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Kurzfassung 

Der Agrarsektor steht unter wachsendem Druck. Die steigende Nachfrage nach Lebensmitteln 

muss gesättigt und gleichzeitig Umweltschäden begrenzt werden. Hierbei müssen Landwirte 

und die ländliche Bevölkerung ebenfalls bedacht werden. In den aktuellen politischen Debatten 

in der EU wird der Schwerpunkt darauf gelegt, die landwirtschaftlichen Produktionssysteme 

auf hohe Ansprüche an sozialen Wohlstand und ökologische Nachhaltigkeit auszurichten. 

Trotz der verstärkten Konzentration auf die Verbesserung der ökologischen und sozialen 

Nachhaltigkeit fehlt es jedoch an geeigneten Instrumenten zur gemeinsamen Bewertung der 

Leistung in den Bereichen Umwelt und sozialer Wohlstand. Ein wichtiges Instrument, um mehr 

Nachhaltigkeit zu erreichen, sind neuartige Smart Farming Technologien (SFTs). Darüber 

hinaus sind die Auswirkungen von SFTs bisher kaum untersucht worden und müssen besser 

verstanden werden, um sicherzustellen, dass der Einsatz von SFTs zur gewünschten 

Entwicklung beiträgt. 

Diese Dissertation zielt darauf ab, Einblicke in die derzeitige ökologische und soziale Effizienz 

der landwirtschaftlichen Produktion zu geben und das Potenzial von SFT für positive 

Veränderungen auf Betriebsebene in Europa zu analysieren. Zuerst untersuchen wir den Status 

quo der landwirtschaftlichen Produktion in der EU. Wir betrachten eine regionale Perspektive 

und bewerten die miteinander verknüpften ökologischen und sozialen Effizienzwerte in den 

EU-Regionen mithilfe der Data Envelopment Analysis (DEA). Wir liefern empirische 

Erkenntnisse darüber, wie die regionale landwirtschaftliche Produktion in der EU ein 

Gleichgewicht zwischen ökologischer und sozialer Effizienz herstellt, und empfehlen die DEA 

als praktikables Instrument zur Bewertung des Status quo. Zweitens analysieren wir die 

Auswirkungen der SFT auf Betriebsebene, indem wir untersuchen, welche strukturellen und 

verhaltensbezogenen Veränderungen die Technologie hervorrufen kann. Wir folgen der 

gleichen Methodik der Effizienzanalyse wie im ersten Teil, aber dieses Mal studieren wir die 

Auswirkungen der SFT auf Betriebsebene. Konkret bewerten wir die Auswirkungen von 

automatischen Melksystemen (AMS) auf norwegischen Milchviehbetriebe, einschließlich der 

durch SFT induzierten strukturellen und verhaltensbezogenen Veränderungen, die wiederum 

die Umwelteffizienz der Betriebe beeinflussen können. Zum besseren Verständnis der durch 

SFT induzierten Struktur- und Verhaltensänderungen betrachten wir Wirtschaftstheorie und 

die bisherige Forschung zum Thema, um zur Entwicklung eines konzeptionellen 

Bewertungsrahmens beitzutragen. Dieses Konzept kann in zukünftigen Studien zur Bewertung 

der Auswirkungen von SFT auf Betriebsebene verwendet werden, wobei der Schwerpunkt auf 

den durch SFT ausgelösten Struktur- und Verhaltensänderungen in den Betrieben liegt. 

Die Ergebnisse dieser Dissertation liefern wertvolle Erkenntnisse für die nachhaltige 

Entwicklung des europäischen Agrarsektors und die Rolle der SFT bei diesem Wandel. Unsere 

Ergebnisse zeigen, dass die Politik dazu beitragen muss, den Zielkonflikt zwischen 

ökologischer und sozialer Effizienz zu überwinden, um eine nachhaltige landwirtschaftliche 

Entwicklung zu gewährleisten. Damit SFT Teil einer Strategie zur Überwindung dieses 

Zielkonflikts sein können, müssen die durch SFT induzierten strukturellen und 



verhaltensbezogenen Veränderungen besser verstanden und gesteuert werden, so dass SFT eine 

nachhaltige Entwicklung fördert, ohne unerwünschte und nachteilige Auswirkungen zu 

verursachen. 

Schlüsselwörter: Data Envelopment Analysis (DEA), Ökologische Effizienz, Soziale Effizienz, 

Smart Farming Technologien, Agrartechnologie, Strukturänderungen 

 

 

  



Abstract 

The agricultural sector faces growing pressure to meet the increasing demand for food while 

mitigating environmental damage and being fair to farmers and rural populations. Current 

policy debates in the EU emphasise steering agricultural production systems towards achieving 

high social welfare and environmental sustainability. However, despite the increased focus on 

improving environmental and social sustainability, we lack appropriate tools to jointly evaluate 

performance in the environmental and social dimensions. One important tool for reaching 

increased sustainability is novel smart farming technology (SFT). Furthermore, the effects of 

SFT have scarcely been studied and need to be better understood to ensure that using SFT will 

contribute to the desired development. 

 

This dissertation aims to provide insights into the current environmental and social 

performance of agricultural production and explore the potential of SFT to generate farm-level 

change in Europe. First, we examine the status quo of EU agricultural production. We consider 

a regional perspective and assess interrelated environmental and social efficiency scores in EU 

regions using Data Envelopment Analysis (DEA). We contribute empirical insights into how 

regional agricultural production in the EU balances environmental and social efficiency and 

suggest DEA as a feasible tool to assess the status quo. Second, we investigate the farm-level 

effects of SFT, considering what structural and behavioural changes the technology can induce. 

We follow the same efficiency analysis methodology as in the first part, but this time, we 

analyse the effects of SFT at the farm level. Specifically, we assess the effects of Automatic 

Milking Systems (AMS) on Norwegian dairy farms, including SFT-induced structural and 

behavioural change, which, in turn, can affect farms' environmental efficiency. To further 

understand SFT-induced structural and behavioural change, we use economic theory and 

previous literature to contribute a conceptual framework. This framework can be used in future 

studies assessing the farm-level effects of SFT, emphasising the structural and behavioural 

change SFT triggers on farms. 

 

The findings in this dissertation provide valuable insights for guiding the sustainable 

development of the European agricultural sector and the role of SFT in this change. Our results 

show that policy needs to contribute to overcoming the trade-off between environmental and 

social efficiency to ensure sustainable agricultural development. For SFT to be part of a 

strategy to overcome this trade-off, SFT-induced structural and behavioural changes must be 

better understood and managed so that SFT promotes sustainable development without creating 

unwanted and adverse effects.  

 

Keywords: Data Envelopment Analysis (DEA), eco-efficiency, social efficiency, smart 

farming technology, agricultural technology, structural change 
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Chapter 1  
Overview of the thesis 

1.1 Motivation and general research question 

The agricultural sector faces increasing pressure to feed a growing population while mitigating 

environmental damage. To rise up to this challenge, sustainable intensification of agricultural 

production is needed. Sustainable intensification can be defined as a development towards 

increased food production while minimising, or at the least not increasing, environmental 

damage (Caiado et al. 2017; Gadanakis et al. 2015; Lindblom et al. 2017; Weltin and Hüttel 

2019). Alternatively, sustainable intensification can be defined as satisfying the demand for 

food while ensuring environmental sustainability (Bonfiglio et al. 2017). However, achieving 

sustainable intensification is complex due to the many stakeholders involved, multifaced 

uncertainties related to agricultural production, and high environmental and social costs should 

the policy fail to achieve sustainability gains (Firbank 2020).  

In the EU, agricultural policies increasingly focus on jointly improving environmental and 

social sustainability. This is reflected in the current Common Agricultural Policy (CAP) period 

of 2023-27, which positions itself as “a greener and fairer CAP”, emphasising its dual focus on 

improving the conditions for farmers while mitigating environmental impact (European 

Commission 2022). The combined emphasis on environmental and social sustainability is also 

reflected in the recent policy initiative for a strategic dialogue of EU agriculture, which brings 

together stakeholders to contribute policy advice for improved environmental and social 

sustainability (Strohschneider et al. 2024; European Commission 2024a).  
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Smart farming technology (SFT)1  - a more data-driven approach to farming (Wolfert et al. 

2017) - is one important tool to achieve sustainable intensification with the potential to also 

increase social welfare. SFT is becoming increasingly important for agricultural production 

(Storm et al. 2024; Finger 2023). The digitalisation and automatization of agriculture, including 

SFT, are frequently referred to as the Fourth Agricultural Revolution or Agriculture 4.0 (Klerkx 

and Rose 2020; Rose and Chilvers 2018; Walter et al. 2017). This reflects the significant impact 

smart farming is expected to have on the agricultural sector. SFT has the potential to, among 

other things, increase resource use efficiency, reduce labour requirements and lower production 

costs (Duckett et al. 2018; Finger et al. 2019; Martin et al. 2022; Walter et al. 2017). Thereby, 

SFT is expected to improve all aspects of sustainability, i.e., the economic, environmental, and 

social dimension (Finger et al. 2019).  

Despite the increased focus on simultaneously improving environmental and social 

sustainability through policy and SFT, joint performance evaluation in both dimensions is rare. 

Additionally, the effects of SFT are poorly studied. These two research gaps become evident 

in the study by Sparrow and Howard (2021), who show that the social effects of SFT are often 

overlooked in previous research. Furthermore, Sparrow and Howard (2021) state that the actual 

effects of future SFT will not depend on whether farmers use the technology but rather on how 

they use it, implying a need for studies on the realised farm-level effects of SFT.  

Regarding joint evaluations of environmental and social performance, previous research has 

noted the scarcity of studies on this matter. For example, Harrison et al. (2021) discuss the 

myopic focus on GHG emissions when evaluating the effects of carbon mitigation projects in 

livestock farming, criticising previous evaluations for overlooking potential synergies or spill-

overs on other sustainability dimensions. This is in line with the findings by Sparrow and 

Howard (2021) on the omission of social aspects when assessing the effects of SFT. To assess 

environmental and social performance, efficiency analysis can prove useful. Specifically, 

 

1 Throughout this dissertation, we define SFT as a technology with at least one of the features of gathering and providing 

information, enabling for or conducting variable rate application or being a fully automated system, following the definition 

we provide in Chapter 4.  
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efficiency analysis enables accounting for several indicators simultaneously and provides 

insights into units' performance in jointly supporting high environmental quality with high 

welfare (Huppes and Ishikawa 2005). However, previous research has focused on 

environmental and economic performance, while the social dimension was only recently 

quantified (Chambers and Serra 2018; Ait Sidhoum et al. 2020). While these previous 

contributions provide important methodological insights, efficiency scores reflecting 

performance in the agricultural sector on a broader geographical scale and with stronger 

connections to sustainability targets are still lacking.   

Regarding the effects of SFT, it is still not sufficiently understood how farmers use the 

technology on their farms (Klerkx et al. 2019). Further, realised effects of SFT on 

environmental and social conditions in agricultural production are rarely studied. Instead, 

several studies use experimental data or modelling predictions without considering observed 

farm-level outcomes (Finger et al. 2019). Consequently, we lack knowledge of what changes 

SFT might generate on the farm level and, thus, how aggregate adoption will affect agricultural 

practices (Daum, 2021). Particularly, due to the lack of studies assessing the farm-level effects 

of SFT, insights into how SFT affect farm structures and farmers’ decisions are insufficient. 

Understanding the status quo of European agricultural production and what developments SFT 

might spur is crucial for steering agricultural production towards sustainability. To this end, 

this dissertation aims to address two research objectives. First, we assess the status quo to 

provide insights into the current environmental and social performance of agricultural 

production (Chapter 2). Second, we explore the potential of SFT to generate farm-level change 

in Europe (Chapters 3 and 4). Figure 1.1 illustrates how the three main chapters of this 

dissertation contribute to our overarching research aim. 
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Figure 1.1: Illustration of research synthesis 

Source: Own illustration 

As illustrated in Figure 1.1, the overarching aim of this dissertation can be divided into two 

general research objectives:  

1. To assess how well EU regions balance environmental and social efficiency in 

agricultural production and thereby outline paths for sustainable development 

(Chapter 2). 

2. To assess what structural and behavioural change smart farming technology can 

induce and how this affect farms’ environmental performance and development 

(Chapters 3 and 4). 

When addressing the status quo in Chapter 2, we consider a regional level, which is necessary 

for capturing social dynamics and enabling a broad geographical coverage of Europe. On the 

contrary, Chapters 3 and 4 focus on the farm level to capture farmer behaviour and reactions 
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to the novel technology. In Chapters 2 and 3, we use Data Envelopment Analysis (DEA) to 

assess efficiency, highlighting what aspects can be improved (Chapter 2) and how SFT affect 

farm-level efficiency (Chapter 3). Both Chapters 2 and 3 contribute, apart from empirical 

insights, innovative applications of efficiency analysis. In Chapter 4, we use economic theory 

to provide a conceptual framework that can be used as a foundation for studying SFT that is 

not yet widely diffused or still under development.  

Chapter 2 studies the status quo of EU regions’ environmental and social performance, 

improving knowledge of how agricultural production balances these two objectives. 

Specifically, we assess relative performance by computing interrelated scores of environmental 

and social efficiencies (EE and SE). Chapter 2 also provides implications for how EE and SE 

can be improved by considering whether relative efficiency can be improved by less efficient 

regions learning from regions with high joint EE and SE or whether there is an absence of 

regions performing well in both dimensions. The latter scenario, an absence of high-performing 

regions in both EE and SE, would imply that a system shift is required for production to become 

more sustainable in EE and SE jointly. Considering that SFT can increase the efficiency of 

already existing production systems or enable system redesign by creating new farming 

systems and agricultural landscapes (Finger 2023), insights into the status quo efficiency can 

guide the implementation of SFT and other policy interventions to jointly increase EE and SE 

where it is most needed. 

SFT encompasses a wide range of technologies with different readiness and adoption rates. 

Where autonomous technology such as Unmanned Aerial Vehicles (UAVs) are only recently 

being adopted by farmers, other SFTs have been used on farms for decades (Khanna et al. 

2024). For example, Automatic Milking Systems (AMS) are already widely implemented in 

the livestock sector (Eastwood et al. 2019; Martin et al. 2022). The long tradition of using 

AMS, particularly in northern Europe (Jacobs and Siegford 2012), makes it a good case study 

of the farm-level effects of SFT. In Chapter 3, we assess the effects of AMS on farm structural 

and behavioural factors on Norwegian dairy farms, thereby investigating the scarcely studied 
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phenomena of farm-level secondary effects of technology, which we also refer to as SFT-

induced structural and behavioural (S&B) change. Further, we study how the AMS-induced 

structural and behavioural change, in turn, affects farms’ eco-efficiency, focusing on GHG 

emissions (GHG emissions efficiency).  

The findings in Chapter 3 highlight the importance of understanding the processes triggered on 

farms as a novel SFT is adopted. Accounting for such processes is crucial to ensure that the 

novel technology spurs a development towards increased farm sustainability without 

generating adverse or contradictory effects. Previous studies have discussed the effects of 

specific SFTs and summarised these findings to enable conclusions about the general effects 

of smart farming and the robotisation of agriculture (Sparrow and Howard 2021; Martin et al. 

2022). However, to enable evaluations of how SFT can trigger farm-level change once the 

technology is adopted, we need a better understanding of the mechanisms driving S&B change 

and what outcomes this will result in on farms. To this end, Chapter 4 provides a conceptual 

framework contributing to a better understanding of SFT-induced S&B change. 

In the remainder of this chapter, we provide more detail on the studies constituting this thesis 

and elaborate on how each study contributes to the overarching aim and the respective 

objective. In Chapter 1.3, we summarise the findings and conclude, outlining the limitations 

and highlighting the potential for future research that this dissertation invites. Finally, in 

Chapter 1.3.2, we suggest some concrete policy implications that can be derived from the 

results of the included studies. 

1.2 Contribution of the thesis 

In this section, we summarise each chapter of the dissertation. We provide the background to 

each chapter in light of the dissertation’s overarching aim, the methodologies used, and the 

main results. Finally, we discuss how each chapter's main findings contribute to the 

dissertation's aim and objectives. 
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1.2.1 Environmental and social efficiency of NUTS2 regions: identifying opportunities for 

sustainability improvements and necessities for a system change 

 

If smart farming is to reduce environmental pressures and improve social and economic 

conditions as promised (Duckett et al. 2018; Walter et al. 2017), efforts for adoption should be 

focused on where they are most needed. Nevertheless, it has been recognised that productivity 

gains and technologization benefitting environmental aspects do not guarantee improved social 

sustainability (Strohschneider et al. 2024; Rose et al. 2021). Thus, the recent policy debate in 

the EU reflects the need to balance the social and environmental dimensions when formulating 

policies for the development of agricultural production (Strohschneider et al. 2024). Despite 

this focus, we lack the tools to jointly evaluate environmental and social performance. 

Consequently, empirical insights are scarce. To this end, Chapter 2 provides novel insights into 

the status quo of the joint EE and SE of agricultural production in NUTS2 regions in the EU.   

Policies to improve efficiency are more likely to gain public acceptance than policies restricting 

production (Beltrán-Esteve et al. 2017; Kuosmanen and Kortelainen 2005). However, the 

social aspect is often overlooked in efficiency evaluations despite its importance for 

agricultural production and rural communities (Caiado et al. 2017). By evaluating EE and SE 

interrelatedly, we show whether there are trade-offs or synergies between the two, offering 

insights into the status quo and potential development paths. Particularly, we provide insights 

into whether less efficient regions can improve relative efficiency by learning from regions 

with high combined EE and SE. If no region displays high levels of EE and SE, this implies 

that a system shift might be required to overcome this trade-off. 

We use DEA to jointly assess environmental and social efficiency, ensuring comparability 

between the two efficiency scores through an interdependency constraint (Boussemart et al. 

2020; Dakpo and Lansink 2019). DEA requires that the evaluated units are homogenous in that 

they perform similar activities and use similar inputs in similar production environments 

(Dyson et al. 2001). To meet this requirement, we use metafrontiers (O’Donnell et al. 2008). 
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We implement the meta frontiers by grouping the regions based on three different categories: 

main specialisation (whether the region produces the main share of output from livestock, 

arable production or high-value crops), biogeographical region (based on the classification by 

the European Environment Agency (EEA)), and population density (based on a grouping by 

(Bianchi et al. 2020). By grouping the regions, we can consider relative performance within 

the groups and compare performance between groups. As we consider several options for 

grouping, each region is grouped three times and thus receives three scores of EE and SE 

respectively. One important feature of DEA is to assign weights to the different indicators, 

which can take on any positive value. To ensure that no indicator is assigned unreasonable high 

or low weights, we define assurance ranges (Cooper et al. 1999). We use the Agri Sustainability 

Compass (ASC) (European Commission 2024b) to select environmental and social indicators 

to include in the efficiency scores, ensuring the inclusion of indicators which are relevant to 

EU agriculture. 

Chapter 2 contributes to the overarching aim of this dissertation by assessing the joint 

environmental and social efficiency of EU agriculture and thus providing insights into the 

current environmental and social performance of agricultural production. To this end, SFT is 

an important instrument to enable regions to operate with higher environmental and social 

efficiency. Depending on the considered technology, SFT can contribute to improved 

efficiency or a system redesign (Finger 2023).  However, smart farming is also associated with 

social risks, such as increased inequality and changes in employment affecting certain 

individuals (Rose et al. 2021), which further motivates jointly assessing environmental and 

social efficiency to ensure that improvements in one dimension do not come at the cost of the 

other.  

Chapter 2 identifies a trade-off between environmental and social efficiency that persists in all 

groupings. This indicates a need for a system redesign to reach high levels of efficiency in both 

dimensions simultaneously. Additionally, we identify higher heterogeneity in the trade-offs in 

groups specialising in arable crops, Continental and Atlantic regions, and regions with rural 
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and intermediate population densities. This implies that less efficient regions can learn from 

the more efficient regions to jointly increase EE and SE in these groups.  

1.2.2 Evaluating environmental effects of adopting automatic milking systems on Norwegian 

dairy farms 

Chapter 32 consists of an empirical study of the effects of AMS on farms’ GHG emissions 

efficiency. Having assessed the status quo of EU agricultural production on a regional level in 

Chapter 2, Chapter 3 focuses on the farm level, investigating the actual effects of a novel 

technology once implemented on farms. The joint contribution of Chapters 2 and 3 is important 

as they both propose using DEA efficiency analysis to assess current performance (Chapter 2) 

and the effects of technology (Chapter 3). This facilitates comparisons between the 

development needed in the agricultural sector to increase efficiency and the farm-level effects 

generated by new technology. The main motivation for this chapter is that novel technology 

might induce S&B change and that overlooking the effects of such changes can increase the 

risk that novel technology leads to maladaptation (Pörtner et al. 2022). 

AMS represents an important case study, as this is one of the most extensively used smart 

farming technologies. Norway is at the forefront of AMS usage (Vik et al. 2019), which 

motivates our geographical focus. AMS can improve social welfare, and farmers commonly 

adopt AMS to increase their flexibility and, thus, their quality of life (Hansen et al. 2020; Stræte 

et al. 2017). However, research has shown that adopting and using AMS is not only linked to 

changes in farm work and farmer flexibility but also associated with other structural changes 

on farms (Rønningen et al. 2021; Oudshoorn et al. 2012; Vik et al. 2019). To this background, 

it is important to ensure that developments spurred by AMS usage do not couple with 

deteriorated environmental performance. Ideally, AMS can generate joint improvements in 

both environmental and social sustainability.  

 
2 Chapter 3 is published as Martinsson, E., Hansson, H., Mittenzwei, K., & Storm, H. (2024). Evaluating environmental effects 

of adopting automatic milking systems on Norwegian dairy farms. European Review of Agricultural Economics, 51(1), 128-

156. DOI: https://doi.org/10.1093/erae/jbad041. 
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Nevertheless, no previous study has investigated how smart farming can affect farms’ 

environmental performance through changes in farm structure and farmer behaviour. Further, 

the effect of smart farming on farms’ S&B development has received little attention in previous 

literature. To fill this gap, this chapter aims to assess what change AMS can induce on several 

S&B factors and how this affects farms’ GHG emissions efficiency. Specifically, we consider 

a sample of Norwegian dairy farms and include labour per cow, milk per cow, off-farm income, 

number of cows, the share of feed concentrates in the cows’ diet and arable land per milk 

output.  

Alongside the empirical results of the effects of AMS on Norwegian dairy farms, this chapter 

presents a novel methodological procedure for assessing the effects of novel technology on 

farms’ efficiency, accounting for the influence of S&B change. We compute GHG emissions 

efficiency using DEA, following the approach by Kuosmanen and Kortelainen (2005) with 

bootstrapping of the efficiency scores to reduce sample bias (Simar and Wilson 2000). Having 

obtained efficiency scores for each farm, we assess the effects of AMS adoption on farms’ 

GHG emissions efficiency and the included S&B factors. To fully utilise the unbalanced panel 

data and account for staggered adoption and variations in effects over time, we employ a 

machine learning matrix completion method for causal identification (Athey et al. 2021). We 

use a fixed effects regression to assess the association between the GHG emissions efficiency 

and the S&B factors at the farm level. In the final step, we connect the results by multiplying 

the effect of AMS on the S&B factors with the correlation between each factor and the GHG 

emissions efficiency. This procedure allows us to estimate each factor's contributing power to 

the relation between AMS adoption and GHG emissions efficiency.  

Chapter 3 contributes to the second objective of this thesis: to assess how smart farming can 

induce S&B change and affect farms’ environmental performance and development. The 

contribution is twofold: on the one hand, we provide a novel methodological procedure to 

assess farms’ development after adopting a novel technology, specifically accounting for S&B 

change and secondary effects on farms’ GHG emissions efficiency. On the other hand, we 
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provide empirical results regarding the effects of AMS in Norwegian dairy farming. Our 

findings imply that the average effect of AMS on GHG emissions efficiency is small but with 

a large variation, indicating that AMS affect farms heterogeneously. We also identify that the 

S&B change affects GHG emissions efficiency in contradicting ways. This finding underlines 

the importance of understanding what farm-level effects are triggered by technology adoption 

to ensure that technology is used to increase the sustainable development of farms. Through 

these findings, we demonstrate that the effects of technology initially intended to increase the 

social well-being of farmers might generate S&B changes, which, in extension, have 

unintended effects on farms’ environmental efficiency. The insights from Chapter 3 emphasise 

the importance of understanding structural and behavioural change and its potentially 

contradictory and adverse effects on farm sustainability. This sets the scene for Chapter 4, 

where we explore smart farming-induced structural and behavioural change further. 

1.2.3 Conceptualisation of how adopting novel technology induces structural and behavioural 

changes on farms 

In the final chapter of this dissertation3, we provide a conceptual framework of induced S&B 

change generated by smart farming adoption. In contrast to the previous chapters, this chapter 

does not conduct an empirical efficiency analysis. Instead, we expand on the conceptual 

understanding of the farm-level effects of SFT.  Specifically, we build on the notion of induced 

S&B change presented in Chapter 3 to construct a theoretical framework. By conceptualising 

SFT-induced S&B change, Chapter 4 provides a more general understanding of the farm-level 

effects of SFT. We provide a conceptual framework by using economic theory to derive 

mechanisms of change triggered by traits of SFT. Additionally, Chapter 4 contributes a 

literature review to provide examples of how the conceptual framework applies. 

This chapter aims to enhance the conceptual understanding of how novel SFT motivates farm-

level S&B changes in both arable and livestock farming. The conceptual framework applies to 

 
3 Chapter 4 is published as Martinsson, E., & Storm, H. (2025). Conceptualization of How Adopting Novel Technology 

Induces Structural and Behavioural Changes on Farms. Journal of Agricultural and Resource Economics, 1-26. DOI: 

10.22004/ag.econ.356163 
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SFT, which is defined as a technology with at least one of the traits of being autonomous, 

conducting variable rate application (VRA), or gathering and providing information. We 

consider these traits, together with the initial costs and capacity of the technology, as factors 

which can induce S&B change. 

Previous research has thoroughly investigated the adoption determinants of smart and digital 

technologies (Gallardo and Sauer 2018; Michels et al. 2020; Shang et al. 2021). However, less 

attention has been given to the actual effects. After adoption, a SFT might drive farmers to 

adjust their field structures (Sparrow and Howard 2021), expand production and farm size (Vik 

et al. 2019) or reorganise farm labour (Martin et al. 2022). However, the mechanisms triggering 

these changes are poorly conceptualised. Furthermore, previous concepts formulated to study 

the effects of smart farming, such as activity theory (Lioutas et al. 2019) or responsible research 

and innovation (Rose and Chilvers 2018), focus on interactions between actors but do not 

incorporate farm-level S&B adaptations to novel SFT. 

In our conceptualisation, we consider changes in Economies of size (EoSi), Economies of 

scope (EoSc), production and financial risk and increased input use efficiency (triggering 

rebound effects) as drivers of S&B adaptations to novel SFT. We term these drivers as 

mechanisms triggered by features of technology which, in turn, lead to various outcomes of 

S&B change. By connecting technology features to economic theory, we derive processes 

through which novel SFT induces S&B change. Through the literature review, we identify 27 

previous studies where we can derive the mechanisms and outcomes described in our 

conceptual framework. Of these studies, 16 focus on livestock production, while 11 consider 

arable production. 

Together with Chapter 3, Chapter 4 contributes to the second objective of the thesis: Assessing 

how smart farming can induce S&B change and thereby affect farms’ environmental 

performance and development. The framework developed in this chapter can support 

hypothesis formulation and guide research to study the effects of SFT on farms. The framework 

can also be used to model the upscaling of SFT and provide insights into how to steer increased 
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adoption and usage of technology to contribute to sustainable development and sustainable 

intensification.  

1.3 Conclusion 

This dissertation aims to provide insights into the current environmental and social 

performance of agricultural production and explore the potential of SFT to generate farm-level 

change in Europe. We contribute to this aim by, on the one hand, assessing the status quo and 

thus identifying the need for policy and SFT to improve environmental and social efficiency. 

On the other hand, we investigate the effects that SFT will have once it is implemented on 

farms. The studies in this thesis contribute both methodological and conceptual insights, as 

well as novel empirical results. 

In Chapters 2 and 3, we present new applications of efficiency analysis and DEA. Specifically, 

we suggest that efficiency analysis can be a valuable tool in evaluating the performance of 

agricultural production in its ability to jointly provide high environmental quality and social 

welfare (Chapter 2). Further, in Chapter 3, we outline a procedure, including DEA, for 

assessing how novel SFT impacts the environmental efficiency of farms through structural and 

behavioural change.  

In addition to methodological contributions, all chapters in this dissertation enable conclusions 

relevant for policymakers, farmers, technology developers, and researchers looking to steer 

towards sustainable development of European agricultural production and better understand 

the effects of digitalisation and the automatization of farming. Concretely, the results from 

Chapter 2 provide insights into regions' current performance and development potential, either 

through improving relative efficiency or indicating the need for a system change. Therefore, 

Chapter 2 is relevant for policymakers by indicating what steering is required to improve 

sustainability and for technology developers and distributors by providing implications of what 

the technology will need to do and where novel technology can have the largest impact.  
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Chapters 3 and 4 add insights into farm-level effects of SFT, focusing particularly on the S&B 

change the technologies can generate and how this, in turn, can affect farms’ GHG emissions 

efficiency. Specifying the effects of SFT and how it affects farms’ environmental efficiency is 

highly relevant for farmers and policymakers, and the methodological and conceptual 

contributions in these chapters enable future researchers to further expand their knowledge on 

the farm-level effects of SFT.  

While the respective chapters highlight the individual studies' limitations, recommendations 

for future research, and policy implications, we want to dedicate the remainder of this 

introductory chapter to providing some general insights. First, we discuss some limitations of 

the studies and outlooks for future research. Second, and finally, we provide policy 

recommendations.  

1.3.1 Limitations and outlook 

We identify two main limitations of this dissertation which future research needs to address.  

The first limitation relates to our choice of efficiency analysis as the main empirical method, 

which is a relative approach. Thus, we do not consider absolute environmental damage and 

social welfare levels. By assessing efficiency, we provide insights into, on the one hand, 

potential paths of development (Chapter 2) and, on the other hand, realised paths of 

development generated by technology adoption (Chapter 3). Nevertheless, none of the studies 

in this dissertation considers absolute levels of environmental and social indicators. While 

efficiency analysis offers the benefits of being easily quantified (Ait Sidhoum et al. 2022) 

sustainability is more difficult to define, especially on a sub-global level (Dearing et al. 2014). 

Some previous research has integrated efficiency measures with sustainability targets, for 

example, Martinsson and Hansson (2021), but more research is needed in this area.  

To reach targets for sustainable development, it is important to assess the performance in all 

dimensions where decisions regarding sustainable development are made (Lemke and Bastini 

2020). Thus, coupling the results from the efficiency analysis in Chapters 2 and 3 with 
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sustainability targets and thresholds would provide valuable insights into the need for 

agricultural production to change to become sustainable. For example, the results could be 

coupled with the progress towards reaching the CAP 2023-27 targets or the related Sustainable 

Development Goals as defined in the Paris Agreement. Integrating efficiency scores with 

sustainability boundaries at regional and national levels would provide valuable insights into 

whether efficiency improvements will be sufficient to reach sustainability at different levels of 

aggregation or whether other changes in the food value chain will be required. Linking the 

efficiency scores to sustainability could offer insights in line with recent research efforts 

aspiring to provide pathways towards increased sustainability in EU agriculture (Müller et al. 

2024) 

The second limitation of the compiled research in this dissertation is the sole focus on 

agricultural production and the focus on farm-level when assessing the effects of SFT, thereby 

omitting potential market feedback effects. Throughout this chapter, we have discussed the 

need for, and the ability of, smart farming to improve agricultural sustainability. Nevertheless, 

even though farms are an integral part of the food system, other actors and stakeholders must 

be considered when discussing a sustainable transformation of the agricultural sector. Previous 

research has indicated that smart farming will affect social dynamics (Rose et al. 2021) and 

consumer behaviour (Regan 2019). To fully understand the role of smart farming in a 

sustainable transformation of agriculture, the findings in this dissertation should be considered 

in a broader context extending beyond agricultural production. Future research could, for 

example, extend the concept of smart farming-induced structural and behavioural change to the 

consumer side and integrate it into a systems perspective. 

1.3.2 Implications for policy 

We are entering the fourth agricultural revolution, where smart farming is playing an 

increasingly important role. This dissertation investigates the status quo of EU agricultural 

production and explores the potential of SFT to generate farm-level change in Europe. 
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Specifically, following the two objectives defined for this thesis, we can provide at least two 

policy recommendations. 

The first objective of the thesis is to assess how well EU regions balance environmental and 

social efficiency in agricultural production and thereby outline paths for sustainable 

development. Based on the results from Chapter 2, we derive the first policy recommendation: 

Policy recommendation 1: To ensure sustainable agricultural development, policymakers must 

focus on overcoming the trade-off between environmental and social efficiency.  

In Chapter 2, our empirical insights indicate a trade-off between environmental and social 

efficiency, emphasising the importance of policy addressing both dimensions simultaneously 

to overcome this trade-off. SFT could be the way to achieve this, due to the technology’s 

potential to improve both environmental and social conditions (Walter et al. 2017; Finger et al. 

2019) but studies have also pointed to the potential risk of such SFT on the social dimension 

of sustainability (Rose et al. 2021; Eastwood et al. 2019). Therefore, ensuring that SFT is 

implemented and used in a way that jointly improves environmental and social conditions is 

crucial.  

In Chapter 3, we evaluate the effects of AMS on farm-level GHG emissions efficiency. As 

AMS is mainly adopted to improve farmers' social welfare, the effects we identify on 

environmental efficiency further strengthen our case of the dual focus on environmental and 

social effects and emphasise this in the context of SFT. Furthermore, in Chapter 4, we provide 

more details on the mechanisms of smart farming that induce structural and behavioural 

change. This leads to the second policy recommendation:  

Policy recommendation 2: For smart farming to successfully overcome the trade-off between 

environmental and social efficiency, smart farming-induced structural and behavioural 

changes, such as farm expansion, increased intensification, and specialisation, must be 

considered.  
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The S&B changes associated with smart farming need to be managed so that they contribute to 

emphasising the sustainability of aggregate adoption of SFT rather than cancelling out or 

adversely affecting farm- and regional sustainability. Chapters 3 and 4 present the concept of 

smart farming-induced structural and behavioural change, which can support policymakers and 

future research in assessing the effects of technology adoption in the relevant empirical 

contexts.  

In summary, this thesis provides tools in the form of methodological procedures, empirical 

insights, and a conceptualisation to increase the knowledge regarding the effects of Smart 

Farming Technology and the Environmental and Social Efficiency of European agriculture. 
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Chapter 2  
Evaluating efficiency in the environmental 

and the social dimension of EU agricultural 

production 

Abstract. Agricultural production must provide agricultural output as well as social welfare 

while at the same time mitigating environmental damage. It must avoid inefficiencies which 

waste resources or represent forgone opportunities to produce social welfare. In this study, we 

assess how efficiently EU regions turn their economic value of agricultural production into 

social benefits while at the same time minimising environmental damage. We evaluate 

interrelated scores of environmental and social efficiencies using meta-frontiers and data 

envelopment analysis, allowing us to inspect the trade-offs between environmentally and 

socially efficient production. Additionally, we consider the heterogeneity in performance 

between different groups of regions. We find indications that many regions can improve their 

relative efficiency in the environmental and social dimensions by learning from more efficient 

regions. However, we also find a strong trade-off between environmental and social efficiency, 

indicating that a systems redesign might be required to achieve a socially and environmentally 

efficient EU agricultural production. 

Keywords: Data Envelopment Analysis (DEA), Metafrontier, NUTS2 regions, eco-efficiency, 

social efficiency 

 

2.1 Introduction 

Agricultural production faces the challenge of balancing economic and social aspects while at 

the same time limiting environmental damage. In the EU, attempts to mitigate agriculture's 

environmental impact recently led to farmer protests across Europe in 2023-2024. This event 

highlights the importance of agricultural policies promoting synergies between environmental 

regulation and farmer interests (Finger et al. 2024). The need for balancing social and 



Chapter 2: Evaluating Efficiency of EU Agricultural Production  

 

26 

 

environmental dimensions is also reflected in the recent policy debate (Strohschneider et al. 

2024). However, despite this focus, we lack appropriate tools to jointly assess the current status 

of EU regions regarding their social and environmental performance. Additionally, we lack 

empirical insights as to what extent regions succeed in providing high levels of social and 

environmental outcomes jointly or if there is an inherent trade-off in current production 

systems. Identifying the existing trade-offs is crucial as it can indicate where a redesign of 

existing production systems, such as leveraging novel technologies (Finger 2023), might be 

needed to resolve these trade-offs.  

In this paper, we use efficiency analysis to jointly assess the environmental and social 

performance of EU regions at the NUTS2 level. We aim to empirically answer how well EU 

regions balance environmental efficiency (EE) and social efficiency (SE) in agricultural 

production. Additionally, we address the question of to what extent heterogeneity exists in that 

balance among different groups of regions. Answering these questions allows us to provide 

insights into possible strategies for improving environmental and social sustainability. 

Efficiency evaluations provide insights into how society can support a high standard of living 

with a high environmental quality (Huppes and Ishikawa 2005). From a policy perspective, 

efficiency is relevant as policies to improve efficiency are more likely to be accepted in society 

than policies restricting production (Beltrán-Esteve et al. 2017; Kuosmanen and Kortelainen 

2005). The concept of eco-efficiency allows for investigating how environmental damage can 

be decreased for a given production level (Ait Sidhoum et al. 2022). Recent contributions have 

extended the eco-efficiency approach to consider social aspects both at the firm level (Ait 

Sidhoum et al. 2020; Chambers and Serra 2018; Figge and Hahn 2004) as well as the country 

level (Boussemart et al. 2020). However, the literature jointly assessing efficiency in the 

environmental and social dimensions is scarce.  

We assess efficiency using meta-frontier Data Envelopment Analysis (DEA). The meta-

frontier approach (O’Donnell et al. 2008) involves grouping regions into smaller, more 
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homogenous groups. Previous studies using DEA to assess eco-efficiency have largely 

focussed on the farm level (see e.g. Bonfiglio et al. (2017), Gómez-Limón et al. (2012), Stetter 

and Sauer (2022), Martinsson and Hansson (2021), and Ait Sidhoum et al. (2020)) and on 

country level (Vlontzos et al. 2014; Beltrán-Esteve et al. 2014; Beltrán-Esteve et al. 2019). 

Recent contributions have provided regional assessments of agricultural production, including 

Manevska-Tasevska et al. (2021) assessing changes in technical efficiency in Swedish regions, 

Lin and Fei (2015) assessing differences in CO2 performance in Chinese provinces and 

Tekiner-Mogulkoc (2022) assessing changes in agricultural productivity in Turkish regions. 

Following existing studies pioneered by Charnes et al. (1989) and Martić and Savić (2001), we 

apply DEA at the regional level. Considering a regional perspective enables using other data 

sources, such as emissions data (Boussemart et al. 2020; Peiró-Palomino and Picazo-Tadeo 

2019; Camarero et al. 2013; Lin and Fei 2015), which is rarely accessible at a farm level. 

Additionally, to reach policy goals, it is important to assess efficiency on the levels of 

aggregation where decisions regarding sustainable development are made (Lemke and Bastini 

2020). 

Our study is the first to contribute an EU-wide regional efficiency assessment combining SE 

and EE. Based on the results, we can identify potential paths for sustainable development.  

Particularly, we can gain insights into whether there is potential for improving relative 

efficiency by learning from better-performing regions or whether there is a need for a system 

redesign to enable higher combined EE and SE. Identifying a need for system redesign is 

particularly relevant concerning smart farming and digital technology as these come with the 

promise to decrease environmental pressures (Walter et al. 2017; Storm et al. 2024). 

Specifically, smart farming decreases environmental damage by increasing efficiency, 

substituting away from harmful inputs, and redesigning the production system (Finger 2023). 

However, the technology will also have social impacts (Rose et al. 2021). An additional 

contribution of the paper is that we base the selection of the indicators to measure 

environmental and social outcomes on the recently developed Agri Sustainability Compass 
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(ASC) (European Commission 2024b). The ASC contains key indicators for sustainability in 

EU agriculture that are crucial for policy assessment. Using the same indicators in our 

assessment increases the policy relevancy of our results.  

The remainder of this paper is structured as follows: In Section 2, we provide our conceptual 

framework. Section 3 outlines the indicators included in the analysis derived from the ASC. 

Section 4 explains our methods. As DEA is a data-driven method, we consider it beneficial to 

first present the indicators, followed by outlining the details of the methods, as some 

methodological considerations (e.g., how to specify the assurance ranges) will require 

knowledge of the included indicators. Section 5 presents and discusses the results. In section 

6, we conclude. 

2.2 Conceptual framework 

We conceptualise efficiency as a necessary condition for sustainability, where inefficient 

regions are unsustainable as they can mitigate environmental damage or increase social welfare 

by increasing their efficiency. However, efficiency is not a sufficient condition for 

sustainability, as it merely considers relative levels of damage and benefits. Sustainability, 

however, is absolute and conceptualised by e.g. Rockström et al. (2009) and Steffen et al. 

(2015) as the planetary boundaries and Raworth (2012) as the Safe and Just Operating Space. 

Nevertheless, neither of these concepts provides guidance on achieving sustainable 

development (Biermann 2012) and defining environmental boundaries at a lower scale of 

operation is complex (Dearing et al. 2014). To this end, eco-efficiency can indicate how current 

operations are making the most of the available resources to produce output and show whether 

mitigation can be achieved by improving efficiency (Caiado et al. 2017).  

Our approach contributes novel insights into how well regions balance EE and SE. From this, 

we aim to derive conclusions about potential pathways for improvements. We illustrate our 

conceptual approach in Figure 2.1.  
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Figure 2.1: Illustration of the conceptual approach 

Note: Own illustration 

Assume we have assessed regions’ relative SE and EE performance, with ranges between 0 

(least efficient) to 1 (most efficient). As shown in Figure 2.1, we can plot EE along the x-axis 

and SE on the y-axis. The highest performance in both dimensions would be achieved in the 

top right corner. The shaded areas represent two examples of how the population of regions 

could potentially be distributed, illustrating different pathways for improvement. Distribution 

“A” shows a scenario with a strong trade-off between SE and EE and low heterogeneity in 

deviations from this trade-off. In this scenario, no region achieves high SE and EE jointly. This 

would imply little potential for improving joint SE and EE within the current production 

systems, indicating a need for system redesign. Distribution “B”, in contrast, illustrates an 

example of high heterogeneity in the trade-off between SE and EE, where some regions achieve 

high SE and EE jointly. This implies a larger potential for units performing poorly in the EE 

and SE dimensions to learn from more efficient units. Hence, the width of the distributions A 

and B indicate the potential to improve efficiency by learning from other regions in the sample 

or using technology already used by other regions. Arrow C shows how much even the best-

performing units in the sample would need to develop beyond what is observed with the current 

practices, thus indicating additional needs for system changes. 
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2.3 Deriving indicators from the Agri sustainability compass 

The ASC builds on the data in the Agrifood Data Portal and the indicators are selected to 

represent key challenges in EU agriculture and the progress in these challenges over time 

(European Commission 2024b). Most of the indicators in the ASC are also part of the CAP 

indicators, which help assess the performance of CAP 2023-27 and EU member states’ 

strategic plans of how to reach the CAP objectives. Figure 2.2 shows the ASC, outlining the 

indicators included in our analysis in red.  

 

Figure 2.2: Illustration of the indicators included from the Agri. Sustainability Compass 

(European Commission 2024a). 

Note: The highlighting of the indicators included is our own. 

To follow the ASC, we use national indicators where regional data is unavailable. The 

indicators measured on a country level are indicated in Table 2.1. To benchmark the 

environmental and social performance towards production, we consider net value-added per 

UAA, defined as total output minus intermediate consumption and fixed capital consumption 

per UAA. Thus, the efficiency scores reflect a region’s ability to minimise environmental 

damage and maximise social welfare given the net value added per UAA.  
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In our analysis, we consider 147 NUTS2 regions of 181 EU countries observed in 2020. Some 

regions are omitted due to a lack of data. Most significantly, there is missing data on economic 

accounts, mainly for Italy and Poland, that must be dropped. In other cases, missing data can 

be imputed. The handling of missing data is shown in Appendix 3. Further, to obtain a more 

homogenous sample, we omit regions based on two criteria: if the region is geographically 

outside of Europe and if the region produces less than 200 million EUR of agricultural output 

in 2020. Table 2.1 displays descriptive statistics for our dataset. 

Table 2.1: Descriptive statistics 

Indicator Min Mean  Max SD 

N = 147     

Net value-added (thousands of EUR / UAA) 0.10 0.94   6.63  0.10 

Environmental indicators     

GHG (tonnes / UAA) 0.66 3.04 13.23  2.27 

Share of conventional farms (% UAA) 0.62 0.92 0.99 0.07 

Inverse Shannon diversity 0.011 0.49 1.44 0.21 

Ammonia (kg / ha) (Country-level) 7.50    23.64  58.50  13.08 

Pesticide (Harmonised risk indicator 1) (Country-

level) 

36.00    65.73   137.00  17.48 

Nitrate (% of groundwater with high nitrate 

concentrations, >50mg/l) (Country-level) 

0.90    16.22  26.70 7.52 

Social indicators     

Female farmers (% of total) 0.02 0.14  0.41 0.09 

Young farmers (<35 / >65) 0.07 0.86 7.21 1.01 

Share of fully educated farmers (% of total) 0.01 0.35 0.92 0.24 

Net value added / AWU (thousands of EUR) 0.12   2.04 8.94  1.50 

Antibiotics (inverse of g/animal) (Country-level) 1.00 * 39.61 73.28  19.26 

Note: *Manually imputed to avoid zero-values. UAA: Utilised Agricultural Area. AWU: Annual 

Working Unit. 

2.3.1 Environmental indicators 

We formulate six indicators from the nine in the ASC, excluding the bird’s index due to a 

substantial lack of data and variations in methodology between countries. Instead, we consider 

biodiversity indirectly captured through crop diversity and other measures such as intensity, 

 
1  Austria, Belgium, Bulgaria, Croatia, Czechia, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, the 

Netherlands, Portugal, Rumania, Slovakia, Spain, Sweden 
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nitrates, and pesticides. Furthermore, we only include one GHG-emission indicator, as the 

efficiency scores are already measured in relative terms. Additionally, we capture intensity 

indirectly through the eco-efficiency scores by relating farms’ environmental indicators to their 

economic performance. The more intensively a farm uses inputs generating GHG, ammonia, 

pesticide and nitrate relative to the value it produces, the lower the EE. This section provides 

further information on the environmental indicators we include in our analysis.  

Crop diversity 

Crop diversity is crucial for improving soil quality and enhancing properties such as pH, 

organic carbon content, and water retention (Feng et al. 2020). The ASC defines crop diversity 

as the proportion of farms growing at least three different crops, but regional data is 

unavailable. Instead, we use Eurostat data to assess the utilized agricultural area (UAA) for 

each crop. To quantify the benefits of crop diversification, we apply the Shannon index, similar 

to Gómez-Limón et al. (2012) and Sipilainen and Huhtala (2013). We focus on the inverse of 

this index, subtracting the maximum value from the value assigned to each region. This method 

yields a metric where a higher score indicates lower crop diversity. The region with the highest 

Shannon index receives a score of zero, which we replace with the second lowest value to meet 

the positive value requirement of DEA. 

GHG emissions  

EU agricultural production is responsible for about 13% of total GHG emissions, where the 

main source of GHG emissions arising in agriculture are from enteric fermentation and soils 

(EEA, 2023). By formulating our indicator as total GHG emissions per UAA, we ensure 

alignment with the value indicator towards which we benchmark performance. We use data 

from the European Database for Global Atmospheric Research (EDGAR) and include GHG 

emissions from soil, manure and enteric fermentation. EDGAR provides indicators of sector-

specific GHG-emissions using data from international statistics and scientific methods to 

estimate emissions on a country- and NUTS2 level (Crippa et al. 2021). 
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Organic farming 

There are EU targets to increase the share of organically farmed UAA to up to 25% by 2030 

(European Commission 2021). To reach this target, the CAP 2023-27 provides financial 

support for organic farming through rural development commitments and eco-schemes 

(European Commission 2022). In the ASC, the indicator for organic farming is defined as the 

share of the area farmed under organic farming. Data is available on a NUTS2 level through 

Eurostat. To formulate an indicator of environmental damage generated from a lack of organic 

farming, we consider the indicator as the share of conventionally farmed areas relative to the 

total UAA in an area. Thus, the higher the share of conventional farms, the larger the 

environmental damage. 

Ammonia, Nitrates and Pesticides 

Three indicators are not available on a NUTS2 level. Thus, we include these on a country level. 

These indicators are Ammonia emissions, Nitrates and a Harmonised pesticide risk indicator. 

The ASC includes the amount of total ammonia emissions from agriculture. To be consistent 

with our EE framework, we consider ammonia emissions per UAA using data from Eurostat. 

The ASC nitrate indicator is formulated as an index calculated by taking the average nitrogen 

per litre groundwater from 2000-2002. In our assessment, we want one value to reflect the state 

in 2020 and thus deviate from the ASC formulation to achieve this. We consider levels of 

nitrates in groundwater reported at the end of the Nitrates Directive Reporting period 7 (2016-

2019), where nitrates are defined in 4 different classes (from high to low concentrations). We 

use % of high concentrations (>= 50ml/l) as the indicator. Finally, to account for pesticides, 

we use the harmonised risk indicator for pesticides provided by Eurostat, which is the same 

indicator included in the ASC.  

2.3.2 Socio-economic indicators 

By benchmarking the social indicators towards net value added per UAA, we consider that 

regions with higher value tend to have higher social welfare and that regions with higher social 
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welfare are often more productive agriculturally. Specifically, we assume that increased net 

value added per UAA is associated with improvements in generational renewal, gender 

balance, farmer education, reduced antibiotic usage, and higher income per Agricultural 

Workforce Unit (AWU).  

Farmer characteristics: Training, gender and age 

In the CAP 2023-27, targets are formulated to increase training among farmers, improve 

generational renewal and increase gender equality among farm managers (European 

Commission 2022). The EU CAP 2023-27 directs funds to support young farmers and to 

improve the gender balance in farming (European Commission 2022). Data on these indicators 

are available on a regional level in the Eurostat database. We consider the share of female farm 

managers, the share of farmers with full agricultural education and the ratio of young farmers 

(<35) to farmers over 65 in our SE assessment. (Zagata and Sutherland 2015) previously used 

the age-ratio indicator to capture the issue of an ageing farming population. 

Antibiotic usage 

Antibiotic usage can lead to resistance and, thereby, a lack of health treatment options in 

humans and animals (European Commission 2024b). Besides affecting human health, 

antibiotic usage is related to animal welfare, where high animal welfare is associated with low 

antibiotic usage (Nunan 2022). The EU farm-to-fork strategy specifies the target to decrease 

the usage of antibiotics by 50% in 2030 compared to 2018 (European Commission, 2020). We 

formulate an indicator where lower usage of antibiotics indicates higher social welfare. We use 

the same data as the ASC on a country level provided by the European Medicines Agency 

(EMA), considering grams of antibiotics (except tablets) per livestock unit. To obtain an 

indicator where a higher value indicates higher welfare, we subtract the value for each country 

from the maximum value in the sample. To avoid zero values, we add one to the country with 

the highest antibiotic usage per LU (Poland) to account for the fact that this country delivers 

low welfare from mitigating antibiotic usage per animal.  

https://eur-lex.europa.eu/resource.html?uri=cellar:ea0f9f73-9ab2-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF
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Poverty: Income per annual working unit (AWU) 

Poverty is a societal issue especially prevalent in rural areas, and low income from farming 

poses a high risk of poverty and social exclusion (Augère-Granier 2017). The ASC displays 

statistics over the percentage of the population living at risk of poverty, showing that poverty 

has decreased over time but that there still is a gap between poverty in rural areas and the full 

society. However, rural poverty is not solely attributable to agriculture but other societal 

structures. Thus, to account for agricultural production’s contribution to mitigating poverty, we 

consider the net value added per annual working unit (AWU) employed in agriculture using 

data from Eurostat on a NUTS2 level. To ensure a fair comparison between countries, we adjust 

the income to the purchasing power in each country using purchasing power parity (PPP2). 

2.4 Method 

To assess EE and SE, we use DEA to evaluate two separate but interrelated efficiency models 

- one to assess environmental efficiency (EE) and one to assess social efficiency (SE). The EE 

model is input-oriented, whereas the SE model is output-oriented. To represent the relation 

between environmental pressures and value, we can use the formulation by Kuosmanen and 

Kortelainen (2005) to formulate the damage-generating technology set as T(z) = {(Z, y); Z can 

produce y} assuming n = 1, 2, …, N regions and where Z is a vector of environmental damage 

and y is the output. Defining environmental damage as inputs used in the production of 

conventional output is common in the literature (Kuosmanen and Kortelainen 2005; Gómez-

Limón et al 2012; Martinsson et al. 2023). Similarly, we formulate a welfare-generating 

technology set as T(s) = {(y, S); y can produce S} where S is the social welfare generated 

through the production of y, the net value added per UAA. T(s) reflects that the agricultural 

 
2 We use the comparative price levels within the EU 2020 = 100. The comparative price levels are the ratio between PPP and 

the market exchange rate for each country. If the value is higher than 100 the country is expensive, if the value is lower than 

100 the country is cheap. For most EU-countries, the PPP shows how many Euros one need in that country to maintain the 

purchasing power of one Euro in the EU on average. Nevertheless, some countries in the EU have not adapted the Euro as 

their national currency. For these countries, we first adjust the PPP to be expressed in Euro by multiplying the PPP with the 

exchange rate of the domestic currency in 2020. 
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sector provides social welfare on a regional level through the production of agricultural goods. 

The regions providing the highest social welfare relative to the level of net value added per 

UAA are operating with the highest SE. Previous literature has included social welfare 

indicators as outputs in a DEA framework (Puggioni and Stefanou 2019; Chambers and Serra 

2018). Ait Sidhoum et al. (2020) include social indicators both on the input and output sides. 

To ensure comparability between EE and SE, we use interdependency constraints (Boussemart 

et al. 2020; Dakpo and Lansink 2019; Kapelko et al. 2021) by benchmarking both 

environmental and social performance towards value added per UAA, denoted y in the 

technology sets. 

We represent DEA in a ratio-form (Coelli et al. 2005; Kuosmanen and Kortelainen 2005). The 

weights are denoted w and u for the EE and SE models respectively assuming m = 1,…, M 

different environmental pressures and k = 1,…, K different social welfare indicators: 

max
𝑤

𝐸𝐸𝑛 = 
𝑉𝑛

𝑤1𝑧𝑛1+⋯+𝑤M𝑧𝑛𝑀
  

s.t. 

𝑉1

𝑤1𝑧11+⋯+𝑤M𝑧1𝑀
≤ 1  

…            (2.1) 

𝑉𝑁

𝑤1𝑧𝑁1+⋯+𝑤M𝑧𝑁𝑀
≤ 1  

𝑤1, … , 𝑤M  ≥ 0  n = 1, …, M 

 

max
𝑢

𝑆𝐸𝑛 = 
𝑢1𝑠𝑛1+⋯+𝑢K𝑠1𝐾

𝑉𝑛
  

s.t. 

𝑢1𝑠11+⋯+𝑢K𝑠1𝐾

𝑉1
≤ 1  

…            (2.2) 

𝑢1𝑠𝑁1+⋯+𝑢K𝑠𝑁𝐾

𝑉𝑁
≤ 1  

𝑢1, … , 𝑢K  ≥ 0  k = 1, …, K 
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𝑉𝑛 is the net value added per UAA for region n and  𝑧𝑛m and 𝑠𝑛kare the environmental damage 

k and the social welfare m for region n. Equations 2.1 and 2.2 optimise the efficiency by finding 

weights which maximise the eco-efficiency of unit n considering M different environmental 

pressures (Equation 2.1) and K different social welfare indicators (Equation 2.2). We conduct 

the analysis in R. 

Additionally, we consider metafrontiers and weight restrictions. First, we use metafrontiers to 

split the full sample of regions into smaller but more homogenous subsamples. Second, we 

consider weight restrictions in the form of assurance ranges3 to prevent some indicators from 

being assigned unreasonably high or low weights. The following subsections elaborate on the 

model additions. 

Finally, we address the issue of outliers. We use super efficiency for outlier detection (Banker 

and Chang 2006), enabling us to include the same weight restrictions as applied in the analysis.4 

We consider units with an efficiency score higher than the third quartile added to 1.5 times the 

interquartile range (Q3-Q1) as outliers (Öttl et al. 2023). We categorize extreme observations 

into two groups: outliers and "special cases." Outliers are regions with super efficiency that fall 

outside a specified range in all groupings. We identified 11 outliers (1 in EE and 10 in SE), 

which are excluded from further analysis. "Special cases" are regions considered outliers in 

some groupings but not others, likely due to unique conditions or exceptional management 

strategies. Their performance is relevant but not directly comparable to other regions in the 

dimensions where they are classified as outliers. We omit these special cases from analysis in 

one dimension and then assess their efficiency in the other dimension. 

 

3 What we in this paper refer to as “Assurance ranges” are in previous studies called “Assurance regions”. We use the term 

ranges here so as not to confuse it with NUTS2 regions. 

4 Previous research points to that super efficiency is a useful method for outlier detection, but that it might not provide 

consistent ranking of units when assessing efficiency (Banker, Chang, and Zheng 2017; Banker and Chang 2006). Thus, we 

use super efficiency to detect outliers, but consider traditional DEA bounded between 0 and 1 when assessing the efficiency 

scores. 
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2.4.1 Metafrontiers to increase sample heterogeneity 

DEA requires that the evaluated units perform similar activities and use similar inputs in similar 

production environments (Dyson et al. 2001). We use metafrontiers to create more 

homogenous groups of regions with similar exogenous conditions (O’Donnell et al. 2008). The 

metafrontier methodology involves splitting the full sample into subsets of more homogenous 

units (O’Donnell et al. 2008). A meta-frontier is estimated considering all units in the sample, 

enveloping the group frontiers (O’Donnell et al. 2008).  The group frontiers enable us to better 

capture inefficiency arising from management and policy rather than exogenous conditions and 

how the metafrontier envelops the group frontiers. Figure 2.3 illustrates meta- and group 

frontiers.  

 

Figure 2.3: Illustration of the metafrontier 

Note: the illustration is based on Bianchi et al. (2020) and Beltrán-Esteve et al. (2014).  The meta-

frontier, illustrated as the solid line, envelops the group frontiers. G is inefficient and belongs to the 

same group as A, B and C. 

We face several options of grouping regions. For example, Bianchi et al. (2020) grouped 

regions based on population density. Halkos et al. (2015) and Czyżewski and Kryszak (2023) 

grouped regions based on the country in which they are located. Farm-level evaluations have 

grouped farms based on different modes of production, such as mountain and traditional plain 
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olive farms (Beltrán-Esteve et al. 2014) or conventional and organic farming (Beltrán-Esteve 

et al. 2017; Aldanondo-Ochoa et al. 2014). Ideally, we would split our regions into sufficiently 

large groups where the regions face the same conditions for producing efficiently. In such a 

grouping, inefficiency would only result from differences in, not exogenous differences. 

However, such a grouping rarely exists. Instead, we analyse three groupings based on main 

specialization, population density, and biogeographical zone. Table 2.2 presents an overview 

of these groups and their observations. 

Table 2.2: Overview of grouping 

 Criteria n 

Specialisation More than 50% of total agricultural value is derived from livestock. 46 

 More than 50% of the value derived from crop production is 

attributable to arable crops. 

60 

 More than 50% of the value derived from crop production is 

attributable to high-value crops. 

41 

Population* Rural 64 

 Intermediate 57 

 Urban 23 

Climate** Continental 65 

 Atlantic 42 

 Mediterranean 26 

Note: *Typology from Bianchi et al. (2020); **Biogeographical zones from EEA 

2.4.2 Weight restrictions 

Efficiency is determined by optimising the weight parameters w and u in the EE and SE 

assessments, respectively (Equations 2.1 and 2.2). Determining weights within the model is 

often considered a strength and a weakness of DEA (Kuosmanen and Kortelainen 2005; 

Theodoridis and Ragkos 2015; Thompson et al. 1990). The drawback is that some indicators 

can get weighted unreasonably high, while others receive weights close to zero. We want to 

avoid that some regions can obtain high efficiency by solely focusing on one environmental or 

social aspect while ignoring the other dimensions. To prevent this, we specify a lower and a 
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higher boundary, an assurance range, which each weight can take on, relative to the weight of 

a benchmark indicator (Podinovski and Thanassoulis 2007).  

When restricting weights in DEA, the indicators should be defined in similar units (Sarrico and 

Dyson 2004). We follow (Soteriades et al. 2020) and divide each indicator by its standard 

deviation. To ensure that this standardisation results in weights on the same scale assigned to 

the pressures and social welfare indicators, we inspect that no weights stand out in size when 

using standardized variables before applying the weight restrictions.  

We specify the assurance ranges to be between 0.1 and 2 for both EE and SE. This means that 

no pressure (welfare indicator) can receive a weight less than 0.1 or more than 2 times the 

environmental pressure (social welfare indicator) we specify as the benchmark. We consider 

the indicator with the highest and most non-zero weights, without any weight restrictions, as 

the benchmark indicator. For EE, this is GHG/UAA; for SE, this is income per AWU. A more 

detailed description of the procedure to set assurance ranges together with a robustness check 

is available in Appendix 2.  

2.5 Results and discussion 

In this section, we present and discuss the results. First, we discuss the outliers and the special 

cases, followed by the meta-efficiency and how the different groups compare in their efficiency 

performance. Finally, we discuss the within-group heterogeneity. 

2.5.1 Outliers and special cases 

Before assessing efficiency, we test the sample for outliers and 'special cases' (Table 2.3). The 

last column shows the number of regions without special cases and outliers.  We identify 11 

outliers. We also consider a region as an outlier if it is excluded from the biogeographical 

grouping (as is the case for regions in Boreal, Pannonian and Alpine areas) and detected as an 

outlier in the two other groupings.  
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Table 2.3 Outliers and special cases 

Group Special cases in EE Special cases in SE Incl. units 

Livestock 3 (NL12, NL31, ES11) 4 (SK03*, FRI2, AT32*, FRC2) 43 

Arable Crops 4 (BE31, FRE1, SE22, HR02) 5 (SK04*, FI1C,  SE12*, FRF3, 

BG41, BG34) 

56 

High-value 

Crops 

1 (NL33) 5 (HR03, FRK2, FRM0, RO22, 

ES43) 

36 

Urban 1 (NL33) 3 (CZ02, FR10, EL30) 20 

Intermediate  3 (PT15, FRL0, NL34) 4 (FI1C*, SE12*, BG41, SE23) 50 

Rural 6 (EL65, EL61, EL52, EL63, 

EL53, ES11) 

8 (SK04*, SK03*, HR03, FRI2, 

AT32*, FRF3, FRC2, BE34) 

57 

Continental 7 (DEB3, SE22, FRF1, BE33, 

FRJ1, DEA1, HR02) 

4 (FRI2, FRF3, BG41, FRC2) 59 

Atlantic 5 (NL33, NL32, FRL0, NL42, 

NL23) 

1 (FRJ2) 37 

Mediterranean 0 2 (HR03, ES43) 25 

Total   147 

Note: * These regions were identified as outliers when grouped on specialisation and population but 

were not included in the grouping on biogeographical conditions. The underlined regions are the 

outliers.  

The only outlier in EE is NL33, and the outliers in SE are SK03, SK04, FRI2, AT32, FRC2, 

FRF3, BG41, HR03, FI1C and SE12. NL33 (South of Holland) has a very high agricultural 

value per UAA in our dataset, which is more than double compared to the regions with the 

second highest value for this indicator. This is likely what causes NL33 to come out as an 

outlier.  

The outliers in SE are all among the regions with the lowest value per UAA. Thus, these regions 

benefit because their social sustainability indicators are related to a very low value per UAA. 

Additionally, AT32, BG41, and HR03 have a high share of female farmers, and FRC2, AT32, 

and FRF3 have among the youngest populations farmers. SK03, SK04, FI1C, SE12 and AT32 

are omitted from the grouping of biogeographical zones as they belong to zones with only a 

small number of other observations and are indicated as outliers in the two other subsets. In 

Appendix 3, we provide Figures to illustrate these statements. 
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2.5.2 Metafrontier efficiency 

In the meta-frontier, displayed in Figure 2.4, efficiency is calculated under the assumption of 

equal operating environments in all regions in the sample (Bianchi et al. 2020). We observe a 

substantial trade-off between regions with high EE and SE. This result shows that under the 

assumption of equal operating environments across the sample of EU NUTS2 regions, no 

region is achieving high efficiency in both EE and SE.  

 

Figure 2.4: Distribution of the efficiency scores in the full sample  

Note: EE on the X-axis and SE on the Y-axis 

2.5.1 Group efficiency 

The group efficiency adheres to the assumptions in DEA of comparable units and allows us to 

evaluate how more homogenous subsets of EU regions balance EE and SE. By comparing 
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group performance to the overall sample, we identify strengths and weaknesses, providing 

insights for improving sustainability. Before analysing results, Figure 2.5 illustrates how 

differences between meta-efficiency and group efficiency can be interpreted, with arrows 

indicating performance shifts. Figure 2.5 serves as a foundation for analysing the results in 

Figure 2.6. 

 

Figure 2.5: Illustration of the interpretation of different shifts compared to the meta efficiency   

Note: A and B illustrate the direction of the shift, while C and D illustrate the magnitude of the shift.  

A: Such a group would constitute the most socially efficient regions in the full sample. 

B: Such a group would constitute the most environmentally efficient regions in the full sample. 

C: Such a group faces relatively less beneficial exogenous conditions (there is a large gap between the 

group- and the meta-frontier, as illustrated with the distance G´G´´ in Figure 2.3). 

D: Such a group faces relatively more beneficial exogenous conditions (there is a small gap between 

the group- and the meta-frontier, as illustrated with the distance G´G´´ in Figure 2.3). 

Figure 2.6 illustrates the efficiency scores resulting from the grouping (blue) and the meta-

efficiency scores in Figure 2.4 (light grey). We highlight the regions included in each group in 

black. By comparing the meta efficiency (the black dots) to the group efficiency (in blue), we 
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illustrate how each region improves its relative performance compared to a smaller group of 

homogenous regions rather than the entire sample. The grey area in Figure 2.6 displays the 

special case regions assessed separately and only in one dimension.  

 

Figure 2.6: Metafficiency scores compared to the different groupings. 

Note: The dotted lines illustrate the difference between the meta frontier (black dots) and the group 

frontier performance (blue dots). The full lines indicate NUTS2 IDs where the observations are too 

close for the name to be listed next to them for clarity.  

Our research aim is to answer how well EU regions balance EE and SE in agricultural 

production. Figure 2.6 shows that the relation between EE and SE varies, but the trade-off 
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persists in all groups. In the following sections, we discuss the differences between group 

performance and meta-efficiency displayed in Figure 2.6, followed by an analysis of the within-

group efficiency.  

2.5.2 Differences between groups 

In Figure 2.6, the livestock group shift horizontally, indicating that these regions dominate the 

SE frontier but that no livestock region is on the EE frontier. This implies that given the 

grouping based on specialisation, there is a difference in the ability of livestock regions and 

crop regions to produce efficiently; the livestock regions have better capacity in the SE 

dimension, and the crop regions, particularly the high-value crops, have better capacity in the 

EE dimension. Thus, livestock production could mitigate damage for a given value when 

compared to regions specialising in crops, where novel technology could be a solution. 

Alternatively, there needs to be a shift towards less emissions-intensive production in these 

regions. Based on specialisation, we can also see a vertical shift in the regions specialising in 

high-value crop production, indicating that this subset contains the regions on the EE frontier 

in the full sample but does not contain any regions with full SE in the full sample. Thus, this 

group of regions need to be targeted with strategies to improve social welfare for the given 

production level.  

When grouping based on biogeographical regions, the difference in performance between 

groups is not as distinct as when grouping based on specialisation. The Continental and Atlantic 

regions improve their performance in both dimensions when compared within the respective 

group. Many Mediterranean regions shift vertically, indicating part of the EE but not of the SE 

frontier in the full sample analysis. In the groping based on population density, Rural and 

Intermediate regions shift more horizontally while urban regions shift vertically. In this respect, 

the urban region displays similarities with the Mediterranean group of regions in providing 

better conditions for eco-efficient production.  
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Summarising, there are differences in the joint EE and SE performance between groups of 

regions indicating different conditions for efficient production. We can conclude that overall, 

livestock regions could adopt more environmentally sustainable practices, e.g., implementing 

novel technology to mitigate the environmental impact. On the other hand, regions with the 

main share of crops need to implement practices or policies that can improve social welfare. 

We also identify the potential to adapt practices to increase SE in the Mediterranean and urban 

regions. Overall, these findings provide guidance for interventions targeting system shifts in 

different regions to overcome the contextual hindrances for environmentally and socially 

efficient production. 

2.5.3 Within-group efficiency 

We gain insights into the potential for relative efficiency improvements by considering the 

distribution of efficiency scores within the groups. This corresponds to the example 

distributions A and B in Figure 2.1. Here, we study the potential for efficiency improvements 

within the group. Figure 2.7 shows that the heterogeneity in trade-off between EE and SE is 

higher for the arable crop regions and the continental and Atlantic regions. The lowest 

heterogeneity in trade-offs is found in Mediterranean regions. On the one hand, this finding 

implies that in regions specialising in arable crops, the Continental and Atlantic regions might 

have the largest potential to increase efficiency within the existing production system. On the 

other hand, the Mediterranean regions show little potential for improving relative efficiency 

within existing systems, indicating the need for system redesign. 
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Figure 2.7: Within-group heterogeneity 

Note: The grey area is manually marked to improve the visualisation of the potential for improving 

relative efficiency in the EE and SE dimensions. 

The negative correlation between EE and SE is highest among the Mediterranean, high-value 

crops, and urban regions. Thus, these groups perform poorly in balancing the two objectives of 

EE and SE, indicating a need for system redesigning to overcome this negative correlation. 

Based on Figure 2.7, the trade-off appears to be the least prevalent for the Arable, Continental 

and Atlantic regions. In these groups, some regions achieve efficiencies above 0.5 in the EE 

and SE dimensions combined. In contrast, no region is observed with joint EE and SE 

efficiency above 0.5 in the remaining groups. 
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2.6 Conclusion 

This study uses DEA to assess the regional environmental and social efficiency of EU NUTS2 

agricultural production. This is the first EU-wide assessment of agricultural production’s 

environmental and social efficiency. We formulate a procedure to jointly assess EE and SE and 

use the ASC to select indicators. The aim of this study is to provide insights into the joint 

performance in the EE and SE dimensions in EU regions and thereby identify potential 

pathways to improve environmental and social sustainability.  

A limitation of the used method is that we do not consider absolute environmental damage and 

social welfare - Efficiency analysis is a relative measure. We show how the sustainability of 

production can be increased through efficiency improvements. However, as we do not include 

absolute values, we cannot derive insights into when production can be considered sustainable. 

Further, our results are influenced by the data availability as we, for some indicators, resort to 

country-level data. The country-level indicators might benefit some regions and disadvantage 

others. For example, regions specialising in high-value crops might benefit from the pesticide 

index being measured at the country rather than the regional level. Nevertheless, we argue that 

including some indicators on the country level is still better than omitting them completely 

from the analysis. 

We find a trade-off between EE and SE, which persists in all groupings. We conceptualise 

efficiency as a necessary condition for sustainability. Thus, given our findings of a persistent 

negative relation between EE and SE, no region can be considered sustainable as no region is 

operating efficiently in both dimensions. This indicates a need for a transformation of 

agricultural production to balance efficiency in both the environmental and the social 

dimensions.  To this end, novel technology and novel agricultural production strategies can 

present ways forward towards mitigating environmental damage by substituting harmful inputs 

while improving social conditions by, e.g., making the agricultural sector more attractive for a 

younger and more well-educated generation.  
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By comparing the group performance to the full sample, we show that performance varies 

between the groups. For some groups, particularly the Continental, Atlantic, and regions 

specialising in arable crops, we identify large heterogeneity in the trade-offs between SE and 

EE. This indicates a potential for increasing efficiency within existing production systems. 

Thus, policies can be targeted to increase the relative performance of regions lagging behind, 

considering the high-performing regions in the groups as examples of successful strategies. 

More concretely, policies can ensure better utilisation of technology and production systems 

already in place by e.g., supporting information exchange between regions facing similar 

conditions. However, there is no one-fits-all solution, and the individual conditions of each 

region need to be considered before providing more specific guidance on how each region 

should act to improve their relative efficiency.  

Future research could further investigate the drivers of efficiency to provide more targeted 

policy recommendations. Further, future research could couple these findings with absolute 

environmental damage and social welfare levels by, e.g., computing regional social and 

environmental boundaries.  
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2.8 Appendix 1: data processing 

The analysis includes 147 NUTS2 regions. Some regions have incomplete data that can be 

imputed. Table 2.4 provide details to the imputed values. 

Table 2.4: Imputed data 

Indicator with missing 

values 

Method of deriving or imputing 

the data 

Regions where the value 

was imputed (total 

number in parenthesis) 

UAA dedicated to different 

crops (used for the Shannon 

index). 

We subtract the other usages for 

arable land from the total UAA to 

derive the missing data. 

 

BG31, BG32, BG33, 

BG34, BG42, DK01, 

DK05, ES11, ES21, ES22, 

ES23, ES62, BE33, IE06, 

NL31, BE34, RO12, BE31, 

ES13, PT15, EL63, EL30, 

IE04, FRM0 (24) 

Farmers under 25 (used 

when computing the farmer 

age ratio.) 

We subtract the other age-

categories from the total number of 

farmers to derive the missing data. 

BE31, NL23 (2) 
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Total agricultural output, 

output of livestock products, 

and output of crop products 

are used as inclusion criteria 

when categorising regions 

based on specialisation. 

We impute this indicator by using 

the values of 2021, where 2020 is 

missing. 

FI19, FI1D (2) 

Net value added is used as the 

economic indicator in EE and 

SE. 

We impute this indicator by using 

the values of 2021, where 2020 is 

missing. 

BE22, BE23, BE24, BE25, 

BE31, BE32, BE33, BE34, 

BE35, FI19, FI1D (11) 

2.9 Appendix 2: robustness check 

Weights in DEA are typically distinguished between relative and absolute (Podinovski and 

Thanassoulis 2007). We use relative (homogenous) weight restrictions, enabling including 

subjective weights without introducing bias in the efficiency scores (Podinovski and 

Thanassoulis 2007). Furthermore, relative weight restrictions can be separated between linked 

and unlinked. We use unlinked weight restrictions, commonly referred to as Assurance ranges 

of type I (AR1) (Podinovski 2015; Thompson et al. 1990; Cooper et al. 2011). We use AR1 

weight restrictions formulated as:  

𝐿𝑖  ≤
𝑤𝑖

𝑤1
≤ 𝐻𝑖 

𝑙𝑟  ≤
𝑢𝑟

𝑢1
≤ ℎ𝑟 

 

𝐿𝑖    ( 𝑙𝑟 ) and 𝐻𝑖  (ℎ𝑟)  represent the lower respectively higher boundary for weight of 

environmental pressure i (social welfare indicator r) relative to the weight of environmental 

pressure (social welfare indicator) 1. Figure 2.8 and Figure 2.9 presents the robustness check 

results for varying benchmark indicators. We consider the other indicators at the regional level 

as potential benchmarking indicators.  
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Figure 2.8: Robustness check, EE 

 

 

Figure 2.9: Robustness check, SE 

Finally, we consider the efficiency with and without including weight restrictions. As seen in 

Figure 2.10, efficiency scores are higher for some regions when weights are allowed to vary 

freely. These regions are putting high emphasis on one environmental pressure or social 

welfare indicator, and thus when restricted to include strictly positive weights for all indicators, 

the efficiency scores of these regions become lower. 
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Figure 2.10: EE and SE with and without weight restrictions 

Note: The left panel displays the EE and the right panel the SE. The y-axis displays the efficiency scores 

without using any weight restriction, and the x-axis displays the efficiency scores with the weight 

restrictions. 

2.10 Appendix 3: outliers 

In this Appendix, we provide Figures to back up our claims regarding why these regions come 

out as outliers as we discuss in Section 2.5. The outlier in EE is NL33. Figure 2.11. shows the 

value per UAA for NL33.  

 

Figure 2.11: Outliers in value per UAA 

The outliers in SE are AT32, BG41, FI1C, FRC2, FRF3, FRI2, HR03, SE12, SK03, SK04. 

These regions are all among the regions with the lowest value per UAA. Figure 2.12 illustrates 
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this, limiting the y-axis to only range up until 2.5 million EUR per UAA to enable 

distinguishing the different regions with the lowest value per UAA.  

 

Figure 2.12: Outliers in the SE dimension, value per UAA 

Figure 2.13 shows the share of female farmers, generational renewal, share of fully educated 

farmers and the inverse antibiotic usage divided by value per UAA. Income per UAA is not 

plotted, as this indicator does not exhibit unusually high scores among the outlier regions.   

 

Figure 2.13: Outliers in SE dimension, social indicators 
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Chapter 3  
Evaluating environmental effects of 

adopting automatic milking systems on 

Norwegian dairy farms1 

Abstract: We present a novel procedure based on eco-efficiency for assessing farm-level 

effects of technology adoption while considering secondary effects. Secondary effects are 

defined as structural and behavioural adaptations to technology that may impact environmental, 

social or economic outcomes. We apply the procedure to automatic milking systems (AMS) in 

Norway and find that AMS induces secondary effects, most strongly by decreasing labour per 

cow and increasing herd sizes. For estimating effects of AMS we employ a novel causal 

machine learning approach. AMS induce heterogenous effects on eco-efficiency, negatively 

associated with herd expansion and labour per cow. 

Keywords: eco-efficiency, automatic milking robots, Norway, agricultural innovations 

 

3.1 Introduction 

Technical improvements at the farm level are one crucial path to improved environmental 

sustainability (Messerli et al. 2019). However, new technologies may induce additional 

changes that positively or negatively affect environmental outcomes. Overlooking these effects 

increases the risk that novel technologies lead to maladaptation (Pörtner et al. 2022). We refer 

to these changes as ‘secondary effects’, defined as structural and behavioural adaptations to 

novel technology, which may impact environmental, social or economic outcomes. It is crucial 

 
1 Chapter 3 is published as Martinsson, E., Hansson, H., Mittenzwei, K., & Storm, H. (2024). Evaluating environmental effects 

of adopting automatic milking systems on Norwegian dairy farms. European Review of Agricultural Economics, 51(1), 128-

156. Only minor edits have been made for the purpose of this dissertation. DOI: https://doi.org/10.1093/erae/jbad041. 
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to consider secondary effects when assessing how (novel) technology affects farm 

sustainability. Awareness of secondary effects enables steering technology adoption and usage 

through regulatory changes or technological advancements to promote sustainable 

development. Yet, secondary effects are often overlooked when assessing farm-level effects of 

novel technology in terms of economic or environmental impacts. Previous literature has 

indicated secondary effects of, for example, smart farming technologies on the likely 

responsiveness to greenhouse gas (GHG) taxes (Schieffer and Dillon, 2015), the social impacts 

of GHG mitigating policy (Harrison et al. 2021) or as rebound effects where efficiency 

improvements can lead to increased resource usage (Herring and Roy, 2007; Sears et al. 2018; 

Paul et al. 2019). Smart farming technology is predicted to improve the sustainability of 

agriculture (Balafoutis et al. 2017; Duckett et al. 2018; Finger et al. 2019). Nevertheless, as the 

extensive usage of most smart farming technologies and robotics still lays in the future, 

empirical evaluations are scarce (Lieder and Schröter-Schlaack, 2021), and the inclusion of 

secondary effects is rare. 

As European agriculture accounts for approximately one-tenth of global GHG emissions (FAO, 

2020), the technological development must contribute to lowering this environmental impact. 

One type to robotic technology that is already widely adopted by farmers are automatic milking 

systems (AMS) which provide an interesting study case for secondary effects. In the livestock 

sector, accounting for a large share of agricultural GHG emissions, there is considerable 

potential for mitigating emissions by reducing the emission per unit of product (Mbow et al. 

2019). In dairy farming, one way to reduce emissions per unit of product is to increase the milk 

yield per cow (Zehetmeier et al. 2012), which can be achieved by adopting more efficient 

technology, such as AMS. One of the countries with the highest implementation of AMS is 

Norway. In 2018, cows milked with AMS produced 47 per cent of the milk (Vik et al. 2019). 

In 2020, this had increased to 57 per cent (Mikalsen et al. 2021). Norwegian farmers adopt 

AMS to increase their work-time flexibility and thus quality of life, and to reduce farm labour 

requirements (Hansen, 2015; Stræte, Vik and Hansen, 2017; Vik et al. 2019). However, 
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previous studies have also indicated that AMS adoption in Norway is coupled with structural 

changes on farms, specifically farm expansion (Vik et al. 2019; Rønningen et al. 2021). AMS 

has also been found to be associated with changes in feeding patterns towards more high-

energy feed (Bijl et al. 2007; Oudshoorn et al. 2012; Schewe and Stuart, 2015) and less grazing 

allowing for cows to be milked more frequently (Oudshoorn et al. 2012; Gołas et al. 2020; 

Lessire et al. 2020). Furthermore, using AMS is associated with increased energy consumption 

(Steeneveld et al. 2012). Consequently, AMS can generate secondary effects as it is coupled 

with several farm-level changes. The implications of those changes for farms’ environmental 

performance, particularly GHG emissions, remain an open question. To this background, the 

question arises of how AMS relate to farms’ structural development and environmental 

performance. 

In this paper, we provide novel insights on the effects of AMS adoption on farm-level 

environmental performance, specifically focusing on the effects of AMS on GHG emissions 

efficiency. GHG emissions efficiency refers to an eco-efficiency measure focusing specifically 

on GHG emissions as the environmental outcome (Stetter, Wimmer and Sauer, 2022). Eco-

efficiency is expressed as a ratio between value-added and indicators for GHG emissions. 

Integrating economic and environmental factors into one efficiency measure is crucial to 

managing trade-offs between environmental objectives and production (Huppes and Ishikawa, 

2005). Using data envelopment analysis (DEA), scores are generated describing farms’ ability 

to produce output while inducing minimal environmental damage (Kuosmanen and 

Kortelainen, 2012). We aim to assess what structural and behavioural factors can be identified 

as secondary effects of AMS adoption and how this affect farms’ GHG emissions efficiency. 

Our aim is formulated as two research questions: 

1) What structural and behavioural factors can be identified as secondary effects of 

AMS adoption? 

2) Does AMS adoption generate changes in farms’ GHG emissions efficiency, which can 

be associated with the structural and behavioural changes? 
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We contribute to the literature evaluating the secondary effects of AMS through our empirical 

results. The procedure we provide in this paper can also be applied in other settings when 

evaluating the secondary effects of novel technology. Using our novel approach, we combine 

results on how AMS generate secondary effects with results on how AMS induces changes in 

GHG emissions efficiency. Linking AMS adoption to eco-efficiency is already a novel 

contribution. This allows to understand the secondary effects of AMS adoption in the form of 

structural and behavioural changes and in terms of farms’ environmental performance. By 

attributing the effect of AMS on GHG emissions efficiency to the identified secondary effects, 

insights for policy and extension can be provided on what aspects to target to achieve 

sustainable development of farms when adopting AMS. 

We find that AMS adoption is associated with increased herd sizes, increased share of feed 

concentrates and increased milk yields per cow. Further, we find largely heterogenous effects 

of AMS adoption on GHG emissions efficiency with a negative effect on average. The effect 

of AMS adoption on GHG emissions efficiency highlights the importance of evaluating how 

new technology affects farms environmental outcomes. 

The remainder of the paper is organised as follows: First, we present our novel procedure to 

evaluate secondary effects of novel technology and the methodologies we use. Second, we 

present the dataset we use to conduct the empirical evaluation. Third, we present the findings, 

and discuss the conclusions that can be drawn from using this approach in the context of 

Norway and AMS adoption. Finally, we provide some suggestions for future research. 
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3.2 Method 

We employ a novel four-step procedure to identify structural and behavioural factors as 

secondary effects of AMS and to assess whether AMS adoption generates changes in farms’ 

GHG emissions efficiency which can be associated with the structural and behavioural 

adaptations. An illustration of this procedure is provided in Figure 3.1. 

Figure 3.1: Summary of the four-step procedure applied in this paper  

Note: The Figure describes what is done in each step and which method is employed 

In steps one and three, we assess the effect of AMS adoption on structural and behavioural 

factors and on GHG emissions efficiency, respectively. We identify six factors as important in 

terms of AMS adoption and GHG emissions efficiency based on previous research. These 

factors are labour per cow, number of cows, share of feed concentrates, arable land per milk 

output, milk per cow and off-farm income. To assess GHG emissions efficiency we include 

value-added, energy consumption, fertiliser consumption and enteric fermentation. We present 

these variables and motivate their inclusion in Section 3.3. We obtain the effect of AMS 

adoption on each of the factors by calculating their counterfactual development if the farms 

had not adopted AMS by using a matrix completion approach by Athey et al. (2021). From this 
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counterfactual, we can calculate an average treatment effect for the treated (ATT). The 

advantage of the matrix completion approach is that it basically performs a matching based on 

the pre-treatment trend, for example matching adopting farms that grow in herd size prior to 

adoption to non-adopting farms with similar growth in herd size. Additionally, it allows for 

controlling of individual time-invariant unobserved factors as well as time individual-invariant 

factors, similar as a fixed effects (FE) regression. Nevertheless, it is important to underline the 

possibility of reverse causality between the factors and AMS adoption. For example, we cannot 

detangle if the motivation to increase herd size leads to adopting AMS or if the availability of 

AMS motivates a farm to increase herd size. Similarly, AMS adoption might increase value-

added, which would affect farms’ GHG emissions efficiency, but it might also be that changes 

in value-added make adoption affordable. Our approach cannot resolve this potential reversed 

causality, which is also conceptually difficult to detangle. However, by matching observations 

on pre-treatment development, we can compare farms on a similar development trajectory. 

Further, even if adopting AMS is part of an expansion or intensification strategy, if AMS allows 

the farmer to realise this strategy is already a secondary effect according to our definition. 

Nevertheless, we are careful in concluding directions of causality. Another aspect to consider 

is that the factors included as potential secondary effects likely interact. We do not account for 

these interactions when assessing the effects of AMS adoption as we want to obtain estimates 

of the changes in each factor independently. However, in the OLS regression (step four), the 

interaction between the factors is controlled for to enable explaining the changes in GHG 

emissions efficiency. 

For our second question, regarding how AMS adoption affects GHG emissions efficiency and 

whether we can associate this to the secondary effects identified in step one, we employ steps 

two to four. In step two, we assess farm-level GHG emissions efficiency using the methodology 

developed by Kuosmanen and Kortelainen (2005). Previous evaluations of efficiency in 

livestock farming focusing explicitly on GHG emission include the works of Dakpo et al. 

(2017) and Stetter et al. (2022). In the fourth step, we determine which variables correlate with 
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GHG emissions efficiency using linear OLS regression. Finally, we seek to identify how the 

factors we identify as secondary effects can be associated with the relation between AMS 

adoption and GHG emissions efficiency. We multiply the effect of AMS adoption on each 

factor as assessed in step one with the marginal effects obtained in the regression in step three. 

This indicates how structural and behavioural change can explain the changes in GHG 

emissions efficiency generated by AMS adoption. We dedicate the rest of this section to 

outlining the details of the methods applied in each step of our procedure. 

3.2.1 Steps one and three: assessing the impact of automatic milking systems 

In steps one and three, we evaluate the effects of AMS on the structural and behavioural factors 

and GHG emissions efficiency. In these steps, we require a method to deal with unbalanced 

panel data and staggered adoption. For this, we rely on a novel machine-learning approach in 

line with an increasing stream of literature in recent economic research that has also turned to 

machine learning for causal questions (Storm et al. 2019). Specifically, we employ a matrix 

completion approach for causal panel data models (Athey et al. 2021) that allows estimating a 

treatment effect in cases of staggered adoption and an unbalanced panel dataset. This approach 

can be seen as nesting a two-way fixed effect approach with synthetic control approaches 

(Abadie and Gardeazabal, 2003). The two-way FE allow to control for time-invariant as well 

as unit-invariant unobservables. The synthetic control approach constructs a synthetic 

counterfactual by matching on pre-treatment trends over time. Specifically, the approach 

considers treatment effect estimation as a missing data problem, where we lack the 

counterfactual outcomes that need to be predicted in order to compute treatment effects. In the 

matrix completion approach, the missing counterfactual observations are predicted by learning 

a low-rank representation of the observed non-treated outcomes using nuclear norm 

regularisation (Athey et al. 2021). Based on this low-rank representation, the counterfactual 

observations can be predicted. As the approach nests the FE and the synthetic control approach, 

it allows to combine both and determine their relative weighting in a data-driven way. 

Previously, researchers needed to decide a priori which of the two approaches to use. 
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The matrix completion method allows for including time- and farm-specific covariates, which 

are utilised in this paper. Including time- and farm-specific covariates adds to the FE already 

included in the model as it allows to account for the interaction between farm and time fixed 

factors. For example, being located in a remote region (a farm-fixed covariate) while diesel 

prices rise (a time-fixed covariate) might play a role in the effect of AMS on GHG emissions 

efficiency and is considered by adding the covariates. The included farm characteristics are a 

binary indicator for adoption, the farmer’s year of birth, the farm’s location and the year of 

AMS adoption (set to zero for non-adopters). Furthermore, we include 370 agricultural input 

and output prices (The Budget Committee for Agriculture, 2022) as time-specific variables, 

such as prices of various crops and vegetables, livestock and livestock products (such as milk) 

and inputs like fertiliser and subsidies. One advantage of the approach is that it uses 

regularisation to avoid overfitting, allowing to include a larger number of control variables. 

Having derived counterfactual outcomes for adopting farms if they did not adopt AMS, we 

estimate the average effect of treatment for the treated (ATT) as: 𝜏 = ∑ [𝑌𝑖𝑡(1) −𝑖,𝑡: 𝑊𝑖𝑡=1

 𝑌𝑖𝑡(0)] / ∑ 𝑊𝑖𝑡𝑖,𝑡  if a farm has adopted and 𝑊𝑖𝑡 = 0 otherwise. 𝑌𝑖𝑡(1) is the observed outcome 

for the observations with AMS, and for 𝑌𝑖𝑡(0) we estimate their counterfactual outcome as 

𝑌𝑖𝑡 ̅(0). Finally, we calculate the difference between the realised outcome and the counterfactual 

for each observation to gain insights on the distributions of the effects. 

To increase transparency of the results and to provide an understanding of how this method 

compares to more commonly used econometric procedures, we conduct a two-period 

propensity score weighted difference-in-difference (PS-DID) regression and a FE regression 

in Appendix 1. 

3.2.2 Step two: assessing GHG emissions efficiency 

We assess GHG emissions efficiency, a measure of eco-efficiency only considering indicators 

for GHG emissions. Throughout this section, we use the term ‘eco-efficiency’ when describing 

the procedure, as this is the most commonly used terminology. Eco-efficiency considers farms’ 
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ability to minimise the environmental damage caused at a given amount of production and is 

defined as the ratio of economic value-added to emissions or other environmental damage 

(Kuosmanen and Kortelainen, 2005). Thus, it is a relative measure where eco-efficiency is 

achieved when production compensates the environmental harm it generates with sufficient 

value-added. What is considered sufficient value-added is determined by the structure of the 

sample, with the most eco-efficient farms having the highest ratio of economic value to 

environmental damage. Thus, if observations are added to a sample, the eco-efficiency of an 

individual unit can change if the efficiency frontier is affected. Although this paper focuses on 

GHG emissions, Kuosmanen and Kortelainen’s (2005) approach has the potential to 

simultaneously examine multiple environmental factors. Another term for eco-efficiency is 

sustainable intensification (Firbank et al. 2013; Gadanakis et al. 2015; Smith et al. 2017). The 

most common application of eco-efficiency in agriculture is at the farm-level (Zhou et al. 

2018), which is the focus of this paper. The definition of an eco-efficiency only focusing on 

GHG emissions as ‘GHG emissions efficiency’ was initially made by Stetter et al. (2022). 

We use DEA (Charnes et al. 1978) to assess eco-efficiency, followed by bootstrapping of the 

efficiency scores to reduce sample bias (Simar and Wilson, 2000). DEA is a deterministic 

approach that evaluates each unit towards an efficiency frontier constructed from the most 

efficient units in the sample. Following the approach by Kuosmanen and Kortelainen (2005), 

our analysis rests on the assumption of a pollution-generating technology set which states that 

‘value-added v can be generated with environmental damage z’. We consider that this 

pollution-generating technology set can improve over time, such that more value-added can be 

generated with less environmental damage, by assuming irreversible technical change. The 

assumption of irreversible technical change is based on the rationale that the technology 

available in each year consists of the technology in previous years and new technology 

developed in the year under evaluation (Lansink et al. 2002). This assumption implies that 

observations are only compared to other observations with at least as good technology as 

themselves. Thus, observations of farms in earlier years can have the opportunity to achieve 
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higher efficiency, despite not having access to as advanced technology as the observations 

made in later years. Practically, this is implemented by including all observations in the current 

year and all previous years in the comparison group when computing the eco-efficiency 

(Lansink et al. 2002). Apart from implementing the assumption of irreversible technical 

change, the same methodology as in previous papers using cross-sectional observations can be 

applied (Gómez-Limón et al. 2012; Martinsson and Hansson, 2021; Pérez Urdiales et al. 2016). 

Following the notation used by Kuosmanen and Kortelainen (2005), we express the eco-

efficiency for farm n as EEn= Vn / D(Zn), where Vn denotes the value-added and D(Zn) is a 

damage function of the environmental pressures Z of farm n. The function D of the M 

environmental pressures for farm n can be approximated linearly as D(Zn) = w1z1 + w2z2 … + 

wMzM, where there are zM environmental pressures, each with its own weight wm. Weights are 

determined using DEA to produce the highest eco-efficiency score possible for each 

observation. The inverse of the maximisation problem is calculated to obtain linearity: 

min
𝑤

𝐸𝐸𝑛
−1 = 𝑤1

𝑧𝑛1

𝑉𝑛
+ ⋯ +  𝑤𝑀

𝑧𝑛𝑀

𝑉𝑛
 

s.t. 

𝑤1

𝑧11

𝑉1
+ ⋯ +  𝑤𝑀

𝑧1𝑀

𝑉1
≥ 1 

…            (3.1) 

𝑤1

𝑧𝑁1

𝑉𝑁
+ ⋯ +  𝑤𝑀

𝑧𝑁𝑀

𝑉𝑁
≥ 1 

We evaluate (1) for each year subsetting the data such that the observations are compared to 

observations made in the same year or in previous years. That is, when evaluating farms 

observed in 2013 (our earliest year of observation), we only compare these to other 

observations made in 2013. Evaluating farms in 2014, we include observations from 2013 and 

2014, and so on. Eco-efficiency is measured against a frontier estimated from the sample, 

where the addition or omission of observations may alter the frontier and, consequently, the 

farms’ estimated efficiencies. Eco-efficiency is a further development of assessing technical 
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efficiency. Thus, this paper’s eco-efficiency formulation corresponds to an input-oriented 

Farrell (1957) efficiency model, with environmental pressures as inputs and value-added as the 

only output (Bonfiglio et al. 2017). Furthermore, the method utilised in this paper is based on 

a radial assumption, which can be a limitation in a short run perspective if not all variables can 

be varied at the same rate. Nevertheless, with a longer time frame, this assumption becomes 

more feasible. 

Using bootstrapping, pseudo samples are generated from which efficiency estimators are 

derived. From this, Monte Carlo realisations of the estimated efficiency can approximate the 

bias. The final step is calculating bias-corrected efficiency scores by subtracting the bias from 

the estimated efficiency. The bootstrapping is done as a Shephard input distance function 

(Simar and Wilson, 1998; Bogetoft and Otto, 2022). Following Simar and Wilson (1998), we 

set the number of bootstraps in this application to 1,000. Furthermore, DEA is sensitive to 

outliers in the data, and it is common to drop observations identified as outliers (see e.g. 

Latruffe and Desjeux (2016); Weltin and Hüttel (2019)). Applying the procedure by Wilson 

based on log-ratios, we identify seven observations as outliers. By inspecting the data, we 

cannot find anything atypical about these observations identified as outliers that would indicate 

mistakes in the data recording. Thus, we chose to keep all observations.2 The eco-efficiency 

scores are generated using the R software, and the package Benchmarking (Bogetoft and Otto, 

2011) which draws heavily on the FEAR package (Wilson, 2008). 

V and Z values in equation (3.1) must be positive to obtain a finite solution. This is known as 

the DEA’s positivity property (Bowlin, 1998). Thus, we replace values of Z that are zero or 

less with a small arbitrary number (Bowlin, 1998). Farms with negative V values are omitted 

from the analysis because they would generate eco-efficiency scores close to zero. Thus, we 

remove one farm with negative value-added. Meanwhile, energy and fertilisers both exhibit 

negative values for environmental pressures. This indicates that nothing was consumed of that 

 
2 We run the analysis without the outliers and find only minor changes in the results which do not change any of the conclusions 

drawn in this paper. 
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indicator that year, which encourages the replacement of a small number to enable computation 

of the farm’s eco-efficiency for that year.3 

3.2.3 Step four: assessing the association between GHG emissions efficiency and the structural 

and behavioural factors 

We use a FE regression to assess the drivers of the GHG emissions efficiency. This constitutes 

the fourth step in our procedure (see Figure 3.1) and allows us to establish a connection between 

the changes in secondary effects and those in GHG emissions efficiency. A set of factors with 

hypothesised relationship to AMS adoption and GHG emissions efficiency are included in a 

linear regression as 

𝐺𝐻𝐺 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑖 = 𝛼𝑖 + 𝛾𝑡 +  ∑ 𝛽𝑛(𝑓𝑎𝑐𝑡𝑜𝑟𝑛)𝑖𝑡 +  𝜀𝑖𝑡
𝑁
𝑛=1     (3.2) 

where 𝛼  and 𝛾  are farm- and year-FE, respectively. The result from this step shows the 

marginal effect of each factor on GHG emissions efficiency. We use the results to link the 

GHG emissions efficiency to the factors included as potential secondary effects of AMS. A FE 

approach allows us to control for unobserved farm- and time-invariant heterogeneity, which is 

beneficial as we want to use the result of Equation 3.2 to assess how farms’ GHG emissions 

efficiency changes through potential changes in the factors. However, it comes at the cost that 

only within-variation can be exploited for identification, producing less precise estimates. An 

alternative to including FE would be to pool the observations in a cross-sectional regression. 

This would increase the estimation efficiency and enable using all data rather than only the 

within-variation, but would not provide estimates on within changes on farms. 

Theoretically, linear regression can be used to explain DEA efficiency scores (Hoff, 2007; 

McDonald, 2009). DEA scores are bounded between 0 and 1. However, by applying a 

bootstrapping procedure, few farms are evaluated as fully efficient (obtaining a score of 1) and 

 
3 A total of 14 observations are found with negative values for any of the environmental pressures. None of the negative 

observations coincides, which could have pointed to other underlying changes on the farm. We conduct the analysis also 

dropping these observations finding that this does not change the eco-efficiency results significantly. 
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thus fewer corner solutions are realised, which further supports the usage of OLS. As argued 

and further explained by Hoff (2007) and McDonald (2009), DEA scores are best described as 

fractional data generated from a normalisation process rather than censored data for which a 

Tobit model would be appropriate. However, using OLS in the second stage has also drawn 

criticism due to the efficiency scores’ serial relationship (Simar and Wilson, 2007). The method 

proposed by Simar and Wilson (2007) tends to generate similar results as linear OLS regression 

when explaining eco-efficiency (Latruffe et al. 2008). Banker and Natarajan (2008) 

demonstrated that two-stage DEA provides a consistent estimator when data are generated by 

a monotone increasing and concave production function, further supporting the use of OLS 

regression in the second stage. OLS regression also has the advantage of being widely used 

and recognised by many, which offers an advantage in transparency and understandability, as 

also pointed out by McDonald (2009). Nevertheless, as Tobit regression has also been pointed 

out as a feasible method for this purpose (Hoff, 2007), we conduct a Tobit regression as a 

robustness check to the OLS. The Tobit is displayed in Appendix 2, and the results are close to 

what we obtain with the OLS. 

3.3 Data and descriptive statistics 

We focus on conventional dairy farms using the Norwegian account results in agriculture and 

forestry, comparable to the EU’s Farm Accountancy Data Network, between 2013 and 2019. 

The dataset includes information on AMS usage, providing a unique opportunity to study AMS 

usage at the farm level. The dataset is an unbalanced panel. We filter the data such that farms 

adopting AMS are all observed for at least one year before adoption, allowing the time of 

adoption to be determined. Thus, our analysis includes 273 farms that did not adopt AMS and 

47 that adopted AMS between 2014 and 2019, adding up to 1,594 observations. Table 3.1 

presents some descriptive statistics for each variable used in the analysis splitting the data 

between farms adopting AMS before and after adoption and non-adopters. Table 3.1 

distinguishes between structural and behavioural factors and the variables used to calculate 
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GHG emissions efficiency. We deflate value-added and off-farm income to 2015’s consumer 

price index (Totalkalkylen, NIBIO). 

We can obtain some first indications of the effects of AMS by testing whether there are 

differences in means between the farms before compared to after adopting AMS. We test for 

differences in means using a two-sample t- test after concluding normality using QQ plots. We 

do not find strong evidence to reject the null hypothesis of equal means for energy 

consumption, fertiliser usage and off-farm income. For the other variables, the null hypothesis 

can be rejected. This indicates changes after AMS is adopted and motivates further 

investigation. 

Table 3.1: Variable description and descriptive statistics 

 Adopters, before 

AMS (n=138) 

Adopters, after 

AMS (n=136) 

 Non-adopters 

(n=1320) 

 Mean Sd Mean Sd  P-values of 

two-sample 

t-test 

Mean Sd 

Structural and 

behavioural 

factors 

        

Labour per cow 

(hours per head) 

137.19 42.837 102.62 32.764  0.000*** 182.6 66.303 

Milk per cow 

(100 litre output 

per head) 

68.43 9.49 74.31 9.97  0.000*** 67.22 8.79 

Off-farm income 

(100 nkr per total 

net income) 

197.39  427.70 121.46  260.31  0.118 79.78 161.56 

Number of cows 

(heads)  

29.32 11.556 38.12 11.480  0.000*** 21.21 9.359 

Feed concentrates 

(feed units, share 

of total feed 

concentrates and 

roughage) 

0.417 0.086 0.474 0.098  0.000*** 0.4205 0.082 

Arable land per 

milk output (m2 

per litre milk 

output) 

0.30 0.99 0.08 0.43  0.017** 0.38 1.46 
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Eco-efficiency         

Value-added 

(1000 nkr) 

792.80 380.38 951.10 385.10  0.000*** 638.25 316.38 

Energy (100 litre 

diesel) 

68.20 39.71 71.56 40.902  0.280 45.19 29.27 

Fertilisers (100 

kg) 

221.96 126.93 244.30 131.43  0.150 168.90 105.47 

Enteric 

fermentation 

(CH₄) 

3415.3 1656.9

9 

4067.80 1591.4

2 

 0.000*** 2322.2

0 

1476.6

6 

Note: T-tests are conducted comparing farms before and after AMS adoption. ‘***’ and ‘**’ indicate 

significance at the 1% and 5% level respectively. 

 

Table 3.1 shows that farms that adopting AMS are different in the considered parameters than 

those that do not adopt. For example, farms observed before adoption already have higher 

energy usage, lower labour per cow and are slightly larger in the number of cows. Further, 

there are likely other aspects of farms which we do not consider here that determine whether 

farms adopt AMS or not. In this paper, we do not study the determinants of adoption, but 

recognising that farms adopting AMS are different from farms not adopting AMS is important 

for interpreting our results as effects of AMS among the farms that adopt. 

3.3.1 Operationalisation of GHG emissions efficiency 

In Norway, GHG emissions from livestock production are primarily caused by field emissions, 

forage production and intrinsic animal emissions (Oort van and Andrew, 2016). This is 

measured from enteric fermentation, manure management, feed production and energy 

consumption. The indicators selected for this efficiency evaluation reflect this to the extent 

possible, given the available data. Energy expenditures and fertiliser expenditures are divided 

by the price of diesel and mineral fertiliser, respectively, for each year obtained from NIBIO 

(Totalkalkylen, NIBIO) and are thus expressed as quantities. Enteric fermentation is calculated 

using IPCC methods (Eggleston et al. 2006) using values adapted to the Norwegian context 

from the national inventory report (NIR) from 2021 (Bjønness, 2021). Details on the 

calculation of the emission factors are provided in Appendix 3. 
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Despite being a major contributor to farms’ GHG emissions, we do not consider manure 

management. Arguably, manure management systems do not differ significantly regarding 

GHG emissions (Soteriades et al. 2019). However, IPCC methods for calculating GHG 

emission coefficients vary based on manure management. The lack of knowledge regarding the 

manure management system employed is a deficiency, and incorporating this information into 

the Norwegian account results dataset would allow for a more accurate evaluation. In 2018, 

three of four farms used a blade spreader for manure application, indicating limited variation 

between farms (Kolle and Oguz-Alper, 2020). 

Finally, we use value-added as the economic indicator in our GHG emission efficiency 

formulation. Value-added is formulated as the total value of production from agriculture, 

including subsidies and minus intermediate consumption. Intermediate consumption includes 

purchased animals, feed, seeds, fertilisers, machinery maintenance, fuel and hired labour. The 

animals included are all animals purchased to a farm in a year, including cattle such as calves 

which are bread on the farm for meat or milk production. Thus, it does not include the value of 

the permanent livestock. Value-added measures the remuneration to own labour, capital and 

land. 

3.3.2 Operationalisation of structural and behavioural factors 

This section provides definitions of the variables and a discussion about their potential relation 

to AMS adoption and GHG emissions efficiency. We include the structural and behavioural 

factors based on the hypothesis that they are secondary effects of AMS adoption. Figure 3.2 

illustrates the relationship between the factors and AMS adoption and GHG emissions 

efficiency, respectively.  
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Figure 3.2: Illustration of the potential effects of AMS adoption on the structural and behavioural 

factors and their relation to GHG emissions efficiency 

Note: ‘+’ indicates a positive association, ‘-’ indicates a negative association and ‘-/+’ indicates that 

previous findings are contradictive or that no previous assessments have been made. The arrows going 

from AMS adoption to the factors illustrate that we assess a causal effect between these (matrix 

completion), while the arrows reaching between the factors to GHG emissions efficiency illustrate that 

we are assessing a correlation (OLS regression). In the remainder of this chapter, we provide motivation 

for inclusion of each of the factors. 

Herd size 

Adopting AMS can be part of an expansion strategy and sometimes an unintended consequence 

where farmers expand to utilise the machine and recoup their investment fully (Vik et al. 2019). 

Previous eco-efficiency evaluations have shown a positive relation with the number of cows 

(Soteriades et al. 2020; Martinsson and Hansson, 2021). On the one hand, the number of cows 

enables farms to generate higher value-added by increasing the size of production, but, on the 

other hand, more cows also generate higher (total) enteric fermentation and higher energy costs 

as the size of production is larger. Associating herd size to GHG emission efficiency provides 

indications of whether it is best to have more small farms or fewer larger ones from a GHG 
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emissions efficiency perspective. How herd size relates to GHG emissions efficiency depends 

on, for example, how well the farmer can manage the herd and on contextual constraints to 

produce as efficiently as possible and generating high value-added while keeping the GHG 

emissions to a minimum. It is important to emphasise that herd size and eco-efficiency are not 

correlated by construction, as both farms with large and small herds have opportunities to 

produce eco-efficiently. 

Labour per cow 

A primary motive among Norwegian farmers for investing in AMS is reducing labour and 

increasing work-time flexibility (Stræte et al. 2017). The indicator labour per cow captures the 

total labour per cow, including both hired and family labour. Previous eco-efficiency 

assessments have studied the relation to hired labour, finding that hired labour is negatively 

associated with eco-efficiency (Bonfiglio et al. 2017; Martinsson and Hansson, 2021). We 

hypothesise that higher family labour per cow can be negatively related to GHG emissions 

efficiency, as the farmer can spend less time on farm management when more physical work 

is required in the production. Thus, we hypothesise that our indicator of labour per cow shows 

a negative association to GHG emission efficiency. 

Milk per cow and share of feed concentrates 

Milk per cow and the share of feed concentrates are included as secondary effects as they can 

change with AMS adoption, as AMS allows for increased milking frequencies (Oudshoorn et 

al. 2012). The variables are related as the cows need to consume more feed concentrates if 

milking intervals are to be increased, which reduces grazing (Lessire et al. 2020) but increases 

milk yield per cow. There are conflicting findings on whether farms with AMS import more 

high-energy feed (Oudshoorn et al. 2012). Both factors reflect managerial decisions on the 

level of intensity and potentially affect GHG emissions efficiency: Milk per cow enables 

farmers to generate more agricultural value relative to the number of cows, and the share of 

feed concentrates fed to the cows affects their enteric fermentation. 
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Off-farm income and arable land 

The share of income derived from non-farm sources and the farmland used for grain and cash 

crop production relative to milk output are measures of specialisation, which might change 

when the farmer invests in AMS. Many Norwegian farmers seek income elsewhere because 

their farms are typically small and produce little economic value (Oort van and Andrew, 2016). 

Off- farm income reflects the farmers’ focus on farming relative to other income-generating 

activities, and the farmland used for grain and cash crops reflects the degree of farm 

specialisation. We hypothesise that investing in AMS will increase the farmers’ dairy-focus 

and thus decrease off-farm income and arable production relative to milk. Specialisation has 

been found to be negatively related to environmental performance on a sector-level considering 

the milk yield relative to beef output on dairy farms (Soteriades et al. 2019). Thus, we 

hypothesise that arable land per milk output can have a positive association to GHG emissions 

efficiency. Farmers engaged in off-farm activities have higher labour opportunity costs, which 

could create an incentive for managing the farm more efficiently. To our knowledge, 

specialisation in terms of off-farm income and share of arable production has not been related 

to eco-efficiency previously. 

3.4 Results and discussion 

In this section, we present the results of our four-step procedure. First, we answer the question 

of what structural and behavioural factors can be attributed as secondary effects of AMS 

adoption. Second, we answer whether AMS adoption generates changes in farms’ GHG 

emissions efficiency, which can be associated with structural and behavioural changes. In the 

analysis, we use the standardised form of the structural and behavioural variables obtained by 

subtracting the mean and dividing by the standard deviation. As the variables are expressed in 

different units, using their standardised version enables an easier comparison of the effects. We 

explain the interpretation of the standardised variables in the following sections. 33.9 per cent 

of our data is imputed to obtain counterfactual outcomes using matrix completion, comparable 
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to 25 per cent missing entries in the example provided by Athey et al. (2021) to illustrate their 

method. 

3.4.1 Identifying structural and behavioural factors as secondary effects of AMS 

From the matrix completion procedure, we obtain ATT estimates for each factor. As we use 

the variables’ standardised form, the effects express average changes in standard deviations 

with AMS adoption. The standard deviations for each factor are displayed in Table 1. For 

example, the number of cows is increased by 0.76 standard deviations on average when AMS 

is adopted, corresponding to 8.7 cows (0.76*11.5). Beside ATT effects, we also compute the 

effect of AMS for each observation as the difference between the observed and the predicted 

outcome. Results indicate a substantial heterogeneity in the estimated effects around the ATT 

effects (Figure 3.3). 

 
Figure 3.3: Result of matrix completion for each structural and behavioural factor.a The dotted 

line marks zero and ‘x’ marks the ATT for each factor (the exact values of the ATTs are displayed 

in Table 3). 
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Note: The results are estimated with separate models of matrix completion for each factor. Root mean 

squared error: Off-farm income: 0.37; Nr of cows: 0.28; Milk/cow: 0.61; Labour/cow: 0.47; Feed 

conc./tot feed: 0.47; Arable land/milk output: 0.22. The variables are standardised.  
aTwo outlying observations of the effect on off-farm income is omitted in the table to enable a better 

display of the results. The omitted observations are −4.89 and 8.4 

Earlier studies already documented that farms with AMS have larger herd sizes than farms 

without (Rønningen, Magnus Fuglestad and Burton, 2021). We can add to these findings that 

differences between farms with and without AMS are not only due to baseline differences but 

that adopting AMS is associated with an enlargement of the herd. Vik et al. (2019) previously 

found that farms with AMS expand through a qualitative study, and our results support this 

finding. Moreover, we find that the adoption of AMS positively correlates with increased milk 

production per cow, as expected, given that AMS adoption offers the potential to increase 

milking frequency (Oudshoorn et al. 2012). Further, the share of feed concentrates in the diet 

is rising. The ATT is negative for labour per cow and arable land per milk output. This indicates 

a higher intensification and specialisation in dairy production compared to crops. At the same 

time, the negative ATT of areal production seems to be driven by some negative outlier 

observations. Off-farm income displays a small negative ATT highly centred around zero. 

Considering the effect for each observation indicates that for most factors, the direction of the 

effect is clear, while the magnitude of the effect is heterogeneous. Our findings indicate that 

farms develop in similar directions in the structural and behavioural variables after AMS 

adoption. 

Nevertheless, interpreting the effects as causal should be done with caution. We do not account 

for potential interrelation between the change in these variables, as we estimate the effect in 

separate models. This must be considered when concluding, as the change in one variable from 

AMS adoption might be affected or driven by the change in another. 
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3.4.2 Identifying the effect of AMS adoption on GHG emissions efficiency and the relation to the 

structural and behavioural factors 

We investigate how farms’ GHG emissions efficiency is affected by AMS adoption and to what 

extent we can attribute this to structural and behavioural factors. We first present the results of 

the GHG emissions efficiency evaluation and how this is affected by AMS adoption. This is 

followed by the estimated association between the GHG emissions efficiency and the structural 

and behavioural factors, coming together in Table 3 to answer our question of how AMS affects 

GHG emissions efficiency and if this can be associated with the effects of AMS adoption 

observed in the structural and behavioural variables. 

The average bias-corrected GHG emissions efficiency for the complete sample is 0.47, 

indicating room for improvement. Farms could reduce environmental pressures by 53 per cent 

while maintaining value-added to become fully efficient. Table 3.2 shows the results of the 

GHG emissions efficiency assessment for the entire sample and when separating adopters and 

non-adopters. Note that no observation is on the frontier, resulting from bootstrapping. 

Table 3.2 GHG emissions efficiency scores: All observations, adopters observed before adoption, 

adopters observed after adoption and non-adopters 

 Total (n=1,594) Adopters, before AMS (n=138) Adopters, after AMS (n=136) Non-adopters (n=1,320) 

Mean 0.47 0.43 0.40 0.48 

Max 0.96 0.82 0.82 0.96 

Min  0.006 0.07 0.03 0.006 

Sd 0.17 0.17 0.17 0.17 

 

Non-adopting farms have the highest mean efficiency, whereas the adopting farms after 

adoption have the lowest. We test the differences in means between the three groups in Table 

3.2 using t-tests. We can reject the null hypothesis of equal means between AMS adopters and 

non-adopters before and after adoption. Comparing the adopters before AMS with the adopters 

after AMS using the same t-test yields a p-value of 0.2. 
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Figure 3.4 displays the effect of AMS on GHG emissions efficiency generated from the matrix 

completion. The root mean squared error (RMSE) is 0.17. The ATT of AMS adoption on GHG 

emissions efficiency is −0.015, indicating that the average effect of adopting AMS among the 

adopters is to decrease GHG emissions efficiency by 0.015. However, computing the effect of 

each observation, it is evident that there are large heterogeneities in the results. Figure 3.4 

shows that the small average effect is not due to an absence of impact but rather to the large 

heterogeneity in responses.4 

As the matrix completion procedure does not consider dynamic effects (Athey et al. 2021), 

Figure 3.4 does not display differences in the effects given time since AMS adoption. 

 

Figure 3.4: Result of matrix completion for GHG emissions efficiency. 

Note: The dotted line marks zero and the x marks the ATT= −0.015. Root mean squared error: 0.17.  

Finally, we aim to attribute the effects of AMS adoption on GHG emissions efficiency to the 

structural and behavioural factors to provide insights into the mechanisms behind the changes 

in GHG emissions efficiency. Correlating the changes in GHG emissions efficiency to the 

structural and behavioural factors can provide explanations for the large heterogeneity between 

farms, and potentially contradictory effects can explain the small average effect. 

 
4 Contrasting the results to the PS-DID and the fixed effects regression (Appendix 1), the PS-DID yield estimates of a 

somewhat stronger effect (−0.06 using full matching) while the fixed effects provide very similar results as the matrix 

completion (−0.011). 
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We obtain the contributing power of each factor to the association between GHG emissions 

efficiency and AMS by multiplying the relationship between each factor and GHG emissions 

efficiency (step three) by the change in each factor associated with AMS (step one). Still, we 

use the standardised forms of structural and behavioural factors. For the number of cows, this 

would indicate that when increasing the number of cows by one standard deviation (11.5, Table 

1), GHG emissions efficiency is expected to change by −0.02. Thus, the increase in herd size 

induced by AMS (0.77 standard deviations) contributes to a decrease in GHG emissions 

efficiency by 0.77 * (−0.02) = −0.015. We conduct this procedure for each factor listed in Table 

3.3 

Table 3.3: The contribution of each factor to the effect of AMS adoption on GHG emissions 

efficiency 

Factor Change induced by 

AMS (ATT, step 1) 

Correlation between the factors and 

GHG emissions efficiency (step 3) 

Contributing power to the 

relation between AMS 

adoption and GHG emissions 

efficiency 

Cows 0.77  × -0.02  = -0.015 

Feed concentrates 0.73        × -0.01  = -0.007 

Milk per cow 0.55   × 0.02  = 0.011 

Off-farm income -0.02    × -0.00 = 0 

Areal production per milk 

output 

-0.11    × 0.00 = 0 

Labour per cow -0.54                 × -0.04 = 0.022 

   Total effect  0.011 

Note: The result is obtained by multiplying the effect of AMS on each factor (step one) with the result 

from the FE linear regression (step three). The second column contains the estimates of the FE OLS 

regression (step 3). The total effect is obtained by summarising the right-side column.  

The total effect displayed in Table 3 is obtained by summing up the contributing power of all 

factors. This total effect of 0.011 is smaller in absolute terms than the estimated effect of AMS 

on GHG emissions efficiency in step 3, which we estimate to be −0.015. Thus, other processes 

may be at work which are not reflected by the structural and behavioural variables we include 

in the model. Nevertheless, our procedure demonstrates the relative importance of the factors 
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as secondary effects affecting farms’ environmental performance. In Table 3.3, the structural 

and behavioural factors show contradicting relations to GHG emissions efficiency, which can 

explain the small average effect of AMS adoption on GHG emissions efficiency. 

The second column displays the result from the linear regression outlined in Equation 3.2. We 

generate the results using a two-way FE regression. Despite the contributing power of each 

factor being relatively small, they are not irrelevant. Small decreases in farm-level GHG 

emissions efficiency can substantially increase total emissions. However, as displayed in the 

regression plot in Figure 3.5, the confidence intervals are large, indicating that more data would 

be required to increase the precision of the result. For example, access to a balanced panel data 

of the farms between 2013 and 2019, or a panel data covering a longer period of time, could 

help narrowing the confidence intervals. Not being able to reject the null hypothesis that there 

is no relationship between changes in a factor and changes in the GHG emissions efficiency 

calls for further investigation. 

 

Figure 3.5: Coefficient plot of the FE regression 

Note: 95 per cent confidence intervals 

Decreasing the labour per cow is associated with higher GHG emissions efficiency and 

constitutes the largest contribution to the effect of AMS adoption on GHG emissions 

efficiency. The negative association between labour per cow and GHG emissions efficiency is 
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consistent with prior findings (Bonfiglio et al. 2017; Martinsson and Hansson, 2021). The 

strong association between labour per cow and changes in GHG emission efficiency generated 

by AMS comes both from a relatively large effect of adopting AMS, but also from a large 

estimated association with GHG emissions efficiency. Thus, decreasing the labour per cow on 

a farm due to AMS contributes positively to farms’ GHG emissions efficiency. Whereas the 

previous findings of a negative relation between labour per cow and eco-efficiency has focused 

on a cross-sectional setting, our findings indicate that it is not only the case that farms with 

more labour per cow also have lower eco-efficiency, but that there is also an association 

between these variables when considering changes within farms. 

The number of cows also displays a large contribution to the changes in GHG emissions 

efficiency, mainly through the effect generated by adopting AMS. The result of a negative 

association between number of cows and GHG emission efficiency contradicts previous 

findings such as Martinsson and Hansson (2021). One reason for the negative association with 

GHG emissions efficiency could be that increasing the number of cows increases enteric 

fermentation. Another reason could be that diesel consumption is higher on larger Norwegian 

farms (van Oort and Andrew, 2016), possibly due to long distances between the farm centre 

and the most distant fields. Nevertheless, further research is required to investigate why larger 

farms are less GHG emissions efficient. Extension services, farmers and researchers need to 

find ways to achieve herd expansion combined with higher GHG emissions efficiency.  

The contradicting effect of labour per cow and herd sizes illustrates that the small estimated 

effect of AMS adoption on GHG emissions efficiency (Figure 3.4) is not due to a lack of 

processes, but rather that the adoption of AMS is associated with several processes that have 

contradicting effects on GHG emissions efficiency. 

Milk yield per cow and the share of feed concentrates have contradicting effects and are nearly 

cancelled out, as seen in Table 3.3. The changes in these variables are likely a result of 

increased milking frequency, which is enabled by AMS adoption (Oudshoorn et al. 2012). 
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Previous research has identified milk yield per cow to be positively associated with eco-

efficiency (Soteriades et al. 2020), which the findings of this study support. Achieving the 

maximum milk yield with the smallest proportion of feed concentrates can support increasing 

GHG emissions efficiency. Thus, we must identify ways to increase milk yield without 

increasing feed concentrates to affect GHG emissions efficiency positively. 

Off-farm income and areal production per milk output have little influence on the association 

between GHG emissions efficiency and AMS adoption, as they are estimated to have very low 

correlation to GHG emissions efficiency and change little with the adoption of AMS. 

To sum up, the most GHG-emissions-efficient farms in the sample have lower labour per cow, 

smaller herds, higher milk yield and a lower proportion of feed concentrates in the dairy cow 

feed ratio. These results indicate a challenge for the Norwegian dairy industry in maintaining 

GHG emissions efficiency as demand for dairy products increases and mechanisation drive 

farms to expand in size (Vik et al. 2019). Understanding the importance of different structural 

and behavioural factors that could drive the overall change in GHG emissions efficiency 

provides valuable insight into the significance of various underlying processes triggered by the 

adoption of novel technology. Based on this, future research efforts and extension services can 

be more precisely targeted. Investigating the correlation between the GHG emissions efficiency 

and the structural and behavioural changes, we do not find any indications that the included 

variables can explain the considerable heterogeneity in farms’ GHG emissions efficiency 

responses to AMS adoption. 

3.5 Conclusion 

We present a novel analytical approach for evaluating farm-level effects of new technology 

adoption, including secondary effects. We use matrix completion and DEA to assess the impact 

of adopting AMS on structural and behavioural factors and farm GHG emission efficiency. To 

our knowledge, this paper is the first to empirically demonstrate the presence of secondary 
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effects and use eco-efficiency evaluation to assess the effects of new farm technology. This 

procedure can be used in future research to evaluate other technologies. 

We identify that AMS adoption generates secondary effects in our sample of Norwegian dairy 

farms. After AMS adoption, farms increase herd sizes, the share of feed concentrates in the 

cows’ diet and milk yield per cow while decreasing labour per cow. The average effect of AMS 

adoption on GHG emission efficiency is small (−0.015) but with significant heterogeneities 

across observations. The negative and heterogenous relationship between AMS adoption and 

GHG emissions efficiency is a novel finding that highlights the importance of evaluating farm-

level effects of novel technology, including the possibility of secondary effects, as they can 

have unexpected effects on GHG emissions efficiency. For agriculture to develop towards 

increased environmental sustainability while ensuring economic viability, novel technology 

must contribute to improved farm-level eco-efficiency. 

By providing a link between AMS adoption and structural and behavioural factors, our study 

enables more precise steering of the development of farms to achieve desired policy targets 

given AMS adoption. Furthermore, linking structural and behavioural factors to GHG 

emissions efficiency allows for deriving insights into which processes to target for eco-efficient 

AMS implementation. We recommend providing extension services to enable farms to expand 

while maintaining or increasing their GHG emissions efficiency and increasing milk yield per 

cow without increasing the share of feed concentrates. Further, it is interesting to note the 

considerable heterogeneity in the effects of AMS adoption on GHG emissions efficiency, 

which calls for further research to determine what drives farms to increase or decrease their 

efficiency after adopting AMS in particular and novel technology in general. Future research 

should also invest in understanding the mechanisms behind the secondary effects of novel 

technology to enable forecasting the development of farms as more autonomous technology is 

developed and made available to farmers. For example, expanding the procedure to consider 

interrelations between the variables as AMS is adopted would be a helpful extension adding 

further understanding to the effects of AMS adoption. Further research should also expand the 
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approach by Kuosmanen and Kortelainen (2005) to implement more realistic assumptions of 

non-radial changes of variables in the very short run. 
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3.7 Appendix A: PS DID and fixed effects regression 

We apply PS-DID and FE regression to estimate how AMS adoption affects GHG emissions 

efficiency. Comparing the more unconventional machine learning approach to classic 

econometric methods improves the transparency and understanding of the results. The main 

differences are that the econometric methods provide statistical significance and confidence 

intervals, which the matrix completion currently lacks, and that the matrix completion can 

make use of the full dataset and utilise the variations there, while the econometric methods are 

more limited in this respect. We apply the econometric methods to assess the effect of AMS 

adoption on GHG emissions efficiency to illustrate the differences between the methods. In 

this appendix, we briefly outline the PS-DID and FE regression. Both methods produce similar 

results as the matrix completion approach, showing that our results are robust across different 

methodologies. 
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PS DID. As AMS adoption is not randomly distributed, we use propensity scores to control for 

factors which impact the adoption decision. Including propensity scores help to realise the 

parallel trends assumption, which is a prerequisite for a DID regression. The variables used for 

calculating the propensity scores are displayed in Table 3.4. 

Table 3.4: Descriptive statistics of covariates used for the propensity score calculation 

 Adopters 

(n=47) 

 Non-adopters 

(n=273) 

 

Covariates for propensity score 

matching 

Mean Sd Mean Sd 

Years observed 5.86 1.441 4.805 2.244 

Hired labour (share of total) 0.202 0.114 0.186 0.129 

Labour per cow  144.089 46.62 183.96 61.089 

Milk per cow (litre per head) 6605.752 832.812 6597.898 958.396 

Off-farm income (nkr per total net 

income) 

119541.454 125742.635 79600.95 147086.396 

Number of cows (heads)  28.565 11.796 20.845 8.806 

Feed concentrates (feed units, share of 

total feed concentrates and roughage) 

0.404 0.091 0.429 0.082 

Areal production per milk output (ha 

per milk output) 

0.002 0.001 0.003 0.002 

Sold roughage (income per cow) 1080.986 1295.466 1108.991 1402.04 

Beef per milk (kg/litre output) 0.019 0.015 0.018 0.011 

Energy (litre diesel)  60.545 30.327 44.039 26.646 

Fertilisers (nkr)  744.068 412.644 549.02 312.424 

Enteric fermentation (CH₄) 3221.127 1543.549 2260.37 1364.854 

Net income (1000 nkr) 966.059 382.987 824.818 375.146 

Further, DID requires treated and control groups to be observed in two periods: one period 

before adoption and one after. Thus, we subset the dataset to only keep observations the first 

and the last time they are observed. The average treatment effect of adoption can be determined 
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by comparing the outcomes of adopters and non-adopters (Khandker, Koolwal and Samad, 

2009). The DID regression can be expressed as △ 𝐸𝐸𝑖 =  𝛼 + 𝛽1(𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖) + 𝑒𝑖. Adoption 

is a binary indicator of whether the farm is an adopter or not. PS are included as weights in the 

regression.  

To test the robustness of the PS and the sensitivity of their specification to the result, we 

consider two versions of the DID using PS calculated through two different methods: Full 

matching and inverse probability weights (IPW). We use the Matchit package in R (Stuart et 

al. 2011) to obtain propensity scores and conduct the full matching. We calculate the IPW 

weights as 𝐼𝑃𝑊𝑖 =  
𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖

𝑃(𝑋)𝑖
+  

1−𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖

1−𝑃(𝑋)𝑖
. 𝑃(𝑋)𝑖 is the propensity score and 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖  is, 

as before, a binary indicator of whether farm i is an adopter or not. The matching satisfies the 

condition of common support as depicted in Figure 3.6. 

 

Figure 3.6: Distribution of the propensity scores for adopters and non-adopters separately. 

Note: Adoption = 0 are non-adopters and adoption = 1 are adopters, indicated by light and dark grey, 

respectively. 

Recent methodological contributions have suggested ways to expand the method to allow for 

staggered adoption by e.g. formulating different groups of adopters adopting in different times 
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(Callaway and Sant’Anna, 2021). However, this comes with the issue that it requires 

sufficiently large groups of adopters in the different years. In our application, this would result 

in small subsets of farms adopting in each year. 

FE regression. The other alternative we consider to assess the impact of an intervention is to 

use a two-way FE regression, including a dummy variable for the change in adoption status. 

The dependent variable is GHG emissions efficiency, and the explanatory variables are years 

since adoption, with one dummy for each year relative to adoption. We can create dummy 

variables of whether farms are in the years before adoption, as the actual adoption is preceded 

by a decision to adopt which can generate adaptive changes already before the AMS is 

implemented on the farm. However, the estimates do not reflect any counterfactual outcomes, 

but only consider how AMS affects the adopting farms. We include dummies for up to four 

years before adoption and four years after adoption, with an omitted reference period of five 

years before adoption. The regression can be written as 𝐸𝐸𝑖𝑡 =  𝛼𝑖 + 𝜑𝑡 +

 𝛽1(𝑦𝑟_𝑠𝑖𝑛𝑐𝑒_𝑎𝑑𝑜𝑝𝑡𝑖𝑡 ) + ∑ 𝛽𝑛𝑑𝑢𝑚𝑚𝑦_𝑦𝑟_𝑠𝑖𝑛𝑐𝑒_𝑎𝑑𝑜𝑝𝑖𝑡
4
𝑛=−4 +  𝑒𝑖𝑡.  Farm and year-fixed 

effects are included, denoted by α and φ in the FE regression equation. This method only 

considers variation among farms whose adoption status changes, i.e. farms that adopt AMS; 

non-adopting farms are excluded. The results of the PS DID and FE regression are displayed 

in Figure A2. 
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Figure 3.7: The effect of AMS adoption on GHG emissions efficiency estimated using PS-DID 

with full matching, IPW weights and the fixed effects regression, respectively. 

Note: The average effect is the result from the PS DID and fixed effects regression. All effects over 

time since adoption are generated using the fixed effects. The average effects are: −0.052 (full 

matching), −0.06 (IPW weights) and −0.11 (fixed effects). 90 per cent and 95 per cent confidence 

intervals 

3.8 Appendix B: Second stage DEA using Tobit regression 

A commonly used alternative to OLS regression in DEA efficiency assessments is Tobit (Hoff, 

2007; McDonald, 2009). As Tobit has been identified as a feasible alternative to OLS, we apply 

it as a robustness check to our OLS estimation used in the paper. While McDonald (2009) 

reached the conclusion to not use Tobit in the second stage DEA, Hoff (2007) identified Tobit 

as sufficient in representing second stage DEA assessments. Tobit regression is best used with 

censored data or where corner solutions are present, which is the case with DEA efficiency 

scores ranging between 0 and 1 (Hoff, 2007). The results from the Tobit regression are 

displayed alongside the results from the fixed effects OLS regression and shown in  

Table 3.5. 
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Table 3.5: The result from the Tobit and the OLS regression.   

 Tobit FE OLS 

Cows -0.04*** 

(0.0049) 

-0.02 

(0.016) 

Feed concentrates -0.01*** 

(0.0037) 

-0.01** 

(0.005) 

Milk per cow 0.02*** 

(0.0037) 

0.02*** 

(0.005) 

Off-farm income -0.02*** 

(0.0034) 

-0.00 

(0.007) 

Areal production per milk output -0.01*** 

(0.0034) 

0.00 

(0.003) 

Labour per cow -0.01* 

(0.0048) 

-0.04***  

(0.011) 

Note: Clustered standard errors in parenthesis. ‘***’ 1% significance, ‘**’ 5% significance, ‘*’ 10% 

significance. 

3.9 Appendix C: Emissions factors calculation 

To calculate methane emissions from enteric fermentation, we use equations provided by the 

IPCC (Eggleston et al. 2006) adapted to the Norwegian context in the NIR (Bjønness, 2021). 

We use the following equation to calculate enteric fermentation: 

𝐸𝑛𝑡𝑒𝑟𝑖𝑐 𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 =  𝐸𝐹𝑖 × 𝑁𝑖  

where 𝐸𝐹𝑖 denotes emissions factors for animal category i, and 𝑁𝑖 is the number of individuals 

in that category. To calculate enteric fermentation, we use the variables number of cows 

(including heifers and bulls), litre milk yield (including milk sold, milk consumed on the farm 

and waste), feed concentrates and roughage expressed in feed units from the Norwegian 

account results dataset. Emissions factors are calculated using the IPCC equation: 

𝐸𝐹 =  
𝐺𝐸 ∗ 𝑌𝑚 ∗ 365

55.65𝑚𝑗/𝑘𝑔𝐶𝐻4
 

Where GE is gross energy intake and 𝑌𝑚 is the methane conversion rate and depend on the 

climatic conditions and geographical area considered. To enable calculating these factors in the 

Norwegian context, we use estimates from the Norwegian national inventory report (NIR) 
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(Bjønness et al. 2021) which provides equations for calculating the GE and 𝑌𝑚 for dairy cattle, 

and provide estimations of the emissions factors for other livestock. Following the Norwegian 

NIR, we use the following equations to calculate GE, and 𝑌𝑚: 

GE = 137.9 +  0.0249 ×  Milk305 +  0.2806 ×  Concentrate_proportion  

Ym =  7.38 −  0.00003 x Milk305 −  0.01758 x Concentrate_proportion 

Milk305 is the energy corrected milk yield during the 305 days long lactation period. Due to 

data availability, we use the total yearly milk yield without correcting for energy content. In 

our calculation of enteric fermentation, we also include heifers and bulls, by multiplying the 

number of individuals in each category with emissions factors calculated using gross feed 

intake and methane conversion rate calculated for the Norwegian context from the NIR report 

(Bjønness et al. 2021). Thus, in total there are five categories of livestock included when we 

calculate a farms’ enteric fermentation; dairy cows, heifer >1 year, heifers <1 year, bulls >1 

year and bulls <1 year. 
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Chapter 4  
Conceptualization of how adopting novel 

technology induces structural and 

behavioural changes on farms1 

Abstract: Predicting the effects of adopting novel technology, particularly smart farming, is 

challenging as farmers often modify their behaviour and farm structures once a new technology 

is adopted. Nevertheless, by considering features of novel smart farming technology and 

relying on economic theory, we derive incentives for structural and behavioural changes that 

adoption can trigger. This paper presents a conceptual framework describing processes linked 

to features of smart farming technology that can incentivise farm-level structural and 

behavioural change. Specifically, we focus on rebound effects, economies of size (EoSi) and 

scope (EoSc), and risk-balancing. To provide examples of how the conceptual framework 

applies, we conduct a literature review of previous research studying farm-level effects of smart 

farming. 

Keywords: agricultural technology, structural change, rebound effects, conceptual framework 

 

4.1 Introduction 

Digital innovation is transforming the agricultural industry (Klerkx and Rose 2020). The 

European Union’s Common Agricultural Policy for 2023–27 reflects a desire to promote digital 

 
1 Chapter 4 is published as Martinsson, E., & Storm, H. (2025). Conceptualization of How Adopting Novel Technology 

Induces Structural and Behavioural Changes on Farms. Journal of Agricultural and Resource Economics, 1-26. DOI: 

10.22004/ag.econ.356163 
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and smart farming technology to modernise agriculture through innovation and knowledge 

(European Commission, 2019). One of the outcomes sought by increasing the use of digital 

technology is enhancing resource use efficiency and halting biodiversity loss (European 

Commission, 2019). However, whether increasing the adoption of digital and smart farming 

technology will provide these desired outcomes of increased sustainability is uncertain (Klerkx 

et al. 2019). The effects crucially depend on which farms adopt the technologies at what point 

in time, how the technology is used, and what structural and behavioural (S&B) adaptations 

follow after adoption.  

In this paper, we use economic theory and insights from previous literature to conceptualise 

smart farming-induced S&B change. Thereby, we contribute insights on important farm-level 

mechanisms and outcomes generated as farmers adopt and use smart farming technology. The 

induced S&B effects can alter sustainability outcomes and the development of the agricultural 

sector by, for example, driving changes in farm size and specialization of farms. Understanding 

induced S&B change is especially important for smart farming technology, which, although 

not yet widely implemented, is expected to transform the agricultural sector (Klerkx and Rose 

2020; Daum 2021). Nevertheless, the determinants and drivers of S&B incentives generated 

by smart farming technology are poorly understood.  

This study contributes to understanding smart farming-induced S&B change. Specifically, we 

aim to provide insights into how novel smart technology motivates farm-level S&B changes 

and what outcomes this can yield. To achieve this, we formulate two objectives:  

1. To construct a theoretically derived conceptual framework which describes and 

conceptualize mechanisms that can create incentives for S&B change. 

2. To provide examples of how the framework applies through a literature review of farm-

level effects of smart farming.  

We apply the theoretically derived framework which we formulate in this paper to smart 

farming in livestock and crop production. Findings from the literature review are analysed 
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separately for the two specializations due to differences in smart farming technology used in 

livestock farming compared with crop production. Constructing the conceptual framework and 

conducting the literature review are not two isolated processes. By first developing the 

conceptual framework, we use it to formulate the keywords for the literature review. Further, 

when conducting the literature review, we allow for updating the conceptual framework with 

new insights, gained throughout the process of reviewing the literature. The literature review 

further reveals how previous studies have approached smart farming-induced S&B change and 

contributes to highlighting the contribution of our conceptual framework.  

Previous literature has primarily investigated the determinants of adopting smart farming and 

digital technology (Tey and Brindal 2012; Gallardo and Sauer 2018; Michels et al. 2020; Shang 

et al. 2021; Khanna et al. 2022; Gabriel and Gandorfer 2022; Khanna et al. 2024). Adoption 

studies provide valuable insights into the effects of technology, as technology will only have 

an impact if adopted. Research has also studied the direct effects of incorporating robotics into 

agriculture, showing that agricultural robotics can have positive effects by increasing resource 

use efficiency, reducing labour requirements and lowering production costs (Walter et al. 2017; 

Duckett et al. 2018; Finger et al. 2019; Martin et al. 2022; Storm et al. 2024). S&B change of 

smart farming has also been studied previously. For example, a farmer might need to adjust 

field structures to enable a field-robotic technology to operate efficiently (Sparrow and Howard 

2021), reorganize farm labour to utilize the autonomous features of an automatic milking 

system (AMS) (Martin et al. 2022), expand farm sizes to fully benefit from the AMS (Vik et 

al. 2019) or be motivated to reinvest savings in production costs from the adoption of smart 

farming and intercropping technologies (Paul et al. 2019). However, the literature studying 

smart farming induced S&B change is scarce and the mechanisms behind farmers adapting and 

changing their production decisions in response to smart farming technology are poorly 

understood and conceptualized.  

Previous concepts for studying the effects of smart farming technology include activity theory, 

which considers the interaction between actors (Lioutas et al. 2019; Rijswijk et al. 2021) and 
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responsible research and innovation, which highlights ethical and social considerations (Rose 

and Chilvers 2018; Regan 2019). Nevertheless, no conceptual framework exists to study farm-

level S&B adaptations to novel smart farming technology. As a result, smart farming-induced 

S&B change is often overlooked. We gather inspiration for our conceptual framework in 

previous similar contributions, such as Paul et al.'s (2019) conceptual framework of rebound 

effects in land and soil management, Shang et al.'s (2021) framework integrating empirical 

evidence with agent-based models and Finger et al.'s (2019) review of how precision farming 

can be transformed to benefits for the agricultural sector. Nevertheless, none of these previous 

contributions includes smart farming-induced S&B change. Instead, most studies on smart 

farming focus on potential impacts using experimental data or model predictions, giving little 

attention to the observed effects (Finger et al. 2019).  In a review by Lowenberg-DeBoer et al. 

(2020)  on the economics of field crop robotics, the authors conclude that the literature on this 

topic is scarce and that more research needs to investigate the potential of crop robotics to 

change the optimal scale and size of farms.  

The effects of novel technology are difficult to capture, and the exact effects can be as diverse 

as the number of farms. In particular, the effects of novel smart farming technology, which are 

still not widely adopted, are impossible to predict fully. Nevertheless, the effects of technology 

can be better understood by determining how specific technology characteristics create 

incentives for S&B change through various mechanisms. The mechanisms are derived from 

economic theory to develop a conceptual framework that can be used to support hypothesis 

formulation about changes that will arise on farms after smart farming technology is adopted. 

This framework is important for three reasons: it informs empirical research, provides 

information for modelling and informs policymakers in their efforts to promote sustainable 

development through smart farming. Specifically, we assume that induced S&B change that 

can arise from changes in economies of size (EoSi) and scope (EoSc) and changes in risk and 

rebound effects arising from increasing resource use efficiency are considered. In Section 3, 
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we thoroughly explain each concept and how we hypothesize that smart farming technology 

can generate S&B change through the respective concepts.  

The rest of the paper is structured as follows. In Section 4.2 we provide the basis of the 

framework by defining the types of effects we focus on and specifying the definition of smart 

farming technology. Section 4.3 provides the theoretical foundations by discussing EoSi and 

EoSc, rebound effects and risk and how they can trigger S&B change. The first objective is to 

derive a conceptual framework describing mechanisms that create incentives for S&B by 

considering the theoretical foundations in the context of smart farming technology. Section 4.4 

presents the literature review, keywords, and inclusion criteria. In Section 4.5 we present the 

results. Finally, Section 4.6 concludes. 

4.2 Structural and behavioural change induced by smart farming 

technology 

In our study, we want to increase the understanding of how the adoption of smart farming can 

incentivize farm-level S&B changes. Thus, we do not focus on the farmers’ intentions with 

adopting the technology but instead aim to understand how attributes of technology can create 

incentives for S&B change, disregarding if the farmer was targeting these changes before the 

adoption of the technology or not. There is already a vast amount of literature on farmers’ 

intention to adopt smart and precision farming technology (Tey and Brindal, 2012; Pathak et 

al. 2019). However, we attempt to disentangle which mechanisms can incentivize S&B change 

given the specific characteristics of novel smart farming technology.  

As an example of incentivized S&B change, consider adopting an AMS. Farmers' intention for 

adoption could be expansion and to enable shifting to a more modern and flexible lifestyle (Vik 

et al. 2019). Disregarding the initial incentives, the characteristics of AMS can incentivize farm 

expansion for example to fully exploit the machine capacity or motivate farmers to increase 

production to finance the investment (Vik et al. 2019). We aim to provide a theory-based 

framework that allows to evaluate how certain technology characteristics induce S&B change. 
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We do not put any evaluation in whether the induced changes are desirable or not, or whether 

they occur in the short or long term. The focus is on the features of novel smart farming 

technology and what farm-level mechanisms are potentially triggered by adopting and using 

the technology on the farm. 

Smart farming is a broad term used to define the transformation of the agricultural sector jointly 

including aspects of technology, the diversity of agricultural production systems and the 

interaction between different institutions such as markets and policies (Walter et al. 2017). 

Nevertheless, the term “smart farming technology” is not uniquely defined in the literature. 

One type of technology with an important role in the smart farming transition is precision 

agriculture (PA). Which is defined as “…a management strategy that gathers, processes and 

analyses temporal, spatial and individual plant and animal data and combines it with other 

information to support management decisions according to estimated variability for improved 

resource use efficiency, productivity, quality, profitability and sustainability of agricultural 

production.” (The international society of precision agriculture (ISPA)). However, robotic and 

fully automated systems are also increasingly being developed and adopted to farms, thus also 

playing a crucial role in the transition towards smart farming  (Moysiadis et al. 2021). with the 

addition that this study also focuses on autonomous technology. Thus, we classify a technology 

as smart farming if it has at least one of the following features: gathers and provide information, 

enables for or conducts variable rate application (VRA) or is a fully automated system.   

4.3 Theoretical foundations of induced structural and behavioural change 

This section presents a conceptual framework of smart farming-induced S&B change. 

Specifically, the contribution presented in this section consists of describing and connecting 

important economic mechanisms and outcomes triggered by smart farming technology. It 

conceptualizes the relation between features of smart farming, mechanisms of smart farming-

induced S&B change and the outcomes this yields.  



Chapter 4: How Adopting Novel Technology Induces Farm-level Change

 

111 

 

The conceptual framework rests on the assumption that traits of smart farming can induce S&B 

change through the economic concepts of EoSi, EoSc, rebound effects and risk. The economic 

concepts which we include in our conceptualization do not encompass all potential effects of 

novel technology, but they provide an important starting point for explaining S&B change 

processes after adopting smart farming technology. While there is previous literature on how 

novel agricultural technology can generate rebound effects (Paul et al. 2019) and change EoSi 

(Lowenberg-DeBoer et al. 2022), EoSc and risk are less frequently studied than drivers of S&B 

changes generated by adopting new technology.  

We gather inspiration for formulating the conceptual framework from Lange et al. (2021) 

conceptualization of rebound effects, which considers separate rebound mechanisms and 

rebound outcomes in energy savings. Similarly, this study disaggregates induced S&B change 

effects into mechanisms and outcomes. The connection between technology features, 

mechanisms and outcomes is the basic premise of the framework presented in this study and is 

illustrated in Figure 4.1. Specifically, the study conceptualizes a link between features of smart 

farming technology, which triggers mechanisms that motivate the change. The outcomes are 

then the results of the farmer acting on the mechanisms, giving rise to S&B changes.  In 

opposite to Lange et al. (2021), who focuses exclusively on the rebound effect, this paper 

considers a broader range of mechanisms and focuses to the specific features of smart farming 

technology.  
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Figure 4.1: Theoretically derived conceptual framework of induced structural and behavioural 

(S&B) change. 

Note: The arrows going from the features of technology to the effects are illustrating which features can 

trigger which effects given the economic theory. The different style of arrows is made to increase 

readability. 

We focus on four mechanisms. As depicted in Figure 4.1, we consider that S&B change will 

be induced if a novel technology changes the cost-minimizing size of the farm (changes EoSi), 

changes the cost-minimizing scope (EoSc), increases or decreases risk and uncertainty 

(changes risk), or increases input use efficiency (enabling re-investments giving rise to rebound 

effects). These mechanisms change the status quo on the farm, and the outcomes will be 

structural or behavioural changes following the economic concepts listed. Notably, there are 

overlaps between the effects we discuss in this paper. Particularly, EoSi and rebound effects 

overlap in the respect that input use efficiency at certain scales of production can be used to 

measure EoSi, while increasing input use efficiency is also an indicator for rebound effects. 

The key differences between each of the concepts are, however, the mechanisms through which 

the features of technology generate the outcomes distinct for the different economic theories 

and will be elaborated on in the following sections. In the remainder of this section, we review 

the economic theories and explain the relation between the features and induced S&B change, 

as illustrated with the arrows in Figure 4.1.  



Chapter 4: How Adopting Novel Technology Induces Farm-level Change

 

113 

 

4.3.1 Economies of size and scope as incentives for structural and behavioural change 

Technological development has encouraged expansion towards larger and more specialized 

farms (Bowman and Zilberman, 2013). EoSi is an important driver of farm expansion as 

technological development progresses (Schimmelpfennig, 2016; Key, 2019). Nevertheless, 

these conclusions are commonly drawn at the sector level and not attributed to farm-level 

adoption of new technology, which can incentivize farmers to expand using EoSi. While the 

current development of farms is towards becoming larger and more specialized under the 

economic rationale to pursue EoSi and increase technical efficiency rather than focusing on 

diversification (de Roest et al. 2018), smart farming technology can also enable both increased 

and new forms of diversification of production (Walter et al. 2017) and enable preserving 

smaller farm sizes by removing the pressure to expand (Lowenberg-DeBoer et al. 2021). 

However, technological lock-ins could also contribute to increasingly specialized farming 

systems, as identified for crop production (Magrini et al. 2016; Meynard et al. 2018).  

To this background, we consider changes in EoSi 2 and EoSc necessary to study on a farm level 

as potential mechanisms of S&B change. EoSi is present when costs per output can be 

decreased by increasing the size of production in any cost-minimizing way and EoSc is present 

when costs per output are minimized when inputs are used to produce several different goods. 

EoSc can arise from product-specific EoSi (Panzar and Willig, 1981). In the following, EoSi 

and EoSc are described from the perspective of how these theories can provide motivations for 

S&B effects of smart farming technology.  

Economies of size (EoSi) 

EoSi specifies a scenario where average costs, i.e., costs per output, can be minimized by 

increasing production quantity. Average costs consist of fixed and operational (variable) costs 

and are commonly illustrated as an L- or U-shaped curve, where costs for low levels of 

 
2 This also covers the notion of economies of scale, when scaling up all inputs by a factor leads to increases in output with 

more than that factor. See (Duffy, 2009) for a clear outline of the concepts’ differences. 
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production is high due to high fixed costs and decrease with size enlargement (Chavas, 2008; 

Duffy, 2009; Lowenberg-DeBoer et al. 2021). At very large farm sizes, average costs can 

increase, indicating diseconomies of size (Alvarez and Arias, 2003). 

A recent stream of studies how crop robotics can change farms’ average cost and EoSi using a 

linear programming optimization model developed by Lowenberg-DeBoer et al. (2021). With 

such a model it can be shown how the usage of crop robotics changes the average production 

cost and that this largely depends on the required supervision time. A high degree of autonomy 

without the need for human supervision can decrease the advantage of larger farms and make 

smaller farms more economically feasible (Lowenberg-DeBoer et al. 2022). However, even 

with high supervision requirements, the same model shows that crop robotics are found to 

decrease average costs (Maritan et al. 2023). A high requirement for human supervision makes 

the EoSi for larger farms more noticeable than for smaller farms and the implication of “bigger 

is better” is increased when crop robotics need more supervision (Lowenberg-DeBoer et al. 

2022).  

The introduction of novel technology is one important tool to enable farms to expand to 

previously unfeasible sizes (Hermans et al. 2017), where otherwise further expansion would 

be limited due to managerial confinements which would cause the farm to run into decreasing 

returns to size (Alvarez and Arias, 2003). Such large-scale operations are referred to as 

Megafarms and are particularly prevalent in Eastern Europe, South America and China 

(Hermans et al. 2017). EoSi can enable megafarms, as the large farm size enables spreading 

fixed costs over a larger quantity, increasing the attractiveness of the farm for managers and 

technical staff and enabling full utilization of facilities and farm infrastructures (Chaddad and 

Valentinov, 2017). Furthermore, megafarms have the means and capacity to invest in modern 

information and communication technology, which enables them to continue to grow (Chaddad 

and Valentinov, 2017). Megafarms also benefit from EoSi as geographical and product 

diversification expansion can decrease price and production risk (Chaddad and Valentinov, 

2017).  
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Given EoSi and previous studies on how novel technology can change average costs and thus 

change EoSi, we identify four ways smart farming technology can shift average costs to induce 

S&B change. First, suppose the technology has a high investment cost, this can generate EoSi 

by shifting the average cost curve to the right, driving farms to expand to minimize production 

costs (Duffy, 2009; Weersink, 2018). Second, whether the technology requires high or low 

supervision time has implications for the slope of the average cost curve, where high 

supervision time will create a negative slope persisting until large farm sizes. In contrast, 

low supervision time will also enable small farms to minimise average costs (Lowenberg-

DeBoer et al. 2022). Third, suppose the novel smart farming technology can provide higher 

managerial capacity. In that case, it can allow farms to grow more before encountering 

diseconomies of size, or even grow without encountering diseconomies of size as in the case 

of megafarms with several operators (Chaddad and Valentinov, 2017; Hermans et al. 2017). 

Finally, the indivisibility and investment costs of the technology can create thresholds for 

further expansion. Indivisibility refers to the extent to which technology employment can 

gradually increase (Rasmussen, 2012). In contrast, high indivisibility means that the usage of 

the technology cannot be gradually increased but rather stepwise. Figure 4.2 illustrates these 

three potential effects of smart farming technology.  

 

Figure 4.2: Illustration of Economies of Size (EoSi) for different features of the technology.  
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Note: The three curves illustrate three different hypothetical technologies and show how average costs 

might change as novel technology is adopted. Fig 2 is simulated by the authors using arbitrary numbers 

to illustrate potential shifts in the average cost curve for smart farming technology. A-D represent the 

four potential effects from changing EoSi as discussed in the section before the figure. A: Higher 

investment cost. B: Changing slope of the average cost curve. C: Decreasing diseconomies of size for 

large farm sizes. D: Investment cost and indivisibility, creating potential hurdles for further expansion. 

For illustration, Figure 4.2 shows two types of smart farming technology: one with high 

indivisibility, high investment costs and high supervision requirements (technology 2) and one 

with low investment costs, high divisibility and low supervision requirements (technology 3). 

Relating to technology features, EoSi can be affected by high investment costs and the 

indivisibility of a technology, which can shift the average cost curve down and to the right (A 

in Figure 4.2), creating hurdles for further expansion (D). The degree of autonomy of 

technology can change the slope of the cost curve, where high supervision time will create a 

negative slope and low supervision time will flatten out the slope, making smaller farm sizes 

more feasible (B). Finally, information gathering and provision and VRA can alleviate the 

managerial limitations at large farm sizes, enabling farms to continue to grow without running 

into decreasing returns to size (C). 

Economies of scope (EoSc) 

We follow the definition of EoSc as sharable inputs (Panzar and Willig, 1981). Sharable, or 

complementary, inputs provide arguments for diversification because such inputs can be used 

to produce several goods simultaneously (Bowman and Zilberman, 2013). Analogously, the 

absence or decrease of sharable inputs motivates specialization. (Panzar and Willig, 1981) 

categorized sharable inputs as 1) elements of productive capacity (such as electricity), 2) 

indivisible equipment usable for producing more than one good and 3) human capital or other 

inputs that inevitably offer coproducts (the typical example being sheep offering mutton and 

wool). Similarly, (Lansink, 2008) exemplifies sharable inputs such as labour, farm structures 

and machinery. In addition, knowledge is a sharable input that provides arguments for 

diversification, as diversified systems are often more complex to manage than specialized ones 
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(Chavas and Barham, 2007). Both Lansink (2008) and Chavas and Barham (2007) build their 

formulations of sharable inputs on Panzar and Willig (1981).  

Smart farming technology can generate both increasing and decreasing EoSc, depending on 

whether it increases or decreases the usage of sharable inputs.  While EoSc is barely studied in 

the context of the effects of technology, Takeshima et al. (2020) provide an example by 

studying mechanization on Nigerian farms identifying that diversified systems are likely to be 

preserved where mechanization is more versatile and can be applied to different crops  

(Takeshima et al. 2020), i.e. when technology is sharable. On the one hand, if technology has 

high indivisibility, replaces labour and provides knowledge for a specific production process, 

this motivates expanding production of the good where the improved technology is applicable 

while decreasing the production of other goods. On the other hand, smart farming can enable 

more diversified production by increasing sharable inputs. Considering the features of smart 

farming technology, both increasing and decreasing EoSc can be generated through all 

technology features, depending on the possibility of applying the features to several production 

processes. Figure 4.1 illustrates that all technology features can affect EoSc, as long as the 

feature increases or decreases sharable inputs.  

4.3.2 Rebound mechanisms as drivers of induced structural and behavioural change  

Rebound effect is a broad term initially developed to explain the difference between potential 

and actual energy savings (Sorrell, 2007). However, the exact definition vary (Peters et al. 

2012; Lange et al. 2021). Rebound effects can arise when an efficiency improvement lowers 

production costs, resulting in savings on the farm. These savings can be re-invested into 

expanding production, changing production processes, or be allocated elsewhere Paul et al. 

2019). A common distinction of rebound effects is between income and substitution effects. 

Income effects define a situation where cost savings can be re-invested and substitution effects 

define substituting processes towards using more of the process of which efficiency was 

increased (Sorrell, 2007; Paul et al. 2019). However, all rebound effects occur through adaptive 
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responses to an efficiency increase that offset part or all of the resource savings achieved by 

the efficiency improvement (Sorrell, 2007; Paul et al., 2019; Lange et al., 2021).  

Rebound effects are relevant to explain changes in farm structures after adopting novel 

technology. These effects have been intensively studied for technologies that improve water 

use efficiency (Albizua et al. 2019; Song et al. 2018; Wang et al. 2020) and land use efficiency 

(Meyfroidt et al., 2018; García et al., 2020). The 2019 IPCC report underscores the importance 

of considering rebound effects, particularly in the livestock sector, as reductions in emission 

intensities need to be coupled with appropriate governance to avoid rebound effects, offsetting 

mitigation efforts (Mbow et al. 2019). 

Considering the features of smart farming, input use efficiency can be increased through the 

traits of capacity, autonomy, VRA and information, as these are all features that can increase 

input use efficiency. Whether the capacity of the technology will trigger rebound mechanisms 

depends on whether the farm is operating at the optimal size for the technology such that 

efficiency can be increased or if the farm first will undergo some structural change triggered 

by changed EoSi to realize efficiency gains. VRA increases the efficiency of inputs, commonly 

pesticides and fertilizers in crop production or livestock in animal husbandry, generating 

rebound effects that result in lower resource savings compared to a scenario without any 

induced S&B change. Using VRA can also increase the relative efficiency of using fertilizers 

or chemicals compared to mechanical methods and thus, through the rebound effect, motivate 

the farmer to increase the usage of these inputs, creating a larger environmental burden.  

Information gathering and provision, and autonomy can increase labour efficiency. 

Autonomous technology replaces the need for some labour tasks, where cost savings can 

generate rebound effects in other inputs. Decreases in labour requirements can give rise to 

rebound effects, mainly as autonomous technology replaces more high-skilled jobs rather than 

just standardized tasks (Marinoudi et al., 2019), leading to considerable cost savings. The cost 

savings can be re-invested to change farm structures; however, the exact outcomes generated 
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through rebound mechanisms are not inherent in the theory but rather vary depending on how 

the farmer chooses to reinvest the cost savings.  

4.3.3 Risk balancing as a driver of induced structural and behavioural change 

Farming is characterized by risk, and farmers' attitudes to risk shape their decisions for their 

farms (Just and Just, 2016). Risk and uncertainty also play an essential role in adopting new 

technology (Marra, Pannell, and Abadi Ghadim, 2003). A common assumption is that new 

technology is associated with higher risk than the old traditional technology, but findings imply 

that new technology can also help farmers decrease uncertainty (Barham et al., 2014). 

Furthermore, new technology on farms affects the risks the farmer faces (Kim and Chavas, 

2003; Orea and Wall, 2012; Wauters et al., 2014). Smart farming can, for example, reduce risks 

through VRA (Lowenberg-DeBoer, 1999) or enable earlier detection of pests, thereby reducing 

risks of pest damage (Liu et al., 2017; Rojo-Gimeno et al., 2019). Farmers’ responses to risk 

can be highly heterogeneous (Ramsey et al., 2019), making it challenging to describe general 

principles of how smart farming can generate S&B change through changes in risk.  

We follow the risk balancing principle by Gabriel and Baker (1980) and focus on two broad 

types of risk: business and financial (Komarek et al. 2020). Risk-balancing behaviour has been 

identified empirically among European farmers (Gabriel and Baker, 1980; de Mey et al. 2014 

& 2016). Business risks stem from the market and production, while financial risks involve 

how the farm is financed (Gabriel and Baker, 1980; Komarek et al. 2020). Farmers identify 

farm survival and profit maximization as two objectives to maximize subject to the constraint 

that risks should not exceed a certain level. Farmers' risk preferences, a key concept in 

agricultural economics, are reflected in the level of risk a farmer is willing to accept. The risk 

balancing is illustrated as the sum of business and financial risks constrained by a maximum 

acceptable level of risk, 𝛽. The risk constraint can be expressed as (Gabriel and Baker, 1980):  

𝜎

𝑐𝑥
 +  

𝜎𝐼

𝑐𝑥(𝑐𝑥−𝐼)
 ≤  𝛽     (4.1) 
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The first operator denotes business risk as the net cash flow standard deviation (σ) over the net 

cash flow (𝑐𝑥). Variations in cash flow come from the market or the production process. In 

contrast, financial risk concerns how the farm is financed, denoted by the second operator in 

Equation 4.1, where risk is increased by fixed financial obligations such as the obligation to 

repay a debt (Gabriel and Baker, 1980; Komarek et al. 2020). I denotes the fixed debt servicing 

obligation. If 𝜎 is increased, both business and financial risks increase and the risk must be 

adjusted. For example, a farmer can make decisions about production, farm financing, 

investment decisions or a combination. However, when 𝜎 is decreased, there is slack in the risk 

constraint and the farmer can afford to make riskier decisions.  

Considering risk balancing (Gabriel and Baker, 1980), we can consider two scenarios where a 

smart farming technology can affect behavioural adaptations by changing risk: when business 

risk decreases, leaving a slack in the risk constraint or when increases in financial risk result in 

higher risks than the level which is acceptable to the farmer. Recent findings indicate that 

production and financial risk are independent of each other, such that a farmer’s attitude 

towards production risk is a poor predictor of farmers’ attitude towards financial risk (Finger 

et al. 2023). This indicates that the different types of risks are handled separately by farmers, 

which could imply that adopting novel technology could generate S&B change if technology 

is adopted to address one of these risk domains, requiring later adaptation in the other.  

We consider scenarios in which risks must decrease to comply with the risk constraint and 

when risk can be increased if there is a slack in the risk constraint. The following section 

discusses the technology features that trigger these changes in risk. 

Slack in the risk constraint 

From the risk constraint in Equation 4.1, slack can motivate farmers to adapt their behaviour 

to increase profits by increasing the SD of net cash flow or debt obligations. Debt can be 

increased by taking a loan to invest in new technology or to invest in farm structural change 

and increasing productivity and capacity (Uzea et al. 2014). Thus, when there is a slack in the 
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risk constraint, a farmer can make investments that increase risks with the prospect of higher 

gains. However, investing in expansion can also decrease the total risks if the farm is 

characterized by increasing returns to size (Langemeier and Jones, 2000). Thus, if a farm is 

expanding to use increasing returns to size and maintain slack in the risk constraint or even 

decrease risks on farms, it might be motivated to expand or increase capacity even further to 

increase risks to meet the risk constraint.  

A slack in the risk constraint can be generated by the smart farming feature of VRA, which can 

increase cash flow from increased efficiency, or from increasing information that decreases 

production risks. This is illustrated in Figure 4.1. Figure 4.1 also illustrates an influence 

between risk balancing and changes in EoSi as under increasing returns to size, farmers can 

opt to expand to decrease risks, incentivizing them to take riskier decisions by, e.g., expanding 

further or investing in additional technology, as risks are below the tolerated level. 

When risks are too high 

If technology increases risks and the left-hand side of Equation 4.1 is higher than 𝛽, a farmer 

is motivated to decrease risks to meet the constraints. This situation can arise if the technology 

is a high investment and the farmer must take a loan. Griffin et al. (2018) illustrate financial 

risks by asking, “Will this investment pay for itself quickly?”. As financial risks increase and 

if the novel technology does not decrease business risks, farmers may be motivated to decrease 

risks to meet the risk-balancing constraint.  

A common way to manage increased financial risk is to keep more liquid assets (e.g. animals 

ready for slaughter or grain or forage directly convertible to cash) (Gabriel and Baker, 1980; 

Langemeier and Jones, 2000; Ullah et al. 2016). In contrast, illiquid assets are livestock and 

machinery (Harwood, 1999). Thus, farmers facing high financial risks are less likely to expand 

because they hesitate to invest in more land and machinery. Instead, farmers are motivated to 

increase liquidity to manage their debt.  An exception to this hesitation to expand can be seen 

in cases where the farm is operating under increasing returns to size, where increasing 
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production to utilize the technology fully decreases production risks  (Langemeier and Jones, 

2000). Thus, when a farmer takes on increased debts by investing in a technology, risk-

balancing behaviour can provide an additional drive to utilize size effects as a way to lower 

risks. However, it could lead farmers to be more cautious with further investments on the farm.  

Worth noting here is that there are other risks associated to smart farming often highlighted in 

the literature. Such risks are the potential marginalisation of farmers not adopting the 

technology, worries about data security and the risk of autonomous technology creating a 

disconnect between farmers and their crops and animals (Sparrow and Howard 2021). 

Furthermore, increasing the autonomy on farms can be associated with risks which we cannot 

yet imagine as full autonomy on farms is still in its early days (Shutske, 2023). These types of 

risks are outside the scope of this study, but nevertheless important to consider when 

visualizing the future of agriculture. 

4.4 Empirical foundations: literature review 

In this section, we review previous research on farm-level effects of smart farming with the 

aim of providing examples of how the conceptual framework applies. To reach this aim, we 

conduct a structured literature search of the Web of Science (WoS) and Scopus database, 

including peer-reviewed literature and conference contributions. We borrow elements from the 

systematic literature review by following the five steps of a systematic literature review (Khan 

et al. 2003; Okoli, 2015): framing the questions, identifying relevant work, assessing the quality 

of studies, summarizing the evidence and interpreting the findings. To identify relevant work, 

we use the keywords in Table 4.1. However, our approach deviates from a systematic review 

in how we screen the resulting studies for inclusion: Rather than mapping all literature on the 

subject, we follow the principles of a narrative literature review by organizing the findings 

thematically based on whether they contain smart farming induced S&B change and whether 

we can map the changes into the mechanisms covered in our framework. In this respect, we do 

not aim to provide an exhaustive overview of the entire literature on the topic of assessing the 
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effects of smart farming technology but rather investigate whether we can identify studies 

providing examples of the conceptual framework presented in Figure 4.1.   

 

 

 

 

 

Table 4.1:. Keywords for the literature search.  

Group  Search terms Nr studies 

1 – specify context 

(joined by AND) 

All papers should 

include some 

elements of 

agriculture, 

technology and 

structural change 

Agriculture (from 

Shang et al. 2020) 

TS = agricultur* OR farm* AND  

Identify the 

technology 

context (also from 

Shang et al. 2020 

adding “robot”) 

TS = technolog* OR innovation* OR robot* AND  

Identify the 

element of 

structural change 

TS = ‘structural change’ OR structural OR 

‘behavio$ral change’OR behavio$r OR intensif* OR 

expans* OR specialis* OR ‘farm size’ OR 

diversific* OR ‘herd size’ 

= 11 566 

 

2 – specify induced 

structural and 

behavioural change 

(joined by OR) 

All papers should 

also include an 

Economies of size 

and scope 

TS = ‘economies of size’ OR ‘economies of scale’ 

OR ‘diseconomies of scale’ OR ‘diseconomies of 

size’ OR ‘economies of scope’ OR ‘diseconomies of 

scope’ OR ‘scale enlargement’ OR expansion OR 

‘specialised farms’ OR ‘farm diversification’ OR 

‘complementary inputs’ OR ‘sharable inputs’ 
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element of EoS, risk 

or increasing input 

use efficiency. 

Risk TS= ambiguity or hazard or uncertain* or risk* or 

variab* or volatil* or stabil* or vulnerab* or 

resilien* or robust* debt OR purchase 

 

Increasing the 

input use 

efficiency  

TS = ‘rebound effect*’ or Jevon* or ‘labo$r use 

efficiency’ OR work* OR labor OR labour OR job* 

OR task* OR employment*  

 

3 – specify smart 

farming 

Smart farming 

(adapted from 

Shang et al. 2020)  

TS = precision OR digital OR ‘smart farming’ OR 

robot* OR autonomous OR automa* OR ‘unmanned 

aerial vehicle*’ OR drone OR ‘cloud computing’ OR 

‘site specific’ OR ‘variable rate’ OR ‘GPS’ OR 

‘remote sensing’ OR ‘soil sampling’ OR ‘yield 

mapping’ OR ‘yield monitor*’ OR ‘autosteer’ OR 

drip OR irrigation OR ‘water saving’ 

= 1660 

(filtered 

for papers 

in 

English) 

Note: * are used to broaden the search terms. 

4.5 Results 

In this section, we discuss the literature review results and draw connections between the 

literature and the conceptual framework in Figure 4.1. We searched the databases a final time 

on 08 January 2025. The literature search resulted in 10 546 papers. After excluding duplicates, 

papers based on meso topics (WoS) and subject area (Scopus),3  3 263 papers remained to 

screen for inclusion. This process is illustrated in Figure 4.3. Refining searches by topic follows 

Šarauskis et al. (2022). Next, we formulate a protocol for what qualifies a record to be included 

in the literature review (available in Appendix 1). When screening titles and abstracts, many 

papers are excluded as they focus on adoption determinants, contribute to developing 

technology or do not consider smart farming technology.  

 
3 Excluded meso-topics (WoS): Oceanography, meteorology and atmospheric sciences, Archaeology, Marine biology, Modern 

history, Soviet, Russian and East European history, space sciences.  

Excluded subject areas (Scopus): Computer science, Engineering, Mathematics, Earth and Planetary Sciences, Physics and 

Astronomy, Biochemistry, Genetics and Molecular biology, Materials science, Medicine, Chemical engineering, Chemistry, 

Veterinary, Pharmacology, Toxicology and pharmaceutics, Immunology and microbiology, Neuroscience, Health professions, 

Nursing. 



Chapter 4: How Adopting Novel Technology Induces Farm-level Change

 

125 

 

Notably, when considering the 196 articles for full-paper reads, few studies include the 

potential of smart farming to induce S&B change. As seen in Figure 4.3, most papers are 

excluded at this stage because they consider the future potential of a smart farming technology 

(25 studies on farm-level and 8 studies on a higher or lower level of aggregation), adoption 

determinants (20 studies) and effects of the technology without incorporating S&B change (18 

studies). Finally, we identify any S&B change generated by smart farming technology in 34 

papers. We identify the S&B mechanisms and outcomes in our conceptual framework (Figure 

4.1) in 27 of these studies. The 7 papers indicating S&B change which are not included in our 

framework mention the absence of effects due to a lack of trust in the technology (Eckelkamp 

and Bewley, 2020), that the farmer seeks more education to enable efficient use of the 

technology (Busse et al. 2015; Barnes et al. 2019) or that, after having adopted information 

technology, farmers increase their commitment to climate change mitigation (Irawan et al. 

2023; Mao et al. 2024). Two papers state that the adoption of smart farming technology 

generates S&B change but does not specify the mechanisms triggering the changes (Martinsson 

et al. 2023; W. Wang et al. 2024). 
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Figure 4.3: Structural and Behavioural (S&B) change in previous literature 

We list the mechanisms and outcomes for each paper, then consider whether it fits as one of 

the processes identified from the theory. In most papers, the mechanisms are not mentioned 

explicitly but are deduced from the motivations for change described in the papers. Many of 

the included studies only briefly mention the mechanisms through which smart farming-

induced S&B change occurs or refer to them indirectly. Our finding that few studies include 
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the possibility for S&B change and that the few studies that do, in many cases, refer to such 

change indirectly highlights the need for more research on this topic. Future research on smart 

farming-induced S&B change can make use of the conceptual framework presented in Section 

4.3. For transparency, the quotes from the papers where the induced S&B change is identified 

are displayed in Appendix 2.  

Table 4.2 presents an overview of the results. We distinguish between livestock and arable 

production as the smart farming technology used in the specializations is significantly different, 

and thus, this is discussed separately in the following sections. Table 4.2 presents an overview 

of the results of labelling the EoSi, EoSc, rebound mechanisms, or risk of the 27 papers in 

which at least one process was detected. In the following, we further discuss the results from 

the literature review regarding induced S&B change for livestock and arable production.  

Table 4.2: Induced structural and behavioural (S&B) change derived from the literature. 

Reference Technology EoSi EoSc Rebound  Risk 

Livestock production      

Tangorra et al. (2022) AMS X X   

Rotz et al. (2003) AMS X    

Qi et al. (2022) Automatic oestrus detection X    

Schewe and Stuart (2015) AMS X   X 

Steeneveld et al. (2015) Sensor systems for livestock   X  

Castro et al. (2012) AMS X    

Jacobs and Siegford (2012) AMS  X   

Rodenburg (2017) AMS  X   

Hansen (2015)  AMS X    

Vik et al. (2019) AMS X    

Hogan et al. (2023) Automatic calf feeders X    

Lyons et al, (2014) AMS X    

Martin et al. (2022) AMS X    

Keeper et al. (2017) AMS  X   

Bach and Cabrera (2017) AMS  X   

Lee et al. (2024) 

 

 

AMS   X  

Arable production Technology EoSi EoSc Rebound Risk 

Schimmelpfennig (2019) PA in rice production   X  

McFadden et al. (2022) Yield and soil mapping   X  

Tenreiro et al. (2023) VRA X    

Monzon et al. (2018) PA   X X 



Chapter 4: How Adopting Novel Technology Induces Farm-level Change

 

128 

 

Lieder and Schröter-Schlaack 

(2021) 

Smart farming  X X  

Paul et al. (2019) Precision technology   X  

Lowenberg-DeBoer et al. (2022) Fleet robotics X    

Zhang and Mishra (2024) Information technology   X  

MacPherson et al. (2025) Digital tools  X  X 

Lowenberg-DeBoer et al. (2021) Autonomous equipment X    

Smith (2024) Digital tools   X  

Note: Abbreviations: AMS: Automatic milking system. VRA: variable rate application. PA: Precision 

agriculture. EoSi: Economies of size. EoSc: Economies of scope. 

4.5.1 Induced structural and behavioural change in livestock production 

Of the 27 included papers, 16 focus on livestock farming. Of these, 13 provide evaluations of 

AMS. The remaining articles focus on technologies to improve animal monitoring in dairy 

farming (Steeneveld et al. 2015), automatic oestrus detection (Qi et al. 2022) and smart calf 

feeders in cattle and dairy farming (Hogan et al. 2023). Automatic oestrus detection is a 

technology worn by the cow (Qi et al. 2022) and, thus, does not come with the same structural 

requirements as AMS. Sensor systems are a broader category of technology, which can both 

be stationary and coupled with an AMS or activity meters placed on the cows (Steeneveld et 

al. 2015). Thus, the sensor systems, including the automatic oestrus detection, differ from AMS 

in that these are information systems, without also being large machinery. The calf feeding 

systems studied by Hogan et al. (2023) are more similar to AMS in that they are large 

machinery. 

We identify S&B change processes through all four mechanisms for smart farming in livestock 

production. Table 4.3 provides an overview. In Appendix 2, Table 4.5, we provide more detail 

on the effects derived from each paper. 

 

Table 4.3: Induced structural and behavioural (S&B) change in livestock production 

Reference Technology 

trait 

Effect Mechanism Outcome 
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Tangorra et al. (2022) Capacity EoSc A certain farm structure 

is required 

More farm 

structures for dairy 

production are built 

 Autonomy EoSi Labour use efficiency 

can be improved for 

larger farm sizes 

Expansion to 

increase efficiency  

Rotz et al. (2003) Capacity EoSi Potential to increase 

economic viability at full 

utilisation 

Increased herd size 

Qi et al. (2022) Capacity EoSi No increased costs for 

herd expansion 

Increased herd size 

Schewe and Stuart 

(2015) 

Investment cost Risk balancing Increased debt load Increased intensity 

of production 

  EoSi Increased production to 

offset the investment 

Increased herd size 

Steeneveld et al. 

(2015) 

Autonomy Rebound 

effect 

Increased labour use 

efficiency 

No decrease in 

labour input 

Castro et al. (2012) Capacity EoSi Potential to increase 

economic viability 

Increased herd size 

to full utilisation 

Jacobs and Siegford 

(2012) 

Autonomy EoSc Potential to increase 

efficiency 

Increased labour 

usage in the 

milking process 

Rodenburg (2017) Capacity EoSc Potential to increase 

efficiency 

Structural 

adaptations of the 

barn 

Hansen (2015)  Capacity EoSi Need to adapt farm 

structures to the 

technology 

 

Expansion and 

investment in new 

technology 

Vik et al. (2019) Investment cost EoSi Need to finance the 

investment 

Increase production 

  DisEoSc Need to finance the 

investment 

Increase 

specialisation in 

dairy 

Hogan et al. (2023) Capacity EoSi Potential to increase 

labour use efficiency 

Increased herd size 

to full utilisation 

Lyons et al. (2014) Capacity EoSi Potential to increase 

economic viability 

Increased herd size 

to full utilisation 

Martin et al. (2022) Investment cost EoSi Potential to increase 

economic viability 

Increase production 

 Capacity DisEoSi Potential to maintain 

economic viability 

Maintain 

production 

Keeper et al. (2017) Capacity DisEoSc Potential to increase 

milking efficiency and 

reduced labour 

requirements 

Adapt farm 

structures to the 

AMS (specialise in 

dairy) 

Bach and Cabrera 

(2017) 

VRA DisEoSc Need to optimise the 

technology 

Adapt farm 

structures to dairy 
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Lee et al. (2024) Autonomy Rebound 

effect 

Labour savings Invest to improve 

productivity 

 

We derive effects through EoSi from 11 of the 16 papers. EoSi arises after adopting AMS (Rotz 

et al. 2003; Castro et al. 2012; Vik et al. 2019; Tangorra et al. 2022; Martin et al. 2022; Lyons 

et al. 2014) but also after adopting livestock sensor systems (Steeneveld et al. 2015) and 

automatic calf feeding (Hogan et al. 2023). Automatic oestrous detection technology is also 

included in this process, as it increases managerial capacity and thus decreases diseconomies 

of size, enabling more efficient expansion and overcoming decreasing returns to size (Qi et al. 

2022). Finally, Martin et al. (2022) state that farms adopting AMS will decrease profits if the 

herd size is expanded above what can be utilized in the AMS unit on the farm, which is 

classified as EoSi through technology indivisibility. 

The papers identifying EoSc focus on AMS and relate to the technology’s indivisibility and 

high structural requirements. As outlined in Section 3.1.2, we identify EoSc as sharable or 

complementary inputs that can produce several goods simultaneously (Bowman and 

Zilberman, 2013). When AMS is adopted, dairy production efficiency increases, increasing 

relative costs for producing other goods. There are two ways through which this is realized as 

induced S&B change. First, structural change and further investments optimize the usage of 

the AMS (Jacobs and Siegford 2012; Hansen 2015; Rodenburg 2017; Keeper et al. 2017; Bach 

and Cabrera 2017; Tangorra et al. 2022). Second, to adapt to the AMS, Martin et al. (2022) 

point out that farmers are motivated to adopt more complementary technology. This underpins 

a feedback effect, where an outcome can be the decision to adopt another technology, 

generating more S&B change. 

The key to rebound effects is that efficiency increases generate cost savings that can be re-

invested or used to substitute less efficient processes. One process was identified through which 

rebound effects can arise, driven by increasing labour use efficiency and where the cost savings 



Chapter 4: How Adopting Novel Technology Induces Farm-level Change

 

131 

 

can be re-invested in expanding or intensifying production (Steeneveld et al. 2015; Hogan et 

al. 2023; Lee et al. 2024).  

Finally, we consider mechanisms of risk. One paper identified that the debt burden from 

investing in an expensive technology (in this case, AMS) drives intensification (Schewe and 

Stuart, 2015). Following risk balancing (Gabriel and Baker, 1980), farmers facing increased 

debt are unlikely to expand their farm structures. Still, they may be motivated to increase 

production to keep more liquid assets and repay the debt. This aligns with the behaviour derived 

from Schewe and Stuart (2015). 

Concluding the findings on smart livestock farming, indications of induced S&B change were 

identified for all mechanisms specified a priori in the theoretical foundations. Smart livestock 

farming, mainly by AMS, can motivate expansion through EoSi and rebound mechanisms. 

Farms expand after adopting AMS because there is a prospect of lower costs and increased 

benefits if herds are larger and because AMS generates cost savings, which can be re-invested 

(rebound mechanism). Technology can also drive farmers to intensify production by increasing 

the milk yield per cow as feeding efficiency increases and as a strategy to cope with the 

increased debt. Identifying these effects alone is not novel; however, the novelty lies in 

identifying the different processes driving the development of farms through smart farming-

induced S&B change. Thus, we add detail and improve the understanding of why livestock 

farms evolve the way they do after adopting a novel smart farming technology. That only one 

of the 16 records included in livestock farming considers debt burden as a driver of change 

indicates a gap in the research; it is more likely that this aspect was omitted by previous 

research rather than the effect is absent. 

4.5.2 Induced structural and behavioural change in arable production 

We identify 11 papers focusing on arable production, including studies on yield and soil 

mapping for maize production (McFadden et al. 2022), VRA of nitrogen fertilizer in wheat 

production (Tenreiro et al. 2023), PA for grain production (Monzon et al. 2018), different smart 
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farming technologies in arable production (Lieder and Schröter-Schlaack, 2021), precision 

farming in rice production (Schimmelpfennig, 2019), fleet robotics in crop production 

(Lowenberg-DeBoer et al. 2021 & 2022) and information technology (Smith, 2024; 

MacPherson et al. 2025). Notably, all but two included technologies enable intra-field 

intervention. We also include two papers that do not focus on a specific technology but discuss 

the potential future effects of smart farming in arable production in general (Lieder and 

Schröter-Schlaack, 2021) and precision technology in land and soil management  (Paul et al. 

2019). Despite the few papers, we identify induced S&B change through all mechanisms but 

risk. Table 4.4 displays the S&B change derived from the literature review. More details are 

provided in Table 4.5 in Appendix 2. 

Table 4.4 Induced structural and behavioural (S&B) change in crop production 

Reference Technology trait Effect Mechanism Outcome 

Schimmelpfennig 

(2019) 

VRA Rebound effect Increased efficiency of 

conservation agriculture 

Increased practice of 

conservation 

agriculture 

McFadden er al. 

(2022) 

Information Rebound effect Increase efficiency of 

production 

Increase output 

Tenreiro et al. 

(2023) 

Indivisibility EoSi Costs can be minimised 

at larger farm sizes 

Expansion to minimise 

costs 

Monzon et al. 

(2018) 

VRA Rebound effect Increased efficiency of 

production 

Increased input usage 

  Rebound effect Increased efficiency of 

production 

Increased production of 

high-yield crops 

Lieder and 

Schröter-Schlaack 

(2021) 

Information EoSc Diversification is 

enabled 

Increased 

diversification of crops 

 VRA Rebound effect Increased fertilizer use 

efficiency 

Increase fertilizer usage 

and increase intensity 

on heterogenous fields 

  Rebound effect Increased efficiency of 

production 

Increased cultivation of 

high-value crops 

  Rebound effect Increased water use 

efficiency 

Increased water usage 

Paul et al. (2019) VRA Rebound effect Increase efficiency Increase input usage 
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Lowenberg-

DeBoer et al. 

(2022) 

Autonomy EoSi With higher supervision-

time, costs are lowered at 

larger farm sizes 

Expansion to minimise 

costs 

Zhang and Mishra 

(2024) 

Information Rebound effect Increase land and labour 

productivity 

Increased 

commercialization 

MacPherson et al. 

(2025) 

Investment cost Risk Need to pay off debt Work more 

 Information Risk Reduced production-risk 

of diversification 

Diversify output 

  EoSc Increased opportunities 

for crop diversification 

Diversification 

Lowenberg-

DeBoer et al. 

(2021) 

Capacity EoSi Possibility to farm on 

smaller and irregularly 

shaped fields 

Expand to fields 

previously unprofitable 

to farm 

 Capacity disEoSi Possibility to farm on 

small and irregularly 

shaped fields 

Decreased incentive to 

expand to minimise 

costs 

Smith (2024) Information Rebound effect Increased control over 

workers  

Restructure labour - 

Intensify and specialise 

tasks 

 

EoSi is identified in three papers. Tenreiro et al. (2023) identify EoSi regarding a threshold for 

when VRA of fertilizers has an economic advantage compared to uniform applications in their 

sample of Spanish wheat farms. Lowenberg-DeBoer et al. (2021) find that by using 

autonomous technology for grain production; profitable production is also enabled on smaller 

and more irregularly shaped fields. However, this can lead to farm expansion onto fields that 

were previously too high-cost.  In later work, Lowenberg-DeBoer et al. (2022) show that fleet 

robotics used with current requirements of supervision time will enable decreasing costs under 

the condition that farms expand, where the benefit of larger farm sizes increases the higher the 

required supervision time is. Lieder and Schröter-Schlaack (2021) and MacPherson et al. 

(2025) identify the effects driven by EoSc, where smart arable farming can provide information 

to maintain and increase crop diversification.  

The effect we identify most frequently is related to rebound mechanisms. Rebound mechanisms 

increase efficiency in five ways, leading to six different outcomes. First, increasing input use 
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efficiency increases output (Monzon et al. 2018; McFadden et al. 2022) or, if producing another 

crop becomes more profitable, a shift towards growing more high-value and input-intensive 

crops (Monzon et al. 2018; Lieder and Schröter-Schlaack, 2021). Second, increasing the output 

per hectare increases land use efficiency, which drives land use expansion or intensification 

(Monzon et al. 2018; Paul et al. 2019; Lieder and Schröter-Schlaack, 2021). The third 

technology feature that drives S&B change through rebound mechanisms is the increased 

efficiency of operating heterogenous fields, which (Lieder and Schröter-Schlaack, 2021) 

identified. This is listed as a separate effect, as it highlights a shift where farmers, apart from 

re-investing benefits from increasing output per hectare into intensification or expansion, can 

also expand their production to land that was not previously profitable to farm. Smith (2024) 

find that labour can be better supervised with new technology, which can motivate a re-

structuring of labour to more specialized tasks. The fifth and last feature to drive rebound 

mechanisms is that the benefits of conservation agriculture can be increased using PA, 

motivating farmers to expand the land farmed (Schimmelpfennig, 2019). This differs from 

previous specifications of rebound effects where the conditions are that an increase in 

efficiency should lead to higher consumption of that input for which efficiency was increased 

(Paul et al. 2019). In our definition, all change motivated by increased efficiency is considered 

a rebound effect, independent of the outcome.  

Finally, from one paper, we can derive S&B change due to changes in risk (MacPherson et al. 

2025). As farmers invest in new information technology, they face pressure to increase 

production to pay off the debt. Further, as information technology can decrease the risks of 

diversifying outputs, this can motivate farmers to diversify what crops are produced 

(MacPherson et al. 2025).  

Summarising, we identify rebound effects to occur most frequently as effects of smart farming 

in arable production. The few responses due to changes in risk or EoSi and EoSc likely reflect 

the literature’s focus on more immediate effects. While rebound effects can arise in the short 

run, changes in farm structures as responses to EoSi, EoSc and risk are visible only in the long 
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term, which requires studying technology usage for a longer time after adoption. In some of 

the included studies, this is enabled by using modelling approaches (Lowenberg-DeBoer et al. 

2021; MacPherson et al. 2025).    

4.6 Conclusion 

Identifying and understanding induced S&B change is essential to assess how novel technology 

can contribute to sustainable development. The concept of induced S&B change provided in 

this paper enables predicting what effects smart farming technology might have in the future, 

given the features of the technology. On the one hand, technology may incentivize expanding 

and intensifying production through EoSi, rebound effects or changes in risk. On the other 

hand, technology can improve the efficiency of smaller and more diversified farms through 

EoSc. It is important to consider the relative importance of these effects for realizing farm 

structural development policy objectives and for modelling when making predictions about 

farm developments after technology adoption. By understanding S&B change induced by smart 

farming technology, decision-makers are better equipped to steer and predict future 

developments.  

The results from the literature review distinguish between livestock and crop production. 

Despite their differences, comparing them provides valuable insights. One of the largest 

differences in smart farming adoption between the two specializations is that we identify more 

and earlier studies on autonomous livestock farming in the form of AMS (Table 4.3). In 

contrast, only one study is identified to discuss the effects of fully autonomous technology in 

arable farming (Table 4.4). Due to the high initial investment associated with AMS adoption, 

farmers are motivated to increase milk production to be able to afford the investment (Vik et 

al. 2019) and when financing the investment with a loan, the increased debt can create pressure 

to increase productivity (Schewe and Stuart, 2015).  However, this effect is not identified in 

arable smart farming, likely as the technology in the reviewed studies requires smaller 

investments than AMS. Nevertheless, as farmers adopt more autonomous and robotic 
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technology in arable farming, investment costs might increase, creating developments towards 

expansion.  

Our literature review connects the theoretical foundations and previous literature on the effects 

of smart farming to derive examples of how the framework applies. While we find support for 

S&B through EoSi, EoSc, risk and rebound effects, future research can extend the framework 

to also consider other effects. Particularly, several studies highlight the absence of effects due 

to a lack of trust in the technology and unwillingness to give up control (Jacobs and Siegford 

2012; Steeneveld et al. 2015; Eckelkamp and Bewley 2020). Including the possibility of the 

farmer not acting on the provided information is an avenue for future research extending the 

provided framework. Another avenue for future research, highlighted and enabled by this 

study, is to conduct empirical research on the farm-level smart farming-induced S&B change. 
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4.8 Appendix 1: inclusion criteria and labelling 

When screening the papers for inclusion, the following protocol was used: 

Figure 4.4: Protocol used for the literature review 

 

The researchers screening the papers were then appointed to read the papers deriving 

mechanisms and outcomes and labelling these as EoSi, EoSc, rebound effects or risk balancing, 

or other if the effects did not fit into any of the a priori defined mechanisms. 

4.9 Appendix 2: details of included records 

Table 4.5shows the induced S&B change derived from each paper together with an extract from 

that paper where the effects are identified. The square brackets indicate additions made by the 

author of this paper to clarify abbreviations or other aspects not clear from the short quote in 

Table 4.5. 

Table 4.5: Induced S&B change derived from each paper extracted from the literature review 

Livestock production   
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References and 

details 

Label Identification in text 

Tangorra et al. 2022 

Country: Italy 

Data: Survey: 62 

dairy farmers 

adopters of AMS  

Tech: AMS 

  

  

Scope effects 

(invest more in 

dairy farming → to 

optimise 

technology) 

“In 29% of farms, the adoption of the milking robot 

required the construction of a new barn” 

“in accordance with the switch to Automatic milking, 

most farmers chose to build new freestall barns and 

improve their facilities”. 

Size effects 

(increase herd size 

→ minimise costs 

of labour) 

“The number of FTE [“full-time employee”] in cluster 3 

[“large sized farms with high milk production”] was 

significantly higher (P < 0.05) than the other 2 clusters 

due to the higher number of lactating cows and AMS 

installed (Table 2). In cluster 3, a single FTE produced 

115% and 30% more milk annually than clusters 1 

[“small farms with low milk production”] and 2 

[“medium farms”], respectively. This is consistent with 

the findings of Hadley et al (2002), where increasing 

herd sizes resulted in improved labor efficiency due to 

several factors such as labor-saving technology 

adoption, skilled and managerial personnel employment, 

better facilities use, and economies of size (Bewley et 

al., 2001; O’Brien et al., 2007). 

Rotz et al. (2003) 

Country: USA 

Data: Simulations, 

historical weather 

data, regional 

information 

Technology: AMS 

Size effects 

(increase herd size 

→ minimise costs) 

“Highest farm net return to management and unpaid 

factors was when AMS were used at maximal milking 

capacity. Adding stalls to increase milking frequency 

and possibly increase production generally did not 

improve net return” 

“At 50- to 60-cow farm sizes, a single AMS unit was 

better utilised, providing an equal or greater return than 

traditional milking systems” 

“A primary disadvantage is that they [the AMS] require 

a large initial investment” 

Qi et al. (2022) 

Country: China 

Data: Survey data 

Size effects (no 

increased costs for 

management for 

larger herds → 

expansion) 

“herd size significantly negatively impacts dairy cow 

yield; second, the adoption of digital technology can 

attenuate the negative impact of herd size on dairy cow 

yield” 
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Technology: 

Automatic oestrus 

detection 

“The negative impact of herd size on dairy cow yield 

diminishes with the adoption of digital technology.”  

Schewe and Stuart 

(2015) 

Country: USA, the 

Netherlands and 

Denmark 

Data: Interviews 

with 35 adopters  

Technology: AMS  

  

Size effects (want 

to maximise 

profitability → 

invest in increasing 

herd size,  

Size effects 

(increased capital 

costs → expansion) 

“Priorities to maximize profitability and extent of debt 

load resulted in decisions to increase heard size or 

convert from a pasture-based operation to year-round 

confinement” 

“one-half of adopters interviewed have increased herd 

size, all with the ultimate goal of increasing production 

to offset capital investment.” 

Risk (increased 

debt → increased 

productivity) 

“our findings demonstrate that AMS may increase the 

debt load, undermining farm resiliency and increasing 

the environmental intensity of production”. 

“Pressure to increase production to compensate for the 

high cost of AMS and possible reduced resilience 

resulting from debt was a central concern for many 

adopters.” 

“Those farmers with less acquired debt did not feel the 

same pressures to increase productivity and maintained a 

higher degree of perceived financial resilience”. 

Steeneveld et al. 

(2015) 

Country: the 

Netherlands 

Data: Survey to 512 

farms. 202 farms had 

sensor systems and 

310 farms did not 

have 

Technology: Sensor 

system 

Size effects 

(increased capital 

costs → expansion) 

“Farms with sensor systems had a significantly larger 

average herd size than farms without sensor systems. 

This suggests that sensor systems may be adopted by 

farms who wish to pursue a herd expansion strategy”. 

“Farms without any sensor system had an average herd 

size of 104 cows in 2013, compared with 114 cows for 

AMS farms with sensor systems and 147 cows for CMS 

farms with sensor sys- tems (data not shown).” 

Rebound effects 

(increased labour 

efficiency → 

expansion) 

“The finding that the FTE (“Full-Time Employee”) did 

not decrease after investment might have several 

explanations. First, farms in the current dataset may be 

more focused on expansion than on having more free 

time, thus a decrease in FTE does not show as they plan 

a transition to more cows”. 
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Castro et al. (2012) 

Country: Spain 

Data: Collected data 

from AMS units 

Technology: AMS 

Size effect 

(expansion → 

increased 

efficiency) 

“the milk yield could be maximised by milking the 

maximum number of cows per AMS with a value of 

between 2.40 and 2.60 milking per cow per day”. 

Jacobs et al. (2012) 

Country: USA 

Data: Literature 

review 

Technology: AMS 

  

Scope effects 

(structural change 

→ optimise 

technology) 

“Enough evidence exists to suggest that a delicate 

balance must be achieved, with cows motivated to 

voluntarily approach the AMS to decrease farm labor 

while avoiding unproductive visits to help promote an 

efficient system and maximise use of the AMS” 

“without a well-managed traffic situation, the potential 

for a bottleneck or absence of cows at the AMS 

increases, resulting in a less efficient milking system 

(Wiktorsson and Spörndly, 2002)”. 

Scope effects 

(changed 

management → 

optimise milk 

yield) 

“if the cow does not participate voluntarily in the 

milking and feeding routine, labor is required to 

complete these processes. Therefore, the cow’s ability 

and motivation to individually access the milking stall 

become important to the overall success of the system 

(Hogeveen et al., 2001). The success of various 

strategies for encouraging voluntary milking visits will 

be reviewed in future sections of this document”. 

Hogan et al. (2023) 

Country: Ireland 

Data: Survey 

Technology: 

Automatic calf 

feeder  

Size effects (labour 

efficiency can 

increase for larger 

herds→ expansion) 

“Results showed an increase in total farm time input in 

2021 compared to 2019, but this was accompanied by an 

improvement in labour efficiency on farms. This finding 

corroborates previous labour research, which showed an 

economy of scale effect was present with regard to 

labour efficiency; as herd size increased, time input 

increased and labour efficiency improved 

(O’Donovanetal., 2008; Demingetal.,2018; 

Hoganetal.,2022a).” 

Rodenburg et al. 

(2017) 

Country: Europe  

Scope effects 

(structural change 

→ optimise usage) 

 “This paper offers a practical overview of labor 

organisation, management strategies, and design of 

robotic milking facilities that contribute to labor 

efficiency and cow comfort and productivity”  
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Data: Literature 

review  

Technology: AMS 

“Further research in these areas and the potential to 

select for milking frequency will undoubtedly result in 

new opportunities to improve robotic milking outcomes 

in terms of labor savings as well as milk production per 

milking stall and per cow”. 

Hansen et al. (2015)  

Country: Norway 

Data: Interviews 

with 19 dairy farmers 

adopters 

Technology: AMS  

Size effects 

(structural and 

managerial change 

→ optimise usage) 

“The majority of the farmers had expanded their 

production significantly and built new cowshed or 

refurbished their cowsheds as part of installing the 

AMS.” 

Martin et al. (2022) 

Country: No 

geographical 

limitation 

Data: Literature 

review 

Technology: 

Agricultural robots 

(main focus on 

AMS) 

 

  

Size effects 

(improve economic 

viability → 

expansion) 

“At the farm level, this production increase is part of 

changes to make investments in AMS structurally and 

eco- nomically viable (Vik et al., 2019). Moreover, the 

farms that tend to adopt AMS are not the most labor-

intensive ones but instead those oriented towards 

increasing milk production (Heikkila et al. 2012)” 

Diseconomies of 

size (maintain 

economic viability 

→ do not expand) 

“For a given robotic milking capacity, the milking 

frequency decreases when the herd size increases, so the 

profitability decreases when the farm size increases” 

Size effects 

(increase herd size 

→ increase profits) 

“there is a size range in which investing in AMS is 

economically attractive: medium- sized farms” 

Vik et al. (2019) 

Country: Norway 

Data: Interviews 

with 36 farmers, and 

secondary literature  

Technology: AMS 

 

  

Size effects (high 

initial costs → 

expansion to spread 

out fixed costs) 

“In practice, investing in AMS implies investing in a 

new or renovated cowshed. The interviews show that, 

for many, the investment is partly financed by increased 

production. To afford a new cowshed, the volume of 

milk produced must be increased, as the profit per litre is 

difficult to increase to a sufficient degree, and this has a 

significant impact on daily life on the farm” 

Size effects 

(expansion → 

finance investment, 

spread fixed costs) 

“Installing AMS is often associated with other 

investments, such as automatic feeders and modernised 

cowsheds, and the investments are partly financed by 

increased production”. 
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  Scope effects 

(invest more in 

dairy farming → 

increase efficiency) 

“Installing AMS is often associated with other 

investments, such as automatic feeders and modernised 

cowsheds, and the investments are partly financed by 

increased production”. 

(Lyons, Kerrisk, and 

Garcia, 2014) 

Country: -  

Data: Literature 

review 

Technology: AMS 

Size effects 

(technology 

underutilized → 

increase herd size) 

“Only when system utilisation levels are low and there is 

spare milking robot time available, then the farmer can 

aim at increasing the number of milkings performed per 

day (Hogeveen et al., 2001; Rotz et al., 2003).“ 

“In a report from van Dooren et al. (2004b), an indoor-

based AMS that allowed 24 h grazing with 2 daily 

fetchings, operated 18.2 h per day and had the potential 

to reach full utilisation (milking 22 h per day) by adding 

14 additional cows to the herd and harvesting an 

additional 336 kg milk/d” 

(Lee et al. 2024) 

Country: South 

Korea 

Data: Secondary 

farm-level economic 

data 

Technology: AMS 

Rebound effects 

(labour savings → 

invest more in 

management) 

“The significant differences in ATT on calf production 

suggest that adopting smart farming, specifically robotic 

milking systems, has led to labor input savings, allowing 

increased effort to be invested in the management of 

individual dairy cows, which could have resulted in 

improved calf productivity in the Korean dairy 

industry.” 

Arable production   

Reference and details Label Identification in text 

(Lieder and Schröter-

Schlaack, 2021) 

Country: No 

geographical 

limitation 

Data: Literature 

review and expert 

interviews 

Technology: smart 

farming (SF) 

Scope effects 

(information enable 

diversification → 

more diverse 

systems) 

“SF can greatly simplify the move away from 

monoculture and the planning of diverse crop rotations. 

Appropriate advisory services or platforms for the 

exchange of know-how promote the implementation of 

ecological crop rotations, which can also lead to 

efficiency gains” 
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 Rebound effect 

(increase efficiency 

→ expansion) 

“SF technologies for fertilizer application may also bring 

along rebound effects. Schieffer and Dillon concluded in 

a model experiment that effective cost savings create 

incentives to increase fertilizer use. According to 

Ahlefeld, there is also a risk of increasing intensity on 

heterogeneous fields, which could hardly be fertilised 

before”. 

 Rebound effect 

(increase efficiency 

→ more high-value 

crops) 

“The increase in efficiency could contribute to farmers 

cultivating higher-value crops than before with regard to 

a desired profit maximisation and thus increase fertilizer 

intensity overall” 

 Rebound effect 

(increased 

efficiency of 

irrigation → 

increased 

irrigation) 

“Rebound effects from digital innovations in irrigation 

have often been studied as it seems particularly 

susceptible to rebound effects [132]. For example, Sears 

et al. [117] show that increasing irrigation efficiency can 

lead to an increase in water use by making it less 

expensive to irrigate marginal lands.” 

(Tenreiro et al. 2023) 

Country: Spain 

Data: Experimental 

farm trial 

Technology: VRA 

Size effects 

(expansion to reach 

profitable size → 

minimise costs) 

“Under current conditions (S1), a relative advantage 

associated with VRA adoption was computed but only 

for an annual area sown as wheat larger than 567 ha 

year−1 (Table 5). This is considerably larger than 

representative European (arable) farm sizes, which 

typically range from 4 to 62 ha” 

(Monzon et al. 2018) 

Country: Argentina 

Data: Single case 

study 5000 ha farm  

Technology: 

Precision Agriculture 

(PA) 

  

  

Rebound effects 

(increase efficiency 

→ intensification) 

“These novel technologies can lead to i) input use 

reductions and preservation of resource base without 

yield penalties, ii) increases in production while 

maintaining the levels of input use and, when necessary, 

iii) increases in input application without reductions in 

input use efficiency (Byerlee, 1992). This paper presents 

a clear example of this type of technologies driving a 

substantial increase in production in areal farm”. 

Table 4: Precision management increased farm output 

(between 25%-39% and decreased variation in farm 

output between 0%- -28% (depending on the zone). 

  “The gross margin of San Lorenzo was 112 US$ ha−1 

year−1 higher than that for Tandil (Fig.7). This 
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difference was related to a 244 US$ ha−1 year−1 higher 

net income in San Lorenzo despite132US$ ha− 1year−1 

higher total cost. This difference in total cost relates to a 

higher cropping intensity in San Lorenzo (1.32 vs 1.16 

crops per year), a lower frequency of Soy1 (a less 

expensive crop to grow), and a greater frequency of the 

more expensive maize and winter crop/Soy2 compared 

to Tandil”. [Comment: Tandil is the region and San 

Lorenzo the farm where the PA is used.] 

(Schimmelpfennig, 

2019) 

Country: USA 

Data: US national 

farm-level 

production data 

(USDA  

Technology: 

Precision agriculture 

(soil and yield 

mapping, VRT, GPS) 

Rebound 

(conservation agri 

more efficient 

→increase 

conservation agri) 

“PrecAg is linked to stewardship through BMPs (best 

management practice) including conservation tillage and 

erosion control” 

“The conclusion from the analysis is that profitable and 

cost-effective implementation of PrecAg in rice 

production improves average on-farm natural resource 

stewardship, and lowers the environmental burden of 

intensive crop management practices”. 

(McFadden, 

Rosburg, and Njuki, 

2022) 

Country: USA 

Data: USDA 

Technology: Yield 

and soil maps 

 

Rebound (increase 

efficiency → 

increase output) 

“All productive inputs (labor, nitrogen, capital, and other 

materials) generally increase across the four adoption 

scenarios. For example, field-level nitrogen applications 

increase from 6,120 pounds on unmapped fields to 

12,611 pounds on fully mapped fields. This large 

difference is partially driven by field size differences. 

However, even after accounting for field size, average 

nitrogen application rates are higher on fully mapped 

fields than unmapped fields. This variation in input use 

may reflect some degree of unobservable field or farmer 

attributes that play a role in map use.” 

“we find that output increases with the use of maps 

because of their frontier-shifting and efficiency-

increasing effects” 

“…over the long run as agricultural digitalization 

deepens, there may be implications for farm structure. 
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Paul el at. (2019) 

Country: -  

Data: Literature 

review 

Technology: 

Precision technology 

Rebound (increase 

efficiency or input 

to yield → increase 

output) 

“For precision farming, strong direct producer-side 

rebound effects in the form of higher total fertilizer 

inputs are possible. In general, an important component 

of precision farming is calculating the spatially 

differentiated nutrient demand of plants. In cases of 

relatively low fertilizer intensities before the 

implementation of the technology, a higher production 

potential in some areas of a field with corresponding 

higher nutrient needs can overcompensate for the 

reduced fertilizer application in areas with a lower 

production potential (Flessa et al., 2012).”  

“efficiency gains from improved crop varieties, 

intercropping and precision farming/decision support 

systems could come with direct rebound effects 

(substitution) if they motivate farmers to reduce tillage 

and substitute mechanical weed control with pesticide 

application.” 

(Lowenberg-DeBoer 

et al. 2022) 

Country: Great 

Britain 

Data: Simulation 

data 

Technology: Swarm 

robotics 

Size effects 

(decreased average 

costs from 

expansion → 

motivate larger 

farm-sizes) 

“The cost curves show that increasing human 

supervision time accentuates the economies of scale for 

larger farms, compared to either the 10% field time 

autonomous equipment scenario or the conventional 

scenario” [note: cost/ton wheat and farm size. 

100% supervision time ~170£/ton, farm size of 100 ha, 

~120£/ton farm size of 500 ha. Conventional technology 

~170£/ton, farm size of 100 ha, ~135£/ton farm size of 

500 ha.] 

“For the smallest farm, the 100% supervision scenario 

has higher production costs than the conventional 

equipment cost curve, and for the 500 ha farm it is about 

£11/ton lower. The implication of higher human 

supervision time for farm size is that the economic 

pressure for “bigger is better” is accentuated by 

requiring increased human supervision.” 

(Zhang and Mishra, 

2024) 

Country: China 

Rebound effect 

(increase 

productivity of land 

and labour → 

“…farm households adopting ICT increased the 

percentage of marketed farm output in total farm 

production, are more commercialized, and have an 



Chapter 4: How Adopting Novel Technology Induces Farm-level Change

 

155 

 

Data: Secondary 

economic data 

(China Household 

finance survey) 

Technology: 

Information and 

Communication 

Technologies 

increase farm 

commercialisation)  

increased tendency to maximize profits in agricultural 

production” 

(MacPherson et al. 

2025) 

Country: Germany 

Data: modelling and 

stakeholder input 

Technology: Digital 

agriculture 

EoSi (need to scale 

up to stay 

competitive → 

scale up)  

 

Risk (need to pay 

off debt → increase 

production) 

“the adoption of digital agriculture could also result in a 

‘technology treadmill’, where the need to scale up 

operations to stay competitive arises because 

technological advancements often lead to increased 

productivity, driving down prices and forcing farmers to 

expand their operations, thereby increasing their 

workload (Cochrane, 1958; McGrath et al., 2023). 

Additionally, the financial investments required to adopt 

costly digital technologies could result in capital lock-in, 

where farmers are financially bound to pay off debts, 

compelling them to work more.” 

 Risk / EoSc 

(reduced 

production risk of 

diversification → 

diversify) 

“The participants agreed that better decision support 

could reduce production risks associated with 

introducing new crops as well as provide better market 

analytics on consumer demand for new products. In turn, 

crop diversification could improve economic stability 

(von Czettritz et al., 2023) and ecosystem functionality 

(Tamburini et al., 2020).” 

(Lowenberg-DeBoer 

et al. 2021) 

Country: UK 

Data: Simulation 

data 

Technology: Crop 

robotics 

EoSi (decrease 

costs of smaller and 

irregular plots → 

expand into these 

areas) 

“An additional benefit of using smaller equipment sets, 

whether they be conventional or autonomous, would be 

their ability to better handle in-field obstacles (e.g. trees, 

power poles) and smaller irregularly sized fields [...] 

With a much-reduced impact of smaller and irregularly 

sized fields on the operating efficiency of smaller 

equipment sets, and as this study indicates, comparable 

costs of production and more profitable scenario 

outcomes, adoption of such systems would reduce or 

even lead to a reverse in the impacts of agricultural 

intensification and large scale mechanisation.” 
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 Dis-EoSi (cost 

minimised at 

smaller farm sizes 

→ maintain farm 

size) 

"The estimated wheat production cost curve with 

autonomous equipment achieves almost minimum levels 

at a smaller farm size than the conventional equipment 

cost curve."  

"The ability to achieve near minimum production costs 

at relatively smaller farm sizes, and with a modest 

equipment investment, means that the pressure for 

farming businesses to continually seek economies of 

scale (i.e. to “get big or get out”) is diminished." 

(Smith, 2024) 

Country: UK 

Data: Interviews, 

expert knowledge 

and review of 

industry grey 

literature 

Technology: 

digitalisation 

(Agtech) 

Rebound effect 

(more control over 

workers → 

intensify and 

specialise tasks)  

“‘AgTech’ is not leading to significant reduction in 

demand for seasonal migrant labour and so not 

governing in a meaningful manner the regulation of 

migrant flows. Rather it is focused on growers seeking 

to govern the regulation of the workplace through 

adopting ‘AgTech’ to attempt to intensify and specialise 

tasks.” 

 


