiple agents (b).

segmentation benchmarks, which is a good starting point for future research.
Figure 7.6 shows some qualitative results on the RadarScenes test set of our

approach and the Gaussian Radar Transformer. Our approach correctly identifies
the distant moving instance in scene 14 and does not include a false positive
prediction. Furthermore, our Radar Instance Transformer works reliably under
versatile scenes, as illustrated in Figure 7.7. Our approach is able to identify
moving instances under different and changing scenarios. The urban environment
illustrates the difficulties of reliably identifying occluded distant moving instances.
Additionally, the Doppler velocity values of instances that pass the ego vehicle
are very small due to the fact that the Doppler velocity is the radial velocity
of the detections, and the tangential movement is not covered. However, the
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Figure 7.8: Qualitative results of our Radar Instance Transformer on the View-of-Delft valida-
tion set. The camera images are shown for reference. The ground truth instance labels and the
corresponding instance predictions are projected into the reference image. The ground truth
and the predictions are cropped for better visibility.

network accurately differentiates between moving and static agents. Furthermore,
our approach identifies the oncoming car in rainy scene 79 precisely. The scene
illustrates the handling of noise, which is best seen for the Doppler velocity vectors
for off-road detections belonging to the static class, as depicted in the ground
truth. The different scenarios further illustrate the sparsity and the changing
density of the radar scan. Figure 7.8 illustrates further qualitative results on
the View-of-Delft validation set of our approach. Overall, our approach performs
well despite the various difficulties of sparse and noisy point clouds in real-world
environments.

7.3.4 Ablation Studies on the Sequential Attentive
Feature Encoding Module

The second experiment evaluates our sequential attentive feature encoding and
illustrates that our module improves performance by efficiently including valuable
temporal information within the features of the current point cloud. For this ex-
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pose
compensation

PQmov SQmov RQmov IoUmov

T = 0 ✓ 73.8 94.7 77.9 82.2
T = 1 ✓ 74.0 94.8 78.0 82.5
T = 3 ✓ 76.4 95.0 80.4 83.6
T = 4 ✓ 77.3 95.2 81.2 84.8
T = 5 ✓ 77.7 95.2 81.6 84.5

Ours without pose compensation 76.1 95.3 79.8 83.3

Ours (T = 2) ✓ 76.8 95.1 80.8 84.4

Table 7.3: Influence of the number of previous input point clouds and pose compensation on
the RadarScenes validation set. The best trade-off for accuracy and runtime is achieved for two
previous scans. The best results are in bold.

periment, we vary the number of input scans for our Radar Instance Transformer
and evaluate the pose compensation, as depicted in Table 7.3. The pose compen-
sation aligns the current and previous point clouds based on the ego-motion, as
explained in Section 7.1.1. The temporal information improves the performance
with the best result for five additional previous scans, i.e., T = 5. However, the
training time, memory consumption, and runtime increase with adding more ad-
ditional scans. Therefore, we select T = 2 as the best trade-off since our method
performs well in terms of PQmov and IoUmov and reduces the inference time. Fur-
thermore, to save resources, the training time decreases by more than a factor
of two compared to T = 4. The enhancement by temporally enriched features is
directly visible by the increase of more than 2 absolute percentage points by in-
cluding T = 2 previous scans instead of none. Furthermore, we argue that recent
scans include the most important information to identify moving instances, lead-
ing to a slight decrease in accuracy for T = 3 and minor improvements for T = 4

and T = 5. Additionally, the pose compensation does not compensate for the
relative movement of instances, leading to false associations over time. Thus,
the recent scans contain the most valuable information, and the IoUmov shows
just small improvements. To verify that the temporal information supports the
identification of static points, including noise, we determine the IoUstat for T = 0

and T = 2 resulting in 99.4 and 99.5, respectively. We assume that the changing
appearance of noise can be identified within the temporal domain, and hence,
the IoUstat improves. To elaborate on the improvement in detail, separate labels
for static and noise are required, which are not available.

In the second step, we remove the pose compensation, which helps to align the
previous and the current scan. Here, the decrease in PQmov is small. One advan-
tage of radar sensors is the often higher frame rate compared to LiDAR sensors,
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# local similarity
(Sloc)

global similarity
(Sglob)

IoUmov PQmov

[A] 81.6 -
[B] ✓ 83.7 -
[C] ✓ 83.2 75.6
[D] ✓ ✓ 84.4 76.8

global: with positional encoding 82.6 74.2
local: static included 82.7 74.0

Table 7.4: Influence of the different components of our instance transformer head in terms
of IoUmov and PQmov on the RadarScenes validation set. The local Sloc and global similarity
improve the predictions of moving instances. The best results are in bold.

which leads to smaller transformations between scans. In addition, we expect that
the self-attention mechanism adaptively controls the information exchange within
the current and previous scans and helps to extract valuable features, which un-
derlines the advantages of our sequential attentive feature encoding module.

7.3.5 Ablation Studies on the Instance Transformer Head

The third experiment is presented to illustrate that our instance transformer
head incorporates important instance information and enhances the performance
of moving instance segmentation. Notably, we do not report the PQmov for the
models without the global attentive similarity quantity because we cannot per-
form the partitioning based on the learned weights, and thus we compare the
results for this experiment based on the IoUmov. To assess the benefits of the pro-
posed attentive similarity quantities, we remove the respective modules for the
global and local computation, as depicted in Table 7.4. We first remove the lo-
cal and global attentive similarity in configuration [A], which reduces the IoUmov

by 2.8 absolute percentage points. In ablation [B], we add the local attention,
which already improves the IoUmov compared to [A]. We assume that the knowl-
edge of which point within the local neighborhood belongs to the same instance
helps to differentiate between instances and also to identify moving detections
reliably. Compared to [A], the added global attentive similarity in [C] improves
the performance. The global context is beneficial for identifying moving instances.
Furthermore, false positive detections of moving detection are penalized, which
enhances moving object segmentation. The combined local and global attentive
similarity [D] combines both properties and further improves PQmov.

To analyze our design decisions, we add the positional encoding for the global
attentive similarity. Since the relative position grows large in magnitude in the
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PQmov SQmov RQmov

rg=3.0 m 70.4 94.5 74.5
rg=4.0 m 73.4 95.3 77.0
rg=5.0 m 75.1 95.4 78.7
rg=6.5 m 76.6 95.1 80.6
rg=7.5 m 76.8 95.1 80.8
rg=8.0 m 76.7 95.0 80.8

Ours (rg=7.0 m) 76.8 95.1 80.8

Table 7.5: Ablation study on the graph-based instance assignment on the RadarScenes valida-
tion set. The best performance is achieved for rg=7.0m. The best results are in bold.

global context, as mentioned in Section 7.1.3, we assume that the local context
is lost, which is essential to differentiate between nearby points and hence does
not improve accuracy. Additionally, we exclude the static point from the local
similarity in our method, which means that for all static points, the predicted
attentive similarity quantity has to be 0. We presume that the focus of the
instance assignment is clearly on moving instances, which is not the case if we
include the static points and thus decrease PQmov. In conclusion, the instance
transformer head improves performance by exploiting local and global context to
extract valuable features from noisy radar point clouds.

7.3.6 Ablation Studies on the Instance Assignment

The ablation study presented in this section supports our claim that attention-
based graph partitioning enhances instance assignments without class-dependent
information. We evaluate the hyperparameter rg for the radius graph, as de-
picted in Table 7.5. Our method achieves good performance for different radii
with the best PQmov for rg = 7m. Compared with the bandwidths for mean
shift algorithms in Section 7.3.3, our approach is able to utilize a larger radius.
One reason for a larger radius is that we do not use an offset prediction and
still reliably detect large moving instances. This could lead to a combination of
instances, especially small instances with nearby larger instances. However, the
major advantage of our attention-based graph partitioning is that the global at-
tentive similarity quantity effectively removes the interconnection between these
instances. We additionally evaluated the performance of the most vulnerable
road users, pedestrians, which often comprise single detections to show that the
interconnection can be reliably solved. However, potential future work might
address the changing resolution of radar point clouds based on the distance to
the sensor to refine the instance assignment. Within the evaluated range of radii,
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model IoUmov PQmov

Ours + Point Voxel Transformer [262] 80.0 69.0
Ours + Stratified Transformer [242] 82.2 70.1
Ours w/o top level 81.9 73.7

Ours 84.4 76.8

Table 7.6: Ablation study on the backbone design and comparison to recently best-performing
backbones on the RadarScenes validation set. Our dedicated backbone design improves perfor-
mance by full-resolution processing. The best results are in bold.

the PQmov for pedestrians remains stable at 84.7, which illustrates the robustness
of our approach. In comparison, clustering often relies on accurate offset predic-
tions and class-specific properties [157] to reliably identify instances of varying
sizes. Hence, our attention-based graph partitioning helps to identify moving
instances and overcomes the limitations of state-of-the-art approaches.

7.3.7 Ablation Studies on the Backbone Architecture

In our fourth experiment, we analyze our method with respect to the ability to ex-
tract valuable features by keeping the full resolution of the point cloud throughout
the network. The results in Table 7.6 verify that removing the intermediate trans-
former blocks on the top levels of our model harms the accuracy. These building
blocks are the additional modules compared to the widely-used U-Net [166, 271]
architecture. Furthermore, we extend the two best-performing non-radar-specific
backbones, which follow the U-Net architecture, with our model-agnostic modules
to illustrate the advancements of our approach. The full-resolution processing and
the extraction of additional high-level features outperform other methods, such as
the Stratified Transformer [242]. Nevertheless, our model-agnostic sequential at-
tentive feature encoding and instance transformer head enhance the performance
of the Stratified Transformer [242] and the Point Voxel Transformer [262], which
illustrates that these modules help to improve scene interpretation in radar scans.

7.3.8 Runtime

Finally, we analyze the runtime and the number of parameters of the different
methods. We consistently follow our setup, introduced in Section 5.3.5, including
the Nvidia RTX A6000 GPU and optimized farthest point sampling and kNN
algorithm. For our approach, we utilize the best-performing configuration and
include T = 2 previous scans.
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model parameters (M) mean runtime (ms)

4DMOS [140] 1.8 14.0
Point Voxel Transformer [262] 6.2 47.1
Stratified Transformer [242] 8.0 34.4
DS-Net [82] 50.2 52.3
Mask3D [187] 39.6 85.2
Gaussian Radar Transformer (Chapter 5) 8.4 24.0

Ours 3.8 31.7

Table 7.7: The evaluation of the number of parameters and the mean runtime of the models on
an Nvidia RTX A6000 GPU based on 1000 randomly sampled point clouds of the RadarScenes
validation set. Our approach reduces the number of parameters compared to other approaches
and runs faster than the frame rate of 17 Hz of the sensor.

Stages of our model parameters (M) mean runtime (ms)

Pre-processing - 5.8
sequential attentive feature encoding 0.006 2.7
Backbone 3.8 15.7
Instance Transformer Head 0.02 1.2
Graph Partitioning - 6.3

Table 7.8: Detailed evaluation of the number of parameters and the mean runtime of the
individual building blocks of our model on an Nvidia RTX A6000 GPU based on 1000 randomly
sampled point clouds of the RadarScenes validation set.

All results are detailed in Table 7.7. The mean runtime of our approach
is 31.7 ms, which is equal to 31 Hz, and thus faster than the frame rate of 17 Hz
of the sensor. Our Gaussian Radar Transformer has the lowest runtime of the
transformer-based models in our experiments with 24 ms but utilizes twice as
many parameters. We argue that the runtime depends on the different specific
implementations of the respective attention mechanism. The Stratified Trans-
former [242] uses a more complex mechanism that induces further latencies com-
pared to the simple vector attention of the Gaussian Radar Transformer. Ad-
ditionally, we observe that the runtime scales with the number of points. To
illustrate that aspect, we calculated the minimum and maximum runtime of our
model, which are 23 ms and 221 ms, respectively. For all models, scans with-
out any moving object prediction do not need clustering, which reduces runtime.
However, with the increasing number of moving predictions, our global attentive
association matrix gets more complex, and therefore, the runtime scales with the
number of points and moving predictions. Furthermore, the runtime scales with
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the number of T previous scans, which increases to 35.3 ms for T = 5. Future
research can address these issues to decrease runtime further. Another option
to reduce the runtime is the replacement of the commonly used kNN algorithm.
Since the resolution of radar point clouds is dependent on the distance to the sen-
sor, the adjustment of the sampling might address this limitation and additionally
improve performance.

To get an in-depth analysis, we additionally report the runtime and parame-
ters of the individual blocks in Table 7.8. We observe that the processing of the
intermediate building blocks of our backbone is time-consuming, and explicit par-
allelization of the stages can enhance the inference time. Nevertheless, we achieve
state-of-the-art performance with an adequate runtime, outperforming all other
methods except Gaussian Radar Transformer and DS-Net, while we include tem-
poral information and use fewer parameters, reducing memory requirements.

In summary, our evaluation suggests that our method provides competitive
moving instance segmentation in sparse radar point clouds by efficiently includ-
ing temporal information. The attentive similarity quantities encode valuable
information and enable class-agnostic, graph-based instance assignment, outper-
forming state-of-the-art approaches. Thus, we support all our claims through this
experimental evaluation.

7.4 Conclusion
In this chapter, we addressed moving instance segmentation in sparse and noisy
radar point clouds and presented a novel approach that shows strong performance
and outperforms a large set of baseline methods. Our method efficiently exploits
temporal information and overcomes the runtime limitations of passing aggre-
gated scans through the whole network. We propose a full-resolution backbone
to prevent information loss in sparse point cloud processing. We utilize the self-
attention mechanism throughout the network to extract valuable features and in-
troduce attentive graph-based instance partitioning. This allows us to successfully
identify moving agents and enhance the feature extraction by incorporating local
and global instance knowledge. We further established a new benchmark based on
the RadarScenes dataset, which allows further comparisons with future work and
provides comparisons to other methods. The experiments suggest that the differ-
ent building blocks of our approach are essential to achieving good performance
on moving instance segmentation. Furthermore, we propose model-agnostic mod-
ules to incorporate temporal information and perform instance clustering, which
are applicable to different backbones to enhance scene understanding.

The strong performance within versatile driving scenarios and under challeng-
ing weather conditions illustrates the advantages of radar sensors, underlining the
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importance of these sensors. The provided Doppler velocity supports the identi-
fication of moving instances within single or temporally enriched scans, which is
a fundamental advantage compared to other modalities. Additionally, the task
of moving instance segmentation potentially solves the long-tailed class distribu-
tion problem by including rare and underrepresented classes within the moving
class. The strong performance for moving object segmentation further shows that
the approaches perform better for binary classification compared to semantic seg-
mentation, introduced in Chapter 5, by reducing the class imbalance. Therefore,
it makes sense to explore the advanced segmentation capabilities of moving in-
stance segmentation and utilize the predictions to address additional tasks. Con-
sequently, we introduce two approaches that leverage the moving instance predic-
tions of the Radar Instance Transformer to enhance scene understanding in the
following chapters.
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Chapter 8

Moving Instance Tracking

T he identification of moving objects in dynamic real-world environ-
ments, as presented in the previous chapters, is the basis for safe au-
tonomous navigation. Especially the segmentation into moving and
static targets and the instance assignment to derive information about

the agents in the scene are essential for collision-free path planning. The advan-
tages of the radar sensor compared to other popular sensors are that it provides
Doppler velocity information and radar cross section values that support accurate
segmentation and lead to exceptional results. However, the prediction performed
based on the current scan does not cover the temporal information, which, for ex-
ample, humans are aware of, to predict future movement and anticipate possible
maneuvers. Knowledge about the trajectory of traffic participants and their fu-
ture state prediction enables advanced driving functionalities and is particularly
useful in preventing collisions. Consequently, the temporally consistent tracking
information about moving agents is crucial to enhancing scene understanding and
avoiding dangerous situations.

In this chapter, we aim to leverage the predictions of the moving instance
segmentation and extend the approach to track instances in sparse and noisy
radar point clouds, as illustrated in Figure 8.1. This requires differentiating be-
tween moving and static parts of the surroundings and consistently distinguishing
individual agents in the environment over time. The 4D moving instance seg-
mentation task falls within 4D panoptic segmentation [7]. However, all moving
instances belong to the moving object class without further differentiation into a
more detailed separation. Consequently, there exists no additional semantic in-
formation about the instances that supports tracking of closely related instances,
resulting in a challenging prediction task.

Current state-of-the-art methods [7, 35, 136] often address moving instance
tracking within aggregated scans, and Weng et al. [223] associate instances and
existing tracks based on the intersection over union score. However, the aggrega-
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Figure 8.1: Our method combines moving object segmentation (top), instance segmenta-
tion (middle), and tracking (bottom) to solve the 4D panoptic task of moving instance tracking
from sparse radar point clouds. The corresponding colors in the middle and bottom images
represent the respective tracked instances (static is grey).

tion of scans induces latency and is disadvantageous for tasks requiring immediate
feedback, such as collision avoidance. Additionally, instances within sparse radar
point clouds often comprise single points for which an IoU-based association is
inappropriate because no overlap of the bounding boxes exists. Other meth-
ods [16, 38] rely on dedicated trackers based on Kalman filters [91], which often
neglect valuable appearance features [39, 223]. To extract appearance features,
other approaches voxelize point clouds, which is particularly harmful to sparse
radar data processing due to discretization artifacts. Furthermore, common ap-
proaches by Chen et al. [35] and Marcuzzi et al. [136] focus on the tracking of
instances, including the semantic classes, which incorporate additional helpful
information to derive correct associations. We go beyond that by tracking mov-
ing objects without the knowledge of the semantic class, which makes association
more difficult. Furthermore, our approach overcomes the limitations of other
methods by considering the tracking of instances that comprise single detections
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and reducing latency by performing association within consecutive scans.
The main contribution of this chapter is a novel point-based approach that

enables moving instance tracking by incorporating geometric and appearance fea-
tures to accurately associate moving instances in sparse and noisy radar point
clouds over time. Our approach, called Radar Tracker, utilizes a neural net-
work and extends the prediction of our moving instance segmentation approach
to derive temporal consistent tracking IDs. We efficiently incorporate temporal
information for each point by a temporal offset prediction to enhance the segmen-
tation and enable direct center-based tracking of moving instances. We propose
an attention-based instance feature extraction network to reduce information loss
and keep the appearance features of the individual instances. Furthermore, we de-
rive attention-based association scores to extend tracking by attention. The final
geometric and appearance features are combined within our instance association
to improve the performance of the overall estimation task.

In sum, we make three claims in this chapter: First, our approach shows
state-of-the-art performance for moving instance tracking in sparse and noisy
radar point clouds. Second, our temporal offset prediction incorporates valu-
able information for segmentation, improving tracking performance. Third, our
attention-based track association overcomes the shortcomings of state-of-the-art
center-based tracking by incorporating appearance feature information.

8.1 Our Approach to Track Moving Instances
Our approach aims to achieve reliable moving instance tracking in sparse radar
point clouds. We follow the tracking-by-detection paradigm and extend the Radar
Instance Transformer with dedicated tracking modules, as illustrated in Fig-
ure 8.2. We directly predict the temporal offset for each detection within single
radar scans to enhance segmentation and enable direct center-based association.
We utilize the self-attention mechanism [212] to regress an additional cost func-
tion and include appearance features to improve tracking performance. The final
association combines geometric and learned appearance features based on radar
measurements to enhance scene understanding.

8.1.1 Moving Instance Segmentation Backbone

The performance of the instance segmentation backbone limits the tracking of
objects. Therefore, we utilize the state-of-the-art Radar Instance Transformer
introduced in Chapter 7 as the backbone to extract moving instances reliably.
We follow the same procedure and utilize the current radar scan P t at time t,
which comprises the point coordinates and the radar features such as the Doppler
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Figure 8.2: Detailed design of the individual modules of our Radar Tracker. (a) The backbone of the Radar Instance Transformer is extended with the
offset predictions and provides the semantic classes and instance predictions. (b) The attentive instance network extracts features to represent instances.
(c) Our instance similarity module determines the appearance-based association matrix to enhance instance tracking. (d) The data association utilizes the
appearance and geometric features to predict the tracking IDs of moving instances in sparse radar point clouds.
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velocity and radar cross section and add temporal information from T previ-
ous scans P t−T by the sequential attentive feature encoding module. Since the
temporal information improves moving instance segmentation, the enhanced per-
formance directly influences the tracking accuracy. The processed single scan,
including temporally enriched point-wise features, is then passed through the
network to derive the outputs of the backbone, including the moving object seg-
mentation labels SMOS, the instance IDs I = {I1, . . . , IN} with Ii ∈ N, and the
point-wise features Xb. We utilize the moving instance predictions as input to our
attentive instance network to incorporate the information on how many agents
are present in the current scan and which points belong to the moving class. Since
we do not rely on additional information, we can potentially substitute the back-
bone for other moving instance segmentation networks. Consequently, our Radar
Tracker is model-agnostic and does not rely on the feature extraction capabilities
of the backbone network to derive appearance features, which can be a limiting
factor for the applicability of the approach.

8.1.2 Offset Prediction Module
Geometric features of instances are essential to track moving instances reliably.
However, in sparse radar point clouds, the appearance of objects changes, mak-
ing tracking based on bounding boxes difficult [223]. The case of single-point
instances is especially not covered adequately. Therefore, our Radar Tracker fo-
cuses on center-based associations to exploit important geometric relationships.

Furthermore, future state prediction is crucial to associate tracks and objects
over time. In contrast to other approaches [35, 252], which predict velocity vectors
for bounding boxes or voxels, we directly process the point cloud on a per-point
basis to include per-point motion cues without discretization artifacts. Our re-
sulting approach first utilizes the commonly used offset prediction head [83] to
regress offsets O ∈ RN×2 to the instance center Ct ∈ RN×2 of the current scan.
Secondly, we predict the temporal offset Otemp ∈ RN×2 for each point, which is
a vector that points to the center of the instance Ct+1 ∈ RN×2 in the next scan.
We calculate the center as the average of the coordinates of the points belonging
to the instance.

The input to our offset prediction module is the concatenation of the fea-
tures of the backbone Xb, and the point coordinates P of the current scan to
include fine-grained position information. Specifically, the offset prediction mod-
ule within the current scan is often included in the backbone architecture [83]
to cluster instances. However, the Radar Instance Transformer does not include
offset predictions due to the advanced attention-based instance clustering, which
is why offset predictions are additionally added as output to the backbone. For
the individual offset prediction heads, we combine two fully connected layers,
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batch normalization [88] and a rectified linear unit [150]. The offset modules are
model-agnostic and can be applied to different methods to include additional mo-
tion cues and enhance segmentation performance. The resulting offsets directly
incorporate the information for center-based moving instance tracking and add
motion cues about moving instances within each scan. Additionally, the tem-
poral offset includes a regression target for single-point moving instances, which
does not account for the spatial offset prediction because the single point already
corresponds to the center. The effect is negligible for commonly used LiDAR
data because instances normally comprise more than a single point. However, if
we have a closer look at the distribution of radar points within an instance, intro-
duced in Section 7.3.2, the problem of having a single detection for a complete
instance is much more severe in radar data. Therefore, the additional motion
cue for moving instances potentially improves segmentation performance in a
multi-task manner, which we verify in Section 8.3.3.

8.1.3 Attentive Instance Network
Center-based instance association works remarkably well. However, the geomet-
ric association often neglects appearance features extracted by the network de-
pendent on the radar features, which are essential if the geometric features are
inaccurate or multiple agents interact. This makes it difficult for a purely ge-
ometrically based approach to perform well, especially for the targeted task of
moving instance tracking where additional information on the semantic class of
the instance is not present. In contrast to other methods, such as proposed by
Chen et al. [35] and Marcuzzi et al. [136], we propose to extract discriminative
instance features by a transformer-based network to reduce information loss by
discretization artifacts in sparse radar data.

Our attentive instance network comprises two transformer blocks and an at-
tentive aggregation module as depicted in Figure 8.2 (b). In contrast to the previ-
ous chapters, we only consider moving predictions as input to our network. There-
fore, the input consists of the point coordinates Pin = [p1, . . . , pNmov ]⊤ ∈ RNmov×2

and the features Xin = [x1, . . . , xNmov ]⊤ ∈ RNmov×D, where pi ∈ R2 and xi ∈ RD

for Nmov moving points. Hence, Xin only includes a subset of the features that are
utilized by the backbone, which includes moving and static points. During train-
ing, we select the instances based on the ground truth labels and for the inference
based on the semantic and instance predictions of the backbone. Therefore, our
Radar Instance Transformer and the tracking modules are trained separately. We
adopt the transformer design proposed in the previous chapter to extract point-
wise information for the moving detection in the current scan. The transformer
block is a residual block, including a feature dimension expansion that embeds
a transformer layer. We first process the input features Xin ∈ RNmov×D by a
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fully connected layer with weight matrix Wl ∈ RD×D1 to increase the feature
dimension. The resulting features Xin

l and corresponding point coordinates Pin

are fed into a transformer layer. The output features are processed by another
fully connected layer and added to the skip connection features.

For the transformer layer, we follow Section 3.3 to calculate the attention
weights. The local areas are determined with k = Nk resulting in Qk,Kk,
and Vk ∈ RNmov×Nk×D1 and R ∈ RNmov×Nk×D1 . We adopt vector attention and
calculate the final attention weights Ai,j by the softmax function. To calculate
the output features Xout ∈ RNmov×D1 of the transformer layer, we calculate the
sum of the element-wise multiplication and add the relative positional encoding.
We utilize two consecutive transformer blocks following the same processing steps,
but we increase the feature dimension within the second transformer block to D2.
The resulting output features are X̂out ∈ RNmov×D2 .

The second step of the network focuses on extracting one representation of the
instances to achieve correct data association. The attentive aggregation module is
inspired by the attention mechanism and follows the attentive sampling operation
introduced in Chapter 5. We utilize the attentive aggregation module to keep and
combine the information of instances within sparse radar point clouds. The idea
is that the information of the individual detections is combined within one feature
vector without information loss, which is in contrast to max pooling. We process
the resulting output features X̂out ∈ RNmov×D2 of the second transformer block by
a fully connected layer with weight matrix Wagg ∈ RD2×D2 and softmax activation
function. The resulting outputs are our aggregation weights Aagg, which we utilize
to weight the N I points within the individual instance. The final instance feature
is derived by the summation of the weighted point features, resulting in:

Xinst
i =

NI∑
j=1

Aagg
i,j ⊙ X̂out

i,j . (8.1)

The weighting of the features of the detections combines the information about
the instance and, therefore, omits information loss. We leverage the instance-wise
feature vectors for the appearance-based data association. Additionally, we ex-
tract the coordinates Pinst of each point belonging to an instance to include posi-
tion information in the association step. We argue that the spatial relationship
is essential to prevent the association of distant objects that may have similar
feature representations. The output of the network encodes the important infor-
mation representing the individual instances. In the following, we want to exploit
the instance features and coordinates to derive detailed associations based on sim-
ilarities.
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8.1.4 Instance Similarity Module
The essential part of improving the temporal data association of tracks and newly
detected objects is the cost function or similarity measure for the tracking. We
utilize the features and center coordinates of our attentive instance network to
determine the similarities and incorporate appearance features. Additionally, we
follow the previous chapters and utilize the attention mechanism throughout the
network.

We encode the features Xinst ∈ RN inst×D2 as queries Qsim ∈ RN inst×N inst×D2

and keys Ksim ∈ RN inst×N inst×D2 and perform dot product attention to derive
an attention-based similarity value as visualized in Figure 8.2 (c). Within the
attention matrix, we include the self- and cross-attention of the instances. Ad-
ditionally, we calculate the relative center positions rcenter = pi − pj where pi

and pj ∈ Pcenter = [p1, . . . , pN inst ]⊤ ∈ RN inst×2 for the number of moving in-
stances N inst and encode the relative positions by an MLP. We reduce the dimen-
sionality of the encoding to one resulting in Rsim ∈ RN inst×N inst .

To calculate the resulting attention-based instance similarity scores, we re-
place the softmax function with an element-wise sigmoid function to derive values
in the range of zero and one. The procedure is similar to that described in Sec-
tion 7.1.3, but the attention weights now operate at the level of entire instances
rather than distinguishing between individual points. Additionally, we add the
positional center encoding as follows:

Asim
i,j = sigmoid

(
Qsim

i,j Ksim
i,j

⊤
+ Rsim

i,j

)
. (8.2)

The similarity scores incorporate the feature and position information and
directly indicate how likely two instances belong together. The combination of
both features combines the appearance of the instance within the scene to enhance
the tracking performance. To utilize the scores as an additional cost function, we
calculate the similarity cost as:

Csim
i,j =

1

(Asim
i,j + ϵ)

, (8.3)

where ϵ is an arbitrarily small constant for numerical stability. The similarity
cost includes the appearance features and thus incorporates essential information
for moving instance tracking.

8.1.5 Data Association
The central part of our data association is the offset predictions Otemp and O for
the coordinates of the instance Pinst because the center-based association within
a small distance is reliable for tracking moving instances. We add the respective
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offset to the corresponding point coordinates of the instance and derive the mean
value of the predictions to calculate the center of the instance to directly associate
instances. However, to improve data association when the geometric association
is imprecise, we utilize the attention-based instance similarity scores Asim to en-
hance tracking performance. Hence, the overall process includes appearance and
geometric features to improve tracking quality.

We first calculate the Euclidean distance d based on the center predictions of
our method. For the existing tracks, the center is defined by the temporal offset
predictions Otemp, whereas for the newly identified instances, the offset O is uti-
lized. Since a global association within the complete field of view of the sensors
includes multiple misleading connections, which would be considered in the opti-
mization step, we directly restrict the optimization to local areas. Therefore, we
cluster the instances based on the distances d into local areas with DBSCAN [53].
After the clustering, we utilize the local cost matrices, i.e. only instances in each
cluster, and perform Hungarian matching [104].

Additionally, we process the input features Xin by our model to extract in-
stance features Xinst and determine the similarity scores Asim of the tracks and
the objects. Since the geometric information is valuable within the short-range
displacement, we determine a threshold td1 where the data association is purely
based on the geometric assignment for instances that move slowly and are not
occluded during the tracking process. Since the measurement frequency of the
radar sensors is high, the relative displacement for consecutive scans is small,
which facilitates the geometric assignment. Above that threshold, we include the
similarity cost function Csim to perform the association. Therefore, we determine
a similarity cost threshold tsimc , which resolves whether the instance is assigned
to the corresponding track. The goal is to utilize the appearance features for
larger displacements, where the geometric assignment is difficult since multiple
possible instance candidates exist. The similarity cost threshold also handles
occlusion and initializes new tracks. Furthermore, we define a second distance-
based threshold td2 where the appearance-based association is difficult, and the
association is omitted due to false positive assignments. We update the existing
tracks with the information of the assigned instances after the processing of the
individual scans. Occluded tracks are propagated according to the temporal offset
predictions Otemp, and we initialize new tracks with the corresponding informa-
tion of the instance, including the instance feature representation and the offset
information. The final data association incorporates geometric and appearance
features to enhance tracking performance.
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8.2 Implementation Details
We implemented our approach in PyTorch [161] and trained the instance segmen-
tation backbone and our Radar Tracker with one Nvidia A100 GPU. We adopt
the training parameter of the Radar Instance Transformer, see Section 7.2. To
learn the spatial and temporal offsets of the radar detections, we add for both
offsets the following loss function:

Loffset =
1

N

N∑
i=1

∥oi − (ci − pi)∥1, (8.4)

where N is the number of points in the point cloud, and ci is the respective
ground truth center of the instance that pi belongs to. We extract the ground
truth center for the temporal offset by transferring the points of the instances
of the future scan into the current scan. The transformations are given in the
dataset.

We utilize the AdamW [132] optimizer with an initial learning rate of 0.001 to
train our Radar Tracker. We process the original features with the input dimen-
sion D = 4, comprising the point coordinates

[
xCi , y

C
i

]⊤, the radar cross section σi,
and the ego-motion compensated Doppler velocity vi, by the transformer blocks
where D1 = 64 and D2 = 256. We define the local areas for sample and grouping
by Nl = 6 points. We reduce the number of points because we only consider the
moving predictions, in contrast to Chapter 7. The attentive instance aggregation
module keeps the feature dimension and combines the information within one
instance feature vector. One batch includes 64 scan pairs, where only the first
scan is considered during the loss calculation. The network is able to predict the
data association and if the objects within the first scan are present in the second
scan. We supervise the attentive similarity output by a binary cross-entropy loss.

We set the bandwidth b = 10 for the clustering using DBSCAN to determine
local areas for the association. We set the distance based thresholds td1 = 5 m
and td2 = 10 m. We keep the tracks for 12 consecutive scans. The cost threshold
for the attentive similarity is set to tsimc = 1.5. We add points belonging to the
static class as additional instances for data augmentation to include the differen-
tiation between static and moving points in the attentive similarity. This way, we
account for false predictions during inference and enable the network to reliably
estimate the associations.

8.3 Experimental Evaluation
The main focus of this chapter is to enable reliable moving instance tracking in
sparse and noisy radar point clouds. We present our experiments to show the
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capabilities of our method and to support our key claims, which include that
our method outperforms existing state-of-the-art methods in moving instance
tracking. Secondly, our temporal offset prediction enhances the classification and
tracking score by adding additional motion cues. Thirdly, our attention-based as-
sociation scores incorporate valuable appearance features enhancing performance.

8.3.1 Experimental Setup
We train and evaluate our model on the RadarScenes dataset, as explained in
detail in Chapter 5. We utilize the LiDAR segmentation and tracking qual-
ity (LSTQ) score [7] to evaluate the moving instance tracking performance. The
LiDAR segmentation and tracking quality is designed to evaluate point-based seg-
mentation and tracking methods and does not depend on LiDAR-specific proper-
ties. Additionally, the metric ensures comparability for follow-up research. The
LiDAR segmentation and tracking quality combines the classification score Scls

for the semantic evaluation and the association score Sassoc for the temporal eval-
uation, resulting in LSTQ =

√
Scls × Sassoc.

8.3.2 Moving Instance Tracking
The first experiment evaluates the performance of our approach and shows that
our method achieves state-of-the-art performance in moving instance tracking
in sparse and noisy radar scans. We compare our Radar Tracker to the high-
performing networks with strong performance in LiDAR point-based tracking
benchmarks. However, we do not consider the best performing Eq-4D-StOP [281]
since it incorporates large rotations of the input point clouds, which is detrimental
to radar data [158].

Consequently, we utilize CA-Net [136] proposed by Marcuzzi et al., MOT [223]
by Weng et al., and the center tracking approach proposed by Yin et al. [252]
as baselines. We extend the center tracking with Hungarian matching [104] and
directly use the measured ego-motion-compensated Doppler velocities to perform
tracking instead of predicting velocities of the individual bounding boxes. For the
MOT [223] approach, we utilize the IoU as the cost to illustrate the limitations
in instance association. We adopt the Radar Instance Transformer, introduced
in Chapter 7, as the backbone for all methods since it is the best-performing
approach for moving instance segmentation and thus ensures a fair comparison.

Our Radar Tracker outperforms the existing methods, especially in terms of
LiDAR segmentation and tracking quality and association scores, as displayed
in Table 8.1. As mentioned, the MOT [223] approach struggles to associate
small instances due to the IoU-based association. In particular, instances that
consist of single detections do not result in an intersection and, therefore, limit

149



8.3. Experimental Evaluation

Approach LSTQ Sassoc Scls

MOT [223] 42.4 19.4 92.7
Center tracking [252] + Hungarian [104] 59.3 38.0 92.7
CA-Net [136] 34.8 13.0 92.7
Ours 66.8 48.2 92.7

Table 8.1: Moving instance tracking results on the RadarScenes test set in terms of
LiDAR segmentation and tracking quality (LSTQ), classification scores (Scls) and association
scores (Sassoc). Our approach outperforms state-of-the-art methods and enhances instance as-
sociation for tracking. The best results are in bold.

the performance. The center-based tracking overcomes these limitations and en-
hances performance. Nevertheless, MOT [223] and center tracking with Hungar-
ian matching [104] neglect the appearance features of the instances and thus can
not compensate for the shortcomings of geometric tracking. CA-Net combines
both features within one cost function. However, the method struggles to extract
discriminative instance information and to associate the instances based on ap-
pearance features. Relying on the geometric features within small displacements
can help to omit false predictions.

To illustrate the capabilities of our method, we show in Figure 8.3 two qualita-
tive results of the Radar Tracker. Our approach shows good performance within
diverse scenarios, including adverse weather. For the rainy scene, we are able to
track approaching objects, which change the number of points, which is difficult
for IoU-based approaches since, for really small instances, no overlap might exist.
Furthermore, the urban street scene includes several instances that belong to the
same semantic class, which makes tracking challenging. However, our approach
handles the complex scene well and provides consistent tracking IDs. We argue
that extracting appropriate features is challenging in sparse radar data, and the
design of our network and association is crucial to enhance accuracy. Our method
reliably tracks moving instances by combining geometric and appearance features.

8.3.3 Ablation Study on Offset Predictions
The second experiment evaluates our offset predictions, especially the temporal
offset, and illustrates that our approach is capable of including valuable motion
cues to enhance segmentation and tracking quality. To evaluate the segmenta-
tion performance, we utilize the IoUmov since segmentation of moving detection is
essential for tracking. We extend the backbone, the Radar Instance Transformer,
with the spatial offset prediction and the temporal offset prediction as additional
regression targets, as depicted in Table 8.2. The spatial offset, which points to
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Figure 8.3: Qualitative results of our Radar Tracker on the test set of RadarScenes over time t.
The camera images are anonymized and shown for reference. The colors in the image correspond
to the predicted instances over time. The left column is from sequence 79 (rain), and the right
is from sequence 138 (urban). In the images of the predictions, each color represents a different
instance of moving objects (static is black). The colors in the images correspond if the object
is visible.

the center of the instance within the current scan, already improves the IoUmov

by 0.8 absolute percentage points. Despite this improvement, the temporal offset
prediction enhances the performance by an additional 0.1 absolute percentage
point. We presume that the temporal offset prediction includes well-defined mo-
tion cues, especially for instances comprising single detection that do not have a
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Approach using: spatial offset temporal offset IoUmov

Radar Instance Transformer (Chapter 7) 84.4
Ours ✓ 85.2
Ours ✓ 85.3
Ours ✓ ✓ 85.4

Table 8.2: Influence of the temporal and spatial offset predictions in terms of IoUmov on the
RadarScenes validation set. The temporal and spatial offset improves segmentation perfor-
mance. The best results are in bold.

Approach Sassoc

Ours w/o positional encoding 54.0
Ours with no object class 54.1
Ours w/o sigmoid 54.0
Geometric association td2 = 10 m 52.2
Ours 54.3

Table 8.3: Influence of the design decision for the attentive association on the RadarScenes
validation set. The comparison with the geometric association shows that our approach leads
to superior results by considering appearance features. The best results are in bold.

regression target for the spatial offset. Therefore, we observe a better moving ob-
ject segmentation performance if we only add the temporal offset. If we combine
both offset predictions to enable direct center-based tracking, we achieve the best
IoUmov of 85.4%.

To verify that both offset predictions improve the tracking performance, we
evaluate a simple center-based association with and without the center predic-
tions in an additional experiment. We remove the appearance features to strictly
assess the performance of the geometric approach. The offset prediction improves
the Sassoc from 49.5% to 50.2%, which underlines the advantage. As a result, the
jointly learned instance and offset predictions combine the advantages and im-
prove segmentation and tracking quality.

8.3.4 Ablation Study on Attentive Association

In our third experiment, we analyze our method concerning the ability to extract
reliable attentive similarity scores to associate instances. Therefore, we evaluate
the different components of our method as detailed in Table 8.3. First, we remove
the positional encoding within our attentive instance association, which results in
a decrease of 0.3 absolute percentage points. We argue that positional encoding is
important to differentiate between similar instances within the scan. Furthermore,
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8. Moving Instance Tracking

Model parameters (M) mean runtime (ms)

Radar Instance Transformer (Chapter 7) 3.8 31.7

Center tracking [252] + RIT 3.8 32.0
CA-Net [136] + RIT 7.2 46.7
Ours + RIT 4.6 43.7

Table 8.4: The evaluation of the mean runtime and the number of parameters of the models on
an Nvidia RTX A6000 GPU based on 1000 randomly sampled point clouds of the RadarScenes
dataset.

we are able to combine appearance and geometric features to enhance tracking
quality.

In the second step, we add an additional no-object regression target [261] to
the attention score to address the occlusion within the appearance features. How-
ever, small and distant instances are often detected in one scan but not covered
in the next one, leading to several no-object assignments as ground truth. We
assume that this forces the network to assign more instances to the no object
class, and the information to track the instances is not covered adequately, which
results in a 0.2 absolute percentage points decrease of Sassoc. Additionally, we
tried to remove the sigmoid function [261] to directly learn the attention scores.
However, this also results in a decrease in performance. To verify that the associ-
ation based on the attention scores enhances accuracy, we evaluate our method,
including only geometric information for the threshold td2 = 10 m. The geometric
association performs worse compared to our approach. Hence, the appearance fea-
tures are essential to improve tracking and resolve ambiguities between instances
at larger distances.

8.3.5 Runtime

We analyze the runtime of our approach and show that our approach runs fast
enough to support online processing in autonomous vehicles. We evaluated the
runtime of our approach and the best-performing learning-based approach follow-
ing Section 5.3.5.

Our Radar Instance Transformer has a runtime of 31.7 ms and comprises 3.8
million parameters, as introduced in Chapter 7. Our Radar Tracker adds a run-
time of 12 ms, including 800 k parameters. The CA-Net utilizes a larger network
and hence increases the runtime compared to our approach. The geometric asso-
ciation of the center tracking results in the lowest overall runtime but neglects
the valuable appearance features, reducing the tracking quality. The resulting
runtime of 43.7 ms equals a frequency of 22 Hz, which is faster than the frequency
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of 17 Hz of the sensors. As a result, we are able to incorporate the appearance
features with a minor overhead and solve the task of moving instance tracking.

In summary, our evaluation suggests that our method provides competitive
moving instance tracking results in sparse and noisy radar point clouds by incor-
porating geometric and appearance features. Thus, we supported all our claims
with this experimental evaluation.

8.4 Conclusion
In this chapter, we addressed the task of segmentation and tracking of mov-
ing objects, which is essential for reliable path planning and collision avoidance.
To enhance scene understanding, we presented a novel method for moving in-
stance tracking in sparse radar point clouds. We follow the tracking-by-detection
paradigm since moving instance segmentation produces exceptional results by
exploiting radar-specific properties such as the Doppler velocity.

Our approach exploits temporal offset predictions to encode geometric in-
formation to enhance segmentation and tracking. We combine temporal offset
predictions and spatial offset predictions of the current scan to maximize segmen-
tation performance and include geometric features in the instance association.
We further infer instance appearance features using a transformer-based network
and introduce an attention-based association cost function to improve the track-
ing quality. This allows us to successfully associate individual instances based
on valuable geometric and appearance features over time. We experimentally
evaluated our approach on the radar moving instance tracking benchmark based
on the RadarScenes dataset. The results suggest that combining geometric and
appearance features is essential to achieve good performance on moving instance
tracking in sparse radar data. Furthermore, our approach successfully associates
instances that comprise only a single point, resolving the limitations of IoU-based
association methods. Overall, our approach outperforms state-of-the-art methods,
paving the way for reliable moving instance tracking in sparse radar data.

The tracking of moving instances supports the scene understanding and is
essential for future state prediction. Consequently, temporal understanding is
crucial for advanced driving systems. However, humans do not only rely on
the perception of moving and static objects but predict the maneuvers based
on semantic understanding. This knowledge is important because the possible
movement of cars and pedestrians differs. Therefore, semantic segmentation helps
to improve scene understanding, which we address in the next chapter.
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Chapter 9

Panoptic Segmentation

T he moving instance segmentation and tracking provide valuable infor-
mation to improve scene understanding, as presented in Chapter 8.
To navigate safely in complex real-world driving scenarios, additional
information, such as the semantic class of dynamic traffic participants,

is useful. It must be correctly identified to ensure safe autonomous mobility be-
cause interaction with different traffic participants plays a crucial role in collision
avoidance and path planning. Furthermore, the semantic classes provide infor-
mation about the possible movements of the agents. For example, the movement
of cars or trucks is more restricted due to the rigid structure and the larger in-
ertia, as well as road boundaries and traffic rules. Hence, knowledge about the
semantic class is important for anticipating individual behaviors and providing
context-aware decisions.

In this chapter, we tackle the problem of panoptic segmentation of moving
agents in sparse and noisy radar point clouds. We need to distinguish between
moving and static parts of the environment and separate individual instances
within our surroundings. We assign a corresponding semantic class and consider
the moving instances as “things” and the static points as “stuff”. This combines
instance segmentation with semantic segmentation to panoptic segmentation. We
focus on dynamic instances and hence include the differentiation between moving
and non-moving objects, such as parked and moving vehicles. Radar sensors are
particularly suitable to identify moving agents because they provide the Doppler
velocity of the detection, resulting in exceptional moving instance segmentation,
as shown in Chapter 7. We aim to leverage the reliable moving instance predic-
tions and propose a semantic instance refinement, as illustrated in Figure 9.1, to
enhance scene understanding. Compared to state-of-the-art approaches [190, 269],
we are able to work on single-scan radar data and do not rely on scan aggrega-
tion, which can increase memory consumption and induce latencies, limiting the
applicability in real-world scenarios.
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Figure 9.1: Our method processes moving instance segmentation predictions (a) to predict
point-wise semantic classes (b) and refine the instance assignment (c) to solve the panoptic
segmentation task from sparse radar point clouds. In the image of the point cloud (a), each
polygon represents a different instance of moving objects.

Additionally, Zhou et al. [274] and Xiang et al. [237] utilize feature refine-
ment within the backbone to enhance performance by combining multiple rep-
resentations, which increases the computational burden. Therefore, we focus on
leveraging the predictions to enhance accuracy efficiently and only add a small
overhead to the backbone. Furthermore, instead of directly solving the task of
panoptic segmentation, such as Li et al. [118], Xiao et al. [239], and Kolodiazh-
nyi et al. [99], our approach leverages the advantages of solving two separate
tasks with very good performance enhancing overall accuracy. We first perform
moving instance segmentation to leverage the advantages, such as incorporating
underrepresented classes and reducing the class imbalance. Then, we refine the
instance segmentation and predict the semantic classes in a two-step approach.
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9. Panoptic Segmentation

We overcome the limitations of scan aggregation and increased computational bur-
den with a lightweight network focusing on the essential information to enhance
performance.

Our main contribution is a novel method for accurate panoptic segmentation
in sparse and noisy radar point clouds. The approach, called SemRaFiner, lever-
ages the advantages of moving instance segmentation, which does not require
differentiation between semantic classes but allows us to enhance the overall per-
formance. We optimize the layers of our network and propose a new self-attention
module, our radius transformer layer, to account for the changing density of radar
point clouds, especially when processing moving instance predictions. We utilize
dedicated data augmentation to further refine the instance prediction and en-
hance panoptic segmentation. We construct an efficient network incorporating
the individual modules and an optimized training approach to improve the per-
formance of the overall perception task.

In sum, we make four key claims in this chapter: First, our SemRaFiner shows
state-of-the-art performance for panoptic segmentation in sparse and noisy radar
point clouds. Second, our radius transformer layer optimizes feature extraction,
especially for processing moving object predictions. Third, our optimized training
process, including dedicated data augmentation to refine instances and improve
semantic predictions, results in better performance. Fourth, our proposed ap-
proach runs faster than the sensor frame rate.

9.1 Our Approach to Panoptic Segmentation

The goal of our approach is to achieve precise panoptic segmentation in sparse
and noisy radar point clouds to enhance scene understanding of autonomous
vehicles. Our SemRaFiner architecture, illustrated in Figure 9.2, utilizes the
prediction of our Radar Instance Transformer, introduced in Chapter 7, and
extends the backbone to refine instance assignments and include semantic classes.
Our network is a point-based transformer network that builds upon the self-
attention mechanism [212]. We directly process the individual points using our
radius transformer layer to enhance feature extraction by addressing the specific
spatial distribution of radar points. We further enhance the instance prediction
by enabling the network to account for false predictions through our training
procedure. The final point-based prediction includes the corresponding semantic
class and refined instance assignments.
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extracts valuable features from filtered moving instances. (c) The semantic prediction of our approach refines the instance assignment. The final output
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9. Panoptic Segmentation

9.1.1 Moving Instance Segmentation Backbone
Radar data is typically sparse and noisy, but it provides additional Doppler infor-
mation, which is useful for moving object detection and simplifies moving instance
segmentation. Due to the enhanced performance of moving instance segmenta-
tion (Chapter 7) compared to standard semantic segmentation (Chapter 5), our
idea is to exploit this prediction performance advantage to improve the accu-
racy of panoptic segmentation. Therefore, we utilize the state-of-the-art mov-
ing instance segmentation method, our Radar Instance Transformer, presented
in Chapter 7, to reliably determine moving instances and refine these predictions
to improve panoptic segmentation.

We follow the design of our Radar Instance Transformer and enrich the current
radar point cloud P t at time t, consisting of the coordinates of the points and
the radar features, including the Doppler velocity and radar cross section values,
with temporal information from T previous scans P t−T , . . . ,P t−1. The enriched
point cloud is processed by transformer blocks to extract valuable features for
attention-based graph clustering to determine the instance IDs I = {I1, . . . , IN}
with Ii ∈ N. Additionally, the outputs of the backbone include the binary moving
object segmentation labels SMOS. For processing the current point cloud, we
utilize the predicted labels to filter the point clouds for moving prediction, which is
the input to our method. The features of the backbone remain untouched after the
training, and only the moving instance segmentation predictions are required to
select the corresponding data points, as introduced in Chapter 8. Therefore, we do
not rely on extracted features of the backbone, and we can potentially substitute
the network for other moving instance segmentation approaches. Furthermore,
the filtering reduces the computational complexity, and the majority of the point
cloud does not depend on an additional processing step. However, the good
performance of the moving instance segmentation backbone is crucial for our
method to improve panoptic segmentation.

9.1.2 Radius Transformer Layer
In sparse radar point clouds, individual points can represent whole instances, such
as distant vehicles or nearby pedestrians. Therefore, they contain important infor-
mation for safe autonomous mobility. Feature extraction of sparse radar data is
key to enhancing performance for downstream tasks. Since we process the filtered
point cloud, often including only moving instances, the point clouds are sparse
and unevenly distributed compared to the unfiltered point cloud, including static
points. To address this issue, especially for sparse moving instance prediction, we
propose a radius transformer, which combines a ball query sampling strategy with
a vector attention mechanism. We argue that the most important information
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9.1. Our Approach to Panoptic Segmentation

for correctly classifying individual points is within the local area of the object.
Most state-of-the-art approaches also focus on the local area. However, due to
the filtering of the point clouds explained in Section 9.1.1, individual instances
are distributed over the whole field of view. Performing attention between the k
nearest neighbors, explained in the previous chapters, or determining the corre-
sponding points with serialization algorithms [235] can result in interconnections
of distant points, which is likely to harm the feature extraction capability for our
type of problem. In contrast to our other approaches in previous chapters, our
radius-based approach limits the considered related local area for sparse point
cloud processing.

Other approaches by Lai et al. [108] and Xin et al. [242] restrict the local area
by performing attention on predefined areas. However, the grid representation is
fixed, which does not necessarily align with the instances. Therefore, we propose
a radius instance transformer layer, defining the local area for each point indi-
vidually to overcome this shortcoming. Consequently, the local area covers the
important information to segment individual detections reliably.

The input to our radius transformer layer contains the point coordinates Pin

and point-wise features Xin of the moving instances within the current scan, as
explained in Chapter 8. We do not process the static predictions. In contrast to
the previous chapter, we process the input features Xin ∈ RNmov×D by two fully
connected layers with weight matrices Wb

1 ∈ RD×D1 and Wb
2 ∈ RD1×D1 to increase

the feature dimension, which we elaborate in Section 9.1.3. In our transformer
layer, we follow our general approach, introduced in Chapter 5, and encode the
features of the moving points by fully connected layers.

To adaptively combine the features within the local areas and extract valuable
features for individual points, we need to group the points. As mentioned before,
to account for the changing density of points and replace the grid representa-
tion with a flexible solution, we sample the points within a circle defined by the
radius r, around the individual points. We determine the neighborhood of the cor-
responding points with point coordinates p by the relative position ri,j = pi − pj

where pi and pj ∈ Pin. The domain of definition for our self-attention is then
the circle Br(pi) = {pi ∈ Pin | ∥ri,j∥ ≤ r} with radius r, similar to the ball query
of PointNet++ [166]. However, we replace the processing within the local areas
of PointNet++ with a powerful attention mechanism. Furthermore, we observe
that having many interconnections between points can make it difficult to extract
valuable features within local regions, consisting of different semantic classes, due
to the information exchange within the attention mechanism. Hence, we restrict
the maximum number of points Nmax within the radius, resulting in an optimized
neighborhood representation to enhance feature extraction.

We sample the points using a ball query [210] to extract the related queries,
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Figure 9.3: Our transformer block is a residual block that includes our radius transformer
layer and two multi-layer perceptrons with two fully connected layers and Gaussian error linear
unit activation functions. The input includes the point coordinates Pin and the point-wise
features Xin. The output of the transformer block consists of the enriched features Xb, and the
point coordinates Pin, which are kept intact to include fine-grained position information within
consecutive processing steps.

keys, and values, resulting in Qr,Kr, and Vr ∈ RNmov×Nmax×D1 within the local
neighborhoods. If the local area around the points contains less than Nmax points,
the remaining keys, queries, and values are zero-padded. Furthermore, we utilize
the relative position ri,j, which we calculate to determine the local areas to deter-
mine the relative positional encoding R ∈ RNmov×Nmax×D1 . We follow our previous
approaches explained in Chapter 5 and adopt vector attention [270] to calculate
the attention weights A ∈ RNmov×Nmax×D1 . In contrast to our tracking approach,
we process the resulting attention weights by a multi-layer perceptron (MLP),
including two fully connected layers with weight matrices Wa

1,Wa
2 ∈ RD1×D1 , two

batch normalization [88] layers, and rectified linear unit activation functions [150].
We then apply the softmax function to derive the final attention weights Âi,j. The
output features Xout ∈ RNmov×D1 of our radius transformer layer are the sum of
the element-wise multiplication and the relative positional encoding. Besides the
features, which comprise the information within the local area, the output of the
transformer layer includes the point coordinates Pin of the moving points. The
point coordinates are kept to include fine-grained position information within the
consecutive layers.

9.1.3 SemRaFiner Network
We aim to efficiently process the radar data to reduce latencies. Consequently,
our SemRaFiner includes only two transformer blocks and three MLPs to derive
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the refined instance IDs Ir = {Ir1 , . . . , IrN} with Iri ∈ N and semantic labels Ssem,
see Figure 9.2.

We follow our approaches described in previous chapters and embed our ra-
dius transformer layer into a residual block to extract valuable features, see Fig-
ure 9.3. We first increase the dimension of the features Xin, which we then process
within the radius transformer layer. The output features of the radius transformer
layer are added to the features of the skip connection and processed by the sec-
ond MLP. The point coordinates are directly passed into the transformer layer
to calculate the positional encoding and include fine-grained position informa-
tion within the local areas. The resulting features after the second transformer
block Xb

2 ∈ RNmov×D2 are processed by the three consecutive MLPs, as illustrated
by the blue blocks in Figure 9.2, to reduce the dimensionality and derive the final
predictions. The first two MLPs consist of two fully connected layers, where the
first fully connected layer keeps the dimension of the features, and the second re-
duces the dimension by a factor of two. To derive the final semantic predictions,
the last MLP first reduces the dimensionality by a factor of two before predict-
ing the semantic labels. The final semantic predictions Ssem = {ssem

1 , . . . , ssem
N }

where ssem
i ∈ {1, . . . , C} combine the static predictions of the backbone and the

refined semantic class predictions. The predicted semantic classes of our network
for the moving predictions of the backbone include the static class to enable
instance refinement.

9.1.4 Data Augmentation
We utilize ground truth annotations to train our model and to classify instances
within sparse radar point clouds reliably. During inference, we leverage the mov-
ing instance prediction to perform point-wise semantic segmentation and refine
the instance prediction. The major problem is that the ground truth does not
include failure cases such as static points predicted as moving. To account for
the false prediction of static points, we augment our training data. Our idea is
to enable our network to correct false predictions, which cannot be learned by
only considering the ground truth annotations. Furthermore, we want to enable
the method to leverage the semantic information for panoptic segmentation to
correct false predictions. Therefore, we incorporate static points into the training
process and add static points close to an instance by the probability of pI to learn
to correct false predictions. This approach also aligns with the false predictions,
which often occur at the boundary of the instance. Additionally, we observe
that the moving instance predictions include false predictions for small instances
within the individual scans. Therefore, we add instances comprising only static
ground truth annotations, including one to five points by the probability of pS.
The correction of these predictions can eliminate incorrectly detected instances.
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9.1.5 Instance Refinement

Our data augmentation enables us to correct false predictions and remove static
points from instance predictions. Furthermore, we utilize the semantic predic-
tions to correct instance assignments. Since the classification of moving and
static points does not include further differentiation, we observe that nearby in-
stances belonging to different semantic classes, such as trucks and cars, may get
clustered together. However, our panoptic segmentation includes that knowledge,
and hence, we can resolve the false assignments. We combine the instance assign-
ments and semantic predictions within our instance refinement module. Due to
the point-wise processing, we derive a semantic class for each individual radar
point. We combine these predictions and the instance assignment per point and
assign different instance IDs if the semantic classes differ. Additionally, we re-
move the instance ID if our approach predicts that the corresponding point be-
longs to the static class. The overall refinement thus accounts for false semantic
predictions and wrong instance assignments.

9.2 Implementation Details
We train the backbone separately and adopt the original parameters introduced
in Section 7.2. We implemented our SemRaFiner in PyTorch [161] and trained
our network with one Nvidia A100 GPU and a batch size of 64 over 80 epochs.
As optimizer, we utilize AdamW [132], set the initial learning rate to 0.001, and
drop the learning rate by a factor of 10 after 60 epochs. We combine the Lovász
loss [21] and cross-entropy loss to learn the point-wise classification using the
same weighting for all classes. Compared to the straightforward semantic seg-
mentation in Chapter 5, the processing of the moving instance predictions does
not include the strong class imbalance. Therefore, the loss function does not
include a weighting of the classes.

Additionally, we introduce a consistency loss to enforce the same class pre-
diction for the individual instances. We construct a loss based on the semantic
predictions Isem

h for the individual instances h. The ideal case is that each in-
stance belongs to the same class. However, this limits the performance since we
cannot correct false predictions during instance refinement. Therefore, it is im-
portant to maintain point-wise classification while preserving consistency within
the true instances. We utilize the number |Isem

h | of distinct classes within an
instance Isem

h to calculate the loss over the number of all instances Nh as follows:

Lc =
1

Nh

Nh∑
h=1

1− 1

|Isem
h |

. (9.1)
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We combine all three losses without weighting to derive the final training loss
for our network. The input features comprise the point coordinates, the radar
cross section σi, and the ego-motion-compensated Doppler velocity vi, forming
the input vector xi =

[
xCi , y

C
i , z

C
i , σi, vi

]⊤. The coordinate zCi = 0 is added to
apply the pose compensation, explained in Section 7.1.1. We increase the per-
point features to D1 = 64, D2 = 256 within our transformer blocks. We set
the parameters for our radius transformer layer to r = 5.0m and the maximum
considered neighbors within the ball query to Nmax = 24. The first two MLPs
reduce the dimensionality to 128 and 64, respectively. In the third MLP, the first
fully connected layer has an output dimension of 32 before predicting C classes
by the second fully connected layer. We set the probabilities of augmenting the
instances pI and the scan pS to 40%.

9.3 Experimental Evaluation
The main focus of this chapter is to achieve accurate panoptic segmentation in
sparse radar point clouds. We present our experiments to show the capabilities
of our method. The results of our experiments support our key claims, including
that our approach achieves state-of-the-art performance in panoptic segmenta-
tion without aggregating scans. Moreover, our radius instance transformer layer
accounts for the changing density in sparse radar data to enhance panoptic seg-
mentation. Our dedicated data augmentation and point-wise processing enables
instance refinement to improve overall performance. Our SemRaFiner is efficient
and only adds a small overhead to the backbone to incorporate semantic classes.

9.3.1 Experimental Setup

As detailed in Chapter 5, we train and evaluate our model using the RadarScenes
dataset. Consistent with Chapter 7, we utilize the panoptic quality to evaluate the
panoptic segmentation. Additionally, we report the intersection over union (IoU),
introduced in Chapter 5, to evaluate the semantic segmentation performance in
detail. To enable a comprehensive evaluation, we further differentiate between
the six classes, including static, pedestrian, pedestrian group, car, truck, and bike.

9.3.2 Panoptic Segmentation

The first experiment evaluates the performance of our approach and its outcomes
support the claim that our approach achieves state-of-the-art performance in
panoptic segmentation using sparse and noisy radar scans. We compare our
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PQ IoU
Method Input PQ mIoU static car pedestrian pedestrian

group
bike truck static car pedestrian pedestrian

group
bike truck

RadarPNv1 [188] - 61.0 - - - - - - 98.7 58.2 36.0 58.7 58.4 56.1
RadarPNv2 [190] - 61.9 - - - - - - 98.7 63.8 38.8 58.5 51.0 61.0
STA-Net [269]

multi-scan
- 70.4 - - - - - - 99.8 75.9 43.1 82.0 67.1 54.6

Mask3D [187] 56.9 56.1 98.4 70.6 18.4 31.9 57.7 64.3 98.6 68.7 11.8 35.9 57.7 63.9
Chapter 5 + DBSCAN [53] 56.3 56.9 98.7 59.0 29.7 38.3 54.6 57.3 98.7 58.5 21.7 46.0 54.6 61.8
Ours

single-scan
81.4 70.4 99.7 85.7 59.2 83.1 78.9 82.1 99.4 74.9 42.1 71.0 65.2 69.6

Table 9.1: Panoptic segmentation results on the RadarScenes test set in terms of PQ and IoU scores. The results of RadarPNv1 [188], RadarPNv2 [190]
and STA-Net [269] are adapted from the original papers. The gray rows correspond to multi-scan segmentation methods. Our approach outperforms
state-of-the-art approaches and performs on par with aggregation-based methods. The best results are in bold.
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9.3. Experimental Evaluation

method to high-performing networks with strong performance in point-based in-
stance segmentation and radar segmentation. Furthermore, we utilize the ap-
proach Mask3D [187] proposed by Schult et al. as a baseline and extend our
Gaussian Radar Transformer with DBSCAN [53] to reliably cluster instances.
We extend Mask3D [187] with state-of-the-art post-processing for mask predic-
tions [36] and set the score threshold to 0.5 to enhance performance and derive
the panoptic labels.

Additionally, we report the results of the works by Schumann et al., namely
RadarPNv1 [188] and RadarPNv2 [190], and the STA-Net [269] by Zhang et al.,
which rely on scan aggregation and do not consider single-scan processing. Our
SemRaFiner outperforms the existing single-scan approaches, especially in terms
of PQ, by a solid margin, as displayed in Table 9.1. The performance improves,
especially for small instances comprising only a few points, such as pedestrians
and distant objects. We observe that our dedicated network, which utilizes the
moving instance segmentation as input, is able to extract valuable features, par-
ticularly for smaller classes, due to the reduced class imbalance and optimized
architecture. We emphasize that our performance depends on the prediction of
our Radar Instance Transformer, and therefore, precise moving instance segmen-
tation is important to enhance the accuracy. Furthermore, this supports the claim
that processing the moving instance prediction leads to a better performance than
directly performing panoptic segmentation.

Another way to enhance segmentation performance is by aggregating radar
point clouds. However, the aggregation of point clouds can induce disadvanta-
geous latencies, which is relevant when performing our approach on a vehicle in
real-time. Additionally, our method performs on par in terms of mIoU with the
best-performing semantic segmentation model STA-Net, which aggregates scans
over 500ms with input point clouds of 3072 points. In contrast, our single scans
include an average number of points of 539 in the test set. The Radar Instance
Transformer utilizes two previous scans to enrich the current scan, but only the
single current scan is processed within the backbone. Therefore, we achieve simi-
lar results using five times fewer points and also include instance segmentation.

Gaussian Radar Transformer achieves a higher mIoU compared to Mask3D for
the single-scan approaches. We assume that the optimized radar-specific architec-
ture performs better on radar data. However, the powerful mask predictions lead
to better performance in terms of PQ but come with a higher computational cost.
Overall, both methods struggle to reliably segment instances in sparse and noisy
radar point clouds. We enhance the PQ for all classes, leading to an improvement
of more than 20 percentage points on the overall PQ.
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9. Panoptic Segmentation

# Model r [m] Nmax PQ mIoU

[A] Stratified Transformer [108] 55.0 42.6
[B] Point Transformer [270] 75.8 63.1
[C] KPConv [210] 81.0 69.6
[D] Ours 5.0 24 83.0 72.2
[E] Ours with varying parameters 6.0 24 82.3 71.3
[F] Ours with varying parameters 6.0 34 82.4 71.5
[G] Ours with varying parameters 5.0 34 82.7 72.0
[H] Ours with varying parameters 3.0 24 81.7 70.4
[I] Ours with varying parameters 5.0 6 78.7 66.4

Table 9.2: Ablation study on the radius transformer layer on the RadarScenes validation set in
terms of PQ and mIoU scores. The radius transformer layer improves the feature extraction
for the target processing of moving object predictions compared to other approaches.

9.3.3 Ablation Study on the Radius Transformer Layer

The second experiment evaluates our radius transformer layer and illustrates
that our approach is capable of extracting valuable features from sparse point
clouds, enhancing the overall performance. We replace the radius transformer
layer with the point transformer layer used for radar signal processing, introduced
in Chapter 7, the stratified transformer layer [108], and KPConv [210], illustrating
the ablation results in Table 9.2. Additionally, we evaluate the performance of
our approach based on the selection of the hyperparameters, namely the radius r
and the maximum number of neighbors Nmax.

The gain obtained by our radius transformer layer is directly visible by the
increase compared to the other transformer modules, enhancing the performance
by more than 6 absolute percentage points compared to the point transformer
layer. We argue that the kNN-based processing results in the interconnection of
distant points, and the grid representation does not align with the instances, both
harming the accuracy. As expected, the KPConv approach, Table 9.2 [C], leads
to the best result using the ball query to determine the local areas. However,
our attention-based processing enhances the PQ by 2 absolute percentage points
compared to KPConv.

Furthermore, the comparison of the setup of r = 5 m and Nmax = 6, Ta-
ble 9.2 [I], which utilizes the same number of neighbors as the point transformer,
underlines that the additional neighborhood restrictions by the radius are advan-
tageous. We argue that, especially for small instances such as pedestrians but
also cars or bikes that are far away, this leads to too many interconnections that
harm the accuracy. However, for larger instances, we observe that increasing the
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Model PQ

Ground truth semantics 77.1
Ours w/o data augmentation 81.5
Ours 83.0

Table 9.3: Ablation study on the instance refinement on the RadarScenes validation set in terms
of PQ and mIoU scores. The refinement is essential to enhance the prediction performance and
correct the instance assignments. The best results are in bold.

number of neighbors helps to classify them reliably.
The performance decreases if we increase the maximum number of points

from 24 to 34, Table 9.2 [D] and [G], respectively. We assume that too many
interactions result in a mix of information during self-attention, which hinders
the clear separation of the information. We also see that for a larger number
of neighbors, the performance of smaller instances, such as pedestrians, drops
from 65.2 % to 64.0 % for Nmax = 24 and Nmax = 34, respectively. Since close
instances might still be included within the radius, the performance of small in-
stances, especially, is affected. Therefore, the radius and the maximum number
of parameters depend on the task and the segmentation of the specific instances.
Additionally, the parameters may depend on the resolution of the radar sensor,
which is an interesting starting point for future research to automatically deter-
mine the optimal settings. Overall, both parameters are essential to enhance
radar-based panoptic segmentation.

9.3.4 Ablation Study on the Instance Refinement

The third experiment supports the claim that our method incorporates valuable
instance refinement to enhance overall performance, as depicted in Table 9.3. The
central parts that enable instance refinement are dedicated data augmentation for
incorporating static points and point-wise processing. To verify the assumptions,
we first evaluate the performance of the moving instance segmentation prediction
in combination with the semantic ground truth labels. We, therefore, do not
optimize the instance prediction of the Radar Instance Transformer to illustrate
the limitation of keeping the instance assignments under perfect segmentation
results. In the second step, we remove the data augmentation introduced in Sec-
tion 9.1.4. The resulting method accounts for false predictions within the different
object classes but cannot correct false static predictions because these errors are
excluded in the training process. However, our instance refinement helps to opti-
mize the instance prediction compared to our Radar Instance Transformer, even
under the condition that our semantic predictions are not perfect. Furthermore,
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Figure 9.4: Qualitative results of our SemRaFiner and our Radar Instance Transformer on the
RadarScenes dataset. The camera images are anonymized and shown for reference. The left
column is from sequence 79 (fog), and the right is from sequence 107 (urban environment).
Each color in the image of the predictions represents a different instance (static is grey).

the data augmentation enhances the panoptic quality by more than 2 absolute
percentage points. Therefore, data augmentation and point-wise processing are
both essential to improve performance, especially for the annotated moving ob-
jects in RadarScenes. Additionally, we performed an additional experiment and
removed the consistency loss for the class consistency within instances, which re-
sulted in a PQ of 82.9%, leading to a small decrease in performance. Furthermore,
our SemRaFiner works reliably under different and challenging driving scenarios,
as illustrated in Figure 9.4. Our approach refines the moving instances under
different and changing scenarios.

9.3.5 Runtime
Finally, we analyze the runtime and the number of parameters of the approaches
and, in this way, support the claim that our approach runs fast enough to support
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Model parameters (M) mean runtime (ms)

STA-Net [269] 7.4 34.9
RadarPNv1 [188] 1.8 278.1

Mask3D [187] 39.6 85.2
Gaussian Radar Transformer (Chapter 5) 8.4 24.0
Radar Instance Transformer (Chapter 7) 3.8 31.7

Ours + Radar Instance Transformer (Chapter 7) 4.5 42.1

Table 9.4: The evaluation of the mean runtime and the number of parameters of the mod-
els on an Nvidia RTX A6000 GPU based on 1000 randomly sampled point clouds of the
RadarScenes dataset. The runtime and the parameters of STA-Net and RadarPNv1 are copied
from Zhang et al. [269] using a different hardware setup.

online processing. We follow Section 5.3.5 and evaluated the runtime of our
approach on an Nvidia RTX A6000 GPU on 1,000 real-world radar scans that we
randomly selected from the RadarScenes validation set. The mean runtime for
one radar scan is illustrated in Table 9.4. Our Gaussian Radar Transformer has
the lowest runtime utilizing optimized farthest point sampling and kNN algorithm
in C++ [271]. The multi-scan approaches increase the runtime compared to the
Gaussian Radar Transformer, but the comparison is difficult since the reported
results are evaluated on different hardware. Additionally, Mask3D uses four times
more parameters to enhance the panoptic segmentation. The Radar Instance
Transformer and our approach combined still have fewer parameters compared
to STA-Net since our model only adds a small overhead. The combined runtime
of 42.1 ms, equal to 24 Hz, is faster than the frame rate of 17 Hz of the radar
sensors.

In summary, our evaluation suggests that our method provides competitive
panoptic segmentation in sparse radar point clouds. The instance refinement
and the utilization of moving instance predictions outperform state-of-the-art
approaches. Thus, we support all our claims made in this chapter through our
experimental evaluation.

9.4 Conclusion
Semantic scene understanding, including the prediction and classification of mov-
ing agents, is essential to enabling safe and robust driving behaviors of au-
tonomous vehicles. In this chapter, we presented a novel approach for panop-
tic segmentation of sparse and noisy radar point clouds. Our method exploits
the advantages of moving instance segmentation to refine predictions and en-
hance the overall system performance. Our method efficiently leverages sparse

170



9. Panoptic Segmentation

representations of moving points by limiting the self-attention mechanism within
a local neighborhood. We overcome the limitations of grid representations and
unbounded local regions in transformer networks to predict semantic classes. Fur-
thermore, we exploit the self-attention mechanism within the optimized network
to improve overall performance. Our point-wise processing enables us to refine
instance prediction and correct assignment errors.

This allows us to enhance feature extraction by optimizing the training pro-
cedure and successfully correcting instance assignments. We implemented and
evaluated our approach on the RadarScenes dataset and provided comparisons
to other existing techniques. The experiments suggest that our proposed mod-
ules and training strategy are essential to achieve good performance on panoptic
segmentation, supporting all claims made in this chapter. Overall, our approach
outperforms the state-of-the-art methods, incorporating essential knowledge for
radar-based scene understanding.
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Chapter 10

Conclusion

S emantic scene understanding of the surroundings of a self-driving vehi-
cle is crucial for operating autonomously in complex, real-world scenar-
ios. Different environmental conditions, such as changing lighting and
adverse weather, can significantly challenge perception systems. Espe-

cially, commonly used sensors such as cameras and LiDARs face limitations under
rain, fog, and snow. In this thesis, we tackle these limitations by proposing novel
approaches that leverage radar sensors, which work reliably under challenging
conditions, including adverse weather. The interpretation of a scene depends on
various aspects, making dedicated algorithms for the desired task crucial. More-
over, the applicability of the approaches in real-world scenarios depends on the
runtime. For instance, collision avoidance relies on immediate feedback to ensure
safety and reduce accidents.

Our work presented in Chapter 5 to Chapter 9 addresses several challenges
and focuses on radar-based scene understanding by processing single-scan radar
point clouds. Consequently, our approaches do not rely on processing aggregated
data throughout the whole network, which induces latency and increases mem-
ory requirements. Since single-scan radar point clouds are sparse and noisy, we
propose advanced algorithms that explore radar-specific properties such as the
Doppler velocity to enable reliable perception algorithms.

We divide this thesis into two parts to examine the capabilities of radar-based
perception approaches in detail. In Part I, we focus on the semantic understand-
ing of radar point clouds by developing specialized learning-based approaches.
Starting in Chapter 5, we present our novel approach for semantic segmentation
of sparse and noisy radar point clouds. We introduce an advanced architecture
and optimize the transformer layer by replacing the commonly used softmax func-
tion with a scaled Gaussian function to enable an individual weighting of sparse
radar points. The dedicated modules improve feature extraction and are impor-
tant for deriving valuable information and enhancing segmentation performance.
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Furthermore, the processing of radar-specific properties such as the radar cross
section and Doppler velocity support the identification of moving instances and
help to classify nearby objects reliably. We compared our approach to several
other state-of-the-art methods, showing superior semantic segmentation perfor-
mance with comparable results to data aggregation methods.

Despite the good performance, the semantic segmentation does not include un-
derrepresented classes, and the strong class imbalance within radar point clouds
entails challenges for learning-based approaches. Instead of exploring multi-class
semantic information, we focused on moving object segmentation in Chapter 6,
which is especially suitable for radar signal processing because of the provided
Doppler velocity. As a result, moving objects are directly identifiable within
single radar scans. This is an advantage compared to LiDAR and camera pro-
cessing, which often rely on temporal dependencies based on data aggregation.
We incorporate the velocity information within our transformer-based network
to enhance feature extraction. Moreover, we optimize the upsampling strat-
egy within the encoder-decoder architecture to improve information exchange
for sparse radar data. The data-driven approaches enhance performance com-
pared to the threshold-based method for the Doppler velocity due to the noise in
radar scans. Therefore, deep neural networks are essential to handle sparse and
noisy radar scans and provide reliable predictions to leverage the full potential
of downstream tasks such as path planning.

Moving object segmentation provides information about which parts of the en-
vironment are moving and which are static. For scene understanding, the knowl-
edge of how many agents are present is crucial to operate safely in real-world
environments. To account for the missing information, we propose our Radar
Instance Transformer in Chapter 7. The novel approach incorporates temporal
information in an effective way to overcome the limitations of passing aggregated
scans through the whole network. Therefore, we enhance segmentation perfor-
mance by enriching the single current radar scans and reducing the computations.
We optimize the backbone architecture to keep the valuable information of indi-
vidual detection intact. Furthermore, we leverage the self-attention mechanism
to incorporate local and global instance knowledge, enhancing feature extraction
and segmentation performance. We propose an attentive graph-based instance
partitioning to reliably identify moving agents without relying on semantic infor-
mation. As a result, we enhanced the accuracy for moving instance segmentation
and addressed the challenging task of instance assignment within sparse radar
point clouds. We established a new benchmark based on the RadarScenes dataset,
which allows further comparisons with future work and is publicly available.

Our moving instance segmentation approach shows exceptional results and
includes valuable information for various tasks. Therefore, we exploit the pre-
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dictions in Part II to address additional tasks and enhance scene understanding.
Besides identifying instances within individual scans, tracking and motion infor-
mation of agents over time is essential for path planning and reliable collision
avoidance of autonomous vehicles in real-world environments. In Chapter 8, we
address this task and utilize geometric and appearance features to associate mov-
ing instances over time. We propose an advanced tracking algorithm based on
the self-attention mechanism to enhance tracking quality. We address the diffi-
culties of sparse point clouds and include the tracking of instances that comprise
individual detections. Our experimental results demonstrate that our method
surpasses existing approaches.

Semantic information about the corresponding class plays a crucial role in fu-
ture trajectory prediction and pose estimation of individual instances, contribut-
ing to scene understanding. In particular, precise planning algorithms rely on this
semantic understanding to model interactions between instances, as the maneu-
vers vary between classes. For example, the movement of cars is more restricted
than that of pedestrians. Therefore, we address the panoptic segmentation of the
radar point clouds in Chapter 9. In contrast to other approaches, we leverage
the moving instance prediction to directly predict the semantic class for the indi-
vidual points and refine the instance segmentation. We optimize the transformer
layer to process the sparse moving object predictions to account for the changing
density and extract valuable features. Furthermore, we introduce dedicated data
augmentation techniques to account for false predictions and include the seman-
tic information in the instance refinement. The combined approach adds little
overhead to the moving instance segmentation network to enable online process-
ing. We outperform other methods by a solid margin and achieve similar results
to data aggregation segmentation methods, illustrating the strong performance
of our transformer-based approaches.

Overall, this thesis presents novel approaches to enhance scene understanding
for sparse and noisy radar point clouds in real-world automotive environments.
We introduced modules to incorporate valuable radar sensor information and
optimized network architecture to extract discriminative features. We addressed
a variety of tasks contributing to scene understanding and presented solutions
to several single-scan processing challenges. We evaluated and tested all our
approaches on publicly available large-scale radar data and demonstrated that our
transformer-based methods outperformed state-of-the-art. Our approaches work
reliably under adverse weather, compensating for the limitations of other sensor
modalities to enhance performance. The efficient processing and the availability
of radar sensors within vehicles make these advancements practical and widely
accessible. In summary, we took a step forward towards sensor redundancy to
enhance scene understanding for autonomous vehicles and improve safety.
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Chapter 11

Future Work

In this thesis, we explored radar-based scene understanding from sparse and noisy
single-scan point clouds. We proposed various approaches to leverage the poten-
tial of radar sensors to enhance object identification and segmentation. While
our methods achieved encouraging results, novel techniques and promising future
works have the opportunity to improve performance and bring us closer to full
autonomy. We primarily focused on the perception of moving instances and the
differentiation of moving and static parts of the environment. This information
is fundamental and contains the essential aspects for many downstream tasks,
such as path planning. The differentiation and identification of the semantic
classes of the static environment enhances scene understanding. This knowledge
can help to precisely localize autonomous vehicles within complex scenes and
improve context information for safe and efficient decision-making.

Furthermore, the separate classification of noise conceals multiple possibilities
for improving the performance of radar-based perception. The differentiation
can improve the overall segmentation performance, support free space detection,
and reduce the memory requirements for consecutive tasks by removing noise.
However, labeling the static environment and noise, in particular, is challenging.
Therefore, transferring annotations from different sensor modalities can support
the annotation process. Additionally, the development of so-called imaging radars
simplifies the labeling efforts due to higher resolution, resulting in denser point
clouds. Consequently, the time and the cost of the annotation process and the
required synchronized camera and LiDAR data can be reduced. The processing
of the dense point clouds brings benefits, such as detailed information about the
environment. However, the architectures and modules need adjustment to handle
denser point clouds in real time.

One central challenge in this thesis and also state-of-the-art approaches results
from the identification of instances. The runtime of instance association based on
clustering algorithms depends typically on the number of points or occupied vox-
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els. The attentive graph-based clustering in Chapter 7 includes similar drawbacks
since the construction of the graph and clustering correlate with the number of
moving detections. Consequently, crowded scenes where latency requirements
are high often have higher runtime. Masked-based predictions [135, 186] have
a near-constant runtime. However, the number of masks needs to exceed the
number of instances to reliably identify agents in the surroundings. As a result,
the runtime is always high because the masks are determined for each scan and
not adapted to the number of instances. Advanced algorithms with an optimized
runtime independent of the scenes are desirable to overcome these limitations.
The restriction of the instance assignment to local regions and performing the
optimization in parallel can be interesting for future research. Additionally, the
reduction of mask predictions without restricting accuracy is another solution.

Besides runtime optimization, the performance of the segmentation is often
class-dependent and influenced by the distance to the sensor. The detection
performance of the most vulnerable road users, including pedestrians and two-
wheelers, is often worse than that of vehicles, see Part I. Data augmentation and
specific data selection algorithms can enhance performance. However, there are
still difficulties in the identification of small instances, which have to be addressed
to enable safe driving functionalities within all scenarios. The effect is often more
severe for sparse radar data, making the reliable segmentation of small and distant
instances challenging since they usually comprise single detections. The informa-
tion within the point cloud is scarce, and adequate feature extraction is key to
enhancing the overall performance. The refinement introduced in Chapter 9 is a
promising solution, and restricting the local area to extract the features improved
the accuracy. However, the approach does not account for class-specific restric-
tions and distance-based adjustments due to the fact that distant radar data is
sparser. Therefore, the adaptation of the specific parameters or data-driven op-
timization of these are interesting research directions. Furthermore, the radar
parameters and sensor design influence the nature of the radar point cloud, as ex-
plained in Chapter 2. Since the optimization of the algorithms depends on specific
input data, the adaptation to different sensors is challenging. Consequently, the
simultaneous optimization of the radar parameters and the algorithm to explore
the dependencies and automatically determine optimal settings can be crucial to
leverage the full potential and provide valuable insights.

Despite optimization opportunities for the algorithms and sensor configura-
tions, major challenges in radar signal processing and the whole perception stack
are unknown objects. In Part I, we presented the approach to handle all mov-
ing objects within one central class, the moving class, which can include the
long-tailed distribution important to handle real-world scenarios. However, scene
understanding can benefit from the differentiation of individual instances within
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the static environment and include semantic information for unknown objects.
Therefore, an extension focusing on open-world instances and semantic segmen-
tation is an interesting research area. Despite the requirements for annotated
point clouds mentioned earlier, open-world segmentation benefits from unsuper-
vised approaches. Unsupervised learning approaches learn implicit patterns in
data without using annotated data. This is especially useful for clustering data
into different classes and identifying class-agnostic instance segments. For open-
world segmentation, this includes several possibilities to derive instance clusters
for static and moving detection as well as to reason about objects belonging to
similar classes, which has already been addressed in LiDAR data processing [154].
Therefore, unsupervised approaches are interesting for exploring the variety of
long-tailed class distributions and incorporating the knowledge within the per-
ception algorithms. As a consequence, these approaches can provide additional
knowledge for semantic refinement, introduced in Chapter 9, to enhance scene
understanding.

Last but not least, multi-modal perception algorithms and information fu-
sion can provide detailed information for autonomous vehicles to enhance scene
understanding. The redundancy in perception algorithms can improve the ro-
bustness and reliability of autonomous vehicles in real-world environments. The
sensor suites of autonomous vehicles include LiDARs, cameras, radars, and oth-
ers, such as global navigation satellite systems and inertial measurement units,
which can provide important information. Due to the variety of data and individ-
ual representations, fusing multi-modal sensor information remains challenging.
Therefore, advanced fusion schemes that handle various data representations and
consider the advantages and limitations of individual sensors need to be explored
to enhance overall safety. Another open question is how to solve information fu-
sion, especially when one sensor modality faces limitations such as under adverse
weather, and how to make sure that we identify the degeneration of the data. We
believe that exploring the advantages of individual sensors and the fusion of data
is essential for future research to improve scene understanding and enable robust
and safe autonomous mobility.
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