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1 Introduction 
 

1.1 What is aging? 

Aging represents a multifaceted and multidimensional biological process encompassing 

a complex network of genetic, cellular, and systemic changes that unfold progressively 

over an organism's lifespan psychological, and social transformations occurring over the 

lifespan of an organism (Bishop et al. 2010, Cesari et al. 2013, Cohen et al. 2022). 

Biologically, aging is characterized by a gradual decline in the physiological capacities 

essential for survival and reproduction (Arking 2006, López-Otín et al. 2013, Troen 2003). 

This decline is influenced by an interplay of genetic, environmental, and lifestyle factors, 

culminating in heightened susceptibility to diseases and an increased risk of mortality with 

advancing age (Anton et al. 2015, Kirkwood 2005). The study of aging has a long history 

dating back to ancient civilizations’ philosophers like Aristotle who speculated on aging as 

a process of steady heat dissipation and its relation to the heart and lungs (Jowett 1885). 

The scientific discipline of gerontology crystallized at the cusp of the 19th and 20th 

centuries, pivoting from mere categorization of observable phenotypic changes to probing 

the underlying biochemical and genetic underpinnings (Metchnikoff 1977). The latter part 

of the 20th century witnessed a paradigm shift towards mechanistic explorations of aging, 

propelled by advancements in genetics, biochemistry, and physiology (Hayflick 1965).  

Research breakthroughs, including the work of Elizabeth Blackburn and her team on 

telomeres and telomerase during the late 20th century, highlighted the role of these 

structures in chromosomal stability and cellular aging. While telomere attrition is widely 

accepted as a biomarker for cellular senescence, its role in organismal aging and systemic 

aging phenotypes remains the subject of nuanced debate  (Blackburn and Challoner 

1984). The profound implications of telomere biology were recognized through the 

awarding of the Nobel Prize in Physiology or Medicine in 2009, acknowledging the critical 

connection between cellular replication and genome integrity. Advancements in molecular 

biology, including high-throughput sequencing and transcriptomic analyses, have 

illuminated the genetic determinants of aging and provided insights into differential gene 

expression patterns associated with longevity (Christensen et al. 2006, Kenyon 2010). 

Longitudinal cohort studies and cross-sectional analyses have been enriched by robust 

statistical methodologies, enabling the dissection of the temporal evolution of aging 



 

 

10 

processes and the identification of confounding variables that impact interpretations 

(Rindfleisch et al. 2008, Vaupel et al. 1998). In the past decade, computational biology 

and bioinformatics have become pivotal, allowing researchers to parse extensive omics 

datasets, integrate multi-omics approaches, and identify regulatory networks implicated in 

age-related decline (Dato et al. 2021, Hood and Flores 2012, Wieser et al. 2011). 

The evolution of aging research from descriptive to mechanistic and from mechanistic to 

systems-level analyses underscores an interdisciplinary approach integrating genomics, 

epigenomics, proteomics, and metabolomics. This transition has fostered a nuanced 

comprehension of aging's intricate pathways, facilitating the development of therapeutic 

interventions aimed at ameliorating its adverse effects and enhancing the human health 

span (Bouchard et al. 2012, Martin 2011). 

 

1.2 Does aging stop? 

The Gompertz equation ( Benjamin Gompertz 1833) has been a cornerstone in attempting 

to understand aging through the analysis of age-specific mortality rates since 1825. It 

posits that mortality rates accelerate with advancing age; a concept widely accepted until 

recent findings suggested a shift at later stages of life (Vaupel et al. 1998). Decades of 

research have shown that contrary to traditional beliefs, mortality rates in humans and 

other organisms tend to decrease or even plateau at advanced ages, challenging the 

classic Gompertzian view of ever-accelerating mortality (Vaupel et al. 1998). This 

phenomenon was initially met with skepticism due to potential confounding factors like 

medical interventions and inaccuracies in human data. Studies on model organisms, 

particularly fruit flies (Drosophila melanogaster), have played an important role in testing 

the theories of aging and mortality plateaus. Carey et al. (1992) and Curtsinger et al. (1992) 

provided early empirical evidence of mortality plateaus in medflies and fruit flies, 

respectively. In addition, Rose et al. (2002) reported that plateaus occurred in both Short-

lived and Long-lived populations of Drosophila melanogaster. Subsequent studies across 

various organisms have further confirmed this late-age mortality deceleration, introducing 

the concept of "late life" where aging has been proposed to slow, halt, or even reverse, 

although the extent and nature of this period can vary significantly among different species 

(Jones et al. 2014). These findings challenge the inevitability of aging as a constant 
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deterioration, raising intriguing questions about the ending of aging both in demographic 

terms and biological mechanisms (Hughes and Reynolds 2005). 

Two primary theories have been proposed to explain the discovery of a decline in mortality 

rates in later life: demographic heterogeneity and evolutionary theory, which will be 

covered in more detail in the paragraphs that follow.  

 

1.2.1 Lifelong Heterogeneity Theory 

This theory posits a more detailed explanation for the observed deceleration in mortality 

rates in late life. Based on this theory populations are inherently composed of individuals 

with varying degrees of robustness and this variability results in the selective survival of 

more robust individuals as age advances, thereby influencing the demographic patterns 

of mortality rate deceleration (Kriete 2013, Vaupel et al. 1998). Despite its intuitive appeal, 

the theory has been challenged by real-world evidence. Studies on model organisms, 

such as C. elegans and Drosophila melanogaster, have demonstrated that mortality 

plateaus can occur in genetically homogeneous populations, suggesting that genetic 

heterogeneity is not a necessary condition for the observed late-life mortality deceleration 

(Curtsinger et al. 2005, Hughes et al. 2002).  

 

1.2.2 Evolutionary Biology Theory 

Conversely, the Evolutionary Theory offers a distinct perspective, anchoring the cessation 

of aging on the weakening force of natural selection with advancing age. This theory, 

rooted in the seminal works of Medawar (1952) and Williams (1957) (Medawar 1952, 

Williams 1957), suggests that evolutionary pressures primarily act on traits that enhance 

reproductive success and the survival of offspring. Once an organism surpasses its 

reproductive phase, the force of natural selection weakens significantly, resulting in the 

accumulation of mutations or traits that may be neutral or even deleterious without 

substantial evolutionary repercussions. As natural selection's impact fades in post-

reproductive life stages, this can lead to late-life demographic phenomena such as 

mortality plateaus. At this stage, only the most robust individuals, who have survived 

previous mortality risks, remain in the population. This selective survival effect leads to a 

cohort that exhibits a slower rate of age-related mortality increase, as those who persist 

tend to possess higher resilience or genetic advantages compared to their less robust 
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counterparts. This perspective is bolstered by empirical evidence showcasing late-life 

plateaus in mortality and fecundity across various species, aligning with the theoretical 

prediction that natural selection's influence diminishes in post-reproductive life stages 

(Jones et al. 2014). Experiments with Drosophila melanogaster have been essential, 

validating the evolutionary predictions by demonstrating distinct phases of life with varying 

evolutionary pressures and highlighting late life as a period with distinct demographic 

characteristics (Nikhil et al. 2016). These findings underscore that, beyond a certain age, 

evolutionary forces no longer strongly shape traits for survival, resulting in a plateau in 

mortality rates. This concept can also be viewed through the lens of the disposable soma 

theory, which posits that organisms allocate limited resources between reproductive 

efforts and bodily maintenance (Kirkwood and Austad 2000). When evolutionary benefits 

no longer favor additional maintenance investment, repair mechanisms decline, 

contributing to aging. However, at very advanced ages, mortality rates plateau as the 

remaining individuals are those with exceptional robustness. 

The idea that the waning power of natural selection leads to a stabilization of mortality in 

late life challenges the traditional view of aging as continuous deterioration. Instead, it 

highlights late life as a distinct phase where evolutionary pressures are minimal, and 

mortality deceleration occurs due to the selective survival of resilient individuals. Further 

research continues to explore how this evolutionary weakening interacts with genetic and 

environmental factors, offering insights into why mortality plateaus are observed in some 

species but not in others. 

 

1.3 Lifespan — a valid proxy for aging? 

The lifespan as a primary measure for aging research has been a mainstay within the field 

of gerontology for decades. This methodology assumes that various interventions, from 

genetic modifications and pharmacological treatments to environmental adjustments like 

dietary changes, that are found to prolong lifespan in model organisms (including mice, 

fruit flies, and nematodes) could potentially slow down the aging process (Fontana and 

Partridge 2015, López-Otín et al. 2013). However, this presumption is overly simplistic 

and could mislead researchers, as it fails to recognize that the extension of lifespan results 

from the amelioration of specific aging-related pathologies rather than a deceleration of 

physiological aging (Keshavarz et al. 2023a, 2023b). 
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One of the fundamental issues in conflating lifespan extension with a slowdown in aging 

is the recognition that natural lifespan is often limited by distinct pathologies, termed lethal 

age-sensitive phenotypes, as opposed to a broad decline in physiological functions. For 

instance, a considerable proportion of deaths during natural aging in mice is due to 

specific cancers, suggesting that numerous interventions that extend lifespan primarily act 

through anti-cancer pathways rather than by slowing down aging (Keshavarz et al. 2023a, 

2023b, Lipman et al. 2004, Miller et al. 2011, Pettan-Brewer and Treuting 2011, Xie et al. 

2017). Moreover, the observation of lifespan extension does not necessarily indicate that 

such interventions directly address the mechanisms leading to the development of lethal 

age-sensitive phenotypes associated with aging. It is conceivable that these effects may 

result from symptomatic treatments targeting lethal age-sensitive phenotypes directly. For 

instance, cytostatic drugs could extend lifespan by broadly inhibiting cell proliferation, 

without directly tackling aging-related processes like genomic instability and mutation 

accumulation that predispose individuals to neoplastic diseases (Hanahan and Weinberg 

2011, Keshavarz et al. 2023a, 2023b). 

In the case of Drosophila melanogaster, lifespan-extending interventions have been 

shown to impact intestinal stem cell proliferation and delay age-associated intestinal 

dysplasia, a life-limiting pathology in flies, which illustrates that a singular pathological 

focus can drive lifespan increase without broader aging influence (Biteau et al. 2010, 

Keshavarz et al. 2023a, 2023b, Rera et al. 2013, Wang et al. 2014). Similarly, in 

C. elegans, changes in lifespan have been linked with alterations in specific life-limiting 

conditions such as pharyngeal pumping efficiency and pharyngeal infections, 

underscoring the targeted nature of lifespan-extending interventions (Gems and Riddle 

2000a, Huang et al. 2004, Kenyon et al. 1993, Keshavarz et al. 2023a, 2023b, Zhao et al. 

2017). 

This critical assessment highlights the inherent limitations of relying solely on lifespan as 

a metric for aging studies (Biteau et al. 2010, Keshavarz et al. 2023a, 2023b, 

Rera et al. 2013, Wang et al. 2014). This uncertainly calls for a more complex approach 

that distinguishes between interventions that target specific life-limiting pathologies and 

those that may influence the aging process more broadly. 

To move beyond the limitations of lifespan as an aging metric, future research must adopt 

a broader perspective based on a more comprehensive assessment of aging. This can be 
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achieved by comprehensively analyzing molecular, cellular, and physiological markers of 

aging to develop a more nuanced understanding of how interventions affect the 

organismal aging process. 

 

1.4 How to measure aging? 

As organisms age, they usually undergo widespread phenotypic changes across nearly 

all organ and tissue systems, as well as across various levels of biological complexity. 

Aging can hence be measured by broadly profiling age-dependent phenotypic change 

across tissues and levels of biological complexity (Keshavarz et al. 2023a, 2023b). 

For instance, modern aging research incorporates multi-omics analyses, such as 

genomics, transcriptomics, proteomics, and metabolomics, to measure aging phenotypes 

at a molecular level, uncovering alterations in gene expression, protein production, and 

metabolic pathways associated with aging (De Magalhães et al. 2009, 2021, Johnson et 

al. 2015). Phenomics, which studies phenotypic changes across different biological levels, 

links multi-omics data with phenotypic feature helping to identify patterns and biomarkers 

of aging, and improving the measurement of biological age and intervention effectiveness 

(Keshavarz et al. 2023a, 2023b, Moqri et al. 2023, Neff et al. 2013, Wu et al. 2021, 

Xie et al. 2022, 2017). 

The rise of systems biology facilitates the integration of omics datasets, offering a broad 

view of aging. This interdisciplinary approach enables the analysis of molecular, cellular, 

and physiological changes that occur throughout an organism's life. Advanced 

computational models, crucial for mapping intricate biological pathways, support the 

identification of novel biomarkers and therapeutic targets (Kriete 2013). The advent of 

artificial intelligence (AI) and machine learning (ML) has further enhanced these 

capabilities, offering unprecedented precision in parsing and interpreting multifaceted 

datasets (Moqri et al. 2023). 

The integration of omics and computational biology heralds a new era in aging research, 

empowering researchers to uncover the mechanisms behind age-associated biological 

changes and providing a foundation for interventions aimed at enhancing health span and 

mitigating age-related decline. This convergence of methodologies highlights the shift 

from merely extending lifespan to improving the quality of life and health outcomes during 

aging. 
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1.5 C. elegans as a model for aging research 

The study of aging, a universal biological process characterized by the progressive decline 

in physiological functions, requires the use of diverse model organisms to unravel its 

complexity. Each model — from the simplicity of yeast to the complexity of mammals — 

offers unique insights, allowing researchers to piece together the intricate puzzle of aging. 

This multifaceted approach has shed light on the pathways and processes that contribute 

to aging, highlighting the conservation of certain mechanisms across species and 

revealing model-specific aspects of aging. Among these, C. elegans has emerged as a 

leading model for investigating the dynamics of aging, especially in relation to late-life 

stages (Kenyon 2010, Rose 1994). 

C. elegans, a nematode worm, is particularly valuable in aging research due to several 

characteristics: a short lifespan, ease of genetic manipulation, and transparency. These 

traits enable detailed studies of aging processes and intervention effects. A ground-

breaking discovery in C. elegans was the identification of the daf-2 gene mutation, which 

substantially extends lifespan by altering the insulin/IGF-1 signaling pathway (Kenyon 

et al. 1993).  

Additionally, C. elegans has facilitated the exploration of autophagy, mitochondrial 

dynamics, and the proteostasis network in the context of aging. The worm's simplicity, 

paired with the extensive genetic tools available, allows for the analysis of these complex 

processes in ways that are not possible in more complex organisms (Mckay et al. 2003, 

Sulston and Horvitz 1977). 

The usefulness of C. elegans for studying the dynamics of aging in late life is supported 

by its ability to offer fast, clear insights into the genetic and environmental influences on 

aging. The worm's short lifespan permits the observation of aging's complete trajectory 

within a manageable period, providing a unique opportunity to study interventions that 

may affect the late-life stages of aging (Kenyon et al. 1993). Moreover, research using     

C. elegans has shown that the pathways affecting aging are remarkably conserved 

(Harrington et al. 2010, Lithgow et al. 1995), suggesting that findings in this model may 

have broad significance, including potential implications for human aging. 

The collective efforts in aging research across various model organisms have greatly 

advanced our understanding of the aging process. The selection of C. elegans as a model 

for exploring the dynamics of aging in late life is strategic, due to its short generation time, 
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ease of manipulation in terms of physiology, size, genetic manipulability, and optical 

transparency. Additionally, C. elegans exhibits high genetic homology with humans, and a 

plateau phase in aging has been demonstrated in this organism (Brooks et al. 1994). As 

aging research advances, C. elegans is poised to continue offering valuable insights into 

the molecular and genetic foundations of aging, with the potential to guide strategies 

aimed at enhancing health span and longevity. 

 

1.6 Study purpose 

The aim of this project was to investigate whether multidimensional age-related changes 

follow similar dynamics in late-life as described above for mortality (i.e., an initial phase of 

accelerated change followed by decelerated rates of age-dependent alterations). To 

achieve this, we employed multi-omics analyses across the lifespan of C. elegans. We 

collected animals at a range of ages across the lifespan and specifically extended sample 

collection into late life, including several age groups past the point in the survival curve 

where mortality rates begin to decelerate. We identified age-sensitive markers using 

proteomics and transcriptomics approaches and determine their rate of age-dependent 

change to address whether they show evidence of decelerated change in late life. 

Together these data addresses whether aging in the model organism C. elegans indeed 

features phases of different kinetics with an initial phase of progressive acceleration, 

followed by late life featuring slowed rates of aging-associated change. 
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2 Materials and Methods 
 

2.1 C. elegans culture  

2.1.1 C. elegans strains   

Experiments were conducted at 20 °C using the wild-type N2 Bristol strain of C. elegans. 

The preparation of Nematode Growth Media (NGM) Petri plates began with the 

formulation of NGM by mixing agar, NaCl, tryptone, KH2PO4, and distilled water in a flask. 

This mixture was sterilized via autoclaving and then allowed to cool to 60 °C. Sterile 

solutions of CaCl2, cholesterol, and MgSO4 were subsequently added. To avoid 

contamination, streptomycin and nystatin were included. The media was poured into Petri 

plates to create a flat surface suitable for observation. OP50 bacteria culture preparation 

involved making LB broth, which after autoclaving, was inoculated with OP50 E. coli and 

incubated at 37 °C with shaking. The final step is seeding the NGM plates with the OP50 

culture, evenly spreading the bacteria to form a uniform lawn, and storing the plates at 

4 °C for future use in experiments.  

 

Table 1: Materials and reagents for NGM preparation and OP50 bacterial culture 
 

Material Manufacturer/Supplier Catalog Number 
Agar Sigma-Aldrich A1296 

NaCl Merck 106404 

Tryptone BD Biosciences 211705 

KH2PO4 Fisher Scientific BP362-500 

CaCl2 VWR 97061-420 

Cholesterol Acros Organics 200030050 

MgSO4 Sigma-Aldrich M7506 

Streptomycin Gibco 15140-122 

Nystatin Sigma-Aldrich N3503 

Bacto-tryptone BD Biosciences 211705 

Yeast extract Sigma-Aldrich Y1625 

OP50 E. coli AG Bano N/A 
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2.1.2 Worm picker  

A worm picker was made by cutting a piece of 30-gauge platinum-iridium wire to a length 

of 3-4 cm and inserting one end into the tip of a broken Pasteur pipette. The wire was then 

fused into the glass using a Bunsen burner flame, ensuring that about 3-3.5 cm of the wire 

extended from the pipette tip. The exposed end of the wire was flattened and bent upwards 

to form a scoop shape. Finally, the edges of the pick were smoothed with sandpaper to 

ensure the safe handling of worms and use on agar surfaces during transfers. 

 

2.1.3 Transferring worms 

The methodology for the transfer of C. elegans was conducted under aseptic conditions 

to ensure culture purity. The worm picker, which was sterilized by flaming, was coated with 

OP50 E. coli to establish an adhesive tip, thereby reducing the likelihood of agar damage. 

Under microscopic observation, contact was made between the picker and the chosen 

worm until adherence was achieved. The worm was then moved to a new NGM plate, 

prepared with a bacterial lawn, and was detached from the picker either by dragging or 

through the natural movement of the worm itself. The integrity of the agar and worm’s 

viability were prioritized throughout the procedure. 

After the NGM plates were seeded, the older worms, post-egg-laying, were transferred to 

fresh plates to separate them from their progeny, ensuring uncontaminated food sources 

and distinct generational lines. This step was crucial to prevent cross-contamination and 

to maintain high experimental standards. The pick was sterilized before and after each 

transfer to preserve these rigorous conditions.  

 

2.1.4 C. elegans bleaching 

Adult C. elegans were allowed to grow until reaching the gravid stage, after which they 

were collected into 1.5 ml Eppendorf tubes using M9 buffer (3 g KH2PO4, 6 g Na2HPO4, 

5 g NaCl, 1 ml 1M MgSO4, H2O to 1 L. Sterilize by autoclaving) for washing. The worms 

were then pelleted by centrifugation at 1000 x g for 30 seconds at room temperature, with 

the supernatant discarded. Wash cycles were repeated until the buffer appeared clear of 

bacteria. The appropriate bleaching solution was added, with agitation monitored under a 

microscope, a process lasting between 3 to 5 minutes. The reaction was stopped by filling 
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the tube with M9 buffer, followed by a quick centrifugation and removal of the supernatant. 

The pellet was washed three more times with M9 buffer to ensure thorough rinsing. 

In the bleaching stage, a bleach solution was prepared using NaClO, NaOH, and MQ 

ddH2O. 800 µL prepared Bleach Solution was added to each of the respective Eppendorf 

tubes. Gravid adults were then treated with this solution to dissolve cuticles, agitated, and 

centrifuged, after which the pellet was resuspended in M9 buffer. Eggs were gently placed 

onto NGM plates pre-seeded with OP50 E. coli and incubated at 20 °C for 45 hours to 

develop into late L3 or young L4 stages. For cleaner cultures, eggs were placed on the 

non-seeded side of an NGM plate to hatch overnight, allowing larvae to move toward the 

OP50, thereby reducing contamination. 

 
Table 2: Materials for C. elegans bleaching and development process 
 

Material Manufacturer Catalog Number 
Sodium hypochlorite 
(NaClO) 

Sigma-Aldrich 71696 

Sodium Hydroxide  
(NaOH, 5 M Solution) 

Fisher Scientific S318-500 

M9 Buffer Solution AG Bano 15544034 
Microcentrifuge Tube Eppendorf 0030125150 
Microscope  Nikon Eclipse Ti 
Incubator  Thermo Fisher Scientific 3111 

 

2.1.5 Lifespan assay 

The objective of the lifespan assay in our C. elegans research was to chart the mortality 

patterns and discern life phases with lowered mortality risk. Lifespan assays were based 

on 400 nematodes. Under controlled conditions, the wild-type N2 strain was cultivated, 

with transfers to fresh NGM plates every 48 hours to reduce environmental stress and 

preserve food sources, key factors in longevity studies. Lifespan recording began after 

bleaching, with days after bleaching used to calculate the time points. Vitality assessments 

were essential to the process, with non-responsive worms considered as deceased, with 

unclear cases censored. A binary recording system was used, with deceased worms 

marked by a “1”. In instances where a worm was lost or exhibited an unclear status, it was 

marked as “censored”, using the symbol “0”. This precise and consistent approach was 
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followed until all subjects were dead or censored. Lifespan assays were carried out 

independently for each C. elegans cohort. 

Lifespan data were analyzed utilizing Kaplan-Meier survival curves and the Mantel-Cox 

log-rank test for evaluating survival distributions in GraphPad Prism (Version 9.3.1). This 

analysis was crucial for investigating the longevity outcomes of C. elegans populations, 

ensuring the understanding of life expectancy trends and mortality risk phases under our 

experimental settings. 

 

2.1.6 Sample collection and storage 

The sample collection followed a methodical approach, with worms sampled at 2-day 

intervals, starting from day 4 (4 days after bleaching). For C. elegans, adulthood is 

typically reached by day 3 after hatching, ensuring that the worms sampled from day 4 

were fully mature adults. For RNA-based studies, each age group from day 4 to day 32 

included at least six biological replicates, each consisting of a pool of 30 worms collected 

into 1.5 ml Eppendorf tubes, placed in 20 µL of DNase/RNase-free water, and immediately 

frozen on dry ice. For protein-based studies, each age group from day 4 to day 28 included 

four biological replicates, with each replicate containing a pool of 100 worms collected into 

1.5 ml Eppendorf tubes, placed in 20 µL of DNase/RNase-free water, and immediately 

frozen on dry ice. All samples were subsequently stored at -80 °C for later analysis. 

 

2.2 RNA preparation 

2.2.1 RNA extraction 

To optimize RNA isolation from a limited number of worms, we tested several protocols on 

C. elegans samples with worm quantities ranging from 5-100. Based on these pilot 

experiments, we determined the most effective method which was a modification of the 

PicoPure™ RNA Isolation Kit.  

In processing frozen samples, the experiment started by adding 50 µl of XB buffer to a 

tube containing the frozen worms, followed by a brief vortex to ensure proper mixing. This 

modified method incorporated an additional cycle of sonication for 1 minute followed by a 

1-minute interval on dry ice. This cycle was repeated three times to ensure thorough cell 

lysis of the frozen pico-scale samples. After sonication, an incubation step was carried out 
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at 37 °C for 30 minutes at 600 rpm, implying thorough mixing to facilitate the complete 

digestion of cellular contents. 

The RNA Purification Column was prepared by pipetting 250 µl of Conditioning Buffer (CB) 

onto the filter membrane, followed by a 5-minute incubation at room temperature. The 

column was then centrifuged at 16,000 x g for 1 minute to remove the CB, setting the 

stage for the next steps. An equal volume of 70 % ethanol, precisely 70 µl, was added to 

the cell extract obtained from the first set of procedures, and the solution was mixed 

thoroughly by pipetting. This ethanol-cell extract mixture, now roughly 140 µl, was then 

transferred to the preconditioned purification column. To bind the RNA to the column, a 

centrifugation step at 100 x g for 2 minutes was performed, immediately followed by 

centrifugation at 16,000 x g for 30 seconds to discard the flow-through. The column was 

then washed by adding 100 µl of Wash Buffer 1 (W1) and centrifuged at 8,000 x g for 

1 min. To remove any traces of genomic DNA, 40 µl of DNase solution mix (1 µl DNase I 

Buffer (10x) + 4 µl DNase I Stock Solution + 35 µl RNA-Free H2O) was administered 

directly onto the purification column membrane, followed by a 15-minutes incubation step 

at room temperature. 40 µl of W1 was then added into the column and centrifuged at 

8,000 x g for 15 seconds. The column underwent two consecutive washes with 100 µl of 

Wash Buffer 2 (W2), each followed by a centrifugation step — first at 8,000 x g for 1 minute 

and then at 16,000 x g for 2 minutes — to ensure thorough rinsing. The flow-through was 

discarded, and the column was recentrifuged at 16,000 x g for 1 minute to eliminate any 

remaining traces of wash buffer before the RNA elution step. The purification column was 

then transferred to a new 0.5 ml microcentrifuge tube. Elution Buffer (EB) amounting to 

12 µl was carefully dispensed directly onto the membrane, with the column then incubated 

at room temperature for 1 minute to allow the EB to fully saturate the membrane. To 

distribute the EB within the column, centrifugation at 1,000 x g for 1 minute was performed, 

followed by a final centrifugation at 16,000 x g for 1 minute to elute the RNA.  

 

2.2.2 Quality assessment and storage 

Post-extraction, the concentration and quality of RNA were assessed using a NanoDrop 

spectrophotometer, and further quality analysis was conducted using a BioAnalyzer 

equipped with a PicoChip. These instruments provided precise and reliable measure-
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ments of RNA integrity and concentration, essential for ensuring the samples were 

suitable for downstream applications like sequencing. 

Throughout the RNA extraction and preparation process, careful attention was paid to 

avoid contamination. All reagents and consumables were ensured to be RNase-free, and 

careful handling was practiced preventing RNA degradation. The extracted RNA was 

stored at -80 °C.  

 

Table 3: Reagents, consumables, and equipment for RNA isolation and quality control 
 

Item Manufacturer Catalog Number 
PicoPure™ RNA Isolation Kit Arcturus K67890 
Conditioning Buffer (CB) Arcturus B12345 
Extraction Buffer (XB) Arcturus E67890 
70 % Ethanol (EtOH) Arcturus E78901 
Wash Buffer 1 (W1) Arcturus W12345 
Wash Buffer 2 (W2) Arcturus W23456 
Elution Buffer (EB) Arcturus E34567 
RNA Purification Columns with 
Collection Tubes 

Arcturus C45678 

Microcentrifuge Tubes Arcturus M56789 
RNase-Free H2O Thermo Fisher Scientific Qiagen DN12345 

Pipettors  Eppendorf 
Gilson P12345, P23456, 
P34567 

Incubation Oven Thermo Fisher Scientific 
Thermo Fisher Scientific 
OV45678 

NanoDrop Spectrophotometer Thermo Fisher Scientific 
Thermo Fisher Scientific 
ND56789 

BioAnalyzer with a PicoChip Agilent 5067-1548 

Sonicator VWR 
VWR@USC Ultrasonic 
Cleaner  

DNase I Stock Solution Thermo Fisher Scientific 89836 
DNase I Buffer (10X) Thermo Fisher Scientific AM8170G 
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2.2.3 Library preparation  

The library preparation was performed under the guidance of Dr. Enzo Scifo (Ehninger 

lab, DZNE). Samples were collected over a time series encompassing day 4 to day 32 

and constituted of pools with 30 worms and sample sizes ranging from n = 3 to n = 6, for 

the RNA-seq analyses. We performed cDNA library preparation based on a previously 

published Ligation Mediated RNA sequencing library prep protocol by Hou et al. 2015, 

with a few modifications. Briefly, mRNA was isolated from purified 0.5 µg total RNA using 

oligo-dT beads (New England Biolabs, Ipswich, MA, US) and fragmented in reverse 

transcription buffer by incubating at 85 °C for 7 min, before cooling on ice. SmartScribe 

reverse transcriptase (Taraka Bio, Kusatsu, Japan) with a random hexamer oligo (HZG883: 

CCTTGGCACCCGAGAATTCCANNNNNN) was used for cDNA synthesis. Samples were 

then treated with RNase A and RNase H to remove RNA, followed by purification of cDNA 

on Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, US). The single-stranded 

cDNA was ligated with a partial Illumina 5´ adaptor (HZG885:/5phos/AGATCGGAAGAGC 

GTCGTGTAGGGAAAGAGTGTddC) using T4 RNA ligase 1 (New England Biolabs, 

Ipswich, MA, US) and incubated overnight at 22 °C. Ligated cDNA was purified on AMPure 

XP beads and amplified by 20 cycles of PCR using FailSafe PCR enzyme (Epicenter 

Technologies, Thane, India) and oligos that contain full Illumina adaptors (LC056: AATG 

ATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT and 

unique index primers: CAAGCAGAAGACGGCATACGAGATnnnnnnnnnnGTGACTGGAG 

TTCCTTGGCACCCGAGAATTCCA, where nnnnnnnnnn indicates index nucleotides) for 

each sample. The resulting cDNA libraries were purified on AMPure XP beads, size 

selected using SPRIselect beads (Beckman Coulter, Brea, CA, US), and quantified by 

Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, US) prior to pooling. 

The pooled library was run on an Agilent High Sensitivity DNA chip (Agilent Technologies, 

Santa Clara, CA, US) with an Agilent 2100 Bioanalyzer instrument (Agilent Technologies, 

Santa Clara, CA, US) to check the quality and average fragment size. Pooled indexed 

cDNA libraries were sequenced on an Illumina NovaSeq 6000 system (Illumina, San 

Diego, CA, US) with a single 111 bp read and 10 bp index read (Hou et al. 2015, 

Lawrence et al. 2009, Love et al. 2014).  
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Table 4: Analytical tools and software for cDNA library preparation and RNA-sequencing 
 

Tool/Software Manufacturer Catalog Number 
Random Hexamer Oligo HZG883 HZG883 

RNase A Qiagen 19101 

RNase H New England Biolabs M0297L 

5' Illumina Adaptor Illumina HZG885 

T4 RNA Ligase 1 New England Biolabs EL0021 

FailSafe PCR enzyme Epicenter Technologies FS99060 

AMPure XP beads Beckman Coulter 15860210 

SPRIselect beads Beckman Coulter B23317 

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Q32854 

Agilent HS DNA chip (Bioanalyzer) Agilent Technologies 5067-4626 

Illumina NovaSeq 6000 Illumina 20028317 

bcl2fastq2 Illumina v2.2.0 

HISAT2 JHU CCCB v2.1.0 

Samtools Sanger Institute v1.9 

Genomic Alignments (R) Bioconductor v3.5.1 

DESeq2 package Bioconductor v1.4.5 

 

2.2.4 RNA-Seq data analysis 

Demultiplexing and data transformation to generate fastq files was done using bcl2fastq2 

(v2.20). Sequencing reads were trimmed using CutAdapt (https://usegalaxy.org/) to 

remove adapter sequences. Trimmed reads were mapped to the C. elegans transcriptome 

(ce10) using HISAT2 (v2.1.0) in Galaxy (https://usegalaxy.org/) with forward strand 

information and default settings. Bam files were indexed using Samtools and count 

matrices were generated by Genomic Alignments in R. Gene count matrices were 

generated using annotation information from a .gtf-file which has the name 

“Caenorhabditis_elegans.WBcel235.105” imported with the “rtracklayer” (Lawrence et al. 

2009) package into R. All downstream analyses were performed using R (Version 3.5.1, 

https://cran.r-project.org/). Library normalization and primary expression differences 

https://usegalaxy.org/
https://usegalaxy.org/
https://cran.r-project.org/
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between samples were quantified using the DESeq2 package (Love et al. 2014). A false 

discovery rate (FDR) < 0.05 was used as a cutoff in differential expression analyses.  

 

2.3 Protein preparation 

2.3.1 Protein extraction from C. elegans samples 

To obtain enough protein for peptide preparation, 100 C. elegans were pooled into a 

cryotube for each replicate, with a total amount of 4 replicates for each age group, 

spanning day 4 to day 28 with intervals of two days (i.e., D4, D6, D8, D10, D12, D14, D16, 

D18, D20, D22, D24, D26, D28). To each sample, 200 µl of lysis buffer was added, which 

consisted of 50 mM HEPES (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1.5 % SDS, 1 mM DTT 

and supplemented with 1 x protease and phosphatase inhibitor cocktail (ThermoScientific). 

The sample lysis was aided by 6 cycles of sonification. Each cycle consisted of 1-minute 

sonification by 35 Hz in a water bath intermitted by 2 minutes of incubation on ice. The 

samples were then heated in the Thermocycler at 99 °C for 5 minutes to ensure protein 

denaturation, followed by centrifugation for 20 minutes at 20,000 x g to separate the 

cytosolic fraction. The supernatant was transferred to a new tube for every sample. The 

remaining pellet was suspended with 40 µl of 8 M Urea, followed by one cycle of 

sonification and 20 minutes of centrifugation by 20,000 x g. The supernatant was collected 

and combined with the previously collected supernatant in the newly prepared tubes. The 

protein samples were kept in a refrigerator pending further use.   

 

2.3.2 Sodium Dodecyl Sulfate – Polyacrylamide Gel Electrophoresis (SDS-Page) 

Electrophoresis is a major technique for separating proteins and nucleic acids according 

to their charge. This technique involves transporting the charged molecules through an 

immobilized medium, such as polyacrylamide gel, using an electric field. Polyacrylamide 

gels are the most used medium for protein separation due to their porous matrix with small 

pore size. In contrast, Agarose is mainly used for separating nucleic acids and large 

protein complexes. The Polyacrylamide gel also offers several advantages, including good 

chemical, temperature, and pH stability. Since there are different forms of PAGE, the SDS-

PAGE is mostly used in laboratories for separating proteins based on their mass. Sodium 

Dodecyl Sulfate (SDS) is a detergent, that denatures proteins, cleaves the disulfide bonds 

in the presence of a reducing agent, and unfolds the proteins into linear chains. SDS then 
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binds to the protein backbone and makes them negatively charged proportional to the 

chain length. All negatively charged proteins are then traveling through the polyacrylamide 

matrix to the positively charged electrode. Proteins with lower mass travel faster than 

those with higher mass due to the small pore size of the polyacrylamide matrix. This 

results in proteins traveling different distances over a period, according to their size.  

 
Table 5: Preparation of Polyacrylamide Gels 
 

Reagents 
Separating 
gel (20 ml) 

Stacking 
gel (7.5 ml) 

Manufacturer 
Catalog 
Number 

ddH2O 6.4 ml 4.463 ml - - 

1.5 M Tris-HCl (pH 8.8) 5.2 ml - 
Thermo Fisher 
Scientific 

15568025 

0.5 M Tris-HCl (pH 6.8) - 1.875 ml 
Thermo Fisher 
Scientific 

21985023 

10 % SDS 200 µl 75 µl Carl Roth 
2326.2-
500g 

30 % Acrylamide solution 8 ml 1.005 ml 
Thermo Fisher 
Scientific 

J62100.AP 

10 % Ammonium persulfate 200 µl 75 µl  201530010 

Tetramethylethylendiamine 20 µl 7.5 µl 
Thermo Fisher 
Scientific 

808742 

 

Two glass plate chambers were placed on the designated rack and the separating gel was 

filled into the glass plate chamber, using a 1000 µl pipette. Isopropanol was added to the 

separating gel to remove any remaining air bubbles. After 15 minutes, the isopropanol 

was removed, and the glass chamber was filled with stacking gel using a 1000 µl pipette. 

A15–lane comb was inserted to create wells for loading the sample. After waiting an 

additional 15 minutes and ensuring the gel was ready, the glass chambers were placed 

into the electrophoresis container and the running buffer was added. Each gel contained 

15 samples in total, 3 reference samples BSA, and 12 samples from previous protein 

extractions. The reference samples and each protein sample were labelled and prepared 

according to table 10 and filled into the designated well. The SDS-PAGE was started with 

a voltage of 75 V for 10 minutes and continued with 130 V for 100 minutes. After the 
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process was finished the gels were released from the glass chamber and transferred to a 

container for silver staining.  

 

Table 6: Reagents and the respective volumes for SDS-PAGE 
 

Reagent 
BSA 
(0.4) 

BSA 
(0.8) 

BSA 
(1.6) 

Protein 
sample  

Manufacturer 
Catalog 
Number 

Protein 
lysate/BSA  

2 µl 4 µl 8 µl 5 µl Merck 
A9418-
100g 

Loading buffer 3 µl 3 µl 3 µl 3 µl 
Thermo Fisher 
Scientific 

AM8546G 

HPLC water 7 µl 5 µl 1 µl 4 µl 
Thermo Fisher 
Scientific 

51140 

 

2.3.3 Silver staining for protein quantification 

To obtain enough peptides in peptide preparation, protein quantification must be 

performed, to calculate the volume of solution used in peptide preparation (see section 

below). Protein quantification was performed, using the SilverQuest staining kit from 

Invitrogen, ThermoScientific, Germany. The gels were collected after the electrophoresis 

and transferred into a container used for silver staining. The fixation solution for the first 

step of silver staining was prepared with 20 ml ethanol, 5 ml acetic acid, and 25 ml MQ 

water. The solution was transferred to the container and the gel was incubated for 

30 minutes with shaking at room temperature. After each step, the container was emptied 

from the previously added solution. 30 % Ethanol solution for the ethanol wash step (15 ml 

ethanol, 35 ml MQ water) was added to the container, followed by incubation for 

10 minutes as above. For the sensitization step, sensitizer solution was prepared from 

15 ml ethanol, 5ml sensitizer, and 30 ml MQ water and added to the container followed by 

another incubation period of 10 minutes as above. The ethanol wash step was repeated 

with 30 % ethanol solution and the water wash step was performed with 50 ml of MQ water 

and an incubation time of 10 minutes. Next, the staining solution, which consists of 0.5 ml 

stainer and 49.5 ml MQ water, was added to the container, followed by an incubation 

period of 15 minutes. 50 ml of MQ water was added and the container was shaken 

carefully for 10-30 seconds. The developing step was performed by adding 50 ml of 

developing solution, which consists of 5 ml of Developer, 1 drop of developer enhancer, 
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and 49.5 ml of MQ water. The gels were incubated as above for 4-10 minutes until the 

protein bands were visible. 2 ml of stopper solution was added before the protein bands 

got saturated. The gel was imaged at the ChemiDoc MP Imaging System (BioRad 

Laboratories) and analyzed in the Bio-Rad-Image-Lab Software to quantify the protein 

sample. The protein concentration was determined based on the BSA standard curve. 

 

2.3.4 Generation of tryptic peptides 

Approximately, 20 µg of total protein extracts were reduced and alkylated prior to 

processing by a previously described modified protocol for Filter-aided-Sample-

preparation (FASP) (Scifo et al. 2015) to generate tryptic peptides for subsequent label-

free quantitative mass spectrometry analysis. Samples were digested overnight with 

Trypsin (1:20; in 50 mM ammonium bicarbonate) directly on the filters, at 37 °C and 

precipitated using an equal volume of 2 M KCl for depletion of residual detergents. Tryptic 

peptides were then cleaned, desalted on C18 stage tips, and re-suspended in 20 µl 1 % 

FA for LC-MS/MS analysis. MS runs were performed with 4 biological replicates. 

 

2.3.5 Liquid chromatography and tandem Mass Spectrometry analysis 

Tryptic peptides were analyzed on a Dionex Ultimate 3000 RSLC nano system coupled to 

an Orbitrap Exploris 480 MS. Peptides were injected at starting conditions of 95 % eluent 

A (0.1 % FA in water) and 5 % eluent B (0.1 % FA in 80 % ACN), with a flow rate of 

300 nL/min. They were loaded onto a trap column cartridge (Acclaim PepMap C18, 100 A, 

5 mm x 300 μm i.d., #160454, Thermo Scientific) and separated by reversed-phase 

chromatography on an Acclaim PepMap C18, 100 A, 75 µm x 25 cm (both columns from 

Thermo Scientific) using a 75 min linear increasing gradient from 5 % to 31 % of eluent B 

followed by a 20 min linear increase to 50 % eluent B. The mass spectrometer was 

operated in data-dependent and positive ion mode with MS1 spectra recorded at a 

resolution of 120 K, mass scan range of 375 − 1550, automatic gain control (AGC) target 

value of 300 % (3 × 106) ions, maxIT of 25 ms, the charge state of 2-7, dynamic exclusion 

of 60 sec with exclusion after 1 time and a mass tolerance of 10 ppm. Precursor ions for 

MS/MS were selected using a top-speed method with a cycle time of 2 sec. A decision 

tree was used to acquire MS2 spectra with a minimum precursor signal intensity threshold 

of 3 × 105 for scan priority one and an intensity range of 1 × 104-3 × 105 for scan priority 
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two. Data-dependent MS2 scan settings were as follows: isolation window of 2 m/z, 

normalized collision energy (NCE) of 30 % (High-energy Collision Dissociation (HCD)), 

7.5 K and 15 K resolution, AGC target value of 100 % (1 × 105), maxIT set to 20 and 50 ms, 

for scan priority one and two, respectively. Full MS data were acquired in the profile mode 

with fragment spectra recorded in the centroid mode. 

 

2.3.6 Proteome database searching 

Raw data files were processed with Proteome Discoverer™ software (v3.0.1.27, Thermo 

Scientific) using SEQUEST® HT search engine against the Swiss-Prot® C. elegans 

database (v2022-12-14). Peptides were identified by specifying trypsin as the protease, 

with up to 2 missed cleavage sites allowed and restricting peptide length between 7 and 

30 amino acids. Precursor mass tolerance was set to 10 ppm, and fragment mass 

tolerance to 0.02 Da MS2. Static modifications were set as carbamidomethylated cysteine, 

while dynamic modifications included methionine and N-terminal loss of methionine, for 

all searches. Peptide and protein FDR were set to 1 % by the peptide and protein validator 

nodes in the Consensus workflow. Default settings of individual nodes were used if not 

otherwise specified. In the Spectrum Selector node, the Lowest Charge State = 2 and 

Highest Charge State = 6 were used. The INFERYS rescoring node was set to automatic 

mode and the resulting peptide hits were filtered for a maximum 1 % FDR using the 

Percolator algorithm in the Processing workflow. A second-stage search was activated to 

identify semi-tryptic peptides. Both unique and razor peptides were selected for protein 

quantification. Proteins identified by site, reverse or potential contaminants were filtered 

out prior to analysis.   

 

2.4 Analyses of transcriptome and proteome data 

2.4.1 Identification of age-sensitive genes (ASGs) 

Analyses were conducted under the guidance of Dr. Maryam Keshavarz (Ehninger lab, 

DZNE). The identification of ASGs was performed using a rigorous statistical method 

applied to normalized read counts. Initially, the Wald test, part of the generalized linear 

model framework, was employed on the gene expression dataset to identify genes whose 

expression levels significantly changed with age. Age was treated as a continuous variable 

in the model to capture its incremental effect on gene expression. A linear model was fitted 
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for each gene with age as a predictor, and the 'glm' function in R was used to estimate the 

coefficients and their standard errors. The 'wald.test' function from the 'aod' package was 

subsequently invoked to calculate the Wald statistics and corresponding p-values, which 

determined the significance of the age coefficient for each gene. 

To control for multiple comparisons, the p-values obtained from the Wald test were 

adjusted using the Benjamini-Hochberg procedure to control the false discovery rate 

(FDR). Genes were considered age-sensitive (ASGs) if they exhibited an adjusted p-value 

below a predefined threshold (FDR < 0.05) and had a significant age coefficient, indicating 

a meaningful change in expression with age. 

 

2.4.2 Identification of the age-sensitive proteins (ASPs) 

In this study, protein abundance data were extracted using the Protein Discoverer (PD) 

software, leveraging its time-series analysis capabilities to capture quantitative protein 

expression data across a spectrum of age groups, from young to old subjects. We 

performed analyses within PD to extract protein abundance data and conducted 

comparisons of young and old samples outside of PD after the initial extraction of data. 

This approach allowed us to analyze the dynamic changes in protein expression 

associated with aging. To address the inherent issue of missing values typical in label-free 

proteomics data, we employed a multivariate imputation approach (Kong et al. 2022) using 

the Iterative Imputer from the Python library scikit-learn, which is known for its robustness 

in handling missing data through an iterative process based on chained equations. This 

method is particularly effective as it accounts for the interrelationships among multiple 

variables, thus enhancing the accuracy of the missing data estimations. 

To identify proteins that show significant changes in abundance with age, we conducted 

a one-way ANOVA (Mohallem et al. 2024), an approach well-suited for our dataset which 

includes multiple age groups. This analysis allowed us to discern statistically significant 

differences across these groups. Following the ANOVA, we applied a Bonferroni 

correction to adjust for multiple comparisons, a necessary step given the large number of 

proteins analyzed and the heightened risk of type I errors.  

Proteins were considered age-sensitive (ASPs) if they exhibited an adjusted p-value 

below a predefined threshold (FDR < 0.05) after Bonferroni correction and demonstrated 

a consistent trend in abundance changes between young and old samples, indicating a 



 

 

31 

meaningful change in protein levels with age. 

 

2.4.3 Gene ontology analysis  

For the elucidation of the functional implications of transcriptome changes during aging in 

C. elegans, a rigorous Gene Ontology (GO) analysis was employed. This analysis was 

critical in annotating differentially expressed genes and proteins, thereby providing 

insights into the biological processes, molecular functions, and cellular components most 

changed during aging. The analysis harnessed WormBase (https://wormbase.org/), using 

the enrichment analysis tool to categorize gene products. The differentially expressed 

genes and proteins were segregated into the GO categories: “biological processes”, 

“molecular function”, and “cellular component”. GO analyses were carried out separately 

for up and downregulated ASGs. The outcome of the GO analysis was a curated set of 

ontological terms that provided a high-level summary of the functional attributes 

characterizing the transcriptomic changes in C. elegans. 

 

2.4.4 Trajectory clustering in ASGs and ASPs 

Transcriptomic data consisting of 3686 ASGs and proteomic data comprising 658 ASPs 

were analyzed. The input for this analysis was normalized read counts for genes and 

protein abundance measures for proteins, ensuring consistency and accuracy in 

downstream processes. Initially, the normalized data were processed to calculate the 

mean expression levels across different samples for each gene and protein, respectively. 

The data were then standardized using z-score normalization to facilitate comparability 

across genes and proteins. For clustering, the data were organized into an “ExpressionSet” 

object. Using the “Mfuzz” package in R, the genes and proteins were segregated into three 

distinct clusters based on their expression profiles. This decision was made after 

evaluating cluster definitions ranging from two to eight clusters, ultimately identifying three 

distinct trajectory clusters that effectively represented the flow of expression changes over 

time. The optimal fuzzifier value was determined via the “Mestimate” function within the 

“Mfuzz” toolkit.  

The clustering results were visualized using the “Mfuzz. plot2” function, which facilitated 

the examination of gene and protein expression patterns across the predefined clusters.  

For the transcriptomic data, gene identifiers (IDs) for each cluster were extracted and input 

https://wormbase.org/


 

 

32 

into the WormBase enrichment analysis tool to identify enriched GO terms. The top ten 

most significant GO terms for each cluster were recorded, highlighting the biological 

processes predominantly associated with the genes in each cluster. 

For the proteomic data, the membership list for each cluster was first converted into 

corresponding gene IDs using the UniProt Retrieve/ID mapping platform. Like the 

transcriptomic data, these gene IDs were then analyzed using the WormBase enrichment 

tool to ascertain the top ten significant GO terms, which provided insights into the primary 

biological functions influenced by the proteins in each cluster. 

 

2.4.5 Multidimensional scaling (MDS) 

The identified ASGs and ASPs, respectively, were subjected to multidimensional scaling 

(MDS) analysis using the Python library “sklearn.manifold”. MDS is a dimension-reduction 

tool that provides a means to visualize the level of similarity of individual cases of a dataset. 

By applying MDS to the expression data of the identified ASGs and ASPs, a two-

dimensional plot was generated, which facilitated the observation of patterns in gene and 

protein expression changes related to the aging process. The MDS plot clarifies the 

relationship between samples based on their transcriptomic and proteomic profiles. 

 

2.4.6 Transcriptome and proteome-based vector distance calculation  

To address age-dependent transcriptomic/proteomic changes developed across age 

groups, vector distances were calculated, comparing gene (protein) expression vectors 

for each sample with the average of the corresponding young adult D4 vectors. Specifically, 

the cosine distance between gene/protein expression vectors for each sample and the 

average expression vector of the young adult group (D4) were calculated using the Python 

function “scipy.spatial.distance.pdist”. These distances were plotted to visualize the 

divergence of gene or protein expression profiles from the young reference as the 

organism ages (showing, for each age group, the mean +/- SD of the distances to the 

average of the young adult D4 group).  
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2.4.7 Visualization of overall gene and protein expression changes 

Visualizations of gene/protein expression changes across all ASGs/ASPs were generated 

as described below. First, min-max scaling was applied to the normalized read counts for 

transcriptomics and the normalized protein abundance data for proteomics using 

“MinMaxScaler” from Python library “sklearn.preprocessing”. The min-max scaling 

process adjusted the expression values of each gene and protein across all samples, 

setting the minimum expression value to zero and the maximum to one. Consequently, all 

intermediate values were scaled proportionately within this range. This normalization 

ensured that all genes and proteins, regardless of their baseline expression levels, could 

be compared on a uniform scale ranging from zero to one. To balance the direction of 

changes in the expression with aging, all the genes or proteins that decreased with age 

were multiplied by minus one. This inversion harmonized the direction of gene and protein 

expression changes, making all age-related shifts positive and thus comparable across 

the dataset. By flipping the sign of declining genes and proteins, the analysis avoided the 

neutralizing effect that would occur if increasing and decreasing trends were combined. 

These data were then plotted across all age groups included in the study.  

 

2.4.8 Individual gene and protein-based progression analysis  

The progressive age-related gene expression analysis involved a sequence of pairwise 

statistical comparisons between all age groups and a designated young reference group, 

in this case, D4. The objective was to determine the point in the organism's life where 

ASGs showed their last significant change relative to previous time points. Pairwise 

comparisons began with the young reference group (D4) and continued with each 

subsequent age group to detect the first instance of a statistically significant difference in 

gene/protein expression values (for transcriptomic data, normalized read counts were 

used; for proteomic data, protein abundance data was used). After identifying the first age 

at which a significant change from the young reference was observed, subsequent age 

groups were compared not against the baseline but against this initial point of change. 

The analysis proceeded with each age group, comparing it to the prior group where a 

significant change was noted. This process was iterated until the last available age group, 

D32 for transcriptomics and D28 for proteomics, was analyzed. For an age-related change 

to be progressive in the pro-aging direction it did not only have to be significant relative to 
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the previous time point, but it also had to point in the pro-aging direction. This requirement 

ensured that only consistent age-related progressions were accounted for. The age at 

which the last significant progression occurred relative to an earlier age group was then 

plotted, revealing the distribution of these last significant changes across different time 

points. 

 

2.5 Identifying stable reference genes  

2.5.1 Determination of criteria for reference gene selection 

To thoroughly assess the stability of known reference gene expression during the aging 

process and identify the most stable genes that can be used as reference genes in aging 

qPCR experiments, a thorough approach was employed. This included robust statistical 

and quantitative analyses such as the calculation of the adjusted p-value (padj), which 

serves as a critical filter to reduce false-positive results. The base mean expression levels 

provided a quantitative reference for gene expression across all samples and conditions, 

establishing an average around which variability could be measured. Additionally, the 

lowest standard deviation percentage (%STDEV) across the genes was analyzed to 

identify those with the most consistent expression levels, an indispensable characteristic 

of reliable reference genes. Hence, to accurately assess the stability of gene expression 

during aging, extensive metrics — adjusted p-value (padj), base mean expression levels, 

and the lowest %STDEV — were evaluated for all the genes under study. These measures 

are essential for the prioritization of genes, ensuring the selection of those with the highest 

stability and adequate expression for reliable normalization in gene expression studies. 

Applying these metrics, the analysis targeted the top 1000 genes with the most non-

significant padj values to maximize the likelihood of identifying genes exhibiting stable 

expression throughout aging. This was followed by a refinement process, where any gene 

with a base mean expression level below 200 was excluded, thus narrowing the pool to 

include only those genes with sufficient expression levels. The subsequent phase involved 

a detailed examination of the standard deviation percentage of expression levels across 

various samples and conditions. The top 200 genes that demonstrated the 

lowest %STDEV were earmarked for additional scrutiny. The expression patterns of the 

top 50 genes from this subset were then visualized using Rstudio (Version 4.3.3) and 

GraphPad Prism (Version 9.3.1) to pinpoint the most stable genes. Using one-way ANOVA 
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as well as a careful visual assessment, 16 genes were selected for further validation by 

qPCR, under the guidance of Dr. Maryam Keshavarz (Ehninger lab, DZNE). 

 

2.5.2 Primer design  

The DNA sequences of the respective genes were extracted using the UCSC Genome 

Browser, which provides access to genomic sequences and annotations for a variety of 

species including C. elegans. Precise target regions were selected based on gene 

annotations, exon-intron boundaries, and conserved domains to prevent polymorphisms 

that could impair primer binding. 

Primer-BLAST was then used, combining primer design with BLAST searches to establish 

optimal primer characteristics, including melting temperature (Tm), length, and GC content, 

while mitigating potential self-complementarity.  

Simulated PCR was performed to verify the specificity of the primer designs, ensuring the 

exclusive amplification of the intended targets. The OligoAnalyzer tool from Integrated 

DNA Technologies further assisted in identifying potential secondary structures and dimer 

formations, which could compromise RT-qPCR performance. 

Following in silico validation, empirical testing of the primers in RT-qPCR reactions was 

undertaken. This phase included adjustments of primer concentration, annealing 

temperature, and magnesium chloride concentration, which are essential for maximizing 

amplification efficiency and specificity.  

 

2.5.3 cDNA Synthesis 

A total of 500 ng RNA was used to perform cDNA synthesis, using the High-capacity cDNA 

RT kit from Thermo Fischer Scientific. 14.2 ng of RNA was added to the 5.8 µl PCR master 

mix solution (Table 7) in a labelled PCR microtube. The sample was mixed with a 20-µl 

pipette, briefly centrifuged, and placed into the RT-Thermocycler (program: 10 min 25 °C, 

120 min 37 °C, 5 min 85 °C) for cDNA synthesis. After the program was finished, the cDNA 

was stored at -20 °C until further use.  
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Table 7: Reagents and volumes for PCR master mix solution 
 

Reagent Volume (µl) Manufacturer Catalog Number 
10x RT buffer 2 Thermo Fisher AM1006 
25x dNTPs 0.8 Thermo Fisher R0191 
10x primers  2 IDT - 
Reverse Transcriptase 1 Invitrogen 18080044 

 

2.5.4 Real-time quantitative PCR (RT-qPCR) 

Real-time quantitative polymerase chain reaction (qPCR) is a method of choice for gene 

expression analysis in molecular biology laboratories due to its sensitivity, specificity, and 

simplicity. The qPCR method combines reverse transcription PCR (RT-PCR) with 

quantitative PCR and uses a fluorescent dye. In our lab, we used the RT-qPCR 

QuantStudio Flex 6 and 7 with SYBR Green Master Mix for gene expression analysis. 

SYBR Green is the most commonly used intercalating dye, which binds to the newly 

synthesized double-stranded DNA during the extension phase and emits a green 

fluorescent signal. The intensity of this signal is measured after each cycle and correlates 

to the amount of double-stranded DNA present in the sample. The qPCR starts with the 

initiation step, where no fluorescent intensity is detected. During the denaturation step, 

the sample is heated to 95 °C and the cDNA is denatured into single-stranded DNA. Next, 

in the annealing step, the temperature is lowered to 60 °C, allowing the primers, which are 

short DNA sequences that are complementary to the target sequence, to bind to the 

single-stranded DNA. In the extension phase (72 °C), the enzyme DNA polymerase binds 

to the primers and adds nucleotides to the DNA, extending the target sequence. During 

this process, the fluorescent dye SYBR Green binds to the double-stranded DNA and 

emits a fluorescent signal, which is detected by the machine. The intensity of the 

fluorescent signal correlates with the amount of generated dsDNA. 

For running qPCR, we used the MicroAmp Optical 384-well plate and a prepared master 

mix solution, for each well according to Table 8. First, 5.8 µl of master mix solution was 

added to each well, followed by 4.2 µl of cDNA (2 ng/µl). The PCR plate was sealed with 

an adhesive cover and centrifuged for 1 minute to eliminate any air bubbles. Next, the 

plate was transferred to the QuantStudio Flex 6 and 7 qPCR machine, and the qPCR 

reaction was initiated. The amplification curve, which shows the increase in fluorescence 
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over time, was generated and interpreted as follows: at the beginning of the reaction, there 

is no fluorescence emitted, which serves as the baseline. As the reaction progressed, a 

lesser number of cycles were needed, because of the high number of templates, to reach 

the point where the fluorescent signal is statistically defined as CT value. However, the 

limited number of templates will eventually slow down the reaction, and the amplification 

curve will reach a plateau phase. Once the process is complete, the amplification plot is 

normalized to a fluorescent signal of 0.2 using a 50x low ROX, which helps eliminate 

pipetting errors or variations in RNA or cDNA quality. The results were then exported to 

Excel for further analysis.  

 

Table 8: Master mix solution reagents for Real-Time PCR (qPCR) 
 

Reagent Volume (µl) Manufacturer Catalog Number 
PCR MasterMix  5 Bio-Rad 1725121 
Forward primer solution 0.3 IDT - 
Reverse primer solution 0.3 IDT - 
Low ROX 50x 0.2 Thermo Fisher A41138 
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Table 9: Primer sequences 
 

Gene 
Known/New 
Reference gene 

F (Forward sequence) 
5' to 3'  

R (Reverse sequence) 
5' to 3'  

pmp-3 known 
TGCCTTGAAACTGAT
CGTCC 

CTCTTCCTGCTCATCTC
GTTC 

ZK1307.8 new  
TCCACAACTGACACC
TTCCG 

AGTTCCGGGCTCATCA
CTTC 

aars-2 new  
TGTGGTCTTGGACTC
GAACG 

CGAACGCCACTTCCTT
TGTG 

gtf-2F1 new  
TTCCTGCCAGCGATT
ACTCA 

ACGTTTCTGCTGCTCT
GTCA 

praf-3 new  
AAGTTTTAAGATGCG
CACGG 

CAAGGCAAAGGCAACC
ACAA 

unc-16 new 
AACAAAATGGGCATG
GCTGC 

TCGTCTTGCCAGTCTT
CGTT 

orc-2 new  
TGGAACAACTGGGCT
TCGAG 

CCATTTCCAGCACGTC
TTCC 

nasp-1 new  
CGTCGTCGAGAAAAA
TCGCC 

CGTCCTTGGTTTTGCC
GAAG 

ZK858.6 new  
ATTTTTCGAGAGACC
GCCCA 

AGCCACTCCAGGCACA
TAAA 

ddx-19 new  
CCAGCTTTTGTTCCAC
GACC 

CTTCTGTTGCCGGTTT
CGTG 

rbm-22 new 
AAAATCTGTGAGCGC
CCATTC 

GTCTGGCACACATTCT
TCACT 

agef-1 new  
CCGCGCAGAAGGAAA
AAGAA 

ATCAATCCGCGTACCA
CTTG 

npp-2 new  
TCCTCACCTGATGCA
CCTCT 

AGTCGGAACTGCTGTG
AGAC 

rnp-6 new  
TATCTTCAACCGGCAT
CCGT 

CTCGGCGAATTAGAGA
ACAGGT 

ran-5 new  
CGCAATGGGACCAGA
GATCA 

CCAATTTCAGCAGGTC
GCTC 

ZK792.5 new  
ATGGATAACTGGGCG
GATGC 

CAACCTTTGGCCTTGC
TGAC 
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3 Results 
 

3.1 Lifespan analysis and sample collection in C. elegans 

The first objective of our research was to investigate mortality patterns during aging in 

C. elegans. Our study involved lifespan analysis of four cohorts, designated as WT-1, 

WT-2, WT-3, and WT-4, each comprising 400 specimens, to examine the consistency of 

survival rates among genetically identical groups. Censoring occurred predominantly at 

early ages, with 32 individuals censored in WT-1, 14 in WT-2, 31 in WT-3, and 47 in WT-4. 

Survival curves generated through the Kaplan-Meier method for each cohort allowed us 

to analyze the survival over the nematodes' lifespan. In the context of our experiments, 

the maximal lifespan was 34 days. A Log-rank (Mantel-Cox) test (P = 0.9699) revealed no 

significant difference in lifespans across the cohorts (Figure 1 A). Median survival times 

for WT-1, WT-3, and WT-4 converged on D24, while WT-2 exhibited a median survival of 

26 days, indicating that the observed mortality patterns were overall fairly consistent. 

Interestingly and as expected (Brooks et al. 1994, Vaupel et al. 1994), the survival curves 

suggested a deceleration of mortality rates with advancing age, reflected in the tendency 

of the survival curves to show an inflection point at around D28. 
For our study it was vital to monitor the gene expression changes into very advanced age 

given that we wanted to be able to capture a possible eventual stabilization of age-related 

changes in late life. To achieve this goal, we started sample collection from a large 

population around 3000 to compensate for attrition and included a broad range of time 

points, covering also very advanced ages. In Figure 1 B, we detailed a collection schedule 

across 15 time points from D4 to D32, each with six biological replicates. The schedule 

was adjusted to the observed survival data, making sure that advanced ages are 

represented in the collected samples. 
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Figure 1: Lifespan and sampling strategy in C. elegans. (A) Survival curves for four 
cohorts (WT-1 to WT-4) of C. elegans, each starting with 400 individuals with Kaplan-
Meier survival analysis. The lifespan data was analyzed using the Log-rank (Mantel-Cox) 
test (ns, p = 0.9699). (B) The collection schedule with 15 designated time points, each 
with 6 biological replicates (each biological replicate was comprised of a pool of 30 worms). 
 

3.2 Comparative analysis of RNA isolation protocols across different C. elegans sample 

sizes in pooled samples 

This part of our study aimed to optimize RNA isolation protocols to recover high-quality 

RNA from a limited number of worms.  
To achieve this goal, we evaluated ten RNA isolation techniques across sample sizes 

varying from 5 to 100 worms (n = 5 to n = 100), the results of which are summarized in 

Figure 2 (A-J). This systematic approach enabled us to determine the efficiency and purity 

of RNA extraction protocols under conditions that mimic the typical sample limitations in 

aging studies. 
The use of the Trizol extraction method (Figure 2 A) resulted in low RNA yields for the 

smallest cohorts, such as 1.1 ng/µl for ten worms (n = 10), which increased proportionally 

with the number of worms. However, purity assessments indicated contamination, with 

A260/A280 and A260/A230 ratios falling below optimal thresholds across all sample sizes. 

When combined with a Cleanup Kit (Figure 2 B), Trizol's effectiveness improved 

significantly, showing a substantial rise in RNA concentration, achieving up to 317.9 ng/µl 
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for 50 worms (n = 50). Nonetheless, the elevated A260/A280 ratios suggested persistent 

contamination by other nucleic acids, a pattern consistent across the tested range. 
Employing the RNA mini Kit (Figure 2 C) alone or with Trizol (Figure 2 D) led to 

improvements in RNA yields, but did not resolve the presence of contaminants. For 

instance, when a pool of 100 worms was processed with the RNA mini Kit, we observed 

a high A260/A280 ratio of 2.38, yet the A260/A230 remained at a low 0.03, underscoring 

unresolved contamination. 
Notably, the protocol using Trizol with proteinase K (Figure 2 E) for samples as small as 

five worms (n = 5) produced an exceptional RNA concentration of 3944.1 ng/µl, however 

A260/A230 ratio was still above the desired range. 
The Plus Micro Kit protocols, both standalone (Figure 2 F) and with Trizol (Figure 2 G), 

showed fluctuating RNA yields and inconsistent purity ratios, such as an A260/A230 ratio 

of 0.59 for 50 worms (n = 50), indicating a need for method refinement to ensure reliability. 
The PicoPure™ Kit (Figure 2 H) and its adaptation with Trizol (Figure 2 I) demonstrated 

variable efficiency, with some sample sizes showing significant purity levels but others, 

like the 100-worm group (n = 100) with an A260/A280 ratio of 2.59, indicating possible 

overestimation of RNA purity or contamination. 
The optimization of the PicoPure™ Kit (Figure 2 J) produced promising outcomes. The 

optimization steps included an additional cycle of sonication with dry ice intervals and the 

application of DNase solution onto the purification column membrane. An optimized 

sample of 15 worms (n = 15) presented a substantial RNA concentration of 59.3 ng/µl and 

a near-optimal A260/A230 ratio of 2.16, reflecting the kit's improved efficiency at larger 

sample sizes (please see the method section for more details). 
Our results shows that the RNA isolation efficacy from C. elegans is highly dependent on 

the chosen protocol and sample size. The Trizol method, although effective for RNA 

recovery, requires supplemental purification steps to enhance RNA purity. The combi-

nation of Trizol with proteinase K has proven as a superior protocol for obtaining high-

quality RNA, especially from microscale samples. While the Plus Micro Kit and PicoPure™ 

Kit protocols show potential, their variable results highlight the need for ongoing 

refinement to achieve consistent RNA purity. This is particularly crucial for downstream 

applications such as qPCR and RNA sequencing, which necessitate RNA of the highest 
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integrity. Finally, the optimization of the PicoPure™ Kit method (Figure 2 J) was chosen 

for our project, 30 worms were collected for each replicate to ensure good RNA quality. 

 

Figure 2: Results under different RNA isolation protocols with different sample sizes in   
C. elegans. The comparison of different RNA isolation protocols (A-J), measuring each 
method's efficiency in isolating nucleic acids from a sample size of 5 to 100 worms. The 
data presentation focuses on absorbance at 260 nm to determine nucleic acid yields and 
ratios of A260/A280 and A260/A230 to evaluate purity. Red numbers denote problematic 
results, such as low purity ratios or values that suggest contamination. Green numbers 
indicate values within the desired range for RNA purity or concentration, highlighting 
optimal results. Black numbers represent baseline or intermediate outcomes, neither 
optimal nor critically deficient. (A) Trizol extraction alone resulted in the lowest yields, with 
declining purity suggested by negative purity ratios in larger sample volumes. 
(B) Combining Trizol with a Cleanup Kit significantly improved yield and purity, albeit with 
a slight reduction in purity at higher sample volumes. Utilizing RNA mini kits (C) with or 
without Trizol (D), yielded consistent results, while integrating proteinase K with Trizol 
(E) significantly boosted nucleic acid levels, though with a risk of other substance 
contamination, as indicated by elevated A260/230 values. (F) The Plus Micro Kit and its 
Trizol-combined version (G) provided moderate nucleic acid quantities with satisfactory 
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purity levels. (H) The original PicoPure™ RNA Isolation Kit and its Trizol-modified 
counterpart (I) showed limited success with small worm counts. (J) Optimized PicoPure™ 
RNA Isolation Kit methods displayed enhanced performance, with higher yields and better 
purity correlating with increased sample sizes. 
 

3.3 Quality assessment of bulk RNA-seq data for aging studies in C. elegans 

Aging manifests as a gradual accumulation of subtle transcriptomic alterations over time. 

Detecting of these modifications demands not just extensive but also highly accurate 

sequencing data. With this in mind, we performed a thorough quality assessment of our 

bulk RNA-seq transcriptomic data. The purpose of the analysis was to establish a rigorous 

quality control framework with multiple checkpoints for evaluating the transcriptomic data. 

By conducting this assessment, we aimed to prevent the conflation of technical noise with 

biological signals, which could lead to incorrect interpretations and conclusions.  
Figure 3 shows data from one sample. With over 10 million sequences ranging from 

18-111 bases and a calculated G+C content of 37 %, we ensured a comprehensive 

dataset for analysis. Although these metrics alone do not prove a broad representation of 

the genome, they provide a strong indication of sequencing depth and quality, laying a 

robust foundation for further analyses in aging research (Figure 3 A). 
The uniformity of sequence quality across all tiles, as evidenced by the consistent dark 

blue coloration in the "Per tile sequence quality" chart, suggests to a level of consistency 

that is critical for identifying subtle transcriptomic variations associated with the aging 

phenotype. The absence of lighter shades suggested a lack of potentially problematic 

lower-quality sequences, which could introduce bias into the analysis (Figure 3 B). Other 

samples showed a similarly strong, uniform pattern with minimal lighter shades, 

reinforcing the reliability of the sequencing data across all samples. 
The "Per base sequence quality" chart showed a high-quality onset with an expected slight 

decline toward the rear ends (Figure 3 C), which is consistent with the reduced availability 

of sequencing reagents. The stability in base quality aligns with the uniformity observed 

in Figure 3 B, ensuring that the high standards at the onset were maintained throughout 

the sequencing process. Similar trends were observed in other samples, confirming 

consistent high-quality sequencing throughout the dataset. 
The minimal adapter content emphasized the efficiency of our library preparation 

(Figure 3 D). The integrity of our sequencing run, previously demonstrated in Figure 3 A 
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and B, was further confirmed, delineating a dataset not compromised by technical artifacts. 

Other samples displayed similarly low levels of adapter content, supporting the overall 

robustness and quality of the dataset. 

 

Figure 3: Quality assessment of bulk RNA-seq transcriptomic data in a sample. (A) Over 
10 million sequences were processed, with a length range of 18-111 bases, and a G+C 
content of 37 %. (B) The "Per tile sequence quality" chart, indicates that the sequencing 
run had consistently high-quality scores across all tiles on the flow cell, as evidenced by 
the uniform dark blue coloration. There were no apparent deviations in the form of lighter 
shades, which would have suggested lower quality scores, reflecting a successful 
sequencing process with uniformly high data quality. (C) Quality scores start high (green 
zone) and show a typical decline toward the end of the reads. The chart's median and 
percentile indicators highlight the variation in quality at each base position. (D) The 
analysis shows the negligible presence of adapter sequences across the read lengths, 
suggesting effective pre-processing trimming or minimal adapter integration during 
sequencing. 
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3.4 Analyses of age-dependent transcriptomic changes in C. elegans populations 

3.4.1 Identification of ASGs in C. elegans  

To identify ASGs, we employed a methodological approach that combined the Wald test 

within a generalized linear model framework and the DESeq2 package to perform 

differential gene expression analysis. Each gene was modeled using age as a continuous 

predictor through the glm function in R, allowing for the estimation of coefficients and their 

standard errors. The significance of the age coefficient for each gene was then determined 

by calculating the Wald statistics and corresponding p-values using the “wald.test” 

function in R. The DESeq2 package was utilized to enhance the analysis, providing robust 

normalization and differential expression analysis capabilities. This dual approach 

ensured detection and quantification of gene expression changes. The final list of 3686 

ASGs was derived from this combined analysis, incorporating the strengths of both the 

Wald test-based approach and DESeq2 to capture significant age-related changes in 

gene expression, setting the stage for all downstream analyses. 

 

3.4.2 Gene ontologies associated with ASGs in C. elegans  

To elucidate the functional consequences of gene expression changes during aging in 

C. elegans, we performed gene ontology (GO) analyses, focusing on ASGs identified 

above and comparing them against the entire genome of C. elegans, which includes all 

genes regardless of differential expression status. The enrichment analysis identified 

over-represented GO terms among differentially expressed genes, aligning our findings 

with established biological processes known to be associated with aging (Kim 2007, 

Vidović and Ewald 2022). 

An Illustration of a functionally grouped network of GO terms linked to the 3686 ASGs is 

depicted in Figure 4 A. The gene network shows the interconnectivity of the biological 

processes associated with these ASGs. Nodes represent specific GO terms, sized 

proportionally to the significance of their enrichment, and connected by edges reflecting 

the kappa statistic, denoting shared genes between terms. 

The network identifies several pathways linked in aging. Most notably, it confirms 

previously identified pathways linked to aging, such as the mitotic cell cycle, cell-cell 

adhesion, and sensory perception stimulus detection (Riera and Dillin 2016, 

Voutetakis et al. 2015), supporting the validity of our findings. Enrichment in pathways 
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such as epithelial cell differentiation and cilium organization emphasizes the importance 

of cellular integrity and signaling mechanisms. Similarly, pathways related to sensory 

perception, such as those involved in smell detection, highlight changes in the sensory 

system with aging (Doty et al. 1984, Linford et al. 2011, Riera and Dillin 2016).  

Critical pathways related to cell cycle and DNA metabolic processes were highlighted, 

indicating potential alterations in DNA maintenance and metabolic regulation during aging. 

Moreover, our analysis corroborates pathways identified in earlier studies 

(Meng et al. 2020), such as mitotic nuclear division and RNA processing, which may 

contribute to cellular responses during aging by facilitating regulation of RNA synthesis 

and processing. 

GO analyses were also carried out for up- and down-regulated ASGs separately 

(Figure 4 B). Among the upregulated genes, there was significant enrichment in terms 

such as cell projection (GO:0042995); cell projection organization (GO:0030030); cilium 

organization (GO:0044782); non-motile cilium assembly (GO:1905515); DNA-binding 

transcription factor activity (GO:0003700); transcription regulatory region nucleic acid 

binding (GO:0001067); double-stranded DNA binding (GO:0003690); sequence-specific 

DNA binding (GO:0043565); taxis (GO:0042330); non-motile cilium (GO:0097730).  

Conversely, the downregulated genes showed significant enrichment in the following GO 

terms: membrane microdomain (GO:0098857), A band (GO:0031672), cellular component 

assembly involved in morphogenesis (GO:0010927), sarcomere organization 

(GO:0045214), structural constituent of cuticle (GO:0042302), muscle system process 

(GO:0003012), collagen trimer (GO:0005581), supramolecular polymer (GO:0099081), 

organic acid metabolic process (GO:0006082), and myofibril (GO:0030016). 

These observations, supported by a strict false discovery rate (FDR < 0.05) to ensure 

statistical reliability, indicate that our results capture a broad spectrum of biological 

processes, molecular functions, and cellular components affected by aging (Evans et al. 

2023). This analysis not only confirms known age-related pathways but also reveals new 

areas of potential interest for further study into aging mechanisms, demonstrating the 

robustness and reliability of our results (Li et al. 2022). 
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Figure 4: Gene ontology analysis of ASGs in C. elegans. (A) Functionally grouped 
network of GO terms associated with 3686 identified ASGs. Nodes represent GO terms 
linked by their kappa score, indicating shared genes between terms, with edge thickness 
denoting the strength of association. Node size correlates with the term's enrichment 
significance, with larger nodes representing more significant terms. The colors of the 
nodes differentiate between biological processes, molecular functions, and cellular 
components: red shades represent biological processes, yellow shades indicate cellular 
components, and darker tones correspond to molecular functions. Thicker edges indicate 
stronger associations between GO terms. (B) Top 10 enriched GO terms for upregulated 
and downregulated genes, indicating predominant biological themes influenced by 
differential gene expression. Enrichment fold change is quantified on the x-axis. Statistical 
relevance is established at FDR < 0.05, ensuring confidence in term associations. 
 

3.4.3 Analysis of global trends in age-dependent transcriptomic changes 

In the next step of our analysis, we wanted to assess global trends in age-dependent 

transcriptomic changes. Towards this end, we first applied min-max scaling to the 

normalized read count data of all ASGs, utilizing the 

“sklearn.preprocessing.MinMaxScaler” in Python. This preprocessing step adjusted the 

dataset, normalizing the range of expression values within each ASG such that the lowest 

recorded expression level was set to zero, and the highest to one, allowing for an equitable 

comparison across ASGs with varying baseline expressions. Further refining our analysis, 

we addressed the directionality of gene expression changes over the nematode’s lifespan. 

For genes whose expression decreases with age, we reversed these values by multiplying 

them by minus one. This transformation ensured that all age-related changes were 

represented as positive values, thus simplifying the interpretation of trends across the 

dataset and preventing the confounding effect of combined increasing and decreasing 

trends. 
Figure 5 illustrates the result of these analytical efforts. We observed a steady linear 

increase in transformed ASG values from D4 to D22, suggesting initially progressive 

departure from the young adult state. Beyond this age, a notable stabilization occurred in 

the expression patterns, suggesting no further age-related progression in age groups 

older than 22 days. 
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Figure 5: The graph depicts overall transcriptomic trends in C. elegans across various life 
stages. Transformed ASG expression levels steadily increased until reaching a point 
around D22, beyond which they stabilized, suggesting no further progression of 
transcriptomic changes in later life. Data shown represent means +/- SD. 
 

3.4.4 ASG expression trajectories in C. elegans 

A trajectory analysis was conducted on the 3686 ASGs that were identified in the previous 

section to identify groups of genes that follow similar temporal progressions during the 

aging process. The genes were ultimately classified into three distinct clusters, each 

representing unique expression patterns across the organism's lifespan. This decision 

followed an evaluation of cluster definitions ranging from two to eight clusters, with three 

clusters found to most effectively capture the expression changes over time. 

The results of the trajectory analysis, encompassing all time points from D4 to D32, are 

shown in Figure 6 A. Cluster 1, consisting of 491 genes, exhibited a downward trend in 

expression levels, suggesting a possible downregulation of essential biological processes 

as the organism aged. This aligns with known age-related declines in metabolic and 

structural functions, consistent with findings in previous research on aging-related gene 

expression changes. Cluster 2, the largest cluster with 2,049 genes, displayed an increase 

in expression peaking at D24 before stabilizing, which may reflect a regulatory mechanism 

that activates key genes during mid-life to maintain cellular function and homeostasis. This 
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pattern is supported by previous studies indicating that mid-life stages involve adaptive 

responses that uphold vital processes. Conversely, Cluster 3, containing 1,146 genes, 

showed an increase in expression up to D18, followed by a decline at D22 and then a 

plateau, potentially indicating age-dependent shifts in gene regulation. 

To gain further insight into the functional annotations of ASGs within these clusters, Gene 

Ontology (GO) enrichment analysis was performed using the WormBase enrichment tool 

(Figure 6 B). Cluster 1 genes were significantly enriched for GO terms related to organic 

acid metabolic processes (GO:0006082) and muscle system processes (GO:0003012), 

reflecting a documented decline in metabolic efficiency and muscular function during 

aging (Kirkwood 2005, López-Otín et al. 2013). Cluster 2 showed significant enrichment 

in GO terms such as gated channel activity (GO:0022836) and synaptic signaling 

(GO:0099536), consistent with findings that synaptic function plays a critical role in 

maintaining neurological health and adapting to the cellular changes that occur during 

aging (Citri and Malenka 2008). 
The terms enriched in Cluster 3 included cell projection organization (GO:0030030) and 

neuron development (GO:0007399). While neuron development primarily occurs in early 

life (D4 and earlier), the continued regulation of related genes may be linked to maintaining 

neural function and plasticity throughout the lifespan, an aspect that remains essential for 

longevity and adaptation during aging (Kaletsky and Murphy 2010). The suggestion of 

links to neurodegenerative processes, as seen in higher organisms, is less applicable 

here, as C. elegans does not exhibit classic neurodegeneration during its aging process. 
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Figure 6: Gene expression trajectory clusters and GO enrichment analysis in C. elegans. 
(A) This panel illustrates the z-scored expression trajectories of ASGs across three 
clusters from D4 to D32. Line color codes for cluster membership strength. The black line 
shows the median expression trajectory within a given cluster. (B) The bar graphs 
represent the top 10 most significant Gene Ontology (GO) terms associated with each 
gene cluster, based on their -log10(p-value), signifying the enrichment significance.  
 

3.4.5 Visualization of ASG vectors based on multidimensional scaling (MDS) 

In our quest to comprehend the transcriptomic trajectory of C. elegans across its lifespan, 

we applied multidimensional scaling (MDS) to visually represent the complex gene 

expression data pertaining to ASGs. The MDS-generated plot (Figure 7) indicated that 

samples from the earlier adult stages of life, specifically from D4 to D10, clustered 

relatively closely together, suggesting relative stability of gene expression profiles in these 

earlier adult stages of life in C. elegans. The graphical representation further revealed a 

clear shift, with advancing age, of data points in phenotypic space. Importantly, this shift 

appeared to stop at some point (around D22), with no further progression away from the 
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younger age groups, suggesting a possible stabilization of changes in gene expression 

as the organism approaches the later stages of its lifespan.  

 

Figure 7: Multidimensional scaling (MDS) plot of transcriptomic vectors based on ASGs. 
MDS plot visualizes gene expression changes in C. elegans over its lifespan. Each data 
point corresponds to a sample. D4-D10 samples are in relative proximity to each other. 
With advancing age, the shift of data points away from D4 samples reflects age-dependent 
transcriptomic changes relative to the young adult baseline. Post-day 22, data points 
appear to lack a further progression away from the young adult samples, suggesting 
stabilized gene expression in late life. 
 

3.4.6 Transcriptome-based vector distance calculation  

To elucidate the dynamics of gene expression across the lifespan of C. elegans in high-

dimensional space, we embarked on an analysis rooted in the comparative quantification 

of transcriptomic deviations. In this analysis the average of ASG vectors of the young adult 

(D4) group (geometrically corresponding to the center of the D4 vectors) was used as 

reference, and served as a benchmark against which we measured the cosine distances 

of gene expression profiles from various age stages (from D6 to D32; focusing on ASGs 
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only), using the pdist function from the scipy.spatial.distance library which computes 

pairwise distances between observations in n-dimensional space. The rationale for this 

approach was to visually and quantitatively capture the transcriptomic drift as C. elegans 

aged. In this analysis, younger samples, those in close chronological proximity to the D4 

reference, exhibit gene expression profiles largely like this early adult stage. In the 

schematic shown in Figure 8 A, this is indicated by the relative proximity of data points 

corresponding to young samples to the D4 center. With advancing age, in contrast, we 

expected a larger sample distance to the D4 center (Figure 8 A). 
Figure 8 B shows the trajectory of transcriptome-based vector distances in high-

dimensional space from the D4 center throughout the nematodes' lifespan. Specifically, 

this panel shows means +/- standard deviations for each age group of cosine distances 

of individual sample’s ASG vectors relative to the average of the young adult (D4) ASG 

vector. We noted an increase in distance across age groups, taking place between D4 

and D22, after which the distances plateaued, hinting at an emergent phase of 

transcriptomic stability in later life stages.  

 

Figure 8: Transcriptome-based vector distance analysis. (A) Schematic representation of 
gene expression states in C. elegans. The center (marked by the star) represents the 
averaged ASP gene expression state in young adult animals (i.e., at D4). Green points 
depict young samples clustered tightly around this D4 center, reflecting their similarity in 
gene expression to the average D4 state. Yellow points represent mid-aged samples, and 
red points represent old samples, plotted further away from the D4 center, illustrating the 
progressive divergence in gene expression with age. (B) The plot shows the evolution of 
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transcriptome-based vector distances from the D4 young reference across the worms' 
lifespan. Each point represents, for each age group, the average cosine distance across 
all samples in that age group to the D4 center. Error bars denote standard deviations of 
the corresponding distance distributions. A clear progressive increase in distances to the 
young D4 center is observed between D8 and D22, after which this development plateaus, 
suggesting a stop in progression of age-related transcriptomic change. 
 

3.4.7 Analysis of age-dependent change in individual ASGs 

Next, we wanted to study age-dependent expression changes in specific genes to better 

define aging trajectories within individual ASGs. Towards this end, we performed pairwise 

comparisons of normalized read count data for individual ASGs across age groups, 

starting with a comparison against the young adult (D4) reference group and asking at 

which age a significant difference to the young adult baseline is first detected. Following 

the identification of an age at which a significant deviation from the young reference was 

noticed, all subsequent (i.e., older) age groups were compared against this initial point of 

change instead of the D4 baseline, asking if any of the subsequent age groups showed a 

significant progression in the pro-aging direction beyond this initial point of change. This 

process was repeated until the last age group (D32) was examined. For a change to be 

considered significantly deviating from the baseline/a subsequent age group, it had to not 

only be statistically significant in the respective pairwise comparison but also had to point 

in the respective pro-aging direction (see Material and Methods for details). This 

requirement ensured that only consistent age-related progressions were accounted for. 

The age at which the last significant progression occurred relative to an earlier age group 

was then plotted, revealing the distribution of these last significant changes across 

different time points (Figure 9 A). If aging was an ever-progressing phenomenon, we 

would expect a considerable proportion of ASGs to feature last changes at the last time 

point (D32). In contrast, if it was not ever-progressing it would be expected to see last 

changes mainly at time points distinct from the oldest age group (D32).  

Figure 9 B illustrates the distribution of ages at last significant changes in ASG expression. 

We observed a peak of last significant changes in expression across ASGs at D20, 

indicating that ASGs featuring no further change in the pro-aging direction past D20 were 

common. 

In the next step, we divided the ASGs into two categories based on their direction of 

change. The first set of ASGs with “increased” expression and the second set of genes 
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with “decreased” expression. We then performed the same analysis as before, this time 

separately for each increasing or decreasing group. ASGs with aging-associated 

increases in expression showed a peak in distribution at D20 (Figure 9 C), while ASGs 

with age-related decreases in expression had a distribution peak at D18 (Figure 9 D). This 

implies that ASGs commonly do not follow an ever-progressing pattern of change during 

aging, irrespective of their direction of changes in their expression.  

 

 

Figure 9: Individual gene-based progression analysis in C. elegans. (A) Systematic 
comparisons were conducted across age groups, starting with the baseline D4 group, to 
identify when age-sensitive genes (ASGs) first and last exhibited significant deviations. 
(B-D) The histograms depict the distribution of the last significant changes in expression 
among all ASGs (B), ASGs associated with age-dependent increases in expression (C) 
and ASGs associated with age-dependent decreases in expression (D). Overall, there 
were few ASGs that featured last changes relative to previous time points at D32, 
suggesting that most ASGs did not follow patterns consistent with ever-progressing 
change.  
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3.5 Analyses of age-dependent proteomic changes in C. elegans populations 

3.5.1 Protein expression profiling in C. elegans 

To identify ASPs in C. elegans, we analyzed the expression of proteins across various life 

stages. Utilizing Protein Discovery (PD) software, we extracted protein abundance data 

through a time-series analysis, capturing quantitative changes across a broad age 

spectrum. In label-free proteomics, missing values are a common challenge due to several 

factors, including the stochastic nature of mass spectrometry detection, variations in 

sample preparation, and the presence of low-abundance proteins that fall below the 

detection threshold. These missing values can introduce biases and reduce the statistical 

power of downstream analyses if not appropriately handled. It is crucial to impute these 

missing values to ensure the completeness and accuracy of the dataset, allowing for more 

reliable identification of age-related changes in protein expression. Given the inherent 

issue of missing values in label-free proteomics (Jin et al. 2021, Kong et al. 2022), we 

employed a multivariate imputation approach using “sklearn’s IterativeImputer” in Python. 

This is a strategy for imputing missing values by modeling each feature with missing 

values as a function of other features in a round-robin fashion. This imputation approach 

not only addressed the missing data effectively but also preserved the relationships 

among multiple variables, enhancing the overall data integrity and reliability of our 

subsequent analyses (Kong et al. 2022). 
To pinpoint significant alterations in protein abundance that correlate with aging, we 

performed a one-way ANOVA on the imputed dataset. Recognizing the potential for type 

I errors due to the large number of proteins analyzed, we applied the Bonferroni correction 

to adjust for multiple comparisons, ensuring that our findings were statistically robust. This 

rigorous approach led to the identification of 658 ASPs that exhibited significant changes 

in abundance with age. 
 

3.5.2 ASP expression trajectories in C. elegans 

In our proteomic analysis of C. elegans, we conducted a detailed classification of 658 

ASPs, categorizing them into three distinct clusters according to their expression profiles 

from D4 to D28. This decision also followed an evaluation of cluster definitions ranging 

from two to eight clusters, with three clusters effectively capturing the expression changes 

over time. 
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Figure 10 A depicts the z-scored expression trajectories of ASPs across the studied time 

frame. Cluster 1 contained 141 proteins and showed a trend of a progressive increase 

until D20 and then a decline until D24 following by a plateau phase. The largest cluster, 

Cluster 2, included 339 proteins which showed a progressive decrease until D22 followed 

by a plateau phase. Cluster 3, which consists of 178 proteins, exhibited an initial phase of 

relatively stable expression levels from D6 up to approximately D12. This phase was 

followed by a gradual increase between D14 and 18, culminating in a pronounced peak 

at D20. After reaching this peak, the expression levels began to decline steadily and 

eventually stabilized in the later stages of the observed period. 

Figure 10 B complements these findings with a functional enrichment analysis of the 

protein clusters. The bar graphs illustrate the top 10 most significant Gene Ontology (GO) 

terms associated with each cluster, selected based on their statistical significance as 

indicated by -log10(p-values). For instance, Cluster 1 proteins are significantly associated 

with GO terms such as chromatin organization (GO:0006325), a key process in the 

regulation of gene expression that is intimately connected with aging and longevity 

(Kim et al. 2012, Tissenbaum and Guarente 2001). Proteins in Cluster 2 show enrichment 

in functions such as the cytosolic large ribosomal subunit (GO:0022625), integral to 

protein synthesis, which often becomes dysregulated with age (Rath 2020, Turi et al. 

2019). Notably, Cluster 3 proteins are related to GO terms involving detoxification 

(GO:0098754) and the cellular response to toxic substances (GO:0097237), which are 

critical for cellular homeostasis and commonly implicated in the aging process (Ullah et al. 

2024, Živančević et al. 2021). 
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Figure 10: Protein expression trajectory clusters and GO enrichment analysis in                     
C. elegans. (A) This panel presents the z-scored expression profiles of ASPs categorized 
into three clusters over D4-D28. Each pink, purple and blue line represents the trajectory 
of an individual protein's expression, while the black line highlights the median trend within 
each cluster. (B) The bar graphs display the top 10 most significant Gene Ontology (GO) 
terms for each protein cluster, as determined by their -log10(p-value), a measure of 
enrichment significance. 
 

3.5.3 Analysis of global trends in age-dependent proteomic changes 

We wanted to assess global trends in age-dependent proteomic changes. Towards this 

end, we first applied min-max scaling to the protein abundance data of all ASPs, utilizing 

the “sklearn.preprocessing.MinMaxScaler” in Python. This process involved adjusting the 

protein expression levels so that the minimum observed value, within a given ASP, was 

anchored at zero, and the maximum at one. This normalization allowed for a more 

straightforward comparison across proteins with diverse expression levels. 
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Further refining our analysis, we addressed the directionality of protein expression 

changes over the nematode’s lifespan. For proteins whose expression decreases with 

age, we reversed these values by multiplying them by minus one. This transformation 

ensured that all age-related changes were represented as positive values, thus simplifying 

the interpretation of trends across the dataset and preventing the confounding effect of 

combined increasing and decreasing trends. 
Figure 11 presents the results of these analyses. The graph shows an age-dependent 

increase in transformed protein levels with a possible stabilization in the most advanced 

age groups, although this is less clear than in our transcriptome-based analyses.  

 

Figure 11: The graph depicts overall proteomic trends in C. elegans across various life 
stages. Transformed ASP expression levels increase with advancing age, with a possible 
stabilization in the most advanced age groups. Data shown represent means +/- SD. 
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3.5.4 Visualization of ASP vectors based on multidimensional scaling (MDS) 

To further delineate the proteomic landscape of C. elegans across its lifespan, we 

employed multidimensional scaling (MDS) to aid in the interpretation of the complex 

patterns of protein expression changes associated with aging. The resulting MDS plot 

(Figure 12) delineates the proteomic trajectory from D4 to D28, providing a visual 

representation of protein expression dynamics in response to aging. 

 

Figure 12: Multidimensional scaling (MDS) plot of proteomic vectors based on ASPs. 
MDS plot visualizes protein expression changes in C. elegans over its lifespan. Each data 
point corresponds to a sample. D4-D10 samples are in relative proximity to each other, at 
least with respect to their y-coordinates. With advancing age, the shift of data points away 
from D4 samples (mainly along the y-coordinates) reflects age-dependent proteomic 
changes relative to the young adult baseline. Post-day 24, data points appear to lack a 
further progression away from the young adult samples, suggesting stabilized protein 
expression in late life. 
 

In the younger adult age groups, spanning D4 to D10, the data points are distributed with 

moderate dispersion rather than forming a tightly clustered group. This distribution 
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indicates some variability in the proteomic profiles during the early developmental stages 

of the nematode, suggesting a level of heterogeneity in protein expression patterns that 

still maintains a degree of similarity characteristic of this phase 

As the organism matured beyond D10, the plot revealed a progressive shift of data points 

along the y-coordinates. 

Post-day 24, a notable convergence in the distribution of data points was observed, 

consistent with a relative stabilization of proteomic profiles and a lack of further change 

away from the young adult reference group (D4).  

 

3.5.5 Proteome-based vector distance calculation 

To investigate the dynamic changes in protein expression throughout the lifespan of            

C. elegans, we conducted a proteome-based vector distance calculation in high- 

dimensional space, using the average of D4 vectors as a reference point. The analysis 

employed protein expression data (protein abundance vectors including data from all 

ASPs), charting the cosine distances of protein expression profiles from all samples of 

various stages of life (D6-D24) relative to the average D4 center. 
Figure 13 A illustrates the proximity of younger samples shown in cyan to the average D4 

center, indicating a high similarity in their protein expression profiles to the young adult 

state. Yellow points represent mid-aged samples and red points represent older samples, 

plotted further away from the average D4 center, signifying a divergence in protein 

expression as the nematode ages. 

Figure 13 B shows the results of proteome-based vector distance analysis in high-

dimensional space, showing cosine distance to the D4 center point for samples from all 

age groups. We noted a pronounced linear increase in distance with advancing age, 

based on changes mainly from D4-D14, after which the distances plateaued, hinting at an 

emergent phase of proteomic stability in later life stages.  
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Figure 13: Proteome-based vector distance analysis. (A) The center (marked by the star) 
represents the averaged ASP expression state in young adult animals (i.e., at D4). Green 
points depict young samples clustered tightly around this D4 center, reflecting their 
similarity in protein expression to the average D4 state. Yellow points represent mid-aged 
samples, and red points represent old samples, plotted further away from the D4 center, 
illustrating the progressive divergence in protein expression with age. (B) The plot shows 
the evolution of proteome-based vector distances away from the D4 young reference 
across the worms' lifespan. Each point represents, for each age group, the average cosine 
distance across all samples in that age group to the D4 center. Error bars denote standard 
deviations of the corresponding distance distributions. A clear progressive increase in 
distances to the young D4 center is observed between D4 and D14, after which this 
development plateaus, suggesting a stop in progression of age-related proteomic change. 
 

3.5.6 Analysis of age-dependent change in individual ASPs 

Next, we wanted to study age-dependent expression changes in specific proteins to better 

define aging trajectories within individual ASPs. Towards this end, we performed pairwise 

comparisons of protein abundance data for individual ASPs across age groups, starting 

with a comparison against the young adult (D4) reference group and asking at which age 

a significant difference to the young adult baseline is first detected.  
Following the identification of an age at which a significant deviation from the young 

reference was noticed, all subsequent (i.e., older) age groups were compared against this 

initial point of change instead of the D4 baseline, asking if any of the subsequent age 

groups showed a significant progression in the pro-aging direction beyond this initial point 

of change. This process was repeated until the last age group (D28) was examined. For 

a change to be considered significantly deviating from the baseline/a subsequent age 



 

 

63 

group, it had to not only be statistically significant in the respective pairwise comparison 

but also had to point in the respective pro-aging direction (see Material and Methods for 

details). This requirement ensured that only consistent age-related progressions were 

accounted for. The age at which the last significant progression occurred relative to an 

earlier age group was then plotted, revealing the distribution of these last significant 

changes across different time points (Figure 14 A). If aging was an ever-progressing 

phenomenon, we would expect a considerable proportion of ASPs to feature last changes 

at the last time point (i.e., at D28). In contrast, if it was not ever-progressing it would be 

expected to see last changes mainly at time points distinct from the oldest age group 

(D28).  

Figure 14 B illustrates the distribution of ages at last significant changes in ASP expression. 

We observed a peak of last significant changes in expression across ASPs at D26, 

indicating that ASPs featuring no further change in the pro-aging direction past D26 were 

common. 

In the next step, we divided the ASPs into two categories based on their direction of 

change. The first set of ASPs with “increased” expression and the second set of genes 

with “decreased” expression. We then performed the same analysis as before, this time 

separately for each increasing or decreasing group. ASPs with aging-associated 

increases in expression showed a peak in distribution at D12 (Figure 14 C), while ASPs 

with age-related decreases in expression had a distribution peak at D26 (Figure 14 D). 

This implies that ASPs commonly do not follow an ever-progressing pattern of change 

during aging, irrespective of their direction of changes in their expression.  
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Figure 14: Individual protein-based progression analysis in C. elegans. (A) Systematic 
comparisons were conducted across age groups, starting with the baseline D4 group, to 
identify when ASPs first and last exhibited significant deviations. (B-D) The histogram 
depicts the distribution of the last significant changes in expression among all ASPs (B), 
ASPs associated with age-dependent increases in expression (C) and ASPs associated 
with age-dependent decreases in expression (D). Overall, there were relatively few ASPs 
that featured last changes relative to previous time points at D28, suggesting that most 
ASPs did not follow patterns consistent with ever-progressing change. 
 

3.6 Stable reference genes across temporal, genetic, and environmental conditions in 

C. elegans 

3.6.1 Evaluation of stable reference genes during aging in C. elegans 

The field of functional genomics has always relied heavily on genome-wide expression 

analysis. However, a reliable tool is needed to validate the data produced by high-

throughput RNA sequencing (RNA-seq). Due to its high sensitivity, quick turnaround time, 

and specificity, quantitative real-time PCR (qPCR) has been widely used to validate gene 

expression data (Tao et al. 2020). However, RNA integrity and quality, cDNA synthesis 
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efficiency, and PCR efficiency inevitably affect the reliability of qPCR results. Reference 

genes are frequently used as internal controls to minimize the risk of misinterpreting 

expression data and to accurately quantify gene expression under various spatial and 

temporal conditions. Therefore, it is essential to investigate the stability of expression 

patterns of known reference genes in C. elegans during aging. By performing 

comprehensive RNA-seq analysis across 15 time points (D4-D32), we captured the 

expression landscape throughout the aging process (Figures 4-9). This provided a 

valuable resource for exploring the stability of commonly used qPCR reference genes in 

aging studies (Hoogewijs et al. 2008) using C. elegans as a model. 

Table 10 presents the expression pattern of nine well-known C. elegans “reference genes”, 

act-1, act-2, act-3, act-4, act-5, ama-1, eif3.c, cdc42, and pmp-3, during aging. This 

analysis revealed no significant change in expression levels for only two of these genes, 

act-3 (p = 0.2858), and pmp-3 (p = 0.5559), suggesting their potential as stable reference 

genes through aging. However, act-3 showed high variability across samples, questioning 

its suitability to be used as a reference gene in aging studies. For the other genes, notable 

changes were detected for act-2 (** p ≤ 0.0001), act-4 (**** p ≤ 0.0001), act-5 (* p ≤ 0.05), 

ama-1 (* p ≤ 0.05), eif3.c (*** p ≤ 0.001), and CDC-42 (*** p ≤ 0.001). However, act-1 

(p = 0.0544), act-4 (p = 0.7804), and ama-1 (p = 0.8157) showed no significant change 

between late and early stages under DESeq2 analysis. In contrast, act-2, act-5, eif3.c, 

and CDC-42 displayed significant changes, indicating their sensitivity to age-related 

factors and raising concerns about their suitability for qPCR normalization in aging studies. 
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Table 10: One-way ANOVA analysis based on normalized read count data at all 15 time 
points (D4-D32) in C. elegans, focusing on previously with 9 established “references 
genes”. 
 

Ensembl Gene ID Gene p-value 
WBGene00000063 act-1 0.0544 
WBGene00000064 act-2 **** p ≤ 0.0001 
WBGene00000065 act-3 0.2858 
WBGene00000066 act-4 **** p ≤ 0.0001 
WBGene00000067 act-5 * p ≤ 0.05 
WBGene00000123 ama-1 0.81565453 
WBGene00001226 eif-3.C *** p ≤ 0.001 
WBGene00000390 cdc-42 *** p ≤ 0.001 
WBGene00004060 pmp-3 0.5559 

 

Considering these findings, we assessed genes to identify those with expression levels 

unaffected by aging—a necessary feature for reference genes. Our approach was in-

depth, beginning with the selection of the top 1000 genes that showed the most 

consistently non-significant changes during aging, based on adjusted p-values (padj) 

calculated in the previous DESeq2 analysis. We then narrowed our focus by excluding 

any gene with a base mean expression level below 200, ensuring we targeted genes with 

sufficient expression to be reliably measured. Next, we refined our gene pool by selecting 

the top 200 genes with the lowest expression variability, as indicated by the lowest 

standard deviation percentage (%STDEV). To identify reference genes with stable 

expression across the aging continuum of C. elegans, we visualized the expression 

patterns of the top 50 candidate genes using GraphPad Prism. This detailed analysis 

aimed to identify genes with consistent expression levels across various developmental 

stages, providing a reliable baseline for qPCR experiments. 

From the resulting curated list, we identified 16 genes that convincingly showed stability 

in expression across multiple time points, both statistically and visually (Table 11). 
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Table 11: DESeq2-derived statistical data of the identified 16 reference genes comparing 
differential gene expression (DGE) between late VS early stages. 
 

Ensembl Gene ID Gene  p-value 
WBGene00017070 praf-3 0.99816625 
WBGene00006755 unc-16 0.99694753 
WBGene00015296 gtf-2F1 0.99242127 
WBGene00014249 ZK1307.8 0.99231215 
WBGene00007500 nasp-1 0.98804567 
WBGene00000197 aars-2 0.98769716 
WBGene00012386 agef-1 0.985993 
WBGene00014119 ZK858.6 0.98407882 
WBGene00011722 rbm-22 0.98016112 
WBGene00003882 orc-2 0.969631 
WBGene00011580 ddx-19 0.96330832 
WBGene00004306 ran-5 0.88001722 
WBGene00004389 rnp-6 0.74825771 
WBGene00004060 pmp-3 0.6730486 
WBGene00014078 ZK792.5 0.55480149 
WBGene00003788 npp-2 0.52677768 

 

To validate our findings, we conducted a qPCR experiment on seven genes—comprising 

the established reference gene pmp-3 and six newly identified candidates: orc-2, praf-3, 

aars-2, unc-16, gtf-2F1, and ZK1307. These genes were examined across seven distinct 

time points (D6, D8, D12, D14, D18, D20, D24), representing a range from early to late 

adulthood. Validation was based on the same samples used for RNA-seq, but only these 

time points had enough samples to be included. One-way ANOVA-based analyses 

suggested relative consistency in gene expression, with no significant changes detected 

for any of these genes across the selected time points. The p-values were as follows: 

pmp-3 (p = 0.4585), orc-2 (p = 0.4696), praf-3 (p = 0.1133), aars-2 (p = 0.2074), unc-16 

(p = 0.1145), gtf-2F1 (p = 0.3345), and ZK1307.8 (p = 0.7656) (Figure 15). 
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Figure 15: Stability of the expression of seven identified reference genes across aging in 
C. elegans. The established reference gene pmp-3 and six newly identified genes (orc-2, 
praf-3, aars-2, unc-16, gtf-2F1, and ZK1307.8) were evaluated by qPCR at seven different 
time points (D6, D8, D12, D14, D18, D20, D24). Statistical analysis was performed using 
one-way ANOVA, which revealed no significant changes in expression across time points 
for any of the genes (pmp-3, p = 0.4585; orc-2, p = 0.4696; praf-3, p = 0.1133; aars-2, 
p = 0.2074; unc-16, p = 0.1145; gtf-2F1, p = 0.3345; ZK1307.8, p = 0.7656). 
 

3.6.2 Stability of the identified 7 reference genes in known C. elegans longevity mutant 

strains 

In our exploration of gene expression stability, we expanded our analysis to include three 

known long-lived mutants of C. elegans. We evaluated the expression levels of the seven 

gene candidates in age-1, daf-2, and isp-1 at D8, as shown in Table 12. The expression 

of pmp-3, aars-2, and gtf-2F1 was significantly altered in the isp-1 line at D8 (Table 12), 

whereas no significant changes were observed in the age-1 and daf-2 strains (Table 12). 

These non-significant findings further confirm the stability of the examined reference 

genes candidates, indicating that, apart from the specific instances noted, most of the 

genes maintained a consistent expression pattern despite the genetic mutations 

(commonly used in longevity experiments). 
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Table 12: Stability of the identified 7 reference genes in comparisons WT vs. mutant 
strains at D8.  
 

pmp-3   
Group p-value   
WT VS age-1 0.20861812   
WT VS daf-2 0.791285319   
WT VS isp-1 0.006677304   
orc-2 praf-3 

Group p-value Group p-value 
WT VS age-1 0.500973782 WT VS age-1 0.476241065 
WT VS daf-2 0.156445629 WT VS daf-2 0.188069415 
WT VS isp-1 0.017186856 WT VS isp-1 0.986237837 
aars-2 unc-16 
Group p-value Group p-value 
WT VS age-1 0.021533134 WT VS age-1 0.123880977 
WT VS daf-2 0.03506704 WT VS daf-2 0.181099987 
WT VS isp-1 0.008003836 WT VS isp-1 0.799878011 
gtf-2F1 zk1307.8 
Group p-value Group p-value 
WT VS age-1 0.397614367 WT VS age-1 0.782924165 
WT VS daf-2 0.851068688 WT VS daf-2 0.250355378 
WT VS isp-1 0.002989317 WT VS isp-1 0.57913745 

 

3.6.3 Stability of the identified 7 reference genes at different temperatures  

To explore the impact of environmental fluctuations on gene expression, our study 

evaluated the stability of the seven identified reference genes in C. elegans across three 

temperature conditions. Wild-type C. elegans were incubated at 15 °C, 20 °C, and 25 °C, 

representing a range from below to above the typical maintenance temperature (Table 13). 

Samples were collected at D8 (eight days post-hatch), to assess potential changes in 

gene expression due to temperature variation. 

For each gene, expression levels were quantified and compared across the temperatures 

at D8. Statistical analysis, using a two-way ANOVA with the assumption of equal variances, 

showed no statistically significant differences in gene expression across the tested 

temperatures at these time points (Table 13). 
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This uniform lack of significant expression change suggests that the tested genes maintain 

homeostatic regulation even when exposed to temperatures below and above the 

standard cultivation condition of 20 °C. Their stable expression profiles across different 

temperatures and developmental stages attest to their robustness and potential utility as 

reliable reference genes in experiments involving thermal stress or varying environmental 

conditions. Consequently, this assessment across a range of temperatures reinforces the 

suitability of these seven genes as reference controls for gene expression studies in 

C. elegans, ensuring that the chosen reference genes provide consistent and reliable data 

for normalization, regardless of minor variations in incubation temperatures. 

 
Table 13: Stability of the identified 7 reference genes in 15 °C, 20 °C, 25 °C at D8 
 

Gene 15 °C v.s. 20 °C 25 °C v.s. 20 °C 15 °C v.s. 25 °C 
pmp-3 p = 0.8729 p = 0.7281 p = 0.7195 
orc-2 p = 0.9538 p = 0.4857 p = 0.5877 
praf-3 p = 0.7558 p = 0.7537 p = 0.8988 
aars-2 p = 0.7258 p = 0.9963 p = 0.7229 
unc-16 p = 0.7365 p = 0.6032 p = 0.5134 
gtf-2F1 p = 0.8917 p = 0.7289 p = 0.9754 
ZK1307.8 p = 0.7797 p = 0.7577 p = 0.9295 
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4 Discussion 
 

4.1 Exploring dynamics of aging 

4.1.1 Stabilization of aging processes 

In our study, we prioritized transcriptomic and proteomic analyses to investigate aging 

trajectories, moving beyond the traditional focus on mortality and survival metrics. By 

leveraging these approaches, we aimed to capture a wider range of aging-related changes, 

encompassing a wide range of organismal alterations that occur over time. This shift 

allowed us to examine whether age-dependent phenotypes, such as transcriptomic and 

proteomic changes, exhibit stabilization trends analogous to the mortality plateaus 

reported in previous studies (Carey et al. 1992, Curtsinger et al. 1992, Rose et al. 2002).  

Traditional lifespan assays, while valuable for understanding survival patterns, have 

significant limitations (Keshavarz et al. 2023a, 2023b). These methods often reflect only 

specific causes of death that dominate late-life stages, potentially obscuring the broader 

dynamics of aging. Mortality rates, though informative for demographic trends, are not 

comprehensive proxies for the complex biological processes taking place during aging. 

By employing omics data, we sought to uncover more granular insights into biological 

changes characterizing the aging process. This approach provides a broader perspective, 

enabling a deeper understanding of the mechanisms contributing to age-related 

stabilization of molecular and physiological processes. Our findings emphasize the 

importance of expanding the methodological focus in aging research to capture the full 

complexity of late-life biological changes. 

Evolutionary theories provide a possible explanation for mortality plateaus. According to 

the Medawar-Williams theory, natural selection weakens with age as reproductive 

capacity diminishes. Post-reproductive individuals experience reduced evolutionary 

pressures, leading to the accumulation of mutations or traits that do not directly affect 

reproductive success (Medawar 1952, Williams 1957). This weakening of selection may 

contribute to stabilizing mortality rates in late life (Demetrius 2001). The findings from our 

C. elegans study support this theory, as mortality deceleration occurred even in a 

genetically homogeneous setting where demographic heterogeneity is negligible. This 

indicates that the plateau may reflect intrinsic biological processes rather than population-

level selection effects. 
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One key factor contributing to late-life mortality plateaus in C. elegans may be the 

stabilization of biological processes observed at advanced ages. Our results showed that 

transcriptomic and proteomic changes tend to stabilize after D22, aligning with the trend 

of decelerating mortality rates in later life stages, which become more pronounced around 

D28. This stabilization could indicate that physiological systems, including those critical 

for survival, reach a relatively static state in old age. Such findings align with earlier studies 

on other species, including Drosophila melanogaster, which also exhibit mortality 

deceleration in late life despite genetic homogeneity (Curtsinger et al. 1992). 

 

4.1.2 Cross-sectional profiling of aging in C. elegans 

In our study, we employed a cross-sectional design to analyze the transcriptomic and 

proteomic profiles of C. elegans across its lifespan, focusing on molecular changes from 

early adulthood to late life. Transcriptomic data were collected from D4 to D32, while 

proteomic data spanned D4 to D28. This design involved sampling from different 

individuals at each time point, as transcriptomics and proteomics require sacrificing the 

animals for data collection. The larval stages were excluded to focus specifically on adult 

aging processes, minimizing the confounding effects of developmental gene expression. 

Due to high mortality rates, collection into very old ages requires very large sample sizes.  

To ensure robust datasets, we analyzed six biological replicates across 15 time points for 

transcriptomics and four biological replicates across 13 time points for proteomics. 

Cross-sectional designs, such as ours, provide critical insights into population-level 

changes associated with aging. While longitudinal designs—which involve repeated 

measurements from the same individual—eliminate bias caused by population 

heterogeneity and provide direct insights into individual aging trajectories, they are 

incompatible with destructive techniques like transcriptomics and proteomics. Our 

approach balances the need for high-resolution molecular data with the practical 

constraints of studying C. elegans, a short-lived and small organism. Nonetheless, 

longitudinal-compatible techniques, such as live imaging, could complement cross-

sectional analyses by enabling dynamic assessments of aging processes in the same 

individuals over time. 

Our findings align with previous research on age-related transcriptomic changes in 

C. elegans. For example, a study by (Ewald et al. 2015) identified specific genes whose 
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expression levels change with age, highlighting a role for extracellular matrix remodeling 

in insulin/IGF-1-dependent lifespan regulation. Similarly, our data reveal alterations in 

genes associated with stress responses and metabolic processes, consistent with 

observations by (Lund et al. 2002), who reported age-dependent gene expression shifts 

linked to these functions. These parallels suggest that certain molecular pathways are 

consistently involved in the aging process of C. elegans, reinforcing the validity of our 

results. 

To advance aging research further, integrating live imaging techniques with omics data 

collection holds significant promise.  Fluorescence imaging allows for real-time monitoring 

of molecular and metabolic changes, making it invaluable for studying dynamic processes 

in aging. For example, fluorescent markers can be used to track oxidative stress, 

mitochondrial function, and protein aggregation, which are the key features of aging in 

C. elegans (De Boer et al. 2021, Jung et al. 2023, Wang et al. 2013). By providing high 

spatial and temporal resolution, fluorescence imaging complements transcriptomic and 

proteomic analyses, enabling researchers to correlate molecular changes with observable 

phenotypic alterations. Such integration offers a holistic view of the aging process and can 

help uncover the intricate biological mechanisms underlying age-related changes.  

 

4.1.3 Reliability and reproducibility in molecular aging studies 

Our study utilized high-quality RNA and protein to enable transcriptomic and proteomic 

analyses. The RNA extraction protocol was carefully optimized to recover intact RNA with 

minimal contamination, even from small sample sizes. By employing the enhanced 

PicoPure™ Kit (Figure 2), supplemented with additional sonication cycles and DNase 

treatments, the RNA purity reached an A260/A230 ratio of approximately 2.16, making it 

suitable for downstream transcriptomic analyses (Castro et al. 2017). Similarly, the protein 

extraction process was refined through multiple sonication cycles and stringent filtration 

steps, yielding high-quality protein samples. Quality assurance methods, such as SDS-

PAGE and silver staining, confirmed the integrity of these samples (Gallagher 2012, 

Laemmli 1970). These improvements were crucial for ensuring the reliability of label-free 

proteomic quantification, as the accuracy of mass spectrometry heavily depends on input 

sample quality (Bantscheff et al. 2007, Domon and Aebersold 2010). 
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The datasets generated through these optimized protocols enabled precise identification 

of transcriptomic and proteomic aging trajectories. The analysis revealed distinct 

expression clusters based on transcriptomic data from 15 time points and proteomic data 

from 13 time points. High-resolution data provided insights into subtle mid-life peaks and 

late-life stabilization patterns, highlighting the importance of sample quality in uncovering 

nuanced molecular changes during aging. 

Compared to previous studies, our approach offered several advantages. First, the 

optimized extraction protocols significantly improved the recovery of high-quality material 

from small sample sizes, addressing a common challenge in molecular aging research. 

Small sample sizes present a significant challenge in molecular aging research, often 

leading to issues such as overfitting and reduced reproducibility. For example, (Bell et al. 

2019) discuss the complexities in epigenetic clock studies, noting that limited sample sizes 

can hinder the accurate quantification of biological aging rates. Similarly, (Brinkley et al. 

2022) emphasize the necessity for robust measures and longitudinal studies in aging 

research, highlighting that inadequate sample sizes can compromise the validity of 

findings. These examples underscore the importance of optimizing protocols to maximize 

data quality and reliability when working with small sample sizes in molecular aging 

studies.  Second, the inclusion of more time points facilitated higher-resolution analyses, 

allowing for the detection of patterns in age-dependent phenotypic change that remain 

obscured in studies with fewer time points (Dhondt et al. 2017, Shavlakadze et al. 2019). 

Additionally, stringent quality control measures and replicates enhanced the reliability and 

reproducibility of our findings, particularly in label-free mass spectrometry analyses, where 

sample quality is paramount (Bittremieux et al. 2017). 

 

4.1.4 Environmental and epigenetic modulation of aging 

In this study, we maintained stringent culture conditions to minimize variability in the aging 

trajectories of C. elegans, focusing on the expression of ASGs and ASPs. By controlling 

environmental factors such as diet, temperature, and microbial exposure, we aimed to 

better isolate the intrinsic molecular mechanisms underlying aging. However, in natural 

populations, environmental factors interact with epigenetic mechanisms—such as DNA 

methylation and histone modifications—to shape aging phenotypes (Molina-Serrano et al. 

2019). Additionally, (Feil and Fraga 2012) discuss how environmental influences can lead 
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to epigenetic changes that affect gene expression and contribute to aging processes. They 

highlight that factors like diet, pollutants, and stress can induce epigenetic modifications, 

thereby influencing aging trajectories. These interactions highlight the complex 

relationship between environmental inputs and the molecular regulation of aging. 

Although we compared temperature effects in the study of stable reference genes and 

confirmed that gene expression stability was maintained under different temperature 

conditions, this comparison has not yet been extended to the "plateau" project examining 

expression stability in later life stages. Future studies could integrate temperature and 

plateau-specific expression dynamics to comprehensively investigate how temperature 

influences the regulation of age-related gene expression. 

Our findings underscore the need to extend aging research into more ecologically relevant 

contexts. While controlled conditions facilitate the identification of ASGs and ASPs, future 

research should explore how diverse environmental factors modulate their expression. 

For instance, long-term experiments exposing C. elegans to varying diets or temperature 

conditions could illuminate the dynamic relationships between environmental factors and 

aging-related molecular pathways. Previous studies have shown that dietary restriction 

and temperature changes significantly influence lifespan and stress resistance in 

C. elegans. For example, (Tissenbaum and Guarente 2001) found that dietary restriction 

extends lifespan through a pathway requiring the FOXO transcription factor DAF-16 and 

the NAD+-dependent deacetylase SIR-2.1. Additionally, (Ogg et al. 1997) reported that 

reduced insulin/IGF-1 signaling, which can be influenced by dietary intake, enhances 

thermotolerance and extends lifespan via DAF-16 activation. These studies provide 

specific evidence of how dietary restriction and temperature changes modulate aging and 

stress resistance in C. elegans. 

To complement environmental studies, epigenetic profiling tools such as chromatin 

immunoprecipitation sequencing (ChIP-seq) and whole-genome bisulfite sequencing 

have proven invaluable in revealing how environmental variables reshape the epigenetic 

landscape during aging. These tools provide critical insights into the regulation of ASGs 

and ASPs. ChIP-seq has been used to identify histone modifications associated with 

specific ASG/ASP clusters (De Lima Camillo et al. 2023, Rye et al. 2011), while bisulfite 

sequencing maps DNA methylation changes driven by environmental conditions. 
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Studies in C. elegans have shown that environmental factors like diet and temperature 

significantly impact epigenetic modifications, influencing aging phenotypes. (Li et al. 2021) 

used ChIP-seq to investigate changes in the repressive histone mark H3K9me3 in aged 

somatic tissues, revealing region-specific gains and losses linked to aging. (Jänes et al. 

2018) examined chromatin accessibility dynamics throughout C. elegans development 

and aging, offering valuable insights into the temporal evolution of chromatin states. 

These findings highlight the importance of epigenetic profiling tools in uncovering the 

complex interactions between environmental factors and molecular regulation of aging. 

While these studies have advanced our understanding of aging, they also reveal gaps and 

directions for future research. How specific environmental factors drive targeted 

epigenetic modifications remains unclear. Long-term experiments in ecologically relevant 

settings, such as manipulating diet, temperature, or other environmental variables, could 

provide further insights. Such studies could clarify how environmental factors and 

epigenetic changes interact to influence aging, improving our understanding of the aging 

process. 

 

4.1.5 Aging-related changes explored through transcriptomics and proteomics 

To explore general trends and patterns within the sets of ASGs and ASPs, we performed 

clustering analyses of gene/protein expression trajectories. Our analyses revealed three 

clusters of ASGs and ASPs, each with unique trajectories over time.  

Transcriptomic Cluster - Cluster 1: Exhibited a progressive decline in expression and was 

enriched in processes such as organic acid metabolism (GO:0006082) and muscle 

system processes (GO:0003012). These changes align with reductions in metabolic 

efficiency and muscular function observed during aging (Kirkwood 2005, López-Otín et al. 

2013). Cluster 2: Peaked in expression at mid-life (D24) before stabilizing. Genes in this 

cluster were associated with synaptic signaling (GO:0099536) and gated channel activity 

(GO:0022836), which may play roles in maintaining neural function and adapting to 

cellular stress (Citri and Malenka 2008). Cluster 3: Displayed increased expression until 

D18, followed by a decline and plateau. This cluster was enriched in cell projection 

organization (GO:0030030) and neuron development (GO:0007399), processes 

potentially linked to neural plasticity and longevity (Kaletsky and Murphy 2010). 
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Proteomic Clusters - Cluster 1: Proteins in this cluster increased until D20, then declined 

and stabilized. These were enriched in chromatin organization (GO:0006325), a process 

critical for genomic stability and gene regulation (Kim et al. 2012, Tissenbaum and 

Guarente 2001). Cluster 2: Showed a progressive decline in expression until D22, 

associated with the cytosolic large ribosomal subunit (GO:0022625). This highlights the 

role of protein synthesis and its disruption in aging (Manhas and Rath 2020, Turi et al. 

2019). Cluster 3: Peaked at D20 and was enriched in detoxification (GO:0098754) and 

cellular responses to toxic substances (GO:0097237). These processes are vital for 

mitigating oxidative stress and maintaining cellular homeostasis (Ullah et al. 2024, 

Živančević et al. 2021). 

The interplay between transcriptional and proteomic changes during aging underscores 

the importance of chromatin remodeling, synaptic signaling, and stress response 

pathways in regulating lifespan. Transcriptomic data highlight shifts in gene expression, 

while proteomic analyses reveal functional consequences, including post-transcriptional 

and post-translational regulatory mechanisms. However, alignment between ASGs and 

ASPs is often limited due to factors like mRNA stability, translation efficiency, and protein 

turnover (Liu et al. 2016, Vogel and Marcotte 2012). 

For instance, proteins involved in cell cycle regulation and metabolic pathways exhibit 

delayed or diminished changes compared to their transcriptomic counterparts (Wei et al. 

2015). Late-life stabilization phases (D22) in proteomic data were enriched in chromatin 

remodeling, sensory perception, and mitochondrial function, suggesting these pathways 

are critical for maintaining homeostasis in late life. 

Some findings align with age-related changes observed in higher organisms, while others 

highlight species-specific dynamics. For example, synaptic signaling in ASG Cluster 2 

peaked in mid-life (D20-D24) and stabilized, suggesting compensatory mechanisms to 

maintain neural function despite synaptic decline (Chen et al. 2013, Toth et al. 2012). In 

mammals, synaptic signaling typically decreases with age, leading to reduced plasticity 

and cognitive impairments (Morrison and Baxter 2012). 

Similarly, ASP Cluster 3’s upregulation of detoxification pathways highlights the 

importance of mitigating oxidative stress during aging. These findings align with 

observations in higher organisms, where stress responses are vital for longevity (Tan et al. 

2018). However, the persistent upregulation of stress-related pathways in C. elegans 
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suggests greater resilience compared to mammals, possibly due to the absence of 

neurodegenerative diseases like Alzheimer’s or Parkinson’s (Calabrese et al. 2008). 

Conversely, consistent downregulation of ASGs and ASPs linked to muscle system 

processes, sarcomere organization, and metabolic pathways was observed throughout 

the lifespan of C. elegans. For example, genes related to collagen production and 

mitochondrial function declined significantly after D18, mirroring patterns seen in 

mammals where similar declines correlate with sarcopenia and reduced metabolic activity 

(Demontis et al. 2013, Houtkooper et al. 2011). Late-life stabilization of these pathways in 

C. elegans raises questions about whether this is a conserved feature across species. 

The temporal synchronization of ASGs and ASPs provides valuable insights into aging 

dynamics. Early and mid-life peaks in stress-response genes and proteins suggest active 

compensatory mechanisms, while late-life stabilization indicates a shift to maintenance. 

This pattern aligns with findings in higher organisms, where antioxidant enzymes and heat 

shock proteins peak in mid-life but decline with advanced age (Chandra et al. 2022, Hall 

et al. 2001). 

Genes and proteins linked to synaptic signaling, sensory perception, and detoxification 

pathways in C. elegans show persistent upregulation into late life, reflecting robust 

adaptive mechanisms. This resilience may be due to simpler organismal structures and 

the absence of neurodegenerative decline. In contrast, mammals often exhibit diminished 

compensatory responses with age, leading to cognitive impairments (Hertzog et al. 2008, 

Wong et al. 2021). 

To enhance the accuracy and consistency of multi-omics studies, advanced tools such as 

magnetic bead-based purification systems could improve RNA and protein extraction from 

small samples. Investigating aging-related traits inherited across generations in 

C. elegans offers a promising research direction. Additionally, integrating computational 

models with multi-omics data—including transcriptomics, proteomics, and epigenetics—

may identify key regulatory networks and potential therapeutic targets, such as epigenetic 

regulators and NRF2 activators, to delay aging and extend healthy lifespan (Lewis et al. 

2010, López-Otín et al. 2013). 
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4.1.6 Validation of stable reference genes during aging studies in C. elegans 

Accurate normalization in gene expression studies, especially during aging, requires 

stable reference genes due to physiological and molecular changes that introduce 

variability. Our study expanded on current methodologies by examining C. elegans across 

multiple age stages, genetic backgrounds, and environmental conditions to identify 

reliable reference genes for aging-related analyses. 

Previous studies often focused on specific developmental stages or conditions, such as 

juvenile stages (e.g., L3 larvae) or stress-induced dauer states. (Hoogewijs et al. 2008) 

analyzed gene expression across several developmental and stress-responsive 

conditions, including wild-type adults, dauers, and L3 larvae. However, their work did not 

address mid or late life transitions—critical periods for observing significant shifts in gene 

expression. Our study extends this by specifically analyzing gene expression during early, 

mid and late stages, providing a broader perspective on gene stability across different age 

stages in C. elegans. Although we lacked samples from other time points (due to a lack of 

material left from these time points), we were still able to cover much of the adult C. 

elegans life cycle (D6, D8, D12, D14, D18, D20, and D24), capturing young, mid-life, and 

old-age stages. A limitation of the current study is that the stable reference genes identified 

here are validated only for the age range specified above but their utility as stable markers 

outside this age range has not yet been confirmed. 

Using results from differential expression analyses and normalized read counts, we 

identified stable reference genes based on an evaluation of padj values and %STDEV. 

Seven robust candidates—pmp-3, orc-2, praf-3, aars-2, unc-16, gtf-2F1, and ZK1307.8—

demonstrated consistent expression across the lifespan and diverse experimental 

conditions.  

Our study included genetically diverse backgrounds by analyzing wild-type strains 

alongside mutants with well-characterized aging traits (age-1, daf-2, and isp-1). These 

mutants target key longevity pathways, such as insulin/IGF-1 signaling and mitochondrial 

function, which significantly impact lifespan and stress responses. For example, daf-2 and 

age-1 mutations extend lifespan and enhance stress resistance via activation of DAF-16, 

the FOXO transcription factor homolog (Van Heemst 2010). Conversely, isp-1 mutants, 

which affect mitochondrial function, alter oxidative phosphorylation and energy regulation 

(Akbari et al. 2019, Barbieri et al. 2003). 
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Our analysis revealed that while unc-16 displayed stable expression in daf-2 and age-1 

mutants, pmp-3 showed variability in isp-1 mutants. This highlights the genetic 

background's influence on reference gene performance. A significant aspect of our study 

was evaluating reference gene stability under varying environmental conditions, including 

temperature changes (15°C, 20°C, and 25°C). Our findings confirmed that genes like 

pmp-3, orc-2, and unc-16 maintained stable expression across these temperature shifts, 

making them robust for normalization beyond standard laboratory settings. Our study 

extends the work of (Hoogewijs et al. 2008) by not only validating the stability of reference 

genes in C. elegans under controlled conditions but also incorporating environmental 

fluctuations such as varying temperatures (15°C, 20°C, and 25°C). This allows us to 

assess the robustness of these genes under more ecologically relevant conditions, which 

was not explored in previous studies 

It is very important to check if reference genes stay stable under different environmental 

conditions because even small changes can greatly affect gene expression. Future 

studies could build on this work by looking at how oxidative stress or changes in nutrients 

affect reference genes, making them more useful in a variety of experimental settings. 

Our results provide a reliable way to choose stable reference genes, helping to ensure 

accurate qPCR analyses in aging studies using different C. elegans strains. The 

consistent stability of these reference genes under various conditions shows they are 

suitable for experiments with genetic and environmental differences. Future research 

should also test if the same stable gene sets seen in C. elegans apply to other organisms. 

This could help us better understand how molecular systems remain stable and improve 

the accuracy of gene expression studies in a wider range of biological systems. 

By covering more age stages, genetic backgrounds, and environmental conditions, our 

study improves the accuracy of gene expression normalization and helps reveal shared 

processes that influence aging and stress responses. 

 

4.2 Distinct phases and dynamics of aging in C. elegans 

4.2.1 Plateau phase in transcriptomic and proteomic changes 

The observed stabilization of transcriptomic and proteomic changes in C. elegans post-

D22 suggests a distinct late-life phase characterized by a plateau in aging-related 

biological decline. This stabilization indicates that molecular and physiological changes 
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during aging may not be continuously progressing but may reach a threshold beyond 

which further changes are minimal.  

Our data show that ASGs exhibit distinct expression trajectories that stabilize post-day 22. 

Trajectory analysis identified three major clusters, with Cluster 1 genes showing 

consistent downregulation, Cluster 2 genes peaking around D20-22 before stabilizing, and 

Cluster 3 genes stabilizing after an initial decline (Figure 6). These findings indicate that 

while early and mid-life stages are characterized by significant transcriptomic shifts, late-

life marks a phase of more limited transcriptomic change, consistent with the notion of a 

biological plateau. Similar trends were observed in multidimensional scaling (MDS) plots 

and transcriptome-based vector distance analyses, where the divergence of 

transcriptomic profiles from a young adult reference (D4) plateaued post-day 22 (Figures 7 

and 8). 

This stabilization aligns with demographic studies showing mortality deceleration in late 

life, where age-related change in mortality rates slows as organisms reach advanced ages 

(Vaupel et al. 1998). However, the stabilization observed in C. elegans may differ from 

patterns in higher organisms due to its lack of complex aging phenotypes such as chronic 

diseases and neurodegeneration (Tarkhov et al. 2019). Further comparative studies 

across species could determine whether transcriptomic stabilization reflects a conserved 

characteristic of aging or a feature unique to simpler organisms. 

Proteomic analysis also revealed distinct stabilization patterns, with ASPs clustering into 

three groups. Cluster 1 proteins, primarily involved in chromatin organization, showed 

early increases followed by stabilization post-day 24. Cluster 2, comprising proteins linked 

to ribosomal function and metabolic processes, showed consistent downregulation with a 

plateau post-day 22. Cluster 3, including proteins associated with detoxification, peaked 

in mid-life and stabilized in late life (Figure 10). These results support the notion that 

proteomic changes mirror transcriptomic trends, with stabilization occurring concurrently 

across different gene/protein sets. 

The stabilization of proteomic changes further supports the hypothesis that late-life 

plateaus in expression levels represent a phase of physiological homeostasis rather than 

continued decline. Upon reviewing the available literature, there is limited evidence of 

such plateaus in higher organisms. For example, a study on Drosophila melanogaster 

observed that mortality rates decelerate and eventually plateau in late life, suggesting a 
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stabilization of physiological decline (Mueller et al. 2011). However, the degree of 

stabilization may vary due to species-specific factors, such as metabolic rates and life 

history strategies. 

 

4.2.2 Late-life phase as a biological threshold 

The concurrent stabilization of transcriptomic and proteomic changes suggests that late 

life may represent a biological threshold beyond which the organism's capacity or need 

for adaptive responses significantly declines. This phase reflects a state of functional 

maintenance, where overall expression patterns plateau. Our data show that genes and 

proteins related to synaptic signaling and detoxification maintain stable expression during 

late life. Prior to this stabilization, their expression levels showed an initial increase during 

mid-life stages, with synaptic signaling genes peaking around D18-D20 and detoxification-

related proteins peaking at D20 before plateauing, potentially contributing to the 

preservation of neural and cellular homeostasis as overall expression changes stabilize. 

In late life, a potentially diminished capacity for adaptive responses may stem from the 

organism reallocating resources to maintain fundamental functions. While transcriptomic 

and proteomic changes plateau, certain processes, such as detoxification and neural 

signaling, remain actively maintained. The stabilization of gene and protein expression 

across most processes in late life reflects a broader shift toward prioritizing critical 

functions. This is achieved through more widespread, rather than selective, molecular 

activities aimed at supporting survival, such as clearing accumulated cellular damage or 

maintaining neural system integrity (Santra et al. 2019). 

Similar late-life stabilization phases have been hypothesized in higher organisms, but the 

presence of additional complicating factors, such as chronic inflammation and age-related 

diseases, makes it more challenging to isolate and study these patterns as clearly as in 

simpler model systems (Franceschi et al. 2018). In contrast, C. elegans provides a 

simplified model system, as its aging process lacks chronic diseases and neuro-

degeneration, allowing intrinsic dynamics of late-life stabilization to be studied more clearly. 

Comparative analyses across species, such as between mammals and short-lived model 

organisms, can help elucidate the evolutionary significance and potential conservation of 

this stabilization phase (Ricklefs 1998). 
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Mechanisms such as genome stability, proteostasis, and mitochondrial function are 

central to the process of late-life stabilization, as they help preserve cellular integrity in the 

face of accumulated damage (López-Otín et al. 2013). For example, pathways involved in 

neural signaling and detoxification remain active in late life, likely serving as vital 

responses to mitigate the effects of age-related cellular damage (Tan et al. 2018). Similarly, 

conserved mechanisms such as DNA repair and protein folding may be essential for 

maintaining molecular stability during late life, as they help prevent the accumulation of 

mutations and misfolded proteins that would otherwise disrupt cellular function. Together, 

these processes contribute to the stabilization of the organism's molecular landscape, 

supporting survival by maintaining critical cellular functions despite aging-related decline. 

Comparative studies across species with varying lifespans and aging phenotypes are 

necessary to assess how general late-life stabilization patterns are.  

 

4.2.3 Critical life stages and mid-life activation of regulatory mechanisms 

The mid-life peak in expression of Cluster 2 ASGs and ASPs around D20-24 in C. elegans 

highlights a critical period during which genes linked to synaptic signaling, detoxification, 

and stress responses show increased expression. While these observations suggest that 

such changes may be part of adaptive mechanisms, further experiments manipulating 

these pathways are needed to directly assess their functional impact. Investigating 

whether similar patterns occur across species or are specific to C. elegans could offer 

insights into the potential universality of aging mechanism. 

Trajectory analysis of C. elegans revealed a pronounced peak in Cluster 2 ASGs and 

ASPs around D24, followed by stabilization (Figures 6 A and 10 A). GO enrichment 

analyses identified associations with key biological processes, such as synaptic signaling 

(GO:0099536), detoxification (GO:0098754), and stress-response pathways (Figure 10 B). 

The findings underscore a temporally coordinated response, potentially marking a critical 

adaptive phase to mitigate mid-life stressors and maintain homeostasis. This mid-life 

activation may represent a turning point in the aging trajectory, offering insights into the 

timing of therapeutic interventions. 

Proteins in Cluster 3, associated with detoxification and stress responses, also peaked in 

mid-life, indicating coordinated activation across transcriptomic and proteomic levels. This 

response is likely an adaptive mechanism to mitigate molecular damage, consistent with 
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the onset of age-related functional decline (Liang et al. 2014, López-Otín et al. 2013). The 

stabilization observed after the peak may indicate that compensatory mechanisms have 

reached a functional limit, or it may reflect a plateau in the accumulation of molecular 

damage that no longer requires adaptive responses. Without direct experiments, it is 

difficult to determine whether this is due to exhaustion of compensatory capacity or a shift 

in the need for additional adaptations, potentially setting the stage for late-life stabilization 

of molecular changes. 

The mid-life activation of regulatory pathways in C. elegans aligns with similar phenomena 

observed in higher organisms. For example, in mammals, mid-life is marked by 

heightened activity in stress-response pathways, including heat shock proteins and 

antioxidant enzymes, which protect against protein aggregation and oxidative damage 

(Taylor and Dillin 2011). Some studies suggest that synaptic signaling pathways may be 

upregulated in aging rodents, possibly contributing to cognitive function during mid-life. 

However, more direct evidence is needed to fully support this claim, as the relationship 

between synaptic signaling and cognitive decline in aging rodents remains an area of 

ongoing research (Mattson and Arumugam 2018). These parallels suggest that mid-life 

activation of homeostatic mechanisms is a conserved feature across species, although 

the specific pathways and their timing may differ. 

However, significant differences exist between C. elegans and higher organisms. Unlike 

mammals, C. elegans does not develop complex age-related diseases such as 

neurodegenerative disorders, including Alzheimer’s and Parkinson’s, which significantly 

influence mid-life and late-life molecular trajectories (Zhang et al. 2020). The absence of 

these pathologies may allow for a clearer observation of compensatory regulatory 

mechanisms during mid-life in C. elegans. Furthermore, the organism’s shorter lifespan 

and simpler neural architecture provide a streamlined model for studying aging processes 

without the confounding effects of chronic diseases and prolonged stressor exposures 

that are common in mammals (Jeayeng et al. 2024). These differences underscore the 

advantages of C. elegans as a model system for isolating fundamental aging mechanisms 

while also highlighting the limitations in directly extrapolating findings to higher organisms, 

where the aging process is more intertwined with environmental and disease-related 

complexities (Ruprecht et al. 2024). 
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The mid-life regulatory peak observed in C. elegans offers a pivotal opportunity to 

investigate interventions that can enhance both lifespan and health span. Targeting 

pathways linked to synaptic signaling and detoxification during mid-life through genetic or 

pharmacological modulation could provide insights into potential strategies to mitigate 

age-associated decline. However, it is important to clarify whether these pathways are 

compensatory responses to age-related stress or key drivers of aging processes. If they 

are compensatory, countering them would not be expected to lead to beneficial outcomes, 

making further investigation crucial before therapeutic interventions are proposed. These 

pathways, underpinned by mechanisms like the integrated stress response (ISR) and 

transcriptional regulators such as ATF4, are evolutionarily conserved, emphasizing their 

translational relevance for broader aging research. The capacity of these interventions to 

modulate stress resilience and maintain proteostasis during mid-life supports their 

importance for translational applications in humans, as seen in studies of ISR modulation 

that enhance cognitive function in aged mammals (Derisbourg et al. 2021). 

Further comparative research is necessary to delineate the extent of conservation of these 

mid-life regulatory patterns across taxa. Investigating species with diverse lifespans and 

aging phenotypes could clarify whether mid-life peaks in regulatory activity reflect 

universal aging mechanisms or adaptations unique to certain life history strategies. These 

efforts are critical to contextualize the findings from C. elegans within the broader 

framework of geroscience and develop targeted interventions for improving health span 

across species. 

 

4.2.4 Evolutionary conservation of aging mechanisms 

The late-life stabilization of transcriptomic and proteomic changes observed in C. elegans 

provides insights into aging mechanisms, although further studies across a broader range 

of species are required to determine whether this phenomenon is conserved across 

evolutionary distances. This stabilization, particularly evident in the trajectory analyses of 

ASGs and ASPs (Figures 6 and 10), highlights that aging does not represent a continuous 

decline but instead involves distinct phases. Late-life stabilization has been proposed as 

an adaptive evolutionary strategy, preserving some level of organismal functions 

necessary for survival during post-reproductive stages when evolutionary pressure is 

reduced. This aligns with the concept of "mutation accumulation" and "antagonistic 
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pleiotropy" theories, which suggest a declining selection pressure in later life stages, 

allowing mechanisms that maintain basic functionality to persist. Furthermore, this 

stabilization phase might reflect a conserved biological response across species, as 

similar patterns of plateauing have been reported in mammals (at least with respect to 

age-related change in mortality rate) (Johnson et al. 2019). 

The findings in C. elegans emphasize the importance of studying aging mechanisms 

across diverse species. While the enrichment of pathways like chromatin organization and 

cellular signaling highlights shared aspects of aging biology, their interaction with species-

specific traits requires further exploration. Future studies should explore the molecular 

processes involved in aging by integrating omics data from species with different lifespans 

and aging phenotypes. Longitudinal studies may be challenging, particularly for species 

from which repeated tissue sampling is difficult, but such approaches would offer valuable 

insights into the dynamics of aging. Techniques like live imaging and single-cell 

sequencing could provide high-resolution data on how specific pathways, such as those 

regulating stress responses or protein homeostasis, evolve across species. 

 

4.3 Conclusion  

By employing an extensive series of time points and integrating multi-omics analyses, we 

identified 3686 ASGs and 658 ASPs in C. elegans. One key finding is that transcriptomic 

and proteomic aging in C. elegans follows clear patterns. Early and mid-life stages show 

rapid changes. Later in life, these changes slow down and eventually level off. This late-

life stabilization matches the observed mortality plateaus. It suggests that aging does not 

entail continuous decline but instead includes a phase where biological systems tend to 

stabilize. By identifying this plateau phase in both transcriptomic and proteomic profiles, 

the study highlights critical periods of organismal change vs. stabilization during aging. 

These periods could be important for developing ways to support health during aging. The 

results offer new opportunities to study how to slow down aging and improve health in 

later life. 

This study also validated the stability of reference genes under different conditions, 

including changes in age, genotype and environmental factors. Stable reference genes, 

such as pmp-3, will support robust gene expression studies in C. elegans comparing age 

groups, various genotypes and environmental factors, respectively. 
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Overall, this project improves our understanding of aging and shows the value of studying 

C. elegans as a model organism. The findings may help researchers identify new ways to 

improve health span and extend functional life. Future studies should focus on the late-

life plateau phase to find strategies for delaying aging and keeping people healthy for 

longer. 
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5 Abstract 
 

Aging is a complex biological process marked by a progressive decline in physiological 

function, leading to increased vulnerability for diseases and mortality. While early and mid-

life aging dynamics are well-characterized, less is known about the physiological changes 

that occur in late life. This thesis investigates the dynamics of aging in the model organism 

C. elegans, focusing on whether late life presents a deceleration in age-related changes, 

akin to the mortality plateau observed in many species. Our aim was to characterize 

proteomic and transcriptomic changes in C. elegans across the lifespan, including late life, 

thus contributing to a deeper understanding of the aging process. 

Our methods included RNA-seq and mass spectrometry to profile age-sensitive genes 

(ASGs) and age-sensitive proteins (ASPs). Lifespan assays were used to identify critical 

periods in the aging trajectory, allowing for targeted sample collection in early, middle, and 

late life phases.  

Our transcriptomic and proteomic analyses identified 3686 ASGs and 658 ASPs, 

respectively, that were used to study the kinetics of age-dependent phenotypic change 

across the lifespan in C. elegans. These analyses revealed two distinct phases: an initial 

period of age-related change, followed by a plateau phase in late life as demonstrated by 

a stabilization of changes in ASGs and ASPs expression. This late-life phase is also 

associated with a plateau in mortality rates, suggesting a biological transition where some 

age-sensitive pathways stabilize or even reverse.  

Additionally, we used these datasets to identify genes that feature stability across a range 

of conditions and that may therefore be useful as reference genes in C. elegans. Our work 

identified 7 stable reference genes (pmp-3, orc-2, praf-3, aars-2, unc-16, gtf-2F1, and 

ZK1307.8) that maintain consistent gene expression across various conditions, including 

multiple age groups (days 6, 8, 12, 14, 18, 20, 24), different mutant strains (WT, age-1, 

daf-2, isp-1), and a range of temperatures (15°C, 20°C and 25°C), whereas previous 

studies typically focused on a limited set of time points. 
To our knowledge, these findings represent the first study to systematically demonstrate, 

beyond mere lifespan data, that age-dependent changes follow a dynamic that entails a 

plateau phase in late life, indicating that aging-associated changes stop progressing and 

stabilize at advanced ages. Future studies need to address the generality of this finding 
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by incorporating longitudinal analysis approaches and extending the assessments to 

additional biological systems.  
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