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Abstract

The widespread adoption of digital communication demands robust security and privacy pro-
tections, particularly through secure messaging systems that can protect personal and sensitive
information. Despite advancements in end-to-end security, encryption, and anonymity, significant
gaps remain in usability and user trust, limiting widespread adoption. This cumulative dissertation
examines the human aspects of secure messaging systems through four peer-reviewed studies,
addressing fundamental challenges in usability, trust establishment, and practical implementations.

Diverse methodological approaches drive the research, including systematic protocol analysis with
a focus on human aspects, large-scale empirical studies, and qualitative investigations, alongside the
proposal and evaluation of improved technical implementations. First, a comprehensive systemati-
zation of knowledge establishes a unified framework for evaluating secure messaging protocols and
“in-the-wild” tools, investigating critical gaps in current approaches. Second, an empirical study
with 1047 participants examines fingerprint representation approaches for trust establishment.
Third, qualitative research explores potential misconceptions in user mental models and trust for
end-to-end security in general. Finally, a novel hardware-based approach utilizing NFC-enabled
wearables demonstrates practical solutions for simplifying cryptographic key management while
maintaining security.

Key findings indicate that (1) trust establishment remains the cornerstone of secure messaging,
as it requires user interaction and underpins the entire security guarantees; failure in this area
compromises the system entirely. (2) traditional hex-based fingerprint representations significantly
underperform in both attack detection and perceived usability compared to the proposed sentence-
based representation, but also numeric representation – as commonly used outside cryptographic
contexts – also proving more effective; (3) users mistrust messaging platforms and security fea-
tures in general and substantially overestimate attackers while underestimating cryptographic
capabilities; and (4) less invasive security mechanisms as with using wearables show promise for
broader adoption. The findings align with current developments in secure messaging applications,
where similar verification approaches are used.

This work advances the field of usable security by bridging theoretical understanding with prac-
tical implementation, contributing to the development of more effective and accessible secure
communication systems. The findings provide guidance for designing next-generation secure
messaging solutions that balance robust security with user needs and capabilities.
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CHAPTER 1

Introduction

The rapid adoption of digital communication platforms has transformed how people connect,
collaborate, and express themselves. Yet, as reliance on these tools grows, so does the need to
secure private conversations. From activists resisting authoritarian regimes to ordinary users
seeking privacy, secure communication has emerged as a critical battleground in the fight for
digital rights. The history of secure digital communication dates back to the early days of email,
when privacy-conscious users recognized the need to protect their messages.

This need led to the 1991 release of PrettyGood Privacy (PGP) by Phil Zimmermann [12], the first
widely available tool to bring public-key cryptography to the general public. Traditionally, users
had to either directly exchange keys in advance or use the web-of-trust model for key validation.
The latter relied on chains of validations to establish identity trust, but both approaches proved too
complex for average users to understand and manage. Around the same time, RSA Data Security
began developing S/MIME (Secure/Multipurpose Internet Mail Extensions) as a standard track
alternative to PGP [13]. S/MIME’s hierarchical trust model relied on certificate authorities –
trusted third parties that verify and certify identities. Although this approach simplified trust
establishment compared to PGP, it introduced dependencies on authorities, and it remained
unclear where to retrieve the public keys before the first communication. Despite their different
approaches – PGP’s web of trust versus S/MIME’s hierarchical trust model – both standards
struggled with usability challenges that came to define early security tools [14–17]. Their need
to manually exchange keys, verify identities, and understand complex cryptographic concepts
created barriers preventing widespread adoption beyond technically skilled users. With less than
0.06 % of emails transmitted in 2022 being end-to-end secured [18], it is evident that email has
failed to achieve widespread security adoption and is likely to remain inherently insecure.
While email encryption efforts stalled, instant messaging experienced its first major growth

phase during the 1990s and early 2000s. During this early era of online communication, commercial
services such as AIM, ICQ, andMSNmessengers1 – all now largely obsolete – and various IRC chat
systems allowing group communication dominated the messaging landscape. These platforms
prioritized real-time message delivery over security and privacy considerations, utilizing (mostly)
unencrypted transmission protocols through centralized servers or peer-to-peer connections. This
architecture made messages vulnerable to interception or surveillance by both service providers

1 AIM (AOL Instant Messenger), ICQ, and MSN (Microsoft Network) messengers were popular early instant messag-
ing services, while IRC (Internet Relay Chat) facilitated decentralized group communication. All have been largely
replaced by modern platforms.
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Chapter 1 Introduction

and potential attackers with access to the network infrastructure. As these platforms became
widely used, privacy-conscious users began making early attempts at securing instant messaging.

1.1 Evolution of Secure Messaging

Extending the security definitions established by Goldberg et al. [19], secure messaging deals with
three key security challenges mostly solved by cryptography (explored in detail in Chapter 2):
trust establishment – ensuring users are communicating with their intended partners free ofman-in-
the-middle (MITM) attacks, conversation security – protecting message content’s confidentiality and
integrity, and transport privacy – preserving anonymity and concealing communication metadata.
Early attempts to solve secure messaging typically involved retrofitting email encryption tools like
PGP, again requiring users to manually exchange keys and verify identities. These approaches
carried over the technical complexity and usability issues that had already hindered the adoption
of encrypted email among non-technical users, ultimately leading to insecure communication
practices.

In response toPGP’s security and usability limitations, Borisov, Goldberg, and Brewer introduced
Off-the-Record Messaging (OTR) in 2004 as a new standard designed explicitly for secure instant
messaging [20]. For easier adoption, the authors provided a client library to facilitate support
for instant messaging client developers. Unlike the retrofitted email/messaging encryption with
PGP and S/MIME, OTR even offered more advanced security features such as backward/forward
secrecy and deniability (all definitions presented in detail in Chapter 2), which appealed to those
seeking enhanced privacy in their conversations. More importantly, OTR achieved a significant
usability improvement by adopting a trust on first use (TOFU) model similar to OpenSSH, i. e.,
securing all conversations with automatically-exchanged keys and only notifying the user when
keys change. Since key verification is optional, even novice users can use it without requiring
them to exchange any keys in advance or understand the complex web of trust relationships or
certificate authorities. This meant that regular users could communicate securely by default, while
security-conscious users retained the option to verify textual key fingerprints if they suspected
manipulation or wished to ensure authenticated communication. OTR gained traction in niche
communities, particularly among technically savvy users, yet despite these innovations, OTR still
faced adoption hurdles similar to those of its predecessors, especially within the mainstream user
base.
In the following years, a series of high-profile security incidents made the limitations of email

encryption and early secure messaging solutions starkly apparent. Key incidents such as the
Iranian Gmail breach in 2009, which exposed email data and targeted journalists [21], and the
2011 DigiNotar compromise, which enabled attackers to intercept and decrypt private Gmail
communications using forged SSL certificates [22], underscored the critical need for end-to-end
security in private communications. Further scandals like the Snowden revelations in 2013 [23],
which exposed global mass surveillance programs, and the Sony Pictures hack in 2014 [24], where
a massive leak of unencrypted email communications exposed private information and damaged
the company’s reputation, highlighted the inherent weaknesses of centralized trust models and
the broader risks of state and corporate surveillance. These events underscored the importance
of implementing end-to-end security and privacy at scale, while also highlighting the need to
move beyond centralized trust models that leave communications vulnerable to breaches and
surveillance.
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Chapter 1 Introduction

The growing demand for secure messaging and the risks posed by centralized trust models
have incentivized platform providers to adopt end-to-end encryption. A breach exposing billions
of private conversations on a major messaging platform, similar to the aforementioned Email
hacks [22, 24], would represent a catastrophic failure of user privacy. Platforms like WhatsApp
and iMessage now actively promote end-to-end security features [25, 26], while open proto-
cols such as Signal protocol and Matrix have emerged to democratize secure communica-
tion [27–29], making privacy accessible to a wider audience.

1.2 Human Aspects in Secure Messaging

Despite these advancements, the widespread adoption of secure messaging technologies has
not been without hurdles. While end-to-end security has become a cornerstone of modern com-
munication platforms, many users still struggle with understanding the underlying concepts to
remain secure [2, 14–17]. Inconsistent implementations across platforms creates a fragmented land-
scape [3], complicating even expert users’ judgment and understanding. Balancing security with
usability remains critical, as overly complex systems risk alienating users or promoting insecure
practices.

This thesis examines the intersection of technical security implementations and human behavior.
As an article thesis – also known as cumulative dissertation in German academic systems – it
investigates the human aspects of secure messaging, exploring how to design systems that users
can and will use correctly while maintaining strong security guarantees. Here, it focuses on two
fundamental security properties: trust establishment to the process of users verifying that they are
actually communicating with the intended parties, and conversation security to protect message
content for confidentiality and integrity. To address these security properties comprehensively, the
thesis builds upon four peer-reviewed key publications presented in Chapters 2 to 5, investigating
secure messaging. Each publication contributes to a deeper understanding of how, in the long
term, secure messaging can be made more effective and accessible to the general public. While
transport privacy is another critical aspect of secure messaging as outlined in Chapter 2, the rest of
the thesis focuses primarily on trust establishment and conversation security, as transport privacy
considerations were primarily addressed by collaborators. Bridging the gap between theory and
practice, every approach is examined through three critical dimensions: the systematic analysis
of security properties, the human factors affecting acceptance and usability, and the practical
challenges during the adoption.

While the evolution fromearly email tomodern securemessaging platforms represents significant
progress, fundamental challenges persist inmaking secure communication both usable and effective.
The historical difficulties with traditional security protocols highlight how technical solutions alone
cannot ensure widespread adoption – user experience, trust, and perception all play crucial roles.
This understanding shaped this thesis’ research agenda, which examines secure messaging through
multiple lenses: from systematic analysis of existing solutions to qualitative and empirical studies
of user behavior and novel technical implementations. This analysis encompasses both commercial
implementations and academic research and observed that both communities naturally learned
from each other, leading to a mutually beneficial evolution of secure messaging practices. These
historical developments led to an analysis of existing approaches and tools. Based on this list
and obvious gaps between technical capabilities and real-world usage patterns, four big research
questions emerged.

3



Chapter 1 Introduction

1.3 Research Questions

This thesis addresses four key research questions aimed at advancing secure messaging. Focusing
on the research gaps will allow for a higher adoption of end-to-end security. The questions are
addressed with the presented diverse research methods to examine the research from multiple
angles comprehensively. The following questions guided the work throughout the research process:

RQ 1 How can existing secure messaging solutions be systematically categorized and evaluated
to identify major challenges in terms of security, usability, and adoption perspectives and
what needs further improvements? The goal here was to create a structured understanding
of the current landscape of secure messaging tools, protocols, and approaches, examining
their strengths and limitations.

A unified framework for categorizing and evaluating new approaches in this field helps
identify problems and create a guide for the research community to move forward on this
important topic.

This research question is addressed in Publication 1 [3, 4], covered in Chapter 2. The results
from this research directly influence the next three research questions.

RQ 2 What are the primary challenges users face in trust establishment, and how these can
be addressed through both manual and automated approaches? This question aimed
to explore methods that simplify the process by which users verify their communication
partners, whether through manual verification techniques like key fingerprints or automated
systems.

Evidence-based recommendations help design more effective and user-friendly trust estab-
lishment mechanisms, particularly focusing on key fingerprint representations.

This research question is addressed in Publication 3 [1], covered in Chapter 4. The results
from this research will help the community to verify the authority-based trust establishment.

RQ 3 How do users understand secure messaging tools, and what misconceptions or gaps
exist in their mental models of these technologies? Understanding users’ perceptions
and knowledge of secure messaging was crucial for identifying usability issues that impact
broader adoption.

Detailed characterization of user mental models and perception regarding secure messaging,
including identification of common misconceptions and areas where user understanding
diverges from technical reality, helps the community to address these in next-generation
messengers.

This research question is addressed in Publication 2 [2], covered in Chapter 3.

RQ 4 How can users improve the cryptographic key management without sacrificing usability?
This question explored approaches to simplify key management while maintaining strong
security properties, addressing a fundamental challenge in making security accessible to
average users.

Novel technical architecture for integrating wearable devices into cryptographic operations
demonstrates practical approaches to simplifying key management.

This research question is addressed in Publication 4 [5], covered in Chapter 5.

4
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While prior work extensively focused on technical protocols and cryptographic properties,
the research questions Items RQ 1 to RQ 4 also consider the human and practical aspects of
secure messaging - from understanding user perceptions to improving usability overall. Each
question builds upon insights gained from addressing the previous questions, creating a cohesive
research narrative that spans both theoretical and practical aspects of secure messaging. Their
methodological diversity allows the examination of secure messaging challenges from multiple
perspectives, providing both breadth and depth of understanding.

1.4 Research Overview and Contributions

The research presented in this dissertation revolves around the challenges and opportunities in
secure messaging, particularly from a human-centric perspective. Ultimately, this work seeks to
establish secure messaging as default, accessible to all rather than reserved for specialists. This
research examined secure messaging during a pivotal evolution period (2015-2020), as major
platforms like WhatsApp and iMessage started to transition to end-to-end encryption by de-
fault. This research period captured WhatsApp’s transition to end-to-end encryption, with its
billion-user base, allowing empirical study of user adaptation patterns. The research benefited
from collaboration between academic institutions and messaging developers, e. g., Signal devel-
opers and members from the EFF, allowing insights into both theoretical advances and practical
deployment challenges. To this end, four representative publications or studies are introduced and
organized in individual Chapters 2 to 5 presenting peer-reviewed Publications 1-4 [1–3, 5], each per
research question with a particular contribution.
Each chapter follows the same structure: starting with a short introduction highlighting the

contributions and context of the study, it then presents the peer-reviewed publication in its original
published format, embedding the respective venue’s published layout, typography, and style
guidelines. The embedding is designed so that the running head indicates the current chapter and
section, helping the reader navigate the dissertation. Additionally, each page features two separate
page numbering systems: an outer page number for the dissertation and an inner page number
corresponding to the original publication. The original formatting, including internal references
within the publications – such as (inner) page numbers, tables, and figures – is preserved relative
to their respective sections to maintain consistency with the published versions. Bibliographic
references cited within the publications remain publication-specific and unchanged, retaining their
original numbering and formatting. Finally, each chapter concludes with a short summary that
contextualizes the findings within the current state of the art and subsequent developments in the
field.
The following chapters explore these studies in depth. Each publication addresses a distinct

research question and contributes unique insights to the secure messaging landscape in a high-
level overview. A more detailed discussion of the particular contributions can be found in the
publications presented in every chapter:

Publication 1 | Systematization of Secure Messaging Solutions

Despite thementioned availability of encryption protocols likeOpenPGP andS/MIME, real-world
adoption remains minimal due to usability barriers and the challenges of managing end-to-end
security independently: Less than 0.06 % of emails are encrypted nowadays [18]. However, the rise

5
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of instant messaging and a renewed focus on end-to-end security have catalyzed advancements in
secure messaging:

Chapter 2, consisting of the SoK: Secure Messaging publication, published in 2015 IEEE Symposium
on Security and Privacy (S&P), in its original form [3, 4], offers a comprehensive systematization
of secure messaging solutions, incorporating insights from academic research and real-world
implementations, referred to as “in-the-wild” projects in the publications. Presented as a Systemati-
zation of Knowledge (SoK) publication [30, 31], it establishes foundational definitions, categorizes
approaches, and identifies challenges within secure messaging, establishing the groundwork and
analytical framework for analyses in subsequent chapters. This forms the foundation, including
the research background and technical definitions used in this thesis. In traditional monographic
dissertations, this is also known as the background chapter.
The evaluation framework identifies three core challenges in secure messaging: trust establish-

ment, conversation security, and transport privacy. The systematization evaluates approaches from
both academia and practical implementations in terms of security capabilities, usability issues, and
adoption implications.

Contribution The chapter’s key contributions include: defining standardized security and pri-
vacy terms, systematizing both academic and real-world approaches, conducting a comparative
evaluation, and highlighting unresolved challenges in secure messaging. The analysis is struc-
tured through a novel evaluation framework that examines security properties, usability aspects,
and adoption challenges. Some of the unresolved areas in terms of the human aspects in trust
establishment and conversation security will then be covered in the following chapters.

Methodology With the formation of a unified evaluation framework, this research employs a
comprehensive systematic analysis of end-to-end encryption protocols from both academic lit-
erature and real-world implementations. The methodology particularly focuses on comparing
how solutions address core challenges in trust establishment, conversation security, and transport
privacy, while always considering the trade-offs between security properties, usability aspects, and
adoption challenges.

Impact This work identified critical gaps in the secure messaging landscape, particularly in trust
establishment and usability aspects, through systematically analyzing existing systems. This frame-
work not only guided the research direction of subsequent publications presented in this thesis but
has also been utilized by other researchers to evaluate new secure messaging protocols and imple-
mentations. The systematic categorization of security properties and usability challenges provides
a common language for discussing and comparing secure messaging solutions, contributing to
more structured research in this area.

Publication 2 | Evaluation of Trust Establishment

As outlined in Publication 1 presented in Chapter 2, trust establishment in secure messaging remains
a fundamental challenge, as systems must balance the conflicting goals of usability and security. It
criticizes the predominant reliance on centralized trust authorities for prioritizing ease over security.
Chapter 3 consists of the An Empirical Study of Textual Key-Fingerprint Representations peer-reviewed
publication in 2016 at the 25th USENIX Security Symposium, in its original form [1]. While manual

6
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Chapter 1 Introduction

fingerprint comparison is acknowledged as the most secure approach in decentralized systems, its
design and usability flaws have prevented widespread adoption.
The empirical study of Publication 2 presented in Chapter 3 directly addresses these concerns

by offering actionable insights into improving manual verification through better fingerprint
representation. This chapter critiques these traditional approaches, highlighting their vulnerability
to partial preimage attacks and unnecessary cognitive burdens on users. Addressing these concerns,
the study empirically evaluates six textual key fingerprint schemes, including numeric, word lists,
and sentence-based encodings, through a large-scale online experiment with 1,047 participants.
Findings reveal that the established hex comparisons perform worst in terms of usability and
security, and the study proposes tested and proven alternatives.

Contribution The study contributes by systematically evaluating the usability and security trade-
offs of textual key fingerprint representations, introducing sentence-based encodings as a practical
and highly effective alternative. It demonstrates how these alternatives achieve superior attack
detection rates, usability ratings, and user confidence compared to traditional hexadecimal rep-
resentations. This work provides actionable recommendations for replacing outdated formats
with inclusive, user-friendly solutions, laying the foundation for more secure and accessible trust
establishment mechanisms in secure messaging systems. Some of the proposed approaches are
even used in popular messengers nowadays.

Methodology The research employs a large-scale quantitative empirical study (n=1,047) through
a carefully designed online experiment. The online experiment uniquely incorporated realistic
attack scenarios based on contemporary computational capabilities for generating partial preimage
collisions, mirroring real-world threat models. This approach enabled direct comparison of verifi-
cation methods under practical security conditions, measuring both user performance in detecting
attacks and subjective aspects like user confidence and perceived usability.

Impact By combining thorough experimental design with realistic security parameters, the study
provides actionable insights into the effectiveness of different verification approaches in real-world
scenarios. The empirical evaluation of fingerprint representation schemes in Publication 2 demon-
strated that sentence-based approaches achieved the highest performance in attack detection
by 98%, and user confidence in terms of trustworthiness and usability, while numeric representa-
tions emerged as the most practical solution when considering language barriers. This research
highlighted a significant disconnect in secure messaging implementations and other security tools,
such as OpenSSH, at the time when platforms predominantly used hexadecimal representations
despite their demonstrated worse performance in both security and usability metrics. Throughout
the research process, the findings were shared with key stakeholders in the messaging community,
including developers of the Signal application and members of the Electronic Frontier Foundation
(EFF). These exchanges served as a feedback mechanism, ensuring that the research remained
aligned with practical considerations and real-world applications.

In alignment with this research, today’s popular messengers – WhatsApp, which implemented
the Signal protocol in the meantime, and others – all employ numeric representations in
their optional verification systems, validating our findings and the research conclusions about the
optimal balance between security, usability, and practical deployment constraints. The detailed
implications and adoption of these findings by the main platforms are discussed in Chapter 3.

7



Chapter 1 Introduction

Publication 3 | Analysis of User Mental Models

Chapter 4 builds on Publication 1’s observation that the understanding of how end-users perceive
secure messaging remains underexplored, despite its critical role in designing usable and effective
solutions. Chapter 4 consists of the In Encryption We Don’t Trust: The Effect of End-to-End Encryption to
the Masses on User Perception peer-reviewed publication, published in 2019 IEEE European Symposium
on Security and Privacy (EuroS&P), in its original form [2]. As secure messaging technologies like
WhatsApp’s implementation of the Signal Protocol made end-to-end encryption widely accessible,
the assumption was that user trust and awareness would naturally improve. However, the extent to
which these advancements have translated into accurate user mental models and trust in encryption
technologies has remained unclear.
The chapter presents the first longitudinal qualitative study exploring the evolution of user

perceptions of secure messaging, comparing mental models before and after the mainstream
adoption of end-to-end encryption. The study examines user understanding of secure messaging,
identifies common misconceptions, and provides recommendations for improving user interfaces
and messaging practices. To capture users’ perception and understanding, a qualitative user study
based on interviews was conducted to illustrate average users’ mental models regarding secure
messaging, i. e., how they see the messaging world. The goal is identifying aspects that help
messenger developers implement usable and secure software without contradicting the average
user’s understanding.

Contribution The study identifies persistent gaps in understanding, including misconceptions
about the capabilities and limitations of encryption. For example, while explicit encryption notifi-
cations have become common in apps like WhatsApp and iMessage, most users remain unaware of
what these mechanisms entail or how they function. Furthermore, many participants demonstrated
overestimated perceptions of attackers’ capabilities while underestimating the protections afforded
by cryptography. Finally, the findings contribute actionable recommendations for designing next-
gen secure messaging protocols that address critical gaps in user understanding.

Methodology The research employs a two-phase qualitative investigation examining user percep-
tions before and after the mainstream adoption of end-to-end encryption. Unstructured focus
groups formed the development of semi-structured interviews, enabling systematic exploration of
users’ mental models and security understanding. The final interviews then provided insights into
how widespread encryption deployment impacts user trust and perception.

Impact As the first-of-its-kindmentalmodel in the area of securemessaging, it howusers perceived
the security of popular messengers and whether they understand how to use security features
correctly. Users significantly overestimate attackers’ capabilities and underestimate cryptography
(“no technical solution to stop skilled attackers from getting data exists”). Most users didn’t even
comprehend what the security info bubbles and warnings meant and stated a general feeling of
“being not well protected.” Based on the findings, the work offers recommendations for how the
security messaging community can address these challenges.

Publication 4 | Repurposing Wearables for Cryptographic Security

Building Publication 1’s critique that current secure messaging systems often neglect the usability-
security balance in conversation security, Chapter 5 presents a novel approach to automating
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authentication via NFC-based security tokens rather than unlocking cryptographic keys with
passwords or smartcards. Chapter 5 consists of the OpenKeychain: An Architecture for Cryptography
with Smart Cards and NFC Rings on Android peer-reviewed journal publication at the Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) 2017, in its original
form [5]. The approach addresses the vulnerabilities associated with on-device key storage by
offloading cryptographic keys and operations to external tokens on wearable devices. Leveraging
NFC technology, it provides a more user-friendly and secure mechanism for key management,
effectively reducing user interaction with complex cryptographic operations. The built architecture
for NFC-based cryptography on Android via external security tokens allows messaging tool
developers to incorporate end-to-end security protection in their applications.

Contribution This is one of the first implementations to integrate wearable devices, such as NFC-
enabled rings, for cryptographic operations in real-world messaging and email applications. The
chapter’s usability lab study, conducted under enterprise field conditions with 40 participants,
evaluates the architecture’s practical performance, revealing its potential to significantly enhance
the usability and security methods in emails or secure messaging.

Methodology The research combines technical implementation with empirical evaluation, develop-
ing a novel NFC-based authentication architecture for Android and assessing it through controlled
usability studies in enterprise settings. Our implementation extends existing cryptographic frame-
works with wearable device integration, while the evaluation, which involved 40 participants under
realistic working conditions, provides insights into practical deployment scenarios and usability
implications.

Impact The mental model findings from Publication 3 have informed how messaging platforms
communicate security features to users, while the authentication architecture from Publication 4
has been integrated into OpenKeychain, the most used OpenPGP implementation on Android.
This research established principles for NFC-based authentication through wearables, which are
reflected in current developments in security mechanisms. As organizations are increasingly adopt-
ing two-factor authentication with smartcards or security tokens such as YubiKey, the integration
of these features into wearable devices can be seen as a natural progression, same as these are now
used for device unlocking.

Synthesis | Interconnection of Publications

While each publication provides a standalone contribution, together they address complementary
aspects of secure messaging. This framework is built on diverse methodologies, ranging from
systematic protocol analysis to simulated attacks under realistic conditions and from empirical user
studies to novel implementations. These four publications represent a comprehensive investigation
of secure messaging that bridges theoretical understanding and practical implementation.

Publication 1’s evaluation framework sets the stage by defining the problem space and identifying
gaps in current solutions regarding user interaction and security. In particular, it identified key
challenges in trust establishment, which directly motivated and led to the empirical investigation
of trust establishment mechanisms in Publication 2, in particular, textual key fingerprint representa-
tions. The usability issues outlined in Publication 1 and the findings about user difficulties with
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technical security concepts in Publication 2 revealed the need to better understand how users con-
ceptualize secure messaging, leading to the qualitative in-depth exploration of user mental models
in Publication 3. Finally, based on the understanding gained from studying user perceptions and
behaviors, where users tend to use noninvasive features without actually knowing it, experimented
with adding minimal invasive methods for key storage and verification in Publication 4.
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CHAPTER 2

Background and Systematization

Secure messaging has become increasingly important as individuals and organizations seek to
protect their communications from surveillance and other threats. The rise of instant messaging
and the revelations of widespread surveillance and security breaches, however, sparked renewed
interest in end-to-end security protection, referred to as secure messaging in general, in both
practical applications and academic research.
This chapter incorporates, in its entirety, a previously published technical report [4], which

serves as an extended version of the peer-reviewed publication [3]. The technical report, referenced
in the peer-reviewed publication, was chosen for inclusion because it retains the same semantics
as the peer-reviewed version while adding further explanations and detailed definitions to assist
readers less familiar with the secure messaging landscape. For the sake of completeness, the
peer-reviewed version has been included in Appendix A.1.
Building on the research questions introduced in Chapter 1, this chapter provides a thorough

systematic analysis of existing secure messaging approaches and their limitations, drawing on both
academic research and approaches that have emerged in actual application implementations using
their modified cryptographic protocols (referred to as ”in-the-wild” projects). A notable example
analyzed in this systematization is the Signal protocol1, which built upon OTR’s security
properties while addressing its limitations regarding asynchronous communication. Despite
introducing significant cryptographic advancements as early as 2013, the protocol initially received
limited attention from the academic community until this systematization work began.

As a Systematization of Knowledge (SoK) publication [30, 31], this work perfectly serves as the
foundational background for the dissertation, addressing the key challenges and systematizing
the current state-of-the-art approaches in secure messaging systems. It provides a structured
framework for understanding and evaluating messaging systems regarding security, usability, and
adoption, laying the groundwork for the analyses and contributions presented in later chapters.
The upcoming Chapters 3 to 5 are based on the definitions and problem areas outlined in this
chapter.

The primary contributions of this publication include: 1) establishing standardized definitions
for security and privacy features in secure messaging; 2) systematizing approaches to secure

1 Signal formerly TextSecure and its protocol Axolotl underwent a renaming to Signal and Signal
protocol at the end of 2015. The publication presented in this chapter uses the old naming, whereas the rest of
the dissertation sticks with the new naming.
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Chapter 2 Background and Systematization

messaging from academic research and real-world implementations, referred to as in-the-wild
projects; 3) conducting a comparative evaluation of these approaches; and 4) identifying current
research challenges to guide future work. These contributions provide a comprehensive perspective
that supports the subsequent chapters and informs about ongoing efforts in the field.

2.1 Peer-Reviewed Publication 1 | SoK: Secure Messaging

Authors’ Contributions

The published technical report [4], an extended version of a peer-reviewed publication at the 2015
IEEE Symposium on Security and Privacy (DOI: 10.1109/SP.2015.22) [3], one of the premier venues in
computer security, attached in Appendix A.1, is included in its entirety in original form in this section.
This work synthesizes and evaluates secure messaging approaches using a consistent framework –
particularly important given the rapid evolution of messaging systems following the data breaches
and surveillance revelations 2010 - 2015. The authors’ contributions, with two joint first authors that
are relevant to the contents of this chapter, are as follows:

• Sergej Dechand I took the lead in the systematization, review, and evaluation of existing trust
establishment protocols and conversation security mechanisms, although with less focus on
group chats, which is less relevant for this dissertation. These sections form the core focus and
research areas in this dissertation and represent the primary technical background chapter of
this work.

• Nik Unger responsible for the systematization, review, and evaluation of metadata protection
mechanisms, as well as addressing the group chat aspects of communication security, while
Sergej focusedmainly on the other aspects. Nik’s contributions complemented the overall scope
of the research and provided critical insights into the multi-user communication framework.

• Joseph Bonneau provided the initial list of various “in-the-wild” secure messaging tools
considered in our evaluation. His feedback during all phases of thework significantly enhanced
the technical rigor and comprehensiveness of the report.

• IanGoldberg, Sascha Fahl, HenningPerl,MatthewSmith reviewed thework at various stages,
offering valuable feedback, cryptographic reviews, and suggestions that greatly improved the
quality and clarity of the final report.

The following pages present an in-depth analysis through the inclusion of a peer-reviewed
publication that systematizes securemessaging approaches, providing a foundation for the analyses
presented in later chapters. This systematization is essential to identify recurring challenges in trust
establishment, conversation security, and transport privacy, thereby setting the stage for further
empirical investigation in the remainder of this dissertation.
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Abstract—Motivated by recent revelations of widespread state
surveillance of personal communication, many products now
claim to offer secure and private messaging. This includes both a
large number of new projects and many widely adopted tools that
have added security features. The intense pressure in the past two
years to deliver solutions quickly has resulted in varying threat
models, incomplete objectives, dubious security claims, and a lack
of broad perspective on the existing cryptographic literature on
secure communication.

In this paper, we evaluate and systematize current secure
messaging solutions and propose an evaluation framework for
their security, usability, and ease-of-adoption properties. We con-
sider solutions from academia, but also identify innovative and
promising approaches used “in the wild” that are not considered
by the academic literature. We identify three key challenges
and map the design landscape for each: trust establishment,
conversation security, and transport privacy. Trust establishment
approaches offering strong security and privacy features perform
poorly from a usability and adoption perspective, whereas some
hybrid approaches that have not been well studied in the
academic literature might provide better trade-offs in practice.
In contrast, once trust is established, conversation security can
be achieved without any user involvement in most two-party
conversations, though conversations between larger groups still
lack a good solution. Finally, transport privacy appears to be
the most difficult problem to solve without paying significant
performance penalties.

I. INTRODUCTION

Most popular messaging tools used on the Internet do
not offer end-to-end security. Even though protocols such
as OpenPGP and S/MIME have been available for decades,
they have failed to achieve widespread adoption and have
been plagued by usability issues [2]–[5]. However, recent
revelations about mass surveillance by intelligence services
have highlighted the lack of security and privacy in messag-
ing tools and spurred demand for better solutions. A recent
Pew Research poll found that 80% of Americans are now
concerned about government monitoring of their electronic
communications. A combined 68% of respondents reported
feeling “not very secure” or “not at all secure” when using
online chat and 57% felt similarly insecure using email [6].
Consequently, many new applications claiming to offer secure
communication are being developed and adopted by end users.

Despite the publication of a large number of secure mes-
saging protocols in the academic literature, tools are being
released with new designs that fail to draw upon this knowl-
edge, repeat known design mistakes, or use cryptography in

1This is an extended version of our paper in the 2015 IEEE Symposium
on Security and Privacy [1]. This document was last updated on 2015-04-14.

insecure ways. However, as will become clear over the course
of this paper, the academic research community is also failing
to learn some lessons from tools in the wild.

Furthermore, there is a lack of coherent vision for the future
of secure messaging. Most solutions focus on specific issues
and have different goals and threat models. This is com-
pounded by differing security vocabularies and the absence of
a unified evaluation of prior work. Outside of academia, many
products mislead users by advertising with grandiose claims
of “military grade encryption” or by promising impossible
features such as self-destructing messages [7]–[10]. The recent
EFF Secure Messaging Scorecard evaluated tools for basic
indicators of security and project health [11] and found many
purportedly “secure” tools do not even attempt end-to-end
encryption.

We are motivated to systematize knowledge on secure
messaging due to the lack of a clear winner in the race for
widespread deployment and the persistence of many lingering
unsolved research problems. Our primary goal is to iden-
tify where problems lie and create a guide for the research
community to help move forward on this important topic. A
further goal in this work is to establish evaluation criteria for
measuring security features of messaging systems, as well as
their usability and adoption implications. We aim to provide
a broad perspective on secure messaging and its challenges,
as well as a comparative evaluation of existing approaches,
in order to provide context that informs future efforts. Our
primary contributions are: (1) establishing a set of common
security and privacy feature definitions for secure messaging;
(2) systematization of secure messaging approaches based both
on academic work and “in-the-wild” projects; (3) comparative
evaluation of these approaches; and (4) identification and
discussion of current research challenges, indicating future
research directions.

After defining terminology in Section II, we present our
systematization methodology in Section III. In subsequent
sections (Sections IV–VI), we evaluate each of the proposed
problem areas (namely trust establishment, conversation secu-
rity and transport privacy) in secure messaging. Our findings
are discussed and concluded in Section VII.

II. BACKGROUND AND DEFINITIONS

Secure messaging systems vary widely in their goals and
corresponding design decisions. Additionally, their target audi-
ences often influence how they are defined. In this section, we

1
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define terminology to differentiate these designs and provide
a foundation for our discussion of secure messaging.

A. Types of specification

Secure messaging systems can be specified at three different
broad levels of abstraction:

Chat protocols: At the most abstract level, chat protocols
can be defined as sequences of values exchanged between
participants. This mode of specification deals with high-
level data flows and often omits details as significant as the
choice of cryptographic protocols (e.g., key exchanges) to use.
Academic publications typically specify protocols this way.

Wire protocols: Complete wire protocols aim to specify
a binary-level representation of message formats. A wire
protocol should be complete enough that multiple parties can
implement it separately and interoperate successfully. Often
these are specific enough that they have versions to ensure
compatibility as changes are made. Implicitly, a wire protocol
implements some higher-level chat protocol, though extracting
it may be non-trivial.

Tools: Tools are concrete software implementations that
can be used for secure messaging. Implicitly, a tool contains
a wire protocol, though it may be difficult and error-prone to
derive it, even from an open-source tool.

B. Synchronicity

A chat protocol can be synchronous or asynchronous. Syn-
chronous protocols require all participants to be online and
connected at the same time in order for messages to be
transmitted. Systems with a peer-to-peer architecture, where
the sender directly connects to the recipient for message
transmission, are examples of synchronous protocols. Asyn-
chronous protocols, such as SMS (text messaging) or email, do
not require participants to be online when messages are sent,
utilizing a third party to cache messages for later delivery.

Due to social and technical constraints, such as switched-
off devices, limited reception, and limited battery life, syn-
chronous protocols are not feasible for many users. Mobile
environments are also particularly prone to various transmis-
sion errors and network interruptions that preclude the use of
synchronous protocols. Most popular instant messaging (IM)
solutions today provide asynchronicity in these environments
by using a store-and-forward model: a central server is used
to buffer messages when the recipient is offline. Secure
messaging protocols designed for these environments need to
consider, and possibly extend, this store-and-forward model.

C. Deniability

Deniability, also called repudiability, is a common goal for
secure messaging systems. Consider a scenario where Bob
accuses Alice of sending a specific message. Justin, a judge,
must decide whether or not he believes that Alice actually did
so. If Bob can provide evidence that Alice sent that message,
such as a valid cryptographic signature of the message under
Alice’s long-term key, then we say that the action is non-
repudiable. Otherwise, the action is repudiable or deniable.

E
compromise

t

secure vulnerable window

(a) Forward Secrecy

E
compromise
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securevulnerable window

(b) Backward Secrecy

Fig. 1. Session keys are protected from long-term key compromise.

We can distinguish between message repudiation, in which
Alice denies sending a specific message, and participation
repudiation in which Alice denies communicating with Bob
at all. The high-level goal of repudiable messaging systems is
to achieve deniability similar to real-world conversations.

A fundamental problem of deniability is that Justin may
simply trust Bob even with no technical evidence due to Bob’s
reputation or perceived indifference. In a group chat, this
problem may be even worse as Alice may need to convince
Justin that a number of accusers are all colluding to frame
her. It is not possible to construct a messaging system that
overcomes this fundamental social problem; the best that can
be done is to provide no stronger evidence than the word of the
accusers. Some technical systems clearly offer more evidence;
for example, signed PGP emails offer strong evidence that
Alice really was the sender.

The cryptographic literature has produced many definitions
of “deniability” since deniable encryption was first formally
proposed [12]. For example, we can draw a distinction between
an offline and online judge: in the offline case, the accuser
attempts to convince the judge of an event after the conver-
sation has already concluded; in the online case, the judge
exchanges private communications with the accuser while the
conversation is still taking place. Existing work defines online
repudiation in incompatible ways, and very few protocols
attempt to achieve meaningful online repudiation [13], [14].
Thus, in this work we only consider the offline setting.

D. Forward/Backward Secrecy

In systems that use the same static keys for all messages,
a key compromise allows an attacker to decrypt the entire
message exchange. A protocol provides forward secrecy if the
compromise of a long-term key does not allow ciphertexts
encrypted with previous session keys to be decrypted (Fig-
ure 1a). If the compromise of a long-term key does not allow
subsequent ciphertexts to be decrypted by passive attackers,
then the protocol is said to have backward secrecy (Figure 1b).
However, tools with backward secrecy are still vulnerable to
active attackers that have compromised long-term keys. In this
context, the “self-healing” aspect of backward secrecy has also
been called future secrecy. The terms are controversial and
vague in the literature [15]–[17].
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III. SYSTEMATIZATION METHODOLOGY

Over the years, hundreds of secure messaging systems have
been proposed and developed in both academia and industry.
An exhaustive analysis of all solutions is both infeasible and
undesirable. Instead, we extract recurring secure messaging
techniques from the literature and publicly available messaging
tools, focusing on systematization and evaluation of the under-
lying concepts and the desirable secure messaging properties.
In this section, we explain our precise methodology.

A. Problem Areas

While most secure messaging solutions try to deal with all
possible security aspects, in our systematization, we divide
secure messaging into three nearly orthogonal problem areas
addressed in dedicated sections: the trust establishment prob-
lem (Section IV), ensuring the distribution of cryptographic
long-term keys and proof of association with the owning
entity; the conversation security problem (Section V), ensuring
the protection of exchanged messages during conversations;
and the transport privacy problem (Section VI), hiding the
communication metadata.

While any concrete tool must decide on an approach for
each problem area, abstractly defined protocols may only
address some of them. Additionally, the distinction between
these three problem areas is sometimes blurred since tech-
niques used by secure messaging systems may be part of their
approach for multiple problem areas.

B. Threat Model

When evaluating the security and privacy properties in
secure messaging, we must consider a variety of adversaries.
Our threat model includes the following attackers:

Local Adversary (active/passive): An attacker controlling
local networks (e.g., owners of open wireless access points).

Global Adversary (active/passive): An attacker controlling
large segments of the Internet, such as powerful nation states
or large Internet service providers.

Service providers: For messaging systems that require cen-
tralized infrastructure (e.g., public-key directories), the service
operators should be considered as potential adversaries.

Note that our adversary classes are not necessarily exclusive.
In some cases, adversaries of different types might collude.
We also assume that all adversaries are participants in the
messaging system, allowing them to start conversations, send
messages, or perform other normal participant actions. We
assume that the endpoints in a secure messaging system are
secure (i.e., malware and hardware attacks are out of scope).

C. Systematization Structure

Sections IV–VI evaluate trust establishment, conversation
security, and transport privacy approaches, respectively. For
each problem area, we identify desirable properties divided
into three main groups: security and privacy features, usability
features, and adoption considerations. Each section starts
by defining these properties, followed by the extraction of
generic approaches used to address the problem area from

existing secure messaging systems. Each section then defines
and evaluates these approaches, as well as several possible
variations, in terms of the already-defined properties. Concrete
examples of protocols or tools making use of each approach
are given whenever possible. The sections then conclude by
discussing the implications of these evaluations.

In each section, we include a table (Tables I, II, and III)
visualizing our evaluation of approaches within that problem
area. Columns in the tables represent the identified proper-
ties, while rows represent the approaches. Groups of rows
begin with a generic concept, specified as a combination
of cryptographic protocols, followed by extension rows that
add or modify components of the base concept. Whenever
possible, rows include the name of a representative protocol
or tool that uses the combination of concepts. Representatives
may not achieve all of the features that are possible using
the approach; they are merely included to indicate where
approaches are used in practice. Each row is rated as providing
or not providing the desired properties. In some cases, a row
might only partially provide a property, which is explained in
the associated description.

For each problem area, we identify desirable properties in
three main categories:

1) Security and Privacy Properties: Most secure messaging
systems are designed using standard cryptographic primitives
such as hash functions, symmetric encryption ciphers, and
digital signature schemes. When evaluating the security and
privacy features of a scheme, we assume cryptographic prim-
itives are securely chosen and correctly implemented. We
do not attempt to audit for software exploits which may
compromise users’ security. However, if systems allow end
users to misuse these cryptographic primitives, the scheme is
penalized.

2) Usability Properties: Usability is crucial for the use and
adoption of secure messaging services. Human end users need
to understand how to use the system securely and the effort
required to do so must be acceptable for the perceived benefits.

In previous research, various secure messaging tools have
been evaluated and weaknesses in the HCI portion of their
design have been revealed. The seminal paper “Why Johnny
Can’t Encrypt” [2] along with follow-up studies evaluating
PGP tools [3], [4] and other messaging protocols [18]–[22]
have also showed users encountering severe problems using
encryption securely. However, these studies focused on UI
issues unique to specific implementations. This approach
results in few generic insights regarding secure messenger
protocol and application design. Given the huge number of
secure messaging implementations and academic approaches
considered in our systematization, we opted to extract generic
concepts. Because we focus on usability consequences im-
posed by generic concepts, our results hold for any tool that
implements these concepts.

To evaluate the usability of secure messaging approaches,
we examine the additional user effort (and decisions), security-
related errors, and reduction in reliability and flexibility that
they introduce. Our usability metrics compare this extra effort
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to a baseline approach with minimal security or privacy
features. This is a challenging task and conventional user
studies are not well suited to extract such high-level usability
comparisons between disparate tools. We opted to employ
expert reviews to measure these usability properties, which is
consistent with previous systematization efforts for security
schemes in other areas [23], [24]. To consider usability and
adoption hurdles in practice, we combined these expert reviews
with cognitive walkthroughs of actual implementations based
on Nielsen’s usability principles [25]–[27] and already known
end-user issues discovered in previous work [2]–[5], [19]–[21],
[28]. These usability results supplement our technical system-
atization and highlight potential trade-offs between security
and usability.

3) Ease of Adoption: Adoption of secure messaging
schemes is not only affected by their usability and security
claims, but also by requirements imposed by the underlying
technology. Protocols might introduce adoption issues by
requiring additional resources or infrastructure from end users
or service operators. When evaluating the adoption properties
of an approach, we award a good score if the system does
not exceed the resources or infrastructure requirements of a
baseline approach that lacks any security or privacy features.

IV. TRUST ESTABLISHMENT

One of the most challenging aspects of messaging se-
curity is trust establishment, the process of users verifying
that they are actually communicating with the parties they
intend. Long-term key exchange refers to the process where
users send cryptographic key material to each other. Long-
term key authentication (also called key validation and key
verification) is the mechanism allowing users to ensure that
cryptographic long-term keys are associated with the correct
real-world entities. We use trust establishment to refer to the
combination of long-term key exchange and long-term key
authentication in the remainder of this paper. After contact
discovery (the process of locating contact details for friends
using the messaging service), end users first have to perform
trust establishment in order to enable secure communication.

A. Security and Privacy Features

A trust establishment protocol can provide the following
security and privacy features:

Network MitM Prevention: Prevents Man-in-the-Middle
(MitM) attacks by local and global network adversaries.

Operator MitM Prevention: Prevents MitM attacks executed
by infrastructure operators.

Operator MitM Detection: Allows the detection of MitM
attacks performed by operators after they have occurred.

Operator Accountability: It is possible to verify that oper-
ators behaved correctly during trust establishment.

Key Revocation Possible: Users can revoke and renew keys
(e.g., to recover from key loss or compromise).

Privacy Preserving: The approach leaks no conversation
metadata to other participants or even service operators.

B. Usability Properties

Most trust establishment schemes require key management:
user agents must generate, exchange, and verify other partic-
ipants’ keys. For some approaches, users may be confronted
with additional tasks, as well as possible warnings and errors,
compared to classic tools without end-to-end security. If a
concept requires little user effort and introduces no new error
types, we award a mark for the property to denote good usabil-
ity. We only consider the minimum user interaction required
by the protocol instead of rating specific implementations.

Automatic Key Initialization: No additional user effort is
required to create a long-term key pair.

Low Key Maintenance: Key maintenance encompasses re-
curring effort users have to invest into maintaining keys. Some
systems require that users sign other keys or renew expired
keys. Usable systems require no key maintenance tasks.

Easy Key Discovery: When new contacts are added, no
additional effort is needed to retrieve key material.

Easy Key Recovery: When users lose long-term key mate-
rial, it is easy to revoke old keys and initialize new keys (e.g.,
simply reinstalling the app or regenerating keys is sufficient).

In-band: No out-of-band channels are needed that require
users to invest additional effort to establish.

No Shared Secrets: Shared secrets require existing social
relationships. This limits the usability of a system, as not all
communication partners are able to devise shared secrets.

Alert-less Key Renewal: If other participants renew their
long-term keys, a user can proceed without errors or warnings.

Immediate Enrollment: When keys are (re-)initialized, other
participants are able to verify and use them immediately.

Inattentive User Resistant: Users do not need to carefully
inspect information (e.g., key fingerprints) to achieve security.

C. Adoption Properties

Multiple Key Support: Users should not have to invest
additional effort if they or their conversation partners use
multiple public keys, making the use of multiple devices with
separate keys transparent. While it is always possible to share
one key on all devices and synchronize the key between them,
this can lead to usability problems.

No Service Provider Required: Trust establishment does not
require additional infrastructure (e.g., key servers).

No Auditing Required: The approach does not require
auditors to verify correct behavior of infrastructure operators.

No Name Squatting: Users can choose their names and can
be prevented from reserving a large number of popular names.

Asynchronous: Trust establishment can occur asyn-
chronously without all conversation participants online.

Scalable: Trust establishment is efficient, with resource
requirements growing logarithmically (or smaller) with the the
total number of participants in the system.

D. Evaluation

1) Opportunistic Encryption (Baseline): We consider op-
portunistic encryption, in which an encrypted session is es-
tablished without any key verification, as a baseline. For
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TABLE I
TRADE-OFFS FOR COMBINATIONS OF TRUST ESTABLISHMENT APPROACHES. SECURE APPROACHES OFTEN SACRIFICE USABILITY AND ADOPTION.

Scheme Example Security Features Usability Adoption
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Opportunistic Encryption†* TCPCrypt - - - - -
+TOFU (Strict)† - - - - -
+TOFU†* TextSecure - - - -
Key Fingerprint Verification†* Threema - - - - - - - - -
+Short Auth Strings (Out-of-Band)†* SilentText - - - - - - - - - - -
+Short Auth Strings (In-Band/Voice/Video)†* ZRTP - - - - - - - - -
+Socialist Millionaire (SMP)†* OTR - - - - - - - - - -
+Mandatory Verification†* SafeSlinger - - - - - - - -
Key Directory†* iMessage - - - - -
+Certificate Authority†* S/MIME - - - -
+Transparency Log - - - - -
+Extended Transparency Log† - - - -
+Self-Auditable Log† CONIKS -
Web-of-Trust†* PGP - - - - - - - -
+Trust Delegation†* GnuNS - - - - - - -
+Tracking* Keybase - - - - - - -
Pure IBC† SIM-IBC-KMS - - - - - - -
+Revocable IBC† - - - - - - -
Blockchains* Namecoin - - - - - -
Key Directory+TOFU+Optional Verification†* TextSecure - - - -
Opportunistic Encryption+SMP†* OTR - - - - - -

= provides property; = partially provides property; - = does not provide property; †has academic publication; *end-user tool available

instance, this could be an OTR encryption session without any
authentication. The main goal of opportunistic encryption is to
counter passive adversaries; active attackers can easily execute
MitM attacks. From a usability perspective, this approach is
the baseline since it neither places any burden on the user nor
generates any new error or warning messages.

2) TOFU: Trust-On-First-Use (TOFU) extends opportunis-
tic encryption by remembering previously seen key mate-
rial [29]. The network MitM prevented and infrastructure
MitM prevented properties are only partially provided due to
the requirement that no attacker is present during the initial
connection. TOFU requires no service provider since keys can
be exchanged by the conversation participants directly. TOFU
does not define a mechanism for key revocation. TOFU can be
implemented in strict and non-strict forms. The strict form fails
when the key changes, providing inattentive user resilience
but preventing easy key recovery. The non-strict form prompts
users to accept key changes, providing easy key recovery at
the expense of inattentive user resilience.

TOFU-based approaches, like the baseline, do not require
any user interaction during the initial contact discovery. This
yields good scores for all user-effort properties except for the
key revocation property, which is not defined, and alert-less
key renewal, since users cannot distinguish benign key changes
from MitM attacks without additional verification methods.

For instance, TextSecure shows a warning that a user’s key has
changed and the user must either confirm the new key or apply
manual verification to proceed (shown in Figure 2). If the
user chooses to accept the new key immediately, it is possible
to perform the verification later. The motivation behind this
approach is to provide more transparency for more experienced
or high-risk users, while still offering an “acceptable” solution
for novice end users. Critically, previous work in the related
domain of TLS warnings has shown that frequent warning
messages leads to higher click-through rates in dangerous
situations, even with experienced users [30].

From an adoption perspective, TOFU performs similarly to
the baseline, except for key recovery in the strict version and
multiple key support in both versions. The multiple key support
problem arises from the fact that if multiple keys are used, the
protocol cannot distinguish between devices. An attacker can
claim that a new device, with the attacker’s key, is being used.

3) Key Fingerprint Verification: Manual verification re-
quires users to compare some representation of a cryptographic
hash of their partners’ public keys out of band (e.g., in person
or via a separate secure channel).

Assuming the fingerprint check is performed correctly by
end users, manual verification provides all desirable security
properties with the exception of only partial key revocation
support, as this requires contacting each communication part-
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Fig. 2. TextSecure warning for key changes: the user must either accept the
new key by selecting “complete”, or perform manual verification [31].

ner out-of-band. The approaches differ only in their usability
and adoption features.

Fingerprint verification approaches introduce severe usabil-
ity and adoption limitations: users have to perform manual
verification before communicating with a new partner (and get
them to do the same) to ensure strong authentication. Thus,
manual verification does not offer automatic key initialization,
easy key discovery, or immediate enrollment. In addition,
new keys introduce an alert on key renewal, resulting in a
key maintenance effort. Fingerprints complicate multiple key
support since each device might use a different key.

While it is possible to improve the usability of key finger-
print verification by making it optional and combining it with
other approaches, we postpone discussion of this strategy until
the discussion.

4) Short Authentication Strings: To ease fingerprint ver-
ification, shorter strings can be provided to the users for
comparison. A short authentication string (SAS) is a truncated
cryptographic hash (e.g., 20–30 bits long) of all public parts
of the key exchange. It is often represented in a format aimed
to be human friendly, such as a short sequence of words.
All participants compute the SAS based on the key exchange
they observed, and then compare the resulting value with
each other. The method used for comparison of the SAS
must authenticate the entities using some underlying trust
establishment mechanism.

Several encrypted voice channels, including the ZRTP pro-
tocol and applications like RedPhone, Signal, and SilentPhone,
use the SAS method by requiring participants to read strings
aloud [32], [33]. Figure 3 shows an example of SAS verifi-
cation during establishment of a voice channel in RedPhone.
For usability reasons, RedPhone and SilentPhone use random
dictionary words to represent the hash. Because these tools
require the user to end the established call manually if the
verification fails, they are not inattentive user resistant.

SAS systems based on voice channels anchor trust in the
ability of participants to recognize each other’s voices. Users
who have never heard each other’s voices cannot authenticate

Fig. 3. Users read random words during SAS verification in RedPhone [31].

using this method. Even for users that are familiar with each
other, the security provided by voice identification has been the
subject of controversy [34], [35]. Recent work [36] suggests
that, with even a small number of samples of a target user’s
speaking voice, audio samples can be synthesized that are
indistinguishable from the genuine user’s voice with typical
levels of background noise. We should expect that artificial
voice synthesis will improve in cost and accuracy, while
human auditory recognition will not improve.

For this reason, we consider voice-based SAS verification
to be obsolescent from a security standpoint. In Table I, we
assume that users verify the SAS with a method providing
stronger security (e.g., using audio and video channels with
careful inspection during the SAS verification). If the com-
munication channel (e.g., text messaging) does not support a
mechanism to establish trust, the SAS must be compared out
of band (e.g., as recommended by SilentText).

The SAS approach sacrifices asynchronicity, since mutual
authentication must be done with all users at the same time.
Due to the short size of the SAS, the naı̈ve approach is
vulnerable to a MitM attack by an adversary that attempts
to select key exchange values that produce a hash collision
for the two connections. To mitigate this problem, the attacker
can be limited to a single guess by forcing them to reveal their
chosen keys before observing the keys of the honest parties.
This can be accomplished by requiring that the initiator of
the key exchange release a commitment to their key, and then
open the commitment after the other party reveals theirs.

5) Secret-based Zero-Knowledge Verification: The Socialist
Millionaire Protocol (SMP) is a zero-knowledge proof of
knowledge protocol that determines if secret values held by
two parties are equal without revealing the value itself. This
protocol is used in OTR as the recommended method for user
verification [37], [38]. Alice poses a question based on shared
knowledge to Bob in-band and secretly records her answer.
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After Bob answers the question, the two parties perform the
SMP to determine if their answers match, without revealing
any additional information. Users are expected to choose
secure questions with answers based on shared knowledge that
attackers would be unable to know or guess.

The SMP used in OTR is performed on a cryptographic hash
of the session identifier, the two parties’ fingerprints, and their
secret answers. This prevents MitM and replay attacks.

Since a MitM must perform an online attack and can
only guess once, even low min-entropy secrets achieve strong
security [38], [39]. However, use of the SMP sacrifices asyn-
chronicity since all participants must be online during the
verification. If the protocol fails, the end users do not know
whether their answers did not match, or if a MitM attacker
exists and has made an incorrect guess.

6) Mandatory Verification: The previously defined veri-
fication methods are prone to inattentive users. Mandatory
verification approaches counter user negligence by requiring
that users enter the correct fingerprint strings instead of merely
confirming that they are correct. Of course, entering the
fingerprints takes user effort. In practice, QR-Codes and NFC
are popular methods to ease this process.

In SafeSlinger the user must choose the correct answer
among three possibilities to proceed [40]. Physically co-
located users form a group and exchange ephemeral keys.
Each device hashes all received information and displays the
hash as a sequence of three common words. Two additional
sequences are randomly generated. The users communicate
to determine the sequence that is common to all devices and
select it to verify the ephemeral keys, preventing users from
simply clicking an “OK” button. These keys are then used to
exchange contact information within the group with security
guarantees including confidentiality and authenticity.

Mandatory verification is a technique that is applied to
another trust establishment scheme; the resulting approach
inherits the usability properties of the underlying scheme.
Incorporating mandatory verification sacrifices asynchronicity
to ensure inattentive user resistance.

7) Authority-based Trust: In authority-based trust schemes,
public keys must be vouched for by one or more trusted
authorities.

During key initialization, authorities can verify ownership
of public keys by the claimed subjects through various means,
such as password-based authentication or email validation. The
authority then asserts the keys’ validity to other users. Two
well-known examples of authority-based trust establishment
are public-key directories and certificate authority schemes.

A Certificate Authority (CA) may issue signed certificates
of public keys to users, who can then present them directly to
other users without needing to communicate further with the
authority. This model has been widely deployed on the web
with the X.509 Public Key Infrastructure (PKIX) for HTTPS.
While the S/MIME standard uses this model for secure email,
it has seen less widespread deployment than PGP.

Alternatively, users may look up keys directly from an
online public-key directory over a secure channel. This is

common in several proprietary messaging applications such
as Apple iMessage and BlackBerry Protected Messenger.
In contrast to CA schemes, where the conversation partner
directly provides an ownership assertion from the CA, the
authority is directly asked for ownership assertions in key
directory schemes.

From the security point of view, the two schemes only differ
in key revocation and privacy preservation. While key updates
in key directories imply the revocation of old keys, in the
CA approach, certificates signed by the authority are trusted
by default; revocation lists have to be maintained separately.
However, CA-based revocation lists used in web browsers are
known to have issues with effectiveness and practicality [24],
[41], [42]. Since certificates may be exchanged by peers
directly, the CA-based approach can be privacy preserving.

With either system, users are vulnerable to MitM attacks
by the authority, which can vouch for, or be coerced to vouch
for, false keys. This weakness has been highlighted by recent
CA scandals [43], [44]. Both schemes can also be attacked if
the authority does not verify keys before vouching for them.
Authorities in messaging services often rely on insecure SMS
or email verification, enabling potential attacks.

The two approaches both support good usability. Well-
known systems using public-key directories, such as iMessage,
work without any user involvement.

8) Transparency Logs: A major issue with trusted authori-
ties is that they can vouch for fraudulent keys in an attack. The
Certificate Transparency protocol [45] requires that all issued
web certificates are included in a public log.

This append-only log is implemented using a signed Merkle
tree with continual proofs of consistency [45]. Certificates are
only trusted if they include cryptographic proof that they are
present in the log. This ensures that any keys the authority
vouches for will be visible in the log and evidence will exist
that the authority singed keys used in an attack.

Certificate Transparency is a specific proposal for logging
PKIX certificates for TLS, but the general idea can be applied
to authority-based trust establishment in secure messaging.
We refer to the general concept as transparency logs for the
remainder of the paper. While there are no known deployments
to date, Google plans to adapt transparency logs for user keys
in End-to-End, its upcoming email encryption tool [46]. In
the absence of a concrete definition, we evaluate transparency
logs based on the certificate transparency protocol.

The main security improvement of the two schemes consists
of operator accountability and the detection of operator MitM
attacks after the fact. The remaining security features are
inherited from authority-based trust systems.

However, these schemes introduce new and unresolved us-
ability and adoption issues. For instance, the logs must be au-
dited to ensure correctness, negating the no auditing required
property. The auditing services require gossip protocols to
synchronize the view between the monitors and prevent attack
bubbles (e.g., where different views are presented to different
geographical regions) [45]. Also, since only identity owners
are in a position to verify the correctness of their long-term
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keys, they share responsibility for verifying correct behavior of
the log. Previous research has shown that users often neglect
such security responsibilities [30], [47], so this task should
be performed automatically by client applications. However,
if a client detects a certificate in the log that differs from their
version, it is not clear whether the authorities have performed
an attack, an adversary has successfully impersonated the
subject of the certificate to the authorities, or if the subject
actually maintains multiple certificates (e.g., due to installing
the app on a second device). Ultimately, end users have to cope
with additional security warnings and errors, and it remains
to be seen whether they can distinguish between benign
and malicious log discrepancies without training. In addition,
transparency logs might hamper immediate enrollment due to
delays in log distribution.

Ryan [48] proposed extending the transparency logs concept
using two logs: one of all certificates in chronological order
of issuance, and one of currently valid certificates sorted
lexicographically. This enables a form of revocation by making
it efficient to query which certificates are currently valid for a
given username.

Melara et al. [49] proposed CONIKS, using a series of
chained commitments to Merkle prefix trees to build a key
directory that is self-auditing, that is, for which individual
users can efficiently verify the consistency of their own entry
in the directory without relying on a third party. This “self-
auditing log” approach makes the system partially have no
auditing required (as general auditing of non-equivocation
is still required) and also enables the system to be privacy
preserving as the entries in the directory need not be made
public. This comes at a mild bandwidth cost not reflected in
our table, estimated to be about 10 kilobytes per client per
day for self-auditing.

Both Ryan’s Extended Certificate Transparency and
CONIKS also support a proof-of-absence, which guarantees
the absence of an identifier or key in the log.

9) Web of Trust: In a web of trust scheme, users verify
each other’s keys using manual verification and, once they
are satisfied that a public key is truly owned by its claimed
owner, they sign the key to certify this. These certification
signatures might be uploaded to key servers. If Alice has
verified Bob’s key, and Bob certifies that he has verified
Carol’s key, Alice can then choose to trust Carol’s key based
on this assertion from Bob. Ideally, Alice will have multiple
certification paths to Carol’s key to increase her confidence in
the key’s authenticity.

The user interface for web of trust schemes tends to be
relatively complex and has never been fully standardized. The
scheme also requires a well-connected social graph, hence
the motivation for “key-signing parties” to encourage users
to form many links within a common social context.

Assuming that the web of trust model performs correctly,
MitM attacks by network and operator adversaries are limited
due to distribution of trust. However, since key revocations
and new keys might be withheld by key servers, the model
offers only partial operator accountability and key revocation.

Since the web of trust model produces a public social graph,
it is not privacy preserving.

The key-initialization phase requires users to get their keys
signed by other keys, so the system does not offer automatic
key initialization, alert-less key renewal, or immediate enroll-
ment, and is not inattentive user resistant. Because users must
participate in key-signing parties to create many paths for trust
establishment, users have a high key maintenance overhead
and a need for an out-of-band channel. Even worse, users
must understand the details of the PKI and be able to decide
whether to trust a key.

PGP typically uses a web of trust for email encryption
and signing. In practice, the PGP web of trust consists of
one strongly connected component and many unsigned keys
or small connected components, making it difficult for those
outside the strongly connected component to verify keys [50].

A simplification of the general web of trust framework is
SDSI [51] (Simple Distributed Security Infrastructure) later
standardized as SPKI [52], [53] (Simple Public Key Infras-
tructure). With SDSI/SPKI, Bob can assert that a certain key
belongs to “Carol” and, if Alice has verified Bob’s key as
belonging to “Bob”, that key will be displayed to Alice as
“Bob’s Carol” until Alice manually verifies Carol’s key herself
(which she can then give any name she wants, such as “Carol
N.”). We refer to these approaches as trust delegation. A
modern implementation is the GNU Name System (GNS) [54],
[55], which implements SDSI/SPKI-like semantics with a key
server built using a distributed hash table to preserve privacy.

10) Keybase: Keybase is a trust establishment scheme
allowing users to find public keys associated with social
network accounts. It is designed to be easily integrated into
other software to provide username-based trust establishment.
If a user knows a social network username associated with a
potential conversation partner, they can use Keybase to find
the partner’s public key.

During key initialization, all users register for accounts with
the Keybase server. They then upload a public key and proof
that they own the associated private key. Next, the user can
associate accounts on social networks or other services with
their Keybase account. Each external service is used to post
a signature proving that the account is bound to the named
Keybase account.

When looking up the key associated with a given user, the
Keybase server returns the public key, a list of associated
accounts, and web addresses for the external proofs. The client
software requests the proofs from the external services and
verifies the links. The user is then prompted to verify that the
key belongs to the expected individual, based on the verified
social network usernames. To avoid checking these proofs
for every cryptographic operation, the user can sign the set
of accounts owned by their partner. This signature is stored
by the Keybase server so that all devices owned by the user
can avoid verifying the external proofs again. This process is
known as tracking. Tracking signatures created by other users
are also accessible, providing evidence of account age. Old
tracking signatures provide confidence that a user’s accounts
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have not been recently compromised, but does not protect
against infrastructure operator attacks.

Keybase provides partial operator MitM protection since
attacks require collusion between multiple operators. The
scheme also provides easier key initialization and key mainte-
nance than web-of-trust methods.

11) Identity-Based Cryptography: In identity-based cryp-
tography (IBC), plaintext identifiers (such as email or IP
addresses) are mapped to public keys. A trusted third party,
the Private Key Generator (PKG), publishes a PKG public key
that is distributed to all users of the system. Public keys for an
identifier are computed using a combination of the identifier
and the PKG public key. The owner of the identity requests
the private key for that identity from the PKG while providing
proof that they own the identity. The advantage of this system
is that users do not need to contact any other entity in order
to retrieve the public key of a target user, since the public key
is derived from the identifier.

There are two main problems with basic IBC schemes: they
lack any operator MitM prevention and key revocation is not
possible. Since the PKG can generate private keys for any user,
the operator of the PKG can break the security properties of all
conversations. While this fundamental problem cannot be over-
come without using hybrid encryption schemes, key revocation
support can be added. Revocable IBC approaches [56]–[58]
add timestamps to the public key derivation process, regularly
refreshing key material.

IBC schemes are normally deployed in situations where the
trustworthiness of the PKG operator is assumed, such as in
enterprise settings. Few pure-IBC schemes have been proposed
for end-user messaging [59], [60].

12) Blockchains: The Bitcoin cryptocurrency utilizes a
novel distributed consensus mechanism using pseudonymous
“miners” to maintain an append-only log [61]. Voting power
is distributed in proportion to computational resources by
using a probabilistic proof-of-work puzzle. For the currency
application, this log records every transaction to prevent
double-spending. Miners are rewarded (and incentivized to
behave honestly) by receiving money in proportion to the
amount of computation they have performed. The success of
Bitcoin’s consensus protocol has led to enthusiasm that similar
approaches could maintain global consensus on other types of
data, such as a mapping of human-readable usernames to keys.

Namecoin, the first fork of Bitcoin, allows users to claim
identifiers, add arbitrary data (e.g., public keys) as records for
those identifiers, and even sell control of their identifiers to
others [62]. Namecoin and similar name-mapping blockchains
are denoted by the blockchain entry in Table I. Unlike most
other schemes, Namecoin is strictly “first-come, first-served”,
with any user able to purchase ownership of any number of
unclaimed names for a small, fixed fee per name. This price
is paid in Namecoins—units of currency that are an inherent
part of the system. A small maintenance fee is required to
maintain control of names, and small fees may be charged by
miners to update data or transfer ownership of names.

From the security perspective, blockchain schemes achieve

similar results to manual verification, except that instead of
exchanging keys, the trust relies on the username only. Once
users have securely exchanged usernames, they can reliably
fetch the correct keys.

However, various shortcomings arise from a usability and
adoption perspective. The primary usability limitation is that
if users ever lose the private key used to register their name
(which is not the same as the communication key bound to
that name), they will permanently lose control over that name
(i.e., key recovery is not possible). Similarly, if the key is
compromised, the name can be permanently and irrevocably
hijacked. Thus, the system requires significant key manage-
ment effort and burdens users with high responsibility. If
users rely on a web-based service to manage private keys for
them, as many do with Bitcoin in practice, the system is no
longer truly end-to-end. The system requires users to pay to
reserve and maintain names, sacrificing low key maintenance
and automatic key initialization. Users also cannot instantly
issue new keys for their identifiers (i.e., there is no immediate
enrollment) but are required to wait for a new block to be
published and confirmed. In practice, this can take 10–60
minutes depending on the desired security level.

On the adoption side, for the system to be completely
trustless, users must store the entire blockchain locally and
track its progress. Experience from Bitcoin shows that the vast
majority of users will not do this due to the communication
and storage requirements and will instead trust some other
party to track the blockchain for them. This trusted party
cannot easily insert spurious records, but can provide stale
information without detection. In any case, the system is not
highly scalable since the required amount of storage and traffic
consumption increases linearly with the number of users.

Finally, there are serious issues with name squatting, which
have plagued early attempts to use the system. Because any-
body can register as many names as they can afford, a number
of squatters have preemptively claimed short and common
names. Given the decentralized nature of blockchains, this is
hard to address without raising the registration fees, which
increases the burden on all users of the system.

E. Discussion

As Table I makes evident, no trust establishment approach
is perfect. While it is common knowledge that usability and
security are often at odds, our results show exactly where
the trade-offs lie. Approaches either sacrifice security and
provide a nearly ideal user experience, or sacrifice user ex-
perience to achieve nearly ideal security scores. Authority-
based trust (whether in the form of a single authority or
multiple providers) and TOFU schemes are the most usable
and well-adopted, but only offer basic security properties. Not
surprisingly, authority-based trust (particularly app-specific
key directories) is predominant among recently developed
apps in the wild, as well as among apps with the largest
userbases (e.g., iMessage, BlackBerry Protected, TextSecure,
and Wickr). By contrast, no approach requiring specific user
action to manage keys, such as web-of-trust, Keybase, GNS,
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or blockchains, has seen significant adoption among non-
technically-minded users.

In practice, we may be faced with the constraint that none of
the usability properties can be sacrificed in a system that will
achieve mass adoption. Higher-security schemes may be useful
within organizations or niche communities, but defending
against mass surveillance requires a communication system
that virtually all users can successfully use. Thus, it may
be wise to start from the basic user experience of today’s
widely deployed communication apps and try to add as much
security as possible, rather than start from a desired security
level and attempt to make it as simple to use as possible. The
recent partnership between WhatsApp and TextSecure [95] is
an example of a successful application of this approach.

There appears to be considerable room for security improve-
ments over authoritative key directories even without changes
to the user experience. Transparency logs might provide more
accountability with no interaction from most users. Because
this approach has not yet been deployed, it remains to be
seen how much security is gained in practice. The insertion
of new keys in the log does not provide public evidence of
malicious behavior if insecure user authentication methods
(e.g., passwords) are used to authorize key changes, as we fully
expect will be the case. Still, the possible loss of reputation
may be enough to keep the server honest.

Another promising strategy is a layered design, with basic
security provided by a central key directory, additional trust
establishment methods for more experienced users (e.g., visual
fingerprint verification or QR-codes), and TOFU warning
messages whenever contacts’ keys have changed. TextSecure
and Threema, among others, take such a layered approach
(represented by the second-to-last row in Table I). In contrast,
OTR uses opportunistic encryption with the ability to perform
the SMP to ensure trust (represented by the last row in Table I).

Conversely, the approaches with good security properties
should focus on improving usability. There has been little
academic work studying the usability of trust establishment.
Further research focusing on end-users’ mental models and
perception for trust establishment could help to develop more
sophisticated and understandable approaches.

V. CONVERSATION SECURITY

After trust establishment has been achieved, a conversation
security protocol protects the security and privacy of the
exchanged messages. This encompasses how messages are en-
crypted, the data and metadata that messages contain, and what
cryptographic protocols (e.g., ephemeral key exchanges) are
performed. A conversation security scheme does not specify
a trust establishment scheme nor define how transmitted data
reaches the recipient.

In Table II, we compare the features of existing approaches
for conversation security. Rows without values in the “group
chat” columns can only be used in a two-party setting.

A. Security and Privacy Features

Confidentiality: Only the intended recipients are able to
read a message. Specifically, the message must not be readable
by a server operator that is not a conversation participant.

Integrity: No honest party will accept a message that has
been modified in transit.

Authentication: Each participant in the conversation re-
ceives proof of possession of a known long-term secret from
all other participants that they believe to be participating in
the conversation. In addition, each participant is able to verify
that a message was sent from the claimed source.

Participant Consistency: At any point when a message is
accepted by an honest party, all honest parties are guaranteed
to have the same view of the participant list.

Destination Validation: When a message is accepted by an
honest party, they can verify that they were included in the set
of intended recipients for the message.

Forward Secrecy: Compromising all key material does not
enable decryption of previously encrypted data.

Backward Secrecy: Compromising all key material does not
enable decryption of succeeding encrypted data.

Anonymity Preserving: Any anonymity features provided
by the underlying transport privacy architecture are not
undermined (e.g., if the transport privacy system pro-
vides anonymity, the conversation security level does not
deanonymize users by linking key identifiers).

Speaker Consistency: All participants agree on the sequence
of messages sent by each participant. A protocol might per-
form consistency checks on blocks of messages during the
protocol, or after every message is sent.

Causality Preserving: Implementations can avoid display-
ing a message before messages that causally precede it.

Global Transcript: All participants see all messages in the
same order.

Not all security and privacy features are completely inde-
pendent. If a protocol does not authenticate participants, then it
offers participation repudiation (since no proof of participation
is ever provided to anyone). Similarly, no authentication of
message origin implies message repudiation as well as mes-
sage unlinkability. Note that the implications are only one
way: repudiation properties might be achieved together with
authentication. Additionally, a global transcript order implies
both speaker consistency and causality preservation since all
transcripts are identical.

Conversation security protocols may provide several differ-
ent forms of deniability. Based on the definitions from Sec-
tion II-C, we define the following deniability-related features:

Message Unlinkability: If a judge is convinced that a
participant authored one message in the conversation, this does
not provide evidence that they authored other messages.

Message Repudiation: Given a conversation transcript and
all cryptographic keys, there is no evidence that a given
message was authored by any particular user. We assume that
the accuser has access to the session keys because it is trivial
to deny writing a plaintext message when the accuser cannot
demonstrate that the ciphertext corresponds to this plaintext.

10

Chapter 2 Background and Systematization

22



TABLE II
CONVERSATION SECURITY PROTOCOLS AND THEIR USABILITY AND ADOPTION IMPLICATIONS. NO APPROACH REQUIRES ADDITIONAL USER EFFORT.
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TLS+Trusted Server†* Skype - - - - - - - - - - - -
Static Asymmetric Crypto†* OpenPGP, S/MIME - - - - - - - - - -
+IBE† Wang et al. - - - - - - - - - - - -
+Short Lifetime Keys OpenPGP Draft - - - - - - - - -
+Non-Interactive IBE† Canetti et al. - - - - - - - - -
+Puncturable Encryption† Green and Miers - - - - - - - - -
Key Directory+Short Lifetime Keys† IMKE - - - - - - - -
+Long-Term Keys† SIMPP - - - - - - - - -
Authenticated DH†* TLS-EDH-MA - - - - -
+Naı̈ve KDF Ratchet* SCIMP - - - -
+DH Ratchet†* OTR - - -
+Double Ratchet†* Axolotl - - -
+Double Ratchet+3DH AKE†* - - - -
+Double Ratchet+3DH AKE+Prekeys†* TextSecure - - - -
Key Directory+Static DH+Key Transport† Kikuchi et al. - - - - - - - - - - - -
+Authenticated EDH+Group MAC† GROK - - - - - - - - - -
GKA+Signed Messages+Parent IDs† OldBlue - - - - - - - -
Authenticated MP DH+Causal Blocks†* KleeQ - - - -
OTR Network+Star Topology† GOTR (2007) - - - - - - - - - - -
+Pairwise Topology† - - - -
+Pairwise Axolotl+Multicast Encryption* TextSecure - - - - -
DGKE+Shutdown Consistency Check† mpOTR - - - - - - - -
Circle Keys+Message Consistency Check† GOTR (2013) - - - -

= provides property; = partially provides property; - = does not provide property; †has academic publication; *end-user tool available

We also assume that the accuser does not have access to the
accused participant’s long-term secret keys because then it is
simple for the accuser to forge the transcript (and thus any
messages are repudiable).

Participation Repudiation: Given a conversation transcript
and all cryptographic key material for all but one accused (hon-
est) participant, there is no evidence that the honest participant
was in a conversation with any of the other participants.

Several additional features are only meaningful for group
protocols (i.e., protocols supporting chats between three or
more participants):

Computational Equality: All chat participants share an
equal computational load.

Trust Equality: No participant is more trusted or takes on
more responsibility than any other.

Subgroup messaging: Messages can be sent to a subset of
participants without forming a new conversation.

Contractible Membership: After the conversation begins,
participants can leave without restarting the protocol.

Expandable Membership: After the conversation begins,
participants can join without restarting the protocol.

When a participant joins a secure group conversation, it is
desirable for the protocol to compute new cryptographic keys
so that the participant cannot decrypt previously sent mes-

sages. Likewise, keys should be changed when a participant
leaves so that they cannot read new messages. This is trivial to
implement by simply restarting the protocol, but this approach
is often computationally expensive. Protocols with expandable
/ contractible membership achieve this without restarts.

There are many higher-level security and privacy design
issues for secure group chat protocols. For example, the
mechanisms for inviting participants to chats, kicking users
out of sessions, and chat room moderation are all important
choices that are influenced by the intended use cases. We do
not cover these features here because they are implemented at
a higher level than the secure messaging protocol layer.

B. Usability and Adoption

In classic messaging tools, users must only reason about
two simple tasks: sending and receiving messages. However,
in secure communication, additional tasks might be added.
In old secure messaging systems, often based on OpenPGP,
users could manually decide whether to encrypt and/or sign
messages. Many studies have shown that this caused usability
problems [2]–[5], [21]. However, during our evaluation, we
found that most recent secure messenger apps secure all
messages by default without user interaction. Since all imple-
mentations can operate securely once the trust establishment
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is complete, we omit the user-effort columns in Table II.
However, we take other usability and adoption factors, such
as resilience properties, into account:

Out-of-Order Resilient: If a message is delayed in transit,
but eventually arrives, its contents are accessible upon arrival.

Dropped Message Resilient: Messages can be decrypted
without receipt of all previous messages. This is desirable for
asynchronous and unreliable network services.

Asynchronous: Messages can be sent securely to discon-
nected recipients and received upon their next connection.

Multi-Device Support: A user can participate in the con-
versation using multiple devices at once. Each device must be
able to send and receive messages. Ideally, all devices have
identical views of the conversation. The devices might use a
synchronized long-term key or distinct keys.

No Additional Service: The protocol does not require any
infrastructure other than the protocol participants. Specifically,
the protocol must not require additional servers for relaying
messages or storing any kind of key material.

C. Two-party Chat Evaluation

1) Trusted central servers (baseline): The most basic con-
versation security features that a secure chat protocol can
provide are confidentiality and integrity. This can be easily
implemented without adversely affecting usability and adop-
tion properties by using a central server to relay messages
and securing connections from clients to the central server
using a transport-layer protocol like TLS. This also allows
the central server to provide presence information. Since
this approach does not negatively affect usability, it is no
surprise that this architecture has been adopted by some of the
most popular messaging systems today (e.g., Skype, Facebook
Chat, Google Hangouts) [63]–[67]. We do not consider these
protocols further because they allow the central server to
decrypt messages and thus do not meet our stronger end-to-
end definition of confidentiality—that messages cannot be read
by anyone except the intended recipient(s). We include this
approach as a baseline in Table II in order to evaluate the
effects of various designs.

Note that the baseline protocols provide all repudiation
features, since there is no cryptographic proof of any activity.
Additionally, these protocols are highly resilient to errors
since there are no cryptographic mechanisms that could cause
problems when messages are lost. The use of a trusted central
server makes asynchronicity and multi-device support trivial.

2) Static Asymmetric Cryptography: Another simple ap-
proach is to use participants’ static long-term asymmetric
keypairs for signing and encrypting.

OpenPGP and S/MIME are two well-known and widely
implemented standards for message protection, mostly used
for email but also in XMPP-based tools [63], [68]–[70].

While this approach provides confidentiality, message au-
thentication, and integrity, it causes a loss of all forms of
repudiation. Additionally, care must be taken to ensure that
destination validation and participant consistency checks are
performed. Without destination validation, surreptitious for-

warding attacks are possible [71]. Without participant con-
sistency, identity misbinding attacks might be possible [72].
Defenses against replay attacks should also be included. These
considerations are particularly relevant since the OpenPGP
and S/MIME standards do not specify how to provide these
features, and thus most implementations remain vulnerable to
all of these attacks [68], [70].

To simplify key distribution, several authors have proposed
the use of identity-based cryptography in the same setting.
The SIM-IBC-KMS protocol acts as an overlay on the MSN
chat network with a third-party server acting as the PKG [60].
Messages are encrypted directly using identity-based encryp-
tion. The protocol from Wang et al. [73] operates similarly,
but distributes the PKG function across many servers with a
non-collusion assumption in order to limit the impact of a ma-
licious PKG. These protocols partially sacrifice confidentiality
since an attacker with access to the PKG private key could
surreptitiously decrypt communications.

A second issue with naı̈ve asymmetric cryptography is the
lack of forward or backward secrecy. One way to address this
issue is to use keys with very short lifetimes (e.g., changing
the key every day). Brown et al. propose several extensions to
OpenPGP based on this principle [74]. In the most extreme
proposal, conversations are started using long-term keys, but
each message includes an ephemeral public key to be used for
replies. This method provides forward and backward secrecy
for all messages except those used to start a conversation.

From a usability and adoption perspective, static key ap-
proaches achieve the same properties as the baseline. Apart
from the non-transparent trust establishment, iMessage is a
prominent example of how static asymmetric cryptography
can achieve end-to-end conversation security with no changes
to the user experience. Since the same long-term keys are
used for all messages, message order resilience, dropped
message resilience, asynchronicity, and multi-device-support
are provided. No additional services are required.

3) FS-IBE: In traditional PKI cryptography, forward se-
crecy is achieved by exchanging ephemeral session keys or
by changing keypairs frequently. The use of key agreement
protocols makes asynchronicity difficult, whereas frequently
changing keypairs requires expensive key distribution. Forward
Secure Identity Based Encryption (FS-IBE) allows keypairs to
be changed frequently with a low distribution cost. Unlike
traditional identity-based encryption schemes, the private key
generators (PKG) in FS-IBE are operated by the end users and
not by a server. Initially, each participant generates a PKG
for an identity-based cryptosystem. Participants generate N
private keys (SKi), one for each time period i, by using their
PKG, and then immediately destroy the PKG. Each private
key SKi is stored encrypted by the previous private key
SKi−1 [15], [75]. The participant then distributes the public
key of the PKG. Messages sent to the participant are encrypted
for the private key corresponding to the current time period.
When a time period concludes, the next secret key is decrypted
and the expired key is deleted. Thus, if intermediate keys
are compromised, the attacker can only retrieve corresponding
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future private keys; forward secrecy, but not backward secrecy,
is provided. In contrast to generating key pairs for each time
period, which requires distribution of N keys, only a single
public master key is published; however, the generation still
needs to be repeated after all time periods expire.

Canetti, Halevi, and Katz were the first to construct a
non-interactive forward secrecy scheme based on hierarchical
IBE with logarithmic generation and storage costs [75]. In
addition, they showed how their scheme can be extended to
an unbounded number of periods (i.e., the private keys do not
have to be generated in advance), removing the need for addi-
tional services to distribute new keys at the cost of increasing
computational requirements over time. This scheme provides
non-interactive asynchronous forward secrecy without relying
on additional services. However, if messages arrive out of
order, their corresponding private keys might have already
been deleted. As a mitigation, expired keys might be briefly
retained, providing partial out-of-order resilience.

Green and Miers proposed puncturable encryption, a modi-
fication of attribute-based encryption (built using a hierarchical
IBE scheme) in which each message is encrypted with a
randomly chosen “tag” and the recipient can update their
private key to no longer be able to decrypt messages with
that tag after receipt [76]. This approach provides arbitrary
out-of-order resilience, although to make the scheme efficient
in practice requires periodically changing keys.

Computational costs and storage costs increase over time
for both FS-IBE and puncturable encryption, introducing scal-
ability concerns. To our knowledge, neither approach has been
deployed and they thus merit further development.

4) Short lifetime key directories: Several protocols make
use of a central server for facilitating chat session establish-
ment. In these systems, users authenticate to the central server
and upload public keys with short lifetimes. The server acts as
a key directory for these ephemeral public keys. Conversations
are initiated by performing key exchanges authenticated with
the short-term keys vouched for by the key directory. Messages
are then encrypted and authenticated using a MAC. IMKE [77]
is a protocol of this type where the server authenticates users
through the use of a password. SIMPP [78]–[80] operates
similarly, but uses long-term keys to authenticate instead.

These protocols achieve confidentiality and integrity, but
lack authentication of participants since the central server
can vouch for malicious short-term keys. Since session keys
are exchanged on a per-conversation basis, these protocols
achieve forward and backward secrecy between conversations.
Since SIMPP uses signatures during the login procedure, it
loses participation repudiability; the accuser cannot forge their
response to the server’s challenge.

5) Authenticated Diffie-Hellman: While the use of central
servers for presence information and central authentication is
fundamental to systems such as IMKE and SIMPP, there is an
alternative class of solutions that instead performs end-to-end
authenticated Diffie-Hellman (DH) key exchanges. By default,
the authenticated DH key agreement does not rely on central
servers. In an authenticated key exchange (AKE) such as

authenticated DH, the participants generate an ephemeral ses-
sion key and authenticate the exchange using their long-term
keys. The resulting session key is used to derive symmetric
encryption and MAC keys, which then protect messages using
an encrypt-then-MAC approach. This basic design provides
confidentiality, integrity, and authentication. TLS with an
ephemeral DH cipher suite and mutual authentication (TLS-
EDH-MA) is a well-known example of this approach. Note
that further protections are required during key exchange to
protect against identity misbinding attacks violating partici-
pant consistency [38], [72], such as those provided by SIGMA
protocols [82].

The use of ephemeral session keys provides forward and
backward secrecy between conversations. Message unlinka-
bility and message repudiation are provided since messages
are authenticated with shared MAC keys rather than being
signed with long-term keys. At a minimum, messages can
be forged by any chat participants. Some protocols, such as
OTR, take additional measures, such as publication of MAC
keys and the use of malleable encryption, to expand the set
of possible message forgers [83]. If the participants simply
sign all AKE parameters, then this approach does not provide
participation repudiation. However, if participants only sign
their own ephemeral keys, these signatures can be reused by
their conversation partners in forged transcripts. Figure 4a
shows the authenticated key exchange used by OTRv1 (more
recent versions use a SIGMA key exchange). Conversation
partners are able to reuse ephemeral keys signed by the
other party in forged transcripts, thereby providing partial
participation repudiation. OTR users can increase the number
of possible forgers by publishing previously signed ephemeral
keys in a public location, thereby improving their participation
repudiation.

Once the AKE has been performed, the encrypt-then-MAC
approach allows messages to be exchanged asynchronously
with out-of-order and dropped message resilience. However,
since a traditional AKE requires a complete handshake before
actual messages can be encrypted, this basic approach requires
synchronicity during conversation initialization. Additionally,
since key agreements can only be performed with connected
devices, there is no trivial multi-device support.

6) Key Evolution: A desirable property is forward secrecy
for individual messages rather than for entire conversations.
This is especially useful in settings where conversations can
last for the lifetime of a device. To achieve this, the session
key from the initial key agreement can be evolved over time
through the use of a session key ratchet [17]. A simple
approach is to use key derivation functions (KDFs) to compute
future message keys from past keys. This naı̈ve approach, as
used in SCIMP [84], provides forward secrecy. However, it
does not provide backward secrecy within conversations; if a
key is compromised, all future keys can be derived using the
KDF. Speaker consistency is partially obtained since messages
cannot be surreptitiously dropped by an adversary without
also dropping all future messages (otherwise, recipients would
not be able to decrypt succeeding messages). If messages are
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A B

gae gbe

sign sign

authenticated key agreement

(a) OTRv1 DH handshake. The session key is derived from
the key agreement based on signed ephemeral keys: s =
DH(gae , gbe )

ga gb

gae gbe
key agreements

(b) 3-DH handshake. The session key is a
combination of all key agreements: s =
KDF(DH(gae , gbe )||DH(gae , gb)||DH(ga, gbe ))

Fig. 4. TLS/OTRv1 handshake vs. 3-DH handshake (figures derived from [81]). Gray nodes represent ephemeral keys, white nodes represent long-term keys.
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Fig. 5. Simplified version of Axolotl: ci denote chain keys, ki message keys, KDFi arbitrary key derivation functions, Eki
an encryption function using

ki, and Ai = gai and Bi = gbi as public DH values. Gray key nodes denote keys held in memory after Alice receives message M4.
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dropped or arrive out of order, the recipient will notice since
the messages are encrypted with an unexpected key. To handle
this, the recipient must store expired keys so that delayed or
re-transmitted messages can still be decrypted, leaving a larger
window of compromise than necessary. Thus, out-of-order and
dropped message resilience are only partially provided.

7) Diffie-Hellman Ratchet: A different ratcheting approach,
introduced by OTR, is to attach new DH contributions to
messages [83]. With each sent message, the sender advertises
a new DH value. Message keys are then computed from
the latest acknowledged DH values. This design introduces
backward secrecy within conversations since a compromised
key will regularly be replaced with new key material. Causality
preservation is partially achieved since messages implicitly
reference their causal predecessors based on which keys they
use. The same level of speaker consistency as the naı̈ve KDF
solution can be provided by adding a per-speaker monotonic
counter to messages. A disadvantage of the DH ratchet is that
session keys might not be renewed for every message (i.e.,
forward secrecy is only partially provided). Like the KDF-
based ratchet, the DH ratchet lacks out-of-order resilience; if
a message arrives after a newly advertised key is accepted,
then the necessary decryption key was already deleted.

8) Double-Ratchet (Axolotl): To improve the forward se-
crecy of a DH ratchet, both ratchet approaches can be com-
bined: session keys produced by DH ratchets are used to seed
per-speaker KDF ratchets. Messages are then encrypted using
keys produced by the KDF ratchets, frequently refreshed by
the DH ratchet on message responses. The resulting double
ratchet, as implemented by Axolotl [85], provides forward
secrecy across messages due to the KDF ratchets, but also
backward secrecy since compromised KDF keys will even-
tually be replaced by new seeds. To achieve out-of-order
resilience, the Axolotl ratchet makes use of a second derivation
function within its KDF ratchets. While the KDF ratchets are
advanced normally, the KDF keys are passed through a second
distinct derivation function before being used for encryption.

Figure 5 depicts the double ratchet used in Axolotl. The
secondary KDF, denoted as KDF2, allows the chain keys
(ci) to be advanced without sacrificing forward secrecy; each
ci is deleted immediately after being used to derive the
subsequent chain key ci+1 and the corresponding message
key (ki) for encryption. If messages arrive out of order, this
system provides a mechanism for decrypting the messages
without compromising forward secrecy. For example, if Bob
is expecting message M1 and is storing c1 in memory, but
then receives M2 instead, he uses c1 to compute k1, c2, k2,
and c3. Bob uses k2 to decrypt the newly received message,
and then he deletes c1 and c2 from memory, leaving only k1
and c3. When the missing M1 eventually arrives, Bob can use
k1 to decrypt it directly. However, if an attacker compromises
Bob’s system at this moment, they will be unable to derive
k2 to decrypt M2. A similar situation is depicted in Figure 5,
where gray key nodes denote keys held in memory after Alice
was able to receive M4.

Axolotl also simplifies the use of its outer DH ratchet. In
OTR, a chain of trust, allowing trust in new DH key exchanges
to be traced back to the original AKE, is provided through
the use of DH key advertisements and acknowledgments. To
speed up this process, Axolotl instead derives a root key
from the initial AKE in addition to the initial DH keys.
Each subsequent DH secret is derived by using the sender’s
latest DH key, the latest DH key received from the other
participant, and the current root key. Each time the DH ratchet
is advanced, a new root key is derived in addition to a new
chain key. Since deriving the chain keys requires knowledge
of the current root key, newly received DH keys can be
trusted immediately without first sending an acknowledgment.
Despite these improvements, the double ratchet still requires
synchronicity for the initial AKE.

9) 3-DH Handshake: A triple DH (3-DH) handshake is
a different AKE scheme that provides stronger participation
repudiation. Specifically, transcripts of conversations between
any two participants can be forged by anyone knowing nothing
more than the long-term public keys of the participants.
Figure 4b depicts a 3-DH AKE. Triple DH is an implicitly
authenticated key agreement protocol—a category that has
been extensively examined in the literature [86]–[92]. Note
that in this simplified version, if an attacker’s ephemeral key
was used (possible since ephemeral keys are not signed),
the attacker would be able to calculate the session key ret-
rospectively assuming the delayed possession of the corre-
sponding long-term key. Thus, in practice the key exchange
requires further protection mechanisms against ephemeral keys
chosen by an attacker. Assuming that Alice and Bob both
have long-term DH keys ga and gb and ephemeral keys
gae and gbe , the 3-DH shared secret s is computed as
s = KDF(DH(gae , gbe)||DH(ga, gbe)||DH(gae , gb)) [85]. If a
secure key derivation function is used, a MitM attacker must
either know a and ae, or b and be. Kudla et al. have shown
that the 3-DH key exchange provides the same authentication
level as achieved with the authenticated versions of DH key
agreements [93]. 3-DH achieves full participation repudiation
since anybody is able to forge a transcript between any two
parties by generating both ae and be and performing DH
key exchanges with ga and gb. Assuming that Mallory uses
gm as her long-term DH value and gme as her ephemeral
key agreement value, and that she knows Alice’s long-term
DH value ga, she is able to forge a transcript by calculating
s = KDF(DH(gae , gme)||DH(ga, gme)||DH(gae , gm)) as the
common HMAC and encryption secrets. Mallory can do this
without ever actually interacting with Alice. Since the secret
is partially derived from the long-term public keys, 3-DH also
provides participant consistency without the need to explicitly
exchange identities after a secure channel has been established.
Unfortunately, this also causes a partial loss of anonymity
preservation since long-term public keys are observable during
the initial key agreement (although future exchanges can be
protected by using past secrets to encrypt these identities). It
is possible to regain anonymity preservation by encrypting key
identifiers with the given ephemeral keys.
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10) Prekeys: While a double ratchet does not provide asyn-
chronicity by itself, it can be combined with a prekey scheme
to create an asynchronous version of the protocol. Prekeys are
one-time ephemeral public DH contributions that have been
uploaded in advance to a central server. Clients can complete
a DH key exchange with a message recipient by requesting
their next prekey from the server. When combined with a 3-DH
exchange, this is sufficient to complete an asynchronous AKE
as part of the first message. In comparison to time-window
based FS-IBE approaches (cf. Section V-C3), this approach
requires the precomputation of a number of ephemeral keys;
otherwise, forward secrecy is weakened. However, this scheme
also permits the destruction of the private ephemeral values
immediately after receiving a message using them, instead of
keeping a key until a time window expires.

TextSecure [31] is a popular Android app that combines
Axolotl, prekeys, and 3-DH to provide an asynchronous user
experience while sacrificing the no additional service property.
It has gained considerable attention recently after being incor-
porated into WhatsApp [94], [95]. Assuming Axolotl is used
on two devices, the key material can evolve independently
for each device. However, if one of those devices remains
offline for a long time, a key compromise on that device
is problematic: if the device can use its outdated keys to
read messages that were sent when it was offline, then this
compromise defeats forward secrecy; if the device cannot
read the old messages, then the protocol does not achieve
complete multi-device support. Deciding how long a device
may be offline before it can no longer read buffered messages
is an adoption consideration requiring further study of user
behavior.

D. Group Chat Evaluation

1) Trusted central servers (baseline): The baseline protocol
described in Section V-C1, where clients simply connect to a
trusted central server using TLS, can trivially support group
chats. While it is easy to add and remove group participants
in this system, the only thing preventing participants from
reading messages sent before or after they are part of the
group is the trustworthiness of the server. This fact is indicated
by half circles for expandable / contractible membership.
SILC [96] in its default mode is an example of a protocol using
this design. While SILC’s architecture involves a network
of trusted servers similar to the IRC protocol, for analysis
purposes this network can be considered as one trusted entity.

To improve the security and privacy of these systems,
participants can simply encrypt and authenticate messages
before sending them to the server by using a pre-shared secret
key for the group. This approach is useful because it can
be applied as a layer on top of any existing infrastructure.
SILC has built-in support for this method in its “private
mode”; users can provide a password for a channel that is
used to derive a pre-shared key unknown to the server. While
this design provides confidentiality and integrity, it does not
provide authentication.

2) Key transport: Rather than relying on users to exchange
a secret password out-of-band, it is far better to automatically
exchange a new secret for each conversation. A simple pro-
posed method for doing this is to have one participant generate
a session key and securely send it to the other participants.
These systems begin by establishing secure channels between
participants. The conversation initiator then generates a group
key and sends it to the other participants using the pairwise
channels. This design provides forward and backward secrecy
since a new group key is randomly generated for each con-
versation. Due to the use of a group leader, computational
and trust equality are also lost. However, groups are easily
expandable and contractible by having the initiator generate
and distribute a new group key.

An early design of this type, proposed by Kikuchi et
al. [97], suggests using a key directory to store static DH
public keys for users. When group chats are formed, these
keys and are used to derive pairwise session keys for the
participants. A modified DH exchange is used in order to
allow the server to reduce the required computation for the
clients. Participation repudiation is lost due to the design of
the key exchange mechanism, whose security properties have
not been rigorously verified. An improvement, used in the
GROK protocol [98], is to use standard DH exchanges for
the pairwise channels, authenticated using long-term public
keys stored in the key directory. This improvement provides
authentication and anonymity preservation, but still suffers
from the inherent inequality of key transport approaches.

3) Causality preservation: One issue that is rarely ad-
dressed in the design of conversation security protocols is
causality preservation. The user interface of the chat appli-
cation must make design choices such as whether to display
messages immediately when they are received, or to buffer
them until causal predecessors have been received. However,
the conversation security protocol must provide causality in-
formation in order to allow the interface to make these choices.

OldBlue [99] is a protocol that provides speaker consis-
tency and causality preservation. An authenticated group key
agreement (GKA) protocol is executed at the start of the
conversation. Messages are encrypted with the group key and
then signed with long-term asymmetric keys. This approach
to signatures eliminates message repudiation. To preserve
causality, messages include a list of identifiers of messages that
causally precede them. The OldBlue protocol conservatively
assumes that any message received by a user might influence
the messages they subsequently send. Therefore, all received
messages are considered to causally precede subsequently
transmitted messages. Message identifiers are hashes of the
sender, the list of preceding identifiers, and the message con-
tents. When a message has been lost, the client continuously
issues resend requests to the other clients.

A different approach is employed by KleeQ [100], a pro-
tocol designed for use by multiple trusted participants with
tenuous connectivity. An authenticated multi-party DH ex-
change is performed to initiate the protocol. By authenticating
the parameters in a manner similar to OTR, participation
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repudiation can be provided. The group can be easily expanded
by incorporating the DH contribution of a new member into
the multi-party DH exchange, deriving a new group key.
However, the group is not contractible without restarting the
protocol. When two conversation participants can establish a
connection, they exchange the messages that the other is miss-
ing using a patching algorithm. All messages are encrypted
and authenticated with a MAC using keys derived from the
group secret, providing message repudiation. Messages are
sealed into blocks, which are sequences of messages having
the property that no messages could possibly be missing.
After each block is sealed, rekeying is performed using
the previous keys and the block contents. A mechanism is
provided to seal blocks even if some users are inactive in
the conversation. Speaker consistency is not guaranteed until
the messages have been sealed in a block. While participants
are authenticated during group formation, message contents
are not authenticated until after they have been sealed into
a block. The block sealing mechanism indirectly provides
participant consistency and destination validation. If malicious
participants send differing messages to others, this will be
uncovered during the block sealing phase. Manual resolution
is required to identify malicious participants.

4) OTR networks: Since OTR [83] provides desirable fea-
tures for two-party conversations, it is natural to extend it to
a group setting by using OTR to secure individual links in a
network. A basic strategy is to enlist a trusted entity to relay
messages and then secure client links to this entity using OTR.
This is the approach taken by the GOTR protocol released
in 2007 (we write the year to distinguish it from a different
protocol with the same name from 2013). GOTR (2007) [101]
selects a participant to act as the relay, forming a star topology
of pairwise connections with the selected participant acting
as the hub. All authentication properties, speaker consistency,
and causality preservation are lost because they do not persist
across the relay node. Since the relay server can buffer
messages, asynchronicity is provided as long as the relay node
remains online. All other properties are inherited from OTR.
Groups can be expanded and contracted simply by establishing
new OTR connections to the relay.

Instead of using a star topology, pairwise OTR connections
between all participants can be established. This approach
restores authentication and anonymity preservation, as well as
equal trust between members. It is also possible to send mes-
sages to subgroups by only transmitting the message across
selected OTR links. The downside of this approach is that it
does not preserve causality or provide speaker consistency;
participants can send different messages to different people.
This design also incurs significant computational overhead. It
would be desirable to achieve these security properties without
this level of additional cost.

5) OTR for groups: Several protocols have been proposed
to achieve OTR-like repudiation properties for group conver-
sations. The TextSecure protocol can be naturally extended
to groups by sending messages to each recipient using the
two-party TextSecure protocol [102]. Multicast encryption is

used for performance: a single encrypted message is sent to a
central server for relaying to recipients while the decryption
key for the message is sent pairwise using TextSecure. In
practice, the wrapped decryption keys are attached to the same
message for broadcasting. It is also possible to accomplish
this task using one of the many existing broadcast encryption
schemes [103]. This design does not provide any guarantees
of participant consistency, but it inherits the asynchronicity of
the two-party TextSecure protocol. Speaker consistency and
causality preservation are achieved by attaching preceding
message identifiers to messages. A message identifier is a hash
of the sender, the list of preceding identifiers, and the message
contents.

A repudiable group chat scheme can also be designed by
utilizing a deniable group key exchange (DGKE) protocol, as
in the mpOTR protocol [104], [105]. When completed, the
DGKE provides each participant with a shared secret group
key and individual ephemeral signing keys. This information is
authenticated with long-term keys in a manner providing par-
ticipation repudiation while still authenticating participants—
participants receive proof of each other’s identities, but this
proof cannot be used to convince outsiders. All parties must
be online to complete the DGKE, so the protocol does not
support asynchronicity. Messages are encrypted with the
shared group key and signed with the ephemeral keys. The
ephemeral signatures provide proof of authorship to others in
the group but, because outsiders cannot be certain that these
ephemeral signing keys correspond to specific long-term keys,
message repudiation is preserved. However, since all messages
from an individual are signed with the same (ephemeral)
key, the protocol does not have message unlinkability. When
the conversation has concluded, each participant hashes all
messages received from each other participant. The hashes are
then compared to ensure that everyone received the same set of
messages, providing speaker consistency. If this check fails,
messages must be individually compared to uncover discrepan-
cies. This approach, where a consistency check is performed
only once at the conclusion of the conversation, does not work
if a network adversary disconnects users from the conversation
before the consistency check can be completed. In this worst-
case scenario, the only information received by users is that
something went wrong at some point during the protocol, but
nothing more specific. Unfortunately, in many scenarios it is
unclear how users should respond to this limited information.
In this scheme, subgroup messaging is not possible since all
messages share a single encryption key. The group is also not
expandable or contractible without performing a new DGKE.

A completely different approach is taken by the GOTR
(2013) protocol. GOTR (2013) [14] is built using a “hot-
pluggable” group key agreement (GKA) protocol, allowing
members to join and drop out of the conversation with little
overhead. This system involves the use of “circle keys”: sets
of public keys having the property that a shared secret key
can be computed by anyone with a private key matching a
public key in the set. The key exchange mechanism in this
protocol is relatively complex; we refer the interested reader
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to the original publication for details [14]. Pairwise secure
channels are set up between participants to send consistency
check messages. These consistency channels have the effect
of providing global transcript order, but all participants are
required to be online to receive messages. The system oth-
erwise provides features similar to mpOTR but with flexible
group membership and message unlinkability.

E. Discussion

Similar to our study of trust establishment, Table II makes
immediately clear that no conversation security protocol pro-
vides all desired properties. Since most of the properties in the
table are not mutually exclusive, however, there is significant
room for improvement by combining protocol designs and this
should be seen as a tangible and important call to action for
the research community.

Sadly, the most widely adopted solutions also have the
worst security and privacy properties, with most non-security-
focused applications providing only basic static asymmetric
cryptography. This does not appear to be due to the usability
drawbacks of the more secure protocols: once the trust estab-
lishment has been done, all of the conversation security ap-
proaches we studied can be automated without any additional
effort for the user. An exception is enabling asynchronous
communication while still providing forward and backward
secrecy; the only solution for this problem that appears to
have any significant deployment in practice is the prekeys
approach implemented by TextSecure. This requires relatively
complicated infrastructure compared to a simple key server,
introduces problems for multi-device support, and is prone
to denial-of-service attacks if it is used in anonymous com-
munication. This approach is poorly studied in the academic
literature. The FS-IBE scheme discussed in Section V-C3
promises to resolve the issues of server complexity and denial
of service, but introduces new challenges such as scalability
and performance issues [75]. Unlike prekeys (Section V-C10),
this scheme has received a considerable amount of follow-
up research and academic citations, but we are unaware of
any practical tool implementing it. In addition, a time-window
based FS-IBE scheme requires holding the ephemeral keys
for a certain amount of time to allow decryption of delayed
messages. One possible mitigation is to rely on an additional
server maintaining window counters where every window
number is used once, analogous to the prekeys approach. Im-
proving the practicality of FS-IBE and puncturable encryption
schemes warrants further research.

Another outstanding concern that limits adoption of secure
conversation security protocols is the limited support for mul-
tiple devices. Despite a vast number of users owning multiple
devices, only the most insecure protocols support this property
without requiring users to perform pairing procedures. Device
pairing has proved extremely difficult for users in prac-
tice [106], [107] and allowing users to register multiple devices
with distinct keys is a major usability improvement. Although
extremely difficult, implementing usable device pairing is not

necessarily an insurmountable problem. Additional work in
this area is needed.

When it comes to group chat properties, we can identify
several areas for improvement in Table II. Classic protocols
often do not provide participant consistency or destination
validation, making them potentially vulnerable to surreptitious
forwarding or identity misbinding attacks. However, these are
sometimes addressed in concrete implementations. The double
ratchet used in Axolotl improves forward secrecy with low cost
in performance, implementation complexity, and resilience,
but it has not yet been thoroughly evaluated in an academic
context. Additionally, decentralized group chat systems in-
herently permit a participant to send different messages to
different people. Due to network conditions, users can also
end up observing significantly different transcripts. Despite
these intrinsic weaknesses, surprisingly few protocols explic-
itly consider speaker consistency or causality preservation.
The recently proposed (n+1)sec protocol [108] is an example
of new work in this area. (n+1)sec builds off of Abdalla et
al.’s flexible group key exchange protocol [109] to provide a
DGKE and checks for transcript consistency.

Existing solutions achieve mixed results concerning repudi-
ation. It is often debated whether repudiation is a desirable
feature and, if it is, whether or not it is worth pursuing. There
are situations in which the mere suspicion of authoring a given
message is potentially harmful to an author; in these cases,
repudiation is not useful, and participants should make use
of a protocol providing anonymity instead. Even in scenarios
where repudiation is traditionally thought to be useful, such as
during criminal trials in societies requiring proof of authorship
“beyond a reasonable doubt”, there are no prominent examples
of repudiable messaging properties influencing legal decisions.
Nonetheless, if it is possible to maintain repudiation within a
secure messaging protocol without substantial cost, we believe
that it remains a desirable property. Users typically think of
real-world conversations as “off-the-record”, so it is natural
to desire (or expect) this property from a secure messaging
protocol. For the definitions of participation repudiation and
message repudiation used in this work, the two-party protocols
based on authenticated DH key exchanges and the OTR-like
group protocols provide inexpensive solutions.

There are also additional adoption constraints imposed by
many modern secure group chat protocols. Group protocols
often choose to employ either a trusted participant or an
additional service to improve protocol performance, which
can lead to security concerns or introduce additional costs
for deployment. Very few group protocols support subgroup
messaging or changing group membership after the conver-
sation has started without incurring the substantial costs of
a new protocol run. Additionally, many proposed designs
require synchronicity in order to simplify their protocols,
which largely precludes their use on current mobile devices.

VI. TRANSPORT PRIVACY

The transport privacy layer defines how messages are ex-
changed, with the goal of hiding message metadata such as
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TABLE III
TRANSPORT PRIVACY SCHEMES. EVERY PRIVACY-ENHANCING APPROACH CARRIES USABILITY AND/OR ADOPTION COSTS.
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Store-and-Forward†* Email/XMPP - - - - - - -
+DHT Lookup†* Kademlia - - -
Onion Routing+Message Padding†* Tor - - - - -
+Hidden Services* Ricochet - - - -
+Inbox Servers† - - - - - -
+Random Delays†* Mixminion - - - - -
+Hidden Services+Delays+Inboxes+ZKGP* Pond - - - -
DC-Nets†* - - - - - - - - -
+Silent Rounds† Anonycaster - - - - - - -
+Shuffle-Based DC-Net+Leader† Dissent - - - - - - -
+Shuffle-Based DC-Net+Anytrust Servers† Verdict - - - - - - -
Message Broadcast† - - - - - - -
+Blockchain - - - - - - - -
PIR* Pynchon Gate - - - - -

= provides property; = partially provides property; - = does not provide property; †has academic publication; *end-user tool available

the sender, receiver, and conversation to which the message
belongs. Some transport privacy architectures impose topolog-
ical structures on the conversation security layer, while others
merely add privacy to data links between entities. The transport
privacy schemes may also be used for privacy-preserving
contact discovery. In this section, we compare approaches for
transport privacy in terms of the privacy features that they
provide, as well as usability concerns and other factors that
limit their adoption. Table III compares the various schemes.

A. Privacy Features

We make the distinction between chat messages, which
are the user-generated payloads for the messaging protocol
to exchange, and protocol messages, which are the underlying
data transmissions dictated by the upper protocol layers. We
define following privacy properties:

Sender Anonymity: When a chat message is received, no
non-global entities except for the sender can determine which
entity produced the message.

Recipient Anonymity: No non-global entities except the
receiver of a chat message know which entity received it.

Participation Anonymity: No non-global entities except the
conversation participants can discover which set of network
nodes are engaged in a conversation.

Unlinkability: No non-global entities except the conver-
sation participants can discover that two protocol messages
belong to the same conversation.

Global Adversary Resistant: Global adversaries cannot
break the anonymity of the protocol.

B. Usability Properties

Contact Discovery: The system provides a mechanism for
discovering contact information.

No Message Delays: No long message delays are incurred.
No Message Drops: Dropped messages are retransmitted.
Easy Initialization: The user does not need to perform any

significant tasks before starting to communicate.
No Fees Required: The scheme does not require monetary

fees to be used.

C. Adoption Properties

Topology Independent: No network topology is imposed on
the conversation security or trust establishment schemes.

No Additional Service: The architecture does not depend on
availability of any infrastructure beyond the chat participants.

Spam/Flood Resistant: The availability of the system is
resistant to denial-of-service attacks and bulk messaging.

Low Storage Consumption: The system does not require a
large amount of storage capacity for any entity.

Low Bandwidth: The system does not require a large
amount of bandwidth usage for any entity.

Low Computation: The system does not require a large
amount of processing power for any entity.

Asynchronous: Messages sent to recipients who are offline
will be delivered when the recipient reconnects, even if the
sender has since disconnected.

Scalable: The amount of resources required to maintain
system availability scales linearly with the number of users.

D. Evaluation

1) Store-and-Forward (baseline): To evaluate the effec-
tiveness and costs of different transport privacy architectures
in Table III, we compare the solutions to a baseline. For
the baseline protocol, we assume a simple store-and-forward
messaging protocol. This method is employed by email and
text messaging, causing minor message delays and storage
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requirements for intermediate servers. Since email headers
contain sender and recipient information, a simple store-and-
forward mechanism does not provide any privacy properties.

2) Peer-to-Peer Solutions: Instead of relying on centralized
servers for message storage and forwarding, peer-to-peer based
schemes try to establish a direct message exchange between
the participants. Since end users frequently change their IP
addresses, these systems often use Distributed Hash Tables
(DHTs) to map usernames to IP addresses without a central
authority. Examples of popular DHT systems are Chord,
Kademlia (used by BitTorrent), and GNUnet [110]–[112]. In
addition to acting as an IP address lookup table, it is possible
to store exchanged messages directly in a DHT. Various query
privacy extensions have been proposed to prevent other users
from learning what data is being requested. They can be used
in advanced DHT overlays allowing anonymous queries and
message exchange [113]–[115].

Global network adversaries are still able to see the traffic
flow between participants during message exchange. Thus,
clients have two options to protect the data flow: fake mes-
sage transmissions, or use anonymization techniques. End-user
clients might use services such as onion routing, which is
evaluated in the next section, to hide their identities.

From the usability and adoption perspective, peer-to-peer
networks require a synchronous environment. DHTs can be
used for contact discovery with easy initialization, but they
introduce message delays and message drops.

In practice, various end-user applications use the BitTorrent
or GNUnet networks for their secure messaging service. For
instance, Tox, Bleep, and other messengers use BitTorrent for
message exchange. The GNUnet Name Service (GNS) offers
privacy-preserving name queries for contact discovery [54].

3) Onion Routing: Onion routing is a method for commu-
nicating through multiple proxy servers that complicates end-
to-end message tracing [116]. In onion routing, senders send
messages wrapped in multiple layers of encryption through
preselected paths—called circuits—of proxy servers. These
servers unwrap layers of encryption until the original message
is exposed, at which point it is relayed to the final destination.
Each node in the path only knows the immediate predecessor
and successor in the path. The routing process adds some la-
tency to messages, but otherwise retains the baseline usability
features. An onion routing protocol, such as the widely used
Tor protocol [117], provides sender anonymity, participant
anonymity, and unlinkability against network attackers with
limited scope.

Global network adversaries are still able to break the
anonymity properties of simple onion routing designs by per-
forming statistical analysis incorporating features such as con-
tent size, transmission directions, counts, and timing, among
others. The success of such an adversary can be limited by in-
dividually eliminating these features. Protection can be added,
for example, by introducing random delays to transmissions.
The longer the allowed delays, the less statistical power is
available to the adversary. Of course, this imposes potentially
long message delays and additional storage requirements for

relays, making it unusable for synchronous instant messaging.
Unfortunately, random delays do not completely defeat

global adversaries. The only way to do so is to make transmis-
sion indistinguishable from no transmission (e.g., by saturating
the bandwidth of all connections). However, in practice, this
is likely infeasible. Additionally, concrete implementations
such as Tor often provide weaker anonymity guarantees than
idealized onion routing schemes. Several prominent attacks
against Tor have been based on implementation defects, lim-
ited resources, weaknesses introduced by performance trade-
offs, and predictability of the content being transmitted [118]–
[121]. Adoption of onion routing is limited by the requirement
to establish a large network of nodes to provide a sufficient
anonymity set and cover traffic.

In the default mode, onion routing systems do not attempt to
provide recipient anonymity. However, Tor can be extended to
achieve this property using an extension called hidden services.
To create a Tor hidden service, the recipient uses traditional
Tor circuits to upload a set of introduction points and a public
key to a public database. The sender later uses a circuit to
acquire this information from the database. The sender chooses
a rendezvous point and sends it along with a nonce to the
recipient through an introduction point. The recipient and
sender both connect to the rendezvous point, which uses the
nonce to establish a communication channel by matching up
the sender and recipient circuits. Without the aforementioned
defenses, this scheme is also vulnerable to global adversaries.

To provide asynchronous communication support, store-
and-forward servers can be incorporated into the onion routing
model. Each user is associated with a Tor hidden service that
remains online. To send a message, the sender constructs a
circuit to the recipient’s server and transmits the message.
Users periodically poll their own servers to determine if
any messages are queued. Ricochet is an example of this
approach [122].

Pond uses this design for its transmission architecture [123]
but adds random delays between connections, all of which
transmit the same amount of data, to weaken statistical analysis
by network adversaries. While some protection against global
network adversaries is provided by the onion routing model,
this protection is strictly weaker than Tor because connections
are made directly from senders to recipient mail servers.
This design requires storage commitments by servers and also
introduces very high latency.

Without additional protections, this scheme is also highly
vulnerable to denial-of-service attacks because connection
delays and fixed transmission sizes artificially limit bandwidth
to very low levels. Pond addresses this by requiring users to
maintain group lists secured by zero-knowledge-group-proof
schemes (ZKGP). This way, recipients can upload contact lists
without revealing their contacts. Simultaneously, senders can
authenticate by providing zero-knowledge proofs that they are
in this list. The BBS signature scheme [124] is currently used
by Pond to achieve this. Additional work is underway to
provide a similar mechanism in more efficient manner by using
one-time delivery tokens [123].
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The ZKGP schemes used by Pond are related to secret
handshake protocols. Secret handshakes enable authentication
between parties that share some attributes, while keeping
identities hidden from others [125].

4) DC-nets: Dining Cryptographer networks (DC-nets) are
anonymity systems that are often compared to onion routing
schemes. Since they are primarily used as a general-purpose
transport privacy mechanism, many varieties have been pro-
posed [126]–[134]. In our brief overview, we focus on recently
introduced schemes that explicitly list secure messaging as an
intended use case.

DC-nets are group protocols that execute in rounds. At the
start of each round, each participant either submits a secret
message or no message. At the end of the round, all partici-
pants receive the xor of all secret messages submitted, without
knowing which message was submitted by which participant.
In this way, DC-nets provide sender anonymity while also
achieving global adversary resilience—no statistical analysis
can reveal the sender of a message. Recipient anonymity can be
achieved by using the protocol to publish an ephemeral public
key. Messages encrypted with this key are then sent and, since
the owner of the matching private key is unknown, the partici-
pant able to decrypt the messages cannot be determined. Since
messages are sent in rounds, DC-nets add message latency
and do not support asynchronous communication; dropped
messages prevent the protocol from advancing. Messages are
easily linked by observing which network nodes participate in
a round. Additionally, DC-nets have limited scalability due to
requiring pairwise communication.

The basic DC-net design has a problem with collisions: if
two parties submit a message in the same round, the result
will be corrupted. A malicious participant can exploit this to
perform an anonymous denial-of-service attack by submitting
garbled messages each round. Worse still, an active network
attacker can also perform this attack by perturbing transmitted
bits. There are several approaches to mitigate this problem.
Anonycaster [131] adds pseudorandomly determined “silent
rounds” where all members know that no message should be
contributed. Receipt of a message during a silent round indi-
cates a denial-of-service attack by an active network attacker.
However, malicious participants can still launch attacks by
sending garbled messages only during non-silent rounds.

Dissent [130], [132], [134] and Verdict [133] take a different
approach by constructing a DC-net system through the use of
a verifiable shuffle and bulk transfer protocol. Shuffle-based
DC-nets can include a blame protocol to pinpoint the entity
that caused a round to fail. Dissent appoints one participant
as a leader to manage round timing, the blame protocol,
and exclusion of disconnected members from rounds, thereby
restoring support for asynchronicity. Verdict uses an alternative
approach where the DC-net protocol is executed by a set
of central servers that clients connect to, providing greater
scalability and maintaining security as long as any one server
is honest.

While DC-nets are primarily a transport privacy mechanism,
they are distinguished from other schemes by their use of

rounds and the fact that every network node is also a par-
ticipant in the conversation. When using DC-nets to transmit
higher-level conversation security protocols, it is important for
designers to consider how these properties affect the overall
security of the scheme (e.g., the use of synchronous rounds
creates a global transcript, and the details of the DC-net key
exchanges may cause a loss of participation repudiation).

5) Broadcast Systems: There is a simple approach to pro-
viding recipient anonymity against all attackers, including
global adversaries: distributing messages to everyone. This ap-
proach provides recipient anonymity, participation anonymity,
and unlinkability against all network attackers. It also provides
a natural way to discover contacts because requests for contact
data can be sent to the correct entity without knowledge of
any addressing information. However, there are some serious
downsides that hinder adoption: broadcasting a message to
everyone in the network requires high bandwidth, there is
no support for asynchronicity, and it has extreme scalability
issues. Additionally, it is easy to attack the availability of
the network through flooding. Bitmessage [135], a broadcast-
based transport system, either requires monetary fees or a
proof of work to send messages in order to limit spam, adding
computation requirements and message delays as represented
by the blockchains row in Table III. It is also possible to
alleviate scalability problems by clustering users into smaller
broadcast groups, at the cost of reduced anonymity set sizes.

6) PIR: Private Information Retrieval (PIR) protocols allow
a user to query a database on a server without enabling the
server to determine what information was retrieved. These
systems, such as the Pynchon Gate [136], can be used to store
databases of message inboxes, as well as databases of contact
information. Recipient anonymity is provided because, while
the server knows the network node that is connecting to it, the
server cannot associate incoming connections with protocol
messages that they retrieve. For the same reason, the protocols
offer participation anonymity and unlinkability. By default,
there is no mechanism for providing sender anonymity. These
systems are naturally asynchronous, but they result in high
latency because inboxes must be polled. The servers also incur
a high storage cost and are vulnerable to flooding attacks.

PIR schemes can also be used to privately retrieve presence
information, which can be useful for augmenting synchronous
protocols lacking this capability. For example, DP5 [137] uses
PIR to privately provide presence data for a secure messaging
protocol; DP5 does not facilitate message transmission itself.

PIR implementations can be divided into computational
schemes, which rely on computational limitations of the server,
information-theoretic schemes, which rely on non-collusion of
servers, and hybrid schemes that combine properties of both.
There is also a class of PIR schemes that make use of secure
coprocessors, which require users to trust that the coprocessor
has not been compromised. PIR implementations differ in their
bandwidth, computation, and initialization costs, as well as
their scalability. PIR is not widely adopted in practice because
one or more of these costs is usually prohibitively high.
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E. Discussion

If messages are secured end to end, leaving only identi-
fiers for anonymous inboxes in the unencrypted header, then
metadata is easily hidden from service operators. Assuming
that each message is sent using new channels, an adversary
is not able to link single messages to conversations. However,
such schemes introduce adoption and usability issues; they
are prone to spam, flooding, and denial-of-service attacks,
or require expensive operations such as zero-knowledge au-
thentication, posing barriers to adoption. Worse still, hiding
metadata from a global adversary in these schemes necessitates
serious usability problems such as long delays.

In contrast, decentralized schemes either exhibit synchronic-
ity issues or have serious scalability problems. Most de-
centralized projects, especially BitTorrent-based approaches,
lack detailed documentation that is required for complete
evaluation. Some tools claiming to hide metadata only do so
in the absence of global network adversaries, which recent
surveillance revelations suggest may exist.

Broadcast-based schemes can achieve the best privacy
properties, but exhibit serious usability issues, such as lost
or delayed messages, in addition to apparently intractable
scalability issues. Even if anonymous transmission schemes
are adopted, they require a large user base to provide a high
degree of anonymity, potentially discouraging early adopters.
Finally, care must be taken when selecting a conversation
security scheme to avoid leaking cryptographic material or
identifiers that might lead to deanonymization.

VII. CONCLUDING REMARKS

The vast majority of the world’s electronic communication
still runs over legacy protocols such as SMTP, SMS/GSM,
and centralized messengers, none of which were designed with
end-to-end security in mind. We encourage the research com-
munity to view the high-profile NSA revelations in the United
States as a golden opportunity to encourage the adoption of
secure systems in their place. As the old adage goes: “never
let a crisis go to waste”.

Unfortunately, while we have seen considerable progress in
practical tools over the past two years, there is little evidence
suggesting that academic research on secure messaging has
dramatically increased. This is unfortunate for two reasons:
First, many interesting problems of practical importance re-
main unresolved. In particular, apparent practical deployment
constraints, including limitations for asynchronous commu-
nication, multiple independent devices, and zero user effort,
are not fully appreciated in most published research papers.
Second, many theoretically solved problems are not considered
in practice, whether because developers are unaware of their
existence, or because they cannot immediately translate the
cryptographic publications into working systems.

Our effort to systematize existing knowledge on secure mes-
saging suggests three major problems must be resolved: trust
establishment, conversation security, and transport privacy.
The schemes can largely be chosen independently, yielding a
vast design space for secure messaging systems. Yet we also

caution against a proliferation of a-la-carte systems for specific
niches. The main purpose of communication networks is to
interact with others and there is considerable value in having a
small number of popular protocols that connect a large number
of users. Currently, many people fall back to email despite its
insecurity.

We also note that, disappointingly, most of the exciting
progress being made right now is by protocols that are either
completely proprietary (e.g., Apple iMessage) or are open-
source but lack a rigorously specified protocol to facilitate
interoperable implementations (e.g., TextSecure). An open
standard for secure messaging, combining the most promising
features identified by our survey, would be of immense value.

Inevitably, trade-offs have to be made. We conclude that
secure approaches in trust establishment perform poorly in
usability and adoption, while more usable approaches lack
strong security guarantees. We consider the most promising
approach for trust establishment to be a combination of central
key directories, transparency logs to ensure global consistency
of the key directory’s entries, and a variety of options for
security-conscious users to verify keys out of band to put
pressure on the key directory to remain honest.

Our observations on the conversation security layer sug-
gest that asynchronous environments and limited multi-device
support are not fully resolved. For two-party conversation
security, per-message ratcheting with resilience for out-of-
order messages combined with deniable key exchange pro-
tocols, as implemented in Axolotl, can be employed today
at the cost of additional implementation complexity with
no significant impact on user experience. The situation is
less clear for secure group conversations; while no approach
is a clear answer, the TextSecure group protocol provides
pragmatic security considerations while remaining practical. It
may be possible to achieve other desirable properties, such as
participant consistency and anonymity preservation, by incor-
porating techniques from the other systems. It remains unclear
exactly what consistency properties are required to match
users’ expectations and usability research is sorely needed to
guide future protocol design. Finally, transport privacy remains
a challenging problem. No suggested approaches managed
to provide strong transport privacy properties against global
adversaries while also remaining practical.

We consider this systematization to be a useful assessment
of published research and deployment experience. We have
uncovered many open challenges and interesting problems to
be solved by the research community. The active development
of secure messaging tools offers a huge potential to provide
real-world benefits to millions; we hope this paper can serve
as an inspiration and a basis for this important goal.
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Chapter 2 Background and Systematization

2.2 Implications and Future Directions

This chapter provides a systematic evaluation of secure messaging protocols and tools, identifying
gaps in security, usability, and adoption. Here, the results are critically evaluated in terms of their
implications for the broader adoption of secure messaging tools.

The open research was systematized into three problem areas: conversation security (Section V,
Table II), trust establishment (Section IV, Table I), and transport privacy (Section VI, Table III).
The study concludes that conversation security, where once trust is established, is on a good path
to being solved in practice even when implementing advanced security features such as perfect
forward secrecy. Not only their security features have been proven, but popular messaging systems,
namely WhatsApp and iMessage have already implemented the Signal protocol consisting
of the double ratchet, pre-keys and 3DH (and their improved successor versions [27]) as their
default [32].
The study emphasizes that the other two areas, trust establishment and transport privacy,

still remain a big challenge in balancing trade-offs between privacy/security and usability. This
concludes that no single approach perfectly balances both.

In current widespread systems, trust is predominantly established through authority-based au-
thentication and the leverage of trust on first use (TOFU) schemes, which contradicts the end-to-end
security assumptions in case the authorities are involved in the surveillance. The study concludes
with two potential solutions for future work, which have been addressed by the community and
this thesis.

a) Transparency logs, as with key transparency, might provide more provider accountability
without interaction from most users similar to [33–35]. Notably, the work by Fahl, Dechand,
et al., co-authored by the author of this thesis [6], demonstrates a system for Android
applications featuring a transparency log, which could be adapted for secure messaging
platforms by replacing apps with user public keys. Later in 2023, Meta announced the
deployment of key transparency for WhatsApp [36].

b) additional trust establishment methods for more experienced users as with improved key
fingerprint verification schemes and the usage of QR-codes); This can be accompanied by
warning messages whenever contacts’ keys have changed, which motivated our research
in Chapter 3. WhatsApp and iMessage both offer the extended trust establishment as
hidden in the expert settings so that advanced users can go beyond authority-based trust to
verify their counterparts manually.

This systematization identifies and discusses additional usability challenges, including the limited
understanding and mental models of non-technical users when engaging with end-to-end security,
which guided the research presented in Chapter 4. It also highlights issues related to key storage
and management, thereby informing the investigations discussed in Chapter 5.
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CHAPTER 3

Empirical Study of Textual Key Fingerprints

Building on the systematization and identified open challenges in Chapter 2, trust establishment
remains a big challenge in secure messaging. Traditionally, tools relying on end-to-end security,
such as SSH and OpenPGP, relied on a manual key-fingerprint comparison which also became
an extended feature in popular messaging systems. This chapter builds on these findings by
empirically evaluating alternative textual fingerprint representations to address these usability
and security gaps.
This study focuses on the usability and security of manual key-fingerprint comparison, a foun-

dational authentication component in secure messaging and other cryptographic systems. With
the advent of end-to-end encryption in mainstream applications like WhatsApp, the question
of improving fingerprint representations for better usability and security has gained renewed
attention.

This work presents the first large-scale empirical evaluation of different fingerprint representation
formats, examining howdesign choices impact both security and user experience. For this, the study
evaluates six textual key-fingerprint representation schemes, including hexadecimal, numeric, and
language-based options such asword lists and sentence-based encodings. The online study involved
1047 participants, where participants experienced our designed simulated attacks and consisted of
two parts: (1) an experiment where it was measured how fast and accurate participants perform
for different schemes under a realistic attack scenario, and (2) a survey about their perception and
sentiment.

The research demonstrates that the widely used hexadecimal fingerprint representation, which is
the current standard in tools like SSH and OpenPGP, performs significantly worse than alternative
approaches in terms of both usability and attack detection. Specifically, over 10% of attacks went
undetected with hexadecimal representation.
The study introduces and validates novel fingerprint representation approaches, particularly

showing that sentence-based encodings achieve the highest attack detection rate (97.97%) while
maintaining good usability scores. The research also found that numeric representations outper-
form traditional alphanumeric and especially hexadecimal approaches.
The research offers actionable recommendations for improving fingerprint representations in

secure messaging applications, demonstrating that significant usability and security improvements
are possible through better representation choices without requiring new hardware or complex
software changes.
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3.1 Peer-Reviewed Publication 2 | An Empirical Study of Textual Key
Fingerprints

Authors’ Contributions

The work presented in this chapter is based on the publication at the 25th USENIX Security
Symposium (USENIX Security 16, TX, Texas) [1] and is included in its entirety in original
form in this section. The authors’ contributions that are relevant to the contents of this
chapter are as follows:

• Sergej Dechand I served as the main author and was primarily responsible for the
overall conceptualization, design, and execution of the study. This included designing
the research methodology, implementing the fingerprint representations, building
the evaluation test bench, and conducting the comprehensive quantitative study with
1,047 participants. I oversaw all critical aspects of the project, ensuring its successful
completion and scientific rigor.

• Dominik Schürmann contributed to implementation and verification efforts, espe-
cially for the performed attacks, but also integrating fingerprint representations into
OpenKeychain. Dominik’s contributions provided helpful technical context and com-
plemented the study’s practical applications.

• Yasemin Acar provided expert support on statistical framework and methodology
and analysis of the quantitative results ensuring their statistical validity. Additionally,
she offered valuable feedback throughout the project that enhanced the overall quality
of the research.

• Caroline Busse, Sascha Fahl and Matthew Smith provided valuable feedback
throughout all project phases, actively contributing to discussions regarding the re-
search direction. Their input included offering structural and conceptual advice to
enhance the quality, clarity, and presentation of the publication.
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Abstract

Many security protocols still rely on manual fingerprint
comparisons for authentication. The most well-known
and widely used key-fingerprint representation are hexa-
decimal strings as used in various security tools. With
the introduction of end-to-end security in WhatsApp and
other messengers, the discussion on how to best repre-
sent key-fingerprints for users is receiving a lot of inter-
est.

We conduct a 1047 participant study evaluating six
different textual key-fingerprint representations with re-
gards to their performance and usability. We focus on
textual fingerprints as the most robust and deployable
representation.

Our findings show that the currently used hexadeci-
mal representation is more prone to partial preimage at-
tacks in comparison to others. Based on our findings,
we make the recommendation that two alternative repre-
sentations should be adopted. The highest attack detec-
tion rate and best usability perception is achieved with a
sentence-based encoding. If language-based representa-
tions are not acceptable, a simple numeric approach still
outperforms the hexadecimal representation.

1 Introduction

Public key cryptography is a common method for au-
thentication in secure end-to-end communication and
has been a part of the Internet throughout the last two
decades [7, 11]. While security breaches have shown
that systems based on centralized trusted third parties
such as Certificate Authorities and Identity Based Private
Key Generators are prone to targeted attacks [42], decen-
tralized approaches such as Web of Trust and Namecoin
struggle with beeing adopted in practice due to usability
issues [7, 13, 30]. Certificate transparency systems, such
as CONIKS and others [24, 39, 27], aim to solve a subset
of these issues by providing an auditable directory of all

user keys. Still, manual key verification, i. e., the link be-
tween public keys and the entities, such as hostnames or
people, remains a challenging subject, especially in de-
centralized systems without pre-defined authorities, such
as SSH, OpenPGP, and secure messaging [12, 41].

Many traditional authentication systems still rely on
manual key-fingerprint comparisons [17]. Here, key-
fingerprints are generated by encoding the (hashed) pub-
lic key material into a human readable format, usually
encoded in hexadecimal representation. A variety of al-
ternatives such as QR Codes, visual fingerprints, Near
Field Communication (NFC), and Short Authentication
Strings (SAS) have been proposed. Most of these sys-
tems offer specific benefits, e. g., QR codes and NFC do
not require users to compare strings, but they also come
with specific disadvantages, e. g., they require hardware
and software support on all devices. While advances are
being made in these areas, the text-based representation
is still the dominant form in most applications.

However, due to the recent boom of secure messag-
ing tools, the debate of how to best represent and eval-
uate textual fingerprints has opened up again and there
are many very active discussions among security ex-
perts [28, 33]. In April 2016, WhatsApp serving over
one billion users enabled end-to-end encryption as de-
fault by implementing the Signal protocol. Key verifi-
cation is optional and can be done by using QR codes
or comparing numeric representations, in their case 60-
digit numbers [43]. However, it is not clear whether their
solution is more usable than traditional representations.

In this paper, we present an evaluation of different tex-
tual key-fingerprint representation schemes to aid in the
secure messenger discussion. The requirements posed to
the developers are as follows:

• The fingerprint representation scheme should pro-
vide offline support and work asynchronously. One
reason for this is that fingerprints are often printed
on business cards or exchanged by third parties.
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• The fingerprint should be transferable via audio
channels, e. g., it should be possible to compare fin-
gerprint over the phone.

• The representation scheme should be as technically
inclusive as possible. No special hardware or soft-
ware should be required to verify the fingerprints:
both require a concerted and coordinated effort be-
tween many actors to get enough coverage for a
comparison mechanism to be worthwhile for users
to adopt.

• The representation should be as inclusive as possi-
ble, i. e., excluding as few people with sensory im-
pairments (visual, color, audio, etc.) as possible.

The above requirements exclude many proposed rep-
resentation schemes and offer an explanation why they
have not seen any adoption outside of academia. For this
reason, we focus exclusively on textual fingerprint rep-
resentations in our study. Textual key-fingerprints do not
require hardware support and work in synchronous and
asynchronous scenarios, i. e., they can be compared via
voice or printed on business cards. Depending on the
scheme, they even could be recalled from memory and
exchanged over a voice channel.

This paper presents our study testing the usability of
various textual key-fingerprint representation schemes.
Our study consists of two parts: (1) an experiment where
we measured how fast and accurate participants perform
for different schemes, and (2) a survey about their per-
ception and sentiment. These also contained a direct
comparison between the representations.

Our findings suggest that the most adopted alphanu-
meric approaches such as the Hexadecimal and Base32
scheme perform worse than other alternatives: under a
realistic threat model, more than 10% of the users failed
to detect attacks targeting Hexadecimal representations,
whereas our best system had failure rates of less than 3%.
While the best system for accuracy is not the fastest, it
is the system which received the highest usability rating
and is preferred by users.

In the following sections, we discuss related work fol-
lowed by an analysis of current implementations deploy-
ing in-persona key-fingerprint representation techniques
and discuss our evaluated representation schemes. Then,
we describe our experiment evaluating text-based key-
fingerprint verification techniques with regards to their
attack-detection accuracy and speed. Our experiment
was conducted as an online study with 1047 participants
recruited via the Amazon Mechanical Turk (MTurk) plat-
form. We consider the scenario outlined above, where
a user compares two key-fingerprint strings encoded by
the different representation schemes. In addition to the
implicit measurements of accuracy and speed, we also

alice@localhost :~$ ssh alice@example.com

The authenticity of host ’example.com (93.184.216.34) ’

can ’t be established.

RSA key fingerprint is

6f:85:66: da:e3:7a:02:c6:5e:62:3f:36:b7:d9:b4:2c.

Are you sure you want to continue connecting (yes/no)?

(a) OpenSSH: Lowercase Hexadecimal with Colons

alice@localhost :~$ gpg --fingerprint Bob

pub 2048R/00012282 2015 -01 -01 [expires: 2020 -01 -01]

Key fingerprint =

73EE 2314 F65F A92E C239 0D3A 718C 0701 0001 2282

uid Bob <bob@example.com >

(b) GnuPG: Uppercase Hexadecimal with Spaces

Figure 1: Alphanumeric Fingerprints Used in Practice

evaluate the self-reported user perception to get feed-
back about which systems are preferred by end users.
Finally, we present our results, discuss their implications
and takeaways, and conclude our work.

2 Related Work

Various key-fingerprint representations have been pro-
posed in academia and industry. Various cryptographic
protocol implementations still rely on manual fingerprint
comparisons, while the hexadecimal representation is
used in most of them. However, previous work suggests
that fingerprint verifications are seldom done in prac-
tice [17, 37].

2.1 Key-Fingerprint Representations
Previous work has shown that users struggle with com-
paring long and seemingly “meaningless” fingerprints
and it is suspected that they even might perform poorly
in this task [19]. While most previous work has focused
on the family of visual fingerprints [35, 32, 19, 10], to
our knowledge, none of those focused on the differences
between various different textual fingerprint representa-
tions.

Hsiao et al. have conducted a study with some tex-
tual and visual representation methods for hash verifi-
cation [19]. They compared Base32 and simple word
list representations with various algorithms for visual
fingerprints and hash representation with Asian charac-
ter sets (a subset of Chinese, Japanese Hiragana, and
Korean Hangul, respectively). A within-subjects online
study with 436 participants revealed that visual finger-
prints score very well in both accuracy and speed, to-
gether with the Base32 text representation. Hsiao et al.
conclude that depending on the available computation
power and display size, either Base32 or one of the vi-
sual fingerprinting schemes should be used. They explic-
itly did not evaluate hexadecimal representation or digits

2
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“because that scheme is similar to Base32 and known to
be error-prone” [19]. However, our work shows that nu-
meric representations actually perform significantly bet-
ter than Base32 and is less error prone. In addition, our
results suggest that language-based schemes, e. g., gen-
erated sentences achieve excellent results comparable to
visual schemes. At the same time, textual approaches are
more flexible (can be read out loud) and do not exclude
people with sensory impairments.

Another study by Olembo et al. also focused mainly
on the topic of visual fingerprints [32]. They devel-
oped a new family of visual fingerprints and compared
them against a Base32 representation. The Base32
strings were twelve characters long and displayed with-
out chunking. The participants performed better with
the visual fingerprints than with Base32, regarding both
accuracy and speed. Olembo et al. conclude that the
Base32 representation is far away from optimal when
it comes to manual key-fingerprint verification. We
test this claim by comparing Base32 representation with
other textual key-fingerprint representation and eventu-
ally prove it wrong.

Regarding chunking, Miller et al. have published The
magical number seven and succeeding work that shows
that most people can recall 7±2 items from their mem-
ory span [29]. It has been shown that although there
are slight differences between numbers, letters and words
(numbers perform slightly better than letters, and letters
slightly better than words), they perform similar in stud-
ies. More recent studies have shown that human working
memory easily remembers up to 6 digits, 5.6 letters and
5.2 words [1, 6, 8]. Adjusting chunk sizes to these num-
bers can help users when comparing hashes.

While all of the above studies offer interesting insights
into different (mainly visual) fingerprint representations,
to the best of our knowledge there is not work focusing
on which textual representation performs the best. How-
ever, this knowledge would be extremely important to
help in the current debate in the secure messaging com-
munity. The representations currently being put forward
and implemented are far from optimal and the results of
our study can help improve the accuracy and usability of
fingerprint representations. Unlike the above studies we
conduct our study with a more realistic attacker strenth,
as presented in subsection 4.1).

2.2 Passwords and Passphrases

A passphrase is basically a password consisting of a se-
ries of words rather than characters. In academic lit-
erature, passphrases are often considered as a poten-
tially more memorable and more secure alternative to
passwords and are often recommended by system ad-
ministrators [23, 40]. In contrast to most passphrase-

Scheme Example

Hexadecimal 18e2 55fd b51b c808

601b ee5c 2d69

Base32 ddrf l7nv dpea

qya3 5zoc 22i

Numeric 2016 507 6420 1070 394

1136 2973 991 70

PGP

locale voyager waffle disable
Belfast performance slingshot Ohio
spearhead coherence hamlet liberty
reform hamburger

Peerio bates talking duke rummy slurps
iced farce pound day

Sentences Your line works for this kind power cruelly.
That lazy snow agrees upon our tall offer.

Table 1: Examples for different textual key-fingerprint repre-
sentations for the same hash value

based systems, key-fingerprints cannot be chosen by
the end-user and thus are more related to the system-
assigned passphrases field: Bonneau et al. have shown
that users are able to memorize 56-bit passwords [4].
miniLock1 and its commercial successor Peerio2 use
system-assigned passphrases to generate cryptographic
key pairs easing key backup and synchronization among
multiple devices.

Contrary to widespread expectations, Shay et al. were
not able to find any significant recall differences between
system-assigned passphrases and system-assigned pass-
words [40]. However, they reported reduced usability
due to longer submission times due to typing.

Similar to passphrases, the usage of language-based
key-fingerprint representations is claimed to provide bet-
ter memorability than just an arbitrary series of charac-
ter strings despite the lack of empirical evidence. In our
study, we measure the performance of the different ap-
proaches and also collect perception and feedback from
end users.

3 Background

In the past years, various textual key-fingerprint repre-
sentations have been proposed. In this section, we ana-
lyze currently practised in-persona key verification tech-
niques in well-known applications. For comparison, Ta-
ble 1 lists the approaches we used in our evaluation gen-
erated from the same hash value.

Only applications requiring manual key-fingerprint

1https://minilock.io
2https://peerio.com
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verification are considered. In mechanisms like S/MIME
or X.509, fingerprints play only a secondary role because
certificates are verified via certificate chains.

In the following, SHA-1(x)16 defines the execution of
16 rounds of nested SHA-1 on x, a truncation to the left-
most 16 bits is defined by x[0, . . . ,16], and pk is used as
an abbreviation for the values of a public key (differs for
RSA, DSA, or ECC).

3.1 Numeric
Numeric representation describes the notation of data us-
ing only numeric digits (0-9). The primary advantage of
a such system is that Arabic numerals are universally un-
derstood, and in addition, numeric key-fingerprints show
a similarity to phone numbers. The encoding is achieved
by splitting a binary hash into chunks of equal length
and expressing each chunk as a decimal number, e. g., by
simply switching the representation base from 2 to 10.

The messaging and data exchange application SafeS-
linger3 implements this as a fallback scheme for unsup-
ported languages [14]. A 24 bit SAS in SafeSlinger (cf.
Figure 2a) can be expressed by three decimal encoded
8-bit numbers.

In the messaging platform WhatsApp, a fingerprint
is calculated by SHA-256(pk)5200[0, . . . ,240]. This fin-
gerprint is split up into six chunks, where each chunk
is represented by a five digits long number modulo
100,000 [43]. Concatenating this fingerprint with the fin-
gerprint of the communication partner results in the dis-
played representation, e. g.,

77658 87428 72099 51303

34908 23247 95615 27317

09725 59699 62543 54320

3.2 Alphanumeric
Alphanumeric approaches use numbers and letters to
represent data. Depending on the representation type
and its parameters, the letters can be presented either
in lower-case or in upper-case. The string can be chun-
ked into groups of characters, which are usually of equal
length. Chunking does not alter the information con-
tained, while changing lower-case letters to upper-case
letters (and vice versa) may does, depending on the cod-
ing scheme. Commonly used representations are Hex-
adecimal, Base32, and Base64.

3.2.1 Hexadecimal

Hexadecimal digits use the letters A-F in addition to nu-
merical digits and are a common representation for key-
fingerprints and primarily used in SSH and OpenPGP.

3https://www.cylab.cmu.edu/safeslinger

Note that the case of the letters do not make any differ-
ence. Regarding chunking, both spaces (cf. Figure 1b)
and colons (cf. Figure 1a) are commonly used as separa-
tion characters.

Key fingerprints in OpenPGP version 4 are defined in
RFC 4880 [7] by

Hex(SHA-1(0x99‖ len‖4‖ creation time‖algo‖pk))

where len is the length of the packet, creation time is the
time the key has been created and algo is unique iden-
tifier for the public-key algorithm. While the inclusion
of creation time makes sure that even two keys with the
same key material have different fingerprints, it allows an
attacker to iterate through possible past times to generate
similar fingerprints skipping the key generation step [5].
The actual representation of OpenPGP fingerprints is not
defined in RFC 4880, but most implementations chose to
encode them in hexadecimal form, e. g., GnuPG displays
them uppercase in 16 bit blocks separated by whitespaces
with an additional whitespace after 5 blocks (cf. Fig-
ure 1b), e. g.,

73EE 2314 F65F A92E C239 0D3A 718C 0701 0001 2282

Other implementations, such as OpenKeychain, deviate
only slightly, for example by displaying them lowercase
or with colored letters to ease comparison but still pro-
vide compatibility with GnuPG.

SSH fingerprint strings, as defined in RFC 4716 and
RFC 4253 [15, 44], are calculated by

Hex(MD5(Base64(algo‖pk)))

where algo is a string indicating the algorithm, for ex-
ample “ssh-rsa”. Fingerprints are displayed as “hexadec-
imal with lowercase letters and separated by colons” [15]
(cf. Figure 1a), e. g.,

6f:85:66:da:e3:7a:02:c6:5e:62:3f:36:b7:d9:b4:2c

3.2.2 Base32

Base32 uses the Latin alphabet (A-Z) without the let-
ters O and I (due to the confusion with numbers 1 and
0). There is no difference between lower-case letters and
upper-case letters. In addition, a special padding char-
acter “=” is used, since the conversion algorithm pro-
cesses blocks of 40 bit (5 Byte) in size. The source string
is padded with zeroes to achieve a compatible length
and sections containing only zeroes are represented by
“=” [20, 21].

The ZRTP key exchange scheme for real-time ap-
plications is based on a Diffie-Hellman key exchange
extended by a preceding hash commitment that allows
for very short fingerprints, called Short Authentication

4
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Strings (SAS) without compromising security [45]. The
Base32 encoding used in ZRTP uses a special alphabet
to produce strings that are easier to read out loud. VoIP
applications such as CSipSimple4 use this Base32 op-
tion, usually named “B32” inside the protocol. Here, the
leftmost 20 bits of the 32 bit SAS value are encoded as
Base32. , e. g.,

5 e m g

3.2.3 Base64

There exist a number of specifications for encoding data
into the Base64 format, which uses the Latin alphabet in
both lower-case and upper-case (a-z, A-Z) as well as the
digits 0-9 and the characters “+”, “/”, and “=” to repre-
sent text data. Again, the character “=” is used to encode
padded input [20]. Starting with OpenSSH 6.8 a new
fingerprint format has been introduced that uses SHA-
256 instead of MD5 and Base64 instead of hexadecimal
representation. In addition the utilized hash algorithm is
prepended, e. g.,

SHA256:mVPwvezndPv/ARoIadVY98vAC0g+P/5633yTC4d/wXE

3.3 Unrelated Words
Instead of (alpha)numeric representation, fingerprints
can be mapped to lists of words. Here, the binary rep-
resentation is split into chunks, where each possible
value of a chunk is assigned to a word in a dictionary.
To increase readability, such a dictionary usually con-
tains no pronouns, articles, prepositions and such. Word
lists, such as the PGP Word List [22] and the Basic En-
glish word list compiled by K.C. Ogden [31], are pri-
marily used for verification mechanisms based on SAS.
Key-Fingerprints represented by words have been imple-
mented for VoIP applications based on the ZRTP key
exchange and other real-time communication protocols.
Examples are Signal5, and the messaging and contact
sharing application SafeSlinger [14] (cf. Figure 2). Be-
sides their use in SAS based mechanisms, miniLock and
Peerio utilize unrelated words for passphrase generation.

An example for a modern VoIP implementation that
utilizes ZRTP for key exchange over Secure Real-Time
Transport Protocol (SRTP) is Signal’s private calling fea-
ture, previously distributed as Redphone. The devel-
opers chose to implement only a specific subset of the
ZRTP specification [45], namely Diffie-Hellmann key
exchange via P-256 elliptic curves using “B256” SASs,
i. e., Base256 encoding that maps to the leftmost 16 bits
of the 32 bit SAS values to the previously introduced
PGP Word List [22], e. g.,

4https://github.com/r3gis3r/CSipSimple
5https://github.com/WhisperSystems/Signal-Android

(a) SafeSlinger: List of words (b) OpenKeychain: Sentences

Figure 2: Language-based fingerprint representations

quota holiness

The messaging application SafeSlinger is based on
a Group Diffie-Hellman protocol [14] implementing a
key verification with SASs for up to 10 participants. In
SafeSlinger the leftmost 24 bits of a SHA-1 hash is used
to select 3 words from the PGP Word List, e. g.,

suspense unify talon.

Besides this, two other 3 word triples are selected to force
users to make a selection before proceeding (cf. Fig-
ure 2a).

In contrast to Signal and SafeSlinger, Peerio (based
on miniLock) does not use any SAS based verification
mechanism. It uses pictures for verification and word
lists for code generation. The word list is generated from
most occurring words in movie subtitles. Besides key
verification, these are also used to generate so called
passphrases, which are used to derive their ECC private
keys.

3.4 Generated Sentences
The words from the previous dictionaries can also be
used to generate syntactically correct sentences as pro-
posed by previous research: Goodrich et al. proposed
to use a “syntactically-correct English-like sentence”
representation for exchanging hash-derived fingerprints
over audio by using text-to-speech (TTS) [16]. Michael
Rogers et al. implemented a simple deterministic sen-
tence generator [16, 38]6 Though the sentences from
both approaches rarely make sense in a semantic fash-
ion, they are syntactically correct and are claimed to pro-

6https://github.com/akwizgran/basic-english
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vide good memorability. In our study, we used Michael
Roger’s approach for our sentence generator.

We implemented this method for PGP fingerprints
in OpenKeychain 3.67 (cf. Figure 2b). To the best of
the authors’ knowledge, to this date, it is the first inte-
gration of key verification via sentences although other
projects are considering to change their fingerprint en-
coding scheme [38, 36].

4 Methodology

In order to evaluate the effect and perception of the dif-
ferent textual key-fingerprint representations, we con-
ducted an online study on Amazon’s Mechanical Turk
(MTurk) crowdsourcing service. Our Universities do not
have an IRB, but the study conformed to the strict data
protection law of Germany and informed consent was
gathered from all participants. Our online study is di-
vided into two parts: The experiment for performance
evaluation followed by a survey extracting self-reported
data from users. The survey ended with demographic
questions.

4.1 Security Assumptions
In this section, we define the underlying security assump-
tions of our study, such as fingerprint method, length, and
strength against an adversary. The fingerprint method
and parameters are utilized consistently for all experi-
ments in our study to offer comparability between all
possible fingerprint representations. This attack model is
important for the usability since an unrealistically strong
or weak attacker could skew the results. Obviously, if the
fingerprint strength is not kept equal between the systems
this would also skew the results.

4.1.1 Fingerprint Method

To decide upon a fingerprint method for humanly verifi-
able fingerprints in our study, we first have to differen-
tiate between human and machine verification to illus-
trate their differences. While a full fingerprint compar-
ison can be implemented for machine verification, hu-
mans can fall for fingerprints that match only partially.
Additionally, machine comparison can work with long
values, whereas for human verification the length must
be kept short enough to fit on business cards and to keep
the time needed for comparison low.

For machine comparison, full SHA-256 hashes should
be calculated binding a unique ID to the public key mate-
rial. The probability of finding a preimage or collision at-
tack is obviously negligible, but the fingerprints can still
be computed fast in an ad-hoc manner when needed.

7https://www.openkeychain.org

It is important to note that collision resistance is not re-
quired for our scenarios. It is required for infrastructure-
based trust models such as X.509, where certificates are
verified by machines and trust is established by authority.
In these schemes, a signature generated by a trusted au-
thority can be requested for a certificate by proving the
control over a domain, but then reused maliciously for
a different certificate/domain. This is already possible
with a collision attack, without targeting a full preimage.
In contrast, the direct human-based trust schemes con-
sidered in this study only need to be protected against
preimage attacks, because no inherently trusted author-
ity is involved here.

While machine comparison needs to be done fast, e. g.,
on key import, manual fingerprint verification by humans
is done asynchronously in person or via voice. Thus, we
can use a key derivation function to provide a proof-of-
work, effectively trading calculation time for a shorter
fingerprint length. Secure messaging applications such
as Signal or OpenPGP-based ones could pre-calculate
the fingerprints after import and cache these before dis-
playing them for verification later.

Thus, modern memory-hard key derivation functions
such as scrypt [34] or Argon2 [3] can be utilized to
shorten the fingerprint length. These key derivation func-
tions are parametrized to allow for different work factors.
Suitable parameters need to be chosen by implementa-
tions based on their targeted devices and protocol.

As discussed in Section 3.2.1, while the generation of
new fingerprints consists of the creation of a new key pair
and the key derivation step, an attacker can potentially
skip the key creation. Thus, in the following we only
consider the key derivation performance as the limiting
factor for brute force attacks.

When utilizing a properly parametrized key derivation
function for bit stretching, the security of a 112 bit long
fingerprint can be increased to require a brute force at-
tack comparable to a classical 2128 brute force attacker.
Consequently, a fingerprint length of 112 bit is assumed
throughout our study.

4.1.2 Attacker Strength for Partial Preimages

In our user study, we assume an average attacker try-
ing to impersonate an existing ID using our fingerprint
method. Thus, an attacker would need to find a 112 bit
preimage for this existing fingerprint using a brute force
search executing the deployed key derivation function in
each step. Due to the work factor, we consider this to be
infeasible and instead concentrate on partial preimages.
For comparability and to narrow the scope of our study,
an attacker is assumed that can control up to 80 bits of
the full 112 bit fingerprint.

Attackers might aim to find partial preimages where
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the uncontrolled bits occur at positions that are more eas-
ily missed by inattentive users. First, the bits at the be-
ginning and the end should be fixed as users often begin
their comparison with these bits. Thus, we assume that,
for any representation method, the first 24 and last 24
bits are controlled by the attacker and thus the same as in
the existing fingerprint. Based on the feedback from our
pre-study participants and reports from related work, this
can be considered best-practice [17, 37]. Second, of the
remaining 64 bits in the middle of our 112 bit fingerprint,
we assume that 32 bits are controlled by the attacker in
addition to the first 24 and last 24 bits. In total, we as-
sume that 80 bits are controlled by the attacker, i. e., are
the same as in the existing fingerprint, and 32 bit are un-
controlled.

The probability of finding such a partial preimage for
a fingerprint when executing 249 brute force steps is cal-
culated approximately by

1−

(
2112 −∑32

k=1
(64

k

)
2112

)249

≈ 0.66.

The inner parentheses of this equation define the prob-
ability that no partial preimage exists for one specific
bit permutation. Instead of using

(64
32

)
, a sum over 32

variations has been inserted to include permutations with
more than the uncontrolled 32 bit that are also valid par-
tial preimages. Finally, the probability to find a par-
tial preimage is defined by the inverse of the exponen-
tiation. Assuming the scrypt key derivation function
parametrized with (N,r, p) = (220,8,1), Percival calcu-
lates the computational costs of a brute force attack
against 238 (≈ 268) hashed passwords with $610k and
253 (≈ 958) with $16B [34]. These costs can be consid-
ered a lower and upper bound for our attacker, which we
assume to have average capabilities and resources. While
238 has a probability of finding a partial preimage of only
0.05%, with 242 the probability reaches nearly 1%, and
with 249, as in our example, a partial preimage is found
with over 50%.

In our study, we simulate attacks by inverting the bits
from the existing fingerprint which are uncontrolled by
the attacker, while the controlled bits are unchanged.
For our theoretical approximation, we assume that the
first 24 and last 24 bits should be controlled as well as
32 bits from the middle. In our study, we simulate an
even more careful selection of appropriate fingerprints
from the ones that an attacker would brute force. A gen-
eral criteria here is to minimize the influence of uncon-
trolled bits on the entire fingerprint: For numeric and al-
phanumeric representations all bits affecting a character
or digit are inverted together. For unrelated words, all
bits affecting a word are changed. Sentences are never
changed in a way that would alter the sentence structure.

Figure 3: A screenshot of the actual task a user had to per-
form in the experiment. A user rates whether the security codes
match, in this case with the Peerio word list approach, by click-
ing on the corresponding buttons shown on the phone.

4.2 Pre-Study

To get additional feedback from participants and eval-
uate our study design for flaws and misunderstandings,
we conducted two small pre-studies: A lab study with 15
participants and an MTurk experiment with 200 partic-
ipants, all required to perform 10 comparisons for each
representation scheme (totally 60 comparisons in a ran-
domized order). In our lab-study, we mainly focused
on qualitative feedback, whereas the main goal of the
MTurk pre-study was to find flaws in the presentation
and task descriptions, as well as to check whether our
proposed methodology is received as expected.

The biggest problem we found regarding the study de-
sign was that participants were uncertain if they should
check for spelling mistakes in the words and sentence-
based representation or if the all attacks would change
entire words. To clarify this, a speech bubble was in-
cluded in the task description that the participants do not
have to look for spelling mistakes for language-based ap-
proaches.

We tested different rates of attack during the pre-study.
The results showed that participants who were exposed
to frequently occurring attacks were more aware and had
a much higher attack detection rate. For our main study,
we reduced the number of attacks to 40 comparisons with
4 attacks to have a good balance between true positives
and false negatives. We received feedback that attacks
on anchor parts of the strings, i. e., in the beginning,
end, and at line breaks could be easily detected. Many
users had problems with distinguishing the hexadecimal
from the Base32 representation as well as distinguish-
ing different word list approaches (Peerio vs. OpenPGP
word list). Thus, we opted for a mixed factorial study
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design where users test only one scheme of each type.
We grouped the hexadecimal and Base32 scheme for the
alphanumeric type and the PGP and Peerio for the word-
list type together. These two groups were tested between-
subjects in a split-plot design, i. e., the participants test
either hexadecimal or Base32 for the alphanumeric type.
See Table 2 for a graphical representation of our condi-
tion assignment design.

4.3 Experiment Design
The main part of our online study is the experiment
part where users perform actual fingerprint comparisons.
Here, we conducted two separate experiments with a dis-
tinct set of participants: (1) our main experiment test-
ing different textual high-level representation schemes
against each other and (2) a secondary experiment testing
different chunk sizes for the hexadecimal representation.
We opted for two distinct experiments due to the expo-
nential growth of experiment conditions, as described in
Section 4.3.1.

Before letting the participants start our experiment, we
explained the scenario:

“With this HIT, we are conducting an aca-
demic usability study followed by a short sur-
vey about different types of security codes
used in the IT world. Security codes are of-
ten used in encrypted communications to iden-
tify the participants in a communication. If the
security codes match, you are communicating
securely. If they don’t match, an eavesdropper
may be intercepting your communication”.

On MTurk, the term Human Intelligence Task, or HIT
stands for a self-contained task that a worker can work
on, submit answers, and get a reward for completing.
Since our participants might not be familiar with the key-
fingerprint representation term, we replaced it with se-
curity codes for the sake of the study.

We opted not to obfuscate the goal of the study since
our research aims at finding the best possible representa-
tion for the comparison of key-fingerprints in a security
context. This is closest to how users interact with finger-
prints in the real world — their secure messaging appli-
cations also ask them to compare the strings for security
purposes. The question how to motivate users to compare
fingerprints is an entirely different research question. So
in our case, we believe it was not necessary or desirable
to use deception and since deception should be used as
sparingly as possible we opted for the “honest” approach.

After agreeing the terms, participants are shown a fic-
titious business card next to a mobile phone, both dis-
playing a security code (as shown in Figure 3). To
become more familiar with the task, the experiment is

Type (Within-Group) Scheme (Between-Group)

Alphanumeric Hexadecimal XOR Base32
Numeric Numeric
Unrelated Words PGP XOR Peerio
Generated Sentences Generated Sentences

Table 2: To avoid confusion between too similar approaches
(cf. Section 4.2), in our condition assignment, scheme types
(left column) can consist of multiple representation schemes
(right column). Each participant tests only one randomly as-
signed scheme of each type in a randomized order. .

started with 4 training tasks (each method once) not con-
sidered in the evaluation. The user’s only task is to
rate whether the shown fingerprints match by clicking on
Match or Doesn’t Match on the phone. Based on the con-
dition assignment, participants see different approaches
in a randomized order. We measure whether their an-
swer was correct and their speed, i. e., the amount of time
spent on the comparison. The experiment is concluded
with a survey collecting feedback on the used approaches
and the tasks and demographic information discussed in
the “Results” section.

4.3.1 Variables and Conditions

In the main experiment, the used representation scheme
is our controlled independent variable whereas its val-
ues define our experiment conditions. In our additional
chunking experiment, the chunking size is our controlled
independent variable instead of the representation algo-
rithm. During all tasks, we measure how fast participants
perform with their given conditions and whether they are
able to detect attacks by rating “incorrect” (speed and
accuracy as our measured dependent variables).

In both experiments, each user had to perform 46 com-
parisons in total. To detect users clicking randomly, 2
obviously distinct comparisons were added to test a par-
ticipant’s attention. Training comparisons and attention
tests are not included in the evaluation. Based on the
feedback in our pre-study, we added tooltips during the
training comparisons giving hints for language-based ap-
proaches telling the user that spelling attacks would not
occur. We set the number of attacks to six: two obvious
attacks where all bits are altered serving as control ques-
tions and 4 actual attacks with partial 80-bit preimages
(one for each representation scheme). Participants failing
at the control attacks are not considered in the evaluation
but still received a payment if finishing all tasks. The
major challenge in the study design is a high attack de-
tection rate in general: most users perform comparisons
correctly for the given attacker strength.

To avoid side effects, we chose fixed font size, color
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Figure 4: A screenshot showing a statement rating in the post-experiment survey. Since the participants might
not distinguish the different types, we have provided an example from their previous task.

and style, i. e., the same typeface for all fingerprint rep-
resentations. In addition, we set fixed line breaks for sen-
tences and word lists. In the main experiment, the same
chunking style was used for all representations: For (al-
pha)numeric approaches a chunk consists of four charac-
ters separated by spaces. For word lists, we opted for a
line break every four words. In the generated sentences
representation, one sentence per line is displayed. We are
aware that all these design decisions can have an effect
on the comparison of the representations. However, our
pre-study results show a significantly lower effect size.
More importantly, we are mainly interested in compar-
ing the concepts, therefore we did not vary any of the
visual attributes like font size or style. In particular, dif-
ferences resulting from the font’s typeface have not been
evaluated. Lund showed in his meta-analysis that there
are no significant legibility differences between serif and
sans serif typefaces [25].

Chunk-Size Testing A question was raised whether
the chunking of a hexadecimal string plays a greater role
in comparison to the different approaches. Thus, in addi-
tion to the main experiment testing different representa-
tion types, we conducted a second experiment with new
participants testing different chunk sizes for the hexadec-
imal representation. Here, we used chunk-sizes ranging
from 2 to 8 in addition to “zero-chunk size” (8 cases).
The zero-chunk size means that no spaces have been in-
cluded. To make the results more comparable, we opted
for a similar design as done in the major experiment, i. e.,
we required the same amount of comparisons, used the
same font settings, and had the same amount of attacks.
For each participant, we assigned 4 out of 8 different
chunk-sized randomly. Same as in the major experiment,
all participants had to compare 46 fingerprints whereas
the first 4 are considered as training comparisons, 4 at-
tacks (one for each chunk size), and 2 control attacks
with obviously distinct fingerprints.

The major experiment is followed by a survey fo-

cusing on self-reported user perception and opinions
about the different approaches. This is the main reason
we opted to compare as much as possible in a within-
groups fashion and only selected a small number of con-
ditions in total. Since users might not notice the dif-
ference between the various dictionary or alphabet ap-
proaches, we designed a mixed factorial design where
the users would only get one of the alphabets/dictionar-
ies (between-subjects) but they would test all different
high-level systems (within-group) as depicted in Table 2.
The between-group conditions have been assigned ran-
domly with a uniform distribution. Since participants
from our pre-study had difficulties to distinguish the dif-
ferent chunking approaches, we skipped the survey part
in the chunk-size experiment.

4.3.2 Online Survey

The experiment was followed by an online survey gath-
ering self-reported data and demographics from partic-
ipants. To measure perception, we asked the partici-
pants whether they agreed with statements discussed in
subsection 5.2 on a 5 point Likert scale: from strongly
disagree to neural strongly agree as shown in Figure 4.
Participants had to rate each representation type for all
statements. Since users might not distinguish the differ-
ent representation schemes, we provide an example from
their previously finished task.

4.3.3 Statistical Testing

We opted for the common significance level of α = 0.05.
To counteract the multiple comparisons problem, we use
the Holm-Bonferronicorrection for our statistical signif-
icance tests [18]. Consequently, all our p-values are re-
ported in the corrected version.

We test the comparison duration with the Mann-
Whitney-Wilcoxon (MWW) test (two-tailed). We opt for
this significance test due to a few outliers, consequently a
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Scheme Speed Accuracy Total
mean [s] med [s] stdev p-val fail-rate p-val f-pos fails attacks tests

Hexadecimal 11.2 10.0 6.4 10.44 0.49 50 479 4765
Hexadecimal – Base32 1.0 1.1 0.0 <0.001 −1.94 0.690 −2.09 12 32 269
Hexadecimal – Numeric 0.6 0.5 0.6 <0.001 −4.10 0.048 0.21 −9 −452 −4527
Hexadecimal – PGP −1.8 −1.2 −1.0 <0.001 −1.65 0.690 −0.01 11 35 340
Hexadecimal – Peerio 2.5 2.7 0.8 <0.001 −4.69 0.048 0.08 22 −8 −91
Hexadecimal – Sentences −1.1 −0.7 −0.6 <0.001 −7.45 <0.001 −0.99 22 −457 −4518

Base32 10.2 8.9 6.4 8.50 2.58 38 447 4496
Base32 – Hexadecimal −1.0 −1.1 −0.0 <0.001 1.94 0.690 2.09 −12 −32 −269
Base32 – Numeric −0.4 −0.6 0.6 <0.001 −2.16 0.404 2.30 −21 −484 −4796
Base32 – PGP −2.8 −2.3 −1.0 <0.001 0.28 0.714 2.08 −1 3 71
Base32 – Peerio 1.5 1.6 0.8 <0.001 −2.75 0.404 2.17 10 −40 −360
Base32 – Sentences −2.1 −1.8 −0.6 <0.001 −5.51 <0.001 1.10 10 −489 −4787

Numeric 10.6 9.5 5.8 6.34 0.28 59 931 9292
Numeric – Hexadecimal −0.6 −0.5 −0.6 <0.001 4.10 0.048 −0.21 9 452 4527
Numeric – Base32 0.4 0.6 −0.6 <0.001 2.16 0.404 −2.30 21 484 4796
Numeric – PGP −2.4 −1.7 −1.6 <0.001 2.45 0.404 −0.22 20 487 4867
Numeric – Peerio 1.9 2.2 0.2 <0.001 −0.59 0.714 −0.13 31 444 4436
Numeric – Sentences −1.7 −1.2 −1.2 <0.001 −3.35 0.004 −1.20 31 −5 9

PGP 13.0 11.2 7.4 8.78 0.50 39 444 4425
PGP – Hexadecimal 1.8 1.2 1.0 <0.001 1.65 0.690 0.01 −11 −35 −340
PGP – Base32 2.8 2.3 1.0 <0.001 −0.28 0.714 −2.08 1 −3 −71
PGP – Numeric 2.4 1.7 1.6 <0.001 −2.45 0.404 0.22 −20 −487 −4867
PGP – Peerio 4.3 3.9 1.8 <0.001 −3.03 0.337 0.09 11 −43 −431
PGP – Sentences 0.7 0.5 0.4 <0.001 −5.79 <0.001 −0.98 11 −492 −4858

Peerio 8.7 7.3 5.6 5.75 0.41 28 487 4856
Peerio – Hexadecimal −2.5 −2.7 −0.8 <0.001 4.69 0.048 −0.08 −22 8 91
Peerio – Base32 −1.5 −1.6 −0.8 <0.001 2.75 0.404 −2.17 −10 40 360
Peerio – Numeric −1.9 −2.2 −0.2 <0.001 0.59 0.714 0.13 −31 −444 −4436
Peerio – PGP −4.3 −3.9 −1.8 <0.001 3.03 0.337 −0.09 −11 43 431
Peerio – Sentences −3.6 −3.4 −1.4 <0.001 −2.76 0.075 −1.07 0 −449 −4427

Sentences 12.3 10.7 7.0 2.99 1.48 28 936 9283
Sentences – Hexadecimal 1.1 0.7 0.6 <0.001 7.45 <0.001 0.99 −22 457 4518
Sentences – Base32 2.1 1.8 0.6 <0.001 5.51 <0.001 −1.10 −10 489 4787
Sentences – Numeric 1.7 1.2 1.2 <0.001 3.35 0.004 1.20 −31 5 −9
Sentences – PGP −0.7 −0.5 −0.4 <0.001 5.79 <0.001 0.98 −11 492 4858
Sentences – Peerio 3.6 3.4 1.4 <0.001 2.76 0.075 1.07 0 449 4427

Table 3: Our experiment results showing the differences between the representation schemes. The top rows of each row group
separated by a rule, show the raw performance of a baseline scheme, followed by italic rows showing a direct comparison delta.
Greyed-out values are not backed by statistical significance. The columns fail-rate (undetected attacks) and false-pos (same string
rated as an attack) display percentage values.

slightly skewed normal distribution, and a large amount
of collected data. The common language effect size is
shown by mean and median comparisons [26].

The attack detection rate is tested with a pairwise
Holm-Bonferroni-corrected Barnard’s exact test (Exakt
package in R) achieving one of highest statistical power
for 2x2 contingency tables [2].

Survey ratings are, again, tested by using the MWW
significance test (two-tailed test). As has been shown in
previous research [9], it is most suitable for 5-point Lik-
ert scales, especially if not multimodal distributed as in
our survey results. In case two fingerprint representation
schemes are statistically tested against each other, only
participants encountering both schemes were considered.

5 Results

In this section, we present our results: our online study
with 1047 participants has been conducted in August and
September 2015. The study for testing the chunk size has
been conducted in February 2016 with 400 participants.
Starting with our online experiment evaluation showing
the raw performance of users, we then present user per-
ception results from the follow-up survey. Finally, we
discuss the demographics of our participants.

5.1 Online Experiment
Participants who have not finished all comparisons or
failed the attention tests were excluded from our eval-
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Scheme Speed Accuracy Total
mean [s] med [s] p-val fail-rate p-val false-pos fails attacks tests

Hexadecimal (4) 12.3 10.4 6.78 0.38 16 236 2360
hex (4) – hex (0) −2.4 −2.6 <0.001 0.33 1.000 −0.28 −2 −17 −170
hex (4) – hex (2) −0.3 −0.9 <0.001 1.37 1.000 0.00 −3 3 30
hex (4) – hex (3) −0.3 0.1 0.362 −0.64 1.000 0.09 2 8 80
hex (4) – hex (5) −1.4 −1.2 <0.001 1.01 1.000 −0.40 −2 5 50
hex (4) – hex (6) −1.9 −1.8 <0.001 2.43 1.000 0.09 −5 8 80
hex (4) – hex (7) −1.7 −1.8 <0.001 3.35 1.000 0.19 −8 −1 −10
hex (4) – hex (8) −2.8 −3.2 <0.001 1.35 1.000 −0.12 −4 −10 −100

Table 4: Comparison of the chunking experiment results showing the differences between the representation schemes. The top row
shows the raw performance of the hexadecimal scheme with a four-character chunking, followed by italic rows showing a direct
comparison delta. Greyed-out values are not backed by statistical significance. The columns fail-rate (undetected attacks) and
false-pos (same string rated as an attack) display percentage values.

uation: all participant compared 46 security codes in a
randomized order, whereas 40 (10 of each scheme) were
considered in the evaluation. The four training samples
and the control questions are excluded. Few comparisons
done in less than 2 seconds and more than one minute
have been excluded. The reason for such can either be
multiple clicks during the page load, or external inter-
ruptions of the participants. None of the attack could be
successfully detected in under 4 seconds.

Our experiment results, summarized in Table 3, show
the raw performance of all schemes regarding their
speed, accuracy and false-positive rate. The top rows of
each row group, separated by a rule, show the raw perfor-
mance of a representation scheme as baseline (negative
values indicate lower values than the baseline). The fol-
lowing rows show a direct comparison delta between be-
tween two schemes. The speed column group consists of
the mean and median (in seconds), the standard deviation
and the according p-values for a direct comparison. The
fail-rate column shows the rate of the undetected attacks
with the according p-values for a direct comparison. The
total column group simply shows the total numbers of
tests, attacks and undetected attacks.

The results show that the average time spent on com-
parisons plays only a minor role among the schemes:
4.3s difference between the best and the worst scheme.
Note that the Peerio word-list scheme performed best
with 8.7s mean whereas the PGP word list performed
worst with 13s mean (p < 0.001).

However, there is a clear effect regarding the attack de-
tection rate (see Table 3). All alternative key-fingerprint
representations performed better than the state-of-the-
art hexadecimal representation, where 10.1% of attacks
have not been detected by the users. Previous work
shows similar numbers for Base32 [19]. To our surprise,
the numeric approach performs better in both categories:
it features an attack detection rate of 93.57% (p < 0.01)
and an average speed of 10.6s (p < 0.001). Generated
sentences achieved the highest attack detection rate of

97.97% with a similar average speed as the hexadecimal
scheme. On the downside, this scheme has produced a
slightly higher false-positive rate. We found that the false
positives occurred mostly with longer sentences where
there has been a line break on the phone mock-up due
to portrait orientation. This is a realistic problem of this
system if used with portrait orientation and not a problem
with our mock-up in itself. Improvements on making the
sentences shorter could mitigate this situation.

Chunk-Size Experiment

Table 4 summarizes the results of our secondary chunk-
size experiment. As can be seen, no statistically signif-
icant results have been achieved for the attack detection
fail-rate (undetected attacks by end users). However, we
observed that the chunk sizes with 3 and 4 characters per-
formed best in speed, even though the effect sizes were
minor: only 3.3 seconds difference with similar standard
deviations between the best and worst chunk size setting.

Firstly, we notice that despite the same attack strength
as in our major experiment, participants were able to de-
tect more attacks. We suspect that the higher attack de-
tection rate is based on (1) a higher learning effect due
to the same scheme for all comparisons and (2) in con-
trast to our major study, participants had a slightly higher
drop-out rate and thus only more motivated participants
were considered. This is supported by the numbers in the
total tests column of Table 4: here, we can see that for
the zero-chunking and chunking with 8 characters less
tests have been performed. This is based on the fact that
although the chunk sizes have been assigned almost uni-
formly, participants assigned with harder chunk settings
often dropped out before even finishing their entire task.

More importantly, our results also support the claim
from our pre-study: The chunking parameter in hexadec-
imal strings plays only a minor role in the attack detec-
tion fail-rate.
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Figure 5: Aggregated survey results for statement rating regarding the usability and trustworthiness.

5.2 Online Survey
To measure the usability and trustworthiness of all rep-
resentation schemes, we asked our participants whether
they agreed with the following statements:

S1 The comparisons were easy for me with this method

S2 I am confident that I can make comparisons using this
method without making mistakes

S3 I think making comparisons using this method would
help me keep my communications secure

S4 I was able to do the comparisons very quickly with
this method

S5 I found this method difficult to use

S6 Overall, I liked this method

We mixed positive and negative statements, e. g., S1
and S5, to create a more robust measure. S6 is used to
calculate the overall ranking of the different representa-
tion schemes.

Figure 5 shows the aggregated results where the us-
ability statements are grouped to one usability feature
and the trustworthiness derived from the rating on the
statement S3. Negative statement ratings have been in-
verted for a better comparison. Figure 6 shows the rating
results for each specific statement in the survey. The or-
der of the tested schemes has been chosen randomly, but
was kept consistent across all statements. Same as in
our online experiment evaluation, the pairwise statistical

tests are Holm-Bonferroni corrected. In case of a direct
statistical test between two schemes, only users encoun-
tering both schemes have been considered. All in all, the
usability perception of the participants is almost consis-
tent with the performance results from the experiment.

To measure the perception of the task difficulty, we
asked the participants whether they agreed with the state-
ments S1, S2 and S3 respectively. As illustrated in Fig-
ure 6 in the Appendix A, the effect size between the dif-
ferent approaches is low. However, the participants were
more likely to agree that language-based representation
schemes are easier to use. For instance, we see that in
comparison to the alphanumeric schemes (average rat-
ing of 3.4), word list (average rating of 3.9, p < 0.001)
and generated sentence schemes (average rating of 4.2,
p < 0.001 ) are rated to be easier by our participants (S1,
S5). While the experiment results of the sentence genera-
tors clearly outperformed all other approaches, they also
were rated better by the participants. Same applies for
the low-performing hexadecimal and Base32 schemes
which clearly received lower ratings. Consistently with
the surprising performance results in the experiment, the
numeric scheme is also considered to be easier by many
participants: average rating of 3.9 and p < 0.001.

The sentence generator scheme achieved the highest
user confidence rating “making comparisons without any
mistakes” (S2, p < 0.001 for all pairwise comparisons).
The participants’ perception is consistent with the ex-
periment results where the word-list-based and sentence
generator schemes lead to higher attack detection rates.
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The ratings for S4 illustrate that more complex repre-
sentation schemes from the user’s point of view, such as
hexadecimal and Base32, are considered to be more se-
cure by participants, even though all approaches provide
the same level of security.

5.3 Demographics
A total of 1047 users participated in the online study
while only 1001 have been considered in the evaluation
due to our two control questions. Out of the evaluated
participants, 534 participants were male, 453 were fe-
male, 4 chose other while the rest opted to not give any
information. No significant difference between genders
could be found, with a subtle trend of a higher accuracy
for women and higher speed among men. The median
age was 34 (34.4 average) years, while 34 participants
chose not to answer (no statistically significant differ-
ences between ages).

A total of 39 people reported to have “medical con-
ditions that complicated the security code comparisons
(e. g., reading disorders, ADHD, visual impairments,
etc.)” with a slightly higher undetected attack rate (sta-
tistically insignificant due to small sample size and thus
low statistical power).

The majority of the participants stated to have a Bach-
elor’s degree (399 of 1047) as their highest education
whereas 34% chose not to answer. 931 participants have
started our HIT but stopped early during the experiment
(mostly after the first few comparisons). 160 users re-
ported the general task to be annoying.

6 Discussion

The results of our study show that while there are subtle
speed variations among all approaches, the attack detec-
tion rate and user perception for the current state-of-the-
art hexadecimal key-fingerprint representation is signif-
icantly lower than those of most alternative representa-
tion schemes. Language-based representations (with the
exception of the PGP word list) show improved user be-
haviour leading to a higher detection rate of attacks. To
improve the usability of key-fingerprints, we propose the
following takeaways based on our study results.

6.1 Takeaways
Our results show that all representation schemes achieve
a high accuracy (high attack detection rate) and can be
performed quickly by users. As expected, language-
based fingerprint representations are more resilient
against attacks (higher attack detection rate) and achieve
better usability scores. Among all conditions, alphanu-
meric approaches performed worse and have been out-

performed. For instance, the numeric representation was
more suitable than hexadecimal and Base32. The raw
performance results suggest a similar speed for the nu-
meric representation with a higher attack detection rate,
and it also has received better usability ratings from end-
users.

Our chunking experiment has shown that chunk-sizes
play only a minor role in improving attack detection rates
(we could not find statistically significant differences).
However, if a hexadecimal representation is used chunks
of 3 and 4 characters perform best.

As shown by the word list representations, the compar-
ison speed can be increased by larger dictionaries leav-
ing room for improvement in this area. Even though all
representation schemes provide the same level of secu-
rity, exotic looking solutions are considered to be more
secure by end users.

6.2 Limitations

Most importantly, our study design does not test whether
end users are actually willing to compare any finger-
prints in practice. We only aim to study how easy differ-
ent representations are to compare from the users’ point
of view.

As with any user study conducted with MTurk, there
is concern about the external validity of the results: users
in the real world might show different behaviour. This
is mainly because of two reasons: (1) in practice finger-
print comparisons will seldom occur in a such frequency,
and (2) when performed in practice play a more impor-
tant role than just participating in an anonymous online
study. Additionally, MTurkers have been shown to be
more tech-savvy and are better in solving textual and vi-
sual tasks in comparison to the average population. Thus,
they could have performed better in most of the compar-
ison conditions than the average population. It is also
known that some MTurkers just “click through” studies
to get the fee and thus distort study results. Our coun-
terbalanced study design with included control questions
and statistical significance tests mitigate this effect. For
instance, we excluded 46 out of 1047 participants from
our main study part based on these questions being an-
swered incorrectly.

Due to the within-group part of our factorial design,
many parameter choices such as different fonts, font
sizes, attack rates, etc. could not be considered. These
are, however, interesting avenues for future work. As
shown in our additional chunking experiment, another
challenge in testing different parameters is the high at-
tack detection rate, where subtle changes would require
a high amount of users to produce statistically significant
results.

Due to the anonymous nature of online studies, it is

13

Chapter 3 Empirical Study of Textual Key Fingerprints

53



206 25th USENIX Security Symposium USENIX Association

also impossible to reliably tell which languages a partic-
ipant is fluent in. We specified that we only wanted par-
ticipants from English-speaking countries, however we
had no way of checking compliance except by relying
on self-reported data. Language-based representation ap-
proaches might induce additional barriers for non-native
speakers, e. g., due to unknown or unfamiliar words.

7 Conclusion and Future Work

We evaluated six different key-fingerprint representation
types with regards to their comparison speed, attack de-
tection accuracy and usability, which encompasses at-
tack detection but also resilience against human errors
in short-term memory. An online study with 1047 partic-
ipants was conducted to compare numeric, alphanumeric
(Hexadecimal and Base32), word lists (PGP and Peerio),
as well as generated sentences representation schemes
for key-fingerprint verification. All fingerprint represen-
tations were configured to offer the same level of security
with the same attacker strength.

Our results show that usage of the large word lists (as
used in Peerio) lead to the fastest comparison perfor-
mance, while generated sentences achieved highest at-
tack detection rates. In addition, we found that additional
parameters such as chunking of characters plays only a
minor role in the overall performance. The widely-used
hexadecimal representation scheme performed worst in
all tested categories which indicates that it should be re-
placed by more usable schemes. Unlike proposals which
call for radically new fingerprint representations, we
studied only textual fingerprint representations, which
means that the results of our work can be directly applied
to various encryption applications with minimal changes
needed. Specifically, no new hardware or complex soft-
ware is required: applications merely need to replace the
strings they output to achieve a significant improvement
in both attack-detection accuracy and usability.

There are various interesting areas of future work.
Firstly, we chose to study only a selected sample from the
design space of fingerprint representations in a within-
subjects design, so we could facilitate a direct compar-
ison between the different classes of fingerprints. Fur-
ther work exploring line breaks, font settings, dictionar-
ies, different attacker strengths, etc. will likely lead to
further improvement possibilities.

While this work shows that there are better ways to
represent key-fingerprints than currently being used, it
does not explore what can be done to motivate more users
to actually compare the fingerprints in the first place.
Follow-up studies to research this important question are
naturally an interesting and vital area of research.
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Figure 6: Survey results for all statement ratings
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3.2 Implications and Future Directions

(a) WhatsApp’s key verification
with the possibility to use the cam-
era

(b) Signal’s key verification with
the possibility to use the camera

(c) iMessage key verification, al-
though using SAS to shorten the fin-
gerprint in synchronousmodes [37]

Figure 3.1: Manual key fingerprint verification in popular messengers in 2024. Screenshots taken from the
EFF tool guide and Apple’s official iMessage documentation [26, 38]

The findings highlight significant usability and security gaps in traditional hexadecimal formats.
The recommendation is to adopt sentence-based or numeric representations, demonstrating higher
attack detection rates and better user acceptance. Some participants expressed frustration with
hexadecimal / base32 representations, citing difficulty in recognizing errors during comparison
tasks. In contrast, sentence-based encodings were described as “intuitive” and “easier to relate to,”
indicating a clear preference for language-based formats that align better with everyday cognitive
patterns. By addressing these usability challenges, the study contributes to the broader effort of
making secure communication more accessible and reliable for users.
While sentence-based and numeric representations demonstrate significant improvements in

usability and security, their scalability in real-world deployments requires further exploration.
Key considerations include backward compatibility with existing tools, integration with current
cryptographic libraries, and potential resource constraints for low-power devices.

Backward compatibility and tool integration might also be why traditional security tools such as
OpenSSH and OpenPGP remained unchanged with their TOFU combined with the hexadecimal
key fingerprint representation. By contrast, most instant messaging tools adopted the numeric
representation as their default, although it is mainly hidden deep in the expert settings. As depicted
in Fig. 3.1, today, most of the popular messengers, such as WhatsApp, use the numeric fingerprint
format, which validates our findings that the numeric representation seems to be the best trade-off
approachwhen facing language barriers. To reduce potential mistakes, these interfaces are typically
enhanced with the capability to scan QR codes or exchange files over NFC directly.
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In cases where the spoken languages can be derived from context, sentence-based encodings
reduce susceptibility to phishing attacks by presenting fingerprints in a familiar, non-technical
format that is harder to spoof convincingly (see Fig. 3.1(c) where just one word would offer the
same security). Moreover, the improved attack detection rates observed in our study suggest that
these encodings offer enhanced protection in scenarios where users must verify authenticity under
adversarial conditions.
The study’s methodology and online experiment platform have proved valuable beyond the

secure messaging domain. While requiring substantial adaptations and the creation of a new study
design, the core experimental platform with the statistical framework was successfully reused for
usability studies in malware analysis with Yakdan et al. [7], demonstrating how systematic user
study approaches can benefit security research across different domains.
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CHAPTER 4

Secure Messaging Mental Models

As outlined in Chapter 2, the analysis questions whether there might be significant gaps in how
end-to-end security features are presented and communicated to end users. This chapter builds on
these findings by examining how users conceptualize secure messaging systems and their features,
focusing on understanding and addressing misconceptions. The qualitative study presented in
this paper explores the evolution of user perception and mental models of secure messaging
following the widespread adoption of end-to-end security in popular applications like WhatsApp
oriMessage. WithWhatsApp ’s implementation of theSignal protocol as the default in
2016, end-to-end encryption became accessible to the masses, accompanied by explicit notifications
informing users about the encryption of their communication. Despite this significant shift in
messaging security, the paper investigates whether users’ understanding, trust, and awareness of
encryption have improved.

Using a qualitativemethodology, the research compares users’mentalmodels before and after the
introduction of mass messenger encryption (MME, pre- and post-MME). Findings reveal a persistent
lack of trust in encryption technologies among users, largely driven by misconceptions about its
capabilities and the strength of cryptographic protections. Furthermore, themajority of participants
remained unaware of the encryption mechanisms by default in WhatsApp, despite abundant in-
app notifications and media attention. This lack of awareness and understanding underscores the
need for improved communication about encryption and highlights barriers to user confidence in
secure messaging systems. These findings are particularly relevant given the growing importance
of secure communication in both personal and professional environments, where users’ trust and
understanding directly impacts the effective use of security features. The research contributes
valuable insights into the interplay between usability, trust, and awareness in adopting secure
technologies.
This in-depth qualitative study is the first to investigate how users conceptualize, understand

and perceive secure messaging over time. It examines their mental models – the internal constructs
people form to understand and explain how a system works and predict its behavior. Comparing
mental models from two points in time offers a unique longitudinal perspective on howwidespread
encryption impacts user understanding and trust. The study analyzes the discrepancies between
users’ conceptual understanding and established security practices implemented in widely adopted
messaging applications. It also addresses a general mistrust in security capabilities, with users
overestimating attackers’ capabilities and underestimating the effectiveness of cryptographic pro-
tections.
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4.1 Peer-Reviewed Publication 3 | In Encryption We Don’t Trust: The
Effect of End-To-End Encryption to the Masses on User Perception

Authors’ Contributions

The work presented in this chapter is based on our paper (In Encryption We Don’t Trust:
The Effect of End-to-End Encryption to the Masses on User Perception) published at the
2019 IEEE European Symposium on Security and Privacy (EuroS&P, DOI: 10.1109/Eu-
roSP.2019.00037) [2]. The authors’ contributions that are relevant to the contents of this
chapter are as follows:

• Sergej Dechand I served as the main author of this work, leading all aspects of the
research, including the conceptualization, design, and execution of the study. I was
responsible for designing the user study, analyzing the results, and creating the overall
structure of the published work. My coordination and contributions helped ensure
the project’s successful completion and its scientific impact.

• Alena Naiakshina, Anastasia Danilova carried out the user interviews and diligently
processed and organized the interview data. Their efforts and attention to detail were
essential for collecting high-quality qualitative data and supporting the analysis.

• Matthew Smith Provided valuable feedback throughout all phases of the project,
offering conceptual input and suggestions that improved the structure and clarity.
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Abstract—With WhatsApp’s adoption of the Signal Protocol
as its default, end-to-end encryption by the masses happened
almost overnight. Unlike iMessage, WhatsApp notifies users that
encryption is enabled, explicitly informing users about improved
privacy. This rare feature gives us an opportunity to study
people’s understandings and perceptions of secure messaging
pre- and post-mass messenger encryption (pre/post-MME). To
study changes in perceptions, we compared the results of two
mental models studies: one conducted in 2015 pre-MME and
one in 2017 post-MME. Our primary finding is that users do
not trust encryption as currently offered. When asked about
encryption in the study, most stated that they had heard of
encryption, but only a few understood the implications, even on
a high level. Their consensus view was that no technical solution
to stop skilled attackers from getting their data exists. Even
with a major development, such as WhatsApp rolling out end-
to-end encryption, people still do not feel well protected by their
technology. Surprisingly, despite WhatsApp’s end-to-end security
info messages and the high media attention, the majority of the
participants were not even aware of encryption. Most participants
had an almost correct threat model, but don’t believe that there
is a technical solution to stop knowledgeable attackers to read
their messages. Using technology made them feel vulnerable.

I. INTRODUCTION

Before 2016, most mobile communication, such as short mes-
saging services (SMS) or messaging apps, did not provide any
end-to-end encryption. One popular exception was iMessage.
However, it still lacked a user interface for key authentication,
thus creating a vulnerability to man-in-the-middle attacks.
It also did not advertise any of its security features. With
WhatsApp’s introduction of the Signal protocol as its
default, authenticated end-to-end message encryption suddenly
became available to the masses [43]. WhatsApp notifies users
that their messages are end-to-end encrypted every time a new
conversation is opened and offers an optional authentication
process based on quick response codes or key fingerprints [43,
13].

Even though various cryptography protocols as OpenPGP,
off-the-record messaging, and Tor, have been available for
decades [8, 5, 2], they have all failed to achieve widespread
adoption due to usability issues, such as key management and
key authentication and sometimes even unreliable message
delivery. Previous work has shown that end users struggle

with security tools for email encryption [44, 16, 32, 24]. The
general perception is still that usability problems are to blame
for the woes of encryption solutions. However, we propose that
perceptions and mental model issues might remain hindrances
even when security mechanisms provide good usability. The
introduction of a very usable end-to-end encryption solution
provides the ideal opportunity to study this aspect.

To capture users’ perception and understanding, we con-
ducted a qualitative user study based on interviews to il-
lustrate average users’ mental models before and after the
mass messenger encryption event (pre- vs. post-MME). The
methodology and the first 11 interviews were conducted in July
and August 2015. In January and February 2017, approximately
nine months after WhatsApp’s introduction of end-to-end
encryption, we conducted another set of interviews (post-MME)
to be able to compare mental models before and after the
introduction of this widespread encryption mechanism. In 2017,
we re-invited some participants from the 2015 group and invited
11 new participants to enable a direct comparison. The results
of both groups were analyzed individually. We chose this mixed
set because taking part in the pre-MME study was very likely
to have shaped the participants’ opinions. Recruiting both old
and new participants allowed us to see both a within group
and a between group view of this event.

Our study was aimed at identifying aspects helping messen-
ger developers implement usable and secure software, so it
was important to understand how people imagine the process
of sending and receiving mobile messages. We considered two
main methods: classic text messages (SMS) and WhatsApp.
Rather than technical details, we focused on whether end
users understand high-level concepts and more importantly,
the implications of encryption. The first part of our study was
started before the widespread adoption of end-to-end encryption
services, so we considered the transition of users’ mental
models after the introduction of mass messenger encryption.
Our key findings are:

1) Users do not trust encryption. Most of our participant
were well aware of who is theoretically capable of
eavesdropping on their communication. However, they
overestimated the capabilities of potential attackers, e.g.,
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(a) WhatsApp Encryption (b) WhatsApp Authentication

Fig. 1: WhatsApp’s implementation of end-to-end encryption
based on the Signal protocol [35].

skilled neighbours could break the encryption and read
their messages. At the same time, they underestimated
cryptographic capabilities, sharing the consensus that
there is no technical solution stopping skilled attackers
from breaking encryption. Most stated that they had
heard about encryption, but only a few understood the
implications, even on a high level.

2) Users lack awareness. Despite WhatsApp’s introduction
of end-to-end encryption in April 2016, most users were
still unaware of it nine months later. More surprisingly,
when directly asked about the info message (see Figure 1a),
many participants reported noticing it but chose to ignore
it or failed to understand the implications correctly.

3) SMS is more secure than WhatsApp. Almost all the
participants believed that SMS is more secure than
WhatsApp. The participants justified this belief with
two reasons: first, they considered the Internet to be evil
and second, they held opinion that SMS messages seldom
cross country borders.

4) Users do not feel targeted. In general, government
and special service surveillance was perceived critically,
especially if executed by foreign countries. However, most
participants believed that they would never be targeted.
A few participants saw benign, exceptional cases for the
police in fighting crime and terrorism but rejected the idea
of mass surveillance. Finally, the majority thought that
governments and hackers are able to break any kind of
encryption.

5) Study participation raises awareness and attention.
The participants who took part in our 2015 study were
more aware of encryption and security in the second inter-
view. For instance, some used alternative messengers such
as Threema, Signal and Telegram. This was mainly

because the participants were critical of WhatsApp’s
acquisition. In contrast, the newly-invited participants
never used other apps except for LINE.

The rest of the paper is structured in the following way: in
Section II we review related work. Section III describes our
methodology and its limitations. In Section IV we present the
results of our focus groups. In Sections V and VI we compare
the results of the pre- and post-MME single interviews. An extra
section (Section VII) is dedicate to the 4 re-invited participants.
Finally, in Sections VIII and IX we discuss our results, provide
recommendations, and conclude.

II. RELATED WORK

In this section, we discuss the usage of current security
solutions in messaging and prior attempts to improve their
usability. We also discuss work on gathering user perceptions
and obtaining people’s mental models in the human-computer
interaction and especially the usable security and privacy
community.

A. Communication Security

Starting with the commercially available email encryption
PGP [8], a large body of security communication tools (e.g.,
Tor, Off-the-Record Messaging (OTR) and others) followed [14,
37, 5]. However, the famous Johnny user studies and follow-up
work confirmed that end users are overwhelmed with most
security tools [44, 16, 32, 15, 24]. For instance, some required
hard key management [44, 8, 2], and others had session issues
with less reliable mobile environments [5, 2, 33, 38, 34].

Consequently, up to the beginning of 2016 the majority
of exchanged personal messages including email and mes-
sengers remained unsecured. With the growing popularity of
the Signal messenger and its protocol providing similar
security features as OTR and a better integration in mobile
environments [36, 34, 38], WhatsApp integrated it in early
2016 [43]. Similarly to iMessage, end-to-end encryption
is activated by default. Additionally, it provides an optional
authentication verifying the absence of man-in-the-middle
attacks and can be done by using QR codes or comparing
numeric hash representation with 60-digit numbers, as shown
in Figure 1b [43, 13].

B. Mental Models

To elicit users’ understanding and perception in an area, a
commonly used method in psychology, and recently in the
usable security and privacy area, is based on mental models [9,
28]. More specifically, mental models describe what exactly
users think about a specific topic or problem; they disclose that
people form diagrams in their minds, which help them to build
their understanding of the world and to solve the problems that
emerge when they have to interact with complex systems [20,
28].

Various usable security researchers adopted mental models
of users’ understanding regarding technologies based on the
Internet [42, 41, 21, 31, 21, 22, 29]. Having unrealistic mental
models regarding communication may induce a risk based on
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users’ activities. Previous work specifically named some of the
misunderstandings [41, 40]. We propose that developers should
take users’ mental models in consideration when designing
messaging protocols rather than assuming that their users
understand cryptographic details. This approach could lead
to a greater acceptance of secure messaging software as users
will not be confused or frustrated by the complexity of public
key encryption.

Asgharpour et al. [3] found that security experts and non-
experts have different mental models of security risks. They
proposed that risk communication should not be designed based
on experts’ mental models, as it is mostly done, but rather
should be designed based on end users’ point of view.

Bravo-Lillo et al. [7] designed a mental model in order to
understand how users think about computer security warnings.
The study compared advanced and novice user’s behavior
dealing with computer security warnings and was supposed to
help developers to improve their warning design.

Wash [41] conducted a study in order to understand the
users’ mental models of attackers and security technologies,
and to explain why users strictly follow some security advice
from computer security experts and ignore others.

Furthermore, a multi-method user study was conducted by
Vaniea et al. [39] to get a better understanding of how people
make decisions about software updates.

C. User Perceptions of Secure Messaging

Adoption criteria of secure messaging tools and services
as well as social influence on users decision of security tools
and security behavior have been intensively investigated in
the past [17, 11, 23, 12]. For example, De Luca et al. [23]
conducted an online survey with 1500 participants, making a
quantitative analysis of how much of a role security played
in people’s decisions to use a mobile messenger. As often
suspected in the usable security field, their results suggest that
security plays a minor role, and the available contacts in a
messenger clearly dominate their decision making.

Furthermore, Bai et al. [4] investigated whether users are able
to understand the difference between a key-exchange and a key-
directory model. Their results show that users are well aware
of usability and security trade-off, but favored key directories.

Renauld et al. [31] investigated why the usage of end-to-end
encrypted emails is limited. Their study revealed issues such as
incomplete threat models, misaligned incentives, and a general
absence of understanding of email architecture. In contrast
to their work, we did not stop the interview sessions if the
term encryption was not mentioned by participants. Rather, we
asked our participants about encryption and how they imagine
it is supposed to work. This procedure ensures that participants,
who have a general idea of encryption, but might not conceive
of the term, could still express their knowledge.

Abu-Salma et al. [1] conducted 60 qualitative interviews
analyzing the obstacles to the adoption of mobile messaging
applications. Their participants were additionally advised to
explain encryption. Interestingly, the participants indicated
telephony as a service, which is more secure than text

messaging. Although the study of Abu-Salma et al. was
conducted with another methodology and in the UK, the
findings show remarkable similarities to our study. For in-
stance, their participants observed SMS as more secure than
instant messaging, an opinion which was also shared by our
participants in Germany.

III. METHODOLOGY

To capture end users’ understanding of mobile commu-
nication, we conducted semi-structured interviews with 22
participants from Germany. We conducted our interviews before
and after WhatsApp’s introduction of end-to-end encryption,
so we could observe changes in end users’ mental models. The
pre-mass messenger encryption (pre-MME) interviews were
conducted with 11 participants in July and August 2015. The
post-mass messenger encryption (post-MME) interviews were
conducted with 11 new invited and 4 re-invited participants in
January and February 2017.

Our study was designed to offer insights into the following
aspects of users’ perceptions of encrypted messaging:
• Understanding of the architecture: how users imagine

mobile communication works and whether they distinguish
between SMS and instant messaging.

• Threat model: who users assume is able to eavesdrop
and whether there are ways to prevent it.

• Understanding of encryption: how do users imagine
encryption and authentication and whether they understand
the implications.

• Impact of end-to-end encryption: change in users’ un-
derstanding of mobile communication after WhatsApp’s
introduction of end-to-end encryption (post-MME).

A. Interview Guideline Design

A major challenge in designing semi-structured interviews to
capture users’ understandings and mental models is to design
an interview guideline covering the necessary topics. Previous
work in this area either opted to use more open questions with
a large unstructured part, or refined their interviews based on
pre-studies [1]. To improve this process, we used focus groups,
to iteratively develop a guideline for individual interviews [30].
Focus groups are an approved methodology with a long history
of use in psychological studies to collect qualitative data [26,
19]. A skilled moderator leads an interactive group discussion
with multiple participants by using a guideline of a set of
carefully predetermined structured questions. We used the focus
group methodology as a more refined and structured way of
a pre-study justifying the final interview guideline [30]. We
performed 3 focus group iterations, adapted and improved
our interview guideline with each iteration. In addition to the
moderated discussion, we asked our participants to support
their thoughts with drawings, in order to let them visualize
their perceptions [31, 21, 22, 29].

B. Focus Groups

We conducted 3 focus group iterations in 2015 [27]. For the
recruitment of participants we used the theoretical sampling

Chapter 4 Secure Messaging Mental Models

63



approach [30]. The first focus group was recruited at our
university. Two student assistants invited participants who were
on campus. To get a more diversity for the second and third
focus groups, we recruited students of non-technical degrees
from other universities and older people with less academic
background. Participation was rewarded with snacks and
refreshments. A single, skilled researcher led and moderated
the focus group discussions by using a carefully predetermined
semi-structured guideline. The moderator was accompanied by
an assistant researcher, who served as a note-taker for important
observations.

The first part of the guideline was used to gain a first
glimpse of the participants’ mental model of mobile messaging
communication. An empty sheet of paper with only two
individuals, Alice and Bob on it, was handed out to the focus
groups. The participants were asked to describe how Alice and
Bob could communicate with each other and to draw stations
important for their communication. The second part covered
perceptions of encryption and authentication. The participants
were asked to think about eavesdroppers and to highlight
threatening spots in their drawings. They were also asked
how eavesdropping might be prevented. To gain insight into
the participants’ perceptions of Man-in-the-Middle scenarios,
we asked how Alice could be sure that the person she was
communicating with was really Bob, in other words, how it
can be guaranteed that communication partners are the persons
whom they claim to be. All the questions were open-ended to
encourage the participants to express their thoughts in detail.
The guideline was refined after each focus group, e.g., by
adding relevant questions and removing less relevant questions.

The first group’s participants were undergraduate computer
science students (first and second year), 1 female and 6 male
with an average age of 21 years. The second focus group
had 6 participants (2 male and 4 female) with an average age
of 24 years. The group consisted of students (e.g., medicine,
architecture) and employees (e.g., logopedics) in fields less
related to computer science. Considering the younger age
and the student status of most participants, we invited older
participants with less technical backgrounds (cleaner, scholar,
housewife, pastor, vendor, geriatric nurse, mechanic and a
carpenter) to join the third focus group. This group consisted
of 8 people, 3 male and 5 female with an average age of 47.5
years. Each focus group discussion lasted approximately 60
minutes.

Based on the three iterations of focus groups, we created
a semi-structured guideline for individual interviews (see
Appendix A). For instance, instead of using unfamiliar persons
such as Alice and Bob, we decided to ask the participants
how they thought communication with their friends worked.
Additionally, the focus group participants mentioned SMS and
WhatsApp as communication applications they used often.
So, we concentrated on these applications in our individual
interviews. Finally, most participants in the focus groups
were confused by the expression authentication. We, therefore,
neither mentioned the term authentication nor used a helping
scenario in the individual interviews.

C. Individual Interview Participants

For the individual interviews, we recruited participants by
placing advertisements on eBay Kleinanzeigen (a German pri-
vate marketplace website similar to Craigslist). We also asked
the participants in the 2015-group whether they would like to
participate in our study in 2017 again. Those interested were
invited to individual interviews to our university. Participation
in the interviews was rewarded with 15 Euro. A table showing
the demographics of the participants can be found in the
Appendix E.

Pre-MME (2015): 11 participants were invited to talk
about messaging architecture and security. The sample consisted
of 7 females and 4 males with an average age of 29 years.
The average self-reported level of technical knowledge (see
Section III-E) was 8 (medium). All participants had diverse
professions, like students, office assistants, food service work-
ers, scientific assistant etc. The student participants studied
business informatics, computer science, economics and media
management.

Post-MME (2017): We established two groups in 2017:
(1) 4 re-invited participants from the 2015 study1 and (2) 11
new participants. 6 female and 5 male, with an average age of
31 years. Four of the new invited participants were students
in computer science unrelated programs including economics,
medicine, agriculture, and teaching. Three participants were
self-employed in the beauty treatment, economics and health
care industries. One participant reported to be working as
a paramedic and another participant was unemployed. Their
average self-reported level of technical knowledge was 6
(medium).

In both studies, the coders discussed after each evaluated
interview whether theoretical saturation [6, 10] was reached
or whether more participants were needed to be sampled. In
case of a disagreement between the coders, further participants
were invited. Saturation was reached when both coders agreed
that no new codes/themes emerged.

D. Individual Interview Procedure

We conducted 11 individual interviews in 2015 before
WhatsApp’s introduction of end-to-end encryption in 2017.
After this, we conducted further 15 individual interviews to
identify the mental model changes. All the interviews were
conducted in German and followed the same methodology and
guideline. To avoid experimenter bias, the same interviewer
conducted them. Each interview lasted from 30 to 40 minutes.

First, the participants had to answer demographic questions
and how often they use SMS and WhatsApp (see Appendix B).
Next, the participants were presented a brief scenario:

You would like to communicate with a friend using
your mobile phone. You would like to send a text
message to your friend via Short Messaging Service

1We invited all participants from the original group in order to examine
whether their mental models changed after the introduction of E2E encryption.
Only 4 of 11 participants were willing to join the new study. We did not
receive any answer from the other 7.
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(SMS) or via WhatsApp. Please draw how you think
the communication looks like.

The interview technique was designed to give as little hints as
possible. As in the focus groups, the participants were handed
a sketch of two individuals. If participants indicated differences
in their mental models of SMS and WhatsApp, they were
requested to make two drawings. Also, in the case of space
limitations, we handed out another blank sheet of paper for the
second service. The participants were also asked what parties
they thought could eavesdrop communication. They indicated
stations where these parties could eavesdrop. If participants
did not mention encryption, we asked them whether they had
heard of it and requested that they explain and draw how they
imagined encryption. The participants had to indicate whether
they believed that WhatsApp or SMS messages are encrypted
and if they knew of or used any apps providing encryption.
Finally, the participants were asked how a message could be
explicitly assigned to a person. The guideline for the individual
interviews can be found in the Appendix A.

E. Evaluation

We conducted a qualitative analysis for the single interviews
and focus groups. All interviews were transcribed in German.
Two researchers independently coded and evaluated every
transcription following a three-step procedure: (1) using open
coding to develop concepts and categories, (2) developing
connections among the categories, and (3) drawing conclusions
by assigning users’ individual statements to the categories [19].
Differences between the two coders were resolved through
discussion to avoid interpretation bias. Relevant statements
and expressions from the participants’ mental models were
translated into English by the same researchers.

To report statements by the participants from single inter-
views, we label them P1-P11 in the pre-MME (2015) group
and from N1-N11 for the post-MME (2017) group. The 4
re-invited participants are referred to with their initial labels
from 2015: P1, P5, P6, and P9. In relevant cases, we also
report how many participants stated specific themes to indicate
their frequency and distribution, although we do not aim to
generate quantitative results.

To assess participants’ technical experience, they rated
statements on a 5-point Likert-Scale (see Appendix C). We
calculated a ratio indicating the technical background of
participants from 0 to 12 (low: 0-3, medium: 4-8, high: 9-
12). More details on the calculation can also be found in the
Appendix C.

F. Limitations

Despite high individual demographic differences, our sample
contains only participants with a German cultural background.
The results might not be the same in different cultures. Based
on historic background, language nuances but also local media
exposure in Germany, the results in this paper might not be
applied to other cultures directly.

Furthermore, we used eBay Kleinanzeigen (similar to
Craigslist) to recruit our participants. Thus, we have a self-

selection bias and could only sample in the population of
people using this service.

A qualitative approach does not claim to provide generaliza-
tion. Qualitative work such as this is only the first step on the
road to generalizable results as it can help exploring reasoning
and views of participants.

G. Ethics

Since our study was conducted in Germany, it was not
required to pass an IRB review. However, our study complies
with the strict German privacy regulations. At the end of the
first study we asked if participants would be willing to be
contacted again. The contact data was stored separately. The
data was collected anonymously and the participants were
informed about withdrawing their data during or after the
study.

IV. FOCUS GROUP RESULTS

Although the participants in the focus groups were from
different age ranges and professions, all the groups mentioned
some general points [27]. Most participants appeared skeptical
of and expressed insecurity when using mobile messaging
communication. They believed that almost anyone could
eavesdrop on their messages at every station if someone,
whether companies or individuals, was eager enough or had
the proficiency to do so. Although all the participants had
security concerns they nevertheless still actively used services
they mistrusted on their mobile phones. However, a number
of participants stated that they did not send any sensitive
information by mobile phone. For that, they preferred to meet in
person or write emails. Several reasons motivated this behavior:
some participants did not understand the system behind SMS
and WhatsApp, and others did not know how to protect their
messages from eavesdropping.

Various participants were concerned about WhatsApp and
its security, but did not switch to secure messengers because
all their contacts still used WhatsApp. Nevertheless, the
participants stated that if more of their contacts and other
people started to use secure messaging apps, they would too. All
the groups mentioned encryption in connection to preventing
eavesdropping.

Some believed that not even encryption can protect their
messages. Most importantly, the second and third groups
showed that the majority of users were not familiar with
public-key cryptography. The only concepts they could imagine
involved passwords and symmetric encryption. The participants
suggested that the key exchange should involve a personal
meeting or sharing a secret. One interesting aspect mentioned
by the second group was that mobile numbers are connected
to WhatsApp. The second group seemed to trust this kind of
control. In contrast the first focus group stated that this is not a
method trustworthy at all. The third focus group became aware
of the potential threat from the man-in-the-middle attacks by
going through a simplified scenario with Alice, Bob and Eve.
This indicates that users are capable to understand the threats
without effort, but didn’t realize the threat on their own.
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Fig. 2: Aggregated Mental Models of Individual Interviews.
The upper parts of the illustration (blue) refer to messaging via SMS whereas the lower illustration (green) refers to messaging

via WhatsApp. Stations mentioned by our participants were indicated with individual numbers (see Appendix D).

Importantly, all the focus groups mentioned the NSA and
governments as potential adversaries. Obviously, most the
participants had noticed the NSA spying scandal and realized
that their messages could easily be captured by different parties,
particularly the U.S. government. This finding shows that news
and stories influence mental models.

V. INDIVIDUALS’ ARCHITECTURE UNDERSTANDING

Most importantly, our analysis shows that even though end-to-
end security did not gain high attention among our users, all the
participants were aware of the interception risks of both systems
(WhatsApp and SMS). We present the results in subsections
focusing on different areas of mobile communication. In each
subsection, we describe the results from our first iteration before
the introduction of end-to-end security to the masses (2015).
If the users’ mental models changed in the follow-up iteration
after the introduction of end-to-end security to the masses
(2017), we also discuss the differences in a separate paragraph.
For the comparison of 2015 and 2017, we consider the results
of the 11 participants in 2015 and the 11 new participants in
2017.

A. Messaging Architecture

Our main goal was to illustrate the users’ understandings
of messaging infrastructure. Therefore, we asked participants
of how they imagined messaging communication between
two persons. The mental model drawings of the individual
participants can be found online.2 Ignoring minor details
discussed in the following, all participants’ mental models
had great similarities. We, therefore, summed the individual
mental models into a single aggregated model of messaging

2The original mental model drawings of the individual participants
were handwritten and in German. In order to ensure participants’
anonymity we transcribed all drawings. Additionally, they were translated
in English: https://net.cs.uni-bonn.de/fileadmin/user_upload/smith/EuroSP19_
MentalModel_Drawings.pdf

architecture by including stations mentioned by our participants,
and summarizing terms, such as, server, provider, and radio
mast referred to as providers’ base stations by the participants
(see Appendix D). Figure 2a shows the summarized mental
model of all the 2015 participants and Figure 2b for
2017. Almost all the participants distinguished between
communication via SMS and WhatsApp.

1) Pre-MME (2015): In 2015, the participants mentioned
different intermediate stations. First, all the participants men-
tioned a mobile provider base station (specifically referred
as a radio mast by P4, P7, P8, P10, and P11) as a point,
through which an SMS message passed on its way to the
other communicating peer. P1, P2, P5, P6, P7, P10, and P11
included one or more mobile providers or ISPs (Internet Service
Providers) in their visualizations for SMS. Moreover, P1, P3,
P5, P6, P8, P9, and P11 mentioned servers as an intermediate
stop in the architecture. P3 and P6 distinguished between
servers in foreign countries and Germany. Some participants
(P2, P8, and P10) believed that satellites were involved in
mobile communication.

Asked to extend their drawing of SMS or make another dia-
gram for messaging via WhatsApp, almost all the participants
identified the Internet as the basic difference between the two
(Figure 2a, lower illustration):

“Yes, in my opinion, it looks different because [the
text messages] are sent through the Internet, which
is an external service. Thus, it definitely works in a
different way.” (P1)

P1, P8, and P9 differentiated between mobile servers for
SMS and Internet servers for WhatsApp. P8 stated that the
Internet works via satellites. Additionally, the WhatsApp
provider often referred to as a server by the participants, was
specified as the core difference from SMS.
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Adversary Stations Pre-MME #P Stations Post-MME #N
Mobile Provider 2, 2 ↔ 4, 3, 6 4 1 ↔ 2, 2, 2 ↔ 3 4
German Government 2, 3, 4, * 5 2 3
German Law Enforcement 1, 1 ↔ 2, 2 3 1 ↔ 2, 2 , 2 ↔ 3 2
US Law Enforcement 2 2 3 1
German Intelligence Agencies 2 ↔ 4, 2 4 1 ↔ 2, 2↔ 3 2
Foreign Intelligence Agencies 2 2 2 ↔ 3 3
Hackers 1, 2, 2 ↔ 4, 3, 7 7 1 ↔ 2 , 2 , 2 ↔ 3, 3 8

TABLE I: SMS adversaries mentioned by our participants before and after the introduction of MME. Stations Pre-MME (related
to Figure 2a) and Stations Post-MME (related to Figure 2b) show the stations where participants (#P of 11/#N of 11) expect
adversaries to eavesdrop on their messages. Attackers indicated between two stations were marked by arrows; * indicates
"everywhere".

Adversary Stations Pre-MME #P Stations Post-MME #N
WhatsApp 7, 9 9 1 ↔ 3 , 4 , 5 , 6 9
Mobile Provider 6 2 1 ↔ 4 2
German Government 1, 2, 9, * 3 2 ↔ 3 3
Foreign Governments 6 ↔ 9, 9, * 6 1 ↔ 3, 6 4
German Law Enforcement 1 ↔ 9, 2, 9 3 1 ↔ 3, 3 1
Foreign Law Enforcement 9 3 1, 3 1
German Intelligence Agencies 2 5 6 3
Foreign Intelligence Agencies 6 ↔ 9, 7, 2 4, 6 5
Hackers 1, 2, 9 6 1, 3, 3 ↔ 6, 4, 6 9
Commercial Companies 7 ↔ 9, 9 5 3 ↔ 6, 6 2
Facebook/Zuckerberg 7 ↔ 9 4 1, 3 ↔ 5, 3 ↔ 6, 6 4
Spying Apps (e.g., Viruses) 1 4 0

TABLE II: WhatsApp adversaries mentioned by our participants before and after the introduction of MME. Same table
structure as in Table I.

2) Post-MME (2017): We found only minor differences
between the mental models of the participants in 2015 and 2017
(new participants). The 2015 participants often called several
provider base stations radio masts or towers. This changed
slightly in 2017, when most of the participants specified only
one provider base station for SMS (N1, N3, N4, N6, N7, N9,
and N11). N2, N5, and N8, however, still identified more
than one provider base station. For example, N2’s mobile
communication was represented by only three single radio
masts connected to each other. Finally, in 2015 satellites were
associated with mobile communication for text messages, while
in 2017 the participants N2-N4 believed satellites were also
required for the Internet.

B. Threat Model

Table I and Table II summarize the threat model for
SMS and WhatsApp shared by the participants. To give an
impression of how often adversaries were mentioned, we
also provide the number of participants (#P/#N of 11) who
mentioned them.

1) Pre-MME (2015): When investigating the participants’
threat models, they all agreed that eavesdropping was possible
at various stations involved in communication channels. This
position captured the generally skeptical sentiments all the
participants have shown when speaking of security of mobile
communication.

The most significant result of our study was that messages
sent via the SMS were felt to be more secure than WhatsApp

messages. Various reasons were mentioned. First, because
WhatsApp messages are sent via the Internet, participants
often stated that WhatsApp is more prone to eavesdropping.
Second, banks and post offices also use SMS in order to send
important data (P7). Third, P7, P8, P9 and P10 believed that
SMS is more difficult to be hacked. Almost all participants
mentioned WhatsApp and hackers as potential adversaries.

However, P6 and P10 believed that ordinary people are not
likely to be targeted for surveillance. They stated that either rich,
famous people, politicians or criminals are targeted: “I do not
think that everybody is being monitored. I’m an unimportant
person and don’t write dangerous or bad stuff” (P6).

In the following, we discuss the adversaries mentioned by
the participants in more detail.

Mobile Providers and ISPs: P2 assumed that mobile
providers were not allowed to access the messages. In contrast,
P7 explained that mobile providers maintained relations with
governments and spies, and P7 argued that governments
did not necessarily need to cooperate with mobile providers
to access the messages. Also, P8 added that hackers and
governments could access radio providers.

Government and Law Enforcement: Half of the partici-
pants mentioned German and foreign governments (e.g., U.S.
and Russia) as potential adversaries. Most participants stated
that the German government could read their messages when
they use SMS for mobile communication. P2 speculated that the
German government could only read SMS messages at satellites
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and that it is impossible to protect SMSes from governments
because it is unfeasible to control the satellites. Furthermore,
P8 noted that German government could install malware, such
as key loggers and trojans, on mobile devices.

P3 and P8 mentioned the Pentagon as an eavesdropping
party in the U.S. government. P8 and P9 both mentioned Asian
and Chinese governments. P9 also assumed that the Russian
government could eavesdrop. Additionally, the participants
mentioned the U.S. law enforcement agencies: FBI, CSI, CIA.

Some participants (P8, P10, and P11) distinguished between
permitted data access and illegitimate data access: when
someone collects data but does nothing with it vs. access data
without your knowledge and deliberately spies on the data. For
example, German and U.S. law enforcement and the German
government were mentioned as eavesdroppers in context of
terrorism and crime prevention (P3, P5, P6, and P9-P11). P10
believed that key words such as bomb and terrorist are logged
and counted. If a log shows an unusual large amount of such
key words, the sender is monitored and controlled.

Intelligence Agencies: P3 remembered that the NSA
eavesdropped on German Chancellor Angela Merkel. The
German media reported on mass surveillance. More than
half of the participants (P1, P7-P11) mentioned the NSA
as a potential eavesdropper in WhatsApp communication.
The German Federal Intelligence Service (BND) was also
explicitly mentioned by P8 and P10.

Hackers: Almost all participants (P3, P4, P6-P11) identified
hackers as a party, which can eavesdrop text messages.
In particular, P4 mentioned Russian hackers. Further, P6
differentiated between “good hackers” (searching for exploits
and vulnerabilities) and “bad hackers” (stalker and criminals
in general). P7, on the other side, referred to hackers as
“teenager without friends” or “[someone] connected to the
mafia.” P9 explained that some hackers sell the data, which
they obtain. Hackers who are collecting data for marketing
were also mentioned by P10. A larger part of our participants
believed hackers are able to access the messages on all stations.

Commercial Companies: P5 believed that text messages are
scanned. Further, some participants assumed that commercial
companies like Amazon (P2), newspaper (P2) or advertisement
agencies (P5, P9, P10) buy data from the WhatsApp
company in order to advertise. However, they are only capable
to access the data through contacting the WhatsApp company.

Smartphones, Malware and the Internet: P10 named
updates as a security threat because users are not aware of what
they are downloading and do not know whether mobile devices
send information to app providers. P6 and P11 mentioned
malware, such as trojans. While P6 reported that malware
could come from the governments, P11 believed the malware
is downloaded when surfing on web pages with smartphones.
Furthermore, P6 assumed that smartphones were easier to
break into than into older mobile devices. Additionally,

P6 stated that SMS is more secure than WhatsApp
because it does not use the Internet. Similarly, P4 opined that
“the Internet is evil. Everyone can listen to and read everything.”

Fusion of Facebook and WhatsApp: P2 and P5 commented
critically on the fusion of WhatsApp and Facebook in 2014:

“I think it is defined in general terms and condi-
tions that WhatsApp can use pictures etc. that are
sent. Therefore, I believe that companies, which
could profit from eavesdropping, [can read the
messages].” (P2)

These participants assumed that Facebook is capable of
accessing all messages from WhatsApp: For instance, P2
equated Facebook with Mark Elliot Zuckerberg: “The founder
Zuckerberg [can read messages]. He also started up a company
for that” (P2).

WhatsApp: For WhatsApp communication almost all of
the participants mentioned the WhatsApp provider, hackers,
the U.S. government, and the Secret Service as potential
eavesdroppers. The participants had great doubts about the
Internet technology as well as about WhatsApp as a company:

“In principle, I assume that WhatsApp is able to
decrypt messages. WhatsApp can read the messages
[within their server].” (P1)

In addition to that, P5 believed that WhatsApp scans the
messages for important information. P5 also remarked that
WhatsApp reveals details about the communicating party,
e.g., the online status or profile pictures.

2) Post-MME (2017): When comparing the adversaries, the
new participants mentioned the same adversaries as the old
participants. More interestingly, even though six participants
(N3, N4, N7, N9-N11) noticed that WhatsApp introduced
end-to-end encryption, they still considered WhatsApp to be
capable of reading and accessing the messages.

Additionally, all participants except N7 reported that they
did not change their behavior after they saw the notification for
the end-to-end encryption. Furthermore, our participants stated
that they did not understand the message. Even though six
participants noticed the encryption of WhatsApp only three
participants (N1, N5, N9) thought WhatsApp to be more
secure than SMS. Our participants lack trust in encryption as
well as lack knowledge of end-to-end encryption technology.

Finally, comparing pre-MME and post-MME it is notable
that post-MME no participants thought that spying apps are
included in the threat model for WhatsApp.

VI. INDIVIDUALS’ CRYPTOGRAPHY UNDERSTANDING

A. Pre-MME (2015)

The participants were asked whether they believed that
SMS or WhatsApp messages were encrypted. Almost all
participants (P1-P10) assumed that SMS messages are en-
crypted but again indicated that the mobile provider and the
German government could decrypt their messages. Regarding
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WhatsApp, participants had mixed feelings. P1, P3, P6, P9 and
P10 stated that WhatsApp messages are encrypted, the rest
stated that they are not encrypted. P1, P3, P6 and P9 assumed
that WhatsApp has access to their messages independently
of whether the messages are encrypted or not.

Four participants were able to name alternative secure
messaging apps to WhatsApp, mentioning Threema (P7-P9,
P11) and Telegram (P8). P1 stated that Tor could be used
for secure email communication. However, eight participants
(P1-P7, P10) stated that they have never used secure messaging
apps. Although P4 used the app MyEnigma, which advertises
end-to-end encryption, she did not state to use an encryption
app. P9 and P11 tested Threema, but only P11 used the app
for a longer time. Finally, most of the participants stated that
they would be interested in a secure messaging app. However,
they do not trust the app provider offering such services.

Encryption: Three participants (P3, P5, P10) needed an
encryption tip, but could explain the idea of encryption after
that very well. Participants defined encryption in the following
way:
• A kind of a secret code (P5-P8, P10).
• Every message gets an encryption code, key or password.
• A change of data, so it is only possible to read the message

with special information.
• A secret language in which all the letters are exchanged

by numbers or symbols.
• Encryption is a “blockade” or “barrier”, which is difficult

to break like an anti-virus software or a firewall.
• Analogy with a ZIP-file: “Both parties need to have the

protection app. [The text message] is passing through
the Internet, but not to an extra company. Directly after
sending the message, it has to be packed. Imagine it like
ZIP-files. For the text messages you would also need a
program, which is able to unpack” (P2).

Only one participant (P11) mentioned “end-to-end encryp-
tion” as well as illustrated asymmetrical encryption with private
and public keys (student of business informatics).

Some participants believed that even if encryption is used
it can be decrypted: “Actually nothing is secure, because
software exist, which can decrypt everything” (P6). Therefore,
the majority of the participants believed that the provider of
a secure app handles the encryption and thus has access to
the code. Consequently, the app provider is able to read all
of their messages. To prevent eavesdropping by the secure
app provider, P4 mentioned an idea of separate services for
encryption and messaging. P6 expressed another idea: when
developing an encryption application, the developer team
splits the code in several parts. Then every member would
be responsible for one part of the encryption. If the team
combines the individual parts of the program they can break
the code. Also P10 assumed that if the user wants to be
secure, he needs to handle the encryption manually. It seems
that users expect to put a certain amount of work in order to
be/feel secure.

Authentication: In the next part, the participants were
requested to think about authentication, specifically, how a
message can be assigned to a unique person. Eight participants
(P1-P5, and P7-P9) mentioned mobile phone numbers, but
assumed that mobile providers could also imitate mobile phone
numbers. Alternatively, a key and a password were mentioned
by three participants (P1, P2, and P11). Two participants (P1,
P10) commented that the only alternative was a personal
meeting for comparing a password or exchanging a key:

“There are classical methods in which each side
owns a key. It would only be completely safe, if you
meet physically and exchanged the keys. [...] Meeting
physically means that you exchange the keys without
using an electronic device. You can never be sure
whether the post office or anybody else reads along.
[...] I believe exchanging a key privately is the only
solution providing full security” (P1).

Other participants (P3, P6, P10) mentioned that they would
agree on a word and would append it to the message or simply
ask the other person something, which only the person could
know. P8 noticed that encryption is a contrast to authentication.
In summary, most of the participants did not understand why
authentication was needed:

“But I have not sent [the message to a third party],
but to my friend. I assume that my friend and I have
accounts, Alex27 and Kati07, for example. Then I
send a message to them. Why should Pia23 read
along? The Internet does not know my password,
only me and my friend do.” (P2)

B. Post-MME (2017)

By comparing mental models of encryption between pre-
and post-MME, we recognized that they did not change.
Participants described encryption in a similar way, using
symmetrical passwords or codes. The majority of participants
said that WhatsApp is able to access the messages even if
they deploy end-to-end encryption. Participants had troubles
with understanding the term end-to-end encryption and feel
like it is impossible that the WhatsApp company is not able
to access the messages because they provide the encryption in
the first place.

N10 mentioned that she uses WhatsApp but did not encrypt
because it requires to scan the QR code of the other party.
Obviously, even though she noticed the notification WhatsApp
gives at the beginning of a conversation, she believed that the
message is not automatically encrypted and that she needs to
put an effort to encrypt her messages.

Our participants in 2017 still fail to understand how authen-
tication can be achieved. Some participants believe they would
notice if a certain message does not come from the sender
(different style of writing or language). Further, all participants
except one (N10) did not know about the security code
verification. Even worse, the only participant who successfully
scanned the code (N10) thought afterwards that WhatsApp
does not offer encryption as default. As mentioned above, she
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thought that only after scanning the code the messages are
encrypted.

VII. RE-INVITED PARTICIPANTS POST-MME (2017)

Four participants (P1, P5, P6, P9) agreed to repeat our study
giving us the chance to compare their mental models of 2015
and 2017. The re-joint participants all reported that they use
WhatsApp regularly, compared to 2015 where some reported
to use it rather often.

Messaging Architecture: In terms of mobile messaging
architecture the participants stuck to their remaining mental
models. P1 and P6 established a more detailed view on the
architecture. P1 mentioned satellites and P6 added a new
drawing for WhatsApp with a WhatsApp server as an
intermediate station.

Threat Model: The threat model and the possible adversaries
remained as strong as in 2015. While in 2015 P1 thought
everybody could read WhatsApp messages, in 2017 he was
sure that no one except the WhatsApp company can read
WhatsApp messages any longer. He also did not mention
the German or American government as eavesdroppers any
more. In 2017 P5 additionally named the NSA as eavesdropper
for every station (SMS and WhatsApp), but no longer the
German government.

Although all participants recognized that WhatsApp intro-
duced encryption, P1, P5 and P9 were sure that WhatsApp
could access the keys. Further, P9 believed that “everyone
who is a bit clever can decrypt”. P6 was the only one from
our re-invited participants, who believed that WhatsApp’s
encryption protects users’ messages from eavesdroppers. She
indicated that WhatsApp is probably using extra software
for encryption preventing also the company from reading
the messages. However, it should be considered that P6 is
a Computer Science student and thus, we expect her to be
more knowledgeable than lay people.

Encryption: In 2015 all four participants thought SMS were
encrypted, while in 2017 only P9 still believed that SMS are
encrypted (but using an universal encryption key). P5 was
the only one in 2017 still thinking SMS is more secure than
WhatsApp.

All participants were aware that WhatsApp introduced
encryption. We assume that our study increased the aware-
ness of the participants. Still, the introduction of end-to-end
encryption in WhatsApp did not change the behavior of our
four participants:

“I still would not send a PIN over WhatsApp
because it is personal information. If I had to, I would
not feel differently before and after WhatsApp did
it.” (P9)

Authentication: Regarding two-party authentication in 2017
there are still misconceptions of WhatsApp’s QR code: “I
only used the QR code for WhatsApp web” (P6). P9 did not
know about the QR code in WhatsApp because she has not
found it in the app. However, she was aware that Threema
uses the QR code for authentication.

VIII. DISCUSSION AND IMPLICATIONS

In previous work on mental models and security perception,
researchers examined the current state at a given point in time.
To the best of our knowledge, this is the first work studying
behavior and understanding changes of users between two
points in time separated by an important event: the introduction
of end-to-end message encryption to the masses.

In this section we elaborate on the implications of our results
for the security community. In addition to our takeaways based
on our findings, we make concrete recommendations what
messenger and protocol developers could do in the future.

One of the key differences between the encryption introduced
by WhatsApp (and iMessage) is that they are extremely
usable - to a point that it is almost impossible to make a
mistake. This stands in strong contrast to classical approaches
such as PGP, S/MIME and others, which suffer from many
usability problems. Studies have shown that the majority of
users made catastrophic mistakes in those cases.

However, our study results show that the introduction and
usage of a highly usable security mechanism did not lead to
higher perception or valuation of the security technology. In
our view, this means that it was not just poor usability, which
hindered the adoption of past end-to-end encryption schemes
but also the unsurprising fact that users are overwhelmed by
technology in general and consider themselves to be helpless
and vulnerable against skilled attackers.

The fact that encryption was turned on without any user
interaction and further, that the use does not require any
additional interaction is what made this role-out a success.
However, this success comes at a price. Unlike with PGP the
WhatsApp and iMessage solutions rely on trusted first-
parties, namely the message providers. The providers can
change keys and mount attacks with little risk of being exposed
since there is still limited awareness of the underlying end-to-
end security mechanism.

A. Takeaways and Recommendations

Our most important takeaway is that end users do not trust
encryption, and this has not been changed by the widespread
adoption of usable encryption mechanisms. Even though the
participants had an almost correct threat model, they felt
vulnerable when using technology and were skeptical to any
technical solutions to prevent the attacks. When asked about
encryption, most stated they had heard of encryption but only
few understood the implications even on a high level. Their
consensus was that there is no technical solution stopping
skilled attackers from eavesdropping. The fact that encryption
increases the effort required to do so was not raised in any
significant manner. More surprisingly, despite WhatsApp’s
end-to-end encryption information messages that pop up
with every new communication partner and the high media
attention surrounding iMessage and WhatsApp encryption,
the majority of our participants were still not aware of it.

The success of WhatsApp’s and iMessage’s security
solutions is based on the fact that end users do not have to
understand what is happening. This seems like a very sensible
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way forward: “Users should not have to care about security - it
should just be there for them.” The failure of the introduction
and usage of end-to-end encryption to raise awareness or
increase the desire for protection shows that continuing down
the route of trying to educate users is likely to fail as it has in
the past.

This leaves some big challenges for the community to tackle.
One of the main reason why WhatsApp and iMessage have
succeeded where previous solutions have failed is the fact that
the products are under control of a single entity acting as a
trusted entity. This makes the creation of a usable solution
significantly easier. However, it also introduces the challenge
of preventing the key manager from tampering with the keys.
This confirms the demand for user-interaction-free solutions,
such as key transparency and CONIKS [18, 25]. On the other
hand, email encryption has to battle with the fact that dozens of
email clients and hundred of providers are in use and without
any concept for key management.

The results of our study suggest that attempts to provide
security against key-change attacks by informing the user
of changed keys might not succeed. For the time being we
recommend that the community accepts the fact that there is a
vendor lock-in since the effort to create a usable version of PGP
has shown that the engineering effort to create a multi-client,
multi-provider solution is a Herculean engineering task and in
our view focusing on the less challenging problem. Thus, based
on the results of our study, we propose that the open challenge
is to fulfill the following criteria in a closed-ecosystem to start
with:
• Work on users’ trust. Our study suggests that end users

underestimate the power of cryptography. As stated by
P5, “Even Mrs. Merkel was hacked and all messages
decrypted. So decrypting messages of an end user, the
little customer, is probably not a big deal. [...] In the end,
everything can be decrypted, interpreted or read.”

• Speak users language. Despite this being a well known
recommendation and part of Nielsen’s usability principles
this is still an issue in modern apps. Improving the
notification in WhatsApp by using a more user-friendly
language, e.g., understandable wording of end-to-end
encryption. In our study, the participants stated that they
ignored this message due to unfamiliar terms. For instance,
N3 stated when asked about WhatsApp’s end-to-end
encryption: “Oh that was what this annoying notification
was about?”

• Keep it simple for users. As already adopted in various
mobile messengers, users should not need to do anything
for security. This was confirmed by our participants
questioning the need to authenticate contacts manually:
“It would be too inconvenient to scan QR codes of all
contacts” (N10).

• Fewer notification, which the user does not understand.
The party managing the keys should not be able to mount a
man-in-the-middle attack by pushing new keys to a client.
Only in this event a user should be notified. User struggle
to understand the notification shown by WhatsApp.

IX. CONCLUSION AND FUTURE WORK

The main goal of this paper was to capture and compare
end-user mental models of message encryption. For this, we
conducted an in-depth qualitative study consisting of two
parts, each with 11 participants: pre- and post-MME. Although
WhatsApp introduced end-to-end encryption more than nine
months before our post-MME study, many participants still
were not aware of it and there had been only minor changes
in their mental models. Our results suggest that even though
users were able to describe the threat model almost correctly,
they do not believe that there is any technical possible to
stop the attackers. More importantly, misconceptions about
cryptography have lead to a lack of trust in encryption in
general. The participants reported feeling vulnerable and simply
assumed that they cannot protect themselves from attackers.
Based on our findings, we make recommendations for how the
community can address these challenges.

Our future work consists of studying cultural differences in
detail and conducting a quantitative experiment testing users’
understanding of different high-level encryption concepts.
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APPENDIX A
FINAL GUIDELINE

1) Scenario (5 minutes):
You would like to communicate with a friend via your
mobile phone. Therefore, you would like to send a text
message via Short Messaging Service (SMS) or via
WhatsApp to your friend. Please draw how you think
a communication via SMS looks like. Which intermediate
stations does the message pass through until it reaches
your friend?
• Does the communication for WhatsApp look similar or

different?
– If YES: Please prepare a second drawing or com-

plete the first one.
2) Can other parties eavesdrop the message?
• If YES: At which stations in the communication can

other parties eavesdrop the message? Please draw it in
your sketch. Which parties?
Lately, there have been reports of “Eavesdropping of
messages” in the media. Is there something that comes
to your mind concerning this topic?
– If NO: Have you heard about “Snowden” or the

“NSA surveillance scandal?” If NO: proceed with (3,
Tip)

3) You assumed that other parties might eavesdrop your
message. Are there any countermeasures to prevent that?
(1 minute) Tip: Have you heard of encryption?

4) How can somebody encrypt? Could you please explain
how you think encryption works? Please draw it in your
sketch. (5 minutes)

5) How can you assign a message uniquely to one person?
(3 minutes)
• If answer = “Personal password”: Then you would

have to agree with your communication partner on an
individual password. This could be quite difficult. Can
you imagine an alternative?

• If answer= “Phone number”: Would this be sufficient?
(Tip: Or could the provider imitate the telephone
number?)

6) Do you think SMS messages are encrypted? (1 minute)
• If YES: Who could eavesdrop the messages? There was

no password exchange.
7) Do you think WhatsApp messages are encrypted? (1

minute)
• If YES: Who could eavesdrop the messages? There was

no password exchange.
8) Have you heard of apps offering encryption? (1 minute)
• If YES: Which can you name?

9) Have you used apps offering encryption? (1 minute)
• If YES: Which ones?
• If NO: Would you use apps offering encryption?

10) Are you currently using apps offering encryption? (2

minutes)
• If YES: Which ones?
• If NO but already used: Why are you not using the

app(s) any longer?

APPENDIX B
DEMOGRAPHIC SURVEY QUESTIONS

1) Gender: Female / Male, Age: ... Years
2) How often do you send text messages via SMS/

WhatsApp? Regularly - Often - Rarely - Never
3) What is your highest completed level of education?
4) Recent professional status: Student, subject:...; Employed,

profession:...; Unemployed

APPENDIX C
TECHNICAL SCORE

We calculated the technical skill score (0-12) of our partici-
pants as follows: (T1 + reverse(T2) + T3) - 3. A value of 0-3
was considered as a low technical score, 4-8 was considered
a medium technical score, and 9-12 was considered a high
technical score.
• T1: I have a good understanding of Computers and the

Internet: 1: I disagree - 5: I agree
• T2: I often ask other people for help when I am having

problems with my computer. 1: I disagree - 5: I agree
• T3: I am often asked for help when other people have

problems with their computer. 1: I disagree - 5: I agree

APPENDIX D
AGGREGATED MENTAL MODELS OF INDIVIDUAL

INTERVIEWS

Stations mentioned by participants before end-to-end security
from Figure 2a:

1) Mobile Phone: P3, P4, P5, P6, P8, P9, P10
2) Provider: P1, P2, P4, P5, P6, P7, P8, P10, P11
3) Satellite: P2, P8, P10
4) Provider: P1, P2, P7, P8, P10, P11
5) Mobile Phone: P3, P4, P5, P6, P8, P9, P10
6) Provider: P1, P8, P10, P11
7) Internet: P1, P2, P3, P4, P5, P6, P8, P10, P11
8) Provider: P1, P8, P11
9) WhatsApp Server: P1, P3, P5, P6, P7, P8, P9, P11
Stations mentioned by participants after end-to-end security

from Figure 2b:
1) Mobile Phone: N2, N3, N4, N5, N6, N7, N10
2) Provider: N1, N2, N3, N4, N5, N6, N7, N8, N9, N11
3) Mobile Phone: N2, N3, N4, N5, N6, N10
4) Internet: N3, N4, N5, N6, N11
5) Satellite: N2, N3, N4
6) WhatsApp Server: N3, N4, N5, N6, N7, N8, N9, N11

APPENDIX E
DEMOGRAPHICS

The demographics of our participants can be found in
Table III.
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Participant Sex Age Highest completed
level of education

Current
employment

Technical
Score

How often do
you send text
messages via
SMS

How often do you
send text messages
via WhatsApp

Used encryption
apps

Encryption-tip

P1 Male 33 Master of Applied
Biotechnology

Office Assistant high Regularly Rarely N N

P2 Female 24 A-Levels Biotechnical Assis-
tent

medium Rarely Regularly N N

P3 Female 27 Trained Hairdresser Caterer / Waitres low Rarely Regularly N Y
P4 Female 47 Computer Science Self-employed high Regularly Rarely Y N
P5 Male 26 Advanced technical

college entrance
qualification

Student Business Ad-
ministration

high Rarely Regularly N Y

P6 Female 26 Advanced technical
college entrance
qualification

Student Computer
Science

medium Rarely Often N N

P7 Female 19 A-Levels Student Media Infor-
matics

medium Rarely Regularly N N

P8 Male 26 Diploma Financial
Consultant

Public servant
Fincancial
Administation

high Often Regularly Y N

P9 Female 46 State examination Research Assistant
Medicin

medium Regularly Regularly Y N

P10 Female 25 Advanced
qualification to
enroll for a technical
college+ Trained
Educator

Unemployed medium Regularly Never N Y

P11 Male 23 A-Levels Student Business In-
formatics

high Rarely Regularly Y N

NP1 Male 48 Certificate of
Secondary Education
+ Trained cook

Unemployed high Rarely Regularly N N

NP2 Male 22 Advanced
qualification to
enroll for a technical
college

Self-employed Sales-
person Health Sector

low Regularly Regularly N N

NP3 Male 21 A-Levels Student Aggricultural
Studies

high Regularly Regularly N Y

NP4 Female 27 A-Levels Student Medicin medium Regularly Regularly Y (WhatsApp) N
NP5 Male 53 Trained forwarding

merchant
Self-employed
Trader

medium Regularly Regularly N N

NP6 Female 24 Bachelor Education Student Master of Ed-
ucation

low Rarely Regularly N

NP7 Male 35 Master Logistics and
E-Business

Part-time employed
Business Admin.

medium Regularly Often Y (WhatsApp) Y

NP8 Female 53 Advanced
qualification to
enroll for a technical
college

Self-Employed (Well-
ness Consulter)

medium Rarely Regularly N Y

NP9 Female 21 A-Levels Paramedic low Regularly Often Y (WhatsApp) Y
NP10 Female 21 A-Levels Pharmaceutic, techni-

cal Assistant
high Regularly Regularly Y (Line, What-

sApp)
N

NP11 Female 20 A-Levels Employed in Busi-
ness Administration

medium Regularly Regularly Y (WhatsApp) N

2017:P1
from 2015

Male 34 same as in 2015 Assistant of the CEO high Regularly Regularly Y (WhatsApp) N

2017:P5
from 2015

Male 28 same as in 2015 same as in 2015 medium Often Regularly N N

2017:P6
from 2015

Female 27 same as in 2015 same as in 2015 medium Often Regularly Y (Signal) N

2017:P9
from 2015

Female 47 same as in 2015 same as in 2015 medium Often Regularly Y N

TABLE III: Demographics of 22 participants
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4.2 Implications and Future Directions

The focus was on examining how users conceptualize secure messaging systems and their fea-
tures to find and address users’ misconceptions leading to lower security. The findings of this
study reveal a significant gap between secure messaging systems’ technical capabilities and users’
perceptions of their effectiveness. Despite the adoption of end-to-end encryption by mainstream
platforms like WhatsApp, user awareness of these advancements remains low. Most users did
not even notice the introduction of end-to-end security. The study highlights a persistent mistrust
in encryption technologies, rooted in misconceptions about their capabilities. Participants often
overestimated attackers’ abilities while underestimating encryption’s protective power and im-
mensely overestimating the capabilities of the attackers (“every encryption can be broken by secret
services”). This skepticism led to a general sense of vulnerability (“Using technology made them
feel vulnerable” [2]), with users believing that no technology could prevent skilled attackers from
accessing their messages. Future studies could investigate whether user trust and understanding
of encryption differ by cultural background or technological exposure, enabling developers to
tailor communication strategies to specific audiences.
This mistrust underscores the limitations of usability-focused security implementations alone.

While features like end-to-end encryption were seamlessly integrated into messaging platforms,
they failed to shift user confidence in the technology. The findings suggest that technical trans-
parency, intuitive communication, and targeted education are necessary to bridge the gap between
user mental models and the actual security guarantees these systems offer. Integrating the study’s
recommendations into widely-used platforms would require a phased approach, starting with
user testing of simplified terminology and incremental updates to the UI that prioritize intuitive
encryption awareness. Emerging technologies like AI chatbots or decentralized systems could
complicate user mental models since even for experts it is not always clear what remains locally and
what might be forwarded to cloud-based models. Developers must preemptively address these
shifts by ensuring transparency in how these features align with encryption standards. Building
trust in encryption requires effective implementation and user-centered design that addresses
misconceptions and fosters confidence in secure communication.
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CHAPTER 5

Repurposing Wearables for Cryptographic
Security

With smartphones increasingly serving as primary devices for sensitive operations such as email
encryption, authentication, and secure communication in general, the protection of cryptographic
keys becomes a central concern. As outlined in the analysis in Chapters 2 and 4, users can handle
encryption if it is handled automatically, but the handling of security keys remains a significant
problem for users since most average users do not entirely grasp what it means. Furthermore,
traditional approaches, like storing keys directly on the device, are susceptible to theft, compromise,
or software vulnerabilities.

This chapter, incorporating a previously published peer-reviewed journal article in its entirety [5],
introduces a novel architecture that offloads key storage and cryptographic operations to exter-
nal wireless hardware security tokens, such as smart cards or wearables. Leveraging the Near
Field Communication (NFC) protocol enables a secure and user-friendly mechanism for key
storage and management without requiring users to handle complex cryptographic operations
manually. The proposed NFC-based token architecture can be integrated into existing tools like
OpenKeychain by leveraging existing APIs for key management while ensuring backward
compatibility with current cryptographic standards, especially OpenPGP. A quantitative lab study
within a large enterprise company in Germany evaluates the practicality, usability, and acceptance
of this approach.

This is one of the first implementations for offloading cryptographic key storage to wearable devices
on Android, such as rings, which are used in common messaging applications or email. Rather
than providing APIs for authentication only, this work offers a more high-level approach, which not
only includes cryptographic primitives but also a variety of pre-defined user interface components
for common end-user interactions. This approach separates key management from the mobile
device, ensuring that sensitive data is stored securely on external tokens.

A lab studywith 40 participants conducted under field conditions evaluates the implementation’s
usability and practicability, as well as the usability and security of the architecture in general. The
empirical evaluation assesses the practical feasibility of NFC-based wearables for cryptographic
operations and provides insights into the advantages and challenges of using such tokens in
real-world scenarios.
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5.1 Publication 4 | OpenKeychain: An Architecture for Cryptography
with Smart Cards and NFC Rings on Android

Authors’ Contributions

The work presented in this chapter is based on our publication OpenKeychain: An Architecture
for Cryptography with Smart Cards and NFC Rings on Android published at the Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3 (DOI
10.1145/3130964) [5]. The chapter text is, in large part, taken and adapted from this paper.
The authors’ contributions that are relevant to the contents of this chapter are as follows:

• Sergej Dechand I designed the study, conducted the sessions with participants and
was responsible for processing and evaluating the study results. My contributions
ensured the methodological rigor and the analysis of the findings presented in the
paper.

• Dominik Schürmann served as themain author, primarily responsible for the software
implementations and the integration of cryptographic features into OpenKeychain.
Dominik also managed the interactions with study participants, ensuring the smooth
execution of the software-related aspects of the study.

• Lars Wolf provided valuable feedback throughout all phases of the work and offered
guidance on structuring the paper, contributing to its clarity and quality.
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OpenKeychain: An Architecture for Cryptography with Smart Cards and
NFC Rings on Android

DOMINIK SCHÜRMANN, TU Braunschweig, Germany
SERGEJ DECHAND, University of Bonn, Germany
LARS WOLF, TU Braunschweig, Germany

While many Android apps provide end-to-end encryption, the cryptographic keys are still stored on the device itself and can
thus be stolen by exploiting vulnerabilities. External cryptographic hardware solves this issue, but is currently only used for
two-factor authentication and not for communication encryption.

In this paper, we design, implement, and evaluate an architecture for NFC-based cryptography on Android. Our high-level
API provides cryptographic operations without requiring knowledge of public-key cryptography. By developing OpenKeychain,
we were able to roll out this architecture for more than 100,000 users. It provides encryption for emails, messaging, and a
password manager. We provide a threat model, NFC performance measurements, and discuss their impact on our architecture
design. As an alternative form factor to smart cards, we created the prototype of an NFC signet ring. To evaluate the UI
components and form factors, a lab study with 40 participants at a large company has been conducted. We measured the
time required by the participants to set up the system and reply to encrypted emails. These measurements and a subsequent
interview indicate that our NFC-based solutions are more user friendly in comparison to traditional password-protected keys.

CCS Concepts: • Security and privacy → Usability in security and privacy; Key management; Hardware-based security
protocols; • Human-centered computing→ Mobile devices;

Additional Key Words and Phrases: NFC, near-field communication, smart card, ring

ACM Reference Format:
Dominik Schürmann, Sergej Dechand, and Lars Wolf. 2017. OpenKeychain: An Architecture for Cryptography with Smart
Cards and NFC Rings on Android. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 3, Article 99 (September 2017),
24 pages.
https://doi.org/10.1145/3130964

1 INTRODUCTION
Nowadays, it is widely acknowledged that smartphones hold the most sensitive information, such as emails,
short messages, and photos. Besides private usage, the same devices are often used for accessing privileged
company information due to Bring Your Own Device (BYOD) policies. Privacy-aware app developers take this
into account and provide apps for secure messaging, encrypted cloud storage, and other use cases. Unfortunately,
secret keys generated by these apps are unprotected and stored on the internal flash memory. Thus, an attacker
can fully compromise end-to-end security by retrieving secret keys through privilege escalation exploits or
direct physical access. While this is a well-known problem, the security of many apps and the mobile operating
system is subpar [82]. Since the Stagefright-bug [85], Google started rolling out monthly Over-The-Air (OTA)
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updates [53] documented in Nexus Security Bulletins [4]. Unfortunately, not all fixes are backported for devices
of other Original Equipment Manufacturers (OEMs). Even if the system is up-to-date, widespread vulnerabilities
in secure email and messaging apps have been found, potentially exposing secret keys to attackers [78, 82]. Even
worse, app developers often lack knowledge of cryptography, which leads to insecure implementations [25, 29].

Traditional desktop encryption software provides protection against key theft by encrypting keys using
high-entropy passwords. One of the main reasons this is not done on mobile devices is due to the difficulty of
entering passwords on mobile on-screen keyboards. One often recommended password alternative are biometric
fingerprints. These can be used since Android 6 with the Keystore API. While they are suitable for locking devices,
they should not be used alone to protect secret keys. They do not provide enough entropy to reach the same
strength as passwords or hardware-backed solutions [49, 56].

For desktop systems, external hardware in form of smart cards exist which can be used with USB card readers.
They replace password-protected key files with external cards and corresponding PINs. In contrast to traditional
key files, which are stored on the same device where the password is entered, the secret key of a smart card
is stored physically separated from the device where the PIN is entered. For smartphones, On-The-Go USB
cables or other external peripherals, such as hardcovers with card slots, exist. Because these are unwieldy and,
thus, unsuitable for day-to-day usage, Near-Field Communication (NFC) has been proposed for smart card
communication. A small selection of NFC tokens, which are capable of encryption and signature generation and
not only authentication is available. Still, no high-level cryptographic NFC API was available.

1.1 Contributions
In this paper, we introduce and evaluate an architecture for NFC-based cryptography on Android via external
security tokens, such as smart cards. First, we discuss the problem setting by looking into currently available
NFC hardware and software libraries to derive a clear set of requirements. In the threat model we consider for
this work, three main attack areas have been identified: NFC, security token, and smartphone. All attacks are
evaluated in comparison to traditional password-protected secret keys. Based on our requirements and threat
model, we carefully design our architecture and, thus, make the following contributions in this paper:

(1) Our main contribution is the design of a high-level API for Android, which not only includes cryptographic
primitives but also a variety of pre-defined UI components for common end-user interactions. Previously available
cryptographic NFC APIs have been designed for authentication only.
(2) For developers, we provide a set of API methods, which can be used without knowledge of public-key

cryptography. Keys are handled transparently independent of their storage location (password-protected key file
or via NFC). In addition to the card’s PIN authentication, we provide a security layer via an Android app that
handles the PIN input and allows only certain apps access to cryptographic methods, which have been explicitly
granted by the user. This way, under the assumptions of Android’s security model, only one trusted app handles
the PIN input, while many semi-trusted apps can access cryptographic methods.
(3) As one of the main developers of OpenKeychain, an encryption app for Android, we were able to roll out

this architecture for more than 100,000 devices. Its API is used by several other apps, such as K-9 Mail, the XMPP
client Conversations, and the password manager Password Store.

(4) As an alternative form factor, we consider a NFC ring. Because no NFC rings with a cryptographic processor
are available, we created our own prototype using an NXP Integrated Circuit (IC) and a 3D printer.

(5) To evaluate the end-user usability of our architecture in combination with password-protected keys, NFC
cards, and NFC rings, we conducted a usability lab study with 40 participants outside of the university environment
in cooperation with the IT security department of a large company. As a use case scenario we implemented
end-to-end encrypted email communication. Finally, an interview has been conducted to evaluate user perception
and form factor acceptance.
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2 RELATED WORK
The work presented in this paper touches the research areas of (a) usability of end-to-end encryption, (b)
cryptographic API design, and (c) usability of security tokens, especially in conjunction with smartphones.
While our API supports a wide range of differing use cases, end-to-end email encryption is one prominent

example, which we also included as an experiment in our study. The famous “Why Johnny Can’t Encrypt” [81]
publication discusses a case study on PGP 5.0 and concluded that end-to-end email encryption software was still
not usable enough for most end-users. This led to several user studies over the few last years, e.g., by Garfinkel
et al. [35, 36] and Fahl et al. [30]. They studied larger groups and proposed how email encryption or Facebook
encryption can be made usable.

While there is a broad range of research on usable security for end-users, developer usability is often neglected.
It has been shown that in a set of 12000 apps at least 88 % include at least one cryptographic error [25]. Similarly,
developers often override safe defaults due to being unaware of the implications as shown in the evaluation of
SSL apps by Fahl et al. [31]. To prevent these incidents from happening, high-level cryptographic APIs, such as
NaCl [7], Sodium [20], and Keyczar [21], have been published in the last years. High-level ‘crypto-box’-methods,
based on a fixed set of algorithms, are provided that execute several steps at once, which are usually done
individually when using low-level APIs such as Java Cryptography Extension (JCE) or Bouncy Castle [11]. Still,
these libraries provide no automated way of handling password/PIN input and are not designed to fit into the
developer ecosystem of mobile operating systems such as Android.
Research on the usability of security tokens for asymmetric cryptography in the context of encryption of

emails or instant messages is limited. Most publications focus on authentication not encryption with security
tokens, in particular smart cards. Sasse concludes that smart cards can offer usability benefits compared to
password authentication [75]. Strouble et al. conducted a survey, answered by 300 participants, evaluating the
usability of smart cards [79]. A notable result is that 67 % left their smart cards in the USB reader at least once,
which increases the possibility of theft. Paul et al. conducted a field study with 24 participants over 10 weeks
to evaluate the user behavior and perceptions in regards to smart cards [67]. They conclude that “The greatest
perceived benefit was the use of an easy-to-remember PIN in replacement of complicated passwords. The greatest
perceived drawback was the lack of smartcard-supported applications” [67]. Recently, Google compared their
‘Security Keys’ with other hardware tokens, passwords alone, and two factor authentications using smartphone
apps [52] using the usability framework by Bonneau et al. [10]. They measured the raw performance and found
out that users are twice as fast authenticating via ‘Security Keys’ in comparison to in-app One Time Passwords.
Failure rates dropped from 3% with OTP to 0 %. Taking into account the burden of physically carrying around
authentication hardware, Mare et al. found that participants greatly differ in their preference regarding form
factors [54]. To the best of the authors’ knowledge, no studies are considering the usage of NFC security tokens,
in our case NFC cards and rings, for end-to-end encryption instead of authentication on smartphones.

Available security tokens, which are qualified for our architecture, must include a cryptographic processor for
asymmetric operations, such as RSA or ECC, and a NFC interface. For desktop systems with USB or card readers,
tokens such as NitroKey [62], variants of YubiKey [83] (w/ OpenPGP support), and Java Card OpenPlatform (JCOP)
smart cards with ICs by NXP are available. A number of smartphone accessories exist, e.g., back covers like the
BlackBerry Smart Card Reader [72], modern variants like the Smart Card Reader by Precise Biometrics [69] (∼100
EUR), and the Smart Fold Android Contact Smart Card Reader [46]. Due to the cost and bulkiness of external
peripherals, NFC security tokens are considered. Only a limited number of the presented ones have an NFC
interface, such as YubiKey NEO [83], the Fidesmo Card [32], and NXP developer cards with dual interface.
In addition to evaluating the traditional card form factor, we consider the usage of wearable NFC rings. A

first example from 1998 is the Java Ring by Dallas Semiconductor [18] running an early version of the Java
Card environment. During the following years, this form factor has been proposed for different communication
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scenarios [16, 60, 71, 73]. A famous commercially available NFC ring has been designed by McLear and marketed
via Kickstarter [58]. To the best of the authors’ knowledge, no consumer-ready NFC ring supporting asymmetric
cryptography over NFC together with an implementation was available until the first author started the work
outlined in this paper.

3 PROBLEM SETTING
As discussed in the introduction, important secret keys should not be kept on internal flash storage as they can be
stolen using widely available exploits. Instead, it is good practice to store those on external security tokens. In this
section, we discuss related security and usability problems to derive a set of requirements for our architecture.
Cryptographic operations should be executed via a connection between smartphone and token, while the

secret key itself should never be exposed to the smartphone. This connection is traditionally established via card
readers, which require On-The-Go USB cables or external peripherals to work with modern smartphones. Also,
smart cards are often left inside the reader [79], which poses a security risk. Communication over NFC has been
proposed as a mobile alternative but no API is available for encryption/digital signature generation. Even though
a small selection of security tokens with NFC and cryptographic processor are available, these are designed as
credit cards or USB sticks. While other form factors have been proposed for simple NFC tags with read/write
capability, these are not available with cryptographic processors. Furthermore, while the usage of security tokens
has been evaluated for two-factor authentication, no studies exist in the context of end-to-end encryption. Thus,
it is not known how users perceive the usage of NFC in the context of email encryption for example. It is also not
known if other form factors could improve the acceptance of tokens or their usability.
When using NFC, security tokens must be held against the device’s NFC antenna for differing durations

depending on the cryptographic operation. Users can easily get frustrated if these are too long. Access control to
operations should be done by entering a numeric PIN on the device that is easy to remember. To restrict brute
force attempts, the token should deactivate after a number of failed attempts and a special Admin PIN must allow
the user to re-activate the token. In available implementations for desktop operating systems with card readers,
the users are not properly guided through the selection of an appropriate PIN and Admin PIN. For example, in
GnuPG [26] and Enigmail [14] users are not forced to change the default PINs after key generation.
Not all apps should have access to the PIN to execute arbitrary cryptographic operations while the security

token is held against the NFC antenna. Also, in traditional desktop implementations, it is not possible to restrict
the execution of cryptographic operations to a specific set of client applications. Thus, client applications often
handle PIN input directly, even though they may not be trusted fully. Furthermore, usage of secret keys is not
restricted in any way, as long as a contact smart card is inserted into the reader. Secret keys for special purposes
or higher levels of classification are not protected differently than other keys. Currently, no high-level API exists
for smartphones that supports cryptographic operations, but also securely handles PIN/password caching and
provides user interaction for common functionality, such as public key import. All available low-level APIs
integrated in mobile operating systems such as Java’s Cipher API [2] on Android, whose internals are based on
Bouncy Castle/OpenSSL, as well as iOS Cryptographic Services [5] require a substantial effort from the developer.
This naturally leads to vulnerabilities implemented over and over in many apps as well as to re-implementations
of the same functionality in different contexts, such as password input as well as caching layers. Furthermore, they
do not provide re-usable UI components. Even high-level APIs, such as NaCl [7], Sodium [20], and Keyczar [21],
require a substantial amount of app-specific code to handle password input and caching, migrations from older
key algorithms, and user to key mappings.

In addition, these are designed without special hardware in mind, i.e., no external security tokens are supported
out of the box. Thus, keys stored on security tokens must be handled completely different and require more
complexity than keys stored on the device, e.g., when using Android APIs [27].
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3.1 Requirements
Based on the outlined problem setting, a set of architectural requirements is derived:

R1 Support for multiple form factors without external smartphone accessories
R2 Short durations of cryptographic NFC operations
R3 PIN input and caching solely handled by a trusted entity on the smartphone
R4 High-level versionable cryptographic API including UI components for common user interactions, secure

defaults, and standardized packet formats
R5 Access control on the token-side by numeric PIN/Admin PIN and on the app-side by restriction of secret

keys to specific clients
R6 Transparent handling of secret keys independent of their storage location

3.2 Threat Model
The main advantage of security tokens is that its key storage is physically separated from the mobile device. The
hardware and firmware of the security token does not provide an API to retrieve secret keys, only cryptographic
operations are exposed executed on the processor of the token. In the following, the discussed threat model is
subdivided by the attacked entity, i.e., NFC, security token, and smartphone. While we evaluate all scenarios
relevant for the whole architecture, an emphasis lies on mitigations provided by our own contributions.

3.2.1 NFC. First, we discuss attacks against the NFC connection itself that is established between the smart-
phone as an active initiator and the security token as a passive target.

Denial of Service Since radio jamming in general is difficult to prevent, NFC lacks sophisticated counter-
measures. However, simply preventing communication is of low value to an attacker. In particular, signing
and decrypting emails is not a time-critical activity and can, thus, tolerate short-term disruptions. More
importantly, this attack does not put the security of the secret key at risk.

Relay Attack This attack is also called a wormhole or Mafia attack. In the field of NFC payment and
authentication systems, a connection is established between the victim’s smart card and an attacker’s
NFC reader. This connection is relayed over the Internet to a second device of the attacker to actually
authenticate or pay at a different NFC reader physically far away [34]. This attack can potentially be
executed unnoticed by holding the attacker’s NFC reader against the victim’s pocket containing the smart
card. In our architecture, the security token is protected by a PIN. Thus, NFC relay attacks can only be
executed if the PIN has been compromised beforehand.

Eavesdropping Kortvedt and Mjolsnes were able to eavesdrop on NFC in a range of up to 29 cm [51]. Brown
et al. experimentally showed that eavesdropping capabilities largely depend on the amount of background
noise [12]. Thus, if the attacker is very close to the victim and has the required equipment, it might be
possible to extract the following information: In case of signature generation, a hash is transmitted and
a signed hash is received. In case of decryption, an encrypted session key packet is transmitted and the
decrypted session key is received. It is important to note that the plaintext that should be signed or the
ciphertext that should be decrypted is never transmitted. Furthermore, the secret key never leaves the
security token. Therefore, to decrypt an email with an eavesdropped session key, the encrypted email
must also be intercepted at the corresponding email provider. Still, this is a valid attack scenario against
targeted individuals. While our current prototype assumes channel security, for a future version we consider
deploying the NFC-SEC standard [23, 24] that provides an Elliptic Curve Diffie Hellman key exchange with
AES encryption. An application-level alternative for securing NFC has been proposed by Hölzl et al. using
the Secure Remote Password (SRP-6a) protocol authenticated by a user-provided password [45].
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Man-in-the-Middle (MitM) While eavesdropping might be possible in a certain range, MitM are extremely
difficult because the attacker needs to block existing NFC. In detail, these attacks differ depending on the
type of NFC connection: With an active-passive or passive-active connection, an attacker has to both block
the originator’s channel and to create an own RF field with perfect timing [42]. This is hard to achieve
in practice and can possibly be detected by the user. In case of active-active connections, the interceptor
has to completely block the communication between both partners without them noticing. Usually, NFC
should abort if two RF fields exists, but is has been shown for the EMV protocol that some implementations
do not follow the standard and it is possible to win the timing race [59]. Yet, this has not been shown for
other protocols besides EMV. Conclusively, while Haselsteiner and Breitfuß [42] consider MitM attacks
practically impossible, we at least consider them extremely difficult.

3.2.2 Security Token. In general, access to the security token is protected by a PIN with a length of 6 digits to
protect against attackers in physical proximity. Thus, every cryptographic operation requires an authentication
step. For the remaining attacks, we assume that the security token is protected against manipulations until it
is received by the end user. Hence, the manufacturing process, warehousing, and shipping are considered to
be secure, such that the initial key generation by the user is uncompromised. From this point on, though, the
security token is vulnerable to theft and loss. As stated in the Introduction, there is no pre-deployed secret key
on the security token, but the keys are generated by the user. In the following, we will mainly focus on attacks
against the authentication step and hardware.

Brute Force PIN For memorability, we let the user chose the PIN, but prevent certain commonly chosen
combinations, such as 123456. An attacker gaining access to the device can brute force up to 3 possible
combinations of the PIN. After this, the security token is locked to prevent further brute forcing, and can
only be unlocked entering the Admin PIN. In our architecture, the Admin PIN is not chosen by the user,
instead it is securely-generated from random.

Physical attacks Due to theft or while the owner leaves the token unattended, an attacker can gain access
to the security token. Physical attacks [80] aim to read, to modify or to erase data on the security token.
Examples are provoking a power outage, examination with a probe station, chip re-wiring, as well as
addition and cutting of a track. Given the physical access to the security token, these are generally difficult
to defeat completely. Yet, they are typically expensive, destructive, and time consuming, especially since
attacks are very target dependent. Additional protections against physical attacks, such as additional metal
layers, bus scrambling, or on-board sensors can also be implemented on the hardware side. For these
countermeasures, we rely on the security of the utilized NXP IC.

Side-Channel Attacks While being in close proximity to the owner, who currently uses the token with her
smartphone, information about the cryptographic operation can be leaked by the token and smartphone.
Timing attacks, for instance, exploit that the computing time of an operation differs with the used parameters,
which in turn, can then be derived. As with physical attacks, we rely on the countermeasures provided
by the IC. As discussed for an attacker who eavesdrop on NFC communication, also for side-channel
attacks against the hardware, it could provide an additional advantage to monitor the corresponding email
communication to correlate the decryption process with a particular message.

3.2.3 Smartphone. Recent vulnerabilities, such as the Stagefright bug [85], show the limited security on mobile
devices. While local and remote software/firmware vulnerabilities are considered, we assume state-of-the-art
cryptographic algorithms to be secure.

Physical Access An attacker, who gains physical access to a smartphone, while the owner leaves it unat-
tended, is assumed to be able to download all data. The secret key, however, is never stored on the phone
and, thus, not at risk. If no sophisticated attacks are performed, such as flashing a whole new operating
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Fig. 1. Architecture Overview.

system, Android’s system security prevents the installation of malware with root access. Still malicious
apps with normal privileges could be installed. Due to the fact that PINs/passwords are only entered via a
single trusted cryptography provider, malicious apps without root access cannot intercept these.

Vulnerabilities in Client Apps An attacker can try to exploit vulnerabilities in client apps that use our
API. As described before, passwords and PINs cannot directly be retrieved as these are handled by the
trusted cryptography provider only. Some vulnerabilities could potentially allow the attacker to trick the
user into decrypting different content than originally opened by the user. In this case the password/PIN
is properly entered by the user and the attack succeeds. To reduce the privacy impact in this scenario, a
client app’s API access is restricted to specific secret keys. Thus, only the keys selected for this client can
be misused by an attacker.

Vulnerabilities in Android Critical vulnerabilities in Android can lead to exploits being used by an attacker
to install malware with system access. In this case all installed apps are potentially insecure, even the
PIN/password input and caching. Still, after detecting such a breach and removing the malware, future
communications are secure, because the attacker was not able to retrieve the secret key.

UI Spoofing/Task Hijacking A malicious app could start a PIN/password dialog overlaying the original
one and mimicking its design to intercept user secrets. This could be done by installing malware or a
patched version of our cryptography provider. More sophisticated attacks building upon this scenario
exploiting Android specific mechanisms are discussed by Cooley et al. [17] and Ren et al. [70]. As a future
countermeasure we are plan to allow the user to set a personal image that will appear in all trustworthy UI
components of our architecture. This has been implemented for example by Mailvelope [55].

GUI Side Channel Attacks As a special subcategory of attacks on Android, side channel attacks on the GUI
of Android apps and hardware interrupts can potentially leak PINs/passwords to an attacker [15, 22]. As
Diao et al. [22] remark, these side channels need to be closed on a system level by providing less runtime
statistics to installed apps.

4 ARCHITECTURE
Considering the requirements and threat model, we propose a security architecture as depicted schematically
in Figure 1. A security token, e.g., in credit card format, runs a smart card operating system together with an
implementation of the cryptographic operations. The user’s secret key is stored solely on this external token. It
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receives power via induction while holding it against the device and communicates with the operating system over
NFC. The device’s NFC interface is standardized and, thus, works with security tokens of multiple form factors
(R1). The token’s API is protected via PIN authentication and provides all required cryptographic operations
such as key generation, signature creation, and decryption. A single trusted cryptography provider is installed as
an app on the smartphone’s operating system. It implements all required low-level cryptographic operations
as well as communication over NFC, optimized for short durations (R2) and usability. PIN/password input and
caching is done solely by this trusted cryptography provider (R3). In addition to PIN/password input, several
other common user interactions are supported to prevent re-implementations of the same interactions in different
clients and decrease implementation complexity for client developers. An API is exposed to client developers
providing high-level versioned cryptographic methods, e.g., a method for encryption combined with signatures,
in the standardized OpenPGP message format (R4). Access to this API is granted per app by user choice (R5).
The cryptography provider provides a key generation wizard that includes a secure selection of PIN/Admin PIN.
Furthermore, it provides a unified way to transparently use secret keys without exposing their storage location
or asymmetric algorithms (R6).

4.1 Prerequisites
Our architecture is based on several existing technologies that are discussed briefly as prerequisites.

OpenPGP To integrate with existing protocols, the OpenPGP standard [13] has been chosen. It provides
standardized email [28] and instant messaging [76, 77] encryption. Thus, it supports most common use cases
with extensions for standardized communication protocols. OpenPGP support for smart cards has been stan-
dardized for ISO-compatible card operating systems [68] and primarily three open source implementations
exist [33, 61, 84].

NFC Typically operating at 13.56MHz, NFC is a wireless transmission technology for short ranges allowing
active-active and active-passive modes. In our case, an active-passive connection is established, where
the smartphone serves as the initiator and the security token is the passive target. The ISO 14443-4 [47]
standard is used as the physical/link layer protocol between initiator and target and ISO 7816-4 [48] defines
the basic structure of commands and Application Protocol Data Units (APDUs).

Operating System Support NFC support in Apple’s current iOS 9 only supports NFC store loyalty cards as
part of the Apple Pay API [6] and Windows Phone has only limited support for smart cards [1]. In contrast,
Android’s NFC API allows to exchange APDUs. It supports a foreground dispatch mode (≥ Android 2.3.3)
and reader mode (≥ Android 4.4) that allow an app to manage the NFC connection without interfering
with other installed NFC apps [3].

4.2 API Design
The presented architecture has been fully implemented for the Android operating system as part of OpenKey-
chain [65], an app implementing the OpenPGP standard. Currently, OpenKeychain has over 100,000 installations
on Google Play and is also available via alternative stores, such as F-Droid. Besides the API proposed in this paper,
OpenKeychain also provides encryption/decryption as well as signature generation/verification functionality of
messages and files within the app. Since October 2015, a version has been released that was audited externally [43].

The following design provides a high-level API that complies with all requirements and can be used by other
installed apps in a convenient way: In agreement with the OpenIntents project [64], the API definition lives
in the namespace “org.openintents.openpgp”. In contrast to similar architectures like JCE, these can also be
chosen at runtime via app settings, i.e., the cryptographic backend for an email app can be provided by multiple
implementations of the same high-level API.
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Fig. 2. Control flow of the proposed API.

Instead of providing an API via exported Android Activities, the API has been defined with the Android
Interface Definition Language (AIDL). This allows for streaming of larger content via file descriptors. While this
allows for performant access to shared memory between two apps, the immutable definition of the methods’ type
signatures makes it difficult to maintain backward compatibility with API definitions included in older client
apps. Thus, instead of defining the method name and parameters directly as part of the type signature, these
are defined using an Intent with a specific action (method name) and extras (method parameters), which are
well-known to Android developers. Using Intents allows for easier backward compatibility and more flexible
method definitions, which are not constrained to a specific parameter combination. To satisfy the requirement of
backward compatibility, these are made versionable by including a version field together with a size calculated
over the remaining fields at the first position when flattening the object for serialization.
Following Figure 2, after binding to the service, a client can execute a remote method. If a parameter is not

specific enough or a required parameter is missing that can be provided by the user, the operation is canceled
and the USER_INTERACTION_REQUIRED result code is returned together with a immutable PendingIntent. This
PendingIntent can be started by the client at an appropriate time and is executed in the cryptography provider’s
process sandbox to handle interaction using appropriate UI components. One common use case is that a public
key is missing for a given email address and must be downloaded. After user interactions, the operation is
executed again with the parameters from the first execution combined with those retrieved from user input via
the result Intent. The client app holds all parameters and decides by itself at which point in its control flow to
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(a) Access control per
app via user decision.

(b) Missing public key. (c) Restriction of al-
lowed keys per app.

(d) Password input for
password-protected
keys.

(e) PIN selection during
key creation.

Fig. 3. A selection of UI components shown via PendingIntent for the USER_INTERACTION_REQUIRED state.

Table 1. API specification. No understanding of public-key cryptography is required.

Action Req. Extras Description

SIGN_AND_ENCRYPT USER_IDS Encrypt to email addresses (USER_IDS) and generate signature
DECRYPT_VERIFY - Decrypt and verify signature

start the PendingIntent for user interaction. On SUCCESS, the encrypted and signed text has been streamed into
the file descriptor given by pipeId.
For an API it is desirable to be stateless, i.e., the cryptography provider should be implementable without

caching parameters or method calls for connected clients. Provider-side caching is unnecessary because the
result Intent (previously passed through the PendingIntent), which is required for a second execution, is returned
to the client after every user interaction (USER_INTERACTION_REQUIRED case). While this is possible for most
parameters, PIN and passwords should never be exposed to the client and, thus, cannot be returned via the result
Intent. Therefore, a PIN/password cache has been implemented using key IDs as unique identifiers. No session
management is required inside the cryptography provider due to this architectural design. Due to their high
abstraction, the exposed API methods work independently from the storage location of the secret key.

4.3 API
We provide a simple API specification in Table 1. A combined signature generation with encryption can be
executed by creating an Intent with SIGN_AND_ENCRYPT with at least one extra holding the email addresses of the
recipients named USER_IDS. The plaintext is streamed into the file descriptor and read from the file descriptor
previously opened by the client. On first execution, the operation will result in the USER_INTERACTION_REQUIRED
state three times before finishing with the ciphertext in SUCCESS. As shown in Figure 3a, the cryptography
provider asks the end-user to allow the requesting client access to the API. Afterward, the user is asked to
select her own key (secret key) by another UI component of the provider. If no key is available for the requested
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Fig. 4. Users are guided through the usage of security tokens over NFC.

email address a screen for key selection and retrieval is displayed, as shown in Figure 3b. Finally, based on the
selection of the secret key, either a password (cf. Figure 3d) or a PIN is requested (similar to Figure 3d but with
numeric keypad). This example shows that even without knowledge of public-key cryptography, a developer can
effectively encrypt and sign data that can only be read by the recipient. Also, the secret key storage location
is handled automatically and either a password input or NFC interaction with PIN input is returned. A second
execution of the same Intent for different data will succeed earlier because access has now already been allowed,
the public key is available and the PIN/password is already cached.
Regardless of whether the input is only encrypted, only signed, or a combined encryption with signature,

an Intent with DECRYPT_VERIFY can be started to process the cryptographic input. No additional extras are
required. Based on the PIN/password caching status of the specific secret key, the required screens are shown,
e.g., Figure 3d. A special screen allows the user to restrict the secret keys that can be used by a particular client
app (cf. Figure 3c). Besides the plaintext, two Parcelable objects are always returned indicating the decryption
and signature result. These include the information if the given input was signed and/or encrypted.
For security tokens, an appropriate PIN and Admin PIN must be chosen (cf. Figure 3e). Here, we prevent the

user from chosing one of the top 20 common PIN combinations following Berry’s PIN number analysis [9], e.g.,
123456, 000000, and similar ones. An attacker can try up to 3 different PINs until the security token locks itself
and can only be unlocked by the Admin PIN. We provided a trade-off between usability and security by letting
the user select her favorite PIN, but securely generate an Admin PIN that should be written down. Our design
decisions are similar to current practices of PIN/PUK selection for SIM cards.

Advanced API calls, for example to generate backups or detached signatures, can be found in OpenKeychain’s
API documentation [65].

4.4 NFC UI Component
We conducted a pre-study with 12 participants using a preliminary design of our NFC UI component. In this
pre-study, we mainly focused on qualitative feedback, whereas the main goal of this pre-study was to find flaws
in the UI design and user experience. We provided a Sony Xperia Z3 smartphone and a white NFC smart card
that has been pre-configured for the scenario and asked the participants to send an encrypted email. We observed
them during this task, especially their interaction with the NFC UI components. Finally, we interviewed them
about their experience.
We found out that it is important to give clear instructions to guide the users through the steps of using a

security token. In previous versions, users took away the security token too early or were confused when the
dialog closed automatically after a successful operation. Thus, we improved the process by dividing it into three
steps shown in Figure 4: 1) clearly depict how to hold the token against the device, 2) display a progress indicator
together with the instruction to keep the token at the back, and finally 3) display the instruction that the token can
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(a) IC extracted from NXP
J3D081.

(b) Circular coil as new
NFC antenna.

(c) 3D printed ring proto-
type.

Fig. 5. Components of our NFC signet ring prototype (photos have the same proportions).

be taken away. Our implementation keeps polling for the established NFC connection after successful operations
to detect when the token is taken away. When the token indicates with an error that a wrong PIN has been used
for authentication, the previous cached one for this key will be cleared for the next try.

4.5 NFC Smart Cards and Signet Rings
In addition to evaluating our architecture, in particular our proposed cryptographic API for developers, we want
to study the impact of a different form factor for end-users. Widely available form factors are that of smart cards
or USB sticks. Available NFC rings solely include read/write NFC tags (cf. Section 2) No challenge-response or
asymmetric cryptographic protocols are supported. Thus, they do not satisfy the requirements in this paper to
support full asymmetric cryptography.
Due to the unavailability of such rings, we created our own prototypes. Because smart card ICs are only

sold to smart card manufacturers, we bought blank NXP J3D081 developer cards with dual interface support for
NFC. The IC, depicted in Figure 5a, has been extracted using acetone [74]). A new induction coil functioning
as the NFC antenna has been created using magnet wire to fit the form factor (cf. Figure 5b). The number of
turns for an NFC antenna operating at 13.56MHz depends on the IC configuration. Thus, to estimate the correct
number of turns, we measured the frequency of the original antenna with a signal generator and oscilloscope.
The original antenna’s frequency has been measured as 875 kHz, thus, the inductance can be calculated as
L = 4.57

875 kHz ≈ 5.223 µH [19]. According to NXP [63], the number of turns for circular coils can be calculated with

L =
24.6 · N 2 · D
1 + 2.75 · sD

.

The magnet wire has been wrapped around a metal cylinder with a diameter of D = 1.53 cm resulting in a circular
coil with s = 0.2 cm. Choosing the number of turns with N = 14 results in an inductance close to the original one:

5.426 µH ≈ 24.6 · 142 · 1.53 cm
1 + 2.75 · 0.2 cm

1.53 cm

The resulting coil has been soldered with the IC and inserted into a 3D printed ring prototype as depicted in
Figure 5c. It should be noted that the cylinder height on top of the ring can be reduced drastically by a more
sophisticated production process.
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5 EVALUATION
In this section we evaluate different aspects of our architecture by API comparison, NFC performance measure-
ments, and a user study of our UI components.

5.1 Methodology
The evaluation of our architecture consists of several parts. (1) To understand its designated use for developers, a
comparison with existing APIs, implemented as libraries and applications, has been done. (2) The raw performance
of the cryptographic operations over NFC have been measured in a controlled environment. This helps to
understand the technical constraints we needed to design UI components for. (3) As mentioned in Section 4.4, we
conducted walkthroughs with 12 users from our university. The results indicated that users did not know when
to keep NFC tokens at the back or when to take them away, which led to an improved UI for NFC operations.
(4) Finally, we recruited 40 participants from a large company to test the full architecture from an end-user
perspective including the UI components of our API and different NFC security tokens in a real-world environment.
Furthermore, the usability and user perception of our NFC signet ring prototype as an alternative form factor has
been evaluated.

5.2 API Comparison
Many cryptographic APIs are available that have been designed with different features and goals in mind. Thus,
not every API suites every purpose and when designing communication systems the selection of an appropriate
one largely depends on the following: If the design should be interoperable with existing standards, the API must
support standardized formats. If it operates in a closed ecosystem, modern high-level APIs can be chosen where
less programming errors can be made [7]. For higher security standards, especially in cooperate environments,
the API should support security tokens. Furthermore, a category of APIs exist supporting functionality that go
beyond cryptographic methods and require storage and GUI, such as PIN/password cache, key management, and
Graphical User Interfaces (GUI). These features provide complex functionality via API calls and reduce the burden
on client developers who otherwise need to implement these on their own.

We selected prominent representatives for the categories of traditional low-level APIs, modern high-level APIs,
and fully integrated systems and compared them in regards to the discussed functionality in Table 2. Only APIs
for supporting encryption and signature generation for end-to-end security are considered, no authentication or
transport security APIs are included. While more APIs exist, they typically fall into one of these categories and
are thus evaluated similar to the selected ones. While modern libraries such as libsodium or Keyczar provide
‘crypto-box’-methods with a fixed set of algorithms, GnuPG’s selected algorithms depend on local configuration
files and preferred algorithms defined in public key files. In our implementation, similar high-level operations with
fixed algorithms exist that do not even require the knowledge of public-key cryptography due to additional UI
components. While libraries such as Bouncy Castle must be integrated with additional libraries, such as OpenSC,
to support security tokens, in our architecture security token support is an integral part. Modern libraries often
lack a standard format and a corresponding key/algorithm migration path.

The features that require either support by the operating system or depend on specific GUI toolkits are typically
not found in libraries, but in apps/integrated systems. An exception is Keyczar that provides basic command line
tools for key management. One of the main goals of our system is to provide common user interactions via UI
components. GnuPG specifies a ‘UI Server Protocol’ [40] that has similar goals and is implemented for Kleopatra
and GPA. The library GpgME makes accessing this API easier [40]. In comparison to our implementation, the
specification is not stateless and the implementation in Kleopatra does not provide dialogs for security tokens. Its
Inter-Process Communication (IPC) is based on libassuan for platform-independent sockets. GNOME’s Seahorse,
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Table 2. Feature comparison of cryptographic APIs for end-to-end security. Libraries that only offer authentication
or transport security are not considered here.
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libcrypto [66] # #   # # #

Bouncy Castle [11] # #   # # #
OpenSC [37] #   G# # # #

High-Level APIs NaCl/libsodium [8]  # #  # # #
Keyczar [21]  # #  # G# #

Fully Integrated Systems

GnuPG [40] #   G#   #
GNU Privacy Assistant (GPA)a [41] #   G#    

Kleopatraa [50] #   G#    
GNOME Keyringa [38] #   #    

Our work    #    

a uses GnuPG as its backend

which is the frontend to GNOME Keyring, provides similar capabilities using a dbus service. Still, it misses
functionality such as searching for and importing keys when choosing recipients [39].
While our API is not used as widely as the listed competitors, several client applications have already been

released with an active user base. Its usage spans easy use cases, such as password managers (Password Store),
as well as sophisticated ones, such as instant messaging (Conversations) and email clients (K-9 Mail) [65]. Most
client apps are developed by third-parties and available on Google Play.

5.3 NFC Performance
We measured the performance of executing cryptographic operations over NFC using a Sony Xperia Z3 and the
NXP J3D081 smart card running Yubico’s OpenPGP app version 1.0.10. The average durations can be found in
Table 3. Besides generating secret keys, which is only done once for new users, our measurements show average
durations below 1 s for day-to-day operations. Only the asymmetric operations are executed on the smart card:
For signatures, the hash of the input is generated on the smartphone, only the RSA signature is calculated on the
smart card. For decryption, AES is executed on the smartphone, only the session key is decrypted on the smart
card. 2048 bit RSA keys have been transferred and generated. ECC has not been evaluated, because no OpenPGP
applet with ECC support was available for JCOP operating system during this work.
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Table 3. Mean durations (w/ standard deviation) of cryptographic operations over NFC (10 experiments per operation).

Operation Duration σ Operation Duration σ

Signature calculation 787.9ms 3.18 Transfer existing secret key 711.9ms 32.66
Decrypt session key 830.9ms 55.86 Generate secret key on-tokena 9476.2ms 2297.71

a Roughly, only every third key generation succeeded

Generating keys on the smart card turned out to be unreliable. Only roughly every third generation succeeded,
while all other operations canceled by losing the connection. Even when having the card lying on a flat surface
with the smartphone on top, we were never able to generate three keys in a row that makes this method unsuitable
in practice. The same issues have been encountered with different smartphone-token combinations. By building
a self-contained implementation, we ruled out issues in our architecture design. Instead, we suspect that the
induction does not provide a perfectly stable energy supply, which is required by the key generation process.
Because on-token key generation was too unreliable, in our current version keys are generated on-smartphone.
We will investigate this issue further and will fix this in an upcoming version, possibly using ECC providing
faster key generation methods.

5.4 User Study
To evaluate the usability of NFC ring and card form factors in comparison to password-protected keys, we
conducted an end-user study with 40 participants at a large company outside of the university environment.
The main goal of our study is to test the usability of the NFC-based approaches in comparison with state-of-
the-art password protection of secret key material. In this section, we present our study design and discuss the
corresponding results.

5.4.1 Participant Recruitment. Our 40 participants were recruited in the IT department of a large company
based in Germany. Taking part in the study was considered as working time, i.e., the participants were paid their
normal hourly wages. Due to restrictions in their employment contract, we were not allowed to pay additional
money on top. Our university does not have an Institutional Review Board (IRB), but the study conformed to the
strict data protection law of Germany and informed consent was gathered from all participants.

5.4.2 Study Design. Our conducted study consists of two parts: (1) a lab experiment observing objective
measurements such as setup time, decryption time and (2) a follow-up user survey for analyzing end-user
perception.

The experiment consists of different tasks to be performed with different approaches.

5.4.3 Variables, Conditions and Participant Assignment. Our independent variable among all tasks was the
chosen authentication type with following conditions password, NFC card, and NFC ring. The in the evaluation
relevant dependent variables (objective measurements) were (1) duration to measure the efficiency of each task
and (2) user perception based on a follow-up survey. The effectiveness was not considered as a separate dependent
variable in our evaluation since all users were able to perform the tasks. For the condition assignment, we opted
for a within-group design where all study participants had to perform tasks from all approaches: password, NFC
card, and NFC ring. We did not test against other methods commonly used for authentication, such as biometric
fingerprints or pattern-based techniques. Generally, these provide a much lower security level than passwords
satisfying modern length requirements, let alone security tokens [56] and are thus not suitable for end-to-end
encryption. Our design allows us to gather user perception at the end of the study where users give feedback and
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(a) Ring with smartphone. (b) Card with smartphone.

Fig. 6. Handling of NFC rings and cards together with smartphones. A sticker has been used to indicate the best NFC spot
on smartphone and ring.

ratings for all approaches. To mitigate learning and fatigue effects in our within-group study design, the order in
which participants were asked to perform the approaches was randomized.

5.4.4 Tasks. The performed tasks are:

Task 1 When users start the application for the first time, they have to follow a wizard to create a key pair
for usage with the app. They are guided through the process, which consists of entering a name and an
email address, select a password/PIN and depending on the approach to hold an NFC security token against
the smartphone. The actual key generation is indicated by a progress bar, while the user has to wait until it
finishes.

Task 2 In the second task, the participants are asked to receive and read an encrypted email. Depending
on the approach, users might be asked to enter a PIN or password, or hold an NFC device against their
smartphone. To avoid bias due to variable password/PIN complexities, during this step we provide a
pre-defined password/PIN.

Task 3 At last, the participants are asked to reply with a secure email by writing an appropriate response
text and sending it.

To begin with the study, we provided a detailed explanation of the concept and the procedure to participants.
We gave them a Sony Xperia Z3 smartphone and optionally depending on the approach, either the NFC ring or
NFC card to let them get accustomed to the hardware themselves. As depicted in Figure 6, the usage patterns
between the NFC ring and card differ due to their physical size. Before conducting the study, a sticker has been
attached to the smartphone and ring indicating the best spot and the affiliation between these objects. Right after
this, the participants continued with the key creation wizard of the first tested approach followed by the other
remaining tasks. After completing the first tested approach, the other approaches follow. At the end of the study,
we interviewed the participants for their ratings with regards to the single approaches and additional feedback.
Finally, they were asked to participate in an anonymized questionnaire to collect demographic statistics.
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Fig. 7. Time measurements (in seconds, no outliers, lower is better).

5.4.5 Statistical Testing. For the statistical hypothesis testing, we opted for the common significance level
of α = 0.05. To account for multiple testing, all our study p-values are reported in the Holm-Bonferroni
corrected version [44]. All time intervals and user-ratings are tested with the nonparametric (applicable to
unknown statistical distributions) Mann–Whitney U test (two-tailed, Holm-Bonferroni corrected). We opted for
this nonparametric statistical test due to the ordinal nature of our data and to avoid any statistical distribution
assumptions. All our effect sizes are reported by mean comparisons and the usage of the common language effect
size method [57], i.e., the meaning of the effect size is explained in plain English.

5.4.6 Objective Measurements. We measured following objective measurements in our experiment:

Setup time We measure the entire time of the setup process in Task 1. This includes input of name and email
address, password/PIN selection, key generation on-smartphone, and optionally transfer to security token.

Decryption time Here, we measure only the time where the users have to perform an action related to the
cryptographic operation of Task 2, i.e., password input and on-smartphone asymmetric decryption or PIN
input and on-token operation (requiring holding the token against the smartphone’s back side).

Sign/Encryption time Again, we measure the time where the users have to perform an action in Task 3.
Due to PIN/password caching, no input is required for signing. Thus, we only measured the time required
for executing the NFC operations by holding the security tokens against the smartphone’s back side.

Figure 7a shows a box plot with a time distribution overview for the setup process. Our main hypothesis is
that passwords are less efficient (especially on smartphones) in comparison to NFC-based approaches which is
also a common belief in the usable security community. As can be clearly seen, the password-based approach
tends to require extra time: a median of 114.5 seconds indicated by the blue line in box (p < 0.0001 in comparison
to the NFC-based approaches supporting our main hypothesis). NFC-based approaches, on the other hand, have
shown a better performance during the wizard process: a median of 83.5 and 68.5 seconds (p = 0.083 indicating
that based on our sample size, we could not observe a significant difference between those). For instance, only 14
people were able to type in a valid password on the first try. By comparison, 22 people were able to position the
ring correctly and choose a valid PIN on the first try.
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Fig. 8. Aggregated user perception showing the ranking choices in the interview.

Figure 7b shows a box plot with a time distribution overview for decrypting an email. This process consists
of the following steps: when a secured email is opened, the cryptographic API immediately starts with the
decryption process. To be able to decrypt, depending on the approach, either a password input or the positioning
of the NFC device in combination with a PIN input is required. Note, that during this task we provided the
participants a pre-defined password/PIN to avoid bias due to variable complexities. As can be clearly seen, the
password-based protection not only performs worst in security and setup time, but also requires additional time
for reading encrypted emails: median of 37.0 seconds (18.5 and 22.0 for NFC-based solutions) as indicated by the
blue lines in the boxes (p < 0.001 supporting our main hypothesis). In the follow-up writing of a secured email
where the password is cached, NFC-based approaches require additional time for positioning of the NFC devices:
mean of 9.6 seconds (11 seconds for the ring and 8.3 for the card).

5.4.7 User Perception. To measure user perception, after completing all tasks in the experiment, we asked the
users to answer questions with regards to their tested approaches in an interview. Here, we distinguish between
quantitative results aggregated from users’ ratings and qualitative open-end questions asking the users for their
feedback and justifications. Our hypothesis is based on a common belief that passwords are troublesome on
mobile devices. The full interview can be seen in the Appendix A. Furthermore, we asked them to fill out a short
questionnaire form with additional details about their demographics, education, computer literacy, and previous
usage of security apps. The full questionnaire can be seen in the Appendix B.

Quantitative. As our major quantitative question in the interview, we asked our participants to rank their
tested approaches: 1 as best and 3 as worst. As depicted in Figure 8, the majority of our participants ranked
NFC-based approaches to be superior to the password-based approach. The color coding shows the ranking level
and the percentage numbers on the y-axes summarize the percentage of participants who ranked an approach as
best (1) and as worst (3) respectively. A pairwise comparison between the approaches shows a high statistical
significance between the token-based approaches and password-based protection (p < 0.0001 in both cases).
However, we could not observe significant results between the NFC card and the ring (p = 0.073). The NFC card
approach achieved a slightly higher mean of 1.5 in comparison the NFC ring that achieved a mean of 1.8. By
comparison, password-based key storage achieved a mean rating of 2.7 where only 5 % of the users consider this
approach to be best.

Qualitative. During the interview we asked the participants to describe the advantages and disadvantages of
each approach (cf. Appendix A). While the participants accepted passwords as a well-known approach, most
participants agreed that “imagining good passwords is incredibly difficult” and “good passwords are difficult
to enter on smartphone keyboards”. Whereas, cards and rings have the advantage of “requiring only a short
PIN instead of a complicated password”. In general, participants were in favor of cards, due to their common
form factor, which allows to “store them easily in the wallet”. Some mentioned that it is annoying to constantly
take it out of the wallet, thus they prefer wearing the card attached to their belt. Many participants remarked
that the card was more easily be placed below the smartphone and then worked perfectly with NFC and did not
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require precise positioning like the ring. Participants who favored the ring found the idea great and described it
as a “cool gadget”. Some noted that “rings are more secure than cards because they are more difficult to steal
than wallets” and their “security purpose is not immediately obvious to an outsider”. Interestingly, participants
assessed it differently if cards or rings are more easily lost. Some argued that “rings can easily be forgotten on a
bedside cabinet while not worn at night”, while they argued that they “never forget the wallet in the morning
before work”. Others said that “cards are easily misplaced as they are not constantly worn on the body”.

Demographics. A total of 40 users from the same company participated in our user study. 33 participants were
male, 6 participants were female and one participant opted not to disclose the gender. The mean and median age
of the participants was 34. In the quantitative analysis, we could not find any statistically significant differences
between the genders, although women tend to prefer wearable NFC devices over cards. During the interview we
also noted different reasons for liking/disliking particular approaches. For instance, 9 out of 33 men preferred
cards instead of rings simply because they usually do not wear rings at all and are not accustomed to it. Some of
them proposed the usage of watches or wristbands as an alternative form factor. A woman argued that, because
dresses are often worn without belts, she “prefer[s] to wear cards attached to a necklace”. Naturally, she and two
other woman preferred the ring as it can be worn as a fashion accessory and has a smaller size.
14 participants did not have a university degree (3 of them were students planning to complete a degree). 8

participants completed a Bachelor’s degree or similar, 17 a Master’s degree or similar and 1 a doctorate’s degree.
We could not observe statistical significant differences between the degrees.

Our question set (cf. Appendix A) indicates a high level of technical background. On a scale from 1 (novice user)
to 20 (experienced) the participants achieved a mean score of 17.1 wheres the participant with least knowledge
achieved a score of 13.

Limitations. First-off, our study does not test whether end users will actually switch to NFC-based encryption
or even start encrypting their emails during daily work. As with any lab study, more issues might arise in the
field and thus an actual field study is an important future work. Our 40 participants were recruited in the IT
department in a large company based in Germany, which is not the representative of the general population in
Germany. As mentioned before, our questionnaire (cf. Appendix A) indicates a high level of technical background.

6 CONCLUSION
We proposed and implemented an architecture for NFC-based cryptography on Android devices. Our architec-
ture includes a high-level cryptographic API especially designed for developers accustomed to Android’s IPC
mechanisms. It allows for cryptographic operations without knowledge of public-key cryptography, works trans-
parently with password-protected key files as well as NFC security tokens, and provides carefully designed user
interactions. In addition to traditional NFC smart cards, our NFC signet ring prototype represents an alternative
form factor for end-users. Performance measurements show that cryptographic operations over NFC can be
executed fast enough to be usable for day-to-day use. In our lab study with 40 participants, 95 % chose one of
the NFC solutions as the best approach. Conclusively, we have shown the advantages of our architecture for
NFC-based cryptography.

A INTERVIEW
The original questions were asked in German.
• Which operating system are you using on your own smartphone?
• For every approach {password, smart card, signet ring} (in the order the approaches have been tested by
the participant):
– What did you think was good?
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– What did you think was bad?
• Which approach was the best in your opinion? Please create an order by assigning the numbers 1, 2, 3.

Approach Order

Password [ ]

Smart Card [ ]

Signet Ring [ ]

• Would you consider replacing passwords by a signet ring?
• Would you consider replacing smart cards by a signet ring?

B QUESTIONNAIRE
The original questionnaire was written in German. Furthermore, it included in addition gender, age, and qualifi-
cation questions (Question 1–3), which are not displayed in this appendix.

Question 4
Please rate how much you agree (or disagree) with the statements below.

Str
on
gly

Di
sag
ree

Di
sag
ree

Ne
utr
al

Ag
ree

Str
on
gly

Ag
ree

I have a very good understanding of computers and the Internet. 2 2 2 2 2

I often ask others for help when I have computer problems. 2 2 2 2 2

Others often askme for help when they have computer problems. 2 2 2 2 2

I have a very good understanding of computer security. 2 2 2 2 2

Question 5
Are you already using apps for encryption or secure communication on your computer in your private life?
2 Yes, in particular: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 No

Question 6
Are you already using apps for encryption or secure communication on your smartphone in your private life?
2 Yes, in particular: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 No

Question 7
Are you already using apps for encryption or secure communication on your smartphone in your job?
2 Yes, in particular: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 No
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Question 8
Have you already used NFC before this study?

2 Yes, in particular for: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 No
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5.2 Implications and Future Directions

This study successfully demonstrates the feasibility and practicality of offloading cryptographic
key storage to wearable NFC devices, such as rings, for use in common applications like email. The
architecture effectively separates key management from mobile devices with minimal user effort,
enhancing security by utilizing external tokens. Lab evaluations under field conditions validate
the proposed approach’s usability, performance, and security, providing actionable insights for
real-world adoption and future developments in wearable cryptographic solutions. The use of
NFC-enabled wearables for cryptographic operations can extend to enterprise environments for
secure document access or financial systems for transaction authentication, demonstrating the
architecture’s versatility.
The increasing utilization of wearables with smart devices expands their potential for secure

authentication and key management [39]. Initial use cases, such as smartwatch unlocking and two-
factor authentication [40, 41], lay the foundation for further research into biometric authentication,
decentralized identity management, and interoperability with IoT ecosystems, enabling scalable
and user-centric cryptographic solutions.

103



CHAPTER 6

Conclusions

Secure messaging has evolved from a niche domain into an essential component of modern
digital communication infrastructure. Today, these systems serve over two billion users daily,
spanning both personal and professional contexts. This dissertation examined four interrelated
challenges central to the development and adoption of secure messaging systems, each investigated
through a peer-reviewed publication. The challenges are the systematic evaluation of secure
messaging protocols (RQ1), the design and assessment of usable key fingerprint verification for
trust establishment (RQ2), the exploration of user perceptions and mental models of end-to-end
security and encryption in general (RQ3), the integration and acceptance of hardware-based
authentication mechanisms to simplify and strengthen key management (RQ4). This dissertation
situates these studies within real-world ecosystems, demonstrating the necessity of a holistic,
human-centered approach to secure messaging. The findings emphasize that robust technical
securitymust be balancedwith user understanding and practical usability to ensure communication
adoption and effective protection.

Together, these interconnected studies provide new theoretical insights and practical guidance on
integrating human aspects in secure messaging, illustrating how robust cryptographic methodolo-
gies and user-centered design principles must work in tandem. The following sections summarize
the key findings, contributions, unresolved challenges, real-world impact, and directions for future
work. As an initial step, we now focus on the key findings and principal contributions of the
conducted research, shedding light on the core insights gained:

6.1 Summary of Research Outcomes

Our research yielded significant insights across our four presented research questions (RQ1 - RQ4):

RQ 1 | Systematization of Secure Messaging The analysis presented in Chapter 2 systematically
mapped how various secure messaging protocols and tools address core aspects of secure commu-
nication – trust establishment, conversation security, and transport privacy– thereby establishing
a rigorous foundation with the potential assessing and developing secure messaging protocols,
while always considering the human aspects. This evaluation framework not only introduced
standardized terminology and synthesized approaches spanning academic research and industry
practice but also illuminated open research challenges, challenges such as enabling user-friendly
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authority-based verification mechanisms. These findings laid the groundwork for subsequent
research into improving secure messaging usability and adoption.

RQ 2 | Trust Establishment and Key Verification The empirical study presented in Chapter 3 con-
ducted the first large-scale investigation of secure messaging key verification through a large-scale
online experiment (n=1047 participants) that simulated realistic attack scenarios, where a plausible
preimage collision attack was designed to test the different representations. The findings demon-
strated that alternative fingerprint representations, particularly the newly developed sentence-based
approach (but also the existing numeric schemes), significantly improve the usability and security
of manual fingerprint verification compared to traditional and most adopted hexadecimal strings,
which performed worst. These improvements manifested in enhanced user comprehension and
significantly higher detection rates of attack attempts under realistic conditions, providing evidence-
based guidance for secure messaging applications. Finally, concrete design recommendations for
implementing more effective trust establishment mechanisms in secure messaging applications
were recommended.

RQ 3 | Mental Models and User Perception of Secure Messaging The study in Chapter 4 revealed
complex and often contradictory user attitudes in securemessaging toward end-to-end security and
encryption in general. Through qualitative interviews (n=22), this work uncovered that despite the
widespread deployment of end-to-end encryption in popular messaging apps, users heard about it
for the first time and even exhibited significant skepticism and mistrust. Notably, even when users
were aware of encryption features, they often dismissed their effectiveness or questioned their
trustworthiness. The analysis identified several key factors contributing to this mistrust: limited
understanding of encryption mechanisms (and underestimating its potential), skepticism about
service providers’ motivations, and a significant overestimation of attackers’ capabilities. These
findings challenge the assumption that merely implementing and advertising security features is
sufficient for user acceptance, suggesting instead that secure messaging applications must address
fundamental issues of trust and transparency.

RQ 4 | Hardware-Based Key Storage by using Wearables The study in Chapter 5 presented a novel
architecture for integrating external cryptographic hardware in the form of an NFC-enabled ring
as wearable into mobile security applications to handle key management. This work demonstrated
how wearables and other external cryptography-capable devices, particularly NFC-enabled rings
and smartcards, can enhance the security of key management and storage. It also has the potential
to increase usability by abstracting the key management problem from the user, thereby bridging
the gap between usability and security. While the results demonstrated the technical feasibility and
security benefits of hardware-based approaches, the analysis revealed promising user feedback and
important considerations for mass-market adoption, particularly regarding usability and ecosystem
integration.

6.2 Synthesis and Broader Impact

During the course of this research, secure messaging underwent a significant transformation. The
period began with encrypted messaging as a niche feature used primarily by privacy-conscious
individuals.
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This thesis advances the field of Secure Messaging through several key human aspect insights.
It provides a unified evaluation framework for secure messaging protocols while emphasizing
usability and adoption metrics. This helps categorize and evaluate existing and future messaging
protocols. Building on this foundation, the research developed two distinct methodologies. The
first developed a quantitative experimental approach testing how users actually behave when
faced with security decisions in realistic scenarios. This helped to systematically observe and
measure real-world security behaviors rather than relying solely on theoretical models or self-
reported data. The testbed enables empirical validation of security and usability implementations
in practical settings. The second methodology employed qualitative research techniques to deeply
understand how users conceptualize and think about security in messaging applications. This
approach revealed users’ mental models, assumptions, and perceptions regarding end-to-end
security through qualitative, semi-structured, in-depth interviews. Finally, the findings highlight
significant gaps between technical security implementations and user comprehension, informing
future secure system designs.
The research also produced two new concrete approaches to bridge these gaps:

Key Fingerprint Verification First, the sentence-based key fingerprint verification system serves as a
foundational approach for trust establishment that can be adapted beyond messaging to various
secure communication contexts, from SSH connections to IoT device authentication. Throughout
the research process, the findings were shared with key stakeholders in the messaging community,
including collaboration with developers of the Signal protocol, which became the security
base for WhatsApp (among others), and members of the Electronic Frontier Foundation (EFF).
These exchanges provided a feedbackmechanism, ensuring that the research remained alignedwith
practical considerations and real-world applications. Eventually, the two most popular messengers
WhatsApp and iMessage, transitioned to end-to-end security by default, while the public
key handling comes from them as “trusted authority”, there is still the option to verify the keys
if needed (assuming that their apps are backdoor-free), gives us hope that a mass leakage or
surveillance of private messaging conversations becomes less likely.

Key Management in Wearables The OpenKeychain NFC implementation demonstrates how
hardware-based security through wearables can simplify key management while also increasing
security guarantees. This work anticipated the growing role of wearable technology in security, a
trend now evident in the widespread adoption of wearables for authentication and access control.
The architecture and design patterns developed provide a blueprint for implementing secure key
management in emerging wearable platforms.

Similarly, with the increasing prevalence of wearables, such as Apple Watch and Oura Ring, and
already established security features using these, e. g., smartphone unlocking [40] and two-factor
authentication [41], suggests that further application similar to our implementation become widely
adopted in the future.

6.3 Open Challenges and Future Work

Despite the advances demonstrated through our research, several fundamental challenges in
secure messaging remain that warrant future investigation. While this work’s systematization
presented various potent improvements to trust establishment by using authority-based trust with
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key transparency, which has even been adopted in popular messengers, this process still requires
basic end-to-end security knowledge and little effort from its users. Further research could identify
and empirically validate approaches that users not only comprehend but feel genuinely motivated
to employ in their daily communication practices. Furthermore, it could explore implementing
and evaluating sentence-based key fingerprinting across diverse authentication scenarios beyond
messaging – from SSH server connections and WIFI networks to screenless devices – where
asynchronous trust establishment is essential.

As discussed in Chapter 2, Transport privacy and further social-graph-related metadata privacy
continue to pose significant challenges, particularly regarding hiding social graphs and susceptibil-
ity to timing attacks revealing communication patterns. While numerous academic approaches
have been presented in this work, the major platforms have not yet adopted improvements for
billions of users due to potential scalability or practicability limitations (e. g., potential Denial
of Service (DoS) attacks or legislative constraints), even though Signal pioneered in aspects
significantly reducing metadata about related to social graphs with Private Contact Discovery and
Sealed Senders [42, 43], which emerge after the release of Publication 1. Research addressing these
practical constraints could significantly advance metadata protection in real-world applications.
These technical challenges increasingly intersect with cultural and ethical considerations. While
some users value absolute anonymity, providers and governments often prioritize accountability.
Whether messaging providers pursue certificate-transparency approaches or focus on conceal-
ing communication patterns requires broader societal discussions to influence the design and
capabilities of next-generation secure communication tools.
The integration of hardware security mechanisms presents another promising direction. With

wearables already established for the discussed security use cases like unlocking and two-factor
authentication, cryptographic key management can be further automated and secured. Mass
evaluation through field studies would strengthen automated cryptographic key management
through wearables in real-world settings.
Finally, expanding studies on user interaction with secure systems remains crucial to better

align technical capabilities with human behaviors. Addressing these persistent challenges can
help secure messaging solutions achieve broader adoption and foster deeper user trust without
compromising security guarantees. The evolution of secure messaging from a niche technology to
a mainstream medium not only reflects the progress made so far but emphasizes the importance
of understanding and addressing human aspects to achieve secure, private, and widely adopted
messaging systems.
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Abstract—Motivated by recent revelations of widespread state
surveillance of personal communication, many solutions now
claim to offer secure and private messaging. This includes both a
large number of new projects and many widely adopted tools that
have added security features. The intense pressure in the past two
years to deliver solutions quickly has resulted in varying threat
models, incomplete objectives, dubious security claims, and a lack
of broad perspective on the existing cryptographic literature on
secure communication.

In this paper, we evaluate and systematize current secure
messaging solutions and propose an evaluation framework for
their security, usability, and ease-of-adoption properties. We con-
sider solutions from academia, but also identify innovative and
promising approaches used “in-the-wild” that are not considered
by the academic literature. We identify three key challenges
and map the design landscape for each: trust establishment,
conversation security, and transport privacy. Trust establishment
approaches offering strong security and privacy features perform
poorly from a usability and adoption perspective, whereas some
hybrid approaches that have not been well studied in the
academic literature might provide better trade-offs in practice.
In contrast, once trust is established, conversation security can
be achieved without any user involvement in most two-party
conversations, though conversations between larger groups still
lack a good solution. Finally, transport privacy appears to be
the most difficult problem to solve without paying significant
performance penalties.

I. INTRODUCTION

Most popular messaging tools used on the Internet do
not offer end-to-end security. Even though protocols such
as OpenPGP and S/MIME have been available for decades,
they have failed to achieve widespread adoption and have
been plagued by usability issues [2]–[5]. However, recent
revelations about mass surveillance by intelligence services
have highlighted the lack of security and privacy in messaging
tools and spurred demand for better solutions. A recent Pew
Research poll found that 80% of Americans are now concerned
about government monitoring of their electronic communica-
tions. 68% of respondents reported feeling “not very secure”
or “not at all secure” when using online chat and 57% felt
similarly insecure using email [6]. Consequently, many new
applications claiming to offer secure communication are being
developed and adopted by end users.

Despite the publication of a large number of secure mes-
saging protocols in the academic literature, tools are being
released with new designs that fail to draw upon this knowl-
edge, repeat known design mistakes, or use cryptography in
insecure ways. However, as will become clear over the course

1An extended version of this paper is available [1].

of this paper, the academic research community is also failing
to learn some lessons from tools in the wild.

Furthermore, there is a lack of coherent vision for the future
of secure messaging. Most solutions focus on specific issues
and have different goals and threat models. This is com-
pounded by differing security vocabularies and the absence of
a unified evaluation of prior work. Outside of academia, many
products mislead users by advertising with grandiose claims
of “military grade encryption” or by promising impossible
features such as self-destructing messages [7]–[10]. The recent
EFF Secure Messaging Scorecard evaluated tools for basic
indicators of security and project health [11] and found many
purportedly “secure” tools do not even attempt end-to-end
encryption.

We are motivated to systematize knowledge on secure
messaging due to the lack of a clear winner in the race for
widespread deployment and the persistence of many lingering
unsolved research problems. Our primary goal is to iden-
tify where problems lie and create a guide for the research
community to help move forward on this important topic. A
further goal in this work is to establish evaluation criteria for
measuring security features of messaging systems, as well as
their usability and adoption implications. We aim to provide
a broad perspective on secure messaging and its challenges,
as well as a comparative evaluation of existing approaches,
in order to provide context that informs future efforts. Our
primary contributions are: (1) establishing a set of common
security and privacy feature definitions for secure messaging;
(2) systematization of secure messaging approaches based both
on academic work and “in-the-wild” projects; (3) comparative
evaluation of these approaches; and (4) identification and
discussion of current research challenges, indicating future
research directions.

We present our systematization methodology in Section II.
In subsequent sections (Sections III–V), we evaluate each of
the proposed problem areas (namely trust establishment, con-
versation security and transport privacy) in secure messaging.
Our findings are discussed and concluded in Section VI.

II. SYSTEMATIZATION METHODOLOGY

Over the years, hundreds of secure messaging systems have
been proposed and developed in both academia and industry.
An exhaustive analysis of all solutions is both infeasible and
undesirable. Instead, we extract recurring secure messaging
techniques from the literature and publicly available messaging
tools, focusing on systematization and evaluation of the under-
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lying concepts and the desirable secure messaging properties.
In this section, we explain our precise methodology.

A. Problem Areas

While most secure messaging solutions try to deal with all
possible security aspects, in our systematization, we divide
secure messaging into three nearly orthogonal problem areas
addressed in dedicated sections: the trust establishment prob-
lem (Section III), ensuring the distribution of cryptographic
long-term keys and proof of association with the owning en-
tity; the conversation security problem (Section IV), ensuring
the protection of exchanged messages during conversations;
and the transport privacy problem (Section V), hiding the
communication metadata.

While any concrete tool must decide on an approach for
each problem area, abstractly defined protocols may only
address some of them. Additionally, the distinction between
these three problem areas is sometimes blurred since tech-
niques used by secure messaging systems may be part of their
approach for multiple problem areas.

B. Threat Model

When evaluating the security and privacy properties in
secure messaging, we must consider a variety of adversaries.
Our threat model includes the following attackers:

Local Adversary (active/passive): An attacker controlling
local networks (e.g., owners of open wireless access points).

Global Adversary (active/passive): An attacker controlling
large segments of the Internet, such as powerful nation states
or large internet service providers.

Service providers: For messaging systems that require cen-
tralized infrastructure (e.g., public-key directories), the service
operators should be considered as potential adversaries.

Note that our adversary classes are not necessarily exclusive.
In some cases, adversaries of different types might collude.
We also assume that all adversaries are participants in the
messaging system, allowing them to start conversations, send
messages, or perform other normal participant actions. We
assume that the endpoints in a secure messaging system are
secure (i.e., malware and hardware attacks are out of scope).

C. Systematization Structure

Sections III–V evaluate trust establishment, conversation
security, and transport privacy approaches, respectively. For
each problem area, we identify desirable properties divided
into three main groups: security and privacy features, usability
features, and adoption considerations. Each section starts
by defining these properties, followed by the extraction of
generic approaches used to address the problem area from
existing secure messaging systems. Each section then defines
and evaluates these approaches, as well as several possible
variations, in terms of the already-defined properties. Concrete
examples of protocols or tools making use of each approach
are given whenever possible. The sections then conclude by
discussing the implications of these evaluations.

In each section, we include a table (Tables I, II, and III)
visualizing our evaluation of approaches within that problem
area. Columns in the tables represent the identified proper-
ties, while rows represent the approaches. Groups of rows
begin with a generic concept, specified as a combination
of cryptographic protocols, followed by extension rows that
add or modify components of the base concept. Whenever
possible, rows include the name of a representative protocol
or tool that uses the combination of concepts. Representatives
may not achieve all of the features that are possible using
the approach; they are merely included to indicate where
approaches are used in practice. Each row is rated as providing
or not providing the desired properties. In some cases, a row
might only partially provide a property, which is explained
in the associated description. Due to space limitations, the
discussion of some schemes listed in the tables has been
omitted. Details of these and their evaluations are included
in the extended version of this paper [1].

For each problem area, we identify desirable properties in
three main categories:

1) Security and Privacy Properties: Most secure messaging
systems are designed using standard cryptographic primitives
such as hash functions, symmetric encryption ciphers, and
digital signature schemes. When evaluating the security and
privacy features of a scheme, we assume cryptographic prim-
itives are securely chosen and correctly implemented. We
do not attempt to audit for software exploits which may
compromise users’ security. However, if systems allow end
users to misuse these cryptographic primitives, the scheme is
penalized.

2) Usability Properties: Usability is crucial for the use and
adoption of secure messaging services. Human end users need
to understand how to use the system securely and the effort
required to do so must be acceptable for the perceived benefits.

In previous research, various secure messaging tools have
been evaluated and weaknesses in the HCI portion of their
design have been revealed. The seminal paper “Why Johnny
Can’t Encrypt” [2] along with follow-up studies evaluating
PGP tools [3], [4] and other messaging protocols [12]–[16]
have also showed users encountering sever problems using
encryption securely. However, these studies focused on UI
issues unique to specific implementations. Because we focus
on usability consequences imposed by generic concepts, our
results hold for any tool that implements these concepts.

To evaluate the usability of secure messaging approaches,
we examine the additional user effort (and decisions), security-
related errors, and reduction in reliability and flexibility that
they introduce. Our usability metrics compare this extra effort
to a baseline approach with minimal security or privacy
features. This is a challenging task and conventional user
studies are not well suited to extract such high-level usability
comparisons between disparate tools. We employed expert
reviews in the form of cognitive walkthroughs of actual imple-
mentations to extract and systematize usability aspects based
on Nielsen’s usability principles [17]–[19], which is consistent
with previous systematization efforts for security schemes in
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other areas [20], [21]. These usability results supplement
our technical systematization and highlight potential trade-offs
between security and usability.

3) Ease of Adoption: Adoption of secure messaging
schemes is not only affected by their usability and security
claims, but also by requirements imposed by the underlying
technology. Protocols might introduce adoption issues by
requiring additional resources or infrastructure from end users
or service operators. When evaluating the adoption properties
of an approach, we award a good score if the system does
not exceed the resources or infrastructure requirements of a
baseline approach that lacks any security or privacy features.

III. TRUST ESTABLISHMENT

One of the most challenging aspects of messaging se-
curity is trust establishment, the process of users verifying
that they are actually communicating with the parties they
intend. Long-term key exchange refers to the process where
users send cryptographic key material to each other. Long-
term key authentication (also called key validation and key
verification) is the mechanism allowing users to ensure that
cryptographic long-term keys are associated with the correct
real-world entities. We use trust establishment to refer to the
combination of long-term key exchange and long-term key
authentication in the remainder of this paper. After contact
discovery (the process of locating contact details for friends
using the messaging service), end users first have to perform
trust establishment in order to enable secure communication.

A. Security and Privacy Features

A trust establishment protocol can provide the following
security and privacy features:

Network MitM Prevention: Prevents Man-in-the-Middle
(MitM) attacks by local and global network adversaries.

Operator MitM Prevention: Prevents MitM attacks executed
by infrastructure operators.

Operator MitM Detection: Allows the detection of MitM
attacks performed by operators after they have occurred.

Operator Accountability: It is possible to verify that oper-
ators behaved correctly during trust establishment.

Key Revocation Possible: Users can revoke and renew keys
(e.g., to recover from key loss or compromise).

Privacy Preserving: The approach leaks no conversation
metadata to other participants or even service operators.

B. Usability Properties

Most trust establishment schemes require key management:
user agents must generate, exchange, and verify other partic-
ipants’ keys. For some approaches, users may be confronted
with additional tasks, as well as possible warnings and errors,
compared to classic tools without end-to-end security. If a
concept requires little user effort and introduces no new error
types, we award a mark for the property to denote good usabil-
ity. We only consider the minimum user interaction required
by the protocol instead of rating specific implementations.

Automatic Key Initialization: No additional user effort is
required to create a long-term key pair.

Low Key Maintenance: Key maintenance encompasses re-
curring effort users have to invest into maintaining keys. Some
systems require that users sign other keys or renew expired
keys. Usable systems require no key maintenance tasks.

Easy Key Discovery: When new contacts are added, no
additional effort is needed to retrieve key material.

Easy Key Recovery: When users lose long-term key mate-
rial, it is easy to revoke old keys and initialize new keys (e.g.,
simply reinstalling the app or regenerating keys is sufficient).

In-band: No out-of-band channels are needed that require
users to invest additional effort to establish.

No Shared Secrets: Shared secrets require existing social
relationships. This limits the usability of a system, as not all
communication partners are able to devise shared secrets.

Alert-less Key Renewal: If other participants renew their
long-term keys, a user can proceed without errors or warnings.

Immediate Enrollment: When keys are (re-)initialized, other
participants are able to verify and use them immediately.

Inattentive User Resistant: Users do not need to carefully
inspect information (e.g., key fingerprints) to achieve security.

C. Adoption Properties

Multiple Key Support: Users should not have to invest
additional effort if they or their conversation partners use
multiple public keys, making the use of multiple devices with
separate keys transparent.

No Service Provider Required: Trust establishment does not
require additional infrastructure (e.g., key servers).

No Auditing Required: The approach does not require
auditors to verify correct behavior of infrastructure operators.

No Name Squatting: Users can choose their names and can
be prevented from reserving a large number of popular names.

Asynchronous: Trust establishment can occur asyn-
chronously without all conversation participants online.

Scalable: Trust establishment is efficient, with resource
requirements growing logarithmically (or smaller) with the the
total number of participants in the system.

D. Evaluation

1) Opportunistic Encryption (Baseline): We consider op-
portunistic encryption, in which an encrypted session is es-
tablished without any key verification, as a baseline. For
instance, this could be an OTR encryption session without any
authentication. The main goal of opportunistic encryption is to
counter passive adversaries; active attackers can easily execute
MitM attacks. From a usability perspective, this approach is
the baseline since it neither places any burden on the user nor
generates any new error or warning messages.

2) TOFU: Trust-On-First-Use (TOFU) extends opportunis-
tic encryption by remembering previously seen key mate-
rial [22]. The network MitM prevented and infrastructure
MitM prevented properties are only partially provided due to
the requirement that no attacker is present during the initial
connection. TOFU requires no service provider since keys can
be exchanged by the conversation participants directly. TOFU
does not define a mechanism for key revocation. TOFU can be
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TABLE I
TRADE-OFFS FOR COMBINATIONS OF TRUST ESTABLISHMENT APPROACHES. SECURE APPROACHES OFTEN SACRIFICE USABILITY AND ADOPTION.
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Opportunistic Encryption†* TCPCrypt - - - - -
+TOFU (Strict)† - - - - -
+TOFU†* TextSecure - - - -
Key Fingerprint Verification†* Threema - - - - - - - - -
+Short Auth Strings (Out-of-Band)†* SilentText - - - - - - - - - - -
+Short Auth Strings (In-Band/Voice/Video)†* ZRTP - - - - - - - - -
+Socialist Millionaire (SMP)†* OTR - - - - - - - - - -
+Mandatory Verification†* SafeSlinger - - - - - - - -
Key Directory†* iMessage - - - - -
+Certificate Authority†* S/MIME - - - -
+Transparency Log - - - - -
+Extended Transparency Log† - - - -
+Self-Auditable Log† CONIKS -
Web-of-Trust†* PGP - - - - - - - -
+Trust Delegation†* GnuNS - - - - - - -
+Tracking* Keybase - - - - - - -
Pure IBC† SIM-IBC-KMS - - - - - - -
+Revocable IBC† - - - - - - -
Blockchains* Namecoin - - - - - -
Key Directory+TOFU+Optional Verification†* TextSecure - - - -
Opportunistic Encryption+SMP†* OTR - - - - - -

= provides property; = partially provides property; - = does not provide property; †has academic publication; *end-user tool available

implemented in strict and non-strict forms. The strict form fails
when the key changes, providing inattentive user resilience
but preventing easy key recovery. The non-strict form prompts
users to accept key changes, providing easy key recovery at
the expense of inattentive user resilience.

TOFU-based approaches, like the baseline, do not require
any user interaction during the initial contact discovery. This
yields good scores for all user-effort properties except for the
key revocation property, which is not defined, and alert-less
key renewal, since users cannot distinguish benign key changes
from MitM attacks without additional verification methods.

From an adoption perspective, TOFU performs similarly to
the baseline, except for key recovery in the strict version and
multiple key support in both versions. The multiple key support
problem arises from the fact that if multiple keys are used, the
protocol cannot distinguish between devices. An attacker can
claim that a new device, with the attacker’s key, is being used.

3) Key Fingerprint Verification: Manual verification re-
quires users to compare some representation of a cryptographic
hash of their partners’ public keys out-of-band (e.g., in person
or via a separate secure channel).

Assuming the fingerprint check is performed correctly by
end users, manual verification provides all desirable security
properties with the exception of only partial key revocation
support, as this requires contacting each communication part-
ner out-of-band. The approaches differ only in their usability
and adoption features.

Fingerprint verification approaches introduce severe usabil-
ity and adoption limitations: users have to perform manual
verification before communicating with a new partner (and get
them to do the same) to ensure strong authentication. Thus,
manual verification does not offer automatic key initialization,
easy key discovery, or immediate enrollment. In addition,
new keys introduce an alert on key renewal, resulting in a
key maintenance effort. Fingerprints complicate multiple key
support since each device might use a different key.

4) Short Authentication String (SAS): To ease fingerprint
verification, shorter strings can be provided to the users for
comparison. A SAS is a truncated cryptographic hash (e.g.,
20–30 bits long) of all public parts of the key exchange. It
is often represented in a format aimed to be human-friendly,
such as a short sequence of words. All participants compute
the SAS based on the key exchange they observed, and then
compare the resulting value with each other. The method used
for comparison of the SAS must authenticate the entities using
some underlying trust establishment mechanism.

ZRTP, and several earlier products, use the SAS method by
requiring participants to read strings aloud and thus anchors
trust in the ability of participants to recognize each other’s
voices [23], [24]. Users who have never heard each other’s
voices cannot authenticate using this method. Even for users
that are familiar with each other, the security provided by voice
identification has been the subject of controversy [25], [26].
Recent work [27] suggests that, even with a small number of
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samples of a target user’s speaking voice, audio samples can
be synthesized which are indistinguishable from the genuine
user’s voice with typical levels of background noise.

For this reason, we consider voice-based SAS verification
to be obsolescent from a security standpoint. In Table I, we
assume that users verify the SAS with a method providing
stronger security (e.g., using audio and video channels with
careful inspection during the SAS verification). If the com-
munication channel (e.g., text messaging) does not support a
mechanism to establish trust, the SAS must be compared out
of band (e.g., as recommended by SilentText).

The SAS approach sacrifices asynchronicity, since mutual
authentication must be done with all users at the same time.
Due to the short size of the SAS, the naive approach is
vulnerable to a MitM attack by an adversary that attempts
to select key exchange values that produce a hash collision
for the two connections. To mitigate this problem, the attacker
can be limited to a single guess by forcing them to reveal their
chosen keys before observing the keys of the honest parties.
This can be accomplished by requiring that the initiator of
the key exchange release a commitment to their key, and then
open the commitment after the other party reveals theirs.

5) Secret-based Zero-Knowledge Verification: The Socialist
Millionaire Protocol (SMP) is a zero-knowledge proof of
knowledge protocol that determines if secret values held by
two parties are equal without revealing the value itself. This
protocol is used in OTR as the recommended method for user
verification [28], [29]. Alice poses a question based on shared
knowledge to Bob in-band and secretly records her answer.
After Bob answers the question, the two parties perform the
SMP to determine if their answers match, without revealing
any additional information. Users are expected to choose
secure questions with answers based on shared knowledge that
attackers would be unable to know or guess.

Since a MitM must perform an online attack and can
only guess once, even low min-entropy secrets achieve strong
security [29], [30]. However, use of the SMP sacrifices asyn-
chronicity since all participants must be online during the
verification. If the protocol fails, the end users do not know
whether their answers did not match, or if a MitM attacker
exists and has made an incorrect guess.

6) Mandatory Verification: The previously defined veri-
fication methods are prone to inattentive users. Mandatory
verification approaches counter user negligence by requiring
that users enter the correct fingerprint strings instead of merely
confirming that they are correct. Of course, entering the
fingerprints takes user effort. In practice, QR-Codes and NFC
are popular methods to ease this process.

In SafeSlinger the user must choose the correct answer
among three possibilities to proceed [31]. After the protocol
is completed, each device receives a copy of contact infor-
mation shared with other participants with security guarantees
including confidentiality and authenticity.

Mandatory verification inherits the usability properties of
the underlying scheme. Incorporating mandatory verification
sacrifices asynchronicity to ensure inattentive user resistance.

7) Authority-based Trust: In authority-based trust schemes,
public keys must be vouched for by one or more trusted au-
thorities. Two well-known examples are public-key directories
and certificate authority schemes.

From the security point of view, the two schemes only differ
in key revocation and privacy preservation. While key updates
in key directories imply the revocation of old keys, in the
CA approach, certificates signed by the authority are trusted
by default; revocation lists have to be maintained separately.
However, CA-based revocation lists used in web browsers are
known to have issues with effectiveness and practicality [21],
[32], [33]. Since certificates may be exchanged by peers
directly, the CA-based approach can be privacy preserving.

With either system, users are vulnerable to MitM attacks
by the authority, which can vouch for, or be coerced to vouch
for, false keys. This weakness has been highlighted by recent
CA scandals [34], [35]. Both schemes can also be attacked if
the authority does not verify keys before vouching for them.
Authorities in messaging services often rely on insecure SMS
or email verification, enabling potential attacks.

The two approaches both support good usability. Well-
known systems using public-key directories, such as iMessage,
work without any user involvement.

8) Transparency Logs: A major issue with trusted authori-
ties is that they can vouch for fraudulent keys in an attack. The
Certificate Transparency protocol [36] requires that all issued
web certificates are included in a public log.

Certificate Transparency is a specific proposal for logging
PKIX certificates for TLS, but the general idea can be applied
to authority-based trust establishment in secure messaging.
We refer to the general concept as transparency logs for the
remainder of the paper. While there are no known deployments
to date, Google plans to adapt transparency logs for user keys
in End-to-End, its upcoming email encryption tool [37]. In
the absence of a concrete definition, we evaluate transparency
logs based on the certificate transparency protocol.

The main security improvement of the two schemes consists
of operator accountability and the detection of operator MitM
attacks after the fact. The remaining security features are
inherited from authority-based trust systems.

However, these schemes introduce new and unresolved us-
ability and adoption issues. For instance, the logs must be au-
dited to ensure correctness, negating the no auditing required
property. The auditing services require gossip protocols to
synchronize the view between the monitors and prevent attack
bubbles (e.g., where different views are presented to different
geographical regions) [36]. Also, since only identity owners
are in a position to verify the correctness of their long-term
keys, they share responsibility for verifying correct behavior of
the log. Previous research has shown that users often neglect
such security responsibilities [38], so this task should be
performed automatically by client applications. However, if
a client detects a certificate in the log that differs from their
version, it is not clear whether the authorities have performed
an attack, an adversary has successfully impersonated the
subject of the certificate to the authorities, or if the subject
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actually maintains multiple certificates (e.g., due to installing
the app on a second device). Ultimately, end users have to cope
with additional security warnings and errors, and it remains
to be seen whether they can distinguish between benign
and malicious log discrepancies without training. In addition,
transparency logs might hamper immediate enrollment due to
delays in log distribution.

Enhanced Certificate Transparency [39] and CONIKS [40]
both improve on the basic transparency logs concept, but
neither has yet been deployed in practice.

9) Blockchains: The Bitcoin cryptocurrency utilizes a novel
distributed consensus mechanism using pseudonymous “min-
ers” to maintain an append-only log [41]. Voting power is
distributed in proportion to computational resources by using
a probabilistic proof-of-work puzzle. For the currency appli-
cation, this log records every transaction to prevent double-
spending. The success of Bitcoin’s consensus protocol has led
to enthusiasm that similar approaches could maintain global
consensus on other types of data, such as a mapping of human-
readable usernames to keys.

Namecoin, the first fork of Bitcoin, allows users to claim
identifiers, add arbitrary data (e.g., public keys) as records for
those identifiers, and even sell control of their identifiers to
others [42]. Namecoin and similar name-mapping blockchains
are denoted by the blockchain entry in Table I. Unlike most
other schemes, Namecoin is strictly “first-come, first-served”,
with any user able to purchase ownership of any number of
unclaimed names for a small, fixed fee per name. This price
is paid in Namecoins — units of currency that are an inherent
part of the system. A small maintenance fee is required to
maintain control of names, and small fees may be charged by
miners to update data or transfer ownership of names.

From the security perspective, blockchain schemes achieve
similar results to manual verification, except that instead of
exchanging keys, the trust relies on the username only. Once
users have securely exchanged usernames, they can reliably
fetch the correct keys.

However, various shortcomings arise from a usability and
adoption perspective. The primary usability limitation is that
if users ever lose the private key used to register their name
(which is not the same as the communication key bound to
that name), they will permanently lose control over that name
(i.e., key recovery is not possible). Similarly, if the key is
compromised, the name can be permanently and irrevocably
hijacked. Thus, the system requires significant key manage-
ment effort and burdens users with high responsibility. If
users rely on a web-based service to manage private keys for
them, as many do with Bitcoin in practice, the system is no
longer truly end-to-end. The system requires users to pay to
reserve and maintain names, sacrificing low key maintenance
and automatic key initialization. Users also cannot instantly
issue new keys for their identifiers (i.e., there is no immediate
enrollment) but are required to wait for a new block to be
published and confirmed. In practice, this can take 10–60
minutes depending on the desired security level.

On the adoption side, for the system to be completely

trustless, users must store the entire blockchain locally and
track its progress. Experience from Bitcoin shows that the vast
majority of users will not do this due to the communication
and storage requirements and will instead trust some other
party to track the blockchain for them. This trusted party
cannot easily insert spurious records, but can provide stale
information without detection. In any case, the system is not
highly scalable since the required amount of storage and traffic
consumption increases linearly with the number of users.

Finally, there are serious issues with name squatting, which
have plagued early attempts to use the system. Because any-
body can register as many names as they can afford, a number
of squatters have preemptively claimed short and common
names. Given the decentralized nature of blockchains, this is
hard to address without raising the registration fees, which
increases the burden on all users of the system.

E. Other Approaches

Due to space constraints, we omit evaluations of some
approaches in Table I. Readers unfamiliar with web-of-trust
schemes can refer to Appendix B. Identity Based Encryption
(IBE) and Keybase are discussed in the extended paper [1].

F. Discussion

As Table I makes evident, no trust establishment approach
is perfect. While it is common knowledge that usability and
security are often at odds, our results show exactly where the
trade-offs lie. Approaches either sacrifice security and provide
a nearly ideal user experience, or sacrifice user experience
to achieve nearly ideal security scores. Authority-based trust
and TOFU schemes are the most usable and well-adopted,
but only offer basic security properties. Not surprisingly,
authority-based trust (particularly app-specific key directories)
is predominant among recently developed apps in the wild, as
well as among apps with the largest userbases (e.g., iMessage,
BlackBerry Protected, and Wickr).

In practice, we may be faced with the constraint that none of
the usability properties can be sacrificed in a system that will
achieve mass adoption. Higher-security schemes may be useful
within organizations or niche communities, but defending
against mass surveillance requires a communication system
that virtually all users can successfully use. Thus, it may be
wise to start from the basic user experience of today’s widely
deployed communication apps and try to add as much security
as possible, rather than start from a desired security level and
attempt to make it as simple to use as possible.

There appears to be considerable room for security improve-
ments over authoritative key directories even without changes
to the user experience. Transparency logs might provide more
accountability with no interaction from most users. Because
this approach has not yet been deployed, it remains to be
seen how much security is gained in practice. The insertion
of new keys in the log does not provide public evidence of
malicious behavior if insecure user authentication methods
(e.g., passwords) are used to authorize key changes, as we fully
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expect will be the case. Still, the possible loss of reputation
may be enough to keep the server honest.

Another promising strategy is a layered design, with basic
security provided by a central key directory, additional trust
establishment methods for more experienced users (e.g., visual
fingerprint verification or QR-codes), and TOFU warning
messages whenever contacts’ keys have changed. TextSecure
and Threema, among others, take such a layered approach
(represented by the second-to-last row in Table I). In contrast,
OTR uses opportunistic encryption with the ability to perform
the SMP to ensure trust (represented by the last row in Table I).

Conversely, the approaches with good security properties
should focus on improving usability. There has been little
academic work studying the usability of trust establishment.
Further research focusing on end-users’ mental models and
perception for trust establishment could help to develop more
sophisticated and understandable approaches.

IV. CONVERSATION SECURITY

After trust establishment has been achieved, a conversa-
tion security protocol protects the security and privacy of
the exchanged messages. This encompasses how messages
are encrypted, what data is attached to them, and what
cryptographic protocols (e.g., ephemeral key exchanges) are
performed. A conversation security scheme doesn’t specify a
trust establishment scheme nor define how transmitted data
reaches the recipient.

In Table II, we compare the features of existing approaches
for conversation security. Rows without circles in the “group
features” columns can only be used in a two-party setting.

A. Security and Privacy Features

Confidentiality: Only the intended recipients are able to
read a message. Specifically, the message must not be readable
by a server operator that is not a conversation participant.

Integrity: No honest party will accept a message that has
been modified in transit.

Authentication: Each participant in the conversation re-
ceives proof of possession of a known long-term secret from
all other participants that they believe to be participating in
the conversation. In addition, each participant is able to verify
that a message was sent from the claimed source.

Participant Consistency: At any point when a message is
accepted by an honest party, all honest parties are guaranteed
to have the same view of the participant list.

Destination Validation: When a message is accepted by an
honest party, they can verify that they were included in the set
of intended recipients for the message.

Forward Secrecy: Compromising all key material does not
enable decryption of previously encrypted data.

Backward Secrecy: Compromising all key material does
not enable decryption of succeeding encrypted data. This
property is also often called future secrecy [43]. The terms
are controversial and vague in literature [44]–[46].

Anonymity Preserving: Any anonymity features provided
by the underlying transport privacy architecture are not
undermined (e.g., if the transport privacy system pro-
vides anonymity, the conversation security level does not
deanonymize users by linking key identifiers).

Speaker Consistency: All participants agree on the sequence
of messages sent by each participant. A protocol might per-
form consistency checks on blocks of messages during the
protocol, or after every message is sent.

Causality Preserving: Implementations can avoid display-
ing a message before messages that causally precede it.

Global Transcript: All participants see all messages in the
same order. Note that this implies speaker consistency.

Conversation security protocols may provide several differ-
ent forms of deniability. For a detailed treatment of deniability
in various contexts, see Appendix A. We define the following
deniability-related features:

Message Unlinkability: If a judge is convinced that a
participant authored one message in the conversation, this does
not provide evidence that they authored other messages.

Message Repudiation: Given a conversation transcript and
all cryptographic keys, there is no evidence that a given
message was authored by any particular user. We assume that
the accuser has access to the session keys because it is trivial
to deny writing a plaintext message when the accuser cannot
demonstrate that the ciphertext corresponds to this plaintext.
We also assume that the accuser does not have access to the
accused participant’s long-term secret keys because then it is
simple for the accuser to forge the transcript (and thus any
messages are repudiable).

Participation Repudiation: Given a conversation transcript
and all cryptographic key material for all but one accused
participant, there is no evidence that the honest participant
was in a conversation with any of the other participants.

Several additional features are only meaningful for group
protocols (i.e., protocols supporting chats between three or
more participants):

Computational Equality: All chat participants share an
equal computational load.

Trust Equality: No participant is more trusted or takes on
more responsibility than any other.

Subgroup messaging: Messages can be sent to a subset of
participants without forming a new conversation.

Contractible Membership: After the conversation begins,
participants can leave without restarting the protocol.

Expandable Membership: After the conversation begins,
participants can join without restarting the protocol.

When a participant joins a secure group conversation, it is
desirable for the protocol to compute new cryptographic keys
so that the participant cannot decrypt previously sent mes-
sages. Likewise, keys should be changed when a participant
leaves so that they cannot read new messages. This is trivial to
implement by simply restarting the protocol, but this approach
is often computationally expensive. Protocols with expandable
/ contractible membership achieve this without restarts.

There are many higher-level security and privacy design
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TABLE II
CONVERSATION SECURITY PROTOCOLS AND THEIR USABILITY AND ADOPTION IMPLICATIONS. NO APPROACH REQUIRES ADDITIONAL USER EFFORT.
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TLS+Trusted Server†* Skype - - - - - - - - - - - -
Static Asymmetric Crypto†* OpenPGP, S/MIME - - - - - - - - - -
+IBE† Wang et al. - - - - - - - - - - - -
+Short Lifetime Keys OpenPGP Draft - - - - - - - - -
+Non-Interactive IBE† Canetti et al. - - - - - - - - -
+Puncturable Encryption† Green and Miers - - - - - - - - -
Key Directory+Short Lifetime Keys† IMKE - - - - - - - -
+Long-Term Keys† SIMPP - - - - - - - - -
Authenticated DH†* TLS-EDH-MA - - - - -
+Naı̈ve KDF Ratchet* SCIMP - - - -
+DH Ratchet†* OTR - - -
+Double Ratchet†* Axolotl - - -
+Double Ratchet+3DH AKE†* - - - -
+Double Ratchet+3DH AKE+Prekeys†* TextSecure - - - -
Key Directory+Static DH+Key Transport† Kikuchi et al. - - - - - - - - - - - -
+Authenticated EDH+Group MAC† GROK - - - - - - - - - -
GKA+Signed Messages+Parent IDs† OldBlue - - - - - - - -
Authenticated MP DH+Causal Blocks†* KleeQ - - - -
OTR Network+Star Topology† GOTR (2007) - - - - - - - - - - -
+Pairwise Topology† - - - -
+Pairwise Axolotl+Multicast Encryption* TextSecure - - - - -
DGKE+Shutdown Consistency Check† mpOTR - - - - - - - -
Circle Keys+Message Consistency Check† GOTR (2013) - - - -

= provides property; = partially provides property; - = does not provide property; †has academic publication; *end-user tool available

issues for secure group chat protocols. For example, the
mechanisms for inviting participants to chats, kicking users
out of sessions, and chat room moderation are all important
choices that are influenced by the intended use cases. We do
not cover these features here because they are implemented at
a higher level than the secure messaging protocol layer.

B. Usability and Adoption

In classic messaging tools, users must only reason about
two simple tasks: sending and receiving messages. However,
in secure communication, additional tasks might be added.
In old secure messaging systems, often based on OpenPGP,
users could manually decide whether to encrypt and/or sign
messages. Many studies have shown that this caused usability
problems [2]–[5], [15]. However, during our evaluation, we
found that most recent secure messenger apps secure all
messages by default without user interaction. Since all imple-
mentations can operate securely once the trust establishment
is complete, we omit the user-effort columns in Table II.
However, we take other usability and adoption factors, such
as resilience properties, into account:

Out-of-Order Resilient: If a message is delayed in transit,
but eventually arrives, its contents are accessible upon arrival.

Dropped Message Resilient: Messages can be decrypted
without receipt of all previous messages. This is desirable for
asynchronous and unreliable network services.

Asynchronous: Messages can be sent securely to discon-
nected recipients and received upon their next connection.

Multi-Device Support: A user can participate in the con-
versation using multiple devices at once. Each device must be
able to send and receive messages. Ideally, all devices have
identical views of the conversation. The devices might use a
synchronized long-term key or distinct keys.

No Additional Service: The protocol does not require any
infrastructure other than the protocol participants. Specifically,
the protocol must not require additional servers for relaying
messages or storing any kind of key material.

C. Two-party Chat Evaluation

1) Trusted central servers (baseline): The most basic con-
versation security features that a secure chat protocol can
provide are confidentiality and integrity. This can be easily
implemented without adversely affecting usability and adop-
tion properties by using a central server to relay messages and
securing connections from clients to the central server using a
transport-layer protocol like TLS. This also allows the central
server to provide presence information. Since this approach
does not negatively affect usability, it is no surprise that this
architecture has been adopted by some of the most popular
messaging systems today (e.g., Skype, Facebook Chat, Google
Hangouts) [47]–[51]. We do not consider these protocols
further because they do not meet our stronger end-to-end
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definition of confidentiality — that messages cannot be read
by anyone except the intended recipient(s). We include this
approach as a baseline in Table II in order to evaluate the
effects of various designs.

Note that the baseline protocols provide all repudiation
features, since there is no cryptographic proof of any activity.
Additionally, these protocols are highly resilient to errors
since there are no cryptographic mechanisms that could cause
problems when messages are lost. The use of a trusted central
server makes asynchronicity and multi-device support trivial.

2) Static Asymmetric Cryptography: Another simple ap-
proach is to use participants’ static long-term asymmetric
keypairs for signing and encrypting.

OpenPGP and S/MIME are two well-known and widely
implemented standards for message protection, mostly used
for email but also in XMPP-based tools [47], [52]–[54].

While this approach provides confidentiality, message au-
thentication, and integrity, it causes a loss of all forms of
repudiation. Additionally, care must be taken to ensure that
destination validation and participant consistency checks are
performed. Without destination validation, surreptitious for-
warding attacks are possible [55]. Without participant con-
sistency, identity misbinding attacks might be possible [44].
Defenses against replay attacks should also be included. These
considerations are particularly relevant since the OpenPGP
and S/MIME standards do not specify how to provide these
features, and thus most implementations remain vulnerable to
all of these attacks [52], [53].

A second issue with naive asymmetric cryptography is the
lack of forward or backward secrecy. One way to address this
issue is to use keys with very short lifetimes (e.g., changing
the key every day). Brown et al. propose several extensions to
OpenPGP based on this principle [56]. In the most extreme
proposal, conversations are started using long-term keys, but
each message includes an ephemeral public key to be used for
replies. This method provides forward and backward secrecy
for all messages except those used to start a conversation.

From a usability and adoption perspective, static key ap-
proaches achieve the same properties as the baseline. Apart
from the non-transparent trust establishment, iMessage is a
prominent example of how static asymmetric cryptography
can achieve end-to-end conversation security with no changes
to the user experience. Since the same long-term keys are
used for all messages, message order resilience, dropped
message resilience, asynchronicity, and multi-device-support
are provided. No additional services are required.

3) FS-IBE: In traditional PKI cryptography, forward se-
crecy is achieved by exchanging ephemeral session keys or
by changing keypairs frequently. The use of key agreement
protocols makes asynchronicity difficult, whereas frequently
changing keypairs requires expensive key distribution. Forward
Secure Identity Based Encryption (FS-IBE) allows keypairs to
be changed frequently with a low distribution cost. Unlike
traditional identity-based encryption schemes, the private key
generators (PKG) in FS-IBE are operated by the end users and
not by a server. Initially, each participant generates a PKG

for an identity-based cryptosystem. Participants generate N
private keys (SKi), one for each time period i, by using their
PKG, and then immediately destroy the PKG. Each private
key SKi is stored encrypted by the previous private key
SKi−1 [45], [57]. The participant then distributes the public
key of the PKG. Messages sent to the participant are encrypted
for the private key corresponding to the current time period.
When a time period concludes, the next secret key is decrypted
and the expired key is deleted. Thus, if intermediate keys
are compromised, the attacker can only retrieve corresponding
future private keys; forward secrecy, but not backward secrecy,
is provided. In contrast to generating key pairs for each time
period, which requires distribution of N keys, only a single
public master key is published; however, the generation still
needs to be repeated after all time periods expire.

Canetti, Halevi and Katz were the first to construct a
non-interactive forward security scheme based on hierarchical
IBE with logarithmic generation and storage costs [57]. In
addition, they showed how their scheme can be extended to
an unbounded number of periods (i.e., the private keys do not
have to be generated in advance), removing the need for addi-
tional services to distribute new keys at the cost of increasing
computational requirements over time. This scheme provides
non-interactive asynchronous forward secrecy without relying
on additional services. However, if messages arrive out of
order, their corresponding private keys might have already
been deleted. As a mitigation, expired keys might be briefly
retained, providing partial out-of-order resilience.

A similar approach is puncturable encryption [58], in which
a recipient can update their private key to prevent future
decryption of a specific message identified by an (arbitrary)
tag. Computational costs and storage costs increase over
time for both systems, introducing scalability concerns. To
our knowledge, neither scheme has been deployed and they
thus merit further development.

4) Authenticated Diffie-Hellman: Many conversation secu-
rity schemes make use of an authenticated Diffie-Hellman
(DH) key exchange to initialize the conversation. In an
authenticated key exchange (AKE) such as authenticated DH,
the participants generate an ephemeral session key and authen-
ticate the exchange using their long-term keys. The resulting
session key is used to derive symmetric encryption and MAC
keys, which then protect messages using an encrypt-then-
MAC approach. This basic design provides confidentiality,
integrity, and authentication. TLS with an ephemeral DH
cipher suite and mutual authentication (TLS-EDH-MA) is
a well-known example of this approach. Note that further
protections are required during key exchange to protect against
identity misbinding attacks violating participant consistency,
such as those provided by the SIGMA protocol [29], [44].

The use of ephemeral session keys provides forward and
backward secrecy between conversations. Message unlinka-
bility and message repudiation are provided since messages
are authenticated with shared MAC keys rather than being
signed with long-term keys. At a minimum, messages can
be forged by any chat participants. Some protocols, such as
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OTR, take additional measures, such as publication of MAC
keys and the use of malleable encryption, to expand the set
of possible message forgers [59]. If the participants simply
sign all AKE parameters, then this approach does not provide
participation repudiation. However, if participants only sign
their own ephemeral keys, these signatures can be reused by
their conversation partners in forged transcripts. OTR uses
this approach to obtain partial participation repudiation due
to a limited set of possible forgers.

Once the AKE has been performed, the encrypt-then-MAC
approach allows messages to be exchanged asynchronously
with out-of-order and dropped message resilience. However,
since a traditional AKE requires a complete handshake before
actual messages can be encrypted, this basic approach requires
synchronicity during conversation initialization. Additionally,
since key agreements can only be performed with connected
devices, there is no trivial multi-device support.

5) Key Evolution: A desirable property is forward secrecy
for individual messages rather than for entire conversations.
This is especially useful in settings where conversations can
last for the lifetime of a device. To achieve this, the session
key from the initial key agreement can be evolved over time
through the use of a session key ratchet [43]. A simple
approach is to use key derivation functions (KDFs) to compute
future message keys from past keys. This naive approach, as
used in SCIMP [60], provides forward secrecy. However, it
does not provide backward secrecy within conversations; if a
key is compromised, all future keys can be derived using the
KDF. Speaker consistency is partially obtained since messages
cannot be surreptitiously dropped by an adversary without
also dropping all future messages (otherwise, recipients would
not be able to decrypt succeeding messages). If messages are
dropped or arrive out of order, the recipient will notice since
the messages are encrypted with an unexpected key. To handle
this, the recipient must store expired keys so that delayed or
re-transmitted messages can still be decrypted, leaving a larger
window of compromise than necessary. Thus, out-of-order and
dropped message resilience are only partially provided.

6) Diffie-Hellman Ratchet: A different ratcheting approach,
introduced by OTR, is to attach new DH contributions to
messages [59]. With each sent message, the sender advertises
a new DH value. Message keys are then computed from
the latest acknowledged DH values. This design introduces
backward secrecy within conversations since a compromised
key will regularly be replaced with new key material. Causality
preservation is partially achieved since messages implicitly
reference their causal predecessors based on which keys they
use. The same level of speaker consistency as the naive KDF
solution can be provided by adding a per-speaker monotonic
counter to messages. A disadvantage of the DH ratchet is that
session keys might not be renewed for every message (i.e.,
forward secrecy is only partially provided). Like the KDF-
based ratchet, the DH ratchet lacks out-of-order resilience; if
a message arrives after a newly advertised key is accepted,
then the necessary decryption key was already deleted.

7) Double-Ratchet (Axolotl): To improve the forward se-
crecy of a DH ratchet, both ratchet approaches can be com-
bined: session keys produced by DH ratchets are used to seed
per-speaker KDF ratchets. Messages are then encrypted using
keys produced by the KDF ratchets, frequently refreshed by
the DH ratchet on message responses. The resulting double
ratchet, as implemented by Axolotl [61], provides forward
secrecy across messages due to the KDF ratchets, but also
backward secrecy since compromised KDF keys will even-
tually be replaced by new seeds. To achieve out-of-order
resilience, the Axolotl ratchet makes use of a second derivation
function within its KDF ratchets. While the KDF ratchets
are advanced normally, the KDF keys are passed through
a second distinct derivation function before being used for
encryption. If a message arrives out of order, the KDF
ratchet can be moved forward while temporarily storing the
old derived message key; if this key is compromised, it does
not impact forward secrecy. Despite these improvements, the
double ratchet still requires synchronicity for the initial AKE.

8) 3-DH Handshake: A triple DH (3-DH) handshake is
a different AKE scheme that provides stronger participa-
tion repudiation. Assuming that Alice and Bob both have
long-term DH keys ga and gb and ephemeral keys gae

and gbe , the 3-DH shared secret s is computed as s =
KDF(DH(gae , gbe)||DH(ga, gbe)||DH(gae , gb)) [61]. If a se-
cure key derivation function is used, a MitM attacker must
either know a and ae, or b and be. Kudla et al. have shown
that the 3-DH key exchange provides the same authentication
level as achieved with the authenticated versions of DH key
agreements [62]. 3-DH achieves full participation repudiation
since anybody is able to forge a transcript between any two
parties by generating both ae and be and performing DH
key exchanges with a and b. Since the secret is partially
derived from the long-term public keys, 3-DH also provides
participant consistency without the need to explicitly exchange
identities after a secure channel has been established. Unfortu-
nately, this also causes a partial loss of anonymity preservation
since long-term public keys are always observable during
the initial key agreement (although future exchanges can be
protected by using past secrets to encrypt these identities).

9) Prekeys: While a double ratchet does not provide asyn-
chronicity by itself, it can be combined with a prekey scheme
to create an asynchronous version of the protocol. Prekeys are
one-time ephemeral public DH contributions that have been
uploaded in advance to a central server. This allows clients
to complete a DH key exchange with a message recipient by
requesting their next prekey from the server. When combined
with a 3-DH exchange, this is sufficient to complete an
asynchronous AKE as part of the first message.

TextSecure [63] is a popular Android app that combines
Axolotl, prekeys, and 3-DH to provide an asynchronous user
experience while sacrificing the no additional service property.
It has gained considerable attention recently after being incor-
porated into WhatsApp [64], [65]. Assuming Axolotl is used
on two devices, the key material can evolve independently
for each device. However, if one of those devices remains
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offline for a long time, a key compromise on that device
is problematic: if the device can use its outdated keys to
read messages that were sent when it was offline, then this
compromise defeats forward secrecy; if the device cannot
read the old messages, then the protocol does not achieve
complete multi-device support. Deciding how long a device
may be offline before it can no longer read buffered messages
is an adoption consideration requiring further study of user
behavior.

D. Group Chat Evaluation

1) OTR for groups: Several protocols have been proposed
to achieve OTR-like repudiation properties for group conver-
sations. The TextSecure protocol can be naturally extended to
groups by sending messages to each recipient using the two-
party TextSecure protocol [66]. Multicast encryption is used
for performance: a single encrypted message is sent to a central
server for relaying to recipients while the decryption key for
the message is sent pairwise using TextSecure. This design
does not provide any guarantees of participant consistency,
but it inherits the asynchronicity of the two-party TextSecure
protocol. Speaker consistency and causality preservation are
achieved by attaching preceding message identifiers to mes-
sages. A message identifier is a hash of the sender, the list of
preceding identifiers, and the message contents.

A repudiable group chat scheme can also be designed by
utilizing a deniable group key exchange (DGKE) protocol,
as in the mpOTR protocol [67], [68]. When completed, the
DGKE provides each participant with a shared secret group
key and individual ephemeral signing keys. This information
is authenticated with long-term keys in a manner providing
participation repudiation while still authenticating participants
— participants receive proof of each other’s identities, but
this proof cannot be used to convince outsiders. Messages
are encrypted with the shared group key and signed with
the ephemeral keys. The ephemeral signatures provide proof
of authorship to others in the group but, because outsiders
cannot be certain that these ephemeral signing keys correspond
to specific long-term keys, message repudiation is preserved.
However, since all messages from an individual are signed
with the same (ephemeral) key, the protocol does not have mes-
sage unlinkability. To provide speaker consistency, a check is
performed on shutdown whereby hashes of messages sent by
each participant are exchanged. If this check fails, messages
must be individually compared to uncover discrepancies. In
this scheme, subgroup messaging is not possible since all
messages share a single encryption key. The group is also not
expandable or contractible without performing a new DGKE.

A completely different approach is taken by the GOTR
protocol released in 2013 (we write the year to distinguish
it from a different protocol with the same name from 2007).
GOTR (2013) [69] is built using a “hot-pluggable” group
key agreement (GKA) protocol, allowing members to join
and drop out of the conversation with little overhead. This
system involves the use of “circle keys”: sets of public keys
having the property that a shared secret key can be computed

by anyone with a private key matching a public key in
the set. The key exchange mechanism in this protocol is
relatively complex; due to space constraints, we refer the
interested reader to the original publication for details [69].
Pairwise secure channels are set up between participants to
send consistency check messages. These consistency channels
have the effect of providing global transcript order, but all
participants are required to be online to receive messages. The
system otherwise provides features similar to mpOTR but with
flexible group membership and message unlinkability.

E. Other Approaches

Due to space constraints, there are several approaches in
Table II for which we omit detailed evaluations. Protocols
such as IMKE [70] and SIMPP [71]–[73] use a central server
to exchange ephemeral keys. GROK [74] and the protocol
of Kikuchi et al. [75] are early attempts to support secure
group chat, and involve a conversation leader transmitting an
ephemeral group key to others with the help of a central server.
Group chat protocols such as OldBlue [76] and KleeQ [77]
provide mechanisms to preserve causality of messages sent
over unreliable networks. These protocols are evaluated in
the extended paper [1]. Other designs include pairwise OTR
connections, or a trusted server that is connected to using OTR,
as in the GOTR (2007) scheme [78]. Appendix C discusses
these designs. The recently proposed (n+1)sec protocol [79]
provides a DGKE and checks for transcript consistency.

F. Discussion

Similar to our study of trust establishment, Table II makes
immediately clear that no conversation security protocol pro-
vides all desired properties. Since most of the properties in the
table are not mutually exclusive, however, there is significant
room for improvement by combining protocol designs and this
should be seen as a tangible and important call to action for
the research community.

Sadly, the most widely adopted solutions also have the
worst security and privacy properties, with most non-security-
focused applications providing only basic static asymmetric
cryptography. This does not appear to be due to the usability
drawbacks of the more secure protocols: once the trust estab-
lishment has been done, all of the conversation security ap-
proaches we studied can be automated without any additional
effort for the user. An exception is enabling asynchronous
communication while still providing forward and backward
secrecy; the only solution for this problem that appears to
have any significant deployment in practice is the prekeys
approach implemented by TextSecure. This requires relatively
complicated infrastructure compared to a simple key server,
introduces problems for multi-device support, and is prone
to denial-of-service attacks if it is used in anonymous com-
munication. This approach is poorly studied in the academic
literature. The FS-IBE scheme discussed in Section IV-C3
promises to resolve the issues of server complexity and denial
of service, but introduces new challenges such as scalability
and performance issues [57]. Unlike prekeys (Section IV-C9),
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this scheme has received a considerable amount of follow-
up research and academic citations, but we are unaware
of any practical tool implementing it. In addition, a time-
window based FS-IBE scheme requires holding the ephemeral
keys for a certain amount of time to allow decryption of
delayed messages. Improving the practicality of FS-IBE and
puncturable encryption schemes warrants further research.

Another outstanding concern that limits adoption of secure
conversation security protocols is the limited support for mul-
tiple devices. Despite a vast number of users owning multiple
devices, only the most insecure protocols support this property
without requiring users to perform pairing procedures. Device
pairing has proved extremely difficult for users in practice [80],
[81] and allowing users to register multiple devices with
distinct keys is a major usability improvement.

When it comes to group chat properties, we can identify
several areas for improvement in Table II. Classic protocols
often do not provide participant consistency or destination
validation, making them potentially vulnerable to surreptitious
forwarding or identity misbinding attacks. However, these are
sometimes addressed in concrete implementations. The double
ratchet used in Axolotl improves forward secrecy with low cost
in performance, implementation complexity, and resilience,
but it has not yet been thoroughly evaluated in an academic
context. Additionally, decentralized group chat systems in-
herently permit a participant to send different messages to
different people. Due to network conditions, users can also
end up observing significantly different transcripts. Despite
these intrinsic weaknesses, surprisingly few protocols explic-
itly consider speaker consistency or causality preservation.

Existing solutions achieve mixed results concerning repu-
diation. Only the OTR-like protocols, namely the two-party
protocols based on authenticated DH key exchanges and the
OTR-like group protocols, offer both message and participant
repudiation while also providing authentication.

There are also additional adoption constraints imposed by
many modern secure group chat protocols. Group protocols
often choose to employ either a trusted participant or an
additional service to improve protocol performance, which
can lead to security concerns or introduce additional costs
for deployment. Very few group protocols support subgroup
messaging, and just as few support changing group member-
ship after the conversation has started without incurring the
substantial costs of a new protocol run. Additionally, many
proposed designs require synchronicity in order to simplify
their protocols, which largely precludes their use on current
mobile devices.

V. TRANSPORT PRIVACY

The transport privacy layer defines how messages are ex-
changed, with the goal of hiding message metadata such as
the sender, receiver, and conversation to which the message
belongs. Some transport privacy architectures impose topolog-
ical structures on the conversation security layer, while others
merely add privacy to data links between entities. The transport
privacy schemes may also be used for privacy-preserving

contact discovery. In this section, we compare approaches for
transport privacy in terms of the privacy features that they
provide, as well as usability concerns and other factors that
limit their adoption. Table III compares the various schemes.

A. Privacy Features

We make the distinction between chat messages, which
are the user-generated payloads for the messaging protocol
to exchange, and protocol messages, which are the underlying
data transmissions dictated by the upper protocol layers. We
define following privacy properties:

Sender Anonymity: When a chat message is received, no
non-global entities except for the sender can determine which
entity produced the message.

Recipient Anonymity: No non-global entities except the
receiver of a chat message know which entity received it.

Participation Anonymity: No non-global entities except the
conversation participants can discover which set of network
nodes are engaged in a conversation.

Unlinkability: No non-global entities except the conver-
sation participants can discover that two protocol messages
belong to the same conversation.

Global Adversary Resistant: Global adversaries cannot
break the anonymity of the protocol.

B. Usability Properties

Contact Discovery: The system provides a mechanism for
discovering contact information.

No Message Delays: No long message delays are incurred.
No Message Drops: Dropped messages are retransmitted.
Easy Initialization: The user does not need to perform any

significant tasks before starting to communicate.
No Fees Required: The scheme does not require monetary

fees to be used.

C. Adoption Properties

Topology Independent: No network topology is imposed on
the conversation security or trust establishment schemes.

No Additional Service: The architecture does not depend on
availability of any infrastructure beyond the chat participants.

Spam/Flood Resistant: The availability of the system is
resistant to denial-of-service attacks and bulk messaging.

Low Storage Consumption: The system does not require a
large amount of storage capacity for any entity.

Low Bandwidth: The system does not require a large
amount of bandwidth usage for any entity.

Low Computation: The system does not require a large
amount of processing power for any entity.

Asynchronous: Messages sent to recipients who are offline
will be delivered when the recipient reconnects, even if the
sender has since disconnected.

Scalable: The amount of resources required to maintain
system availability scales linearly with the number of users.
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TABLE III
TRANSPORT PRIVACY SCHEMES. EVERY PRIVACY-ENHANCING APPROACH CARRIES USABILITY AND/OR ADOPTION COSTS.
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Store-and-Forward†* Email/XMPP - - - - - - -
+DHT Lookup†* Kademlia - - -
Onion Routing+Message Padding†* Tor - - - - -
+Hidden Services* Ricochet - - - -
+Inbox Servers† - - - - - -
+Random Delays†* Mixminion - - - - -
+Hidden Services+Delays+Inboxes+ZKGP* Pond - - - -
DC-Nets†* - - - - - - - - -
+Silent Rounds† Anonycaster - - - - - - -
+Shuffle-Based DC-Net+Leader† Dissent - - - - - - -
+Shuffle-Based DC-Net+Anytrust Servers† Verdict - - - - - - -
Message Broadcast† - - - - - - -
+Blockchain - - - - - - - -
PIR* Pynchon Gate - - - - -

= provides property; = partially provides property; - = does not provide property; †has academic publication; *end-user tool available

D. Evaluation

1) Store-and-Forward (baseline): To evaluate the effec-
tiveness and costs of different transport privacy architectures
in Table III, we compare the solutions to a baseline. For
the baseline protocol, we assume a simple store-and-forward
messaging protocol. This method is employed by email and
text messaging, causing minor message delays and storage
requirements for intermediate servers. Since email headers
contain sender and recipient information, a simple store-and-
forward mechanism does not provide any privacy properties.

2) Onion Routing: Onion routing is a method for commu-
nicating through multiple proxy servers that complicates end-
to-end message tracing [82]. In onion routing, senders send
messages wrapped in multiple layers of encryption through
preselected paths of proxy servers. These servers unwrap
layers of encryption until the original message is exposed,
at which point it is relayed to the final destination. Each
node in the path only knows the immediate predecessor and
successor in the path. The routing process adds some latency to
messages, but otherwise retains the baseline usability features.
An onion routing protocol, such as the widely used Tor pro-
tocol [83], provides sender anonymity, participant anonymity,
and unlinkability against network attackers with limited scope.
Tor also includes an extension called hidden services that
provides recipient anonymity.

Global network adversaries are still able to break the
anonymity properties of simple onion routing designs by per-
forming statistical analysis incorporating features such as con-
tent size, transmission directions, counts, and timing, among
others. The success of such an adversary can be limited by in-
dividually eliminating these features. Protection can be added,
for example, by introducing random delays to transmissions.
The longer the allowed delays, the less statistical power is
available to the adversary. Of course, this imposes potentially

long message delays and additional storage requirements for
relays, making it unusable for synchronous instant messaging.
Mixminion is an implementation using this technique [84].

Unfortunately, random delays do not completely defeat
global adversaries. The only way to do so is to make transmis-
sion indistinguishable from no transmission (e.g., by saturating
the bandwidth of all connections). However, in practice, this is
likely infeasible. Adoption of onion routing is limited by the
requirement to establish a large network of nodes to provide
a sufficient anonymity set and cover traffic.

To provide asynchronous communication support, store-
and-forward servers can be incorporated into the onion routing
model. Each user is associated with a Tor hidden service that
remains online. To send a message, the sender constructs a
circuit to the recipient’s server and transmits the message.
Users periodically poll their own servers to determine if any
messages are queued. Ricochet is an example of this approach.

Pond uses this design for its transmission architecture [85]
but adds random delays between connections, all of which
transmit the same amount of data, to weaken statistical analysis
by network adversaries. This design requires storage commit-
ments by servers and also introduces very high latency.

Without additional protections, this scheme is also highly
vulnerable to denial-of-service attacks because connection
delays and fixed transmission sizes artificially limit bandwidth
to very low levels. Pond addresses this by requiring users to
maintain group lists secured by zero-knowledge-group-proof
schemes (ZKGP). This way, recipients can upload contact lists
without revealing their contacts. Simultaneously, senders can
authenticate by providing zero-knowledge proofs that they are
in this list. The BBS signature scheme [86] is currently used
by Pond to achieve this.

3) DC-nets: Dining Cryptographer networks (DC-nets) are
anonymity systems that are often compared to onion routing
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schemes. DC-nets are group protocols that execute in rounds.
At the start of each round, each participant either submits a
secret message or no message. At the end of the round, all
participants receive the xor of all secret messages submitted,
without knowing which message was submitted by which
participants. In this way, DC-nets provide sender anonymity
while also achieving global adversary resilience — no statis-
tical analysis can reveal the sender of a message. Recipient
anonymity can be achieved by using the protocol to publish
an ephemeral public key. Messages encrypted with this key
are then sent and, since the owner of the matching private
key is unknown, the participant able to decrypt the messages
cannot be determined. Since messages are sent in rounds, DC-
nets add message latency and do not support asynchronous
communication; dropped messages prevent the protocol from
advancing. Messages are easily linked by observing which net-
work nodes participate in a round. Additionally, DC-nets have
limited scalability due to requiring pairwise communication.

The basic DC-net design has a problem with collisions: if
two parties submit a message in the same round, the result
will be corrupted. A malicious participant can exploit this to
perform an anonymous denial-of-service attack by submitting
garbled messages each round. Worse still, an active network
attacker can also perform this attack by perturbing transmitted
bits. There are several approaches to mitigate this problem.
Anonycaster [87] adds pseudorandomly determined “silent
rounds” where all members know that no message should
be contributed. Receipt of a message during a silent round
indicates a denial-of-service attack by an active network at-
tacker. However, malicious participants can still launch attacks
by sending garbled messages only during non-silent rounds.

Dissent [88]–[90] and Verdict [91] take a different approach
by constructing a DC-net system through the use of a verifiable
shuffle and bulk transfer protocol. Shuffle-based DC-nets can
include a blame protocol to pinpoint the entity that caused a
round to fail. Dissent appoints one participant as a leader to
manage round timing, the blame protocol, and exclusion of
disconnected members from rounds, thereby restoring support
for asynchronicity. Verdict uses an alternative approach where
the DC-net protocol is executed by a set of central servers that
clients connect to, providing greater scalability and maintain-
ing security as long as any one server is honest.

While DC-nets are primarily a transport privacy mechanism,
they are distinguished from other schemes by their use of
rounds and the fact that every network node is also a par-
ticipant in the conversation. When using DC-nets to transmit
higher-level conversation security protocols, it is important for
designers to consider how these properties affect the overall
security of the scheme (e.g., the use of synchronous rounds
creates a global transcript, and the details of the DC-net key
exchanges may cause a loss of participation repudiation).

4) Broadcast Systems: There is a simple approach to pro-
viding recipient anonymity against all attackers, including
global adversaries: distributing messages to everyone. This ap-
proach provides recipient anonymity, participation anonymity,
and unlinkability against all network attackers. It also provides

a natural way to discover contacts because requests for contact
data can be sent to the correct entity without knowledge of
any addressing information. However, there are some serious
downsides that hinder adoption: broadcasting a message to
everyone in the network requires high bandwidth, there is
no support for asynchronicity, and it has extreme scalability
issues. Additionally, it is easy to attack the availability of
the network through flooding. Bitmessage [92], a broadcast-
based transport system, either requires a proof of work or
monetary fees to send messages in order to limit spam, adding
computation requirements and message delays as represented
by the blockchains row in Table III. It is also possible to
alleviate scalability problems by clustering users into smaller
broadcast groups, at the cost of reduced anonymity set sizes.

5) PIR: Private Information Retrieval (PIR) protocols allow
a user to query a database on a server without enabling the
server to determine what information was retrieved. These
systems, such as the Pynchon Gate [93], can be used to
store databases of message inboxes, as well as databases of
contact information. Recipient anonymity is provided because,
while the server knows the network node that is connecting
to it, the server cannot associate incoming connections with
protocol messages that they retrieve. For the same reason, the
protocols offer participation anonymity and unlinkability. By
default, there is no mechanism for providing sender anonymity.
These systems are naturally asynchronous, but they result in
high latency because inboxes must be polled. The servers also
incur a high storage cost and are vulnerable to flooding at-
tacks. PIR implementations can be divided into computational
schemes, which rely on computational limitations of the server,
information-theoretic schemes, which rely on non-collusion of
servers, and hybrid schemes that combine properties of both.
PIR implementations differ in their bandwidth, computation,
and initialization costs, as well as their scalability. PIR is not
widely adopted in practice because one or more of these costs
is usually prohibitively high.

E. Discussion

If messages are secured end-to-end, leaving only identifiers
for anonymous inboxes in the unencrypted header, then meta-
data is easily hidden from service operators. Assuming that
each message is sent using new channels, an adversary is
not able to link single messages to conversations. However,
such schemes introduce adoption and usability issues; they
are prone to spam, flooding, and denial-of-service attacks, or
require expensive operations such as zero-knowledge authenti-
cation posing barriers to adoption. Worse still, hiding metadata
from a global adversary in these schemes necessitates serious
usability problems such as long delays.

In contrast, decentralized schemes either exhibit synchronic-
ity issues or have serious scalability problems. Most de-
centralized projects, especially BitTorrent-based approaches,
lack detailed documentation that is required for complete
evaluation. Some tools claiming to hide metadata only do so
in the absence of global network adversaries, which recent
surveillance revelations suggest may exist.
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Broadcast-based schemes can achieve the best privacy
properties, but exhibit serious usability issues, such as lost
or delayed messages, in addition to apparently intractable
scalability issues. Finally, care must be taken when selecting
a conversation security scheme to avoid leaking cryptographic
material or identifiers that might lead to deanonymization.

VI. CONCLUDING REMARKS

The vast majority of the world’s electronic communication
still runs over legacy protocols like SMTP, SMS/GSM, and
centralized messengers, none of which were designed with
end-to-end security in mind. We encourage the research com-
munity to view the high-profile NSA revelations in the United
States as a golden opportunity to encourage the adoption of
secure systems in their place. As the old adage goes: “never
let a crisis go to waste.”

Unfortunately, while we have seen considerable progress in
practical tools over the past two years, there is little evidence
suggesting that academic research on secure messaging has
dramatically increased. This is unfortunate for two reasons:
First, many interesting problems of practical importance re-
main unresolved. In particular, apparent practical deployment
constraints, including limitations for asynchronous commu-
nication, multiple independent devices, and zero user effort,
are not fully appreciated in most published research papers.
Second, many theoretically solved problems are not considered
in practice, whether because developers are unaware of their
existence, or because they cannot immediately translate the
cryptographic publications into working systems.

Our effort to systematize existing knowledge on secure mes-
saging suggests three major problems must be resolved: trust
establishment, conversation security and transport privacy.
The schemes can largely be chosen independently, yielding a
vast design space for secure messaging systems. Yet we also
caution against a proliferation of a-la-carte systems for specific
niches. The main purpose of communication networks is to
interact with others and there is considerable value in having
a small number of popular protocols that connect a large
number of users. Currently, everyone uses email and hence
many people fall back to this method despite its insecurity.

We also note that, disappointingly, most of the exciting
progress being made right now is by protocols that are either
completely proprietary (e.g., Apple iMessage) or are open-
source but lack a rigorously specified protocol to facilitate
interoperable implementations (e.g., TextSecure). An open
standard for secure messaging, combining the most promising
features identified by our survey, would be of immense value.

Inevitably, trade-offs have to be made. We conclude that
secure approaches in trust establishment perform poorly in
usability and adoption, while more usable approaches lack
strong security guarantees. We consider the most promising
approach for trust establishment to be a combination of central
key directories, transparency logs to ensure global consistency
of the key directory’s entries, and a variety of options for
security-conscious users to verify keys out of band to put
pressure on the key directory to remain honest.

Our observations on the conversation security layer sug-
gest that asynchronous environments and limited multi-device
support are not fully resolved. For two-party conversation
security, per-message ratcheting with resilience for out-of-
order messages combined with deniable key exchange pro-
tocols, as implemented in Axolotl, can be employed today
at the cost of additional implementation complexity with
no significant impact on user experience. The situation is
less clear for secure group conversations; while no approach
is a clear answer, the TextSecure group protocol provides
pragmatic security considerations while remaining practical. It
may be possible to achieve other desirable properties, such as
participant consistency and anonymity preservation, by incor-
porating techniques from the other systems. It remains unclear
exactly what consistency properties are required to match
users’ expectations and usability research is sorely needed to
guide future protocol design. Finally, transport privacy remains
a challenging problem. No suggested approaches managed
to provide strong transport privacy properties against global
adversaries while also remaining practical.

We consider this systematization to be a useful assessment
of published research and deployment experience. We have
uncovered many open challenges and interesting problems to
be solved by the research community. The active development
of secure messaging tools offers a huge potential to provide
real-world benefits to millions; we hope this paper can serve
as an inspiration and a basis for this important goal.
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APPENDIX A
DENIABILITY

Deniability, also called repudiability, is a common goal
for secure messaging systems. Consider a scenario where
Bob accuses Alice of sending a specific message. Justin, a
judge, must decide whether or not he believes that Alice
actually did so. If Bob can provide evidence that Alice sent
that message, such as a valid cryptographic signature of the
message under Alice’s key, then we say that the action is non-
repudiable. Otherwise, the action is repudiable or deniable.
We can distinguish between message repudiation, in which
Alice denies sending a specific message, and participation
repudiation in which Alice denies communicating with Bob
at all. The high-level goal of repudiable messaging systems is
to achieve deniability similar to real-world conversations.
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A fundamental problem of deniability is that Justin may
simply trust Bob even with no technical evidence due to Bob’s
reputation or perceived indifference. In a group chat, this
problem may be even worse as Alice may need to convince
Justin that a number of accusers are all colluding to frame
her. It is not possible to construct a messaging system that
overcomes this fundamental social problem; the best that can
be done is to provide no stronger evidence than the word of the
accusers. Some technical systems clearly offer more evidence;
for example, signed PGP emails offer strong evidence that
Alice really was the sender.

The cryptographic literature has produced many definitions
of “deniability” since deniable encryption was first formally
proposed [94]. For example, we can draw a distinction between
an offline and online judge: in the offline case, the accuser
attempts to convince the judge of an event after the conver-
sation has already concluded; in the online case, the judge
exchanges private communications with the accuser while the
conversation is still taking place. Existing work defines online
repudiation in incompatible ways, and very few protocols
attempt to achieve meaningful online repudiation [69], [95].
Thus, in this work we only consider the offline setting.

APPENDIX B
WEB OF TRUST

In a web of trust scheme, users verify each other’s keys
using manual verification and, once they are satisfied that a
public key is truly owned by its claimed owner, they sign
the key to certify this. These certification signatures might be
uploaded to key servers. If Alice has verified Bob’s key, and
Bob certifies that he has verified Carol’s key, Alice can then
choose to trust Carol’s key based on this assertion from Bob.
Ideally, Alice will have multiple certification paths to Carol’s
key to increase her confidence in the key’s authenticity.

The user interface for web of trust schemes tends to be
relatively complex and has never been fully standardized. The
scheme also requires a well-connected social graph, hence
the motivation for “key-signing parties” to encourage users
to form many links within a common social context.

Assuming that the web of trust model performs correctly,
MitM attacks by network and operator adversaries are limited
due to distribution of trust. However, since key revocations
and new keys might be withheld by key servers, the model
offers only partial operator accountability and key revocation.
Since the web of trust model produces a public social graph,
it is not privacy preserving.

The key initialization phase requires users to get their keys
signed by other keys, so the system does not offer automatic
key initialization, alert-less key renewal, or immediate enroll-
ment, and is not inattentive user resistant. Because users must
participate in key-signing parties to create many paths for trust

establishment, users have a high key maintenance overhead
and a need for an out-of-band channel. Even worse, users
must understand the details of the PKI and be able to decide
whether to trust a key.

PGP typically uses a web of trust for email encryption
and signing. In practice, the PGP web of trust consists of
one strongly connected component and many unsigned keys
or small connected components, making it difficult for those
outside the strongly connected component to verify keys [96].

A simplification of the general web of trust framework is
SDSI [97] (Simple Distributed Security Infrastructure) later
standardized as SPKI [98], [99] (Simple Public Key Infras-
tructure). With SDSI/SPKI, Bob can assert that a certain key
belongs to “Carol” and, if Alice has verified Bob’s key as be-
longing to “Bob,” that key will be displayed to Alice as “Bob’s
Carol” until Alice manually verifies Carol’s key herself (which
she can then give any name she wants, such as “Carol N.”).
We refer to these approaches as trust delegation. A modern
implementation is the GNU Name System (GNS) [100], [101],
which implements SDSI/SPKI-like semantics with a key server
built using a distributed hash table to preserve privacy. Other
web of trust approaches such as SDSI [97], [98], SPKI [99],
Keybase [102] and GNS [100] are described and evaluated in
the extended version of this paper [1].

APPENDIX C
OTR NETWORKS

Since OTR [59] provides desirable features for two-party
conversations, it is natural to extend it to a group setting by
using OTR to secure individual links in a network. A basic
strategy is to enlist a trusted entity to relay messages and
then secure client links to this entity using OTR. This is
the approach taken by the GOTR (2007) protocol. GOTR
(2007) [78] selects a participant to act as the relay, forming a
star topology of pairwise connections with the selected partic-
ipant acting as the hub. All authentication properties, speaker
consistency, and causality preservation are lost because they
do not persist across the relay node. Since the relay server
can buffer messages, asynchronicity is provided as long as the
relay node remains online. All other properties are inherited
from OTR. Groups can be expanded and contracted simply
by establishing new OTR connections to the relay.

Instead of using a star topology, pairwise OTR connections
between all participants can be established. This approach
restores authentication and anonymity preservation, as well as
equal trust between members. It is also possible to send mes-
sages to subgroups by only transmitting the message across
selected OTR links. The downside of this approach is that it
does not preserve causality or provide speaker consistency;
participants can send different messages to different people.
This design also incurs significant computational overhead.

249249

Appendix A Incorporated Articles Part of the Thesis

130


	Abstract
	Acknowledgements
	Author's Publications
	1 Covered Core Publications
	2 Referenced Supporting Contributions
	3 Related Research

	1 Introduction
	1.1 Evolution of Secure Messaging
	1.2 Human Aspects in Secure Messaging
	1.3 Research Questions
	1.4 Research Overview and Contributions

	2 Background and Systematization
	2.1 Publication 1 | SoK: Secure Messaging
	2.2 Implications and Future Directions

	3 Empirical Study of Textual Key Fingerprints
	3.1 Publication 2 | An Empirical Study of Textual Key Fingerprints
	3.2 Implications and Future Directions

	4 Secure Messaging Mental Models
	4.1 Publication 3 | In Encryption We Don’t Trust: The Effect of E2E Encryption...
	4.2 Implications and Future Directions

	5 Repurposing Wearables for Cryptographic Security
	5.1 Publication 4 | OpenKeychain: An Architecture for Cryptography with Smart...
	5.2 Implications and Future Directions

	6 Conclusions
	6.1 Summary of Research Outcomes
	6.2 Synthesis and Broader Impact
	6.3 Open Challenges and Future Work

	Bibliography
	A Incorporated Articles Part of the Thesis
	A.1 Publication 1 | SoK: Secure Messaging


