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Summary

Neurons are excitable cells with a highly complex morphology. Their dendritic arbors stretch

across thousands of micrometers and house tiny protrusion-like structures called "Spine", where

they receive signals from other neurons. This signal transfer occurs when the neurotransmitters

released from the presynaptic neuron bind to the receptors localized in the post-synaptic density

in the spine head. One of the most essential types of receptors is the α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptor (AMPAR)s. They mediate fast-excitatory currents

necessary for information transfer from one neuron to another. Given the extensive dendritic

structure, localizing AMPARs and modulating their copy numbers at each spine pose a tremen-

dous logistical challenge for the neuron to ensure its function. This thesis aims to provide novel

insight into how neurons solve this logistical challenge throughout the dendrite and how their

copy numbers are regulated to change information transfer efficiency via synaptic plasticity.

Modern microscopy techniques and advanced labeling methods allow the investigation of

molecular composition and visualization of individual molecules in neuronal compartments

such as dendrites and spines. However, analyzing this data is a challenging task. Tracking

molecules over large distances and determining their precise location within specific cellular

compartments remains algorithmically complex. This thesis also provides a new data analysis

pipeline to tackle these challenges by comprehensive and reproducible analysis of fluorescent-

based imaging data.

In Chapter 2, I introduce a novel tool we call "SpyDen", which I built to efficiently and

robustly analyze neuronal imaging data and extract biologically meaningful information from

them. I developed this tool with a former master’s student, Jean Philip Heino Filling, and a

former Postdoc, Maximilian Eggl. In section 2.1, I describe the data analysis pipeline that

SpyDen uses for systemic data analysis. In section 2.2 and section 2.3, I discuss the algorithmic

solutions I implemented to trace the dendritic tree and analyze fluorescently bright puncta-like

signals from images. These punctated singles originate from mRNA or protein of interest.

In Chapter 3, I introduce trafficking processes, such as diffusion, active transport, and degra-

dation, utilized by a neuron to distribute AMPAR throughout the dendritic tree in section 3.1.

Then, in section 3.2, I discuss the results from the analysis of fluorescent in-situ hybridization

data imaged by my collaborators, Dr. Anne-Sophie Hafner, for AMPAR subunits Gria1 and
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Gria2 and show that the new AMPARs subunits are produced predominantly in the cell somata.

In section 3.3, I analyze the protein antibody labeling data on the AMPAR subunit GluA2 and

observe a uniform distribution of this subunit in the first 100µm. Initially, these results are

surprising as proteins predominantly synthesized in the soma show a decreasing protein den-

sity in the dendrites. In section 3.4, I introduce a new mathematical model that includes the

global trafficking mechanism to explain the differences between mRNA and protein density of

AMPARs. Mainly, I find that biased active transport of these receptors can lead to a uniform

distribution in the first 100µm and an increase in their density, a phenomenon termed distance-

dependent scaling of AMPARs, which is reported in the literature but never fully understood

mechanistically. Next, in section 3.5, I extend my model, introduced in section 3.4, to model

the three functionally separate populations of AMPARs, namely, the AMPARs in the neuronal

plasma membrane, intracellular stores, and the post-synaptic density (PSD). Then, I analyze the

protein antibody labeling data imaged by my collaborator, Maximilian Ken Kracht, where the

surface and intracellular population of GluA2-containing AMPARs were labeled separately in

the same neurons. My analysis reveals that 70% of the total GluA2-containing AMPARs are

stored in an intracellular pool. Moreover, half of the GluA2 receptors on the neuronal surface

are immobilized at the PSD, serving a functional role, while the other half is a mobile pool in

the extra-synaptic space.

In Chapter 4, I introduce the experimental observation highlighting the differences in re-

sponses of two main AMPAR subtypes: the GluA1-homomeric AMPAR and GluA2-containing

AMPARs. I re-analyze the reported data from two published studies that utilized comparable

chemical LTP induction methods to quantify their behavior. In Section 4.1, I show that the

response of GluA1-homomeric AMPARs can be explained by a fast change in their exocyto-

sis rate. However, the same changes do not explain the slow response of GluA2-containing

AMPARs. An extensive literature review suggests that AMPAR auxiliary, Cornichon family

AMPA receptor auxiliary protein 2 (CNIH-2) can be the key to explaining these differences in

AMPAR subtype responses. In sections 4.2 and 4.3, I discuss the analysis of fluorescent in-

situ hybridization for Cnih2 mRNA and FUNCTA-PLA against CNIH-2 protein imaged by my

collaborator, Dr. Anne-Sophie Hafner. My analysis shows that, unlike the mRNA for AMPAR

itself, the mRNA for auxiliary subunit CNIH-2 gets locally translated in the neuronal dendrites,

and the rate of its local translation in the dendrite increases upon plasticity induction. In section

4.4, I show that when CNIH-2 transcripts are knocked down using the shRNA strategy, hence
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reducing its protein level, the surface insertion of GluA2-containing AMAPR reduces while

that of GluA1-homomer remains unaffected. In section 4.5, I introduce a model of CNIH-2

protein density to study their steady-state distribution and response to an increase in local and

somatic translation rates. Finally, in section 4.6, I integrate the model for CNIH-2 with my

three-population mathematical model of AMPARs (introduced in section 3.5) to explain the

changes in GluA2-containing AMPARs. I show that only a prolonged increase in the local

synthesis rate of CNIH-2 could match the slow and persistent increase in GluA2-containing

AMPAR, as reported in published experimental works.
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Zusammenfassung

Deutsche Übersetzung

Neuronen sind erregbare Zellen mit einer sehr komplexen Morphologie. Ihre dendritis-

chen Verzweigungen erstrecken sich über mehrere tausend Mikrometer und enthalten winzige,

vorstehende Strukturen, die Dorn (Spines) genannt werden, an denen sie Signale von anderen

Neuronen empfangen. Diese Signalübertragung erfolgt, wenn die vom präsynaptischen Neuron

freigesetzten Neurotransmitter an den Rezeptoren anbinden, die in der postsynaptischen Dichte

am Kopf des Dornes lokalisiert sind. Eine der wesentlichen Arten von Rezeptoren sind die

α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolpropionsäure-Rezeptoren (AMPA-Rezeptoren). Sie

vermitteln schnelle exzitatorische Ströme, die für die Informationsübertragung von einem Neu-

ron zum anderen notwendig sind. Angesichts der stark verzweigten Struktur der Dendriten

stellt die Lokalisierung von AMPARs und die Regulierung ihrer Kopienzahl an jedem Dorn

eine enorme logistische Herausforderung für das Neuron dar, um seine Funktion zu gewährleis-

ten. Ziel dieser Arbeit ist es, neue Einblicke zu bieten, wie Neuronen diese logistische Her-

ausforderung im gesamten Dendriten lösen und wie ihre Kopienzahl reguliert wird, um die

Effizienz der Informationsübertragung durch einen Prozess, der als synaptische Plastizität beze-

ichnet wird, zu verändern. Moderne Mikroskopietechniken und fortgeschrittene Markierungsver-

fahren ermöglichen die Untersuchung der molekularen Zusammensetzung und die Visualisierung

einzelner Moleküle in neuronalen Kompartimenten wie Dendriten und Dornen. Die Analyse

dieser Daten stellt jedoch eine groSSe Herausforderung dar. Die Verfolgung von Molekülen

über groSSe Entfernungen und die Bestimmung ihrer genauen Position innerhalb spezifis-

cher zellulärer Kompartimente bleibt algorithmisch komplex. In dieser Arbeit wird eine neue

Datenanalyse-Pipeline entwickelt, um diese Herausforderungen durch eine umfassende und re-

produzierbare Analyse von Fluoreszenz-basierten Bildgebungsdaten zu bewältigen. Im zweiten

Kapitel wird ein von mir entwickeltes neuartiges Tool namens SpyDen vorgestellt, um neu-

ronale Bildgebungsdaten effizient und robust zu analysieren und biologisch aussagekräftige

Informationen aus ihnen zu extrahieren. Dieses Tool wurde in Zusammenarbeit mit einem

ehemaligen Masterstudenten, Jean Philip Heino Filling, und einem ehemaligen Postdoktoran-

den, Maximilian Eggl, entwickelt. Im Abschnitt 2.1 beschreibe ich die Datenanalyse-Pipeline,

die SpyDen für die systemische Datenanalyse verwendet. In den Abschnitten 2.2 und 2.3 er-
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Zusammenfassung

läutere ich die von mir entwickelten algorithmischen Lösungen zur Verfolgung des dendritis-

chen Baums und zur Analyse fluoreszierende punktartige Signale aus Bildern. Diese punktar-

tigen Einzelsignale stammen von der mRNA oder dem Protein von Interesse. Im dritten Kapi-

tel, im Abschnitt 3.1 wurden Traffickingprozesse wie Diffusion, aktiven Transport und Abbau

vorgestellt, die ein Neuron nutzt, um AMPAR im gesamten dendritischen Baum zu verteilen.

Im Abschnitt 3.2 werden die Daten der fluoreszierenden In-situ-Hybridisierung analysiert, die

von meiner Kollaboratorin Dr. Anne-Sophie Hafner für die AMPAR-Untereinheiten Gria1 und

Gria2 aufgenommen wurden, und die Analyse zeigt, dass die neuen AMPAR-Untereinheiten

vorwiegend in Zellsomata produziert werden. Im Abschnitt 3.3 werden die Daten zur Markierung

der AMPAR-Untereinheit GluA2 mit Protein-Antikörpern analysiert und dabei wird eine gle-

ichmäSSige Verteilung dieser Untereinheit in den 100 µm beobachtet. Diese Ergebnisse sind

zunächst unerwartet, denn Proteine, die überwiegend im Soma synthetisiert werden, zeigen eine

abnehmende Proteindichte in den Dendriten. Im Abschnitt 3.4 wird ein neues mathematisches

Modell eingeführt, das den globalen Trafficking-Mechanismus einbezieht, um die Unterschiede

zwischen mRNA- und Proteindichte von AMPARs zu erklären. Vor allem kommt dabei heraus,

dass ein einseitiger aktiver Transport dieser Rezeptoren zu einer gleichmäSSigen Verteilung

in den ersten 100 µm und einer Zunahme ihrer Dichte führen kann, ein Phänomen, das als

entfernungsabhängige Skalierung von AMPARs bezeichnet wird und über das in der Literatur

bereits berichtet wird, das aber mechanistisch nie vollständig verstanden wurde. Als Nächstes

wird im Abschnitt 3.5 das im Abschnitt 3.4 vorgestellte Modell erweitert, um die drei funk-

tionell getrennten Populationen von AMPARs zu modellieren, nämlich die AMPARs in der

neuronalen Plasmamembran, den intrazellulären Speichern und der postsynaptischen Dichte

(PSD). Dann analysiere ich Daten zur Markierung von Protein-Antikörpern, die von meinem

Kollaborator Maximilian Ken Kracht aufgenommen wurden, wobei die Oberfläche und die in-

trazelluläre Population von GluA2-haltigen AMPARs in denselben Neuronen getrennt markiert

wurden. Meine Analyse ergibt, dass 70 % der gesamten GluA2-haltigen AMPARs in einem

intrazellulären Pool gespeichert sind. Darüber hinaus ist die Hälfte der GluA2-Rezeptoren auf

der neuronalen Oberfläche an der PSD immobilisiert und erfüllt dort eine funktionelle Auf-

gabe, während die andere Hälfte ein mobiler Pool im extra-synaptischen Raum ist. Im vierten

Kapitel stelle ich die experimentellen Beobachtungen vor, die die Unterschiede in den Reak-

tionen der beiden wichtigsten AMPAR-Subtypen, nämlich der GluA1-homomeren AMPARs

und der GluA2-haltigen AMPARs, hervorheben. Um ihr Verhalten zu quantifizieren, analysiere
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ich erneut die Daten aus zwei bereits veröffentlichten Studien, die vergleichbare chemische

LTP-Induktionsmethoden verwendet haben. Im Abschnitt 4.1 zeigt sich, dass die Reaktion der

GluA1-homomeren AMPARs durch eine schnelle Änderung ihrer Exozytoserate erklärt werden

kann. Die gleichen Veränderungen erklären jedoch nicht die langsame Reaktion von GluA2-

haltigen AMPARs. Eine umfassende Literaturrecherche ergibt, dass der AMPAR-begleitendes

Protein CNIH-2 der Schlüssel zur Erklärung dieser Unterschiede in den Reaktionen der AMPAR-

Subtypen sein kann. In den Abschnitten 4.2 und 4.3 beschreibe ich die Analyse von fluo-

reszierender In-situ-Hybridisierung für Cnih2 mRNA und FUNCTA-PLA gegen das CNIH-2-

Protein analysiert, das von meiner Kollaboratorin Dr. Anne-Sophie Hafner abgebildet wurde.

Meine Analyse zeigt, dass die mRNA für die Hilfsuntereinheit CNIH-2 im Gegensatz zur

mRNA für AMPAR selbst lokal in den neuronalen Dendriten translatiert wird, und dass die

Rate ihrer lokalen Translation im Dendriten bei einer Plastizitätsinduktion zunimmt. In Ab-

schnitt 4.4 wird gezeigt, dass, wenn CNIH-2-Transkripte mit Hilfe der shRNA-Strategie aus-

geschaltet werden, was zu einer Verringerung des Proteingehalts führt, die Oberflächeninsertion

von GluA2-enthaltenden AMAPR reduziert wird, während die des GluA1-Homomers unbeein-

flusst bleibt. Im Abschnitt 4.5 wird dann ein Modell der CNIH-2-Proteindichte eingeführt, um

ihre Steady-State-Verteilung und ihre Reaktion auf eine Erhöhung der lokalen und somatischen

Translationsraten zu untersuchen. AbschlieSSend werden im Abschnitt 4.6 durch die Integra-

tion des Modells für CNIH-2 mit dem mathematischen Drei-Populations-Modell für AMPARs

(eingeführt in Abschnitt 3.5) die Veränderungen bei GluA2-haltigen AMPARs erklärt. Durch

die Analyse wird sichtbar, dass nur ein anhaltender Anstieg der lokalen CNIH-2-Syntheserate

mit dem langsamen und anhaltenden Anstieg der GluA2-enthaltenden AMPARs übereinstim-

men kann, sowie es auch in veröffentlichten experimentellen Arbeiten berichtet wird.

ix





Acknowledgements

Embarking on this doctoral journey has been a transformative and wonderful experience for me,

and it would not have been so without the support, guidance, and motivation of many individuals

and institutions. It is with earnest gratitude that I utilize this opportunity to acknowledge their

valuable contributions.

First and foremost, I express my deepest gratitude to my supervisor, Prof. Dr. rer. nat.

Tatjana Tchumatchenko, whose patience, expertise, and unfaltering support guided me through

the complexities of this research. Your insightful feedback and encouragement throughout the

4 years of my PhD have been vital in shaping both this thesis and my growth as a research

scholar. I am equally grateful to my co-supervisor, Prof. Dr. rer. nat. Michael Pankratz, for

their valuable input, mentorship, and constructive criticism throughout this journey. I am also

greatly grateful to Dr. Nataliya Kraynyukova and Dr. Anne-Sophie Hafner for their dedicated

scientific supervision and insightful contributions.

I feel greatly indebted to the faculty and the staff of the Mathematics and Natural Sciences

Department at the University of Bonn. Your guidance, encouragement, and provision of re-

sources created an ideal environment for academic growth and excellence. Special thanks to

the Promotionsbüro for always being there to assist with administrative duties and to address

my queries promptly. I am deeply grateful to the previous host institutions, the Max Planck

Institute for Brain Research (MPIBR) and the University of Mainz, where I worked for my PhD

project.

To my lab members (current and past), I am immensely grateful for your camaraderie, col-

laboration, and support. The countless hours we spent discussing ideas, troubleshooting code,

and celebrating breakthroughs have been some of the most rewarding and memorable moments

of my PhD journey. Your friendship and shared passion for science made even the most exigent

days more manageable and inspiring. I am particularly grateful to Ulzii, Janko, Kanaan, Pierre,

Cornelius, Jean, Max, Lorenzo, Dario, Albert, Carlos, Rohan, Alexandra, Nestor, Maria, and

Sabine for their guidance, humor, and encouragement, which have left a lasting impression on

me.

My sincere thanks go to my fellow researchers and colleagues, especially Prof. Dr. Erin

Schuman, Prof. Dr. Amparo Acker-Palmer, Maximilian Ken Kracht, for their thought-provoking

xi



Acknowledgements

discussions and collaborative efforts. I am also thankful to Prof. Dr. Simon Rumpel, Prof. Dr.

Stefan Bittner, who served as the members of my thesis committee during my stay at Univer-

sity of Mainz. Your perspectives have broadened my understanding and enriched my academic

journey.

I am profoundly grateful to the Collaborative Research Center 1080 for the financial sup-

port provided during my PhD. This funding enabled me to carry out my research and attend

conferences to share my findings with the academic community.

On a more personal note, I want to express my deepest gratitude to my family. To my parents,

Prof. Dr. Pariksha Wagle, my mother, and Prof. Dr. Sunil Wagle, my father, thank you for

instilling in me the value of education and for your unconditional love and support throughout

my life. To my brothers, Dr. Swapnil Wagle and Susmit Wagle, I thank you for your unwavering

belief in my abilities and your unlimited encouragement and understanding during this journey.

A special thanks go to Aishwarya Ketkar for her unreserved faith in my capabilities, which

have kept me going, and for helping me with the German translation.

Lastly, I wish to acknowledge the countless hours spent in reflection and perseverance, the

moments of doubt that led to growth, and the personal and academic evolution I have undergone

during this process. To all who have contributed, directly or indirectly, to this accomplishment,

know that your support has left an indelible mark on my life and this thesis.

Thank you all for being part of this journey. This milestone is as much a celebration of your

support and encouragement as it is of my academic achievement.

xii



Contents

Summary iii

Zusammenfassung vii

Acknowledgements xi

1. Introduction 1

1.1. Neuronal compartments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Synapse and synaptic plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Molecular players and synaptic plasticity models . . . . . . . . . . . . . . . . 6

1.4. Decoding Synaptic plasticity: the role of AMPA Receptors . . . . . . . . . . . 12

1.4.1. Models of AMPAR trafficking . . . . . . . . . . . . . . . . . . . . . . 14

1.5. Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. SpyDen: Automating molecular and structural analysis across spines

and dendrites 19

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2. SpyDen pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3. Dendritic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4. Puncta analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5. Brief Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3. Model of AMPA Receptor Trafficking Under Baseline Condition 33

3.1. Modes of AMPA receptor trafficking . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1. Surface movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2. Active transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.3. Exocytosis, endocytosis, and degradation . . . . . . . . . . . . . . . . 38

3.1.4. Local translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2. mRNA density of AMPA receptor subunits . . . . . . . . . . . . . . . . . . . 40

3.3. Protein density of AMPA receptor subunits . . . . . . . . . . . . . . . . . . . 42

3.4. Model of total GluA2-containing AMPAR . . . . . . . . . . . . . . . . . . . . 44

xiii



Contents

3.5. Three population model of AMPAR trafficking . . . . . . . . . . . . . . . . . 50

3.6. Brief summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4. AMPAR dynamics upon chemical LTP induction 59

4.1. Differential kinetics of AMPAR subtypes to LTP induction . . . . . . . . . . . 59

4.2. Auxiliary subunit CNIH-2 is locally translated . . . . . . . . . . . . . . . . . . 64

4.3. CNIH-2 dynamics upon cLTP induction . . . . . . . . . . . . . . . . . . . . . 69

4.4. CNIH-2 drives forward trafficking of AMPARs to neuronal surface . . . . . . . 70

4.5. Model of CNIH-2 mRNA and protein density . . . . . . . . . . . . . . . . . . 73

4.6. CNIH-2 driven GluA2-AMPAR exocytosis . . . . . . . . . . . . . . . . . . . 75

4.7. Brief Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5. Conclusion 81

5.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1. Data analysis tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.2. AMPAR trafficking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.3. Central role of local synthesis in AMPAR subtype dynamics . . . . . . 82

5.2. Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

References 86

List of Publications 109

A. Appendix A 111

A.1. Adjusting dendritic path and width calculation . . . . . . . . . . . . . . . . . . 111

A.2. Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.3. Structure of the SpyDen output . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.4. Parameter values used for various models . . . . . . . . . . . . . . . . . . . . 118

A.5. Steady state solution for the total AMPA receptors density on a finite domain . 119

A.6. Steady state solution for the three population model . . . . . . . . . . . . . . . 120

A.7. Time-dependent solution of the AMPA receptor trafficking model . . . . . . . 122

A.8. Trafficking dynamics and steady state distribution of CNIH-2 mRNA . . . . . . 123

A.9. Trafficking dynamics and steady state distribution of CNIH-2 protein . . . . . . 124

A.10.Time-dependent solution of CNIH-2 subunit trafficking model . . . . . . . . . 126

xiv



Contents

A.11.CNIH-2 local-translation upregulation upon plasticity and exocytosis of GluA2-

containing AMPARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.12.Fitting models to the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.13.Estimation of trafficking parameters from published live-cell fluorescent imag-

ing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.14.Experimental procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.15.List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xv





1. Introduction

Biological neurons are the fundamental building blocks of the nervous system, playing a critical

role in information transmission in living organisms. These excitable cells in the brain, periph-

eral nerves, and spinal cord are responsible for generating and relaying electrical signals that

control various physiological processes like sensory perception, motor activity, thoughts, and

emotions.

Neuronal signaling occurs through changes in the electrical potential across the cell mem-

brane, such that at resting state, the interior of the cells is maintained at a lower electric poten-

tial of -65 mV compared to the exterior of the cell. The exchange of cations by the sodium-

potassium (Na+/K+) pump helps maintain this voltage gradient. Upon stimulation of excitatory

nature, positive current flows in the cell, leading to its depolarization. On the contrary, stimu-

lation of inhibitory nature leads to hyperpolarization of the membrane potential. Naturally, the

combined effect of excitatory and inhibitory currents is balanced at the resting state. However,

upon external stimulation, an imbalance in the dendritic currents alters the membrane potential

at the soma and the Axon initial segment (AIS), a region dense with voltage-gated ion channels

critical for action potential, also called spike generation.

As the membrane potential rises at the AIS and crosses a threshold near - 50 mv, the voltage-

gated sodium channels open, allowing a rapid influx of Na+ ions that further depolarizes the

neuron. As the membrane potential increases, the voltage-gated Na+ channels become inactive

after a certain threshold, and the voltage-gated potassium channels open, causing the outflux

of K+ ions. This restores the membrane potential to its resting state. This sequence of sharp

increase, followed by a sharp decrease in membrane potential, generates an action potential or

"spike", which serves as a fundamental electrical signal (Fig. 1.1.B). Once initiated, the action

potential propagates along the axons. Local depolarizing triggers voltage-gated channels in the

vicinity, ensuring efficient relay of the signal down the long axon. The Myelin sheaths, an insu-

lating coating enabling saltatory conduction, enhance the speed of action potential propagation.

Additionally, the action potential jumps between the gaps in the myelin, also known as nodes

of Ranvier.

Once an action potential reaches the axon terminals, it triggers the activation of axonal bou-

tons, which facilitates the transfer of information onto the downstream neurons via synapses.
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1. Introduction

In section section 1.1, I describe the three main neuronal compartments in more detail.

1.1. Neuronal compartments

Neurons typically consist of three major parts. At the cell’s core is its cell body or soma, which

contains the nucleus and many organelles that manage the cellular function. The second major

part of a neuron is its dendrites, which are extensive branches that receive the signals from other

neurons. Third are axons, which are long, thin, tube-like processes called the axons that trans-

mit the signals to other neurons or non-neuronal cells such as glands or muscles (Fig. 1.1.A).

The signal transmission occurs mainly via two types of connections. First, Synaptic termi-

nals or chemical synapses, where chemical messengers or neurotransmitters are released into

the synaptic cleft (the small gap between the presynaptic neuron and the postsynaptic neuron,

Fig. 1.1.C)) to communicate with neighboring neurons. The second and less abundant type is

electrical synapses, or gap junctions, that are formed at thin gaps between pre- and postsynaptic

neurons. The flow of ions in electrical synapses is usually bidirectional.

I The Soma

The soma, or cell body, plays the role of a central compartment of a neuron. Typically, it is

spherical with a radius of about 10µm. A bilipid layer surrounds the intracellular milieu in

the soma to separate it from the extracellular space. The cell cytoplasm is a solution rich in

nutrients, proteins, and various neuronal structures and organelles. The nucleus, smooth and

rough endoplasmic reticulum, and the Golgi apparatus are key among these structures. The

endoplasmic reticulum plays a crucial role in synthesizing lipids and proteins, with the rough

endoplasmic reticulum being particularly notable for its ribosome-studded exterior. For many

years, the soma was believed to be the sole site of protein production in neurons. However, this

view shifted in the late 1990s when emerging evidence suggested that protein assembly also

occurs within the dendritic arbor, challenging the long-held understanding of neuronal protein

synthesis [16].
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1.1. Neuronal compartments

I The Dendrites

Dendrites serve as the neuron’s primary apparatus for receiving signals from other neurons.

These structures exhibit a remarkably diverse and stereotyped morphology, which has been in-

strumental in classifying different neuron types. Dendritic arbors’ unique branching patterns

and characteristics provide a basis for categorizing neurons, reflecting their specialized func-

tions and roles within the nervous system. Dendritic trees vary greatly across neuron types,

ranging from extensive arbors in pyramidal neurons spanning a few thousand microns to very

compact structures, limited to ≈ 100µm in granule cells. Dendrites are cylindrical structures

with a bilipid layer encasing cytoplasm, and mature dendrites feature spine protrusions (1 − 2

per µm) that host synapses [119].

Dendritic radii typically range from 0.1µm in granule cells to a few micrometers in basal

pyramidal dendrites, with some exceptions like crab stomatogastric ganglia neurons reaching

50µm. Dendritic length can refer to the soma-to-tip distance or the inter-branch distance, with

this thesis using the latter definition.

The dendritic surface comprises a bilipid layer similar to the soma’s, enclosing cytoplasm

with various organelles. The endoplasmic reticulum is the largest internal structure, followed

by mitochondria. Ribosomes, lysosomes, and proteosomes also play crucial roles in dendritic

function.

Dendrites serve to integrate signals from presynaptic neurons arriving within a time window

and transmit them to the axon hillock, where action potentials or a spike originate. The diverse

morphologies of neurons result from balancing two key factors: maximizing signal transmis-

sion efficiency from synapses to the soma and minimizing the metabolic cost associated with

dendritic wiring. This balance can explain the variety of dendritic structures observed across

different neuron types.

I The Axons

Axons are responsible for conducting the action potential generated at the axon hillock to the

presynaptic boutons, where the single is transmitted to postsynaptic neurons. Axons are sur-

rounded by a protective myelin sheath formed by oligodendrocytes in the Central Nervous Sys-

tem (CNS) and Schwann cells in the Peripheral Nervous System (PNS). Given the extremely

long lengths of the axons, the action potential tends to decrease in strength even in the presence
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of a protective myelin sheath. Hence, evolution led to gaps in myelinations, called Node of

Renevier (Fig. 1.1.A), rich in voltage-gated ion channels to enable amplification of the electri-

cal signal. These mechanisms support the reliable transmission of information from one neuron

to another.

1.2. Synapse and synaptic plasticity

Synapses are specialized structures that enable communication between two neurons. Typi-

cally, a synapse comprises a presynaptic axonal bouton that emits the signals in response to

spiking in the presynaptic neuron and a postsynaptic neuron that receives the signals, inducing

a change in the postsynaptic membrane potential (PSP). The gap between the two neurons, typ-

ically in the order of 20-30 nanometers, is called synaptic cleft (Fig. 1.1.C). Upon a presynaptic

spike arriving at the axon terminal, voltage-gated Ca2+ channels activate, causing a fast influx

of Ca2+, triggering the fusion of presynaptic vesicles and leading to neurotransmitter release

(Fig. 1.1.C). The released neurotransmitters diffuse across the cleft and bind to specific recep-

tors on the postsynaptic membrane. The binding of neurotransmitters leads to the activation

of receptors via conformational change from a closed to open state. Opening of ion channels

either directly alters the ion flow or initiates secondary messenger pathways to open other ion

channels, allowing either negative (Cl− causing hyperpolarization, or positive Na+, causing

depolarization) currents to flow.

The resulting local electrical changes spread along the dendrite and reach the axonal initial

segment where the cumulative effect of simultaneously arriving signal is sensed. Several factors

can modify the signal. For example, Shunting inhibition modifies the signal when current leaks

due to ion channel opening caused by overlapping synaptic activation. Attenuation weakens

the voltage as it travels due to dendritic resistance, making signals from distal synapses less

effective. Temporal dynamics also play a role, as signals from distant dendrites take longer

to reach the soma, and the precise timing of multiple depolarizations is critical for triggering

a spike. Additionally, voltage-gated ion channels in dendrites can lead to localized dendritic

spikes, amplifying synaptic input.

This spatial and temporal transformation of synaptic signals collectively form dendritic com-

putations, which integrate complex inputs and determine neuronal outcomes [108, 144].

Synaptic plasticity refers to synapses’ ability to strengthen or weaken over time in response
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Figure 1.1.: Structure of a pyramidal neuron and excitability. A) The neuronal anatomy is designed for effi-

cient and fast signal processing and transmission. The extensive network of dendritic arbors collects

synaptic inputs in the form of voltage fluctuations across the cell membrane. When these voltage

changes reach the AIS, they can trigger an action potential or spike if the depolarization is above a

threshold. This spike then propagates along the axon and reaches the axon terminals, where it acti-

vates synapses, facilitating signal transmission to other neurons. These processes collectively form

the basis of neural communication and information processing in the nervous system. B) Membrane

voltage is shown as a function of time. If the depolarization fails to reach the critical threshold needed

for opening voltage-gated channels (illustrated by the dashed line), the voltage returns to its resting

state without triggering a response, as seen at 10ms and 20ms in the example. However, if the depolar-

ization surpasses this threshold, it initiates a positive feedback loop, resulting in an action potential, as

demonstrated at 30ms. This voltage trace is based on simulations using the Hodgkin-Huxley model,

which mathematically describes the initiation and propagation of action potentials in neurons. C) De-

tailed structure of a synapse, zoomed in from the highlighted box in panel A. Key features include:

i) Pre- and postsynaptic neurons in close proximity, ii) Synaptic cleft separating the two neurons, iii)

Neurotransmitter release from the presynaptic neuron due to presynaptic calcium influx, iv) Specific

receptors on the postsynaptic membrane that neurotransmitters bind to, v) Ion channels in the post-

synaptic neuron. The image demonstrates how neurotransmitters released into the synaptic cleft bind

to receptors on the postsynaptic side, triggering the opening of ion channels. This process results in

voltage changes in the postsynaptic compartment, facilitating neural communication. Figures A and C

are adapted from templates on BioRender.com.
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to increases or decreases in their activity. The term "Synaptic plasticity" was first coined in

1894. Later, Donald Hebb postulated that neurons that "fire together, wire together," which

indicates that if two neurons consistently fire at the same time, the connection between them

is strengthened. This model is referred to as Hebbian learning [77]. In 1973, Terje Lømo and

Tim Bliss, in their seminal study, showed that a burst of tetanic (100 Hz) stimulation of the

perforant pathway fibers from the entorhinal cortex onto dentate gyrus (DG) led to a significant

and long-lasting increase in postsynaptic responses of DG granule cells [13]. They called this

phenomenon Long-term potentiation (LTP). The reverse of this process is called Long-term

depression (LTD), which weakens synapses. Since the discovery of LTP (and LTD), a key

question has remained the focus of researchers that is: what are the molecular processes that

enable LTP?

In the section section 1.3, I describe the key mechanisms and experimental methods to study

synaptic plasticity mechanisms.

1.3. Molecular players and synaptic plasticity models

Biologically, the adaptability of synaptic connections results from the dynamic of molecular

processes occurring in various neuronal compartments. For example, the rapid lateral diffu-

sion of glutamate receptors within the neuronal plasma membrane enables swift adjustments in

postsynaptic currents during LTP [29].

Activity-dependent alterations in synaptic protein composition are widely believed to deter-

mine the neurobiological mechanisms of learning and memory formation. Fully understanding

the molecular dynamics of neurons, including the roles of mRNAs and proteins, would require

the development of techniques capable of simultaneously achieving high spatial resolutionto lo-

calize and identify every molecule in a neuron preciselyand high temporal resolution to capture

the intra- and intermolecular dynamics of these molecules. However, such a comprehensive

method does not yet exist. In the meantime, neurobiologists continue to amass a wealth of data

using a diverse array of advanced techniques, each offering unique strengths and presenting

certain limitations.

For example, in-situ hybridization techniques have been instrumental in mapping profiles of

mRNA transcripts in neurons [154, 114]. These methods reveal two distinct types of mRNA

localization: (1) somatic mRNA, confined to the cytoplasm near the nucleus, and (2) mRNA
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distributed in the cytoplasm of both soma and dendrites or axons. While highly informative, in-

situ hybridization provides a snapshot-like static visualization of mRNA distributions. However,

these techniques

Over the past two decades, breakthroughs in single mRNA molecule live-imaging have trans-

formed our understanding of mRNA dynamics [124, 100]. By tracking the motion of individual

mRNAs and mRNPs in living neurons, researchers have unraveled new insights into behavior.

For instance, the movement of mRNPs in dendrites and axons is primarily driven by active,

motor-based transport and follows an aging Levy walk model [152]. These particles exhibit

bidirectional, traveling in both anterograde and retrograde directions, and have high mobility.

Quantitative analyses suggest that mRNAs are not present in sufficient numbers to populate

every synapse individually but are instead local, shared resource [22, 160]. It has been hy-

pothesized that mRNA molecules slow down their motion near active synapses [153], enabling

localized translation into proteins precisely where and when they are needed. This targeted

mechanism ensures that protein synthesis occurs on demand, supporting synaptic functions.

Understanding the dynamics of mRNA trafficking in neurons, including these transport and

localization mechanisms, is crucial for advancing our knowledge of how neurons adapt and

regulate protein synthesis in response to activity.

Among the most thoroughly studied synaptic proteins are Ca2+ calmodulin-dependent pro-

tein kinase II (CaMK2a), Postsynaptic density protein 95 (PSD-95), and AMPAR. CaMK2a is

the most abundant synaptic protein, PSD-95 serves as the primary organizer of the Postsynaptic

density (PSD), and AMPARs mediate fast excitatory currents. Despite their critical roles at

the synapse, interestingly, all three proteins display high mobility in extrasynaptic regions and

are only transiently anchored at the synaptic site. However, their dynamics at the synapses

differ significantly, as revealed by live-imaging techniques such as Fluorescence recovery after

photobleaching (FRAP) and Single Particle Tracking (SPT) Fig. 1.2Left column. For instance,

most AMPAR remain within synapses for only seconds to minutes [164], whereas CaMK2a and

PSD-95 are more effectively trapped and remain immobilized for tens of minutes [158, 102].

This stochasticity in synaptic protein dynamics highlights the complexity of molecular be-

havior at synapses and underscores the need to study additional protein species. Characterizing

a broader range of synaptic proteins is crucial for uncovering the rules governing synaptic plas-

ticity and neuronal adaptation.

Notably, both the mRNAs encoding for synaptic proteins and synaptic proteins themselves
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1.3. Molecular players and synaptic plasticity models

live for a finite lifetime. Typically, mRNAs live for hours, while proteins can last for days.

This rapid turnover is striking, especially considering human memories can last for decades. To

explore this dynamic turnover, modern techniques have been developed to track newly synthe-

sized RNA and proteins within cells. Metabolic labeling methods, such as those described by

Rabani et al. (2011), Russo et al. (2017), and Akbalik et al. (2017), enable the visualization

of newly synthesized RNA molecules. When combined with RNA sequencing techniques like

SLAMseq, these methods can track the synthesis and degradation kinetics of nearly all mRNA

transcripts [132, 137, 4, 82].

Similarly, several advanced methods now allow the localization and quantification of newly

synthesized proteins. One approach involves combining metabolic labeling of proteins with

microscopy, often incorporating additional co-detection steps, as seen in Puromycin labeling

with Proximity Ligation Assay (Puro-PLA) and Fluorescence non-canonical amino acid tag-

ging (FUNCAT)-Proximation ligation assay (PLA) methods [167]. Another approach involves

tagging the endogenous locus of a gene with a fast-folding fluorescent protein, such as super-

folder GFP or VENUS, enabling real-time visualization of protein synthesis [45]. These tools

facilitate the study of protein expression dynamics at synapses, providing valuable insights into

the spatial and temporal regulation of synaptic protein synthesis.

Despite these advancements, imaging techniques typically focus on the distribution and dy-

namics of only a limited number of molecules at a time. While three decades of research using

various imaging approaches have provided critical insights into the behavior of synaptic pro-

teins, only a small fractionjust a few dozenof the 2,700 protein types identified at excitatory pre-

and postsynaptic sites have been characterized in detail [43].

To tackle the challenges of current methods, computational models offer a powerful alterna-

tive for investigating the complex inter-dependencies of RNA and protein dynamics across spa-

tial and temporal scales. By integrating experimental data and simulating molecular behaviors,

these models provide a framework for exploring the complex processes underlying synaptic

function and plasticity, advancing our understanding of neuronal systems. In addition, compu-

tational models help yield predictions about the speed, spatial distribution, and localization of

molecules involved in synaptic plasticity that can be experimentally tested.

In neurons, molecular movements occur through two primary models: (1) Passive diffusion,

which involves soluble molecules in the cytoplasm or within organelles membranes, as well as

transmembrane and membrane-associated molecules at the cell surface or in organelle mem-
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branes, and (2) active transport, where molecules and molecular complexes are transported by

binding directly or indirectly to molecular motors, which interact with cytoskeletal networks

to drive intracellular movement. Consequently, the spatiotemporal dynamics of proteins and

mRNA at synapses are shaped by these trafficking mechanisms, both in the cytoplasm and

along the neuron’s surface.

Several influential theoretical frameworks have been developed to model molecular dynam-

ics within neurons. These include the tug-of-war model [115], which describes competition

among molecular motors; the sushi-belt model [183], which depicts active transport along cy-

toskeletal tracks; the active synapse-dendrite exchange model [49], which explains the dynamic

redistribution of molecules between synapses and dendrites; and the passive diffusion model

[19], which captures the random movement of molecules driven by concentration gradients.

Next, I provide an overview of key modeling approaches that describe diffusive and active

transport and discuss how these models have deepened our understanding of the role of molec-

ular dynamics in neuronal function.

Diffusion is a prominent mode of molecular motion inside the cytoplasm and along the

plasma membrane. Based on experimental observations, several factors determine the rate of

diffusion. For instance, protein crowding in neuronal compartments can slow down molecular

kinetics [104]. Another factor is the bulkiness of molecular complexes or organelles. Models

describing the diffusive movement of mRNAs, mRNPs, and proteins include Brownian motion

[18] and anomalous diffusion [152]. One bottleneck revealed by diffusion models is traffick-

ing speed. Modeling studies report that if diffusive movement is considered alone, resources

reach the distal dendritic site with long delays, which can alter synaptic outcome [18]. Another

problem with pure diffusion is that delivering to spines farther than a few hundred microns is

impossible, especially for mRNAs and proteins with shorter half-lives. Interestingly, modeling

studies have suggested that intracellular passive diffusion is slower than surface diffusion, fur-

ther complicating the resource distribution [138]. Facing the delivery delays typical for slow in-

tracellular diffusion, experimental and theoretical studies emphasized the importance of mRNA

and protein’s active transport along microtubules to ensure fast, long-distance redistribution of

resources [18, 183].

To address limitations of only diffusive movement, several computational models considered

active microtubule-based molecular transport [84, 115, 183, 11]. Microtubules (MTs) serve as

railroads, enabling quick distribution of cargoes containing mRNAs, proteins, and macromolec-
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ular complexes across dendrites and axons. Motor proteins serve as intermediaries connecting

and moving cargoes on these microtubule tracks [83]. Individual motor proteins can move at

fast velocities in a range of 0.2 to 1.5 µm/sec. However, the motion of a single cargo can typ-

ically be described by two phases: fast runs, both anterograde and retrograde, and pauses. The

initial hypothesis suggested that these pauses or interruptions resulted from competition at the

molecular level between motor proteins traveling in opposite directions. This hypothesis was

modeled as the "tug-of-war" between opposing forces, resulting in a much slower net speed

ranging from 0.01 to 0.05 µm/sec [84]. Müller and colleagues mathematically formulated the

tug-of-war mechanism for intracellular motor transport, which proved to be an effective model

for studying mRNA and protein cargo motion [115]. However, recent experimental work de-

picted a more complicated picture of bidirectional intracellular trafficking than initially thought

[71].

To capture these additional complex cargo movements in the dendrites, one of the leading

hypotheses is that cargo movement is mainly controlled by local demand-driven signaling path-

ways for cargo in the nearby vicinity [17, 118]. A contemporary model named the "sushi-belt"

model [48] was proposed to explain the mRNA motion and its localization to active synaptic

sites for local translation. More recently, [183] formalized the sushi-belt model mathematically

and showed that this model could capture the complex spatial distribution of protein cargo in

the branched dendritic trees. In contracts to diffusion, active transport ensures cargo delivery

to distal sites. Interestingly, however, despite using physiological transport and kinetic param-

eters, the sushi belt model equally results in significant time delays for cargo delivery. Thus,

additional mechanisms are needed to ensure the fast delivery of molecules on demand to their

target destinations. One of the mechanisms that has been the focus of research for the past three

decades is local translation.

Many mRNA have been shown to localize in neurites [22, 171]. It has been hypothesized

that those mRNAs serve the demand for synaptic proteins in response to activity [161]. Local

protein synthesis could provide protein in suitable time scales matching observed synaptic adap-

tations. Fonkeu and colleagues recently constructed a computational model to capture diffusive

movement and active transport of Camk2α mRNA and proteins in dendrites [58]. Their model

predicted that local translation bursts can boost CaMKIIα density, which lasts for ≈ 10 hours,

and this elevation can span across a distance of 100 microns. Their model also predicted that a

similar translation burst in soma has no effect at distal sites because of the restricted diffusive
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movement of CaMKIIα protein is [58]. Thus, it is essential for future computational models

to include dendritic synthesis of synaptic proteins to predict spatio-temporal scales of synaptic

plasticity.

Distributing newly synthesized proteins across the cytoplasm and the plasma membrane to

ensure the right copy numbers of synaptic proteins per synapse is a primary focus for com-

putational neuroscience. As I have discussed, long-range cargo transport can be ensured by

combining diffusion, active transport, and local protein synthesis. Nonetheless, for transmem-

brane proteins such as AMPA receptors, local delivery requires an additional step of exocytosis

of intracellular vesicles transporting the protein of interest. Reversely, transmembrane proteins

are removed/recycled from the plasma membrane via endocytosis. Modulating the exocytosis-

to-endocytosis ratio can directly impact the local copy number of transmembrane proteins and,

thus, dictates opportunities for local synapses to capture transmembrane proteins. This has

been captured by a series of models addressing synaptic trapping of AMPA receptors [49, 159].

Recently, [159] proposed a model to study the bidirectional synaptic plasticity LTP/LTD as

a consequence of the relative balance between AMPARs endocytosis and exocytosis. Coun-

terintuitively, the model in [159] predicts that both LTP and LTD increase endocytic flux. In

fact, LTP induces a considerably higher endocytic flux than LTD. However, the exocytic flux

generated upon LTP induction outweighs the endocytic flux, resulting in an overall synaptic

potentiation.

Next, I discuss the role of AMPA receptors in synaptic plasticity and how synaptic activity

regulates their accumulation at the synapse.

1.4. Decoding Synaptic plasticity: the role of AMPA

Receptors

The majority of LTP observed in the brain results from increased AMPAR density at the post-

synaptic membrane or AMPAR single-channel conductance or both [81, 89, 42]. The AMPAR

concentration is increased within PSD through a cascade of trafficking and molecular events

like diffusion of AMPARs in the extrasynaptic space and exocytosis of AMPAR from the intra-

cellular storage. The direct interaction of GluA1 with scaffold proteins such as 4.1N through the

C-terminal domains promotes their activity-driven exocytosis. Several post-translational modi-
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fications (PTMs) promote their lateral diffusion, exocytosis, and single-channel conductance. I

have summarized the most important PTM in Table 1.1.

Posttranslational
modification

Subunit: Residue Effect Ref(s)

Palmitoylation GluA1: C811 limits exocytosis and S818 phos-
phorylation

[105]

Nitrosylation GluA1: C875 enhances S831 phosphorylation [145]
Phosphorylation GluA1: S845 and S831 enhances interaction with PSD and

surface retention, Synergetic en-
hancement of LTP

[99]

Phosphorylation GluA1: S818 increases interaction with 4.1N and
activity-dependent exocytosis

[105]

Table 1.1.: Impact of Post-translational modifications of AMPAR on their regulation during LTP. For more details,

see [42].

Other than the PTM, interaction with auxiliary subunits can also alter the trafficking of

AMPAR under basal and activity-dependent. The known AMPARs auxiliary subunit fami-

lies are Transmembrane AMPA receptor regulatory protein (TARP)s, γ − 2 (stargazin), γ −

3, γ − 4, γ − 5, γ − 7, and γ − 8 [168], the cornichon homologs (CNIH-2/3), GSG1L and

CKAMPS (CKAMP44 and CKAMP44-like proteins). These auxiliary subunits can impact the

single-channel properties and trafficking [156, 12, 42]. For example, γ−2 or stargazin interacts

with AMPARs and PSD complex proteins including SAP97 and PSD-95, and regulate AMPAR

trafficking including their surface diffusion, exocytosis [173], endocytosis [111] and synaptic

targeting [27, 94], [12] provides detailed information on auxiliary subunits and their role.

Another factor that can impact AMPAR response to plasticity is the subunit composition

of the pore-forming complex. For example, the majority of AMPARs in the adult brain are

tetramers of GluA1 and GluA2 subunits [182], and most of the previous studies investigated

their regulation in plasticity induction. However, the role of another type of AMPAR, which is

permeable to calcium (CP-AMPAR, most likely GluA1 homomers), is controversial. Firstly, at

most synapses in glutamatergic neurons, the CP-AMPAR concentrations are very low. However,

research has shown that these CP-AMPARs are more abundant in perisynaptic areas. Interest-

ingly, upon the induction of LTP, these receptors can be quickly and temporarily mobilized to

the synaptic sites. This rapid recruitment of CP-AMPARs to synapses immediately following

LTP induction suggests a dynamic role for these receptors in synaptic plasticity and potentially

in the early stages of memory formation [76, 131, 67]. These findings are refuted by another
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study [64, 2]. These findings warrant further characterization of the CP-AMPAR role in plas-

ticity induction protocols.

While evidence most clearly elucidated involvement of GLuA1 in LTP, GluA2/GluA3 AMPAR

also partake. Most of the work suggests that the GluA2/3 AMPAR are constitutively recruited

into synapses and replace the GluA1/A2 AMPAR and possibly GluA1 homomers [148].

Overall, the AMPAR subunit composition, PTMs, and interactions with auxiliary subunits

are important for expressing synaptic plasticity and basal activity.

Next, I briefly introduce the different computational models proposed to study AMPAR traf-

ficking under basal and synaptic plasticity.

1.4.1. Models of AMPAR trafficking

Several computational studies have proposed investigating AMPAR dynamics under basal and

plasticity conditions by modeling the trafficking processes. In this section, I have described

some of the modeling efforts.

Earnshaw and Bressloff a two-compartment model that included the endo-and exocytosis

exchange of surface and intracellular AMPARs coupled with the diffusional trapping of surface

receptors at the postsynaptic density [50]. Using this minimalistic model, they could replicate

many experimental observations at the time, including the effect of blocking endocytosis and

exocytosis on synaptic strength, the time course of LTP and LTD expression, and the constitutive

exchange of GluA1/2 receptor with GLuA2/3 receptors. However, their model had several

limitations, such as the diffusion rate used in their model lay outside observed physiological

ranges [50]. In addition, they also did not take the spine and dendritic neck geometry that is

known to influence AMPAR trafficking [87, 56]. In a later study, authors modeled individual

AMPARs diffusing in and out of PSDs along with their surface diffusion and recycling rates

and could reproduce changes in the synaptic AMPA receptor numbers observed experimentally

during plasticity [35]. In addition, the authors also showed the contribution of exocytosis and

synaptic trapping on AMPAR accumulation at the PSD. However, both models focused on

modeling the trafficking within a spine and could not predict the long-range distribution of

AMPARs in dendrites and distal spines.

Plasticity induction at a single synapse can also lead to interactions with stimulation synapses

and change their synaptic strengths. These changes in unstimulated synapses are termed Het-
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erosynaptic plasticity. See [25, 177] for more details on heterosynaptic plasticity. These het-

erosynaptic changes are attributed to competition in a common pool of dendritic resources.

Hence, it is important to model AMPAR dynamics in a multi-spine setting.

In a recent study by Triesch and colleagues, they modeled a small stretch of dendrite with

multiple spines on them to study the effect of resource sharing and local competition in plasticity-

induced changes at stimulated spine and heterosynaptic changes in unstimulated spines [169].

However, their model also suffered several limitations. For example, their model again doesn’t

give information about long-range AMPAR distribution, as the size of the local pool can depend

on the dendritic location.

None of the previous models have studied the effect of auxiliary subunit interaction with

AMPAR. While the previously proposed models have been very useful in studying AMPAR

changes during plasticity, they are incomplete in capturing certain aspects of AMAPR traffick-

ing. Hence, a more comprehensive model is required that also includes interaction with aux-

iliary subunits to understand global and local trafficking of AMPAR under basal and plasticity

conditions.
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1.5. Research goal

Synaptic plasticity is crucial for higher brain functions such as learning and memory formation.

Abnormal synaptic plasticity can lead to neurological disorders such as Parkinson’s disease and

Alzheimer’s. Biologically, synaptic plasticity is realized through intricate dynamics of molecu-

lar processes that occur at various spatiotemporal scales. Experimental techniques to investigate

these mechanisms allow us to glance at the remarkable complexity of molecular dynamics oc-

curring inside the neuronal dendrites and axons. Nonetheless, we are still far from fully under-

standing the complete landscape of molecular processes and their specific responses to synaptic

signals for two key reasons. First, techniques capable of analyzing thousands of molecules si-

multaneously, such as omics approaches, are inherently static and offer only a "snapshot" of

the neuron’s state at a specific moment. Alternatively, most available techniques addressing

spatial and temporal dynamics of molecular motion are restricted to only a few molecules at

once. In neuronal compartments, such as dendrites, the dynamics of many molecular species

are interwoven and unfold across tens to hundreds of microns.

Another significant challenge in experimental neuroscience is untangling the contributions

of various mechanisms influencing protein dynamics. While it is possible to study individual

processes, such as local protein synthesis, in great detail, isolating and accounting for the ef-

fects of other mechanisms-like diffusion, degradation, active transport, and vesicular trafficking

processes such as endo- and exocytosis, remains elusive. These overlapping and intertwined

processes collectively modulate protein abundance and localization during synaptic plasticity,

complicating efforts to assign changes to specific mechanisms.

This is where theoretical frameworks and computational models of mRNA and protein traf-

ficking offer invaluable insights [58, 36, 17]. By leveraging mathematical and physical princi-

ples, these models can simulate the motion of individual particles or particle densities, for even

thousands of molecular species simultaneously, with the help of experimental data to charac-

terize the kinetics of each process. Simulation of such models enables researchers to predict

molecular behavior under various and precise conditions, bridging the gap between large-scale

but static datasets and dynamics but sparse experimental observations.

In this work, I aim to provide novel mechanistic insights into synaptic plasticity. For this,

I introduce an integrative model of AMPAR and its auxiliary subunit CNIH-2. Using insights

drawn from biological data, I describe the basal-level trafficking of two different subtypes of
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1.5. Research goal

AMPAR. I aim to predict the response of these two AMPAR subtypes to chemical plasticity

induction in my model and validate my model predictions against experimental observations.

Even though my findings in this work will be specific to AMPARs, my model can be generalized

to study other synaptic proteins that use common trafficking pathways as well. Finally, I also

aim to bridge the gap between experimental data and modern data analysis too by developing a

novel data analysis pipeline for more comprehensive analysis of fluorescent imaging data.
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2. SpyDen: Automating molecular and

structural analysis across spines and

dendrites

This chapter is adapted from the result section and the supporting information of the ar-

ticle:

Maximilian F. Eggl∗, Surbhit Wagle∗, Jean P. Filling∗, Thomas E. Chater, Yukiko

Goda and Tatjana Tchumatchenko. "SpyDen: Automating molecular and struc-

tural analysis across spines and dendrites". bioRxiv, (2024): 2024-06: doi:

https://doi.org/10.1101/2024.06.07.597872. *: co-first authors

I describe a data analysis pipeline called "SpyDen" in this chapter. I have developed SpyDen

in collaboration with fellow lab members Jean Filling and Maximilian Eggl to analyze and

extract useful information from the raw data generated by modern fluorescent-based microscopy

techniques.

2.1. Introduction

Recent innovations in imaging technology have made it possible to investigate the intricate in-

teractions between synaptic plasticity and neural function, along with the molecular dynamics

occurring over time across dendritic trees, axons, and synapses, at scales ranging from microm-

eters to nanometres [172, 41, 88, 112, 97, 116, 44, 140, 123]. These innovative microscopy

techniques enable the quantification of mRNA localization and various protein species along

dendritic and axonal trees, as well as within individual synapses, offering unprecedented in-

sights into neuronal synaptic and dendritic dynamics [86, 133, 79].

Traditionally, microscopy images have been annotated manually or semi-manually. This an-

notation often requires using multiple software tools at different steps of the analysis pipeline

to extract meaningful information, such as detecting discrete fluorescent puncta that label mR-

NAs or newly synthesized proteins and segment and quantify cellular compartments of interest.
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2. SpyDen: Automating molecular and structural analysis across spines and dendrites

Some of the frequently used tools are: java-based ImageJ/Fiji [141], python based NAPARI [3]

or java-based Neuronstudio [134].

Meanwhile, modern Artificial Neural Network (ANN)-based automated tools offer signif-

icant advantages over traditional methods. For one, they reduce the possibility of annotator

biases, and analysis is often reproducible. Another benefit is that large-scale datasets can be

analyzed efficiently due to the fully automatic nature of such tools. Some of the frequently

used tools include the DeepD3 Framework [57], SpineS [7], or the work of [175]. However,

they have several limitations. For one, ANN-based techniques work best for images with the

exact resolution as images they were trained on, rendering them suboptimal for other resolu-

tions. Secondly, they are not fully open source and open access, which limits their adaptability

and customization to diverse experimental needs. Additionally, both tools often address only

specific segments of the data analysis pipeline. For a more comprehensive analysis of the struc-

tural and molecular composition, one must employ a combination of traditional and ANN-based

tools. This mixed approach of switching between tools can become time-intensive and complex

as one has to learn different tools.

In Appendix Table A.3, I provide a more exhaustive list of tools and the features they offer.

The tools included offer at least some of the capabilities of SpyDen, such as analyzing dendrites,

synapses, and mRNA and protein puncta. However, the tool I developed, "SpyDen," integrates

these analyses into a single streamlined pipeline, for example, analyzing a dendritic stretch,

its synaptic terminals, and the associated protein puncta in a single pipeline. This is a feature

that many of the listed tools (in Table A.3) lack, hindering the functionality for comprehensive,

all-in-one analysis.

Our pipeline is a structured approach to image analysis that is based upon three principles:

I) easy to use for multiple types of analyses, II) open-source accessibility with data export to

a standard and open-format, III) ability to customize the annotation generated by the software

and generalization across spatial resolution. In addition, our tool is augmented with a Graphical

User Interface (GUI) Fig. 2.1 and video tutorials to help new users.

Below, I describe the complete SpyDen pipeline. I also validated SpyDen using expert anno-

tations across numerous use cases to evaluate its power as an integrated platform for molecular

image analysis in an efficient and reproducible manner.
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i)

iii)

v)

ii)

iv)

A

B

C

D

E

F

Figure 2.1.: Graphical User Interface of SpyDen SpyDen GUI comes with a main window, as shown in the

figure. The main window is divided in 5 regions for: i): selecting file and metadata, ii): optimizing

results by adjusting interactive sliders, the number of sliders changes based on the different steps of

the analysis pipeline. iii): In the letters A-F, I highlight the buttons provided for different modes of

analyses offered by SpyDen. iv): for displaying images and results of the analysis. Finally, v): where

the user is provided feedback and instruction to use a particular feature. The buttons in red box iii): are

as follows. A): calculate medial axis, B): calculate dendritic width, C): Spine localization via Neural

Network, D): Calculating Spine RIOs, E): calculating local background intensity, F): get and measure

puncta. The Figure is adapted from [52].
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2. SpyDen: Automating molecular and structural analysis across spines and dendrites

2.2. SpyDen pipeline

The SpyDen analysis pipeline is built of three primary analyses, namely the dendrite analysis,

spine analysis, and puncta analysis Fig. 2.2. In this thesis, I mainly discuss the dendrite and

puncta analysis. Please see the original article in [52] for details on Spine analyses.

A Dendritic path calculation

5 µm

B Dendritic width calculation C Spine locations via ANN

D Automatic ROI generation E Local background calculation F Automatic puncta detection

Figure 2.2.: Analysis pipeline of SpyDen A) An example image containing a dendritic stretch with spines, op-

timal medial axis path shown in black B) The segmented dendrite (outlined in yellow), after width

calculation on the medial axis path C) Potential spine heads (red cross) generated using an ANN

model. Spyden allows manual editing (adding or deleting) of potential spine heads. D) Spyden uses

the spine heads as a starting point and calculates the full spine head ROIs. E) Spyden also automat-

ically calculates local background intensity from an equal ROI area for each spine. The position of

local background ROI can be edited manually. F) SpyDen calculates fluorescent puncta in both den-

drite and spine ROIS. Image scale bar: 5 µm. Figure is adapted from [52].

Each analysis consists of several interactive objects and requires minimal user input via the

GUI. SpyDen allows saving results at the end of each analysis pipeline. To adhere to a structure

analysis pipeline, one must go through each analysis sequentially.

2.3. Dendritic analysis

As proteins and mRNAs are localized extensively in the dendrite, systematically segmenting

the dendrite is essential to obtain statistics such as mRNA/protein intensity profile along the
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2.3. Dendritic analysis

dendrite. Spyden’s dendritic pipeline inherently obtains this information. The dendritic analysis

requires a start and an end node to work. This way, the dendritic distance is known for each point

on the path connecting the start and end nodes. To segment the complete dendrite, SpyDen first

calculates the optimal route on the medial axis of the dendrite. Then, SpyDen uses this medial

axis path to iteratively calculate the dendritic width at each node. Next, I describe the medial

path calculation.

I Medial Axis Path finding

For calculating the optimal path, the problem is reduced to the shortest pathfinding task in a

maze. The algorithm traces the best route through the dendrite using the user-defined start and

end points. This process begins by transforming the experimental image into a binary matrix,

where pixels with luminosity above a defined threshold represent navigable paths. In contrast,

all other pixels are treated as obstacles Fig. A.1.B. The shortest path through this binary matrix

is computed using the Dijkstra algorithm from the NetworkX library [70]. I employed down-

sampling for larger images (bigger than 512x512 pixels) to speed up the computation.

However, this approach alone often places the calculated path along the dendrite’s edges, es-

pecially for curved or bent dendrites. For this, the SpyDen algorithm augments the binary matrix

with an additional factor representing the distance of each pixel from the nearest boundary (pix-

els below the luminosity threshold). This extra factor prioritizes pixels closer to the dendrites

center by assigning higher weights to those further from the edges. The result is a medial axis

path that accurately follows the dendrites central trajectory. To visualize this adjustment, see

Fig. A.1.C, where peaks indicate pixels furthest from the dendritic boundary.

The resulting path consists of all pixels between the dendritic endpoints. The full pixel-

resolution path then undergoes several reduction steps to get a compressed representation of

key control points. These control points are easy to store, provide editability of the path, and

improve computational efficiency. These control points are selected through curvature-based

sampling and are the editable nodes shown in Fig. 2.3. Linear interpolation between the con-

trol points can regenerate the full path as needed. I have provided the complete algorithmic

implementation of the reduction process in the Appendix as 1.
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2. SpyDen: Automating molecular and structural analysis across spines and dendrites

Figure 2.3.: Various steps of dendritic segmentation. A) An example image with a dendritic branch and spines,

scale bar: 5µm. B) After applying a median filter to reduce the salt and pepper noise followed by

a user-defined threshold (default is the mean) for a rudimentary segmentation of the fore- and back-

ground. This threshold defines the maze for the algorithm to calculate the medial axis path on C) A

medial axis path is calculated as the weighted shortest path between user-defined endpoints. D) For

each point on the medial axis path, an ellipse is fitted that covers the dendritic width. E) The width

calculated at each point is further processed to avoid abrupt changes due to various factors, such as the

presence of the spine and the gap in the edges. This processing results in a smooth dendritic segment.

Figure is adapted from [52].

I Dendritic Width Calculation

After calculating the medial axis path, the entire selected dendritic stretch is segmented. This

requires a precise calculation of width at each point. To achieve this, my algorithm defines

an ellipse at each point along the medial axis. The semi-major axis is kept perpendicular to the

medial axis and iteratively expanded until it intersects with the dendritic boundary detected. The

dendritic boundaries are detected using the Canny edge detection algorithm [23]. Meanwhile,

the semi-minor axis of the ellipse is set to a small fixed value and aligned with the direction

of the medial axis. The Canny edge detection is applied to the median-filtered and thresholded

image. I have illustrated this ellipse-based approach in the top panel of Fig. 2.3.D.

The ellipse-based method offers two advantages. It avoids ambiguities in edge detection by

differentiating between synaptic and dendritic edges, often indistinguishable from direct Canny

detection. Second, unlike ray-based approaches, the expanding ellipse method ensures that it

eventually intersects an edge and mitigates gaps in the dendritic boundary caused by variations

in luminosity, as a single ray might escape through gaps and fail to detect an edge. I showed an

example of the ellipse-based for better visualization in Fig. 2.4.

The algorithm excludes non-dendritic structures such as spines and filopodia by applying
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2.3. Dendritic analysis

Errornous width due
to spine

Spurious edges

Canny edges

Medial axis

Gap in
dendritic edge

ellipse for
width calculation

Figure 2.4.: Example of dendritic width calculation A canny-edge detection algorithm on an example image’s

filtered and thresholded version provides an acceptable set of edges. However, several problems pre-

clude using the edges directly (as illustrated by the white circles). Instead, I decided to apply the

ellipse-based approach seen in Fig. 2.3.A-E to encounter these problems and generate a smooth den-

dritic segmentation. Scale bar: 5µm. Figure is adapted from [52]
.

smoothing conditions to prevent abrupt width changes. SpyDen further incorporates user-

interactive sliders to modify (i) the width-multiplication factor and (ii) the smoothing intensity,

allowing users to refine segmentation results and optimize dendritic width calculation. The

complete algorithm for dendritic width calculation, including smoothing and user-adjustable

parameters, is detailed in Algorithm 2 in the Appendix. This robust method ensures precise

segmentation and width determination, facilitating accurate dendritic analysis in diverse exper-

imental conditions.

I Validation

I validated the dendritic segmentation across three distinct datasets to validate SpyDen’s perfor-

mance and demonstrate its robustness under varying experimental paradigms. These datasets

Chater [26], Helm [79], and Cultured are publicly available and published, except for the Cul-

tured dataset, which is newly introduced in this work. This Cultured dataset was acquired by my

collaborators, Dr. Thomas Chater and Prof. Yukiko Goda. The Chater dataset comprises neu-

rons from organotypic slice cultures Fig. 2.5.A while the Helm Fig. 2.5.B and Cultured datasets

Fig. 2.5.C feature images of dissociated neuronal cultures. This combination offers a diverse
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Figure 2.5.: SpyDen dendritic segmentation performance is comparable to manual segmentation A-C) Ex-

ample dendrite from the Chater data (in A) [26]), Helm dataset (in B) [79], and unpublished Cultured

data (in C);Top row:: Raw image; second row:: same image with manual annotations shown in red;

third row: SpyDen segmentation with default parameter set; last row: SpyDen segmentation with aug-

mented parameters optimized for one image in blue. D) -F) Recall (D), Precision (E) and F1-score (F)

as performance measure of dendritic segmentation. Performance of the SpyDen segmentation with

default (in green) and 1-image optimized parameters (blue), respectively. Additionally, I calculated

a baseline (called the straight dendrite), where a diagonal chord (2µm width) is drawn between the

dendritic start and endpoints and designated as the dendrite (in grey). For all images: scale bar: 5 µm

and ∗ refers to p < 0.05. Figure adapted from [52]

and compelling data set for evaluating SpyDen’s capabilities.

A notable distinction among these datasets lies in their experimental resolutions, a factor

critical for the performance of many neural network algorithms. Additionally, the datasets have

varying signal-to-noise ratios in Fig. 2.5.A-C.

The evaluation begins with assessing the dendritic segmentation algorithm’s performance

compared to manual expert evaluations. Each dataset contains 20 dendrites. Typical usage of

SpyDen involves applying the automatic algorithm’s results as-is, adjusting the medial axis path

of the dendrite, or fine-tuning algorithm parameters using slider adjustments. To replicate this

usage, two segmentation scenarios were analyzed:

• Default: Results from the automatic algorithm with default SpyDen parameters.

• 1-Image Optimized: Results after fine-tuning the algorithm parameters on a single image
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2.3. Dendritic analysis

from the dataset, then applying these settings across the remaining images.

In Fig. 2.5.A-C, I show an example dendrite from the three datasets along with the segmen-

tations, with SpyDen-generated segmentations in green and blue. I utilized several metrics to

quantify SpyDens performance compared to expert annotations (ground truth, in red). I treated

the segmentation task as a classification problem, where each pixel is categorized as either in

or out of the dendrite. This task is inherently imbalanced, with many more non-dendritic pixels

than dendritic ones. To evaluate performance, I employed recall, precision, and the F1 score,

standard metrics for imbalanced datasets. Recall assesses the proportion of true positives cor-

rectly identified, precision evaluates the model’s ability to minimize false positives, and the F1

score combines both recall and precision for a balanced evaluation as:

recall =
tp

tp + fn

precision =
tp

tp + fp

F1 =
2× recall × precision

recall + precision

Performance metrics for SpyDen across the Helm, Chater, and Cultured datasets are shown

in Fig. 2.5.D&F. For the Helm dataset [79], I achieved a high recall (∼ 0.9) and precision (∼

0.8) for both default and 1-image optimized segmentation, resulting in an average F1 score of

0.85. This consistency reflects SpyDen’s design and optimization for Helm-like experimental

conditions, where parameter adjustments provided minimal improvement.

To further explore SpyDens performance, a naive segmentation strategy ("straight dendrite")

was tested. This naive segmentation achieved an F1 score of ∼0.4 and ∼0.3 for the Helm

[79] dataset and Chater [26] dataset, respectively. This naive strategy struggled with curved

dendrites, resulting in low precision value and variable recall value. SpyDen with default pa-

rameters yielded lower precision and F1 score on the Chater dataset [26]; however, the recall

value was high. This was due to a lower contrast between the actual dendrite and background

fluorescent, leading to over-segmentation and adjusting the Gaussian filter variance improved

performance, achieving an F1 score of ∼0.82. Similarly, the Cultured dataset displayed over-

segmentation under default settings but achieved 0.85 F1 scores with parameter optimization.

Significantly, in my analysis, I adjusted the parameters for a single image per dataset and
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2. SpyDen: Automating molecular and structural analysis across spines and dendrites

applied them to others, demonstrating SpyDens adaptability. Despite focusing on transferable

parameters without editing dendritic paths, SpyDen consistently outmatched the baseline and

delivered robust results across several datasets.

2.4. Puncta analysis

One of the most commonly investigated biological samples is the fluorescent labeling of mR-

NAs and newly synthesized proteins. Traditionally, the techniques used to label mRNA such

as Fluorescence in situ hybridization (FISH) [171, 58] and Small Molecule Fluorescence in

situ hybridization (smFISH) [30] and newly-synthesized protein such as FUNCAT-PLA[167],

Puro-PLA[167] result in images with fluorescent bright puncta against a dark background (see

Fig. 2.2.F). Hence, detecting and quantifying fluorescent bright puncta is critical in analyzing

biological images. SpyDen provides a robust pipeline for identifying puncta for multi-channel

or multi-time image datasets.

I Fluorescence puncta detection

SpyDen uses the Laplacian of Gaussian (LoG) technique, implemented via the python library

skimage, to detect fluorescent spots in experimental images automatically. This method requires

a threshold value to define the absolute lower bound for scale-space maxima. However, the

optimal threshold varies depending on the type of biological structure being analyzed.

SpyDen accommodates puncta detection in multiple neuronal structures (e.g., spines, den-

drites, somata) by providing two adjustable sliders:

• Threshold Dendrite

• Threshold Synapse/Soma

These sliders allow users to independently set threshold values for different types of ROIs.

The puncta detection works as follows: for an image I(t, c, x, y) and an ROI R(t, c, x, y) within

I , the threshold value tR(t, c) is calculated as:

tR(t, c) = max(R(t, c, j, k))× γ

100
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2.4. Puncta analysis

Here: - R(t, c, j, k) represents the array of fluorescence intensity values for all j, k ∈ ROI in

channel c at time t. and γ corresponds to the slider values.

SpyDen also allows users to detect puncta of varying sizes by adjusting the minimum and

maximum standard deviations of the Gaussian kernel via the Puncta Size slider.

Additionally, SpyDen omits puncta detection in ROIs with intensities below the background

noise level to enhance efficiency and reduce false-positive detections. This ensures reliable and

accurate identification of fluorescent puncta in diverse experimental datasets.

Figure 2.6.: Puncta detection and analysis using SpyDen A) An example image of cultured pyramidal neuron

from with processed for FISH against Camk2a mRNA (in green) and fluorescently immunolabeled

MAP2 (in magenta); scale bar: 20µm. B) Puncta detected in the soma (shown in yellow) and in

dendrite segmented with default parameters (shown in red); Scale bar 10µm. C) Same as B) but for

adjusted width calculation parameter. D) I show an example dendritic stretch from a cultured neuron

processed for antibody labeling against Homer1; the dendritic boundary was visualized using Dio dye.

E) Homer1 fluorescent puncta detected by SpyDen in dendritic stretch (in red) and in spine heads (in

yellow). In D, C, E, I show the spine and soma segmented using SpyDen (outlined in white) and the

dendrite, also segmented by SpyDen (outlined in yellow). The figure is modified from [52].

As an example, I show the puncta detected in different datasets that involved imaging mRNA

and protein localization in In Fig. 2.6,

First, CamK2a mRNA, encoding for the CaMK2α protein, is known to be localized in the cell
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2. SpyDen: Automating molecular and structural analysis across spines and dendrites

somata and neurites (as can be seen in In Fig. 2.6.A). SpyDen efficiently detected the somatic

and dendritic mRNA puncta as shown in Fig. 2.6.B&.C.

Second, Homer1 is a crucial synaptic protein that mainly localizes in the spine head [79] and,

hence, is often used as a marker for spines (shown in Fig. 2.6.D). SpyDen detected homer1

puncta mainly in the spine head and fewer puncta in dendrite that could belong to the stubby

spines (see Fig. 2.6.E).

I Validation

Next, I assessed the accuracy of SpyDen’s puncta analysis. I analyzed the dataset from two

recently published datasets [58, 11] and compared the results against the computational tool

used in respective studies.

• Dataset 1: Confocal microscopy images of mouse primary cortical neurons with two

Cdc42 isoforms labeled using single-molecule mRNA FISH Fig. 2.7.A&B.

• Dataset 2: Confocal microscopy images of rat dissociated hippocampal cultured neurons,

where mRNA FISH was performed for Camk2a (Fig. 2.7.C, left).

In the original studies, StarSearch (RajLab) was used to quantify smFISH puncta for the

Cdc42 isoforms (E6 and E7) in Dataset 1 [11]. SpyDens analysis produced comparable results,

accurately reflecting the percentage localization of the two isoforms between soma and neurites

(Fig. 2.7.D&E).

For Dataset 2 [58], Neurobits [171] was used to analyze Camk2a mRNA. Similarly, SpyDens

results closely matched Neurobits’ findings in terms of quantifying Camk2a mRNA in somatic

and dendritic compartments (Fig. 2.7.F). SpyDen also produced comparable puncta counts for

soma and neurites across both datasets (Fig. 2.7.G-I), making it a robust puncta detection tool

for several types of ROIs. SpyDen can also be used to detect fluorescent puncta in smaller ROIs

such as spines; for a full description, please refer to [52].

SpyDen, along with matching the performance of established tools like StarSearch and Neu-

robits, also provides additional flexibility, efficiency, and user-friendly features, making it a

powerful tool for puncta analysis in diverse experimental contexts.
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Figure 2.7.: SpyDen’s puncta detection was validated against published datasets. A) An example neuron pro-

cessed for smFISH against Cddc42 isoforms E6 (green channel) and E7 isoforms (red channel), the

cell body is labeled with DAPI (blue channel); Scale bar: 5 µm. B) Zoomed-in image of the segmented

soma and an example dendrite. top row: smFISH image of soma and puncta detected by SpyDen for

E6 and E7. bottom row: smFISH in the image and the same puncta detected by SpyDen (red: E7 and

green: E6). C) Left image: An example neuron processed for FISH against Camk2a mRNA (in red)

with fluorescent immunolabeling of MAP2 for neurites (gray), scale bar: 20 µm. Right SpyDen out-

putted somatic mRNA puncta and dendritic mRNA puncta. D) Somatic puncta detection from SpyDen

and StarSearch obtained comparable fractions. E) Same as D for neurites. Isoform E7 is preferen-

tially localized in the neurites as opposed to isoform E6 [11]. SpyDen analysis generated same results

(*: p-value < 0.05,**: p-value < 0.01, ***: p-value < 0.001). F) Soma vs neurites fraction of total

Camk2a mRNA with higher localization in soma. SpyDen analysis can replicate the results obtained

using Neurobits. G-I) No significant difference in the number of puncta detected by StarSearch vs.

SpyDen in the soma (G), in neurites (H), and FISH puncta count by Neurobits vs. SpyDen (I). The

figure is adapted from [52].
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2. SpyDen: Automating molecular and structural analysis across spines and dendrites

I Key Advantages of SpyDen’s Puncta Detection

• ROI-specific detection: Established tools such as Neurobits process the entire image and

assign each identified puncta to an ROI. However, this approach is inefficient as the com-

plete image is processed. SpyDen, on the other hand, focuses on puncta detection within

predefined ROIs. SpyDen’s targeted approach significantly reduces analysis time per im-

age.

• Parameter adjustment: SpyDen allows users to inspect and optimize algorithm parame-

ters, such as puncta size and intensity threshold, providing flexibility to fine-tune results.

• Automatic Statistics Output: SpyDen generates detailed statistics for each detected punc-

tum, including location, radius, intensity range (minimum and maximum), etc. These

outputs are readily accessible and reduce post-analysis processing. I have listed the out-

put statistics generated by SpyDen in Table A.2.

• Easy to Use with video tutorials: SpyDen comes with extensive video tutorials, simplify-

ing the learning process compared to tools like StarSearch and Neurobits, which provide

text-based documentation.

2.5. Brief Summary

This chapter describes a Python-based tool I developed to perform several fluorescent-based

neuronal imaging data analyses. The tool offers several analyses, including 1. Dendritic seg-

mentation and analysis, 2. Spine segmentation and analysis, and 3. Puncta detection and anal-

ysis. Existing tools provide one or more of these features, but not all. Hence, I developed

SpyDen. The first step in the analysis is to segment the dendrite for which I calculate the me-

dial axis path and then calculate the width at each point on this path using an ellipse-based

approach. Next, I used the segmented dendrites to identify fluorescent puncta and calculate

their statistic. Next, I introduce how the biological information extracted from such microscopy

data set helped me develop mathematical models of AMPAR trafficking under basal conditions.

I also used my model to study AMPAR copy-number change upon LTP induction.
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3. Model of AMPA Receptor Trafficking

Under Baseline Condition

This chapter is adapted from the results section and the supporting information of the

article:

Surbhit Wagle, Maximilian K. Kracht, Anne Bührke, Amparo Acker-Plamer, Na-

taliya Kraynyukova, Anne-Sophie Hafner, Erin M. Schuman and Tatjana Tchu-

matchenko. "An integrative model of AMPA receptor trafficking reveals the central

contribution of local translation in subtype-specific kinetics". bioRxiv, (2025): doi:

https://doi.org/10.1101/2025.02.08.637220.

In this chapter, I discuss the different trafficking mechanisms that are known to orchestrate

the movement of AMPAR and their distribution along the dendritic tree. I also present the sim-

ulations of the trafficking mechanism under baseline conditions using a computational model.

3.1. Modes of AMPA receptor trafficking

AMPARs are crucial to excitatory synaptic communication in the brain, mediating the fast de-

polarizing synaptic current. They play an integral role in the mechanisms underlying synaptic

plasticity, particularly in the expression of long-term potentiation (LTP), a process essential for

learning and memory. The strength of excitatory synaptic transmission is largely determined

by the number and composition of synaptic AMPARs within the PSD. Therefore, regulating

AMPAR availability and functionality at synapses is a key mechanism for controlling synaptic

efficacy and neuronal communication [42, 29].

Neurons, such as the pyramidal neurons in the hippocampus and cortex, have long dendritic

arbors that can extend several hundreds of micrometers. This vast network of dendritic pro-

cesses enables them to integrate inputs from thousands of other neurons. These dendrites are

densely populated with dendritic spines, small protrusions that serve as the primary sites for ex-

citatory synaptic input. Typically, dendritic spines are distributed at a density of approximately

12 spines per micrometer along the dendrite [119].
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3. Model of AMPA Receptor Trafficking Under Baseline Condition

For effective detection of excitatory inputs (i.e. detecting the release of glutamate from

the axons of presynaptic neurons), postsynaptic neurons must make sure that their dendritic

spines are appropriately populated with sufficient AMPARs. The presence of AMPARs at these

spines is critical for translating synaptic signals into postsynaptic responses, thereby enabling

the functional connectivity necessary for neural circuit activity and plasticity. There are several

mechanisms that neurons employ to overcome the challenges of their structural complexity and

ensure the distribution of AMPARs. These trafficking mechanisms can be divided into roughly

two modes based on their spatial extent. First is the global trafficking mode, which can again

be divided into two subsets i) passive, Brownian motion-like diffusion, and ii) active, motor

protein-based transport Fig. 3.1.B. These two mechanisms can shape the dendrite-wide land-

scape of AMPAR distributions. The second mode is the local trafficking mode. As AMPAR

is a trans-membrane protein, it has a population that is bound to the plasma membrane and

another population that is intracellular. The exchange between these two populations occurs

mostly through local trafficking mechanisms, namely, i) endocytosis that causes internalization

of the surface receptors and ii) exocytosis that causes surface insertion of cytoplasmic receptors

Fig. 3.1.C.

Here, I describe the molecular processes that are known to traffic the AMPARs along the

dendrite of neuron, thus shaping their spatial distribution in the neuron.

3.1.1. Surface movements

The plasma membrane of cells is a dynamic and compartmentalized medium, characterized by

its viscous nature. Within this structure, neurotransmitter receptors including AMPARs can

undergo Brownian diffusion when not stabilized by interactions with cytoskeletal or scaffold

proteins which are relatively fixed on in the plasma membrane. Several studies tracking the

movements of individual endogenous AMPARs on neuronal surfaces have confirmed these pre-

dicted behaviors [14, 9, 78], while also revealing some unexpected features. This is especially

evident in the extrasynaptic compartment. Receptors in the extrasynaptic neuronal membrane

can typically diffuse freely at rates of up to 1 µm2/s [9, 121, 90]. Similarly, high mobility is

observed in intracellular membranes, such as the endoplasmic reticulum (ER).

Brownian diffusion is an energetically neutral process for the cell, entirely driven by thermal

agitation and molecular collision. The mean squared displacement, MSD, achieved through
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3.1. Modes of AMPA receptor trafficking

Figure 3.1.: Various trafficking processes of AMPARs. A) Synapses distributed along the dendritic arbors re-

quire GluA1- and GluA2-containing AMPARs for LTP. Various processes impact AMPAR availability,

and their time scales range from seconds to hours. B) The global landscape of AMPARs in a neuron is

shaped by fast bidirectional active transport and slow passive diffusion on the cell surface or inside the

cytoplasm. C) The local trafficking modes, including slow endocytosis and exocytosis of AMPARs,

help to maintain a sufficient pool of extrasynaptic receptors. Upon endocytosis, AMPARs are sorted

into recycling and early endosomes that are reinserted. AMPARs in the late endosome are degraded.

Following surface insertion, AMPARs reach PSD by their diffusion towards the synapse and binding

to PDZ domain scaffold proteins at the PSD. See text for full description. The figure is adapted from

[178].
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3. Model of AMPA Receptor Trafficking Under Baseline Condition

diffusion is proportional to the time:

MSD(t) ∝ tα (3.1)

t represents the time since the start of the observation, and α = 1 for diffusive movement, α < 1

for subdiffusive movement, and α > 1 for superdiffusive movement. As the displacement

depends on the square root of time for a diffusive movement, purely diffusive movement is

efficient on short time scales but not on long time scales. For instance, a receptor diffusing at

an average rate of 1 µm2/s can move roughly a micrometer in 1 second but travel only about

15 micrometers in 100 seconds. In contrast, intracellular motor-driven transport, which relies

on ATP for energy, enables receptors to traverse approximately 200 micrometers in the same

amount of time, making it far more effective for longer distances.

Interestingly, while directed receptor movement on intracellular tracks is well-documented,

reports of directed movement on the neuronal surface are rare, with only a few exceptions noted

in the literature (see [166]). These findings highlight the reliance on diffusion for localized re-

ceptor dynamics and the necessity of motor-driven mechanisms for more extensive intracellular

transport.

Measuring receptor movement is best in live cells for obvious reasons. In live neurons, one of

the most common and oldest methods is FRAP. In this method, fluorescently tagged receptors

are photobleached in a small ROI using a focused laser beam, and the subsequent recovery of

fluorescence in this ROI is recorded to access the rate of receptor mobility in the surrounding

membrane environment Fig. 3.2.A. However, it has several shortcomings, such as a lack of

spatial resolution due to diffraction limit, and cannot be used for subsynaptic information on

receptor movement. Also, it is not suited for studying endogenous receptor movement as it

often requires overexpression that strongly biases receptor composition. Additionally, it also

biases measurements of mobility as overexpression can saturate the limited number of trapping

sites.

Another commonly used technique is single-particle or single-molecule tracking Fig. 3.2.B.

This method has advanced from earlier techniques that used receptor-bound nanogold or latex

particle tracking to a highly refined approach capable of tracking single fluorophores attached

to receptors with remarkable speed (up to kilohertz) and resolution (in the 10-nm range) [106,

32]. Thanks to their inherent single-molecule sensitivity, these techniques are particularly well-
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3.1. Modes of AMPA receptor trafficking

Figure 3.2.: Methods to study receptor motion. A) Fluorescence recovery after photobleaching (FRAP) involves

locally photobleaching fluorescently labeled receptors and monitoring the recovery of fluorescence

in the bleached area to determine both the rate of receptor movement and the proportion of immobile

receptors [9]. B) Time-lapse imaging of single molecules in live cells enables the tracking of individual

receptors. By analyzing the surface explored by these receptors over time, researchers can measure

their movement patterns and diffusion rates. Extrasynaptic receptors generally exhibit free Brownian

motion, characterized by a linear MSD curve, while synaptic receptors display confined movements

[164]. The figure is adapted from [65].

suited for tracking endogenous receptors, which are often expressed in low copy numbers.

3.1.2. Active transport

The viscous nature of the intracellular environment makes it unsuitable for long-distance traf-

ficking via purely diffusive processes. Owing to the lack of direct measurement of diffusion

rates of receptor-containing vesicles, the estimated diffusion rates are in the order of 0.01µm2/s,

with significant confinement [91]. Intracellularly, a more efficient way of transporting cargo is

through molecular motors, such as kinesin and Dynien, which consume energy in the form of

Adenosine Triphosphate (ATP). For short distances, myosin motors can move cargo along the

actin cytoskeleton with high specificity [54]; however, myosin-based transport is not suited for

long-range transport. Microtubule-based systems are preferred for long-distance intracellular
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transport, such as transport between various cell organelles (like Endoplasmic Reticulum (ER),

and Golgi) as they allow directional movements at speeds of up to 5 µm/s. Few studies have

examined glutamate receptor transport due to imaging challenges with fluorescently tagged re-

ceptors. The first detailed report of intracellular transport of AMPAR was studied in nematode,

Caenorhabditis elegans[85].

In a recent study, Hangen and colleagues have highlighted the microtubule-based rapid trans-

port of AMPAR [72]. Intriguingly, they observed a bidirectional movement of vesicles con-

taining AMPARs. This bidirectional transport enables efficient distribution of receptors and

ensures their availability across the dendrite for rapid, on-demand delivery during activity-

dependent plasticity. They further highlighted that synaptic activity-driven calcium influx can

arrest vesicles transporting AMPAR, which they hypothesized could be for the surface inser-

tion of AMPAR to meet synaptic demands. They also showed that during prolonged periods

of elevated synaptic activity, intracellular AMPAR transport increases significantly, likely to

replenish the dendritic receptor pool [72]. These findings, collectively, indicate that neurons

have evolved a robust activity-dependent regulation of glutamate receptor intracellular trans-

port [72, 151] hinting towards a pivotal role in controlling receptor availability during synaptic

plasticity and warranting further examination.

3.1.3. Exocytosis, endocytosis, and degradation

Efficient vesicular trafficking in the cytoplasm is achieved through interactions with actin, re-

quiring energy expenses. These interactions generate the essential push for vesicle biogenesis,

propulsion over short-distance through the cytoplasm to their target destinations [95, 73], and

is crucial for recycling of receptors via endocytosis and exocytosis.

The actin motor protein myosin VI is specifically required for activity-induced, clathrin-

mediated endocytosis of AMPARs during synaptic LTD in hippocampal neurons [122] and at

parallel fiber-Purkinje cell synapses [179]. Since dendritic spines are densely packed with actin

filaments and largely lack microtubules, myosin-driven movements are likely predominant in

these compartments. During long-term potentiation (LTP) induction, myosin Vb or Va interacts

with GluA1-containing recycling endosomes in the dendritic shaft, facilitating their transport

into spines. Within the spines, these recycling endosomes fuse with the plasma membrane,

enabling surface insertion of GluA1 AMPARs and contributing to the spine surface growth
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associated with LTP [181]. It remains unclear whether actin-based transport is also involved in

longer-range movements within dendrites.

AMPARs, like many other surface proteins, are internalized and stored in intracellular com-

partments such as an early endosome. They can also be stored in late endosomes following

endocytosis, where they are degraded through lysosomal pathways [113]. Finally, they can be

recycled back to the surface via recycling endosomes [74, 113]. Their reinsertion or degradation

seems to be dependent on the activation of NMDAR and phosphorylation activity of PKA as ac-

tivating AMPAR without NMDAR activation targets AMPAR to late endosome and lysosomal

degradation [53].

3.1.4. Local translation

Another major pathway for a neuron to supply proteins to distal dendrites is to synthesize pro-

teins locally in the dendrites. This can be achieved by transporting mRNAs and protein synthe-

sis machinery to the dendrites. The first evidence that mRNA present in dendrites is translated

into proteins essential for synaptic plasticity was reported in [93]. Since then, research has pro-

gressively highlighted the significance of locally synthesized proteins and their critical role in

long-term plasticity [51, 163, 16]. As demonstrated by these studies, the continuous presence

of mRNA within the dendritic arbor enables the consistent production of newly synthesized

proteins. The steady synthesis in dendrites ensures a uniform distribution of proteins across the

dendritic arbor while minimizing the overall protein demand in the dendrite [58].

The reduction of protein needs comes with the additional cost of transporting mRNAs into the

dendritic branches. Again, this can happen with the methods of intracellular motion described

above, mainly with passive diffusion and active transport. In addition to transporting the mRNA

the protein synthesis machinery also needs to be localized in the dendrites. The number of ribo-

somes present in the synapses of a hippocampal neuron ranges from zero to eight per synapse

[155], enabling individual synapses to respond and adapt to stimuli in various ways.

For AMPARs, whether local translation plays a critical role in shaping their distribution re-

mains unclear. Recent evidence suggest local translation under plasticity condition [66, 92].

However, experimental work also argues that mRNA encoding for the pore-forming subunits of

AMPAR are largely somata-enriched [63] under basal conditions. One way to reconcile these

differences would be to consider enhanced mRNA translocation to the dendrites under plasticity
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demands for mRNAs that are somatically enriched such as AMPAR. For this reason, we studied

mRNA localization for two major pore-forming subunits of AMPAR, namely the GluA1 and

GluA2 subunits.

3.2. mRNA density of AMPA receptor subunits

As discussed above, diffusion and active transport are well-established mechanisms that reg-

ulate AMPAR distribution along neuronal dendrites Fig. 3.1.A-B. However, the role of local

transport in the trafficking of AMPAR subunits remains poorly understood. To explore the con-

tribution of local protein synthesis to AMPAR availability in dendrites, we began by examining

the distribution of mRNAs encoding AMPAR subunits.

For this, my collaborators, Dr. Anne-Sophie Hafner, performed fluorescent in-situ hybridiza-

tion (FISH) against the Gria1 and Gria2 mRNA-coding for the GluA1 and GluA2 subunits

of AMPAR. I have provided the details on the FISH experiments in Appendix section A.14.

Next, I analyzed this FISH dataset and quantified endogenous levels of Gria1 and Gria2 mRNA

molecules in hippocampal cultured neurons Fig. 3.3.A using the SpyDen tool’s puncta analysis

pipeline described in section 2.4.

First, I quantified the fraction of mRNA of Gria2 in the neuronal somata and dendrite and

compared it against Camk2a mRNA, an mRNA species well known to be localized in dendrites

[22, 171, 58], detected in the same neuron. I found that while a majority of Camk2a mRNA

(more than 70%) was localized in the dendrites, only a small, 18% of the Gria2 mRNA was

localized in the dendrite while the remaining 82 % was localized in the somata. Fonkeu and

colleagues have shown that even though Camk2a mRNA distribution declines as one moves

away from the somata, it is still sufficient to satisfy protein needs [58]. So, I asked if the small

fraction of Gria2 mRNA shows similar characteristics. To answer this, I binned the dendritic

fraction of Gria2 mRNAs based on their distance from the soma or origin of the dendrite. Then,

I fitted this distribution with the exponential function to compare the relative amount of mRNA

at 100 µm distance Fig. 3.3.C. This analysis showed a fast decline and relatively low abundance

of Gria2 mRNA. Specifically, I observed that the Gria1 mRNA levels dropped by a large, 98%

while the Camk2a mRNA only showed a moderate 42% decrease Fig. 3.3.C.

Then, I performed the same set of analysis for the Gria1 mRNA. In this case, also, a small ≈

25 % of the Gria1 mRNA was localized into the dendrite compared to the Camk2a mRNA that
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Figure 3.3.: Gria2 mRNA is predominantly enriched in soma. A) Top: Rat cultured hippocampal neurons at

18-21 DIV labeled using fluorescence in situ hybridization to detect Gria2 (left, green) and Camk2a

mRNAs (right, green) and immunostained for MAP2 (magenta). Scale bar = 20 µm. Bottom: The

zoomed image of the representative dendritic segment shows a considerably small number of Gria2

mRNA (left) compared to abundant Camk2a mRNA (right). Scale bar = 5 µm. B) Box plot of the

somatic (hollow) and dendritic (filled) fraction of total mRNA for Gria2 computed as a fraction in a

compartment with respect to the total mRNA count in a neuron (18 cells, p-value: 6.9 × 10−5) and

Camk2a (23 cells, p-value: 0.23), Gria2-dendrite vs Camk2a-dendrite (p-value:0.02). C) Fitting an

exponential function to mRNA puncta density distribution for Gria2 (n = 12 dendrites, exponent

Gria2 = -0.04 ± 0.009) compared to the Camk2a distribution (n = 33 dendrites, exponent Camk2a =

-0.006 ± 0.001), revealed rapid drop in Gria2 mRNA. Inset: I show normalized fit of Gria2 mRNA

distribution compared to Camk2a. The figure is adapted from [178].
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had ≈ 50% of its in the dendrite Fig. 3.4.A-B. Also, the dendritic distribution of Gria1 mRNA

showed a similar trend as the Gria2 mRNA where at a distance of 100µm, the concentration of

Gria1 mRNA dropped by 96% Fig. 3.4.C.

Overall, relatively low abundance of Gria1 and Gria2 mRNA, coupled with their rapid de-

cline with the dendritic distribution challenges the possibility of local translation as a mech-

anism for maintaining AMPAR protein levels at distal dendritic sites. Previous studies have

reported local synthesis of the AMPAR subunit GluA1 in proximal dendrites, within a few tens

of microns from the soma, in response to BDNF stimulation [92] and secreted amyloid pre-

cursor protein-alpha-mediated LTP [107]. These findings align with my results regarding the

presence of Gria1 and Gria2 mRNAs in the proximal dendrites near the soma and do not contra-

dict the absence of local GluA1 and GluA2 synthesis in more distal dendritic regions observed

in my analyses. Notably, my results are in line with the recent work of Glock and colleagues,

who examined the neuronal translatome by comparing the somatic layer and neuropil (primarily

comprising dendrites, axons, and glia) in the CA1 region of the hippocampus. Their data on

RNA footprinting showed minimal coverage for Gria1 and Gria2 in the neuropil but substantial

coverage in the somatic layer [63]. Next, I studied how the GluA2 protein is distributed along

the dendrite.

3.3. Protein density of AMPA receptor subunits

Experimental studies have revealed that the abundance of AMPAR along the dendrites often

increases towards the distal ends [5, 150], which is shown to depend on GluA2 subunit of

AMPAR [150]. This phenomenon is also known as distance-dependent scaling of AMPARs

and has been observed for other ion channels as well, such as HCN channels [109] and voltage-

gated potassium channels Kv4.2 [11]. However, the studies on AMPAR used AMPAR-mediated

current amplitude as a proxy for AMPAR copy-number, which is considered an indirect measure

of AMPAR abundance. Hence I decided to test this using protein-antibody labeling of GluA2.

For this, I analyzed the density of GluA2 AMPAR protein to see if my findings align with

previous studies. To test this, my collaborator, Dr. Anne-Sophie Hafner, performed protein

antibody labeling of total GluA2-containing AMPARs after fixation and permeabilization and

acquired images using confocal microscopy. In Fig. 3.5.A, I show an example image from this

dataset. I measured the fluorescent intensity of endogenous GluA2-containing AMPARs within
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Figure 3.4.: Gria1 mRNA is predominantly localised in soma. A) Top: 18-21 DIV cultured rat hippocampal

neurons at processed for FISH against Gria1 (left, green) and CamK2a mRNA (right, green) and

fluorescently immunostained (FI) MAP2 (magenta). Scale bar = 20 µm. Bottom: Zooming into a

representative dendrite shows a smaller number of Gria1 mRNA (left) in comparison to CamK2a

mRNA (right). Scale bar = 5 µm. B) Somatic (hollow) and dendritic (filled) fraction of total mRNA

for Gria1 (19 cells, p-value: 1e-06) and CamK2a (19 cells, p-value: 1), Gria1-dendrite vs CamK2a-

dendrite (p-value:0.019). C) Exponential fit of mRNA puncta density distribution for Gria1 (n = 12

dendrites, exponent Gria1 = -0.03 ± 0.007) compared to the CamK2a distribution (n = 33 dendrites,

exponent CamK2a = -0.001 ± 0.001), see Methods for mRNA exponential fit. Inset: Normalized fitted

Gria1 mRNA distribution compared to CamK2a. The figure is adapted from [178].
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the first 100 µm of the dendrites to analyze their dendritic distribution. My analysis revealed no

significant trend in receptor density along the first 100 µm of dendritic length Fig. 3.5.B.

Figure 3.5.: GluA2 protein showed uniform density in dendrites up to 100 µm. A) Top: DIV 18-21 cultured rat

hippocampal neurons performed with antibody labeling of FI MAP2 (magenta) and GluA2 (white).

Bottom: Zoomed in representative dendritic stretch showed a homogeneous GluA2 protein distribution

along the first 100 µm. Scale bar = 20 µm. B) GluA2 intensity normalized by the MAP2 intensity (5

µm bins, median: green squares with IQR). A sum of exponential fit revealed a minimal 5% drop in

GluA2 density. The figure is adapted from [178].

3.4. Model of total GluA2-containing AMPAR

Recent modeling work can not recapitulate the findings that AMPARs exhibit a uniform con-

centration in the first 100 µm and an increasing concentration towards the distal tip. These mod-

eling studies suggested an exponentially decaying profile of protein over long-range [50, 58],

especially for proteins that lack local synthesis. However, in these models, protein diffusion

was used as the mode of protein trafficking, and one of the key mechanisms, active transport,

was not considered.

I Diffusion, active transport and degradation

Hence, I next developed a computational model that consisted of the known mechanisms of

AMPAR trafficking, mainly passive diffusion, active transport, and degradation, to study their

distribution along a model dendrite. I considered a finite dendrite of length L. Next, I described
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the protein density ρ(x, t) in this model dendrite to evolve using the Partial differential equation

(PDE)s:

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
− V

∂ρ(x, t)

∂x
− λρ(x, t). (3.2)

In this equation, the first term on the right-hand side (RHS) describes the passive diffusion

of AMPARs with a constant rate of diffusion (D). The second term on RHS describes the ac-

tive transport, and the last term on RHS describes a constant rate of degradation throughout the

model dendrite. I would like to note that in this model, the rate of diffusion, active transport

velocity, and degradation rate are considered to be constant along the dendrite. Next, I ana-

lyzed the distribution of proteins at equilibrium - meaning the distribution observed after a time

significantly longer than all relevant timescales of the system. What that means for the model

in Eq. 3.2, is that the system doesn’t change with time and Eq. 3.2 converts into an Ordinary

differential equation (ODE), described as:

0 = D
d2ρ(x)

dx2
− V

dρ(x)

dx
− λρ(x). (3.3)

The resulting ODE is of 2nd order and, with two boundary conditions, can be fully solved.

Next, I described the two boundary conditions and the biological intuition behind them.

I Boundary conditions

Here I focused on the boundary conditions that can be imposed on the diffusion-advection-

degradation equation at equilibrium (in Eq. 3.3). Assuming a finite dendrite of length L, x ∈

(0, L), the boundary conditions are Φ(0) = Jinflux assuming a constant influx of new receptors

from the soma at the left boundary of the model dendrite. The second boundary condition I

imposed is Φ(L) = 0, which represents no flux at the tip of the dendrite assuming the dendrite

is closed at the distal tip and no receptor can escape from it. With these boundary conditions,

the problem can be described using the following ordinary differential equations
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D
∂2ρ(x)

∂x2
− V

∂ρ(x)

∂x
− λρ(x) = 0

Φ(0) = Jinflux

Φ(L) = 0.

(3.4)

The system of equations in Eq. 3.4 can be analytically solved, see Appendix section A.5.

ρ(x) =
Jinflux

e−K1L − e−K2L

(
e−K2x−K1L

V +DK2

− e−K1x−K2L

V +DK1

)
. (3.5)

In the appendix section A.5, I show how to obtain the solution of equation Eq. 3.3 at equilib-

rium.

I Global trafficking parameters

Next, I fitted the model described in Eq. 3.4 to understand which trafficking parameters could

explain the uniform distribution and reconcile with the earlier reports on AMPAR distribution

with an increase toward the distal end [150, 5]. I describe the details of the fitting procedure

in the Appendix section A.12. Upon fitting the model, I measured a marginal 7% decrease in

GluA2-containing AMPAR at 100 µm distance from the soma.

Previous modeling studies have demonstrated that active transport velocity can significantly

influence the distribution of molecules along dendrites [58, 19]. AMPARs, as transmembrane

proteins, are transported within vesicles in the cytoplasm through microtubule-mediated trans-

port. These vesicles move bidirectionally, with speeds averaging 1.46 µm/s in both anterograde

and retrograde directions [72]. However, experimental works have not established a net antero-

grade active transport velocity for unmodified receptors.

To address this, I initially treated the active transport velocity as an unknown parameter in

my mathematical model (see Supplemental Information). Subsequently, I assumed that the

net active transport velocity was zero (i.e. V = 0 in equation Eq. 3.3), meaning anterograde

and retrograde transport fully compensate for each other. I then analyzed whether modulation

in diffusion parameters and protein half-life could account for the experimentally observed

distribution of GluA2 receptors in our dataset Fig. 3.5B, characterized by an almost constant
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concentration near the soma and an increase toward the dendritic ends.

I first investigated how changing the diffusion rate changed the distribution of GluA2-containing

AMPARs in model dendrite. For this, I set the active transport velocity, V , to 0 and protein half-

life to 3.12 days [46] and changed the diffusion rate, D.

Figure 3.6.: AMPAR GluA2 subunits require biased active transport to compensate for the lack of their local
synthesis. A)-C) Steady state distributions of GluA2 from the protein trafficking dynamics model

proposed in section 3.4. Elevating the reported diffusion constant (D) of GluA2 10 times than the

reported value leads to a 9% GluA2 decrease at 100 µm but does not distance-dependent scaling at

500 µm (inset). B) and C) Active transport V = 0. B) The half-life (T1/2) of GluA2 protein increased

over the reported maximum of 4.35 days cannot provide constant GluA2 distribution observed in the

data (shown in Fig. 3.5. C) Biased active transport of V = 1.4 ∗ 10−3 µm/s leads to an observed 7%

decrease in GluA2 protein concentration and distance-dependent scaling at 500 µm (inset). The figure

is adapted from [178].

I used diffusion constants ranging from to 10−2µm2/s to 1µm2/s, starting with the exper-

imentally reported value of [14]. At this value, the model showed a 39% decrease in GluA2

concentration at a distance of 100µm from the soma (Fig. 3.6.A). When I reduced the diffusion

constant by a factor of 10, still keeping it in the experimentally reported range [185], this led to

a 79% decrease in GluA2 concentration at the same distance (Fig. 3.6.A). Conversely, increas-

ing the diffusion constant by a factor of 10 an order of magnitude higher than what is typically

measured at the cell surface resulted in only a 9% decrease at 100µm, closely matching the

experimentally observed reduction in GluA2 concentration (Fig. 3.6.A).

Further increasing the diffusion constant by two orders of magnitude led to a minimal reduc-

tion of ≈30% in GluA2 concentration, with the distribution remaining only slightly flatter than

that observed with a single order of magnitude increase. Despite trying diffusion coefficients

spanning several orders of magnitude, none of the tested values for GluA2 diffusion were able

to replicate the experimentally reported increase in AMPAR concentration observed in distal
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dendritic regions (Fig. 3.6.A, inset) [150, 157].

Next, I asked if protein half-life can explain the observed experimental distribution of GluA2.

For this, I again set the active transport velocity, V , to zero and used an intermediate value of

diffusion coefficient, D, equal to 0.1µm2/2 reported in [14]. Then, I set the half-life of GluA2

protein in my model to values between 1.95 to 4.35 days as reported in experimental studies

[47, 33]. When I set the half-life to 1.95 days, the GluA2 concentration decreased by 47% at a

dendritic distance of 100µm. This reduction was slightly mitigated to ≈40% when the half-life

was increased to the maximum reported value of 3.12 days. Longer half-life values result in an

extended lifetime for the molecules, allowing more of them to reach distal dendritic locations

through diffusion.

However, even with a 39% decrease in GluA2 concentration at 100 µm, the reduction re-

mained substantially higher than obtained in our experiments, which was a 7% decrease. Fur-

ther increasing the GluA2 half-life to 4.35 days (see Table A.5) reduced the drop to 33% at

100 µm (Fig. 3.6.B). While extending the GluA2 half-life increased its dendritic concentra-

tion, only non-physiological values were able to replicate the experimentally measured GluA2

distribution.

Additionally, when analyzing GluA2 distribution curves beyond 100 µm, we did not observe

the expected increase toward the distal dendritic ends (Fig. 3.6.B, inset). These findings indicate

that modifying the half-life parameter alone, in the absence of active transport, is insufficient to

explain the experimentally observed distribution pattern of GluA2.

Since neither increasing the GluA2 diffusion rate nor half-life alone was sufficient to replicate

the reported distribution of AMPARs, I next studied the potential role of biased active transport

velocity along microtubules. Initially, I assumed an active transport velocity of zero, reflecting

the non-biased bidirectional nature of microtubule-based transport in dendrites [165]. However,

in the next step, I introduced a positive active transport velocity, V , creating a bias for the

anterograde movement of intracellular vesicles toward the distal tips of dendrites.

To test this hypothesis, I set the receptor half-life to 3.12 days and adjusted both the active

transport velocity constant, V , and the diffusion constant, D, to fit the experimentally measured

GluA2 fluorescence distribution.

I decided to fit the two constants, V and D, to get an initial value of this parameter as there is

a lack of evidence of a net anterograde active transport for AMPAR. I have provided the details

of the parameter fitting in Appendix section A.12.
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The best fitted values for active transport parameter, V , came out to be 1.4 ∗ 10−3µm/s and

the diffusion rate, D, was equal to 0.22µm/s Fig. A.2. Using these physiologically plausible

parameter values, the model produced a GluA2 receptor distribution with a 7% decrease at

100µm from the soma (Fig. 3.6.C), followed by a steady increase in receptor concentration that

reached 180% at 500 µm (Fig. 3.6.C, inset). Interestingly, fitting the active transport to just the

first 100µm in my model automatically predicted an increase in GluA2 concentration towards

the distal tip. To investigate the impact of globally reducing the active transport velocity on the

GluA2 distribution, I decreased its value by factors of 2 and 10.

As the active transport velocity decreased, I observed an accumulation of receptors in the

proximal dendritic regions near the soma (Fig. 3.6.C). When the active transport velocity was

reduced by a factor of 10, the gradual increase in GluA2 concentration in distal dendrites dis-

appeared completely (Fig. 3.6.C, inset). Conversely, increasing the fitted active transport ve-

locity by a modest factor of 3/2 resulted in a dramatic 500% rise in GluA2 concentration at the

dendritic tip, demonstrating that even small increases in active transport velocity can cause a

significant accumulation of GluA2 at distal dendritic sites (Fig. 3.6.C, inset).

Overall, my computational model and experimental data analysis emphasize that active trans-

port could explain the experimentally observed GluA2 protein distribution. Next, I moved on

to characterizing the local modes of trafficking Fig. 3.1C, namely the endo-and exocytosis of

receptors and their incorporation into synapses.

I Endocytosis and exocytosis of AMPAR

Given that the number of AMPARs in the PSD directly correlates with synaptic strength, I

next investigated the mechanisms underlying AMPAR insertion into the PSD under both basal

conditions.

To achieve this, I focused on small dendritic compartments, including dendritic spines, and

examined AMPAR trafficking between the cytoplasm (intracellular compartment), the plasma

membrane (surface), and PSD. AMPAR exocytosis occurs near synaptic sites, such as the spine

head or adjacent dendritic shaft, allowing AMPARs to enter the PSD via lateral diffusion in

the plasma membrane [121]. By modeling the rates and locations of endocytosis, exocytosis,

and synaptic trapping, I wanted to better understand how these processes influence synaptic

plasticity.
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3. Model of AMPA Receptor Trafficking Under Baseline Condition

Importantly, the trafficking speed and residence time (lifetime within a compartment) of

transmembrane proteins differ between the plasma membrane and the cytoplasm [65]. There-

fore, it is essential to model intracellular and surface proteins separately to accurately estimate

their redistribution.

3.5. Three population model of AMPAR trafficking

In thi section, I describe the extended, three-population model that I developed to study AMPAR

trafficking in detail. The three compartments that I modeled are: the cytoplasm, the plasma

membrane, and the PSD. The protein density in each of these three compartment are henceforth

termed as ρc, ρs and ρpsd respectively (see Fig. 3.7.B). Using this extended model, I analyzed

how endocytosis, exocytosis, and diffusional trapping at the PSD shape AMPAR distribution

across these compartments.

Figure 3.7.: Schematic diagram of the three population model and rates of exchange between them A)
Schematic diagram of a neuron . B) Schematics of the three compartmental mathematical models

with the rates of exchange between them.

I describe the three population models using the system of coupled partial differential equa-

tions:
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3.5. Three population model of AMPAR trafficking

∂ρc(x, t)

∂t
= Dc

∂2ρc(x, t)

∂x2
− Vp

∂ρc(x, t)

∂x
− λcρc(x, t)− βρc(x, t) + αρs(x, t) (3.6)

∂ρs(x, t)

∂t
= Ds

∂2ρs(x, t)

∂x2
− λsρs(x, t) + βρc(x, t)− αρs(x, t) (3.7)

− ηρs(x, t)(ω − ρpsd(x, t)) + γρpsd(x, t)

∂ρpsd(x, t)

∂t
= ηρs(x, t)(ω − ρpsd(x, t))− γρpsd(x, t) (3.8)

In this three-population extended model, I can describe the distribution of AMPAR in the

cytoplasm, plasma membrane, and PSD. For the cytoplasmic compartment, the density of re-

ceptors is shaped by the diffusion constant (Dc), intracellular transport (Vp), and the degradation

rate of the receptors (λc). The dynamics of the receptors in the plasma membrane is shaped en-

tirely by lateral diffusion (Ds) through Brownian motion. The local trafficking between the

plasma membrane and intracellular receptors is modeled using the coupling terms representing

exocytosis (β) and endocytosis (α).

Synaptic uptake plays a critical role in determining AMPAR availability at different dendritic

locations. Surface receptors can become trapped in the PSD by binding to anchoring proteins,

such as PSD-95, with an incorporation rate (η). These trapped receptors can eventually unbind

from anchoring proteins and exit the PSD at a rate (γ). Finally, I assumed that each synapse has

a maximum capacity, defined by ω, for accommodating AMPARs. This maximum capacity is

dictated by the number of slots within the PSD. These slots are structural components composed

of proteins like PSD-95, which anchor AMPARs in the PSD and limit their mobility [147, 69].

In this three-population model, I have made the following assumptions:

• All the trafficking parameters in the model are assumed to be constant and do not depend

on the location in the dendrite. For example, the degradation rate λc has the same value

at each location in the dendrite.

• The exchange between the extra-synaptic and synaptic receptor occurs because of lateral

diffusion and binding and unbinding of receptors to the PSD structure proteins such as

PSD-95 [65]. Here, I have modeled that collective motion as a hopping-like motion such

that receptors can hop into the PSD, leading to their incorporation into the synapse, and

eventually receptors can hop out of the PSD and hence return to the extrasynaptic pool of
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3. Model of AMPA Receptor Trafficking Under Baseline Condition

receptors.

• The nanoscale organization of the PSD was not considered for simplicity reasons, which

can influence the diffusional trapping of AMPARs inside the PSD (see [96, 65]).

Next, I began characterizing the values of the parameters for the three population models. For

this, first, I solved the system of PDEs described in Eq. 3.6 - Eq. 3.8 at equilibrium, meaning

that the concentrations did not change with time. In the Appendix section A.6, I have described

the mathematical details on deriving the distribution of the three populations.

Figure 3.8.: The endogenous distribution of GluA2-containing AMPARs. A) Schematic representation of an-

tibody labeling (top left) alongside example images used to quantify intracellular and surface protein

concentrations in dendrites (top right) and somata (bottom). The GFP signal (green) highlights the

intracellular region. The iGluA2 signal (cyan) represents GluA2 subunits within the cytoplasm, while

the sGluA2 signal (magenta) corresponds to GluA2 subunits localized to the cell surface (scale bars

10µm). B) Fitting of the global transport parameters (Dc, Ds, Vp) to the surface and intracellular

GluA2 fluorescent intensity. left: Dendritic distribution of soma-normalized GluA2 confined to the

surface (sGluA2 data and model fit,) and right: intracellular GluA2 (iGluA2 data and model fit, cyan,

right). NDendrites = 11. C) Ratio of fluorescent intensity between surface and intracellular GluA2

was 0.37 ± 0.062 in somata (mean ± std, N = 15) and 0.40 ± 0.063 in dendrites (mean ± std, N =

69, p = 0.35, z-stat=0.86). D) Distribution of the ratio of surface to intracellular GluA2 fluorescent

intensity ratio fitted with an exponential function shows an insignificant decrease of 3% at 100 µm

(exponent = 2.9× 10−4). Figure is adapted from [178].

Then, I analyzed the experimental data on fluorescent labeling of GluA2-containing AMPARs

in the cell cytoplasm, on the neuronal surface, and in the spines. The experimental data was
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3.5. Three population model of AMPAR trafficking

acquired by my collaborators, Maximilian Kracht and Prof. Amparo Acker-Plamer. They per-

formed immunolabeling of endogenous surface and intracellular GluA2 Fig. 3.8. Their labeling

protocol utilized secondary antibodies with different fluorophores applied before and permeabi-

lization in fixed cultured hippocampal neurons. To visualize the cell structure, they expressed

a green fluorescent protein (GFP) cell transfection technique. I have provided the complete

experimental protocol in Appendix section A.14.

First, I characterized the ratio of exocytosis to endocytosis rates in my three populations

model that drives continuous recycling of GluA2-containing AMPARs between the plasma

membrane and the cytoplasm. In my three population model (described in Eq. 3.6 - Eq. 3.8)

under equilibrium condition, the ratio of exocytosis to endocytosis rates (β/α) corresponds to

the ratio of total protein in the plasma-membrane to cytoplasm, i.e.

β

α
=

∫ L

0
ρs(x)dx∫ L

0
ρc(x)dx

(3.9)

I have described the step to obtain this ratio in Eq. A.31 in the Appendix section A.12.

My data analysis showed that; under basal conditions, cytoplasmic GluA2 levels were higher

than surface GluA2 in both somata and dendrites Fig. 3.8.B, consistent with previous findings

[12, 128]. Interestingly, the data analysis also showed that this ratio remained constant along

the dendrite up to 100 µm (Fig. 3.8.C).

Based on the relation in Eq. 3.9, I obtained the value of the exocytosis rate. For this, I used

the ratio of fluorescence intensity cytoplasm to the neuronal surface and multiplied it with the

endocytosis rate reported in published literature by Rosendale et al., 2018 [135]. Finally, I

arrived at the exocytosis rate as β = 2.4× 10−4s−1 for the endocytosis rate, α = 6× 10−4s−1.

Next, I obtained the global trafficking parameters for the model, namely Ds, Dc, Vp. For this,

I fitted the steady-state concentration of GluA2-containing AMPAR in the three population

model to estimate global transport parameters to the normalized GluA2 fluorescence intensity

Fig. 3.8.D. The best-fit values were Ds = 0.7µm2/s, Dc = 0.7µm2/s, and Vp = 10−4 µm/s.

Here, I obtained different values for the global trafficking parameters than in the previous

section. However, it is important to note that these values were derived from a separate dataset

of mouse hippocampal neurons, which may account for their variation from the experimental

results shown in Fig. 3.5.B. Overall, by integrating experimentally measured AMPAR distribu-

tion data with an extended molecular dynamics model, I successfully characterized both local
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3. Model of AMPA Receptor Trafficking Under Baseline Condition

and global trafficking parameters of endogenous AMPARs.

Figure 3.9.: Synaptic enrichment of endogenous distribution of GluA2-containing AMPARs. A) The

schematic of the surface (top, left, magenta) and intracellular areas (top, right, cyan) of a synapse. Ex-

ample images (bottom) show dendritic segments with spine and corresponding shaft ROIs (scale bar:

1 µm). B) The balance between the exocytosis and endocytosis rates in the spine (0.56±0.12) and den-

dritic shaft (0.5±0.09) (N = 55, p = 0.0034, z-stat=0.83). C) The surface (top, left) and intracellular

(top, right) synaptic enrichment were computed as the corresponding spine area divided by the shaft

area (magenta for the surface and cyan for the cytoplasm area, respectively SEsurf = 1.01 ± 0.84,

SEint = 0.88± 0.68) (N = 55, p = 0.45, z-stat = 0.55). Figure is adapted from [178].

Next, I wanted to understand if the ratio of exocytosis to endocytosis rate differed near the

spines as compared to the dendritic shafts. For this, I performed a detailed analysis of the exper-

imental data where I defined two regions of interest (ROIs): one encompassing the spine head

region and the other corresponding to the adjacent dendritic shaft Fig. 3.9.A. I also utilized these

ROIs to fit the rates of incorporation (η) into and exit (γ) from the PSD. Using these rectan-

gular ROIS, I investigated whether the surface-to-intracellular (β/α) ratio of GluA2-containing

AMPARs in spine heads and neighboring dendritic shafts differed from the average ratio along

the dendrite (shown in Fig. 3.8.B). This analysis revealed a slightly but significantly higher

β/α ratio in the spine head compared to the nearby dendritic shaft. Specifically, the mean

exocytosis-to-endocytosis ratio was 0.5 in dendritic shafts adjacent to spine heads and 0.55 in

the spine heads themselves (Fig. 3.9.B), exceeding the dendritic average of 0.4 (Fig. 3.8.B).

AMPARs are exocytosed first and then get incorporated into the PSD via lateral diffusion. Af-

ter reaching the PSD, AMPARs can interact with scaffolding proteins via intracellular signaling

pathways, such as phosphorylation. These interactions stabilize them at the PSD by reducing

their diffusion rate to a very low value (in the order of 10−3 − 10−2µm2/s). To leave the PSD,
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3.5. Three population model of AMPAR trafficking

AMPARs must unbind from these scaffolding slots and diffuse away. This slightly higher ratio

near spines compared to the rest of the dendrite can be due to the accumulation of surface near

the spine neck, as the spine neck is shown to serve as a bottleneck for entry of surface receptors

into the spines due to their thin morphology and presence of cytoarchitectural proteins such

as septin7 barriers in the spine neck reduces the receptor diffusion across the neck ([56]). In

the end, I used the value of 0.4 to obtain the exocytosis rate, as it was obtained over the entire

dendrite and, hence, is a better representative value for the complete neuron.

Figure 3.10.: Synaptic enrichment increases with distance (A) Scatter plot of Synaptic enrichment plotted

against distance from the soma and regression line (magenta) and 95% Confidence interval (CI)

shown as shaded region, spearman correlation coefficient = 0.32,p-value=0.017. (B) Scatter plot of

spine areas plotted as a function of distance from the soma in 60µm distance. Regression line (ma-

genta) and 95% CI shown as shaded region, spearman correlation coefficient= 0.05,p-value=0.73.

Indicating no correlation between spine size and distance from soma. (C) Scatter plot of integrated

fluorescence intensity (FI) from the spine (in magenta) and shaft (in cyan) plotted as a function of

distance from the soma. Regression lines for the spine in magenta and 95% CI shown as a shaded

region and shaft in cyan with 95 % CI shown as a shaded region, spearman correlation coefficients

= 0.14,p-value=0.31 (for spines) and Spearman correlation coefficients = −0.27,p-value=0.045 (for

shaft). FI in Shaft shows a decrease with distance from soma where as FI in spines remain constant.

The figure is adapted from [178]

To determine the balance between the net synaptic incorporation (η) and exit (γ) rates of

GluA2-containing AMPARs, I further analyzed the experimental data. I calculated a met-

ric termed "synaptic enrichment, (SE)" defined as the ratio of integrated fluorescence density

between spine heads and extrasynaptic ROIs for both surface and cytoplasmic receptors (see

Fig. 3.9.C). On average, this ratio was approximately 1, and the fraction of extrasynaptic and

synaptic surface receptors was close to 50% each. Using this information, I fitted the incorpo-

ration and exit parameters which came out to be η = 7× 10−4s−1 and γ = 2.3× 10−2s−1.
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3. Model of AMPA Receptor Trafficking Under Baseline Condition

Interestingly, the synaptic enrichment also showed a positive correlation with dendritic dis-

tance. SE increased from proximal to distal dendrites, driven by a decrease in shaft fluorescence

while synaptic fluorescence remained constant (Fig. 3.10.A-C).

To validate our 2D ROI-based approach, we cross-verified synaptic enrichment using a 1D

method [61], which evaluates fluorescence intensity along a straight line ROI passing through

the spine head (likely the PSD region) and adjacent dendritic shaft. The results were consistent,

confirming the robustness of my results. I have described the comparison of the two methods in

Fig. 3.11.

GFP sGluA2 iGluA2 Merge

A

D FE G

B C

Figure 3.11.: Calculation of Synaptic enrichment with two different methods yield comparable values
(A) A representative confocal image of hippocampal neuron cultures from mice transfected with GFP,

anti-GluA2 labeled before and after permeabilization (sGluA2 and iGluA2 respectively obtained by

my collaborators. Scale bar: 5µm (B-C) A representative line scan of sGluA2 across synaptic and

dendritic ROIs (inset) used to calculate synaptic enrichment factor as described in [61]. The line

starts from the spine head and is drawn along the neck and across the shaft. (C) Same as B but for

iGluA2. I fitted two Gaussian kernels to the normalized intensity profile for calculating the synaptic

enrichment factors. (D-E) A correlation plot of synaptic enrichment value calculated using the two

methods described in [79] and [61], nspines = 55 (from 8 neurons) for sGluA2 (D) and iGluA2 (E)
(sGluA2: r= 0.43, p = 0.001, iGluA2: = 0.47, p = 3E-4). (F-G) Box plot with median and inter-

quartile interval synaptic enrichment values gives comparable results using the two methods for both

sGluA2 (F) and iGluA2 in (G). mean is shown as black triangles. The figure is adapted from [178]
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3.6. Brief summary

In this chapter, I describe the development of the baseline model of endogenous AMPAR traf-

ficking. Obtaining equilibrium concentrations from the steady state is important to study the

impact of plasticity induction. Using experimentally measured AMPAR distribution in biolog-

ical neurons and an extended, three-population model, I successfully characterized the local

and global trafficking parameters of endogenous AMPARs under basal conditions. Notably,

I discovered that the endocytosis rate of AMPARs surpasses their exocytosis rate, with the

exocytosis-to-endocytosis ratio remaining consistent along the dendrite. This dual regime"live

longer, travel slower" in the plasma membrane near synapses and "live shorter, travel faster"

in the cytoplasmappears to maintain a critical balance. This balance ensures the availability

of GluA2-containing AMPARs at distal dendritic sites while supporting their stability near

synapses. Subsequently, I applied the three-population model to explore how AMPAR copy

numbers change during the regulation of local trafficking following plasticity induction.
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induction

This chapter is an adaptation of the results section and the supporting information of the

article:

Surbhit Wagle, Maximilian K. Kracht, Anne Bührke, Amparo Acker-Plamer, Na-

taliya Kraynyukova, Anne-Sophie Hafner, Erin M. Schuman and Tatjana Tchu-

matchenko. "An integrative model of AMPA receptor trafficking reveals the central

contribution of local translation in subtype-specific kinetics". bioRxiv, (2025). doi:

https://doi.org/10.1101/2025.02.08.637220.

In this chapter, I discuss the time-dependent simulations of the three-population models de-

scribed in Chapter 3. I performed these simulations to explain the plasticity-induced changes in

synaptic AMPAR copy numbers for two subtypes of AMPARs, namely the GluA1-homomeric

AMPARs and GluA2-containing AMPARs.

4.1. Differential kinetics of AMPAR subtypes to LTP

induction

AMPAR underlies synaptic efficiency and plasticity. Hence, understanding their temporal dy-

namics is essential to unravel the time scales and mechanisms that lead to synaptic plasticity.

One of the significant challenges in this domain is the complex interplay between the onset

and duration of LTP-related processes and the specific subunit composition of the AMPARs in-

volved. While much of the early research focused predominantly on GluA2-containing AMPARs,

as they are the most abundant AMPAR subtype [182], recent studies have shed light on the piv-

otal role played by GluA2-lacking AMPARs in the induction and expression of LTP. The GluA2

subunit impacts the functional property of AMPARs with a significant divergence in AMPAR’s

permeability to Calcium ions (Ca2+). AMPARs that lack a GluA2 subunit are permeable to

Ca2+ while having a GluA2 subunit makes them impermeable to Ca2+. Another functional

consequence is that having GluA2 leads to a linear current-voltage (I-V) relationship. On the

59



4. AMPAR dynamics upon chemical LTP induction

other hand, GluA2-lacking AMPARs exhibit inward rectification as intracellular polyamines

block them in a voltage-dependent manner. They also show high conductance and fast decay

kinetics.

Generally, GluA2-lacking AMPARs are also called Calcium permeable- (CP) AMPARs [21].

While growing evidence has established that CP-AMPARs do not participate in synaptic trans-

mission under basal conditions, their role in LTP is unclear due to conflicting findings. It is par-

ticularly noteworthy that the GluA1 homotetramer is the most abundant pore-forming complex

among CP-AMPARs [42]. Several studies have shown that GluA1 homomers can be inserted

at the synapse in a small time window (up to 30 minutes after LTP induction). Their insertion

and the resulting Ca2+ was necessary for the full expression of LTP [126, 131] as applying

inhibitors to block these CP-AMPARs within 30 minutes led to LTP reversal [126, 125, 131].

Previous studies have also reported a significant pool of CP-AMPARs present at the perisy-

naptic sites that can be rapidly and transiently incorporated into synapses undergoing LTP

[131, 67, 76, 184, 126, 127]. The synaptic incorporation of GluA1 in basal condition and

during LTP is shown to depend on the interaction of long-tailed C-terminal domain with the

PSD proteins. This interaction is necessary and sufficient for hippocampal LTP [187].

These CP-AMPARs accumulate in the plasma membrane more quickly than their GluA2-

containing counterparts [162]. However, immediately after the cessation of stimulation, the

concentration of CP-AMPARs begins to decrease [162]. Recent research emphasizes that the

synaptic incorporation of these receptors is essential for fully expressing LTP. In contrast, dur-

ing chemically induced LTP (cLTP), GluA2 recruitment seems to be constitutive [148]. In re-

cent work, Clavet-Fournier and colleagues performed protein antibody labeling of endogenous

GluA2-containing AMPARs at different time points following chemical LTP induction. They

observed that the synaptic fraction increased up to 2 hrs. These results show that chemical LTP

induction leads to persistent, long-lasting changes in synaptic GluA2 content [31]. Given the

preciseness and direct measure of synaptic AMPARs in these two studies, I decided to compare

my model prediction to their results.

To better understand and compare the temporal responses of GluA2-containing AMPARs

and GluA1 homomers, I decided to employ the three-population model described earlier (in

section 3.5) to predict AMPAR concentrations in surface and synapse and compare its with ex-

perimental studies. To isolate these receptor types’ distinct behaviors and quantitative measures,

I utilized the data from Tanaka and Hiranos experiments [162]. In their study, they utilized
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GluA1-SEP overexpression to visualize surface GluA1. Overexpression of specific AMPAR

subunits significantly alters the receptor stoichiometry within transfected neurons, promoting

homomeric AMPAR formation [42]. They induced LTP in cultured hippocampal neurons us-

ing a 10-minute bath application of Glycine, which is known to induce N-methyl-D-aspartate

receptor (NMDAR) - dependent LTP. After LTP, the authors measured the change in synaptic

GluA1 fluorescent intensity at 10, 20, and 30 minutes. The exocytosis rate was also measured

once per minute during the entire 30 minutes.

A B

Figure 4.1.: Changes for GluA1-homomeric AMPAR cLTP A) I used a step function where the exocytosis rate

(β) was increased 3.5 fold to the basal rate. The changes made in the model matched well with the

change in exocytosis frequency reported in ([162] FigS3C). B) An additional change in the synaptic

incorporation rate (η) was necessary, which reflects the average change in spine head size measured in

([31] Fig2F). The figure is adapted from [178].

In my simulations, I set out to replicate the changes in synaptic GluA1 content using the

GluA1 version of three-population models that incorporated a matching Chemical long-term po-

tentiation (cLTP) protocol (see section A.12 for details on GluA1-homomeric AMPAR model).

For this, I assumed my model would be at equilibrium at the start of the simulation. Next, I

simulated a 3.5-fold transient increase in the GluA1 exocytosis rate (β) during the 10-minute

induction period that matched the experimental observation in [162] (see also Fig. 4.1.A). While

this approach resulted in elevated GluA1 concentrations in the plasma membrane (ρs) and PSDs

(ρpsd), the model predicted a transiently higher concentration in dendritic regions compared to

PSDs, which contradicted experimental findings Fig. 4.2.C.

To address this discrepancy, I refined the model by increasing both the exocytosis rate (β) and

the incorporation rate (η) of GluA1 receptors upon cLTP induction. The increased incorporation

rate reflects the enhanced trapping to AMPAR under plasticity condition due to the phoshory-
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lation of GluA1 subunit and change in spine head area [68, 80, 40], which enhances synaptic

incorporation rates (η). Specifically, I implemented a 1.3-fold increase in the incorporation rate

alongside the 3.5-fold transient exocytosis rate enhancement. This increase in incorporation

rate lasted for the entire duration of simulation time. These adjustments enabled the model to

replicate the experimentally observed magnitude and temporal profile of GluA1 homomer dy-

namics well Fig. 4.2.C. Interestingly, changing the synaptic incorporation alone was insufficient

to match experimental observations Fig. 4.2.B.

Figure 4.2.: The three-population model can replicate the fast and transient synaptic GluA1 AMPAR dynam-
ics A) Change in GluA1 fluorescent intensity (as % of baseline intensity) upon increase in exocytosis

rate. A fast increase in exocytosis rate (β) alone can not match the experimental data B) Same as A
but for persistent increase in synaptic incorporation rate (η). This persistant increase also could not the

experimental data. C) Same as A for a combination of exocytosis and synaptic incorporation. Both of

these changes are necessary to match experimental data. The experimental data is reported in [162].

The figure is adapted from [178].

An exciting prediction emerged from the refined model: approximately 30 minutes after cLTP

induction, the extrasynaptic concentration of GluA1 in the plasma membrane returned to base-

line and subsequently fell below baseline levels after ∼ 1 hour Fig. 4.2.C. Meanwhile, synap-

tic GluA1 levels stabilized at an equilibrium concentration approximately 15% above baseline.

This behavior highlights the intricate regulation of AMPAR dynamics during synaptic plasticity

and underscores the critical interplay between receptor exocytosis and synaptic incorporation

rates in shaping the temporal behavior of AMPARs.

These findings are interesting as they highlight the quick response of GluA1-AMPAR to

plasticity induction. However, the decay in synaptic and extrasynaptic concentrations of these

AMPAR subtypes after the end stimulation doesn’t match with the observations of LTP induc-

tion, leading to long-lasting changes in synaptic efficacy and AMPAR content. To reconcile
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4.1. Differential kinetics of AMPAR subtypes to LTP induction

Figure 4.3.: Constant exocytosis increase doesn’t explain the response of GluA2-containing AMPARs A-D)
Temporal changes in GluA2 fluorescent intensity (% of baseline value) for fast increase in exocytosis

rate (β) and a persistant change in synaptic incorporation rate (η). The exocytosis was increased for

10 minutes (in A), 30 minutes (in B), 60 minutes (in C), and 120 minutes (in D). The figure is adapted

from [178].

these findings, I focused on GluA2-AMPAR content in synapses and their temporal evolution

reported in experimental findings. To this end, I re-analyzed the data from a recently published

study where Clavet-Fournier and colleagues utilized antibodies targeting endogenous GluA2

and super-resolution microscopy to track GluA2 concentration in postsynaptic densities (PSDs)

following cLTP induction [31]. My analysis revealed a sustained increase in synaptic GluA2-

containing receptors, persisting beyond the stimulation period and reaching approximately a

150% increase two hours after cLTP induction.

To replicate these findings, I integrated the experimental data for GluA2-containing receptors

into my model [31] Fig. 4.3. Similar to the observations with GluA1, increasing the exocytosis

and PSD incorporation rates elevated receptor concentrations in PSDs during stimulation but

failed to sustain these elevated levels beyond the stimulation period. Moreover, the model could

not reproduce either the kinetics or the amplitude of concentration increase of GluA2-containing
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receptors Fig. 4.3. When I increased exocytosis rates for 10 minutes Fig. 4.3.A, 30 minutes

Fig. 4.3.B, 1 hour Fig. 4.3.C and 2 hours Fig. 4.3.D, the model still could not reproduce the

experimental observation in [31]. I have summarized the parameter changes and whether they

matched experimental data on AMPAR changes following chemical LTP induction in Fig. 4.4.

These results indicate that additional mechanisms, beyond direct changes in exocytosis and

PSD incorporation, are likely involved in mediating synaptic trafficking of GluA2-AMPARs.

In addition, they also highlight that the increase in exocytosis rate is both limited or slow and

persists for several hours even after the stimulation ceases. Interestingly, such delayed and pro-

longed responses are often associated with the recruitment of local protein synthesis following

stimulation. However, I have already shown that GluA2 mRNA is not abundantly present in

dendrites (see Fig. 3.3]). Hence, I decided to shift my focus toward other key components of

the AMPAR macromolecular complexes, particularly auxiliary subunits, as they are known to

alter functional and trafficking characteristics of AMPARs [12, 168, 143].

Figure 4.4.: Summary of chemical LTP simulations for GluA1-homomeric and GluA2-containing AMPARs.

The figure is adapted from [178].

4.2. Auxiliary subunit CNIH-2 is locally translated

To gain insights, I leveraged a large translatome dataset published by Glock and colleagues [63].

The authors used ribosomal profiling to dissect local transcriptomes in neurons, estimating the

translation rates of neuronal transcripts in the cell body, dendrites, and axons. Their data also

confirmed the somata-enriched localization of AMPAR pore-forming subunit GluA1-2 mRNAs.

CNIH-2, encoded by the gene Cnih2, stood out due to its unique transcript distribution among

all the AMPAR’s auxiliary subunits previously identified. The ribosome profiling data showed

comparable read levels for Cnih2 mRNA in dendrites and somatic regions, a distribution profile

remarkably similar to that of CamK2a mRNA. Experimental studies show that CNIH-2 signifi-
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cantly slows down receptor deactivationby as much as five-fold thereby extending the duration

of excitatory postsynaptic currents, irrespective of the GluA subunit composition [34, 149, 143].

This modulation enhances the net depolarizing ion influx into the postsynaptic neuron, increas-

ing synaptic efficacy.

Despite these findings, the precise role of CNIH-2 remains debated. Initially, it was thought

to facilitate AMPAR transport between the endoplasmic reticulum (ER) and the Golgi apparatus

(GA) in hippocampal CA1 neurons [75, 20]. However, subsequent studies suggest that CNIH-2

can bypass this early anterograde pathway and directly deliver AMPARs to the plasma mem-

brane [74]. Moreover, there are conflicting results on the association of CNIH-2 with AMPARs

subtypes, with evidence for a higher preference for GluA1/2 heteromers over GluA2/3 receptors

and GluA2-lacking or GluA2-containing AMPARs [34, 15, 12]. To address these uncertainties

and understand the role of CNIH-2 in AMPAR trafficking, I decided to study its mRNA and

protein localization and function in more detail.

I Cnih2 mRNA density

I began by investigating the localization of Cnih2 mRNAs in the rat hippocmapal neuronal cul-

tures. My Collaborator, Dr. Anne-Sophie Hafner, performed FISH against Cnih2 mRNA and

compared it with CamK2a mRNA and acquired neuronal images using confocal microscopy.

In Fig. 4.5.A, I show an example FISH image. Next, I analysed this data to understand Cnih2

mRNA localization. Strikingly, the distribution of Cnih2 mRNA closely mirrored that of CamK2a.

Excitingly, my analysis revealed that ∼ 50% of Cnih2 mRNA was localized within dendrites, a

level comparable to the 60% observed for CamK2a Fig. 4.5.B. This fraction was approximately

three folds higher than Gria2 mRNA (18% ) and two folds higher than the Gria1 mRNA (26%).

To get a more precise idea about the distribution of dendritic mRNA, I fitted the spatial pro-

files of both Cnih2 and CamK2a mRNAs with decaying exponential functions (see Appendix

section A.12 for details on the fitting procedure). At a dendritic distance of 100 µm, the dis-

tributions of Cnih2 and CamK2a mRNAs showed similar profiles. The mRNA density reduced

by 59% and 52% for, Cnih2 and CamK2a mRNAs respectively Fig. 4.5.C. Next, I studied how

Cnih2 mRNA dictates the protein density and local synthesis of de novo CNIH-2 protein in

dendrites.
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4. AMPAR dynamics upon chemical LTP induction

Figure 4.5.: Cnih2 mRNA is abundant in dendrites A) Top: Cultured rat hippocampal neurons (1821 DIV)

labeled with FISH for Cnih2 (left, green) and CamK2a mRNA (right, green) alongside fluorescent

MAP2 immunostaining (magenta). Scale bar = 20 µm. Bottom: A magnified dendrite shows fewer

Cnih2 mRNA signals (left) compared to CamK2a mRNA (right). Scale bar = 5 µm. B) Somatic

(hollow) and dendritic (filled) fractions of total mRNA for Cnih2 (27 cells, p = 1.0) and CamK2a

(19 cells, p = 6e-4). Comparison between Cnih2 and CamK2a in dendrites: p = 0.08. C) Fitting

an exponential function to mRNA puncta density distribution yields an exponent of −0.009 ± 0.002

for Cnih2 (n = 36 dendrites) compared to−0.007 ± 0.002 for CamK2a (n = 38 dendrites). Inset:

Normalized fits shown for Cnih2 and CamK2a mRNA distribution. The figure is adapted from [178].
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I CNIH-2 protein density

Next, I studied the localization of CNIH-2 receptors along the dendrites. For this, my collabo-

rator, Dr. Anne-Sophie Hafner performed immunolabeling of CNIH-2 using protein antibody

in rat hippocampal cultural neurons at DIV 18-21 Fig. 4.6.A. I have provided the details of this

experiment in Appendix section A.14. Dr. Hafner acquired images of the processed neuron

using confocal microscope and I analyzed the dataset. My analysis revealed a homogeneous

distribution of receptors along the dendrites Fig. 4.6.B.

Figure 4.6.: CNIH-2 protein exhibit a constant density in the dendrites. A) Top: Cultured rat hippocampal

neurons at DIV 1821 were processed for antibody labeling of CNIH-2 protein (gray) and FI MAP2

(magenta). Bottom: A magnified view of a representative dendrite reveals a uniform GluA2 distribu-

tion along the first 100 µm. Scale bar = 20 µm. B) MAP2-normalized CNIH-2 intensity (5 µm bins;

median shown as green squares with interquartile range [IQR]). The figure is adapted from [178].

I CNIH-2 local synthesis

Given this significant dendritic localization of Cnih2 mRNA and protein, I examined whether

CNIH-2 protein is synthesized locally within dendrites. For this, my collaborators Dr. Anne-

Sophie Hafner and Prof. Erin Schuman performed FUNCAT combined with PLA. Briefly,

this technique involves the incorporation of a non-canonical amino acidAHA, a methionine

derivativeduring protein synthesis, followed by antibody-based detection of a specific protein
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of interest, with coincidence signals detected via PLA. Neurons were incubated with AHA or

methionine (as a control) for one hour, fixed, and analyzed. I have provided the details of this

experiment in Appendix section A.14.

Figure 4.7.: CNIH-2 protein is locally translated. A) Top: Example images of cultured hippocampal neurons

processed using FUNCAT-PLA showing the distribution of newly synthesized AMPAR auxiliary sub-

unit CNIH-2 after 1 hour of metabolic labeling with AHA or, in control conditions, with methionine

(Met). Scale bar = 20µm. Bottom: Representative dendrite illustrates abundant CNIH-2 nascent pro-

tein after 1 hour of metabolic labeling with AHA. cale bar = 10µm. B) Boxplot showing CNIH-2

nascent protein density in the soma (nmet = 33, nAHA = 29 neurons per condition). C) same as B)

but for dendrites. D) Boxplot showing fraction of protein in dendrites and the somatic compartment

for neurons treated with AHA. ∗ ∗ ∗, p ≤ 0.001. Circles represent individual neuron values, box lines

indicate the median, and black triangles represent the mean. The figure is adapted from [178].

Next, I analyzed the CNIH-2 FUNCAT-PLA dataset and quantified local synthesis puncta

using the SpyDen tool. Quantification of nascent CNIH-2 proteins (in AHA condition) during

this period revealed prevalent synthesis in somata and across the dendritic arbor Fig. 4.7.A.

Notably, approximately 75% of the newly synthesized CNIH-2 protein localized to dendrites

Fig. 4.7.D. Under the control conditions (methionine), FUNCAT-PLA signals were virtually

absent in both somata and dendrites, confirming the specificity of the synthesis signal Fig. 4.7.B-
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C.

The findings from FUNCAT-PLA data, combined with the high abundance of Cnih2 mRNA

in dendrites, strongly suggest that CNIH-2 is locally synthesized throughout the dendritic ar-

bor. This raises an important question: what could be the functional implications of CNIH-2

synthesis at such distal sites?

4.3. CNIH-2 dynamics upon cLTP induction

Given its role in slowing down AMPAR deactivation and prolonging excitatory postsynaptic

currents, local synthesis of CNIH-2 could serve as a mechanism to enhance synaptic strength

selectively and dynamically at specific dendritic sites. This spatially targeted modulation could

be particularly critical for synaptic plasticity, where the precise timing and location of receptor

regulation play a pivotal role in shaping neural circuits and information processing.

To further unravel the intricate molecular machinery underpinning learning, memory, and

neuronal adaptation, I continued investigating the interplay between AMPAR auxiliary subunits

and synaptic function. Harmel and colleagues previously reported that CNIH-2 preferentially

associates with AMPARs possessing unprocessed glycans [75]. At the time, these findings were

interpreted to suggest that CNIH-2 primarily interacts with receptors within the endoplasmic

reticulum (ER). However, more recent studies challenge this interpretation. First, evidence

has shown that CNIH-2 is present at the PSD, where it significantly impacts synaptic currents

[15]. Second, unprocessed glycan-bearing AMPARs have been shown to traffic to the plasma

membrane in neurons [74].

Based on these findings, I hypothesized that CNIH-2 might play a pivotal role in the activity-

dependent trafficking of AMPARs to the neuronal plasma membrane. To test this hypothesis,

my collaborators, Dr. Anne-Sophie Hafner and Prof. Erin Schuman, designed plasticity exper-

iments where they applied a chemically induced cLTP protocol to cultured hippocampal neu-

rons from rats and tracked changes in newly synthesized CNIH-2 protein concentrations using

FUNCAT-PLA. In Fig. 4.8.A, I show an example image from this dataset under basal and chem-

ical LTP condition. I have provided the details of this experiment in Appendix section A.14.

Interestingly, I observed no significant change in CNIH-2 synthesis in somata Fig. 4.8.B. On the

contrary, cLTP induction remarkably resulted in a significant twofold increase in the concen-

tration of dendritic CNIH-2 protein within an hour of stimulation Fig. 4.8.C. This experiment
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4. AMPAR dynamics upon chemical LTP induction

Figure 4.8.: De novo CNIH-2 synthesis in dendrites increases upon chemical LTP induction. A) Top row:

Representative images of rat cultured hippocampal neurons displaying the distribution of newly syn-

thesized CNIH-2 after 1 hour of metabolic labeling with AHA (left) and increased levels of de novo

CNIH-2 proteins in dendrites following cLTP induction (right). Scale bar: 20µm. Bottom row:

Zoomed in images of dendrites from the representative images, scale bar: 5µm. B) Box plots dis-

playing the density of newly synthesized CNIH-2 in the soma. C) Same as B but in dendrites (n = 30

for basal, n = 22 for cLTP neurons analyzed). A significant increase was seen in dendrites but not in

the soma * p ≤ 0.05. Circles represent individual neuron values, and box lines for the median and

IQR. The mean is shown as black triangles. The figure is adapted from [178].

provides direct evidence of activity-dependent regulation of an AMPAR auxiliary subunit for the

first time, demonstrating a robust, localized increase in CNIH-2 synthesis in dendrites following

LTP. What could be the function of CNIH-2 local synthesis and its regulation upon chemical

LTP induction? To answer this, my collaborators further recorded the data where CNIH-2 was

removed from the neurons, and surface GluA subunits were immunolabelled and imaged.

4.4. CNIH-2 drives forward trafficking of AMPARs to

neuronal surface

To further explore how CNIH-2 synthesis in dendrites regulates AMPAR trafficking to the neu-

ronal surface, my collaborators Dr. Anne-Sophie Hafner, Dr. Anne Bührke and Prof. Erin

Schuman developed a platform to label nascent GluA1- and GluA2-containing receptors local-

ized on the plasma membrane. First, they treated cultured hippocampal neurons with AHA (4

mM, 1 hour) and during the final 715 minutes, they incubated neurons with antibodies targeting

the extracellular N-terminal domains of GluA1 or GluA2 subunits for surface labeling.

To investigate the functional role of CNIH-2 in promoting AMPAR surface expression, they

employed a shRNA strategy to reduce Cnih2 transcript levels. Hippocampal cultured neurons
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from rats were transfected with CNIH-2 shRNA or control shRNA at 8 days in vitro (DIV).

After 11 days of shRNA expression, they treated the neurons with AHA or methionine (as a

control) and subsequently surface-labeled GluA1 or GluA2 using antibodies prior to fixation

Fig. 4.10.A.

They also valludated the efficieny of CNIH-2 knockdown after 11 days. For this they per-

formed FISH against Cnih2 mRNA and FUNCAT-PLA detection of nascent CNIH-2 protein,

the efficiency of was validated. My analysis of their FISH dataset showed that Cnih2 mRNA

transcript levels were reduced to 0 in the shRNA against Cnih2 conditions as compared to

shRNA control Fig. 4.9.A. Next, I analyzed the FUNCAT-PLA dataset of nascent CNIH-2 pro-

tein and observed significantly smaller protein levels in the shRNA-Cnih2 condition compared

to the control shRNA condition Fig. 4.9.B. This analysis validated the knockdown of CNIH-2

protein from the system.

Figure 4.9.: Validation of CNIH-2 knockdown using an shRNA strategy. A) Bar graphs and strip plots illustrate

the density of Cnih2 mRNA in the soma of neurons expressing either a control shRNA or an shRNA

targeting Cnih2 (nControl = 8, nCNIH2 = 18 neurons per condition). *** p ≤ 0.001. B) Bar graphs

and strip plots depict the density of nascent CNIH-2 proteins in the soma of neurons expressing either

a control shRNA or an shRNA targeting Cnih2 (nCntl = 49, nCNIH2 = 23 neurons analyzed per

condition). ***p ≤ 0.001. Circles represent individual neuron values, and box lines for the median

and IQR. The mean is shown as black triangles. The figure is adapted from [178].

Next, I analyzed the levels of GluA subunits at the neuronal surface in the two conditions.

Reduced CNIH-2 expression had no measurable effect on the surface expression of GluA1

subunits Fig. 4.10.B&C. However, it dramatically reduced the surface expression of GluA2

subunits, both in the soma and dendritic arbor Fig. 4.10.B&D.

These findings highlights the critical role of CNIH-2 in driving the surface expression of

GluA2-containing AMPARs. The data also reveal a specific requirement for CNIH-2 in facili-

tating the trafficking of GluA2 subunits to the plasma membrane, emphasizing its essential role
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Figure 4.10.: CNIH-2 drives surface insertion of GluA2-containing AMPARS. A) Scheme showing experimen-

tal flow for the analysis of GluA1 and GluA2 trafficking to the surface in presence (Control-shRNA-

GFP) or absence (CNIH-2-shRNA-GFP) of CNIH-2. B) Cultured hippocampal neurons displaying

newly synthesized surface GluA1 and GluA2 subunits in neurons expressing either a shRNA target-

ing CNIH-2 or a control shRNA with no rat genome ta gets. In the absence of CNIH-2 proteins,

newly synthesized GluA2-containing AMPARs are absent from both the somatic and dendritic sur-

faces. Scale bar= 20µm. C) Box plots display no significant change in the abundance of newly

synthesized GluA1 receptors at the cell surface in the soma and dendrite (Control n = 39, without

CNIH-2 n = 28 neurons per condition). D) Box plots display a significant reduction in the abun-

dance of newly synthesized GluA2 receptors at the cell surface in the soma and dendrite(Control

n = 29, without CNIH-2 n = 25 neurons per condition). (* p ≤ 0.05, *** p ≤ 0.001) . Circles

represent individual neuron values, and box lines for the median and IQR. The mean is shown as

black triangles. The figure is adapted from [178].

in regulating AMPAR composition and synaptic plasticity.

Next, I build a trafficking model of CNIH-2 by expanding a previously developed model

by Fonkeu and colleagues [58] to model CNIH-2 concentration along my model dendrite at
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equilibrium and changes in its concentration upon plasticity induction.

4.5. Model of CNIH-2 mRNA and protein density

My findings so far warranted detailed modeling of CNIH-2 mRNA and protein as it drives the

insertion of GluA2-containing AMPARs to the neuronal membrane.

I mRNA density

To model CNIH-2 mRNA density, I utilized the model published in [58]. The mRNA dynamics

is governed by the PDE:

∂RCNIH−2(x, t)

∂t
= DR

∂2RCNIH−2(x, t)

∂x2
− vR

∂RCNIH−2(x, t)

∂x
− kRRCNIH−2(x, t). (4.1)

I am interested in getting the equilibrium concentration of Cnih2 mRNA (i.e. assuming that the

mRNA concentration doesn’t change with time, ∂RCNIH−2(x,t)

∂t
= 0). At equilibrium, this PDE

is reduced to an ODE:

0 = DR
d2RCNIH−2(x)

dx2
− vR

dRCNIH−2(x)

dx
− kRRCNIH−2(x). (4.2)

This ODE can be fully solved with the help of two boundary conditions. Hence, I subject the

ODE Eq. 4.2, first to a boundary condition assuming there is a constant influx (Φ(0)) of new

mRNAs from the soma (JRin). Second, I assume a no-flux boundary at the distal end of the

dendrite (Φ(L)), as no mRNA can escape out of the dendrite. These two boundary conditions

are mathematically described as:

Φ(0) = −JRin

Φ(L) = 0.
(4.3)

The steady state concentration of Cnih2 mRNA (denoted by RSS
Cnih2(x)) is then given by the

solution of Eq. 4.2, as:
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RSS
Cnih2(x) =

JRin

e−λR1L − e−λR2L

(
e−λR2L−λR1x

vR +DRλR1

− e−λR1L−λR2x

vR +DRλR2

)
. (4.4)

Here λR1,2 = (−vR±
√

v2R + 4DRkR)/(2DR). I have described the steps to derive the solution

written in Eq. 4.4 in Appendix section A.8. Additionally, the baseline parameters used for

mRNA density distribution are provided in Table A.7.

I Protein density

Next, I describe the protein density of CNIH-2 in my model dendrite. The protein density

distribution is governed by the diffusion, degradation, and local synthesis of CNIH-2 in the

dendrites. These mechanisms are captured using the PDE:

∂ρCNIH−2(x, t)

∂t
= DP

∂2ρCNIH−2(x, t)

∂x2
− vP

∂ρCNIH−2(x, t)

∂x
− kPρCNIH−2(x, t)

+ βPR
SS
Cnih2(x).

(4.5)

ρCNIH−2(x, t), describes the dynamics of CNIH-2 protein along the dendrite in this equation.

The first term on the right-hand side (RHS) describes the diffusion (with the rate DP ), the sec-

ond term represents active transport (with the rate vp), the third term represents the degradation

of CNIH-2 protein (with the rate kp), and the final term represents the local translation of Cnih2

mRNA w th a rate of translation βP . To get the CNIH-2 protein density at equilibrium (i.e. the

density doesn’t change with time), we can assume ∂ρCNIH−2(x,t)

∂t
= 0, and convert the PDE in

Eq. 4.5, to an ODE:

0 = DP
d2ρCNIH−2(x)

dx2
− vP

dρCNIH−2(x)

dx
− kPρCNIH−2(x) + βPR

SS
Cnih2(x). (4.6)

Similar to the ODE describing mRNA density, the ODE for protein density can also be solved

using two boundary conditions. Again, first, I assume a constant influx, Φ(0), of new proteins

from the soma into my model dendrite. Second, I assume a no-flux boundary at the distal end of

the dendrite, Φ(L), as no protein can escape out of the dendrite. These two boundary conditions

are mathematically described as:

74



4.6. CNIH-2 driven GluA2-AMPAR exocytosis

Φ(0) = −JPin

Φ(L) = 0.
(4.7)

With these boundary condition, The full solution of the ODE in Eq. 4.6, describing CNIH-2

protein density distribution, is given as:

ρSSCnih2(x) =

−

 (vP+DPλR1)βP

DPλ2
R1+vPλR1−kP

(
e−λP2L− e−λR1L

)
+ JPine

−λP2L

(vP +DPλP1)(e−λP1 − e−λP2L)

+

(vP+DPλR2)βP

DPλ2
R2+vPλR2−kP

(
e−λP2L− e−λR2L

)
(vP +DPλP1)(e−λP1 − e−λP2L)

 e−λP1x

+

 (vP+DPλR1)βP

DPλ2
R1+vPλR1−kP

(
e−λP1L− e−λR1L

)
+ JPine

−λP1L

(vP +DPλP2)(e−λP1 − e−λP2L)

+

(vP+DPλR2)βP

DPλ2
R2+vPλR2−kP

(
e−λP1L− e−λR2L

)
(vP +DPλP2)(e−λP1 − e−λP2L)

 e−λP2x

− −βPJRine
−λR2L

(DPλ2
R1 + vPλR1 − kP )(vR +DRλR1)(e−λR1L − e−λR2L)

e−λR1x

− −βPJRine
−λR1L

(DPλ2
R2 + vPλR2 − kP )(vR +DRλR2)(e−λR2L − e−λR1L)

e−λR2x

(4.8)

whereby λP1/2 = (−vP ±
√

v2P + 4DPkP )/(2Dp). I have described the steps to arrive at the

solution to the ODE defined in Eq. 4.6 in Appendix section A.9. Additionally, I have provided

the the parameters I used to obtain a uniform CNIH-2 protein distributions are provided in

Appendix Table A.7. Next, I used my model of CNIH-2 protein density to understand how it

impacted GluA2-containing AMPAR dynamics upon plasticity induction.

4.6. CNIH-2 driven GluA2-AMPAR exocytosis

As I have previously shown, CNIH-2 is locally synthesized in the dendrite, and the rate of its

de novo synthesis increases upon plasticity induction (see Fig. 4.8); I decided to use the model
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of CNIH-2 for explaining AMPAR changes upon plasticity induction, specifically for GluA2-

containing AMPARs as it selectively traffics them to the neuronal membrane Fig. 4.10.

For this, I solved the time-dependent PDE in Eq. 4.5 using numerical integration methods. I

have described the step for the numerical integration in Appendix section A.10.

First, I simulated a brief increase in CNIH-2 local translation rate (by 500 folds) that lasted

for 10 minutes to match the time used for chemical LTP induction. This brief translation upregu-

lation lasting just 10 minutes resulted in a moderate two-fold increase in CNIH-2 concentration

within the proximal dendritic region after two hours, which further declined to a 1.5-fold in-

crease after five hours Fig. 4.11.A. Next, I incorporated the time-dependent changes in CNIH-2

density into my three-population model of AMPAR trafficking. I simulated an increase in the

exocytosis rate of GluA2-containing AMPARs dependent on CNIH-2 density and a 1.3-fold in-

crease in their synaptic incorporation rate into PSDs after cLTP induction. My model assumed

that the exocytosis rate varied spatially and temporally in proportion to the modeled changes

in CNIH-2 distribution. With these changes, my model could not fully capture the dynamics

of GluA2-containing AMPARs reported by Clavet-Fournier and colleagues [31]. My model

predicted a slow increase in GluA2 synaptic concentration that matched the early time point

data (at 30 and 60 minutes). However, the peak amplitude predicted by my model saturated at

≈ 125% of baseline Gl A2 synaptic concentration Fig. 4.11.B. This was less than the data that

showed an ≈ 150% increase at 120 minutes after chemical LTP induction.

These results indicated that local synthesis of CNIH-2 does provide the timescales required

to match synaptic GluA2 changes. However, a local synthesis lasting only for the duration of

LTP stimulation is not sufficient to explain the significant increase in synaptic GluA2 content.

To fix this, I next simulated a prolonged up-regulation of CNIH-2 local synthesis (again by

500 folds) that lasted for hours. The intuition behind this prolonged up-regulation is based on

experimental studies that have reported heightened local synthesis following synaptic plastic-

ity [28, 130]. My model of CNIH-2 protein density resulted in an ≈ twelve-fold increase in

CNIH-2 density at the end of 2 hours (up-regulation duration). Additionally, the CNIH-2 pro-

tein remained well above five folds after 5 hours of simulation time Fig. 4.12.A. Next, again

I used CNIH-2 density as a driver of exocytosis rate in my three-population model of GluA2-

containing AMPARs. When combined with the small 1.3-fold increase in synaptic incorpora-

tion rate, my model could match both the kinetics as well as the peak amplitude of synaptic

GluA2 reported experimentally in [31] Fig. 4.12.B.
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Figure 4.11.: Brief, 10 minutes CNIH-2 local synthesis can not explain GluA2 dynamics upon chemical LTP
induction. A) Spatio temporal distribution CNIH-2 concentration upon increased local translation

lasting for brief, 10 minutes follwoing LTP induction. B) Changes in synaptic and surface GluA2

when changes in CNIH-2 was used as an increase in exocytosis rate. In addition a 1.3 fold changes

in synaptic incorporation rate was implemented. The brief local syntheis upregulation can match the

kinetics of GluA2 change but not the amplitude at 2 hours. The figure is adapted from [178].

Figure 4.12.: Prolonged CNIH-2 local synthesis can explain GluA2 dynamics upon chemical LTP induction.

A) Spatio temporal distribution CNIH-2 concentration upon increased local translation that persisted

for 2 hours follwoing LTP induction. B) Changes in synaptic and surface GluA2 when changes

in CNIH-2 was used as an increase in exocytosis rate, in addition a 1.3 fold changes in synaptic

incorporation rate can match the kinetics and amplitude of GluA2 changes at 2 hours. The figure is

adapted from [178].

Finally, I wanted to understand if the increased de novo protein synthesis has to occur in the

dendrites in order to explain GluA2 dynamics. For this, I simulated a prolonged increase (by

500 folds) in somatic synthesis rate (JPin in Eq. 4.7) that lasted for 2 hours. This increase in

somatic CNIH-2 synthesis led to only a marginal increase in dendritic CNIH-2 concentration,
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as per my model prediction. Specifically, there was an initial 1.15-fold increase in the proximal

dendrite after two hours of somatic upregulation, which diminished to a 1.05-fold increase after

five hours Fig. 4.13.A.

Figure 4.13.: Prolonged somatic CNIH-2 synthesis has minuscule impact on GluA2 concentration upon
chemical LTP induction. A) Spatio temporal distribution CNIH-2 concentration upon increased

somatic translation lasting for 2 hours. B) Changes in synaptic and surface GluA2 when changes

in CNIH-2 was used as an increase in exocytosis rate. In addition a 1.3 fold changes in synaptic

incorporation rate was implemented. C) same as B but without the change in synaptic incorporation

rate. Change in exocytosis rate only hardly impacts the GluA2 concentration. The figure is adapted

from [178].

Next, when I incorporated the time-dependent changes in CNIH-2 distribution into my math-

ematical model of AMPAR trafficking, I observed a marginal change of ≈ 15% in the synaptic

GluA2, significantly below the experimentally observed changes Fig. 4.13.B. This change was

mostly due to the persistent changes in synaptic incorporation rate as without this enhanced

synaptic trapping, the synaptic AMAPRs showed almost no change Fig. 4.13.C. I summarise

the trafficking changes that I tried and whether they could explain GluA2-containing AMPAR
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dynamics in Fig. 4.14.

Figure 4.14.: Summary of parameter changes that can explain GluA2-conatining AMPAR changes upon
chemical LTP induction. The figure is adapted from [178].

4.7. Brief Summary

In this chapter, I described that AMPARs can display distinct responses to LTP induction by

chemical application of glycine. Next, I showed that the GluA1-homomeric AMPARs show

a fast insertion in the cell plasma membrane and accumulation at the synapse. However, the

accumulation at the synapse is transient. On the other hand, GluA2-containing AMPAR shows a

slower insertion into the neuronal surface, but it lasts for hours. The key mechanisms that result

in this temporal difference can be the local synthesis of AMPAR auxiliary protein CNIH-2. I

showed that Cnih2 mRNA is dendrite-enriched and has its mRNA distributed across the entire

neuronal tree. Then, using the FUNCAT-PLA experiment, we showed that the mRNA indeed

gets actively translated in the dendrites, and the rate of translation increases upon chemical

LTP induction. Following this, I showed that disrupting CNIH-2 translation leads to a specific

reduction in membrane insertion of GluA2-containing AMPARs, and the GluA1-homomers are

not affected by the knockdown of CNIH-2. Finally, my simulation showed that the dynamics of

an increase in CNIH-2 concentration by up-regulation of the local synthesis rate could explain

the temporal dynamics of synaptic GluA2 changes.
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5.1. Main results

In Chapter 1, I described the general physiology of biological neurons and how they process

information in the brain. The information transfer between neurons occurs mainly a subcellular

structures called synapses. These synapses are known to change the efficiency of information

transmission via a cellular process called synaptic plasticity. One of the known forms of synap-

tic plasticity is long-term potentiation or LTP.

5.1.1. Data analysis tool

In Chapter 2, I discussed a novel computational tool called "SpyDen" for continuous and dis-

crete molecular localization and analysis inside dendrites and dendritic spine compartments. I

developed this tool with a fellow master’s student, Jean P. Filling, and a fellow PostDoc, Maxi-

milian F. Eggl. I also described my contribution to developing an algorithmic solution to trace

the neuronal dendritic tree in fluorescent-based imaging data automatically. I extended this fea-

ture to fully segment dendrites. I further developed a feature to detect and analyze fluorescent

bright puncta to get meaningful statistics such as the fraction of molecular localization in so-

mata vs. dendrite and the dendritic distribution of molecules as a function of the location along

the dendrites.

5.1.2. AMPAR trafficking

In Chapter 3, I disccused a mathematical model for the trafficking of endogenous GluA2-

containing AMPARs under basal conditions. In this model, I included the experimentally

reported transport mechanisms that shape AMPAR distribution along the dendritic tree. The

plasma membrane receptors can move laterally via diffusion, and intracellularly, AMPAR-

containing vesicles are transported using motor protein-based active transport. Another mech-

anism that can impact the availability of AMPARs is local synthesis. However, analysis of the

experimental data demonstrated that Gria1 and Gria2 mRNAs, encoding the two most abundant

AMPAR pore-forming subunits, GluA1 and GluA2, are predominantly translated in the somatic
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compartment under basal conditions. This finding suggests that local translation of these sub-

units is unlikely to account for the reported increase in GluA2 concentration at distal dendritic

locations.

On the other hand, GluA2 protein distribution remained constant in the first 100 µm in the

data. This is in contradiction with previous modeling studies, which predicted that proteins,

including AMPARs, that are predominantly translated in the soma and utilize purely passive

diffusion as means of transport show an exponentially decaying profile with dendritic distance

[58, 19, 17]. With a novel mathematical model described using a PDE, I could explain these

seemingly inconsistent profiles of mRNA and protein distribution for AMPARs. My model

predicted that a biased active transport in an anterograde direction could increase the protein

concentration towards the distal tip, even without dendritic mRNA translation.

Next, I extended my model to capture the intricate trafficking dynamics of three population

of AMPARs with distinct functional compartments, namely their concentrations in the cell cy-

toplasm, on the cell surface, and at the PSD using a system of three coupled PDEs. By solving

this model at a steady state and fitting the various parameters of the model to experimental data,

I could generate various insights into the kinetics of AMPAR trafficking under basal condi-

tions. First, my analysis revealed that at baseline, the rate of endocytosis of GluA2-containing

AMPARs was higher than its exocytosis rate, resulting in an intracellular pool of approximately

70% of its total concentration. Second, the exocytosis to endocytosis rate ratio was constant in

the 100 µm dendritic length, indicating that exocytosis frequency is likely the same through-

out the dendritic tree, or at least in the first 100 µm. Third, using the model and experimental

data analysis, I could predict that almost 50% of the surface AMPARs are bound to the PSD

structures, and the remaining 50% constitute the mobile fraction that can be exchanged with the

bound receptors. This finding is also in-line with experimental reports that utilized single parti-

cle tracking and fluorescence recovery after photobleaching (FRAP) techniques and estimated

the fraction of immobile AMPARs to be between 30-50% [164, 78].

5.1.3. Central role of local synthesis in AMPAR subtype dynamics

In Chapter 4, I started with describing the differences in plasticity response of AMPAR sub-

types [148, 42], with GluA1 homomers exhibiting rapid surface insertion and accumulation

in PSDs [129, 162], whereas GluA2-containing heteromeric AMPARs display comparatively
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slower synaptic accumulation [129, 31]. Using my modeling approach, I showed that an imme-

diate increase in exocytosis and a modest rise in the synaptic incorporation rate was sufficient

to recapitulate the rapid and transient accumulation of GluA1 homomeric AMPAR. Similar

short-lasting change in exocytosis rate was not enough to capture the slow GluA2 dynamics ob-

served experimentally [31]. Instead, an exocytosis the rate that changed with time was required

to reproduce experimental data.

I propose that this time-dependent exocytosis is driven by local CNIH-2 concentration, an

auxiliary protein known to regulate AMPAR trafficking and their synaptic accumulation. I

showed that Cnih2 mRNA is well localized in the dendrite and undergoes local translation

there. I further showed that cLTP increased their local translation rate within a few minutes.

Then, I showed that shRNA knockdown of Cnih2 mRNA reduced CNIH-2 protein that in turn

decreased surface expression of GluA2-containing AMPAR specifically. Finally, incorporat-

ing a local upregulation of CNIH-2 translation in my GLuA2 model as a driver of exocytosis

helped reproduce the kinetics and amplitude of experimental GluA2 data. This upregulation

in my model needed to last for hours as a brief upregulation lasting for 10 minutes provided

the kinetic match but not the amplitude. Finally, an equivalent increase in somatic CNIH-2 in-

flux had minimal effect on AMPAR concentration, highlighting the crucial contribution of local

translation.

Finally, my results indicate an alternative pathway for AMPAR delivery to the synapse.

GluA1 homomers presumably follow the conventional secretory route, undergoing processing

via the somatic Golgi apparatus (GA), resulting in AMPARs with mature glycosylation profiles

sensitive to Endonuclease H treatment. Conversely, GluA2-containing heteromers, synthesized

at the surface of the somatic ER, may bypass GA membranes and directly reach the neuronal

plasma membrane in dendrites. This process appears to be mediated by the local synthesis of

CNIH-2, producing AMPARs with Endonuclease H-resistant glycans, as previously demon-

strated [74]. While the details of molecular interaction between AMPAR and their auxiliary

subunits is still an active area of research, my results provide critical perspicuity into how dis-

tinct AMPAR populations are selectively incorporated into synapses under various conditions.

This selective incorporation has important implications for therapeutic strategies to restore or

modulate AMPAR synaptic transmission and plasticity, which are often disrupted in neurologi-

cal and neurodegenerative diseases.
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5.2. Perspective

My work has several limitations regarding essential components of AMPAR transport. One

limitation of my work is that I did not consider the modulation of active transport by neuronal

activity and calcium influx. Experimental work shows that synaptic influx of Ca2+ can arrest

active transport of AMPAR-containing vesicles and lead to their accumulation near stimulated

spine[72]. This accumulation of AMPAR near stimulated spines represents an elevated pool

of new receptors that can be exocytosed to meet plasticity needs. Additionally, in my three-

population model (introduced in section 3.5), I have only considered a net, biased active trans-

port. My model can be extended to include the anterograde and retrograde motion separately to

study active transport modulation in detail.

Another limitation of my work is that I did not consider the impact of spine geometry (for

example, spine neck), which can influence plasticity outcomes via AMPAR trafficking [68, 19,

10]. The spine neck poses a bottleneck for synaptic entry of proteins and mRNAs. In the

current version of the model, I simplified these geometric constraints by considering only a

single parameter for synaptic incorporation of AMPAR. This simplification allowed me to keep

my model mathematically tractable. To study the effect of spine geometry, my model can be

extended to include the spine neck as an additional compartment. As previous studies have

pointed out, the diffusive trafficking can differ between neuronal surface and cytoplasm [138].

Another important geometric consideration is the nanoscale organization of PSD. Experimental

work shows that PSD consists of substructures of dense domains that anchor AMPAR and can

also undergo re-organization upon synaptic plasticity induction. My model can be used to

study this by considering multiple PSD compartments and changing the number of slots under

plasticity conditions.

A main assumption I made in this thesis is the dendrites are cylindrical. Tapering in biological

dendrites is crucial in signal transmission from dendrites to soma. Biological dendrites also

show random fluctuations in their radius to the presence of other dendrites, axons, blood vessels,

and astrocytes. Future extensions of my model can study the effect of decreasing radius using

an effective velocity towards the beginning of the dendrite. The second main assumption I

made is that each spine on the model dendrite is identical in terms of slot numbers and synaptic

incorporation rate. Synaptic plasticity outcomes depend on the initial size of the spines [26].

I am currently studying how spine size variation leads to changes in synaptic plasticity. For
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this, I am modifying my model to set the initial sizes of the spines by drawing them from a

lognormal-like distribution as shown by experiments [136].

Since its discovery, understanding synaptic plasticity mechanisms has been the focus of neu-

roscience research. In this thesis, I have provided novel and important insights into the mech-

anisms behind LTP. Over the last five decades, several other forms of synaptic plasticity have

been discovered. For example, LTD leads to the weakening of synapses. Interestingly, LTD in-

duction causes the removal of AMPARs from synapses and the internalization of extrasynaptic

AMPARs [98, 8]. As a next step, my model can also be used to study the LTD. To study the

LTD dynamics, one can change the endocytosis rate and investigate the removal of receptors

from the PSD and neuronal surface. Another prominent form of synaptic plasticity is home-

ostatic scaling, which leads to a multiplicative strengthening or weakening of all the weights

of a neuron [170]. Interestingly, the homeostatic scaling leads to an increase or decrease in

AMPAR content at all the synapses. My model can be further extended to study mechanisms

of homeostatic scaling. Heterosynaptic plasticity is another form of synaptic plasticity in which

stimulation of one or more synapses leads to plasticity in unstimulated synapses that are near

the stimulated synapses [25, 177]. Previous modeling work suggests that heterosynaptic plas-

ticity can occur through competition for a shared pool of resources [169] and synaptic-cross talk

[25, 177]. My model can be further extended to study heterosynaptic plasticity by including in-

tracellular signaling such as AMPAR phosphorylation and dephosphorylation by CaMK2a and

Protein phosphatase 1 (PP1) AMPARs.

These other forms of plasticity are important as they are crucial for network dynamics. For

example, heterosynaptic plasticity is hypothesized as a mechanism to prevent run-away dynam-

ics through weight-normalization [176, 120]. Weight normalization suggests that if some of

the neurons weights are potentiated, others should depotentiate to keep the sum of all weights

constant. Similarly, homeostatic scaling is also proposed as a weight normalization mechanism

where all the neurons weights are scaled up or down in a multiplicative manner [170, 169]

Overall, I propose that bridging molecular processes with biologically plausible plasticity

rules offers a promising avenue for advancing our understanding of neural circuit development,

memory formation, behavior, and higher cognitive functions.
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A. Appendix A

A.1. Adjusting dendritic path and width calculation

Here, I describe how to improve the optimal path and dendritic width calculation. The user

should adjust the threshold so that the signal-to-noise ratio (SNR) is optimal before providing

the start and end points of the dendrite. Empirically, I observed a median threshold to work

better Fig. A.1. However, one should be careful not to keep the threshold too high such that the

segments of the dendrite are removed. The best solution is to try different threshold values and

choose one that gives a high SNR with the full dendrite visible.

In figure Fig. A.1&D., I show how threshold value impacts the middle axis path.

Once the optimal path is calculated, SpyDen allows further optimization of dendritic width

calculations. For this, two sliders are provided. First is the smoothness factor. The raw width

values calculated using 2, can be abrupt due to missing edges or spine edges. Hence, SpyDen

uses a sliding window averaging to smoothen the dendritic width. This is based on the fact that

dendrites do not abruptly broaden or become narrower. The smoothness factor helps adjust the

size of the sliding window. The optimal value for this factor depends on the image resolution

and quality. However, once the optimal value for this factor is found, SpyDen automatically

uses the optimal value for other images for the same dataset.

The second factor is the thickness factor. This factor broadens or narrows down the width

in a multiplicative manner. This is included to allow users to estimate the actual width of the

dendrite. For example, if the dendrites were labeled using immunolabeling of MAP2 (which is

a microtubular protein) instead of GFP fill, then the actual width of the dendrite is proportional

to the MAP2 signal. This factor takes care of the proportionality and can produce the absolute

width.

In Fig. A.1.G&H., I show the impact of these two factors on the dendritic width calculation.

Finally, I summarize the benefit of using SpyDen compared to other tools in Table A.3.
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Figure A.1.: Median threshold on the raw image allows optimization of medial axis paths for the dendrites
and dendritic width calculation. A) An example image, along with start and end points (marked

in red), is provided to the pipeline for medial axis path calculation. B) SpyDen generates a filtered

image (using default threshold value) that has a better signal-to-noise ratio. C) SpyDen generates a

weighted matrix (see 3D plot) for the filtered image to calculate the shortest path that traverses the

highest points. These highest points represent the center of the dendrite. D) Adjusting the threshold

values can lead to more or less features getting filtered out. The updated dendritic paths (marked with

the orange line). Each of the 4 sub-images (i to iv) depicts the optimal path for higher threshold values.

Note that case iv) filtered too much of the dendrite out (with a very high threshold value), and so no

optimal path was found. E) The user can edit the generated path using the nodes (highlighted by the

red circles) by dragging them and or adding/deleting new nodes. F) The medial axis path can calculate

dendritic width (red lines on either side of the dendrite) for a selected threshold value. A very high

threshold can lead to the removal of the actual dendritic segment, and hence, a width calculation is not

possible, as shown in iv. G)-H) Users can tune parameters to adjust dendritic width calculation. These

parameters include the smoothness factor in (G), which determines the length of the sliding window

to calculate the average width. A higher smoothness factor results in larger sliding windows and less

abrupt width values. The second parameter is the width thickness factor (H), which multiplies the

outward pointing normals by a set value. Altering these values can have a substantial effect on the

calculated width and allow for a significant amount of flexibility for the user. The threshold dendritic

with from Fiii) was used. Figure adapted from [52].

112



A.2. Algorithms

A.2. Algorithms

Here, I write the pseudocode for the algorithmic procedure used for calculating the median axis

path.

Algorithm 1 Finding of the dendritic medial axis path
Require: : Image of dendrite and spines, I , threshold t, start point ρs and end point pe

1: Perform a threshold of I with value t to obtain a binarised image E of dendrite and spines.
2: for each pixel eij with pixel coordinates ij in E do
3: if eij == 1 then
4: create a node nij in the Graph G. ij are the preserved coordinates of the nodes.
5: end if
6: end for

Cost map for shortest path
7: for every node nij in G do
8: ni′j′ is nearest neighbour with i′j′ ∈ {(i+ 1)j, i(j + 1), (i+ 1)(k + 1), ...}(8 combina-

tions)
9: if ni′j′ exists then

10: create edge eiji′j′ between nodes nij and ni′j′ with value |(i− i′, j − j′)| (1 or
√
2)

in Graph G
11: end if
12: end for

Cost Map for following boundaries
13: Make a copy G′ of G and set incrementer for every node ii′j′
14: Make a copy G′′ of G′

15: while nodes n′′
i′′j′′ exist in G′′ do

16: for all nodes n′′
i′′j′′ in G′′ do

17: if number of edges for n′′
i′′j′′ < 8 then remove node n′′

i′′j′′ and corresponding edges
18: end if
19: if ni′′j′′ in G′′ then
20: set ii′j′ = ii′j′ + 1
21: end if
22: end for
23: end while
24: invert assigned values ii′j′ in G′

25: Cost Graph C = λG + η G′ with λ+ η = 1
26: Perform Dijkstra algorithm on C from node ps to pe to obtain medial axis path which

penalises walking on boundaries.

Here, I write the pseudocode for the algorithmic procedure used for calculating the dendritic

width.
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Algorithm 2 Finding of the dendritic width

Require: : Image, I , Set of spatially ordered dendritic points on the medial axis path , ~d, Canny
edge variance, σ

1: Perform a canny image detection on I and generate a Boolean matrix C of the contour of
the dendrite

2: Create a place holder array W for the width data of size length(~d) x 4
3: incrementer i = 0
4: for each point di in ~d do
5: Create a boolean matrix E of an ellipse ε with the center di
6: Minor axis in the direction of the next neighbor di+1 with a fixed radius of rmin =

2Pixel
7: For the major axis radius I set an incrementer rmaj = 1 Pixel and a counter c = 0
8: while sum(Intersection(C, E) < 1 or c < 30 do
9: Create a new E with rmaj = 1.2 · rmaj

10: c = c+ 1
11: end while
12: The angle of the ellipse can be calculated with a = arcsin((di+1 − di)xrmin/(rmin))
13: Wi = (di, rmin, rmaj , a)
14: i = i + 1
15: end for
16: A Maximum increase condition of the width within two neighbours of the medial axis path

is applied
17: From W the boolean mask of the segmented dendrite can be obtained
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A.3. Structure of the SpyDen output

SpyDen stores the output in multiple file formats including .csv and .json for the statistics and

.npy and .ROI for the ROIs. These multiple output formats are used so that the output can be

exported into other tools for further analysis.

I Dendrite analysis output file

In Table A.1, I describe the output file structure that stores the statistics on dendrites

Dendrite_Channel_0.csv
Column Name Definition

Dendrite: d
pair of x,y coordinates of the point along the medial axis
of dendrite

Width of ell. width of the calculated ellipse at point x,y

Timestep t (Luminosity (mid.))a
Fluorescent intensity of the point on the medial axis at
timestep t

Timestep t (Luminosity (ell.))a
Mean fluorescent intensity of all the pixels within the
dendritic width (calculated using the ellipse approach) at
timestep t

Table A.1.: Output file contains measurements for individual dendritic ROIs. a a separate column is added for each

time step. A separate file is created for each channel as well.
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I Puncta analysis output file

In Table A.1, I describe the output file structure that stores the statistics on puncta detected in

the dendrite, spines, and soma.

dend_puncta.csv and soma_puncta.csv
Column Name Definition
Id Unique identification number assigned to each punctum.
channel Number of channels for which the punctum is located on
RoiId Identification number of the dendritic ROI to which the punctum belongs
snapshot Time point in a time series data to which the punctum belongs
location Pair of x,y coordinate on the image for the punctum
radius Radius of the circular punctum
max Maximum fluorescent intensity of the punctum
min Minimum fluorescent intensity of the punctum
mean Mean fluorescent intensity of the punctum
std Standard deviation of fluorescent intensities of the punctum.
median Median fluorescent intensity of the punctum
distance Distance from the start of dendritic ROI along the ROI

Table A.2.: output file containing measurements for individual punctum from puncta detection pipeline
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A
.3.

Structure
ofthe

SpyD
en

output

Package Name Codebase ROI creation
(Dendrites/
Spines/Puncta)

ROI Stata
(Dendrites/
Spines/Puncta)

Multi-
channel

Time-
series

GUI Exe-
cutable

Man-
ual
edits

Output
formats

2D/3D Last up-
load (date)

SpyDen Python SA / A / A 3/ 3/ 3 3 3 3 3 S, DI .json,.csv,
.roi,.npy

2D Jul 2024

Neurobits [171] MATLAB M / M / A 7/ 7/ 3 3 7 7 7 7 .csv 2D Jun 2018
StarSearch MATLAB M / M / A 7/ 7/ 3 3 7 7 7 7 .csv 2D/3D Mar 2022
SynPAnal [38] Java M / M / A 3/ 3/ 3 3 7 3 3 S,DI .xlsx 2D Mar 2015
Punctaspecks [146] MATLAB 7/ 7/ A 7/ 7/ 3 3 3 3 7 S .csv 2D May 2020
DeepD3 [57] Python A / A / 7 7/ 7/ 7 7 7 3 3 S .tif,.roi,

.hdf5
2D/3D Mar 2024

SpineS [7] MATLAB A / A /7 7/3/7 7 3 3 7 DI .mat,.csv 3D Aug 2022
Spot Spine [62] Java 7/ SA / 7 7/3/7 7 7 3 3 S,DI .swc,.csv 3D/2D Jun 2024
AUTOTUNE [186] MATLAB SA / SA / 7 3/3/7 7 3 3 7 S .mat 2D Jun 2024
SpineTool [55] Python 7/ A /7 7/3/7 7 7 7 7 DI .off, .csv 3D Jul 2023
RESPAN [60] Python A / A / 7 7/3/7 7 3 3 3 7 .csv 3D/2D Aug 2024
SENPAI [24] MATLAB A / A /7 3/3/7 7 7 3 7 7 .mat 3D Mar 2024
DeepSpine-
Tool [174]

Python A / A /7 3/3/7 7 3 3 3 7 .tif 3D Mar 2022

SpineJ [103] Java A / A / 7 7/3/7 7 3 3 3 DI .roi 2D Mar 2020
SynQuant [180] Java A / A / 7 3/3/7 3 7 3 3 7 .roi 2D/3D Jul 2020
3dSpAn [39] C++ A/A/7 7/3/7 7 7 3 3 S .csv,.tiff,

.img
3D Jul 2022

SynActJ [142] Java 7/ A /7 7/3/7 7 3 3 3 7 .csv 2D Dec 2021
SynBot [139] ImageJ

Macro
7/ A / 7 7/ 3/ 7 3 7 3 3 7 .csv, .tif 2D Dec 2024

Table A.3.: A non-exclusive list of tools that offer analysis of dendrite, spine, and puncta. I considered tools published from 2015 to 2024. Abbreviations: SA: Semi-

Automated (requiring minimal manual input); A: Automated (without requiring any manual input), M: Manual; S: Sliders, DI: Direct Intervention; 7: Not

supported, 3: Supported117
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A.4. Parameter values used for various models

In this section, I describe the range of parameter values reported for the different trafficking

methods involved in AMPAR trafficking. In Table A.4, are the values based on published

experimental literature and model fitting. In Table A.5, I list the parameter values used for

GluA1 homomeric AMPAR. These values were obtained from the previous model of GluA1

AMPARs and experimental measures. The values I used for CNIH-2 protein and Cnih2 mRNA

model are described in Table A.6 and Table A.7, respectively.

Parameter (symbol, units) GluAsa Reference(s)
Velocity of active transport (Vp, µm/s) 1. [72]
Diffusion rates (Ds, Dc, µm2/s) 0.01 - 1 [61, 9, 91]
exocytosis rate (β, s−1) 1.3× 10−3 [37]
Number of slots (ω) 60 [117]
Exit from PSD rate( γ, s−1) 1.1 ×10−3 - 2.3 ×10−2 [54, 101]
Parameter (symbol,units) GluA2 GluA1 References(s)
half-life (T1/2, days) 1.95-3.12 0.5-4.35 [47, 33]
endocytosis rate (α, s−1) 5.89 ×10−4 4.94 ×10−4 [135]
Incorporation into PSD rate (η, s−1) 0.0007 0.0003 our model for GluA2

and [68] for GluA1

Table A.4.: Experimentally reported parameters measured in dendrites of hippocampal cultured neurons; a) in-

cludes values that are comparable for both GluA1/2 subunits or if the value is reported only for one of

the subunits.

Parameter (symbol, units) Value References(s)
Ds, Dc (µm2/s) 0.1 [14]
Vp (µm/s) 1× 10−4 our study
λc (s−1) 1.8× 10−6 (T1/2 = 4.53 days ) [47, 33]
λs (s−1) 0 our study
α (s−1) 5× 10−4 [135]
β (s−1) 8.5× 10−4 [59]
η (s−1) 3× 10−4 [68]
γ (s−1) 2.3× 10−2 [54, 101]

Table A.5.: Parameter values used for steady-state, baseline model of GluA1-homomeric AMPARs.
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Parameter (symbol, units) Value References(s)
Dp (µm2/s) 1.5 [14]
Vp (µm/s) 0 our study
Kp (s−1) 1.4× 10−6 ( T1/2 = 5.6 days ) [47]
βp (s−1) 0.01 our study
JPin (protein µm/s) 0.01 our study

Table A.6.: Parameter values used for steady-state, baseline model of CNIH-2 protein.

Parameter (symbol, units) Value References(s)
DR (µm2/s) 3.43× 10−3 [14]
vR (µm/s) 2.1× 10−3 our study
KR (s−1) 1.9× 10−5 ( T1/2 = 10 hours ) [47]
JRin (mRNA µm/s) 0.003 our study

Table A.7.: Parameter values used for steady-state, baseline model of Cnih2 mRNA.

A.5. Steady state solution for the total AMPA receptors

density on a finite domain

In the neurons, AMPAR is primarily produced in the soma under basal conditions and is trans-

ported along the dendrites via active intracellular transport as well as diffusion within both the

plasma membrane and intracellular compartments. This dynamics of a protein (ρ) along the

dendrites can be described using PDEs:

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
− V

∂ρ(x, t)

∂x
− λρ(x, t). (A.1)

The LHS in this equation represents the time-dependent changes in protein concentration. The

terms on the RHS represent diffusion (D), active transport (V ), and degradation (λ), respec-

tively. To solve this equation at equilibrium, I can set the time-dependent term on the LHS to 0

and rewrite the Eq. A.1 as an ODE:

0 = D
d2ρ(x, t)

dx2
− V

dρ(x, t)

dx
− λρ(x, t). (A.2)
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The Eq. A.2 can be solved analytically using two boundary conditions. For this, I assume that

the concentration of the protein (ρ) satisfies the boundary conditions

V ρ−D
dρ

dx

∣∣∣∣
0

= Jinflux (A.3)

V ρ−D
dρ

dx

∣∣∣∣
L

= 0, (A.4)

whereby Jinflux > 0 is the rate of protein influx in the dendrite from the soma and Eq. A.4

means that no proteins come out of the dendritic tip located at a distance L from the soma.

The steady-state solution of the Eq (Eq. A.1) (i.e., solution under the assumption ∂ρ(x,t)
∂t

= 0)

is a sum of two exponential functions

ρ(x) = C1e
−K1x + C2e

−K2x (A.5)

whereby K1,2 =
−V±

√
V 2+4Dλ
2D

. We compute the constants C1, C2 using the boundary conditions

in (Eq. A.3), (Eq. A.4) and obtain the steady state dendritic distribution of the protein

ρ(x) =
Jinflux

e−K1L − e−K2L

(
e−K2x−K1L

V +DK2

− e−K1x−K2L

V +DK1

)
. (A.6)

A.6. Steady state solution for the three population model

To derive the steady-state solutions of the model in Eq. 3.6 - Eq. 3.8, I assumed that the time

derivatives of the functions ρs, ρc and ρpsd are equal to 0 and obtain the following system of ODE

Dc
d2ρc
dx2

− Vp
dρc
dx

− λcρc − βρc + αρs = 0 (A.7)

Ds
d2ρs
dx2

− λsρs − αρs + βρc − ηρs(ω − ρpsd) + γρpsd = 0 (A.8)

ηρs(ω − ρpsd)− γρpsd = 0. (A.9)
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The relation in Eq. A.9 implies that the steady-state of the synaptic proteins (ρpsd) is related to

the steady-state concentration of the proteins in the cell membrane,i.e.:

ρpsd(x) = ηρsω/(ηρs(x) + γ) (A.10)

Combining Eq. A.8 and Eq. A.9,I reduce the system in Eq. A.7-Eq. A.9 to two ODEs

Dc
d2ρc
dx2

− Vp
dρc
dx

+ αρs − βρc − λcρc = 0

Ds
d2ρs
dx2

+ βρc − αρs − λsρs = 0.

(A.11)

Using the substitution Lc =
dρc
dx

, Ls =
dρs
dx

I transform the system of two ODEs of the second

order to the system of four first-order ODEs

dρs
dx

= Ls

dρc
dx

= Lc

Ds
dLs

dx
= αρs + λsρs − βρc

Dc
dLc

dx
= VpLc + βρc + λcρc − αρs.

(A.12)

This system of equations can be solved with four boundary conditions. For this, I assumed

that the functions ρc and ρs fulfill the following boundary conditions:

dρs
dx

∣∣∣∣
L

= 0

Vpρc −Dc
dρc
dx

∣∣∣∣
L

= 0.

(A.13)

This boundary condition is based on the fact that both surface and cytoplasmic receptors don’t

escape the dendrite at the tip of the dendrite.

Next, I assume that the proteins ρc produced in the soma are released in the cytoplasm, the

surface at x = 0 with a constant influx rate Jcin Jsin respectively, i.e.,

Ds
dρs
dx

∣∣∣∣
0

= Jsin

Vpρc −Dc
dρc
dx

∣∣∣∣
0

= Jcin,

(A.14)
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here, Jcin > 0 and Jsin = 0 were used for simulations as I assumed no direct flux into the

surface from the soma and the receptors are directly exocytosed in the dendrites. Finally, I used

the solve_bvp function of Python language to numerically solve the Eq. A.12.

A.7. Time-dependent solution of the AMPA receptor

trafficking model

To study plasticity-dependent changes in AMPAR concentration in different compartments (for

both GluA1 homomeric and GluA2-containing heteromeric receptors), I used the original time-

dependent model in Eq. 3.6-Eq. 3.8 and compute its solution numerically. To this end, I dis-

cretize the spatial variable of the PDE (∆x = 1 µm) and transform the system of PDE into a

system of ODEs

dρc
dt

=
Dc

(∆x)2
(ρc,i+1 − 2ρc,i + ρc,i−1)−

Vp

∆x
(ρc,i+1 − ρc,i)− (λc + β)ρc,i + αPs,i

dρs
dt

=
Ds

(∆x)2
(ρs,i+1 − 2ρs,i + ρs,i−1)− (λs + α)ρs,i + βρc,i − ηρjs,i(ω − ρjpsd,i) + γρjpsd,i

dρpsd
dt

= ηρjs,i(ω − ρjpsd,i)− γρjpsd,i.

I determine ρs, ρc at all intermediate spatial nodes (i = 1, ..., L − 1). For the boundary nodes

(i = 0, L), I use the boundary conditions Eq. A.13-Eq. A.14 at x = 0 and x = L as I assume

that these boundary conditions are satisfied at all time. Using the boundary conditions, I can

write the discretized equation for the boundary nodes as:

dρc
dt

∣∣∣∣
0

=

(
Dc

∆x2
− Vp

∆x

)
ρc,1 −

(
Dc

∆x2
+ λc + β

)
ρc,0 +

Jcin
∆x

+ αρs,0

dρs
dt

∣∣∣∣
0

=
Ds

∆x2
ρs,1 −

(
Ds

∆x2
+ λs + α

)
ρs,0 +

Jsin
∆x

+ βρc,0 − ηρs,0(ω − ρpsd,0)+γρpsd,0

dρc
dt

∣∣∣∣
L

=
Dc

∆x2
ρc,L−1 −

(
Dc

∆x2
+

V 2
P

Dc

+
VP

∆x
+ λc + β

)
ρc,L + αρs,L

dρs
dt

∣∣∣∣
L

=
Ds

∆x2
ρs,L−1 −

(
Ds

∆x2
+ λs + α

)
ρs,L + βρc,L − ηρs,L(ω − ρpsd,L)+γρpsd,L .

Next, I used the scipy.solve_ivp function to compute ρc and ρs with the explicit Runge-Kutta

method of order 5(4).
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A.8. Trafficking dynamics and steady state distribution of CNIH-2 mRNA

A.8. Trafficking dynamics and steady state distribution of

CNIH-2 mRNA

The production, degradation, and transport dynamics of Cnih2 mRNA molecules can be de-

scribed by the model proposed in [58]

∂RCNIH−2(x, t)

∂t
= DR

∂2RCNIH−2(x, t)

∂x2
− vR

∂RCNIH−2(x, t)

∂x
− kRRCNIH−2(x, t). (A.15)

First, I determine the steady state distribution for the equation Eq. A.15. Setting the time-

derivative to 0, I obtain

0 = DR
d2RCNIH−2(x)

dx2
− vR

dRCNIH−2(x)

dx
− kRRCNIH−2(x). (A.16)

The general solution, RDen
CNIH2−ss, of the equation Eq. A.16 reads

RDen
CNIH2−ss(x) = C1e

−λR1x + C2e
−λR2x (A.17)

where λR1,2 = (−vR ±
√

v2R + 4DRkR)/(2DR).

We calculate the constants C1, C2 using the following boundary conditions:

vRRCNIH−2 −DR
dRCNIH−2

dx

∣∣∣∣
0

= (vR +DRλR1)C1 + (vR +DRλR2)C2 = −JRin

vRRCNIH−2 −DR
dRCNIH−2

dx

∣∣∣∣
L

= (vR +DRλR1)C1e
−λR1L + (vR +DRλR2)C2e

−λR2L = 0,

(A.18)

and derive the steady state distribution RDen
CNIH2−ss(x). Here JRin is the constant rate of influx

of mRNA from soma into the dendrite. The second boundary condition describes the no-flux

boundary condition. We obtain

RDen
CNIH2−ss(x) =

(
JRine

−λR2L

(vR +DRλR1)(e−λR1L − e−λR2L)

)
e−λR1x (A.19)

+

(
JRine

−λR1L

(vR +DRλR2)(e−λR2L − e−λR1L)

)
e−λR2x.
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A.9. Trafficking dynamics and steady state distribution of

CNIH-2 protein

The CNIH-2 protein model considers the CNIH-2 somatic translation rate, local dendritic trans-

lation rate, diffusion, and active transport. Hence, I can use the protein trafficking model intro-

duced in [58] for CaMK2a protein to model the CNIH-2 protein dynamics. I obtain

∂ρCNIH−2(x, t)

∂t
= DP

∂2ρCNIH−2(x, t)

∂x2
− vP

∂ρCNIH−2(x, t)

∂x
− kPρCNIH−2(x, t) + βPR

Den
CNIH2−ss(x).

(A.20)

First, I determine the steady state of the equation Eq. A.20 by setting the time-derivative to 0

0 = DP
d2ρCNIH−2(x)

dx2
− vP

dρCNIH−2(x)

dx
− kPρCNIH−2(x) + βPR

Den
CNIH2−ss(x). (A.21)

The general solution PDen
CNIH2−ss of the equation Eq. A.21 reads

PDen
CNIH2−ss(x) = C1e

−λP1x + C2e
−λP2x + C3e

−λR1x + C4e
−λR2x (A.22)

whereby

λP1/2 =
−vP ±

√
v2P + 4DPkP
2Dp

C3 =
−βPJRine

−λR2L

(DPλ2
R1 + vPλR1 − kP )(vR +DRλR1)(e−λR1L − e−λR2L)

C4 =
−βPJRine

−λR1L

(DPλ2
R2 + vPλR2 − kP )(vR +DRλR2)(e−λR2L − e−λR1L)

We use the following boundary conditions to obtain the constants C1 and C2 in Eq. Eq. A.22

vPρCNIH−2 −DP
dρCNIH−2

dx

∣∣∣∣
0

= (vP +DPλP1)C1 + (vP +DPλP2)C2

+ (vP +DPλR1)C3 + (vP +DPλR2)C4 = −JPin

vPρCNIH−2 −DP
dρCNIH−2

dx

∣∣∣∣
L

= (vP +DPλP1)C1e
−λP1L + (vP +DPλP2)C2e

−λP2L

+ (vP +DPλR1)C3e
−λR1L + (vP +DPλP2)C4e

−λR2L = 0

(A.23)
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The final steady state CNIH2 protein distribution reads

ρSSCnih2(x) =

−

 (vP+DPλR1)βP

DPλ2
R1+vPλR1−kP

(
e−λP2L− e−λR1L

)
+ JPine

−λP2L

(vP +DPλP1)(e−λP1 − e−λP2L)

+

(vP+DPλR2)βP

DPλ2
R2+vPλR2−kP

(
e−λP2L− e−λR2L

)
(vP +DPλP1)(e−λP1 − e−λP2L)

 e−λP1x

+

 (vP+DPλR1)βP

DPλ2
R1+vPλR1−kP

(
e−λP1L− e−λR1L

)
+ JPine

−λP1L

(vP +DPλP2)(e−λP1 − e−λP2L)

+

(vP+DPλR2)βP

DPλ2
R2+vPλR2−kP

(
e−λP1L− e−λR2L

)
(vP +DPλP2)(e−λP1 − e−λP2L)

 e−λP2x

− −βPJRine
−λR2L

(DPλ2
R1 + vPλR1 − kP )(vR +DRλR1)(e−λR1L − e−λR2L)

e−λR1x

− −βPJRine
−λR1L

(DPλ2
R2 + vPλR2 − kP )(vR +DRλR2)(e−λR2L − e−λR1L)

e−λR2x.

(A.24)
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A.10. Time-dependent solution of CNIH-2 subunit trafficking

model

How does the concentration of CNIH-2 evolve in our model dendrite over time? To calculate the

spatiotemporal distribution of CNIH-2 protein (ρCNIH−2(x, t)), I return to the original partial

differential equation of CNIH-2 Eq. A.20. To simulate the spatiotemporal dynamics of CNIH-2

during basal state and upon cLTP induction, I first discretized the spacial variable (x) of the

model and converted PDE to a time-dependent ODE

dρCNIH−2

dt
= DP

(
ρCNIH−2,i+1 − 2ρCNIH−2,i + ρCNIH−2,i−1

∆x2

)
− vP

(
ρCNIH−2,i+1 − ρCNIH−2,i

∆x

)
− kPρCNIH−2,i + βPR

Den
CNIH−2−ss,i.

I computed coefficients corresponding to Pi, Pi−1 and Pi+1 and rewrote the last equation as

dρCNIH−2

dt
=

(
DP

∆x2
− vP

∆x

)
ρCNIH−2,i+1 −

(
2DP

∆x2
− vP

∆x
+ kP

)
ρCNIH−2,i +

(
DP

∆x2

)
ρCNIH−2,i−1

+ βPR
Den
CNIH−2−ss,i (A.25)

Now I could determine P at all intermediate nodes (i = 1, ...L− 1) except the boundary nodes

i = 0, L. For the boundary nodes, I used boundary conditions at x = 0 and x = L

DP
ρCNIH−2,0 − ρCNIH−2,−1

∆x
− vPρCNIH−2,0 = −Jpin

DP
ρCNIH−2,L+1 − ρCNIH−2,L

∆x
− vPρCNIH−2,L = 0.

and determined the temporal evolution of the CNIH-2 protein at the boundary points and ob-

tained the differential equations

dρCNIH−2

dt

∣∣∣∣
0

=

(
DP

∆x2
− vP

∆x

)
ρCNIH−2,1 −

(
DP

∆x2
+ kP

)
ρCNIH−2,0 +

JPin

∆x
+ βPR

Den
CNIH−2−ss,0

(A.26)

dρCNIH−2

dt

∣∣∣∣
L

=

(
DP

∆x2

)
ρCNIH−2,L−1 −

(
DP

∆x2
+

v2P
DP

− vP
∆x

+ kP

)
ρCNIH−2,L + βPR

Den
CNIH−2−ss,L.

(A.27)
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Finally, I used the solve_ivp function of the scipy Python library to integrate the ODEs in

Eqs. (Eq. A.25 - Eq. A.27) and calculated ρCNIH−2(x, t).

A.11. CNIH-2 local-translation upregulation upon plasticity

and exocytosis of GluA2-containing AMPARs

For simulating chemical LTP-driven, I step-increased the local translation rate (βP ) to 500 times

the basal rate throught the model dendrite. This step increase lasted for 10 minutes (in case of

brief stimulation) 2 hours (in case of prologned stimulation). I chose the duration of prologned

stimulation based on the previous reports of translation up-regulation, which peaks at 30 min-

utes and is observable at 2 hours following LTP induction [28, 130]. After simulation time,

the local translation rate was reset to the basal level. For increased somatic flux simulation, I

increased the in-flux rate Jpin to 500 times the basal influx. Again, after 2 hours of simulation

time, I reset the influx to baseline.

Next, I considered the local concentration of CNIH-2, a direct regulator of GluA2-containing

AMPAR exocytosis. Hence, for plasticity simulations, the AMPAR exocytosis rate is changed

proportional to the change in CNIH-2 concentration. More precisely, I normalized the CNIH-2

concentration after plasticity induction by the baseline concentration of CNIH-2 and multiplied

it by the basal exocytosis rate.

β(x, t) = β(x, 0)× ρCNIH−2(x, t)

ρssCNIH−2(x)
(A.28)

Here, β(x, t) is the value of the rate of exocytosis across the full dendrite over the complete

simulation time.

A.12. Fitting models to the data

I Fitting mRNA data

To estimate the drop in Gria1, Gria2, Cnih2 and CamK2a mRNA density along a dendritic

branch, I performed automatic optimization of the binned empirical data (bin size = 7.5 µm)
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and an exponential function of the form f(x) = A ∗ e−Bx, where f represents the distribution

of the mRNA along a line dendrite. Independent variable x corresponds to the location on

the dendrite. I fitted the A (> 0) and B (> 0) minimize function of lmfit python package for

nonlinear least square minimization between the data and the model prediction.

I Fitting paramters for total GluA2 model

I automatically optimized the first 100 µm dendritic distribution over the two-dimensional pa-

rameter space (diffusion rate D and active transport velocity V ) to fit the experimental data. For

both experimental data and model, a binning (bin size = 5 µm) and normalization by the first bin

value were done before the optimization. The fitting was done using the minimize function of

lmfit python package for nonlinear least square minimization between the data and the model. I

note that in all of my simulations, I assumed the length of the model dendrite to be L = 500µm

and then performed the fitting.

I Exocytosis rate for the extended model

To calculate the net exocytosis rate at a steady state, I computed the ratio of total surface GluA2

fluorescence (
∫ L

0
ρs(x)dx) to the total intracellular GluA2 fluorescence (

∫ L

0
ρc(x)dx). As per

my calculations below, this ratio is equal to the ratio of the rate of exocytosis to endocytosis.

The following proof shows that this ratio is indeed equal to the ratio between the exocytosis and

endocytosis rates (β/α). Integrating the steady-state solution in Eq. A.11 from 0 to L, I obtain

0 =

[
Dc

∂ρc
∂x

− Vpρc

]∣∣∣∣L
0

+ α

∫ L

0

ρsdx− (β + λc)

∫ L

0

ρcdx (A.29)

0 =

[
Ds

∂ρs
∂x

]∣∣∣∣L
0

− (α + λs)

∫ L

0

ρsdx+ β

∫ L

0

ρcdx (A.30)

Using the boundary conditions from (Eq. A.13 - Eq. A.14), I obtain

∫ L

0

ρcdx =
Jcin
λc

∫ L

0

ρsdx =
βJcin
αλc

Hence, I compute the ratio between the exocytosis and endocytosis rates

β

α
=

∫ L

0
ρsdx∫ L

0
ρcdx

(A.31)
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Here, I used the endocytosis rate as described in Table A.4. For the GluA1-homomer version of

the model, I used a ratio of 1.7 to obtain the exocytosis rate. This ratio was reported in [59].

I Fitting Ds, Dc and VP for full GluA2 model

The exocytosis rate was calculated using the above-mentioned method before fitting the global

transport parameters, DS , Dc, and VP , which were optimized as mentioned above for the total

GluA2 model. In Fig. A.2.A, I show the best-fitted distribution against experimental data and

compare it against the upper and lower values of the diffusion and active transport parameters.

In Fig. A.2.B-.D, I show the distribution in the full length of 500µm. The best-fitted model

showed an ≈ 250% increase in dendritic concentration at the dendritic tip. As expected, a

fast diffusion rate and active transport lead to a huge accumulation towards the distal tip In

Fig. A.2.C. Whereas a purely diffusive transport led to a fast decay of concentration such that

the concentration dropped to 0 at ≈ 300µm.

I Fitting η for three population GluA2 model

First, I fixed all the other parameters in my model and then estimated the parameter η. To fit

the incorporation rate η in my three population model, I calculated the mean ratio of ρpsd and

ρs over the first 60µm length of the model used minimize function to reduce the difference

between this ratio and the mean surface synaptic enrichment calculated from the data.

I Baseline model of GluA1-homomeric AMPARs

To generate the steady-state trafficking dynamics of GluA1-containing AMPARs, I used the

three population models described using the partial differential equations described in Eq. 3.6-Eq. 3.8

and used values for transport parameters based on previous models of SEP-GluA1, described in

Table A.5.
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BA

DC

Figure A.2.: Fitting of GluA2 model to experimental data
A) Binned distribution of Glua2 subunit of AMPAR, slow and fast transport distribution, and theory

fit distribution. B)-D) steady-state, dendritic distribution of Glua2-containing AMPAR (surface+in-

tracellular) for three different sets of transport parameters. The degradation and the somatic flux

parameters were set to λP = 2.57 ∗ 10−6 s−1, JPin = 0.01 proteins/s. The insets contain the den-

dritic concentration normalized at the starting point of the primary dendrite (x = 0). The figure is

adapted from [178]
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A.13. Estimation of trafficking parameters from published

live-cell fluorescent imaging data

I Endocytosis rates under basal condition

Live-cell studies investigating receptor internalization, report endocytosis frequency in units of

events per µm2 per minute, as endocytosis is thought of a sudden loss of fluorescent intesity of

surface receptor. For more details, see [135].

I converted the endocytosis frequency to a rate per second unit for my model. For this, I

multiplied the reported frequency by the number/concentration of receptors per vesicle and the

area of the ROIs.

[135] report endocyotis frequency as 2.5 ± 0.4 ∗ 10−3 events µm−2min−1 for GluA2 and

2.1 ± 1.1 ∗ 10−3 events µm−2min−1 for GluA1 AMPAR. They measured this frequency in

a circular ROI of radius 300 nm. Also, the estimated number of AMPARs per vesicle is 50

[110, 6]. using these values, I obtained the mean endocytosis rates:

2.5 ∗ 10−3 ∗ π ∗ (0.3)2 ∗ 50
60

= 5.89 ∗ 10−4s−1

2.1 ∗ 10−3 ∗ π ∗ (0.3)2 ∗ 50
60

= 4.94 ∗ 10−4s−1

for GluA2 and GluA1 AMPA receptors, respectively.

A.14. Experimental procedures

A detailed description of the methods used to prepare the hippocampal cultures, see [12, 1, 167].

Since the data were acquired on mouse and rat neurons from two different collaborations, I am

providing the details on the experiments for them separately.

I mouse cultured hippocampal neurons

Dissociated hippocampal neuron cultures were prepared from embryonic day E16.5-18.5 mouse

embryos (C57Bl/6N; Charles River Laboratories). The hippocampi were dissected in pre-

chilled dissection medium (Hanks balanced salt solution (HBSS) with 1% GlutaMax, 1% HEPES,

1% Pen/Strep), digested in 1ml Papain for 15min at 37řC, washed twice in pre-warmed DMEM
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medium (Dulbeccos modified Eagle medium (DMEM) with 10% fetal bovine serum (FBS)) and

twice in pre-warmed NB+ medium (Neurobasal medium supplemented with 2mM Glutamax,

77.7mM D-Glucose). Neurons were then gently dissociated with a fire-polished Pasteur pipette,

centrifuged for 5min at 71 g, and finally plated at 30 − 40 x 103 cells/cm2 on poly-D-lysine

coated coverslips placed in a 24-well plate. Neurons were kept in NB++ medium (Neurobasal

medium supplemented with 2mM Glutamax, 77.7mM D-Glucose, and 1:50 B27) at 37řC and

5% CO2 for 14 days until fixation. Animal experiments were approved by the Hessian authori-

ties.

I Transfection

For subsequent staining, neurons were transfected with a plasmid expressing GFP at 11 days

in vitro (DIV) using calcium phosphate transfection. Neurons were transfected by adding 15ţl

2x HeBs buffer (274mM NaCl, 10mM KCl, 1.4mM Na2HPO4 x 7H2O, 15mM D-Glucose,

42mM HEPES) with 15ţl DNA and calcium solution (2 ţg of DNA in 250 mM CaCl2 solution)

per well at DIV11 after plating. The conditioned culture medium was replaced with 400 ţl of

NB+ medium before adding the DNA mixture. After incubation for 10 min at 37řC under 5%

CO2, the neurons were washed three times with NB+, which had been pre-incubated at 37řC

under 5% CO2, and the conditioned NB++ medium was added back to the cells.

I Immunostaining, image acquisition and analysis.

Coverslips with attached neurons (DIV 14) were washed and fixed once at room temperature

DPBS containing calcium and magnesium before being fixed in 4% paraformaldehyde in PBS

(pH = 7.4) containing 4% of sucrose for 10 minutes on ice. Afterward, neurons were washed

with NH4Cl for 10 min on ice, blocked in blocking buffer (2% BSA/4% NDS/PBS) for 30 min

at room temperature, and incubated over three days with mouse anti-GluA2 antibody (1:500,

Millipore) at 4řC and labeled with donkey-anti-mouse Cy3 (1:500, Jackson Immuno Research)

overnight at 4řC. For the visualization of extra- and intracellular GluA2, neurons were subse-

quently permeabilized for 5 min in 0.4% Triton X-100 in PBS, blocked for 30 min, incubated

overnight with the same mouse anti-GluA2 (1:500) and chicken anti-GFP (1:1000, Abcam),

and labeled with donkey anti-mouse Cy5 (1:500, Jackson Immuno Research) and donkey anti-

chicken Alexa 488 (1:500, Jackson Immuno Research) overnight at 4řC. Image acquisition.

132



A.14. Experimental procedures

Hippocampal neurons were imaged using Leica TCS SP5 confocal microscopes and 63x oil ob-

jectives (NA 1.4). Z stacks spanning the entire volume of neurons were obtained, and channels

were separated and collapsed to a sum intensity projection in ImageJ. Manual annotation of the

dendritic tree using a segmented line tool and somata using polygonal ROIs was performed. The

signal intensity profile in dendritic ROIs was measured using a constant width, and integrated

density was calculated for somatic ROIs.

I Rat cultured neurons.

Please see [1] for details on obtaining dissociated rat hippocampal cultures. Briefly, dissected

hippocampi from postnatal day 0-1 rat pups of either sex (Sprague-Dawley strain; Charles River

Laboratories) were obtained and dissociated with papain (Sigma) and plated at a density of

40× 103 cells/cm2 on poly-D-lysine coated glass-bottom Petri dishes (MatTek). Neurons were

maintained and matured in a humidified atmosphere at 37řC and 5% CO2 in growth medium

(Neurobasal-A supplemented with B27 and GlutaMAX-I, life technologies) for 18-21 days in

vitro (DIV) to ensure synapse maturation. All experiments complied with national animal care

guidelines and the guidelines issued by the Max Planck Society and were approved by local

authorities. For transfection, DIV7-11 neurons were transfected using Effectene (Qiagen), as

previously described. Transfected cells were maintained until DIV19 for experiments.

I In situ hybridization in cultured neurons.

Using the QuantiGene ViewRNA kit from Affymetrix (now Thermo Fisher Scientific), mostly

following the provider’s instructions, in situ hybridization was performed. Briefly, cells at DIV

18-24 were fixed for 20 min at room temperature using a 4% paraformaldehyde (PFA) solution

(4% paraformaldehyde, 2.5% Sucrose, in lysine-phosphate buffer). The Proteinase K treat-

ment was omitted to preserve the integrity of the dendrites. After permeabilization using the

provider’s detergent buffer for 2 min, cells were directly incubated for 3h at 40řC with detection

probes. Incubations with pre-amplification, amplification, and detection probes were reduced

to 40 minutes each. After completion of in situ hybridization, cells were washed with PBS

and incubated in blocking buffer (4% goat serum in PBS) for 1hr. Neurons were subsequently

processed for immunofluorescence using standard methods as described below.
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I Immunofluorescence in cultured neurons.

All steps were performed at room temperature unless stated otherwise. Glass bottom dishes

with attached neurons (DIV 18-21) were fixed in paraformaldehyde 4% in lysine phosphate

buffer pH 7.4 containing 2.5% sucrose for 15-20 min. For simple immunofluorescence, neu-

rons were permeabilized for 10 min in PBS + 0.5% Triton-X 100. After 2 quick washes in PBS,

neurons were incubated in a blocking buffer (4% goat serum in PBS) for 30 min. Then, the neu-

rons were incubated for 1 hr or overnight with primary antibodies, and after 3 washes of 5 min,

they were incubated for 1.5 hr with secondary antibodies. We used the following antibodies:

guinea pig anti-MAP2 (Synaptic Systems, 1:2000), mouse anti-biotin (Sigma, 1:1000), rab-

bit anti-biotin (Cell Signaling, 1:1000), mouse anti-Puromycin (Kerafast, 1:2500), homemade

rabbit anti-Puromycin (1:250), homemade anti-GluA1 N-terminal domain (targeted sequence

QWRTSDSRDHTRVDWKRPKC; KO validated by western blot) (fixed sample 1/500; live-

labeling 1/200), mouse anti-GluA2 N-terminal domain from Eric Gouaux previously used in

Nair et al., 2013 (fixed sample 1/100; live-labeling 1/500), rabbit anti-CNIH-2 (Synaptic Sys-

tems, 1/200), homemade rabbit anti-TARP Gamma-8 C-terminal domain (targeted sequence

PGTLSKEAAASNTNT, 1/200; the antibody staining co-localizes with synaptic protein Bas-

soon and shows strong extrasynaptic labeling).

I Chemical long-term potentiation (cLTP).

The original medium of cultured neurons was replaced for 5 min by artificial cerebrospinal

fluid (ACSF) at 37řC to induce chemical LTP. In the control condition, the ACSF contained

Ca2+ (2 mM) and Mg2+ (2 mM) and was supplemented with B27 and MEM Amino Acids

(50X) (Thermo Fisher Scientific). In the cLTP-induction condition, the ACSF differed from the

control-ACSF as follows: Ca2+ (3 mM), Mg2+ (0 mM), glycine (200 µM), picrotoxin (100

µM). After the 5 min induction, the cells were placed in a growth medium containing either

methionine (Met) or L-Azidohomoalanine (AHA) at 4 mM for 1 hr.

I Fluorescence non-canonical amino acid tagging.

To investigate the distribution of newly synthesized proteins, we used a recently developed

method combining fluorescence non-canonical amino acid tagging with the proximity ligation

assay (FUNCAT-PLA) [167]. Cultured neurons were incubated for 1 hr with a growth medium,

134



A.14. Experimental procedures

where met was replaced by AHA (4 mM). In control conditions, the growth medium contained

Met (4 mM) and no AHA.

I Puromycylation.

The sites of synthesis of AMPAR components were determined utilizing a recently developed

method combining puromycylation and proximity ligation assay (Puro- PLA) [167]. Cultured

neurons were labeled with 10 µM puromycin (Sigma- Aldrich) for 2 min. In control exper-

iments, cells were treated with 40 µM of the protein synthesis inhibitor anisomycin (Sigma-

Aldrich) for 30 min prior to and during puromycin labeling.

I Proximity ligation assay.

Anti-puromycin or anti-biotin antibodies (in case of AHA metabolic labeling) in combination

with protein-specific antibodies against our proteins of interest were used for the detection of

newly synthesized proteins by proximity ligation ([167]). We utilized Duolink reagents (Sigma)

and adhered to the protocol provided by the manufacturer with some modifications described

below. We periodically used rabbit PLAplus and mouse PLAminus probes amplification and la-

bel probe binding. Briefly, after we washed the primary antibodies 3 times in PBS, PLA probes

were applied in 1:10 dilution in PBS with 4% goat serum for 1 h at 37 řC, washed several times

with wash buffer A (0.01 M Tris, 0.15 M NaCl, 0.05% Tween 20) and incubated for 30 min with

the ligation reaction containing the circularization oligos and T4 ligase prepared according to

the manufacturer’s recommendations (Duolink Detection reagents Red, Sigma) in a prewarmed

humidified chamber at 37řC. Amplification and label probe binding were performed after fur-

ther washes with wash buffer A with the amplification reaction mixture containing Phi29 poly-

merase and the fluorophore-labeled detection oligo prepared according to the manufacturer’s

recommendations (Duolink Detection reagents Red, Sigma) in a prewarmed humidified cham-

ber at 37 řC for 100 min. Amplification was stopped by three washes in wash buffer B (0.2 M

Tris, 0.1 M NaCl, pH 7.5). For better signal stability, cells were kept in wash buffer B at 4řC

until imaging.
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I Image acquisition and analysis.

images of the cultured cells were acquired using Zeiss LSM780/880 confocal microscopes using

a 63x oil objective NA 1.4 and a 40x oil objective NA 1.3. Z-stacks spanning the entire volume

of imaged neurons were obtained.
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AIS Axon initial segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor . . . . . . . . iii

ANN Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CaMK2a Ca2+ calmodulin-dependent protein kinase II . . . . . . . . . . . . . . . . . . 8

CNIH-2 Cornichon family AMPA receptor auxiliary protein 2 . . . . . . . . . . . . . . iv

CNS Central Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

FISH Fluorescence in situ hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . 28

FRAP Fluorescence recovery after photobleaching . . . . . . . . . . . . . . . . . . . . 8

FUNCAT Fluorescence non-canonical amino acid tagging . . . . . . . . . . . . . . . . 9

GUI Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

LTD Long-term depression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

LTP Long-term potentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ODE Ordinary differential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

PDE Partial differential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

PLA Proximation ligation assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

PP1 Protein phosphatase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

PNS Peripheral Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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PSD Postsynaptic density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

PSD-95 Postsynaptic density protein 95 . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Puro-PLA Puromycin labeling with Proximity Ligation Assay . . . . . . . . . . . . . . 9

SPT Single Particle Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TARP Transmembrane AMPA receptor regulatory protein . . . . . . . . . . . . . . . . 13

cLTP Chemical long-term potentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

smFISH Small Molecule Fluorescence in situ hybridization . . . . . . . . . . . . . . . 28
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