
Detecting Superfluids, Exciting the Higgs
Mode and Enhanced Cooling of Dimers in

the BEC-BCS Crossover

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
Daniel Eberz

aus
Troisdorf

Bonn 2024



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

Gutachter / Betreuer: Prof. Dr. Michael Köhl
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Abstract

In this thesis, the BEC-BCS crossover is experimentally investigated using a quantum
simulator apparatus. We prepare a degenerate, interacting fermionic sample by cooling atoms
in two of the lowest hyperfine states of 6Li in a crossed optical dipole trap. Interactions
between the two states are controlled by means of a broad magnetic Feshbach resonance, and
we adjust the samples’ temperature and density by precisely tuning the trapping potential.
This setup allows us to access and probe the entire BEC-BCS crossover.

A key property of the BEC-BCS crossover is the superfluid critical temperature, predicted
to have a maximum on the BEC side of the strongly interacting regime. However, accurately
measuring the critical temperature is challenging due to difficulties in determining a reliable
temperature scale in the presence of strong interactions. In this thesis, we determine the
critical temperature in the crossover with high accuracy by reconstructing the density
distribution and incorporating interaction effects in the low-density wings when fitting to the
virial expansion of the equation of state. This requires precise identification of the superfluid
phase transition onset, for which we have developed two novel advanced image recognition
techniques based on machine learning. Our improved methodology confirms, for the first time,
an increase in the critical temperature from the BCS limit, extending beyond the unitarity
point and approaching the BEC limit.

Crossing the superfluid phase transition is accompanied by spontaneous symmetry breaking,
creating an energy landscape that supports two distinct excitation modes: the Goldstone
and Higgs modes. Here, we probe the Higgs mode using two distinct excitation methods: a
quench and a modulation of the interaction strength. This enables us to observe the Higgs
mode throughout the crossover, revealing a gradual fading of the mode as it approaches the
BEC regime, where particle-hole symmetry vanishes. Notably, we observe no temperature
dependence of the Higgs mode, prompting further research.

Finally, we present a novel cooling method for a strongly interacting Fermi gas on the BEC
side of the crossover, where a composite dimer bound state exists. By applying a modulation
of the magnetic field at frequencies close to, but higher than the bound state energy, we
selectively dissociate and remove high-energy dimers from the trap, thus realising evaporative
cooling of the sample. This method does not require any changes to the trapping potential
and facilitates staying in the efficient runaway regime. We demonstrate cooling for a wide
range of interactions on the BEC side of the crossover, achieving high efficiencies that match
or exceed all previously reported forced evaporation cooling near Feshbach resonances.
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CHAPTER 1

Introduction

The discovery of superfluidity
The research on superfluid systems began with the discovery of superconductivity in mercury
by Onnes in 1911, for which he was awarded the Nobel Prize in Physics in 1913 [1]. Onnes
measured a sharp and sudden drop in electrical resistance at temperatures below a critical
temperature of 4.2 K, marking the first observation of superconductivity – an effect that could
not be explained by the understanding of physics at the time. Since then, superconductivity
has been observed in various other materials [2], including unconventional high temperature
superconductors. Today, superconductors are employed in a wide range of applications,
from the most powerful magnets [3], e.g., in particle accelerators or MRI devices [4], to
high-precision magnetic field probes [5] and superconducting qubits [6].

Superconductivity is directly linked to the broader concept of superfluidity, which describes
a system that exhibits zero viscosity [7]. Superconducting systems are essentially superfluid
electron gases, allowing an electric current to flow without resistance [8]. The first observation
of superfluidity was reported in liquefied helium-4 at temperatures below 2.2 K [9, 10], roughly
two decades after superconductivity was discovered in mercury.

Helium-4, being a bosonic species, follows fundamentally different physics compared to
a superfluid composed of fermionic electrons in a superconductor. For bosonic systems,
a link between Bose-Einstein condensation (BEC) [11] and superfluidity was established,
as described by Landau [12]. In a BEC, the lowest energy state becomes macroscopically
occupied. If the BEC has finite interactions, the lowest possible excitation is raised to a finite
critical velocity, thus enabling superfluidity.

However, this theory does not extend to an ideal Fermi gas, as fermions do not exhibit
condensation at low temperatures due to Pauli pressure [8]. Instead, at zero temperature,
fermions fill the available energy states up to a maximum energy level known as the Fermi
energy, EF. However, if two interacting Fermi states are introduced, the Pauli exclusion
principle no longer prevents them from interacting at low temperatures. This interaction was
formalised by Bardeen, Cooper and Schrieffer (BCS) in 1957 [13], who described superfluidity
in a two-state mixture of fermions through the condensation of opposite momentum pairs,
known as Cooper pairs [14]. In a BCS-type superfluid, the dispersion relation is lifted by
an emergent gap parameter ∆, which prohibits excitations with energies or more generally
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Chapter 1 Introduction

temperatures below this gap, thus enabling superfluidity.
For Cooper pairs to form, the fermion mixture must support a weak bound state, mediated

by attractive interactions. This bound state only exists due to the occupation of fermions up
to the Fermi energy EF, representing a genuine many-body effect [8]. In superconductors,
these weak attractive interactions arise from phonon interactions between electrons of opposite
spin. Superconductors that follow BCS theory are classified as conventional superconductors.

The BEC-BCS crossover
While BEC- and BCS-type superfluids both conceptually originate from macroscopic condens-
ation, the underlying physics governing bosons and fermions differ significantly. Nevertheless,
the shift from a BCS-type to a BEC-type superfluid can be described within a unified
framework, known as the BEC-BCS crossover [8, 15, 16]. In the BCS limit, weakly interacting
fermions form Cooper pairs, where the pair size is much larger than the average interparticle
distance. As the interaction strength increases, the bound state energy of the Cooper pairs
grows, reducing the pair size [17] and raising the critical temperature. At a certain interaction
strength, the pair size becomes much smaller than the average interparticle distance, allowing
the pairs to be treated as composite bosons, which exhibit signatures of BEC. Thus, the shift
from the BCS to the BEC limit is not considered a transition but a crossover.

The strongly interacting regime between the BEC and BCS limits is of particular interest.
In this regime, the pair size becomes comparable to the interparticle distance. A notable
case is the unitarity limit, where the interaction reaches its maximum, and the interparticle
distance becomes the only relevant length scale [18]. Interestingly, the highest critical
temperature TC, of all fermionic superfluids is expected to occur in the strongly interacting
regime between the BEC and unitarity limits [8, 19, 20]. However, determining the exact
position and value of the highest TC remains a challenge due to the difficulties in modelling
the strongly interacting regime.

In theoretical frameworks, simulations of the strongly interacting regime by conventional
computational methods are inefficient due to the extensive size of the corresponding Hilbert
space [21, 22]. Furthermore, strong interactions preclude the use of perturbative approaches
to accurately model the system. As an alternative, condensed matter experiments have been
employed to explore the strongly interacting regime, but in such experiments, precise control
of the system parameters is highly complex and correlated among the parameters [23].

In this thesis, we leverage the framework of a tailored quantum simulator to address the
challenges posed by the BEC-BCS crossover.

Quantum simulation with ultracold gases
Quantum simulators are machines designed to model specific quantum-mechanical systems,
enabling the simulation of particular quantum effects in a clean and controlled environment.
This precise and clean realisation of quantum systems requires careful disentanglement
and meticulous control of environmental parameters, as well as highly accurate readout
mechanisms. Ultracold atomic gases offer an ideal platform for simulating quantum-mechanical
problems, as they inherently exhibit quantum-mechanical properties.
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The emergence of quantum simulators with ultracold atomic gases began with the proposal
to cool dilute atomic gases using laser light in 1975 [24]. This led to the development of
techniques for cooling and trapping dilute atomic gases via electromagnetic fields, culminating
in the Nobel Prize in Physics of 1997 [25–27]. A high degree of control is achieved through the
interaction of atoms with electromagnetic fields, which allows for precise tuning of the density,
atom number, and temperature of the samples. Furthermore, the interactions between
different atomic states can be controlled by varying an external magnetic field, a phenomenon
known as Feshbach resonances [28, 29].

The implementation of these techniques led to the observation of the first BEC in bosonic
87Rb [30], and the creation of a degenerate Fermi gas in 40K [31]. By utilising the two-body
bound state in a Feshbach resonance, bosonic dimers from two-state mixtures of fermions
were created [32, 33] and observed to undergo a phase transition to a BEC [34–36]. Shortly
afterward, strongly correlated states such as the Mott insulator phase [37] and superfluidity
in the unitary Fermi gas [38, 39] were observed. This marks the beginning of research into
the BEC-BCS crossover using quantum simulators.

Our apparatus utilises a mixture of fermionic 6Li and bosonic 23Na. Both species are
first simultaneously cooled down and trapped in a magneto-optical trap [40, 41]. After the
fermionic 6Li is sympathetically cooled through the complete evaporation of the bosonic 23Na,
the degenerate fermionic sample is loaded into the final optical dipole trap. Here we create a
two-state (hyperfine) mixture of 6Li, which is manipulated and probed using a combination
of carefully designed electromagnetic fields, while interactions are tuned using a Feshbach
resonance. This setup provides a platform to explore superfluidity within the BEC-BCS
crossover.

Superfluid critical temperature in the BEC-BCS crossover

The most prominent feature of the BEC-BCS crossover is the onset of superfluidity. As
discussed earlier, determining the superfluid critical temperature in the strongly interacting
regime between the BEC and BCS limits is remarkably non-trivial, and an exact determination
has thus far been elusive.

In the BEC limit, the superfluid critical temperature corresponds to the critical temperature
of the BEC transition, with a small correction to higher critical temperatures for stronger
interactions [42, 43]. Conversely, in the BCS limit, the critical temperature decreases
exponentially as the interaction weakens [44]. The critical temperatures in both limits is
sketched in Fig. 1.1. Connecting both limits in the sketch suggests a maximum of the critical
temperature near the unitarity regime. However, no exact theory for the critical temperature
in the strongly interacting regime exists, and both the existence and location of a maximum
in the critical temperature remain topics of ongoing debate [19, 20, 45–47].

In this thesis, we measure the phase diagram of the superfluid critical temperature in
the strongly interacting regime of the BEC-BCS crossover with unprecedented accuracy.
Accurately determining the temperature at the onset of superfluidity requires a precise
detection and measurement of the onset of condensation. In the BEC limit, condensation
appears as a sharp bimodal peak atop a thermal background during imaging after a brief
expansion time [48]. However, this feature is absent in the BCS limit, where weakly bound
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Figure 1.1: Superfluidity in the BEC-BCS crossover. The figure depicts condensation and superfluidity
in the BEC-BCS crossover. Left: An early measurement of condensation in the crossover regime,
adapted from [38]. Right: The critical temperature TC/TF of superfluidity in the crossover regime,
connecting the critical temperatures in the BEC (dotted line) [42, 43] and BCS (dashed line) limits
[44]. Around the unitarity regime of strong interactions, no exact solution exists. Several theoretical
approaches are available, e.g., the red dashed-dotted line [45] and the blue solid line [19]. More details
about the phase diagram are given in Fig. 2.7.

Cooper pairs break during expansion. To address this, early measurements throughout
the crossover employed the rapid ramp technique [38, 49], which projects weakly bound
Cooper pairs onto tightly-bound dimers during expansion, restoring a bimodal momentum
distribution. This established the first phase diagram of superfluidity in the BEC-BCS
crossover, shown on the left side of Fig. 1.1. However, the rapid ramp method introduces its
own set of complexities and challenges [50–52].

In the past decade, neural networks have garnered increasing attention, being integrated
into a wide range of technologies, from large language models [53] to image generation via
diffusion models [54, 55]. Over this time, the application of machine learning techniques
in physics has also proven advantageous [56, 57], which is further indicated by the recent
Nobel Prize in Physics of 2024 [58]. For instance, machine learning has been employed in
optimisation tasks [59, 60] and in detecting phase transitions in both theoretical [61–64]
and experimental data [65, 66]. This thesis presents the first experimental detection of
superfluidity in the entire BEC-BCS crossover, without employing conventional methods,
such as the rapid ramp technique.

To precisely determine the critical temperature of condensation, we have developed an
advanced image recognition technique that directly infers condensation from standard time-
of-flight images. This technique utilises image recognition via deep convolutional neural
networks. We have developed two distinct neural network architectures. The first architecture
relies on manually labelled data from the rapid ramp technique, enabling the network to
predict condensate fractions from previously unseen time-of-flight images after training [67].
The second architecture is a deep convolutional autoencoder neural network that requires
neither labelling nor the rapid ramp [68]. After carefully determining the thermometric
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parameters at the onset of superfluidity – such as temperature and density – this approach
has allowed us to map the superfluid phase diagram in the strongly interacting regime,
experimentally confirming, for the first time, a maximum critical temperature on the bosonic
side of the crossover [67, 68].

Superfluids out of equilibrium

When crossing the superfluid phase transition from an initially thermal gas, the system’s order
parameter ∆ acquires a finite value, representing the coherent macroscopic wavefunction of the
condensate [69]. The free energy landscape of a system as a function of the order parameter
∆ is described by the Ginzburg-Landau theory [70]. This energy landscape resembles a
“Mexican hat” and features a minimum energy along a ring of constant |∆|, independent of
the phase of ∆, which describes a continuous symmetry. As the order parameter takes on a
finite value, it arbitrarily selects a phase, thereby breaking the symmetry.

Such systems exhibit two fundamental excitation modes. The first is the (Nambu-)Goldstone
mode, which alters the phase of the order parameter along the ring-like valley of minimum
energy [71, 72]. This mode manifests as phonons and is well understood. More intriguing is
the second excitation mode, known as the Higgs mode [70], which modulates the absolute
value of the order parameter ∆ and requires a minimum energy of 2∆ to be excited [73].

Exciting the Higgs mode is non-trivial because there is no direct control over the order
parameter ∆. Instead, excitation is achieved by driving the system out of equilibrium,
creating a mismatch between ∆ and the system’s equilibrium gap parameter. This allows for
two distinct excitation methods: sudden quenches [73–77] and parametric excitations [78–83]
of the order parameter.

The Higgs mode reveals itself as an oscillation in the order parameter with a frequency
of ωH = 2∆/ℏ [73]. However, measurements of the Higgs mode in the strongly interacting
regime are extremely challenging, and only a few such measurements have been reported.
The earliest measurement in this regime was conducted by my predecessors in our group
[78]. Recently, a measurement of the Higgs mode at unitarity has been published [75]. A
precise understanding of the Higgs mode throughout the crossover requires more precise
measurements.

In an interacting Fermi gas, the Higgs mode is predicted to be stable against decay into
lower-lying modes only in the BCS limit [84], where stability is mediated by particle-hole
symmetry, giving the system an effective Lorentz invariance [71]. This particle-hole symmetry
is a feature of the BCS limit and gradually diminishes as one approaches the BEC limit.
Additionally, the Higgs mode is expected to show a strong temperature dependence due to
the diminishing condensate as the system approaches the critical temperature TC. However,
the recent measurement of the Higgs mode at unitarity observed no significant temperature
dependence [75].

In this thesis, we probe the Higgs mode using both of the excitation methods discussed
earlier. Following a sudden quench of the order parameter, we observe time-resolved oscillation
of the order parameter throughout the BEC-BCS crossover, for the first time. By approaching
the BEC limit, the oscillating signature fades out, signalling an increasing instability of the
Higgs mode due to diminishing particle-hole symmetry. Additionally, the Higgs mode centre
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frequency and width are probed by parametric excitations. While this confirms an averaging
of the Higgs mode centre frequency in an inhomogeneous trapping potential, we observe no
temperature dependence of the centre frequency. This confirms the recent measurement at
unitarity [75], yet cannot be explained by current theories.

Cooling by dimer dissociation

As discussed earlier, the advent of experiments on quantum simulators using ultracold atomic
gases began with the development of laser-based cooling and trapping techniques [24]. To
reach the ultra-low temperatures required for observing strongly correlated systems, such as
the Mott insulator phase [37] or condensation in the unitary Fermi gas [38, 39], evaporative
cooling was introduced. Evaporative cooling selectively removes the highest energy particles
from a sample, thereby reducing the average energy of the remaining particles and effectively
lowering the temperature [85]. Although this process decreases both the temperature and
the number of atoms, efficient evaporation increases the phase-space density of the sample,
thus lowering its the entropy.

Generally speaking, evaporative cooling can be implemented in two different ways: in
magnetic traps and in optical dipole traps. In magnetic traps, atoms are selectively evaporated
by driving radio-frequency-transitions (RF) to high-field-seeking states, which are anti-trapped
and expelled from the system [86]. However, magnetic traps can only confine specific atomic
states, making them unsuitable for most quantum simulators involving Fermi gas state
mixtures, where more flexible state preparation is required. Optical dipole traps address this
limitation, though they lack a selective mechanism for removing high-energy atoms from the
trap [87]. Instead, the optical dipole trap is ramped down in a controlled manner, which
primarily releases the highest energy atoms from the trap but also reduces the overall density
of the system, slowing down thermalisation. Although, both methods are widely used in
ultracold atom experiments, they have inherent limitations.

Theoretically, even more complex and interesting quantum states are predicted to emerge
at lower temperatures, which are not yet achievable with current cooling methods. These
states include unconventional superconductivity [88], topological quantum states [89], and
spin liquids [90]. Therefore, the development of novel cooling techniques remains crucial for
enabling the observation of these peculiar quantum phases.

In this thesis, we introduce a novel cooling method based on the selective dissociation of
high-energy dimers. On the BEC side of the Feshbach resonance, bosonic dimers exist with
a bound state energy, EB. These dimers can be dissociated through parametric excitation
at frequencies higher than their corresponding bound state energy. Dissociating a dimer
produces two unpaired fermions, which interact more strongly with the remaining dimer
cloud. This interaction increases the repulsive mean-field energy, thereby raising the threshold
dissociation energy beyond EB, by an amount proportional to the dimer density. Consequently,
high-energy dimers near the dilute edge of a harmonic trap require less energy to dissociate
compared to low-energy dimers in the dense central region. Once a dimer is broken, the
resulting fermions gain excess kinetic energy, which may expel them from the trap. This
provides a mechanism to selectively remove high-energy dimers from the system, cooling the
sample.
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We explore this cooling mechanism throughout the BEC side of the crossover, from unitarity
to deep bound state energies of > 200 kHz. Our method achieves high evaporation efficiencies
γ, with values of γ = 4 in a gravity-tilted trap and γ = 6 in a gravity-compensated trap,
matching and even surpassing the highest reported efficiencies for forced evaporation in
optical dipole traps near a Feshbach resonance [85, 87, 91–99].

Outline of this thesis

The main results of this thesis are the detection of the superfluid phase transition via
unsupervised machine learning, detailed in Chapter 5, and the development and demonstration
of a novel cooling technique through dimer dissociation, as described in Chapter 7. To
provide context and elaborate on the underlying physics and analysis techniques, the thesis
is structured as follows:

• Chapter 2: This chapter lays out the theoretical framework, presenting the essential
concepts and ideas necessary for understanding the content of this thesis.

• Chapter 3: Here, we focus on the experimental apparatus and the preparation of the
degenerate Fermi spin mixture that constitutes our quantum simulator.

• Chapter 4: This chapter outlines the detection techniques and methodologies used
throughout the thesis. It covers imaging, excitations via a superimposed magnetic field,
thermometry, and the detection of superfluidity via both conventional methods and
machine learning techniques.

• Chapter 5: In this chapter, we present the first key result of this thesis: the superfluid
phase diagram, mapped using novel image recognition techniques based on machine
learning.

• Chapter 6: This chapter is dedicated to the observation of the Higgs mode in the
strongly interacting regime of the BEC-BCS crossover.

• Chapter 7: We introduce the newly developed cooling method based on dimer dissoci-
ation in this chapter, which presents the second main result of this thesis.

• Chapter 8: The final chapter summarises the results and offers a brief outlook on future
directions.

Publications

Parts of this thesis have been or will be published in the following articles:

• M. Link, K. Gao, A. Kell, M. Breyer, D. Eberz, B. Rauf and M. Köhl – Machine
Learning the Phase Diagram of a Strongly Interacting Fermi Gas – Published in Physical
Review Letters [67] – DOI: 10.1103/PhysRevLett.130.203401
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• D. Eberz, M. Link, A. Kell, M. Breyer, K. Gao and M. Köhl – Detecting the phase
transition in a strongly interacting Fermi gas by unsupervised machine learning –
Published in Physical Review A [68] – DOI: 10.1103/PhysRevA.108.063303

• A. Kell, M. Breyer, D. Eberz and M. Köhl – Exciting the Higgs Mode in a Strongly
Interacting Fermi Gas by Interaction Modulation – Published in Physical Review Letters
[100] – DOI: 10.1103/PhysRevLett.133.150403

• M. Breyer, D. Eberz, A. Kell and M. Köhl – Quenching a Fermi superfluid across the
BEC-BCS crossover – Under review at SciPost Physics – Preprint available in [101]

• D. Eberz, A. Kell, M. Breyer and M. Köhl – Cooling a strongly-interacting quantum
gas by interaction modulation – Under review at Physical Review Letters – Preprint
available in [102] – DOI: 10.48550/arXiv.2410.10642
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CHAPTER 2

Ultracold Fermi gases

This chapter provides an introduction to the concepts and theories essential for understanding
this thesis. The experiments presented in this thesis are based on a quantum simulator
using ultracold 6Li, a fermionic isotope of lithium. Thus, the first section introduces the
fundamental concepts of an ideal Fermi gas, as described by the Fermi-Dirac distribution. This
will be compared to the intrinsic statistics of an ideal Bose gas and the classical description
provided by the Boltzmann distribution.

As interactions freeze out in a polarised ultracold Fermi gas, we introduce a two-state
mixture and discuss interatomic interactions between distinguishable fermions. Scattering
between distinguishable fermions introduces the concept of (Fano-)Feshbach resonances,
which serve as a “tuning knob” to adjust interatomic interactions in the experiment by
varying the external magnetic field – a crucial feature for realising various quantum states.

By adjusting the interaction strength, the Fermi gas can be tuned across the crossover from
tightly-bound dimer states to the many-body regime of Cooper pairing on the Fermi surface,
known as the BEC-BCS crossover. To understand the physics within this crossover, we will
briefly review its limits and illustrate the smooth evolution of pairing from Cooper pairs to
tightly-bound composite dimers. Here, we discuss key aspects of the crossover, including
condensation, superfluidity, and the excitation spectrum.

In the experiment, the atoms are prepared in an inhomogeneous trapping potential. Thus,
the final section provides a brief overview of fermions in external potentials.

For more comprehensive reviews of the concepts covered in this chapter, refer to various
review papers and books such as [8, 18, 48, 103, 104].

Outline of this chapter

The sections of this chapter are outlined as follows:

• Section 2.1: We begin by introducing the intrinsic quantum statistics of ideal Bose
and Fermi gases, highlighting the differences to a classical gas described by Boltzmann
statistics.

• Section 2.2: Non-ideal quantum gases exhibit interesting effects when interactions are
introduced. This section covers the principles of interactions and introduces the concept
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Chapter 2 Ultracold Fermi gases

of Feshbach resonances – a key mechanism to tune interactions freely. Interactions are
also linked to the existence of a two-body bound state, which we discuss further.

• Section 2.3: By tuning interactions in a two-state Fermi gas, the system can be
tuned from a molecular Bose-Einstein condensate (BEC) to a condensate of Cooper
pairs (BCS). This section describes the progression of physics from the BEC to the
BCS regime, known as the BEC-BCS crossover, and covers the effects of pairing on
condensation, the critical temperature and the emergence of collective modes, such as
the Higgs mode, across the crossover.

• Section 2.4: In our system, the gas is confined within an inhomogeneous optical dipole
trap potential, approximated by a 3D harmonic potential. Here, we introduce the
local density approximation (LDA), which describes an inhomogeneous sample through
integrals over homogeneous slices.

2.1 Ideal quantum gas
At high temperatures T , particles in a gas behave classically, with their energies E governed
by the Boltzmann distribution [8]

fBoltzmann(E, T ) ∝ exp
(

− E

kBT

)
, (2.1)

where kB is the Boltzmann constant. As the temperature approaches the quantum regime,
the particles behaviour diverges based on their intrinsic spin. Particles with half-integer spin
are classified as “Fermions”, while those with integer spin are called “Bosons”. According to
the spin-statistics theorem, the total wave function ψ(r1, r2) of multiple indistinguishable
particles remains unchanged under exchange of bosons (symmetric), while it collects a factor
of −1 under the exchange of indistinguishable fermions (antisymmetric) [105].

This small distinction has significant implications for indistinguishable fermionic particles:
if they occupy the same position r1 = r2, the only possible solution for the wave function
is ψ(r1, r2) = 0. Thus, two indistinguishable fermionic particles can never occupy the same
location (or, more broadly, the same state), a principle known as the “Pauli exclusion
principle”, which underlies the behaviour of our fermionic 6Li sample.

The Pauli exclusion principle gives rise to the Fermi-Dirac distribution [8]

fFermi(E, T ) = 1
exp

(
E−µ
kBT

)
+ 1

, (2.2)

which describes the occupation probability of a state E at temperature T with a chemical
potential µ(T ). At zero temperature T = 0, all states up to µ(T = 0) are filled, while states
at higher energies remain unoccupied, a phenomenon also known as the Fermi edge. Here,
the chemical potential equals the Fermi energy, µ(T = 0) = EF.

As temperature rises, the distribution loses its step-function-like behaviour and softens
near the Fermi edge, with some particles occupying higher energy states and some states
below the Fermi becoming vacant. Consequently, as new particles can now occupy lower-lying

10



2.1 Ideal quantum gas

energy states E < EF, the chemical potential µ(T ) decreases with increasing temperature T .
The temperature dependence of the chemical potential µ(T ) is self-consistently determined
by fixing the atom number

N =
∫

dEρ(E)f(E, T ), (2.3)

where ρ(E) is the density of states of the corresponding trapping potential. In Fig. 2.1, the
Fermi-Dirac distribution from Eq. (2.2) (left) and the self-consistently calculated chemical
potential µ(T ) (right) are shown for various temperatures in a homogeneous gas (ρ(E) ∝

√
E),

with values in terms of the Fermi energy EF and Fermi temperature TF = EF/kB. As the
temperature approaches the order of the Fermi temperature TF, the Fermi-Dirac distribution
noticeably “melts”, converging towards the Boltzmann distribution (dashed line, left plot).
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Figure 2.1: Fermi statistics Left: The Fermi-Dirac distribution from Eq. (2.2) is shown for increasing
temperatures T (solid lines) in a homogeneous system. As temperature increases, the distribution
approaches the Boltzmann distribution (grey dashed line), shown for the highest temperature of
T/TF = 2.0. Right: Self-consistently determined temperature dependence of the chemical potential
µ(T ) in a homogeneous Fermi gas, calculated by fixing the atom number as in Eq. (2.3). All
temperatures and energies are in units of the Fermi energy and temperature (EF, TF).

In a homogeneous gas, where E = (ℏk)2/(2m), the Fermi energy EF can directly be related
to the density per spin state nσ by integrating the Fermi-Dirac distribution (Eq. (2.2)) at

11
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T = 0 over the momentum space d3p, resulting in [8]

nσ =
∫ d3p

(2πℏ)3 fFermi

(
p2

2m,T = 0
)

= 4π
∫ √

2mEF

0

dp
(2πℏ)3 p

2 = 1
6π2

(2mEF

ℏ2

) 3
2

⇔ EF = ℏ2

2m
(
6π2nσ

) 2
3

⇔ kF =
(
6π2nσ

) 1
3 ,

(2.4)

where, in the final step, we introduce the maximal occupied momentum state, namely the
Fermi momentum kF, with m denoting the particles’ mass. Note that in order to calculate
the density profile in an inhomogeneous trap with potential V (r), the chemical potential is
replaced by a spatially varying chemical potential µ → µ− V (r), a technique known as the
“local density approximation”, further explored in Section 2.4.

While we conduct our experiments on fermionic 6Li, the experimental apparatus also
hosts bosonic 23Na, which is used to sympathetically cool lithium (refer to Section 3.2.5).
Furthermore, as we will see in Section 2.2.3, the fermionic particles can also form a bosonic two-
body bound state. For bosons, the corresponding distribution function is the Bose-Einstein
distribution, which differs only by a change of sign in the denominator [8]

fBose(E, T ) = 1
exp

(
E−µ
kBT

)
− 1

, (2.5)

where the chemical potential must be smaller than the lowest available energy state µ ≤ E0
(ground state), to ensure fBosons ≥ 0. Due to the sign change, the distribution displays
divergent behaviour at zero temperature T = 0 or E = µ, allowing for a macroscopic
occupation of the ground state – a phenomenon known as “Bose-Einstein condensation”.

Bose-Einstein condensation occurs when all accessible excited states with E > E0 are
occupied and all remaining atoms N0 = N − Nexc enter the ground state. As the number
of available excited states Nexc decreases along with temperature, there exists a critical
temperature TC, marking the onset of the condensation.

2.2 Interatomic interactions
To observe rich and complex fermionic phenomena, interactions play a crucial role. As the
Pauli exclusion principle prevents interactions in a polarised sample of ultracold fermions,
we use a spin mixture. In our experiment, this mixture consist of two of the three lowest
magnetic hyperfine states of the ground state 22S1/2, F = 1/2 in 6Li.

The scattering process between these states is governed by the central interatomic potential
V (r). At large interatomic distances, the potential asymptotically approaches the attractive,
long-range Van-der-Waals interaction (−C6/r

6) [106]. At very short distances, the Coulomb
repulsion between the electron clouds forms a hard-core potential wall, further reinforced
by Pauli pressure for aligned spins in a triplet state [106]. In the intermediate range, the
exchange integral for spin singlet and triplet states influences the potential [103]. While the
exact solution of the two-body problem via the potential would be extremely difficult, the
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2.2 Interatomic interactions

ultracold gases in the experiment have extremely large intrinsic length scales, simplifying the
physics enormously.

Since the potential asymptotically connects to the Van-der-Waals potential, which has
a natural length scale (2RvdW = (2µrC6/ℏ

2)1/4) [106], we can compare the extent of the
interatomic potential to the mean interatomic distance. For 6Li, the Van-der-Waals coefficient
is determined to be C6 = 1393.39(16)Eha6

0 [107], where a0 is the Bohr radius and Eh is the
Hartee energy. Here, the reduced mass µr = mLi/2 is half the mass of a lithium atom, mLi.
This yields a characteristic length scale of RvdW = 31.26 a0 ≈ 1.7 nm.

In contrast, the mean interatomic distance for dilute ultracold samples is determined by
the inverse density 1/n1/3 ∝ k−1

F ≈ 104a0 [8], estimated for typical densities of n ≈ 10 µm−3.
Additionally, the experimental temperatures are well below the Fermi energy T/TF ≪ 1,
placing the de-Broglie wavelength on the same order of magnitude [8, 108].

Since the interatomic distance is significantly larger than the range of the potential
k−1

F ≫ RvdW, the fine details of the scattering dynamics become unresolved and can thus be
encapsulated in a single parameter: the scattering length a. The scattering length a will be
introduced quantitatively in the next section.

2.2.1 Elastic s-wave scattering

To solve the scattering problem between two particles, the common approach is to switch to
centre-of-mass coordinates. In this frame, the problem is expressed in terms of the reduced
mass µr = mLi/2 and the relative coordinates r = r1 − r2 of the two particles (r1,2), with the
relative distance defined as r := |r|. The Schrödinger equation for the interatomic potential
V (r) becomes [8, 106, 108](

ℏ2

2µr
∇2

r + V (r)
)
ψk(r) = ℏ2k2

2µr
ψk(r), (2.6)

where k =
√

2µrE/ℏ represents the wave vector associated with the energy E of the incident
wave. Since we consider only elastic scattering among the states involved, the wave vector of
the outgoing wave k′ must have the same energy. Moreover, in the ultracold regime, where
all wave vectors are much smaller than the inverse of the range of the interatomic potential,
only s-wave scattering is relevant.

This allows for an ansatz in the asymptotic regime (r ≫ RvdW) of the form [8, 103, 106]

ψk(r) ∝ exp(ik · r) + fs(k)exp(ik · r)
r

, (2.7)

where the first term represents the incident plane wave and the second term is the scattered
spherical wave with s-wave amplitude fs(k). The amplitude of the s-wave scattered spherical
wave can be written as [8, 103, 106]

fs(k) = 1
− 1
a + reff

k
2

2 − ik
, (2.8)

where reff denotes the effective range, typically on the order of the Van-der-Waals length
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Chapter 2 Ultracold Fermi gases

scale RvdW, and a being the scattering length.
In the limit of large interatomic distances, where k|a| ≪ 1 and reff ≲ 1/k, the scattering

amplitude converges to the scattering length itself, fs → −a. Here, the scattering cross-section
σ approaches that of scattering from hard cores of radius a, giving σ = 4πa2.

In contrast, when the scattering length is very large compared to the interatomic distance
k|a| ≫ 1, the scattering amplitude converges to fs → i/k, resulting in a scattering cross-
section of σ = 4π/k2. In this “unitarity” limit, the scattering length a – and therefore
any details about the interaction potential – become irrelevant and drop out, leaving the
interatomic distance as the only pertinent length scale. The effective range, serving as a
correction term to this universal behaviour, can typically be neglected for reff ≪ 1/k, as
discussed in the previous section.

2.2.2 Feshbach resonances

The phenomenon of (Fano-)Feshbach resonances [28, 109] describes the tunability of the
two-state scattering length a via an external magnetic field. This concept is illustrated in
Fig. 2.2 and will be discussed in this section. For more detailed discussions, consult [8, 103,
106, 110].

Interatomic distance →

E
n

er
gy
→

Open channel (Triplet)

Closed channel (Singlet)∆µB

Bound states

Figure 2.2: Concept of Feshbach resonances. A spin mixture is prepared in the open (triplet) channel
(blue). By applying a magnetic field B, a bound state of the inaccessible closed (singlet) channel (red)
is tuned into resonance with the incoming energy of the free atoms (dashed line). The shift is enabled
by a difference in the channels’ magnetic moment ∆µ. Sketch inspired by [110].

Normally, the scattering length a is fully described by the interatomic potential V (r),
giving rise to a background scattering length abg [106], which depends on the prepared state
mixture. This prepared state mixture is known as the “open channel”.
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2.2 Interatomic interactions

In the case of 6Li, the hyperfine splitting of the ground state (22S1/2, L = 0 → mJ = mS)
gives rise to a high-field-seeking manifold |1⟩ – |3⟩ (F = 1/2, mS = −1/2), and a low-field-
seeking manifold |4⟩ – |6⟩ (F = 3/2, mS = 1/2). A detailed illustration of the level structure
is provided in Fig. 3.2. In our experiment, the atomic sample is prepared in a two-spin
mixture within the high-field-seeking manifold, meaning the open channel is in a triplet state
with a total spin projection of mS,1 +mS,2 = −1.

While the hyperfine splitting of the corresponding ground state allows for several outgoing
channels, all allowed scattering channels are “closed channels” because their asymptotic
energies, defined by the Zeeman splitting, lie far above the incoming energy. However, due to
the differences in spin alignments, the states of the closed channels have distinct magnetic
moments µ, leading to a difference of ∆µ. This difference enables the relative energy of these
channels to be adjusted by ∆µB, which is realised by changing the external magnetic field B.

Additionally, the spin-nuclear coupling term Ŝ · Î introduces mixing between singlet and
triplet states. Now, if the external magnetic field B shifts a bound state of a previously closed
channel close to the incoming energy of the open channel as illustrated in Fig. 2.2, strong
coupling occurs, significantly altering the scattering length a. If the bound state energy is
tuned slightly above the energy of the incoming channel, the scattering length a becomes
large and negative; if it is tuned below, a becomes large and positive. On resonance, when the
bound state energy matches exactly, the scattering length diverges, realising the “unitarity
regime”, previously discussed in Section 2.2.1.

The behaviour of the scattering length a near resonance can be parametrised in the usual
form[106, 111]

a(B) = abg

( ∆B
B −B0

)
, (2.9)

where B is the applied magnetic field, ∆B the resonance width and B0 the resonance position
in terms of the magnetic field.

Since interatomic potentials are generally not fully known, Feshbach resonances are de-
termined experimentally. The most recent and precise measurements for resonances in 6Li
are provided by [111] and are listed in Table 2.1 in terms of the given parametrisation from
Eq. (2.9). For accuracy in describing the behaviour far from resonance, such as zero crossings,
direct measurements of the scattering length are preferred. Accordingly, [111] provides
measured values of the scattering length a for external magnetic fields B from 1 to 1000 G
for all spin mixtures among the |1⟩ – |3⟩ states, plotted in Fig. 2.3 for our experimentally
relevant magnetic fields. For further analysis in this thesis, these direct measurements are
used.

Table 2.1: Feshbach resonance values from [111]. The table shows the experimentally measured values
of the three Feshbach resonances among the |1⟩ – |3⟩ states. The parameters match the parametrisation
in Eq. (2.9). a0 denotes the Bohr radius.

|12⟩ |13⟩ |23⟩
B0/G 832.18(8) 689.68(8) 809.76(5)
∆B/G 262.3(3) 166.6(3) 200.2(5)
abg/a0 −1582(1) -1770(5) -1642(5)
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Figure 2.3: Feshbach resonances in 6Li. The figure shows the scattering length a/a0 (solid line) and
the corresponding bound state energy EB (dashed line) as functions of the magnetic field B/G. Here,
a0 denotes the Bohr radius. Data for the scattering length a is taken from [111]. The bound state
energy is calculated via Eq. (2.11).

2.2.3 Bound state energy

A key feature of the diverging scattering length at resonance is the emergence of a molecular
(dimer) bound state. In the case of Feshbach resonances, this occurs when the bound state
energy of the “closed channel” aligns with the energy of the incoming “open channel”. Due
to the introduction of coupling, the new dressed states display an avoided crossing, featuring
a dimer bound state. Here, the bound state energy asymptotically connects to the energy
(relative to the “open channel” energy) of the bound state in the “closed channel” [103, 106].

The bound state appears at unitarity B = B0 and exists for positive scattering lengths
a > 0 ⇒ B < B0. In the limit of a very large scattering length k|a| ≫ 1, the bound state
energy can be expressed as (often referred to as the effective-range result) [106]

EB = − ℏ2

2µra
2 , (2.10)

where µr = mLi/2 is the reduced mass of the two-body scattering and a is the scattering
length. Since the scattering length is usually much larger than the potential’s effective range
a ≫ reff , the bound state indicates that it occupies a very high rotovibrational molecular
state. Nevertheless, these states exhibit very long lifetimes [32, 92, 112] as three-body induced
relaxation into deeper lying states is strongly suppressed by Pauli blocking, unlike Feshbach
molecules in bosonic species where significant inelastic losses have been observed [29, 113].
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2.2 Interatomic interactions

While the bound state energy in Eq. (2.10) provides a good approximation near resonance,
it lacks details of the scattering potential such as the effective range reff . For a more precise
picture, we consider the Van-der-Waals potential (−C6/r

6) in the asymptotic limits, as
discussed in Section 2.2. Considering this limit, a more careful analysis of the scattering
potential has been conducted in [114], leading to a higher-order correction of the bound state
energy in [115]. The higher-order correction is given up to second order as [115]

EB = − ℏ2

2µr (a− ā)2

[
1 + g1ā

a− ā
+ g2ā

2

(a− ā)2 + O
(

ā3

(a− ā)3

)]
. (2.11)

In this correction µr is the reduced mass, a the scattering length, ā the mean scattering
length and g1,2 correction factors. The mean scattering length ā presents an alternative
convention of the effective range introduced in [116]. For the Van-der-Waals range RvdW,
the mean scattering length is ā = cos

(
π
4
) Γ(3/4)

Γ(5/4) ·RvdW ≈ 29.9 a0, where a0 is the Bohr radius.
The correction factors are provided in [115] as g1 = 0.9179195 and g2 = −0.9467798.

Both the effective-range result in Eq. (2.10) and the higher-order correction result in
Eq. (2.11) are presented in Fig. 2.4 as functions of the scattering length a.
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Figure 2.4: Feshbach bound state energy. The figure shows the bound state energy of a Feshbach
resonance in terms of the scattering length a/a0 for the simple effective-range result in Eq. (2.10)
and the higher-order correction in Eq. (2.11) derived by [115] (bold lines). Additionally, the relative
difference is shown (dashed line).

While both results (solid lines) converge towards each other approaching unitarity (a → ∞),
the relative difference (dashed line) reveals that the simple effective-range result underestim-
ates the bound state energy. In the experiment, we employ scattering lengths as small as
a/a0 ≈ 1500, where the corrected result gives up to 6 % deeper bound state energies. The

17



Chapter 2 Ultracold Fermi gases

corrected result will become relevant later in Chapter 7.

2.3 BEC-BCS crossover

In this section, we discuss the effect of varying the scattering length a across resonance
in a two-state mixture of a Fermi gas. The scattering length a can easily be tuned in the
experiment using Feshbach resonances, as introduced in Section 2.2.2. This enables us to
explore a plethora of interactions and pairing mechanisms by simply tuning the magnetic
field.

As introduced in Section 2.2.3, Feshbach resonances introduce a two-particle bound state
on the side of positive scattering lengths a > 0, forming composite dimers. If the bound
state energy of these composite dimers is much larger than all other energy scales of the
gas, these dimers can be considered stable entities, effectively obeying Bose statistics as
composite bosons. These dimers can then form a Bose-Einstein condensate, giving this side
of the crossover the designation of the BEC regime.

On the other side of the crossover (a < 0), no such two-particle bound state exists. However,
the negative scattering length results in a weak attractive interatomic interaction. We will
see that even for arbitrarily weak attraction, the Fermi gas creates a framework for which
pairing can occur, a phenomenon called “Cooper pairing” [14]. Given that the full many-body
description of a Cooper-paired Fermi gas has first been formulated by Bardeen, Cooper and
Schrieffer, this side of the crossover is called the BCS regime [13].

Between these two regimes lies the unitarity regime, characterised by resonant scattering
and very strong interactions. Here, the scattering length diverges (a → ∞), causing it to
drop out of all thermodynamic descriptions, leaving the interatomic spacing (∝ 1/kF) as the
only relevant length scale [8, 104].

As we will see, the transition from the regimes of composite dimers (BEC) to the many-
body effect of Cooper pairing (BCS) is smooth, without a phase transition, signalling a
crossover that smoothly transitions from fermionic to bosonic pairing [15, 104, 117–119].
In this crossover, we will explore the onset of superfluidity, a key aspect that will later be
examined using machine learning techniques in Chapter 5.

2.3.1 BEC regime - Repulsive composite dimers

On the BEC side of the crossover, two fermions with distinguishable spin can form a composite
dimer with a bound state energy as given in Eq. (2.10). If the bound state energy is much larger
than all other energy scales of the gas, the dimers can be considered permanent composite
bosonic molecules, composed of two spin 1/2 fermions. This statement is equivalent to the
characteristic length scale of the molecules (a) being much smaller than the interatomic
distance 1/(kFa) ≫ 1. The parameter 1/(kFa) will remain the most important parameter
describing the thermodynamics throughout the crossover [8, 104].

In the BEC limit (1/(kFa) → ∞), the gas is made up of tightly-bound molecules of
mass mB = 2mLi and a molecular density equal to the original density per spin state
nB = nσ = nσ1+σ2/2. Here, the critical temperature marking the onset of superfluidity equals
the critical temperature of Bose-Einstein condensation of the composite dimers. The critical
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temperature reads [8, 48, 103]

TC,BEC = πℏ2

mLi

 nσ

ζ
(

3
2

)
 2

3

⇔ TC,BEC
TF

= 2π(
6π2ζ

(
3
2

)) 2
3

≈ 0.218,
(2.12)

where, in the last step, the Fermi energy EF = kBTF from an ideal Fermi gas (Eq. (2.4))
cancels the density. Here, ζ denotes the Riemann zeta function.

While an ideal Bose gas undergo Bose-Einstein condensation, the simultaneous occurrence
of superfluidity requires interactions between the dimers to lift the critical velocity [103]. The
scattering length a, as calculated from the Feshbach resonance, only directly describes the
interatomic interaction. Due to the Pauli exclusion principle between the dimers’ constituents,
interactions between dimer-dimer and atom-dimer channels are drastically attenuated.

The effective atom-dimer scattering length has been calculated by [120] to be aad = 1.18a.
For interactions between two composite dimers, the effective scattering length has been
determined by [121], resulting in add = 0.6a.

For stronger interactions, a first-order correction to the critical temperature TC,BEC,1 has
been determined by [42, 43, 122–124]. This correction increases the critical temperature for
stronger interactions approaching unitarity and is given by

TC,BEC,1
TC,BEC

= 1 + 1.31
(
nσa

3
dd
) 1

3 = 1 + 1.31 · 0.6(
6π2

) 1
3 1
kFa

. (2.13)

Generally, we find that bosonic physics begin to dominate around 1/(kFa) ≈ 0.6 [125], where
the single-particle chemical potential µ becomes negative.

2.3.2 BCS regime - Cooper pairing

The other end of the crossover is the BCS limit, which is reached for 1/(kFa) → −∞. In this
regime, we consider a gas of weakly attractively interacting fermions in a two-state mixture.
Unlike in the BEC regime, this regime does not support a two-body bound state; instead,
pairing occurs due to the presence of the Fermi sea, even for arbitrarily small attractions V0.

The many-body Hamiltonian describing the balanced Fermi gas in the spin states σ = {↑, ↓}
within the grand-canonical description (µN̂) is given by [8, 103]

Ĥ − µN̂ =
∑

k

ξk
(
ĉ†

k,↑ĉk,↑ + ĉ†
k,↓ĉk,↓

)
+ V0

∑
k1,k2,q

(
ĉ†

k1+q,↑ĉ
†
k2−q,↓ĉk2,↓ĉk1,↑

)
, (2.14)

where ξk = ℏ2
k

2

2m − µ represents the single-particle dispersion relation, absorbing the chemical
potential µ. The first term of the Hamiltonian (Eq. (2.14)) is the sum over the single-particle
kinetic energies across all momentum states k. Interactions between fermions are considered
in the second term.
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As discussed in Section 2.2.1, only s-wave scattering is considered in these experiments,
limiting scattering to distinguishable spin states σ. Additionally, since the interatomic distance
cannot resolve the scattering potential, the generally momentum-dependent potential Vq

can be replaced by a constant V0. Both of these simplifications are already incorporated in
the second term, which describes scattering between two fermions with momenta (k1,k2),
transferring a momentum of q, summed over all combinations of these three parameters, and
scaled by the effective interatomic potential V0.

The general Hamiltonian in Eq. (2.14) can further be simplified by considering the involved
momenta in the interaction term. In the Cooper pairing formalism, the bound state energy
is proportional to the density of states. As two Fermions with net-zero momentum k1 = −k2
have the largest amount of final scattering states, scattering between two such constituents
leads to the smallest possible energy. This leads to the further simplified Hamiltonian

Ĥ − µN̂ =
∑

k

ξk
(
ĉ†

k,↑ĉk,↑ + ĉ†
k,↓ĉk,↓

)
+ V0

∑
k,q

(
ĉ†

k+q,↑ĉ
†
−k−q,↓ĉ−k,↓ĉk,↑

)
. (2.15)

As already mentioned, the bound state energy of Cooper pairs is proportional to the density
of states ρ(E) [8, 14, 103]. Unfortunately, in a 3D geometry (ρ ∝

√
E), an arbitrarily small

attractive potential does not yield a bound state. However, the existence of the fully occupied
Fermi sea prohibits momentum states below the Fermi energy EF to participate in scattering,
effectively restricting interactions to the region of the Fermi edge. Consequently, the density
of states is replaced by its constant value at the Fermi energy ρ(E) → ρ(EF). A constant
density of states is also known from 2D geometries, where a bound state even exists for
arbitrarily small potentials [8]. Thus, the existence of Cooper pairing in a weakly attractively
interacting Fermi gas is a pure many-body effect.

In order to solve the Hamiltonian in Eq. (2.15) a mean-field approach is employed. Here,
the pair-annihilation operator b̂k := ĉ−k,↓ĉk,↑ is introduced. In the mean-field approach, the
pair-annihilation operator is split into its expectation value plus fluctuations b̂k = ⟨b̂k⟩ + δb̂k,
where δb̂k = ĉ−k,↓ĉk,↑ − ⟨b̂k⟩. Finally, the decomposition is plugged back into the Hamiltonian
in Eq. (2.15). By omitting all terms quadratic in fluctuation δb̂k and by introducing the new
parameter ∆ := −V0

∑
k ⟨b̂k⟩ we arrive at the final BCS mean-field Hamiltonian, which reads

Ĥ − µN̂ + |∆|2/V0 =
∑

k

ξk
(
ĉ†

k,↑ĉk,↑ + ĉ†
k,↓ĉk,↓

)
−
(
∆∗ĉ−k,↓ĉk,↑ + ∆ĉ†

k,↑ĉ
†
−k,↓

)
. (2.16)

The Hamiltonian now comprises diagonal terms describing the kinetic energy and off-diagonal
terms stemming from the creation (b̂†

k) and annihilation (b̂k) of Cooper pairs.
In order to solve the Hamiltonian, the Hamiltonian is diagonalised by a Bogoliubov

transformation. This transformation introduces new annihilation and creation operators γ̂k,↑
and γ̂†

−k,↓ as mixtures of the original fermionic operators ĉ†
k,↑ and ĉ−k,↓ with amplitudes uk

and vk in the form of

γ̂k,↑ = uk ĉk,↑ − vk ĉ
†
−k,↓

γ̂†
−k,↓ = vk ĉk,↑ + uk ĉ

†
−k,↓.

(2.17)

20



2.3 BEC-BCS crossover

Interestingly, the new quasi-particles are linear combinations of particle and hole operators.
Hence, quasi-particle excitations are coherent superpositions of particle and hole states. The
amplitudes uk, vk of the mixing are given by

u2
k = 1

2

(
1 + ξk

Ek

)
v2
k = 1

2

(
1 − ξk

Ek

)
,

(2.18)

with the dispersion relation of the quasi-particles being

Ek =
√
ξ2
k + ∆2. (2.19)

Only here it becomes apparent that the previously introduced parameter ∆ now functions
as an energy gap in the new dispersion relation. No excitation can be created for energies
E < ∆. As quasi-particles must always be created in pairs to preserve the atom number, the
minimum excitation energy is 2∆. The gap has enormous consequences, as it gives the BCS
state its superfluidity.

Finally, the ground state wave function of the BCS state |ψBCS⟩ can be constructed from
the vacuum |0⟩ by minimising the total energy, which is given for zero occupation of quasi-
particles. The ground state wave function therefore obeys γ̂k,σ |ψBCS⟩ = 0 and can be written
as

|ψBCS⟩ =
∏
k

(
uk + vk ĉ

†
k,↑ĉ

†
−k,↓

)
|0⟩ . (2.20)

Here it becomes clear that |uk|2 denotes the probability to find a vacant pair state and |vk|2
gives the probability to find a pair at momentum k, which thus obey |uk|2 + |vk|2 = 1.

By applying the original definition of the pairing gap ∆ := −V0
∑
k ⟨b̂k⟩ on the ground

state |ψBCS⟩, we find the following relation

∆ = −V0
∑

k

⟨ψBCS| b̂k |ψBCS⟩ = −V0
∑

k

ukvk. (2.21)

First, we find that the gap parameter ∆ is proportional to ∑k ukvk. Hence, only pairs with
uk, vk ≠ 0 contribute to the gap ∆ and can be considered part of the condensate. Thus, the
joint expression ukvk can also be interpreted as the condensed macroscopic wave function of
Cooper pairs [8, 69]. The number of condensed pairs is actually defined as N0 = ∑

k |ukvk|2
[126].

In order to get an understanding of pairing in terms of uk, vk and Ek throughout the
crossover, we have to determine both the gap ∆ and chemical potential µ as function of
the interaction parameter 1/(kFa). By solving both the gap equation Eq. (2.21) and the
number equation N ∝ ∫

dk3v2
k self consistently, results of the mean-field BCS approach

can be calculated. This result is known as the mean-field result, and even though no easy
analytical expression can be obtained, a numerical solution is shown in Fig. 2.5. However,
it has been shown that an analytical result can be obtained by elliptic integrals [127]. The
figure also shows values of the chemical potential µ and gap ∆ in the limits of the BEC
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Chapter 2 Ultracold Fermi gases

regime 1/(kFa) → ∞ and BCS regime 1/(kFa) → −∞. In these limits, the mean-field result
provides approximate analytical results.
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Figure 2.5: Chemical potential µ and gap ∆ in the BEC-BCS crossover. The figure presents several
theoretical models for a homogeneous gas at zero temperature T = 0. The chemical potential µ
considers an emerging bound state EB/2 = (kFa)−2 on the BEC side of the crossover. The more
intricate results from Hu et al. and Haussmann et al. are reproduced from [125] and [45], respectively.
The mean-field result is calculated via the mean-field approach in Section 2.3.2 and can also be found
in [8]. Additionally, the analytical results in the BEC and BCS limit are shown, which can be found
in Eq. (2.23) and Eq. (2.22), respectively.

In the BCS Limit, the chemical potential µ and gap ∆ read (BCS Limit) [8, 103]

µ ≈ EF

∆ ≈ 8
e2 e

π/(2kFa).
(2.22)

As the available interaction energy cannot soften the Fermi edge very much and Pauli blocking
still dominates, the chemical potential is close to the Fermi energy. This scenario resembles
an ideal Fermi gas very closely (compare to Fig. 2.1), which is a special case of the BCS
wavefunction |ψBCS⟩ for uk = 0. In such a system, the gap is exponentially suppressed
being proportional to the expectation value of the pair annihilation operator ⟨b̂k⟩ = ukvk
(Eq. (2.21)). Basically, the Fermi sea only melts in a narrow region of ∆ around the Fermi
edge, leading to fragile pairing.

22



2.3 BEC-BCS crossover

In the BEC Limit, the chemical potential µ and gap ∆ read (BEC Limit) [8, 103]

µ ≈ − ℏ2

2mLia
2 + 2πℏ2anσ

mLi

∆ ≈
√

16
3π

EF√
kFa

.

(2.23)

Here, the chemical potential comprises two terms. The first term is the bound state energy
(per atom) of the tightly-bound molecules, as introduced in Eq. (2.10). As previously discussed
in Section 2.3.1, the composite dimers also interact with each other, leading to a repulsive
(a > 0) mean-field contribution in the second term. While this term closely resembles the
chemical potential of a condensed Bose gas [48], it lacks the suppressed dimer-dimer scattering
length of add = 0.6 [121]. Later in this thesis, the repulsive mean-field contribution in a
composite Bose gas becomes important in enabling a novel cooling method, explored in
Chapter 7.

As discussed beforehand, the chemical potential µ is mostly governed by the negative
bound state energy in the BEC limit. Hence, the gap parameter ∆ cannot describe the
molecular bound state, nor does it correspond to the minimal excitation energy min(Ek) in
Eq. (2.19). Instead, the minimum in the dispersion relation is found at k = 0 for µ < 0 and
can be approximated to

Ek =
√
ξ2
k + ∆2 ≈ |µ| + ∆2

2|µ| . (2.24)

Here, the minimum excitation energy is lifted from the single-particle bound state |µ| by the
pairing mean-field ∆2/(2|µ|), experienced by unpaired fermions in the molecular gas.

Both the results in the BEC limit (Eq. (2.23)) and BCS limit (Eq. (2.24)), as well as the
full mean-field result are shown in Fig. 2.5. Additionally, more intricate theoretical results
for the chemical potential µ [125], considering pair fluctuations, and the gap parameter ∆
[45], based on a variational many-body approach, are presented here as well.

Following the smooth evolution of both the chemical potential µ and gap ∆ within the
strongly interacting regime −1 < 1/(kFa) < 1 (Fig. 2.5) already suggests why there is
no phase transition, but rather a crossover. In the limit of weakly attractive fermions,
the chemical potential closely resembles that of an ideal Fermi gas at low temperatures
(compare to Fig. 2.1). As interactions become stronger, the Fermi sea gradually loses its
step-function-like behaviour, allowing lower-energy states to be populated, which in turn
reduces the chemical potential. Further into the resonance, the chemical potential flips sign
around 1/(kFa) ≈ 0.6. Here, the physics become increasingly bosonic, progressing towards
the BEC limit 1/(kFa) → ∞, where we have tightly-bound molecules.

This same behaviour is also reflected in the size of the pairs [17]. In the BCS limit, pairs
are significantly larger than the interparticle spacing. Near unitarity, the pair size gradually
shrinks down to the scale of the interparticle spacing. Finally, in the BEC limit, we observe
tightly-bound molecules.

Using the results for the chemical potential µ and gap ∆, we can now understand the
pairing behaviour throughout the crossover. The parameters |uk|2 and |vk|2 in Eq. (2.18)
represent the non-occupation and occupation of a momentum state k with a pair, respectively.
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Chapter 2 Ultracold Fermi gases

In Fig. 2.6, we show these parameters along with the mixed quantity |ukvk|2, which represents
the macroscopic and condensed Cooper pairing wave function. We show all three quantities
for three exemplary interaction parameters 1/(kFa) = {−1.0, 0.0, 1.0}, using the results of
the mean-field approach (refer to Fig. 2.5). Additionally, we also show the corresponding
quasi-particle dispersion relation from Eq. (2.19).
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Figure 2.6: Momentum distribution and dispersion relation in the BEC-BCS crossover (mean-field
results) at zero temperature. Upper row: The momentum distribution of the parameters |uk|2
and |vk|2 (Eq. (2.18)) is shown throughout the crossover, corresponding to the non-occupation and
occupation with pairs at the momentum state k, respectively. Above the plots, the respective
interaction parameters 1/(kFa) and mean-field results of the gap ∆ and chemical potential µ are
given, compare to Fig. 2.5. Additionally, the mixed quantity |ukvk|2 is shown. The shaded area is
proportional to the gap ∆, according to Eq. (2.21). Lower row: The corresponding quasi-particle
dispersion relation (solid line) (refer to Eq. (2.19)) at the respective interaction parameters is illustrated,
along with the dispersion relation of the ideal Fermi gas (dotted line) and the mean-field value of the
gap ∆ (dash-dot-dot).

Well on the BCS side (1/(kFa) = −1), the Fermi sea |vk|2 is almost intact, with just a few
momentum states below the Fermi energy EF being empty. Here, Cooper pairing concentrates
along the Fermi edge, which is visible in the peaked structure of the mixed parameter |ukvk|2.
While the gap ∆ is small, it is non zero, lifting the minimum in the dispersion relation to
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2.3 BEC-BCS crossover

min(Ek) = ∆. The minimum in the dispersion relation is close to the Fermi momentum at
ξk + µ ≈ EF.

Moving to unitarity (1/(kFa) = 0), the Fermi sea melts down more drastically. Here, no
momentum state k has close to full occupation, and so the macroscopic wave |ukvk|2 function
extends over all momentum states with a small peak towards larger momenta k < kF. As the
pairing volume increases, so does the gap ∆. While the minimum position in the dispersion
relation shifts to smaller momenta k < kF, the chemical potential is still positive µ > 0, and
so a minimum can be found at min(Ek) = ∆.

Approaching the BEC regime (1/(kFa) = 1), the chemical potential turns negative µ < 1
as molecular binding starts to dominate. Here, pairing occurs over all momentum states with
a peaked structure at zero momentum k = 0. Therefore, ∆ no longer depicts the minimum
excitation energy but an additional pairing field, which lifts the excitation spectrum at its
minimum position k = 0, as discussed in Eq. (2.24).

2.3.3 Superfluid phase transition

As we have seen in Section 2.3.1 and Section 2.3.2, pairing persists throughout the entire
crossover. This has been demonstrated by the smooth evolution of the pairing coefficients
uk and vk in Fig. 2.6 within the strong coupling regime −1 < 1/(kFa) < 1. However, as the
pairing mechanisms transitions from fermionic to bosonic in nature, the critical temperature
TC of the superfluid phase transition no longer aligns with the onset of pairing. Calculating
the critical temperature across the crossover is very much complicated due to the strong
interactions around unitarity. By examining the crossover limits, however, we can gain an
initial sense of the critical temperature trend.

In the BEC limit, weakly repulsive composite bosonic dimers can undergo Bose-Einstein
condensation. Here, the critical temperature of the superfluid phase transition coincides with
the critical temperature of condensation as stated in Eq. (2.12). Additionally, the first-order
correction to the critical temperature in Eq. (2.13) shifts the critical temperature upwards
with stronger interactions.

In the BCS limit, we have discussed that even for arbitrarily-small attractive coupling,
a finite gap ∆ (Eq. (2.22)) opens in the excitation spectrum in Eq. (2.19). Similarly, the
critical temperature in this limit can be obtained by solving the mean-field approach for a
vanishing gap ∆. The critical temperature in the BCS limit reads [44]

TC,BCS+GMB
TF

= 1
(4e)

1
3

eγ

π

8
e2 e

π/(2kFa), (2.25)

where γ is the Euler constant, obeying eγ ≈ 1.78 [8]. In comparison to the gap in the BCS limit
in Eq. (2.22), the critical temperature is scaled by an additional factor of eγ/π. Additionally,
the stated critical temperature also includes a beyond mean-field correction, which reduces
the critical temperature by another factor of 1/(4e)1/3 ≈ 0.45 [44]. The correction is known as
the Gorkov-Melik-Barkhudarov (GMB) correction, and considers screening of the interparticle
interaction due to pairing polarisation effects within the fermionic sample [44].

We see that both the critical temperature in the BEC limit with its first-order correction
(Eq. (2.13)), as well as the critical temperature in the BCS limit (Eq. (2.25)) increase for
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stronger interactions. This simple argument demands that a maximum in critical temperature
must exist somewhere in the unitarity regime. Both results of the critical temperature in the
BEC and BCS limit are shown in Fig. 2.7. Additionally, several theoretical predictions of the
phase boundary are shown. Measurements of the critical temperature have been performed
during this thesis and are presented later in Chapter 5.
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Figure 2.7: Critical Temperature in the BEC-BCS crossover. The figure presents several theroretical
calculations of the critical temperature TC/TF. In the limits, the analytical results for the weakly
interacting BEC (Eq. (2.13)) (dotted line) and the exponentially decaying BCS result with GMB
correction (Eq. (2.25)) (dashed line) are shown. Across unitarity, an extended GMB correction [19]
(solid line) and a self-consistent t-matrix approach [45] (dashed-dotted line) are plotted. Additionally,
two quantum Monte Carlo results (circles [128] and triangles [47]) are presented. Finally, quantum
Monte Carlo results for hard-sphere (red square) and soft-sphere (blue diamond) bosons are shown
[20].

2.3.4 Collective excitations

In Section 2.3, we have introduced the fundamental quasi-particle dispersion relation in
Eq. (2.19). This excitation spectrum describes a “pair-breaking” mechanism through the
creation of an unpaired particle and a hole, thus requiring two quasi-particle excitations to
conserve atom number. In the BCS limit, the excitation minimum occurs near the Fermi
edge k ≈ kF and requires an energy of 2∆. Towards the molecular BEC limit, the lowest
excitation occurs at zero momentum k = 0 and is raised by a mean-field shift experienced by
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2.3 BEC-BCS crossover

the unpaired fermions in the molecular sample, as described in Eq. (2.24). Since pair-breaking
concerns single particles, this spectrum is known as the “single-particle excitation spectrum”.

However, in the considered many-body state, another class of excitations can occur, namely
“collective excitations”. A particularly interesting class of collective excitations arises from the
second-order phase transition associated with the superfluid phase transition, as described by
the Ginzburg-Landau theory [70]. Here, the previously introduced gap parameter ∆ of the
superfluid acts as a complex order parameter. As previously discussed, the order parameter
not only describes the superfluid gap ∆ (Eq. (2.19)) but also the macroscopic wave function
of the Cooper pairs responsible for superfluidity (Eq. (2.21)) [126].

The Ginzburg-Landau theory shows that for such an order parameter ∆, the free energy F
of the system can be parametrised as [70]

F = F0 + α|∆|2 + β

2 |∆|4, (2.26)

where the composition of the real parameters α and β change according to the phase of the
system. Above the phase transition T > TC, both parameters are positive ⇒ α, β > 0. Thus,
the system is in its normal phase and the ground state can be found in the centre of the
complex plane at ∆ = 0.

Once the phase transition is crossed T ≤ TC, the new ground state can be found at a
finite value of the order parameter |∆0| > 0. Here, the parameters of the Ginzburg-Landau
free energy take values obeying α < 0 and β > 0. Thus, the ground state is described by
|∆0|2 = −α/β. As the order parameter ∆ is a complex quantity, it can be described by an
amplitude and a phase ∆0 =

√
|∆0|2ei arg(∆0) = ℜ∆0 + iℑ∆0. The phase can be interpreted

as the phase of the macroscopic wave function. Since the phase does not alter the system’s
Hamiltonian, it is arbitrarily chosen during the phase transition, effectively breaking the
system’s U(1) symmetry [70]. This scenario is sketched in Fig. 2.8, with the ground state
highlighted by the red ball at ∆ = ∆0. Due to the shape of the free energy in the complex
plane, the free energy is often referred to as the “mexican hat” potential.

In a naive picture, the shape of the potential suggests two distinct excitation modes. First,
the ball can be moved along the valley of the potential, effectively changing the phase of
the order parameter. This excitation, depicted by the yellow-dashed arrow, is known as the
(Nambu-)Goldstone mode or phase mode [71, 72]. As the energy does not change along this
mode, arbitrarily small excitations can be performed, which is why this mode is also called
massless. These excitations manifest as sound modes, known as Bogoliubov-Anderson modes
in a BCS system [129].

More complicated, the ball can also be moved radially, changing the amplitude of the
order parameter ∆0. This excitation is highlighted by the green solid arrow and is known
as the Higgs mode or amplitude mode [70]. Similarly to the harmonic oscillator, the order
parameter experiences a harmonic pseudo potential along this direction, resulting in a gapped
excitation that requires a minimum energy of 2∆0. Exciting this mode induces oscillations of
the order parameter with a frequency of ωH = 2∆/ℏ [73].

With a higher energy than the gapless phase mode, the Higgs mode is generally unstable
and decays into lower-energy sound excitations. On the BCS side, the mode is considered
more stable and has a characteristic power law damping of t−1/2 [73]. Stability in this regime
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Figure 2.8: Mexican hat potential below a superfluid phase transtion. Crossing the phase transition,
the free energy F (Eq. (2.26)) landscape forms a ring-like potential well in the complex plane at
|∆| = ∆0, defining the ground state energy. Since ∆ = |∆| expiφ is a complex quantity, a particular
phase φ is chosen (red dot), breaking the system’s symmetry. The energy landscape supports two
fundamentally distinct excitation modes: the gapless Goldstone phase mode (dashed, yellow arrow)
and the gapped Higgs amplitude mode (green, solid arrow). Figure inspired from [70].

arises from particle-hole symmetry, which introduces an effective Lorentz invariance in the
system, allowing for a stable Higgs mode [71, 84].

Particle-hole symmetry is evident in the quasi-particle operators from Eq. (2.18) and their
dispersion relation in Eq. (2.19). In the BCS state, the energy to add a single fermion to
state

(
k′, ↑

)
is the sum of the single particle kinetic energy ξk plus the negative pairing

energy Ek − ξk, which arises because the state and the mirrored partner state (−k, ↓) are
now closed for the other particles. The total energy to add a single Fermion adds up to Ek
and is reflected by the quasi-particle excitation γ̂k,↑ [8]. Interestingly, the energy to remove
a particle from state

(
k′, ↑

)
or to create a hole costs the same energy of Ek. In the BCS

limit, the gap parameter is defined by the region around the Fermi edge. Here, the energy to
create a particle- (k > kF) or hole-excitation (k < kF) close to the Fermi energy k = kF is
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symmetric around the Fermi energy ξk = 0, because the gap ∆ is exponentially suppressed
[130]. This is known as particle-hole symmetry.

For stronger interactions, the gap ∆ increases, and the Fermi sea softens over a broader
region of ∼∆. Thus, particle- and hole-excitations gradually loose their symmetry. In the
BEC limit, the damping is predicted to have a stronger power law dependence of t−3/2 [131].
Additionally, the Higgs frequency shifts to ωH = 2

√
∆2 + µ2/ℏ, as the smallest excitation for

µ < 0 can be found at zero momentum k = 0, as discussed in Eq. (2.24).
In this thesis, two distinct excitation methods of the Higgs mode are analysed in Chapter 6.

Exciting the Higgs mode is non-trivial since the order parameter lacks typical coupling
properties, such as an electric charge or a magnetic moment [132]. To induce perturbations
effectively, the entire pseudo potential must be modulated [70]. This is achieved by perturbing
the interaction parameter through a superimposed magnetic field. First, a parametric modu-
lation of the interaction parameter is performed, allowing for a spectroscopic measurement of
the Higgs mode. The modulation of the interaction parameter leads to an effective modulation
of the order parameter, since both are coupled (refer to Fig. 2.5). Next, the order parameter is
excited by a quench of the interaction parameter, which couples to all modes with a frequency
lower than the ramp speed of the quench. Naturally, this requires a very fast change of the
magnetic field (refer to Section 4.5.1). Afterwards, a time-resolved oscillation of the order
parameter can be observed.

2.4 Fermions in an inhomogeneous trap

Up to this point, we have only considered fermions in a homogeneous system with zero
potential energy. As we will see in Chapter 3, the fermions in this work are confined in an
approximately harmonic 3D trapping potential. Such a trapping potential U(r = (x, y, z))
is generally defined by three distinct trapping frequencies ωi/ (2π) along each Cartesian
direction i = {x, y, z} and can be expressed as

U(r) = m

2
∑

i=x,y,z
(ωiri)2 , (2.27)

where m is the mass of the trapped particles, which, in this thesis, is the mass m = mLi of
6Li atoms.

The potential can confine a certain number of fermions depending on the temperature T
of the gas. In order to calculate the Fermi energy in terms of the atom number Nσ per spin
state, we apply the “local density approximation” (LDA) [8, 103], similarly to the integral in
Eq. (2.4).

In the LDA, the inhomogeneous potential energy U(r) is absorbed into the chemical
potential

µ → µ(r) = µ− U(r) , (2.28)

effectively creating an inhomogeneous chemical potential. Next, the Fermi-Dirac distribution
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is integrated over the full phase-space at T = 0 ⇒ µ = EF, yielding the atom number

Nσ =
∫

d3r

∫ d3p

(2πℏ)3 fFermi

(
p2

2m + U(r) , T = 0
)

= 4π
∫

d3r

∫ √
2m(EF−U(r))

0

dp
(2πℏ)3 p

2

=
∫

d3r
1

6π2

(2m (EF − U(r))
ℏ2

) 3
2

= 1
6

(
EF
ℏω̄

)3
,

(2.29)

where ω̄ = 3
√∏

i=x,y,z ωi is the geometric mean of the trapping frequencies. This results in a
Fermi energy of [108]

EF = ℏω̄(6Nσ)
1
3 , (2.30)

describing the sample in the harmonic trap.
In Eq. (2.4), we have calculated the Fermi energy EF = ℏ2

2m

(
6π2nσ

) 2
3 in terms of the local

(homogenous) density nσ. It is important to note that the Fermi energy of the harmonic
trap only equals the local (homogeneous) Fermi energy calculated from the centre density
nσ (Eq. (2.4)) for an ideal Fermi gas without interactions. Introducing interactions can
significantly alter the density profile, introducing deviations between both calculation of
the Fermi energy. For instance, far on the BEC side, a Bose-enhanced density due to Bose-
Einstein condensation may occur, changing the corresponding Fermi energy significantly.
Therefore, we always use the Fermi energy EF = ℏ2

2m

(
6π2nσ

) 2
3 determined from the density

nσ at the centre of the trap (refer to Eq. (2.4)). This is particularly important when describing
phenomena such as the onset of superfluidity, which typically first occurs at the location of
maximum Fermi energy, and thus largest density.

The LDA is valid when the Fermi energy is much larger than the level spacing of the
trap EF ≫ ℏω̄ [8, 103]. In our samples, this condition generally holds, with most samples
exhibiting Fermi energies of approximately EF/h ≈ 20 kHz, while the level spacing is typically
around ω/ (2π) ≈ 200 Hz.

For a non-zero temperature T > 0 or different trapping potentials U(r), the same LDA
approach can still be used to calculate the normal state density in spatial coordinates nσ(r)
or in momentum space nσ(p) by performing the integrals

nσ(r) =
∫ d3p

(2πℏ)3 fFermi

(
p2

2m + U(r) , T
)

nσ(p) =
∫

d3rfFermi

(
p2

2m + U(r) , T
)
.

(2.31)
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CHAPTER 3

Apparatus and Preparation

This chapter provides an overview of the experimental apparatus used to prepare ultracold
fermionic samples necessary for simulating the BEC-BCS crossover, as introduced in Sec-
tion 2.3. The apparatus has initially been planned, designed and constructed by the first two
PhD students in this experiment, Dr. Alexandra Behrle and Dr. Timothy Harrison, as well as
by Dr. Kuiyi Gao. More detailed descriptions of the system can be found in the dissertations
of the first two students [40, 41]. Details about minor upgrades and additional details are
available in the later dissertations from this experiment [133–135]. In this thesis, the most
important aspects to prepare ultracold samples of 6Li are revisited and discussed.

While 6Li presents our fermionic isotope used to simulate the BEC-BCS crossover, the
apparatus also hosts a bosonic sample of sodium 23Na. Here, 23Na solely serves as a coolant
for sympathetic cooling of 6Li. Accordingly, this chapter begins by introducing both species’
transition levels, which are exploited to manipulate the atoms with controlled laser light. As
the atoms are cooled towards their ground state, the magnetic hyperfine splitting becomes
important for magnetic trapping and for preparing a two-level mixture to simulate the
crossover. Thus, we calculate and discuss the hyperfine magnetic sublevel structure of each
species’ ground state.

To create dilute and ultracold atomic samples, a chamber with ultra-high vacuum is
necessary. Therefore, the next section presents the vacuum system of the experimental
apparatus. We then discuss the path of the initially thermal mixture of isotopes towards an
ultracold, degenerate fermionic sample of 6Li. In the end, the sample is held by an optical
dipole trap. Here, we explore the degrees of control that constitute our quantum simulator.

Outline of this chapter

The sections of this chapter are organised as follows:

• Section 3.1: This section describes and discusses the transition levels and magnetic
hyperfine splitting of the two species, 6Li and 23Na, used in this experiment.

• Section 3.2: Here, we provide an overview of the performed steps to prepare a degenerate
Fermi gas from an initially hot sample.
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Chapter 3 Apparatus and Preparation

3.1 Properties of Lithium and Sodium
As previously mentioned, the apparatus contains a mixture of the fermionic isotope 6Li and
the bosonic isotope 23Na. In order to manipulate, control and detect these isotopes, the level
structure is driven by resonant or off-resonant laser fields. This section will first introduce
the relevant level structure for controlling the atoms with laser light. Next, we will discuss
the magnetic sublevels of the hyperfine ground state. Properties about 6Li and 23Na are
detailed in [136] and [137], respectively.

3.1.1 Transition levels and laser systems
Since both isotopes are alkalis, they possess a hydrogen-like level structure with a single
valence electron of spin S = 1/2. Moreover, the ground state of either isotope is given by the
hyperfine splitting of the state with zero angular momentum L = 0 ⇒ J = S. In hyperfine
coupling, the electron’s magnetic field (∝ S) couples to the magnetic moment of the nucleus
I, manifesting in the total angular momentum F = I ± S. Thus, the fine structure ground
state splits into two hyperfine levels with F = I ± 1/2.

Dipole transitions (|∆L| = 1) from the ground state couple to the L = 1 level, which has
two fine structure sublevels of J = 3/2 and J = 1/2, each with its own hyperfine manifold.
Transitions to the J = 1/2 manifold are known as the D1 line, while transitions to the
J = 3/2 manifold are known as the D2 line. In this setup, we solely use transitions from the
D2-line for both isotopes. The D2 lines for both isotopes are illustrated in Fig. 3.1 alongside
the splitting of the corresponding hyperfine manifolds.

22S1/2

22P3/2

D2 = 670.977 nm

F = 3/2

F = 1/2

228.2 MHz

F = 1/2

F = 3/2

F = 5/2

4.4 MHz

6Li

32S1/2

32P3/2

D2 = 589.158 nm

F = 2

F = 1

1.772 GHz

F = 3

F = 2

F = 1
F = 0

0.108 GHz

23Na

Figure 3.1: Level diagram of the D2-line transitions in 6Li and 23Na. The figure shows the hyperfine
structure in lithium (left) and sodium (right) of the corresponding ground state and 2P3/2 excited
state. Transition frequencies are taken from [136] for 6Li and [137] for 23Na.
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Lithium laser system

The carrier frequency of the lithium laser system is generated by a custom-built “external-
cavity diode laser” (ECDL) operating at approximately λ = 671 nm. This laser is locked to
an external reference vapour cell [138] via Doppler-free spectroscopy. The light is amplified
by two tapered amplifiers (TA) in series, providing roughly 200 mW of power for the six arms
of the magneto-optical trap (MOT), which is discussed further in Section 3.2.4.

A small fraction of light from the first laser is directed to a second ECDL, which is
offset-locked to the first laser. The second laser, amplified by another TA, supplies light for
the Zeeman slower, optical pumping and repumping. Additionally, light from this laser is
used for imaging of the atomic sample. As we will explore in Section 3.1.2, the resonance
frequency changes significantly with the external magnetic field. To keep the imaging on
resonance across a scan range up to 1000 G of magnetic field, the offset lock is ramped prior
to imaging by a magnitude of 1 GHz using an electro-optical modulator (EOM).

Several acousto-optical modulators (AOM) are used to adjust frequencies and power
balancing e.g., to create offsets before locking or to optimise the experiments’ performance.

Sodium laser system

The light for sodium originates from a commercial∗ ECDL running at 1178 nm. Before fre-
quency doubling, the light is amplified by a commercial† Raman fiber amplifier to 2.7 W. This
amplified light seeds a custom-built frequency-doubling cavity [40], producing approximately
1.4 W of λ = 589 nm light. The cavity is locked via the Pound-Drever-Hall technique [139].

The cavity has two outputs. The primary output has higher power of ∼ 1.2 W and is used
for the six arms of the sodium MOT (total ∼ 200 mW), as well as for the dark spot, imaging,
pumping and repumping, which is all further explored in Section 3.2. The secondary output
of the cavity has ∼ 200 mW of power and is mainly used for the Zeeman slower, with a small
fraction used for locking. Here, the laser frequency is locked via Doppler-free spectroscopy in
another custom-built vapour cell containing sodium [140].

As with the lithium laser system, several AOMs are employed to adjust power and frequency
of different beam paths, optimising the experiments’ performance.

3.1.2 Hyperfine splitting of the ground state

So far, we have only considered the degenerate hyperfine ground states of both 6Li (22S1/2,
F = 1/2 and F = 3/2) and 23Na (32S1/2, F = 1 and F = 2). When an external magnetic
field is applied, this degeneracy is lifted, and a manifold of 2F + 1 distinct magnetic sublevels
emerges. As discussed in Section 2.2.2, we use strong magnetic fields to tune interactions in
a state mixture. These states are represented by the magnetic sublevels.

Magnetic sublevels emerge because the atom’s magnetic moment µ couples to an external
magnetic field B with µ · B = µzBz. The magnetic moment of the ground state µz comprises
a spin component µS = gSmSµB and a nuclear component µI = gImIµN, where gS,I denotes
the g-Factor, µB is the Bohr magneton and µN is the nuclear magneton [8, 136, 137]. mS

∗Toptica ECDL DL pro
†8 W, 1178 nm Raman Fiber Amplifier by MPB Communications Inc.
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and mI denote the magnetic quantum numbers of the spin Ŝz and nuclear-spin Îz projection
along B, respectively. To solve for the magnetic energy eigenstates across all fields, the full
Hamiltonian Ĥ of the hyperfine structure must be solved, which reads [8, 103, 141]

Ĥ = A
Î · Ŝ

ℏ2 + 1
ℏ

(
gSµBŜ − gIµNÎ

)
· B, (3.1)

where A is the hyperfine constant, dependent on the fine structure level [136, 137]. The
solution to the hyperfine Hamiltonian in an external magnetic field is shown in Fig. 3.2 for
the ground states of both isotopes 6Li (left) and 23Na (right).

0 100 200 300 400

Magnetic Field B/G

−600

−400

−200

0

200

400

600

E
n

er
gy

(∆
E
/h

)/
M

H
z

|1〉
|2〉
|3〉

|4〉
|5〉
|6〉

F = 3
2

F = 1
2

6Li

0 100 200 300 400

Magnetic Field B/G

−1500

−1000

−500

0

500

1000

1500

E
n

er
gy

(∆
E
/h

)/
M

H
z

+1

+0

−1

−2

−1

+0

+1
+2

mF

F = 2

F = 1

23Na

Figure 3.2: Breit-Rabi diagrams for the 22S1/2 ground state in 6Li and the 32S1/2 ground state in
23Na. The figures depict the energy shift ∆E relative to the unperturbed fine structure ground state
(dashed line) with respect to the external magnetic field B.

In the limit of very small magnetic fields A ≫ gSµBB, the splitting is centred around
the F = 1/2 (F = 1) and F = 3/2 (F = 2) hyperfine states of lithium (sodium). Here,
both the total angular momentum F and its projection mF serve as good quantum numbers,
with each F possessing 2F + 1 distinct mF states of energy gFmFµBB, visible in the initial
linear slopes. However, the eigenstates mF are mixtures of the original basis states, obeying
mF = mS +mI . As the magnetic field increases, this leads to strong bending of states that
do not satisfy |mF | = I + S (maximally stretched states).

In the high magnetic field limit A ≪ gSµBB, the spin’s magnetic moment µS and the
nucleus’s magnetic moment µI precess separately around the external magnetic field B,
requiring mS and mI as labels once again. In this regime, the states split into a high-field-
seeking manifold of mS = −1/2 and a low-field-seeking manifold of mS = 1/2. Nonetheless,
the notation |F,mF ⟩ still adequately describes the state mF = mI +mS .

Throughout this thesis, we adopt the conventional labelling for lithium, designating the
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3.2 Preparation of an ultracold fermionic sample

states from lowest to highest energy as |1⟩ to |6⟩, as depicted in Fig. 3.2. For sodium, we
stick to labeling the states with their respective |F,mF ⟩ quantum numbers.

3.2 Preparation of an ultracold fermionic sample

In this section, we describe the apparatus that makes up the experiment, and that provides
us with an experimental cycle of roughly 26 s from hot atoms to a degenerate spin mixture
(including cooling of coil elements afterwards). The apparatus is centred around a vacuum
chamber, which is essential for preparing dilute and ultracold samples with reasonable lifetimes
of a few seconds. Thus, we begin by describing the vacuum system. Since the alkalis used in
this experiment come as solid metal chunks at room temperature, the preparation involves
multiple steps to create the sample, which are covered subsequently.

3.2.1 Vacuum system

A 3D render of the vacuum chamber forming the experimental apparatus is shown in Fig. 3.3.
Atoms start in their respective reservoirs on the left-hand side, labelled as 23Na and 6Li.
This part of the chamber, called the “oven chamber”, heats up the atoms to create a mixed
vapour. Next, the mixed isotope gas of hot atoms travels through the Zeeman slower, where
it is decelerated to be captured in the magneto-optical trap (MOT) within the “main science
chamber”. Here, several cooling and trapping stages follow, ultimately producing a degenerate
spin mixture in the main science chamber, spatially offset from the MOT position. The
preparation process is detailed in the subsequent sections of this chapter.

Four ion getter pumps‡ are distributed along the system to maintain a vacuum. Additional
titanium-sublimation pumps are installed along the setup, which are optionally fired when
the vacuum starts to deteriorate. Along the Zeeman slower, a differential pumping stage
allows for much better vacuum in the main science chamber, where low pressure is most
critical [40]. Due to the high vapour pressure in the oven chamber, the pressure here is around
5.5 × 10−8 mBar. After the differential pumping stage, pressures below 1 × 10−10 mBar are
achieved in the main science chamber.

Now, we examine the path of the atoms through the adjoining segments of the vacuum
chamber in greater detail.

3.2.2 Effusive Oven

The first stage of the vacuum system is commonly referred to as the “oven chamber”. In our
experiment, we use an isotope mixture of 6Li and 23Na, which necessitates a multi-species
effusive oven with individual temperature control for each isotope. The oven chamber design
is inspired by the setup built at MIT [142] for the same mixture. In my master’s thesis, I
have designed and built an updated version that reduces the maintenance frequency and
includes a shutter for the atomic beam [143]. This updated version has been installed during
the second-to-last sodium exchange in the summer of 2022 and is shown in the 3D render in
Fig. 3.3.

‡Gamma Vacuum
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23Na
6Li

Oven chamber

Big Zeeman slower

Ion pumps

Small chamber

Small Zeeman slower

Main science chamber

Figure 3.3: Render of the vacuum system. The atoms start on the left-hand side of the setup in a
mixed oven configuration, forming an atomic beam. The beam is then slowed down in the spin-flip
Zeeman slower. Finally, a mixture of 23Na & 6Li is trapped and further cooled to quantum degeneracy
in the main science chamber on the right-hand side. Across the entire apparatus, four ion pumps
maintain a vacuum. Render created with Autodesk Inventor.

The oven comprises two individual reservoir cups for 6Li and 23Na. Each cup is heated
well above the respective melting points of 97.80 ◦C for 23Na and 180.54 ◦C for 6Li to achieve
high vapour pressures. During operation, we set the temperature of the sodium reservoir to
330 ◦C and the lithium reservoir to 400 ◦C. In standby mode, temperatures are reduced to
240 ◦C and 300 ◦C, respectively, minimising atom consumption.

The reservoirs are filled with ∼ 10 g of enriched§ 6Li and roughly 50 g of¶ 23Na. After
extended operation, the reservoirs eventually run empty. For example, 23Na typically lasts
about 2.5 y with a 50 g supply. To refill, we close the gate valve between the oven chamber
and the Zeeman slower, flood the chamber with argon, and open the reservoirs. While 6Li
has not yet run empty, inspection during the 2022 instalment of the upgraded oven chamber
(with a new lithium supply) have revealed it was nearly depleted, indicating a turnaround
time of ∼ 8 y. The most recent sodium refill occurred in January 2024, when 50 g of new
sodium was inserted.

A narrow nozzle between the reservoirs regulates relative vapour pressures and prevents
backflow to the sodium cup. In the big oven chamber, the exit nozzle after the lithium
reservoir and a water-cooled copper aperture help to collimate the atomic beam. Atoms
that diverge from the intended trajectory adhere to the copper plate, reducing background
pressure and stabilising the atomic beam. The beam is then entering the Zeeman slower.

§Sigma Aldrich - 340421 - 95 % enriched
¶Sigma Aldrich - 282065
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3.2.3 Zeeman slower

The Zeeman slower is the first stage for cooling the mixed atomic beam emerging from the
effusive oven chamber. In general, the idea of the Zeeman slower is to keep the atoms on
resonance with a closed-cycle transition of a laser beam counterpropagating to the atomic
beam. Atoms can either populate the excited or ground state of this transition. When in
the ground state, an atom absorbs a counterpropagating photon, resulting in a momentum
change of ℏk opposing its initial direction, where k is the wave vector of the laser field. Atoms
in the excited state can undergo spontaneous or stimulated emission. Since spontaneous
emission lacks a preferred direction, its momentum change averages to zero. The total force
F exerted on the atoms is given by the momentum change ℏk multiplied by the absorption
rate, resulting in

F = ℏk
Γ
2

I/Isat

1 + I/Isat + 4δ2/Γ2 , (3.2)

where I/Isat represents the intensity in terms of the isotope’s saturation intensity [136, 137],
Γ denotes the excited-state decay rate and δ is the detuning from the cooling transition.
For very high intensities I/Isat, the populations of the ground and excited states are in
equilibrium and the force takes its maximum value of F = ℏkΓ/2.

As the atoms slow down, the (blue) Doppler shift of the laser frequency as seen by the
atoms reduces, moving the atoms out of resonance. To address this, the Zeeman slower has a
magnetic field B that varies along its slowing axis, synchronising the Doppler shift with the
change in resonance frequency due to the Zeeman effect. The total detuning of both effects
is given by

δ = δlab + kv − µeffB/ℏ, (3.3)

where v is the atom’s velocity and µeff denotes the difference in magnetic moments between
the excited and ground state.

Our experiment employs a spin-flip Zeeman slower with a variable pitch helix coil design,
as described in [144]. In this design, the magnetic field variation is realised through the coil’s
changing pitch, with the highest field near the oven chamber, a zero crossing in the “small
chamber” (refer to Fig. 3.3), and a smaller field of opposite sign at the exit of the Zeeman
slower, facing the main science chamber. The spin-flip Zeeman slower comprises two separate
segments called the “big” and “small” Zeeman slower, as seen in Fig. 3.3. This design allows
for lower peak magnetic field amplitudes, and since the finite magnetic field at the end of
the Zeeman slower ends abruptly, the slowed atoms quickly leave the resonance condition
and become transparent to the cooling light field. Red-detuned cooling light is coupled
trough a window at the end of the chamber and travels trough the entire Zeeman slower.
The closed transitions are driven by σ+ polarised light between the maximally stretched
states, as illustrated in Fig. 3.1. For 6Li, this is the 22S1/2 |F = 3/2⟩ → 22P3/2 |F = 5/2⟩
transition, and for 23Na, it is the 32S1/2 |F = 2⟩ → 32P3/2 |F = 3⟩ transition. Though the
closed transition should prevent substantial occupation of dark states, a small admixture of
repumper light is added to enhance the efficiency.

After passing through the Zeeman slower, the atoms are sufficiently cooled for loading into
the magneto-optical trap.
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3.2.4 Magneto-optical trap

After the Zeeman slower, the atoms are loaded into the magneto-optical trap (MOT). Both
isotopes are loaded simultaneously in overlapping but slightly displaced MOTs.

The working principle of a MOT relies on the same force as the Zeeman slower, introduced
in Eq. (3.2). Here, we combine the effect of a molasses, which counteracts the atom’s
velocity to slow them down, with a spatially restoring force that creates a trapping potential
[103, 141]. This is achieved with six red-detuned beams for each isotope, consisting of two
counterpropagating beams along each Cartesian coordinate. The counterpropagating beams
create a molasses force proportional to the atom’s velocity. Atoms moving towards a beam
experience a blueshift in that beam, resulting in a higher scattering rate and net force
(Eq. (3.3)). Combining this effect across all three Cartesian axes results in a 3D molasses.

The spatial trapping potential is realised by adding a magnetic field and selectively
driving closed transitions with polarised light. To this end, a quadrupole magnetic field
B(x, y, z) ∝ (x, y,−2z)⊺ is created using a coil pair in an anti-Helmholtz configuration.
Due to the Zeeman splitting of the different magnetic sublevels (see Fig. 3.2), the MOT
light is shifted into resonance for atoms moving out from the trap centre towards higher
magnetic fields. This results in a spatially restoring (trapping) force towards the trap centre,
proportional to the displacement.

The MOT centre positions are in line of sight of the atomic beam and are defined to
first order by the zero magnetic field centre of the MOT coils. Small displacement between
the MOTs can be introduced by adjusting the power balance of counterpropagating MOT
beams. Later, the zero-field position defines the start of the small magnetic trap before the
minimum position is moved to the big magnetic trap, and so large displacements can reduce
the transport efficiency significantly. However, small displacements through power balancing
can result in a reduction of light-assisted collisions [145], increasing the atom number in both
MOTs.

For 6Li, our MOT closely resembles the textbook example discussed in [141]. Here, a small
amount of repumper light is added to the cooling light to reduce the population of dark-states.
In contrast, the 23Na MOT employs a technique called the “dark spot MOT” [146], in which
repumper light is only admixed in a ring centred around the MOT (creating a dark spot).
This allows atoms in the centre to have a macroscopic population of dark states, reducing
light assisted collisions and thereby significantly increasing densities in the trap centre.

Molasses and compressed MOT

At the end of the MOT phase, after shutting down the Zeeman slower and fully loading the
MOTs (around ∼ 2.2 s), the 6Li MOT is compressed to increase the phase-space density, and
therefore, decrease the temperature. This is achieved by ramping down the detuning and
power of the lithium MOT beams while keeping the quadrupole gradient constant, a process
known as “compressed MOT” (cMOT).

Subsequently, the quadrupole field, the lithium light as well as the dark spot light for
sodium are turned off. Simultaneously, sodium repumper light is added to the sodium cooling
light, realising a pure optical molasses for 23Na. This technique works via the principle of
polarisation gradient cooling, as described in [147, 148], and is used for around 2 ms. The
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polarisation gradient forms due to interference of the counterpropagating σ± cooling beams.
The theoretical minimum temperature in the MOT is limited by the Doppler temperature

kBTD = ℏΓ/2 [141], which originates in random walk events due to spontaneous emissions,
as discussed in Section 3.2.3. For the considered cooling transitions, this corresponds to
TD = 140 µK for 6Li [136] and TD = 240 µK for 23Na [137]. However, polarisation gradient
cooling can achieve temperatures below this limit, reaching the recoil limit [141, 147]. After
the cMOT and molasses stages, the temperatures of both isotopes have been estimated by
time-of-flight measurements to be 290(30) µK (6Li) and 125(8) µK (23Na) [40], containing
approximately 109 and 1010 atoms, respectively.

In the next stage, the mixed gas is transferred to the magnetic trap for further cooling.
For this, optical pumping is performed to prepare atoms in the maximally stretched and
low-field-seeking states |6⟩ for 6Li and |F,mF ⟩ = |2, 2⟩ for 23Na (see Fig. 3.2). The optical
pumping begins as soon as the molasses stage is completed, with all cooling light and the
MOT quadrupole field turned off. A small bias field is added to preserve a quantisation axis.

3.2.5 Magnetic trap

The magnetic trap is the next step for further cooling, exploiting the lifted degeneracy of
the magnetic sublevels in an external magnetic field, as shown in Fig. 3.2. In order to
trap atoms in a magnetic quadrupole field B(x, y, z) = B′(x, y,−2z)⊤, they must occupy
low-field-seeking states, which is achieved by optical pumping to the maximally stretched
and low-field-seeking states |6⟩ in 6Li and |F,mF ⟩ = |2, 2⟩ in 23Na at the end of the molasses
stage. This results in a linear potential for the states of both isotopes

U(x, y, z) = µBB
′
√
x2 + y2 + 4z2, (3.4)

where B′ is the magnetic gradient in x and y directions, and µB denotes the Bohr magneton.
The factor gFmF equals to gSmS = 1 for maximally stretched states, and hence drops out.
While other state combinations also have low-field-seeking segments for small magnetic fields
(e.g., sodium [149]), the chosen state combination has proven effective, since spin-exchange
collisions to anti-trapped states are forbidden. Additionally, maximally stretched states
remain low-field-seeking across all fields.

Initial magnetic trap

The first magnetic trap is realised with the same coils that have been used for the MOT in
the previous step. After optical pumping, the magnetic gradient is turned back on, optimised
for ideal mode matching between the MOT and magnetic trap, achieving a trap depth of
around ∼ 2.5 mK [40].

At this stage, the magnetic trap centre is still overlapped with the initial MOT, but this
only presents the first stage of the magnetic trap. Next, the atoms are moved from the initial
magnetic trap to the big magnetic trap created with the “Feshbach coils” in quadrupole
configuration, later used in Helmholtz configuration to produce large, uniform magnetic
fields of up to 1000 G at the atoms’ position to employ Feshbach resonances, as described in
Section 2.2.2. The centre position of the final magnetic trap is just 3 mm below the upper
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viewport of the main science chamber and allows for future imaging with a high numerical
aperture or the superposition of a rapidly changing magnetic field using a small, specialised
coil, which will be described in Section 4.5.

For transport to the final magnetic trap, the gradient of the MOT coils is slowly turned off
while the current of the Feshbach coils is being ramped up, moving the atoms by more than
30 mm. The precise functions of the MOT and Feshbach currents for this transport have
been optimised in [41].

Final magnetic trap & radio-frequency induced evaporation

In the final magnetic trap, evaporative cooling is achieved via radio-frequency (RF) induced
spin-slips in 23Na. For a reasonable evaporation efficiency, the trap is turned on for more
than 5 s, and thus additional loss and heating channels must be addressed and mitigated.

In the centre of the quadrupole trap, the magnetic field linearly approaches zero, allowing
spin-flip transitions to anti-trapped high-field-seeking states to occur – a phenomenon know
as Majorana losses [150]. Since cold atoms spend more time near zero potential in the trap
centre, cold atoms are more prone to be lost, resulting in heating [151, 152]. To mitigate
this, the final magnetic trap combines the magnetic quadrupole field (Eq. (3.4)) with a
blue-detuned optical “plug” potential, which repels atoms from the trap centre [153]. The
plug laser‖ runs at 532 nm with a maximum power of 15 W. Due to degradation, the laser
output is currently limited to about > 10 W, which still seems to not limit the final atom
number in the trap.

Evaporation is performed by inducing RF transitions between initial low-field-seeking
and final high-field-seeking states [30, 86]. Atoms transferred to high-field-seeking states
are expelled from the trap, allowing the remaining gas to thermalise anew. If atoms with
energies above the sample’s average energy are removed, the temperature characterising
the energy distribution decreases (see distributions in Section 2.1). Now, if the amount
of lost atoms drops slower than gain in the thermal de-Broglie wavelength, an increase in
phase-space density is achieved [85]. This is principle of evaporative cooling is explored
further in Chapter 7, where it is implemented in a novel way to a gas that has already
achieved degeneracy.

Here, evaporation involves a transition between the initial |F = 2,mF = 2⟩ state and the
anti-trapped, maximally stretched and high-field-seeking state |F = 1,mF = 1⟩ (Fig. 3.2). In
order to address the transition for arbitrary magnetic fields B, a frequency of 1771.6 MHz +
B · 1.4 MHz/G must be applied (refer Fig. 3.2). For evaporative cooling, high-energy atoms
near the edge of the trap (largest magnetic fields) must be removed to lower the temperature.
As the temperature decreases, the average energy reduces, and high-energy atoms are found
closer to the trap centre. Accordingly, the RF frequency is linearly ramped from 1900 MHz
to 1772.5 MHz over a span of 5 s [40, 41]. The optimal evaporation parameters have been
determined phenomenologically by optimising for the highest atom number in the final
degenerate sample. Here, initial evaporation efficiencies of γ = 1.3 and γ = 3.7 for 23Na have
been measured [41].

After evaporation, no sodium remains, while the polarised |6⟩ state 6Li cloud has been
‖Lighthouse Photonics - Sprout-G-15W
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3.2 Preparation of an ultracold fermionic sample

sympathetically cooled with minimal losses (sympathetic evaporation efficiency of γ = 4.9
[41]). The post-evaporation temperature of 6Li has been determined to be below < 20 uK
[40]. Next, the polarised 6Li sample is loaded into the optical dipole trap.

3.2.6 Dipole trap

The dipole trap presents the final stage in the preparation of a degenerate two-state mixture
of 6Li. By this stage, all sodium has been consumed during the sympathetic evaporative
cooling of 6Li in the magnetic trap. Now, all 6Li is transferred into the optical dipole trap.

Dipole traps work on the principle of the AC-stark shift. A light field of frequency ω
detuned by δ = ω−ω0 from the transition frequency ω0 imposes a light shift on the transition
levels [154]. The ground state energy is shifted downwards for negative (red) detuning δ < 0.
This creates an attractive potential U(r) for the atoms, proportional to the intensity I(r) of
the laser field, which reads [155] (in the limit of very large detuning |δ| = |ω − ω0| ≫ ΩR,
with respect to the Rabi-frequency [103])

U(r) = ℏΓ2

8δ
I(r)
Isat

, (3.5)

where Γ is the decay rate of the excited state and I(r)/Isat denotes the laser intensity with
respect to the transition dependent saturation intensity Isat [136].

As indicated by the spatial dependence of the potential U(r) and proportional intensity
I (r), the potential takes the shape of the underlying laser field. This is an extremely powerful
feature, as potentials can now freely be designed by laser beam shaping, which has been done
for various geometries, e.g., homogeneous box traps [156, 157], optical tweezer arrays [158] or
lattice geometries [159].

Here, we use a crossed optical dipole trap composed of two intersecting TEM00 Gaussian
beams with a respective intensity profile of [103, 160]

I(x, y, z) = I0 exp
(

−2x2

w2
x

− 2y2

w2
y

)
. (3.6)

The z (propagation direction) dependency has been omitted, as the intensity profile along
z changes on the order of the Rayleigh range zR ≈ 40 mm [40], while the cloud’s extent is
limited to within 3 mm by the chamber windows. Typically, clouds below 1 mm in size are
prepared. Here, I0 = 2P/

(
πwxwy

)
represents the centre intensity of an elliptical beam with

power P , and waists wx and wy in x and y direction, respectively [160].
Plugging Eq. (3.6) into Eq. (3.5) yields the full potential of the Gaussian beam. In this

experiment, the optical dipole potential is formed by two intersecting Gaussian beams –
one in the horizontal plane and the other vertically orientated [40, 41]. Close to the atoms’
position, the full potential can be simplified via a harmonic approximation, which brings the
potential to the known form from Eq. (2.27) and reads [103]

U (x, y, z) = 1
2m

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (3.7)
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Chapter 3 Apparatus and Preparation

where m = mLi is the mass of the trapped 6Li atoms. Interestingly, the squared trapping
frequencies are proportional to the beam power ω2

i ∝ I [103]. However, The full Gaussian
potential remains important for the wings of the trap, where the potential deviates from the
harmonic approximation and thermometry measurements are conducted in Chapter 5.

The dipole trap is created by a red-detuned ytterbium fibre laser∗∗ operating at 1070 nm
with a maximum output power of 50 W. Light from this laser is coupled via two individual
fibres for the horizontal and vertical beam [40, 41]. An AOM is placed in front of each fibre
for power stabilisation and to run ramps of the trapping potential. Details about the setup
can be found in the construction thesis [161].

Preparation of a spin mixture

Immediately after evaporation in the magnetic trap (as discussed in Section 3.2.5), the dipole
trap powers are ramped up, and the magnetic trap is ramped down. 6Li in the |6⟩ state now
occupies the dipole trap, and magnetic fields can be applied freely using the big Feshbach
coils, producing magnetic fields of up to 1000 G. To create uniform magnetic fields, the
Feshbach coils are switched to a Helmholtz configuration from the quadrupole configuration
used during the magnetic trap stage, employing IGBTs in an H-bridge configuration [40, 41].

To further cool the 6Li sample, a two-state mixture is now required, as the Pauli exclusion
principle prevents scattering in a polarised Fermi gas. To this end, the |6⟩ state is first
transferred to the |1⟩ state via a Landau-Zeener sweep [8, 162]. A second Landau-Zeener
sweep then creates a balanced and coherent superposition state (|1⟩ + |2⟩) /

√
2. This coherent

state is also protected from scattering by the Pauli principle, so a short decoherence time is
introduced to end up with an equal mixture of |1⟩ and |2⟩, which we denote as a |12⟩ mix
[40, 41]. Decoherence is introduced by slight magnetic field inhomogeneities, which mixes
accumulated phases of the atoms and destroys the coherence after ∼ 100 ms [40]. In some
experiments, a |13⟩ mixture is preferred due to a narrower (still broad) Feshbach resonance
(Fig. 2.3), which is prepared by adding an additional transfer from |2⟩ to |3⟩ before the
decoherence time.

Feshbach evaporation

With a balanced spin mixture, the Pauli exclusion principle no longer prohibits interactions in
the sample. Interactions are tuned via the uniform magnetic field produced by the Feshbach
coils in Helmholtz configuration.

For fast and efficient thermalisation, the magnetic field is ramped close to the Feshbach
resonance of the prepared sample. Here, the power of the optical dipole trap is exponentially
ramped down, preferably removing high-energy atoms.

This process yields a degenerate |12⟩ or |13⟩ spin mixture of up to Nσ = 1 × 106 atoms per
spin state at a temperature of roughly 0.07TF [40, 41]. The trap frequencies are typically
around 2π · 100 Hz and 2π · 300 Hz, measured by exciting dipole modes of the cloud’s centre-
of-mass [8, 103].

∗∗IPG Photonics, YLR-50-LP
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3.2 Preparation of an ultracold fermionic sample

3.2.7 Quantum simulator

From here on out, the desired scattering length can be set by adiabatically adjusting the
external magnetic field. Values for the scattering length are calculated via the data from
[111], shown in Fig. 2.3, using the calibrated magnetic field at the atoms’ position.

Additional compensation coils allow for the application of magnetic gradients and magnetic
compensation fields, e.g., to compensate for gravity. Additionally, the trap can be adjusted
by setting ramps for the dipole beam powers. This allows for probing the BEC-BCS crossover
and is explored in the later chapters.

Magnetic field calibration

For a precise knowledge of the magnetic field and the scattering length, the magnetic field
requires precise calibration. A rough calibration has been performed via measuring the field
before assembly of the experiment via a Hall probe [40, 41]. Now, a precise calibration is
performed through the exact knowledge of the |1⟩ to |2⟩ transition frequency, as shown in
the Breit-Rabi spectrum in Fig. 3.2.

To this end, a polarised Fermi gas in the |1⟩ state is prepared. Next, the transition
frequency ν1→2 to the |2⟩ state is probed at various magnetic fields B, which is indicated
by strong losses of the |1⟩ state in absorption images (refer to Section 4.1). The resonance
position is then fitted to the known spectrum, applying a second-order†† calibration function
of the magnetic field, as shown in the left panel of Fig. 3.4. On the right side of the figure, the
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Figure 3.4: Calibration of the Feshbach field. The calibration has been performed by measuring the
RF resonance position of the polarised |1⟩ to |2⟩ transition for different (magnetic) set fields Bset.
At resonance, a strong loss in the absorption image of the |1⟩ state has been observed. By fitting
(solid line, left) the determined resonance frequencies ν1→2 (red dots, left) to the expected Breit-Rabi
spectrum in Fig. 3.2, a second-order polynomial calibration function (Eq. (3.8)) of the magnetic field
has been determined (right). Errors of the transition frequency are too small to be visible.

††Inclusion of a third-order changes the calibration function on the order of 1 × 10−5 and is not resolvable
considering the magnetic field noise
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Chapter 3 Apparatus and Preparation

fitted calibration function is presented, providing a mapping of the set value of the magnetic
field Bset (from rough calibration) to the real magnetic field Breal at the atoms’ position. The
fitted calibration function yields

Breal(Bset) = 0.98563(6) ·Bset − 1
2 · 1.7(2) × 10−6 G−1 ·B2

set. (3.8)

The stated error (0.01 %) represents the standard error of the fit. To diagnose the magnetic
field value throughout the experimental cycle, the current passing the coils is measured with
a high-precision current transducer‡‡, yielding a voltage proportional to the current. Using
this probe, we find the noise of the magnetic field to be matching the calculated error of
0.01 %. Subsequently, the calibrated value is used for precise determinations of the scattering
length and bound state energy, which becomes important later in Chapter 7.

Dipole power calibration

The power of the dipole beams is stabilised by an AOM in front of each out-coupling fibre.
Here, the RF power going to the AOMs is regulated via a photodiode at the end of each fibre
with respect to a set point, which is changed to desired values throughout the experimental
cycle, e.g., to drive ramps. To obtain a rough idea of the power in each beam as a function
of the set point voltage, a power calibration has been performed. To this end, the power in
each beam has been measured with a power meter§§ as a function of the regulation voltage.
Linear fits of the calibration measurements are shown in Fig. 3.5.
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Figure 3.5: Calibration of the dipole beam powers. The power calibration for the horizontal (left) and
vertical (right) beams as a function of the photodiode regulation (set) voltage is shown with the raw
data (dots) and corresponding linear fits (solid line).

‡‡LEM, ITN 600-S ULTRASTAB
§§Ophir, PD300-3W
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CHAPTER 4

Detection and Methodology

This chapter presents the techniques used to detect, quantify and excite the Fermi gas
phases studied in this thesis. As these are essential aspects of the quantum simulator, most
techniques have been previously discussed and analysed in prior works on this experiment
[133, 135, 163]. Here, the most important aspects are revisited and discussed, necessary to
perform and quantify the experiments in Chapters 5 to 7.

Detection is performed via resonant absorption imaging of the quantum gas after preparation
and optional excitation. Resonant imaging of the gas creates a shadow in the imaging plane,
which corresponds to the optical density of the gas. Since the density of the gas is proportional
to the optical density, the optical density must be determined accurately, requiring a thorough
calibration of the imaging system.

In the next step, the in-situ density – measured without thermal expansion – is used
to perform thermometry of the strongly interacting Fermi gas. From this, we acquire
thermometric values of the gas such as the 3D density, temperature and chemical potential.
Owing to the geometry of imaging from a single direction, the absorption image can only
provide the density integrated along the imaging direction. However, because of the axial
symmetry of the trapping potential, the inverse Abel transformation [164] allows to reconstruct
the 3D density of the inhomogeneous gas. By knowledge of the equation of state (EoS) at
unitarity at the superfluid critical point [165], the 3D density can be employed to reconstruct
the underlying trapping potential. With the virial expansion of the equation of state providing
an approximate solution for the low-density regions of the cloud, temperatures and chemical
potentials can then be determined throughout the entire crossover.

While the determination of the thermometric parameters of the gas is a key aspect to
quantify the performed experiments, it does not give a clear signature of crossing the superfluid
phase transition. Throughout the crossover, the superfluid phase is linked to the existence
of a condensate; thus, pairing statistics perturb the momentum distribution in comparison
to the non-condensed gas in the normal phase (refer to Section 2.3.2). In the BEC limit
of the crossover, thermal expansion indeed reveals a bimodal distribution of the condensed
zero-momentum dimers and the remaining thermal dimers [38, 49]. However, in a strongly
interacting Fermi gas, the absorption image of the expanding gas lacks a clear signature
of superfluidity. This is because the Fermi edge smears out due to competing effects such
as temperature, interactions and the inhomogeneity of the trap [8]. To address this, a
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Chapter 4 Detection and Methodology

state-of-the-art technique known as the rapid ramp (RR) of the magnetic field is introduced.
This technique constitutes a projection of weakly bound pairs onto tightly bound dimers,
and restores the bimodal distribution throughout the entire crossover [38, 49].

While the rapid ramp has been successfully used to detect condensation across the crossover,
its perturbative effect on the condensate has been matter of debate [50–52, 166]. It has been
found that the exponential ramp of the magnetic field leads to a non-monotonic dependency
of the condensate fraction with the initial magnetic field [50–52]. While the formation of
a condensate during the ramp could be ruled out [166], the perturbation could lead to
distortions near the onset of condensation. Therefore, alternative approaches to identify
a finite condensate have been explored in this thesis. These rely on neural networks for
advanced image recognition – to infer the condensate fraction directly from time-of-flight
images. To this end, this chapter introduces the basic concepts of the neural networks
employed in Chapter 5.

Finally, the device to excite the Fermi gas is explored. In [163], a custom-built small
magnetic field coil with a finite magnetic field and a negligible magnetic field gradient at
the atoms’ position has been presented. This coil is used to superimpose a rapidly changing
magnetic field, which allows for changing the scattering length, and thus the interaction
parameter of the system. Two modes of operation, quenching and modulating the magnetic
field, are discussed in this chapter.

Outline of this chapter

The sections of this chapter are outlined as follows:

• Section 4.1: First, we introduce the concept of absorption imaging, which serves as our
detection method. Here, we also describe its implementation in our experimental setup,
listing all available cameras.

• Section 4.2: By imaging atoms in-situ, we can recover the 3D density profile (inverse
Abel transformation) and determine the temperature of the gas (fits to the virial
expansion of the equation of state). The section details the necessary processing and
analysis, including the required reconstruction of the trapping potential.

• Section 4.3: This section introduces the rapid ramp (RR), a state-of-the-art technique
for detecting superfluidity throughout the BEC-BCS crossover. Here, we also discuss
its limitations.

• Section 4.4: We then provide a broad introduction to the general principals of deep
convolutional neural networks, used to detect the onset of superfluidity in Chapter 5.

• Section 4.5: Finally, we discuss the custom-built small magnetic field coil, used to excite
the Higgs mode in Chapter 6 and to dissociate composite dimers in Chapter 7.

4.1 Absorption imaging
After conducting the desired experiment, the Fermi gas must be probed to extract information
in the form of the density distribution. A common technique for this is resonant absorption
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4.1 Absorption imaging

imaging. To perform it, a resonant laser pulse illuminates one of the present hyperfine states
in the spin mixture. As the resonant cloud absorbs the laser pulse, the atoms cast a shadow
onto the laser, which is then detected by a CCD camera at the end of the imaging system.

4.1.1 Imaging system

The imaging system in the experiment comprises four cameras placed along different axes for
various purposes. To describe the spatial arrangement of the cameras, we first establish a
coordinate system. A convenient choice of a coordinate system presents the quantisation axis
along the Feshbach field, which we define as the z axis. Perpendicular to the quantization
axis, the x axis is defined by the travel direction of the horizontal dipole trap beam, while
the y direction is perpendicular to the other two directions.

Magnification

An optical telescope between the atoms and the camera defines the focus position and
magnification factor for imaging. The magnification has been calibrated by observing the
free fall of an atom cloud with cameras positioned perpendicular to the direction of gravity.
As remaining magnetic field gradients distort the acceleration, two hyperfine states |3⟩ and
|6⟩ with equal but flipped magnetic moments (refer to Fig. 3.2) have been observed here,
which cancels the effect of any gradient. Cameras with an observation axis parallel to gravity
are calibrated through cross-calibration by observing the same cloud with a different camera
perpendicular to gravity.

Andor1 - Andor iXon Ultra 897

Along the vertical z direction, two cameras are used for different expansion times. For in-situ
images without any expansion time, the atoms’ position is at the focus of the optical dipole
trap. To this end, the first camera (“Andor1”) is focused to this in-situ position and exposed
from below the chamber, capturing images with a magnification of M = 7.26 and a pixel size
of w = 16.0 µm.

This camera is mainly used to measure the in-situ density distribution, from which all
thermometric values are deduced. Since this requires a precise determination of the optical
density, this camera is calibrated for high-intensity imaging in Section 4.1.2.

Andor0 - Andor iXon Ultra 888

During thermal expansion, the dipole trap is shut down, allowing the atom cloud to expand
into the residual trapping potential defined by the curvature of the magnetic field from the
Feshbach coils. The trap frequency perpendicular to the z axis is ω/(2π) = 1/T ∼ 16 Hz,
while the potential along z is anti-confining. After a quarter-period (T/4 ∼ 15 ms) in this
curvature, the absorption image reflects the momentum distribution of the sample [167].
During approximately 15 ms of expansion, the cloud also drops by more than ∼ 1 mm due
to gravity. Thus, the atoms leave the focus position of the first camera, Andor1. For this
reason, a second camera (“Andor0”) along the vertical direction is installed, which is focused
on the atoms’ position after ∼ 15 ms of free fall. The light for this camera enters the chamber
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from above, and transverses a telescope with a magnification of M = 4.32 after exposing the
atoms. The camera has a pixel size of w = 13.0 µm.

Andor2 - Andor iXon Ultra 888

Both Andor0 and Andor1 image the atoms along the vertical z axis. The first camera
(“Andor2”) in the horizontal plane observes the atoms along the y direction with a magnifica-
tion of M = 4.51 and a pixel size of w = 13.0 µm. This camera is primarily used to observe
dynamics along the vertical direction, e.g., dipole modes, or to measure the aspect ratio of
the density distribution between the z and x axes.

During magnification calibration with atoms in a magnetic quadrupole trap of known
aspect ratio of 2 (refer to Section 3.2.5), strong astigmatism along the imaging system of this
camera has been observed. Given the true aspect ratio in a quadrupole trap is known to be
2, a correction factor of 1.86 has been determined for calculating the aspect ratio via this
imaging system. Later, the aspect ratio from this camera is important for calculating the 3D
density via the inverse Abel transformation in Section 4.2.1.

Alta0 - Alta U1

The final component of the imaging system, camera “Alta0”, images atoms along the x
direction, with a magnification factor of M = 1.23 and a pixel size of w = 9.0 µm. Its primary
function is to debug the plug position relative to the atom cloud position in the magnetic
trap (refer to Section 3.2.5) and to give a (magnification) cross-calibration value between the
z and y axes.

4.1.2 High-intensity absorption imaging

In absorption imaging, the atom cloud is illuminated with a resonant laser pulse. Since the
atoms are on resonance, they absorb the imaging light and cast a shadow on the laser pulse,
which is captured by a camera. This first image, which contains the shadow, is called the
“atom image”. Next, a second image is taken using the same imaging parameters but without
any atoms present, creating a reference image known as the “light image”.

From the atom and light images, the reduced intensity Iatom and the reference value Ilight is
deduced for each pixel. The reduction of the intensity dI/ dz in the atom image Iatom − Ilight
is given by the Beer-Lambert law [141]

dI
dz = −nσ0I, (4.1)

where n is the atom density and σ0 = 3λ2/(2π) the resonant absorption cross-section for a
laser pulse of wavelength λ. The law dI/dz suggests an exponential intensity decay along
the imaging direction of z. Hence, the total intensity loss at an image pixel (x, y) is the
integrated law along the z direction, which defines the optical density OD0 := ncolσ0 =
− log

(
Iatom/Ilight

)
, where ncol :=

∫
dzn is the column density. For low intensities Ilight ≪ Isat,

and with a perfectly closed imaging cycle transition, this method would suffice to determine
the column density ncol.
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4.1 Absorption imaging

However, in practice, the absorption cross-section σ0,eff may deviate from the ideal value
σ0 = 3λ2/(2π). Additionally, saturation of the excited imaging state reduces the absorption
coefficient at high intensities Ilight ∼ Isat. Finally, these effects culminate in the modified
Beer-Lambert law [168]

ncolσ0 = −α log
(
Iatom
Ilight

)
+
Ilight − Iatom

Isat
, (4.2)

where α is a correction factor that accounts for imperfections in the imaging system.
In the experiment, we measure the atom and light images with cameras. Instead of intensity

values I, the cameras provide a count number C for each pixel. The amount of counts is
proportional to the depleted power P in that pixel, and thus C ∝ Iτ is proportional to the
intensity I times the pulse length τ . This leads to the experimental form of the modified
Beer-Lambert law, which reads

ncolσ0 = −α log
(
Catom
Clight

)
+
Clight − Catom

Ċsatτ
, (4.3)

where Catom and Clight are the camera counts of a certain pixel in the atom and light images,
respectively, obtained after imaging with a pulse time τ . Note that both the atom and light
images are corrected by a dark image Cdark, which is subtracted from the raw count arrays
Catom,light = Craw

atom,light − Cdark. The saturation intensity is recast into Ċsat, representing the
count rate when illuminated with the saturation intensity Isat.

CCD calibration

While the saturation intensity Isat is known, its corresponding count rate Ċsat is not, requiring
a calibration of the count rate at the saturation intensity. This is achieved by illuminating
the camera with a light pulse of known duration and power. To prevent clipping losses, the
beam size is reduced with a small aperture. Next, the power is measured∗ after the aperture
and as close to the chamber as possible, resulting in 32.2 µW. Since we are interested in
the power at the atoms’ position (or the saturation count rate with respect to the atoms),
we also measure the power as close as possible after the chamber, yielding 27.0 µW. The
average power is then used for at the atoms’ position. Finally, the total counts are obtained
by integrating over all pixels, corrected by the dark image. The number of total counts,
normalised to the pulse power, is shown as a function of the pulse duration τ in Fig. 4.1.

A linear fit to the total counts yields a count rate of 0.356(4)×106 µs−1 µW−1. Interestingly,
the linear fit does not pass trough the origin; instead, the data suggests a finite delay or
rise time of the imaging pulse, likely caused by the rise time of the imaging AOM. This
delay, with a value of τ0 = 73(37) ns, is considered in the pulse duration τ → τ − τ0 when
calculating the column density (refer to Section 4.1.2).

The saturation count rate is calculated by considering the effective pixel area w2
eff = (w/M)2

with the magnification M = 7.26 and pixel size w = 16.0 µm of Andor1 (refer to Section 4.1),
as well as the saturation intensity Isat = 2.54 mW/cm2 of the 6Li D2-line [136]. This results

∗Ophir - PD300
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Figure 4.1: CCD calibration of the in-situ camera (Andor1). The plots shows the total counts C,
corrected by the dark image and normalised to the power of the imaged beam, as a function of the
imaging pulse duration τ .

in a saturation count rate of Ċsat = 44.0(5) µs−1.

Alpha calibration

With the knowledge of Ċsat from the CCD calibration, the modified Beer-Lambert law in
Eq. (4.3) can be applied to determine the optical density OD0 = ncolσ0. To this end, the
atom cloud is divided into elliptical bins of equal optical density ncolσ0 and counts Catom first.
Exemplary bins are shown in the upper right corner of Fig. 4.2. Within these bins, the counts
from both the atom and light images are averaged to improve the signal-to-noise ratio. Next,
the counts are plotted in the form of the modified Beer-Lambert law in Eq. (4.3) by assigning
y := Clight−Catom

Ċsatτ
the difference term and x := − log

(
Catom
Clight

)
the logarithmic term, with −α

left as a slope for fitting and the optical density ncolσ0 as an offset y = −α · x+ ncolσ0. An
exemplary plot of this is show in Fig. 4.2. To determine both the desired optical density
ncolσ0 and the correction factor α, each optical density bin is fitted by a linear function with
the previously introduced slope (−α) and offset (ncolσ0).

Finally, both the determined optical density ncolσ0 and the correction factor α are presented
in Fig. 4.3. The correction factor α shows a linear dependence with the optical density and
levels off at α ∼ 2 for low optical densities OD0 < 2. A similar relationship has already been
observed in earlier works in our experiment [40] and in other groups [169].

In principle, the modified Beer-Lambert law in Eq. (4.3) can now be inverted to provide a
functional mapping of the counts to the optical density OD0 [134]. However, we have figured
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Atoms Elliptical bins

Figure 4.2: High-intensity imaging calibration. The plots shows the application of the modified Beer-
Lambert law in Eq. (4.3) by plotting the difference term against the logarithmic term. This leaves
−α as the slope and ncolσ0 as an offset. This fit requires creating (elliptical) equal (optical-)density
bins, shown in the upper right corner. The colour of each linear fit corresponds to a density bin of the
same colour.

Elliptical bins

Figure 4.3: α factor and OD0 from high-intensity imaging. Both panels show the results from the
high-intensity imaging calibration shown in Fig. 4.2. Left: Dependency of the correction factor α
with the optical density OD0. Right: Optical density OD0 as a function of the elliptical bin index.
The indices are highlighted by the same colour map in the upper right corner. A black dashed line
indicates the trend of the optical density.
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out that the α calibration depends not only on the optical density OD0 but also on other
experimental parameters, such as the pulse length τ and the magnetic field. The former
dependence likely originates from the Doppler effect, while the latter effect can be explained by
changes in interactions with the magnetic field. To mitigate this, the α calibration procedure
is repeated for each in-situ image, using the fitted offset to determine the optical density,
as shown in Fig. 4.2. An exemplary profile of the optical density OD0 obtained with this
technique is shown in the right panel of Fig. 4.3.

Limits of imaging

The previous section considers a stationary atom gas imaged by a resonant laser pulse.
However, this scenario usually deviates from reality. As discussed in the context of laser
cooling in Section 3.2.3, exposing atoms to resonant light induces a force, as described by
Eq. (3.2). This force accelerates and moves the atoms out of the focus position. Additionally,
random walk events due to spontaneous re-emission lead to a lateral spread of the gas.

In order to mitigate these effect, the imaging pulse duration τ must be chosen to be short
enough. The limit is determined by the combined requirements that (1st) the atoms should
not move beyond the depth of focus, (2nd) they should not acquire a Doppler broadened
linewidth greater than the power-broadened linewidth and (3rd) the lateral spread should
remain below the resolution of the imaging system. For the in-situ camera (Andor1), this
poses the strongest limitation. The threshold for this camera is mainly constrained by the
relatively shallow depth of focus, approximately 10 µm [133], which results in a maximum
pulse duration of τmax ∼ 3.5 µs at the highest intensities of I/Isat ∼ 10.

4.2 Thermometry of an interacting Fermi gas

In the previous section, high-intensity absorption imaging has been introduced, a technique
for determining the column density ncol or optical density OD0.

This section presents the subsequent steps in image processing to derive the thermometric
parameters of the gas. These parameters comprise the temperature T , the chemical potential
µ and the spatially-resolved 3D density nσ per spin state σ of the gas. As discussed in
Section 2.4, the density profile of a confined Fermi gas can be described by the local density
approximation (LDA), which incorporates the confining potential U(r) into a spatially varying
chemical potential µ → µ(r) = µ − U(r). In the LDA, the trap centre can be considered
homogeneous, which allows to calculate the (homogeneous) Fermi energy EF ∝ n2/3

σ using the
density nσ at the trap centre (refer to Eq. (2.4)). This calculation is particularly important
for describing the onset of the superfluid phase transition, as this naturally occurs at the
point of the largest Fermi energy first, which is the point of largest density.

For finite temperature T , the density profile of an ideal Fermi gas within LDA is given by
the integral in Eq. (2.31). Solving this integral yields [8, 103]

nσ(r) = − 1
λdB

Li3/2
(

− exp
(
µ− U(r)
kBT

))
= − 1

λdB
Li3/2(−z) , (4.4)

where λdB denotes the de-Broglie wavelength and Li3/2 (not to be confused with lithium) is
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4.2 Thermometry of an interacting Fermi gas

the polylogarithm function of order 3/2. In the final step, the argument of the polylogarithm
function has been replaced by the definition of the fugacity z := exp

(
µ−U(r)
kBT

)
[170].

In order to determine the temperature of the ideal Fermi gas, the straight-forward approach
would be to let the gas expand and to measure the extend of the corresponding momentum
density distribution via a similar integral to Eq. (2.31). However, this approach is complicated
by the introduction of interactions, which are particularly strong in the high-density regions
of the gas upon release. Another approach constitutes the in-situ density distribution from
Eq. (4.4). In the low-density wings of the gas, the polylogarithm can be approximated by
the unity function Lis(x) ≈ x. Here, the density approaches that of a Boltzmann gas (refer
to Eq. (2.1)) and the temperature T can be extracted from a fit to the wings via

nσ(r) = 1
λdB

exp
(
µ− U(r)
kBT

)
⇔ log(nσ) = c− U(r)

kBT
,

(4.5)

where c is a fitting constant.
Better convergence can be reached by fitting the virial expansion of the equation of state

(EoS) to the density profile, which takes interactions into account (refer to Section 4.2.3). Since
the fitting slope depends linearly on the trapping potential U(r), a precise determination
of the potential is required. This is a challenging process, as the fit requires a precise
understanding of the trapping potential in the low-density regions where the harmonic
approximation of the potential loses validity (refer to Section 3.2.6).

In this section, we summarize the processing steps from the column density ncol to the
final thermometric values. This involves reconstructing the 3D density nσ from the original
column density ncol, calibrating the trapping potential U(r) and fitting the virial expansion
of the EoS to determine the temperature.

4.2.1 Inverse Abel transformation - Centre density

The first step in extracting the thermometric parameters of the gas is the reconstruction of
the 3D density nσ from absorption images. As discussed in Section 4.1, absorption imaging
yields the column density ncol =

∫
dznσ, representing the integral of the 3D density nσ along

the imaging direction. This principle is illustrated in Fig. 4.4.
In order to retrieve the original 3D density, an inverse transformation has to be applied.

This transformation is the inverse Abel transformation, which exploits spherical symmetry to
restore the lost dimension based on knowledge of the other two. If the original 3D density
profile exhibits spherical symmetry in the yz-plane, the inverse Abel transformation yields
[164]

nσ(x, r) = − 1
π

∫ ∞

r
dy′ 1√

y′2 − r2

∂ncol
∂y′

(
x, y′) , (4.6)

with r =
√
y2 + z2.

In the experiment, clouds are not necessarily spherical symmetric but rather possess an
elliptical-spherical symmetry. To apply the inverse Abel transformation for elliptical-spherical
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Inverse Abel transformation

Absorption Imaging / Integrating

Figure 4.4: Principle of the inverse Abel transformation. In the experiment, a 3D cloud with density
nσ(r) is prepared. By imaging the cloud, the 3D information gets lost as the density nσ is integrated
along the imaging direction z, yielding a 2D image of column densities ncol(x, y). To reconstruct the
original 3D density, an inverse Abel transformation is applied.

clouds, the radial coordinate is transformed to r =
√
y2 + z2 · w2

z/w
2
y, where wz and wy

denote the cloud size in z and y direction, respectively. The aspect ratio wz/wy is measured
via imaging from the side with Andor2 (refer to Section 4.1). With this transformation, the
inverse Abel transformation adjusts slightly to [165]

nσ(x, r) = −wy
wz

1
π

∫ ∞

r
dy′ 1√

y′2 − r2

∂ncol
∂y′

(
x, y′) . (4.7)

Note that σ is used as a subscript here, to clarify nσ as the density per spin state σ. From
here on, σ will generally be omitted, but n will still refer to the density per spin state unless
stated otherwise.

Applying the inverse Abel-transforming

While the inverse Abel transformation is a straightforward technique for reconstructing the
3D density from a 2D projection, its application to real data requires careful considerations.
First, the integral diverges at the initial value of y′ = r. Second, the integral involves a
numerical derivative of the measured column density ncol. Both of these aspects significantly
amplify any noise in the experimental data. In order to mitigate this noise, the inverse Abel
transformation is typically applied to 1D column density arrays, which average the column
density along elliptical bins of equal column density. This algorithm has been developed by
Andreas Kell [134] for our experiment.

Extracting the central density

With the algorithm applied, noise in the reconstructed 3D density is drastically reduced.
However, since averaging the column density ncol along elliptical bins does not work at the
trap centre, considerable noise remains in this region. Yet, the density at the trap centre is
particularly important, as it is required to calculate the (homogeneous) Fermi energy (refer
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4.2 Thermometry of an interacting Fermi gas

to Section 2.4). To reduce noise at the centre, the central density is not directly deduced
from the inverse Abel transformation, but is instead extrapolated from the density profile.

The extrapolation is performed using two distinct but equivalent approaches, illustrated
in Fig. 4.5. The first approach interpolates the spatial density distribution with a centred
Gaussian function, approximating the shape of the trapping potential. In the second approach,
the position values are mapped to the potential of the calibrated trap (refer to Section 4.2.2).
A linear interpolation between density and potential is then performed to obtain the centre
density. This approach is justified by a good approximation of the centre region with a
Thomas-Fermi distribution [8, 108, 134]. Both approaches have been used in this thesis.
The latter approach has been used in Chapter 5, while the former one is applied to data in
Chapter 7.
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Figure 4.5: Interpolation of the centre density to mitigate noise. The figure shows two different
interpolations (red lines) to determine the centre density (red dots). To this end, some values are
omitted (crosses), while remaing values (blue dots) are used for the interpolation. Left: Spatial
r density distribution n interpolated by a centred Gaussian function. Right: Different density
distribution n interpolated by a linear function with respect to the trapping potential U .

Uncertainties due to anharmonicities of the trap

In the PhD thesis of Moritz Breyer [135], an extensive discussion is provided on the systematic
uncertainty introduced by anharmonicities in the trap. The trapping confinement is created
by two intersecting Gaussian dipole beams. In such a geometry, the equipotential lines stray
away from ellipses in the outer regions of the trap, which disrupts the symmetry required for
the inverse Abel transformation.

The uncertainty introduced by these anharmonicities has been estimated by simulating an
unitary Fermi gas with its known EoS (refer to Section 4.2.2). By processing the simulated
gas with the same procedure as introduced in this section, a small uncertainty of the central
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density has been estimated to be around 5 %. Since this also involves the reconstructed
trapping potential in Section 4.2.2, the fitted temperature T is affected as well. Ultimately, a
total error of approximately 5 % has been concluded for the reduced temperature T/TF.

4.2.2 Reconstruction of the potential

With the 3D density distribution in hand, the last remaining ingredient in determining the
temperature is the reconstruction of a faithful trapping potential. As introduced in Sec-
tion 3.2.6, the main trapping potential is created by a crossed optical dipole trap. Additionally,
the curvature of the magnetic field from the Feshbach coils creates a confining potential in
the horizontal plane, while the vertical direction is anti-trapped. Last but not least, gravity
mgz adds to the total potential, which can be changed by applying additional magnetic
gradients µB. Overall, the potential U(r) is not given by a simple harmonic approximation
but instead follows the combined expression

U(r) = Udipole,horizontal(r) + Udipole,vertical(r) + UFeshbach(r) +mgz + µB. (4.8)

The dipole trap provides the largest contribution to the trapping potential. In order to
reconstruct the full trapping potential U(r), several methods have been thoroughly explored
and discussed in [134]. Shortly summarised, these methods rely on mapping the potential by
probing the full extent of the dipole beam. In a first approach, the dipole beam has been
directly imaged on the cameras used for absorption imaging. However, in this approach the
beam passes through optics not designed for its wavelength, distorting the results. In a second
approach, the power and waists of the dipole beams have been measured and interpolated to
the atoms’ position. From this, a relatively accurate potential could be retrieved. In a third
approach, dipole modes (centre-of-mass oscillations) with increasing amplitude have been
excited in the dipole trap in all three directions. Due to anharmonicities of the Gaussian
beams, the trapping frequency is expected to decrease with increasing amplitude. However,
diminishing signals at larger amplitudes and excessively large cloud sizes have prevented this
method from reliably mapping the required potential range.

Ultimately, we have opted for mapping the potential using the known equation of state
(EoS) at the critical point for a Fermi gas at unitarity [165]. The equation of state at unitarity
is shown in Fig. 4.6. In the left plot, the relation between the chemical potential µ and
temperature T with respect to the Fermi energy EF and Fermi temperature TF is displayed.
The superfluid phase transition is measured to occur at TC/TF = 0.167(13) and at a chemical
potential of µC/µF = 0.42(10), highlighted by a red cross [165]. Additionally, the reference
also provides a measurement of the density n with respect to the ideal Fermi gas n0 (refer to
Eq. (4.4)) as a function of the logarithm of the fugacity log(z) = µ/(kBT ). The red cross
marks the critical point at µC/(kBTC) = 2.49 and a critical density of nC/n0 = 3.07 [165].
Additionally, the panel shows the third and fourth order virial expansion of the equation of
state at unitarity, which will be discussed further in Section 4.2.3.

To reconstruct the trapping potential, knowledge of the equation of state (EoS) is essential.
Afterwards, inversion of the right panel of Fig. 4.6 yields the trapping potential in an LDA
framework, with µ(r) = µ0 −U(r). To gauge the EoS, the central fugacity µ0/(kBT ) must be
known. A convenient gauge point is the onset of superfluidity, where the condensate fraction
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Figure 4.6: Equation of state of a unitary Fermi gas. The left panel shows the relationship between the
chemical potential µ and temperature T/TF. A phase transition (red cross) occurs at the maximum
position of µC/EF = 0.42(10), which takes place at a temperature of TC/TF = 0.167(13). In the right
panel, the density equation of state is shown, linking the fugacity z = exp (µ/(kBT )) to the density
of the unitary Fermi gas n in terms of the ideal Fermi gas density n0 at the same (µ, T ). The red
cross again marks the phase transition, while the green dotted and orange dash-dotted lines show the
virial expansions of 3rd and 4th order, respectively. Data for the solid blue lines and critical points are
taken from [165]. Virial coefficients are from [171].

turns zero CF = 0. At this point, the gas at the centre of the trap is exactly at the critical
point µC/(kBTC) = 2.49. In Section 4.3 and Section 4.4, techniques are introduces to detect
the point where CF = 0. Finally, the trapping potential is deduced by measuring the 3D
density profile of the superfluid critical gas at unitarity, followed by a subsequent inversion of
the measured equation of state. This technique has been developed during the works on this
thesis and is discussed extensively in [134].

In this thesis, two different traps are used for the conducted experiments. Both traps have
been reconstructed using the described technique and are shown in Fig. 4.7.

4.2.3 Virial expansion of the equation of state - Temperature

During this section, we have already discussed the processing from column density ncol images
to reconstructing the 3D density nσ and the trapping potential U(r). Now that the trapping
potential U(r) and the 3D density n are known, the temperature T can finally be determined
by fitting the virial expansion of the equation of state (EoS) to the density distribution.

In Eq. (4.5), the Boltzmann distribution has been consulted to fit the density distribution
of an ideal Fermi gas. However, in the BEC-BCS crossover studied here, the EoS is strongly
influenced by interactions. In this regime, a virial expansion of the EoS yields a more accurate
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Figure 4.7: Reconstructed trap potentials. The left panel a) shows the trap potential for the machine
learning project in Chapter 5, while the right panel b) shows the shallower trapping potential used in
Chapter 7.

result.

The virial expansion separates the grand potential Ω into a power series of the fugacity
z = exp(µ/ (kBT )), which reads [170, 172]

Ω = −kBT Ṽ λ
−3
dB
(
z + b2z

2 + b3z
3 + . . .

)
, (4.9)

with bn being the virial coefficients, λdB the de-Broglie wavelength, T the temperature and Ṽ
the volume of the homogeneous system. The density can be deduced from the power series
as [170]

nσ = − 1
Ṽ

∂Ω
∂µ

= λ−3
dB
(
z + 2b2z2 + 3b3z3 + . . .

)
. (4.10)

By comparison to the Boltzmann limit in Eq. (4.5), the first-order virial expansion with
b1 = 1 identifies as the Boltzmann equation of state.

The next virial coefficients bn for the ideal Fermi gas can easily be calculated via [171]

b(0)
n = (−1)n+1n− 5

2 . (4.11)

However, these virial coefficients become much more complicated when interactions are
introduced. To correct for interactions, the virial coefficients bn = b(0)

n + ∆bn are given
as corrections ∆bn to the coefficients of the ideal Fermi gas b(0)

n . The corrections to the
coefficients themselves now have a temperature dependence. In second order, the correction
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is well-known and reads [173, 174]

∆b2 =


e
x
2

√
2 [1 − erf (|x|)] , if x < 0.

√
2ex

2
− e

x
2

√
2 [1 − erf (|x|)] , otherwise,

(4.12)

with x = λdB/
(√

2πa
)
.

The calculation of higher-order (n ≥ 3) corrections ∆bn is much more involved, and various
approaches have been studied to determine these corrections. Today, virial coefficients are
known up to 3rd order on the BEC side and up to 5th order at unitarity and towards the
BCS side [171, 172, 174, 175]. A comparison of the results has been discussed in detail in
[134]. In the right panel of Fig. 4.6, the convergence of the 3rd and 4th order virial expansions
to the measured density profile of the unitary Fermi gas is shown. While the expansion
provides a good approximation in the low fugacity region z < 1 of µ/(kBT ) < 0, the expansion
diverges quickly in the high fugacity z > 1 region of µ/(kBT ) > 0. Therefore, fitting the
virial expansion to real data must focus on the low-density (low-fugacity) region, where
µ/(kBT ) ≪ 0.

In order to determine the temperature of an in-situ image, the density profile is fitted to
the virial expansion in Eq. (4.10) up to order m. Inclusion of up to m orders is sufficient if the
thermometric values from the fit do not significantly change under the addition of the m+ 1
order. An extensive study of the included orders and the resulting thermometric parameters
is provided in [134]. In the determination of temperatures in Chapter 5, this involves a virial
expansion of up to 3rd order, while samples furthest on the BCS side require the addition of
the 4th order. The analysis of the new cooling technique in Chapter 7 operates solely on the
BEC side and involves an expansion up to 3rd order.

In Fig. 4.8, an exemplary fit of the 3rd order virial expansion to the density profile of a
sample on the BEC side is shown. As previously discussed, the virial expansion only describes
the data in the low fugacity region of µ/(kBT ) ≪ 0, and thus we trim the fitting range
accordingly. While this trimming is mainly important for unitarity and the BCS side, where
µ0 > 0, the trimming also removes noise at the trap centre (refer to Section 4.2.1). Thus,
the fitting region is confined to low densities. The exemplary fit yields a temperature of
T = 0.175(6) µK and a chemical potential of µ0/kB = −4.931(6) µK.

4.3 Detecting Superfluidity via the rapid ramp technique

A key property in the BEC-BCS crossover is the condensate fraction. As discussed in
Section 2.3, the onset of condensation coincides with the onset of the superfluid phase. In
order to detect the superfluid phase transition or to probe excitations of the superfluid phase,
the detection of the condensate fraction is an essential tool. The condensate fraction measures
the amount of atoms participating in the macroscopic, condensed wavefunction Nc relative
to the total number of atoms N = Nc +Nt in the sample, where Nt represents atoms in the
normal or thermal phase.
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Figure 4.8: Fit of the virial expansion to the density. The plots shows a fit (red connected dots)
of the virial expansion (3rd order) to the 3D density distribution (blue points) of the sample. Grey
dashed lines highlight the trimmed fitting region. This example shows data used in Chapter 7 at an
interaction parameter of 1/(kFa) ≈ 2.0. The fit results in T = 0.175(6) µK and µ0/kB = −4.931(6) µK.

Condensation in the BEC limit

In the BEC limit of the crossover, the condensate fraction can easily be obtained through
absorption imaging of an expanding cloud, a technique known as time-of-flight (“TOF”). As
described in Section 4.1, this is achieved by allowing the cloud to expand for a duration of
T/4 into a residual potential with frequency ω/(2π) = 1/T . An absorption image taken after
T/4 reveals the original momentum distribution [8]. Since the BEC occupies the ground state,
the number Nc of composite dimers that participate in the BEC appear as a zero-momentum
peak in the centre of the absorption image. All remaining dimers populate the available states
according to Bose statistics (see Eq. (2.5)), while unpaired atoms follow Fermi statistics (see
Fig. 2.1). The sum of those remaining atoms (atoms + dimers) Nt contribute to a diffuse
thermal background. This is the smoking-gun of BEC, which provides a direct signature of
condensation as a bimodal distribution of a condensate peak on top of a thermal background
in images of the optical density. The bimodal distribution f(x, y) in absorption images can
be modelled as

f(x, y) = At exp
(

−(x− x0)2

2σ2
x

− (y − y0)2

2σ2
y

)
+Ac

(
1 − (x− x0)2

w2
x

− (y − y0)2

w2
y

)3/2

+C, (4.13)

where C is an offset parameter.
Here, the first term represents the thermal background, while the second term comprises

the macroscopic wavefunction of condensed atoms in the ground state. This function is fitted
to optical density OD0 images, and then the number of atoms in the condensate Nc and the
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thermal background Nt are extracted by integrating over the corresponding terms

Nc =
∫

dx
∫

dyAc

(
1 − (x− x0)2

w2
x

− (y − y0)2

w2
y

)3/2

Nt =
∫

dx
∫

dyAt exp
(

−(x− x0)2

2σ2
x

− (y − y0)2

2σ2
y

)
.

(4.14)

Finally, the condensate fraction CF is calculated by comparing the number of atoms in the
condensate to the total number of atoms

CF = Nc
Nc +Nt

. (4.15)

Note that in the experiment, we only detect the atoms per spin state σ, but this does not
affect the calculated condensate fraction CF .

Condensation in the BEC-BCS crossover

At unitarity and on the BCS side of the crossover, identifying condensation becomes more
challenging. In these regimes, the condensate is also formed by zero-momentum pairs, i.e.
Cooper pairs, but the bound state is a pure many-body effect that only forms due to the
existence of the Fermi sea. If such a sample is expanding, the Fermi sea collapses due to the
diminishing density, causing the bound state to disappear. Therefore, no zero-momentum
peak of condensed pairs can be observed here.

In order to still detect pairing, correlations between images of the present spin states could
be examined [176]. However, this approach is unfeasible with our experimental setup, as only
one spin state can be imaged per experimental run.

Nevertheless, pairing still affects the momentum distribution of the atoms, as shown by
the solution of the BCS Hamiltonian in Fig. 2.6. This influence, however, constitutes a very
weak signature, as temperature and the presence of an inhomogeneous trap lead to similar
changes in the momentum distribution. Albeit this obstructs the direct analysis of TOF
images with a suitable model function, the remaining signature still proves to be detectable
through machine learning techniques. These will be introduced in Section 4.4 and employed
in Chapter 5.

Principles of the rapid ramp

Here, we introduce an alternative approach for detecting the condensate fraction across the
entire crossover: the rapid ramp (RR) technique. The technique has been developed for the
first observation of condensation throughout the BEC-BCS crossover in [38, 49]. In principle,
the technique aims to recreate the bimodal distribution from Eq. (4.13) for arbitrary initial
interactions.

To this end, the original pairs are projected onto tightly bound dimers via a ramp of
the magnetic field, as illustrated in Fig. 4.9. These dimers, being two-body bound states,
remain stable even at low densities. By ramping the magnetic field to the zero crossing of
the scattering length a (refer to Section 2.2.2), the pairs are projected to a non-interacting
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state of tightly bound dimers. Since this effectively turns off interactions, the momentum
distribution is unaltered during expansion.

Rapid ramp

Imaging ramp

Figure 4.9: Principle of the rapid ramp. At the start of the free expansion, the magnetic field is
ramped to the zero crossing of the scattering length (vertical dashed, dotted line). This “rapid ramp”
projects pairs onto deeply bound dimers, preserving their momentum distribution. At the end of the
expansion, the magnetic field is ramped back (“imaging ramp”) to a point where the bound state
energy is small enough to simultaneously image free atoms and dimers. Data as shown in Fig. 2.3 for
the |12⟩ resonance [111]. The magnetic field ramps (measured via a current transducer) are shown in
the inset in the upper right corner, with dashed lines marking the start of the expansion, the end of
the free expansion at the zero crossing and the end of the whole expansion after 15 ms.

The ramp is initiated at the exact moment the trap is turned off and is performed fast
enough to constitute a non-adiabatic change of the system, while still being slow enough to
allow for the conversion of pairs to dimers. In the context of the Fermi gas, this constitutes a
ramp faster than the relaxation time of the system, while still being slower than the much
faster timescale of two-body physics [8]. At the end of the expansion time, when the density
is already low and interactions play a less perturbative role, a second ramp returns the
magnetic field close to unitarity. At this magnetic field, dimers and unpaired atoms can be
imaged simultaneously, as the bound state energy is very small compared to the linewidth of
the imaging transition.

Implementation of the rapid ramp

The rapid ramp (RR) has been integrated by the first two PhD students in the lab [40, 41].
During the works on this thesis, an improved circuit with better temporal resolution for
initiating the ramp on a timescale of 1 µs has been implemented by [135].

The complete ramp, comprising the rapid ramp to the zero crossing of the scattering length,
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and the subsequent ramp to the imaging field, is performed over T/4 = 15 ms. Especially the
rapid ramp is technically demanding, as the magnetic field must be changed within ∼ 100 µs
from an initial magnetic field of 600 G – 1000 G to the zero crossing at ∼ 527 G for the |12⟩
mixture, or ∼ 568 G for the |13⟩ mixture. This rapid change is achieved by dissipating the
magnetic field energy through an RC snubber circuit, while discharging the power supply via
an additional IGBT. After a variable time τoff , the dissipation through the snubber circuit is
stopped, while the power supply discharge is stopped after a variable time τdischarge. In the
meantime, the power supply set point is adjusted to match the magnetic field of the zero
crossing in scattering length. The zero crossing is reached after ∼ 260 µs. After ∼ 5.2 ms, the
field is ramped back to the imaging (magnetic) field over a span of 10 ms. A full description
of these steps and the experimental determination of the variable time constants τoff and
τdischarge is found in [41, 135]. For faster experimental sequence setups, Andreas Kell has
developed a deterministic model function to estimate good values for both τoff and τdischarge
as functions of the initial magnetic field [134].

In the upper right corner of Fig. 4.9, the magnetic field ramp measured via a current
transducer is shown. Note that the fast initial drop in the current transducer is much faster
than the actual changing rate of the magnetic field at the atoms’ position due to eddy currents
in the chamber. The real magnetic field changing rate has been measured via the imaging
detuning, which yields the stated duration of ∼ 260 µs to reach the zero crossing [40].
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Figure 4.10: Absorption images (TOF) with and without the RR. Typical absorption images of a
superfluid sample (|12⟩ mix) after 5 ms TOF (left) and after 15 ms TOF with the RR technique
(centre). Both images have the same experimental preparation and colour scale. After the RR, a
sharp peak of the condensed zero-momentum pairs appears within a large thermal cloud surrounding
it (centre). The bimodal distribution of the condensed peak (red shaded area) and thermal Gaussian
background (blue shaded area) is more evident in the OD integrated along one direction (right),
showing a condensate fraction of CF ≈ 0.26.

After reaching the imaging field, an absorption image of the atoms reveals the condensate
fraction CF . An exemplary absorption image in TOF with and without the RR is shown in
Fig. 4.10. Note that the TOF image without the RR uses an expansion time of 5 ms, while
the TOF image with the RR is taken after 15 ms of expansion. The RR is fitted to the model
in Eq. (4.13), which yields the condensate fraction.
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Limitations of the rapid ramp

The significance of the rapid ramp directly depends on how true the measured condensate
fraction is to the real condensate fraction before the ramp. Ideally, the rapid ramp should
conserve the momentum distribution, and the number of condensed pairs should remain
constant. This would be true for a purely projective ramp of the magnetic field. However,
as discussed, the actual magnetic field ramp is influenced by the exponential decay of the
magnetic field due to eddy currents. As a result, the ramp’s timescale shifts from being
purely projective to a more adiabatic ramp.

Moreover, it has been shown that the conversion efficiency of the rapid ramp from pairs to
dimers depends on the initial magnetic field. Thus, the rapid ramp may not precisely reflect
the exact condensate fraction before the ramp, but rather a fraction of it [50–52]. However,
measurements have shown that the condensate formation time is significantly longer than
the magnetic field ramp, ruling out the formation of newly condensed pairs during the ramp
[166]. Thus, the rapid ramp remains the state-of-the-art technique for detecting condensation
and changes in condensation across the crossover.

However, a precise determination of the onset of condensation may be obscured by per-
turbations introduced by the rapid ramp, such as by the detection of preformed pairs in a
“pseudogap” state above the phase transition [51]. For this reason, new detection methods
will be introduced in the following section.

4.4 Machine Learning
In this thesis, we employ neural networks as an alternative approach to detect the onset of
superfluidity from TOF images without relying on the RR. Neural networks have already
been applied to detect phase transitions in various system using both theoretical data [61–64]
and experimental data [65, 66]. The initial application of neural networks to detect the onset
of superfluidity in our experiment has been started by Martin Link [133]. During the works
on this thesis, more effort has been made in combining the onset of superfluidity with a
precise thermometry of the sample (refer to Section 4.2) [67, 134, 135]. A main result of this
thesis constitutes the employment of an autoencoder neural network to detect the onset of
superfluidity without using the RR at all [68]. This work, which has been started by [133],
has been brought to completion in this thesis.

This section introduces the principles of neural networks and the learning algorithms they
employ. Neural networks have been employed in several disciplines, including physics [177].
The networks used in this thesis are deep convolutional neural networks, which have been
demonstrated to be well-suited for the task of image recognition [178]. In our case, the
input images are TOF images, as shown in the left panel of Fig. 4.10. To detect the onset
of superfluidity from these images, we use two distinct network architectures. The first
one has several fully connected layers behind the convolutional layers to extract physical
properties from the image, such as the condensation fraction CF . This network is trained
in a supervised manner with labelled data, where the labels are retrieved from RR images
providing the condensate fraction CF . The second architecture describes an autoencoder
neural network with symmetric input and output layers. This network is trained to reproduce
input data as accurately as possible, while a low-dimensional central layer forces the network
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to learn a compressed low-dimensional representation of the input data [179]. After successful
training, this low-dimensional representation can be extracted and analysed. Here, a second-
order phase transition is found to be encoded as a change of trend in the low-dimensional
distribution of TOF data.

In order to understand the working principle of these networks, this section starts by
introducing a single artificial neuron. The connection of multiple of these neurons make up
the artificial neural network. When each neuron in layer i is connected to every neuron in
the subsequent layer i+ 1, the layer is referred to as a fully connected or dense layer. Special
attention is given to convolutional layers, which make up the first few layers of the networks
in this thesis.

More details about the concepts of machine learning can be found in [133, 180, 181]. An
excellent visual explanation of neural networks is available in [182].

4.4.1 Artificial neural networks

Artificial neurons are the fundamental entities of more complex neural networks [183]. A
single artificial neuron is shown in Fig. 4.11. It comprises a number n of inputs xi and
corresponding weights wi.

∑n
i

b

Φ(z)
∑n
i wixi + b y = Φ(z)

x1

xi

xn

w1

wi

wn

Figure 4.11: Concept of an artifical neuron. The sketch illustrates the workings of an artifical neuron
with inputs x1 to xn and corresponding weights w1 to wn. An additional bias b is added to the
weighted sum z =

∑n
i . Finally, the output y is obtained by applying the activation function Φ(z) to

the weighted sum.

The weighted sum of inputs is processed by a non-linear activation function Φ, yielding
the output of the neuron [183]

y = Φ
(

n∑
i=0

wixi

)
= Φ(wx + b) , (4.16)

which incorporates a bias w0x0 = b. In the final step, the weighted sum has been interpreted
as the scalar product of the input vector x = (x1, x2, . . . )⊺ and the weight vector w =
(w1, w2, . . . ). This will prove useful, as the functions of different layer architectures can be
understood through linear algebra.

Hereafter, the artificial neuron will be simplified by a single quantity y defining its output
value, connected to many inputs xi, which are outputs yi from the previous layer, with
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weights wi. For simplicity, the term “artificial” will be dropped, henceforth.

Activation function

The activation function Φ can be any differentiable function. In order to enable the neural
network to approximate universal functions, the activation function is chosen to be non-linear
[184, 185]. Popular choices for the activation function are listed in Fig. 4.12. The activation
function is applied to the weighted input of z = ∑n

i=0wixi, and is usually centred around
z = 0. Here, the role of the bias b becomes apparent as a shift ∑n

i=1wixi > −b to the
“activation threshold” of the neuron.
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Figure 4.12: Overview of activation functions. The output of a neuron y applies an activation function
y = Φ(z) to the weighted input z to this neuron (refer to Fig. 4.11). The figure presents various
popular options for activation functions.

The most simple artificial neuron is created by employing the Heaviside H function as its
activation function. This constitutes a neuron that “fires” y = 1 if the input exceeds the
threshold z > 0 or keeps “quite” y = 0 otherwise. Such an artificial neuron is known as the
perceptron [186]. However, the Heaviside function has a major drawback: its gradient is zero
everywhere. This prevents neural networks with the Heaviside function as the activation
function from adjusting their weights via gradient propagation (refer to Section 4.4.2).
Basically, such network are unable to be effectively trained.

Other popular choices for the activation function include the sigmoid function f(z) =
1/
(
1 + e−x) [185] and the hyperbolic tangent function tanh(z). While tanh has a greater rate

of change, which can be beneficial for gradient descent, the output of the sigmoid function
is limited to positive values, which may be useful for binary (yes or no) classification tasks.
The rectified linear unit (“ReLU”) function f(z) = max(x, 0) has been shown to enable faster
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convergence during training via gradient descent [187]. This comes naturally, as its gradient
does not decay for large values of the input z ≫ 1. However, its gradient vanishes if the
weighted input turns negative z < 0. A modified version, the leaky ReLU, addresses this
issue by introducing a small remaining positive gradient ∂f(z)

∂z = ϵ for z < 0.
While the sole usage of purely linear activation functions in every layer prevents the neural

network from becoming a universal function approximator [184], it can be necessary to employ
linear activation functions in certain layers if the output range is desired to be unrestricted
and linear. This is the case in the bottleneck layer of the autoencoder neural network in
Section 5.5.

Deep neural networks

A neural network is created by connecting multiple artificial neurons across n distinct layers,
as illustrated in Fig. 4.13. Each layer i comprises a number of neurons, highlighted by circles.
Here, each circle represents a single neuron, as introduced in Fig. 4.11. The layers are stacked
sequentially, starting with the input layer i = 1 and ending with the output layer i = n. If
the network is made up of more than just the input and output layer, it is termed “deep”,
with n− 2 hidden layers between the input and output layer [181]. The dimensionality of
the input layer defines the dimensionality of the input data, such as the number of pixels in
an image. For instance, for an image of 100 px × 100 px pixels, this already constitutes an
input dimensionality of 10000. The dimensionality of the output must match the number of
predicted quantities, such as the number of classes in a classification task or the number of
fitted values.

Each layer i ̸= 1 has connections of its neurons to the neurons of the previous layer i− 1.
These connections are quantified by weights w, which depends on the architecture of the
layer. Each architecture serves a distinct purpose and use case. Stacking many of these layers
constitutes the final neural network.

Dense layers

A dense layer describes a fully connected layer i, where each neuron in layer i has a connection
to each neuron in the previous layer i− 1. Thus, each neuron j in layer i receives a weighted
sum of every neuron xi−1

k from layer i− 1, which reads zij = ∑
k w

i
jkx

i−1
k . The weights wijk

of layer i can be understood as matrix elements of the weight matrix W i. Therefore, the
operation of the dense layer can be formulated as a matrix multiplication of W i with the
(input) neuron vector xi−1 =

(
xi−1

1 , xi−1
2 , . . .

)⊺
, yielding the output vector [181]

yi = Φ
(
zi
)

= Φ
(
W i · xi−1 + bi

)
, (4.17)

with bi being the bias vector of layer i. The activation function Φ is applied to every element
zi.
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Input layer Hidden layers Output layer

Figure 4.13: Sketch of a deep neural network. The sketch shows an arbitrary deep neural network. An
n-dimensional input is processed by k consecutive hidden layers, yielding an m-dimensional output.
Each circle represents a neuron, while only the input and output neurons are accessible. A neuron in
layer i can be connected to every neuron in layer i+ 1 (“dense layer”).

Convolutional layers

Convolutional layers describe an alternative layer architecture to dense layers. In a dense
layer, every neuron of layer i is connected to every neuron in layer i− 1 with a distinct weight
wijk. A convolutional layer i uses a set of n kernels or masks, which are moved across the
input layer i− 1 to create a weighted input z for every kernel entity and position. Each kernel
m has the same size of x× y weights wimjk. Thus, a convolutional layer has only n× x× y
different weights, shared across the entire input layer i− 1 to compute the weighted sums.
Since the convolutional layer has n kernels, the output of the layer acquires a third dimension.

The operation of a convolutional layer on an input layer is illustrated in Fig. 4.14. In this
example, the convolutional layer has n = 3 kernels, each of size 3 × 3. The kernels are moved
across the input layer in steps defined by the hyperparameter “strides”. For every position
(α, β) of kernel m, an output value ym is computed by applying the activation function to
the weighted sum [181]

ym = Φ

∑
mjk

wmjkxα+j,β+k

 . (4.18)

Padding along the edges of the input layer is added to increase the size of the output layer,
preserving the size of the input if desired. Neurons in the padding area have a value of zero.
In the example, the output of the convolutional layer has gained a third dimension due to
the set of n = 3 kernels.
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Convolutional layer Max pooling layer Output layer

Φ( × +b) =
w1 w2 w3

w4 w5 w6

w7 w8 w9

x1 x2 x3
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y1 max( × ) =
1 1

1 1

y1 y2
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y′

1

Figure 4.14: Convolutional plus max pooling layers. The sketch illustrates the operation of a 2D
convolutional layer followed by a 2D max pooling layer. First, the convolutional layer is applied to
the input data (solid 6 × 6 grid). To this end, a kernel (orange 3 × 3) with weights wi moves (orange
arrow) across the input layer according to the “strides” parameter. Additional padding (dashed outer
squares) filled with zero values can be added to get the same input and output layer shape. The
dimension of the output layer can be increased with the number of kernels (3 in this sketch). After
the convolutional layer, a max pooling layer is employed, reducing the output size by fetching the
maximum value along another mask (2 × 2, green squares).

Convolutional layers are usually followed by a downsampling layer, implemented here as
a max pooling layer. Max pooling layers work by moving a mask of size x× y across their
input layer, with a step size equal to their mask size in each dimension. At each position, the
maximum value within the mask is transferred to the output, effectively downsampling the
input layer. This process is also sketched in Fig. 4.14.

Convolutional neural networks (CNNs) are inspired by the discovery that in animals, such
as cats and monkeys, certain neurons are activated by specific regions in their receptive
fields [188]. This concept is mirrored by the architecture of a convolutional layer, where
kernels scan across the input layer [189]. By including subsequent max pooling layers, CNNs
become highly effective at highlighting features in images. Thanks to weight sharing in
convolutional layers and the downsampling in max pooling layers, CNNs require significantly
fewer parameters, enabling faster computation and reduced memory requirements.

4.4.2 Supervised learning

Until now, we have just introduced potential architectures of neural networks. These networks
are made up of a manifold of neurons (Fig. 4.11), arranged in layers and connected through
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distinct weights. It is easy to understand that a unique stack of a few layers, with properly
chosen weights, can reconstruct any function [189]. However, as we have seen during the
introduction of dense and convolutional layers, the amount of parameters of such a network
quickly becomes substantial, often in the range of 10000 to 1000000, or possibly even more.
For a neural network tasked with interpreting images of 100 px ×100 px, this would constitute
a function with an input dimension of 10000 and a highly convolved hidden layer structure,
possibly containing between 10000 and 1000000 parameters. Consequently, such a network
becomes extremely sensitive to changes in either input values or network parameters, such as
the weights.

If the weights are randomly set, the network will produce random outputs for any input.
In order to map inputs to desired outputs accurately, the weights must be carefully tuned.
This has posed a tremendous technical challenge until the development of a technique called
“backpropagation” [190]. Backpropagation allows the neural network to iteratively adjust its
weights according to the deviation between its output and the desired output. This enables
deep neural networks to become universal function approximators [184, 185].

Loss function

The discrepancy between the network’s output and the desired output is quantified by a loss
function. A popular choice for the loss function L between the network output y and the
desired output Ŷ is the mean squared error

L = 1
N

N∑
i=1

|yi − Ŷi|2, (4.19)

for a dataset of N entries. The desired outputs Ŷi are manually determined “labels” of
corresponding input data X̂i. Thus, the dataset with N entries of input data X̂i and labels Ŷi
is called the “training dataset”. Usually, the training dataset is split into batches of m ≤ N
data points, to decrease memory requirements and to optimise the weight adjustments [183,
191]. In the context of gradient propagation, this is called “stochastic gradient descent” [181].

Gradient propagation

Gradient propagation, or backpropagation, describes the adjustment of parameters in the
network with the aim of minimising the loss function. When the loss function is minimised,
the network has effectively learned to map input data to outputs that closely resemble the
labels. To approach this minimum, the weights wijk and biases bij of the network are updated
towards as smaller value of the loss function, which is mathematically expressed in terms of
gradients

wijk → wijk − η
∂L

∂wijk

bij → bij − η
∂L

∂bij
,

(4.20)
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where η is a hyperparameter known as the “learning rate”. A small learning rate updates the
parameters in small increments, approaching the minimum very slowly. While this increases
the sampling resolution of minima in the loss function, effectively making it more precise, it
increases the risk of sticking to local minima in the hyperspace of the loss function. Much
higher learning rates mitigate this problem, but have trouble to converge, which may lead
to instability. In Chapter 5, we employ the Adam optimiser [192] during training, which
adaptively adjusts the learning rate by calculating a moving average of the gradients from
previous iterations, balancing convergence speed and stability.

The gradients are not trivial, but can be calculated by applying the chain rule. For the
output layer i = n, this yields

∂L

∂wnjk
= ∂L

∂ynj
× ∂ynj
∂wnjk

= ∂L

∂ynj
× ∂ynj
∂znj

× ∂znj
∂wnjk

∂L

∂bnj
= ∂L

∂ynj
× ∂ynj
∂bnj

= ∂L

∂ynj
× ∂ynj
∂znj

× ∂znj
∂bnj

.

(4.21)

Each term in these expressions can be calculated straightforwardly. The first term is the
derivative of the loss function, with the loss function being the mean squared error. The second
term represents the derivative of the activation function y = Φ(z). This is why activation
functions in neural network are chosen to be differentiable, as discussed in Section 4.4.1.
Some activation function in Fig. 4.12 exhibit a kink at z = 0; however, the gradient for such
functions is defined to be zero at this point. The last term denotes the derivative of the
weighted input z with respect to the weights, which is just the input value along the weight.

In deeper layers i < n, the calculation of the gradient is more complicated but can be
handled through the successive application of the chain rule. The calculation is similar
to Eq. (4.21), but the derivative of the loss function L with the output yij is expanded by
applying the chain rule again

∂L

∂yij
= ∂L

∂yi+1
p

× ∂yi+1
p

∂yij
= ∂L

∂yi+1
p

× ∂yi+1
p

∂zi+1
p

× ∂zi+1
p

∂yij
, (4.22)

where the final derivative can be replaced by the weight wijp between layer i and i + 1.
Finally, the gradient of ∂L

∂w
i
jk

can be calculated by further applications of the chain rule for

the term ∂L

∂y
i+1
p

until reaching the output layer. Given the step-by-step backpropagation of
these calculations, the method is aptly named “backpropagation”.

4.4.3 Unsupervised neural networks

In supervised machine learning, networks are trained on manually labelled datasets with
pairs of inputs X̂ and corresponding labels Ŷ . Alternative training methods are summarised
under the umbrella term of “unsupervised machine learning”. As the name suggests, these are
methods of inferring structure and information from data without the creation of a labelled
dataset.

Unsupervised learning has diverse applications, such as image denoising, clustering data
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based on similarity, compressing the dimensionality of the data representation and generating
new data from this representation via diffusion, to name a few examples [181, 193, 194].
A prominent example of a model using unsupervised learning is the image diffusion model
Stable Diffusion by Stability AI [55, 195]. This model combines a text encoder with a
variational autoencoder (“VAE”) and a subsequent denoising network to generate images
from a low-dimensional representation.

Autoencoder

Autoencoders are a subclass of unsupervised learning techniques. The core idea of the
autoencoder is to generate a low-dimensional representation of a dataset, such as images
[179]. To this end, the autoencoder represents a deep neural network shown in Fig. 4.13, but
with the same dimensionality of its input and output layer. Within the hidden layers, one
specific layer – known as the “bottleneck layer” – has a significantly smaller dimensionality
(neuron number). By training the network via gradient propagation to reconstruct the input
images as close as possible (effectively approximating the unity function), the network is
forced to learn a low-dimensional representation of the data structure due to the bottleneck
[54, 181]. This low-dimensional representation in the bottleneck is called the “latent space”,
representing an encoding of input data, which contains as much information about the input
as possible, such that the second half of the autoencoder can decode and reconstruct images
back from the latent space.

Autoencoders are very similar to an alternative technique, called principal component
analysis (“PCA”) [196]. PCA extracts a low-dimensional space by linearly transforming the
input space, such that the new axes are sorted after highest variance of data. However, unlike
PCA’s linear transformations, autoencoder can perform complex, non-linear transformations,
yielding richer, non-linear encodings of data patterns.

The encoded data can be used to associate images with distinct classes based on their
distribution in the low-dimensional latent space, e.g., images of dogs might be clustered in
one region, while cats populate a disconnected region. Small dogs like chihuahuas might
creep into the region of cats, but the autoencoder should be able to infer a trend from small
to large dogs, that are very distinct from cats. Thus, this layout allows the model to infer
information about a smooth “phase” transition – like from small to large dogs – based on
trends in the low-dimensional latent space.

A similarly featureless phase transition is given by the second-order phase transition that
is the superfluid phase transition in the BEC-BCS crossover. In this thesis, we employ
an autoencoder neural network on TOF images of samples throughout the crossover for
temperature above and below the phase transition. After successful training of the network,
the autoencoder enables us to observe the onset of superfluidity as a distinct change in trend
within its low-dimensional latent space.

4.5 Superimposing a fast magnetic field
In the experiment, we introduce perturbations into the system using an additional, homebuilt
small magnetic field coil. This coil has specifically been designed with the objective of
changing the magnetic field faster than the fastest timescale of the system, which is the Fermi
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time τF = ℏ/EF [8]. The typical timescale given by the Fermi time in our experiment is on
the order of 5 µs – 10 µs. For this purpose, a small coil comprising two concentric coils has
been designed and built by [134, 163], which is depicted on the right side of Fig. 4.15. This
coils is often referred to as the “quench coil”.

MOT position

MOT coils

Top window

Quench coil

Atom position

Quench coil mount

Current direction

Figure 4.15: Setup of the quench coil. The render shows the relative position of the quench coil with
respect to the atoms’ position (set by the dipole trap) and the MOT position (defined by the MOT
coils). For scale, the atom position is just 3 mm below the top vacuum window. On the right side
of the figure, the 3D-printed mount and winding orientation of the quench coil are shown. Figure
adapted from [134].

This coil produces a finite magnetic field with a nearly zero gradient at the atoms’ position
by using a design with a larger coil and a counter-winding smaller coil housed in a compact
3D-printed mount. The result is a low inductance and magnetic field range, enabling fast
magnetic field changes. To retain a strong enough magnetic field at the atoms’ position, the
coil is positioned as close as possible (∼ 6.5 mm) to the atoms, directly on top of the main
chamber’s upper viewport, as illustrated in Fig. 4.15. The different coil sizes ensure a small
magnetic field while largely cancelling the gradient.

Calibration and alignment

As already discussed, the coil is designed to have a small remaining magnetic field at the
atoms’ position while the gradient is mostly vanished. This is not true for the whole magnetic
field, but only for a small volume at a specific distance from the coil.

To this end, the magnetic field has been calibrated using the same method as for the
magnetic field of the Feshbach coils, discussed in Fig. 3.4. For different DC currents of
the coil, the resonance position of the |1⟩ → |2⟩ transition has been tracked, revealing the
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magnetic field of the coil. Via this method, a calibration factor of 0.874(8) G/A has been
determined.

While the coil has been designed to have a zero gradient at the atoms’ position if moved as
close to the viewport as possible, it has been found that a small gradient along the (vertical)
z axis of the coil remains. This gradient has been compensated for by adding counteracting
gradients with otherwise unused coils.

The gradient in the yz-plane, perpendicular to the coil axis, has been eliminated by
adjusting the coil position within this plane. If a gradient remains, atoms that are released
from the dipole trap experience strong deflection due to the gradient. By aligning the coil
properly, sloshing is minimised.

4.5.1 Quench of the magnetic field

The coil can operate in two distinct modes using separate driver circuits. In the first mode, a
rapid quench of the magnetic field is achieved using the driver circuit detailed in [134, 163].
This is accomplished by swiftly switching off the current (within 30 ns) via a high-speed
power MOSFET driver and a power MOSFET, followed by the rapid dissipation of remaining
magnetic field energy through an RC snubber circuit. The dissipation rate determines the
quench timescale, measured with a pick-up coil to be approximately 2.6 µs. This quench
speed is indeed faster than the Fermi time of 5 µs – 10 µs, as required.

In this mode, magnetic field quenches of up to 35.0(3) G in amplitude are performed,
corresponding to a maximum current of 40 A. The coil’s magnetic field adds to the “final”
magnetic field produced by the Feshbach coils. By turning the coil off, the magnetic field is
quenched back to this “final” magnetic field. Since the quench is faster than the Fermi time,
the quench yields a non-adiabatic change of the interaction parameter 1/(kFa), calculated
from the corresponding change in the scattering length a (refer to Fig. 2.3). This allows for
the excitation of the Higgs mode, which will be explored in Chapter 6.

4.5.2 Modulation of the magnetic field

The second mode of operation employs an amplifier circuit [134] that enables the modulation
of the magnetic field. To this end, an arbitrary function generator† provides a sinusoidal
signal to the amplifier, which modulates the magnetic field accordingly. The amplifier is
designed for an output current amplitude of up to 10 A at frequencies of up to 40 kHz. Higher
frequencies are possible at a reduced output amplitude.

The calibration of the amplifier has been performed similarly to the DC mode explained
in Section 4.5. Instead of calibrating the field via the known |1⟩ → |2⟩ transition frequency,
the detuning to the imaging frequency of the D2 transition (refer to Section 3.1.1) has been
mapped to the magnetic field. Since imaging only takes a few microseconds, this methods
allows to resolve the magnetic field modulation up to frequencies on the order of ∼ 100 kHz.
While effective, this method requires substantial time for extensive data collection, and so it
only serves as a reference at a few selected frequencies.

†GW Instek - AFG-2225
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For broader parameter calibration, spanning input frequency and voltage of the function
generator, we use the amplifier circuit’s monitoring port‡ to measure the coil current with
a translation factor of 0.25 V/A. Considering the previously stated calibration factor of
0.874(8) G/A, this allows calibration of the output magnetic field amplitude Gp relative to
the input amplitude Vpp (peak-peak).

In [134], a frequency range of up to 200 kHz has been analysed. The more intricate
calibration via the imaging detuning probes the real field more carefully. This has revealed a
frequency dependent correction factor to the monitoring-port calibration. The correction is
considered for all calibrations, henceforth.
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Figure 4.16: Amplitude calibration via the current monitor of the amplifier circuit for high frequencies.
Left: Calibration data obtained from the current monitor A/Vpp (peak-peak) as a function of input
amplitude and frequency of the function generator. Right: At each frequency, a linear fit of measured
amplitude versus input amplitude provides the calibration factor Gp/Vpp. Note that this factor
determines the magnetic field amplitude (zero-peak), and thus incorporates the magnetic field vs.
current calibration and the frequency correction from [134]. The dashed line in both panels, as well as
in the inset, is at 258 kHz. Inset: Above this frequency, the calibration becomes highly non-linear,
which is mostly visible in the emergence of a DC offset field.

Here, we extend the calibration analysis to the > 200 kHz range, necessary for dissociating
molecules in the far BEC regime in Chapter 7. Fig. 4.16 shows the calibration from 200 kHz
to 500 kHz. This calibration smoothly connects to the existing calibration for frequencies
< 200 kHz [163].

For frequencies larger 258 kHz, a notable offset or DC component appears in the output
signal, dependent on the input amplitude. This offset has been confirmed as genuine, not an
artifact of the monitoring output, by dissociating composite dimers at magnetic fields that

‡AD8429ARZ
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correspond to bound state energies EB/h beyond > 258 kHz (refer to Section 2.2.3). Here,
it has been observed, that by increasing the input voltage to the amplifier, the dissociation
threshold frequency shifts to lower values, which is caused by an (DC) increase in the magnetic
field of similar strength as seen in the current monitor. The effect probably arises due to a
sharp reduction in the common-mode rejection ratio of the amplifier circuit§ for frequencies
beyond 100 kHz. To prevent the offset from distorting the results in Chapter 7, no frequencies
larger than 258 kHz have been studied.

§OPA549T

76



CHAPTER 5

Machine Learning the Superfluid Phase
Transition

This chapter presents the results of the two projects aimed at detecting the superfluid phase
transition in a strongly interacting Fermi gas through advanced image recognition using
machine learning techniques. To this end, two distinct neural networks are applied to TOF
images, as introduced in Section 5.4 and Section 5.5.

The TOF images have been recorded in a |12⟩ mixture at various magnetic fields, corres-
ponding to interaction parameters 1/ (kFa). To detect the phase transition at each magnetic
field, images have been taken at temperatures above and below the superfluid phase transition
temperature TC/TF, achieved by a controlled heating of the sample. This approach yields a
critical heating time τC for each magnetic field sequence, indicating when the sample trans-
itions to the “normal” state. By repeating the experiment around the critical heating time,
the corresponding temperature TC and Fermi Energy TF are determined via thermometry on
in-situ images of the samples (refer to Section 4.2). Ultimately, this establishes the phase
boundary between the superfluid and normal states within the strongly interacting regime
−1 < / (kFa) < 1.

The first method, detailed in Section 5.4, uses a deep convolutional neural network (refer
to Section 4.4.1) trained to predict the condensate fraction directly from TOF images. For
supervised learning, labels have been created by measuring the condensate fraction via the
rapid ramp technique (refer to Section 4.3). By excluding rapid ramp labels near the phase
transition, where the rapid ramp becomes unreliable, the network learns to predict the onset
of condensation. After training, the critical heating time is identified as the point where the
predicted condensate fraction vanishes. This project has originally been initiated by Martin
Link [133]. During the works on this thesis, a more reliable thermometry has been developed
[134, 135] (refer to Section 4.2). Additionally, the neural network model has been retrained
following modifications to the experimental apparatus, which has been optimised through
transfer learning [197–199]. This process also required the acquisition of new datasets for the
thermometry and network predictions, i.e. the TOF inputs and RR labels. Now, this work is
published in [67].

In the second approach, presented in Section 5.5, the superfluid phase transition is detected
using unsupervised machine learning. Here, an autoencoder neural network (see Section 4.4.3)
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is trained to reconstruct TOF images without additional inputs, such as RR labels or
thermometric parameters. Due to the presence of a “bottleneck” layer, the network is forced
to find a low-dimensional representation of input images that suffices to decode the data
back into an output that closely resembles the original images. After successful training,
the decoder part of the network is stripped off, allowing access to the low-dimensional
representation of the input dataset in the “latent space”. In this latent space, the network
learns to organise the data by temperature and the interaction parameter, solely based on the
momentum distribution in TOF images. While the latent space does not explicitly separate
images into the normal or superfluid phase, the second-order superfluid phase transition
is indicated by a change in trend within the latent space distribution at specific heating
times. From these trend-changing positions, a critical temperature can be inferred. By
comparing the critical temperature with the established phase boundary from Section 5.4,
the trend-changing position is identified as the superfluid phase transition. This project has
been initiated by Martin Link [133] as well. In this thesis, the analysis has been expanded
and employed to the new datasets from the supervised analysis, yielding a phase diagram
solely from TOF images. The results of this project represent a primary goal of this thesis
and have now been published [68].

Outline of this chapter

The sections of this chapter are outlined as follows:

• Section 5.1: In the first section we briefly discuss conventional methods and available
signatures for detecting superfluidity.

• Section 5.2: The limitations of conventional methods lead us into exploring advanced
image recognition techniques using machine learning.

• Section 5.3: Beyond the architecture of neural networks, the data itself is crucial. This
section covers the collected datasets and deduces the reduced temperatures T/TF of
the thermometry dataset using the analysis introduced in Section 4.2.

• Section 5.4: Here, we detail the architecture and training of the supervised deep con-
ventional neural network. After training, we deduce the superfluid critical temperature
in the BCS-BCS crossover and analyse the network’s inner workings using the DeepLift
library [200].

• Section 5.5: This section covers the architecture and training of the unsupervised deep
convolutional autoencoder neural network. Following training, we analyse the data
structure in the latent space and extract positions of trend changes. This allows us to
map the superfluid critical temperature in the BEC-BCS crossover independently of
the rapid ramp (RR) technique.

• Section 5.6: Finally, we summarise and conclude the results.
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5.1 Detecting the superfluid phase transition
As discussed in Section 4.3, determining the superfluid phase boundary requires detecting the
onset of condensation across the BEC-BCS crossover. In the strongly interacting regime, a
clear signature of condensation, such as the bimodal momentum distribution seen in a BEC, is
absent. Therefore, the rapid ramp (RR) technique has been established as the state-of-the-art
method for detection of condensation. However, while the rapid ramp reliably identifies
changes in condensation [166], the detection of the onset of condensation can be affected by
the perturbative nature of the ramp. This incorporates a diminishing signal-to-noise ratio of
the bimodal fit close to the phase transition, and possibly the detection of preformed pairs in
a “pseudogap” state above the phase transition [51].

The first effect arises from the nature of the bimodal fit introduced in Eq. (4.13). Above
the phase transition, the fit does not yield a zero condensate fraction, but instead captures
deviations from a purely Gaussian thermal background, resulting in a noise-dominated,
non-zero condensate fraction. For an experimental determination of the phase boundary
in the strongly interacting regime, however, it is essential to have precise knowledge of the
experimental conditions under which the condensate fraction vanishes.

Signatures of condensation

A more refined determination of the phase boundary requires techniques that can detect
condensation beyond the RR. While TOF images do not provide a clear signature of condensa-
tion, pairing statistics still influence the momentum distribution in a condensed gas. However,
as discussed in Section 4.3, the momentum distribution in TOF is influenced not only by
pairing statistics (Fig. 2.6) but also by temperature, interactions, and the inhomogeneous
trapping potential. This is evident when comparing the similar effects of finite temperature
(Fig. 2.1) and pairing (Fig. 2.6) in a Fermi gas.

Nevertheless, in-situ images have been shown to exhibit small deviations from a non-
interacting Fermi gas, caused by a finite condensate fraction [8]. Although no model function
exists to directly infer condensation from these deviations, machine learning techniques
can overcome this limitation by rendering a universal function approximator, trained to
predict condensation from TOF images. By training a network on data spanning the strongly
interacting regime, the network learns not only to detect the phase transition but to do so
through generalised pattern recognition. To this end, we employ deep convolutional neural
networks – an architecture proven to be ideal for image recognition tasks [178] – directly on
TOF images.

5.2 Detecting phase transitions with machine learning techniques
Machine learning techniques have found diverse applications in physics [56, 57]. These
range from simple optimisation tasks of experimental systems [59], such as the accelerated
optimisation of experimental apparatuses by analysing the effect of a large parameter space
[60], to improved detection methods, like absorption imaging with a single atom image [201].
Other applications include constructing quantum many-body state wavefunctions [202, 203]
from experimental data.
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In this thesis, the focus is on detecting phase transitions in experimental data using machine
learning techniques. Neural networks have already been applied to theoretical data to extract
phase transitions through supervised learning [204, 205]. Unsupervised neural networks have
also been employed to detect phase transitions in theoretical data, utilising methods such
as learning by “confusion” [61], principal component analysis (“PCA”) [61, 62, 64], and
autoencoders [63, 64].

For experimental data, machine learning provides and ideal framework to detect phase
transitions, as it can mask imperfections like imaging noise through the network architecture.
Supervised machine learning has been used to identify phase transitions in topological systems
[65], and later, unsupervised models have been applied to detect the phase transition in
similar systems [66, 206, 207].

In this thesis, both a supervised neural network [67] and an autoencoder neural network
[68] are applied to experimental TOF data to infer the phase transition.

5.3 Acquiring datasets across the phase transition
This section provides an overview of the recorded datasets used in this chapter. As previously
established, the machine learning models in this thesis detect the phase transition from TOF
images. As this does not directly yield the critical temperature TC, the experimental settings
corresponding to the phase transition are then repeated to deduct the temperature from
corresponding in-situ images (refer to Section 4.2).

5.3.1 Controlled heating of a Fermi gas

The experimental settings at the determined phase transition are defined by the magnetic field,
dipole trap power and corresponding ramps. To detect the phase transition, temperatures
above and below the critical temperature TC must be analysed for each magnetic field setting.

Initial trap Shallow trap Recompressed trap

Figure 5.1: Concept of controlled heating. The sketch illustrates the principle of the controlled heating
mechanism used to alter the temperature of the Fermi gas. Initially, the gas is thermalised in the
initial trap. A sudden ramp down to a more shallow trap allows the atoms to expand. After a variable
heating time theat, the trap is recompressed to the original configuration. Due to expansion in the
shallow trap and subsequent recompression, the atoms gain potential energy, which is converted to
temperature after additional thermalisation of 50 ms.
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Heating is achieved through a controlled ramp of the dipole trap powers, as illustrated in
Fig. 5.1 and described in [208, 209]. This process involves a sudden ramp down to a more
shallow trap, followed by a recompression back to the initial trap setting after a variable
heating time theat. Due to expansion in the more shallow trap and subsequent recompression,
the atoms gain potential energy, which is converted to temperature after an additional
thermalisation time of 50 ms in the recompressed trap.

During expansion, atom loss is minimised by keeping the horizontal dipole beam on, while
the vertical dipole trap is completely turned off. Nevertheless, we find that the expansion
is accompanied by strong atom loss, as indicated by the reduction in Fermi temperature
TF, shown in Fig. 5.2. However, this does not pose a problem, since the focus is on the
temperature T normalised by the Fermi temperature of the gas TF. A significant reduction
in TF consequently leads to an increase in the reduced temperature T/TF.

5.3.2 Datasets
In total, three datasets with distinct purposes have been recorded, as outlined in the overview
below. The overview includes information on the types of images captured and the magnetic
fields at which data have been collected. The following sections provide further details about
these datasets.

1. Training dataset
• Contains TOF images and CF from RR images
• Fields B = 727.6 G, 757.1 G, 786.6 G, 835.8 G, 862.4 G, 894.8 G, 914.5 G
• ∼ 7 repetitions per unique field and theat combination

2. Neural network dataset
• Contains TOF images only
• BEC Dataset: FieldsB = 723.7 G, 728.6 G, 733.5 G, 739.4 G, 744.4 G, 751.2 G, 759.1 G
• BCS Dataset: FieldsB = 759.1 G, 775.8 G, 803.4 G, 835.8 G, 855.5 G, 880.1 G, 914.5 G
• ∼ 13 repetitions per unique field and theat combination

3. Thermometry dataset.
• Contains in-situ images via cameras Andor1 (top) and Andor2 (side) (check

Section 4.1)
• BEC Dataset: FieldsB = 723.7 G, 728.6 G, 733.5 G, 739.4 G, 744.4 G, 751.2 G, 759.1 G
• BCS Dataset: FieldsB = 759.1 G, 775.8 G, 803.4 G, 835.8 G, 855.5 G, 880.1 G, 914.5 G
• ∼ 30 repetitions per unique field and theat combination

1. Training dataset

For the supervised neural network in Section 5.4, labels of the corresponding condensate
fraction CF must be recorded alongside TOF images. To achieve this, a training dataset is
recorded for several magnetic fields around resonance, including temperatures below and
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above the critical temperature. Each datapoint in this dataset comprises a TOF image and
the condensate fraction derived from a corresponding rapid ramp image.

The TOF images are captured using standard absorption imaging at the field of preparation.
To ensure a high signal-to-noise ratio while maintaining a mapping to momentum space,
the expansion time for all TOF images is limited to 5 ms. Although this is shorter than the
T/4 = 15 ms of the remaining harmonic potential, even a full development of the original
momentum distribution after a T/4 expansion would be obscured by interactions. Hence, the
neural network can still learn to extract relevant signatures from the density distribution
after the given expansion time.

Details about the training process are covered in Section 5.4.1.

2. Neural network dataset

After training, an additional dataset is acquired to determine the phase transition. This
dataset contains more magnetic field settings and does only contain TOF images, without
supplementary information or labels, such as the condensate fraction.

The neural network dataset comprises datasets from two different dates, namely from 4th
March 2022 and 12th April 2022. Former dataset comprises fields mostly on the BCS side of the
crossover, namely at magnetic fields of B = 759.1 G, 775.8 G, 803.4 G, 835.8 G, 855.5 G, 880.1 G
and 914.5 G, and will be referred to as the “BCS dataset”, henceforth. The latter dataset com-
prises magnetic fields closer the BEC limit, which are B = 723.7 G, 728.6 G, 733.5 G, 739.4 G,
744.4 G, 751.2 G and 759.1 G. This dataset will be called the “BEC dataset”.

Both datasets include ∼ 13 repetitions for each unique combination of heating time theat
and magnetic field B, while the parameters are randomly shuffled during recording. The
following analysis of this dataset via the supervised neural network or the autoencoder
network will yield a critical heating time τC, corresponding to the onset of condensation.

3. Thermometry dataset

Once the critical heating time τC is determined, the sample’s temperature and Fermi energy
are measured to map the superfluid phase boundary. This is done in accordance with the
thermometry described in Section 4.2.

To achieve this, an additional thermometry dataset has been recorded. This dataset contains
in-situ density profiles and is recorded in an alternating fashion with the corresponding TOF
images of the neural network dataset to mitigate the influence of long-time system drifts.
The 3D density profile of the clouds in this dataset is then determined via the inverse Abel
transformation, introduced in Section 4.2.1. To ensure low noise in the thermometry, the
dataset includes ∼ 30 repetitions. Additionally, a few in-situ images are taken from the side
via Andor2 (see Section 4.1) to extract the aspect ratio for reconstructing the 3D density.

First, the 3D density profile is used to yield the temperature of the cloud via a fit of the
virial expansion of the equation of state to the density profile, as explained in Section 4.2.3.
The density of the gas also gauges the temperature scale to the energy of the system, that is
the Fermi temperature TF.

Condensation occurs below a critical temperature TC/TF. In our inhomogeneous trap,
the density nσ is highest in the trap centre, and hence the reduced temperature T/TF is
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Figure 5.2: Thermometry results of the neural network dataset. The figure shows the thermometry
results from the thermometry dataset calculated with the approch in Section 4.2. Upper row:
Temperature T as a function of heating time theat. Lower row: Fermi temperature TF as a function
of heating time theat. The thermometry dataset comprises the BCS and BEC datasets as listed in
Section 5.3.2, which are divided into the left and right column, respectively.

lowest here, with TF ∝ n2/3
σ (refer to Section 2.4). Consequently, condensation starts in

the trap centre when the reduced temperature drops below the critical temperature TC/TF.
Henceforth, the Fermi temperature TF is defined with respect to the density in the trap
centre.

The results of the thermometry are shown for the BEC and BCS datasets in Fig. 5.2. The
figure illustrates that our controlled heating implementation primarily reduces the density
and Fermi temperature, while the temperature of the gas stays rather constant. This yields
an increase of the reduced temperature T/TF, as anticipated.

It is worth noting that the thermometry dataset requires substantial repetitions and
measurement time. To reduce this, sampling of the recorded heating times in the in-situ
datasets has been concentrated around the critical heating time τC , as indicated by the RR
measurements of vanishing condensate fraction.

To determine the critical temperature TC/TF at specific magnetic fields, both the temper-
ature T and Fermi temperature TF are modelled by a linear fit. Around the critical heating
time τC, changes in temperature and Fermi temperature are well approximated by a linear
fit [134]. The exact value of both the critical temperature TC and the Fermi temperature
TF at the critical heating time τC are deduced from best-fit parameters at τC. Furthermore,
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the interaction parameter 1/(kFa) is defined using the Fermi momentum kF =
√

2mkBTF/ℏ.
Note, that the standard error from the best-fit evaluation is reduced compared to the standard
error shown in Fig. 5.2, since the linear fit incorporates numerous datapoints.

5.4 Supervised learning of the superfluid phase transition

The first approach in detecting the superfluid phase transition utilises a deep convolutional
neural network trained to predict the condensate fraction CF from the momentum distribution
in TOF images. The principles of both training and subsequent predictions of the CF via
the neural network are sketched in Fig. 5.3.

CF

ĈF

L = |ĈF − CF |2

Prediction

Bimodal Fit

RR

TOF images

Figure 5.3: Supervised training of the neural network. The sketch illustrates how the convolutional
neural network is trained to predict the condensate fraction CF from TOF images. To this end, a
training dataset is prepared, comprising TOF images with corresponding labels of the condensate
fraction ĈF . The labels have been determined via a bimodal fit to RR images at the same experimental
settings as the TOF images. During training, the weights of the network are adjusted to minimise the
loss function L = |ĈF − CF |2. The weight adjustment is simplified here, for a more complete image
consult Section 4.4.2.

For training, the input TOF images have to be labelled with their corresponding condensate
fraction ĈF . A training dataset is prepared, assigning each TOF image with a corresponding
ĈF label. The TOF images are taken after a fixed expansion time of 5 ms without any
magnetic field ramps after preparation. In an alternating fashion, the same sample is prepared
but imaged after the rapid ramp (refer to Section 4.3), which yields the corresponding ĈF .
During training, the weights of the network are adjusted to minimise the loss function L, as
explained in Section 4.4.2.
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After training, the neural network is able to predict the condensate fraction – without
additional labels – from new data that has not been seen during training [133, 134].

5.4.1 Training of the neural network

Before training starts, the weights of the neural network are randomly initiated. The
training process adjusts the weights of the deep convolutional neural network to minimise the
deviations from a desired output for a given input, expressed in the loss function L (refer to
Section 4.4.2). Here, the inputs are TOF images, and the predicted output is the condensate
fraction CF .

Training is conducted using the training dataset, introduced in Section 5.3.2. Since the
goal is to enable the neural network to predict the condensate fraction from TOF images for
arbitrary interactions 1/(kFa), the training dataset includes various magnetic fields spanning
the strongly interacting regime −1 < 1/(kFa) < 1. Additionally, the training dataset covers
data of different temperatures, i.e. heating times theat, encompassing both the superfluid
and normal phase. The phase transition, in terms of the heating time theat, is estimated by
the diminishing condensate fraction after the RR, which helps in selecting an appropriate
sampling range for data collection.

In principle, the network could learn to predict correlation between atom loss during
heating and the corresponding condensate fraction. However, this issue is mitigated by
including data from many different magnetic fields in the dataset, each with different initial
atom numbers. This forces the network to rely on more subtle features in the TOF images to
predict the CF .

Network architecture

The network architecture resembles a deep convolutional neural network (refer to Section 4.4).
This constitutes several convolutional layers with alternating stacks of max pooling layers,
followed by several dense layers. The network architecture is illustrated in Fig. 5.4 and
summarised in Table 5.1.

The input layer has a size corresponding to the size (225, 255) of the cropped and centred
input TOF images. Directly after the input layer, two resizing layers adjust the input image
size by upsampling by ×2 and downsampling by /3 to (150, 170). The reason behind these
layers will be explored during the explanation of “transfer learning and fine-tuning”, later in
this section. After resizing, the output of size (150, 170) operates as the effective input to the
neural network.

The deep convolutional neural network can be viewed as a pipeline for “feature extraction”,
followed by the “classification” of these features to yield a prediction of the CF . The “feature
extraction” is handled by several convolutional layers, which are each followed by a max
pooling layer. As discussed in Section 4.4, these layers are tailored for image recognition.

After features have been extracted, they need to be classified to yield the prediction of the
neural network. To this end, the output of the last max pooling layer is flattened and fed
to several fully connected dense layers, which “classify” extracted features. Dropout layers
between the dense layers are only relevant for training, during which randomly assigned
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weights are cut off to prevent overfitting [181] with a dropout rate of 0.5. Finally, the output
of the last layer is a single number, representing the predicted condensate fraction CF .

Input layer
Convolutional + max pooling

Dense layer

Output

Figure 5.4: Architecture of the supervised neural network. The sketch showcases the architecture of
the employed convolutional neural network in Section 5.4. Roughly speaking, the network is divided
into alternating convolutional and max pooling layers with subsequent dense layers. Dropout layers
between the dense layers are not shown for simplicity. The graphic has been created with [210]. Note
that the layer sizes are not to scale.

Table 5.1: Architecture of the supervised deep convolutional neural network. This table presents
the layer-by-layer architecture of the employed deep convolutional neural network [67], created using
tensorflow [211]. The first two layers i and ii, simply rescale the image for the first functional layer 1.
In total, the neural network has 11601591 parameters.

Layer index Layer type Output shape Number of parameters
0 Input (225, 255, 1) 0
i Upsampling 2D (450, 510, 1) 0
ii Downsampling 2D (150, 170, 1) 0
1 Convolutional 2D (150, 170, 30) 300
2 Max pooling 2D (75, 85, 30) 0
3 Convolutional 2D (75, 85, 40) 30040
4 Max pooling 2D (37, 42, 40) 0
5 Convolutional 2D (37, 42, 50) 50050
6 Max pooling 2D (18, 21, 50) 0
7 Flatten (18900) 0
8 Dense (600) 11340600
9 Dropout (600) 0
10 Dense (300) 180300
11 Dropout (300) 0
12 Dense (1) 301
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Transfer learning and fine-tuning

During the works on this project, the experimental apparatus was subject to slight changes
and adjustments. These changes comprise a change to the optical dipole trap as well as an
adjustment of the imaging system to compensate for a camera replacement (Andor0, refer to
Section 4.1). Unfortunately, after these changes the already trained network from [133, 134]
no longer produced accurate and reasonable predictions of the condensate fraction anymore.
To restore its predictions’ accuracy, the network had to be retrained using images from the
updated system.

Although the old network [133, 134] was no longer effective, it had already been trained
on a large dataset and has successfully learned to extract signatures from TOF images to
predict the condensate fraction. This “knowledge”, stored in the network’s weights, can be
leveraged to retrain the network on a smaller (new) dataset. The retraining process is known
as “transfer learning” and is commonly used in many scenarios such as image classification,
where a large pre-trained neural network serves as a starting point to train a network on a
smaller dataset of new data [197–199].

The network architecture for the modified system is identical to the architecture of the
previous system [133, 134], but adds an upsampling ×2 and downsampling /3 layer after
the input layer to account for the changed pixel size (16 µm → 13 µm) and magnification
(3.42 → 4.11) of the new camera. As shown in Table 5.1, these layers have no parameters
and are not adjusted during training. Instead, they allow for having the input size (225, 255)
of the new system to be mapped onto the input size (150, 170) of the previous architecture,
preserving the relative size of features in the input images.

Preparing the training dataset

Before any modifications to the experimental apparatus, the network was trained on a dataset
of 7895 labelled data, consisting of the fields listed in Section 5.3.2 [133, 134]. For transfer
learning, a new training dataset with the modified system has been recorded, comprising
a smaller dataset of 2245 datapoints. This dataset is randomly split into a training and
validation set, comprising 90 % and 10 % of the full dataset, respectively. The training set is
used for training, while the validation set is reserved for testing the network’s performance
on unseen data.

We train the neural network with stochastic gradient descent using the Adam optimiser
with a learning rate of 1.5 × 10−4 [192] and a batch size of 30 [67].

As discussed in Section 5.1, the idea of the network is to predict the onset of condensation
at the critical heating time tC, where the rapid ramp produces unreliable data. To address
this, the training set is masked and modified as shown in Fig. 5.5. The figure shows the
labels from the RR, as well as predictions of the network after training. For large condensate
fractions, the rapid ramp can be trusted, and hence data with these labels are used for
training. However, below a small but finite condensate fraction of 3 % – 5 %, the rapid ramp
becomes less reliable, and the measured CF values are dominated by noise in the bimodal fit,
as explained in Section 4.3. The cut-off threshold is chosen for each magnetic field in the
training set separately, considering the data range and noise of the recorded CF values. Data
from the training set, which have labels below the cut-off threshold value are removed for
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Figure 5.5: Labels and predictions of the training dataset. The training dataset contains TOF images
as well as the condensate fraction CF from the RR as labels (orange points). Below a threshold, the
labels from the rapid ramp can not be trusted to yield a sharp phase transition (grey area, label
mask). Training data below this threshold are in the “label mask” and are removed for training.
Beyond a large heating time, the condensate fraction labels can be assumed to be CF = 0 and are set
accordingly. After training, the network produces predictions (blue points), which continue a sharp
trend of decreasing CF towards CF = 0. The critical heating time (red dashed line) is yielded from a
linear-constant fit to the predictions as given in Eq. (5.1).

training. At very large heating times, the CF labels can safely be assumed to be zero, and
these data points are included in the training set with CF set strictly to zero.

Training and validation of the neural network

To accelerate the training process, the technique of transfer learning is employed. Instead of
initialising the network with random weights, the weights from the old network [133, 134] are
used for the convolutional layers, i.e. layer 1 – 6 in Table 5.1. The weights in the subsequent
classifier part of the network, which consists of the fully connected layers 7 – 12, are randomly
initiated.

A key metric to judge if the training has converged is the loss after each training epoch [181].
The loss after each training epoch is shown in Fig. 5.6 for the training and validation set,
respectively. For the first 15 epochs, the convolutional layers are frozen to allow for transfer
learning. This means, that the weights of the convolutional layers are not adjusted, while all
unfrozen layer are adjusted via stochastic gradient descent, as described in Section 4.4.2. In
this way, the network adopts the old weights of feature extraction in the convolutional layers
by only training a new classifier.

After 15 epochs, the loss of both the training and validation set converge, and fine-tuning
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Figure 5.6: Training and validation loss during transfer learning. This plots shows the loss (refer
to Section 4.4.2) over many training epochs of the training and validation set, which are randomly
assigned datapoints in a ratio of 9 : 1 of the training dataset. For the first 15 epochs, the network
is trained via transfer learning using the weights of the old network [133, 134] for the convolutional
layers. For the next 10 epochs, the network is fine tuned by opening all layers to adjustments during
gradient descent.

of the network is initiated by unfreezing all layers. This adjustment enables the network to
refine the weights of the convolutional layers, adapting them to the modified system. During
this phase, the learning rate of the Adam optimiser [192] is reduced from 1.5 × 10−4 to
1 × 10−5. After another 10 epochs of fine-tuning, the training completed as both the training
and validation losses converge to a lower value.

Upon completing training, the network can accurately predict the condensate fraction from
TOF images, as demonstrated in Fig. 5.5.

Generalisation of validation

After training, it is essential to verify whether the network has genuinely learned a generalized
method of feature extraction to predict the condensate fraction CF from the momentum
distribution in TOF images, rather than merely learning correlations with obvious parameters
such as the summed optical density (i.e. the atom number) or the cloud size.

If the network only learns these correlations, it would be possible to train a similarly
performing network using Fermi gas fits [8] instead of the full TOF image. Indeed, we observe
that a network can be trained on best-fits derived from Fermi gas fits [134], however, leading
to a higher general loss compared to a network trained with the full TOF images.

As an additional test, we have employed the neural network on a |13⟩ mixture, even
though the network has been trained on a |12⟩ mixture. Remarkably, the network still
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produces predictions close to the results obtained with the RR [134], even though it had
never encountered images of this mixture before.

As we will see in Section 5.4.2, the network is also able to predict the CF for fields which
have not been part of the training dataset. This suggests that the network has indeed learned
a general approach in extracting the condensate fraction from the momentum distribution in
TOF images. In section Section 5.4.4, this will be illustrated by visualising the importance of
regions in the input activation map of TOF images on the predicted CF across the crossover.

5.4.2 Determining the phase transition

With the neural network trained to predict the condensate faction directly from the momentum
distribution in TOF images, the next step is to determine the critical heating time τC at
which the onset of condensation occurs. To this end, the trained neural network is employed
to predict the CF from TOF images in the neural network dataset (refer to Section 5.3.2).
For each unique combination of the magnetic field and heating time theat, the TOF images
have been measured for ∼ 13 repetitions. Next, the predicted CF are averaged for the ∼ 13
predictions. The mean of the predicted CF is used henceforth.

To determine the critical heating time τC, the predicted condensate fraction CF is modelled
by a linear-constant fit as already shown in Fig. 5.5. The model function reads

CF (theat) =
{
a · (theat − τC) if theat ≤ τC
0 else,

(5.1)

with a being a fit variable and τC being the critical heating time.
In Fig. 5.7, the fits are displayed along with the predicted condensate fraction for exemplary

magnetic fields of the dataset. At magnetic fields close to unitarity, the condensate fraction at
zero heating theat = 0 deviates strongly from the linear behaviour observed for larger heating
times. Therefore, the fitting range for these fields is limited to the linear regime.

By extracting the critical heating time τC, the superfluid phase boundary is determined in
terms of the heating time theat. An overview of all determined critical heating times for all
considered magnetic fields is presented in Fig. 5.8.

Finally, the determined critical heating times are mapped to the thermometric values
of the samples by using the analysis of the thermometry dataset in Fig. 5.2. This yields
the critical temperature TC as well as the Fermi temperature TF and Fermi momentum
kF =

√
2mkBTF/ℏ. Together, these values describe the envelope of the superfluid phase

boundary in terms of TC/TF and 1/(kFa), as shown in Fig. 5.9.

5.4.3 Critical temperature

The superfluid phase diagram in Fig. 5.9 depicts the determined superfluid critical temperature
in a homogeneous Fermi gas due to the definition of the Fermi gas within LDA, using the
density at the centre of the trap. In summary, the resulting phase diagram shows the critical
temperature for interactions strengths from 1/(kFa) ≈ −0.4 to 1/(kFa) ≈ 1.0. From the BCS
limit up to an interaction parameter of 1/(kFa) ≈ 0.5 the critical temperature increases. For
weaker interactions approaching the BEC limit, the critical temperature remains roughly

90



5.4 Supervised learning of the superfluid phase transition

1 2

0.00

0.02

P
re

d
ic

te
d

C
F

723.7 G

0 2 4
0.00

0.05

0.10

739.4 G

0 5 10
0.0

0.1

0.2

759.1 G

0 10

Heating time theat/ms

0.0

0.1

0.2

P
re

d
ic

te
d

C
F

775.8 G

0.0 2.5 5.0

Heating time theat/ms

0.0

0.1

835.8 G

1 2

Heating time theat/ms

0.00

0.02

914.5 G

Figure 5.7: Determining the critical heating time. The figure shows the predicted CF for six exemplary
fields from data in the neural network dataset (refer to Section 5.3.2). For each heating time theat,
∼ 13 repetitions have been measured, and the datapoints (blue) show the averaged prediction while
the error corresponds to the standard error of the mean. A linear-constant function (red, refer to
Eq. (5.1)) is fitted to the data to yield the critical heating time τheat (grey, dashed line). Note that the
upper row corresponds to the “BEC dataset”, while the lower row corresponds to the “BCS dataset”,
defined in Section 5.3.2.

constant, or possibly, indicates a weak decline towards the BEC limit. This presents the
first experimental confirmation of an increasing critical temperature from the BCS limit,
extending beyond unitarity and approaching the BEC limit.

Our results show a striking resemblance with the extended GMB theory presented in [19].
Towards the BCS limit, our results align more closely with the t-matrix approach findings
in [45]. Overall, our results are also consistent with results from quantum Monte Carlo
simulation reported in [128]. Due to the uncertainty in our data, a peak in the critical
temperature at an interaction parameter of 1/(kFa) ≈ 0.6 [19] is only suggested but can not
be conclusively confirmed.

In conclusion, we have demonstrated that the superfluid phase transition can indeed
be detected via enhanced image recognition using supervised machine learning techniques.
This measurement of the critical temperature presents the first precession measurement of
the superfluid phase boundary in the strongly interacting regime for various interaction
parameters.

5.4.4 DeepLift - Insights into the network

The final question to address is: what does the neural network actually learn? As previously
discussed, the neural network is able to predict the CF from data taken at interaction
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Figure 5.8: Overview of the determined critical heating times. The plot shows the determined critical
heating times τC for all magnetic fields included in the neural network dataset (refer to Section 5.3.2).
The dataset comprises two different logs, which have been captured on different days, labelled as
the “BEC” and “BCS” datasets, respectively, describing which limit of the crossover they approach.
Errorbars denote the standard error and are mostly covered by the size of the datapoints.

parameters, i.e. magnetic fields, that have not been seen during training. This suggests that
the neural network is indeed able to generalise the detection of features in the momentum
distribution from TOF images to determine the CF . However, it remains unclear which
features the neural network focuses on to extract the CF .

Neural networks are often viewed as “black boxes” that produce a desired output for a
given input, without transparency regarding their internal processes. Understanding the
mapping from input to output would allow for a more interpretative understanding of how
the neural network functions [212]. To gain these insights, we employ the DeepLift [200]
algorithm on the trained network using the training dataset.

DeepLift assigns an importance score to the input neurons concerning a selected output
neuron by using a backpropagation approach. This score quantifies the contribution of each
input neuron to the output neuron’s value, considering all intermediate layers. In our case,
the output neuron is chosen to be the final output neuron, yielding the CF . The input
neurons are the pixels of the corresponding input images, showing the momentum distribution
after TOF. These are referred to as the “activation map” of the input layer. Consequently,
DeepLift generates an importance score “image” that has a one-to-one correspondence with
the pixels of the input images from TOF.

Given the TOF duration of 5 ms, each pixel in the input image can be associated with a
momentum k/kF, assuming a non-interacting Fermi gas. The importance scores are radially
averaged along momentum bins, mapping the importance scores to momenta. This analysis
is conducted only for images at zero heating time theat = 0, since we aim to understand what
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Figure 5.9: Critical Temperature in the BEC-BCS crossover via the supervised neural network. The
figure presents the results of the superfluid critical temperature, which were determined via the
supervised deep convolutional neural network (circles), adapted from [67]. The error comprises the
standard error as well as a dominating 5 % uncertainty due to anharmonicities of the trapping potential
(refer to Section 4.2.1). Several theoretical calculations of the critical temperature TC/TF are shown
alongside the results. In the limits, the analytical results for the weakly interacting BEC (Eq. (2.13))
(dotted line) and the exponentially decaying BCS result with GMB correction (Eq. (2.25)) (dashed
line) are shown. Across unitarity an extended GMB correction [19] (solid line) and a self-consistent
t-matrix approach [45] (dashed-dotted line) are plotted. Additionally, two quantum Monte Carlo
results (diamonds [128] and upright triangles [47]) are presented.

features the network considers crucial when predicting the condensate fraction CF .
The importance scores for different interaction parameters 1/(kFa) are shown in Fig. 5.10

as a function of the momentum bins k/kF of the TOF images. As anticipated, the importance
scores are higher in the centre of the TOF images on the BEC side, corresponding to low
momenta. Moving towards unitarity and the BCS side, the importance scores shift towards
higher momenta, reflecting Cooper pairing at higher momenta (refer to Fig. 2.6). This trend
aligns with the evolution of pairing effects on the momentum distribution across the crossover,
as illustrated in Fig. 2.6.

Momenta as high as the Fermi momentum k = kF are not relevant in the activation map
due to the significant drop in the signal-to-noise ratio in the outer wings of the TOF images.
Additionally, the TOF images represent a 2D projection of the 3D Fermi sphere, which
smears out the Fermi edge. Since TOF images are taken after 5 ms expansion – less than
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Figure 5.10: Importance scores of momentum bins of the input image for the prediction of the network
output. The importance scores of pixels in the input image are determined via the DeepLIFT library
[200]. To this end, only the coldest samples without any heating time from the training dataset are
analysed. Pixels are correlated with their momentum after 5 ms of TOF, omitting interactions. Both
axes are normalised with the Fermi momentum kF, corresponding to a harmonic trap with N atoms.
The image is taken from [67].

T/4 ∼ 15 ms – the initial density also influences the momentum distribution. Lastly, the
momenta are calculated assuming a non-interacting Fermi gas, but attractive interactions
could slow down the expansion, leading to an underestimation of the calculated momenta.

Overall, the DeepLift approach shows that the highest importance scores indeed shift
towards higher momenta when moving from the BEC limit towards unitarity and the BCS
side. This indicates that the neural network effectively “learns” physical features from the
momentum distribution in TOF data.

5.5 Autoencoder - Unsupervised detection of the superfluid phase
transition

In the previous section, the superfluid phase transition in the strongly interacting regime
has been determined using a supervised deep convolutional neural network. This section
explores an alternative approach, utilising a different network architecture to identify the
phase transition without relying on the rapid ramp technique for the creation of labels. Here,
we employ an unsupervised autoencoder deep convolutional neural network, known as an
autoencoder neural network.

The principle of the autoencoder neural network is illustrated in Fig. 5.11. As an unsuper-
vised technique, its approach significantly deviates from the supervised deep neural network in

94



5.5 Autoencoder - Unsupervised detection of the superfluid phase transition

Section 5.4. The key idea behind the autoencoder is to reduce the dimensionality of the input
data space, e.g., images, by constructing a unity function. Ultimately, the autoencoder is
optimised to map input images to an output of the same size and dimensionality – essentially
functioning as a unity function. However, by constraining the size and dimensionality of a
hidden layer within the network, the autoencoder network is forced to compress the input
images through this “bottleneck”, while optimising the subsequent layers to reconstruct the
original image. The specific hidden layer is referred to as the “bottleneck layer”.

n1

n2

n1

n2

Input OutputBottleneckEncoder Decoder

Figure 5.11: Principle of the autoencoder network. The sketch shows the working principle of the
autoencoder neural network. Input and ouput have the same dimensionality and size. First, the input
image is compressed by the encoder part of the network through the bottleneck layer. The bottleneck
layer is made up of a small amount of neurons, here two neurons n1 and n2. After the bottleneck
layer, the network is optimised to give an output that reconstructs the input through the decoder
part. After training, the distribution of input images in the latent space is analysed, which is spanned
by n1 and n2. Note that every datapoint in the latent space corresponds to one input image.

In this architecture, the layers preceding the bottleneck encode the input data into the
low-dimensional space of the bottleneck layer, forming the “encoder”. Similarly, the layers
following the bottleneck constitute the “decoder”.

For this thesis, the bottleneck layer consists of just 2 neurons, though configurations with
more neurons are tested later in Section 5.5.2. To optimise the network to map the unity
function, the weights are adjusted through supervised gradient descent. However, unlike for
the supervised learning in Section 5.4, no additional labels are created here. Instead, the
input images serve as input and labels at the same time, training the network to approximate
a unity function using stochastic gradient descent (refer to Section 4.4.2).

After the autoencoder is successfully trained, the network maps input images onto them-

95



Chapter 5 Machine Learning the Superfluid Phase Transition

selves with minimal deviation. While this process alone does not reveal any novel structures,
the low-dimensional representation that has been learned during training reveals structure in
a complex representation of the input space [179]. To extract the low-dimensional representa-
tion from the bottleneck layer, the decoder part is stripped from the network, leaving the
encoder as a standalone network with the bottleneck layers as its output. The coordinate
space spanned by the outputs of the bottleneck layer is known as the “latent space”.

For distinctly different input images, the network organises the latent space such that
distinct classes of input images cluster into separated regions [179]. Here, we train the
autoencoder on TOF images that involve a second-order phase transition to a superfluid.
While this suggests that no clear clustering is to be expected, a trend from superfluid to
normal phase images may emerge, allowing for detection within the latent space.

5.5.1 Architecture of the autoencoder network

The architecture of the employed autoencoder neural network is detailed in Table 5.2. In
principle, the architecture is similar to the supervised deep convolutional neural network in
Table 5.1, but it features two convolutional neural networks that are symmetric around the
central bottleneck layer.

The encoder begins with two convolutional layers, each being followed by a max pooling
layer. Afterwards, the output of the last convolutional layer is flattened and compressed to the
bottleneck layer via multiple fully connected dense layers. The decoder, which approximately
mirrors the encoder, follows the bottleneck layer. After passing through some fully connected
dense layers, the one-dimensional output is reshaped to a two-dimensional layer, which is
subsequently processed by multiple transposed convolutional layers [181]. Finally, the output
from the last convolutional layer matches the size and dimensionality of the input layer.

Subtleties of the architecture

After training, the output of the autoencoder network is expected to resemble the input as
close as possible, with small deviations depending on the network architecture. Although,
the network has been tested to be stable against changes in most hyperparameters of the
given layers [133, 134], certain parameters and settings require careful adjustments to ensure
that the network effectively learns the unity function. Key issues that have been identified
during this process are summarised in Fig. 5.12.

An obvious issue arises if the activation function Φ (refer to Section 4.4) is not chosen
properly. In many hidden layers, the data range does not influence the performance of the
network, and hence a sigmoid activation function can be employed. However, in layers where
the output range is critical, it is essential to use an activation function that covers the full
relevant data range. Improper selection can lead to the output range, such as the optical
density (OD) in TOF images, to be capped, resulting in the loss of important features.
To avoid this, the whole network employs only ReLu activation functions, except for the
bottleneck layer, which employs a purely linear activation function.

Caution has to be taken with the hyperparameters of the transposed convolutional layers
(refer to Section 4.4.1). Transposed convolutional layers are conceptually the inverse of
convolutional layers, intended to reconstruct the input from a known output. However,
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Table 5.2: Architecture of the autoencoder neural network. The table presents the layer-by-layer
architecture of the employed autoencoder neural network [68], created using tensorflow [211]. For
clarity, the bottleneck layer 8 is highlighted. After training, the encoder part, comprising layers 0 to
8, is extracted, and the output of layer 8 constitutes the latent space. In total, the neural network has
17400963 parameters.

Layer index Layer type Output shape Number of parameters
0 Input (192, 192, 1) 0
1 Convolutional 2D (192, 192, 32) 320
2 Max pooling 2D (48, 48, 32) 0
3 Convolutional 2D (48, 48, 64) 8256
4 Max pooling 2D (16, 16, 64) 0
5 Flatten (16384) 0
6 Dense (512) 8389120
7 Dense (512) 262656
8 Dense - Bottleneck (2) 1026
9 Dense (512) 1536
10 Dense (512) 262656
11 Dense (16384) 8404992
12 Reshape (16, 16, 64) 0
13 Transposed convolutional 2D (48, 48, 64) 36928
14 Batch normalisation (48, 48, 64) 256
15 Transposed convolutional 2D (192, 192, 32) 32800
16 Batch normalisation (192, 192, 32) 128
17 Convolutional 2D (192, 192, 1) 289

the operation can present issues, particularly related to the strides parameter. During the
convolutional operation, the kernel moves along the input space in steps defined by the
strides parameter. If the strides parameter is chosen bigger than the kernel size, not all input
pixels contribute, leading to a grid-like pattern in the output – a critical issue in transposed
convolutional layers if not properly managed.

To prevent these issues, the output images are always carefully checked after training,
along with the training and validation losses, to ensure the network functions correctly.

5.5.2 Latent space - Detecting the phase transition in a low-dimensional
representation

After setting up the network architecture, the autoencoder is trained on the neural network
dataset (refer to Section 5.3.2). This dataset contains 5031 datapoints, with 90 % used for
training and 10 % for validation. The covered heating times theat in this dataset range from
no heating – corresponding to a large condensate – to high heating times that surpass the
phase transition, as illustrated in Fig. 5.7. During training, the dataset is randomly shuffled
and divided into batch sizes of 20. The autoencoder is trained over 15 epochs using the Adam
optimizer [192] with a learning rate of 4 × 10−4, after which the loss converges, as shown in
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Input image

Good output Capped output Grid output

Good residuals Capped residuals Grid residuals

Figure 5.12: Output and residuals of the autoencoder network. The figures shows an output image
along with its residuals with respect to its input image for a proper and two problematic network
architectures. The first image shows the “good output” if the network has no major isses and the
output resembles the input image as close as possible. On the cortrary, the network is not able to
reproduce the input image, if the activation functions are not chosen properly (“capped output”) or if
the strides parameter of the transposed convolutional layers do not fit the kernel size (“grid output”).
All output images and residuals have the same colourscale, respectively.

Fig. 5.19.
Following training, the decoder part is stripped off the autoencoder, and the encoder is

used as a standalone network. Now, the output from the encoder provides a low-dimensional
representation of the input dataset through the bottleneck layer. The coordinate system
spanned by the two bottleneck neurons is the latent space.

Fig. 5.13 provides an overview of the latent space for all input images, where colour denotes
the magnetic field (left) or the heating time theat (right). In the latent space, each TOF image
corresponds to one datapoint, defined by the coordinate (Neuron1,Neuron2). Interestingly,
the autoencoder organises images in the latent space along lines associated with distinct
magnetic fields, which correlate with the interaction parameter. Along these lines, the images
are sorted by heating time theat, which serves as a measure of the temperature of the gas
(refer to Fig. 5.2). Remarkably, the autoencoder is not provided with any information about
these quantities; it learns to infer these properties of the samples purely from the structure
in the TOF images.

The lines for different magnetic fields appear to converge to a small region in the upper
left corner of the latent space as the temperature increases. For lower temperatures, the
images are more widely dispersed across the latent space, varying in location by magnetic
fields. This behaviour is expected, as the latent space tends to cluster similar images, such
as hot Fermi gas, closer together [8]. In other words, the autoencoder perceives minimal
differences in TOF images with respect to interactions when the gases are hot and devoid of

98



5.5 Autoencoder - Unsupervised detection of the superfluid phase transition

0.0 0.1 0.2

Neuron 1

−0.20

−0.15

−0.10

−0.05

0.00

0.05

N
eu

ro
n

2

0.0 0.1 0.2

Neuron 1

Hot720 770 820 870 920

Magnetic Field / G

Cold

Temperature

Figure 5.13: Latent space representation of the neural network dataset. The figure showcases the
latent space distribution of the TOF images from the neural network dataset. The latent space is
spanned by Neuron 1 and Neuron 2 from the bottleneck layer. Each datapoint corresponds to one
TOF image. Left: The colour highlights the magnetic field of the corresponding TOF images. Right:
The colour denotes the heating time theat of the TOF images. The temperature scale is qualitative,
since every magnetic field series has a different range of heating times. Note that the autoencoder
neither has information about the magnetic field or the heating time, but learns to sort the data in
the latent space by nothing but the momentum distribution in TOF. Figure adapted from [68].

condensation. Cold gases with finite condensation, in contrast, exhibit more variation across
different interactions, occupying a larger region in the latent space.

This behaviour alone is intriguing, as it suggest that the autoencoder can distinguish
between temperature and interactions solely based on TOF images. A more quantitative
discussion about the second-order superfluid phase transition, however, requires a deeper
understanding of how data is arranged in the latent space. As demonstrated with the
supervised neural network in Fig. 5.7, the phase transition manifests as a sharp onset of
condensation at a specific heating time. Features in the arrangement within the latent
space are expected to be more subtle, since the second-order phase transition does not
directly alter the density distribution in TOF images but rather emerges as a discontinuity
in derivatives of the energy, e.g., the heat capacity or the compressibility [165]. To identify
features corresponding to the second-order phase transition, subtle trend changes in the
arrangement of data within the latent space must be examined.
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Finding trend changes in the latent space

Following a single magnetic field line from hot to cold samples in Fig. 5.13 suggests that
the line is not described by a single straight line but rather follows a more complex curve.
Especially, strong bending is observed for the coldest samples. However, the bending at
the smallest temperatures can not be attributed to the phase transition, as the supervised
analysis in Fig. 5.7 clearly indicates a substantial remaining condensate at these temperatures.
Similarly, the hottest samples might exhibit additional structure in the latent space, although
this is less pronounced due to the smaller area in the latent space occupied by hot gases. The
most critical area to be examined is centred around the critical heating time that has been
determined via the supervised analysis, omitting the coldest and hottest samples. Further
details regarding the trimming of data in the latent space is presented in Fig. 5.15.

To identify trend changes, the coordinates in the latent space are averaged for the ∼ 13
recorded repetitions per unique combination of magnetic field and heating time. Afterwards,
the data for each magnetic field is shifted and linearly transformed, while preserving angles,
to emphasize trend changes in a transformed coordinate system. The transformation shifts
the data such that the coldest point is fixed to (0, 0). Next, the data is rotated to turn the
hottest point to the coordinate (x, 0). Finally, the whole data is scaled by a factor 1/x to
bring the hottest point to the coordinate (1, 0). This way, the temperature is increasing from
(0, 0) to (1, 0), making any trend changes visible as deviation from the x-axis.

A plot of the transformed latent space is shown for four exemplary magnetic fields in
Fig. 5.14. Note, that each datapoint in the transformed latent space corresponds to the
average position of ∼ 13 recorded images. In the transformed latent space, it becomes clear
that the data is not described by a single linear line, but by the adjoint combination of two
piecewise linear segments.

To determine the trend changing position, we fit a piecewise linear function to the data

∆f(x) =
{
a1 (x− x0) + b if x ≤ x0
a2 (x− x0) + b if x > x0,

(5.2)

with a1 and a2 being the slopes of the two segments, and b being the value of the trend
changing position along the axis of Neuron II. The function is fitted to the data in the latent
space spanned by Neuron II and Neuron I, so x0 gives the position of the trend changing
position along the axis of Neuron I.

Since the data is ordered by the heating time theat, the trend changing position corresponds
to a critical heating time τC. To determine the critical heating time τC, we average the
heating time of the three closest datapoints to the trend changing position. Afterwards, we
use the results of the thermometry in Fig. 5.2 to map the critical heating time to the critical
temperature of the sample.

Statistical variation

During training, we notice that while the latent space consistently resembles the latent space
from Fig. 5.13, different training iterations can produce flipped or rotated latent spaces.
Although these latent spaces share a similar overall shape and can be transformed to appear
more alike, they vary slightly in the precise distribution of data. These variations arise from
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Figure 5.14: Determination of the trend changing position from the latent space. The figure depicts
the transformed latent space for four exemplary magnetic fields. Each datapoint is the average position
of ∼ 13 images. The trend changing position is fitted by two piecewise linear segments (grey line),
which are connected at the trend changing position (red dot).

the statistically variable nature of the training process, influenced by factors such as randomly
initialised network weights, finite-sized and randomly shuffled training datasets, as well as
stochastic gradient descent. To mitigate the effect of statistical outliers on the determined
critical heating times, we train a batch of 173 models instead of relying on a single trained
model.

In Fig. 5.15 we show four different transformed latent spaces for four distinctly trained
models, shown for a magnetic field of 835.8 G. While the latent space generally indicates a
noticeable trend changing position, some models exhibit much less pronounced trend changes.
This results in a variation of the determined critical heating times τC.

In total we train 173 models and omit only one model due to a non-converged loss after
training. Among the remaining 172 models, we discard another 33 fits out of a total of 2408
fits across all models and magnetic fields. The discarded fits have determined critical heating
times at the edges of the trimmed latent space, and can not be considered trend changes.
These fits mainly belong to fields close to 1/(kFa) ≈ 0.5, where the trend change is less
pronounced (refer to Fig. 5.13).

A histogram of the determined critical heating times τC is shown in Fig. 5.16 along with
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Figure 5.15: Statistical variation of the latent space after training different models. The figure depicts
the transformed latent space for four distinctly trained autoencoder models, shown for the same
magnetic field in each plot. Each datapoint is the average position of ∼ 13 images. The trend changing
position is fitted by two piecewise linear segments (grey line), which are connected at the trend
changing position (red dot).

the critical heating times from the supervised analysis in Fig. 5.8. The histogram reveal
a less sharp determination of the critical heating time as compared to supervised analysis
in Section 5.4. However, for most fields, a specific critical heating time has a pronounced
abundance. To continue the analysis, we calculate the mean and the standard error of the
mean from the histograms, presenting our results for the critical heating time τC at each
magnetic field.

An overview of the determined critical heating times is given in Fig. 5.17. While the
results for most magnetic fields align closely with those from the supervised analysis, some
discrepancies and larger standard errors are evident. For example, stronger deviations occur
at fields closer to the BEC limit. This may be attributed to the small critical heating times of
< 1 ms, shown in Fig. 5.7. At such brief heating times, trend changes at lower temperatures
could be obscured by the limited amount of datapoints below the phase transition. Additional
deviations occur around 1/(kFa) ∼ 0.5, particularly at a magnetic field of 803.4 G.

The fit of the trend changing position is performed via a piecewise linear fit of two linear
segments, as described by Eq. (5.2). Accordingly, the trend changing position can manifest
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Figure 5.16: Histograms of critical heating times acquired with the autoencoder. The figure shows
the abundance of each fitted critical heating time throughout the 172 analysed autoencoder models
(blue bars) for each analysed magnetic field. The data range for fitting has been limited to the grey
dashed lines. For comparison, the results from the supervised analysis in Fig. 5.8 are shown (red
vertical line).

at positive or negative values of Neuron II. At the problematic fields, the orientation of the
trend changing position changes sign, which is connected to a weakly pronounced trend
change. Furthermore, these fields exhibit the smallest variation in temperature and Fermi
temperature with respect to the heating time, as shown in Fig. 5.2. All of these effects can
obscure the detection of trend changes.

Next, the critical heating time is used to determine the critical temperature of the superfluid
phase boundary.

Trimming the data range

As shortly motivated in the previous section Section 5.5.2, the latent space is trimmed before
it is transformed to the latent space shown in Fig. 5.14. Trimming is motivated by the fact,
that the autoencoder has not been trained to actually detect the phase transition, but instead
to compress information about the phase in the latent space. Consequently, the latent space
may contain information about various features that the network deems important, not just
the relatively weak signals of the second-order superfluid phase transition.

To isolate trend changes associated with the second-order phase transition, other features
that could obscure this signal must be removed. Looking at Fig. 5.13, lines of equal magnetic
field suggest pronounced bending for very cold samples, where the samples have a large
condensate fraction, as shown in Fig. 5.7. The reason for this bending is unclear, as the
autoencoder only compresses the images in a low-dimensional, abstract space. However, one
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Figure 5.17: Critical heating times in the BEC-BCS crossover. The figure shows the determined
critial heating times τC from the autoencoder analysis (red points and blue diamonds) along with the
results from the supervised analysis (black squares) from Fig. 5.8. The results from the autoencoder
are the mean values from Fig. 5.16 with errors denoting the standard error of the mean.

possible explanation for this bending could be the significant increase in condensate faction
at magnetic fields of 759.1 G or 775.8 G for very cold samples, as seen in Fig. 5.7.

Fig. 5.18 displays the latent space for a field of 775.8 G, where we have measured the largest
critical heating time in Fig. 5.17. The figure shows the latent space in three different forms:
untransformed (left), transformed without trimming (middle), and transformed and trimmed
(right). The untrimmed latent space does not yield a reasonable critical heating time τC.
Instead, the most prominent trend change occurs for very cold samples, suggesting a critical
heating time around ∼ 4 ms. Comparing this to the predicted CF in Fig. 5.7 suggests that
this early trend change (at CF ∼ 0.1) could be linked to deviations associated with larger
condensate fractions, which also appear at < 4 ms.

By trimming the latent space around the phase transitions identified in Fig. 5.7, the fitting
procedure is locked to concentrate on the trend changes connected to the superfluid phase
transition.

Latent space in 3D

An open question remains regarding the architecture of the autoencoder neural network
described in Table 5.2. Initially, we assume that two neurons in the bottleneck layer are
sufficient for reducing the dimensionality of the input dataset. However, this could be a naive
oversimplification, and further exploration is needed to justify using only two neurons in the
bottleneck.

To test the influence of differently sized bottlenecks, we have trained similar networks
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Figure 5.18: Latent space without trimming. The figure shows the latent space for an exemplary
model at a field of 775.8 G. Left: shows the untransformed and untrimmed latent space as in Fig. 5.13.
Centre: Transformed but untrimmed latent space. Right: Trimmed and transformed latent space
along with a fit of the trend changing position as shown in Fig. 5.14.

but with differently sized bottleneck layers. In a first test, the bottleneck can be chosen to
be just a single number or neuron. Despite this, the autoencoder converges and learns a
representation capable of decoding the single value into convincing outputs. On the other
extreme, we could increase the bottleneck to a size of ten neurons. Naturally, this network is
also able to produce convincing outputs.

A straightforward way to quantitative evaluate the impact of additional neurons in the
bottleneck is to assess how well the output matches the input, or in other words, how small
is the remaining loss after training is completed. The loss function for differently sized
bottleneck layers is shown in Fig. 5.19. While a 1D bottleneck has a slightly higher loss,
adding more than two neurons does not significantly reduce the final loss value. Thus, a
two-dimensional bottleneck already appears sufficient to encode most of the information from
the TOF images.

To further understand what features an additional dimension might capture, we have
trained an autoencoder with a three-dimensional bottleneck, which otherwise exactly resembles
the architecture in Table 5.2. After training, the 3D latent space is plotted in Fig. 5.20.
Although the data now spans three dimensions, the latent space shows the appearance of
a two dimensional data distribution on planes in the latent space. We find that the two
datasets in the neural network dataset (refer to Section 5.3.2) are actually distributed on two
slightly offset but closely aligned planes. This is not unexpected, as small changes to the
system can now be resolved by the third dimension. To analyse the planes, both the “BEC”
and “BCS” datasets are fitted to a plane equation, respectively, using principal component
analysis (“PCA”) [196].

PCA involves calculating the covariance matrix of the centred 3D data distribution. The
principal axes, represented by the eigenvectors of the covariance matrix, define the directions
of maximum variance. Here, the eigenvector corresponding to the smallest eigenvalue indicates
the normal vector to the plane that best fits the data. The spread of datapoints away from
this plane can be quantified by the ratio of the smallest eigenvalue to the norm of the
eigenvalues of the other two principal axes. This results in a spread (or thickness) between
1 % and 5 %, depending on the training iteration.

Fig. 5.20 confirms that the datasets align well with distinct planes. After fitting the planes,
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Figure 5.19: Training losses for different bottleneck sizes. The figure shows the training loss for
differently sized bottleneck layers after a certain amount of training epochs. The figure has been
adapted from [134].

Figure 5.20: Latent space of a 3D bottleneck. The figure shows the 3D latent space from an autoencoder
neural network with a 3D bottleneck layer. The used dataset is the same as in Fig. 5.13. Two distinct
planes for the “BEC dataset” (left) and “BCS dataset” (right) are fitted to the 3D data distribution
via PCA.
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5.5 Autoencoder - Unsupervised detection of the superfluid phase transition

the 3D data is projected onto their respective plane, recovering a two-dimensional latent
space. The exemplary projection of the “BCS dataset” is shown in Fig. 5.21. From this
two-dimensional representation, the same fitting procedure as discussed in Section 5.5.2 can
be used to identify the critical heating time based on trend changes as shown in Fig. 5.21.
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Figure 5.21: Plane projection of the 3D latent space. Left: The figure shows the projection of the 3D
data (“BCS”) from the 3D latent space in Fig. 5.20 onto their respective plane. Right: Afterwards,
the same fitting procedure as described in Fig. 5.14 is used to fit the critical heating time from the
trend changing position.

In conclusion, a two-dimensional bottleneck suffices in capturing the trend changing features
in the latent space, associated with the second-order phase transition. For higher-dimensional
bottlenecks, the trend changing features can be effectively reduced to a two-dimensional
plane, yielding consistent results.

5.5.3 Critical temperature

Finally, the critical heating times conducted from the trend changing positions in Fig. 5.17
can be used to calculate the critical temperature. Exactly as shown in Fig. 5.9, we calculate
the critical temperature by deducing the temperature TC and Fermi temperature TF at the
critical heating times τC in Fig. 5.2.

We show the determined critical temperature from the autoencoder analysis along with the
results from the supervised analysis in Fig. 5.22. Our results reveal the critical temperature
in the strongly interacting regime of −0.40 < 1/(kFa) < 0.98. We find overall good agreement
with the extended Gor’kov-Melik-Barkhudarov theory [19]. Towards the BCS limit, our
results support higher temperatures, predicted by the t-Matrix approach in [45], which exceed
the quantum Monte Carlo results in [47]. Around unitarity and the BEC side of the crossover,
our findings align well with the quantum Monte Carlo results in [128].
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Figure 5.22: Critical Temperature in the BEC-BCS crossover via the autoencoder neural network.
The figure presents the results of the superfluid critical temperature, which were determined via the
autoencoder neural network (downright triangles) [68], shown alongside with our results from the
(supervised) deep convolutional neural network (circles) [67]. The errorbars comprise the standard
error as well as a dominating 5 % uncertainty due to anharmonicities of the trapping potential (refer to
Section 4.2.1). Several theoretical calculations of the critical temperature TC/TF are shown alongside
the results. In the limits, the analytical results for the weakly interacting BEC (Eq. (2.13)) (dotted
line) and the exponentially decaying BCS result with GMB correction (Eq. (2.25)) (dashed line) are
shown. Across unitarity, an extended GMB correction [19] (solid line) and a self-consistent t-matrix
approach [45] (dashed-dotted line) are illustrated. Additionally, two quantum Monte Carlo results
(circles [128] and upright triangles [47]) are presented.

Conclusion – supervised vs. unsupervised

Overall, our findings closely match several theoretical predictions [19, 45, 128] and the results
from our supervised analysis in Fig. 5.9 [133]. Therefore, we conclude that the trend changing
position indeed represents a feature of the second-order phase transition, encoded by the
autoencoder neural network. However, the autoencoder analysis generally displays higher
uncertainty, reflecting the washed out analysis due the broader, statistical distribution of
trend changing position, observed in the histograms in Fig. 5.16.

In conclusion, we successfully detect the superfluid phase transition in a strongly interacting
Fermi gas from a model-free analysis, relying solely on the momentum distribution in TOF
images. This marks the first detection of the superfluid phase transition across a wide
range of interaction parameters in the strongly interacting regime of the BEC-BCS crossover,
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achieved without the use of the rapid ramp (RR) technique. While providing an alternative
perspective on the determination of the phase boundary, this approach also validates our
previous methodology using the RR, and also gives confirmation for the first experimental
observation of an increasing critical temperature from the BCS limit, beyond the unitarity
point toward the BEC limit.

5.5.4 DeepLift in an autoencoder

In Section 5.4.4, we have employed the DeepLift library [200] to analyse the supervised deep
convolutional neural network and to determine importance scores for the activation map of
the input layer, that are the TOF images. The DeepLift library has allowed us to assess
the physical relevance of momentum bins in TOF images to the predictions of condensate
fractions CF , shown in Fig. 5.10. This analysis provides insights into how the neural network
prioritises regions of the cloud that are likely influenced by pairing statistics, as illustrated in
Fig. 2.6.

Here, we aim to explore whether a similar approach can enhance our understanding of
the autoencoder neural network. Unlike the supervised neural network from Section 5.4.4,
the autoencoder lacks the straightforward choice of an output neuron for determining the
importance scores of the input neurons. In the bottleneck, two such neurons can serve this
purpose. To proceed, we split the trained network into the encoder and decoder, as done
in Section 5.5.2, using the encoder with the bottleneck as its output to apply the DeepLift
library.

For the DeepLift analysis, we must select an output neuron. Without a clear indication
of which output neuron is more significant, we conduct the analysis on both bottleneck
neurons. The resulting importance scores as a function of the momentum bins k/kF is shown
in Fig. 5.23 for the coldest images, without any heating. Note, that the calculation of the
momentum bins and importance scores is done exactly as introduced in Section 5.4.4.

While the interpretation of these importance scores is less straightforward than in Sec-
tion 5.4.4, we aim to understand how the autoencoder differentiates superfluids from normal
phase momentum distributions. In the latent space, the autoencoder cluster the coldest
(condensed) samples for different interaction parameters (magnetic fields) across a wider
region of the latent space, while hot (thermal) gases occupy a more concentrated and smaller
area (refer to Fig. 5.13). The key question is: what pixels or regions in the TOF images most
influence the autoencoder to assign an image to the region of cold (condensed) gases or the
region of hot (thermal) gases?

Indeed, for the coldest samples, the network prioritises lower momenta for samples on the
BEC side of the crossover, whereas for samples further on the BCS side, higher momenta
gain importance, as low momenta decrease in relevance. Although the results are not as
distinct as in the supervised neural network analysis in Fig. 5.10, these findings further
suggest that the autoencoder learns essential (physics-based) concepts, such as temperature
and interaction strength (magnetic fields), simply by extracting features from the TOF
momentum distributions. Here, the DeepLift analysis suggests that the network leverages
physical signatures of pairing in order to learn these concepts.
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Figure 5.23: DeepLift analysis of the autoenocoder neural network. The importance score of pixels in
the input image is determined via the DeepLIFT library [200] for both bottleneck neurons (left and
right image). To this end, only the coldest samples without any heating time from the training dataset
are analysed. Pixels are correlated with their momentum after 5 ms of TOF, omitting interactions.
Both axes are normalised with the Fermi momentum kF, corresponding to a harmonic trap with N
atoms.

5.6 Conclusion

In this chapter, we have developed two distinct neural network architectures to detect the
superfluid onset in a strongly interacting Fermi gas across the BEC-BCS crossover. Both
architectures infer signatures of superfluidity directly from the momentum distribution in
corresponding time-of-flight (TOF) images – usually too faint for conventional fitting methods
– enabling us to determine the superfluid phase diagram without relying on the conventional
rapid ramp (RR) technique.

The first architecture employs a deep convolutional neural network trained in a supervised
manner on labels of the condensate fraction CF , determined from corresponding measurements
using the RR. During training, data near the phase transition are masked, preventing the
network from overfitting to labels from the RR that suffer from low signal-to-noise ratio at
a diminishing CF . After training, the network can predict the condensate fraction directly
from TOF images without the RR, allowing us to determine the critical point of vanishing
CF .

By measuring the in-situ 3D density distribution (refer to Section 4.2.1) at the critical
point, we deduce the critical temperature TC/TF (refer to Section 4.2), which enables us to
map the superfluid phase diagram in the BEC-BCS crossover with unprecedented accuracy.
Our results experimentally show, for the first time, an increase in TC/TF from the BCS
side beyond unitarity, with a maximum on the BEC side of the crossover. In the strongly
interacting regime, our results show a striking resemblance to the extended GMB theory in
[19].

Remarkably, we have found evidence that the neural network has developed a physics-based
understanding of pairing using the DeepLift library [200]. An analysis with this library
suggests that the network considers pixels at the centre of the cloud more important for
the prediction of the CF in the BEC limit, with the relevant region shifting outwards as
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one approaches the BCS side of the crossover, in line with the mechanism of pairing in the
BEC-BCS crossover (refer to Fig. 2.6).

The second network architecture employs a deep convolutional autoencoder neural network
– an unsupervised machine learning technique. Unlike the first network, the autoencoder does
not require labelled data and instead infers information about the superfluid phase transition
from structure in the available data. To this end, the autoencoder is trained to encode and
decode a TOF dataset into and from a low-dimensional latent space, aiming to approximate
the unity function. After successful training, the autoencoder maps different input images to
distinct regions of the latent space, effectively compressing significant features of the input
data into coordinates within this space.

Interestingly, the autoencoder organises data by temperature and interaction, despite only
being provided with TOF images. Analysing the structure of data in the latent space reveals
a change in trend around the expected superfluid critical temperature.

Deducing the temperature at these trend changing positions provides an alternative
approach to constructing a phase diagram, entirely independent of the RR technique. Despite
higher uncertainties, we have found very good agreement with the superfluid phase diagram
obtained from our first network architecture and with the extended GMB theory in [19].
Thus, the phase diagram from the autoencoder serves as validation of our methodology,
further supporting the observed increase of TC/TF towards the BEC side of the crossover.
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CHAPTER 6

Observing the Higgs mode in a strongly
interacting Fermi gas

This chapter presents the results of our study on non-equilibrium effects in a perturbed,
strongly interacting Fermi gas. By applying controlled perturbations in a strongly interacting
Fermi gas, different modes can be excited. In the low-frequency regime, these modes are
primarily driven by collective trap dynamics, such as dipole and quadrupole modes, with
frequencies on the order of the trap frequency [8]. At higher frequencies, more intriguing
collective modes emerge, such as the Goldstone and Higgs modes (introduced in Section 2.3.4),
alongside with well-understood single-particle excitations at similar frequencies. The Higgs
mode, in particular, remains poorly understood in the strongly interacting regime, largely
due to the challenges involved in exciting this mode. In this thesis, we employ two distinct
techniques to excite and observe the Higgs mode.

To achieve this, we examine the response of a strongly interacting Fermi gas under these
two excitation methods. Both methods are implemented by a rapid change in a superimposed
magnetic field, applied through the custom-built small magnetic field coil, introduced in
Section 4.5.1. Using this approach, we aim to drive the Fermi gas out of equilibrium, effectively
inducing the Higgs mode [73]. In general terms, a sufficiently rapid change in the magnetic
field shifts the equilibrium parameters of the system faster than the gas can respond.

In the framework of a superfluid Fermi gas, the system is represented by the Mexican
hat potential introduced in Section 2.3.4. After initial preparation, the system resides in an
equilibrium state, characterised by the equilibrium order parameter ∆eq, which corresponds
to the minimum free energy of the system. Excitations of the order parameter ∆ are induced
by driving the system out of equilibrium, achievable by modifying the underlying Mexican
hat potential. To this end, the magnetic field B is altered using the small magnetic field
coil, which directly influences the scattering length a via the Feshbach resonance (refer
to Section 2.2.2). This adjustment modifies the interaction parameter 1/ (kFa), effectively
manipulating both the Mexican hat potential and the equilibrium order parameter (refer to
Fig. 2.5). Broadly, this approach allows for two distinct excitation methods [79]: quenching
or modulating the magnetic field.

The first method, illustrated on the left side of Fig. 6.1, involves a sudden quench of the
magnetic field, driving the system out of equilibrium. In an early theoretical work [73], the
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Figure 6.1: Employed excitation schemes to probe the Higgs mode in a superfluid. The sketch
illustrates the two excitation schemes used in this chapter to excite a fermionic superfluid. Both
panels depict the Mexican hat potential in terms of the free energy F as a function of the order
parameter ∆/∆eq for an arbitrary phase, similar to Fig. 2.8. Before introducing perturbations, the
system (red dot) is described by an order parameter ∆, which is at the equilibrium position ∆′

eq of
the Mexican hat potential, i.e. the potential minimum. Perturbations alter the Mexican hat potential
and its equilibrium state (blue arrows). Left: Following a sudden shift in the Mexican hat potential
(blue arrow), the new equilibrium value ∆eq changes, but the order parameter of the system does not
immediately adjust, creating a deviation ∆ ̸= ∆eq. This deviation, shown by the lifted free energy of
the system (red arrow) to an out-of-equilibrium state, induces oscillations (double headed red arrows)
in the order parameter – the Higgs mode. Right: In a parametric excitation scheme, the Higgs mode
is probed by modulating the equilibrium order parameter ∆eq (blue arrow), forcing oscillation in the
system (red arrow) and enabling a spectroscopic measurement of the Higgs mode.

system’s response to a very small quench has been shown to be oscillations of the order
parameter at twice the frequency 2∆/ℏ of the order parameter. In the same work, it has been
found that these oscillations are damped with a power-law decay of t−1/2 in the BCS limit.
These oscillations have been identified later with the Higgs mode [70, 213, 214]. Exciting this
mode, however, requires a quench of the system on a timescale shorter than system’s intrinsic
Fermi time tF = ℏ/EF, which is approximately 20 µs in our experiment. In this work, the
required rapid timescale is achieved by quenching the magnetic field with the custom-built
small magnetic field coil, introduced in Section 4.5.1.

The observed quench dynamics are reported in Section 6.2. Following the quench, we
observe oscillations in the order parameter, manifesting as oscillations in the condensate
fraction CF . From these, we derive the oscillation frequency and quality factor as a measure
of the damping rate. This research has been conducted within the course of this thesis and
comprises the main results of my colleague Moritz Breyer’s PhD thesis [135], and hence
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the experiments and analysis were mainly carried out by him. A preprint on this work is
available in [101], and currently under review at SciPost Physics. My contributions include
data acquisition, discussions and interpretation of the results.

The second method, illustrated on the right side of Fig. 6.1, involves parametric excitations
of the order parameter by modulating the magnetic field with the custom-built small magnetic
field coil. If the frequency of the modulation νmod approaches the resonance ωH = 2∆/ℏ, the
Higgs mode allows for more energy to be pumped into the system. This results in a promoted
decay of the condensate, which is directly observable in the condensate fraction CF after a
rapid ramp, enabling a spectroscopic probe of the Higgs mode.

The results of the modulation experiments are presented Section 6.3 and are now published
in [100]. This work began shortly before the works on this thesis, and was primarily conducted
by my colleague Andreas Kell [134]. My contributions include data acquisition, discussions
and interpretation of the results.

Outline of this chapter

In this chapter we will give an overview of the methodology and results of both methods.
To put our observed results into context of the expected dynamics in the given system, the
chapter is outlined as follows:

• Section 6.1: In the first section, we will present a theoretical local-density approximation
(LDA) framework for the expected Higgs mode oscillations in an inhomogeneous trapping
potential. In LDA, the Higgs mode is composed of many effective homogeneous
oscillators, superimposing to make up the total oscillation. This presents an comparison
to the homogeneous case, in which the expected Higgs mode frequency can easily be
calculated. We will use this framework to judge the influence of the inhomogeneity on
our observed results.

• Section 6.2: Here, we report on our results of the first proposed excitation method –
quenching the superfluid. We start by introducing the experimental implementation,
discuss the observed dynamics and compare our results with the developed LDA
framework.

• Section 6.3: In the next section, we present our results of the second proposed excitation
method – parametric excitations of the superfluid. Again, we start by introducing the
experimental implementation, discuss the observed promoted decay of the condensate
and compare our results within the developed LDA framework alongside a recent
experimental study [75].

• Section 6.4: In the last section, we compare and discuss the results between the two
employed excitation techniques – quenches and parametric excitations.

More details are given in the corresponding theses [134, 135] and publications [100, 101].
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Chapter 6 Observing the Higgs mode in a strongly interacting Fermi gas

6.1 Higgs mode in an inhomogeneous trap

In most studies – unlike our experiment – the Higgs mode is examined in homogeneous
systems, which are described by key parameters: the Fermi energy EF and order parameter ∆.
A possible setup for creating a homogeneous sample is presented in Appendix A, which might
be employed in future endeavours (see Section 8.2.1). Parallel to this work, the Higgs mode
has been investigated in an inhomogeneous sample after a quench using Bragg-spectroscopy
[75]. In that approach, the focused Bragg beams probe a small, quasi-homogeneous region of
the sample, effectively reducing the observation to a homogeneous Higgs mode in the centre
of the trap.

In our experiment, however, we probe the entire inhomogeneous sample, a consequence of
our excitation method. As proposed in [215], the inhomogeneity of the trapping potential
can lead to a broader “spectrum” of Higgs mode oscillations, which can be described using a
theoretical local-density approximation (LDA) framework. Within LDA (refer to Section 2.4),
the Higgs mode in a homogeneous system can be mapped onto an inhomogeneous system by
introducing a spatially varying Fermi energy EF(r) and order parameter ∆(r) as functions of
the position r.

To explore the expected Higgs mode oscillations, we begin by considering the Higgs mode
in the simplest case – a homogeneous cloud. From this basis, we apply the LDA to extend
known relations to an inhomogeneous trap, as motivated by [215]. This approach is expected
to yield a broadened spectrum compared to the homogeneous cloud, which may account for
deviations in our observed results.

6.1.1 Homogeneous trap

The Higgs mode is identified by an oscillation of the order parameter ∆ at twice its frequency,
ωH = 2∆/ℏ [73]. More specifically, the time evolution of the order parameter following a
quench of the system’s Hamiltonian is given by the time-dependent Bogoliubov-de-Gennes
equation [79, 215]. These calculations reveal an oscillation of the order parameter with a
frequency given by

ωH =

2∆/ℏ if µ ≥ 0
2
√

∆2 + µ2/ℏ if µ < 0,
(6.1)

with the frequency depending on the chemical potential µ if µ < 0.
To estimate the frequency of the Higgs mode ωH, the order parameter ∆ of the system

must be know. In a homogeneous gas at zero temperature, the Higgs mode frequency can
easily be calculated using the detailed results for ∆ and µ across the crossover, as given in
[45] and shown in Fig. 2.5. In this scenario, the order parameter of the entire cloud oscillates
uniformly.

Calculating the Higgs mode frequency becomes more complex at finite temperature T ̸= 0.
Both the order parameter ∆ and chemical potential µ have a temperature dependence. In
the BCS limit, only the temperature dependence of the order parameter is relevant for the
Higgs mode, which is known [8] and shown in Fig. 6.2. This suggests that the Higgs mode
vanishes as the gas approaches the superfluid critical temperature TC.
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Figure 6.2: Temperature dependence of the gap parameter. The figure depicts the temperature
dependence of the gap parameter ∆(T ) in the BCS limit, compare to Fig. 2.5. The temperature T is
given in terms of the superfluid critical temperature TC. Data from [8].

6.1.2 Inhomogeneous trap

In an inhomogeneous trapping potential, the situation becomes notably more complex. Here,
the definition of the Higgs mode in an homogeneous system is extended to the inhomogeneous
system within an LDA framework, by assuming a distribution of independent Higgs mode
“oscillators” throughout the trap. In this framework, each oscillator oscillates independently
with its locally defined order parameter 2∆(r) = 2(∆/EF)EF(r) at the local Fermi energy
EF(r), where (∆/EF) is given by the results in Fig. 2.5.

The integrated signal from all these oscillators constitute the full spectrum of the inhomo-
geneous system, resulting in a significantly broadened spectrum compared to the homogeneous
gas. This broadening can be interpreted as a dephasing of the distinct oscillators, leading to
a faster decay than the expected power-law decay of t−1/2 in the BCS limit [73].

This concept, inspired by [215], has been implemented by Moritz Breyer [135] to model the
Higgs mode spectrum for the recorded inhomogeneous density distributions in our experiment.
This section provides an overview of the calculated model; further details are available in
[135].

The spectrum S(ω) of the inhomogeneous sample is given by an integral over all possible
Higgs mode frequencies ωH

S(ω) =
∫

dωHg(ωH) γ(ω, ωH) , (6.2)

where g(ωH) is the density of oscillators and γ(ω, ωH) represents the linewidth of each
individual oscillator. Both terms are discussed in the following parts of this section.
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Chapter 6 Observing the Higgs mode in a strongly interacting Fermi gas

Density of oscillators

The density of oscillators g(ωH) = ∂N̄(ωH)
∂ωH

is defined by the number of oscillators N̄ =∫ ωH
0 dω′

HNω
′
H

up to a given Higgs mode frequency ωH. Here, Nω
′
H

denotes the number of
oscillators in an infinitesimal frequency range around the Higgs mode frequency ω′

H. This is a
consequence of the inhomogeneous density distribution n(r), where each value of the density
has a distinct Higgs mode frequency ωH(r), defined by the local Fermi energy EF(r) ∝ n(r)2/3

within LDA (refer to Section 2.4). Given the spatial variation of the local Higgs mode
frequency ωH(r), the density of oscillators can be expressed as

g(ωH) = ∂N̄(ωH)
∂ωH

⇔ g(ωH) = ∂N̄(ωH)
∂ωH

= ∂N̄(r)
∂r

∣∣
r=r(ωH)

∂r

∂ωH
.

(6.3)

In the last step, the derivative has been separated into a spatial derivative of the number
of oscillators ∂N̄(r)

∂r , as well as an derivative of the inverse function of the locally changing
Higgs mode frequency ∂r

∂ωH
. Both of these terms can be derived from the measured density

profiles n(r) as N̄(r) =
∫ r

0 4πr2n0(r)† and ωH(r) = 2∆(r)/ℏ = 2(∆/EF)EF(r) /ℏ, with the
order parameter (∆/EF) throughout the crossover being shown in Fig. 2.5 and calculated by
[45]. Note that this integral considers a density of atoms participating in the Higgs mode
n0(r) ∝ n(r), which is different from the density of atoms n(r). This distinction will be
explored further in the next part of this section. The first term of g(ωH) is evaluated at the
position r = r(ωH), corresponding to the position in the trap, where the local Higgs mode
frequency is given by ωH.

Temperature dependence

Thus far, the density of oscillators g(ωH) has been considered for a zero-temperature sample,
utilising the established results for the order parameter at zero temperature across the
crossover, as shown in Fig. 2.5. In the experiment, however, we induce oscillations in a sample
at a finite temperature, well below the superfluid critical temperature, with T/TC ≈ 0.1. As
suggested by Fig. 6.2, this finite temperature introduces variations in the observed Higgs
mode frequency.

We account for finite temperature in the LDA model by incorporating the known tem-
perature dependence of the gap parameter in the BCS limit, as shown in Fig. 6.2. For this
purpose, the entire cloud is assumed to be at a uniform thermalised temperature T , which is
inferred from the interaction parameter 1/(kFa) where the condensate fraction CF vanishes
[20, 135]. Due to the spatially varying Fermi energy EF(r), this results in a locally varying
reduced temperature (T/TF) (r). At a certain position in the cloud rC, the locally varying
reduced temperature matches the critical temperature TC/TF exactly. Consequently, only
atoms obeying r < rC participate in the Higgs mode within LDA.

†This integral is simplified. The conducted integrals consider the surface area of equidensity shells of the
elliptical density distribution
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6.1 Higgs mode in an inhomogeneous trap

This limits the atoms participating in the Higgs mode n0(r) ∝ n(r), by spatially confining
them to r < rC. However, this does not fully capture the whole picture of the temperature
dependence. For a more complete description, the atoms involved in the Higgs mode must be
weighted by a factor considering only the fraction of atoms that are part of the condensate.
This matches the description of the condensate fraction CF . From an experimental point of
view, the condensate fraction is treated as a global parameter, given by the integrated number
of atoms in the bimodal peak (refer to Section 4.3), and thus does not effect the shape of the
final Higgs spectrum S(ω). In the LDA framework, however, the condensate fraction CF
is considered to be spatially varying. To implement this spatial variation, the density n0
is scaled by the squared “wave-function” of the condensate, specifically the squared order
parameter |∆|2.

Finally, the density of oscillators g(ωH) is calculated by scaling the density of atoms
n0(r) by |∆(T )|2, obtained from Fig. 6.2. Additionally, the local Higgs mode frequency
ωH(r) = 2∆(T, r)/ℏ is scaled by the same temperature dependence. The resulting locally
varying terms are displayed in the top row of Fig. 6.3.

Linewidth

The final component needed to calculate the Higgs spectrum S(r) of the inhomogeneous
cloud is the linewidth γ(ω, ωH) of each individual oscillator. Already in the original work
of Volkov and Kogan [73], the Higgs mode in the BCS limit has been identified to have a
fundamental power-law decay of t−1/2. This power-law behaviour has been confirmed by
solution of the time-dependent Bogoliubov-de-Gennes equation [79]. Later, the damping has
been calculated to approach a more damped power-law dependence of t−3/2 in the BEC limit
[131].

Calculations based on the time-dependent Bogoliubov-de-Gennes equation in [216] suggest
that the transition from a BCS to BEC damping occurs relatively deep in the BEC regime, at
an interaction parameter of approximately 0.5 < 1/(kFa) < 1.5. In our experiments described
in Section 6.2 and Section 6.3, however, interactions beyond 1/(kFa) > 0.5 are not much
investigated due to the diminishing oscillation amplitude in the condensate fraction CF .
Therefore, we adopt the simpler power-law dependence of t−1/2 to model the Higgs spectrum.

Applying a Fourier transformation to the t−1/2 power-law dependence allows us to deduce
the linewidth of a single Higgs mode oscillator. In simplified form, the linewidth of an
oscillator with frequency ωH is given by [135]

γ(ω, ωH) =
√

π

8ωH|ω − ωH| . (6.4)

Henceforth, this linewidth is used to calculate the final spectrum S(ωH). This linewidth
is also shown as the red line in the lower panel of Fig. 6.3 for comparison to the broad full
spectrum.
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Chapter 6 Observing the Higgs mode in a strongly interacting Fermi gas

Spectrum

The final spectrum S(ω) is calculated for a given (measured) density distribution via the
integral in Eq. (6.2). Using the density of oscillators g(ωH) along with the linewidth of each
individual oscillator γ(ω, ωH), the total spectrum is obtained and shown in Fig. 6.3.
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Figure 6.3: Higgs spectrum in an inhomogeneous trap within LDA. The figure depicts the exemplary
calculation of a Higgs spectrum S(ω) via the LDA approach given in Eq. (6.2) for a sample at unitarity
1/(kFa) ≈ 0.0. As the most complete model, the shown spectrum considers finite temperature T ̸= 0
as well as a finite linewidth of a t−1/2 power-law dependence, given in Eq. (6.4). The local Higgs mode
frequency at the centre of the sample ωH(r = 0) is highlighted by a grey dashed line. Additionally,
the linewidth of a single oscillator at this frequency is shown by a red line and given by Eq. (6.4).
Upper left: Spatial shell density of the spectrum, including a temperature dependence by scaling with
|∆(T )|2, as shown in Fig. 6.2. Upper right: Locally varying Higgs mode frequency ωH(r) = 2∆(r)ℏ,
considering the same temperature dependence. Lower: Resulting spectrum S(r) (normalised) of the
inhomogeneous (measured) density distribution. Figure adapted from [135].

The spectrum is shown for an exemplary magnetic field at unitarity in the lower panel as a
blue line. For reference, the spectrum also includes the Higgs mode frequency corresponding
to the centre of the trap ωH(r = 0), as a grey dashed line, providing a benchmark for the
maximum expected frequency contributing to the overall spectrum S(ω). The resulting
spectrum illustrates that, due to the integration over all contributing local Higgs oscillators,
the centre of the spectrum shifts to significantly lower frequencies, as anticipated.

Additionally, the figure displays the linewidth of a single Higgs mode oscillator at the
centre Higgs mode frequency (see Eq. (6.4)), shown in red. A comparison of the linewidth of
the resulting spectrum with the power-law decay reveals a much broader spectrum due to
dephasing of the many partaking oscillators.
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6.1 Higgs mode in an inhomogeneous trap

Fourier transformation of the spectrum

The resulting spectrum is then Fourier-transformed to provide an expectation for the temporal
oscillations observed in Section 6.2, taking into account the trap’s inhomogeneity. In the
experiment, we study various quenches with different initial 1/(kFai) and final 1/(kFaf)
interaction parameters. Following these quenches, no immediate change in the density
distribution is observed, and therefore, the spectrum is calculated using the measured density
distribution at the initial interaction parameter 1/(kFai) [135]. The Fourier-transformed
spectra for different exemplary quenches are shown in Fig. 6.4.

For all displayed quenches, the shown temporal oscillations exhibit strong damping, with
the second peak already heavily suppressed. This results from the spectrum broadening or
dephasing, leading to a much more rapid decay than the t−1/2 power-law decay in the BCS
limit [215].

The least amount of discernible oscillations are seen on the BCS side of the crossover,
which is a consequence of the lower Higgs mode frequency (refer to Fig. 2.5). Towards the
BEC side, more oscillations become discernible, as the higher frequency allows for more
oscillations to fit into the same time frame before dephasing reduces the amplitude too much.
In the experiment, however, oscillations on the BEC side are expected to be significantly
suppressed due the vanishing of particle-hole symmetry on the BEC (refer to Section 2.3.4),
an effect not considered in the LDA model.
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Figure 6.4: Time dynamics from the LDA Higgs spectrum. The figure presents the ambiguous signal
(value) of the obtained Fourier transformations of the resulting spectra calculated in Fig. 6.3. Five
different time evolutions (dots) are shown for quenches of the interaction parameter 1/(kFai) →
1/(kFaf), comprising (from top to bottom) 0.27 → 1.08, 0.15 → 0.78, 0.04 → 0.54, −0.06 → 0.4,
−0.14 → 0.24. The signals for different quenches are vertically offset for clarity. Additionally, an
exponentially decaying sine wave is fitted to the resulting oscillations (solid lines), which yields the
expected oscillation frequency. Figure adapted from [135].
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Chapter 6 Observing the Higgs mode in a strongly interacting Fermi gas

In the end, the simulated (LDA) Higgs mode in both the frequency (refer to Fig. 6.3)
and time domains (refer to Fig. 6.4) provides an additional benchmark of the expected
spectrum and temporal oscillation to compare with our experimental data in Section 6.2 and
Section 6.3. This allows for a discussion of how inhomogeneity influences the observed Higgs
mode measurements, which may explain deviations to the expected Higgs mode behaviour in
a homogeneous system.

6.2 Quenching a superfluid - Time dynamics of the Higgs mode
This section presents the results of the quenches performed on the order parameter, resulting
in time-resolved oscillations of the condensate fraction, a manifestation of the Higgs mode.
As previously mentioned, this project has primarily been conducted by Moritz Breyer [135],
while my contributions comprise data acquisition, discussions and interpretation of the results.
A more detailed discussion and presentation of the results presented here can be found in
Moritz Breyer’s PhD thesis [135] and in the preprint of this work [101], which is currently
under review.

A quench refers to a sudden change in the system’s parameters. If this change occurs faster
than the system’s fastest intrinsic timescale, the quench can be regarded as instantaneous.
This timescale is the Fermi time ℏ/EF, which is approximately 20 µs in our experiment. Using
the custom-build small magnetic field coil, described in Section 4.5.1, we can change the
magnetic field faster than this timescale, resulting in an effectively instantaneous change for
the system. Since the magnetic field is linked to the scattering length a (see Section 2.2.2),
this change translates into a shift in the interaction parameter 1/ (kFa), which corresponds
to a quench in the order parameter ∆ (refer to Fig. 2.5).

The expected dynamics induced by this quench have previously been discussed in Section 6.1,
with a more general description of the Higgs mode provided in Section 2.3.4. Here, we briefly
revisit the key aspects of these dynamics to frame the experiment within the theoretical
context. In the BCS limit, the Higgs mode has been identified as a damped oscillation of the
order parameter at twice its frequency 2∆/ℏ and with a power-law damping of t−1/2 [73].
More broadly, a quench from an initial order parameter ∆i to a final order parameter ∆f can
be described using the time-dependent Bogoliubov-de-Gennes equation. After the quench,
the new non-equilibrium order parameter ∆∞ typically differs from its equilibrium value at
the final interaction parameter ∆∞ ̸= ∆f = ∆

∣∣
1/(kFaf)

[79]. Yet, oscillations appear at twice
the value of the new order parameter 2∆∞/ℏ [79, 216, 217], with damping described by t−1/2

in the BCS limit and t−3/2 in the BEC limit [131], linked by a crossover region [216].
A more detailed description about possible quench dynamics is encapsulated in the quench

phase diagram shown in Fig. 6.5 [217]. The phase diagram identifies four distinct quench
regimes, labelled I, II, II′ and III, each exhibiting conceptually different dynamics following
a quench. For very large quenches from a high initial order parameter ∆i to a much lower
final order parameter ∆f , regime I applies, resulting in a vanishing order parameter ∆∞ → 0,
with no oscillations expected in this regime. More moderate quenches fall within regimes II
and II′, characterised by power-law damped oscillations with frequency 2∆∞, after which
the order parameter settles at a new equilibrium value of ∆ (t)

∣∣
t→∞ → ∆∞. Regimes II

and II′ describe quenches to a final order parameter ∆f with a positive chemical potential
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6.2 Quenching a superfluid - Time dynamics of the Higgs mode

µf > 0 (II) or negative chemical potential µf < 0 (II′). For quenches ending in the BEC
regime with µf < 0 (II′), the damping follows a stronger power-law decay of t−3/2 [131] rather
than the weaker t−1/2 in regime II [216], consistent with the previously discussed behaviour
for quenches on the BEC side. Regime III would be particularly interesting, as it features
persistent oscillations of the order parameter; however, this regime is not accessible with our
current methods at this time.

0.2 0.4 0.6 0.8 1.0 1.2

Final order parameter ∆f/EF

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
it

ia
l

o
rd

er
p

ar
am

et
er

∆
i/
E

F I

II

II′

III

Figure 6.5: Phase diagram of quenches in a Fermi superfluid. The figure shows the quench phase
diagram for quenches of the order parameter from an intial value ∆i/EF to a final value ∆f/EF.
Here, EF ∝ n(r = 0)2/3 corresponds to the Fermi energy calculated from the density n(r = 0) at the
centre of the trap. Regimes of different quench dynamics are separated by solid lines and labelled
with Roman numerals I, II, II′ and III. The dashed line denotes an infinitesimal quench of ∆f = ∆i.
Quenches performed in this thesis are marked with coloured datapoints. Solid (blue) circles represent
quenches with discernible decaying oscillations, while open circles (green) represent a time evolution
consistent with dephasing in the LDA model (see Section 6.1). Triangles (red) denote quenches where
the time evolution can not be explained by dephasing within the LDA model alone. Figure and
datapoints adapted from [135]. Phase diagram boundaries from [217].

In this section we probe regimes II and II′ through appropriate quenches in the magnetic
field. Quenches probed in the following parts of this section are highlighted by datapoints in
Fig. 6.5, with colour (and marker style) denoting the kind of observed dynamics following
the quench. Discernible oscillations have only been observed for a subset of quenches with
relatively small initial and final order parameters. For quenches further towards the BEC side,
no discernible oscillations have been detected, which could be explained by the LDA model
of the Higgs mode in an inhomogeneous trap, as introduced in Section 6.1. For quenches
furthest on the BEC side, with the highest expected Higgs mode frequency, no discernible
oscillations have been observed. This can not be accounted for by a faster decay due the
dephasing within the LDA model and instead suggest a vanishing of the Higgs mode towards
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Chapter 6 Observing the Higgs mode in a strongly interacting Fermi gas

the BEC limit, as anticipated from the loss of particle-hole symmetry (see Section 2.3.4).
The experimental protocol and resulting observations are discussed in the next parts of

this section.

6.2.1 Experimental realisation

The quench of the order parameter is driven by a quench in the magnetic field. As previously
discussed, the magnetic field B defines the scattering length a via the corresponding Feshbach
resonance in Section 2.2.2. By varying the scattering length a, the equilibrium value of the
system’s order parameter ∆ changes due the shift in the interaction parameter 1/(kFa). The
initial and final order parameters can be calculated from the interaction parameter values in
Fig. 2.5.

In the experiment, large quenches are preferred, as these they provide a higher signal-to-
noise ratio in terms of changes in the condensate fraction CF . The most significant change
in the system properties occurs when a small adjustment in the magnetic field B results in a
substantial shift in the scattering length a. Therefore, we use the narrower |13⟩ resonance of
the broad Feshbach resonances, which causes a stronger variation in a with respect to B.

The rapid variation in the magnetic field is applied with the small magnetic field coil,
introduced in Section 4.5.1. A schematic of the magnetic field ramps used for the quench
is shown in Fig. 6.6. We prepare a sample at a magnetic field that is the superimposed
sum of the Feshbach coil’s magnetic field B (refer to Section 3.2.6) and the magnetic field
Bquench from the custom-built small magnetic field coil. Typically, the quench amplitude is
set to Bquench = 35 G [135], although it can be reduced to examine smaller quench steps. By
reversing the polarity of the small magnetic field coil, the preparation field can be set to
B±Bquench. At time t = 0, the quench is performed by turning off the small magnetic field coil,
and depending on its polarity, the magnetic field undergoes a quench from B ±Bquench → B.
The timescale of the quench is ∼ 2.6 µs [163] (refer to Section 4.5.1), which is much faster than
the system’s Fermi time of about 20 µs. Thus, the quench can be considered instantaneous,
and the now out-of-equilibrium system begins to evolve.

Immediately following the quench, the density distribution remains unchanged, but the
order parameter deviates from its new equilibrium value, as defined by the updated interaction
parameter. After a hold time thold, the dipole trap is turned off, and the system’s condensate
fraction CF is measured using the RR technique, introduced in Section 4.3. The condensate
fraction CF has a one-to-one correspondence with the order parameter and presents an
accessible proxy, serving as our observable after an evolution time of thold.

6.2.2 Observed dynamics

The experiment is conducted for both quench directions B ±Bquench. For a positive quench
B + Bquench → B, the interaction parameter shifts to higher values 1/(kFai) < 1/(kFaf),
corresponding to a larger final order parameter ∆i < ∆f . For the opposite quench direction
B − Bquench → B, the interaction parameter shifts to lower values 1/(kFai) > 1/(kFaf),
corresponding to a smaller final order parameter ∆i > ∆f . The condensate fraction CF after
various quenches 1/(kFai) → 1/(kFaf) in either direction and a varying hold time thold is
shown in Fig. 6.7.
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Figure 6.6: Experimental protocol to drive quenches. The figure shows the magnetic field ramps
used to investigate quenches of the interaction parameter 1/ (kFa). First, the sample is prepared
at a magnetic offset field of B along with a superimposed magnetic quench field Bquench via the
small magnetic field coil, introduced in Section 4.5. This generates a preparation magnetic field of
B ± Bquench, which is shown for the positive +Bquench direction in the plot. At t = 0, the small
magnetic field coil is turned off, which returns the magnetic field back to B on a timescale faster
than the Fermi time ℏ/EF. The quench induces oscillations in the order parameter of the trapped
Fermi gas. After a hold time thold, the trap is turned off, and the condensate fraction CF is measured
using the RR technique, introduced in Section 4.3. The rapid ramp involves two timescales: the free
expansion time tramp − thold at the zero crossing of the Feshbach resonance Bzc, and the ramp time
timg − tramp to the final imaging magnetic field Bimg.

The observed quench dynamics exhibit qualitatively different time evolutions depending
on the performed quench. For quenches towards the BEC side (1/(kFai) < 1/(kFaf)), we
observe the most discernible yet heavily damped oscillations for quenches that both starts
and end on the BCS side 1/(kFai) < 1/(kFaf) < 0.0. For quenches that transition from the
BCS to the BEC side 1/(kFai) < 0 < 1/(kFaf), no clear oscillation are discernible; instead,
the condensate fraction CF shows a single prominent peak at short hold times thold, followed
by a subsequent decay. When both the initial and final interaction parameters are on the
BEC side 0 < 1/(kFai) < 1/(kFaf), the initial peak vanishes, and the condensate fraction
CF decays immediately.

Quenches in the opposite direction towards the BCS side 1/(kFai) > 1/(kFaf) display
similar behaviour. When both the initial and final interaction parameters are on the BEC
side 0 < 1/(kFaf) < 1/(kFai), only a strong decay is observed, with no discernible oscillations.
For quenches entering the BCS regime 1/(kFaf) < 0 < 1/(kFai), however, damped oscillations
become apparent, qualitatively reflecting the observations for the opposite quench direction.
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Figure 6.7: Observed quench dynamics. The figure presents the observed dynamics in the condensate
fraction CF after a quench from an initial interaction parameter 1/(kFai) to a final interaction
parameter 1/(kFaf), and a subsequent hold time thold, before measuring the CF via the RR (refer
to Section 4.3). Left: Observed dynamics for quenches with 1/(kFai) < 1/(kFaf), ranging from
(from top to bottom) 0.27 → 1.08, 0.15 → 0.78, −0.06 → 0.4, −0.14 → 0.24, −0.22 → 0.11,
−0.31 → 0.00, −0.37 → −0.10 and −0.44 → −0.20. Right: Observed dynamics for quenches with
1/(kFai) > 1/(kFaf), covering 0.90 → 0.21 (red), 0.44 → 0.00 (green), 0.18 → −0.18 (orange) and
−0.05 → −0.36 (blue). Errorbars denote the standard error from 50 repetitions per data point, which
may be obscured by the symbols. Data adapted from [135].

Fit model

To quantitatively analyse the observed dynamics, we fit the data with a phenomenological
model to extract the oscillation frequency and damping factor. The model function F (t)
incorporates a damped oscillation f(t) superimposed on an empirical background function
b(′)(t) that captures the observed decay, and reads

F (t) =
{
f(t) + b(t) if 1/(kFaf) > 1/(kFai)
f(t) + b′(t) if 1/(kFaf) < 1/(kFai).

(6.5)

The empirical background is chosen based on the quench direction 1/(kFaf) ≶ 1/(kFai) to
capture the qualitatively different observations in Fig. 6.7. For quenches towards the BEC side
1/(kFaf) > 1/(kFai), the empirical background b(t) includes an initial exponential approach
to a new equilibrium condensate fraction, followed by a continuous decay. The background
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6.2 Quenching a superfluid - Time dynamics of the Higgs mode

function b(t) reads

b(t) =

η+
(
1 − e−t/τ+

)
+ η0 if t ≤ tmax

e−(t−tmax)/τ−
(
η+
(
1 − e−t/τ+

)
+ η0

)
if t > tmax,

(6.6)

where the initial exponential approach from an initial condensate fraction η0 to an increased
condensate fraction η + η+ occurs over a time tmax with a time constant τ+. This mirrors
the behaviour of the CF approaching a new equilibrium value, as expected in region II
of the phase diagram in Fig. 6.5. After reaching t > tmax, the condensate fraction decays
exponentially with a time constant τ−, attributed to thermal excitations gradually destroying
the condensate. During the fitting process, the time tmax is not constrained to lie within the
measured hold times thold.

For quenches towards the BCS side 1/(kFaf) < 1/(kFai), the observed time dynamics in
Fig. 6.7 suggest a different empirical background function b′(t), described by the sum of a
fast and a slow exponential decay. This background reads

b′(t) = η1e
−t/τ1 + η2e

−t/τ2 + η0, (6.7)

where the first two terms denote the two exponential decays with distinct time constants τ1,2
and decay amplitudes η1,2 from an initial condensate fraction η0.

With the background now modelled, the remaining oscillatory component can be fitted
with a damped oscillation to extract the oscillation frequency ω and damping time constant
τ . As identified in the BCS limit [73], oscillations of the order parameter exhibit a power-law
damping of t−1/2. However, for a more robust fitting routine, the model function instead
uses an exponential decay, which reads

f(t) = Ae−t/τ cos(ωt+ ϕ) , (6.8)

where A is the oscillation amplitude and ϕ is the initial phase of the oscillation.

Long-time dynamics

The observed time dynamics in Eq. (6.5) occur on timescales from ∼ 10 µs to ∼ 100 µs,
corresponding to frequencies of approximately ∼ 10 kHz to ∼ 100 kHz. While such dynamics
could potentially originate from simpler collective trap modes [8], these modes generally have
lower frequencies on the order of the trap frequency ∼ 200 Hz, which does not affect the
dynamics on the timescales considered in this experiment. In the experiment, we observe
these trap modes, which can readily be distinguished from the much faster Higgs mode by
their significantly slower timescales. As such, no changes in density distribution are observed
over the timescales relevant to this experiment.

Consequently, no atom loss has been detected during the first 10 ms following the quench.
Atom loss only becomes apparent on the timescales of the trap dynamics. Therefore, for all
quenches considered, the initial and final interaction parameters are described by the same
Fermi energy EF. This has also been exploited for the calculation of the expected oscillations
within the LDA model (refer to Section 6.1).
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Chapter 6 Observing the Higgs mode in a strongly interacting Fermi gas

6.2.3 Extracted oscillation frequency and damping
The complete model F (t) from Eq. (6.5) is fitted to the observed time dynamics in Fig. 6.7
to extract both the oscillation frequency ω and the damping time constant τ . Additionally,
we also apply the damped oscillation model f(t) from Eq. (6.8) to fit the simulated data
from the LDA model shown in Fig. 6.4. The simulated quenches are calculated for the same
1/(kFai) and 1/(kFaf) as the experimentally conducted quenches, incorporating the measured
density profile (see Section 4.2.1) from before the quench, as well as the initial ai and final
af scattering lengths derived from the corresponding magnetic fields. Both the results from
the experimental data and the LDA model are shown in Fig. 6.8. To normalise the axes,
the observed frequencies and interaction parameters are normalised by the Fermi energy EF
derived from the density at the trap centre (see Section 2.4).
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Figure 6.8: Oscillations frequencies and damping of the oberserved dynamics. The figure presents the
extracted frequencies ω and damping times τ in terms of the quality factor τω, from fits to both the
observed (solid symbols) quench dynamics in Fig. 6.7 and simulated (open symbols) dynamics using
the LDA approach, as discussed in Section 6.1. The colour and symbol shape represents the quench
direction, with 1/(kFai) < 1/(kFaf) shown in red (point) and 1/(kFai) > 1/(kFaf) shown in blue
(diamond). Both axes are normalised by the Fermi energy EF = ℏωF = ℏ2k2

F/(2m) determined from
the density at the trap centre (refer to Section 2.4). Left: Observed and simulated (LDA) oscillation
frequencies. Errorbars indicate the standard error from the fit, and the grey band represents the
uncertainty in the simulation due to parameter variation. The dashed line shows the expected Higgs
frequency 2∆0 at the maximum gap value ∆0 at the trap centre (LDA). Right: Damping time for
both simulated and measured dynamics, with errorbars denoting the propagated standard error. Data
adapted from [135].

First, we note that the observed Higgs frequency increases with an increasing interaction
parameter 1/(kFaf), as expected. However, we find that the measured oscillation frequencies
ω (solid symbols) deviate by more than a factor of two from the frequencies predicted by
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6.2 Quenching a superfluid - Time dynamics of the Higgs mode

the LDA model (open symbols). Yet, deviations to the Higgs mode frequency derived from
the density at the trap centre (dashed line) would be even greater, suggesting that the
inhomogeneity of the samples indeed reduces the observed Higgs mode oscillation frequency.

Nonetheless, the measurement closely aligns with the LDA data in terms of the damping
quality factor ωτ . We attribute this strong agreement in the quality factor to dephasing
caused by the inhomogeneity of the samples [75, 215].

The following part of this section provides a more detailed discussion regarding the observed
frequency deviations.

Deviations in frequency

Despite the good agreement in the damping quality factor τω, the central frequency shows
significant deviations from the LDA model. The overlap between measurements and the LDA
model depends on several parameters within the LDA model and the performed quenches
that merit discussion.

First, the LDA model does not account for the fact that the order parameter ∆∞ after the
quench may differ from the equilibrium order parameter at the final interaction parameter
∆∞ ̸= ∆f . As shown in [77, 79], the order parameter after the quench deviates more strongly
from the equilibrium value as the quench size increases. To examine this effect, we have
performed quenches with varying initial order parameters ∆i and a fixed final order parameter
∆f at unitarity, as presented in Fig. 6.5. However, no change in the measured oscillation
frequency with varying quench size has been observed.

Second, deviations in the extracted frequency could be influenced by the determination
of the Fermi energy ωF, used here as a normalisation factor. As previously discussed, the
Fermi energy is derived from the density n(r = 0) at the trap centre within LDA (refer to
Section 2.4). This density is determined using the inverse Abel transformation, as explained
in Section 4.2.1. As discussed there, deviations from an elliptical trapping potential may
affect the reconstructed density profile, altering the determined Fermi energy. A more
direct approach to check for a correct reconstruction of the density is to compare the atom
number from the reconstructed in-situ density profiles to the atom number from more dilute
absorption images after additional expansion time in TOF. We estimate the overestimation
of the density to be below a factor of two [135]. Due to the scaling of the Fermi energy with
density EF ∝ n2/3 (see Section 2.4), the maximum discrepancy can not account for a shift of
more than 60 % in observed frequency. Thus, it can be ruled out that a systematic error in
the reconstruction of the density is responsible for the large observed deviations in frequency.

Finally, the LDA model itself may be subject to significant variance with the given input
parameters. As discussed in Section 6.1, the LDA model relies on assumptions about the Higgs
profile, including temperature, linewidth and the dependence of the density of oscillators with
the order parameter ∆. Variations in these parameters indeed affect the simulated oscillation
frequency in the LDA model. The range of frequencies from these parameter variations
is represented by the grey band in Fig. 6.8. However, the uncertainty due to parameter
variation does not fully account for the observed discrepancy between measurements and the
LDA model.

While each of these factors can explain some of the observed deviation, none sufficiently
account for the large discrepancy seen in the data. Even if we combine the maximum
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variation from all three factors, only extreme variations would bring the predicted frequencies
closer to the observed data. Understanding the range of possible deviations from all three
factors as probability distribution, this would yield an extremely low probability to hold true.
Consequently, the deviations of the Higgs mode frequency in an inhomogeneous trapping
potential can not be explained solely by the given LDA model.

6.2.4 Conclusion

In conclusion, our quenches probe region II of decaying oscillations in the quench phase
diagram shown in Fig. 6.5. We observe oscillations across a wide range of quenches and can
extract the oscillation frequency from phenomenological fits to the observed time dynamics.
For quenches approaching the BEC regime, we observe fewer discernible oscillations, and for
quenches furthest on the BEC side, oscillations become undetectable, signalling the vanishing
of particle-hole symmetry as the BEC limit is approached.

For a quantitative comparison, we employ an LDA model for the Higgs spectrum in an
inhomogeneous trapping potential. While there is striking agreement in the damping constant
as reflected in the quality factor, the central frequency shows a deviation by more than a
factor of two. We identify several parameters that could account for this discrepancy, but
none fully bring the simulation fully into alignment with the measurements. The strong
agreement in the quality factor suggests that the accelerated decay can be attributed to
dephasing caused by the inhomogeneous distribution of local Higgs mode oscillators in an
LDA framework. Hence, additional research is necessary to gain a more comprehensive
understanding of the Higgs mode behaviour in an inhomogeneous trap.

6.3 Parametric excitations of a superfluid - Spectroscopic
measurement of the Higgs mode

This section presents the results of the spectroscopic probing of the Higgs mode via a
modulation of the magnetic field. As previously mentioned, this project has mainly been
conducted by Andreas Kell [134], while my contributions include data acquisition, discussions
and interpretation of the data. A more detailed discussion about the experiment, methodology
and findings is available in Andreas Kell’s PhD thesis [134]. Here, we provide a brief overview
of the experimental aspects and the analysis of the obtained results. Very recently, the
findings have been published in [100].

In earlier works [218], parametric excitations via magnetic field modulations have been
used to probe the excitation spectrum of a Fermi gas in the BEC-BCS crossover. Before
that, the excitation spectrum of a strongly interacting Fermi gas has been studied using
radio-frequency-transitions (RF) [219]. A key advantage of magnetic field modulations over
RF-transitions is that they do not involve a third state, making the process of probing more
straightforward and simplifying the observations.

In previous experiments, RF-transitions have been used by my predecessors to excite the
Higgs mode in our experiment [78]. RF-transitions couple to the system by addressing the
density [40, 82], using Rabi oscillation to couple to a third unoccupied state. This approach,
however, affects momentum states differently, leading to a broad excitation spectrum.
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An alternative approach to drive parametric excitations is to couple directly to the
interaction parameter 1/(kFa) via the scattering length a [79, 218]. To this end, the magnetic
field is modulated, resulting in an effective modulation of the scattering length and interaction
parameter through the associated Feshbach resonance (refer to Section 2.2.2). This method
has been employed previously to dissociate composite dimers on the BEC side of the BEC-
BCS crossover by modulating the field at a frequency exceeding the corresponding two-body
bound state energy EB [218]. We use this method again in Chapter 7 to selectively break
composite dimers.

6.3.1 Experimental realisation

In this experiment, we induce parametric oscillations of the interaction parameter by modulat-
ing the magnetic field. For this, we again use the custom-built small magnetic field coil (refer
to Section 4.5.2) to superimpose a rapidly changing magnetic field on top of the large offset
magnetic field generated by the Feshbach coils (refer to Section 3.2.6). In contrast to the
quench protocol in Section 6.2.1, the driving circuit of the small magnetic field coil is replaced
by an arbitrary function generator and an amplifier circuit, as detailed in Section 4.5.2.
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Figure 6.9: Experimental protocol to drive modulations. The figure shows the magnetic field profile
used to probe the Higgs mode via a modultion of the interaction parameter 1/(kFa). First, the
sample is prepared at an offset field of B. At t = 0, the offset field is added with a sinusoidal
modulated magnetic field with amplitude Amod and frequency νmod for a duration tmod using the
small magnetic field coil, introduced in Section 4.5. The modulation time tmod is rounded such that
the modulation contains an integer number nmod = 2πtmodνmod of periods. After the modulation, the
trap is immediately turned off at thold and the RR is initiated to measure the condensate fraction CF
(see Section 4.3). The rapid ramp incorporates two timescales, namely the time tramp − thold at which
the sample is freely expanding at the zero crossing of the Feshbach resonance Bzc, as well as the ramp
time timg − tramp to the final imaging magnetic field Bimg. Figure adapted from [100].
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The evolution of the total magnetic field profile used to drive parametric excitations in
this experiment is shown in Fig. 6.9. Initially, the sample is prepared at a magnetic field
B, created solely by the Feshbach coils. After preparation, at t = 0, the custom-built small
magnetic field coil is activated to superimpose a modulation of the magnetic field. The
settings of the small magnetic field coil comprises frequency νmod, amplitude Amod and the
modulation time tmod. To maintain continuity in the magnetic field, the modulation time
tmod is rounded such that only an integer number of periods nmod = 2πtmodνmod is allowed.
This is crucial to prevent unwanted quenches in the experiment.

After the modulation, the small magnetic field coil is switched off at tmod, and immediately
afterwards, the rapid ramp is initiated, as described in Section 4.3. This protocol mimics the
proposed protocol B from [79]. According to the authors, the ramp time of the rapid ramp
must not be faster than the timescale of the parametric excitation in order to observe Higgs
mode excitations effectively.

6.3.2 Observed excitation rate

In this experiment, parametric excitations with a large variation in the amplitude of the
scattering length a are favoured. Therefore, the sample is prepared in a |13⟩ mixture, which
features the narrower of the broad Feshbach resonances (refer to Section 2.2.2). This setup
allows for the largest variation in the scattering length a under a modulation of the magnetic
field B.

To probe the excitation spectrum, the decay rate of the condensate fraction CF is measured
following the modulation. In general, we can vary the modulation amplitude Amod, modulation
frequency νmod as well as the modulation time tmod. We have observed that for each frequency,
the condensate fraction CF decays exponentially with increasing modulation time tmod or an
increase in the square of the modulation amplitude Amod, expressed by

CF = CF0
(
−ΓiA

2
modtmod

)
, (6.9)

where Γi is the frequency-dependent decay rate. This behaviour aligns with the previous
experimental observations in dimer dissociation spectra using magnetic field modulations [218]
and theoretical considerations of the excitation spectrum in [220]. To avoid introducing a new
timescale and causing additional thermal decay of the condensate, we keep the modulation
time constant at tmod = 100 ms throughout all measurements, adjusting only the modulation
amplitude Amod and modulation frequency νmod.

For each measurement, the magnetic field modulation follows the protocol sketched in
Fig. 6.9. In Fig. 6.10, the decay of the condensate fraction CF is shown for various modulation
frequencies νmod and increasing modulation amplitudes Amod for an exemplary sample at
unitarity. We observe that for each frequency, the condensate fraction CF decays exponentially
as per Eq. (6.9), with a decay rate of Γi that varies with frequency.

For stronger modulation amplitudes Amod, the decay deviates from the simple model in
Eq. (6.9). To account for larger modulation amplitudes Amod, the model is extended by a
second-order term to

CF = CF0 exp
(

−ΓiA
2
modtmod − γ

[
A2

modtmod
]2)

, (6.10)
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Figure 6.10: Decay of the condensate fraction after parametric excitation for a sample prepared at
unitarity. Left: Measured condensate fraction CF after excitation via the modulation of the magnetic
field with an amplitude of Amod, as sketched in Fig. 6.9. Different lines represent different excitation
frequencies νmod of 6.8 kHz (red squares), 8.6 kHz (green downfacing triangles), 11.7 kHz (orange
upfacing triangles) and 16.0 kHz (turquoise diamonds). Right: Each line in the left panel is fitted
to the extended model in Eq. (6.10), yielding an initial decay rate Γi. The decay rate is plotted as
a function of the modulation frequency νmod (blue points), with corresponding datapoints from the
left panel highlighted by the same colours and symbols. The resulting decay rate profile is fit by an
empirical function (blue line), incorporating a polynomial background term (dashed line) as defined
in Eq. (6.11). Figure adapted from [100].

where γ is a correction parameter for the second-order term. This extended model allows for
more robust fitting and prevents an overestimation of the initial decay rate Γi. A fit of this
model to the respective data is shown in the left panel of Fig. 6.10.

After fitting the initial decay rate Γi across various frequencies at a given magnetic field,
the frequency dependence of the initial decay rate is identified and plotted in the right panel
of Fig. 6.10. We observe that the decay rate varies with frequency, displaying a prominent
peaked feature on top of an increasing background. The background is caused by collective
excitations, such as phonon excitations of the (Nambu-)Goldstone mode at low frequencies
(refer to Section 2.3.4) and incoherent pair-breaking excitations at higher frequencies near the
paring gap ∆ [221]. For more detail about the decay rate at low frequencies, consult the PhD
thesis of Andreas Kell [134]. We model the background with a 4th degree polynomial function
and the pronounced feature on top of the background by a Gaussian function, yielding the
model function

Γi(νmod) =
4∑

k=1
aiν

k
mod +A exp

(
−(νmod − ν0)2

2∆ν2

)
. (6.11)

Here, the polynomial background is defined by the empirical factors ai, while the Gaussian
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function is characterised by an amplitude A, a central frequency ν0 and a width ∆ν. We
identify the symmetric peak with the collective Higgs mode excitation. A fit to the excitation
spectrum of the initial decay rate Γi is shown in the right panel of Fig. 6.10. This yields the
resonance frequency ν0 and spectral width ∆ν for a sample prepared at a specific interaction
parameter 1/(kFa) and temperature T .

Next, this analysis protocol will be employed for several measurement across the strongly
interacting regime of the BEC-BCS crossover.

6.3.3 Excitation rate across the crossover

In the previous Section 6.3.2, the methodology to determine the excitation spectrum has been
introduced. The frequency dependent decay rate Γi of a condensate is measured following a
suitable excitation of the superfluid via a modulation of the magnetic field. This measurement
is performed for a selected initial temperature T and interaction parameter 1/(kFa), set by
the magnetic field during preparation.

In order to probe the excitation spectrum across the crossover, we repeat the same experi-
mental protocol (see Section 6.3.1) and analysis (see Section 6.3.2) for samples prepared at
different magnetic fields, i.e. interaction parameters 1/(kFa), and temperatures T . As intro-
duced in Section 5.3.1, the temperature of the sample is tuned by a time-varied decompression
and a subsequent recompression of the trapping potential. Note, that the temperature range
in this experiment is constrained by the need for an observable condensate and sufficient
signal-to-noise ratio in the decay rate. To improve the robustness of the fitting method at
small condensate fractions, we simplify the fitting model in Eq. (6.10) by setting γ = 0,
disabling the second-order correction. The excitation spectra across various interaction
parameters and temperatures are shown in Fig. 6.11.

For all probed interaction parameters and temperatures, the excitation spectrum consist-
ently exhibits a peaked feature on top of an increasing background, as modelled by Eq. (6.11).
We use this model function to extract the centre position and width of the peaked Gaussian
on top of the background. An overview of the extracted centre frequencies ν0 and widths
(FWHM) ∆νFWHM as functions of the interaction parameter 1/(kFa) and temperature T is
shown in Fig. 6.12. A discussion about the determined results is given in the following parts
of this section.

Observed resonance frequency

We first examine the measured centre frequencies ν0 of the observed resonances. With an
increasing interaction parameter 1/(kFa), we observe an increase in the resonance frequency
ν0. Both the frequency and the interaction parameter are normalised by the Fermi energy
derived from the density at the trap centre, refer to Section 2.4. As discussed in Section 6.1, we
have developed an LDA model to compare our observed spectra with theoretical predictions
of the Higgs mode spectra in an inhomogeneous sample. Unlike the results in Section 6.2,
the LDA model shows excellent agreement with the observed resonance positions.

We have also measured the excitation spectrum for various temperatures T/TF for a gas
prepared at unitarity 1/(kFa) = 0.0. Due to the need for a measurable condensate fraction
and sufficient signal-to-noise ratio, the temperature range is limited to T/TF ∼ 0.15, as
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Figure 6.11: Measured excitation spectra for various initial interaction parameters and temperatures.
Left: Initial excitation rate Γi (points) as a function of the modulation frequency νmod with fits
(lines) to the model function in Eq. (6.11), incorporating a polynomial background function (dashed
lines). Each colour represents a different initial interaction parameter 1/(kFa), which are (top to
bottom) 0.39, 0.30, 0.21, 0.12, 0.0, -0.07, -0.18. For clarity, data are vertically shifted with an offset
of (1.5/(kFa) + 0.28) kHzG−2. Right: Initial decay rate Γi for a sample prepared at unitarity but
for different initial temperatures T/TF. Here, the colour denotes the temperature T/TF, which is
(bottom to top) ranging from 0.08 to 0.13. Again, data are vertically shifted by an artificial offset of
2 (T/TF − 0.08) kHzG−2. Horizontal errorbars indicate the standard error on νF, while the vertical
errorbars show the statistical standard error from the fit. Figure adapted from [100].

indicated by the grey-shaded area. Contrary to the expected temperature dependency in
Fig. 6.2, we observe no significant correlation between resonance frequency and temperature.
This result, however, aligns with the recent measurement of the Higgs mode using Bragg
spectroscopy in [75]. Unlike our method, their approach probes a quasi-homogeneous region in
the centre of the inhomogeneous sample by focused two photon Bragg spectroscopy following
a quench of the interaction potential. While observing no temperature dependency as well,
their observed centre frequencies generally lie higher, as they correspond to the (homogeneous)
Higgs mode frequency at the centre of the trap.

Generally, the missing temperature dependency could indicate the existence of a pseudogap
state above the superfluid critical temperature [222, 223]. However, further research is needed
to understand the exact mechanism behind this observation.

Observed resonance width

The second parameter extracted from the fits to Eq. (6.11) is the resonance width. For all
plots, we convert the width of the Gaussian model ∆ν to the full width at half maximum

135



Chapter 6 Observing the Higgs mode in a strongly interacting Fermi gas

(FWHM) ∆νFWHM.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

ν 0
/ν

F

−0.2 0.0 0.2 0.4

1/ (kFa)

0.0

0.2

0.4

0.6

∆
ν F

W
H

M
/ν

0

0.075 0.100 0.125 0.150 0.175

T/TF

Figure 6.12: Extracted resonance positions and widths for various initial interaction parameters and
temperatures. The figure presents the extracted resonance positions ν0 and widths (FWHM) ∆νFWHM
as functions of the initial interaction parameter 1/(kFa) and temperature T . Upper left: Measured
(red points) resonance positions ν0 are plotted against 1/(kFa). The solid (blue) line shows the LDA
simulation results from Section 6.1, while the dashed (blue) line corresponds to the Higgs mode
frequency derived from the density at the trap centre. Upper right: Measured resonance positions (at
unitarity) are plotted as a function of the temperature T/TF. No significant temperature dependence
is observed, and the data is well represented by their average (red solid line), contrasting with the
expected temperature dependency in Fig. 6.2. Our data is compared to a different recent study in
[75] (green diamonds and purple triangles). Lower left:. Resonance width (FWHM) ∆νFWHM as a
function of 1/ (kFa), showing minimal dependence. Again, green diamonds are from [75]. Lower right:
Resonance width (FWHM) ∆νFWHM as a function of T/TF, showing a weak dependence at most.
Again, green diamonds are from [75]. The grey area marks the region of insufficient signal-to-noise
ratio. Errorbars include the systematic uncertainty in the Fermi energy EF (refer to Section 4.2.1)
and statistical standard errors from the fit. Figure adapted from [100].

Overall, we observe an almost constant width across the crossover for a varying interaction
parameter 1/(kFa), or for a varying temperature T at unitarity. Our data suggests a weak
dependency of the resonance widths with temperature at most. Interestingly, the recent
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observation of the Higgs mode in [75] reports a spectral width similar to ours, which is notable
given that they probe a quasi-homogeneous sample, while our experiment is examined in an
inhomogeneous sample.

In Section 6.1, we have developed an LDA model to incorporate dephasing of an inhomogen-
eous collection of Higgs oscillators, making up the total spectrum. An exemplary spectrum
from this model is shown in Fig. 6.3. However, this model predict spectra that are significantly
broader (by a factor of ∼ ×2) than those observed in our experiment in Fig. 6.12.

Both the agreement with the quasi-homogeneous measurement of the Higgs mode from
[75] and the strong deviations from the LDA model suggest that the spectral width in an
inhomogeneous trap is not dominated by dephasing as predicted by the LDA model.

6.3.4 Conclusion
In conclusion, we have employed a parametric excitation scheme via the modulation of the
magnetic field to probe the excitation spectrum of a superfluid Fermi gas and to detect the
Higgs mode. The observed Higgs resonance frequencies reveal excellent agreement with the
simulated spectra in an inhomogeneous trapping potential using the LDA approach (see
Section 6.1). However, the LDA approach significantly overestimates the observed resonance
width, suggesting that the spectral width is not dominated by the effect of dephasing.

Moreover, our measurements indicate no observable temperature dependence of the reson-
ance frequency. This observations aligns with a recent measurement of the Higgs mode [75],
but contrasts with existing theoretical predictions in Fig. 6.2, highlighting a need for further
research.

6.4 Comparison between the excitation techniques
In this chapter, we have explored the Higgs mode using two distinct excitation techniques:
quenches and parametric excitations of the interaction parameter 1/ (kFa). Broadly speaking,
quenches allow for the Higgs mode to be induced and observed in a time-resolved manner by
measuring oscillations in the condensate fraction CF – effectively a time-domain measurement
of the Higgs mode. In contrast, parametric excitations serve as a spectroscopic approach of
measuring the Higgs mode in the frequency domain, where the mode is observed through an
enhanced decay of CF for a modulation with a frequency near the Higgs mode frequency.

In the experiments in Section 6.2 and Section 6.3, the excitations techniques leverage the
coupling between the magnetic field B and the scattering length a (see Section 2.2.2). This
coupling enables us to map variation in the magnetic field to changes in the scattering length
a, allowing us to excite the Higgs mode via either a quench or a modulation of a superimposed
magnetic field, generated by the custom-build small magnetic field coil. Using this approach,
we have investigated the Higgs mode in a strongly interacting Fermi gas across the BEC-BCS
crossover, confined in a |13⟩ mixture within a harmonic, inhomogeneous dipole trap potential.

Due to the trap’s inhomogeneity, the expected Higgs becomes more complex. Here, we
have developed an LDA model of the expected Higgs mode spectrum, that accounts for
the sample’s inhomogeneity and, by performing a Fourier transformation on the spectrum,
derived anticipated Higgs mode oscillations. Together, these models provide predictions for
the role of inhomogeneity on both the time- and frequency-domain measurements.
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Chapter 6 Observing the Higgs mode in a strongly interacting Fermi gas

In both measurements, we have observed a Higgs mode frequency significantly lower than
the expected (homogeneous) Higgs mode frequency derived from the density at the centre of
the trap, as anticipated. For parametric excitations, the reduced central frequency predicted
by the LDA model aligns well with the observed central frequency. However, for the quench
technique, we have found a notable discrepancy: the observed frequency was much lower than
the LDA prediction, with the model’s frequency exceeding the experimental value by more
than a factor of two. Despite exploring possible explanations, we were unable to reconcile
the model with the observed results.

Damping of the Higgs mode presents a second key observable, expected to be broadened
by dephasing due to trap’s inhomogeneity. For the quench measurement, the quality factors
of the observed oscillations closely match those predicted by the LDA model, suggesting that
the observed decay results from dephasing among oscillators at varying Higgs frequencies
within the inhomogeneous sample. In contrast, for parametric excitations, we found a
nearly constant resonance width across the strongly interacting regime and for different
temperatures at unitarity. Remarkably, the observed resonance width in our inhomogeneous
trap closely matches that of an effectively homogeneous system from a different recent study
[75]. Furthermore, the LDA model overestimates the expected width by a factor of ∼ 2
compared to our parametric excitation measurement. This indicates that the parametric
excitation technique observes a resonance width more akin to a homogeneous sample, less
affected by dephasing due to inhomogeneities.

The differences between the results from quenching and parametric excitations can not be
explained by the given model, indicating the need for further research to fully understand
how these discrepancies are caused by the inhomogeneity of the trapping potential.
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CHAPTER 7

Cooling of a strongly interacting quantum gas
by dimer dissociation

This chapter presents the mechanism and measured performance of the novel cooling technique
developed in this thesis. Briefly, this new cooling technique leverages a shift in the mean-field
energy during dissociation of composite dimers, enabling the selective removal of high-energy
atoms from an inhomogeneous trap and thereby cooling the remaining sample.

As discussed in Section 2.3.1, a strongly interacting Fermi gas of two distinct spin states
supports a two-body bound state for positive scattering lengths a > 0, enabling the formation
of composite bosonic dimers with bound state energy EB. Due to the Pauli exclusion principle,
these composite bosons exhibit a reduced scattering length with other bosons and unpaired
fermionic atoms, resulting in a weakened mean-field (repulsive) energy. To dissociate dimers,
we apply a magnetic field modulation at a frequency νmod greater than the bound state
energy EB/h.

In first order, each dimer in the inhomogeneous trap has the same dissociation threshold
frequency of νmod > EB/h. However, in second order, the dissociated fermionic fragments
experience a greater mean-field energy within the remaining sample, causing an increase in the
dissociation threshold. The shift ∆νcool in dissociation threshold from the pure bound state
energy EB is due to the shift in mean-field energy from the dimer-dimer state to twice the
atom-dimer state, with the shift being proportional to the inhomogeneous density ∆νcool ∝ n
[108, 224, 225].

By breaking a dimer, the energy surplus of the modulation EB +∆νcool −νmod, is converted
into the kinetic energy of the fragments, potentially expelling them from the trap. The
shift ∆νcool thus underpins this new cooling technique, enabling selective dissociation and
removal of high-energy atoms from the edges of the inhomogeneous trap, where the density
approaches zero.

This approach allows for a cooling protocol akin to standard radio-frequency-transition (RF)
evaporative cooling in a magnetic trap, adapted here for a spin mixture in an inhomogeneous
optical dipole trap. The objective of any evaporative cooling scheme is to selectively remove
the highest energy atoms from a sample, reducing its temperature after brief re-thermalisation.
This concept is illustrated in Fig. 7.1.

Initially, the sample contains Ni atoms at temperature Ti with phase-space density ρ̃i. By
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Chapter 7 Cooling of a strongly interacting quantum gas by dimer dissociation

removing −∆N of the highest energy atoms, the average energy in the sample decreases,
resulting in a temperature reduction to Tf < Ti. When performed efficiently, the phase-space
density ρ̃f increases while the atom number decreases, leading to a drop in entropy.
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Figure 7.1: Goal of evaporative cooling. The figure illustrates the desired effect of evaporative cooling.
Initially, a sample of Ni atoms is prepared at a temperature Ti with a phase-space density of ρ̃i. By
removing −∆N atoms with higher-than-average energies, the temperature reduces to Tf < Ti (blue
line) and the phase-space density increases to ρ̃f > ρ̃i (red line), achieving cooling.

Compared to standard cooling methods like RF-transition evaporation in a magnetic trap
or forced evaporation in an optical dipole trap near a Feshbach resonance, this technique
offers two main advantages. First, dissociation via magnetic field modulation avoids coupling
to a third state, unlike standard RF-transitions, which helps to prevent strong three-body
losses. Second, selective dissociation via the modulation of the magnetic field requires no trap
alterations, preserving the depth of the trapping potential and making it easier to remain in
the efficient runaway regime – meaning an increasing collision rate due to increasing density
[85] – sustaining rapid thermalisation. This novel technique achieves high cooling efficiencies
that meet and even surpass the highest reported efficiencies near a Feshbach resonance [85,
87, 91–99].

This work presents the second main result of this thesis. A manuscript covering this work
is currently under review, with a preprint available in [102].

Outline of this chapter

The sections of this chapter are outlined as follows:

• Section 7.1: In the first section, we introduce the concept of evaporative cooling and
discuss established state-of-the-art implementations.

• Section 7.2: Our newly developed evaporative cooling technique works by a modulation
of a superimposed magnetic field and complements established methods. This section
presents our technique and explains its theoretical basis.
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7.1 Principle of evaporative cooling

• Section 7.3: In this section, we discuss the experimental implementation and show first
results of the cooling technique in our system, focusing on the effect of the modulation
parameters – frequency νmod and amplitude Amod – on the cooling efficiency.

• Section 7.4: The cooling efficiency is a key parameter for any evaporative cooling
technique. Here, we quantify our cooling technique and measure its efficiency for
various magnetic fields, as well as in a gravity-tilted and gravity-compensated trap.

• Section 7.5: Another important aspect of any cooling technique is the intrinsic timescale
required to cool the sample. In this section, we estimate the shortest feasible time for
effectively applying our cooling technique.

• Section 7.6: Finally, we summarise and conclude the findings.

7.1 Principle of evaporative cooling

Evaporative cooling encompasses all techniques that reduce a sample’s entropy by removing
or isolating its high-energy components. In thermal equilibrium, a sample’s state is governed
by its statistical distribution: the Boltzmann distribution in Eq. (2.1) for high temperatures,
or Bose and Fermi statistics in Eq. (2.5) and Eq. (2.2) for bosons and fermions, respectively.
While these statistics differ conceptually, all show a higher likelihood of finding low-energy
components, with the probability of high-energy components decaying in a manner similar
to the exponential Boltzmann distribution. Consequently, the Boltzmann distribution often
suffices to describe the removal of high-energy components from the distribution’s tail.

Speed v

n
(v

)

Ti Cutoff

Speed v

Ti

Tf

Figure 7.2: Principle of evaporative cooling. In a thermal sample, such as a cup of coffee or an atomic
gas, the particles’ energy distribution is governed by the (Maxwell-)Boltzmann distribution. Initially,
at high temperature Ti, the sample contains many high-energy or high-speed v particles. By selectively
removing particles with the highest energy above a cutoff, more energy per particle is removed from
the sample than is available on average. Following this removal and a sufficient re-thermalisation
period, the particles redistribute into a narrower distribution with a lower temperature Tf < Ti,
achieving cooling. Analogously, for a cup of coffee, particles with high enough energy to enter the
gaseous phase leave the liquid, resulting in effective cooling.
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Chapter 7 Cooling of a strongly interacting quantum gas by dimer dissociation

In Fig. 7.2, we illustrate the principal of evaporative cooling using the familiar example of
a hot cup of coffee. Initially, the state of the coffee, i.e. the energy distribution among its
particles, can be modelled by a Boltzmann distribution with an initial temperature Ti. Here,
we introduce the Maxwell-Boltzmann distribution n(v), which integrates the Boltzmann
distribution across the full phase-space except for the particles’ speed v [170]. Only particles
exceeding a threshold speed vgas (the cutoff) can transition from the liquid to the gaseous
phase. In this phase, particles may escape the sample, effectively cooling it.

The temperature reduction occurs in two stages. First, high energy particles are expelled,
thus removing them from the high-energy tail of the (Maxwell-)Boltzmann distribution. This
truncated distribution no longer reflects the system’s equilibrium state. After a suitable re-
thermalisation period, the remaining particles rearrange into a narrower (Maxwell-)Boltzmann
distribution with a lower temperature Tf < Ti, establishing the new equilibrium state.

This is the fundamental concept of evaporative cooling, applicable to many systems. The
primary requirement for efficient evaporative cooling is the selective removal of high-energy
atoms from the distribution.

7.1.1 Established evaporative cooling techniques

In ultracold atomic gases, evaporative cooling has been instrumental in reaching extremely low
temperatures, enabling the experimental observation of highly sought-after quantum states.
These states include the first observation of Bose-Einstein condensation (BEC) [30], degenerate
Fermi gases [31] and the unitary Fermi gas [38, 39]. For all of these experiments, atomic
samples were pre-cooled through successive stages to achieve temperatures necessary for
observing the desired states. Pre-cooling stages utilise standard laser cooling techniques [25],
after which the samples are trapped and further cooled via evaporative cooling in magnetic
or optical dipole traps. Both of these methods are illustrated in Fig. 7.3, and are explained
in more detail below.

RF-transition cooling in magnetic traps

The first observation of BEC in bosonic 87Rb was made possible through RF-transition
evaporative cooling in a magnetic trap, as illustrated on the left side of Fig. 7.3.

As discussed for our experiment setup in Section 3.2.5, atoms are trapped in a magnetic
field by being pumped into a low-field-seeking state |↑⟩. Atoms in a state with a flipped
magnetic moment (high-field-seeking state |↓⟩) are anti-trapped, causing them to be expelled
from the magnetic trap. Due to the Zeeman shift explained in Fig. 3.2, an atom’s energy
depends on the magnetic field, and therefore, on its position within the magnetic trap. This
shift corresponds to a change in the RF-transition frequency required to transfer an atom
from the trapped state |↑⟩ to the anti-trapped state |↓⟩. Atoms at the edges of the trap
are subject to a stronger magnetic field and require a higher RF-transition frequency to be
transferred to the anti-trapped state.

Because the trap edges are typically occupied by high-energy atoms, this frequency shift
allows selective transfer of high-energy atoms to the anti-trapped state, thereby removing
them from the sample.

In practice, RF-transition evaporative cooling is optimised by ramping from high to low
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Figure 7.3: Established evaporative cooling techniques. Our new cooling technique complements the
established methods of RF-transition cooling in a magnetic trap (left) and forced evaporation in an
optical dipole trap near a Feshbach resonance (right). Left: In RF-transition cooling, the sample is
prepared in a trapped state that is flipped to an anti-trapped state through rf-transitions. Due to
the Zeeman effect (refer to Fig. 3.2), atoms with higher energy, primarily located at the trap edges,
have a higher transition frequency, allowing for selective removal of high-energy atoms. Right: In a
dipole trap, there is no such transition. Instead, high-energy atoms are removed by gradually lowering
the trap depth. However, as this reduces the trap depth, it also decreases the density, making it
challenging to remain in the efficient runaway regime.

transition frequencies while allowing for efficient re-thermalisation of the remaining sample.
Notably, this cooling method does not alter the trap itself, allowing the atoms to remain in
the efficient runaway regime without slowing down thermalisation [85]. An overview of the
ramp implemented in the magnetic trap stage of our experiment is given in Section 3.2.5.

While highly effective for single-state bosonic species, this method has limitations tied
to the physics of magnetic traps, which are not designed to hold arbitrary state mixtures.
Consequently, and due to the Pauli exclusion principle, this technique does not achieve the
temperature required for reaching a degenerate Fermi gas.

Forced evaporation in an optical dipole trap near a Feshbach resonance

To reach a degenerate Fermi gas, the concept of evaporative cooling has been adapted for
optical dipole traps. Unlike magnetic traps, optical dipole traps can confine arbitrary state
mixtures, making them ideal for hosting strongly interacting Fermi gases necessary to prepare
the degenerate Fermi gas [31] and to achieve the unitary Fermi gas [38, 39].

In optical dipole traps, however, there is no straightforward mechanism to selectively
expel high-energy atoms independently from alterations to the trap itself. Thus, we rely on
lowering the trap’s potential walls to predominantly remove high-energy atoms. To enable
sufficiently fast thermalisation, the dipole trap is gradually ramped down while the magnetic

143



Chapter 7 Cooling of a strongly interacting quantum gas by dimer dissociation

field is tuned close to a Feshbach resonance, enhancing thermalisation rates. This approach
is applied in the final preparation stage of our experiment, as discussed in Section 3.2.6.

Although conceptually simpler than RF-transition cooling in a magnetic trap, forced
evaporation in an optical dipole trap has a significant drawback related to the control
and reduced confinement of the trap. As the power of the optical dipole trap is lowered,
confinement diminishes throughout the entire trapping region, effectively reducing the gas
density and, consequently, extending the thermalisation time [85]. This presents a major
obstacle in reaching high efficiencies.

Alternative cooling techniques

Both cooling methods introduced so far remain standard, state-of-the-art techniques in most
ultracold atomic gas experiments. However, the search for improved cooling techniques is an
active area of research aimed at accessing novel quantum states at even lower temperatures.
These sought-after quantum states include unconventional superconductivity [88], topological
quantum states [89], and spin liquids [90].

To achieve the required temperatures, alternative cooling methods have been proposed,
such as separating high- and low-entropy regions by potential sculpting [226–228]. Related
approaches have been experimentally implemented, including potential shaping in the Hubbard
model [229], or by introducing alternating high- and low-entropy sites via a superlattice
potential along one spatial direction [230].

7.2 Evaporative cooling via dissociation of composite dimers

In this section we introduce and discuss the concept behind the novel cooling technique
developed in this thesis. The working principle of this technique is illustrated in Fig. 7.4.

Initially, the gas is prepared in a harmonic dipole trap, as described in Section 3.2.6 and
sketched in a in Fig. 7.4. The gas is prepared on the BEC side of the crossover, where a
two-body bound state with energy EB exists, and the trap is predominantly occupied by
composite bosonic dimers from the original fermionic state mixture.

To break a dimer, we apply a magnetic field modulation, as detailed in Section 7.3. The
required energy to break a pair includes the bound state energy EB plus a shift δE, which
originates from a shift of the repulsive mean-field energy as a dimer in the original dimer gas
breaks into two dissociated fermionic fragments. As covered in Section 2.3.1, the shift arises
due to the change in the scattering length from add = 0.6a [121] for a dimer-dimer interaction
to aad = 1.18a for the interaction between a fermionic fragment and a dimer [120].

More quantitatively, the shift can be calculated by comparing the mean-field energy of a
composite dimer in gas of dimers (refer to Eq. (2.23)) with twice the mean-field energy of
a fermion in the same gas of dimers. The shift of the mean-field energy [108, 224] can be
calculated and reads

δE = (3aad − add) 2πℏ2nσ/mLi, (7.1)

where nσ is the density per spin state, equivalent to the density of composite dimers in a fully
paired sample. The expression in parentheses captures the physics of breaking a composite
dimer into two unpaired fermions with stronger repulsive mean-field energy in the remaining
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Figure 7.4: Working principle of cooling via dissociation of dimers. a Initially, atoms of the two
spin states (blue and red circles) are confined within a harmonic dipole trap potential (blue line)
and constitute a partially condensed quantum gas of composite dimers. The dissociation threshold
frequency of the dimers depends on the two-body bound state energy EB as well as the shift in mean-
field energy from the initial dimer gas to the mixed gas of dimers and fermionic atoms, which originate
as fragments of dissociated dimers. The shift of the mean-field energy (red line) is proportional to
the density, resulting in a position-dependent dissociation threshold frequency that increases towards
the trap centre. b This creates a sharp dissociation threshold frequency at the bound state energy
EB (dashed line) for atoms at the dilute edge of the trap. For higher frequencies, more dimers are
dissociated and evaporated from the trap, as seen in the decreasing total atom number Ntotal. The
increasing fraction of dissociated atoms is reflected by the growing number of thermal atoms Nth,atoms
(inset) during dissociation. c More notably, the condensed number of atoms Ncondensed exhibits a
peaked structure. At frequencies close to EB, evaporation selectively targets high-energy dimers at the
dilute trap edges, increasing the number of condensed atoms. For higher frequencies, the evaporation
becomes less selective, reducing the number of condensed atoms.

cloud of dimers. This expression involves a change of the reduced mass µr from µr,dd = mLi
(dimer-dimer) to µr,ad = 2mLi/3 (atom-dimer) and includes a factor of 2 to account for both
fermions produced in dissociation, resulting in the shift of the mean-field energy given in
Eq. (7.1).

The energy threshold for dimer dissociation is given by the sum of the bound state energy
and the shift of the mean-field, which reads

Ediss = EB + δE. (7.2)

By modulating the magnetic field at a frequency νmod above Ediss/h, the fermionic fragments
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gain kinetic energy, propelling them to higher trap states and potentially expelling them from
the trap. This is illustrated in a of Fig. 7.4 and quantitatively shown for an exemplary gas in
b, measured using the RR technique (see Section 4.3). For frequencies νmod above the bound
state energy EB, the total amount of remaining atoms (per spin state) Ntotal decreases with
increasing frequency.∗ This has been measured after a modulation plus a brief thermalisation
period. A similar trend is observed in the amount of dissociated atoms before thermalisation,
indicated by number of thermal unpaired atoms Nth,atoms (per spin state), which are probed
by applying a π-pulse to transfer and image them in a third unoccupied spin state.

While the increase in dissociated atoms with frequency is evident, it is of particular
significance that the mean-field shift enables the selective dissociation and removal of atoms
at specific density shells. Dimers at the edge of the trap, where the density is lowest, have the
highest energy. For these high-energy dimers, the threshold dissociation frequency approaches
the pure bound state energy Ediss → EB. In contrast, low-energy dimers occupy the trap
centre at much higher densities, requiring a higher dissociation threshold energy EB + δE to
break them. The shifted dissociation threshold explains the increasing amount of dissociated
atoms with frequency in b of Fig. 7.4, despite the reduced overlap between initial and final
trap states for increasing excess energy [17]. More importantly, the shifted threshold protects
the coldest dimers in the sample from direct dissociation when the frequency is near the
bound state energy EB, selectively dissociating only high-energy dimers.

To illustrate, for measured densities on the order of 10 µm−3 and calculated bound state
energies around 100 kHz, the mean-field shift typically ranges from δE = 1 kHz to 10 kHz,
depending heavily on the scattering length and position on the BEC side of the crossover.

By modulating the magnetic field at a frequency νmod close to the bound state energy
EB, primarily high-energy dimers at the trap edge are dissociated, reducing the remaining
sample’s energy per particle. In Fig. 7.4 c, this is observed as an increase in the number of
condensed atoms Ncondensed, indicating a rise in phase-space density and reduction in entropy.
At frequencies significantly above the bound state energy, however, the number of condensed
atoms decreases, eventually depleting the condensate, as the dissociation loses selectivity and
dimers are broken throughout the trap, including the lowest energy dimers of the condensate.

Advantages over established methods

Our newly developed cooling technique complements the established methods discussed in
Section 7.1.1. Compared to evaporative cooling via RF-transitions in a magnetic trap or
forced evaporation in an optical dipole trap, this new method offers several major advantages.

First, this method enables cooling of an arbitrary two-spin mixture, provided the bound
state energy on the molecular side of the Feshbach resonance is accessible. Second, the
magnetic field modulation avoids coupling to a third spin state, thereby preventing strong
three-body losses. Finally, the targeted and selective dissociation process achieved through
magnetic field modulation keeps the trap unaltered throughout the evaporation process. This
consistency aids in maintaining the efficient runaway regime, promoting rapid thermalisation
since density does not decrease, unlike in forced evaporation within an optical dipole trap.

∗Here, the modulation amplitude Amod of the magnetic field modulation is chosen to optimise the signal.
For further details on frequency and amplitude consult Section 7.3.
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Later in Section 7.4, we analyse the efficiency of this cooling method, demonstrating that it
reaches high efficiencies of γ = 4 in a gravity-tilted trap and γ = 6 in a gravity-compensated
trap, comparable to and even surpassing the highest reported efficiencies in forced evaporation
steps near a Feshbach resonance [85, 87, 91–99].

7.2.1 Evaporative cooling step model
To deepen our understanding of this cooling mechanism, we simulate the proposed evaporative
cooling step using the step model of evaporation [85]. We simulate an interacting Bose gas
with our measured trap frequencies, temperature and atom number. This defines the initial
internal energy U by integrating the product of energy and occupation (given by the Bose
distribution function in Eq. (2.5)) over the entire phase space, spanned by momentum d3p
and position d3r. After selectively removing −∆N high-energy atoms from the edges of the
sample, we recalculate the internal energy to estimate the corresponding temperature change.

The step model is based on the proportionality between atom number N , temperature T
and internal energy U , expressed as [85]

U = ξNkBT , (7.3)

where ξ depends on the trap geometry, such as ξ = 3/2 for a homogeneous trap or ξ = 3 for
a harmonic trap [8].

As discussed in Section 7.1, evaporative cooling removes a number −dN = Nf −Ni of atoms,
changing the initial atom number Ni to a final atom number of Nf . After removing these atoms
and allowing for sufficient thermalisation, the remaining atoms rearrange into a modified
(Boltzmann) distribution with a final temperature Tf . Thus, the sample’s temperature changes
by dT = Ti − Tf . Naturally, the remaining atoms also exhibit a change in internal energy
dU = Ui − Uf , reflecting the change in atom number dN and temperature dT .

The step model of evaporation describes this cooling step as

Uf = Ui − dU = ξ (Ni − dN ) kB (Ti − dT )
⇔ Uf = Ui − dU = ξkB (NiTi −NidT − TidN + O(dNdT )) ,

(7.4)

where the final non-linear term O(dNdT ) is omitted [85].
Rearranging terms, the temperature change dT after an evaporation step can be calculated

as
dT = dU − ξTikBdN

ξNikB
. (7.5)

To determine the change in temperature dT after an evaporation step, both the change in
internal energy dU and atom number dN must be determined.

We start by simulating the cloud of interacting bosons using the Bose statistics in Eq. (2.5),
incorporating the measured harmonic trap frequencies of

(
ωx, ωy, ωz

)
= 2π×(102, 144, 232) Hz

within an LDA framework, as described in Section 2.4. The temperature is set to T = 260 nK,
derived from a fit of the virial expansion of the equation of state to the measured in-situ
density profile (see Section 4.2). Interactions are incorporated using a self-consistent mean-
field approach, adding the mean-field energy of the composite bosons to the phase-space
dependent energy E(r,p). This results in a term of the total energy in the phase-space,
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which reads
E(r,p) = p2/ (2m) + V (r) + gnσ(r) , (7.6)

with m = 2mLi being the mass of the composite bosons, V (r) being the harmonic potential
(twice of what a single fermions experiences in Eq. (3.7)), g = 2πℏ2a/µr [8] (refer to Eq. (2.23))
being the mean-field coupling constant with µr = mLi (dimers) and nσ being the density of
composite bosons.

In order to determine the density distribution nσ(r), we integrate the Bose statistics in
Eq. (2.5) over the momentum space d3p, as described in Eq. (2.31). Here, the energy term
in Eq. (7.6) is considered in the LDA approach. This step is iterated self-consistently to
incorporate the density dependent mean-field term until the density profile nσ converges
within an uncertainty of 1 %. We can use the resulting density profile to recover the atom
number N by integrating over the real space dr .

The internal energy is determined by integrating the Bose statistics in Eq. (2.5) over the
full phase space d3rd3p. By using the same integrand as for the calculation of the initial
density profile earlier, the initial internal energy Ui is calculated. With repulsive interactions
introducing slight deviations from a perfect harmonic confinement at the trap centre, we
adjust ξ in Eq. (7.3) to fit the altered trap, finding ξ = 2.81, close to the harmonic trap value
of ξ = 3. We use this value for calculations of the internal energy after removing atoms as
well.

To simulate cooling, we modify the Bose statistics such that the probability of finding a
boson for r > rcut drops to zero. This is expressed by

fBose(E (r,p) , T ) =
{
fBose(E(r,p) , T ) if r < rcut
0 if r ≥ rcut,

(7.7)

where fBose(E(r,p) , T ) represents the Bose statistics in Eq. (2.5).
Finally, we calculate the final atom number Nf and internal energy Uf using the modified

Bose statistics.† These values are then used in Eq. (7.5) to find the corresponding change in
temperature dT .

We will apply this simulation in Section 7.3.1 to compare the observed magnitude of cooling
with the predicted magnitude by this model.

7.3 Experimental implementation

In the previous section, we have discussed the concept and principles behind the new cooling
technique. This section covers the implementation of this method and examines the impact
of modulation parameters, specifically amplitude and frequency, on the observed cooling
performance.

The cooling technique operates by dissociating composite dimers on the BEC side of the
crossover and is implemented similarly to the spectroscopic measurements of the Higgs mode,
discussed in Section 6.3.1. Dimers exist on the BEC side of BEC-BCS crossover, and have a
bound state energy of EB, as given by Eq. (2.11). Here, the magnetic field B determines the

†We still use the unaltered density distribution nσ to incorporate the mean-field term.
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position in BEC-BCS crossover and; consequently, defines the bound state energy EB.
Dimer association is achieved by modulating the magnetic field using the custom-built

small magnetic field coil introduced in Section 4.5.2. The resulting profile of the magnetic
field is illustrated in Fig. 7.5.
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Figure 7.5: Experimental protocol for cooling via magnetic field modulation. This figure shows the
magnetic field profile used to dissociate composite dimers through magnetic field modulation. The
sample is first prepared at an offset field of B. At t = 0, a sinusoidal modulation with amplitude
Amod and frequency νmod is superimposed to the offset field for a duration of tmod, using the small
magnetic field coil introduced in Section 4.5. The modulation time tmod is adjusted to contain an
integer number nmod = 2πtmodνmod of oscillations. After modulation, a thermalisation period of
tthermal − tmod is added. To detect cooling, the sample is imaged either in-situ at tthermal to measure
the sample’s temperature, or after additional expansion using the RR technique at timg, to measure
the condensate fraction CF , as detailed in Section 4.3. The rapid ramp includes two timescales: the
free expansion time tramp − tthermal at the zero-crossing Bzc of the Feshbach resonance and the ramp
time timg − tramp to the final imaging magnetic field Bimg.

Initially, the sample is prepared at a magnetic field B, setting its position on the BEC side
of the BEC-BCS crossover, and thus defining the bound state energy EB. After preparing a
|13⟩ mixture as described in Section 3.2.6, cooling is achieved by superimposing the modulated
magnetic field. The modulation parameters include an amplitude Amod, frequency νmod
and modulation duration tmod. To prevent magnetic field jumps, the number of oscillations
is ensured to stay integer, which is achieved by adjusting the modulation time to ensure
nmod = 2πtmodνmod.

Typically, after a modulation period of tmod ∼ 300 ms, a thermalisation time of tthermal −
tmod = 200 ms is added to allow full thermalisation of the sample. We observe that the
amount of dissociated atoms depends only on the combined expression A2

modtmod, consistent
with [218], and A2

modtmod also uniquely defines the extent of cooling. However, to avoid
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introducing additional timescales, we only vary Amod while keeping tmod constant, unless
stated otherwise. Note that the condensate has a 1/e decay time of approximately ∼ 1 s.
Later, in Section 7.5, we scale tmod ∝ 1/

√
Amod to probe the achievable cooling timescale

with minimal modulation duration.

Probing the cooling technique

To quantify the cooling effect, we probe the cooled gas both in-situ and after the rapid ramp.
The general detection procedure is detailed in Chapter 4, but a brief overview is provided here
as well. To infer the 3D density of the trapped sample, the in-situ image is processed via the
inverse Abel transformation, refer to Section 4.2.1. This processed 3D density provides the
central density nσ and the temperature T , determined by fitting the 3D density profile to the
virial expansion of the equation of state (see Section 4.2). However, this procedure requires
extensive data and is therefore supplemented by a faster measurement of the phase-space
density via the condensate fraction CF , obtained from images taken after the rapid ramp
(refer to Section 4.3).

While in-situ images are captured immediately after the thermalisation period, the rapid
ramp incorporates an additional expansion time, as depicted in Fig. 7.5.

7.3.1 Observed cooling

First, we use the measurement of the condensate fraction CF as a proxy for the phase-space
density to assess the influence of the modulation parameters, namely the amplitude Amod
and frequency νmod, on the cooling efficiency. To this end, we prepare a sample at a magnetic
field of B = 640.31(6) G, which corresponds to a bound state energy of EB/h = 104.5(5) kHz.
In order to observe cooling, the magnetic field is modulated with frequencies close to this
bound state energy. The observed change CF − CF0 in condensate fraction from an initial
condensate fraction CF0 to a condensate fraction of CF is shown in Fig. 7.6.

The left plot of Fig. 7.6 shows the change in condensate fraction CF − CF0 as a function
of modulation amplitude Amod for various modulation frequencies νmod. We observe different
regimes of cooling and heating depending on the combination of amplitude Amod and frequency
νmod. For frequencies below the bound state energy νmod ≤ EB/h = 104.5(5) kHz, there
is no discernible increase in condensate fraction CF − CF0, and instead, the condensate
fraction decreases at larger modulation amplitudes. Since dimers can not be broken at these
frequencies, this depletion is attributed to thermal excitations from sound modes [48].

For frequencies above the bound state energy νmod > EB/h = 104.5(5) kHz, we observe an
increase in condensate fraction CF − CF0 at lower modulation amplitudes Amod, indicating
an efficient cooling step. For much higher modulation amplitudes, however, the cooling
decreases and eventually leads to heating. As shown later in Fig. 7.7, higher modulation
amplitudes cause more atoms to be removed from the trap. Thus, the modulation amplitude
Amod of maximum cooling can be understood as the point at which we start to remove
particles with an energy approaching the average energy per particle, effectively making
evaporation less efficient.

In order to estimate the frequency νmod range for efficient cooling, we track the maximum
change in condensate fraction CF − CF0 across tightly sampled modulation frequencies, as
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Figure 7.6: Condensate fraction after the magnetic field modulation. The figure presents the cooling
effect as a change in condensate fraction CF − CF0 relative to the initial condensate fraction CF0
for an exemplary sample with bound state energy EB/h = 104.5(5) kHz (vertical dashed dotted).
With a constant modulation time tmod, the modulation has two free parameters: amplitude Amod and
frequency νmod. Left: Change in condensate fraction CF −CF0 as a function of modulation amplitude
Amod for six exemplary modulation frequencies νmod. Right: Maximum change in condensate fraction
for each modulation frequency, with the six frequencies from the left plot highlighted by corresponding
markers and colours. Errorbars denote the standard error.

shown in the right plot of Fig. 7.6. Efficient cooling is possible for a wide range of frequencies,
but becomes less efficient and eventually leads to heating at much higher frequencies. This
can be attributed to the finite dissociation threshold of the coldest dimers in the centre of the
trap, as given in Eq. (7.2). At very high frequencies, primarily the coldest, condensed dimers
are broken, inhibiting cooling by dissociation. In other words, the dissociation method loses
its selectivity.

Temperature reduction

We also evaluate the cooling technique by measuring the sample’s temperature T . For this
purpose, we prepare an equivalent sample at a magnetic field of B = 640.31(6) G with a bound
state energy of EB/h = 104.5(5) kHz. Again, we vary both the modulation amplitude Amod
and frequency νmod and measure the temperature T of the sample post-thermalisation. The
measured temperatures are displayed in the left plot of Fig. 7.7. For a more direct comparison
to the theoretical step model in Section 7.2.1, we replace the modulation amplitude Amod on
the horizontal axis with the fractional atom loss −∆N/Ni with respect to the initial atom
number Ni.‡

Similar to Fig. 7.6, we observe regimes of cooling and heating depending on the combination
‡Here ∆N is used instead of dN in Section 7.2.1 to acknowledge the non-infinitesimal loss of atoms.
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Figure 7.7: Temperature reduction through cooling. Analogous to Fig. 7.6, an exemplary sample
with bound state energy of EB/h = 104.5(5) kHz is cooled via a magnetic field modulation from an
initial temperature Ti. Left: For four exemplary modulation frequencies νmod, the temperature Tf is
measured as a function of modulation amplitude Amod, yielding a fractional atom loss of −∆N/Ni
from an initial atom number of Ni. Again, an onset at the bound state energy EB is visible. Right: The
measured temperature drop is compared with the simulated temperature reduction in an interacting
Bose gas based on the step model of evaporative cooling, refer to Section 7.2.1. Here, a number −∆N
of atoms is removed from trap edge towards the centre. Left: Errorbars denote the standard error
from the thermometry fit (refer to Section 4.2).

of frequency νmod and amplitude Amod, i.e. the fraction atom loss −∆N/Ni. For frequencies
below the bound state energy νmod < EB/h = 104.5(5) kHz, no cooling is discernible, and
instead, the sample heats up with increasing atom loss. However, for frequencies above
the bound state energy νmod > EB/h = 104.5(5) kHz, a small atom loss yields a reduced
temperature of the sample, confirming the cooling effect. As discussed in the context of the
condensate fraction CF earlier, a much larger atom loss leads to heating.

The theoretical step model presented in Section 7.2.1 is also shown in Fig. 7.7 for com-
parison. Consistent with our measurements, the model predicts a temperature reduction
of approximately ∼ 15 % for a fractional atom loss around ∼ 30 %. This strong agreement
validates our description of the cooling mechanism as given in Section 7.2.

However, the model in Fig. 7.7 does not capture heating, which is observed for higher
frequencies in the experimental data. This discrepancy can be attributed to two factors
not included in the model. First, the model assumes that all atoms above the dissociation
threshold are immediately expelled from the trap. In practice, however, dissociated fragments
with excess kinetic may remain in the trap and heat the sample. Second, at much higher
frequencies νmod and consequently greater atoms losses, more dimers from the condensate’s
zero-energy state are dissociated and potentially removed from the trap. This leads to rapid
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decay of the condensate and heating of the sample.

7.3.2 Onset of dissociation and cooling

We have clarified the dependence of the modulation parameters – amplitude Amod and
frequency νmod – on the efficient regimes of cooling. Yet, the question remains: does the
onset frequency of efficient cooling consistently match the bound state energy, or does a
small, un-captured deviation persist beyond the model presented in Section 7.2? To address
this, we probe the cooling technique by measuring the number of condensed atoms Ncondensed
across various magnetic fields on the BEC side of the crossover, where a dimer bound state is
present.

The measurement and analysis are shown in Fig. 7.8. In the upper row we display the
increase in condensed atoms Ncondensed as a function of modulation frequency νmod for three
exemplary magnetic fields B using a sufficient magnetic field modulation amplitude Amod. To
automate detection of the cooling onset, we calculate the point-to-point gradient, identifying
the onset of cooling at the frequency where the gradient reaches a positive maximum.
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Figure 7.8: Onset of the cooling feature throughout the dimer regime of the BEC-BCS crossover.
The figure highlights the measured onset of cooling via dimer dissociation, coinciding with the bound
state energy EB. Upper row: Cooling is identified by an increase in the number of condensed atoms
Ncondensed (red points). For three exemplary samples prepared at magnetic fields of (left to right)
624.55(6) G, 635.38(6) G and 645.22(6) G, the onset (red dashed line) is identified by the maximum in
the first derivative (blue line) of the data. Bottom: For each magnetic field, the measured onset (red
line) is compared to the calculated bound state energy EB at that field, calculated via the correction
in Eq. (2.11). Inset: The relative deviation between the measured onset and calculated bound state
energy is shown for quantitative comparison. Errorbars denote the standard error.
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This analysis is applied to samples at various magnetic fields, yielding the magnetic field
resolved onset frequency shown in the lower panel of Fig. 7.8. Alongside, we display the
calculated bound state energy EB, calculated with Eq. (2.11). We find excellent agreement
between the detected onset frequency and the bound state energy.

For the largest magnetic fields – yielding the smallest bound state energies EB – the relative
deviation increases dramatically, attributed to the diminishing signal-to-noise ratio of the
cooling peak, as the magnetic field approaches unitarity. The decline in cooling efficiency
near unitarity will be further detailed in Section 7.4.3.

At the lowest magnetic fields, with the largest bound state energies EB, the detected onset
also shows stronger deviations from the calculated bound state energy. This can not be
explained by a diminishing signal-to-noise ratio, as before, but by the limitations of the
amplifier circuit of the small magnetic field coil, as discussed in Section 4.5.2.

Thus, we can conclude that, within our precision, the onset of the cooling technique
coincides with the calculated bound state energy EB, providing further validation of the
mechanism behind the cooling technique described in Section 7.2.

7.3.3 Frequency of maximum cooling efficiency

Till now, we have examined the influence of the modulation amplitude Amod and frequency
νmod on our proposed cooling technique. We have observed that cooling occurs for modulation
frequencies νmod slightly larger than the bound state energy of a sample νmod ≥ EB/h. This
aligns with the proposed cooling mechanism in Fig. 7.5, where the density dependent dimer
dissociation threshold (see Eq. (7.2)) selectively removes high-energy atoms from the trap’s
edge.

The dimer dissociation threshold is highest at the centre, where the dimer density is
greatest (see Eq. (7.1)), and predominantly zero-energy dimers from the condensate are found
here. If the modulation frequency νmod is greater than the dimer dissociation threshold at
the trap centre, many dimers from the condensate are dissociated and removed from the trap
if their excess kinetic energy suffices. Dimers from the condensate have the lowest energy,
and hence a removal would result in strong heating of the sample. Thus, the frequency range
at which we expect efficient cooling should be limited to a frequency range similar to the
dissociation threshold at the centre of the trap. Hence, the range of efficient cooling should
depend on the density in the trap centre nσ. To investigate, we tune the easily accessible
parameter, the centre density nσ, and probe the modulation frequency νmod at which we
experience the most efficient cooling.

Measurements of the condensate fraction CF in Fig. 7.6 already reveal a modulation
frequency νmod for maximum cooling efficiency. Here, we repeat the measurement in Fig. 7.6
with samples of varying initial density nσ. We set the magnetic field to a value of B =
627.50(6) G – the field furthest on the BEC side that still allows for modulation frequencies
to be above the bound state energy of EB/h = 251.3(11) kHz. This maximises the relevance
of dimer physics, ensuring that the dissociation threshold relation from Eq. (7.1) holds. Note
that the interaction parameter for samples at this field is roughly 1/ (kFa) ∼ 3.

To adjust (reduce) the initial centre density nσ, we vary (reduce) the initial preparation
time in the optical dipole trap, refer to Section 3.2.6. Then, we perform the same measurement
as outlined in Section 7.3.1, varying the modulation frequency νmod and amplitude Amod. For
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each modulation frequency νmod, we take the maximum value of the condensate fraction CF ,
which occurs at a finite modulation amplitude Amod. We display the maximum condensate
fractions CF for different initial centre densities nσ as a function of modulation frequency
νmod in Fig. 7.9.
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Figure 7.9: Density dependence of the frequency necessary for maximum cooling. As suggested by
Fig. 7.4 and Eq. (7.1), the dissociation threshold frequency of a density bin nσ is linearly shifted by
density. To investigate this, we determine the frequency for maximum cooling efficiency in terms of the
condensate fraction CF for samples as far on the BEC side as possible, with a bound state energy of
EB/h = 251.3(11) kHz (vertical dashed band). By adjusting the initial preparation in the dipole trap
(refer to Section 3.2.6), we probe the cooling technique for different initial centre densities nσ (symbols
and colours). Left: Higher centre densities shift the position of maximum CF to higher modulation
frequencies νmod = EB + ∆νcool, quantified by fitting a deterministic skewed Gaussian model (defined
in Appendix B). Right: We plot the determined frequency of maximum cooling ∆νcool as a function
of the centre density nσ. Here, the statistical variation due to the fitted model is highlighted by the
blue shaded band. For comparison, the dissociation shift (see Eq. (7.1)) corresponding to the centre
density is shown as a black dashed line. Inset: For all probed initial centre densities, the relative
deviation between the frequency ∆νcool of maximum cooling and the calculated dissociation shift
(black dashed line in right) is shown. Errorbars denote the standard error.

Across all densities nσ, the onset of cooling begins at the bound state energy EB, as
anticipated. At higher modulation frequencies νmod, CF increases, featuring a peak at a
finite modulation frequency of νmod = EB/h + ∆νcool. In order to extract the position of
maximum cooling ∆νcool, we fit a deterministic skewed Gaussian model to the data, defined
in Appendix B. We fix the skewness parameter of the model to make the fitting routine more
robust.

After fitting, we extract the maximum position of the skewed Gaussian model, yielding
the position of maximum cooling ∆νcool. We display the determined positions ∆νcool for all
measured densities nσ in the right panel of Fig. 7.9. Due to the uncertainty of the fitting
routine, the position of maximum cooling ∆νcool has significant uncertainty, highlighted by

155



Chapter 7 Cooling of a strongly interacting quantum gas by dimer dissociation

the blue shaded band. Alongside the extracted data, we show the calculated (see Eq. (7.1))
dissociation threshold frequency at the trap centre as a reference. We find that the frequency
∆νcool at which we observe maximum cooling depends linearly on the density nσ at the centre
of the trap. We expect the same proportionality for the dissociation threshold frequency in
Eq. (7.1).

Moreover, the maximum cooling frequency ∆νcool consistently occurs at around ∼ 80 % of
the calculated dissociation threshold frequency at the trap centre, independent of density nσ.
This confirms the linear dependence of the position of maximum cooling ∆νcool with centre
density nσ.

Notably, while the frequency of maximum cooling ∆νcool linearly depends on the centre
density nσ, the line shape for efficient cooling is broad, which allows efficient cooling over
a wide range of frequencies. Although all dimers with a dissociation threshold below νmod
can indeed dissociate, only those with sufficient excess kinetic energy are immediately
removed from the sample, directly impacting temperature through evaporation. Dimers
with a threshold frequency at or only slightly above the modulation frequency νmod can be
dissociated, but remain in the trap, interacting with the remaining sample. This effect is
not captured by our developed step model in Section 7.2.1, and the subsequent dynamics
are much more complicated. Hence, ∆νcool primarily reflects a frequency range of efficient
cooling, while the broader line shape reflects more complex behaviour.

7.4 Efficiency of cooling

So far, we have investigated the working principles of the cooling technique and have
demonstrated cooling for a wide range of modulation parameters – frequency and amplitude.
To gain a more quantitative understanding, we now examine the efficiency γ of this cooling
technique. The efficiency γ is a key metric for any evaporative cooling technique [85], as
it represents the expected increase in phase-space density ρ̃ during the evaporative loss of
−∆N = Nf − Ni atoms. Since maximising the phase-space density ρ̃ is the goal of any
evaporative cooling approach, a high efficiency γ is desirable. Measuring the cooling efficiency
also allows for a direct comparison to alternative cooling methods.

The efficiency of an evaporative cooling step is defined as [85]

γ = − log (ρ̃f/ρ̃i)
log (Nf/Ni)

, (7.8)

with a change of the phase-space density from ρ̃i → ρ̃f and a change of atoms from Ni → Nf .
An efficiency of γ > 1 is considered effective cooling, while a negative cooling efficiency γ < 0
would indicate heating. Here, the phase-space density ρ̃ is defined as

ρ̃ = nσλ
3
dB, (7.9)

with nσ as the sample density (per spin state) and λdB as the thermal de-Broglie wavelength.
We determine the efficiency by probing the sample in-situ after cooling, as described in

Section 7.3. From in-situ images, we obtain the density profile nσ (r) as well as the sample
temperature T , outlined briefly in Section 7.3 and in more detail in Section 4.2. From the
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density profile nσ (r) we infer the density at the trap centre nσ := nσ (r = 0), which allows
us to determine the phase-space density ρ̃. We also use the density at the centre of the trap
nσ to gauge the Fermi temperature TF for a relative temperature scale (see Section 2.4).

The measured temperature T/TF and phase-space density ρ̃ are shown for an exemplary
magnetic field of B = 640.31(6) G in Fig. 7.10. This magnetic field, with a corresponding
bound state energy of EB/h = 104.5(5) kHz, is the same as in Fig. 7.6 and Fig. 7.7. To
measure the maximum efficiency γ possible for this field, we set the modulation frequency to
νmod = 110 kHz, where the maximum condensate fraction is observed in Fig. 7.6. In that
figure, we also note that the maximum cooling efficiency for each modulation frequency νmod
occurs at a specific modulation amplitude Amod, corresponding to a specific fractional atom
loss −∆N/Ni. Thus, we measure the temperature T/TF and phase-space density ρ̃ for various
modulation amplitudes Amod. For a clearer analysis, we replace the modulation amplitude
Amod on the horizontal axis with the fraction atom loss −∆N/Ni, as done before in Fig. 7.7.
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Figure 7.10: Determination of the cooling efficiency. To quantifiy the cooling method, we determine
the efficiency γ of the phase-space density increase ρ̃ relative to the fraction atom loss −∆N/Ni.
For this purpose, an exemplary sample with a bound state energy of EB/h = 104.5(5) kHz is cooled
through magnetic field modulation at a frequency of νmod = 110 kHz, corresponding to the maximum
in Fig. 7.6. The amplitude Amod of the modulation is changed between measurements, producing a
fractional atom loss of −∆N/Ni. Left: As seen in Fig. 7.7, the temperature drops for a moderate
atom loss, indicating cooling. Right: Concurrently, the phase-space density ρ̃ increases. We fit the
model from Eq. (7.8) in two piecewise segments to the data to extract the cooling efficiency γ from
the initial positive slope segment in the logarithmic plot. Errorbars denote the standard error.

For small fractional atom losses −∆N/Ni, we observe a temperature decrease and a phase-
space density ρ̃ increase. As previously noted and discussed in Fig. 7.6 and Fig. 7.7, we
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experience less efficient cooling and ultimately heating for a much stronger atom loss. Efficient
cooling is observed until where the maximum phase-space density ρ̃ is reached, at a fractional
atom loss of approximately −∆N/Ni ∼ 0.2.

To determine the cooling efficiency γ, we fit Eq. (7.8) in a piece-wise fashion of two segments
to the data. The first segment of positive slope describes efficient cooling, while the second
segment of negative slope indicates heating with γ < 0. For this exemplary field, we deduce
a cooling efficiency of γ = 2.10(23).

7.4.1 Frequency range of efficient cooling

In the previous section, we have determined the cooling efficiency γ for an exemplary
sample at a magnetic field of B = 640.31(6) G with a corresponding bound state energy of
EB/h = 104.5(5) kHz. To maximise the possible efficiency γ, we have employed a modulation
frequency νmod at which we observe the maximum condensate fraction CF in Fig. 7.6. While
this is a reasonable approach, a full spectrum of the cooling efficiency γ(νmod), similar to
Fig. 7.6, would provide more insight into the range of possible cooling efficiencies.
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Figure 7.11: Linewidth of the increase of the condensate fraction and the cooling efficiency. To
quantify the cooling technique, we measure both the condensate fraction CF (left) from RR images
(see Section 4.3), and the temperature and density from in-situ images (see Section 4.2). The latter
method allows extraction of the cooling efficiency γ (right). The figure shows both the increase in
CF −CF0 (left) as well as in γ (right) for a sample prepared with a bound state energy of 104.5(5) kHz
(vertical red line) and cooled with a modulated magnetic field at a frequency of νmod. Errorbars
denote the standard error.

To this end, we have measured the cooling efficiency γ as described in Section 7.4 but across
several modulation frequencies νmod at the same exemplary magnetic field of B = 640.31(6) G.
This produces a spectrum of cooling efficiencies γ(νmod) akin to the spectrum of the maximum
change in condensate fraction CF −CF0, as shown in Fig. 7.6. Both spectra of γ and CF −CF0
are presented in Fig. 7.11. Note that only the positive cooling efficiency γ > 0 of the first
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segment – with moderate atom loss – is shown. If no cooling is discernible – and the phase-
space density graph in Fig. 7.10 can be described by a single segment – the cooling efficiency
is set to γ = 0.

The spectrum confirms that, while in both γ and CF − CF0 regimes of efficient and
less efficient cooling are discernible, the frequency range of maximum efficient cooling is
broad. Thus, desiring the best cooling efficiency does not require an extremely accurate
determination of the best setting for the modulation. Also, the spectrum confirms that the
maximum cooling efficiency γ occurs at the frequency at which we observe the maximum
increase in condensate fraction. Therefore, we can stick with the simpler determination of
the maximum efficiency by measuring the condensate faction CF .

7.4.2 Cooling throughout the BEC regime of the BEC-BCS crossover

Using insights from previous measurements, we now investigate the cooling technique through-
out the BEC regime of the BEC-BCS crossover by varying the magnetic field and, thereby,
the bound state energy EB. To this end, we measure the maximum change in condensate
fraction CF − CF0 as shown in the right panel of Fig. 7.6. As shown in Fig. 7.11, the
modulation frequency νmod that yields the maximum increase in CF − CF0 aligns with
the highest achievable cooling efficiency γ. Consequently, we measure the cooling efficiency
γ for various bound state energies EB using the modulation frequency at which the gain
in condensate fraction CF − CF0 is maximal. The results for both the maximum gain in
CF − CF0 and the corresponding maximum cooling efficiency γ are shown in Fig. 7.12.

The measurement suggests that the cooling method is generally more effective for more
deeply bound dimers with higher bound state energies EB. We observe most efficient cooling
for bound state energies close to and above EB/h ∼ 200 kHz. For these samples, we achieve
a maximum gain in the condensate fraction of CF − CF0 ∼ 0.15, while the cooling efficiency
reaches high values of γ ∼ 4. This efficiency is exceptionally high and comparable to, or
even surpasses, the largest reported evaporation efficiencies of γ ≤ 4 in forced evaporation
approaches in an optical dipole trap near a Feshbach resonance [85, 87, 91–99].

Conversely, as the bound state energy approaches zero EB → 0 near unitarity, cooling
becomes significantly less efficient. For a bound state energy of EB/h = 73.5(5) kHz we
achieve a cooling efficiency of only γ = 1.08(16), barely exceeding unity. This situation occurs
for an interaction parameter of 1/ (kFa) ∼ 0.7 and a magnetic field of B = 645.22(6) G. As
we move to fields with even lower bound state energies, the cooling efficiency falls below
unity, rendering the cooling method inefficient.

We can attribute this reduction in efficiency to two factors, which align with our proposed
cooling mechanism in Section 7.2. First, as EB decreases, the gap in dissociation threshold
(see Eq. (7.2)) between the high- and low-energy dimers becomes less pronounced, weakening
the selective nature of the cooling method, and thus reducing its effectiveness. Second, as
the dimer pair size increases approaching unitarity [17], the behaviour of the dimer sample
increasingly resembles the dynamics of overlapping many-body interactions rather those of a
weakly-interacting bosonic dimers gas. This shift affects the spectral line shape of dissociation
[17] and, consequently, influences the cooling technique. A more precise determination of the
magnetic field beyond which no cooling effect is observed is carried out in Section 7.4.3.

Note that these measurements have been performed in a gravity-tilted trap. Efficiency
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Figure 7.12: Cooling efficiency throughout the BEC side of the BEC-BCS crossover. The cooling
technique operates via dimer dissociation and is thus limited to the bosonic side of the BEC-BCS
crossover. Near unitarity, the cooling efficiency declines and eventually fails to cool the sample. The
figure shows both the evolution of the condensate fraction increase CF − CF0 (a) and the maximum
cooling efficiency γ (b) for samples of different bound state energies EB (colour). a Displays CF −CF0
as determined in Fig. 7.6, with vertical lines indicating the respective bound state energy EB. b For
each EB in a, the frequency of the maximum CF − CF0 is employed to measure the maximum cooling
efficiency γ, determined as shown in Fig. 7.10. Errorbars denote the standard error.

measurements in a gravity-compensated trap are presented in 7.4.4, where we observe
comparable and even slightly higher efficiencies.

7.4.3 Minimum bound state supporting efficient cooling

As discussed in Section 7.4.2, the cooling efficiency γ decreases significantly and eventually
falls below γ = 1 as the magnetic field approaches the unitarity limit. In the previous section,
we already identified reasons for a reduced cooling efficiency, as the bound state energy
EB → 0 approaches zero near unitarity. However, the sampling resolution of the efficiency
measurement in Fig. 7.12 is insufficient to precisely determine the magnetic field B at which
cooling becomes undetectable (γ = 0) and is replaced by heating only.

Here, we perform a measurement of higher resolution to identify the magnetic field B at
which the cooling technique ceases to provide cooling. To this end, we measure the number
of condensed atoms Ncondensed from the RR measurement and search for an increase in the
number of condensed atoms Ncondensed for modulation frequencies νmod larger than the bound
state energy EB. The results are presented in Fig. 7.13.
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Figure 7.13: Vanishing of cooling when approaching unitarity. As indicated in Fig. 7.12, the cooling
technique becomes less efficient towards unitarity and for very low bound state energies stops cooling
the sample at all. In this figure we search for the highest magnetic field B or lowest bound state
energy EB, at which no cooling is discernible anymore. Left: To this end, we measure the amount of
condensed atoms Ncondensed after the RR as a function of modulation frequency νmod and for fields
that are sampled around the expected limiting highest field. Vertical lines highlight the corresponding
bound state energies EB. Between the smallest magnetic field (largest EB) and the largest magnetic
field (smallest EB), we observe a trend from an increase in NCondensed to a featureless decay. Right:
From this observation we pinpoint the onset of cooling between the measured fields (vertical grey
area), corresponding to a range in the two-body scattering length a (horizontal red area). Errorbars
are standard errors.

In the left panel of Fig. 7.13, we show the number of condensed atoms Ncondensed after a
cooling step of modulation frequency νmod and a fixed modulation amplitude of Amod = 0.3.
For the smallest magnetic field B, or the largest bound state energy EB, we still see a
small remaining gain in the number of condensed atoms Ncondensed. However, for the largest
magnetic field B, or the smallest bound state energy EB, no gain is observed. Between these
magnetic fields, a smooth transition from cooling to heating occurs.

We estimate this transition to be between magnetic fields of B ∼ 654 G and ∼ 657 G,
corresponding to a range in bound state energies from EB/h ∼ 29 kHz to ∼ 37 kHz or a range
in scattering lengths from a/a0 ∼ 4051 to ∼ 4574. Beyond this magnetic field, no cooling
can be observed.

7.4.4 Efficiency in a gravity-compensated trap

In Section 7.4.2, we have measured the efficiency γ across various bound state energies EB
throughout the BEC side of the BEC-BCS crossover. This measurement has been performed
in an optical dipole trap with a tilt due to gravity. Gravity is often beneficial for forced
evaporative cooling in an optical dipole trap due to the reduced trap depth, which accelerates
evaporation [85]. While gravity can enhance the efficiency of evaporation and the maximum
achievable phase-space density ρ̃, it usually also decreases the total amount of trapped atoms
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Chapter 7 Cooling of a strongly interacting quantum gas by dimer dissociation

due to the lower trap depth, influencing any evaporative cooling technique significantly.
In order to investigate gravity’s role in our cooling technique, we conduct an additional

measurement of the cooling efficiency γ in a gravity-compensated trap. Here, gravity is
countered by a magnetic gradient field. The measurement is performed similarly to that
shown in Fig. 7.10, with the results for the gravity-compensated trap presented in Fig. 7.14.
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Figure 7.14: Cooling efficiency throughout the BEC side of the crossover for a gravity-compensated
trap. In Fig. 7.12, we have shown the cooling efficiency γ throughout the bosonic side of the BEC-BCS
crossover for a gravity-tilted trap. In this figure, we measure the cooling efficiency for the same
frequencies as in Fig. 7.12, but for a gravity compensated trap, reaching comparable and even slightly
higher efficiencies γ. Errorbars denote the standard error.

Qualitatively, the results align with those in the gravity-tilted trap, achieving the highest
efficiencies γ for the highest bound state energies EB. We observe efficiencies γ similar to
those measured in the gravity-tilted trap in Fig. 7.10. More specifically, efficiencies range
from γ ∼ 5 to ∼ 6, slightly surpassing the maximum efficiency of γ ∼ 4 in the gravity-tilted
trap. Higher efficiencies are most likely an effect of the generally higher atom number in
gravity-compensated traps, improving thermalisation and the efficiency of cooling. For the
largest bound state energy, we measure a cooling efficiency close to γ = 8, which possibly
presents a statistical outlier. These cooling efficiencies outperform the reported cooling
efficiencies of up to γ ≤ 4 [85, 87, 91–99] by a factor of up to 2.

While the cooling efficiencies γ are generally higher in the gravity-compensated trap, the
absence of a tilt alters the trap geometry, leading to lower overall phase-space densities ρ̃. In a
gravity-tilted trap, we observe a maximum gain in the condensate fraction of CF − CF0 ∼ 0.1
for a bound state energy of EB = 104.5(5) kHz in Fig. 7.12, resulting in a total condensate
fraction of CF ∼ 0.16. By contrast, in a gravity-compensated trap at the same bound
state energy EB/h = 104.5(5) kHz, we measure a maximum change in condensate fraction of
CF −CF0 ∼ 0.04, yielding a total condensate fraction of just CF ∼ 0.05. Direct measurements
of the phase-space density ρ̃ confirm these findings.
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Given that the cooling technique is applied to a pre-cooled sample, the significantly higher
achievable phase-space densities ρ̃ in a gravity-tilted trap may be more advantageous, despite
a slightly reduced cooling efficiency.

7.5 Time scale of the cooling technique

So far, we have discussed the working principle of the cooling technique in Section 7.2,
examined the dependency of the cooling efficiency on the parameters of the magnetic
field modulation in Section 7.3 and determined the cooling efficiency for a broad range of
bound state energies in Section 7.4. As outlined in Section 7.2, the cooling mechanism
operates through the dissociation of high-energy dimers, potentially ejecting the dissociated
fragments from the trap. We have observed the ejection of dissociated atoms in Fig. 7.4. The
dissociation and subsequent separation of ejected fragments establishes the timescale of the
cooling technique, followed by an additional thermalisation period to settle for the reduced
temperature. Investigating this timescale allows for an optimised integration of this cooling
technique in various systems, where time constraints may be strict due to limited sample
lifetimes.

The cooling technique uses a modulation of the magnetic field with amplitude Amod,
frequency νmod and a time tmod. To investigate the timescale on which the sample is cooling,
the modulation time tmod should be minimised to reduce smearing or overlap between tmod
and the time which it takes for the reduced temperature to settle. In Section 7.3, we have
discussed that the amount of dissociated atoms only depends on the combined expression
A2

modtmod, which relates amplitude Amod and time tmod, in line with earlier studies in [100,
218]. Thus, it is reasonable to assume that the cooling efficiency also depends on A2

modtmod.
To determine the timescale, we measure the time-resolved gain in condensate fraction

CF − CF0 for several modulation times tmod ∝ 1/
√
Amod at constant A2

modtmod in Fig. 7.15.
Here, we choose a value for A2

modtmod at which we have observed maximum cooling before in
Fig. 7.6. For each modulation time tmod, we measure the time resolved gain in condensate
fraction by varying the hold time thold in the dipole trap after cooling and before imaging.
The hold time replaces the thermalisation time (refer to Fig. 7.5) – for thold = 0 an image is
taken directly at the end of the modulation of the magnetic field. Due to the amplitude limit
of the small magnetic field coil amplifier used for the modulation (refer to Section 4.5.2), the
shortest possible modulation time is tmod = 9.3 ms, which is significantly shorter than the
typical 300 ms.

First, we observe that the gain in condensate fraction CF − CF0 reaches the same level
across all modulation times tmod. This confirms that the optimal modulation time scales as
tmod ∝ 1

√
1/Amod, as anticipated. This indicates that the cooling method can be applied

much faster if a sufficiently large modulation amplitude is available.
Second, for the shortest possible modulation time of tmod = 9.3 ms, we observe a time-

resolved increase in condensate fraction CF − CF0 after completing the magnetic field
modulation. This dataset allows us to deduce the thermalisation timescale necessary to
settle for the reduced temperature. To estimate this, we fit a deterministic model to the
data, which captures the timescale of settling for the increased condensate fraction. We
choose to fit the model in Eq. (6.6), which we have used earlier to describe the revival of the
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Figure 7.15: Time dynamics after modulation. The cooling technique works by dimer dissociation,
subsequent ejection of high-energy atoms from the trap and re-thermalisation of the remains, and thus
is connected to a finite timescale. In order to determine the timescale of the fastest possible cooling
step, we employ the cooling technique for different modulation times tmod of constant A2

modtmod
and measure the increase of the condensate fraction CF − CF0 as a function of the hold time thold
before the RR. Inset For the shortest possible modulation time of tmod = 9.3 ms, we fit (solid line) a
deterministic model from Eq. (6.6) to the data, revealing the timescale. Errorbars denote the standard
error.

condensate fraction after a sudden quench of the magnetic field. From the fit, we find a 1/e
thermalisation time of 23.8(11) ms. Hence, we can fully implement the cooling method in a
time of less than 35 ms, incorporating tmod = 9.3 ms of modulation time and 23.8(11) ms of
thermalisation.

After an additional period of 355(29) ms, we begin to detect decay of the condensate. By
fitting the thermal decay with and without modulation, we determine a 1/e thermal decay
time of 0.92(1) s for the condensate in our setup.

7.6 Conclusion

We have have introduced a novel cooling scheme for an interacting Fermi gas on the BEC
side of the BEC-BCS crossover in an inhomogeneous optical dipole trap potential. This
cooling technique selectively dissociates and ejects the highest energy dimers in the trap by
modulating the magnetic field at frequencies above the corresponding dimer bound state
energy. As the dissociation and ejection occur via additional magnetic field modulation, the
trapping potential remains unaffected, simplifying the process of staying in the runaway
regime of high cooling efficiencies.

The cooling technique relies on a sufficiently deep bound state, so that the dissociation
threshold difference between the highest and lowest energy dimers allow targeted removal
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of predominantly high energy dimers. Thus, the cooling technique performs best at large
bound state energies on the BEC side of the crossover, where we have measured the largest
cooling efficiencies γ. We have measured cooling efficiencies of up γ = 4 in a gravity-tilted
trap and even slightly larger efficiencies of up to γ = 6 in gravity-compensated trap.

Achieving optimal cooling efficiencies requires setting appropriate modulation parameters:
frequency νmod, amplitude Amod, and time tmod. In Section 7.5, we have figured out that the
latter two parameters can be adjusted interchangeably as tmod ∝ 1/

√
Amod, with optimal

cooling depending solely on the combined expression A2
modtmod and frequency νmod. This

enables rapid cooling with a modulation time as short as tmod = 9.3 ms, followed by a 1/e
thermalisation time of ∼ 20 ms.

In this chapter, we have focused our analysis of the cooling technique on pre-cooled atoms
in a |13⟩ mixture. To explore the applicability of the new method, we have also applied
the cooling technique to a |12⟩ mixture with similar bound state energies EB and observed
comparable results as presented in Section 7.3. Additionally, we assessed the technique’s
effectiveness in an initially thermal gas with no condensate fraction. To this end, we have
measured the temperature reduction similarly to Fig. 7.10 but for a single fixed modulation
amplitude of Amod = 0.3 G to reduce the data requirements. In order to start with an initially
thermal gas, we have reduced the initial preparation time in the optical dipole trap (refer
toSection 3.2.6). As shown in Fig. 7.16, cooling is also observed in an initially thermal dimer
gas with no condensate, measured for a sample with a bound state energy of 104.5(5) G,
matching the sample from Fig. 7.10.
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Figure 7.16: Cooling of an initially thermal gas. Considering the description of the cooling technique
in Fig. 7.4, the requirement for the cooling technique to operate is a sufficiently deep two-body bound
state. Thus, the cooling technique should work as long as the initial temperature supports this bound
state. To investigate this, we measure cooling in terms of the temperature T/TF as a function of
the modulation frequency νmod and a constant modulation amplitude of Amod = 0.3 G for a thermal
sample with a bound state energy of EB/h = 104.5(5) kHz. Errorbars denote the standard error.

In conclusion, the method proves to be applicable in many systems, reaching high cooling
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Chapter 7 Cooling of a strongly interacting quantum gas by dimer dissociation

efficiencies throughout a wide region of the BEC regime. Since the implementation is not tied
to many prerequisites, and the implementation of magnetic field modulation does not require
huge alterations of existing systems [163], we expect the cooling method to be applicable in
many systems.
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CHAPTER 8

Summary and Outlook

8.1 Summary
The key results of this thesis are presented in Chapter 5, Chapter 6, and Chapter 7. To
conclude, we provide a concise summary of these chapters, highlighting the main findings
and discussing the final outcomes.

Machine learning of the superfluid phase transition

In Chapter 5, we have investigated the superfluid phase transition in a fermionic spin mixture
across the BEC-BCS crossover. The primary aim of this chapter was to determine a highly
accurate measurement of the superfluid critical temperature within the BEC-BCS crossover.
To achieve this, we have employed two distinct machine learning approaches to detect the
phase transition directly from time-of-flight images.

The first method utilises a deep convolutional neural network trained in a supervised
manner on condensate fractions as labels, which were determined from corresponding rapid
ramp images. After successful training, this network architecture allows us to predict the
condensate fraction directly from newly acquired time-of-flight images without the need
for magnetic field ramps, such as the rapid ramp. The deep convolutional neural network
captures subtle features of pairing in the momentum distribution, which are typically too faint
for conventional fitting methods, demonstrating the enhanced image recognition capabilities
provided by machine learning.

The temperature and density at the predicted onset of superfluidity is then gauged by
performing an inverse Abel transformation on corresponding in-situ images, from which the
temperature is inferred via fits to the virial expansion of the equation of state. From the
resulting critical temperature, we are able to map a phase diagram in the strongly interacting
regime of the BEC-BCS crossover. Our results show a striking resemblance to the extended
GMB theory in [19], and, for the first time, confirm an increase of the critical temperature
from the BCS limit, beyond the unitarity point, with a maximum on the BEC side.

Despite the network’s ability to infer condensation directly from time-of-flight images, its
inner workings are often obscured by the complexity of the numerous entangled non-linear
neuron activations. However, by using the backpropagation-based DeepLift library [200], we
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have found evidence that the neural network learns a physics-based understanding of pairing
and feature extraction for predicting the condensate fraction. This establishes the deep
convolutional neural network as a powerful tool for extracting features from atom images,
where conventional fitting methods are impractical.

Despite its capabilities, the deep convolutional neural network still requires corresponding
condensate fraction labels obtained through the rapid ramp. This becomes particularly
problematic when detecting the onset of superfluidity, where the condensate fraction ap-
proaches zero. Since these labels are derived from bimodal fits to rapid ramp images, they
are susceptible to a low signal-to-noise ratio, possibly affecting predictions close to the onset.

To address this issue, we have introduced a second approach using a deep convolutional
autoencoder neural network, an unsupervised machine learning technique. Unlike the first
method, the autoencoder does not require labels and is trained (in a supervised manner) on
the time-of-flight images with the goal of encoding and decoding of the images to approximate
a unity function. Once successfully trained, the encoder efficiently maps input images into
a low-dimensional latent space, compressing the significant features of the input data into
coordinates of this latent space.

In the latent space, we have found that the data organises itself by temperature and
interaction, even though the network is provided no information beyond the time-of-fight
images. By analysing the structure of the data in the latent space, we have extracted
structural features near the expected superfluid critical temperature, as determined by the
first method. Using the same thermometry as before, we have mapped a second phase
diagram of the superfluid critical temperature in the BEC-BCS crossover, independently
determined without the need for rapid ramp measurements.

As this independent measurement aligns with the phase diagram produced by the supervised
neural network, it confirms the validity of our methodology and further supports the observed
maximum in the critical temperature between the unitarity point and the BEC limit.

Studying the Higgs mode in the BEC-BCS crossover

In Chapter 6, we have explored the response of the Higgs mode in the BEC-BCS crossover.
To this end, we employed two distinct excitation methods on a superfluid Fermi gas within the
BEC-BCS crossover, monitoring the gas’s response after excitation. Due to the inhomogeneity
of our trapping potential, the expected response is highly non-trivial. We attempt to model
the dynamics by developing a local density approximation of local Higgs oscillators within the
inhomogeneous trap, which contribute to the total spectrum of the inhomogeneous superfluid
sample. The model incorporates the measured density distribution, temperature, natural
linewidth of the Higgs mode, and the distribution of Cooper pairs in the inhomogeneous
condensate fraction, providing us with an extended theoretical framework for comparison
with our experimental results.

The first excitation method involves a sudden quench of the interaction parameter by
rapidly changing the magnetic field faster than the system’s fastest timescale, the Fermi
time ℏ/EF. Immediately after the quench, the order parameter is out of equilibrium with
the new interaction parameter, and starts to oscillate. We observe these oscillations in the
order parameter as oscillations in the condensate fraction, which we use as an accessible
proxy. By fitting the data with a deterministic, phenomenological model, we extract the
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oscillation frequency and damping rate. As expected, we observe discernible but damped
oscillations for quenches on the BCS side of the crossover. However, as we approach the BEC
side, the oscillations become less discernible and eventually undetectable. We account this to
the vanishing particle-hole symmetry approaching the BEC side, rendering the Higgs mode
unstable.

In comparison with the Fourier-transformed local density approximation model, the ob-
served oscillation frequencies are much slower – by more than a factor of two. Despite this, the
damping rates observed in the experiment and predicted by the local density approximation
model show strong agreement, suggesting that the significant decay stems from dephasing
in the inhomogeneous superfluid. While we have discussed potential reasons for the large
discrepancy in oscillation frequency, the developed model could not fully account for this
deviation.

In the second approach, we have probed the Higgs mode using a spectroscopic measurement
via parametric excitation. To this end, we have tracked the decay rate of the condensate
fraction after modulating the magnetic field with a frequency νmod and amplitude Amod. For
frequencies near the expected centre frequency of the local density approximation model,
we have observed a peak in the decay rate. We have determined the centre position and
width of this peak across the BEC-BCS crossover. Unlike the first method, the observed
centre frequency matches well with the model’s predicted centre frequency. However, the
observed peak width is significantly narrower than predicted by the model, instead agreeing
with a recent measurement of the Higgs mode in an effectively homogenous system [75]. This
suggests that while the inhomogeneity of the trap lowers the observed centre Higgs frequency,
it does not lead to a significant broadening of the Higgs mode.

Additionally, the spectroscopic approach has also allowed us to investigate the temperature
dependence of the Higgs mode. Contrary to expectation, we observe no change in the
oscillation frequency with temperature, which, aligns with a recent measurement of the Higgs
mode in an effectively homogeneous system [75]. This unexpected result warrants further
investigation.

Cooling by dimer dissociation

In Chapter 7, we have developed and demonstrated a novel cooling technique based on the
selective dissociation and removal of high-energy dimers from an inhomogeneous trapping
potential. This cooling method operates on the BEC side of the BEC-BCS crossover, where
the Feshbach resonance supports a two body-bound state, and dimers can be dissociated
by modulating the magnetic field with frequencies higher than the corresponding bound
state energy. Dissociating a dimer in a pure dimer cloud is connected to an increase in the
repulsive mean-field energy, which results in the dissociation threshold energy to experience
a density-proportional shift from the bound state energy. This shift allows for a selective
dissociation and subsequent removal of predominantly high-energy dimers, effectively cooling
the remaining sample via evaporative cooling.

We have characterised the cooling technique by measuring the phase-space density, either
directly or through the number of condensed atoms as a proxy, probed after an additional
thermalisation time subsequent to the modulation of the magnetic field. For modulation
frequencies greater than the bound state energy, we have observed an increase in phase-space
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density. The corresponding temperature reduction has been explained using the step model
of evaporation, applied to a simulated dimer sample with the measured temperature, atom
number and trap frequencies.

For a more quantitative description of the cooling technique, we have determined the
cooling efficiency for samples across the BEC side of the BEC-BCS crossover. In general,
the cooling technique is most effective and efficient for samples with the highest bound state
energy, furthest on the BEC side. We have measured efficiencies of up to γ = 4 in a gravity-
tilted trap and up to γ = 6 in a gravity-compensated trap, matching and even exceeding the
highest reported efficiencies in forced evaporation implementations near a Feshbach resonance
[85, 87, 91–99]. As we approach unitarity, the bound state energy decreases, causing the
cooling technique to become less efficient, eventually approaching γ = 1. For bound state
energies below EB ∼ 30 kHz no cooling has been detected. We have attributed the decreasing
efficiency towards unitarity to two effects aligning with our proposed cooling mechanism: a
gradual decrease in bound state energy EB and a shift from two-body dynamics to strong
many-body interactions.

Finally, we have investigated the timescale of the cooling technique, which scales as
tmod ∝ 1/

√
Amod, with Amod being the modulation amplitude. For our apparatus, the fastest

cooling step is limited by the maximum achievable modulation amplitude, resulting in a
modulation time of tmod = 9.3 ms and a subsequent 1/e thermalisation time of 20 ms.

It is important to note that the selective removal operates through magnetic field modulation
and, unlike radio-frequency-transitions (RF), does not couple to a third spin state. This
prevents strong three-body losses during evaporation. Moreover, the cooling process does
not require alterations to the trapping potential, simplifying the process of maintaining the
efficient runaway regime. In conclusion, this cooling technique should be applicable for a
wide range of systems, achieving high efficiencies.

8.2 Outlook
In addition to the results presented in Section 8.1, the experimental apparatus offers op-
portunities for future endeavours closely related to the studies in this thesis. Here, we
outline three potential projects that can be realised with the current setup, requiring minimal
modifications to the system.

8.2.1 Probing the Higgs mode in a homogeneous Fermi gas
In Chapter 6, we have studied the response of the Higgs mode in the BEC-BCS crossover
for the inhomogeneous sample produced by our apparatus. As discussed in Section 6.1,
the inhomogeneity of the sample necessitates extended models to describe the observed
oscillations. We have attempted to address this by modelling the Higgs mode spectrum
through a local density approximation of local Higgs oscillators. Nonetheless, probing the
Higgs mode in a homogeneous system would allow for a more direct investigation, as effectively
demonstrated in [75].

To directly compare our results with those of an equivalent homogeneous system, it
would be advantageous to repeat our measurements after preparing the Fermi gas in such a
system. In our current setup, inhomogeneity arises from the crossed optical dipole trap (see
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Section 3.2.6). In Appendix A, we have presented a suitable setup for creating a homogenous
box trap potential within our setup.

This setup is already available and can be implemented in future measurements. Of course,
analysing results from a homogeneous Fermi gas would introduce its own set of challenges,
such as a modified thermometry due to the altered potential.

8.2.2 The Higgs mode in the crossover from 3D to 2D

In Section 2.3.4, we have introduced the Higgs mode as a consequence of spontaneous
symmetry breaking upon entering the superfluid state. When transitioning from a 3D to a
2D system, the superfluid phase transition is replaced by the Berezinskii-Kosterlitz-Thouless
transition [231], which describes a superfluid state without long-range order or symmetry
breaking [232]. Despite ongoing debate, some predictions still suggest that the Higgs mode
persists in 2D systems [233, 234].

The Fermi gas in our experimental apparatus offers an ideal platform to probe the Higgs
mode within the transition from a 3D to a 2D system. For this purpose, a setup similar to
that described in Appendix A can be used to create a blue-detuned optical dipole trap. This
trap employs the 532 nm TEM01 mode along one spatial direction with a 589 nm homogenous
ring potential in the reaming plane, effectively suppressing dynamics in one spatial direction
and rendering the system two-dimensional. By combining this setup with the custom-built
small magnetic field coil, we can probe excitations while transitioning the gas from 3D to 2D.

8.2.3 Measuring the pseudogap

In Chapter 5, we have measured the phase diagram of the superfluid critical temperature TC in
the BEC-BCS crossover. For temperatures below the superfluid critical temperature T < TC,
a superfluid condensate of paired atoms forms. As discussed in Section 2.3, the critical
temperature in the BCS limit coincides with the onset of pairing T ∗ = TC. However, in the
BEC limit, preformed pairs exist at much higher temperatures than the critical temperature
T ∗ ≫ TC. Thus, in the strongly interacting regime of the BEC-BCS crossover, thermal pairs
can exist at temperatures above the critical temperature TC. We have discussed such pairs
in a pseudogap as a possible explanation of the missing temperature dependence of the Higgs
frequency in Fig. 6.12. The existence of preformed pairs could also influence the number of
condensed pairs from a rapid ramp measurement (refer to Section 4.3).

The key question is whether the strong interaction between these pairs lead to a pseudogap
state at a temperature T between the onset of pairing and the onset of superfluidity TC <
T < T ∗. The interpretation and existence of such a pseudogap state in a strongly interacting
Fermi gas is highly debated [222, 235]. In some theories, the pseudogap phase is interpreted as
a regime where the gas exhibits a BCS-like dispersion relation of incoherent pairs, as described
in Eq. (2.19), but with the gap parameter ∆ no longer describing the order parameter of a
macroscopically occupied coherent state [223]. In previous works, the pseudogap has been
experimentally investigated by observing back-bending at the Fermi momentum kF in the
dispersion relation [223, 236], or theoretical discussed in terms of its effect on gas properties,
such as pairing correlations [222].
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In our apparatus, the pseudogap can be probed using an approach similar to the meas-
urements in Section 6.3.1 and Section 7.3. One naive approach would be to modulate the
magnetic field at a frequency νmod high enough that it can only couple to the pseudogap
parameter ∆. This is done for samples at various initial temperatures Ti/TF, set by a
time-dependent recompression of the trapping potential for a time of theat, as described in
Section 5.3.1. If the gas is above a temperature that supports a pseudogap state, the modula-
tion should not couple to any relevant modes, and the gas should be less perturbed. We have
tested this approach for a strongly interacting Fermi gas at unitarity, as shown in Fig. 8.1,
by measuring the temperature before and after the perturbation (refer to Section 4.2).
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Figure 8.1: Investigating the pseudogap for a Fermi gas at unitarity. We have measured the response
to a magnetic field modulation at maximum modulation amplitude and for varying modulation
frequencies νmod. This measurement is performed for samples at various initial temperatures Ti/TF,
which depends on the heating time theat before the modulation, as described in Section 5.3.1. Left:
For the coldest samples with the lowest heating time theat, the sample temperature Tf/Ti changes
most drastically with an increasing modulation frequency νmod. Right: For each heating time theat,
we show the signature β = m/χ2, extracted from a linear fit to the data in the left panel. Here, m
describes the slope and χ2 represents the fit quality.

For the coldest initial samples at Ti/TF < TC/TF = 0.167(13) [165] a superfluid still exists,
and strong coupling results in significant heating. As we increase the initial temperature
Ti/TF, the heating effect diminishes. Since the temperature determination becomes noisier
due to the stronger atom loss with higher initial temperature, we define a signature β = m/χ2

for keeping track of the heating rate. The parameter m is the slope extracted from a linear
fit to the data, while χ2 reflects the quality of the fit. This method prevents the slope from
being overestimated due to noise in the temperature measurements.

The decreasing β with increasing initial temperature Ti/TF suggests a diminishing coupling
strength to the sample. Our data indicate a change in trend between temperatures of
Ti/TF = 0.3 and 0.4, which agrees with earlier studies showing a possible pseudogap transition

172



8.2 Outlook

around Ti/TF < 0.35 [223] and Ti/TF = 0.29 [236].
However, it is important to note that the diminishing signature could also be explained by

the decreasing density with increasing initial temperature, which slows down thermalisation
and heating. Further research is necessary to better understand the observed dynamics
and to clarify a connection to the possible existence of a pseudogap state. A good starting
point would be to track the heating behaviour across the strongly interacting regime of the
BEC-BCS crossover and to eliminate crosstalk of the diminishing density.
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APPENDIX A

Box trap setup

In our apparatus, a homogeneous system can be realised using a blue-detuned optical box
potential. To this end, my colleague Andreas Kell has already implemented an axicon ring
beam setup for 589 nm [237], which defines the potential walls in the xy-plane along the
vertical z-direction. Originally, the box trap was designed to be closed in z-direction by
end-caps formed by a 532 nm TEM01 mode [237]. The targeted dimensions for the cylindrical
box are approximately ∼ 80 µm for the ring radius and the vertical end-cap distance. A
larger end-cap distance would introduce stronger inhomogeneities due to the remaining
curvature of the magnetic field. Although this setup would suffice in trapping atoms, the
TEM01 mode would introduce a harmonic component along the z-direction, leading to further
inhomogeneities.

Light sheet setup

During the works on this thesis, we have integrated an alternative solution for the potential
end-caps in the form of two light sheet beams, referred to as light sheets henceforth. The
implemented setup is sketched in Fig. A.1, and makes use of the same 532 nm light as well.

The setup is constrained by the final lens, which has a focal length of f = 160 mm and
focuses the beam onto the atoms. Since the light is shared with the plug beam setup (refer
to Section 3.2.5), the initial q beam parameters are fixed to qV = (−3.39 + 0.723i) m and
qH = (−5.55 + 2.240i) m for the vertical and horizontal direction, respectively [237].

The light sheets are created using a Wollaston prism, which splits the beam into two
beams with a 1◦ separation. The light sheets require the beams to focus vertically at the
atom position, while the horizontal direction remains relatively collimated and wide. Several
cylindrical lenses are placed around the setup to achieve this. We have simulated the proposed
setup using ray transfer matrix analysis [160] and optimised the lens distances to achieve the
desired light sheet dimensions. The simulated sheet distance as well and vertical wV and
horizontal wH waists are shown in Fig. A.2.

At the atom position, the simulation yields a light sheet distance of 79.6 µm, with a vertical
waist of wV = 7.2 µm and a horizontal waist of wH = 953.2 µm. The corresponding Rayleigh
ranges are zR,V = 0.3 mm for the vertical direction and zR,H = 5.4 m for the horizontal
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Appendix A Box trap setup

L1 L2

L3L4

L5
L6 L7

W

Atoms

Figure A.1: Setup for the creation of light sheets. The setup for creating light sheets is shown, with
the beam direction indictaed by arrows. The optics include seven plano-convex lenses L1–L7, one
Wollaston prism W, and four mirrors (not labelled). All optics are �1 in. The focal lengths and
orientations of the lenses are: f1 = 1000 mm (cyl. vert.), f2 = 100 mm (cyl. hori.), f3 = 50 mm (cyl.
vert.), f4 = 13.7 mm (cyl. vert.), f5 = 200 mm (cyl. hori.), f6 = 500 mm (sph.) and f7 = 160 mm
(sph.). The Wollaston prism (Thorlabs WPQ10) has a beam separation angle of 1◦. Sketch uses
components from [238].

direction. This geometry is suitable for the desired box trap end-caps and has already been
implemented into the apparatus. The light sheets have been roughly aligned to the atom
position, and a picture of the light sheets taken with ANDOR2 (refer to Section 4.1.1) along
the atom imaging path confirms the desired geometry.

The next steps involve characterising the box trap and loading it with atoms. Afterwards,
the transfer from the crossed optical dipole trap to the box trap has to be optimised to
achieve good phase-space densities. Due to the larger optical access required for the ring
beam from the top of the chamber, the currently installed small magnetic field coil (refer to
Section 4.5) must be replaced with a similar coil of larger inner diameter. A suitable coil has
already been designed and must be integrated before adding the ring beam.
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Figure A.2: Ray transfer matrix analyis of the light sheet setup. The setup from Fig. A.1 is simulated
via ray transfer matrix analysis to optimise component positions (dashed vertical lines) such that
the light sheets achieve the desired geometry at the atom position (red vertical line). Top: Axis
displacement of the two beams forming the light sheets. The single beam is split into two beams at
the Wollaston prism (W ). Centre and bottom: Waist in the horizontal wH and vertical wV directions,
respectively.
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APPENDIX B

Special functions

Special functions used in the thesis are specified here.

Skewed Gaussian function
The skewed Gaussian function is defined as

f(x) = 2A · ϕ(x) · Φ(x), (B.1)

with
ϕ(x) = 1√

2πσ2 exp
[
−(x− x0)2

2σ2

]
, (B.2)

and
Φ(x) = 1/2

[
1 + erf

(
α · x− x0√

2σ

)]
. (B.3)

Here, A is the amplitude, x0 is the centre position, σ is the width, α is the skeweness and
erf(x) :=

∫ x
−∞ ϕ(t)dt denotes the error function. This function is used in Section 7.3.3.
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[103] M. Köhl, Atomic, Molecular, and Optical Physics, 2017.
[104] M. Randeria and E. Taylor, Crossover from Bardeen-Cooper-Schrieffer to

Bose-Einstein Condensation and the Unitary Fermi Gas,
Annual Review of Condensed Matter Physics 5 (2014) 209, url: https:
//www.annualreviews.org/doi/10.1146/annurev-conmatphys-031113-133829.

[105] A. Jabs, Connecting Spin and Statistics in Quantum Mechanics,
Foundations of Physics 40 (2010) 776,
url: https://doi.org/10.1007/s10701-009-9351-4.

[106] C. Chin, R. Grimm, P. Julienne and E. Tiesinga,
Feshbach resonances in ultracold gases, Reviews of Modern Physics 82 (2010) 1225,
url: https://link.aps.org/doi/10.1103/RevModPhys.82.1225.

189

http://dx.doi.org/10.1103/PhysRevA.79.061406
https://link.aps.org/doi/10.1103/PhysRevA.79.061406
http://dx.doi.org/10.1103/PhysRevA.87.053613
https://link.aps.org/doi/10.1103/PhysRevA.87.053613
http://dx.doi.org/10.1103/PhysRevA.93.043403
https://link.aps.org/doi/10.1103/PhysRevA.93.043403
http://dx.doi.org/10.1103/PhysRevA.95.013609
https://link.aps.org/doi/10.1103/PhysRevA.95.013609
http://dx.doi.org/10.1103/PhysRevA.106.043320
https://link.aps.org/doi/10.1103/PhysRevA.106.043320
http://dx.doi.org/10.1103/PhysRevLett.133.150403
https://link.aps.org/doi/10.1103/PhysRevLett.133.150403
https://scipost.org/preprints/scipost_202407_00017v1/
https://arxiv.org/abs/2410.10642
http://arxiv.org/abs/2410.10642
http://dx.doi.org/10.1146/annurev-conmatphys-031113-133829
https://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031113-133829
https://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031113-133829
http://dx.doi.org/10.1007/s10701-009-9351-4
https://doi.org/10.1007/s10701-009-9351-4
http://dx.doi.org/10.1103/RevModPhys.82.1225
https://link.aps.org/doi/10.1103/RevModPhys.82.1225


Bibliography

[107] Z.-C. Yan, J. F. Babb, A. Dalgarno and G. W. F. Drake, Variational calculations of
dispersion coefficients for interactions among H, He, and Li atoms,
Physical Review A 54 (1996) 2824,
url: https://link.aps.org/doi/10.1103/PhysRevA.54.2824.

[108] S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of ultracold atomic Fermi gases,
Reviews of Modern Physics 80 (2008) 1215,
url: https://link.aps.org/doi/10.1103/RevModPhys.80.1215.

[109] U. Fano, Effects of Configuration Interaction on Intensities and Phase Shifts,
Physical Review 124 (1961) 1866,
url: https://link.aps.org/doi/10.1103/PhysRev.124.1866.
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Tools

This serves as a brief description of tools that have been used to create parts of this thesis.

• Analysis: Most parts of the analysis have been performed in python, mainly using
standard libraries, such as numpy, scipy, pandas and lmfit. Data plotting has mainly
employed the matplotlib library and the neural networks in this thesis have been created
with tensorflow. Some calculations have been performed using Wolfram Mathematica.

• CAD designs: CAD designs have been created and rendered with a recent version of
Autodesk Inventor.

• Data extraction: Data from third-party publications have been extracted using the
WebPlotDigitizer, created by Ankit Rohatgi.

• Thesis: This thesis has been written in LATEX and the entries for this bibliography have
been collected with Zotero.
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