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Summary

This thesis contains three articles on inequalities for operators in Euclidean harmonic anal-
ysis.

Chapter 1 consists of the article ‘A degree one Carleson operator along the paraboloid’
[5]. It is concerned with a problem historically motivated by the proof of Carleson’s the-
orem, stating that the Fourier series of a square-integrable function f converges pointwise
almost everywhere to f . Carleson’s theorem is essentially equivalent to an estimate for the
so-called maximally modulated Hilbert transform. We study very rough generalizations,
namely maximally modulated singular integrals along certain submanifolds of Rd. Our
main result are new Lp estimates for such operators. The proof combines an overarch-
ing strategy due to Fefferman with several in this context new ingredients, most notably
so-called sparse bounds due to Oberlin and a new square function estimate.

Chapter 2 contains the article ‘On trilinear singular Brascamp-Lieb integrals’ [8]. It
deals with a classification problem for singular Brascamp-Lieb forms and several related
problems. Classical examples of such forms are paraproducts, and more singular represen-
tatives arise in connection with elliptic partial differential equations on Lipschitz domains.
In this more singular context, the theory draws heavily from methods introduced first in
the context of the maximal modulation operators relevant to the first article. However,
these methods do not always apply, different methods are needed depending on the form in
question. We solve the implied classification problem for trilinear singular Brascamp-Lieb
forms, working out the relevant features of the form for different methods to apply. Then
we use this new insight to prove new estimates and some abstract transference principles.

Chapter 3 consists of the article ‘Sharp Fourier extension for functions with localized
support on the circle’ [7]. This article is about the Tomas-Stein restriction inequality for
the circle, one of the starting points of the area of Fourier restriction theory. Among its
many applications are, much in the spirit of the motivation of our first article, some optimal
convergence results for Bochner-Riesz sums of Fourier series in two dimensions. We are
interested in the folklore conjecture that the optimal constant in the Tomas-Stein inequality
is attained by constant functions. Our main result is that the conjectured sharp inequality
certainly holds for functions supported in a small arc on the circle.

The three articles are preceded by an introduction in which we give the historical
motivation for the problems considered in this thesis, elaborate on their connection, and
give a more detailed overview of our results.
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Introduction

In this introduction, we will lay out the motivation for the results in the later chapters of
this thesis and explain their relation to each other. The results in the first article contribute
to a theory that grew out of questions about the convergence of Fourier series.

0.1 Fourier series and maximal modulation operators

Fourier series

Given an integrable function f : [0, 1] → C, its Fourier coefficients are defined by

f̂(n) =

∫ 1

0
e−2πinxf(x) dx,

and its Fourier series is the, a priori formal, sum∑
n∈Z

f̂(n)e2πinx.

Fourier series are an incredibly useful tool in both theoretical mathematics and applied
disciplines, due to the fact that the Fourier series of many functions f converges, in some
appropriate way, to f . A simple rigorous statement to this effect is that the Fourier series
of a function f ∈ L2([0, 1]) converges to f with respect to the L2 norm. This follows from
abstract Hilbert space theory, because the functions x 7→ e2πinx form an orthonormal basis
of L2([0, 1]).

On the other hand the, from a naive standpoint, more natural question of convergence
of the partial Fourier sums

SNf(x) =
N∑

n=−N
f̂(n)e2πinx

as N → ∞ at fixed points x is much harder. It is easy to see that it has a negative answer
if convergence is required at all points. For example, let f ∈ L2([0, 1]) with

f̂(n) =

{
0 if n ≤ 0
ϵn
n if n ≥ 1

for some signs ϵn ∈ {−1, 1}. Since the harmonic series diverges, the signs ϵn can easily be
chosen so that

lim sup
N→∞

SNf(0) = lim sup
N→∞

N∑
n=1

ϵn
n

= +∞ (0.1.1)
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and

lim inf
N→∞

SNf(0) = lim inf
N→∞

N∑
n=1

ϵn
n

= −∞. (0.1.2)

Taking linear combinations of shifts of this f , one can construct functions with Fourier
series that satisfy (0.1.1) and (0.1.2) in any finite set of points and, with some more care,
in any countable set. Katznelson [70] gave an elementary construction showing that even
for every null set with respect to Lebesgue measure there exists a continuous function f
with Fourier series diverging in all points in that set.

This still leaves open the possibility that the Fourier series converges almost everywhere
when f ∈ L2([0, 1]). Luzin [86] formulated this as a conjecture in 1915, and it was answered
positively in a celebrated article by Carleson [21] only in 1966.

Theorem 0.1.1 (Carleson [21]). Let f ∈ L2([0, 1]). Then for almost every x ∈ [0, 1]

lim
N→∞

SNf(x) = f(x).

The Hilbert transform

The theory of Fourier series in one dimension is intimately connected to the Hilbert trans-
form, and it plays an important role in the proof of Theorem 0.1.1. To emphasize more
clearly the similarity to our later results, we describe the connection in the setting of the
Fourier transform on the real line R rather than for Fourier series on [0, 1]. In this setting,
the Fourier transform of a function f : R → C is defined as

f̂(ξ) =

∫ ∞
−∞

e−ixξf(x) dx

and Carleson’s theorem takes the following form.

Theorem 0.1.2 (Carleson [21]). Let f ∈ L2(R). Then for almost every x ∈ R

lim
N→∞

∫ N

−N
f̂(ξ)eixξ dξ = f(x).

There is no serious difference between Theorem 0.1.1 and Theorem 0.1.2, they follow
from each other by straightforward limiting arguments.

The Hilbert transform is the Fourier multiplier operator H : L2(R) → L2(R) defined by

Ĥf(ξ) = −i sgn(ξ)f̂(ξ). (0.1.3)

It spans, together with the identity operator, the space of simultaneously dilation- and
translation-invariant operators on L2(R). This space also contains Fourier truncation op-
erators that appear implicitly in Theorem 0.1.2. Explicitly, we can write∫ ∞

0
f̂(ξ)eixξ dξ =

1

2
(1 + iH)f(x).

The modulation operator MNf(x) = e−iNxf(x) translates the Fourier transform of f by
N :

M̂Nf(ξ) = f̂(ξ +N).

2



This allows expressing also the Fourier truncation at N in terms of the Hilbert transform∫ ∞
N

f̂(ξ)eixξ dξ =
1

2
M−N (1 + iH)MNf(x). (0.1.4)

Now, all truncated Fourier integrals in Theorem 0.1.2 are differences of expressions as on
the left-hand side of (0.1.4). Thus, Carleson’s theorem can be rephrased as a statement
about the operators on the right-hand side of (0.1.4), that is, the identity operator and
M−NHMN .

If f̂ is integrable, then for every x the integral∫ ∞
−∞

f̂(ξ)eixξ dξ

converges absolutely, so the conclusion of Theorem 0.1.2 holds for f . Such functions are
dense in L2(R). To extend the conclusion of Theorem 0.1.2 to all of L2(R), one then only
needs uniform in N upper bounds for the partial Fourier integrals in terms of the L2 norm
of f , or by equation (0.1.4), for the maximally modulated Hilbert transform supN |HMNf |.

These bounds were the main ingredient in Carleson’s proof of Theorem 0.1.2. A slightly
stronger version, due to Hunt, is the following.

Theorem 0.1.3 (Carleson [21], Hunt [68]). There exists a constant C > 0 such that for
every function f ∈ L2(R), ∥∥∥ sup

N∈R
|HMNf |

∥∥∥
L2(R)

≤ C∥f∥L2(R).

Other proofs of Carleson’s theorem, also via slightly weaker bounds for the same op-
erator, were later obtained by Fefferman [51] and Lacey and Thiele [77]. Theorem 0.1.3
continues to hold on Lp for all p > 1, see [68], and in fact for functions in the Orlicz space
L logL log3 L, see [2, 82, 41].

Maximal modulation operators

The Hilbert transform H is an example of a singular integral operator. It can be expressed
as

Hf(x) =
1

π

∫
f(x− y)

1

y
dy .

Some care is needed to make sense of this integral, because the kernel 1
y is not locally

integrable. If f is a Schwartz function, then the integral is well-defined as a principal value
integral, or alternatively via the formula (0.1.3).

Theorem 0.1.3 can be generalized by replacing H by certain other singular integral
operators. One commonly considered class are Calderón-Zygmund operators. They are
defined by convolution with tempered distributions K which agree with a function away
from 0 and satisfies

|K̂(ξ)| ≤ 1, ξ ∈ Rd (0.1.5)

and
|∂αK(x)| ≤ |x|−d−|α|, x ∈ Rd \ {0} (0.1.6)

3



for all |α| ≤ m, where m ≥ 1. Such K are called m-Calderón-Zygmund kernels.
The assumption (0.1.5) implies that Calderón-Zygmund operators are bounded on

L2, and the assumptions (0.1.6) on the kernel imply that Calderón-Zygmund operators
are bounded on Lp(Rd) for 1 < p < ∞. The Hilbert transform is an example of a
Calderón-Zygmund operator on R. In higher dimensions, examples arise naturally as (−d)-
homogeneous versions of differential operators.

A generalization of Theorem 0.1.3 to Calderón-Zygmund operators was given by Sjölin.

Theorem 0.1.4 (Sjölin [107]). For every d ≥ 1 there exist m ≥ 1 and C > 0 such that the
following holds. Let K be anm-Calderón-Zygmund kernel and Tf = K∗f the corresponding
Calderón-Zygmund operator. Then for every f ∈ L2(Rd)∥∥∥ sup

N∈Rd

|TMNf |
∥∥∥
L2(Rd)

≤ C∥f∥L2(Rd).

However, we note that for d ≥ 2 Theorem 0.1.4 no longer has any implications for the
convergence of Fourier series. Further far-reaching generalizations of Carleson’s theorem
for Calderón-Zygmund operators have been obtained in [83, 84, 116, 9].

Singular integrals along submanifolds

The first article of this thesis extends the Carleson-Sjölin bound for maximally modulated
singular integrals beyond Calderón-Zygmund operators to the rougher class of singular
integral operators along submanifolds.

We will fix the manifold to be the paraboloid

P = {(x, |x|2) : x ∈ Rd} ⊂ Rd+1

with d ≥ 2. This is mainly for concreteness; relevant is mainly the positive curvature,
that the dimension of P is at least two and that its codimension is one. Let K be an
m-Calderón-Zygmund kernel on Rd as defined above in (0.1.6), satisfying in addition the
cancellation condition ∫

r<|x|<R
K(x) dx = 0 (0.1.7)

for all r < R. We consider the operator T defined on Schwartz functions f by

Tf(x′, xd+1) =

∫
Rd

f(x′ − y, xd+1 − |y|2)K(y) dy, (0.1.8)

where we write x = (x′, xd+1) ∈ Rd+1. Thus, T is given by convolution with the tempered
distribution

W (x) = δ(xd+1 − |x′|2)K(x′)

supported on the paraboloid P. The operator T is a singular integral operator that shares
many properties with Calderón-Zygmund operators.

The cancellation condition (0.1.7) together with the curvature of the paraboloid imply

that Ŵ is bounded, thus T defines a bounded operator on L2(Rd+1). Calderón-Zygmund
theory can be adapted to prove that T is also bounded on Lp(Rd+1) when 1 < p < ∞
and that various maximal operators associated to T are bounded in the same range, see

4



[26, 110]. However, it is, for example, an open problem whether the maximal averaging
operator associated to T maps L1(Rd+1) into L1,∞(Rd+1), see [30], hinting at the additional
difficulties in dealing with operators along submanifolds.

Let V ⊂ Rd+1 be a linear subspace. We will consider the partial maximal modulation
operators of T , modulated with frequencies only in V , defined by

TV f(x) = sup
N∈V

|TMNf |(x). (0.1.9)

Motivated by Carleson’s and Sjölin’s results, one is led to ask the following question.

Question 1. Does there exist a constant C > 0 such that for all f ∈ L2(Rd+1)

∥TRd+1f∥L2(Rd+1) ≤ C∥f∥L2(Rd+1) ?

This question was explicitly asked, for d = 1, for the first time in [104], motivated by
a bound for a related maximal operator with polynomial phases due to Pierce and Yung
[101]. Various other results for related operators have appeared since then, see [1, 6, 10,
66, 103, 102].

There are two key obstacles towards Question 1. Firstly, the convolution kernel W of
the operator TRd+1 , being supported on a submanifold, is very rough. The existing proofs
of Carleson’s theorem rely heavily on the kernel being locally constant at the correct scales.
This is used, for example, in integration-by-parts arguments. These arguments fail for W
and have to be circumvented.

Secondly, the operator TRd+1 has an exceptionally large group of symmetries. We now
go into detail on this second point.

Symmetries

Every maximal modulation operator as in Question 1 or Theorem 0.1.4 is clearly invariant
under the respective modulations MN . This is a key feature for proving estimates for
such operators, because it prevents techniques such as Littlewood-Paley decompositions,
which rely on the existence of a distinguished frequency 0, from working. The modulation
symmetry implies that the absolute frequency at which a function oscillates has no meaning
to the symmetric operator. Instead, one needs to work with finer frequency localizations
into boxes, and exploit relative oscillation of the different localized pieces. The resulting
methods are called time-frequency analysis.

An exceptional feature of Question 1 is an additional symmetry which similarly implies
that time-frequency analysis as used in the proofs of Carleson’s theorem does not directly
apply to it. Namely, the operator TRd+1 is invariant under the quadratic modulations QA
defined by

QAf(x
′, xd+1) = eiA(|x

′|2+xd+1)f(x′, xd+1), A ∈ R. (0.1.10)

Indeed,

MNQAf(x
′ − y, xd+1 − |y|2)

= eiA(|x
′+y|2+xd+1−|y|2)MNf(x

′ − y, xd+1 − |y|2)
= eiA(3|x

′|2+xd+1)MN−2Ax′f(x
′ − y, xd+1 − |y|2) ,

5



which implies that
TRd+1QAf = TRd+1f.

In fact, it shows that the same is already true for the operator TRd×{0} with only ‘horizontal’
modulations.

Unfortunately, we are still not able to deal with such larger groups of symmetries. In
this thesis, we will sidestep the issues caused by them by only proving estimates for TV
when V is a strict subspace of Rd×{0}. In that case there are still modulation symmetries
under MN for N ∈ V , however there are no exceptional symmetries under QA.

A more precise explanation of the obstruction caused by the exceptional symmetry
under the quadratic modulations QA defined in (0.1.10) in our proof is as follows. In
proving bounds for maximal modulation operators, one starts by fixing for each point x a
frequencyN(x), so that the supremum in (0.1.9) is attained atN = N(x) up to a factor two,
say. This is also done in this thesis. The function N is called the linearizing function. The
above computation shows that the operator with linearizing function N satisfies exactly
the same estimates as the operator with linearizing function NA(x) = N(x)+Ax′, for every
A ∈ R. Moreover, the same is true for all auxiliary operators constructed in our proof.
However, some estimates in the proof are clearly false in the limit A → ∞. Specifically,
consulting our article and the technical definitions therein, it is easy to check that the
density of a set of tiles, which depends implicitly on the function NA, will tend to zero
as A → ∞. Thus upper bounds by the density will fail in the presence of the additional
symmetry, however the proof heavily relies on such bounds.

0.1.1 Our results

Maximal modulations of singular integrals along paraboloids

Sidestepping the issue of additional modulation symmetries, there remain the obstacles
that come from the roughness of W . We are able to address them in the first article of this
thesis. Our main theorem is as follows.

Theorem 0.1.5 (Becker [5]). Let d ≥ 2 and let m > d
2 . Suppose that V = {0}d × R or V

is a proper subspace of Rd × {0}. Then for all p with

d2 + 4d+ 2

(d+ 1)2
< p < 2(d+ 1)

there exists C > 0 such that for all m-Calderón-Zygmund kernels K and all Schwartz
functions f , we have

∥TV f∥Lp(Rd+1) ≤ C∥f∥Lp(Rd+1) .

Our proof of Theorem 0.1.5 is based on a modification of Fefferman’s proof of Carleson’s
theorem in [51]. In addition to various technical complications, the key new ingredients
needed to address the roughness of W are sparse bounds and a square function estimate,
which we will present now.

Sparse bounds

The first new tool we use are certain localized estimates for singular integrals and maximal
averages along the paraboloid, which follow from refinements of so-called sparse bounds.
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A collection S of subcubes of Rd is called sparse if for every Q ∈ S there exists a
measurable subset E(Q) ⊂ Q such that

2|E(Q)| ≥ |Q|

and such that the sets E(Q) are pairwise disjoint. For a cubeQ and an exponent 1 ≤ p <∞,
we denote the p-average of a function f over Q by

⟨f⟩Q,p =
( 1

|Q|

∫
Q
|f |p dx

)1/p
.

Let X be some operator mapping measurable functions to measurable functions. The term
‘sparse bound’ refers to upper bounds for X of the form∣∣∣ ∫ (Xf)g dx

∣∣∣ ≤ C
∑
Q∈S

|Q|⟨f⟩3Q,p⟨g⟩Q,q, (0.1.11)

where C > 0, 1 ≤ p, q <∞ and S is a sparse collection which might depend on f and g.
Sparse bounds were introduced in 2013 by Lerner [80, 81], who used them to give a new

proof of the A2 theorem, stating that the operator norm of any Calderón-Zygmund operator
on the weighted space L2(w) grows at most linearly in the so-called A2 characteristic of
the weight w. His technique proved to be very successful, and since then sparse bounds
have been established for many operators in harmonic analysis, often leading to new or
simplified proofs of effective weighted bounds. We refer to [11] for an overview of the
literature. For the singular integral operators along submanifolds of Question 1, sparse
bounds were essentially established by Lacey [74] and Oberlin [97], see also the work of
Cladek and Ou [31].

In this thesis we will use the sparse bounds to obtain good estimates for the operators
1EX for certain sets E. The sets E will be, in some appropriate sense, small, and we need
estimates that quantitatively capture this smallness. To be more precise, we will be given
a partition of Rd+1 into dyadic cubes, and E will satisfy a thinness condition

|E ∩Q| ≤ δ|Q| (0.1.12)

for all cubes Q in the partition. The operators X we will estimate are likewise ‘adapted’
to the same partition, meaning that there is no contribution of scales smaller than the
scales of the cubes in the partition. We will then establish a refined version of the sparse
bounds of Oberlin [97], which adds to his result the information that in this situation the
sparse collection S can be chosen to only contain cubes refined by the given partition, thus
satisfying (0.1.12). After that, Hölder’s inequality in the Lq averages in (0.1.11) leads to
the improved bound Cδϵ for the operator norm of the localized operator 1EX for some
positive ϵ, which suffices to prove the L2 estimates in Theorem 0.1.5.

In the classical setting of Carleson’s theorem, such localized estimates with decay in
δ are significantly easier to prove. This is because in that setting, the relevant Xf are
essentially constant on each cube of the given partition, which directly gives an estimate
(0.1.11) with optimal p = q = 1 and a disjoint collection of cubes S, rather than just a
sparse one.
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A square function

We introduce another new ingredient to deal with the rough nature ofW , a square function
inspired by the article [110] by Stein and Wainger.

Stein and Wainger proved bounds on L2 for maximal averages along the parabola

sup
k∈Z

2−k
∫ 2k

0
f(x− t, y − t2) dt =: sup

k∈Z
f ∗ µk.

Their proof goes as follows. Replacing µk by a function φk(x, y) = 2−3kφ(2−kx, 2−2ky) with
rapidly decaying Fourier transform and

∫
φk = µk(R2) essentially results in the parabolic

Hardy-Littlewood maximal function, so this operator satisfies the desired L2 bounds. It
only remains to control the difference, which can be dominated by a square function:

sup
k∈Z

|f ∗ (µk − φk)| ≤
(∑
k∈Z

|f ∗ (µk − φk)|2
)1/2

.

By Plancherel’s theorem, the L2 norm of the square function is at most(∫
|f̂(ξ)|2

∑
k∈Z

|µ̂k(ξ)− φ̂k(ξ)|2 dξ
)1/2

.

Finally, it follows from standard estimates for the decay of the Fourier transform of µk−φk,
coming from the curvature of the parabola and the assumption

∫
φk = µk(R2), that the

sum over k is bounded. This completes the proof.
A key step of our argument uses an estimate for a similar maximal function in higher

dimensions and with an additional supremum over modulations. Thus, µk will now be the
measure defined by∫

f dµk = |B(0, 2k)|−1
∫
B(0,2k)

f(x1, x2, x
2
1 + x22) dx.

Like in Stein and Wainger’s argument, the low frequency contributions to µk can be dealt
with using known arguments, here from the proof of Carleson’s theorem in [51]. There
remain certain high frequency truncations µδk of µk, which for the sake of this discussion
can be thought of as being truncated in frequency so that

|µ̂δk(ξ)| ≤ δ,

see (1.5.3) for the correct definition. A square function argument as above shows that the
maximal function supk∈Z f ∗µδk satisfies an improved bound on L2, its norm is at most Cδ.
In our proof we need, however, estimates for the larger maximal function

sup
k∈Z

sup
N∈2−kZ×{0}2

|f ∗MNµ
δ
k| (0.1.13)

involving also a supremum over modulations. With the precise definition of µδk at hand it
is not hard to see that the maximal function (0.1.13) is controlled by the positive maximal
average along the paraboloid. Estimating in that way, however, loses the information
about the Fourier support of µδk and therefore the δ decay. To obtain estimates with good
dependence on δ we instead use a more complex square function argument, keeping track
more carefully of the essential Fourier support of the measures µδk the Fourier transforms
of the measures MNµ

δ
k.

8



0.2 Singular Brascamp-Lieb forms

The modulation invariant operators, discussed in the previous section are closely related
to modulation invariant bilinear operators such as the bilinear Hilbert transform

BHTα,β(f1, f2)(x) =

∫
f1(x− αt)f2(x− βt)

1

t
dt. (0.2.1)

Besides the similar symmetries of these operators, all known proofs of their boundedness
also draw from the same set of techniques. A more direct manifestation of this connection,
observed by Kovač, Thiele and Zorin-Kranich in [72, Appendix B3], is that certain estimates
for the so-called triangular Hilbert transform

THT(f1, f2)(x, y) =

∫
f1(x− t, y)f2(x, y − t)

1

t
dt (0.2.2)

would imply Carleson’s Theorem 0.1.3 directly.
The second article in this thesis deals with a joint generalization of the forms (0.2.1)

and (0.2.2), so-called trilinear singular Brascamp-Lieb forms

Λ(f1, f2, f3) =

∫
Rd

f1(Π1(x))f2(Π2(x))f3(Π3(x))K(Π0(x)) dx. (0.2.3)

Here, fi : Rdi → C are measurable functions, Πi : Rd → Rdi are linear maps, and K is a
tempered distribution with

|∂αK̂(ξ)| ≤ |ξ|−|α|, |α| ≤ m,

for some m ≥ 0. We will call such distributions m-Calderón-Zygmund kernels, noting that
the definition differs slightly from the one given in Section 0.1. The notion of singular
Brascamp-Lieb form was introduced in [47, 48]. The name is inspired by the non-singular
variant without K, for which a fairly complete theory is presented in [13].

The goal of our article is to give criteria on the maps Πi and on exponents p1, p2 and
p3 that determine whether the form Λ satisfies bounds

|Λ(f1, f2, f3)| ≤ C∥f1∥Lp1 (Rd1 )∥f2∥Lp2 (Rd2 )∥f3∥Lp3 (Rd3 ) (0.2.4)

for some constant C > 0 and all functions fi, or not. We call forms Λ satisfying (0.2.4)
p-bounded, where p = (p1, p2, p3). Proving bounds (0.2.4) is in general a difficult open
problem. Our main contribution is towards the implied classification problem: We work
out the relevant characteristics of Λ for existing methods to apply.

Before turning to the classification, we briefly give two applications that motivate the
study of singular Brascamp-Lieb forms.

Calderón’s conjecture and superposition arguments

The bilinear Hilbert transform (0.2.1) was introduced by Calderón in an attempt to prove
bounds for the Calderón commutator [18], which comes up naturally in the theory of elliptic
partial differential equations on domains with Lipschitz boundary; see, for example, the
discussion in [91].
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Using Fourier inversion, the bilinear Hilbert transform can expressed - up to a constant
factor - as

BHTα,β(f1, f2)(x) =

∫∫
f̂1(ξ)f̂2(η) sgn(αξ + βη)eix(ξ+η) dξ dη.

On the other hand, the Calderón commutator has the form

Bm(f1, f2)(x) =

∫∫
f̂1(ξ)f̂2(η)m(ξ, η)eix(ξ+η) dξ dη

for a function m satisfying m(ξ, η) = m(λξ, λη) for all ξ, η ∈ R, λ > 0. This function m
is determined by its values on the circle ξ2 + η2 = 1. Suppose that its restriction to that
circle is odd and of bounded variation. Then there exists a finite measure µ such that

m(ξ, η) =

∫ π

0
sgn(cos(θ)ξ + sin(θ)η) dµ(θ).

Hence, writing BHTθ = BHTcos θ,sin θ:

Bm =

∫ π

0
BHTθ dµ(θ).

Calderón conjectured that the bilinear operators BHTθ for θ ∈ [0, π] are uniformly bounded
from L2 × L2 → L1, which by this argument would imply bounds for all operators Bm, of
linear growth in the variation of m on the circle ξ2 + η2 = 1.

In this argument the bilinear Hilbert transforms play the role of elementary building
blocks, convex combinations of which give rise to a large class of operators occurring in
applications. We will give a generalization of such superposition arguments in Section 0.2.1.

Calderón’s conjecture was only resolved in 1997 by Lacey and Thiele [76, 78]. They
proved a weaker form of the conjecture, with no control on the θ-dependence of the bound.
Uniform bounds for θ ∈ [0, π] were shown by Thiele [112] into L1,∞ and finally by Grafakos
and Li [62] in the precise form needed by Calderón.

Multilinear Ergodic Averages

Another motivation for the study of singular Brascamp-Lieb forms are certain quantitative
pointwise convergence results in ergodic theory. We illustrate this connection using the
example of the triangular Hilbert transform (0.2.2). No bounds for the triangular Hilbert
transform are known. The goal of this section is to motivate its study from applications
that are likewise open problems.

Let (X,A, µ) be a probability space. Two commuting and invertible measure preserving
transformations S, T induce a Z2 action onX. Our object of interest are the bilinear ergodic
averages

AN (f1, f2)(x) =
1

N

N∑
n=1

f1(T
nx)f2(S

nx).

Somewhat similarly as in the setting of Fourier series, L2(X,µ) convergence of these aver-
ages is known, see [34], but pointwise convergence is open.
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Question 2. Let f1, f2 ∈ L2(X). Is it true that the sequence AN (f1, f2)(x) converges for
µ-almost every x as N → ∞?

One approach to proving pointwise convergence, introduced in this setting by Bourgain
[17], is through estimates for the r-variation of the sequence AN (f, g). The r-variation of
a sequence (an)n∈N is defined as

∥a∥V r = sup
J

sup
n0<···<nJ

( J∑
j=1

|anj−1 − anj |r
)1/r

.

Then a positive answer to Question 2 would follow, for example, from an estimate

∥∥AN (f1, f2)(x)∥V r(N)∥L1(X) ≤ C∥f1∥L2(X)∥f2∥L2(X). (0.2.5)

for some finite r. The Calderón transference principle [19] allows to lift such estimates to
the acting group Z2, to which one can transfer from R2. In this way (0.2.5) would follow
from the estimate∥∥∥∥∥∥ 1

T

∫ T

0
f1(x− t, y)f2(x, y − t) dt

∥∥∥
V r(T )

∥∥∥
L1(R2)

≤ C∥f1∥L2(R2)∥f2∥L2(R2). (0.2.6)

The expression on the left-hand side bears an obvious resemblance to the triangular Hilbert
transform (0.2.2) and motivates its study.

We note that by the same argument there are n-linear ergodic averages associated to
all n-linear singular integral operators. For classical, linear, ergodic averages the argument
here was executed by Birkhoff [15] and in the variational form by Bourgain [17]. For the
bilinear Hilbert transform and the corresponding bilinear ergodic averages it was done in
the papers of Lacey [75], Demeter [37] and Do-Oberlin-Palsson [42].

The two-dimensional situation

We return to the topic of our article, the classification of singular Brascamp-Lieb forms.
An important motivation for us is the article [39] of Demeter and Thiele, where they

considered the two dimensional variants of the bilinear Hilbert transform

BHT2
A,B(f1, f2)(x) =

∫
R2

f1(x+Ay)f2(x+By)K(y) dy (0.2.7)

for linear maps A,B : R2 → R2. After introducing a dualizing function they are special
cases of the notion of singular Brascamp-Lieb form (0.2.3). The latter is more general,
allowing, for example, functions with different-dimensional arguments. We will however
show, as a byproduct of our classification, that the higher-dimensional bilinear Hilbert
transforms are among a small number of interesting cases in which estimates are not either
trivially false or elementary.

Certain linear transformations in the integral and functions in (0.2.7) preserve the form
of the operator but change A,B. The application of such transformations has no effect
on the boundedness properties of the operator. The same applies to singular Brascamp-
Lieb forms (0.2.3). It is therefore natural to classify pairs (A,B) modulo the implied
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equivalence relation, and Demeter and Thiele obtained such a classification in [39] in the
two dimensional case (0.2.7).

Their classification identifies a generic, nondegenerate case in which the one-dimensional
methods apply. The new feature in two dimensions are several degenerate cases. For some
of them Demeter and Thiele were able to adapt the one dimensional methods with a more
careful analysis, which they named ‘one and a half-dimensional time-frequency analysis’.
They however left open one very degenerate case, the ‘twisted paraproduct’∫

f1(x− s, y)f2(x, y − t)K(s, t) dsdt .

Boundedness in this case was later shown by Kovač [71].
Another case with two dimensional functions, which is not mentioned in the classifi-

cation of Demeter and Thiele however included in our notion of singular Brascamp-Lieb
form, is the triangular Hilbert transform (0.2.2). In this case estimates are still open.

Given the understanding of the two-dimensional situation, it is natural to ask the fol-
lowing slightly imprecise questions.

Question 3. Are there additional, qualitatively different phenomena in higher dimensions?
That is, are the nondegenerate methods of Lacey and Thiele, the degenerate fractional-
dimensional time-frequency analysis of Demeter and Thiele and the twisted techniques of
Kovac enough to bound all forms other than the triangular Hilbert transform? Given a
specific form, how can one determine whether they apply or not?

0.2.1 Our results

We will show that the short answer to these questions is no, there are no fundamentally
new phenomena in higher dimensions. We now make this precise.

Quiver representations

A quiver is a directed graph. A quiver representation assigns to each vertex of the quiver
a vector space, and to each arrow a linear map between the corresponding spaces. Quiver
representations are studied in the representation theory of finite dimensional algebras, they
are the modules of certain algebras associated to the quiver. Because of this, we will from
now on call them modules.

The algebraic data (Πi)i=0,...,3 associated to a singular Brascamp-Lieb form, together
with the implicit vector spaces, constitutes a module of the quiver in Figure 1. There is a
natural notion of isomorphism of modules. This notion corresponds exactly to the equiva-
lence relation discussed above: Two modules are isomorphic if and only if the corresponding
singular Brascamp-Lieb forms can be transformed into one another by linear changes of
variables. Thus, the problem of classifying singular Brascamp-Lieb forms is equivalent to
the problem of classifying modules of the quiver in Figure 1 up to isomorphism.

This is a classical problem in representation theory. Indeed, up to taking adjoints this is
the so-called four subspace problem of classifying configurations of four finite dimensional
subspaces of a finite dimensional vector space. It was solved by Gelfand and Ponomarev
[58] over algebraically closed fields, and Nazarova [94, 95] over R. We note that with
certain mild assumptions on the singular Brascamp-Lieb form, which are satisfied when it
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Figure 1: Dual of the four subspace quiver

is (p1, p2, p3)-bounded in the Hölder range 1/p1+1/p2+1/p3 = 1, the classification problem
reduces to the simpler Kronecker normal form [73].

Classification results

The solution of the four subspace problem in [58] is in terms of a list of indecomposable
modules, each module can be expressed in a unique way as a direct sum of indecomposables.

We prove the following projection theorem, which implies that the direct summands of
the associated module indicate the difficulty of proving estimates for a singular Brascamp-
Lieb form.

For technical reasons, we distinguish the data H = (Πi)i=0,...,3 of singular Brascamp-
Lieb forms and the associated modules M. The module corresponding to the datum H is
denoted MH and conversely.

Theorem 0.2.1 (Becker-Durcik-Lin [8]). Let M,M′ be two modules and let p < ∞. Let
H and H ⊕ H′ be data with MH

∼= M and MH⊕H′ ∼= M ⊕ M′. Suppose that for each
l-Calderón-Zygmund kernel K we have

|ΛH⊕H′(K, f1, f2, f3)| ≤ C∥f1∥p1∥f2∥p2∥f3∥p3 .

Then there exists a constant C ′ such that for each 2l-Calderón-Zygmund kernel K we have

|ΛH(K, f1, f2, f3)| ≤ C ′∥f1∥p1∥f2∥p2∥f3∥p3 .

Using necessary boundedness conditions for singular Brascamp-Lieb forms that follow
from the non-singular results in [13], Theorem 0.2.1 allows us to exclude many indecompos-
able modules as direct summands of bounded singular Brascamp-Lieb forms. This leads to
the following result.

Theorem 0.2.2 (Becker-Durcik-Lin [8]). Let 1 ≤ p <∞ and let H be a p-bounded singular
Brascamp-Lieb datum with H1, H2, H3 ̸= {0}. Then one of the following holds, with the
notation from Appendix 2.8.

i) (Bilinear Hölder-type) There exists an assignment {i, j, k} = {1, 2, 3} such that 1
pj

=
1
pk

= 1− 1
pi

and n1, n2, n3, n4 ≥ 0 such that

MH
∼= (P(j))⊕n1 ⊕ (K(j))⊕n2 ⊕ (P(k))⊕n3 ⊕ (K(k))⊕n4 .
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ii) (Young-type) We have p = (p1, p2, p3) with 1
p1

+ 1
p2

+ 1
p3

= 2. If p1, p2, p3 ̸= 1 then
there exist n1, n2 ≥ 0 such that

MH
∼= Y⊕n1 ⊕ Z⊕n2 .

If there is some i ∈ {1, 2, 3} with pi = 1, then there exist n1, n2, n3, n4 ≥ 0 such that

MH
∼= Y⊕n1 ⊕ Z⊕n2 ⊕ (P(i))⊕n3 ⊕ (K(i))⊕n4 .

iii) (Loomis-Whitney-type) We have p = (2, 2, 2) and there exist n1, n2 ≥ 0 and a list of
modules M1, . . . ,Mk from Table 2.4 with

MH
∼= L⊕n1 ⊕B⊕n2 ⊕M1 ⊕ · · · ⊕Mk .

iv) (Hölder-type) We have p = (p1, p2, p3) with
1
p1
+ 1
p2
+ 1
p3

= 1. In this case, there exists
a finite list of modules M1, . . . ,Mk from Table 2.2 such that

MH
∼= M1 ⊕ · · · ⊕Mk .

The first two cases are trivial, being essentially built by combining a product and a
linear singular integral operator, or a convolution and a linear singular integral operator.
In these cases the necessary conditions are already sufficient; bounds follow from linear
singular integral bounds and Hölder’s or Young’s inequality, respectively. The third case is
more interesting, but all forms in this case can still be bounded by elementary methods, by
combining Plancherel’s theorem and the Loomis-Whitney inequality. These observations
yield the following theorem.

Theorem 0.2.3 (Becker-Durcik-Lin [8]). Let MH and p be as in case i), ii) or iii) of
Theorem 2.1.15. Then H is p-bounded.

This leaves the Hölder exponent case (iv) as the most interesting one. In that case there

are the four families Nn,Cn,Tn,J
(i)
n of indecomposable modules, see Table 2.2. The first

two correspond to nondegenerate cases, and boundedness of all singular Brascamp-Lieb
forms associated to direct sums of them is by now well understood, see for example [56].
The familyTn includes the triangular Hilbert transformT1 and higher dimensional versions
of it. Bounds for forms in this family, and by Theorem 0.2.1 for any forms containing direct
summands from this family, are therefore likely outside of reach of current methods.

Taking direct sums of modules J
(i)
1 yields forms with ‘twisted’ behavior. We prove new

bounds for all such sums as a special case of the following result.

Theorem 0.2.4 (Becker-Durcik-Lin [8]). Let n ≥ 1 and let M = (J
(1)
1 ⊕J

(2)
1 ⊕J

(3)
1 ⊕C1)

⊕n.
Let 2 < p < ∞ and let H be a singular Brascamp-Lieb datum associated with M. Then
there exists l and C > 0 such that for all l-Calderón-Zygmund kernels K, we have

|ΛH(K, f1, f2, f3)| ≤ C∥f1∥p1∥f2∥p2∥f3∥p2 .

A single J
(j)
n leads to fractional time-frequency analysis, whereas multiple modules J

(j)
n

with n ≥ 2, or direct sums including also Nn for some n or Cn with n ≥ 2 introduces both
twisted and modulation invariant features. Currently, there are no bounds for forms of
the latter type in the literature, but there is no fundamental obstruction to proving them.
Together with Theorems 0.2.2 and 0.2.3 this provides our answer to Question 3.
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Method of rotations

We complement the projection Theorem 0.2.1 with a general superposition result, showing
that every Caldéron-Zygmund kernel on Rd can be expressed as a superposition of Caldéron-
Zygmund kernels on d− 1-dimensional subspaces of Rd.

At its heart is the following proposition about decompositions of mean zero functions
on spheres. Fix d ≥ 3 and denote

Sd−1 = {x ∈ Rd : |x| = 1}.

Let σ be the normalized (d− 1)-dimensional Hausdorff probability measure on Sd−1. Fur-
ther, if ν ∈ Sd−1, let σν be the normalized (d − 2)-dimensional Hausdorff probability
measure on the great circle

(span ν)⊥ ∩ Sd−1 .
Finally, denote by Md the manifold

{(x, y) ∈ Sd−1 × Sd−1 : x · y = 0}

and by Hs
0(S

d−1) the mean zero functions in the Sobolev space Hs(Sd−1).

Proposition 0.2.5 (Becker-Durcik-Lin [8]). Let d ≥ 3 and s > 1/2. There exists a
constant C > 0 such that the following holds. Let Ω ∈ Hs

0(S
d−1). Then there exists a

function Γ : Md → C such that

• for all ν ∈ Sd−1 ∫
(span ν)⊥∩Sd−1

Γ(ν, θ) dσν(θ) = 0 .

and
∥Γ(ν, ·)∥

H
s−1/2
0 ((span ν)⊥∩Sd−1)

≤ C∥Ω∥Hs
0(S

d−1) .

• as measures, we have

Ω(θ)σ(θ) =

∫
Sd−1

Γ(ν, θ)σν(θ) dσ(ν) .

Moreover, Γ can be chosen so that the mapping Ω 7→ Γ is continuous from Ck(Sd−1) into
Ck(Md), for every k.

The proposition states that every mean zero function Ω on Sd−1 can be expressed as
a superposition of functions Γ(ν, ·) that are supported on the great circles ν⊥ ∩ Sd−1 and
have mean zero, and that one has control of the Hs−1/2 norm of these functions.

A corollary of Proposition 0.2.5 are superposition arguments for singular Brascamp-
Lieb forms in a similar spirit as for the Calderón commutator. However, one should expect
the estimates for the forms with kernels supported on subspaces to be significantly harder
to prove than the estimates for the original form. So this method is unlikely to give new
bounds.
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0.3 Fourier restriction inequalities

We turn to the last article of this thesis, which is about a sharp version of the Tomas-Stein
Fourier restriction inequality.

The classical Fourier restriction problem asks about the possibility of defining the re-
striction of the Fourier transform of a function to a subset of Rd. By Plancherel’s theorem,
the Fourier transform is a bijective isometry L2(Rd) → L2(Rd). Thus, it is not possible to
meaningfully restrict the Fourier transform of an L2(Rd) function to a measure zero sub-
set of Rd. On the other extreme, the Fourier transform of a function in L1(Rd) is always
continuous, so it is well-defined pointwise. In between, the Hausdorff-Young inequality im-
plies that the Fourier transform of an Lp(Rd) function is in Lp

′
(Rd). However, the Fourier

transform is no longer surjective, so it might still make sense to restrict it to some sets of
measure zero.

Stein observed [50, Page 28] that this is indeed sometimes possible. His result was later
improved by Tomas and then made optimal by Stein [113]. Let σ be the arc length measure
on the unit circle

S1 = {(x, y) : x2 + y2 = 1} ⊂ R2.

Theorem 0.3.1 (Tomas, Stein [113]). There exists a constant C > 0 such that for all
functions f ∈ L1(R2) ∩ L6/5(R2)(∫

|f̂(ξ)|2 dσ(ξ)
)1/2

≤ C∥f∥L6/5(R2). (0.3.1)

Since L1(R2) ∩ L6/5(R2) is dense in L6/5(R2), it follows that there exists a unique
operator

R : L6/5(R2) → L2(σ)

which agrees with the restriction of the Fourier transform for L1(R2) functions.
The adjoint of the Fourier restriction operator R is the Fourier extension operator

E : L2(σ) → L6(R2), f 7→ f̂σ.

By duality, the Tomas-Stein inequality (0.3.1) is then equivalent to the adjoint bound for
the extension operator, which reads

∥f̂σ∥L6(R2) ≤ C∥f∥L2(σ). (0.3.2)

To illustrate its relevance beyond restricting Fourier transforms of L6/5 functions, we want
to mention two classical applications of the Tomas-Stein inequality.

Bochner-Riesz summation of Fourier series

For the first application we return to the question of convergence of Fourier series, now of
functions f : [0, 1]2 → C. Since there is no natural ordering of Z2, one has to choose the
order in which to sum to Fourier series. One natural choice is to sum in order of increasing
magnitude of the frequency, leading to the following question.

16



Question 4. Let f ∈ Lp([0, 1]2). Is it true that the circular Fourier sums∑
k21+k

2
2≤R2

f̂(k1, k2)e
2πi(k1x1+k2x2) (0.3.3)

converge to f in Lp([0, 1]2) as R→ ∞?

When p = 2 the answer is yes, this is a simple consequence of Plancherel’s theorem.
Surprisingly, however, the answer is no as soon as p < 2, as shown by Fefferman in his
celebrated paper on the ball multiplier [52]. Thus, one is led to introduce a weight of
smoothness λ > 0 (

1− |k|2
R2

)λ
+
=


(
1− |k|2

R2

)λ
if |k| ≤ R,

0 if |k| ≥ R,

in the sums (0.3.3), to make them better behaved.

Question 5. Let 1 ≤ p ≤ ∞. For which λ > 0 is it true that for all f ∈ Lp([0, 1]2), the
Bochner-Riesz sums ∑

k∈Z2

(
1− |k|2

R2

)λ
+
f̂(k1, k2)e

2πi(k1x1+k2x2) (0.3.4)

converge to f in Lp([0, 1]2) as R→ ∞?

In the two dimensional setting considered here, this question was resolved for all
1 ≤ p ≤ ∞ by Carleson and Sjölin [22]. If one is only interested in the range p ≤ 6/5,
however, their result already follows as a simple application of the Tomas-Stein restriction
inequality (0.3.1), see [108, Page 422]. The argument exploits localization of pieces of the
Bochner-Riesz sum to pass from L6/5 to L2, and then expresses the radial Fourier multipli-
ers inherent in the Bochner-Riesz sum as superpositions of the Fourier restriction operators
onto concentric circles.

Strichartz estimates for the Schrödinger equation

Fourier restriction inequalities find another important application in the theory of dispersive
partial differential equations. The Tomas-Stein inequality is not specific to the arc length
measure on the circle, but holds for many measures supported on manifolds, the relevant
property being the nonvanishing curvature of the manifold. In particular, a similar theorem
applies to the parabola. In that setting inequality (0.3.2) gives information about solutions
of the Schrödinger equation in 1 + 1 dimension

i∂tu+∆u = 0,

u(0, x) = f(x).

Taking the Fourier transform of the Schrödinger equation yields

(η − ξ2)û(η, ξ) = 0.

Thus distributional solutions of the Schrödinger equation are supported on the parabola
ξ2 = η. Taking a Fourier transform only in x and solving an ODE also yields

Fx[u](t, ξ) = eit|ξ|
2
f̂(ξ),
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giving the more precise formula

û(η, ξ) = δ(η − |ξ|2)f̂(ξ).

The version of the Tomas-Stein extension estimate for the paraboloid can then be stated
either as an L6 estimate for the solution of the Schrödinger equation

∥u(t, x)∥L6(R2) ≤ C∥f̂∥L2(R) = C∥f∥L2(R), (0.3.5)

or, in a form more closely resembling (0.3.2), as

∥ĝµ∥L6(R2) ≤ C∥g∥L2(µ) (0.3.6)

with µ = δ(η − ξ2)dηdξ and g(ξ, η) = f̂(ξ).

Sharp constants

Having introduced Fourier restriction inequalities in general, we now turn to the specific
problem considered in this thesis. We are interested in the exact optimal constant C in the
inequality (0.3.2).

This problem is motivated by work of Foschi [54], who found the optimal constant in
the Tomas-Stein extension inequality from the two dimensional sphere

S2 = {x ∈ R3 : |x| = 1}.

Let σ2 denote the surface measure on S2.

Theorem 0.3.2 (Foschi [54]). If

∥f∥L2(σ2) ≤ ∥1∥L2(σ2)

then
∥f̂σ2∥L4(R3) ≤ ∥σ̂2∥L4(R3).

In other words, constant functions are maximizers for the Fourier extension inequality
for S2. Foschi also found the sharp constants in inequality (0.3.5) for the parabola and
the cone in two and three dimensions, in that case the maximizers are Gaussians [55]. The
results for the parabola were also independently obtained by Hundertmark and Zharnitsky
[67]. There are numerous other results on sharp constants in extension inequalities in the
literature, for higher-dimensional spheres, other manifolds, some giving full characteriza-
tions of maximizers, some just showing existence or regularity of maximizers, some showing
nonexistence of maximizers. We refer to [96] for a survey of the literature.

For the Tomas-Stein inequality for the circle, Theorem 0.3.1, a characterization of the
extremizers and the sharp constant are, however, still open. It is known that maximizers
exist and are smooth, this was shown by Shao [105, 106]. It is also known by work of
Carneiro, Foschi, Oliveira e Silva and Thiele [23] that constant functions are local maxi-
mizers. In light also of Theorem 0.3.2 it is then natural to make the following conjecture.
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Conjecture 0.3.3. Constant functions maximize the Tomas-Stein extension inequality for
S1. That is, if

∥f∥L2(σ) ≤ ∥1∥L2(σ)

then
∥f̂σ∥L6(R2) ≤ ∥σ̂∥L6(R2).

In their paper [23], Carneiro, Foschi, Oliveira e Silva and Thiele proposed a program to
prove Conjecture 0.3.3 along the lines of Foschi’s proof of Theorem 0.3.2. They managed
to reduce Conjecture 0.3.3 to a conjecture about positive semidefiniteness of a certain
quadratic form Q on a subspace of L2(T3), where T = R/(2πZ). A function f on T3 is
called antipodal if it is π-periodic in each argument.

Conjecture 0.3.4. Let

dΣ = δ(

6∑
j=1

eiθj )

6∏
j=1

dθj

and

Q(f) =

∫∫
T6

(|eiθ1 + eiθ2 + eiθ3 |2 − 1)(|f(θ1, θ2, θ3)|2 − f(θ1, θ2, θ3)f(θ4, θ5, θ6)) dΣ.

Then Q(f) ≥ 0 for all antipodal f ∈ L2(T3).

0.3.1 Our results

The final article of this thesis establishes a partial result towards Conjecture 0.3.4. It
draws inspiration for a guiding strategy from the two papers [3, 99] of Barker, Oliveira
e Silva, Thiele and Zorin-Kranich. These two papers contain rigorous numerical compu-
tations of the eigenvalues and eigenfunctions of the quadratic form Q when restricted to
the finite dimensional space of trigonometric polynomials of degree at most 120. After
various reductions, these numerical results paint a clear picture: There are a small number
of eigenfunctions with very small eigenvalues, and they can be identified to be very close
to the eigenfunctions of the quadratic form

M(f) =

∫
T3

m(θ)|f(θ)|2
3∏
j=1

dθj ,

where m is an explicit nonnegative function. In addition to this, there is a large space of
functions without any noticeable structure, on which the quadratic form seems to be safely
positive, and a few very large eigenvalues. For a more detailed discussion, we refer to [3].

The eigenfunctions of M are, of course, easy to understand. They concentrate around
the level sets of m, which can be computed in the asymptotic range of eigenvalues close
to zero. This analysis shows that they correspond to functions in the original problem
that concentrate near two antipodal points. Motivated by this, we study in our article the
quadratic form Q on such functions. We obtain, after various reductions, an asymptotic
expansion with M as the main term. Then we prove effective bounds to obtain positivity
of the quadratic form for functions under an explicit small support assumption.
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The precise statement is as follows. Let V be the space of all antipodal functions in
L2(T3,R). Let Cε be the cylinder of radius ε centered at the line R(1, 1, 1), and define

Vε :=

{
f ∈ V : supp f ⊂ Cε/(2πZ)3

}
.

Theorem 0.3.5 (Becker [7]). Let ε = 1/20. Then for all f ∈ Vε it holds that Q(f) ≥ 0.

As a consequence, we obtain the following partial result towards Conjecture 0.3.3.

Corollary 0.3.6 (Becker [7]). Let ε′ =
√
3/8ε ≈ 0.031. If

∥g∥L2(σ) ≤ ∥1∥L2(σ)

and g(eiθ) is supported in (−ε′, ε′) + πZ, then

∥ĝσ∥L6(R2) ≤ ∥σ̂∥L6(R2).
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Chapter 1

A degree one Carleson operator
along the paraboloid

This chapter consists of the article [5].

1.1 Introduction

This paper advances the program of Pierce and Yung [101] of studying maximally mod-
ulated singular Radon transforms along paraboloids. While their work focuses on certain
polynomial modulations without linear terms and uses TT ∗ methods, our result is the first
instance in this program for degree one polynomials featuring symmetries that mandate
the use of time-frequency analysis.

Our main result is as follows. An m-Calderón-Zygmund kernel on Rd is a function
K : Rd \ {0} → C satisfying the estimates

|∂αK(x)| ≤ |x|−d−|α| , |α| ≤ m, (1.1.1)

and the cancellation property∫
B(0,R)\B(0,r)

K(x) dx = 0 , 0 < r < R . (1.1.2)

Let V ⊂ Rd+1 be a linear subspace. We consider the maximally modulated singular integral
along the paraboloid defined a priori on Schwartz functions f on Rd+1 by

TV f(x) = sup
N∈V

sup
r<R

∣∣∣∣∣
∫
r<|y|<R

f(x′ − y, xd+1 − |y|2)eiN ·(y,|y|2)K(y) dy

∣∣∣∣∣ , (1.1.3)

where x = (x′, xd+1) ∈ Rd × R = Rd+1, and K is a Calderón-Zygmund kernel.

Theorem 1.1.1. Let d ≥ 2 and let m > d
2 . Suppose that V = {0}d × R or V is a proper

subspace of Rd × {0}. Then for all p with

d2 + 4d+ 2

(d+ 1)2
< p < 2(d+ 1) (1.1.4)
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there exists C > 0 such that for all m-Calderón-Zygmund kernels K and all Schwartz
functions f , we have with TV as defined in (1.1.3)

∥TV f∥Lp(Rd+1) ≤ C∥f∥Lp(Rd+1) .

Note that the singular integral along the paraboloid in (1.1.3) is given by convolution
with the tempered distribution k(z) = δ(zd+1−|z|2)K(z) on Rd+1. In terms of the argument
z, the modulation argument N · (y, |y|2) = N ·z in (1.1.3) is a degree one polynomial. This,
and its consequences for the method of proof below, is why we call TV a degree one operator.

1.1.1 Motivation

Our interest in the operator (1.1.3) stems from the following result of Pierce and Yung [101],
see also [1]. They prove Lp bounds for p ∈ (1,∞) for maximally polynomially modulated
singular integral operators along the paraboloid. More precisely, they consider the operator

f 7→ sup
P

∣∣∣∣∫
Rd

f(x′ − y, xd+1 − |y|2)eiP (y)K(y) dy

∣∣∣∣ , (1.1.5)

where d ≥ 2 and P ranges over a certain set of polynomials of fixed degree without linear
terms, and without a monomial c|y|2. Note that this excludes exactly the monomials that
are present in (1.1.3). Very recently, Beltran, Guo and Hickman [10] gave a version of the
Pierce-Yung theorem with d = 1, and P ranging over {cy3 : c ∈ R}.

The study of maximally modulated singular integrals such as (1.1.3), (1.1.5) has a long
history, starting with Carleson’s [21] proof of pointwise almost everywhere convergence of
Fourier series of L2 functions. His proof relies crucially on an L2 to L2,∞ estimate for the
maximally modulated Hilbert transform

f 7→ sup
N∈R

∣∣∣∣∫ f(x− y)eiNy
1

y
dy

∣∣∣∣ . (1.1.6)

Carleson’s theorem was subsequently extended to Lp for p ∈ (1,∞) by Hunt [68], and to
singular integrals in higher dimension by Sjölin [107]. Other essentially different proofs
of Carleson’s theorem were later given by Fefferman [51] and by Lacey and Thiele [77].
Endpoint questions were considered in [2, 82, 41].

Pierce and Yung’s theorem is motivated by a variation of this theme due to Stein and
Wainger [109]. They investigated maximally polynomially modulated singular integrals

f 7→ sup
P

∣∣∣∣∫ f(x− y)eiP (y)K(y) dy

∣∣∣∣ , (1.1.7)

where P ranges over the set of all polynomials of fixed degree without linear terms. They
prove Lp bounds for p ∈ (1,∞). The harder extension to the operator (1.1.7) with P
ranging over all polynomials of fixed degree was accomplished by Lie [83, 84]. Zorin-
Kranich subsequently gave a version of Lie’s proof with very weak regularity assumptions
in [116].
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1.1.2 Modulation symmetries

We want to discuss the relevance of excluding linear terms in the polynomials in (1.1.5)
and (1.1.7). The methods used by Stein-Wainger to bound the operator (1.1.7), without
linear terms in the modulations, are fundamentally different from the methods employed
by Carleson and Sjölin for the same operator with only linear terms. Stein and Wainger
use a TT ∗ argument exploiting almost orthogonality of contributions of different scales,
and decay when the polynomial modulation is large [109, Theorem 1]. Sjölin and Lie on
the other hand use time frequency analysis. This difference in methods is dictated by the
symmetries of the operator. Carleson’s operator (1.1.6), and Sjölin’s higher dimensional
variant, are invariant under the modulations

f 7→ [x 7→ eiNxf(x)] , N ∈ Rd . (1.1.8)

On the other hand, a quick computation shows that the operator (1.1.7) has no symmetries
under the transformations (1.1.8), as long as no linear terms are present in the polynomials
P . To illustrate how this symmetry affects the proof, the reader is invited to use the
modulation symmetry under (1.1.8) to show that [109, Theorem 1] would not be true for
degree one polynomials.

Pierce and Yung sidestep the issue of modulations symmetries via their restrictions on
the linear and quadratic terms of the polynomials. This allows for a TT ∗ argument in
the same spirit as in [109], but using more sophisticated oscillatory integral estimates. In
contrast, our operators TV are invariant under linear modulations (1.1.8) with N ∈ V , so
our proof will use time frequency analysis.

1.1.3 Previous results

Pierce and Yung’s bound for (1.1.5) sparked interest in the corresponding operators with
linear modulations.

Roos [103] proved a version of Sjölin’s theorem for anisotropic Calderón-Zygmund op-
erators with scaling symmetry preserving the paraboloid. Roos’s result assumes enough
regularity of the Calderón-Zygmund operator, and his bounds blow up if one approximates
a singular integral along a paraboloid by such operators. In [6], the author improved the
control of this blowup.

Guo, Roos, Pierce and Yung proved in [64] a number of interesting related results for
Hilbert transforms on planar curves. They weaken the maximal operator by first taking an
Lp norm in one of the variables, before taking the supremum in the modulation parameter.
Most relevant to us is the following special case of their Theorem 1.2:∫

sup
N∈R

∫ ∣∣∣∣∫ f(x1 − y, x2 − y2)eiNy
2 dy

y

∣∣∣∣p dx1 dx2 ≤ C∥f∥pp , (1.1.9)

where p ∈ (1,∞). They also noted that for p = 2, (1.1.9) holds with the order of dx1 dx2
reversed, and also with modulations eiNy, by a combination of Plancherel and Lie’s poly-
nomial Carleson theorem.

Finally, Ramos [102] proved bounds for maximal modulations of the one dimensional
Fourier multipliers obtained by restricting the multiplier of the Hilbert transform along the
parabola to a line, uniformly in the choice of line.
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Our Theorem 1.1.1 is the first Lp estimate for maximal linear modulations of a singular
integral operator along a submanifold, with - differently from (1.1.9) - the supremum fully
inside the Lp norm. We cannot directly compare our result to [64], because they consider
singular integrals along planar curves, while Theorem 1.1.1 assumes that the dimension of
the paraboloid is at least two. However, Theorem 1.1.1 implies a stronger version of the
hypothetical generalization of (1.1.9) to paraboloids of dimension ≥ 2 in the range of p
given by (1.1.4). We stress that our proof does not apply to the one dimensional parabola,
so we do not recover (1.1.9) itself. However, our Theorem 1.1.1 does recover, via projection
and limiting arguments, Sjölin’s theorem [107] in the full range of exponents p ∈ (1,∞).
In particular, it implies the Carleson-Hunt theorem.

1.1.4 Overview of the proof of Theorem 1.1.1

Our proof is an adaptation of Fefferman’s [51] proof of Carleson’s theorem to the setting
of singular integrals along paraboloids. In some parts we also follow the presentation in
[116]. We establish variants of Fefferman’s key time-frequency analysis estimates in this
more singular setting.

The proof starts with a discretization of the operator, in Section 1.2, and a combinato-
rial decomposition into so called forest operators and antichain operators in Section 1.4 (see
Sections 1.2 and 1.3 for the definitions of these operators). These two steps are straightfor-
ward variation of the corresponding steps in Fefferman’s proof. However, differently from
Fefferman, we test the operator with the indicator function of a set F and use a modified
decomposition adapted to F . This allows us to directly prove weak type L2 bounds.

After the decomposition of the operator, the argument proceeds by proving bounds for
antichain operators in Section 1.5, for so called tree operators in Section 1.6 and finally for
forest operators in Section 1.7, see Propositions 1.3.2, 1.3.3 and 1.3.4. Each of these three
steps needs new ingredients for singular integrals supported on submanifolds.

Antichains: A square function argument

To control the antichain operators in Section 1.5, we decompose the kernel k with singular
support on the paraboloid into a smoothened kernel, which is no longer supported just on
a submanifold, and a remainder. The versions of the operator with smoothened kernel are
estimated using the argument of Fefferman (see Lemma 1 and Lemma 2 in [51]). The con-
tribution of the remainder is estimated by a square function. This square function is closely
related to a classical (unmodulated) square function used in [110] to prove boundedness of
the maximal average along the paraboloid. In our square function, there is an additional
summation over modulations compared to the one in [110]. To bound this larger square
function, we rely on the precise decay rate in each direction of the Fourier transform of
the kernel supported on the paraboloid, coming from stationary phase. In addition, we use
that the Fourier transform of the remainder vanishes near a certain subspace.

Trees: Sparse bounds

In Section 1.6 we estimate the tree operators. These are pieces of the operator which can
be modeled by truncated singular integral operators. Fefferman’s argument for this step
(see Lemma 3 in [51]) relies on the fact that the convolution of a function with a truncated
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singular integral kernel is essentially constant at the scale of the lower truncation parameter.
This makes the integral of said convolution over a set which is thin at this scale small. In
contrast, truncated singular integrals along paraboloids are not essentially constant at the
lower truncation scale. Our new ingredient to solve this issue is a Sobolev smoothing
estimate for truncated singular integrals along paraboloids. On a technical level, we use
certain sparse bounds for singular Radon transforms, see Lemma 1.6.2, due to Oberlin [97],
see also [74]. The arguments in Section 1.6 are formulated for a general class of singular
Radon transforms, similar to the setting of [44].

Forests: Square functions and oscillatory integrals

In Section 1.7 we follow Fefferman’s argument (Lemma 4 and Lemma 5 in [51]) to prove
almost orthogonality estimates between tree operators, and combine the estimates for tree
operators to an estimate for forest operators. We prove that tree operators essentially
only act on frequencies close to a central frequency associated to the tree, leading to al-
most orthogonality for trees with sufficiently separated central frequencies. This requires
more work than in [51], because of the singular support of the kernels on the paraboloid.
However, it is within the scope of the square function arguments in [110], [44], used there
to bound maximal averages and maximally truncated singular integrals along paraboloids.
Fefferman’s argument requires certain upper bounds to be local, in the sense that they only
depend on the values of the functions involved on certain sets associated to the trees. To en-
sure this locality we further use estimates for certain oscillatory integrals along paraboloids,
see Section 1.7.2. They replace easier partial integration arguments in [51].

Finally, we deduce Lp bounds in Section 1.8, using interpolation and a localization
argument as in [116].

1.1.5 Limitations and further questions

The limitations of our methods are still dictated by the symmetries of the operator. The
restrictions on V in Theorem 1.1.1 ensure that the operator TV has only linear modulation
symmetries. If we had Rd×{0} ⊂ V , then TV would be invariant under the transformations

f 7→ [(x′, xd+1) 7→ eiN(|x′|2+xd+1)f(x′, xd+1)] , N ∈ R . (1.1.10)

Time frequency analysis in its current form seems to be unable to handle such additional
symmetries. For example, with our setup Proposition 1.3.2 fails in the presence of the
symmetry (1.1.10), because the definition (1.3.2) of density used therein is not invariant
under (1.1.10).

Note that for the modulation subspace V to be compatible with the anisotropic dilation
symmetry of the paraboloid, it can only be the vertical subspace {0}d × R, a subspace of
Rd × {0}, or a sum of two such spaces. Then the only remaining case (up to rotation
around the vertical axis) that could conceivably be within reach of current methods is
V = Rd−1 ×{0}×R. Our argument does not handle this V , the particular point of failure
is the square function argument in Subsection 1.5.3. However, we know of no fundamental
obstruction. It is tempting to ask whether the results of this paper can be extended to that
case.
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The restriction to paraboloids of dimension two or higher in Theorem 1.1.1 is needed in
the square function argument in Subsection (1.5.3). For the parabola this square function
argument fails, because the Fourier transform of a measure on the parabola has too little
decay.

The range (1.1.4) of p in Theorem 1.1.1, which one might conjecture should really be
(1,∞), is a consequence of restrictions on exponents in the sparse bounds in Lemma 1.6.2.
These restrictions are related to the Lp-improving range for averages along paraboloids. It
is an interesting question whether the range of p can be improved by other methods.
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1.2 Reduction to a discretized operator

We may assume that V = {0}d × R or V = Rd−1 × {0}2. Define anisotropic dilations
δs(x

′, xd+1) := (2sx′, 22sxd+1). Define the dyadic cubes of scale 0 to be

D0 := {k + [0, 1)d+1 : k ∈ Zd+1} ,

and the dyadic cubes of scale s to be Ds := δs(D0) . The collection of all dyadic cubes is
denoted D = ∪s∈ZDs. Given a dyadic cube I ∈ Ds, we denote by s(I) = s its scale.

We define dyadic frequency cubes of scale 0 as

Ω0 := {k + {0}d × [0, 1) : k ∈ {0}d × Z}

if V = {0}d × R and as

Ω0 := {k + [0, 1)d−1 × {0}2 : k ∈ Zd−1 × {0}2} ,

if V = Rd−1 × {0}2. The dyadic frequency cubes of scale s are Ωs := δ−s(Ω0) and the
collection of all dyadic frequency cubes is defined by Ω :=

⋃
s∈ZΩs. A tile is a pair

p = (I, ω), where I ∈ Ds and ω ∈ Ωs for some s = s(p) called the scale of p. The collection
of all tiles is denoted by

P :=
⋃
s∈Z

{(I, ω) : I ∈ Ds, ω ∈ Ωs} .

We decompose the kernelK into pieces localized in dyadic annuli. Fix a smooth function
η supported in [1/8, 1/3] such that∑

s∈Z
η(2−st) = 1 , t ∈ (0,∞) ,

and define Ks(x) = K(x)η(2−s|x|). Then (1.1.1) and (1.1.2) imply that there exists a
constant C = C(η) with

|∂αKs(x)| ≤ C2−s(d+|α|) , |α| ≤ m, s ∈ Z , (1.2.1)
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and that ∫
Ks(x) dx = 0 , s ∈ Z . (1.2.2)

It suffices to estimate the operator

sup
N∈V

sup
s<s

∣∣∣∣∣
s∑
s=s

∫
f(x′ − y, xd+1 − |y|2)eiN ·(y,|y|2)Ks(y) dy

∣∣∣∣∣ , (1.2.3)

since the difference to TV is controlled by the maximal average along the paraboloid, by
(1.1.1). Since the sum of integrals in (1.2.3) is continuous in N , we may restrict the
supremum in N to a countable dense subset of V . By monotone convergence, we may
further restrict both suprema to finite subsets of V and Z × Z. Choosing maximizers for
each x, it suffices to bound the operator

s(x)∑
s=s(x)

∫
f(x′ − y, xd+1 − |y|2)e−iN(x)·(y,|y|2)Ks(y) dy (1.2.4)

uniformly over all measurable functions N : Rd+1 → V, s : Rd+1 → Z and s : Rd+1 → Z
with finite range. We fix such functions N, s, s.

For a tile p ∈ P, we define

E(p) = {x ∈ I(p) : N(x) ∈ ω(p), s(x) ≤ s(p) ≤ s(x)}

and the operator associated to the tile p

Tpf(x) = 1E(p)

∫
f(x′ − y, xd+1 − |y|2)e−iN(x)·(y,|y|2)Ks(p)(y) dy .

For a subset C ⊂ P we write TC =
∑

p∈C Tp. The operator (1.2.4) is then simply TP.
Finally, we remove some tiles with unfavourable properties, using an argument due to

Fefferman [51]. A tile is called admissible if 3ω(p) ⊂ ˆ̂ω(p), where ω̂ denotes the unique
frequency cube of scale s(ω) − 1 containing ω. Then it suffices to show the estimate
∥TPad

f∥Lp ≤ C∥f∥Lp , where Pad is the set of admissible tiles, as follows from an averaging
argument analogous to the one in Section 5 of [51]. From now on by tile we always mean
an admissible tile.

1.3 Outline of the proof of weak type L2-bounds for (1.2.4)

By duality and the reductions in the previous section, it suffices to show that there exists
C > 0 such that for each compact set F ⊂ Rd+1, there exists a set F̃ ⊂ F with |F̃ | ≤ 1

2 |F |
and

∥1F\F̃TPad
∥2→2 ≤ C . (1.3.1)

We fix F . The operators 1FTp do not change upon replacing E(p) by E(p)∩ F , so we will
assume from now on that E(p) ⊂ F for all tiles p. Note that since F is compact and s, s
and N have finite range, only finitely many operators Tp are not zero.
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We now make some definitions to state a decomposition for the operator on the left
hand side of (1.3.1). Denote by dimh V the homogeneous dimension of V with respect to
the dilations δs, that is

dimh(Rd−1 × {0}2) = d− 1 , dimh({0}d × R) = 2 ,

and define the convex cylinder associated to a collection C of tiles by

C(C) = {p ∈ Pad : ∃p′, p′′ ∈ C, I(p′) ⊂ I(p) ⊂ I(p′′)} .

Then the density of a collection C of tiles is defined as

dens(C) = sup
p∈C

sup
λ≥1
odd

sup
p′∈C(C) : I(p)⊂I(p′)

λω(p′)⊂λω(p)

λ− dimh V
|E(λ, p′)|
|I(p′)| , (1.3.2)

where we use the notation λω = c(ω) + δlog2 λ(ω − c(ω)) where c(ω) is the center of ω and

E(λ, p′) = {x ∈ I(p) : N(x) ∈ λω(p)} .

We define a partial order on the set of tiles by

(I, ω) ≤ (I ′, ω′) ⇐⇒ I ⊂ I ′ and ω′ ⊂ ω .

An antichain is a set of tiles that are pairwise not comparable with respect to this order.
A set of tiles C is called convex, if p, p′ ∈ C and p ≤ p′′ ≤ p′ implies p′′ ∈ C. A tree is a
convex collection T of tiles together with an upper bound top(T), i.e. a tile m such that
for all p ∈ T we have p ≤ m. We denote ω(T) = ω(top(T)) and I(T) = I(top(T)). A tree
is called normal if 3I(p) ⊂ I(T) for all p ∈ T.

A pair of trees T1,T2 is called ∆-separated, if for {i, j} = {1, 2} and each tile pi ∈ Ti

with I(pi) ⊂ I(Tj) we have ∆ω(pi) ∩ ω(Tj) = ∅. An n-forest is a collection of pairwise
210dn-separated, normal trees of density at most 2−n that satisfy the overlap estimate∑

T∈F
1I(T) ≤ 2n log(n+ 2) . (1.3.3)

Proposition 1.3.1. There exists a constant C = C(d) and an exceptional set F̃ with
|F̃ | ≤ |F |/2, such that the set

PF\F̃ := {p ∈ Pad : I(p) ∩ (F \ F̃ ) ̸= ∅}

can be decomposed as a disjoint union

PF\F̃ =
⋃
n≥0

C(n+1)2⋃
l=1

Fn,l ∪
C(n+1)3⋃
l=1

An,l

 ,

where each Fn,l is an n-forest and each An,l is an antichain of density at most 2−n.

Estimate (1.3.1), and therefore weak type L2 boundedness of the operator defined in
(1.1.3) then follows from the following estimates for antichain and forest operators.
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Proposition 1.3.2. There exists ε = ε(d) and C > 0 such that the following holds. Let A
be an antichain of density δ. Then

∥TA∥2→2 ≤ Cδε .

Proposition 1.3.3. For each ε < 1
2 − 1

2(d+1) there exist C > 0 such that the following
holds. Let F be an n-forest. Then

∥TF∥2→2 ≤ C2−εn .

We will independently prove Proposition 1.3.1 in Section 1.4 and Proposition 1.3.2 in
Section 1.5. Proposition 1.3.3 is proven using an estimate for trees and an almost orthog-
onality argument. The almost orthogonality argument and the deduction of Proposition
1.3.3 are carried out in Section 1.7. The estimate for single trees is proven in Section 1.6,
and is a mild generalization of the following.

Proposition 1.3.4. For each ε < 1
2 − 1

2(d+1) there exist C > 0 such that the following
holds. Let T be a tree of density δ. Then

∥TT∥2→2 ≤ Cδε .

1.4 Tile organization: Proof of Proposition 1.3.1

Let k ≥ 0 and let Dk(F ) be the set of maximal dyadic cubes Q with |Q∩ F |/|Q| ≥ 2−k−1.
Let P̃≤k be the set of tiles p ∈ Pad such that I(p) is contained in some Q ∈ Dk(F ) and let
P̃k := P̃≤k \ P̃≤k−1. Then we have 1FTPad

=
∑

k≥0 1FTP̃k
, and each p ∈ P̃k satisfies that

|I(p) ∩ F |/|I(p)| < 2−k. We define

E(p) := {x ∈ I(p) ∩ F : N(x) ∈ ω(p)} ,
and define M̃n,k to be the set of maximal tiles p in P̃k such that |E(p)|/|I(p)| ≥ 2−n−1.

Lemma 1.4.1. The exceptional set

F̃1 := F ∩
⋃
k≥0

⋃
Q∈Dk(F )

⋃
n≥k

{x ∈ Q :
∑

p∈M̃n,k

I(p)⊂Q

1I(p) ≥ 1000 · 2n log(n+ 2)}

satisfies |F̃1| ≤ |F |/4.
Proof. We have for each J ∈ D∑

p∈M̃n,k

I(p)⊂J

|I(p)| ≤ 2n+1
∑

p∈M̃n,k

I(p)⊂J

|E(p)| ≤ 2n+1|J | ,

since tiles in M̃n,k are pairwise not comparable and hence the sets E(p), p ∈ M̃n,k are
pairwise disjoint. We estimate for each Q ∈ Dk(F ) and each n ≥ k using the John-
Nirenberg inequality:

|{x ∈ Q :
∑

p∈M̃n,k

I(p)⊂Q

1I(p) ≥ 1000 · 2n log(n+ 2)}|

≤ c1 exp(−c2
1000 · 2n log(n+ 2)

2n+1
)|Q| ≤ (n+ 2)−100|Q| . (1.4.1)
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For the last inequality we have used that in this version of the John-Nirenberg inequality,
one can choose c1 = e2 and c2 = (2e)−1.

Note that the set on the left hand side of (1.4.1) is a disjoint union of cubes I(p) each
of which satisfies |I(p) ∩ F |/|I(p)| ≤ 2−k, hence

|F ∩ {x ∈ Q :
∑

p∈M̃n,k

I(p)⊂Q

1I(p) ≥ 1000 · 2n log(n+ 2)}|

≤ 2−k(n+ 2)−100|Q| ≤ 2(n+ 2)−100|Q ∩ F | .

Summing up, we obtain∑
k≥0

∑
Q∈Dk(F )

∑
n≥k

|F ∩ {x ∈ Q :
∑

p∈M̃n,k

I(p)⊂Q

1I(p) ≥ 1000 · 2n log(n+ 2)}|

≤ 2
∑
k≥0

∑
n≥k

(n+ 2)−100|F | ≤ 1

4
|F | .

This completes the proof.

After removing the exceptional set F̃1, only the tiles in

Pk := {p ∈ P̃k : I(p) ̸⊂ F̃1}

contribute, i.e. we have 1Rd+1\F̃1
TP̃k

= 1Rd+1\F̃1
TPk

. Thus it suffices to decompose the sets
Pk into forests and antichains.

We define the k-density of a tile p ∈ Pk to be

densk(p) := sup
λ≥1
odd

sup
p′∈Pk:I(p)⊂I(p′)
λω(p′)⊂λω(p)

λ−dimh V
|E(λ, p′)|
|I(p′)| .

Then we split each Pk into sets Hn,k := {p ∈ Pk : 2−n−1 < densk(p) ≤ 2−n}, and
decompose each of them separately into forests and antichains. Note that dens(C) ≤
supp∈C densk(p) for each C ⊂ Pk, so all subsets forests and antichains obtained in the
decomposition of Hn,k have density at most 2−n.

Lemma 1.4.2. For each k ≥ 0 and n ≥ k, there exists an exceptional set F̃n,k such
that |F̃n,k| ≤ 2−k−n−2|F |, and such that the set of tiles p ∈ Hn,k with I(p) ̸⊂ F̃n,k can
be decomposed as a disjoint union of O(n + 1) many n-forests and Od((n + 1)2) many
antichains.

Proof. We first note that Hn,k is convex: Since dens is a decreasing function on tiles with
respect to ≤, Hn,k is the difference of two down-sets, and as such convex.

Next, we prune the top n+ 2 layers off Hn,k: Let H
+
n,k be the set of tiles p ∈ Hn,k for

which there exists no chain p < p1 < · · · < pn+2 with all pi ∈ Hn,k, where we use p < p′

to say that p ≤ p′ and p ̸= p′. Clearly, H+
n,k is the union of at most n+ 2 antichains, so it

suffices to decompose H0
n,k := Hn,k \H+

n,k, and this set is still convex.
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For n ≥ k ≥ 0, letMn,k to be the set of maximal tiles p inPk that satisfy |E(p)|/|I(p)| ≥
2−n−1. By Lemma 1.4.1 and the definition of Pk, we then have the overlap estimate∑

p∈Mn,k

1I(p) ≤ 1000 · 2n log(n+ 2) . (1.4.2)

We claim that for each p ∈ H0
n,k, there exists m ∈ Mn,k with p ≤ m. Since p ∈ H0

n,k,
there exists a chain p < p1 < · · · < pn+2 with pn+2 ∈ Hn,k. Since all tiles are admissible,
we have 3⌊(n+2)/2⌋ω(pn+2) ⊂ ω(p). Since pn+2 ∈ Hn,k, there exists an odd λ ≥ 1 and a tile
p′ ∈ Pk with I(pn+2) ⊂ I(p′) and λω(p′) ⊂ λω(pn+2) such that

|E(λ, p′)|
|I(p′)| ≥ λdimh V 2−n−1 . (1.4.3)

Since λ is odd, the set λω(p′) is the disjoint union of λdimh V cubes ω(p′′) of tiles p′′ with
I(p′′) = I(p′), thus there exists one such p′′ ∈ Pk with |E(p′′)|/|I(p′′)| ≥ 2−n−1. By
definition of Mn,k, there is a tile m ∈ Mn,k with p′′ ≤ m. Equation (1.4.3) implies that
λ ≤ 2(n+1)/ dimh V , so that

ω(m) ⊂ ω(p′′) ⊂ 2(n+1)/ dimh V ω(pn+2) ⊂ ω(p) .

Combining all of this we obtain that p ≤ m, so the claim holds.
For a tile p ∈ H0

n,k, let B(p) be the set of tiles m ∈ Mn,k with p ≤ m. Decompose H0
n,k

into 2n+ 10 collections

Cj := {p ∈ Hn,k : 2j−1 ≤ |B(p)| < 2j} , j = 1, . . . , 2n+ 10 .

The collections Cj are convex, since p ≤ p′ ≤ p′′ implies B(p′′) ⊂ B(p′) ⊂ B(p), and by the
overlap estimate (1.4.2) and the claim, their union is H0

n,k.
Let Uj be the set of maximal tiles in Cj , clearly Uj also has overlap bounded by

100 · 2n log(n+ 2). For each m ∈ Uj let

T̃(m) := {p ∈ Cj : p ≤ m} .

Then the sets T̃(m) are disjoint: If p ∈ T̃(m) ∩ T̃(m′) for m ̸= m′, then B(m) ∪B(m′) ⊂
B(p). But the sets B(m) and B(m′) are disjoint: Else there would be m′′ with p ≤ m,m′ ≤
m′′, which implies that m,m′ are comparable. But they are both maximal in Cj , so they
cannot be comparable. Hence 2j+1 > |B(p)| ≥ |B(m)|+ |B(m′)| ≥ 2j+2j , a contradiction.
In particular, tiles p ∈ T̃(m), p′ ∈ T̃(m′) for m ̸= m′ are not comparable.

The sets T̃(m) are of course also convex, so they are trees with top m. To obtain
the separation property, we prune the bottom 20dn layers of the trees: We define T−(m)
to be the set of tiles p ∈ T̃(m) for which there exists no chain p20dn < · · · < p1 < p.
Clearly, T−(m) is the union of at most 20dn antichains. As tiles in different T̃(m) are
never comparable, ∪m∈UjT

−(m) is still a union of at most 20dn antichains. Let T̃0(m) :=

T̃(m) \ T−(m), this is still a convex tree with top m. If p ∈ T̃0(m), then there exists a
chain p20dn < · · · < p1 < p in T̃(m). If m′ ̸= m is such that I(p) ⊂ I(m′) = I(T̃(m′)), then
by the last paragraph we must have ω(p20dn) ∩ ω(m′) = ∅. Since all tiles are admissible, it
follows that 310dnω(p) ∩ ω(m′) = ∅. Hence the trees T̃0(m) are 310dn-separated.
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Finally, we make the trees normal. For this purpose, let r = 100 + d + 6n. We first
prune the top r layers T̃0+(m) off each T̃0(m) similarly as in the last paragraph. This
produces another r = Od(n+ 1) antichains. Then we define the exceptional set

F̃n,k =
⋃
j

⋃
m∈Uj

(I(m) \ (1− 2−r)I(m)) ,

where aQ = c(Q) + δlog2 a(Q− c(Q)) is the anisotropic dilate of Q by a factor a about its
center c(Q). We have, using that 1 ≤ j ≤ 2n+ 10, the Bernoulli inequality and (1.4.2)

|F̃n,k| ≤ (2n+ 10) ·
∑
m∈Uj

(d+ 2)2−r|I(m)|

≤ (2n+ 10) · 1000 · 2n log(n+ 2) · (d+ 2) · 2−r ·
∑

Q∈Dk(F )

|Q|

≤ 2−3n−3
∑

Q∈Dk(F )

|Q| .

Using the definition of Dk(F ) and that n ≥ k we estimate this by

≤ 2−3n−22k|F | ≤ 2−n−k−2|F | .

We finally define
T(m) := {p ∈ T̃0(m) \ T̃0+(m) : I(p) ̸⊂ F̃n,k} .

Then T(m),m ∈ Uj is still a collection of 210dn-separated trees, and they are now normal:
If p ∈ T(m) then s(p) ≤ s(m)− r and I(p) ⊂ (1− 2−r)I(m), and therefore 3I(p) ⊂ I(m).
By the overlap estimate (1.4.2), the collection {T(m) : m ∈ Uj} is the union of at most
1000 n-forests. Thus Cj can be decomposed into 1000 n-forests and Od(n+ 1) antichains,
which completes the proof.

Recall that all antichains in Lemma 1.4.2 have density at most 2−n, since they are
contained in Hn,k. Taking into account all k ≥ 0, Lemma 1.4.2 then yields a total of
Od((n+ 1)3) antichains of density at most 2−n, a total of O((n+ 1)2) many n-forests, and
an exceptional set F̃2 =

⋃
n,k F̃n,k with |F̃2| ≤ |F |/4. Combining this with the estimate for

the measure of F̃1 from Lemma 1.4.1, we obtain Proposition 1.3.1 with F̃ := F̃1 ∪ F̃2.

1.5 Antichains: Proof of Proposition 1.3.2

1.5.1 Decomposition of the kernel

We fix an antichain A of density δ. We will decompose TA, based on a decomposition of
the kernel of the singular Radon transform. Let µs be the measure defined by∫

f dµs =

∫
Rd

f(y, |y|2)Ks(y) dy .

Then the operator Tp can be expressed as

Tpf(x) = 1E(p)(x)

∫
f(x− y)eiN(x)·ydµs(p)(y) . (1.5.1)
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We now decompose the measures µs into a smooth part and a high-frequency part, choosing
different decompositions depending on V . For this, we let ε0 > 0 be a small enough positive
number such that the exponent of δ in Lemma 1.5.3 below is positive.

In the case V = Rd−1 × {0}2, we let φ1 be a smooth bump function supported on
B(0, 100−1) ⊂ R with integral 1, and let

φ1
s,ε0(x) = δ−2ε02−2sφ1(2−2sδ−2ε0xd+1)δ(x

′) . (1.5.2)

We define the low frequency part of µs by

µls(x) := µs ∗ φ1
s,ε0(x) = δ−2ε02−2sKs(x

′)φ1(2−2sδ−2ε0(xd+1 − |x′|2)) (1.5.3)

and the high frequency part by µhs = µs − µls. Note that φ1
s,ε0 is a measure supported on

the line x′ = 0, so µls is essentially frequency localized near the hyperplane ξd+1 = 0.
In the case V = {0}d × R, we let φd be a smooth bump function supported on

B(0, 100−1) ⊂ Rd with integral 1, and let

φds,ε0(x) = δ−dε02−dsφd(2−sδ−ε0x′)δ(xd+1) . (1.5.4)

We define the low frequency part of µs by

µls(x) := µs ∗ φds,ε0(x)

= δ−dε02−ds
∫
δ(|y′|2 − xd+1)Ks(y

′)φd(2−sδ−ε0(x′ − y′)) dy′ (1.5.5)

and the high frequency part by µhs = µs − µls. In this case, φds is a measure supported on
the hyperplane xd+1 = 0, and µls is essentially frequency localized near the line ξ′ = 0.

In both cases the low frequency part µls is a function, and one can check using (1.5.3)
or (1.5.5) and (1.2.1) that

|µls(x)| ≲ δ−dε0 |I(p)|−1 (1.5.6)

and

|∂iµls(p)(x)| ≲
{
δ−(d+2)ε02−s|I(p)|−1 if i = 1, . . . , d,

δ−(d+2)ε02−2s|I(p)|−1 if i = d+ 1.
(1.5.7)

We define operators T lp, T
h
p by replacing µs(p) with µ

l
s(p), µ

h
s(p) in (1.5.1), and we define

T lA, T
h
A as the sum of T lp, T

h
p over all p ∈ A. Then we have TA = T lA + T hA. We prove

estimates for T lA and T hA separately in the next two subsections.

1.5.2 The smooth part

Here we estimate the smooth part T lA. The argument is the same for V = Rd−1 × {0}2
and V = {0}d × R. While µls is defined differently in these two cases, we will only use the
properties (1.5.6) and (1.5.7) of µls, which hold in both cases.

We define the separation ∆(p, p′) of a pair of tiles p, p′ to be 1 if ω(p) ∩ ω(p′) ̸= ∅, and
else we define it as

∆(p, p′) := sup{λ > 0 : λω(p) ∩ ω(p′) = ∅ and ω(p) ∩ λω(p′) = ∅} .

Then we have the following almost orthogonality estimate.
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Lemma 1.5.1. There exists a constant C > 0 such that for all tiles p, p′ with s(p) ≥ s(p′),
we have

|⟨T l∗p g, T l∗p′ g⟩| ≤ Cδ−(2d+2)ε0 ∆(p, p′)−1

|I(p)|

∫
E(p)

|g|
∫
E(p′)

|g| . (1.5.8)

Proof. We abbreviate ∆ = ∆(p, p′). We have, by Fubini and the definition of T lp

|⟨T l∗p g, T l∗p′ g⟩| ≤
∫ ∫

|1E(p)g(x1)||1E(p′)g(x2)|∣∣∣∣∫ ei(N(x1)−N(x2))·yµls(p)(x1 − y)µls(p′)(x2 − y) dy

∣∣∣∣ dx1 dx2 . (1.5.9)

The inner integral in (1.5.9) is bounded by Cδ−2dε0 |I(p)|−1, by (1.5.6). This implies (1.5.8)
if ∆ ≤ 3, so we will assume from now on that ∆ > 3. Fix x1 ∈ E(p), x2 ∈ E(p′) and let

Φ(y) = µls(p)(x1 − y)µls(p′)(x2 − y) .

By (1.5.6) and (1.5.7), we have the bounds

|∂iΦ(y)| ≲ δ−(2d+2)ε0 1

|I(p)||I(p′)|2
−s(p′) , i = 1, . . . , d

and

|∂iΦ(y)| ≲ δ−(2d+2)ε0 1

|I(p)||I(p′)|2
−2s(p′) , i = d+ 1 .

Since ∆ = ∆(p, p′) > 3, we have by definition

max
i=1,...,d

2s(p)|Ni(x1)−Ni(x2)| ≥ (∆− 1)/2 ≥ ∆/3

or
22s(p)|Nd+1(x1)−Nd+1(x2)| ≥ (∆2 − 1)/2 ≥ ∆/3 .

Integrating by parts in the corresponding direction, we find that∣∣∣∣∫ ei(N(x1)−N(x2))·yµls(p)(x1 − y)µls(p′)(x2 − y) dy

∣∣∣∣
≲ ∆−1δ−(2d+2)ε0 |I(p)|−1 ,

which together with (1.5.9) gives the claimed estimate (1.5.8).

Lemma 1.5.2. Let 1 ≤ q ≤ ∞. There exists C > 0 such that for every antichain A of
density δ and every tile p∥∥∥∥∥ ∑

p′∈A,s(p′)≤s(p)

∆(p, p′)−11E(p′)

∥∥∥∥∥
q

≤ Cδ
κ
q

∣∣∣∣∣ ⋃
p′∈A,s(p′)≤s(p)

I(p′)

∣∣∣∣∣
1/q

,

where κ = (1 + dimh V )−1.
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Proof. The estimate holds for q = ∞ with C = 1, since ∆(p, p′) ≥ 1 and the sets E(p′),
p′ ∈ A are disjoint. By Hölder’s inequality it therefore only remains to show the estimate
for q = 1: ∑

p′∈A,s(p′)≤s(p)

∆(p, p′)−1|E(p′)| ≲ δκ

∣∣∣∣∣ ⋃
p′∈A,s(p′)≤s(p)

I(p′)

∣∣∣∣∣ .
The contribution of tiles with ∆(p, p′) ≥ δ−κ is clearly bounded by the right hand side,
since E(p′) ⊂ I(p′) and the sets E(p′) are disjoint. So it remains only to estimate the
contribution of the tiles

A′ := {p′ ∈ A : s(p′) ≤ s(p) , ∆(p, p′) < δ−κ} .

Let L be the set of maximal dyadic cubes L for which there exists p′ ∈ A′ with L ⊊ I(p′),
and there exists no p′ ∈ A′ with I(p′) ⊂ L. The set L is a partition of ∪p′∈A′I(p′), so it
will be enough to show for each L ∈ L the estimate∣∣∣∣L ∩

⋃
p′∈A′

E(p′)

∣∣∣∣ ≤ δ1−κdimh V |L| . (1.5.10)

Fix L ∈ L. There exists a tile p′ ∈ A′ with I(p′) ⊂ L̂. If I(p′) = L̂, define pL = p′, and
else let pL be the unique tile with I(pL) = L̂ and ω(p) ⊂ ω(pL). If λ is the smallest odd
number such that λ ≥ 5δ−κ, then we have in both cases that λω(p′) ⊃ λω(pL). For each
p′′ ∈ A′ with L ∩ I(p′′) ̸= ∅, it holds that L ⊊ I(p′′) and ω(p′′) ⊂ λω(pL). It follows that
for all such p′′, we have that L ∩ E(p′′) ⊂ E(λ, pL). Thus

|L ∩
⋃

p′′∈A′

E(p′′)| ≤ |E(5δ−κpL)|

≤ λ− dimh V dens(A)|L| ≲ δ1−κdimh V |L| ,

giving (1.5.10) and hence the lemma.

Using the last two lemmas, we can prove our main estimate for T lA.

Lemma 1.5.3. For all 1 ≤ q < 2, there exists a constant C > 0 such that

∥T lA∥2→2 ≤ Cδ
κ
2q′−(d+1)ε0 ,

where κ = 1/(1 + dimh V ).

Proof. Define for each p ∈ A the set

A(p) = {p′ ∈ A : s(p′) ≤ s(p), 3I(p) ∩ 3I(p′) ̸= ∅} .

Since T l∗p g is always supported in 3I(p), we have that

|⟨T l∗Ag, T l∗Ag⟩| ≤ 2
∑
p∈A

∑
p′∈A(p)

|⟨T l∗p g, T l∗p′ g⟩| .
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By Lemma 1.5.1, this is bounded up to constant factor by

δ−(2d+2)ε0
∑
p∈A

∫
1E(p)|g|

1

|I(p)|

∫
|g|

∑
p′∈A(p)

∆(p, p′)−11E(p′) .

Cubes I(p′) associated to p′ ∈ A(p) are contained in 5I(p), so we may apply Hölder’s
inequality in the inner integral with q < 2 to bound this by a constant times

δ−(2d+2)ε0
∑
p∈A

∫
1E(p)|g|M q|g|

∥∑p′∈A(p)∆(p, p′)−11E(p′)∥Lq′

|I(p)|1/q′ ,

where M qg = M(gq)1/q is the q-maximal function. Using Lemma 1.5.2 to estimate the
Lq

′
-norm, we estimate this by a constant times

δ
κ
q′−(2d+2)ε0

∑
p∈A

∫
1E(p)|g|M q|g|

≤ δ
κ
q′−(2d+2)ε0

∫
|g|M q|g| ≲ δ

κ
q′−(2d+2)ε0∥g∥22 .

Here we used disjointness of the sets E(p) and L2-boundedness of M q for q < 2. This
completes the proof.

1.5.3 The high frequency part

Here we estimate the high frequency part T hA.
We start by discretizing modulation frequencies. For this, we let ε1 > 0 be a small

positive number, much smaller than ε0, it will be chosen at the end of this section. We fix
finite subsets M(ω) ⊂ ω of each dyadic frequency cube ω, such that the following holds
with ρ = δε1 :

(i) |M(ω)| ≲ ρ− dimh V ,

(ii) For each N ∈ ω, there exists N ′ ∈M(ω) with

dpar(N,N
′) ≤ ρ2−s(ω) , (1.5.11)

where dpar denotes the parabolic distance

dpar(N,N
′) = max{max

1≤i≤d
|Ni −N ′i |, |Nd+1 −N ′d+1|1/2} .

(iii) If ω = a+ bω′ then M(ω) = a+ bM(ω′).

For each tile p, we partition the set E(p) into E(pc), c ∈M(ω(p)), such that for all x ∈ E(pc)

dpar(N(x), c) ≤ δε12−s(p) . (1.5.12)

We define for a tile p and c ∈M(ω(p)) the operator

T h,cp f(x) := 1E(pc)

∫
f(x− y)eic·y dµhs(p)(y) ,
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and we define also
T h,dA =

∑
p∈A

∑
c∈M(ω(p))

T h,cp .

By (1.5.12), we have for x ∈ E(pc) and all y in the support of µhs(p) that

|c · y −N(x) · y| ≤ δε1 ,

hence

|Tpf(x)−
∑

c∈M(ω(p))

T h,cp f(x)| ≤ δε11E(p)(x)

∫
|f(x− y)| d|µhs(p)|(y) .

Summing this over all p ∈ A and using that the corresponding sets E(p) are disjoint, it

follows that |T hA − T h,dA | is dominated by δε1 times a mollified maximal average along the
parabola. Thus

∥T hA − T h,dA ∥2→2 ≲ δε1 . (1.5.13)

It now remains to estimate the discretized operator T h,dA . By disjointness of the sets E(pc)
and the third property of the sets M(ω), we have

T h,dA f(x) ≤ Sf(x) , (1.5.14)

where the square function Sf is defined depending on V as follows: In the case V =
Rd−1 × {0}2 it is defined by

(Sf(x))2 =
∑
s∈Z

∑
N∈Zd−1×{0}2

∑
c∈M(ω0)

|f ∗ (eiδs(c+N)·yµhs (y))(x)|2 (1.5.15)

with ω0 = [0, 1)d−1 × {0}2, and in the case V = {0}d × R it is defined by

(Sf(x))2 =
∑
s∈Z

∑
N∈{0}d×Z

∑
c∈M(ω0)

|f ∗ (eiδs(c+N)·yµhs (y))(x)|2 (1.5.16)

with ω0 = {0}d × [0, 1).

Lemma 1.5.4. There exist C > 0 such that the following holds. Let S be defined by
(1.5.15) or by (1.5.16). Then we have

∥S∥2→2 ≤ Cδ
2

d+2
ε0−

dimh V

2
ε1 .

Proof. We first treat the case (1.5.15). We have

µ̂0(ξ) =

∫
1/8<|y|<1/3

ei(ξ
′·y+ξd+1|y|2)K0(y) dy .

Thus we obtain from the method of stationary phase (see e.g. [65], Lemma 7.7.3) and
(1.2.1):

|µ̂0(ξ)|2 ≲ min{1, |ξd+1|−d} . (1.5.17)

Combining this with (1.5.2) yields

|µ̂h0(ξ)|2 = |(1− φ̂1(δ2ε0ξd+1))µ̂0(ξ)|2 ≲ min{|δ2ε0ξd+1|2, |ξd+1|−d} . (1.5.18)
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Summing up (1.5.18) gives∑
N∈Zd−1×{0}2
|ξ′+c′+N ′|≤|ξd+1|

|µ̂h0(ξ + c+N)|2 ≲ |ξd+1|d−1min{|δ2ε0ξd+1|2, |ξd+1|−d} . (1.5.19)

If |ξ′| > |ξd+1| then we have

|∇(ξ′ · y + ξd+1|y|2)| = |ξ′ + ξd+1y| >
1

2
|ξ′| .

Integrating by parts (see e.g. [65], Theorem 7.7.1), we obtain

|µ̂0(ξ)|2 ≲ min{1, |ξ′|−d−1} , (1.5.20)

and hence
|µ̂h0(ξ)|2 ≲ min{|δ2ε0ξd+1|min{1, |ξ′|−d−1}, |ξ′|−d−1} . (1.5.21)

Summing up estimate (1.5.21) gives∑
N∈Zd−1×{0}2
|ξ′+c′+N ′|>|ξd+1|

|µ̂h0(ξ + c+N)|2 ≲ min{|δ2ε0ξd+1|2, |ξd+1|−1} . (1.5.22)

Combining (1.5.19) and (1.5.22) and using min{a, b} ≤ min{(a3bd−1)1/(d+2), b} yields∑
N∈Zd−1×{0}2

|µ̂h0(ξ + c+N)|2 ≲ min{δ2ε0/d|ξd+1|2, |ξd+1|−1} .

Using dilation invariance of all assumptions on K this implies∑
N∈Zd−1×{0}2

|µ̂hs (ξ + δ−s(c+N))|2 ≲ min{δ 12
d+2

ε0 |22sξd+1|2, |22sξd+1|−1} .

Summing in s, and also summing in the ≲ δ−ε1 dimh V choices of c, we obtain∑
s∈Z

∑
N∈Zd−1×{0}2

∑
c∈M(ω0)

|µ̂hs (ξ + δ−s(c+N))|2 ≲ δ
4

d+2
ε0−ε1 dimh V .

This completes the proof in the case (1.5.15) by Plancherel.
Now we deal with the vertical modulation case (1.5.16). The stationary phase estimate

(1.5.17) combined with (1.5.4) yields

|µ̂h0(ξ)|2 ≲ min{1, |ξd+1|−d}|δε0ξ′|2 ,

and hence ∑
N∈{0}d×Z

|µ̂h0(ξ + c+N)|2 ≲ |δε0ξ′|2 .

Combining the estimates (1.5.20) in the range |ξ′| > |(ξ + c + N)d+1| and (1.5.17) in the
range |ξ′| ≤ |(ξ + c+N)d+1| gives∑

N∈{0}d×Z

|µ̂h0(ξ + c+N)|2 ≲ |ξ′|1−d .
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Therefore we have ∑
N∈{0}d×Z

|µ̂h0(ξ + c+N)|2 ≲ min{δ2ε0 |ξ′|2, |ξ′|1−d} .

As before, this implies the square function estimate (with better dependence on δ) using
dilation invariance of all assumptions to sum in s, the bound on the number of summands
to sum in c, and then Plancherel.

Combining the estimate for T lA in Lemma 1.5.3, for T hA − T h,dA in (1.5.13) and for T h,dA

in (1.5.14) and Lemma 1.5.4, and choosing ε0 and then ε1 sufficiently small, we obtain
Proposition 1.3.2.

1.6 Trees: Proof of Proposition 1.3.4

Here we prove a mild generalization of Proposition 1.3.4. We will estimate what we call
generalized tree operators, with general kernels satisfying conditions described below. We
need the estimates in Section 1.7 both for the singular Radon transform and for a version
of it with a smoothened kernel.

1.6.1 General setup

Let in the following µs, λs, s ∈ Z be any finite measures satisfying the following conditions:

i) µs, λs are supported in δs(B(0, 1/2)),

ii) |µs| ≤ λs,

iii) µs(Rd+1) = 0,

iv) we have

max{|D̂−sλs(ξ))|, |D̂−sµs(ξ)|} ≤ |ξ|−1 , (1.6.1)

where D−sµs := 2−(d+2)sµs ◦ δ−s,

v) and there exist γ > 0 and p, q < 2 such that convolution with D−sλs and D−sµs is
bounded from Lp to Lq

′+γ with norm at most 1 for each s.

Relevant for the proof of Theorem 1.1.1 are the measures defined by∫
f dµs =

∫
Rd

f(y, |y|2)Ks(y) dy , (1.6.2)

∫
f dλs =

∫
Rd

f(y, |y|2)2−dsη(2−sy) dy , (1.6.3)

and smoothened versions thereof. They clearly satisfy conditions i) to iii), condition iv)
follows from standard stationary phase estimates (e.g. [65], Lemma 7.7.3) and for con-
dition v) one can take any (p, q) such that (1p ,

1
q ) is in the interior of the convex hull of

(1, 0), (0, 1), (d+1
d+2 ,

d+1
d+2) (see [85]).
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1.6.2 Generalized tree operators

With the choice of µs from (1.6.2), the tile operators defined in Section 1.2 can be written
as

Tpf(x) = 1E(p)(x)

∫
f(x− y)eiN(x)·ydµs(y) ,

and tree operators can be written as

TTf(x) =
∑
p∈T

Tpf(x) =
∑
s∈σ(x)

∫
f(x− y)eiN(x)·ydµs(y) ,

where σ(x) := {s(p) : p ∈ T, x ∈ E(p)}. Since T is a subset of the set of all admissible
tiles, the set σ(x) is always contained in

J = J(T) := {s ∈ Z : ∃ω admissible, s(ω) = s, ω(T) ⊂ ω} ,
and convexity of the tree T implies that there are σ(x) ≤ σ(x) with

σ(x) = J ∩ [σ(x), σ(x)] .

Motivated by this, we define a generalized tree to be a pair (T, σ′), where T is a tree
and σ′ is a function associating to each x a set

σ′(x) = J ∩ [σ′(x), σ′(x)] ⊂ σ(x) .

The generalized tree operator associated to (T, σ′) is defined by

TT,σ′f(x) =
∑

s∈σ′(x)

∫
f(x− y)eiN(x)·ydµs(y) .

The above discussion shows that this includes in particular the tree operators defined in
Section 1.3, by choosing µs as in (1.6.2) and σ′(x) = σ(x) for each x.

1.6.3 Single tree estimate

We now dominate the generalized tree operators TT,σ′ by a sum of two simpler operators
T∗T,σ′ and MT, resembling a maximally truncated singular integral and a maximal average
along the paraboloid.

Define the unmodulated operator associated to (T, σ′) by

T∗T,σ′f(x) :=
∑

s∈σ′(x)

f ∗ µs(x) =
σ′(x)∑
s=σ′(x)

f ∗ (1J(s)µs)(x) .

This is a maximally truncated singular integral along the paraboloid, and it follows from
standard square function arguments as in [110] that T∗T is bounded on L2.

Define also the maximal average MT associated to T:

MTf(x) := sup
s∈σ(x)

|f | ∗ λs(x) .

The operatorMT is bounded above pointwise by the maximal average associated to (λs)s∈Z,
which is bounded on L2 under our assumptions.

We have the following pointwise estimate for TT,σ′ in terms of T∗T,σ′ and MT.
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Lemma 1.6.1. There exists C > 0 such that for each generalized tree (T, σ′)

|TT,σ′f(x)| ≤ |T∗T,σ′(e−iN(T)(y)f(y))(x)|+ CMTf(x) ,

where N(T) is the smallest element, in lexicographic order, of ω(T).

Proof. Suppose that p ∈ T with s(p) = maxσ(x)− k. Then there exists some p′ ∈ T with
s(p′) = s(p) + k and x ∈ E(p′). Since N(x) ∈ ω(p′) and N(T) ∈ ω(p′), it follows that

|(N(T)−N(x)) · y| ≤ d2−k

for all y in the support of µs(p). Hence we have∣∣∣∣Tpf(x)− eiN(T)·x1E(p)(x)

∫
f(x− y)e−iN(T)·(x−y)dµs(p)(y)

∣∣∣∣
=

∣∣∣∣1E(p)(x)

∫
f(x− y)(eiN(x)·y − eiN(T)·y)dµs(p)(y)

∣∣∣∣
≲ 2−k1E(p)(x)|f | ∗ λs(x) ,

using that |µs| ≤ λs and |eiN(x)·y − eiN(T)·y| ≲ 2−k on the support of µs(p). Summing over
all tiles p ∈ T, we obtain:

|TT,σ′f(x)− eN(T)·xT∗T,σ′(e−N(T)·yf(y))(x)|

≤
∑
p∈T

∣∣∣∣Tpf(x)− eiN(T)·x1E(p)(x)

∫
f(x− y)e−iN(T)·(x−y)dµs(p)(y)

∣∣∣∣
≲

∑
k≥0

2−k
∑
p∈T

s(p)=maxσ(x)−k

1E(p)(x)|f | ∗ λs(x) .

By disjointness of the sets E(p) for tiles p of a fixed scale, the inner sum is bounded by
MT. This completes the proof.

1.6.4 Low density trees and sparse bounds

Lemma 1.6.1 implies that the operators TT,σ′ are bounded on L2 uniformly over all gener-
alized trees (T, σ′). We will now improve this estimate for trees of small density δ, using
sparse bounds for the operators T∗T,σ′ andMT. These sparse bounds are variants of bounds
for prototypical singular Radon transforms that were shown by Oberlin [97]. Our setting is
slightly more general than in [97], and we need a more precise estimate, but it still follows
from Oberlin’s proof with only minor modifications.

A collection S of dyadic cubes is called sparse if for each Q ∈ S there exists a subset
U(Q) ⊂ Q with |U(Q)| ≥ |Q|/2, such that the sets U(Q) are pairwise disjoint. For every
cube Q and p ≥ 1, we denote by

⟨f⟩Q,p :=
(

1

|Q|

∫
Q
|f |p dx

)1/p
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the p-average of a function f over Q. Finally, given a dyadic cube Q and a tree T, we
define

E(Q) = E(T, Q) :=
⋃
p∈T

I(p)⊂3Q

E(p) .

Lemma 1.6.2 ([97]). Suppose that (p, q) are as in condition v) in Subsection 1.6.1. Then
there exists a constant C > 0 such that for every generalized tree (T, σ′) and all f, g there
exists a sparse collection of cubes S ⊂ D such that∣∣∣∣∫ T∗T,σ′f(x)g(x) dx

∣∣∣∣ ≤ C
∑
Q∈S

|Q|⟨f⟩Q,p⟨1E(Q)g⟩3Q,q . (1.6.4)

The same statement holds with T∗T,σ′ replaced by MT.

Proof. This follows from the proof of Theorems 1.3 and 1.4 in [97] (note that our q is his
q′), with the following modifications. Firstly, Oberlin considers operators∑

s∈Z
εs(x)f ∗ µs ,

with εs(x) ∈ [−1, 1], where µs is an isotropic dilate of a fixed measure µ0. In our setting
the µs are anisotropic dilates of D−sµs, but Oberlin’s proof goes through in the anisotropic
setting as well. Furthermore, in our setting the measures D−sµs are not identical, they
depend on s. However, they satisfy all assumptions of Oberlin’s theorems uniformly in s,
by i) - v) above, and the proof still goes through with this assumption.

It remains to explain why we can insert 1E(Q) in the q-average over 3Q in (1.6.4). We
explain it for T∗T,σ′ , the argument for MT is very similar. Oberlin constructs the sparse
collection S by an iterative argument starting from a large cube Q0, such that f , g are
supported in Q0, 3Q0 respectively. The expression on the left hand side of (1.6.4) does not
change if f is restricted to I(T) and g to 3I(T), so we can choose Q0 = I(T). Oberlin
then defines operators TQ, which in our notation are

TQf(x) =
∑
p∈T

s(p)≤s(Q)

1E(p)(x)1s(p)∈σ′(x) · µs(p) ∗ (1Qf)(x) , (1.6.5)

so that T∗T,σ′ = TQ0 . Note that in the sum in (1.6.5) only tiles p with Q ∩ 3I(p) ̸= ∅
contribute. But if s(p) ≤ s(Q) and Q ∩ 3I(p) ̸= ∅, then I(p) ⊂ 3Q. Thus, TQ = 1E(Q)TQ,
and hence

⟨TQf, g⟩ = ⟨TQf,1E(Q)g⟩ . (1.6.6)

Our goal is to estimate
|⟨TQ0f, g⟩| = |⟨TQ0f,1E(Q0)g⟩| .

Oberlin shows that for every dyadic cube Q and every f there exists a collection Q1(Q) of
dyadic cubes such that

|⟨TQf, g⟩| ≤ |Q|⟨f⟩Q,p⟨g⟩3Q,q +
∑

Q′∈Q1(Q)
Q′⊂Q

⟨TQ′f, g⟩ . (1.6.7)
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This follows from his equations (3.2) and (3.3) and the claims below them. The sparse
collection S is then constructed by starting with Q0 and iteratively adding for all Q ∈ S
the cubes Q1(Q) to S. Combining (1.6.6) and (1.6.7) one obtains (1.6.4) for this S, and
Oberlin shows that S is sparse. This completes the proof. Note that the only change
in our argument compared to Oberlin’s is that we use (1.6.6) to insert 1E(Q) into the
q-averages.

Corollary 1.6.3. Let q be as in v) in Subsection 1.6.1. Then for each ε < 1
q − 1

2 there

exists C > 0 such that for each generalized tree (T, σ′) with T of density δ, we have

∥T∗T,σ′∥2→2 ≤ Cδε .

The same statement holds with T∗T,σ′ replaced by MT.

Proof. Let L = L(T) be the collection of maximal dyadic cubes L such that there exists
some p ∈ T with L ⊂ I(p) but there exists no p ∈ T with I(p) ⊂ L. This is a partition of
I(T). Define

E(L) = L ∩
⋃
p′∈T

E(p′) .

We claim that for each L ∈ L we have

|E(L)| ≤ δ|L| . (1.6.8)

To prove this, fix L ∈ L. By definition of L there exists p ∈ T with I(p) ⊂ L̂. Define pL to
be p if I(p) = L̂, and else let pL be the unique tile with I(pL) = L̂ and ω(T) ⊂ ω(pL). If
p′ ∈ T with I(p′) ∩ L ̸= ∅ then we have pL ≤ p′. Thus

|E(L)| ≤ |E(pL)| ≤ dens(T)|L| ≤ δ|L| ,
giving the claim (1.6.8). Since L forms a partition of I(T), we have for all Q ∈ D

|E(Q)| ≤
∑
L⊂3Q

|E(L)| ≤ δ
∑
L⊂3Q

|L| ≤ δ3d+2|Q| .

Thus, for every q̃ > q, we have by Hölder’s inequality

⟨1E(Q)g⟩3Q,q ≤ (3d+2δ)1/q−1/q̃⟨g⟩3Q,q̃ . (1.6.9)

Now pick (p, q) as in v), and pick q̃ with q < q̃ < 2. We obtain from Lemma 1.6.2 and
(1.6.9) ∣∣∣∣∫ T∗T,σ′f(x)g(x) dx

∣∣∣∣ ≲ δ1/q−1/q̃
∑
Q∈S

|Q|⟨f⟩Q,p⟨g⟩3Q,q̃

≤ 2δ1/q−1/q̃
∑
Q∈S

|U(Q)|⟨f⟩Q,p⟨g⟩3Q,q̃

≤ 2δ1/q−1/q̃
∑
Q∈S

∫
U(Q)

MpfMq̃g

≲ δ1/q−1/q̃∥f∥2∥g∥2 .
Here we used boundedness of the p- and q̃- maximal function on L2 for p, q̃ < 2. This yields
the desired result for T∗T,σ′ .

For MT the proof is exactly the same.
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Combining Corollary 1.6.3 with Lemma 1.6.1 we obtain an estimate for a single tree
with decay in the density parameter.

Corollary 1.6.4. For each ε < 1
q − 1

2 there exist C > 0 such for each generalized tree

(T, σ′) with T of density δ, we have

∥TT,σ′∥2→2 ≤ Cδε .

Recall from Subsection 1.6.1 that for the measures µs defined by (1.6.2), condition
v) holds for all p, q < 2 such that (1/p, 1/q) is in the interior of the convex hull of
(1, 0), (0, 1), (d+1

d+2 ,
d+1
d+2). In this case the condition in Corollary 1.6.4 becomes ε < 1

2− 1
2(d+1) .

1.7 Forests: Proof of Proposition 1.3.3

To prove Proposition 1.3.3, it remains to combine the bounds for the operators TT from
Proposition 1.3.4 for all trees in a forest F. For this, we will show almost orthogonality
estimates for tree operators associated to separated trees.

1.7.1 Basic orthogonality estimates

As a first step, we show that the adjoint generalized tree operator T ∗T,σ′ is frequency localized
near NT. We use the definitions from Subsection 1.6.2.

We let Ψ denote the set of Schwartz functions ψ such that

(i) ψ is supported in B(0, 1),

(ii) ψ has integral 1,

(iii) |∂αψ(x)| ≤ L for all |α| ≤ 10d,

where L is chosen sufficiently large such that for each ξ with |ξ| ≥ 1, there exists ψ ∈ Ψ
with ψ̂(ξ) = 0.

For ψ ∈ Ψ, we define the frequency projection ΠR,N = ΠR,N,ψ by

Π̂R,Nf(ξ) = (1− ψ̂(R−1(ξ −N)))f̂(ξ) .

Lemma 1.7.1. For each κ < 1
2(d+1) there exist C such that the following holds. For each

generalized tree (T, σ′) such that each tile in T has scale at least 0, all R ≥ 1 and all ψ ∈ Ψ

∥TT,σ′ΠR,N(T)∥2→2 ≤ CR−κ .

Proof. We start by separating the log2(R) largest scales:

TT,σ′f(x) =
∑

s∈σ′(x)
s≥σ′(x)−log2(R)

∫
f(x− y)eiN(x)·ydµs(y) (1.7.1)

+
∑

s∈σ′(x)
s<σ′(x)−log2(R)

∫
f(x− y)eiN(x)·ydµs(y) . (1.7.2)
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The small scale contribution (1.7.2) is close to the N(T)-modulated operator:∣∣∣∣∣∣∣∣∣
∑

s∈σ′(x)
s<σ′(x)−log2(R)

∫
f(x− y)(e−iN(x)·y − e−iN(T)·y) dµs(y)

∣∣∣∣∣∣∣∣∣
≲

∑
s∈σ′(x)

s<σ′(x)−log2(R)

2s−σ
′(x)

∫
|f(x− y)|d|µs|(y) ≲ R−1Mλf , (1.7.3)

whereMλ denotes the maximal average associated to λ. Here we have used that if s ∈ σ′(x)
with s = σ′(x)− k, then there exists a frequency cube of scale s+ k containing N(T) and
N(x), which implies that for all y in the support of µs we have |(N(x)−N(T)) · y| ≲ 2−k.
So to bound (1.7.2), it suffices to show the following estimate for the N(T)-modulated
operator:∥∥∥∥∥∥∥∥∥

∑
s∈σ′(x)

s<σ′(x)−log2(R)

∫
eiN(T)·(x−y)(ΠR,N(T)f)(x− y) dµs(y)

∥∥∥∥∥∥∥∥∥
2

≲ R−1/2∥f∥2 .

Replacing f by eiN(T)·xf(x) and taking differences it suffices to show∥∥∥∥∥∥sup0≤σ

∣∣∣∣∣∣
∑
σ≤s

1J(s)

∫
(ΠR,0f)(x− y) dµs(y)

∣∣∣∣∣∣
∥∥∥∥∥∥
2

≲ R−1/2∥f∥2 .

This follows from a standard square function argument, using that by (1.6.1) we have for
all σ ≥ 0

|1− ψ̂(R−1ξ)|
∑
σ≤s

|µ̂s(ξ)| ≲ R−1/22−σ/2 .

Now we treat the large scales (1.7.1), using that only logarithmically many scales con-
tribute at each point. We discretize modulation frequencies. Let γ > 0, to be chosen
later. For each dyadic frequency cube ω, we fix finite subsets M(ω) satisfying conditions
(i), (ii), (iii) in Section 1.5.3, with ρ = R−γ . For each s ∈ Z, let ωs be the unique frequency
cube of scale s containing N(T). For each x and each s ∈ σ′(x), we pick a frequency
c(x, s) ∈ M(ωs) such that dpar(N(x), c(x, s)) ≤ R−γ2−s. By a similar computation as in
(1.7.3)∣∣∣∣∣∣∣∣∣

∑
s∈σ′(x)

s≥σ′(x)−log2(R)

∫
f(x− y)(e−iN(x)·y − eic(x,s)·y) dµs(y)

∣∣∣∣∣∣∣∣∣
≤ log2(R)R

−γMλf .
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Thus we may replace N(x) by c(x, s) in (1.7.1). We bound the resulting sum by the
number of nonzero summands, which is at most log2(R) at each point x, times the maximal
summand. The maximal summand is controlled by the estimate∥∥∥∥∥sups≥0

sup
c∈M(s)

∣∣∣∣∫ (ΠR,Nf)(x− y)eic·y dµs(y)

∣∣∣∣
∥∥∥∥∥
2

≲ Rγ dimh VR−1/2∥f∥2 .

This follows from |(1 − ψ̂(R−1(ξ − N + c)))||µ̂s(ξ)| ≲ R−1/22−s/2 and a standard square
function argument, using that there are at most Rγ dimh V choices of c for each s. Optimizing
γ, we obtain the lemma.

An immediate corollary are almost orthogonality estimate for separated trees with the
same top cube.

Corollary 1.7.2. For each κ < 1
2d+3 there exists C > 0 such that the following holds. Let

T1,T2 be a pair of ∆-separated, normal trees with I(T1) = I(T2) =: I. Let (T1, σ1), (T2, σ2)
be generalized tree operators, with possibly different µs. Then∣∣∣∣∫ T ∗T1,σ1g1T

∗
T2,σ2

g2

∣∣∣∣ ≤ C∆−κ∥g1∥L2(I)∥g2∥L2(I) . (1.7.4)

Proof. We drop the σi from the notation and write TTi,σi = TTi . By scaling, we may
assume that the minimal scale of a tile in T1 ∪T2 is 0. Furthermore we may assume that
∆ > 3, otherwise (1.7.4) follows from L2 boundedness of generalized tree operators. Then
it holds by ∆-separation that |N(T1)−N(T2)| ≥ ∆/3.

We let κ′ = κ/(1 − κ) < 1/(2(d + 1)) and γ = 1/(1 + κ′), define Πi = Π∆γ ,N(Ti) for
some function ψ ∈ Ψ, and split up

⟨T ∗T1
g1, T

∗
T2
g2⟩ = ⟨Π1T

∗
T1
g1,Π2T

∗
T2
g2⟩+ ⟨(1−Π1)T

∗
T1
g1,Π2T

∗
T2
g2⟩

+ ⟨Π1T
∗
T1
g1, (1−Π2)T

∗
T2
g2⟩+ ⟨(1−Π1)T

∗
T1
g1, (1−Π2)T

∗
T2
g2⟩ .

The first three terms are bounded by ∆−γκ
′∥g1∥L2(I)∥g2∥L2(I) by Lemma 1.7.1, and the last

term is bounded by

∥(1−Π1)(1−Π2)∥2→2∥g1∥L2(I)∥g2∥L2(I) ≲ ∆γ−1∥g1∥L2(I)∥g2∥L2(I) ,

because ψ ∈ Ψ and |N(T1) −N(T2)| ≥ ∆/3. This gives the desired estimate since γκ′ =
γ − 1 = κ.

1.7.2 Auxiliary estimates for oscillatory integrals

In this subsection we prepare the proof of a version of Corollary 1.7.2 for a general pair of
separated trees by showing some estimates for oscillatory integrals along paraboloids.

From now on, µs and λs are fixed to be the measures defined in (1.6.2) and (1.6.3). We
define

χs,ε = ε−d−11B(0,ε) ∗ (λs−1 + λs + λs+1) (1.7.5)

and χs,ε,δ = δ−1χs,ε1|xd|<δ2s . We also define the associated maximal convolution operators

Mχ,1f(x) := sup
s∈Z

sup
ε>0

|f | ∗ χ̃s,ε , (1.7.6)
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Mχ,2f(x) := sup
s∈Z

sup
ε>0

sup
δ>0

|f | ∗ χ̃s,ε,δ , (1.7.7)

where χ̃(x) = χ(−x). BothMχ,1 andMχ,2 are bounded on L2, because they are dominated
by the composition of the Hardy-Littlewood maximal function and maximal averages along
the parabolas in the direction of the coordinate axes {tei+ t2ed+1 : t ∈ R} for i = 1, . . . , d.

Lemma 1.7.3. There exists C > 0 such that the following holds. For all a, b > 0 with
b ≥ 4a, all N ∈ V , all ψ ∈ Ψ and all s ≥ −1 we have

|(eiN ·yµs(y)) ∗ ψa(x)| ≲ bχs,a,b(x) +
1

ab|N |χs,a(x) . (1.7.8)

Furthermore, if φ ≥ 0 has integral 1 and µls = µs ∗ φ, then

|(eiN ·yµls(y)) ∗ ψa(x)| ≲ bχs,a,b ∗ φ(x) +
1

ab|N |χs,a ∗ φ(x) . (1.7.9)

Here we write ψt(x) = t−d−1ψ(t−1x).

Proof. The estimate (1.7.9) follows from (1.7.8) and the triangle inequality. For |xd| <
b2s estimate (1.7.8) also follows directly from the triangle inequality. For |xd| ≥ b2s we
distinguish cases depending on V .

If V = Rd−1 × {0}2 then Nd = Nd+1 = 0, and without loss of generality we have that
|Nd−1| ≥ |N |/d. We let ỹ = (y1, . . . , yd−2) and put

y = (ỹ,
√
h2 − |ỹ|2 cos(θ),

√
h2 − |ỹ|2 sin(θ)) .

We abbreviate r =
√
h2 − |ỹ|2 and change variables to obtain∫

ψa(x− z)eiN ·z dµs(z)

=

∫
ψa(x

′ − y, xd+1 − |y|2)eiN(x)·(y,|y|2)Ks(y) dy

=

∫ ∫ ∫
Γh,ỹ(θ)e

iϕh,ỹ(θ) dθ h dhdỹ , (1.7.10)

where we put ϕh,ỹ(θ) = Nd−1r cos(θ) and

Γh,ỹ(θ) = ψa(x̃− ỹ, xd−1 − r cos(θ), xd − r sin(θ), xd+1 − h)

Ks(ỹ, r cos(θ), r sin(θ))e
iÑ ·ỹ .

Using (1.2.1) and the assumption s ≥ −1, we find that∣∣Γ′h,ỹ(θ)∣∣ ≲ a−d−22−dsr . (1.7.11)

Since |xd| > b2s and since |xd − r sin(θ)| ≤ a on the support of Γh,ỹ, we have additionally
that | sin(θ)| ≥ b− 2−sa ≥ b/2. Thus

∣∣ϕ′h,ỹ(θ)∣∣ ≥ |N |br
2d

and
∣∣ϕ′′h,ỹ(θ)∣∣ ≤ |N |r

d
. (1.7.12)
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Integrating by parts in (1.7.10), we obtain with (1.7.11) and (1.7.12)

(1.7.10) ≤
∫ ∫ ∫ |Γ′h,ỹ(θ)|

|ϕ′h,ỹ(θ)|
+

|Γh,ỹ(θ)|
|ϕ′h,ỹ(θ)|2

|ϕ′′h,ỹ(θ)| dθhdhdỹ

≲
∫ ∫ ∫

(1B(0,1))a(x̃− ỹ, xd−1 − r cos(θ), xd − r sin(θ), xd+1 − h)

2−ds(
1

ab|N | +
1

b2|N |)12s−3<|y|<2s dθ h dhdỹ

≲
∫
2s−3<|y|<2s

2−ds
1

ab|N |(1B(0,1))a(x
′ − y, xd+1 − |y|2) dy

≲
1

ab|N |χs,a .

Now we assume that V = {0}d × R. Then we have N ′ = 0 and hence∫
ψa(x− z)eiN ·z dµs(z) =

∫
ψa(x

′ − y, xd+1 − |y|2)eiNd+1|y|2Ks(y) dy

=

∫
Γ(t)eiNd+1t dt , (1.7.13)

where this time we have set

Γ(t) =

∫
ψa(x

′ − y, xd+1 − t)Ks(y)δ(t− |y|2) dy .

Using (1.2.1) and that s ≥ −1, one finds that |Γ′(t)| ≲ a−d−22−ds. Integrating by parts
in (1.7.13) gives the desired estimate (1.7.8) after a similar, but simpler computation as in
the case V = Rd−1 × {0}2.

Lemma 1.7.4. There exists C > 0 such that the following holds. Let s ∈ Z, a > 0 and
b > 2−s. Let ψ,φ ∈ Ψ with ψ̂(−aN) = 0. Define

φb,s(x) = (2sb)−d−2φ(2−sb−1x′, 2−2sb−2xd+1)

and µls = µs ∗ φb,s. Then we have that

|ψa ∗ (eiN ·yµls(y))| ≤ Ca2−sb−(d+3)2−(d+2)s1[−2s,2s]d×[−22s,22s](y) . (1.7.14)

Proof. We have that

|ψa ∗ eiN ·yµls(y)| ≲
∫

|ψ̂(aξ − aN)||φ̂b,s(ξ)|dξ

≲ a

∫
|ξ||φ̂b,s(ξ)|dξ

= a2−(d+3)sb−(d+3)

∫
|(ξ′, 2−sb−1ξd+1)||φ̂(ξ)| dξ .

The lemma now follows since 2−sb−1 < 1 and ∥|ξ|φ̂(ξ)∥1 ≲ 1 for ψ ∈ Ψ, and since the left
hand side of (1.7.14) is clearly supported in [−2s, 2s]d × [−22s, 22s].
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1.7.3 Main almost orthogonality estimate for separated trees

Lemma 1.7.5. There exists C > 0 such that the following holds. Let T1,T2 be a pair of
∆-separated, normal trees. Then∣∣∣∣∫ T ∗T1

g1T ∗T2
g2

∣∣∣∣ ≤ C∆−
1

10d ∥WT1g1∥L2(I(T1)∩I(T2))∥WT2g2∥L2(I(T1)∩I(T2))

for certain operators WTi depending only on Ti with

∥WTi∥2→2 ≤ 1 .

Proof. Since the trees are normal, the left hand side vanishes if I(T1) ∩ I(T2) = ∅. Thus
we may assume without loss of generality that I := I(T2) ⊂ I(T1). Note also that we can
always assume that ∆ is sufficiently large, by adding |T ∗Ti

| to WTi . Finally, we assume that
the minimal scale of a tile in T2 is 0, by scaling.

We fix γ := 2(d+1)
(2d+1)(2d+7) >

2
10d > 0 and φ ∈ Ψ and define µls := µs ∗ φ∆−γ ,s, where

φ∆−γ ,s(x) = 2−(d+2)s∆γ(d+2)φ(2−s∆γx′, 2−2s∆2γxd+1) .

Then we decompose TT1 into a large scales part, a smoothened small scales part and an
error term:

TT1f =
∑
s∈σ(x)

s>σ(x)−log2(∆)

∫
f(x− y)eiN(x)·y dµs(y)

+
∑
s∈σ(x)

s≤σ(x)−log2(∆)

∫
f(x− y)eiN(T1)·y dµls(y)

+ ET1(f)

=: T 1
T1
f + T 2

T1
f + ET1(f) .

Notice that µs, λs are supported in δs(B(0, 1/3)), so for ∆ sufficiently large the measures
µls and λls also satisfy conditions i) to v). Thus both T 1

T1
and T 2

T1
are generalized tree

operators.
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We first show that the error term ET1 is small. We have

|ET1(f)| ≤

∣∣∣∣∣∣∣∣∣
∑
s∈σ(x)

s≤σ(x)−log2(∆)

∫
f(x− y)(eiN(x)·y − eiN(T1)·y) dµs(y)

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
∑
s∈σ(x)

s≤σ(x)−log2(∆)

∫
f(x− y)eiN(T1)·y d(µs − µls)(y)

∣∣∣∣∣∣∣∣∣
≲

∑
s∈σ(x)

s≤σ(x)−log2(∆)

2s−σ(x)
∫

|f(x− y)|d|µs|(y)

+ sup
s<s

∣∣∣∣∣∣∣∣
∑
s<s≤s
s∈J

(µs − µls) ∗ (f(y)eiN(T1)·y)

∣∣∣∣∣∣∣∣ .
Here J = J(T1) is as in Subsection 1.6.2. The first term is bounded by ∆−1Mλf(x).
The second term is the maximally truncated singular integral associated to the single scale
operators 1J(s)(µs − µls), applied to eiN(T1)·yf(y). Since

|µ̂s(ξ)− µ̂ls(ξ)| ≤ min{|ξ|−1, |∆−γξ|} ,

this operator has norm ≲ ∆−γ/2 on L2. Thus we have

∥ET1(f)∥2 ≲ ∆−γ/2∥f∥2 ≤ ∆−
1

10d ∥f∥2 .

It now remains to bound ⟨T 1∗
T1
g1, T

∗
T2
g2⟩ + ⟨T 2∗

T1
g1, T

∗
T2
g2⟩. We decompose T1 = T′1 ∪

T′′1 ∪T′′′1 , where
T′1 = {p ∈ T1 : s(p) < −1 , 3I(p) ⊂ I} ,

T′′1 = {p ∈ T1 : s(p) ≥ −1, 3I(p) ∩ I ̸= ∅}
and T′′′1 = T1 \ (T′1 ∪T′′1). Then T′1 is a normal tree with top I. For all p ∈ T′′′1 , p

′ ∈ T2

we have 2I(p) ∩ (2 + 1
4)I(p

′) = ∅, this follows from normality of T2 and the fact that all
tiles in T′′′1 with 3I(p) ∩ I ̸= ∅ have scale at most s(p′)− 2. Thus ⟨T ∗T′′′

1
g1, T

∗
T2
g2⟩ = 0.

According to the decomposition of T1 we split T 1
T1

= T 1
T′

1
+ T 1

T′′
1
+ T 1

T′′′
1
, and similarly

for T 2
T1

. We still have ⟨T 1∗
T′′′

1
g1, T

∗
T2
g2⟩ = 0, thus

⟨T 1∗
T1
g1, T

∗
T2
g2⟩ = ⟨T 1∗

T′
1
g1, T

∗
T2
g2⟩+ ⟨T 1∗

T′′
1
g1, T

∗
T2
g2⟩ . (1.7.15)

For the first summand in (1.7.15) we obtain with Corollary 1.7.2

|⟨T 1∗
T′

1
g1, T

∗
T2
g2⟩| ≲ ∆−

1
10d ∥g1∥L2(I)∥g2∥L2(I) . (1.7.16)
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For the second summand in (1.7.15) we put ν = d+1
2d+1 and choose Π2 = Π∆ν ,N(T2) for some

function ψ ∈ Ψ. If ∆ is sufficiently large then Π2T
∗
p′g2 is supported in (2+ 1

4)I(p
′) for each

tile p′ ∈ T2, thus we also have ⟨T 1∗
T′′′

1
g1,Π2T

∗
T2
g2⟩ = 0. Using this, we expand

⟨T 1∗
T′′

1
g1, T

∗
T2
g2⟩ = ⟨g1, T 1

T′′
1
(1−Π2)T

∗
T2
g2⟩+ ⟨T 1∗

T1
g1 − T 1∗

T′
1
g1,Π2T

∗
T2
g2⟩ . (1.7.17)

The second term in (1.7.17) is by Cauchy-Schwarz, Lemma 1.7.1 and L2-boundedness of
T 1∗
T′

1
= T 1∗

T′
1
1I(T2) bounded by

∆−
1

10d ∥|T 1∗
T1
g1|+ |g1|∥L2(I)∥g2∥L2(I) . (1.7.18)

For the first term in (1.7.17) we may assume that N(T2) = 0. Then we have

T 1
T′′

1
(1−Π2)f(x) =

∑
s∈σ′(x)

s>σ(x)−log2(∆)

(eiN(x)·yµs(y)) ∗ ψ∆−ν ∗ f(x) ,

where σ′(x) = {s(p) : x ∈ E(p), p ∈ T′′1}. Using the estimate for the convolution kernels
proven in Lemma 1.7.3 with a = ∆−ν , b = ∆−1/2, we obtain with the notation defined at
(1.7.5)

|(eiN(x)·yµs(y)) ∗ ψ∆−ν ∗ f(x)|
≲ (∆−1/2χs,∆−ν ,∆−1/2 +∆ν−1/2χs,∆−ν ) ∗ |f |(x) .

Passing the convolutions to the other side in the inner product, we find that the first term
in (1.7.17) is bounded by

log(∆)∆ν−1/2⟨M1,χg1 +M2,χg1, |T ∗T2
g2|⟩

≲ ∆−
1

10d ∥M1,χg1 +M2,χg1∥L2(I)∥g2∥L2(I)

where M1,χ, M2,χ are defined in (1.7.6) and (1.7.7). Since M1,χ and M2,χ are bounded on
L2, this gives the desired estimate for T 1

T1
.

Now we turn to ⟨T 2∗
T1
g1, T

∗
T2
g2⟩. As above, we have

⟨T 2∗
T1
g1, T

∗
T2
g2⟩ = ⟨T 2∗

T′
1
g1, T

∗
T2
g2⟩+ ⟨T 2∗

T′′
1
g1, T

∗
T2
g2⟩ . (1.7.19)

For the first term in (1.7.19) we have again from Corollary 1.7.2 that

|⟨T 2∗
T′

1
g1, T

∗
T2
g2⟩| ≲ ∆−

1
10d ∥g1∥L2(I)∥g2∥L2(I) . (1.7.20)

For the second term in (1.7.19) we split as before

⟨T 2∗
T′′

1
g1, T

∗
T2
g2⟩ = ⟨g1, T 2

T′′
1
(1−Π2)T

∗
T2
g2⟩+ ⟨T 2∗

T1
g1 − T 2∗

T′
1
g1,Π2T

∗
T2
g2⟩ . (1.7.21)

The second term in (1.7.21) is by Cauchy-Schwarz and Lemma 1.7.1 bounded by

∆−
1

10d ∥|T 2∗
T1
g1|+ |g1|∥L2(I)∥g2∥L2(I) . (1.7.22)
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For the first term in (1.7.21), we assume again that N(T2) = 0. Then

T 2
T′′

1
(1−Π2)f(x) =

∑
s∈σ′(x)

s≤σ(x)−log2(∆)

ψ∆−ν ∗ (eiN(T1)·yµls(y)) ∗ f(x) .

By our assumptions on Ψ, we may then further assume that we have ψ̂(∆−νN(T1)) = 0,
since for ∆ sufficiently large |∆−νN(T1)| ≳ ∆1−ν ≥ 1. By Lemma 1.7.4 with a = ∆−ν ,
b = ∆−γ we have∑

s>γ log2(∆)

|ψ∆−ν ∗ (eiN(T1)·yµls(y)) ∗ f(x)| ≲ ∆(d+3)γ−νΦ ∗ |f |(x) ,

where Φ(y) =
∑

s≥0 2
−s(d+3)1[−2s,2s]d×[−22s,22s](y). By Lemma 1.7.3 with a = ∆−ν , b =

∆−1/2 we have for −1 ≤ s ≤ γ log(∆) that

|ψ∆−ν ∗ (eiN(T1·yµls(y)) ∗ f(x)|
≲ (∆−1/2χs,∆−γ ,∆−1/2 +∆ν−1/2χs,∆−γ ) ∗M |f |(x) .

Similarly as for T 1
T1

, we obtain from these estimates that the first term in (1.7.21) is
bounded by

∆−
1

10d ∥Mg1 +M1,χg1 +M2,χg1∥L2(I)∥g2∥L2(I) .

This completes the proof.

1.7.4 Completing the argument for forests

Here we use Lemma 1.7.5 to complete the proof of Proposition 1.3.3. We follow the pre-
sentation in [116].

A row is a union of normal trees with pairwise disjoint top cubes.

Lemma 1.7.6. There exists C > 0 such that the following holds. Let R1,R2 be two rows
such that the trees in R1 are ∆-separated from the trees in R2. Then∣∣∣∣∫ T ∗R1

g1T ∗R2
g2

∣∣∣∣ ≤ C∆−
1

10d ∥g1∥2∥g2∥2 .

Proof. We have by Lemma 1.7.5, with WTi as defined there:∣∣∣∣∫ T ∗R1
g1T ∗R2

g2

∣∣∣∣ ≤ ∑
T1∈R1

∑
T2∈R2

∣∣∣∣∫ T ∗T1
1I(T1)g1T

∗
T2

1I(T2)g2

∣∣∣∣
≤ C∆−

1
10d

∑
T1∈R1

∑
T2∈R2

∏
i=1,2

∥WTi1I(Ti)gi∥L2(I(T1)∩I(T2)) .
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Using Cauchy-Schwarz, disjointness of the cubes I(Ti) for Ti ∈ Ri and ∥WTi∥2→2 ≲ 1, we
estimate:

≤ C∆−
1

10d

∏
i=1,2

 ∑
T1∈R2

∑
T2∈R2

∥WTi
1I(Ti)gi∥2L2(I(T1)∩I(T2))

1/2

≤ C∆−
1

10d

∏
i=1,2

 ∑
Ti∈Ri

∥WTi
1I(Ti)gi∥2L2

1/2

≤ C∆−
1

10d ∥g1∥2∥g2∥2 .

Proof of Proposition 1.3.3. Let F be an n-forest. By the overlap estimate (1.3.3), we can
decompose F into 2n log(n+ 2) rows Ri. Since F is an n-forest, the trees in different rows
are 210dn separated and have density at most 2−n. Note also that separation of the rows
implies that the sets E(Ri) := ∪p∈RiE(p) are pairwise disjoint.

By orthogonality and Corollary 1.6.4, we have that

∥TRi∥2→2 ≲ε 2
−ϵn

for each i and each ε < 1
2 − 1

2(d+1) . Using this and Lemma 1.7.6 yields

∥T ∗Fg∥22 ≤
∑
i,j

∣∣∣∣∫ T ∗Ri
1E(Ri)gT

∗
Rj

1E(Rj)g

∣∣∣∣
≲ (2−2εn + 2n log(n+ 2)2−

1
10d

10dn)
∑
i

∥1E(Ri)g∥22

≲ 2−2εn∥g∥22 . (1.7.23)

This completes the proof.

1.8 Lp-bounds: Proof of Theorem 1.1.1

Theorem 1.1.1 follows from interpolation, Proposition 1.3.1 and the following Lp-estimates
for antichain and forest operators replacing Proposition 1.3.2 and Proposition 1.3.3.

Proposition 1.8.1. For each 1 < p <∞ there exists ε = ε(d, p) > 0 and C > 0 such that
for every antichain A of density δ

∥TA∥p→p ≤ Cδ−ε .

Proof. This follows from interpolation between Proposition 1.3.2 and the trivial bound
∥TA∥p→p ≤ C(p), which holds since TA is dominated pointwise by the maximal average
along the paraboloid.

Proposition 1.8.2. Let p be such that

d2 + 4d+ 2

(d+ 1)2
< p < 2(d+ 1) . (1.8.1)
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There exists C > 0 such that the following holds. Let for each n ≥ 0 and 1 ≤ l ≤ (n+ 1)2

an n-forest Fn,l of normal trees be given. Then

∥∥∥∥∑
n≥0

(n+1)2∑
l=1

TFn,l

∥∥∥∥
p→p

≤ C . (1.8.2)

Proof. Suppose first that p < 2. We will show that for all 0 ≤ α < d2/(2(d2 + 4d + 2))
there exists ε > 0 such that for each G ⊂ Rd+1 with 0 < |G| < ∞ it holds with G̃ = {x :
M1G > t} that

∥1Rd+1\G̃TFn,l
1G∥2→2 ≲ tα2−εn . (1.8.3)

Using Bateman’s extrapolation argument from [4] (see also [116], Appendix B), (1.8.3)
implies that for p < 2 satisfying (1.8.1)

∥TFn,l
∥Lp,1→Lp,∞ ≲ 2−εn .

Then (1.8.2) follows by interpolation and summation in n.
To prove (1.8.3), recall that by Lemma 1.6.2 for each tree T, all p > 1 + 1

d+1 and all
f, g, there exists a sparse collection S with

|⟨1Rd+1\G̃T∗T1Gf, g⟩| ≲
∑
Q∈S

|Q|⟨1Gf⟩p,Q⟨1(Rd+1\G̃)∩E(Q)g⟩p,3Q . (1.8.4)

If 3Q ∩ (Rd+1 \ G̃) ̸= ∅, then |Q ∩G| ≲ t|Q|. Using this and Hölder’s inequality, we obtain
with a similar argument as in the proof of Corollary 1.6.3 that for each ε < 1

2 − 1
d+2 and

each tree T of density at most 2−n

∥1Rd+1\G̃T∗T1G∥2→2 ≲ε t
ε2−εn .

By the same argument, the same holds for MT and hence for TT. By orthogonality, the
same estimate holds for row operators TR. Finally, each forest Fn,l can be decomposed
into at most 2n log(n+ 2) rows, so

∥1Rd+1\G̃TFn,l
1G∥2→2 ≤ 2n/2−εn log(n+ 2)1/2tε .

We obtain (1.8.3) by taking a geometric average of this estimate and (1.7.23).
For the case p > 2 we use that for all 0 ≤ α < 1

2 − 1
2(d+1) , there exists C > 0 such that

for each G ⊂ Rd+1 with 0 < |G| <∞

∥1G
∑
n≥0

(n+1)2∑
l=1

TFn,l
1Rd+1\G̃∥2→2 ≤ Ctα . (1.8.5)

Indeed, if we replace the sets E(p) by E(p) \ G̃, then each tile has density ≲ t, so (1.8.5)
follows immediatly from Proposition 1.3.3. Using Bateman’s extrapolation argument for
the adjoint operator and interpolation, we obtain (1.8.2) for all p > 2 satisfying (1.8.1).
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Chapter 2

On trilinear singular
Brascamp-Lieb integrals

This chapter consists of a joint article [8] with Polona Durcik and Fred Yu-Hsiang Lin.

2.1 Introduction

This article continues the investigation of generalizations of the bilinear Hilbert transform

BHT(f1, f2)(x) =

∫
R
f1(x+ t)f2(x+ αt)

1

t
dt , α ̸= 0, 1 , (2.1.1)

where the integral is understood as the principal value. Lacey and Thiele in their break-
through works [76, 78] proved boundedness of BHT from Lp1 ×Lp2 into Lp0 , provided that
1
p0

= 1
p1

+ 1
p2

= 1 and p0 >
2
3 . This partially resolved a conjecture of Calderón [69].

It is then very natural to ask about higher dimensional versions of (2.1.1), namely the
operators

BHTd(f1, f2)(x) =

∫
Rd

f1(x+A1t)f2(x+A2t)K(t)dt , (2.1.2)

where A1, A2 : Rd → Rd are linear maps and K is a Calderón-Zygmund kernel on Rd,
defined below in (2.1.3). Demeter and Thiele [39] studied the two dimensional case d = 2
of (2.1.2). The class of such operators is richer than in the one dimensional case, in that
various levels of degeneracies occur depending on A1 and A2. Demeter and Thiele found
four qualitatively different cases, and prove boundedness for three of them using different
tools. The final case was later resolved by Kovač [71], using again different techniques.

In the present paper we extend this classification to the d-dimensional case and in
fact to more general singular Brascamp-Lieb forms, in Theorem 2.1.15. We require some
definitions, which are set up in Sections 2.1.1 to 2.1.3. We use our classification to fully
characterize boundedness at exponents p1, p2, p3 that do not satisfy the Hölder relation 1

p1
+

1
p2

+ 1
p3

= 1, in Theorem 2.1.16. In Section 2.1.4 we further give three conditional bounds,
Theorem 2.1.17, Theorem 2.1.18 and Theorem 2.1.19. They indicate how the difficulty of
algebraically related cases in the classification compares. We put our classification into
context and discuss which cases are covered by the existing literature in Section 2.1.5.
Finally, we give new bounds for a large class of cases with Hölder exponents in Theorem
2.1.23.
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2.1.1 Singular Brascamp-Lieb forms

By duality, bounds for the bilinear operators (2.1.2) are equivalent to bounds for the tri-
linear forms ∫

R2d

f1(x+A1t)f2(x+A2t)f3(x)K(t)dt dx .

Motivated by this, we make the following general definitions.

Definition 2.1.1. An l-Calderón-Zygmund kernel is a tempered distribution K on a
Hilbert space H, such that K agrees with a function away from 0 and such that for any
choice of orthonormal basis, the corresponding partial derivatives of the Fourier transform
K̂ satisfy for all ξ ̸= 0

|∂αK̂(ξ)| ≤ |ξ|−|α| , |α| ≤ l . (2.1.3)

Here the Fourier transform of a Schwartz function is defined by

f̂(ξ) =

∫
e−2πiξ·xf(x) dx ,

and this definition is extended to tempered distributions by density.

Definition 2.1.2. We define a (trilinear) singular Brascamp-Lieb datum to be a tuple
H = (H;H0, H1, H2, H3; Π0,Π1,Π2,Π3) of five finite dimensional Hilbert spaces H,Hi and
of four surjective linear maps Πi : H → Hi.

Definition 2.1.3. Given a singular Brascamp-Lieb datum H and a Calderón-Zygumnd
kernel K on H0, the associated singular Brascamp-Lieb form ΛH is the trilinear form
defined a priori on Schwartz functions fi ∈ S(Hi) by

ΛH(K, f1, f2, f3) =

∫
H
f1(Π1x)f2(Π2x)f3(Π3x)K(Π0x) dx . (2.1.4)

Our goal is to study Lebesgue space estimates

|Λ(K, f1, f2, f3)| ≤ C(l)∥f1∥p1∥f2∥p2∥f3∥p3 (2.1.5)

for singular Brascamp-Lieb forms and exponents p = (p1, p2, p3). This motivates the
following definition.

Definition 2.1.4. We say that a form ΛH and the datum H are p-bounded if there exists l
such that (2.1.5) holds for all f1, f2, f3 and all l-Calderón-Zygmund kernels K. We say that
it is is of Hölder type if it is p-bounded for some 1 < p1, p2, p3 <∞ with 1

p1
+ 1

p2
+ 1

p3
= 1.

We will abbreviate a < p1, p2, p3 < b by a < p < b.

The methods used in previous literature to prove or disprove bounds (2.1.5) vary sub-
stantially depending on H. This shows in the very different methods used in [39] and [71],
and also in the analysis in [39] for different H. The following notion of equivalence is rel-
evant for deciding boundedness of a singular Brascamp-Lieb form, as expressed in Lemma
2.1.6.
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Definition 2.1.5. We call two singular Brascamp-Lieb data H, H′ equivalent if there exist
invertible linear maps

φ : H → H ′ , φi : Hi → H ′i, i = 0, 1, 2, 3 , (2.1.6)

such that
Π′i ◦ φ = φi ◦Πi , i = 0, 1, 2, 3 . (2.1.7)

Lemma 2.1.6. Suppose that H and H′ are equivalent singular Brascamp-Lieb data. Then
for all p, the form ΛH is p-bounded if and only ΛH′ is p-bounded.

Lemma 2.1.6 is a direct consequence of changes of variables in the functions and the
integral defining the singular Brascamp-Lieb form.

Our goal is to classify p-bounded singular Brascamp-Lieb forms up to equivalence. Note
that the notions of p-boundedness and equivalence of data are insensitive to the Hilbert
space structures on the spaces in H,H′. Hence, only the underlying vector spaces and
linear maps will be relevant for our classification. However, to make sense of (2.1.3) and
(2.1.5), we need Lebesgue measures on the spaces H,Hi, and a norm on H∗0 . The H,Hi are
defined to be Hilbert spaces to simplify the exposition, because Hilbert spaces canonically
have this additional structure. (The same choice is made in [13], for similar reasons.)

Remark 2.1.7. To study quantitative estimates, that is, the size of the constant C
in (2.1.5), one needs a finer equivalence relation than the one given by (2.1.6), (2.1.7).
Namely one should assume that φ0 is a scalar multiple of an orthogonal transformation,
φ0 ∈ R · O(H0, H

′
0). This is because only scalar multiples of isometries preserve all quan-

titative assumptions on the Calderón-Zygmund kernels. Equivalence classes modulo this
finer equivalence relation are parametrized by equivalence classes according to Definition
2.1.5 together with an element of Gl(H ′0)/(R ·O(H0, H

′
0)). The latter can be parametrized

by nonsingular lower triangular matrices with a 1 in the upper left corner.

2.1.2 The four subspace problem

The classification of Brascamp-Lieb data up to equivalence is equivalent to the so-called
four subspace problem, which we now describe.

Definition 2.1.8. A module is a tuple M = (M ;M0,M1,M2,M3) of a finite dimensional
vector space M and four subspaces Mi ⊆M , i = 0, 1, 2, 3.

Structures M are also called representations (of the four subspace quiver). We call them
modules, because they are modules over the path algebra associated with that quiver. The
interested reader is refered to [40] for a short survey on quiver representations.

Definition 2.1.9. Two modules M and M′ are isomorphic if there exists an invertible
linear map ψ :M →M ′ such that

ψ(Mi) =M ′i , i = 0, 1, 2, 3 .

If M is isomorphic to M′, we write M ∼= M′.
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The four subspace problem asks for a classification of all modules up to isomorphism.
It was solved by Gelfand and Ponomarev [58] for algebraically closed fields. In the case of
general fields (we are interested in R), the solution was given by Nazarova [94, 95]. See also
[87] for an elementary proof. The solution consists of a list of indecomposable modules,
such that each module is isomorphic to a unique (up to permutation) finite direct sum of
indecomposables.

Definition 2.1.10. The direct sum of two modules M = (M ;M0,M1,M2,M3) and M′ =
(M ′;M ′0,M

′
1,M

′
2,M

′
3) is defined to be the module

M⊕M′ = (M ⊕M ′;M0 ⊕M ′0,M1 ⊕M ′1,M2 ⊕M ′2,M3 ⊕M ′3) .

Theorem 2.1.11 (Gelfand, Ponomarev [58]; Nazarova [94, 95]). Let M be a module. Then
there exists a finite sequence of modules M1,M2, . . . ,Mk, from the list in Table 2.1 (possibly
after permuting the subspaces), such that

M ∼= M1 ⊕ · · · ⊕Mk .

For every such representation

M ∼= M′1 ⊕ · · · ⊕M′k ,

there exists a permutation π : {1, . . . , k} → {1, . . . , k} such that Mi = M′π(i), i = 1, . . . , k.

Remark 2.1.12. The indecomposable modules Mj are listed in Table 2.1 only up to
permutation of the subspaces. We give the additional information which permutations give
rise to isomorphic modules for each case in Lemma 2.8.1 in Appendix 2.8. This information
will be used in the proof of Theorem 2.1.15.

We alert the reader that the same classification problem for more than four subspace,
relevant to more-than-three linear forms, is significantly harder. More precisely, the four
subspace problem is the last in this sequence which is tame. For tame classification prob-
lems, there exist for every dimension tuple of the involved subspaces only finitely many
one parameter families of indecomposable modules, plus possibly finitely many additional
indecomposable modules (at least if the underlying field is algebraically closed), see [35].
If a classification problem is not tame, then it is wild. One can show that every wild
classification problem is at least as hard as the classification of finite dimensional modules
up to isomorphism over any finitely generated algebra. For both of these facts, and fur-
ther references, see [43]. In that sense wild classification problems are substantially more
difficult.

Of course, we are not interested in all modules, but just in those corresponding to p-
bounded forms with p <∞. This imposes some restrictions, see Lemma 2.2.1 and Lemma
2.2.2. However, even with these additional restrictions, even if we additionally assume the
Hölder condition 1/p1 + 1/p2 + 1/p3 = 1, the classification problem remains wild for four-
and higher linear forms, see Remark 2.2.3.

2.1.3 Classification of singular Brascamp-Lieb forms

Taking adjoint gives rise to a natural correspondence between the underlying vector spaces
of singular Brascamp-Lieb data and modules.
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Definition 2.1.13. Let H be a singular Brascamp-Lieb datum. The associated module
MH is defined to be

MH = (H∗; Π∗0H
∗
0 ,Π

∗
1H
∗
1 ,Π

∗
2H
∗
2 ,Π

∗
3H
∗
3 ) .

Here ∗ denotes adjoints and dual spaces. Conversely, if M is a module, then we associate
to it a singular Brascamp-Lieb datum

HM = (M∗;M∗0 ,M
∗
1 ,M

∗
2 ,M

∗
3 ; ι
∗
0, ι
∗
1, ι
∗
2, ι
∗
3) .

Here ιj denotes the inclusion map ιj :Mj →M , and we equip the finite dimensional vector
spaces M∗,M∗j with any Hilbert space structure.

If we define morphisms of Brascamp-Lieb data to be tuples of (not necessarily invertible)
linear maps φ,φi satisfying (2.1.6) and (2.1.7), then the maps H 7→ MH and M 7→ HM

become mutually inverse dualities of categories. As a consequence of this fact and Theorem
2.1.11 we immediately obtain a classification of all singular Brascamp-Lieb data.

Theorem 2.1.14. Singular Brascamp-Lieb data H and H′ are equivalent if and only if
MH and MH′ are isomorphic. For each module M, there exists a singular Brascamp-Lieb
datum H with MH

∼= M. As a consequence, for every singular Brascamp-Lieb datum H,
there exists a finite list of modules M1, . . . ,Mk from Table 2.1 such that

MH
∼= M1 ⊕ · · · ⊕Mk . (2.1.8)

This list is unique, up to permutation. Conversely, for every finite list M1, . . . ,Mk there
exists a unique up to equivalence singular Brascamp-Lieb datum H such that (2.1.8) holds.

Most of the singular Brascamp-Lieb forms as in (2.1.8) are not p-bounded for any
p <∞. We exclude the case where some pi = ∞ to avoid certain cases where the maps Πi
are not surjective on the kernel of Π0, which would complicate our analysis while offering
little additional insight. We have the following classification of p-bounded forms with
p <∞, which will be proved in Section 2.2.

Theorem 2.1.15. Let 1 ≤ p < ∞ and let H be a p-bounded singular Brascamp-Lieb
datum with H1, H2, H3 ̸= {0}. Then one of the following holds, with the notation from
Appendix 2.8.

i) (Bilinear Hölder-type) There exists an assignment {i, j, k} = {1, 2, 3} such that 1
pj

=
1
pk

= 1− 1
pi

and n1, n2, n3, n4 ≥ 0 such that

MH
∼= (P(j))⊕n1 ⊕ (K(j))⊕n2 ⊕ (P(k))⊕n3 ⊕ (K(k))⊕n4 . (2.1.9)

ii) (Young-type) We have p = (p1, p2, p3) with 1
p1

+ 1
p2

+ 1
p3

= 2. If p1, p2, p3 ̸= 1 then
there exist n1, n2 ≥ 0 such that

MH
∼= Y⊕n1 ⊕ Z⊕n2 . (2.1.10)

If there is some i ∈ {1, 2, 3} with pi = 1, then there exist n1, n2, n3, n4 ≥ 0 such that

MH
∼= Y⊕n1 ⊕ Z⊕n2 ⊕ (P(i))⊕n3 ⊕ (K(i))⊕n4 . (2.1.11)
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iii) (Loomis-Whitney-type) We have p = (2, 2, 2) and there exist n1, n2 ≥ 0 and a list of
modules M1, . . . ,Mk from Table 2.4 with

MH
∼= L⊕n1 ⊕B⊕n2 ⊕M1 ⊕ · · · ⊕Mk . (2.1.12)

iv) (Hölder-type) We have p = (p1, p2, p3) with
1
p1
+ 1
p2
+ 1
p3

= 1. In this case, there exists
a finite list of modules M1, . . . ,Mk from Table 2.2 such that

MH
∼= M1 ⊕ · · · ⊕Mk .

The proof of Theorem 2.1.15 uses necessary conditions for boundedness of nonsingular
Brascamp-Lieb forms from [13]. They can be applied to singular Brascamp-Lieb forms
because the Dirac δ distribution is a Calderón-Zygmund kernel, and singular Brascamp-
Lieb forms with kernel δ simplify to nonsingular Brascamp-Lieb forms. A similar argument
previously appeared in [48].

The singular Brascamp-Lieb forms corresponding to cases i), ii) of Theorem 2.1.15 are
easily seen to be bounded by Hölder’s inequality, Young’s convolution inequality, and clas-
sical linear singular integral theory. The forms corresponding to case iii) are also bounded,
by an elementary argument using Plancherel and the Loomis-Whitney inequality. This is
summarized by the following theorem, which we prove in Section 2.3.

Theorem 2.1.16. Let MH and p be as in case i), ii) or iii) of Theorem 2.1.15. Then H
is p-bounded.

As Theorem 2.1.16 shows, forms of Hölder type are the most interesting ones. Showing
boundedness for them is in general open, and contains some difficult problems. We collect
results from the literature, proving bounds in some cases, in Section 2.1.5.

2.1.4 Projection results and method of rotations

The difficulty of estimating singular Brascamp-Lieb forms increases when taking direct
sums of the corresponding modules, in the following precise sense.

Theorem 2.1.17. Let M,M′ be two modules and let p < ∞. Let H and H⊕H′ be data
with MH

∼= M and MH⊕H′ ∼= M⊕M′. Suppose that for each l-Calderón-Zygmund kernel
K we have

|ΛH⊕H′(K, f1, f2, f3)| ≤ C∥f1∥p1∥f2∥p2∥f3∥p3 .
Then there exists a constant C ′ such that for each 2l-Calderón-Zygmund kernel K we have

|ΛH(K, f1, f2, f3)| ≤ C ′∥f1∥p1∥f2∥p2∥f3∥p3 .

Also, in the case J
(2)
n of the classification, the difficulty increases with the parameter n.

Theorem 2.1.18. Let M be a module and let p < ∞. Let Hn and Hn−1 be data with

MHn
∼= M⊕ J

(2)
n and MHn−1

∼= M⊕ J
(2)
n−1. Suppose that there exists C such that for each

l-Calderón-Zygmund kernel K we have

|ΛHn(K, f1, f2, f3)| ≤ C∥f1∥p1∥f2∥p2∥f3∥p3 .
Then there exists a constant C ′ such that for each 2l-Calderón-Zygmund kernel K we have

|ΛHn−1(K, f1, f2, f3)| ≤ C ′∥f1∥p1∥f2∥p2∥f3∥p3 .
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The same is true for J
(1)
n and J

(3)
n , because they are isomorphic to modules that can be

obtained from J
(2)
n by permuting the subspaces, see Lemma 2.8.1. We do not state similar

theorems for Cn or Nn, because Theorem 2.6.1 already gives unconditional bounds in these
cases. For Tn, we do not expect an analogue of Theorem 2.1.18 to be true. The reason is
that the associated forms become more singular as n gets smaller, at least judging only by
the number of arguments of the kernel compared to the functions.

In a different direction, it is possible to express forms with a kernel taking d arguments
as superpositions of certain forms with kernels taking d − 1 arguments. Thus bounds for
the former are at most as hard as integrable bounds for the latter. A classical instance of
this idea is the method of rotations, introduced by Calderón and Zygmund in [20], in which
one expresses an odd Calderón-Zygmund kernel as a superposition of Hilbert transforms.
Using this, one can deduce bounds for odd kernel Calderón-Zygmund operators in higher
dimensions from the boundedness of the Hilbert transform. We prove a stronger version
of this fact. Namely, every Calderón-Zygmund kernel in dimension 3 or higher can be
expressed as a superposition of 2-dimensional Calderón-Zygmund kernels on 2-dimensional
subspaces.

This yields the following theorem for singular Brascamp-Lieb forms, which is proved
in Section 2.5. We denote by Grd(V ) the Grassmann-manifold of d-dimensional subspaces
of some vector space V . A Calderón-Zygmund kernel on a d-dimensional Hilbert space is
called homogeneous if for all x ̸= 0 it holds K(tx) = t−dK(x).

Theorem 2.1.19. Let H be a singular Brascamp-Lieb datum and suppose that d = dimH0 ≥
3. Let l ≥ d+1. There exists C ′ > 0 such that the following holds. For each θ ∈ Grd−1(H0),
consider the datum

H(θ) = H ∩Π−10 (θ) = (Π−10 (θ), θ,H1, H2, H3; Π0,Π1,Π2,Π3) .

Here we abuse notation and denote the restriction of Πi to Π−10 (θ) still by Πi. Suppose that
for all θ ∈ Grd−1(M0) there exists C(θ) such that for all homogeneous l−

⌈
d+2
2

⌉
-Calderón-

Zygmund kernels K on θ, we have

|ΛH(θ)(K, f1, f2, f3)| ≤ C(θ)∥f1∥p1∥f2∥p2∥f3∥p3 .

Then for all homogeneous l-Calderón-Zygmund kernels K on H0, we have

|ΛH(K, f1, f2, f3)| ≤ C ′
∫
C(θ) dθ · ∥f1∥p1∥f2∥p2∥f3∥p3 ,

where the integration is over Grd−1(H0) with respect to the unique rotation invariant prob-
ability measure. If d = 2, then the same result is true under the additional assumption that
K is odd.

Remark 2.1.20. The loss of derivatives is a technical consequence of the fact that we
assume Mikhlin bounds (2.1.3) on the Fourier transform of the kernel. If the smoothness
assumptions on the kernels are formulated on the spatial side, then there is no loss of
derivatives.

There is a crucial difficulty in applying Theorem 2.1.19: It assumes quantitative, inte-
grable estimates for the norms of ΛH(θ). Such estimates are notoriously hard to prove. See
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[115], [56] for the strongest currently known results in that direction, which still only apply
to the case N1. Recall also that to study quantitative bounds, one should use the finer
equivalence relation with φ0 a scalar multiple of an orthogonal transformation, as described
in Remark 2.1.7.

2.1.5 Positive boundedness results in the literature

It is tempting to conjecture that the conditions in Theorem 2.1.15 are already sufficient.
By Theorem 2.1.16, this would follow from the following conjecture.

Conjecture 2.1.21. All singular Brascamp-Lieb data HM with M as in case iv) of The-
orem 2.1.15 are p-bounded for all 1 < p <∞ with 1

p1
+ 1

p2
+ 1

p3
= 1.

We now give a list of known boundedness results for forms of Hölder type. With the
exception of Theorem 2.1.23, these results are not new, however some of them have not
been stated in this form anywhere in the literature. In what follows, we will always fix a
basis and identify finite dimensional Hilbert spaces with Rn, for some n.

Note first that the module C0 corresponds simply to Hölder’s inequality in three func-
tions. If a datum HM is p-bounded then so is HM⊕C0 , by Fubini and Hölder’s inequality.
Keeping this in mind, we can ignore C0 in the following discussion.

Coifman and Meyer

The first result on multilinear singular integral operators, due to Coifman and Meyer [33,
32], treats the case M = C⊕n1 for n ≥ 1. The singular Brascamp-Lieb form corresponding
to this module is

Λ(K, f1, f2, f3) =

∫
Rn

∫
Rn

∫
Rn

f1(x)f2(x+ y)f3(x+ z)K(y, z) dy dz dx .

These forms are in a sense the least singular among all singular Brascamp-Lieb forms
of Hölder type, because the kernel K has the maximum possible number of arguments
compared to the functions.

Time-frequency analysis

Lacey and Thiele [76, 78] proved bounds for the Bilinear Hilbert transform

Λ(f1, f2, f3) =

∫
R

∫
R
f1(x)f2(x+ t)f3(x+ αt)

1

t
dt dx ,

where α ̸= 0, 1. This corresponds to the module N1, with X = α. Their methods were
subsequently extended to treat also the cases Nn for n ≥ 2, and direct sums thereof. For
n = 2, this was done in [39]. For larger n, proofs can be found in [104, 56].

The techniques introduced by Lacey and Thiele apply to a certain class of multilinear
Fourier multiplier operators more general than (2.1.4). This was first observed in [59, 92],
where it is shown that it suffices if the multipliers satisfy symbol estimates away from
some subspace, which in particular holds if they satisfy symbol estimates away from some
smaller subspace. Using this observation, one can deduce also bounds for forms ΛH with
MH including summands Cn. The following theorem summarizes this.
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Theorem 2.1.22. Suppose that M is a direct sum of modules Nni and Cmi, for some finite
sequences ni,mi ∈ N≥1. For each 2 < p < ∞ and each singular Brascamp-Lieb datum H
associated with M, there exists C > 0 and l such that for each l-Calderón-Zygmund kernel
K

|ΛH(K, f1, f2, f3)| ≤ C∥f1∥p1∥f2∥p2∥f3∥p3 .

One and a half dimensional time-frequency analysis

The conditions of Theorem 2.1.22 are generically satisfied. ‘Degenerate’ cases were first
studied by Demeter and Thiele in [39], for functions of two arguments. There are, up to
permutation of the functions and equivalence, only three degenerate cases when all functions

and kernels have two arguments: J
(i)
2 , N1 ⊕ J

(i)
1 and J

(i)
1 ⊕ J

(j)
1 for i ̸= j. This can be read

off of Table 2.4, noting that changing i and j only amounts to permuting the functions.
Demeter and Thiele develop a ‘one and a half-dimensional’ time frequency analysis, to prove

bounds for the cases J
(i)
2 and N1⊕J

(i)
1 . Similarly as discussed before Theorem 2.1.22, their

proof implies also boundedness of the less singular forms Λ corresponding to C1 ⊕ J
(i)
1 .

Indeed, by performing a discretization of such Λ as in [39], one arrives at a model form
that still specializes the form (3) in [39, Section 3.1.1], and is consequently bounded by the
argument given there.

Demeter and Thiele further observe that p-bounds for the form ΛH, with MH = J
(i)
2 ,

imply Carleson’s theorem [21] on pointwise convergence of Fourier series of Lp1 functions.
By Theorems 2.1.17 and 2.1.18, the same is then true whenever MH has a direct summand

J
(i)
n for any n ≥ 2.

Twisted techniques

Demeter and Thiele left open the last case in their classification, J
(i)
1 ⊕J

(j)
1 for i ̸= j. They

called this case the ‘twisted-paraproduct’. It was later shown to be bounded by Kovač
[71], using very different techniques. Variations of Kovač’s techniques can by applied to
many other multilinear singular Brascamp-Lieb forms with so-called cubical structure, see
[45]. We expect that bounding forms associated with modules containing a direct summand

other than J
(i)
1 andC1 requires extensions of the time-frequency analysis methods described

above, perhaps in combination with twisted techniques. For Nn this is suggested by the

fact that all known proofs use such techniques, while for J
(i)
n the implication for Carleson’s

theorem offers some justification. Thus, the only remaining trilinear singular Brascamp-
Lieb forms that should be attackable using twisted techniques are the ones associated with

(J
(1)
1 ⊕ J

(2)
1 ⊕ J

(3)
1 ⊕C1)

⊕n, n ≥ 1.
The following Theorem, which we will prove in Section 2.7, shows that they are indeed

always p-bounded.

Theorem 2.1.23. Let n ≥ 1 and let M = (J
(1)
1 ⊕ J

(2)
1 ⊕ J

(3)
1 ⊕ C1)

⊕n. Let 2 < p < ∞
and let H be a singular Brascamp-Lieb datum associated with M. Then there exists l and
C > 0 such that for all l-Calderón-Zygmund kernels K, we have

|ΛH(K, f1, f2, f3)| ≤ C∥f1∥p1∥f2∥p2∥f3∥p2 .

63



Note that Theorem 2.1.23 recovers via Theorem 2.1.17 boundedness of the twisted
paraproduct, as well as of certain higher dimensional versions. It further gives a new proof

of boundedness of the form associated with J
(j)
1 ⊕ C1, different from the one implicit in

[39].
By a cone decomposition, the proof of Theorem 2.1.23 reduces to two essentially differ-

ent cases. The first case can be treated using bounds for the standard maximal and square
functions, in analogy with the Coifman-Meyer multipliers. In this case we have, in fact,
boundedness in a larger range 1 < p <∞. The second case is bounded using twisted tech-
niques, tailored to the specific structure of the form. The arguments rely on intertwined
applications of the Cauchy-Schwarz inequality, integration-by-parts identity, and positivity
arguments. These arguments are applied in a localized setting, which in turn gives the
claimed range of boundedness. It is an open problem to further lower the range of expo-
nents in Theorem 2.1.23. For the twisted paraproduct [71], fiber-wise Calderón-Zygmund
decomposition [14] can be used to extend the range of some exponents. However, similar
arguments do not seem to directly apply in our setting.

The triangular Hilbert transform

The final family of the classification, Tn, contains and generalizes the so-called triangular
Hilbert transform

Λ(f1, f2, f3) =

∫
R

∫
R

∫
R
f1(x1, x2)f2(x1 + t, x2)f3(x1, x2 + t)

1

t
dt dx1 dx2 .

Proving any p-bounds for this form is a hard open problem. We refer to [72] for some
discussion and a partial result. By Theorem 2.1.17, bounding any form associated with a
module M with a direct summand Tn is at least as hard as bounding Tn, and therefore also
open. This applies in particular, but not exclusively, to all forms where dimH0 < dimH1

(note that we have dimH1 = dimH2 = dimH3 for everyH of Hölder type). Indeed, all such
forms must contain an indecomposable direct summand satisfying the same inequality, and
the only such summands are of type Tn. We note that this invalidates a certain claim in
the paper [38], in the case of trilinear forms. More precisely, in [38] boundedness of certain
multilinear singular Brascamp-Lieb forms is shown, which do have a dimension deficit as
above, and it is claimed that the assumptions placed on the forms are generically satisfied.
We believe that this genericity claim is false for trilinear forms.

Further questions

At the time of writing, the above list of cases where p-bounds are known is complete, to
the best of our knowledge. This gives rise to a number of open questions. We consider it
an interesting question whether time frequency techniques and twisted techniques can be

combined, natural test cases are N1 ⊕ J
(1)
1 ⊕ J

(2)
1 or N1 ⊕ J

(1)
1 ⊕ J

(2)
1 ⊕ J

(3)
1 . More difficult

seems to be the question of bounds for the forms associated with Tn, n ≥ 2. Judging by
the dimension of the space H0 in relation to H1, H2, H3 alone, these forms become less
singular as n increases, so these might be useful test cases towards the triangular Hilbert
transform. Finally, it would be interesting to gain a better understanding of the questions
considered in this paper for higher degrees of multilinearity. While a classification in terms
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of direct summands is not possible, see Remark 2.2.3, there might be a different algebraic
description of the properties of modules relevant for proving p-bounds.

2.1.6 Comparison with the literature

We point out that various related objects have been studied under the name singular
Brascamp-Lieb forms. Some completely nondegenerate cases with higher degrees of mul-
tilinearity have been considered in [92, 38], using time frequency analysis. Some further
multilinear cases with so-called ‘cubical structure’ are studied in [45, 46], using twisted
techniques. However, there has been no attempt of a systematic study of all degenerate
cases.

Our kernel K always satisfies the single parameter Mikhlin condition (2.1.3). This is in
contrast to related multiparameter problems, which have been studied for example in [12,
89, 90, 93] in connection with fractional Leibniz-rules. In particular, we point out that the
‘tensorization’ of forms to obtain multiparameter forms, as for example in [12], is not the
same as the procedure of taking direct sums of modules associated with singular Brascamp-
Lieb forms. The former is a way of constructing multiparameter forms, while the latter
constructs single parameter forms. However, as the Mikhlin condition (2.1.3) on Rn is
implied by an n-parameter kernel condition, known multiparameter bounds imply some of
the one parameter bounds. In particular, we note that the bounds obtained in [12, Theorem
6] for a tensor product of one bilinear Hilbert transform with n many paraproducts imply
boundedness of the forms of type N1 ⊕Cn

1 .
Another question concerning the kernels is about the optimal regularity l, or more

generally for optimal regularity conditions on the kernel K or the symbol. Classical results
for linear singular integral operators giving such sharp regularity conditions have been
generalized to Coiffman-Meyer type forms C⊕n1 in [114, 63, 88, 79], and to the bilinear
Hilbert transform in [25].
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2.2 The classification: Proof of Theorem 2.1.14 and Theo-
rem 2.1.15

Proof of Theorem 2.1.14. The first claim of Theorem 2.1.14 follows immediately from basic
linear algebra. The remaining claims follow from the first, the classification of modules in
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Theorem 2.1.11 and the facts that clearly MHM
∼= M and HMH

∼= H.

Before proving Theorem 2.1.15, we recall some necessary conditions for a datum H to
be p-bounded for some p < ∞. They were proven in [48], by adapting similar arguments
for non-singular Brascamp-Lieb inequalities from [13].

Lemma 2.2.1. Let p <∞ and suppose that H is p-bounded. Then for each i = 1, 2, 3,

Πi kerΠ0 = ΠiH . (2.2.1)

Furthermore, for each subspace H ′ ⊆ kerΠ0, it holds that

dimH ′ ≤
3∑
i=1

dimΠiH
′

pi
, (2.2.2)

and if H ′ = kerΠ0, then we have equality in (2.2.2).

Proof. Note that the Dirac δ distribution is a Calderón-Zygmund kernel. Hence, if H is
p-bounded, then the Brascamp-Lieb form∫

H
f1(Π1(x))f2(Π2(x))f3(Π3(x))δ(Π0(x)) dx = c

∫
kerΠ0

f1(Π1(x))f2(Π2(x))f3(Π3(x)) dx

is bounded on Lp1 × Lp2 × Lp3 . Theorem 1.13 in [13] then immediately gives (2.2.2). The
first condition (2.2.1) follows from the fact that if pj < ∞, then the Brascamp-Lieb form
can only be bounded on Lpj if Πi|kerΠ0 is surjective.

Lemma 2.2.2. Suppose that the datum H is of Hölder type. Then for each i = 1, 2, 3, we
have that H = kerΠ0 ⊕ kerΠi.

Proof. By (2.2.2) we have

dimkerΠ0 =

3∑
i=1

dimΠi kerΠ0

pi
≤

3∑
i=1

dimkerΠ0

pi
= dimkerΠ0 .

In the last step we used that 1
p1

+ 1
p2

+ 1
p3

= 1. So we must have equality in the middle,
hence Πj |kerΠ0 is injective, which gives that kerΠj ∩ kerΠ0 = {0}. Combining this with
(2.2.1), we obtain

dimkerΠ0 = dimΠi kerΠ0 = dimΠiH = dimH − dimkerΠi ,

which completes the proof of the lemma.

Proof of Theorem 2.1.15. Let p <∞ and suppose that H is p-bounded. To simplify some
formulas, we will write below qi = p−1i . By Theorem 2.1.11, we have that

MH = M1 ⊕ · · · ⊕Mk

for some modules Mk from Table 2.1. By Theorem 2.1.17, each Hj = HMj , j = 1, . . . , k,
is p-bounded.
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Recall that Theorem 2.1.11 allows for permutations of the subspaces in the modules in
Table 2.1, see Lemma 2.8.1 for an exact description of which permutations of the subspace
give rise to nonisomorphic modules. We will denote modules from Table 2.1 by adding the
permutation and the parameter n as subscripts.

We write
Hj = (Hj , Hj0, Hj1, Hj2, Hj3,Πj0,Πj1,Πj2,Πj3) .

By condition (2.2.1) of Lemma 2.2.1 and surjectivity of the maps Πji, we have for i = 1, 2, 3

dimHji = dimΠjiHj = dimΠji kerΠj0 ≤ dimHj − dimHj0 . (2.2.3)

By comparing with Table 2.1, this immediately implies that Mj ̸∼= IV∗n,π and Mj ̸∼= V∗n,π
for any n or π.

Suppose next that Mj
∼= In,π for some n ≥ 1 and some permutation π. If Hj0 corre-

sponds to the second subspace in the block matrix in Table 2.1, then the map Πj3 corre-
sponding to the fourth subspace is not surjective on kerΠ0. Similarly, if Hj0 corresponds
to the fourth subspace, then the map corresponding to the second one is not surjective on
kerΠ0. Thus by (2.2.1) Hj0 must correspond to the first or third subspace, and by Lemma
2.8.1 we can assume that it corresponds to the first. By (2.2.2), p must satisfy the Hölder
condition q1 + q2 + q3 = 1. By permuting the last three subspaces and using Lemma 2.8.1,

we obtain three isomorphism classes of modules, which are exactly J
(1)
n ,J

(2)
n ,J

(3)
n in Table

2.2.
Suppose now that Mj

∼= IIn,π for some n ≥ 0 and some permutation π. By (2.2.3),
the permutation π must be so that Hj0 corresponds to a subspace of dimension n. We
will assume by permuting the functions that Hj3 is the other subspace of dimension n.
Applying (2.2.2) to the full space H ′ = kerΠj0 we obtain

(n+ 1)q1 + (n+ 1)q2 + nq3 = n+ 1 .

On the other hand, applying (2.2.2) to the one dimensional space H ′ = kerΠj3 ∩ kerΠj0
yields

q1 + q2 ≥ 1 .

Since p3 < ∞ and hence q3 > 0, it follows that n = 0. So in this case, we must have
Mj

∼= P(3) and 1
p1

+ 1
p2

= 1. Note that swapping the two nonzero subspaces in P(j) gives
an isomorphic module, see Lemma 2.8.1. Permuting the functions yields the two additional
possibilities Mj

∼= P(1) or Mj
∼= P(2), with the corresponding conditions on p.

Next, assume that Mj
∼= IVn,π for some n ≥ 0 and π. Suppose first that Hj0 corre-

sponds to one of the first three subspaces in Table 2.1. We permute the subspaces so that
dimHj3 = n. Then we get from (2.2.2) that

(n+ 1)q1 + (n+ 1)q2 + nq3 = n+ 1 .

Taking H ′ = kerΠj0 ∩ kerΠj3, we also have

q1 + q2 ≥ 1 .

Since p3 < ∞ it follows that n = 0 and hence Mj
∼= K(3) and 1

p1
+ 1

p2
= 1. Note that

swapping the two nonzero subspaces in P(j) gives an isomorphic module. Thus, permuting
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the subspaces, only yields the additional possibilities Mj
∼= K(1) or Mj

∼= K(2), with
corresponding conditions on p. It remains to consider the case where Hj0 is the last
subspace in Table 2.1. (2.2.2) applied to H ′ = kerΠj0 gives in this case

(n+ 1)(q1 + q2 + q2) = n+ 2 .

On the other hand, applying (2.2.2) to each of the one dimensional subspaces kerΠj0 ∩
kerΠji, i = 1, 2, 3, and adding the resulting inequalities, yields

2(q1 + q2 + q3) ≥ 3 .

Hence n = 0 and 1
p1

+ 1
p2

+ 1
p3

= 2 or n = 1 and p1 = p2 = p3 = 2. This corresponds to
Mj

∼= Y and Mj
∼= L, respectively. Note that all permutations of the subspaces in these

modules corresponding to functions yield isomorphic modules.
Finally assume that Mj

∼= Vn,π for some n ≥ 0 and π. Note that all such modules
for fixed n and different π are isomorphic. Applying condition (2.2.2) to H ′ = kerΠj0, we
obtain

n(q1 + q2 + q3) = n+ 1 .

On the other hand, applying (2.2.2) to H ′ = kerΠj0 ∩ kerΠji, i = 1, 2, 3, and adding the
resulting inequalities, yields

2(q1 + q2 + q3) ≥ 3 .

Hence, we must have either n = 1 and 1
p1

+ 1
p2

+ 1
p3

= 2 or n = 2 and p1 = p2 = p3 = 2.
This corresponds to Mj

∼= Z and Mj
∼= B, respectively.

In the remaining cases, it follows immediately from (2.2.3) that Hj0 must correspond
to the first subspace. All permutations respecting this give rise to isomorphic modules,
or for modules of type 0 to another module of type 0. From (2.2.2) it then follows that
1
p1

+ 1
p2

+ 1
p3

= 1. Case 0 then corresponds to N, case I gives after permuting the subspaces

rise to the Jordan block cases J(s), case III corresponds to C and case III∗ to T.
Thus the possible choices of p are exactly as in case i) - iv) of Theorem 2.1.15. Collecting

the possible summands for each choice of p completes the proof.

Remark 2.2.3. We now show that already the classification of n-linear singular Brascamp-
Lieb forms of Hölder type is as hard as the classification of representations of the n − 1-
Kronecker quiver, i.e. of tuples of n− 1 linear maps between two finite dimensional vector
spaces, up to isomorphism. This classification problem is wild for n > 3, see for example
Theorem 1 and 2 in [95]. Thus a classification as above is not possible for any n > 3, not
even under the assumption that the forms are of Hölder type.

Note that the necessary conditions from both Lemma 2.2.1 and Lemma 2.2.2 continue
to hold for more than three functions, with identical proofs. Suppose the H is a datum of
Hölder type. Let a = dimH0 and b = dimH1. By Lemma 2.2.2, we have kerΠ0⊕ kerΠ1 =
H, so we can choose bases of H, H0 and H1 such that the matrices of Π0,Π1 are given by(

Ia
0

)
and

(
0
Ib

)
.

Choosing in Hi, 2 ≤ i ≤ n, the basis Πi(ea+1), . . .Πi(ea+b), the matrices of Πi, 2 ≤ i ≤ n
are given by (

Ai
Ib

)
.
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for certain a × b matrices Ai. Let two singular Brascamp Lieb data H,H′ be given, and
assume that they can be transformed into the above normal form with matrices Ai and A

′
i,

2 ≤ i ≤ n, respectively. Then H,H′ are equivalent if and only if there exists an invertible
a× a matrix P and an invertible b× b matrix Q such that for all i = 2, . . . , n

QAiP = A′i . (2.2.4)

On the other hand, the datum (A2, . . . , An) determines n−1 linear maps from Rb → Ra,
so a representation of the (n − 1)-Kronecker quiver. Two such representations are also
isomorphic if and only if (2.2.4) holds. Thus classifying n-linear singular Brascamp-Lieb
forms of Hölder type is as hard as classifying representations of the n−1-Kronecker quiver.

2.3 Bounds for forms of non-Hölder type: Proof of Theorem
2.1.16

We go through the cases one by one. For simplicity we omit the domain of integration
from the notation. Here and in the following sections, we will find constants for various
related inequalities, and by abuse of notation we will denote each of them by the letter C.
In particular, the meaning of C may change from line to line.

2.3.1 Case i

Suppose first that H is as in the case i), that is, (2.1.9) holds for i, j, k ∈ {1, 2, 3}. We
choose coordinates x1 ∈ Rn1 , x2, u ∈ Rn2 , y1 ∈ Rn3 , y2, v ∈ Rn4 . To prove bounds for
ΛH(f1, f2, f3), it suffices after a change of variables to prove bounds for∫

fj(x1, x2)fk(y1, y2)fi(x1, y1, x2 + u, y2 + v)K(u, v) dx1 dy1 dx2 dy2 du dv

=

∫
fj(x1, x2)fk(y1, y2)(fi ∗ K̃)(x1, y1, x2, y2) dx1 dy1 dx2 dy2 ,

where K̃(u, v) = K(−u,−v) and the convolution is in the third and fourth argument only.
Since pj <∞, we have pi > 1. Thus we can further estimate, using Hölder’s inequality for
the exponents pj , pi with

1
pj

= 1− 1
pi

and a linear singular integral bound on fi

≤ C

∫
∥fj(x1, x2)fk(y1, y2)∥Lpj

x2,y2

∥fi(x1, y1, x2, y2)∥Lpi
x2,y2

dx1 dy1 .

By Hölder’s inequality and the condition pj = pk, this is bounded by

≤ C∥f1∥p1∥f2∥p2∥f3∥p3 ,

which completes the proof. If n2 = n4 = 0, then the assumption pj < ∞ is not needed,
and the estimate follows just from Hölder’s inequality.
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2.3.2 Case ii

Suppose next that H is in the case ii) with p1, p2, p3 ̸= 1, so (2.1.10) holds. Again we choose
coordinates x1, y1 ∈ Rn1 , x2, y2, z2 ∈ Rn2 and write the form ΛH(f1, f2, f3) after a change
of variables up to a constant as∫

f1(x1 + y1, x2 + y2)f2(x1, x2 + z2)f3(y1, y2)K(z2) dx1 dx2 dy1 dy2 dz2 .

Using ∗ to denote convolution in the second argument only, we estimate this with Young’s
convolution inequality, and then a linear singular integral bound using that p3 > 1, by

≤ ∥f1∥p1∥f2 ∗ K̃∥p2∥f3∥p3 ≤ C∥f1∥p1∥f2∥p2∥f3∥p3 .

Now suppose that there is some i with pi = 1, so (2.1.11) holds. We may assume i = 1,
because the conditions on p are otherwise symmetric. We choose coordinates x3 ∈ Rn3 ,
x4, z4 ∈ Rn4 and write the form ΛH(f1, f2, f3) up to a constant and a change of variables
as ∫

f1(x1 + y1, x2 + y2)f2(x1, x2, x3, x4)f3(y1, y2 + z2, x3, x4 + z4)K(z2, z4) dx dy dz .

We recognize a convolution in the second and fourth coordinate of f3 with K̃. Applying
Hölder’s inequality in x3, x4, using that 1

p2
+ 1

p3
= 1, we bound the last display by∫

|f1(x1+y1, x2+y2)| ∥f2(x1, x2, x3, x4)∥Lp2
x3,x4

∥f3 ∗2,4 K̃(y1, y2, x3, x4)∥Lp3
x3,x4

dx1dx2dy1dy2 .

By Young’s convolution inequality and then a linear singular integral bound, using that
p2 <∞ and hence p3 > 1, this is again bounded by C∥f1∥p1∥f2∥p2∥f3∥p3 .

2.3.3 Case iii

Suppose finally that H is as in case iii), so (2.1.12) holds. We use Fourier inversion to
express ΛH(f1, f2, f3) in terms of the Fourier transforms f̂1, f̂2 and f̂3. Then we apply
the triangle inequality to move absolute values inside and estimate K̂ by 1 using (2.1.3).
The resulting expression is a non-singular Brascamp-Lieb form Λ̂ in f̂1, f̂2 and f̂3. By
Plancherel’s theorem, the problem thus reduces to checking that this Brascamp-Lieb form
is bounded at exponent (p1, p2, p3) = (2, 2, 2). Transferring a Brascamp-Lieb form to the
Fourier side in this way commutes with taking direct sums of the associated modules.
By Lemma 4.8 in [13], a Brascamp-Lieb form is p-bounded if each direct summand is p-
bounded. Thus it suffices to verify (2, 2, 2)-boundedness of each possible direct summand
of Λ̂.

The summand corresponding on the Fourier side to L is the Loomis-Whitney trilinear
Brascamp-Lieb form, since we have

ΛL(f1, f2, f3) =

∫
f1(x, u)f2(y, v)f3(x+ v, y + u)K(u+ v) dx dy du dv

=

∫
f̂1(ξ1, ξ2 + ξ3)f̂2(ξ2, ξ1 + ξ3)f̂3(−ξ1,−ξ2)K̂(−ξ3) dξ1 dξ2 dξ3 .
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Estimating ∥K̂∥∞ ≤ 1, changing variables ξ1 + ξ3 + ξ2 = τ and shearing the functions
f̂1, f̂2, this becomes exactly the Loomis-Whitney inequality trilinear form, which is then
estimated by

∥f̂1∥2∥f̂2∥2∥f̂3∥2 = ∥f1∥2∥f2∥2∥f3∥2 .
For the summands B we obtain similarly

ΛB(f1, f2, f3) =

∫
f1(x, y)f2(x+ z, y + u)f3(x+ v, z + u)K(u, v) dx dy dz du dv

=

∫
f̂1(−ξ2 − ξ3, ξ1)f̂2(ξ2,−ξ1)f̂3(ξ3,−ξ2)K̂(ξ1 + ξ2,−ξ3) dξ1 dξ2 dξ3 ,

which after estimating ∥K̂∥∞ ≤ 1 and changing variables is again bounded by the Loomis-
Whitney trilinear form of f̂1, f̂2 and f̂3. For the summands Mi from Table 2.4 boundedness
of the summands in Λ̂ reduces similarly to the Cauchy-Schwarz inequality.

2.4 Proof of the projection theorems, Theorem 2.1.17 and
Theorem 2.1.18

To prove Theorem 2.1.17 and Theorem 2.1.18, we will need to extend Calderón-Zygmund
kernels K on some Hilbert space H0 to kernels on a larger Hilbert space H0 ⊕ H ′0. The
following lemma allows us to do that.

Lemma 2.4.1. Let d, d′ ≥ 1 and let K be a Calderón-Zygmund kernel on Rd. Define

K ′(x, y) = |x|−d′ exp
(
−π |y|

2

|x|2
)
K(x) .

For sufficiently small c = c(d, d′, l) > 0, the kernel cK ′(x, y) is an l-Calderón-Zygmund
kernel on Rd+d′.

Proof. Using that the assumptions on K are invariant under dilations, it suffices by scaling
to show that for |ξ| = 1, |η| ≤ 1 and for |η| = 1, |ξ| ≤ 1 and all |α| ≤ l, we have

|∂αK̂ ′(ξ, η)| ≤ 1/c .

Denote the heat kernel by Φ(ξ, t) = t−d/2 exp(−π|ξ|2/t). By a direct computation, we find
that

K̂ ′(ξ, η) =

∫
Rd

K̂(u)
1

|η|d exp
(
−π |ξ − u|2

|η|2
)
du =

∫
Rd

K̂(u)Φ(ξ − u, |η|2) du . (2.4.1)

First, suppose that |η| = 1, |ξ| ≤ 1. The derivatives of the heat kernel take the form

∂αΦ(ξ − u, |η|2) = |η|−|α|p
(
ξ − u

|η| ,
η

|η|

)
Φ(ξ − u, |η|2) , (2.4.2)

where p is a polynomial of degree 2|α|. Therefore, using (2.1.3), it holds for |α| ≤ l

|∂αK̂ ′(ξ, η)| ≤ C|η|−|α|∥K̂∥∞
∫
Rd

(1 + |u|2m)e−π|u|2du ≤ C .
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Now suppose that |η| ≤ 1 and |ξ| = 1. We split up the integral in (2.4.1). Pick a smooth
function φ on H0 with 1B(0,1/4) ≤ φ ≤ 1B(0,1/2). Then

K̂ ′(ξ, η) =

∫
(1− φ(u))K̂(u)Φ(ξ − u, |η|2) du+

∫
φ(u)K̂(u)Φ(ξ − u, |η|2) du

= G1(ξ, |η|2) +G2(ξ, |η|2) .
Note that the function G1(ξ, t) solves the heat equation

4π∂tG1(ξ, t) = ∆ξG1(ξ, t) .

Using this to replace all derivatives in the second argument of G1 by derivatives in ξ, we
obtain

∂βξ ∂
γ
η (G1(ξ, |η|2)) =

|γ|∑
j=1

pj(η)∂
β
ξ∆

j
ξG1(ξ, |η|2) ,

for certain polynomials pj that depend only on γ. It follows that

|∂βξ ∂γηG1(ξ, |η|2)| =

∣∣∣∣∣∣
|γ|∑
j=1

∫
pj(η)

(
∂βξ∆

j
ξ((1− φ(ξ − u))K̂(ξ − u))

)
Φ(u, |η|2) du

∣∣∣∣∣∣
≤
|γ|∑
j=1

sup
|η|≤1

|pj(η)| sup
u

∣∣∣∂βu∆j
u((1− φ(u))K̂(u))

∣∣∣ .
Since 1−φ is smooth and supported on the complement of B(0, 1/4) and since |β|+2|γ| ≤ 2l,
it follows from the Mikhlin condition (2.1.3) for the 2l-Calderón-Zygmund kernel K that
this is bounded by a constant depending only on l.

The derivatives of the second term G2 are given by

∂αG2(ξ, |η|2) =
∫
φ(u)K̂(u)∂αΦ(ξ − u, |η|2) du .

On the support of the integrand, we have |u| ≤ 1/2 and hence 1/2 ≤ |ξ−u| ≤ 3/2. Further,
we have |η| ≤ 1. Using (2.4.2), we obtain∣∣∂αΦ(ξ − u, |η|2)

∣∣ ≤ C|η|−|α|p
(
ξ − u

|η| ,
η

|η|

)
Φ(ξ − u, |η|2)

≤ C|η|−d−|α|
(

1

|η| + 1

)2|α|
exp

(
− π

|η|2
)

≤ C .

Hence, we have
|∂αG2(ξ, η)| ≤ C∥K̂∥∞∥φ∥1 ≤ C ,

which completes the proof of the lemma.

Next, we note that in proving Theorem 2.1.17 and Theorem 2.1.18, we may restrict
attention to bounded Calderón-Zygmund kernels. Indeed, every Calderón-Zygmund kernel
K is the weak limit as R→ ∞ of the bounded kernels KR defined by

K̂R(ξ) = K̂(ξ)(φ(R−1ξ)− φ(Rξ)) ,

for smooth φ with 1B(0,1) ≤ φ ≤ 1B(0,2). Letting R → ∞ in the conclusion of either
theorem with kernel KR yields the conclusion for the general kernel K.
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Proof of Theorem 2.1.17. We fix a bounded 2l-Calderón-Zygmund kernel K on H0. By
assumption, for all l-Calderón-Zygmund kernels K ′ on H0⊕H ′0 and all functions F1, F2, F3

|ΛH⊕H′(K ′, F1, F2, F3)| ≤ C∥F1∥p1∥F2∥p2∥F3∥p3 . (2.4.3)

Our goal is to show that there exists C ′ such that for all f1, f2, f3

|ΛH(K, f1, f2, f3)| ≤ C ′∥f1∥p1∥f2∥p2∥f3∥p3 .

We choose orthonormal bases of the spaces H0, H
′
0, so that the inner product becomes the

standard inner product on Rn, and we denote the corresponding norm by | · |.
We will apply (2.4.3) to the kernelK ′ on H0⊕H ′0 obtained by extending K as in Lemma

2.4.1, thus

K ′(x, y) = |x|− dimH′
0 exp

(
−π |y|

2

|x|2
)
K(x) .

We pick for i = 1, 2, 3, functions FNi on Hi ⊕H ′i defined by

FNi (x, y) = fi(x)N
−dimH′

i
pi exp

(
−π |y|

2

N2

)
.

Since the datum H⊕H′ is by assumption p-bounded, we can apply (2.2.1) and (2.2.2) to
the subspaces kerΠ0 ⊆ ker(Π0 ⊕ Π′0), kerΠ

′
0 ⊆ ker(Π0 ⊕ Π′0), and ker(Π0 ⊕ Π′0), to obtain

respectively
3∑
i=1

dimH ′i
pi

≥ dimH ′ − dimH ′0 , (2.4.4)

3∑
i=1

dimHi

pi
≥ dimH − dimH0

and
3∑
i=1

dimH ′i + dimHi

pi
= dimH ′ + dimH − dimH ′0 − dimH0 .

So we must have equality in (2.4.4). Evaluating ΛH⊕H′ with our choice of functions and
kernel yields then

ΛH⊕H′(K ′, FN1 , F
N
2 , F

N
3 ) =

∫ 3∏
i=1

fi(Πi(x))K(Π0(x))N
− dimH′+dimH′

0 |Π0(x)|− dimH′
0

×
∫
H′

exp

(
−π |Π

′
1(y)|2 + |Π′2(y)|2 + |Π′3(y)|2

N2
− π

|Π′0(y)|2
|Π0(x)|2

)
dy dx . (2.4.5)

Denote by A(x) the matrix

A(x) =
1

|Π0(x)|2
Π′0

t
Π′0 +

1

N2
(Π′1

t
Π′1 +Π′2

t
Π′2 +Π′3

t
Π′3) =

1

|Π0(x)|2
A0 +

1

N2
A1 .
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Then the Gaussian y-integral in (2.4.5) evaluates to det(A(x))−1/2, so

(2.4.5) =

∫ 3∏
i=1

fi(Πi(x))K(Π0(x))N
− dimH′+dimH′

0 |Π0(x)|− dimH′
0 det(A(x))−1/2 dx .

(2.4.6)
We claim that there exists constants c(H′), C(H′) with

detA(x) = c(H′) · |Π0(x)|−2 dimH′
0N−2(dimH′−dimH′

0) · (1 +O(N−2|Π0(x)|2)) (2.4.7)

and
det(A(x))−1/2 ≤ C(H′) · |Π0(x)|dimH′

0N (dimH′−dimH′
0) . (2.4.8)

Suppose (2.4.7) and (2.4.8) hold. Because f1, f2 and f3 are Schwartz functions and K
is bounded, it follows that the integrand in (2.4.6) is uniformly in N controlled by an
integrable function of x. Using (2.4.7) in (2.4.6) and sending N → ∞, we obtain with the
dominated convergence theorem

ΛH(K, f1, f2, f3) = c(H′) lim
N→∞

ΛH⊕H′(K ′, FN1 , F
N
2 , F

N
3 ) .

With the boundedness assumption (2.4.3) on ΛH⊕H′ , it follows that there exist constants
C ′, C ′′ > 0 such that

|ΛH(K, f1, f2, f3)| ≤ C ′ lim sup
N→∞

∥FN1 ∥p1∥FN2 ∥p2∥FN3 ∥p3 = C ′′∥f1∥p1∥f2∥p2∥f3∥p3 .

This completes the proof, up to verifying (2.4.7) and (2.4.8).
To show (2.4.7), we may assume by a base change that A0 is a diagonal matrix, so that

A(x) =
1

|Π0(x)|2



λ1 0 . . . 0 0 . . . 0
0 λ2 . . . 0 0 . . . 0
...

...
. . .

...
... . . .

...
0 0 . . . λdimH′

0
0 . . . 0

0 0 . . . 0 0 . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 0 . . . 0


+

1

N2
A1 ,

where λ1, . . . , λdimH′
0
are the nonzero eigenvalues of Π′0

tΠ′0. Then (2.4.7) follows by ex-
panding detA(x) using the Leibniz formula: The diagonal in A0 contributes the first term,
while the contribution of all other terms is controlled by the O(N−2|Π0(x)|2) term.

To show (2.4.8), we can assume N ≤ C|Π0(x)| for a sufficiently large constant C, since
otherwise it already follows from (2.4.7). But then we have, since A0 ≥ 0

detA(x) ≥ det(
1

N2
A1) = N−2 dimH′

det(A1)

≥ C−2 dimH′
0 |Π0(x)|−2 dimH′

0N−2(dimH′−dimH′
0) det(A1) . (2.4.9)

Note that det(A1) > 0 because kerΠ′1 ∩ kerΠ′2 ∩ kerΠ′3 = {0}, which follows from (2.2.2).
Taking (2.4.9) to the power −1/2 then gives (2.4.8).
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Proof of Theorem 2.1.18. We proceed similarly as in the proof of Theorem 2.1.17. We fix
again a bounded 2l-Calderón-Zygmund kernel K. We further fix n and assume that there
exists C > 0 such that for each l-Calderón-Zygmund kernel K ′

|ΛHn(K
′, F1, F2, F3)| ≤ C∥F1∥p1∥F2∥p2∥F3∥p3 .

Our goal is to show that there exists C ′ such that for all f1, f2, f3

|ΛHn−1(K, f1, f2, f3)| ≤ C ′∥f1∥p1∥f2∥p2∥f3∥p3 .

Suppose that the singular Brascamp-Lieb datum Hn−1 associated with M⊕ J
(2)
n−1 is

(H ⊕ Rn−1 ⊕ Rn−1, H0 ⊕ Rn−1, H1 ⊕ Rn−1, H2 ⊕ Rn−1 , H3 ⊕ Rn−1,Π0,Π1,Π2,Π3) ,

for linear maps Πi. Comparing the matrices associated with J
(2)
n and J

(2)
n−1 in Table 2.2

shows that the datum associated with Hn is then given by

(H ⊕ Rn ⊕ Rn, H0 ⊕ Rn, H1 ⊕ Rn, H2 ⊕ Rn , H3 ⊕ Rn,Π′0,Π′1,Π′2,Π′3) ,

where we have, writing x ∈ H, (y, yn) ∈ Rn−1 × R, (z, zn) ∈ Rn−1 × R:

Π′0(x, y, yn, z, zn) = (Π0(x, y, z), yn) ,

Π′1(x, y, yn, z, zn) = (Π1(x, y, z), zn) ,

Π′2(x, y, yn, z, zn) = (Π2(x, y, z), zn + yn) ,

Π′3(x, y, yn, z, zn) = (Π3(x, y, z), zn + yn−1) .

We define for i = 1, 2, 3

Fi(x, z, zn) = N−1/pi exp

(
−π z

2
n

N2

)
fi(x, z) ,

and we set

K ′(x, y, yn) = |(x, y)|−1 exp
(
−π y2n

|(x, y)|2
)
K(x, y) .

By Lemma 2.4.1, the kernel K ′ is an l-Calderón-Zygmund kernel. We have that

ΛHn(K
′, F1, F2, F3) =

∫
H⊕Rn−1⊕Rn−1

3∏
i=1

fi(Πi(x, y, z))K(x, y)

×
∫
R

∫
R

1

|(x, y)|N exp

(
−πz

2
n + (zn + yn)

2 + (zn + yn−1)
2

N2
− π

y2n
|(x, y)|2

)
dyn dzn dx dy dz .

The zn integral can be evaluated by first expanding (zn + yn)
2, (zn + yn−1)

2 and then
completing the square in zn. One obtains that the inner two integrals equal

1

|(x, y)|
1√
3

∫
R
exp

(
−π2(y

2
n−1 − yn−1yn + y2n)

3N2
− π

y2n
|(x, y)|2

)
dyn .
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This integral is bounded by, and converges by monotone convergence as N → ∞, to

1

|(x, y)|
1√
3

∫
R
exp

(
−π y2n

|(x, y)|2
)
dyn =

1√
3
.

Using that K is bounded and that f1, f2, f3 are Schwartz functions, we obtain with the
dominated convergence theorem

ΛHn−1(K, f1, f2, f3) = lim
N→∞

√
3ΛHn(K

′, F1, F2, F3) .

Combined with boundedness of ΛHn this shows that there exist constants C ′, C ′′ > 0 with

|ΛHn−1(K, f1, f2, f3)| ≤ C ′ lim sup
N→∞

∥F1∥p1∥F2∥p2∥F3∥p3 = C ′′∥f1∥p1∥f2∥p2∥f3∥p3 .

2.5 Method of rotations: Proof of Theorem 2.1.19

Fix the dimension d ≥ 3. We denote Sd−1 = {θ ∈ Rd : |θ| = 1}, and we denote by σ
the normalized (d − 1)-dimensional Hausdorff probability measure on Sd−1. Further, if
ν ∈ Sd−1, then we denote by σν the normalized (d− 2)-dimensional Hausdorff probability
measure on the great circle

(span ν)⊥ ∩ Sd−1 .
Recall that there is an orthogonal decomposition

L2(Sd−1) =

∞⊕
n=0

Hn ,

where Hn is the space of spherical harmonics of degree n on Sd−1, see e.g. [111, Chapter
IV]. Another way to characterize Hn is as the space of eigenfunctions of the spherical
Laplacian corresponding to the eigenvalue λn = −n(n+ d− 2).

We will use the spherical Sobolev spaces Hs(Sd−1) defined by

Hs(Sd−1) = {f ∈ L2(Sd−1) : ∥f∥2Hs(Sd−1) =
∞∑
n=0

λsn∥πn(f)∥2L2(Sd−1) <∞} ,

where πn denotes the orthogonal projection onto Hn. We will also use the Funk transform,
which is the operator T defined a priori on continuous functions F on Sd−1 by

TF (θ) =

∫
F (ν) dσθ(ν) . (2.5.1)

We will need the following properties of the Funk transform.

Lemma 2.5.1. Let Hs
0(S

d−1) be the space of functions in the smoothness s Sobolev space
on Sd−1 of mean zero. For all s ≥ 0, the Funk-transform T extends to a contraction

T : Hs
0(S

d−1) → Hs
0(S

d−1) , ∥T∥Hs
0→Hs

0
=

1

d− 1
< 1 .

Moreover, for all s ≥ 0, the operator T extends to a bounded operator

T : Hs
0(S

d−1) → Hs+δ
0 (Sd−1) ,

where δ = d−2
2 .
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The proof of Lemma 2.5.1 relies on the Funk-Hecke formula.

Lemma 2.5.2 (Funk-Hecke formula). Denote by ωm the m-dimensional Hausdorff measure
on Sm. Let f : [−1, 1] → R be a continuous function. Then for every spherical harmonic
Yn of degree n and θ ∈ Sd−1,∫

Sd−1

f(ν · θ)Yn(ν) dσ(ν) =
ωd−2
ωd−1

λnYn(θ) ,

where

λn =

∫ 1

−1

C
d−2
2

n (t)

C
d−2
2

n (1)
f(t)(1− t2)

d−3
2 dt .

Here Ckn(t) denotes the Gegenbauer polynomials, defined via the generating function

(1− 2rt+ r2)−k =
∑
n≥0

Ckn(t)r
n . (2.5.2)

Proof. See for example [36], Theorem 1.2.9.

Proof of Lemma 2.5.1. Let (fk) be a sequence of continuous functions such that fk is sup-

ported in (−1/k, 1/k) and
∫ 1/k
−1/k fk(t) dt = 1. A computation in coordinates shows that for

every θ ∈ Sd−1

σθ(ν) =
ωd−1
ωd−2

lim
k→∞

fk(ν · θ)σ(ν) ,

in the sense of weak convergence of measures. Applying Lemma 2.5.2 to the sequence fk
and taking limits, we obtain that

TYn = λnYn

for every spherical harmonic Yn of degree n, where

λn =
C

d−2
2

n (0)

C
d−2
2

n (1)
.

We compute the values of C
d−2
2

n in 0 and 1 using (2.5.2). Note the identity

1

(1− x)k
=

∞∑
n=0

(
n+ k − 1

k − 1

)
xn . (2.5.3)

Combining (2.5.2) and (2.5.3), we have

C
d−2
2

n (0) =

(−1)n/2
(n

2
+ d−2

2
−1

d−2
2
−1

)
if n is even

0 if n is odd ,

and

C
d−2
2

n (1) =

(
n+ d− 3

d− 3

)
.
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Hence |λn| clearly vanishes for odd n. For even n we obtain with the duplication formula
Γ(z)Γ(z + 1

2) =
√
π21−2zΓ(2z) and Stirling’s formula

|λn| =
Γ(n2 + d

2 − 1)Γ(n+ 1)Γ(d− 2)

Γ(n2 + 1)Γ(n+ d− 2)Γ(d2 − 1)
= 23−d

Γ(d− 2)Γ(n+1
2 )

Γ(d2 − 1)Γ(n+d−12 )
= O(n

2−d
2 ) . (2.5.4)

Thus T maps Hs
0 into Hs+δ

0 , for δ = d−2
2 > 0. Equation (2.5.4) combined with logarithmic

convexity of the Γ-function also shows that |λ2n| is decreasing, so that

∥T∥Hs
0→Hs

0
= |λ2| =

Γ(d2)Γ(3)Γ(d− 2)

Γ(2)Γ(d)Γ(d2 − 1)
=

1

d− 1
.

We define the manifold of all pairs of orthogonal vectors in Sd−1

Md = {(ν, θ) ∈ Sd−1 × Sd−1 : θ · ν = 0} .

Below we will make use of the fact that the normalized Hausdorff measure on Md disinte-
grates as

dσθ(ν)dσ(θ) = dσν(θ)dσ(ν) . (2.5.5)

Theorem 2.1.19 is a consequence of the following key proposition.

Proposition 2.5.3. Let d ≥ 3 and s > 1/2. There exists a constant C > 0 such that the
following holds. Let Ω ∈ Hs

0(S
d−1). Then there exists a function Γ : Md → C such that

• for all ν ∈ Sd−1 ∫
(span ν)⊥∩Sd−1

Γ(ν, θ) dσν(θ) = 0 . (2.5.6)

and
∥Γ(ν, ·)∥

H
s−1/2
0 ((span ν)⊥∩Sd−1)

≤ C∥Ω∥Hs
0(S

d−1) . (2.5.7)

• as measures, we have

Ω(θ)σ(θ) =

∫
Sd−1

Γ(ν, θ)σν(θ) dσ(ν) . (2.5.8)

Moreover, Γ can be chosen so that the mapping Ω 7→ Γ is continuous from Ck(Sd−1) into
Ck(Md), for every k.

Proposition 2.5.3 says that any mean zero function on Sd−1 can be decomposed into
mean zero functions on slices Sd−1 ∩ (span ν)⊥. We will use this later to decompose
Calderón-Zygmund kernels on Rd into kernels on (span ν)⊥, ν ∈ Sd−1.

Proof of Proposition 2.5.3. For F : Sd−1 → C, we define a candidate solution to (2.5.6),
(2.5.8) by

Γ[F ] : Md → C, Γ[F ](ν, θ) = F (θ)−
∫
F (γ) dσν(γ) .
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The function Γ[F ] satisfies (2.5.6) by construction. On the other hand, it satisfies (2.5.8)
if and only if, as measures,

Ω(θ)σ(θ) =

∫ [
F (θ)−

∫
F (γ) dσν(γ)

]
σν(θ) dσ(ν) .

Using (2.5.5) and the definition (2.5.1) of T to simplify the second summand, we obtain

= F (θ)σ(θ)−
∫
TF (ν) dσθ(ν)σ(θ) = (F (θ)− T 2F (θ))σ(θ) .

Thus, (2.5.8) holds if
Ω = (1− T 2)F . (2.5.9)

Lemma 2.5.1 now implies that 1− T 2 is invertible on Hs
0(S

d−1) for all s > 1/2 and hence
(2.5.9) can be solved for F for every Ω ∈ Hs

0 , and the solution map is continuous. The
function Γ(ν, ·) is up to a constant the restriction of F to the codimension one submanifold
Sd−1 ∩ (span ν)⊥. Since F ∈ Hs

0 , we obtain with the trace theorem (2.5.7). Finally, we
have for Ω ∈ Ck that

F =

∞∑
l=0

T 2lΩ =

2∑
l=0

T 2lΩ+

∞∑
l=3

T 2lΩ .

The first three terms on the right hand side are in Ck, since T maps Ck into Ck. By
Lemma 2.5.1 we have T 6Ω ∈ Hk+d. Since ∥T∥Hk+d

0 →Hk+d
0

< 1, the second sum converges

in Hk+d, which embedds into Ck. Thus the solution map is continuous on Ck.

We will apply Proposition 2.5.3 to the restriction of a homogeneous Calderón-Zygmund
kernel to the sphere Sd−1. Since our defining assumptions (2.1.3) on Calderón-Zygmund
kernels are formulated on the Fourier side, we need the following lemma to pass to kernels
with prescribed smoothness in space.

Lemma 2.5.4 ([111, Chapter IV, Theorem 4.7]). Let s ≥ d. Let Ω ∈ Hs
0(S

d−1) be a mean
zero function on Sd−1. Then m(ξ) = Ω(ξ/|ξ|) defines a homogenous of degree 0 tempered
distribution on Rd. The inverse Fourier transform of m is a homogenous of degree −d
tempered distribution on Rd which can be written as

qm(x) = Ω∗(x/|x|)|x|−d .

The mapping Ω 7→ Ω∗ is bounded with bounded inverse from Hs
0(S

d−1) into Hs−d
0 (Sd−1).

Proof. See Theorem 4.7 in Chapter IV of [111].

Proof of Theorem 2.1.19. Let K be a homogenous l-Calderón-Zygmund kernel and let Ω :
Sd−1 → C be the function satisfying

K̂(ξ) = Ω(ξ/|ξ|) + C0 ,

∫
Ω(θ) dσ(θ) = 0 .

Since K is an l-Calderón-Zygmund kernel, Ω ∈ C l(Sd−1), so in particular Ω ∈ H l
0(S

d−1).
By Lemma 2.5.4, the kernel K is then given by

K(x) = C0δ +Ω∗(x/|x|)|x|−d ,
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and Ω∗ satisfies ∥Ω∗∥Hl−d
0

≤ C∥Ω∥Hl
0
. We apply Proposition 2.5.3 to Ω∗, using that l ≥ d+1.

We obtain for each ν ∈ Sd−1 a function

Ω∗ν(θ) = Γ(ν, θ)

such that

Ω∗(θ)σ(θ) =

∫
Sd−1

Ω∗ν(θ)σν(θ) dσ(ν) , (2.5.10)

and such that
∥Ω∗ν∥Hl−d−1/2

0

≤ C∥Ω∗∥Hl−d
0

≤ C∥Ω∥Hl
0
.

We define the kernel Kθ(x) = C0δ+
ωd−1

ωd−2
|x|1−dΩ∗θ(x/|x|) on (span θ)⊥. By applying Lemma

2.5.4, in the opposite direction, to the function Ω∗θ, we find that for all ξ ∈ (span θ)⊥

K̂θ(ξ) = C0 +
ωd−1
ωd−2

Ωθ(ξ/|ξ|),

for a function Ωθ with

∥Ωθ∥Hl−3/2
0 (Sd−1∩(span θ)⊥ ≤ C∥Ω0∥Hl

0(S
d−1) .

Applying finally the Sobolev embedding theorem, we find that there exists a constant C > 0
such that for each θ ∈ Sd−1, the kernel C−1Kθ is an l −

⌈
d+2
2

⌉
-Calderón-Zygmund kernel

on (span θ)⊥.
From (2.5.10), we obtain for each Schwartz function f on Rd by integration in polar

coordinates:∫
f(x)K(x) dx = C0f(0) + ωd−1

∫ ∞
0

∫
Sd−1

f(rν)Ω∗(ν) dσ(ν)
dr

r

= C0f(0) + ωd−1

∫ ∞
0

∫
Sd−1

∫
Sd−1

f(rν)Ω∗θ(ν)σθ(ν) dσ(θ)
dr

r

=

∫
Sd−1

C0f(0) + ωd−1

∫ ∞
0

∫
Sd−1

f(rν)Ω∗θ(ν)σθ(ν)
dr

r
dσ(θ)

=

∫
Sd−1

C0f(0) +
ωd−1
ωd−2

∫
(span θ)⊥

f(x)Ω∗θ(x/|x|)|x|1−d dµθ(x) dσ(θ)

=

∫
Sd−1

∫
(span θ)⊥

f(x)Kθ(x) dµθ(x) dσ(θ) . (2.5.11)

Here µθ is the d− 1-dimensional Lebesgue measure on (span θ)⊥. Combining (2.5.11) with
Fubini’s theorem, it follows that for all Schwartz functions f1, f2, f3

ΛH(K, f1, f2, f3) =

∫
Sd−1

ΛH(θ)(Kθ, f1, f2, f3) dσ(θ) .

Together with the triangle inequality and the assumption of integrable boundedness of the
forms on the right hand side, this completes the proof.
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2.6 Proof of Theorem 2.1.22

We will deduce Theorem 2.1.22 from the following multilinear multiplier bound from [56].
Note that the condition (2.6.1) on the multiplier is slightly more general than that obtained
by translating the condition on the kernel of the corresponding singular Brascamp-Lieb
forms. We will exploit this to deduce also bounds for forms with less singular multiplier.

Theorem 2.6.1 ([56, Theorem 1.1]). Let 2 < p1, p2, p3 < ∞ with 1
p1

+ 1
p2

+ 1
p3

= 1 and
fix a dimension d ≥ 1. There exists l ∈ N such that the following holds. Let Γ be the
2d-dimensional subspace {(ξ1, ξ2, ξ3) ∈ R3d : ξ1 + ξ2 + ξ3 = 0} of R3d. Furthermore, let
Γ′ ⊆ Γ be a d-dimensional subspace, which can be parametrized in terms of each ξ1, ξ2 and
ξ3. There exists a constant C such that the following holds. Let M : Γ → C satisfy

|∂αM(ξ)| ≤ (dist(ξ,Γ′))−|α| , |α| ≤ l . (2.6.1)

Then ∫
Γ
f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)M(ξ) dµΓ(ξ) ≤ C∥f1∥p1∥f2∥p2∥f3∥p3 .

Theorem 2.6.1 is a special case of the main result in [56]. It can also be deduced by
following the proof of Theorem 2.1.1 in [104]: By a reduction similar to, but slightly more
general than in Section 2.2 of [104], Theorem 2.6.1 reduces to a slightly more general version
of Lemma 2.3.1 in [104]. The only difference to [104] is that the bump functions φy,η,t are
possibly different bump functions adapted to position y, frequency η and scale t, as opposed
to dilation of a fixed bump function. This causes no issues, because the assumptions on M
still guarantee the uniform estimates on φy,η,t required in the proof.

Proof of Theorem 2.1.22. Choosing coordinates and swapping the role of f1 and f3, we
may express the trilinear form ΛH up to a constant as∫

f1(x1 + y1, x2 + CT1 y2)f2(x1 +BT y1, x2 + CT2 y2)f3(x1, x2)K(y1, y2) dy1 dy2 dx1 dx2 .

(2.6.2)
Here B is the direct sum of the matricesX in the modulesNni occuring as direct summands
in MH. In particular, and that is all we will need, B and I−B are invertible. The matrices
C1 and C2 are direct sums of I↑mi and I

↓
mi respectively, from the direct summands Cmi .

By Fourier inversion, (2.6.2) equals a multiple of∫
Γ
f̂1(ξ1,1, ξ1,2)f̂2(ξ2,1, ξ2,2)f̂3(ξ3,1, ξ3,2)K̂(−ξ1,1 −Bξ2,1,−C1ξ1,2 − C2ξ2,2) dµΓ(ξ) .

Define the singular subspace

Γs = {ξ ∈ Γ : ξ1,1 +Bξ2,1 = 0, C1ξ1,2 + C2ξ2,2 = 0} .

Define D1 and D2 to be the direct sum of QmiI
↑
mi and QmiI

↓
mi , respectively, where Qm is

the m× (m+ 1) matrix

Qm =


0 1 0 . . . 0
0 0 1
...

...
. . .

−1 0 0 . . . 1

 .
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Then, the space Γs sits in the larger subspace

Γ′ = {ξ ∈ Γ : ξ1,1 +Bξ2,1 = 0, D1ξ1,2 +D2ξ2,2 = 0} .

The space Γ′ satisfies the nondegeneracy condition of Theorem 2.6.1, because B and I −B
are invertible and because D1, D2 and D1 −D2 are invertible. Indeed, this can be checked
blockwise. The blocks in D1 are of the form QmiI

↑
mi , the blocks in D2 are of the form

QmiI
↓
mi , and the blocks in D1 − D2 are of the form QmiI

↑
mi − QmiI

↓
mi , each of which are

invertible. We choose

M(ξ) = K̂(−ξ1,1 −Bξ2,1,−C1ξ1,2 − C2ξ2,2) .

Then we have for |α| ≤ m, by (2.1.3)

|∂αM(ξ)| ≤ Cm sup
|β|≤m

|∂βK̂(−ξ1,1 −Bξ2,1,−C1ξ1,2 − C2ξ2,2)|

≤ Cm(|ξ1,1 +Bξ2,1|+ |C1ξ1,2 + C2ξ2,2|)−|α|

≤ C(dist(ξ,Γs))
−|α| ≤ C(dist(ξ,Γ′))−|α| .

Here the second to last line follows from the fact that both dist(ξ,Γs) and the expression

|ξ1,1 +Bξ2,1|+ |C1ξ1,2 + C2ξ2,2|

define norms on the finite dimensional quotient space Γ/Γs, and are hence comparable.
Theorem 2.1.22 now follows from Theorem 2.6.1.

2.7 Proof of Theorem 2.1.23

For x ∈ (Rn)6 we write x = (x0, x1), where x0 = (x01, x
0
2, x

0
3) ∈ (Rn)3, x1 = (x11, x

1
2, x

1
3) ∈

(Rn)3, and we write z = (z1, z2, z3) ∈ (Rn)3. Reading off of Table 2.2, one finds that a
singular Brascamp-Lieb datum associated with

M = (J
(1)
1 ⊕ J

(2)
1 ⊕ J

(3)
1 ⊕ C1)

⊕n

is H with projections Π1,Π2,Π3 : (Rn)9 → (Rn)4 and Π0 : (Rn)9 → (Rn)5, given by

Π1(x, z) = (x01, x
0
2, x

0
3, z3) ,

Π2(x, z) = (x01 + x11, x
0
2 + x12, x

0
3, z2 + z3) ,

Π3(x, z) = (x01 + x11, x
0
2, x

0
3 + x13, z1 + z3) ,

Π0(x, z) = (x11, x
1
2, x

1
3, z1, z2) .

A datum with the projections π1, π2, π3 : (Rn)9 → (Rn)4 and π0 : (Rn)9 → (Rn)5, where

π1(x, z) = (x11, x
0
2, x

0
3, z3) ,

π2(x, z) = (x01, x
1
2, x

0
3, z2) ,

π3(x, z) = (x01, x
0
2, x

1
3, z1) ,
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π0(x, z) = (x1 − x0, z1 − z3, z2 − z3) ,

is equivalent to the datum H. This can be seen by first performing the change of variables
(x1, z1, z2) → (x1 − x0, z1 − z3, z2 − z3) in the singular Brascamp-Lieb form, relabeling
(x01, x

1
1) to (x11, x

0
1), and then replacing K by its reflection in the first fiber K(−·, ·, ·, ·, ·).

Therefore, to prove Theorem 2.1.23, it suffices to show

∣∣∣ ∫
(Rn)9

( 3∏
j=1

fj(πj(x, z))
)
K(π0(x, z)) d(x, z)

∣∣∣ ≤ C

3∏
j=1

∥fj∥pj

whenever 2 < p1, p2, p3 <∞, 1
p1

+ 1
p2

+ 1
p3

= 1.

We begin with a cone decomposition of K̂. For a function ϕ on Rd, d ≥ 1, and t > 0,
let

ϕt(x) = t−dϕ(t−1x) .

Let B(0, R) denote the Euclidean open ball centered at 0 with radius R. Let ψ : Rn → R
be a radial Schwartz function with

supp(ψ̂) ⊆ B(0, 1) \B(0, 1/4) ,

satisfying
∫∞
0 ψ̂(tξ)dtt = 1 for each ξ ̸= 0. Let ξ = (ξ1, . . . , ξ5) ∈ (Rn)5 and write

K̂(ξ) = K̂(ξ)

5∏
j=1

∫ ∞
0

ψ̂(tjξj)
dtj
tj
. (2.7.1)

We rewrite this as a sum of integrals over five regions, depending on which parameter ti is
the smallest. That is, we write

K =

5∑
i=1

Ki ,

where

K̂i(ξ) =

∫
Ti

K̂(ξ)
( 5∏
j=1

ψ̂(tjξj)t
−1
j

)
d(t1, . . . , t5) ,

and
Ti = {(t1, t2, t3, t4, t5) ∈ (0,∞)5 : ti ≤ tj for j ̸= i} .

We denote

φ̂(η) =

∫ ∞
1

ψ̂(sη)
ds

s
,

which is a radial smooth function supported in B(0, 1) and for s0 > 0, it holds φ̂s0(η) =
φ̂(s0η) =

∫∞
s0
ψ̂(sη)dss . On each Ti we then integrate over all larger parameters tj , giving

K̂i(ξ) =

∫ ∞
0

K̂(ξ)ψ̂(tξi)
( 5∏
j=1,j ̸=i

φ̂(tξj)
) dt
t
.

We will proceed with additional decompositions of the kernels Ki. By symmetry in (2.7.1)
and in the projections π0, π1, π2, π3, it suffices to consider i = 1 and i = 4 only.
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We begin with i = 1. Here we will decompose the kernel further into Gaussian functions,
which will be convenient later in the proof. Let g be the Gaussian g(x) = e−π|x|

2
, whose

dimension should always be understood from the context. Then we write

K̂1(ξ) =

∫ ∞
0

m1(tξ, t)|tξ1|2ĝt(ξ1, ξ2, ξ3)2ĝt(ξ4, ξ5, ξ4 + ξ5)
dt

t
,

where

m1(ξ, t) = K̂(t−1ξ)ψ̂(ξ1)
( 5∏
j=2

φ̂(ξj)
)
(|ξ1|2g(ξ1, ξ2, ξ3)2g(ξ4, ξ5, ξ4 + ξ5))

−1 .

Since |ξ1| is bounded away from zero by the support assumption on ψ̂, the function m1(ξ, t)
is smooth in the ξ variable. Moreover, on the support of m1(ξ, t), ξ ∈ [−1, 1]5n. Denote

c1(a, t) = (1 + |a|)6n |m1(a, t) ,

where the inverse Fourier transform is taken in the ξ variable. A standard integration by
parts argument, together with the symbol estimates (2.1.3), gives

|c1(a, t)| ≤ C0(1 + |a|)−16n (2.7.2)

for an absolute constant C0, provided l ≥ 22n. The lower bound on l is chosen crudely
such that the decay of the coefficients c1(a, t) suffices in all of the arguments below. We
remark that we do not aim to optimize our arguments to minimize this bound.

Taking the inverse Fourier transform of m, we write

K̂1(ξ) =

∫
(Rn)5

(1 + |a|)−6n
∫ ∞
0

c1(a, t) |tξ1|2ĝt(ξ1, ξ2, ξ3)2ĝt(ξ4, ξ5, ξ4 + ξ5)e
−2πia·tξ dt

t
da .

(2.7.3)
By Fourier inversion,

K1(π0(x, z)) =

∫
(Rn)5

K̂1(ξ)e
2πi(ξ·π0(x,z)) dξ .

Using the definition of π0 and (2.7.3), we can therefore writeK1(π0(x, z)) as a superposition
of the kernels of the form

n∑
i=1

∫ ∞
0

∫
(Rn)5

c1(a, t)(̂∂ig)t(−ξ1,−ξ2,−ξ3)e2πix
0·(−ξ1,−ξ2,−ξ3)(̂∂ig)t(ξ1, ξ2, ξ3)

×e2πi(x1+t(a1,a2,a3))·(ξ1,ξ2,ξ3)ĝt(ξ4, ξ5,−ξ4 − ξ5)e
2πi((z1+ta4)ξ4+(z2+ta5)ξ5−z3(ξ4+ξ5)) dξ

dt

t
,

(2.7.4)
weighted by (1 + |a|)−6n, where a = (a1, . . . , a5). Here we have also used for convenience
that ∂ig is odd and that g is even, and replaced a by −a.

Fixing i and t, the integral in ξ can be viewed as the integral of the function

(η1 . . . , η9) 7→ (̂∂ig)t(η1, η2, η3)e
2πix0·(η1,η2,η3)(̂∂ig)t(η4, η5, η6)e

2πi(x1+t(a1,a2,a3))·(η4,η5,η6)
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×ĝt(η7, η8, η9)e2πi(z1+ta4,z2+ta5,z3)·(η7,η8,η9)

over the five-dimensional subspace

{(η1 . . . , η9) ∈ (Rn)9 : (η1, η2, η3) = (−η4,−η5,−η6), η9 = −η7 − η8} .

It equals the integral of the inverse Fourier transform of this function over the orthogonal
complement of this subspace,

{(r1, . . . , r9) ∈ (Rn)9 : (r1, r2, r3) = (r4, r5, r6), r7 = r8 = r9} .

Therefore, the term for a fixed i in (2.7.4) can be written, up to a constant, as∫ ∞
0

∫
(Rn)4

c1(a, t)(∂i∂3n+ig)t((x, z) + r⋆ + (0, 0, 0, ta, 0)) dr
dt

t
, (2.7.5)

where r = (r1, r2, r3, r4) and r
⋆ = (r1, r2, r3, r1, r2, r3, r4, r4, r4). Thus, it suffices to bound

the form in which K1(π0(x, z)) is replaced by (2.7.5), with estimates uniform in a. Then
it remains to sum over i and integrate in a. By symmetry, it suffices to prove bounds for
i = 1. This will be done in Proposition 2.7.1.

Next we decompose the kernel K4. We write it as K4 = K6 +K7, where

K̂6(ξ) =

∫ ∞
0

K̂(ξ)φ̂t(ξ1)φ̂t(ξ2)φ̂t(ξ3)ψ̂t(ξ4)φ̂210t(ξ5)
dt

t
,

K̂7(ξ) =

∫ ∞
0

K̂(ξ)φ̂t(ξ1)φ̂t(ξ2)φ̂t(ξ3)ψ̂t(ξ4)(φ̂t − φ̂210t)(ξ5)
dt

t
.

Note that if ξ is in the support of the integrand in K̂6 for a fixed t, then 2−3 < |tξ4+ tξ5| <
22. On the other hand, if ξ is in the support of the integrand of K̂7 for a fixed t, then
0 < |tξ4 + tξ5| < 22, but |tξ5| ≥ 2−12 We will decompose these multiplier symbols further.
To reduce the amount of notation we will use Gaussians for this decomposition as well,
even though one could proceed with other Schwartz functions.

Now we write

K̂6(ξ) =

∫
(Rn)5

(1 + |a|)−6n
∫ ∞
0

c6(a, t)|tξ4|2ĝt(ξ)|tξ4 + tξ5|2ĝt(ξ4 + ξ5)e
−2πia·tξ dt

t
da ,

where c6(a, t) = (1 + |a|)6n |m6(a, t) and

m6(ξ, t) = K̂(t−1ξ)φ̂(ξ1)φ̂(ξ2)φ̂(ξ3)ψ̂(ξ4)φ̂210(ξ5)(|tξ4|2ĝt(ξ)|tξ4 + tξ5|2ĝt(ξ4 + ξ5))
−1 .

Here, c6(a, t) satisfy the symbol estimate analogous to (2.7.2).
Thus, K6(π0(x, z)) can be written as a weighted superposition of integrals of the form∫ ∞

0

∫
(Rn)5

c6(a, t)ĝt(ξ1, ξ2, ξ3)(̂∆g)t(ξ4)ĝt(ξ5)(̂∆g)t(ξ4 + ξ5)

×e2πi(x1−x0,z1−z3,z2−z3)·ξe2πita·ξ dξ dt
t

=

∫ ∞
0

∫
(Rn)5

c6(a, t)ĝt(ξ1, ξ2, ξ3)(̂∆g)t(ξ4)ĝt(ξ5)(̂∆g)t(ξ4 + ξ5)e
2πi(x1−x0+t(a1,a2,a3))·(ξ1,ξ2,ξ3)
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×e2πi(z1+ta4,z2+ta5,z3)·(ξ4,ξ5,−ξ4−ξ5) dξ dt
t
. (2.7.6)

Then, the integral in ξ4, ξ5 can be seen as the integral of the function

(η1, η2, η3) 7→ (̂∆g)t(η1)ĝt(η2)(̂∆g)t(η3)e
2πi(z1+ta4,z2+ta5,z3)·(η1,η2,η3)

over the subspace
{(η1, η2, η3) ∈ (Rn)3 : η3 = −η1 − η2} .

It equals the integral of the Fourier transform of this function over the orthogonal comple-
ment

{(r1, r2, r3) ∈ (Rn)3 : r1 = r2 = r3} .
Using this and taking the inverse Fourier transform in ξ1, ξ2, ξ3, the display (2.7.6) is up to
a constant equal to∫ ∞
0

∫
Rn

c6(a, t)gt(x
1−x0+t(a1, a2, a3))(∆g)t(z1+r+ta4)gt(z2+r+ta5)(∆g)t(z3+r) dr

dt

t
.

Thus, it suffices to bound a form with K6(π0(x, z)) replaced by this kernel, with a constant
uniform in a. This will follow from Proposition 2.7.2.

For the kernel K7 we proceed with a similar decomposition but with a factor |tξ5|2
instead of |tξ4 + tξ5|2. This leads to bounding a form with K7(π0(x, z))) replaced by∫ ∞
0

∫
Rn

c7(a, t)gt(x
1−x0+t(a1, a2, a3))(∆g)t(z1+r+ta4)(∆g)t(z2+r+ta5)gt(z3+r) dr

dt

t
.

with a constant uniform in a, where c7(a, t) satisfies a bound analogous to (2.7.2). Note
a symmetry between the last two displays, which can be seen by interchanging z2 and z3,
translating r → r− ta5, and replacing a4 − a5 by a4 in the second display. Bounds for this
form will also follow from Proposition 2.7.2.

To summarize, we have reduced Theorem 2.1.23 to the following two propositions.

Proposition 2.7.1. Let n ≥ 1. Let 2 < p1, p2, p3 <∞ and 1
p1

+ 1
p2

+ 1
p3

= 1. There exists

a constant C > 0 such that for each a ∈ (Rn)9, c(t) satisfying |c(t)| ≤ 1 for each t > 0, and
all Schwartz functions f1, f2, f3 : (Rn)4 → C,∣∣∣ ∫ ∞

0
c(t)

∫
(Rn)13

( 3∏
j=1

fj(πj(x, z))
)
(∂1∂3n+1g)t((x, z) + r⋆ + ta) d(x, z, r)

dt

t

∣∣∣
≤ C(1 + |a|)8n

3∏
j=1

∥fj∥pj ,

where r = (r1, r2, r3, r4), r
⋆ = (r1, r2, r3, r1, r2, r3, r4, r4, r4).

Proposition 2.7.2. Let n ≥ 1. Let 1 < p1, p2, p3 <∞ and 1
p1

+ 1
p2

+ 1
p3

= 1. There exists

a constant C > 0 such that for each a ∈ (Rn)6, c(t) satisfying |c(t)| ≤ 1 for each t > 0, and
all Schwartz functions f1, f2, f3 : (Rn)4 → C,∣∣∣ ∫ ∞

0
c(t)

∫
(Rn)10

( 3∏
j=1

fj(πj(x, z))
)
gt(x

1 − x0 + t(a1, a2, a3))(∆g)t(z1 + r + ta4)
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×gt(z2 + r + ta5)(∆g)t(z3 + r + ta6) d(x, z, r)
dt

t

∣∣∣ ≤ C(1 + |a|)16n
3∏
j=1

∥fj∥pj .

Note that in Proposition 2.7.2, one could decompose the Gaussian in x1 − x0 into
another integral of translated Gaussians. Also, the Laplacians could be split into sums of
second order derivatives. This would yield a form that is, schematically, similar to the one
in Proposition 2.7.1. However, we chose not to do this as, it will not be needed for the
proof.

Proposition 2.7.1 will be proven using twisted techniques, while Proposition 2.7.2 will
follow from the classical square and maximal function bounds, similarly as in the case of the
Coifman-Meyer multipliers. We will prove these propositions in the following two sections.

2.7.1 Proof of Proposition 2.7.2

Denote h = ∆g. Using the definition of the projections πj and splitting the Gaussian into
tensor products of three lower-dimensional Gaussians, the form we need to bound reads∫ ∞

0
c(t)

∫
(Rn)10

f1(x
1
1, x

0
2, x

0
3, z3)f2(x

0
1, x

1
2, x

0
3, z2)f3(x

0
1, x

0
2, x

1
3, z1)

×
( 3∏
j=1

gt(x
1
j − x0j + taj)

)
ht(z1 + r + ta4)gt(z2 + r + ta5)ht(z3 + r + a6) d(x, z, r)

dt

t
.

Integrating in x1 and z, using that Gaussians are even and replacing a1, a2, a3 by −a1, −a2,
−a3, it suffices to estimate∣∣∣ ∫ ∞

0
c(t)

∫
(Rn)4

(f1 ∗1,4 (gt,a1 ⊗ ht,a6))(x
0, r)(f2 ∗2,4 (gt,a2 ⊗ gt,a5))(x

0, r)

×(f3 ∗3,4 (gt,a3 ⊗ ht,a4))(x
0, r) d(x0, r)

dt

t

∣∣∣ ,
where the subscript ∗m1,m2 means that we take 2n-dimensional convolutions with the func-
tions fj in the coordinates m1n, . . . ,m1(n+1) and m2n, . . . ,m2(n+1). Here, all functions
g and h that appear in the tensor products are n-dimensional, we have denoted

gt,aj = t−ngt(·+ taj) ,

and analogously for ht,aj . For two functions ϕ, ρ we also write (ϕ ⊗ ρ)(u, v) = ϕ(u)ρ(v).
Applying Hölder’s inequality in t for the exponents (2,∞, 2) and using |c(t)| ≤ 1, we bound
the last display by∫

(Rn)4

(∫ ∞
0

|(f1 ∗1,4 (gt,a1 ⊗ ht,a6))(x
0, r)|2dt

t

)1/2
sup
t>0

|(f2 ∗2,4 (gt,a2 ⊗ gt,a5))(x
0, r)|

×
(∫ ∞

0
|(f3 ∗3,4 (gt,a3 ⊗ ht,a4))(x

0, r)|2dt
t

)1/2
d(x0, r) .

Applying Hölder’s inequality in (x0, p), we estimate this further by∥∥∥(∫ ∞
0

|f1 ∗1,4 (gt,a1 ⊗ ht,a6)|2
dt

t

)1/2∥∥∥
p1

∥∥∥ sup
t>0

|f2 ∗2,4 (gt,a2 ⊗ gt,a5)|
∥∥∥
p2
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×
∥∥∥(∫ ∞

0
|f3 ∗3,4 (gt,a3 ⊗ ht,a4)|2

dt

t

)1/2∥∥∥
p3
.

Using bounds for the two-dimensional fiber-wise maximal and square functions, the last
display is bounded by an absolute constant times

(1 + |a|)6n+2∥f1∥p1∥f2∥p2∥f3∥p3 .

For the maximal function, a polynomial loss in the shift follows by dominating the Gaussian
gt,aj ≤ 10(2(1+ |aj |))ng2t(1+|aj |). For the shifted square function, we have a uniform bound

on L2 in the shift a. We also have a weak L1 bound with polynomial loss (1 + |aj |)n+1,
this follows from the standard proof of weak L1 bounds of Calderón-Zygmund operators,
but with an L2(dtt )-vector valued kernel, as in [61, Section 5.6.1]. Interpolation and duality
then give the polynomial loss (1 + |aj |)n+1.

2.7.2 Proof of Proposition 2.7.1

In contrast with the previous section, now we cannot bound the form by the maximal and
square functions of each of the functions fj separately.

To prove Proposition 2.7.1, we will first prove an estimate for a local version of our
form. Local estimates will then be combined into a global estimate using a stopping-time
argument. A finite collection T of dyadic cubes in Rd, d ≥ 1, is called a convex tree if there
exists QT ∈ T such that Q ⊆ QT for every Q ∈ T and if Q,Q′′ ∈ T and Q ⊆ Q′ ⊆ Q′′,
then Q′ ∈ T . If ℓ(Q) denotes the side-length of a dyadic cube Q, we denote

ΩT = ∪Q∈TQ× (ℓ(Q)/2, ℓ(Q)) .

For f ∈ L2
loc(Rd) we also define a variant of a maximal operator on a tree T

Mf(T ) = sup
Q∈T

sup
Q′⊇Q

( 1

|Q′|

∫
Q′

|f |2
)1/2

,

where the second supremum is over all cubes Q′ with sides parallel to the coordinate axes,
which contain the cube Q.

Let c(t) and π1, π2, π3 be as in Proposition 2.7.1. Let π4 : (Rn)9 → (Rn)4 be given by

π4(x, z) = (x11, x
1
2, x

1
3, z2) .

We will prove bounds for a more symmetric local quadrilinear form

ΛT ,a(f1, f2, f3, f4) = (1 + |a|)−16n
∫
ΩT

c(t)

∫
(Rn)9

( 4∏
j=1

fj(πj(x, z))
)

×(∂1∂3n+1g)t((x, z) + r⋆ + ta) d(x, z) dr
dt

t
,

defined for bounded functions fj on R4n and a convex tree T in R4n. The main step in the
proof of Proposition 2.7.1 is the following estimate, which will be applied with f4 = 1.
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Proposition 2.7.3. There exists a constant C > 0 such that for any convex tree T , any
a ∈ (Rn)9, and bounded functions f1, f2, f3, f4 : (Rn)4 → C,

|ΛT ,a(f1, f2, f3, f4)| ≤ C|QT |
4∏
i=1

Mfi(T ) .

Proof of Proposition 2.7.3. We may assume that the functions fj are real-valued, as oth-
erwise we split them into real and imaginary parts. Interchanging the order of integration,
using the triangle inequality, and |c(t)| ≤ 1, we bound |ΛT ,a(f1, f2, f3, f4)| by

(1 + |a|)−16n
∫
ΩT

∫
(Rn)7

∣∣∣ ∫
Rn

f1(x
1
1, x

0
2, x

0
3, z3)f4(x

1
1, x

1
2, x

1
3, z2)(∂1g)t(x

1
1 + r1 + a1t) dx

1
1

∣∣∣
×
∣∣∣ ∫

Rn

f2(x
0
1, x

1
2, x

0
3, z2)f3(x

0
1, x

0
2, x

1
3, z1)(∂1g)t(x

0
1 + r1 + a4t) dx

0
1

∣∣∣ dµ ,
where

dµ = gt((x
0
2, x

0
3, x

1
2, x

1
3) + (r2, r3, r2, r3) + t(a2, a3, a5, a6), z + (r4, r4, r4) + t(a7, a8, a9))

×d(x02, x03, x12, x13, z) dr
dt

t
.

Applying the Cauchy-Schwarz inequality with respect to dµ bounds this form by (1 +
|a|)−16n times the geometric mean of∫

ΩT

∫
(Rn)7

∣∣∣ ∫
Rn

f1(x
1
1, x

0
2, x

0
3, z3)f4(x

1
1, x

1
2, x

1
3, z2)(∂1g)t(x

1
1 + r1 + a1t)dx

1
1

∣∣∣2dµ . (2.7.7)

and ∫
ΩT

∫
(Rn)7

∣∣∣ ∫
Rn

f2(x
0
1, x

1
2, x

0
3, z2)f3(x

0
1, x

0
2, x

1
3, z1)(∂1g)t(x

0
1 + r1 + a4t)dx

0
1

∣∣∣2dµ .
These two terms are analogous, which can be seen by swapping the roles of x03 and x13 in
the second term. Thus, it suffices to proceed with (2.7.7).

We integrate in z1 and then expand out the square in (2.7.7). This gives∫
ΩT

∫
(Rn)8

f1(x
0
1, x

0
2, x

0
3, z3)f4(x

0
1, x

1
2, x

1
3, z2)f1(x

1
1, x

0
2, x

0
3, z3)f4(x

1
1, x

1
2, x

1
3, z2)

×(∂1g)t((x
0, z2) + r + u1t)(∂1g)t((x

1, z3) + r + u2t)d(x, z2, z3) dr
dt

t
, (2.7.8)

where u1 = (a1, a2, a3, a8), u2 = (a1, a5, a6, a9).
If n = 1, this expression corresponds to the local form Λ̃T from the dimension four

case in [45]. More precisely, it can be interpreted as the local form applied to a 16-tuple
of functions on R4, in the case of the identity matrix, and when all but four functions
are set to the constant 1. Applying the result from [45] to this setup yields a variant of
Proposition 2.7.3, where the maximal operatorsMfi are replaced by (M |fi|4)1/4. However,
this is insufficient to establish Proposition 2.7.1. It is therefore essential to view (2.7.8)

89



as a variant of the quadrilinear form from the two-dimensional case in [45], but acting on
functions defined on Rn × R3n instead of R× R. The variables are now

x01, x
1
1 ∈ Rn, (x02, x

0
3, z3), (x

1
2, x

1
3, z2) ∈ R3n .

This perspective leads to only one more application of the Cauchy-Schwarz inequality,
which subsequently gives the maximal operators Mfi and the desired Hölder estimate.

The paper [45] establishes an estimate for this quadrilinear form in the setting of func-
tions on R×R. The argument, however, extends to Rn×R3n without significant complica-
tions. Since [45] additionally focuses on other matters, we nevertheless prove the estimate in
our specific setting for the reader’s convenience and to maintain a self-contained exposition.

We will rewrite the form (2.7.8) more concisely, for which we introduce slightly more
general expressions. Let d1, d2 ≥ 1. For y ∈ (Rd1 × Rd2)2 we write y = (y0, y1), where
y0 = (y01, y

0
2) ∈ Rd1 × Rd2 , y1 = (y11, y

1
2) ∈ Rd1 × Rd2 , and let q = (q1, q2) ∈ Rd1 × Rd2 . We

write m = d1 + d2 and identify Rd1 × Rd2 with Rm. Define the maps ρj : (Rm)2 → Rm by

ρ1(y) = (y01, y
0
2) , ρ3(y) = (y01, y

1
2) ,

ρ2(y) = (y11, y
0
2) , ρ4(y) = (y11, y

1
2) .

For bounded functions F1, . . . , F4 on Rm, v ∈ (Rm)2, and T a convex tree in Rm, we define

ΘT ,v(F1, F2, F3, F4) = (1 + |v|)−4m
∫
ΩT

∫
(Rm)2

( 4∏
j=1

Fj(ρj(y))
)

×(∂1∂m+1g)t(y + (q, q) + vt) dy dq
dt

t
.

Then, (2.7.8) can be recognized as

(1 + |u|)4mΘT ,u(f1, f1, f4, f4)
with u = (u1, u2), d1 = n, d2 = 3n. Recall that u consists of the components of a and
satisfies |u| ≤ C|a|. Thus, it will suffice to prove

|ΘT ,u(f1, f1, f4, f4)| ≤ C|QT |Mf1(T )2Mf4(T )2 . (2.7.9)

To show this estimate, we will remove the localization of the kernel and localize the
functions, similarly as in [45]. This will allow for translation q → q − vt and global
telescoping arguments. For a tree T in Rm we define a region in Rm

Tk = ∪{Q ∈ T : ℓ(Q) = 2k}.
For Fj , T , v as above, α ≥ 1, and 1 ≤ i ≤ m, we define

Θ
(i)
T ,v,α(F1, F2, F3, F4) = (α+ |v|)−4m

∑
k∈Z

∫ 2k

2k−1

∫
Rm

∫
(Rm)2

( 4∏
j=1

(Fj1Tk)(ρj(y))
)

×(∂i∂m+ig)Dt(y + (q, q) + vt) dy dq
dt

t
,

where D = D(α) is a 2m× 2m diagonal matrix with diagonal entries dll = 1 if 1 ≤ l ≤ d1
or d1 + d2 < l ≤ 2d1 + d2, and dll = α otherwise. Here, gDt = (detD)−1gt(D

−1·). We will
only use this expression when either α = 1 or v = 0.

The following lemma will reduce the problem to proving a bound for Θ
(1)
T ,u,1 instead.
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Lemma 2.7.4. There exists a constant C > 0 such that for any Fj , T , v as above,

|ΘT ,v(F1, F2, F3, F4)−Θ
(1)
T ,v,1(F1, F2, F3, F4)| ≤ C|QT |

4∏
i=1

MFi(T ) .

We will use another lemma, which will reduce the problem of bounding Θ
(1)
T ,0,α to bound-

ing the sum of Θ
(i)
T ,0,α, i ̸= 1, instead.

Lemma 2.7.5. There exists a constant C > 0 such that for any Fj , T , α be as above,

∣∣∣ m∑
i=1

Θ
(i)
T ,0,α(F1, F2, F3, F4)

∣∣∣ ≤ C|QT |
4∏
i=1

MFi(T ) .

We postpone the proofs of these two lemmas until the end of this section and return to
proving (2.7.9).

By Lemma 2.7.4, it thus suffices to show

|Θ(1)
T ,u,1(f1, f1, f4, f4)| ≤ C|QT |Mf1(T )2Mf4(T )2 .

Note that we can write Θ
(1)
T ,u,1(f1, f1, f4, f4) in an analogous way as in (2.7.7), by writing

the product of all non-positive terms as a square. Indeed, we can write is as

(1 + |u|)−4m
∑
k∈Z

∫ 2k

2k−1

∫
Rd1+3d2

∣∣∣ ∫
Rd1

(f11Tk)(ρ1(y))(f41Tk)(ρ3(y))(∂1g)t(y
0
1 + q1 + a1t) dy

0
1

∣∣∣2

×gt((y02, y12) + (q2, q2) + (a2, a3, a8, a5, a6, a9)t) d(y
0
2, y

1
2, q)

dt

t
,

where we have unravelled the definition of u inside the Gaussian. We estimate a non-
centered Gaussian by a centered Gaussian as

gt(·+ vt) ≤ 10(2(1 + |v|))2d2g2t(1+|v|) ,

and apply this to the Gaussian outside of the squared term. We also change variables
q1 → q1 − u1t. This gives a constant multiple of the form

α2d2(1 + |u|)−4mΘ(1)
T ,0,α(f1, f1, f4, f4)

with α = 2(1 + |(a2, a3, a8, a5, a6, a9)|). Since α2d2(1 + |u|)−4m ≤ C, it will suffice to show

Θ
(1)
T ,0,α(f1, f1, f4, f4) ≤ C|QT |Mf1(T )2Mf4(T )2 .

Note that by symmetry, Θ
(i)
T ,0,α(f1, f1, f4, f4) ≥ 0 for each 1 ≤ i ≤ d1. By Lemma 2.7.5, it

will thus suffice to prove∣∣∣ m∑
i=d1+1

Θ
(i)
T ,0,α(f1, f1, f4, f4)

∣∣∣ ≤ C|QT |Mf1(T )2Mf4(T )2 .
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To show this inequality, we bound the left-hand side of the last display by

m∑
i=d1+1

∑
k∈Z

∫ 2k

2k−1

∫
R3d1+d2

∣∣∣ ∫
Rd2

(f11Tk)(y
0
1, y

0
2)(f11Tk)(y

1
1, y

0
2)(∂ig)αt(y

0
2 + q2) dy

0
2

∣∣∣
×
∣∣∣ ∫

Rd2

(f41Tk)(y
0
1, y

1
2)(f41Tk)(y

1
1, y

1
2)(∂ig)αt(y

1
2 + q2)dy

1
2

∣∣∣gt((y01, y11)+(q1, q1)) d(y
0
1, y

1
1, q)

dt

t
.

We apply the Cauchy-Schwarz inequality in y01, y
1
1, q, t and in the sums, and then expand

out the square, similarly as we did in (2.7.8). This gives an estimate by

∏
j∈{1,4}

( m∑
i=d1+1

Θ
(i)
T ,0,α(fj , fj , fj , fj)

)1/2
.

For each 1 ≤ i ≤ m, we have Θ
(i)
T ,0,α(fj , fj , fj , fj) ≥ 0. Therefore, Lemma 2.7.5 gives

Θ
(i)
T ,0,α(fj , fj , fj , fj) ≤ C|QT |Mfj(T )4

for each 1 ≤ i ≤ m and 1 ≤ j ≤ 4. This finishes the proof of Proposition 2.7.3, up to
verification of Lemmas 2.7.4 and 2.7.5.

To prove Lemmas 2.7.4 and 2.7.5 we will need the following Brascamp-Lieb inequality.

Lemma 2.7.6. For any measurable functions F1, F2, F3, F4 : Rm → C,∣∣∣ ∫
(Rm)2

( 4∏
j=1

Fj(ρj(y))
)
dy

∣∣∣ ≤ 4∏
j=1

∥Fj∥2 .

This lemma was proven in the case d = 1 by repeated applications of the Cauchy-
Schwarz inequality in [45, Lemma 3.2]. The proof when the variables are in higher dimen-
sions follows in the analogous way and we omit it.

We will also need an estimate on the boundary of a convex tree from [45].

Lemma 2.7.7 ([45, Lemma 4.1]). There exists a constant C > 0 such that for any convex
tree T in Rm, ∑

k∈Z
2mk#(∂Tk ∩ (2kZ)m) ≤ C|QT | .

Now we are ready to prove Lemmas 2.7.4 and 2.7.5.

Proof of Lemma 2.7.4. We proceed along the lines of the argument in [45, Section 4] in the
case of the identity matrix. First we use [45, Lemma 3.4], which in the particular case of
the identity matrix gives∣∣(1 + |v|)−4m(∂1∂m+1g)t(y + (q, q) + vt)

∣∣ ≤ Ct−2m
∑
n≥0

2−4nmχ(|y + (q, q)| ≤ 2nt) ,

where χ(A) equals 1 if the condition A is satisfied and 0 otherwise. With this and (2.7.2),
we estimate

|ΘT ,v(F1, F2, F3, F4)−Θ
(1)
T ,v,1(F1, F2, F3, F4)|
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by an absolute constant times

∑
n≥0

2−4mn
∑
k∈Z

∫ 2k

2k−1

∫
Tk

∫
Sc
k

( 4∏
j=1

|Fj(ρj(y))|
)
t−2mχ(|y − (q, q)| ≤ 2nt) dy dq

dt

t
(2.7.10)

+
∑
n≥0

2−4mn
∑
k∈Z

∫ 2k

2k−1

∫
T c
k

∫
Sk

( 4∏
j=1

|Fj(ρj(y))|
)
t−2mχ(|y − (q, q)| ≤ 2nt) dy dq

dt

t
, (2.7.11)

where Sk = {y ∈ R2m : ρj(y) ∈ Tk for all j = 1, 2, 3, 4}.
First we estimate the summand in (2.7.10) for fixed n and k by

C2−2mk
∫
Tk

∫
Sc
k

( 4∏
j=1

|Fj(ρj(y))|χ(|ρj(y)− q| ≤ 2n+k)
)
dy dq ,

where we used ρj(q, q) = q. Let E be the set of q ∈ Tk such that the inner integral of the
last display does not vanish. We estimate the last display using Lemma 2.7.6 by

C2−2mk
∫
E

4∏
j=1

∥Fj(w)χ(|w − q| ≤ 2n+k)∥L2(w) dq ≤ C22mn|E|
4∏
j=1

MFj(T ) . (2.7.12)

We proceed by estimating |E|. If q ∈ E, then there is y ∈ Sck such that for all j,

|ρj(y)− q| ≤ 2n+k .

By definition of Sk, ρj0(y) ̸∈ Tk for some 1 ≤ j0 ≤ 4. Let Qq be a dyadic cube of side length
2k containing q and let Qy be a dyadic cube of side length 2k such that ρj0(y) ∈ Qy. Then
Qq ⊆ Tk and Qy ̸⊆ Tk. But both Qq and Qy are contained in the ball B of radius C2n+k

about q for sufficiently large C > 1. Therefore, there is w ∈ ∂Tk∩ (2kZ)m such that w ∈ B.
But then q is contained in the ball of radius C2n+k about w. This implies

|E| ≤ C2nm+km#(∂Tk ∩ (2kZ)m) .

Applying this estimate to (2.7.12) and summing in n and k, we obtain for (2.7.10) a upper
bound by a constant times(∑

k∈Z
2km#(∂Tk ∩ (2kZ)m)

) 4∏
j=1

MFj(T ) .

Lemma 2.7.7 then yields the desired bound for (2.7.10).
It remains to estimate (2.7.11). Fix n and k and estimate the corresponding summand

by

C2−2mk
∫
T c
k

∫
Sk

( 4∏
j=1

|Fj(ρj(y))|χ(|ρj(y)− q| ≤ 2n+k)
)
dy dq .

Let E be the set of q ∈ T ck such that the inner integral of the last display is not zero. We
estimate the last display with Lemma 2.7.6 by

C2−2mk
∫
E

4∏
j=1

∥Fj(w)χ(|w − q| ≤ 2n+k)∥L2(w) dq . (2.7.13)
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If p ∈ E, then there is y ∈ Sk such that for all j, |ρj(y)− q| ≤ 2n+k. By definition of Sk, for
every j there is q(j) ∈ Tk such that ρj(y) = q(j). Using the triangle inequality, we estimate
(2.7.13) by

C2−2mk
∫
E

4∏
j=1

∥Fj(w)χ(|w − q(j)| ≤ 2n+k+1)∥L2(w) dq ≤ C22mn|E|
4∏
j=1

MFj(T ) .

To obtain the last inequality we may argue as for (2.7.12), because q(j) ∈ Tk. Similarly as
before, the ball of radius C2n+k+1 about p contains pj and as before we see that it also
contains a point in ∂Tk ∩ (2kZ)m. We estimate

|E| ≤ C2nm+km#(∂Tk ∩ (2kZ)m) ,

sum in n and k, and use Lemma 2.7.7 to conclude the desired bound for (2.7.11). This
finishes the proof of the lemma.

Proof of Lemma 2.7.5. We proceed along the lines of the argument in [45, Section 5.2] in
the case of the identity matrix, and streamline the proof in our setting.

Integrating by parts in q, we see that

−2

m∑
i=1

∫
Rm

(∂i∂i+mg)Dt(y + (q, q)) dq =

∫
Rm

(∆g)Dt(y + (q, q)) dq .

Using the heat equation (∆g)tD = 2πt∂t(gtD), we thus obtain

−α4m4π

m∑
i=1

Θ
(i)
T ,0,α(F1, F2, F3, F4)

=
∑
k∈Z

∫
Rm

∫
R2m

( 4∏
j=1

(Fj1Tk)(ρj(y))
)∫ 2k

2k−1

t∂t(gtD)(y + (q, q))
dt

t
dy dq .

Let kT be defined by ℓ(QT ) = 2kT . By the fundamental theorem of calculus in t, the
last display equals

∑
k∈Z

∫
Rm

∫
R2m

( 4∏
j=1

(Fj1Tk)(ρj(y))
)
(g2kD − g2k−1D)(y + (q, q)) dy dq

=

∫
Rm

∫
R2m

( 4∏
j=1

(Fj1QT )(ρj(y))
)
g2kT D(y + (q, q)) dy dq (2.7.14)

+
∑
k<kT

∫
Rm

∫
R2m

( 4∏
j=1

(Fj1Tk)(ρj(y))−
4∏
j=1

(Fj1Tk+1
)(ρj(y))

)
g2kD(y+(q, q)) dy dq . (2.7.15)

We estimate the two terms (2.7.14) and (2.7.15) separately.
First we estimate (2.7.15). Let χ be the characteristic function of [−1, 1]2m. We bound

g ≤ C
∑
n≥0

e−2
n
χ2n .
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We fix k < kT and n ≥ 0, and consider∫
Rm

∫
R2m

( 4∏
j=1

(Fj1Tk)(ρj(y))−
4∏
j=1

(Fj1Tk+1
)(ρj(y))

)
χ2n+kD(y + (q, q)) dy dq .

Using the distributive law and Tk ⊆ Tk+1, we estimate the integrand as∣∣∣ 4∏
j=1

(Fj1Tk)(ρj(y))−
4∏
j=1

(Fj1Tk+1
)(ρj(y))

∣∣∣
≤

4∑
j0=1

|Fj01Tk+1\Tk |(ρj0(y))
∏
j ̸=j0

|Fj1Tk+1
|(ρj(y)) .

We fix j0. For simplicity of notation we set j0 = 1, the other values of j0 will be analogous.
Let Q be a cube of side length 2k contained in Tk+1 \ Tk and consider∫

Rm

∫
R2m

|F11Q|(ρ1(y))
( 4∏
j=2

|Fj1Tk+1
|(ρj(y))

)
χ2n+kD(y + (q, q)) dy dq . (2.7.16)

Since α ≥ 1, we have y + (q, q) ∈ 2n+kα[−1, 1]2m. Applying ρj , we obtain for 1 ≤ j ≤ 4,

ρj(y) + q ∈ 2n+kα[−1, 1]m .

We also have ρ1(y) ∈ Q, so q ∈ P , where

P = 2n+kα[−1, 1]m −Q .

Thus, for each j = 2, 3, 4, we have ρj(y) ∈ S, where

S = Q+ 2n+k+1α[−1, 1]m .

Thus, we can bound (2.7.16) by

2−2m(n+k) (detD)−1|P |
∫
R2m

|F11Q|(ρ1(y))
( 4∏
j=2

|Fj1Tk+1∩S |(ρj(y))
)
dy .

By Lemma 2.7.6, we estimate this by

C2−2m(n+k)(detD)−1|P |∥F11Q∥2
4∏
j=2

∥Fj1Tk+1∩S∥2

= C2−2m(n+k)(detD)−1|P ||Q|1/2|S|3/2
( 1

|Q|

∫
Q
F 2
1

)1/2
4∏
j=2

( 1

|S|

∫
S
F 2
j

)1/2
.

Next, we crudely estimate (detD)−1 = α−2d2 ≤ 1 and |S|3/2 ≤ C22mnα2m|Q|3/2. We also
use that and |Q| = C2mk, |P | ≤ C2m(n+k)αm, and that S covers Q. This bounds the last
display by

C|Q|2mnα3m
4∏
j=1

MFj(T ) .

95



Summing over the disjoint cubes Q in Tk+1 \Tk, summing over k < kT , and using that the
regions Tk+1 \ Tk are disjoint in QT , we then estimate (2.7.15) by

C
(∑
n≥0

e−2
n
2mn

)
α3m|QT |

4∏
j=1

MFj(T ) .

Then it remains to sum in n.
It remains to estimate (2.7.14), which is done similarly as (2.7.15) but simpler. Esti-

mating the Gaussian by a superposition of characteristic functions of cubes, we consider∫
Rm

∫
R2m

( 4∏
j=1

(|Fj |1QT )(ρj(y))
)
χ2n+kD(y + (q, q)) dy dq .

This is then estimated analogously to (2.7.16).

To finish the proof of Proposition 2.7.2 it remains to do a stopping time argument,
similarly as in [71, 45]. Denote by Λ(f1, f2, f3) the form in the statement of Proposition
2.7.2. Let Q denote the collection of all dyadic cubes in R4n contained in [−2N , 2N ]4n, with
side-lengths in [2−N , 2N ] for a large N > 0. By the monotone convergence theorem, we
may assume that in the integral defining Λ one has (t, p) ∈ ΩQ. By homogeneity we may
also normalize

∥fj∥pj = 1

for each j = 1, 2, 3. Thus, it suffices to prove

|Λ(f1, f2, f3)| ≤ C(1 + |a|)16n .

For every triple of integers k = (k1, k2, k3), we define

Pk = {Q ∈ Q : 2kj−1 < sup
Q′⊇Q

( 1

|Q′|

∫
Q′

|fj |2
)1/2

≤ 2kj for j = 1, 2, 3} ,

where the supremum is over all cubes Q′ in R4n with sides parallel to the coordinate axes.
Let Pmax

k be the collection of all maximal dyadic cubes in Pk with respect to set inclusion.
For every Q ∈ Pmax

k , the collection

TQ = {Q′ ∈ Pk : Q′ ⊆ Q}

is a convex tree and for different Q ∈ Pmax
k , the corresponding trees are disjoint. Proposi-

tion 2.7.3 gives

|ΛTQ,a(f1, f2, f3, 1)| ≤ |Q|
3∑
j=1

( 1

|Q′|

∫
Q′

|fj |2
)1/2

≤ |Q|2k1+k2+k3 .

Therefore,

(1+ |a|)−16n|Λ(f1, f2, f3)| ≤
∑
k∈Z3

∑
Q∈Pmax

k

|ΛTQ,a(f1, f2, f3, 1)| ≤ C
∑
k∈Z3

2k1+k2+k3
∑

Q∈Pmax
k

|Q| .
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By disjointness of the maximal cubes, for each j = 1, 2, 3,∑
Q∈Pmax

k

|Q| =
∣∣∣ ⋃
Q∈Pmax

k

Q
∣∣∣ ⊆ |{Mfj > C2kj}| ,

where Mfj denotes a “quadratic” variant of the Hardy-Littlewood maximal function

Mfj(x) = sup
Q′∋x

( 1

|Q′|

∫
Q′

|fj(x)|2 dx
)1/2

,

with supremum is over all cubes Q′ with sides parallel to the coordinate axes. We split
Z3 = K1 ∪ K2 ∪ K3, where Kj = {(k1, k2, k3) : kjpj ≥ kj′pj′ for j

′ = 1, 2, 3}. Thus,

(1 + |a|)−16n|Λ(f1, f2, f3)| ≤
3∑
j=1

∑
(k1,k2,k3)∈Kj

2k1+k2+k3 |{Mfj > C2kj}|

=
3∑
j=1

∑
kj∈Z

2pjkj |{Mfj > C2kj}|
∏
j′ ̸=j

∑
kj′ :kj′≤pjkj/pj′

2
kj′−

pjkj
pj′

≤ C
3∑
j=1

∥Mfj∥pjpj ≤ C
3∑
j=1

∥fj∥pjpj ≤ C .

This finishes the proof of Proposition 2.7.2.

2.8 List of indecomposable modules

In Tables 2.1–2.4 below we list the modules used in the classification Theorems 2.1.11 and
2.1.15. We specify the modules using block matrices

A10 A11 A12 A13

A20 A21 A22 A23
.

We define M to be Rn for some n, and identify each subspace Mi with Rni as well. The
block columns (

A1i

A2i

)
for i = 0, 1, 2, 3 then specify the matrices of the embeddings Mi →M defining the module
M, which fixes implicitly also the dimensions of the subspaces Mi and of M . Two modules
defined like this are isomorphic if the corresponding block matrices can be transformed into
each other by row operations on the whole matrix and column operations on each block
column. In terms of the corresponding Brascamp-Lieb data, the transposes of the block
columns are the matrices of the maps Πi.

Following the notation of [87], we write In for the n× n identity matrix. We denote by
Jn(λ) an n × n Jordan block with eigenvalue λ. An arrow in the superscript of a matrix
indicates that a row or column of zeros is to be added in the direction the arrow points, for
example I↑n is the (n+ 1)× n matrix with one row of zeros, followed by the n× n identity
matrix in the rows below.
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Finally, the matrix X = X(P, s) in modules 0 and Nn denotes the companion matrix of
the polynomial (P (t))s, for some s ≥ 1 and an irreducible polynomial P ∈ R[t] with P (t) ̸= t
and P (t) ̸= t− 1. The companion matrix of a polynomial Q(t) = tn + an−1t

n−1 + · · ·+ a0
is the matrix 

0 . . . 0 −a0
1 . . . 0 −a1
...

. . .
...

...
0 . . . 1 −an−1

 ,

with characteristic polynomial Q. Note that the conditions on P imply that P (t) = t− λ
with λ ̸= 0, 1 or P (t) = t2 − 2λt+ µ with µ > λ2.

The indecomposable modules in Table 2.1 are only listed up to permutation of the
subspaces. The additional information which permutations give rise to non- isomorphic
modules is given by the following lemma, which is Remark 1 in [87].

Lemma 2.8.1 ([87, Remark 1]). For the modules II, III, III∗, IV, IV∗,V,V∗, each permu-
tation of the subspaces that leaves their dimensions invariant gives rise to an isomorphic
module. For the modules of type 0, all permutations of the subspaces give rise to another
module of type 0, but possibly with different X. For module I, swapping the columns 1, 3 or
swapping columns 2, 4 gives rise to an isomorphic module. Thus there are 6 isomorphism
classes of modules that can be obtained by permuting the subspaces in type I.

Lemma 2.8.1 can be directly checked by transforming the corresponding block matrices
into each other using the allowed row and column transformations. We omit this and refer
to [87].
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M dim(M,M0,M1,M2,M3) block matrix

0 (2n, n, n, n, n)
In 0 In X

0 In In In

I (2n, n, n, n, n)
In 0 In Jn(0)

0 In In In

II (2n+ 1, n+ 1, n+ 1, n, n)
In+1 In+1 I↓n 0

0 I→n In In

III (2n+ 1, n, n, n, n+ 1)
In+1 0 I↑n I↓n
0 In In In

III∗ (2n+ 1, n+ 1, n+ 1, n+ 1, n)
In 0 I←n I→n
0 In+1 In+1 In+1

IV (2n+ 2, n+ 1, n+ 1, n+ 1, n)
In+1 0 In+1 I↑n

0 In+1 In+1 I↓n

IV∗ (2n+ 2, n+ 1, n+ 1, n+ 1, n+ 2)
In+1 0 In+1 I←n+1

0 In+1 In+1 I→n+1

V (2n+ 1, n, n, n, n)

In 0 Jn(0) In
0 In In Jn(0)

0..0 0..0 10..0 10..0

V∗ (2n+ 1, n+ 1, n+ 1, n+ 1, n+ 1)

I←n I←n I→n 0

0 I→n I←n I←n
10..0 10..0 10..0 10..0

Table 2.1: Indecomposable modules of the four subspace quiver, up to permutation of the
subspaces. The following list is a direct result from the diagrams in [87].

M dim(M,M0,M1,M2,M3) block matrix

Nn (2n, n, n, n, n)
In 0 In X

0 In In In

J
(1)
n (2n, n, n, n, n)

In 0 In Jn(1)

0 In In In

J
(2)
n (2n, n, n, n, n)

In 0 In Jn(0)

0 In In In

J
(3)
n (2n, n, n, n, n)

In 0 Jn(0) In
0 In In In

Cn (2n+ 1, n+ 1, n, n, n)
In+1 0 I↑n I↓n
0 In In In

Tn (2n+ 1, n, n+ 1, n+ 1, n+ 1)
In 0 I←n I→n
0 In+1 In+1 In+1

Table 2.2: Indecomposable modules corresponding to data of Hölder type
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M dim(M,M0,M1,M2,M3) block matrix

Y (2, 0, 1, 1, 1)
0 1 0 1

0 0 1 1

Z (3, 1, 1, 1, 1)

1 0 0 1

0 1 1 0

0 0 1 1

L (4, 1, 2, 2, 2)
I↑1 I2 0 I2

I↓1 0 I2 I2

B (5, 2, 2, 2, 2)

I2 0 J2(0) I2
0 I2 I2 J2(0)

00 00 10 10

Table 2.3: Indecomposable modules corresponding to Young’s convolution inequality and
to Loomis-Whitney type inequalities

M dim(M,M0,M1,M2,M3) block matrix

P(1) (1, 0, 0, 1, 1) 0 0 I1 I1
P(2) (1, 0, 1, 0, 1) 0 I1 0 I1
P(3) (1, 0, 1, 1, 0) 0 I1 I1 0

K(1) (2, 1, 0, 1, 1)
I1 0 0 I1
0 0 I1 I1

K(2) (2, 1, 1, 0, 1)
I1 0 0 I1
0 I1 0 I1

K(3) (2, 1, 1, 1, 0)
I1 0 I1 0

0 I1 I1 0

Table 2.4: Indecomposable modules corresponding to Hölder’s inequality or Hölder’s in-
equality combined with boundedness of a linear singular integral operator
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Chapter 3

Sharp Fourier extension for
functions with localized support on
the circle

This chapter consists of the publication [7] that will appear in Revista Matemática Iberoamer-
icana. The copyright is held by the EMS Publishing House GmbH and the article is repro-
duced here in accordance with their copyright policy.

3.1 Introduction

We are interested in the conjecture that constant functions are extremizers for the Tomas-
Stein Fourier extension inequality for the circle

∥f̂σ∥L6(R2) ≤ C∥f∥L2(σ). (3.1.1)

Here σ is the arc length measure on the unit circle S1 ⊂ R2 and µ̂(ξ) =
∫
e−ixξ dµ(ξ) is the

Fourier transform.
The corresponding conjecture for S2 was proven by Foschi [54], and in [23] Foschi’s

argument is adapted to S1, and the conjecture of interest is reduced to the following.

Conjecture 3.1.1. The quadratic form

Q(f) :=

∫
(S1)6

(|ω1 + ω2 + ω3|2 − 1)(f(ω1, ω2, ω3)
2 − f(ω1, ω2, ω3)f(ω4, ω5, ω6)) dΣ

is positive semi-definite on the subspace V of all antipodal functions in L2((S1)3,R). Here
we denote

dΣ = dΣ(ω) = δ(
6∑
j=1

ωk)
6∏
j=1

dσ(ωj),

and a function f is antipodal if f(±ω1,±ω2,±ω3) does not depend on the choice of signs.

Conjecture 3.1.1 has been verified for all functions with Fourier modes up to degree 120
in [99] and [3], via a numerical computation of the eigenvalues of Q on the finite dimensional
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space of such functions. Further, using different methods, in [29] the conjectured sharp
form of inequality (3.1.1) has been established for certain infinite dimensional subspaces of
L2(σ) with constrained Fourier support. Our main result establishes Conjecture 3.1.1 for
functions with localized spatial support.

Let Cε be the cylinder of radius ε centered at the line R(1, 1, 1), and define

Vε :=

{
f ∈ V : supp f(eiθ1 , eiθ2 , eiθ3) ⊂

⋃
k∈πZ3

k + Cε

}
.

Theorem 3.1.2. Let ε = 1/20. Then for all f ∈ Vε it holds that Q(f) ≥ 0.

Note that since constant functions are in the kernel of Q, the same result holds for
Vε ⊕ ⟨1⟩, where 1 is the constant 1 function.

As a corollary, functions with support sufficiently close to a pair of antipodal points
satisfy (3.1.1) with the conjectured sharp constant. Define

Φ(g) :=
∥ĝσ∥L6(R2)

∥g∥L2(σ)
.

Corollary 3.1.3. Let ε′ =
√
3/8ε. Suppose that g ∈ L2(σ) is such that g(eiθ) is supported

in (−ε′, ε′) + πZ. Then Φ(g) ≤ Φ(1), where 1 is the constant 1 function on S1.

Note that by rotation symmetry, the same holds when g(eiθ) is supported in I +πZ for
any interval I of length 2ε′.

The constants ε and ε′ in Theorem 3.1.2 and Corollary 3.1.3 are not optimal. Numerical
computations suggest that with our method ε can be improved up to about 0.104 and ε′

up to about 0.063, see Section 3.7.
The numerical results in [3] suggest that eigenfunctions ofQ on the subspace of functions

with Fourier modes up to degree N corresponding to small eigenvalues concentrate in space.
Theorem 3.1.2 shows that Q is positive on all such sufficiently concentrated functions, thus
it should be a useful partial result in establishing positive semi-definiteness of Q on the
full space of antipodal functions. A more precise observation by Jiaxi Cheng, a graduate
student in Bonn, is that the smallest eigenvalue is of size ∼ N−2 log(N), see Section 2 of
[96]. The existence of such an eigenvalue is also explained by the asymptotic formula for
the multiplier m in Lemma 3.4.1, which looks like c|log|x|||x|2 near 0. Unfortunately, we
cannot prove that this is the smallest eigenvalue.

More generally, the topic of sharp Fourier extension inequalities has attracted a lot of
interest in recent years. In the following we consider general dimensions d ≥ 2. Then the
Tomas-Stein extension inequality states that for every

q ≥ qd :=
2(d+ 1)

d− 1
,

there exists C(d, q) > 0 such that for all f ∈ L2(Sd−1, σd−1)

∥f̂σ∥Lq(Rd) ≤ C(d, q)∥f∥L2(σ). (3.1.2)

Here σd−1 denotes the d− 1-dimensional Hausdorff measure on Sd−1.
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It is known that extremizers for (3.1.2) exist when q > qd, for all d, see [49]. At the
endpoint q = qd, existence and smoothness of extremizers have been shown for d = 3 in
[27], [28] and for d = 2 in [106], [105]. For higher dimensional spheres d ≥ 4, existence of
extremizers for q = qd is known conditional on the conjecture that Gaussians maximize the
corresponding extension inequality for the paraboloid, see [57].

For certain specific choices of (d, q), a full characterization of the extremizers of (3.1.2)
is known. Most such results grew out of the work of Foschi [54], who showed that con-
stant functions maximize (3.1.2) for (d, q) = (2, 4), and gave a full characterization of all
complex valued maximizers. His method can be adapted for some non-endpoint extension
inequalities on higher dimensional spheres, see [24]. Using different methods, maximizers
of (3.1.2) for some choices of (d, q) with even q > 4 are characterized in [98]. In some
further cases it is known that constant functions are local maximizers. This was shown in
[23] for (d, q) = (2, 6), and in [60] for (d, qd) with 3 ≤ d ≤ 60. For further background and
references on sharp Fourier extension inequalities we refer to [53] and [96].
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3.2 Proof of Corollary 3.1.3

Corollary 3.1.3 is a direct consequence of Theorem 3.1.2 and the program formulated in
[23]. We give a brief sketch of the implication here; for the details of the program and
proofs we refer the reader to [23].

Proof of Corollary 3.1.3. Let g ∈ L2(σ) be such that g(eiθ) is supported in (−ε′, ε′) + πZ.
Define g̃(x) = g(−x) and

g# =

√
|g|2 + |g̃|2

2
.

As shown in [23], Step 1 and 2, it holds that Φ(g) ≤ Φ(g#), and g# is antipodal and
g#(e

iθ) is supported in (−ε′, ε′) + πZ. Define f(ω1, ω2, ω3) := g#(ω1)g#(ω2)g#(ω3). Then
the function f(eiθ1 , eiθ2 , eiθ3) is supported in

⋃
k∈πZ3 k + (−ε′, ε′)3. Since (−ε′, ε′)3 is a

subset of the cylinder C√
8/3ϵ′

, it follows that f ∈ V√
8/3ε′

= Vε, hence Q(f) ≥ 0, by

Theorem 3.1.2. This verifies Conjecture 1.4 in [23] for g#. Using Step 3, 4 and 5 in [23],
we conclude that Φ(g) ≤ Φ(1).
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3.3 Proof of Theorem 3.1.2

3.3.1 Orthogonal decomposition

We consider the sesquilinear form

B(f, g) =

∫
(S1)6

(|ω1 + ω2 + ω3|2 − 1)

· (f(ω1, ω2, ω3)g(ω1, ω2, ω3)− f(ω1, ω2, ω3)g(ω4, ω5, ω6)) dΣ(ω).

By a change of variables, it holds that B(f, g) = B(Rf,Rg), where Rf(ω1, ω2, ω3) =
f(eiω1, e

iω2, e
iω3). Define

Zd = {(k1, k2, k3) ∈ (2Z)3 : k1 + k2 + k3 = d}

and
Xd =

{ ∑
k∈Zd

akω
k1
1 ω

k2
2 ω

k3
3 : (ak) ∈ ℓ2(Zd)

}
⊂ L2((S1)3).

For d ̸= d′, the spaces Xd and Xd′ are eigenspaces of R with different eigenvalues eid and
eid

′
, and hence are orthogonal with respect to B. Note that the orthogonal projection πd

onto Xd can be expressed as

πd(f)(ω1, ω2, ω3) =

∫ 1

0
e−2πidtf(e2πitω1, e

2πitω2, e
2πitω3) dt,

which implies that πd(Vε) ⊂ Vε. Therefore, we have that

Vε =
⊕
d∈Z

πd(Vε) =
⊕
d∈Z

(Vε ∩Xd).

Hence, it suffices to show positive semi-definiteness of B on each of the spaces

Xd,ε := Vε ∩Xd.

3.3.2 Reducing the dimension

From now on, we use the convention that

ωi = (cos(θi), sin(θi)), (3.3.1)

and abuse notation by writing f(ω(θ)) = f(θ). We also define

a(θ1, θ2, θ3) := (cos(θ1) + cos(θ2) + cos(θ3))
2 + (sin(θ1) + sin(θ2) + sin(θ3))

2

= |ω1 + ω2 + ω3|2,

so that the weight in the bilinear form B is given by a− 1, and record the useful identity

a(θ1, θ2, θ3) = 3 + 2 cos(θ1 − θ2) + 2 cos(θ2 − θ3) + 2 cos(θ3 − θ1). (3.3.2)
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The domain of integration ω ∈ (S1)6 in the bilinear form B becomes θ ∈ R6/(2πZ)6.
As we assume that f ∈ Xd for some d, we fully understand how f transforms under
simultaneous rotations of ω1, ω2, ω3 by the same angle. We will use this to integrate out
such simultaneous rotations of ω1, ω2, ω3 and of ω4, ω5, ω6. These rotations correspond to
shifts of (θ1, θ2, θ3) and (θ4, θ5, θ6) in direction (1, 1, 1), which makes it natural to choose
the following fundamental domain of R3/(2πZ)3 as our domain of integration in θ.

Lemma 3.3.1. Let C be the rhombus with corners

(π,−π, 0), (−π
3
,−π

3
,
2π

3
), (−π, π, 0) and (

π

3
,
π

3
,−2π

3
).

Then the prism P := C + {(t, t, t) : t ∈ [0, 2π)} over C of height 2π
√
3 is a fundamental

domain for R3/(2πZ)3.

Proof. Denote by p the orthogonal projection onto the hyperplane

H := {(θ1, θ2, θ3) : θ1 + θ2 + θ3 = 0}.

The image of (2πZ)3 under p is the hexagonal lattice

Λ := Zv1 ⊕ Zv2 ⊂ H,

where

v1 := (
4π

3
,−2π

3
,−2π

3
) and v2 := (−2π

3
,
4π

3
,−2π

3
).

It is easy to see that the rhombus C is a fundamental domain of H modulo the lattice Λ.
Thus for every x, there exists y with x−y ∈ (2πZ)3 and p(y) ∈ C. Then for an appropriate
choice of k ∈ Z, the point z = y + 2πk(1, 1, 1) lies in P , and x− z ∈ (2πZ)3.

Conversely, let z, z′ ∈ P be such that z − z′ ∈ (2πZ)3. Then p(z) − p(z′) lies in
p((2πZ)3) = Λ, and p(z), p(z′) ∈ C. It follows that p(z) = p(z′). Thus z−z′ ∈ 2πZ·(1, 1, 1),
and from z, z′ ∈ P it follows that z = z′.

In the next lemma, we perform integrations in direction (1, 1, 1) in (θ1, θ2, θ3) and
(θ4, θ5, θ6), thereby reducing to a quadratic form depending only on the restriction f |C .
We define the function λd : C × C → S1 by

λd(θ
′
1, θ
′
2, θ
′
3, θ1, θ2, θ3) = exp(id · (arg(eiθ′1 + eiθ

′
2 + eiθ

′
3)− arg(eiθ1 + eiθ2 + eiθ3))).

The only property of λd that will be used in the proof below is that |λd| = 1.

Lemma 3.3.2. For all d ∈ Z and all f ∈ Xd, we have that B(f, f) equals

12π

∫
C2

δ(a(θ)− a(θ′))(a(θ)− 1)(|f(θ)|2 − λd(θ
′, θ)f(θ)f(θ′)) dH2

C(θ) dH2
C(θ
′).

Here H2
C denotes the 2-dimensional Hausdorff measure on C.
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θ3

θ2θ1

(−π
3 ,−π

3 ,
2π
3 )(π3 ,

π
3 ,− 2π

3 )

(π,−π, 0)

(π,−π, 0) (π,−π, 0)

Figure 3.1: Left: The lattice 1
2Λ in the hyperplane H and the fundamental domain C (gray)

of Λ. The restriction |f ||H is supported in the union of the dashed balls and periodic with
respect to 1

2Λ. Right: One possible choice of a fundamental domain C ′ such that f |C′ is
supported in the union of the balls (dashed) B1, B2, B3 and B4.

Proof. By Lemma 3.3.1, we have

B(f, f) =

∫
P×P

δ(ω1 + ω2 + ω3 − ω4 − ω5 − ω6)(|ω1 + ω2 + ω3|2 − 1)

× (|f(ω1, ω2, ω3)|2 − f(ω1, ω2, ω3)f(ω4, ω5, ω6))
6∏
j=1

dθj

= 2π
√
3

∫
C×P

δ(ω1 + ω2 + ω3 − ω4 − ω5 − ω6)(|ω1 + ω2 + ω3|2 − 1)

× (|f(ω1, ω2, ω3)|2 − f(ω1, ω2, ω3)f(ω4, ω5, ω6)) dH2
C(θ1, θ2, θ3)

6∏
j=4

dθj .

Here we have used that f ∈ Xd, to integrate out simultaneous rotations of all 6 points ωj
by the same angle. For x, y ∈ R2, it holds that

δ(x− y) = 2δ(|x|2 − |y|2)δ(arg(x)− arg(y)).

Hence, we can rewrite the last expression as

= 4π
√
3

∫
C×P

δ(|ω1 + ω2 + ω3|2 − |ω4 + ω5 + ω6|2)

× δ(arg(ω1 + ω2 + ω3)− arg(ω4 + ω5 + ω6))(|ω1 + ω2 + ω3|2 − 1)

× (|f(ω1, ω2, ω3)|2 − f(ω1, ω2, ω3)f(ω4, ω5, ω6)) dH2
C(θ1, θ2, θ3)

6∏
j=4

dθj
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= 12π

∫
C×C

∫ 2π

0
δ(a(θ1, θ2, θ3)− a(θ4, θ5, θ6))

× δ(arg(ω1 + ω2 + ω3)− arg(ω4 + ω5 + ω6)− t)(a(θ1, θ2, θ3)− 1)

× (|f(ω1, ω2, ω3)|2 − f(ω1, ω2, ω3)f(eitω4, eitω5, eitω6)) dt dH4
C×C(θ).

Since f ∈ Xd, we have

f(eitω4, e
itω5, e

itω6) = eitdf(ω4, ω5, ω6).

Thus, we can integrate out t and obtain the claimed identity.

3.3.3 Completing the proof

By Lemma 3.3.2, we have for all d and all f ∈ Xd:

B(f, f) ≥ 12π

∫
C
|f(θ)|2(a(θ)− 1)

∫
C
δ(a(θ)− a(θ′)) dH2

C(θ
′) dH2

C(θ)

− 12π

∫
C2

δ(a(θ)− a(θ′))|a(θ)− 1||f(θ)||f(θ′)| dH2
C(θ) dH2

C(θ
′)

=: 12π(I − II). (3.3.3)

If f ∈ Xd,ε, then the restriction of f onto the hyperplaneH = {(θ1, θ2, θ3) : θ1+θ2+θ3 = 0}
is supported in 1

2Λ + Bε(0). Furthermore, the function |f | is periodic with respect to 1
2Λ,

since it is periodic with respect to πZ3 and invariant under all translations in direction
(1, 1, 1). Thus it suffices to show the following.

Lemma 3.3.3. Suppose that ε ≤ 1/20. Then for all functions f : H → [0,∞) that are
periodic with respect to 1

2Λ and supported in 1
2Λ +Bε(0), it holds that I ≥ II.

Proof. Recall that C is a fundamental domain of the lattice Λ. The expressions in the inte-
grals for the terms I and II are Λ periodic, so we may replace C by any other fundamental
domain C ′. Since f is supported in 1

2Λ + B(0, ε), there exists a fundamental domain C ′

such that f |C′ is supported in

Bε(0, 0, 0) ∪Bε(
2π

3
,−π

3
,−π

3
) ∪Bε(−

π

3
,
2π

3
,−π

3
) ∪Bε(−

π

3
,−π

3
,
2π

3
)

=: B1 ∪B2 ∪B3 ∪B4.

We decompose

I =

4∑
i=1

∫
Bi

|f(θ)|2(a(θ)− 1)

∫
C
δ(a(θ)− a(θ′)) dH2

C(θ
′) dH2

C(θ) =:

4∑
i=1

Ii, (3.3.4)

II =
∑

1≤i,j≤4

∫
Bi×Bj

δ(a(θ)− a(θ′))|a(θ)− 1||f(θ)||f(θ′)| dH2
C(θ) dH2

C(θ
′)

=:
∑

1≤i,j≤4
IIij . (3.3.5)
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Note that |θ| < π/6 implies, by (3.3.2), that a(θ) ≥ 3 + 6 cos(π/3) = 6, and that similarly
|θ−(2π/3,−π/3,−π/3)| < π/6 implies that a(θ) ≤ 3. Therefore, for j = 2, 3, 4 the measure
δ(a(θ)− a(θ′)) vanishes on B1 ×Bj , thus I1j = Ij1 = 0.

Next, we record that II11 ≤ I1, by Cauchy-Schwarz and since a(θ) ≥ 6 on B1:

II11 =

∫
B2

1

δ(a(θ)− a(θ′))|a(θ)− 1||f(θ)||f(θ′)|dH2
C(θ) dH2

C(θ
′)

≤ 1

2

∫
B2

1

δ(ã(θ)− ã(θ′))(ã(θ)− 1)(|f(θ)|2 + |f(θ′)|2) dH2
C(θ) dH2

C(θ
′)

≤
∫
B1

|f(θ)|2(ã(θ)− 1)

∫
C
δ(ã(θ)− ã(θ′)) dH2

C(θ) dH2
C(θ
′) = I1.

The remaining terms are estimated in the next two sections. By Lemmas 3.4.1 and 3.5.1,
we have

I2 + I3 + I4 ≥ 30

∫
B1

|θ|2|f(θ)|2 dH2
H(θ) > 9

101

100
π

∫
B1

|θ|2|f(θ)|2 dH2
H(θ)

≥
∑

2≤i,j≤4
IIij ,

which completes the proof.

3.4 Estimating term I

Lemma 3.4.1. It holds that

I2 + I3 + I4 =

∫
B1

m(θ)|f(θ)|2 dH2
H(θ), (3.4.1)

where Ij is defined in (3.3.4), and m(θ) ≥ 30|θ|2.
Proof. By definition of the Ij , equation (3.4.1) holds with

m(θ) =
4∑
j=2

(a(θ + cj)− 1)

∫
C
δ(a(θ + cj)− a(θ′)) dH2

C(θ
′),

where cj is the center of the ball Bj . Reversing the argument in the proof of Lemma 3.3.2,
it follows that for x ∈ R2∫

C
δ(|x|2 − a(θ′)) dH2

C(θ
′)

=
1√
3

∫
P
δ(|x|2 − |ω1 + ω2 + ω3|2)δ(arg(x)− arg(ω1 + ω2 + ω3))

3∏
j=1

dθ′j

=
1

2
√
3

∫
(S1)3

δ(x− (ω1 + ω2 + ω3))

3∏
j=1

dσ(ωj)

=
1

2
√
3
σ ∗ σ ∗ σ(x).
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The convolution σ ∗ σ ∗ σ is radial. We set σ ∗ σ ∗ σ(x) = ρ(|x|), giving

m(θ) =
1

2
√
3

4∑
j=2

(a(θ + cj)− 1)ρ(
√
a(θ + cj)). (3.4.2)

In polar coordinatesθ1θ2
θ3

 = s cos(α)
1√
2

 1
−1
0

+ s sin(α)
1√
6

 1
1
−2

 (3.4.3)

we compute in Lemma 3.6.6 the asymptotic expansion

(a(θ + c4)− 1)ρ(
√
a(θ + c4)) (3.4.4)

= −12s2(3 sin2(α)− cos2(α)) log(s) (3.4.5)

− 6s2(3 sin2(α)− cos2(α)) log|3 sin2(α)− cos2(α)| (3.4.6)

+ 18 log 2 s2(3 sin2(α)− cos2(α)) (3.4.7)

+ E,

with
|E| ≤ −180s4 log s+ 71s4 when s ≤ 1/20.

As the function a is invariant under permutation of its arguments and constant in direction
(1, 1, 1), it is invariant under the rotation T by 2π/3 about the line R(1, 1, 1). Since

c2 + θ(α, s) = T (c4 + θ(α+ 4π/3, s)) and c3 + θ(α, s) = T 2(c4 + θ(α+ 2π/3, s)),

we obtain the same asymptotic expansion for a(θ + cj)ρ(
√
a(θ + cj)), j = 2, 3, but with α

replaced by α+ 4π/3 and α+ 2π/3.
We now consider (3.4.2). The term (3.4.5) contributes −6

√
3s2 log(s) to m and the

term (3.4.7) contributes 9
√
3 log(2)s2, since for all α

3∑
j=1

(3 sin2(α+
2πj

3
)− cos2(α+

2πj

3
)) = 3.

For term (3.4.6) we use the sharp estimate

3∑
j=1

(3 sin2(α+
2πj

3
)− cos2(α+

2πj

3
)) log|3 sin2(α+

2πj

3
)− cos2(α+

2πj

3
)| ≤ 3 log(3),

which we prove in Lemma 3.6.7. Hence, for s ≤ 1/20,

m(θ) ≥ −6
√
3s2 log(s) + (9

√
3 log(2)− 3

√
3 log(3))s2 + 90

√
3s4 log s− 62s4

≥ (6
√
3 log(20) + 9

√
3 log(2)− 3

√
3 log(3)− 90

√
3

400
log(20)− 62/400)s2

≈ 34.906 s2,

as claimed.
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3.5 Estimating term II

Lemma 3.5.1. For all 2 ≤ i, j ≤ 4 and all f , it holds that

IIij ≤
101

100
π

∫
B1

|θ|2|f(θ)|2 dH2
H(θ).

Proof. We first treat the term II44, and later explain the changes for the other terms. We
have

II44 =

∫
B4×B4

δ
(
1− 1− a(θ′)

1− a(θ)

)
|f(θ)||f(θ′)| dH2

H(θ) dH2
H(θ

′)

=

∫
B1×B1

δ
(
1− 1− a(c4 + θ′)

1− a(c4 + θ)

)
|f(θ)||f(θ′)|dH2

H(θ) dH2
H(θ

′).

We introduce polar coordinates θ = θ(s, α) as in (3.4.3) and write also θ′ = θ(t, β). With
the definitions

h(s, t, α, β) :=
1− a(c4 + θ′)

1− a(c4 + θ)
and g(s, α) := |θ|2|f(θ)|,

we obtain by changing variables

II44 =

∫ 2π

0

∫ 2π

0

∫ ε

0

∫ ε

0
δ(1− h(s, t, α, β))g(s, α)g(t, β)

ds

s

dt

t
dα dβ. (3.5.1)

Doing a Taylor expansion of 1− a(c4 + θ) at 0 yields (see Lemma 3.6.5)

h(s, t, α, β) =
t2

s2
3 sin2(β)− cos2(β)

3 sin2(α)− cos2(α)

1 + ψ(t, β)

1 + ψ(s, α)
, (3.5.2)

where ψ(s, α) is a smooth function of s and α, and ψ(s, α) = O(s2). If the last factor in
(3.5.2) were equal to 1, then the inner two integrals in (3.5.1) would simplify to∫ ∞

0
g(s, α)g(c(α, β)s, β)

ds

s
,

for some constant c(α, β), which is easily estimated using Cauchy-Schwarz. The following
is a perturbed version of this argument.

Fix α, β and write h(s, t) = h(s, t, α, β). Let s(t) be defined implicitly by h(s(t), t) = 1
(note that s also depends on α and β). Then∫ ε

0

∫ ε

0
δ(1− h(s, t))g(s, α)g(t, β)

ds

s

dt

t
=

∫ ε

0
g(t, β)g(s(t), α)

1

|∂sh(s(t), t)|
1

s(t)t
dt

=

∫ ε

0
g(t, β)g(s(t), α)

1

2 + s(t) ψ′(s(t),α)
1+ψ(s(t),α)

1

t
dt. (3.5.3)

Here we used that

∂sh(s, t) = −h(s, t)
(2
s
+

ψ′(s, α)

1 + ψ(s, α)

)
,
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and hence

−∂sh(s(t), t) =
2

s(t)
+

ψ′(s(t), α)

1 + ψ(s(t), α)
.

Applying Cauchy-Schwarz, we obtain that (3.5.3) is bounded by

∫ ε

0
g(t, β)2

1

2 + s(t) ψ′(s(t),α)
1+ψ(s(t),α)

1

t
dt

1/2

·

∫ ε

0
g(s(t), α)2

1

2 + s(t) ψ′(s(t),α)
1+ψ(s(t),α)

1

t
dt

1/2

. (3.5.4)

After substituting s = s(t) in the second integral, its integrand becomes the same as in the
first one, but with the roles of (s, α) and (t, β) interchanged. By Lemma 3.6.5, it holds for
s ≤ 1/20 that

|ψ(s, α)| < 1

100
and |ψ′(s, α)| ≤ 1

10
,

giving ∣∣∣s ψ′(s, α)

1 + ψ(s, α)

∣∣∣ ≤ 1

198
.

Thus, the factor in the integrals in (3.5.4) is bounded above by 198/395 < 101/200. It
follows that

II44 ≤
101

200

∫ 2π

0

∫ 2π

0

(∫ ε

0
g(t, β)2

dt

t

)1/2(∫ ε

0
g(s, α)2

ds

s

)1/2

dα dβ

≤ 101

100
π

∫ 2π

0

∫ ε

0
|g(s, α)|2 dt

t
dα =

101

100
π

∫
B1

|θ|2|f(θ)|2 dH2
H(θ).

For the other eight integrals the same estimate holds: By the argument in the proof of
Lemma 3.4.1, changing c4 to some other cj only changes the expansion in (3.5.2) by a
translation in α and β. Then the rest of the argument goes through exactly as for II44.

3.6 Technical estimates

Here we prove the computational lemmas that were used in the main argument.
We have the following explicit formula for ρ (see [23], Lemma 8):

ρ(r) =
4

r

∫ 1

A(r)

du
√
1− u2

√
(1−r)2

2r + 1− u

√
(3+r)(1−r)

2r + 1 + u
(3.6.1)

with

A(r) = −1 + max
{
0,

(3 + r)(r − 1)

2r

}
.

From this, we obtain the following asymptotic formula.
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Lemma 3.6.1. Let ρ be defined by ρ(|x|) = σ ∗ σ ∗ σ(x). Then we have for all r with
|r − 1| ≤ 1/10

|ρ(r) + 6 log|1− r| − 12 log 2| ≤ −22|r − 1| log|r − 1|+ 23|r − 1|.

We have not tried to optimize the error in this estimate. We give an elementary, self-
contained proof below. For an alternative proof one can use the identity (see [100, p. 17]
or [16, eq. (1.2)])

ρ(x) =


16√

(x+1)3(3−x)
K

(√
16x

(x+1)3(3−x)

)
if 0 ≤ x < 1

4√
x
K

(√
(x+1)3(3−x)

16x

)
if 1 < x ≤ 3

0 if x > 3

(3.6.2)

where

K(k) =

∫ 1

0

1√
1− x2

√
1− k2x2

dx

is the complete elliptic integral of the first kind, together with known asymptotics for K(k)
as k ↗ 1.

We first prove some auxiliary lemmas.

Lemma 3.6.2. For all δ > 0 it holds that

0 ≤
∫ 1

0

1√
u
√
u+ δ

du− log
(4
δ

)
≤ 1

2
δ.

Proof. We have ∫ 1

0

1√
u
√
u+ δ

du = − log(δ) + 2 log
(
1 +

√
1 + δ

)
.

Furthermore, by the mean value theorem, there exists 0 < δ′ < δ such that

log
(
1 +

√
1 + δ

)
= log(2) + δg(δ′)

where

0 < g(δ) =
1

2(1 +
√
1 + δ)

√
1 + δ

≤ 1

4

is the derivative of log(1 +
√
1 + δ).

Lemma 3.6.3. For all 0 < a, b < 1, we have:∣∣∣∣∫ 1

0

1√
1− x2

√
a+ 1− x

√
b+ 1 + x

dx−
∫ 1

0

1√
1− x2

√
a+ 1− x

√
1 + x

dx

∣∣∣∣
≤ b

2

(
log

(4
a

)
+
a

2

)
.
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Proof. By the mean value theorem, we have for all x ≥ 0

|(b+ 1 + x)−1/2 − (1 + x)−1/2| ≤ 1

2
b.

Hence the left hand side of the claimed inequality is estimated by

b

2

∫ 1

0

1√
1− x

√
a+ 1− x

dx ≤ b

2

(
log

(4
a

)
+
a

2

)
,

where we applied Lemma 3.6.2.

Lemma 3.6.4. For all 1 > a > 0, we have∣∣∣∣∫ 1

0

1

(1 + x)
√
1− x

√
a+ 1− x

dx− 1

2
log

(8
a

)∣∣∣∣ ≤ 1

2
a log

(
1 +

1

a

)
.

Proof. We have with v = 1− x∫ 1

0

1

(1 + x)
√
1− x

√
a+ 1− x

dx =

∫ 1

0

1

(2− v)
√
v
√
a+ v

dv

which can be expanded to equal

1

2

∫ 1

0

1√
v
√
a+ v

dv +
1

2

∫ 1

0

1

2− v
dv − a

2

∫ 1

0

1

(2− v)
√
a+ v(

√
v +

√
a+ v)

dv.

Computing the second integral and using Lemma 3.6.2 for the first one yields the main
term log(8/a)/2. For the error estimate we combine Lemma 3.6.2 and the bound∫ 1

0

1

(2− v)
√
a+ v(

√
v +

√
a+ v)

dv ≤
∫ 1

0

1

v + a
dv = log

(
1 +

1

a

)
,

and note that the errors have opposite signs.

Proof of Lemma 3.6.1. We start with the case r = 1− ε < 1. By (3.6.1), we have

1− ε

4
ρ(1− ε) =

∫ 1

−1

1
√
1− u2

√
ε2

2−2ε + 1− u
√

(4−ε)ε
2−2ε + 1 + u

du.

Combining Lemma 3.6.3 and Lemma 3.6.4 with a = ε2/(2− 2ε) and b = (4− ε)ε/(2− 2ε),
we obtain that this integral equals

1

2

(
log

(8
a

)
+ log

(8
b

))
+ E = 3 log(2)− 3

2
log(ε)− log(2− 2ε) +

1

2
log(4− ε) + E

with

|E| ≤ 1

2

(
b log

(4
a

)
+ a log

(4
b

)
+ ab+ a log

(
1 +

1

a

)
+ b log

(
1 +

1

b

))
. (3.6.3)

It is easy to see that ∣∣∣1
2
log(4− ε)− log(2− 2ε)

∣∣ ≤ ε

2
.
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Further, one verifies that, when 0 < ε ≤ 1/10,

a ≤ 1

18
ε, b ≤ 19

9
ε, log

(4
a

)
≤ 3 log(2)− 2 log(ε), log

(4
b

)
≤ log(2)− log(ε)

and

log
(
1 +

1

a

)
≤ log(2)− 2 log(ε), log

(
1 +

1

b

)
≤ − log(ε).

Using this, one can check that

|E| ≤ 13

4
ε log

(1
ε

)
+

5

2
ε.

To summarize, we have shown that∣∣∣1− ε

4
ρ(1− ε)− 3 log(2) +

3

2
log(ε)

∣∣∣ ≤ 13

4
ε log

(1
ε

)
+ 3ε.

We multiply by 4/(1− ε), and use that |4/(1− ε)− 4| ≤ 40ε/9 to obtain

|ρ(1− ε)− 12 log(2) + 6 log(ε)| ≤ 22ε log
(1
ε

)
+ 23ε.

Now we turn to the case r = 1 + ε > 1. There we have

ρ(1 + ε) =
4

1 + ε

∫ 1

−1+ (4+ε)ϵ
2+2ε

1
√
1− u2

√
ε2

2+2ε + 1− u
√

− (4+ε)ε
2+2ε + 1 + u

du

=
16

4− ε2

∫ 1

−1

1
√
1− v2

√
2ε2

4−ε2 + 1− v
√

8ε
4−ε2 + 1 + v

dv.

We first approximate the integral. We can argue as in the case r < 1, now with a =
2ε2/(4 − ε2) and b = 8ε/(4 − ε2). The main term is easily seen to be the same as in the
case r < 1, and the error is bounded by

− log
(
1− ε2

4

)
+ E ≤ ε

40
+ E,

with E satisfying (3.6.3). Now we have

a ≤ 1

15
ε, b ≤ 800

399
ε, log

(4
a

)
≤ 3 log(2)− 2 log(ε), log

(4
b

)
≤ log(2)− log(ε)

and

log
(
1 +

1

a

)
≤ log

(201
100

)
− 2 log(ε), log

(
1 +

1

b

)
≤ − log(ε).

Using this, we obtain

|E|+ ε

40
≤ 13

4
ε log

(1
ε

)
+

9

4
ε.

In other words, it holds that∣∣∣4− ε2

16
ρ(1 + ε)− 3 log(2) +

3

2
log(ε)

∣∣∣ ≤ 13

4
ε log

(1
ε

)
+

9

4
ε.

We multiply by 16/(4− ε2) and use that |16/(4− ε2)− 4| ≤ 40ε/399 to obtain

|ρ(1 + ε)− 12 log(2) + 6 log(ε)| ≤ 14ε log
(1
ε

)
+ 9ε.

This completes the proof.
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Lemma 3.6.5. Let θ be given by (3.4.3). Then it holds that

a(c4 + θ)− 1 = s2(3 sin2(α)− cos2(α))(1 + ψ(s, α)),

where ψ(s, α) is a smooth function satisfying the following estimates:

|ψ(s, α)| ≤ 7

24
s2 +

17

720
s4 + s6e

√
2s

|ψ′(s, α)| ≤ 14

24
s+

17

180
s3 + 2s5e

√
2s.

Proof. By the definition of h, the trigonometric identities and the Taylor expansion of cos,
we have

a(c4 + θ)− 1 = a((0, 0, π) + θ)− 1

= (cos(θ1) + cos(θ2)− cos(θ3))
2 + (sin(θ1) + sin(θ2)− sin(θ3))

2 − 1

= 2 + 2 cos(θ1 − θ2)− 2 cos(θ1 − θ3)− 2 cos(θ2 − θ3)

= 2
∞∑
k=1

(−1)k

(2k)!
((θ1 − θ2)

2k − (θ1 − θ3)
2k − (θ2 − θ3)

2k) (3.6.4)

=:
∞∑
k=1

s2k
(−1)k

(2k)!
P2k(sin(α), cos(α)).

It follows from (3.6.4) that each P2k vanishes when θ1 = θ3 and when θ2 = θ3, which is
equivalent to α = ±π/6, or to cos(α) = ±

√
3 sin(α). Hence, the homogeneous polynomial

P2k(X,Y ) vanishes on the lines
√
3X + Y = 0 and

√
3X − Y = 0. We conclude that for all

k, the factor 3X2 − Y 2 divides P2k(X,Y ). Define Q2k by

Q2k(X,Y )(3X2 − Y 2) = (−1)kP2k(X,Y ).

Then we have, using that Q2 = 1:

a(c4 + θ)− 1 = s2(3 sin2(α)− cos2(α))(1 + ψ(s, α))

where ψ is defined by

ψ(s, α) =
∞∑
k=2

s2k−2
1

(2k)!
Q2k(cos(α), sin(α)).

Now we fix k and estimate

p(α) := P2k(sin(α), cos(α)) and q(α) := Q2k(sin(α), cos(α)).

By (3.4.3), we have that

θ1 − θ2 =
√
2 cos(α),

θ3 − θ1 = − 1√
2
cos(α)−

√
3√
2
sin(α) =

√
2 cos(α+

2π

3
),

θ2 − θ3 = − 1√
2
cos(α) +

√
3√
2
sin(α) =

√
2 cos(α− 2π

3
).
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k P2k(X,Y ) Q2k(X,Y )

1 −3X2 + Y 2 1

2 −9X4 − 18X2Y 2 + 7Y 4 −3X2 − 7Y 2

3 −1
2(27X

6 + 135X4Y 2 + 45X2Y 4 − 31Y 6) 1
2(9X

4 + 48X2Y 2 + 31Y 4)

Table 3.1: The polynomials P2k and Q2k for small values of k.

Thus, by (3.6.4),

p(α) = 2k+1(−1)k(cos(α)2k − cos(α+
2π

3
)2k − cos(α− 2π

3
)2k),

Taking derivatives, and noting that the terms inside the brackets are each at most 1, we
obtain:

|p(α)| ≤ 6 · 2k, |p′(α)| ≤ 12k2k and |p′′(α)| ≤ 24k22k.

Denote

q(α) :=
p(α)

3 sin2(α)− cos2(α)
=

p(α)

(
√
3 sin(α)− cos(α))(

√
3 sin(α) + cos(α))

.

If both factors |
√
3 sin(α)± cos(α)| are at least 1/2, we have that

q(α) ≤ 24 · 2k.

If not, then |α − π/6| < 1/5 or |α + π/6| < 1/5. Without loss of generality we are in the
first case. Then, by Taylor’s formula:∣∣∣ p(α)

α− π/6
− p′(π/6)

∣∣∣ ≤ 1

2
|α− π/6| sup |p′′| ≤ 1

10
24k22k,

hence ∣∣∣ p(α)

α− π/6

∣∣∣ ≤ 15k22k.

Furthermore, since |α− π/6| ≤ 1/5,∣∣∣ α− π/6

(
√
3 sin(α)− cos(α))(

√
3 sin(α) + cos(α))

∣∣∣ ≤ 2
∣∣∣ α− π/6√

3 sin(α)− cos(α)

∣∣∣
≤ 1/5

sin(1/5)
< 2.

Multiplying the last two estimates, we conclude that |q| ≤ 30k22k. We also directly compute
for small k:

|Q4(sin(α), cos(α))| = |−7 cos2(α)− 3 sin2(α)| ≤ 7

and

|Q6(sin(α), cos(α))| =
1

2
|9 sin4(α) + 48 sin2(α) cos2(α) + 31 cos2(α)| ≤ 5125

312
< 17.
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Plugging in these estimates, we obtain

|ψ(s, α)| ≤ 7

24
s2 +

17

720
s4 +

∞∑
k=4

60k2

(2k)!
(
√
2s)2k−2 ≤ 7

24
s2 +

17

720
s4 + s6e

√
2s

and

|ψ′(s, α)| ≤ 14

24
s+

17

180
s3 +

√
2
∞∑
k=4

60k2

(2k − 1)!
(
√
2s)2k−3 ≤ 14

24
s+

17

180
s4 + 2s5e

√
2s,

as claimed.

Lemma 3.6.6. Let θ be given by (3.4.3). Then for all 0 ≤ s ≤ 1/20, we have

(a(c4 + θ)− 1)ρ(
√
a(c4 + θ)) = −12s2(3 sin2(α)− cos2(α)) log(s)

− 6s2(3 sin2(α)− cos2(α)) log|3 sin2(α)− cos2(α)|
+ 18 log 2 s2(3 sin2(α)− cos2(α)) + E,

with
|E| ≤ −180s4 log s+ 71s4.

Proof. By Lemma 3.6.1, it holds that

(x2 − 1)ρ(x) = −6(x2 − 1) log|x− 1|+ 12 log(2)(x2 − 1) + (x2 − 1)E1

= −6(x2 − 1) log|x2 − 1|+ 18 log(2)(x2 − 1) + (x2 − 1)E1

+ 6(x2 − 1) log(1 +
1

2
(x− 1)), (3.6.5)

where
|E1| ≤ −22|x− 1| log|x− 1|+ 23|x− 1|.

Denote also the last term in (3.6.5) by E2. We set

x =
√
a(c4 + θ).

Lemma 3.6.5 implies that |x− 1| ≤ |x2 − 1| ≤ 2s2. Using this and monotonicity of r log r,
we obtain

|(x2 − 1)E1| ≤ |x2 − 1|(−22|x− 1| log|x− 1|+ 23|x− 1|) ≤ −176s4 log(s) + 32s4 (3.6.6)

and

|E2| ≤ 6|x2 − 1|
∣∣∣ log (1 + 1

2
(x− 1)

)∣∣∣ ≤ 24s4. (3.6.7)

By Lemma 3.6.5, it holds that

− 6(x2 − 1) log|x2 − 1|
= −6s2(3 sin2(α)− cos2(α))(1 + ψ(s, α))(2 log(s) + log(3 sin2(α)− cos2(α))

+ log(1 + ψ(s, α)))

= −12s2 log(s)(3 sin2(α)− cos2(α)) (3.6.8)

− 6s2(3 sin2(α)− cos2(α)) log|3 sin2(α)− cos2(α)| (3.6.9)

− 6s2(3 sin2(α)− cos2(α)) log(1 + ψ(s, α))) (3.6.10)

− 6s2ψ(s, α)(3 sin2(α)− cos2(α))

× (2 log(s) + log|3 sin2(α)− cos2(α)|+ log(1 + ψ(s, α))). (3.6.11)
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The term (3.6.10) is bounded by 18s2|ψ(s, α)| ≤ 6s4. The term (3.6.11) is bounded by

−18s2 log(s)|ψ(s, α)|+ 4s2|ψ(s, α)|+ 18s2ψ(s, α)2 ≤ −6s4 log(s) + 2s4.

For the second term in (3.6.5), we have

18 log(2)(x2 − 1)

= 18 log(2)s2(3 sin2(α)− cos2(α)) + 18 log(2)s2(3 sin2(α)− cos2(α))ψ(s, α), (3.6.12)

with the second term bounded by

27 log(2)s2|ψ(s, α)| ≤ 9 log(2)s4.

Putting together the main terms (3.6.8), (3.6.9) and (3.6.12), and the estimates for the
error terms in (3.6.6), (3.6.7), (3.6.10), (3.6.11) and in (3.6.12), one obtains the lemma.

Lemma 3.6.7. For all α, it holds that

3∑
j=1

(
3 sin2

(
α+

2πj

3

)
− cos2

(
α+

2πj

3

))
log

∣∣∣3 sin2 (α+
2πj

3

)
− cos2

(
α+

2πj

3

)∣∣∣
≤ 3 log(3).

Proof. Let

aj = sin2(α+
2πj

3
)− 1

3
cos2(α+

2πj

3
) =

1

3
− 2

3
cos(2α+

4πj

3
).

It is easy to check that

a1 + a2 + a3 = 1 and a21 + a22 + a23 = 1. (3.6.13)

Defining

bj =
aj + aj−1

2
(note that aj+3 = aj), it follows that

b1 + b2 + b3 = 1 and b21 + b22 + b23 = 1/2,

hence b1, b2, b3 ≥ 0. Using Jensen’s inequality, we deduce

3∑
j=1

aj log(|aj |) =
3∑
j=1

bj log(
|aj ||aj−1|
|aj−2|

) ≤ log(
3∑
j=1

bj
|aj ||aj−1|
|aj−2|

).

By (3.6.13), we have that

2ajaj−1 = (aj + aj−1)
2 − (a2j + a2j−1) = (1− aj−2)

2 − (1− a2j−2) = 2aj−2(aj−2 − 1).

Thus, using again (3.6.13)

3∑
j=1

bj
|aj ||aj−1|
|aj−2|

=
3∑
j=1

bj(1− aj−2) = 1.

We conclude that
3∑
j=1

3aj log(|3aj |) = 3 log(3) + 3

3∑
j=1

aj log|aj | ≤ 3 log 3.
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Figure 3.2: The left hand side (solid) and the right hand side (dashed) of (3.7.1).

3.7 Discussion

3.7.1 Optimal value of ε

An inspection of the above argument shows that Q(f) ≥ 0 for all f ∈ Vε as long as

inf
θ∈H,|θ|≤ε

1

2

4∑
j=2

(a(θ + cj)− 1)ρ(
√
a(θ + cj)) ≥ 18π sup

s≤ε,α∈[0,2π]

1

2 + s ψ′(s,α)
1+ψ(s,α)

. (3.7.1)

(Non-rigorous) numerical computations suggest that this inequality holds up to ε = 0.104.
The constant ε′ in Corollary 3.1.3 could then be increased to 0.063.

3.7.2 Fourier coefficients of Q

In [3], some numerical observations on the Fourier coefficients

B̂(k, l) := B(ωk11 ω
k2
2 ω

k3
3 , ω

l1
4 ω

l2
5 ω

l3
6 )

of B with k1 + k2 + k3 = l1 + l2 + l3 = 0 are discussed. Namely, they are very large only
when k is very close to l and when k21 + k22 + k23 ≈ l21 + l22 + l23. We can explain this using
Lemma 3.3.2 as follows.

By Lemma 3.3.2 and since λ0 = 1, for all f ∈ X0 the form B(f, f) can be expressed as∫
C
m(θ)|f(θ)|2 dH2

C(θ) +

∫
C2

n(θ)δ(a(θ)− a(θ′))f(θ)f(θ′) dH2
C(θ) dH2

C(θ
′)

for certain functions m and n.
The first term is a multiplier, hence it acts on the Fourier side by convolution with a

fixed bump function. This bump function decays at least like |k − l|−3, because the third
derivative of m is still integrable. This explains the large coefficients when k is close to l.

The Fourier coefficients of the second term are the Fourier coefficients of the measure
µ := n(θ)δ(a(θ)− a(θ′)) supported on the 3-manifold

M := {(x, y) ∈ C2 : a(x) = a(y)} ⊂ R6.
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The measure µ has a smooth, bounded density with respect to the Hausdorff measure on
this manifold, except in the critical points of a. The Fourier transform of the parts where the
measure has a smooth, bounded density can be estimated using the method of stationary
phase and are of lower order than the contribution of the critical points. To explain what
happens at a critical point (where detD2a ̸= 0), we choose coordinates x1, x2, y1, y2 for C2,
such that the critical point of a is at 0. After a scaling in a and a linear change of variables,
either

a(x) = x21 + x22 +O(|x|3) or a(x) = x21 − x22 +O(|x|3). (3.7.2)

Thus, ignoring higher order terms,

δ(a(x)− a(y)) ≈ δ(|x|2 − |y|2) or δ(a(x)− a(y)) ≈ δ(x21 − x22 − y21 + y22).

The Fourier transforms of these measures can be explicitly computed, in fact, they are up
to a constant factor their own Fourier transform. Now, a has one local maximum and two
local minima, which together with the above discussion explain why B̂(k, l) is very large on
the cone |k|2 = |l|2. The contribution of all other critical points is of smaller order, since
the weight n vanishes there.

This discussion can be turned into a rigorous proof that the Fourier coefficients of µ
concentrate near the cone |k|2 = |l|2. However, we can only show that they concentrate in
e.g.

{(k, l) : ||k| − |l|| ≤ C|k|1/2},
and not in an O(1) neighborhood of the cone, because of the higher order terms in (3.7.2).
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