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1 Abstract

Health-related research questions require methods that can deal with the growing complexity

and dimensionality of biomedical data sets. A popular alternative to common parametric re-

gression approaches are tree-based models, which recursively partition the data using binary

splits to identify subgroups with similar values of an outcome variable of interest. The splitting

rules (i.e., the splitting variables and corresponding split points) are selected in a data-driven

way. Therefore, the data-driven tree building inherently performs variable selection and is

able to detect and include relevant interactions even in high-dimensional data settings. In ad-

dition, tree-based models are easily accessible to practitioners due to their intuitive graphical

representation.

This cumulative dissertation consists of four projects that aim to extend the class of tree-

based models with a focus on application to biomedical research questions. In this vein,

novel flexible tree-based approaches for modeling different types of biomedical data and a

method for measuring statistical uncertainty and conducting inference on parameters from

tree-based models are introduced. The first two projects focus on discrete time-to-event out-

comes, which are common in biomedical research, for example, in observational studies,

where the possible occurrence of an event of interest is only recorded at certain follow-up

times. In the first project, a flexible approach for tree-based modeling of discrete time-to-

event outcomes is proposed. In the second project project, a tree-based model for discrete

time-to-event analysis is used to identify relevant risk factors for a prolonged length of stay in

hospital for patients suffering from oral squamous cell carcinoma. The third project deals with

the analysis of clustered data, where observations come in clusters of units, and the hetero-

geneity between observations from different units needs to be accounted for. A tree-based

approach for modeling the effects of the covariates and the heterogeneity between the units

with an application to quality of life in older adults is presented. The fourth project addresses

the construction of confidence intervals for parameters from tree-based models. In particular,

parameters of a tree-structured varying coefficient model are considered. Classical asymp-

totic normal distribution-based approaches for statistical inference on tree-structured varying
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coefficients are invalid as they neglect the uncertainty induced by the data-driven tree building,

which constitutes a so-called selective inference problem. To address this selective inference

problem, a parametric bootstrap-based method for constructing confidence intervals for tree-

structured varying coefficients is introduced. The performance of the methods proposed in

the four projects is assessed in simulation studies, and applications to real-world data are

considered.

Three research articles have been published in peer-reviewed international journals (Sections

3.1, 3.2, and 3.4). In addition, an unpublished manuscript submitted to Advances in Data

Analysis and Classification and available on arXiv is included in this dissertation (Section

3.3).
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2 Introduction and aims with references

In biomedical research, statistical methods play a crucial role in analyzing various types of

data from clinical and epidemiological studies. Therefore, researchers require methods that

are able to handle the increasing complexity and dimensionality of biomedical data sets that,

for example, arise from the improved imaging technologies in genetics (Chen et al., 2011) or

the increasing number of blood parameters measured in modern laboratories in haematology

(Gunčar et al., 2018). In particular, an effective identification of relevant variables from (high-

dimensional) biomedical data sets is necessary to discover and confirm meaningful biological

relationships, improve diagnostic validity, and optimize treatment strategies.

A key aspect of biomedical research is the analysis of time-to-event outcomes, which rep-

resent the time to the occurrence of a certain event of interest, such as death, disease pro-

gression, or discharge from hospital (Klein and Moeschberger, 2003). In the field of oral and

maxillofacial surgery, for example, length of stay (LOS) in hospital serves as a key indicator

for clinical severity and required healthcare resources. A prolonged LOS was even shown

to be associated with an increased risk of complications and higher mortality (Pirson et al.,

2018). Detecting risk factors for and identifying subgroups of patients with a prolonged LOS

is therefore of great relevance.

Clustered data, where observations come in clusters of units, are also common in biomedical

applications. For example, in multi-centric or cross-national studies, participants are clustered

in multiple study centers or countries. In the Survey of Health, Ageing and Retirement in

Europe (SHARE), quality of life (QoL) in older adults across 27 European countries and Israel

was considered (Börsch-Supan et al., 2013; Bergmann et al., 2024; SHARE-ERIC, 2024).

QoL plays an important role in assessing and guiding many health, social, community, and

environmental policy decisions (Bowling and Stenner, 2011). Hence, it is of great interest to

investigate which individual-level health-related and socioeconomic factors and interactions

between them affect a person’s QoL.

Tree-based models lend themselves to the two aforementioned research questions as they

are able to inherently select relevant covariates, detect interactions, and construct subgroups
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of observations that are similar with regard to the outcome (that is, probability of discharge

from hospital in the context of oral and maxillofacial surgery patients and QoL in the context

of the SHARE data). Tree-based models recursively partition the data into subsets that dif-

fer most strongly with regard to the outcome variable using binary splits. More specifically,

in each step of the tree building, a parent node (starting with the root node containing all

observations in step 1) is split into two child nodes based on some splitting rule, which com-

prises the variable selected for splitting and the corresponding split point. This process is

repeated until a prespecified stopping criterion (for example, a minimal number of observa-

tions in a node or a maximal tree depth) is met. The optimal splitting rule in each step is

commonly selected based on the Gini impurity or the information gain (Breiman et al., 1984).

In each resulting terminal node (also called leaf node), an aggregated measure (for example,

the mean) is determined based on the observations in that node. The concept of tree-based

modeling originates from the classification and regression tree (CART) algorithm by Breiman

et al. (1984). Following their idea, various extensions and alternatives have been proposed

(for an overview, see Strobl et al., 2009). Due to the data-driven tree building, tree-based

models do not require a fixed prespecified model formula that postulates all covariates and

interactions to be included before model fitting, unlike classical, parametric regression ap-

proaches. Instead, the tree building procedure inherently facilitates variable selection as well

as the detection and inclusion of relevant interactions. In addition, tree-based models offer an

intuitively interpretable graphical representation and are simulatable (Murdoch et al., 2019).

Yet, a major drawback of tree-based approaches is that classical methods for statistical in-

ference on the model parameters are invalid (Neufeld et al., 2022). As the parameters of

a tree-based model arise from a data-driven tree building, methods for statistical inference

need to take the uncertainty induced by this model selection step into account. Conducting

inference on these parameters is a so-called selective inference or post-selection inference

problem as statistical inference after a data-driven model selection is of interest (Berk et al.,

2013; Fithian et al., 2014). The concept of statistical inference is essential for most biomedical

applications, in particular, for confirming the beneficial effect of a novel treatment method (for
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example, the effect of antibody treatment in patients with COVID-19 on their need for oxygen

support). To enhance the applicability of tree-based models for the analysis of biomedical

data, methods for quantifying uncertainty and assessing statistical significance of the model

parameters are required.

2.1 Thesis outline

This cumulative dissertation comprises three publications and one unpublished manuscript

that focus on the class of tree-based models and their application to biomedical data. Specif-

ically, the aim is to develop novel tree-based modeling approaches for different types of data

and a method for conducting statistical inference on parameters from tree-based models.

The first two articles deal with tree-based models for discrete time-to-event analysis. In par-

ticular, a novel tree-based approach for modeling discrete event times is introduced (Publi-

cation 1 in Section 3.1), and a tree-based discrete hazard model is applied to investigate risk

factors for a prolonged LOS in hospital in patients suffering from oral squamous cell carci-

noma (OSCC; Publication 2 in Section 3.2). In the Unpublished Manuscript in Section 3.3, a

tree-based approach for modeling clustered data with an application to QoL in older adults is

presented. Finally, the third publication addresses the selective inference problem for param-

eters from tree-based models using a parametric bootstrap approach to construct confidence

intervals (CIs) for tree-structured varying coefficients (TSVCs; Berger et al., 2019; Publication

3 in Section 3.4).

The appendix includes the complete list of publications resulting from projects at the Institute

for Medical Biometry, Informatics and Epidemiology during the years of this PhD.

2.1.1 Tree-based modeling of discrete time-to-event data

The analysis of time-to-event outcomes requires methods that are able to handle the chal-

lenges specific to this type of data. Event times frequently follow a highly skewed distribution

and, even more importantly, are usually subject to censoring. That is, the event times are

not fully observed for all individuals. In clinical studies, for example, participants are only ob-
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served for a limited amount of time before leaving the study, and therefore the event of interest

may not be recorded for all participants.

Most popular models for time-to-event analysis, such as the proportional hazards model by

Cox (1972), assume that time is measured on a continuous scale. In many applications,

however, event times are measured on a discrete scale, where the exact time of the event is

not reported, but only a time interval during which the event occurred. In these cases, one

speaks of discrete time-to-event or interval censored data. The logistic discrete hazard model

is the most widely applied approach for analyzing discrete event times (Tutz and Schmid,

2016). In the classical parametric logistic discrete hazard model, the effects of the covariates

are assumed to be linear as well as independent of each other and time.

In Publication 1, a novel extension of the logistic discrete hazard model is introduced, where

(part of) the parametric predictor function is replaced by a tree. The proposed framework

allows modeling and interpretation of the effects of the covariates separate from the effects

of time, similarly to the classical parametric model. Furthermore, the survival tree by Schmid

et al. (2016), which is able to incorporate interactions between covariates and time, can also

be fitted within the proposed modeling framework. Predictive performance and variable selec-

tion rates of the proposed models are compared with alternative approaches in a simulation

study. The models are illustrated based on applications to data of patients suffering from

acute odontogenic infection and data of patients suffering from lymphatic filariasis. Publica-

tion 2 presents an application of the survival tree to data from patients suffering from OSCC.

Here, the objective is to identify risk factors for a prolonged LOS in hospital after surgery.

2.1.2 Tree-based modeling of clustered data

In clustered data, observations within units are likely to be more similar than observations

between units. Therefore, regression approaches for clustered data need to account for this

heterogeneity between the units.

The classical linear mixed effects model assumes linear effects of the covariates and includes

unit-specific random effects, which commonly follow a normal distribution, to account for the
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heterogeneity between the units in a parsimonious way (Verbeke and Molenberghs, 2000).

Alternative random effects-based approaches that apply tree structures to facilitate inherent

variable selection and detection of interactions between the covariates were proposed by

Hajjem et al. (2011) and Sela and Simonoff (2012). To avoid the distributional assumption

required for the random effects and still enable parsimonious modeling of unit-specific effects,

Berger and Tutz (2018) introduced a fixed effects model with linear effects of the covariates

that applies tree-structured clustering of units with similar effects on the outcome to account

for the heterogeneity.

In the Unpublished Manuscript, a novel tree-based approach for modeling clustered data is

proposed, combining the ideas of Hajjem et al. (2011), Sela and Simonoff (2012), and Berger

and Tutz (2018). Specifically, the proposed model consists of two tree structures, where

one tree captures the effects of the covariates, and the other identifies clusters of units with

similar effects on the outcome. The proposed model is applied to analyze QoL in SHARE,

and goodness of fit as well as variable selection rates are assessed in a simulation study.

2.1.3 Selective inference for tree-based models

Conducting inference on parameters from tree-based models, which arise from a data-driven

tree building, is a selective inference problem. Neufeld et al. (2022) proposed a selective

inference framework for regression trees based on a truncated normal distribution. For more

complex tree-based models, however, alternative approaches for selective inference are re-

quired.

Publication 3 addresses this issue in the context of TSVC models proposed by Berger et

al. (2019). TSVC models are based on the varying coefficient models originally introduced

by Hastie and Tibshirani (1993) and apply recursive partitioning to capture varying effects

of the covariates, potentially resulting in several tree structures as part of a single model.

More specifically, the coefficient of each covariate may be determined by a tree structure. To

address the complex selective inference problem for TSVCs, a parametric bootstrap approach

for constructing percentile CIs is introduced. Coverage proportions of the proposed CIs are
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considered in a simulation study. For illustration, data of patients suffering from COVID-19

and of patients suffering from acute odontogenic infection are analyzed.
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Abstract
Discrete hazard models are widely applied for the analysis of time-to-event outcomes that are intrinsically discrete or grouped
versions of continuous event times. Commonly, one assumes that the effect of explanatory variables on the hazard can be
described by a linear predictor function. This, however, may be not appropriate when non-linear effects or interactions between
the explanatory variables occur in the data. To address this issue, we propose a novel class of discrete hazard models that
utilizes recursive partitioning techniques and allows to include the effects of explanatory variables in a flexible data-driven
way. We introduce a tree-building algorithm that inherently performs variable selection and facilitates the inclusion of non-
linear effects and interactions, while the favorable additive form of the predictor function is kept. In a simulation study, the
proposed class of models is shown to be competitive with alternative approaches, including a penalized parametric model
and Bayesian additive regression trees, in terms of predictive performance and the ability to detect informative variables. The
modeling approach is illustrated by two real-world applications analyzing data of patients with odontogenic infection and
lymphatic filariasis.

Keywords Discrete time · Hazard models · Non-parametric regression · Recursive partitioning · Time-to-event analysis

1 Introduction

The terms time-to-event data or survival data refer to data sets
where the outcome variable corresponds to the time to the
occurrence of a certain event of interest. In clinical research,
for example, the time to death, the time to disease progression
or the duration of hospitalization are widely applied time-to-
event outcomes (Klein and Moeschberger 2003).

When building a regression model that relates the event
time T to a set of explanatory variables x = (x1, . . . , xp)

B Nikolai Spuck
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1 Institute of Medical Biometry, Informatics and Epidemiology,
Medical Faculty, University of Bonn, Venusberg-Campus 1,
53127 Bonn, Germany
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3 Institute of Medical Microbiology, Immunology and
Parasitology, University Hospital Bonn, Venusberg-Campus
1, 53127 Bonn, Germany

4 German Center for Infection Research (DZIF), Partner Site
Bonn-Cologne, 53127 Bonn, Germany

one must account for certain characteristics that are unique
to time-to-event data. In particular, event times are usu-
ally subject to censoring, that is, the event of interest is
not observed for all individuals under study. An appropriate
approach for modeling time-to-event outcomes is to consider
the hazard for the occurrence of an event at time t given by
ξ(t) = lim�t→0{P(t < T ≤ t + �t | T > t, x)/�t}. The
most popular hazard model is the Cox proportional hazards
model by Cox (1972), which assumes that the effects of the
explanatory variables on the hazard are constant over time.
An alternative that does not require the proportional hazards
assumption are accelerated failure time models (Kalbfleisch
and Prentice 2002). This class of models is not dealt with
here, but we refer to Kuss and Hoyer (2021) for recent devel-
opments in this field.

The classical Cox model assumes that the effects of the
explanatory variables can be described by a parametric term
(that is, by a linear function of x). This assumption, which
is too restrictive in many applications, can be relaxed by the
specification of smooth, non-linear functions (Sleeper and
Harrington 1990; LeBlanc and Crowley 2004) or the use of
recursive partitioning techniques also called tree-structured
modeling, see, for example, Segal (1997), Zhang and Singer
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(1999), and Bou-Hamad et al. (2011a). Tree-structured mod-
els are strong tools that relate the explanatory variables to
the outcome in a non-linear way and automatically detect
relevant interactions between the explanatory variables if
they are present. The visualization as a hierarchical tree
makes the model easily accessible for practitioners and sim-
ulatable (Murdoch et al. 2019). In addition, tree-structured
models inherently perform variable selection, which is par-
ticularly useful in high-dimensional settings. Within the
scope of hazard models, Gordon and Olshen (1985) for-
merly extended classification and regression trees (CART,
Breiman et al. 1984) and proposed to partition time-to-event
data based on different measures of distance between two
survival curves. Segal (1995) illustrated the application of
tree-structuredmodeling for the analysis of HIV patient data,
and Carmelli et al. (1997) applied tree-structured time-to-
event analysis to investigate the relationship between obesity
and mortality from coronary heart disease and cancer. More
recently, Wallace (2014) applied conditional inference trees
(Hothorn et al. 2006) to model time-to-event data, and Ran-
coita et al. (2016) proposed to use a Bayesian network for
survival tree analysis with missing data.

All of the aforementioned methods have in common that
they assume time to be measured or approximated by a
continuous scale. In many applications, however, the event
times are intrinsically discrete, or the exact continuous event
times were not recorded and it is only known that the events
occurred in a certain time interval (this is also referred to
as the case of grouped event times). Grouped event times
are typically observed in clinical and epidemiological stud-
ies with fixed prespecified follow-up times. Then time is
recorded on a discrete time scale t = 1, . . . , k. Two exam-
ples, whichwill be dealt with here, are days of hospitalization
after jaw surgery in patients with acute odontogenic infec-
tion and time to an acute attack caused by infections through
skin lesions in patients with lymphatic filariasis measured
in months. In these cases, in which grouping effects are
present, the application of statistical models designed for
continuous time-to-event data is considered inappropriate
by many authors (e.g. Tutz and Schmid (2016) and Berger
and Schmid (2018)). Therefore, we consider the class of
discrete hazard models that has prevailed for the analy-
sis of discrete time-to-event outcomes (Willet and Singer
1993; Hashimoto et al. 2011; Tutz and Schmid 2016). A
comprehensive introduction to parametric discrete hazard
models and semi-parametric extensions was recently given
by Berger and Schmid (2018). In this article, we propose
novel alternatives to the widely used class of parametric dis-
crete hazard models. More specifically, we propose different
non-parametric extensions, where (part of) the parametric
term is replacedby a tree structurewhile the commonadditive
form of the predictor function is kept. As will be illustrated,
the models are highly flexible and combine the advantages

of classical parametric and tree-structured discrete hazard
models.

Tree-structuredmodels for discrete time-to-event analysis
were so far proposed by Bou-Hamad et al. (2009) and Bou-
Hamad et al. (2011b). Their method first grows a tree and
then fits a covariate-free discrete hazard model in each termi-
nal node separately. Schmid et al. (2016) suggested a CART
approach where both the explanatory variables and the time
t are considered as candidates for tree building. Sparapani
et al. (2016) expanded the Bayesian additive regression tree
(Chipman et al. 2010) for binary outcomes to time-to-event
outcomes considering grouped survival times. In addition,
Tiendrébéogo et al. (2019) applied a model-based recursive
partitioning approach based on the algorithm by Hothorn
et al. (2006) toHIVpatient data to identify characteristics that
are associated with risk of death. For overviews on existing
tree-structured methods for discrete-time hazard modeling
and extensions for dynamic predictions, see also Kretowska
(2019) and Moradian et al. (2021).

Our proposed approach differs from previous methods, as
we do not apply a traditional recursive partitioning algorithm,
but fitting and tree building is performed within the classical
framework of additive discrete hazard models. When grow-
ing the trees, in each step the best split is selected among
all current non-internal and non-terminal nodes, yielding a
sequence of nested subtrees of different size.

The remainder of this article is structured as follows: In
Sect. 2 the notation and general methodology for the anal-
ysis of discrete time-to-event data are described. In Sect. 3
we propose three different novel tree-structured regression
models for time-to-event outcomes. The performance of the
different models was assessed in a simulation study, which
is presented in Sect. 4. In Sect. 5, we show the results of two
applications using the proposed models to analyze data of
patients with odontogenic infection and lymphatic filariasis.
Finally, our findings and conceptual aspects are discussed in
Sect. 6.

2 Notation andmethodology

In the following, let Ti denote the event time and Ci denote
the censoring time of individual i , i = 1, . . . , n. We
assume that Ti and Ci are independent and take discrete
values in {1, . . . , k}. It is further assumed that the censor-
ing mechanism is non-informative for Ti , in the sense that
Ci does not depend on any parameters used to model the
event time. Considering right-censored data, the observa-
tion time for individual i is given by T̃i = min(Ti ,Ci ),
and �i := I (Ti ≤ Ci ) indicates whether the event of
individual i was observed (�i = 1) or not (�i = 0). In
case continuous time-to-event data has been grouped, the
discrete event times t = 1, . . . , k refer to time intervals
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[0, a1), [a1, a2), . . . , [ak−1,∞), where Ti = t means that
the event occurred in time interval [at−1, at ).

An essential tool for modeling discrete time-to-event data
is the discrete hazard function. For time-constant explanatory
variables xi = (xi1, . . . , xip) it is given by

λ(t | xi ) = P(Ti = t | Ti ≥ t, xi ), t = 1, . . . , k, (1)

which is the conditional probability for the occurrence of an
event at time t given that the event has not occurred until t .
From (1) it follows that the discrete survival function, which
denotes the probability that an event occurs after time t , can
be written as

S(t | xi ) = P(Ti > t | xi ) =
t∏

s=1

(1 − λ(s| xi )). (2)

Based on the definition of the hazard function in (1), for a
fixed time t , the discrete hazard represents a binary variable
that specifies whether an event occurs at time t or not, given
that Ti ≥ t . Hence, strategies for modeling binary outcome
data can be adapted to discrete hazard modeling.

A class of regression models that relates the discrete haz-
ard function to the explanatory variables xi is defined by

λ(t | xi ) = h(η(t, xi )), t = 1, . . . , k − 1, (3)

where h(·) is a strictly increasing distribution function and
η(·) is a real-valued predictor function depending on the
explanatory variables and time. A commonly assumed semi-
parametric form of the predictor function is given by

η(t, xi ) = γ0(t) + xi�γ , (4)

where γ0(t) describes the hazard over time (for any given
values of xi , called baseline hazard) usually by the use of
dummy variables for each time point or a smooth, non-linear
function. The effects γ ∈ R

p of the explanatory variables on
the hazard are assumed to be linear and independent of time.
Using the logistic distribution function for h(·), Equation (3)
yields the logistic discrete hazard model

λ(t | xi ) = exp(η(t, xi ))
1 + exp(η(t, xi ))

, (5)

which is also called the proportional continuation ratio
model (cf. Tutz and Schmid 2016, Chapter 3). The continu-
ation ratio at time t is given by

�(t | xi ) = P(T = t | xi )
P(T > t | xi ) = exp

(
γ0(t) + xi�γ

)

and denotes the ratio comparing the probability of an event
at time t to the probability of an event after t . Comparing the

continuation ratios of two individuals u and v at time t yields

� (t | xu)
� (t | xv)

= exp
(
(xu − xv)

�γ
)

.

Hence, proportionality is given in the sense that the com-
parison of two individuals with regard to their continuation
ratios is independent of time. This facilitates interpretation of
the estimated effects (see our applications in Sect. 5). For the
remainder of this article, we will focus on the model using
the logistic distribution function and refer to Sect. 6 for a
discussion on the characteristics of models with other link
functions.

As mentioned above, discrete hazard models can be fitted
by means of binary response models. This is because the
log-likelihood of Model (3) can be expressed as

� =
n∑

i=1

T̃i∑

t=1

(1 − yit ) log(1 − λ(t |xi ))

+ yit log(λ(t |xi )), (6)

which is equivalent to the log-likelihood of a binomial model
with independent observations yit . In order to derive coeffi-
cient estimates, one has to define the binary outcome values
for each individual i as

(yi1, . . . , yi T̃i ) =
{

(0, . . . , 0, 1), if �i = 1,

(0, . . . , 0, 0), if �i = 0.

Hence, before fitting the model with software for binary out-
comes, the original time-to-event data has to be converted
into an augmented data matrix that contains the binary out-
come values. This results in a design matrix with T̃i rows for
each individual i , where the vector of explanatory variables is
repeated row-wise, and with a total number of ñ = ∑n

i=1 T̃i
rows. Further details on data preparation and estimation of
discrete hazard models can be found in Berger and Schmid
(2018). Note that, in the following, the term individual will
be used to refer to one row in the original, non-augmented
data matrix, and the term observation to refer to one row of
the augmented data matrix.

3 Tree-structured discrete hazardmodels

The logistic discrete hazard model with predictor function
(4) assumes that the effect on the hazard can be described by
a linear combination of the explanatory variables. This may
be too restrictive, in particular when non-linear effects or
interactions between the explanatory variables are present. To
address this issue, we propose to incorporate tree-based splits
into the predictor function of the discrete hazard model (3).
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Specifically, either the effects of the explanatory variables x
or the effects of x as well as the effect of the time t on the
hazard are replaced by a tree structure.

3.1 Smooth baseline coefficients

A tree-structured predictor function that allows for more
flexibility, but still preserves the additive structure of the
semi-parametric model (4) has the form

η(t, xi ) = γ0(t) + tr(xi ), (7)

where the function tr(·) is determined by a common tree
structure. This means that the function tr(·) sequentially
partitions the observations into disjoint subsets Nm,m =
1, .., M , based on the values of the explanatory variables and
assigns a regression coefficient γm to each subset Nm . Hence,
this function can be written as

tr(xi ) =
M∑

m=1

γm I (xi ∈ Nm) , (8)

where I (·) denotes the indicator function. When growing
the tree, analogously to CART a binary split partitioning the
observations of one parental node into two child nodes is
performed in each step (cf. Hastie et al. 2009).

The function γ0(t) in Model (7) is determined by a P-
spline (Eilers and Marx 1996). More precisely, a number
of B-spline basis functions (de Boor 1978) are used, and a
term to penalize differences between adjacent coefficients is
included in the likelihood function. Then the coefficients are
fitted by maximizing the penalized log-likelihood

�p = � − εJ , (9)

where ε ∈ R
+ is a penalty parameter and J ∈ R

+ is the
penalty term preventing the estimated function from becom-
ing too rough. When using a P-spline, J is a difference
penalty on adjacent B-spline coefficients. For details, see
Wood (2011, 2017).

The tree tr(·) is constructed in a stepwise procedure, start-
ing from the model with baseline coefficients, only. Then the
first split yields a model with predictor

η[1](t, xi ) = γ0(t) + γ
[1]
1 I (xi j ≤ c j ), (10)

where x j is the explanatory variable selected for the first

split, c j is the corresponding split point, and γ
[1]
1 is the effect

for the first subset. Note that the second node defined by
I (xi j > c j ) needs to serve as reference node with γ

[1]
2 := 0

to ensure parameter identifiability. Secondly, a different or
the same variable and a corresponding split point is selected
to further split one of the current nodes. Assuming that the

left node is split based on variable xk with split point ck yields
the predictor

η[2](t, xi ) =γ0(t) + [
γ

[2]
1 I (xi j ≤ c j ∧ xik ≤ ck)

+ γ
[2]
2 I (xi j ≤ c j ∧ xik > ck)

]
, (11)

where γ
[2]
1 and γ

[2]
2 are the effects for the two new sub-

sets built after the second split. Further splits are performed
analogously until a predefined stopping criterion is met (see
Sect. 3.4 for details). The design of the augmented datamatri-
ces for fitting the model with predictor (10) is illustrated in
Online Resource Supplement 1, see Equations (S1) and (S2).

3.2 Piecewise constant baseline coefficients

Model (7) allows for non-linear effects of the explanatory
variables aswell as (higher-order) interactions between them.
Moreover, the effects of the explanatory variables can easily
be interpreted from the tree structure. Modeling the baseline
coefficients by a smooth (P-spline) function may, however,
not be adequate, as abrupt changes of the effect strength
appear particularly plausiblewhen considering discrete event
times (Puth et al. 2020). Therefore, in the following, we
assume that the baseline hazard does not vary over the whole
range of t , but is constant within several time intervals.

An alternative tomodel (7) that also preserves the additive
structure of parametric discrete hazard models, but allows to
fit piecewise constant baseline coefficients is a model with
predictor

η(t, xi ) = tr0(t) + tr(xi ), (12)

where tr0(·) is a second tree partitioning the observations
into subsets N0m0 ,m0 = 1, . . . , M0, with regard to the time
t , and assigning a parameter γ0m0 to each subset N0m0 , and
tr(·) is a tree structure defined as in (8). More formally, we
have that

tr0(t) =
M0∑

m0=1

γ0m0 I
(
t ∈ N0m0

)
, (13)

which represents a piecewise constant function over time.
Both trees tr0(·) and tr(·) are constructed using a similar
stepwise procedure as described in Sect. 3.1. Assuming now
that a split in t at ct is selected in the first step yields the
predictor

η[1](t, xi ) = [
γ

[1]
01 I (t ≤ ct ) + γ

[1]
02 I (t > ct )

]
. (14)

Then, a split in explanatory variable x j at split point c j , in
the second step, results in a predictor of the form

η[2](t, xi ) =[
γ

[2]
01 I (t ≤ ct ) + γ

[2]
02 I (t > ct )

]
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+ γ
[2]
1 I (xi j ≤ c j ), (15)

where the node I (xi j > c j ) serves as reference node. In each
iteration of the algorithm (see Sect. 3.4 for details), a split in
either t or in one of the explanatory variables is performed,
expanding tr0(·) or tr(·), respectively. As a result, the pre-
dictor comprises piecewise constant effects over time and
tree-structured effects of the explanatory variables. Note that
the algorithm treats t as an ordinal variable. Thus, the total
number of possible splits in tr0(·) is k−2.When treating t as
nominal variable instead, certain forms of the effects of time
(e.g. U-shapes) might be detected more easily, particularly
in small samples. Yet, this approach would be much more
computationally expensive, as the number of possible splits
grows exponentially with the number of time points. More
specifically, 2(k−1)−1 − 1 possible binary partitions would
have to be considered for the first split in tr0(·). The design
of the augmented data matrices for fitting the model with
predictor (15) is illustrated in Online Resource Supplement
1, see Equations (S3) and (S4).

3.3 Modeling the effects of t and x by one single tree

The proposed models (7) and (12) are an attractive choice,
as the effects can be captured in a very flexible way and
the representation as a tree facilitates their interpretation. At
the same time the common additive structure of parametric
models (separating the effects of x and t) is kept.

If one suspects that interactions between time and explana-
tory variables are present, the use of a discrete hazard model
with predictor

η(t, xi ) = tr(t, xi ), (16)

may bemore appropriate.Here, the function tr(·, ·) partitions
the observations based on the time t and the values of the
explanatory variables xi , that is,

tr(t, xi ) =
M∑

m=1

γ j I ((t, xi ) ∈ Nm) . (17)

The construction of the tree tr(·, ·) is performed in the same
manner as described in Sect. 3.1, but now in each step the time
t (treated as an ordinal variable) and the explanatory variables
are treated together. Essentially, this modeling approach is
equivalent to the survival tree proposed by Schmid et al.
(2016), as in both cases a single tree is built, where the time t
and the explanatory variables are simultaneously considered
as candidates for splitting. Schmid et al. (2016) proposed to
use theGini impuritymeasure for the selection of split points,
whereas our approach selects the splits based on likelihood
ratio (LR) test statistics (see Sect. 3.4), which is equivalent

to the entropy criterion (Breiman et al. 1984). If the same
splitting criterion is chosen, the model with predictor (16)
and the survival tree yield the same results.

Model (16) is highly flexible, as an interaction between x
and t implies the presence of time-varying effects on the haz-
ards. This, however, comes at the price that the tree structure
is harder to interpret, because each terminal node corresponds
to a subset defined by the explanatory variables and to a time
interval. An example of the augmented data matrices for fit-
tingModel (16) is given in Equations (S5) and (S6) in Online
Resource Supplement 1.

3.4 Fitting procedure

In each step of the tree-building algorithm, the best split
among all candidate variables (that is, one component of
x or t) and among all possible split points is selected. In
order to do so, the two parameters corresponding to the two
subsets resulting from the new split, γ

[�]
q and γ

[�]
q+1 (where

q is the current number of terminal nodes and � = q − 1
is the current number of splits), are tested for equivalence.
More specifically, one examines all the null hypotheses H0:
γ

[�]
q = γ

[�]
q+1 against the alternatives H1: γ

[�]
q 	= γ

[�]
q+1 by

means of likelihood ratio (LR) tests. For a model with pre-
dictor (7), the splitting variable xq and split point cq related
to the largest LR test statistic are selected. For models with
predictor (12) and (16), the split is also selected based on the
largest LR test statistic but can either be in t or in one of the
explanatory variables (in the second or the same tree struc-
ture). Note that in each step of the algorithm all observations
(of the augmented data matrix) are used to derive estimates
of the model coefficients. That means, all parameters are
refitted in each iteration and no previously estimated param-
eters are kept. Consequently, in case of the models with two
components (introduced in Sects. 3.1 and 3.2), the parameter
estimates of either of the two components are adjusted for
the change through a split in the other. For the model with
only one tree component described in Sect. 3.3, an additional
split, however, does not change the parameter estimates in the
remaining nodes (i.e. there would be no necessity to consider
all the observations). Hence, the mechanism is equivalent to
the fitting of a common tree, where only the subset of all
observations in one node are used to guide the next split.

Three approaches for determining the size of the tree(s)
are considered:

(i) The first alternative, which is based on the algorithm
proposed by Berger et al. (2019), applies permutation tests.
Let xq be the variable selected for splitting. Then, the p-value
obtained from the distribution of the maximally selected
test statistic Tq = maxcq Tq,cq provides a measure for the
dependence between the time-to-event outcome and vari-
able xq while accounting for the number of possible split
points (Hothorn and Lausen 2003). Therefore, one explic-
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itly accounts for the involved multiple testing problem with
regard to the number of split points for xq . The construction of
the tree(s) is terminated when the null hypothesis of indepen-
dence between the time-to-event outcome and the selected
explanatory variable (or the time t) cannot be rejected (based
on a prespecified error level α). To determine the asymptotic
distribution of Tq under the null hypothesis and to derive a
test decision, a permutation test is performed. Thatmeans one
permutes the values of the splitting variable xq (or t) in the
original augmented datamatrix and computes the value of the
maximally selected LR test statistic based on the permuted
data. When this procedure is done repeatedly, an approxima-
tion of the distribution of Tq under the null hypothesis can be
derived. Each permutation test is performed with local type
I error level αl = α/s, where s is the number of candidate
variables for splitting in the selected node. Hence, for each
tree the probability of falsely identifying at least one variable
as splitting variable is bounded by α (i.e. on the tree level the
family-wise error rate is controlled by α). To determine the
corresponding p-values with sufficient accuracy, the number
of permutations should increase with the number of candi-
date splitting variables.

(ii) A second alternative is a minimal node size criterion,
which iswidely used in tree-building algorithms (Probst et al.
2019). With the minimal node size criterion, the minimal
number of observations in the nodes is considered as the
main tuning parameter for tree construction. If the number
of observations in a current node falls below a prespecified
threshold, the node is flagged as terminal node and is no
longer available for further splits. The construction of the
tree(s) is terminated when all current nodes are flagged as
terminal nodes. To find the optimal minimal node size we
propose to use the predictive log-likelihood of the model
(evaluated on a separate validation sample or by cross-
validation). It appears to be a natural choice, because split
selection is also based on the likelihood. Note that, for the
model with predictor (12), the optimal minimal node size
must be determined for both trees, which requires optimiza-
tion on a two-dimensional grid.

(iii) The third alternative is a post-pruning strategy, where
a large tree is grown first and is then pruned to an adequate
size to avoid overfitting. More specifically, after building
the large tree, the sequence of nested subtrees is evaluated
with regard to its predictive performance, for example, by
using a validation sample or a k-fold cross validation scheme.
Finally, the best-performing subtree is selected. As with the
minimal node size criterion, we propose to consider the
predictive log-likelihood as evaluation criterion. Note that,
also for model (12) with two tree components, this strategy
requires a one-dimensional optimization only.

To prevent the algorithm from building extremely small
nodes (with only a few observations), an additional mini-
mal bucket size constraint may be applied. With the minimal

bucket size constraint, the minimum number of observations
required in any terminal node is limited downward.

To summarize, the following steps are performed during
the fitting procedure, if the permutation test is applied:

1. Initial model: Fit the model without any explanatory
variables, yielding a single estimate of the intercept γ̂0
(or a P-spline function modeling the baseline effects).

2. Tree building:

(a) Fit all candidate models with one additional split
regarding one of the explanatory variables (or t in
case of a model with predictor (12) or (16)), that ful-
fill the minimal bucket size constraint, in one of the
already built nodes. If none of the additional splits
meets the minimal bucket size constraint, terminate
the algorithm.

(b) Select the best model based on the maximal LR test
statistic.

(c) Carry out the permutation test for the variable asso-
ciated with the selected split with error level αl . If
significant, fit the selected model and continue with
step (2a). Otherwise, terminate the algorithm.

If the minimal node size criterion is used, the algorithm can
be summarized as follows:

1. Initial model: Fit the model without any explanatory
variables.

2. Tree building:

(a) Fit all candidate models with one additional split
regarding one of the explanatory variables (or t), that
fulfill the minimal bucket size constraint, in one of
the already built nodes. If none of the additional splits
meets the minimal bucket size constraint, terminate
the algorithm.

(b) Select the best model based on the maximal LR test
statistic considering the already built nodes that ful-
fill the minimal node size criterion, only. If none of
the already built nodes meets the minimal node size
criterion, terminate the algorithm.

(c) Fit the selected model and continue with step (2a).

Using the post-pruning method, the fitting procedure is as
follows:

1. Initial model: Fit the model without any explanatory
variables.

2. Tree building:

(a) Fit all candidate models with one additional split
regarding one of the explanatory variables (or t), that
fulfill theminimal bucket size constraint, in one of the
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already built nodes. If none of the additional splits
meets the minimal bucket size constraint, continue
with step (3).

(b) Select the best model based on the maximal LR test
statistic.

(c) Fit the selected model and continue with step (2a).

3. Pruning: Select the best model with the minimal predic-
tive log-likelihood from the sequence of models built in
steps (1) and (2). Terminate the algorithm.

In R, the augmented data matrix for fitting discrete time-
to-event models can be obtained by applying the function
dataLong() of the package discSurv (Welchowski et al.
2022). Technically, the proposed algorithm can be embed-
ded into the framework of tree-structured varying coefficients
models (TSVC; Berger et al. 2019). The models can there-
fore be fitted by the eponymous R add-on package TSVC
(Berger 2021), where the explanatory variables (and the time
t) serve as effect modifiers, modifying the effect of a constant
auxiliary variable. Online Resource Supplement 2 contains a
collection of code examples demonstrating how the proposed
models can be fitted using TSVC.

4 Simulation study

To assess the performance of the proposed tree-structured
models and to illustrate their properties, we considered dif-
ferent simulation scenarios. In all scenarios, the aimswere (i)
to evaluate how the performance of the approaches is affected
by the degree of censoring and the number of noise variables,
(ii) to compare the three approaches for determining the size
of the tree(s), and (iii) to compare the proposed approaches
to alternative methods, in particular to penalized maximum
likelihood (ML) estimation and Bayesian additive regres-
sion trees. In addition, the computation times of the models
were considered. The scenarios were based on a true model
with predictor (12) composed of a piecewise constant base-
line function and tree-structured effects of the explanatory
variables (scenario 1), a true model with predictor (4) com-
posed of a smooth baseline function and linear effects of
the explanatory variables (scenario 2), and a true model with
predictor (16) including interaction effects between time and
explanatory variables (scenario 3). More details on the data-
generatingmodels will be given in the following subsections.

In each scenario, the following models were fitted to the
simulated data:

(i) the tree-structured model with smooth baseline effects
as described in Sect. 3.1, referred to as SB,

(ii) the tree-structured model with piecewise constant
baseline coefficients as described in Sect. 3.2, referred
to as PCB,

(iii) the tree-structured model including t and x in a single
tree as described in Sect. 3.3, referred to as ST,

(iv) a parametric model (4) with a LASSO penalty on each
of the regression coefficients and a group LASSO
penalty on the baseline coefficients, referred to as
LASSO,

(v) a nonparametricmodel usingBayesian additive regres-
sion trees with logistic link function, referred to as
BART,

(vi) a fully specified parametric model (4) including
dummy-coded baseline coefficients and all explana-
tory variables (Full),

(vii) a model without any explanatory variables and a con-
stant baseline coefficient only (Null), and

(viii) the true data-generating model (Perfect).

For the SB, the PCB and the ST model, permutation tests
(PT ), the minimal node size criterion (MNS) as well as
the post-pruning method (PR) were applied to determine the
optimal sizes of the trees. The baseline coefficients of the SB
model were estimated by a P-spline comprising five cubic
B-spline basis functions and using a second order difference
penalty. The optimal penalty parameter ε was determined by
generalized cross-validation (see Wood 2017).

The LASSO model contains a penalty term for each
explanatory variable and for the time t . The group LASSO
penalty on the baseline coefficients guarantees that either all
or none of the corresponding estimates are equal to zero.
The degree of regularization is controlled by a joint penalty
parameter ε. See Yuan and Lin (2006) andMeier et al. (2008)
for details.

The BART model, as introduced for survival analysis by
Sparapani et al. (2016), is built of a sum of trees model-
ing the effects of time and the explanatory variables jointly
(analogously to the STmodel) and is fitted within a Bayesian
framework. To achieve maximum comparability, we used a
logistic link function (instead of the default probit link) and
set the number of trees to one. Following Sparapani et al.
(2016), the posterior distributions were estimated based on
2000 draws using a Markov chain Monte Carlo (MCMC)
algorithm with 100 burn-in draws, a thinning factor of 10,
and the default priors (see Sparapani et al. 2021).

In all simulation scenarios, the time-to-event outcomewas
related to one binary explanatory variable x1 ∼ B(1, 0.5)
and two continuous explanatory variables x2, x3 ∼ N (0, 1).
We considered a low-dimensional settingwith five additional
binary noise variables (∼ B(1, 0.5)) and two additional
standard normally distributed variables, as well as a high-
dimensional setting with 90 additional binary noise variables
and seven additional standardnormally distributednoise vari-
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ables. In each scenario we performed 100 replications and
simulated a training sample, a validation sample and a test
sample of size n = 500, respectively. The number of discrete
timepointswas set to k = 11.Thevalidation samplewasused
to determine the optimal minimal node sizes and best per-
forming subtrees (post-pruning) for the SB, the PCB and the
STmodel and the optimal penalty parameter ε for theLASSO
model by maximization of the predictive log-likelihood. The
permutation testswere basedon1000permutationswith error
level α = 0.05. The censoring times Ci were sampled inde-
pendently of the event times Ti using the probability mass
function P(Ci = t) = bk+1−t/

∑k
j=1 b

j , t = 1, . . . , k.
This resulted in censoring rates of approximately 30% (b =
0.7), 50% (b = 1) and 70% (b = 1.3).

To assess the performance of the different approaches, the
predictive log-likelihood was calculated on the test samples.
In addition, we considered prediction error (PE) curves as a
time-dependentmeasure of prediction error. In case ofBART,
we used themean (predicted) hazards over theMCMCdraws
to calculate the predictive log-likelihood values and the PE
curves. The PE at time point t is given by

P̂ E(t) = 1

n

n∑

i=1

wi (t)
(
Ŝi (t) − S̃i (t)

)2
,

where Ŝi (t) = ∏t
s=1(1 − λ̂(s|xi )) denotes the estimated

survival function, S̃i (t) = I (t < T̃i ) denotes the observed
survival function of individual i at time t , and wi (t) are
inverse-probability-of-censoring weights, see van der Laan
andRobins (2003).Wealso computed the integratedPEgiven
by

P̂ Eint =
k−1∑

t=1

P̂ E(t) · P̂(T = t).

The marginal probabilities P(T = t) were estimated using
a logistic discrete hazard model with dummy variables for
each time point. For more details on PE curves, see Tutz and
Schmid (2016).

Furthermore, true positive rates (TPR) and false positive
rates (FPR) for the explanatory variables were considered.
The true positive rate specifies the proportion of explanatory
variables that were correctly identified to have an effect on
the hazard (that is, correctly selected for splitting). It is given
by

T PRX = 1

#{ j : ϑ j = 1}
∑

j :ϑ j=1

I
(
ϑ̂ j = 1

)
,

where ϑ j = 1 if x j has an effect on the hazard and ϑ j = 0
otherwise. The false positive rate describes the proportion

of all noise variables that were falsely identified to have an
effect on the hazard and is given by

FPRX = 1

#{ j : ϑ j = 0}
∑

j :ϑ j=0

I
(
ϑ̂ j = 1

)
.

In case of BART, TPR and FPR were determined by aver-
aging over the MCMC draws.

For the settings with tree-structured effects of time, we
also determined a true positive rate for the thresholds in t ,
which is given by

T PRT = 1

#{k : δt = 1}
∑

t :δt=1

I
(
δ̂t = 1

)
,

where δt = 1 if there is a split at t and δt = 0 otherwise.
Analogously, the false positive rate for the thresholds in t is
given by

FPRT = 1

#{k : δt = 0}
∑

t :δt=0

I
(
δ̂t = 1

)
.

4.1 Model with piecewise constant baseline effects
and tree-structured effects of the explanatory
variables

In the first scenario, the predictor of the true data-generating
model had the form

η(t, xi ) =γ0(t) + [
γ1 I (xi2 ≤ 0 ∧ xi1 = 0)

+ γ2 I (xi2 ≤ 0 ∧ xi1 = 1)

+ γ3 I (xi2 > 0 ∧ xi3 ≤ 0)

+ γ4 I (xi2 > 0 ∧ xi3 > 0)
]

with γ1 = −2.5, γ2 = −1.5, γ3 = −0.5, γ4 = 0.5, and
baseline function

γ0(t) = − 1.5I (t ≤ 3) − I (3 < t ≤ 5)

− 0.5I (5 < t ≤ 8).

Figure S1 inOnlineResource Supplement 3 shows the effects
of the explanatory variables represented as a tree structure.

From the results in Table 1 it is seen that all the pro-
posedmodels were very efficient in detecting the informative
variables. The TPR (upper panel) were higher than 0.6
throughout all settings, even for high-dimensional data with
strong censoring. Compared to the tree-structured mod-
els, LASSO yielded much higher FPR, indicating that the
selectedmodelswere far too large,whileBARTyieldedmuch
lower TPR. This also resulted in a considerably worse pre-
dictive performance of LASSO and BART compared to the
proposed models (see Fig. 1, which show the results for the
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Table 1 Results of the
simulation study: Explanatory
variables (scenario 1)

Model Stopping Low-dimensional High-dimensional
criterion

Censoring rate 0.3 0.5 0.7 0.3 0.5 0.7

TPR_X SB PT 0.987 0.940 0.813 0.970 0.863 0.720

MNS 0.923 0.903 0.833 0.913 0.910 0.730

PR 0.983 0.926 0.823 0.980 0.917 0.773

PCB PT 0.990 0.940 0.810 0.953 0.857 0.660

MNS 0.930 0.913 0.860 0.910 0.917 0.750

PR 0.983 0.930 0.837 0.983 0.943 0.777

ST PT 0.923 0.883 0.757 0.853 0.750 0.617

MNS 0.950 0.870 0.760 0.910 0.813 0.670

PR 0.980 0.907 0.790 0.927 0.853 0.747

BART – 0.784 0.761 0.666 0.562 0.477 0.430

LASSO – 1.000 0.997 0.980 0.997 0.880 0.740

FPR_X SB PT 0.017 0.028 0.010 0.004 0.003 0.004

MNS 0.081 0.040 0.011 0.007 0.004 0.003

PR 0.014 0.016 0.010 0.001 0.001 0.001

PCB PT 0.011 0.020 0.009 0.004 0.003 0.003

MNS 0.073 0.047 0.020 0.007 0.005 0.004

PR 0.023 0.019 0.020 0.001 0.001 0.002

ST PT 0.004 0.004 0.004 0.002 0.001 0.001

MNS 0.041 0.036 0.021 0.005 0.005 0.002

PR 0.020 0.011 0.009 0.001 0.001 0.001

BART – 0.119 0.099 0.119 0.013 0.015 0.011

LASSO – 0.637 0.627 0.504 0.201 0.470 0.183

Average true positive rates (TPR_X) and false positive rates (FPR_X) of the explanatory variables for the
low-dimensional settings (left) and high-dimensional settings (right) and different degrees of censoring
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(a) Low-dimensional setting
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(b) High-dimensional setting

Fig. 1 Results of the simulation study: Predictive performance (sce-
nario 1). The figure shows the predicted log-likelihood obtain from
fitting the different models for the low-dimensional setting (left panel)

and the high-dimensional setting (right panel) with low censoring
(30%). For the results with medium and high censoring, see Figure
S3 and S4 of Online Resource Supplement 3
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(a) Low-dimensional setting
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(b) High-dimensional setting

Fig. 2 Results of the simulation study: Prediction error curves (sce-
nario 1). The figures show the prediction error curves (averaged over
100 replications) of the proposed tree-structured model with the lowest
integrated prediction error (SB PR) and the competing models for the
low-dimensional setting (left panel) and the high-dimensional setting

(right panel) with low censoring (30%). For the results of the other
proposed tree-structured models, see Figures S9 and S10 of Online
Resource Supplement 3. Values of the integrated PE for all settings
(with low, medium and high censoring) are given in Table S3 of Online
Resource Supplement 3

settings with low censoring). The corresponding results for
medium and high censoring are given in Online Resource
Supplement 3.

It is also seen that the SB and PCB model performed sim-
ilarly well, whereas the ST model performed worst among
the proposed models. This indicates that the true underlying
piecewise constant baseline function could be approximated
sufficiently by the smooth function of the SB model. Mod-
eling the effects of time and the explanatory variables in one
tree, however, did not fit the data very well.

Furthermore,modelswhere permutation testswere applied
as stopping criterion mostly showed lower FPR than models
using the minimal node size criterion or the post-pruning
method (see lower panel of Table 1). This is because the per-
mutation test procedure is intended to control the family-wise
error rate α (see Sect. 3.4). Regarding the TPR, the permu-
tation test procedure showed slightly better performance in
the settings with low censoring, whereas applying the mini-
mal node size criterion was superior in the settings with high
censoring. The post-pruning method performed particularly
well in the high-dimensional settings. Of note, in the present
setting the true underlying model was determined by a tree
with similarly sized terminal nodes. In a more unbalanced
setting, the minimal node size criterion tended to be inferior
to the permutation test and the post-pruning method (see,
for example, Figure S8 of scenario 3 in Online Resource
Supplement 3).

Figure2 shows the PE curves for the settings with low
censoring. The figure depicts the results obtained from the
proposed tree-structured model with the lowest integrated
prediction error (SB PR) and the competingmodels. It is seen

that the differences in PE were larger for later time points,
with the proposed SB PR model resulting in the lowest PE
values among the competitors across all time points. This
result appears to be unaffected by the dimensionality of the
data. For the PE curves of the other proposed-tree-structured
models, we refer to Figures S9 and S10 of Online Resource
Supplement 3.

The selection rates obtained for the thresholds in t given
in Table 7 of Online Resource Supplement 3 demonstrate
that the PCB model with minimal node size criterion carried
out considerably more splits in time yielding higher TPR and
FPR. In case of the ST model, most splits were performed
when the post-pruning method was applied.

4.2 Model with smooth baseline effects and linear
effects of the explanatory variables

The second scenario was based on a predictor of the form

η(t, xi ) = γ0(t) + γ1xi1 + γ2xi2 + γ3xi3

with γ1 = −0.5, γ2 = −0.25, γ3 = 0.25 and a sigmoid
baseline function

γ0(t) = −2.25 + 1.5 × exp
(
−(t − 6)−1

)
.

Table 2 and Fig. 3 show that the proposed models yielded
lower TPR than in scenario 1 throughout all settings andwere
outperformed by the LASSO in terms of TPR and predic-
tive ability. The TPR particularly deteriorated in the settings
with high censoring. The BART model appeared to be less
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Table 2 Results of the
simulation study: Explanatory
variables (scenario 2)

Model Stopping Low-dimensional High-dimensional
criterion

Censoring rate 0.3 0.5 0.7 0.3 0.5 0.7

TPR_X SB PT 0.667 0.507 0.343 0.460 0.320 0.128

MNS 0.760 0.593 0.350 0.540 0.417 0.256

PR 0.700 0.580 0.353 0.552 0.363 0.243

PCB PT 0.660 0.507 0.307 0.433 0.317 0.128

MNS 0.737 0.590 0.327 0.547 0.410 0.239

PR 0.717 0.597 0.397 0.580 0.393 0.230

ST PT 0.517 0.380 0.270 0.270 0.190 0.128

MNS 0.553 0.417 0.287 0.337 0.263 0.182

PR 0.587 0.397 0.263 0.337 0.243 0.153

BART – 0.553 0.491 0.378 0.216 0.209 0.156

LASSO – 0.910 0.880 0.740 0.773 0.637 0.527

FPR_X SB PT 0.007 0.009 0.012 0.002 0.001 0.001

MNS 0.030 0.026 0.007 0.002 0.001 0.001

PR 0.020 0.009 0.003 0.001 0.000 0.001

PCB PT 0.006 0.011 0.007 0.001 0.002 0.001

MNS 0.037 0.020 0.011 0.001 0.001 0.001

PR 0.026 0.013 0.004 0.001 0.000 0.001

ST PT 0.007 0.014 0.006 0.002 0.001 0.001

MNS 0.021 0.006 0.013 0.002 0.001 0.001

PR 0.011 0.015 0.009 0.000 0.001 0.001

BART – 0.111 0.096 0.077 0.010 0.010 0.011

LASSO – 0.620 0.582 0.467 0.204 0.160 0.117

Average true positive rates (TPR_X) and false positive rates (FPR_X) of the explanatory variables for the
low-dimensional settings (left) and high-dimensional settings (right) and different degrees of censoring
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(a) Low-dimensional setting
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(b) High-dimensional setting

Fig. 3 Results of the simulation study: Predictive performance (sce-
nario 2). The figure shows the predicted log-likelihood obtained from
fitting the different models for the low-dimensional setting (left panel)

and the high-dimensional setting (right panel) with low censoring
(30%). For the results with medium and high censoring, see Figure
S5 and S6 of Online Resource Supplement 3
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(a) Low-dimensional setting
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Fig. 4 Results of the simulation study: Prediction error curves (sce-
nario 2). The figures show the prediction error curves (averaged over
100 replications) of the proposed tree-structured model with the lowest
integrated prediction error (SB MNS) and the competing models for
the low-dimensional setting (left panel) and the high-dimensional set-

ting (right panel) with low censoring (30%). For the results of the other
proposed tree-structured models, see Figures S11 and S12 of Online
Resource Supplement 3. Values of the integrated PE for all settings
(with low, medium and high censoring) are given in Table S4 of Online
Resource Supplement 3

affected by an increasing censoring rate, but showed much
lower TPR in the high-dimensional settings.

Yet, the proposed models showed substantially better pre-
dictive performance compared to the Null model in the low-
and high-dimensional setting as well as compared to the Full
model in the high-dimensional setting, which reflects the
added value of the variable selection procedure.

Again, the ST models achieved the lowest predictive log-
likelihood values among the tree-structuredmodels (seventh,
eighth and ninth boxplot of Fig. 3), which demonstrates that
fitting one single tree comprising the effects of time and the
explanatory variables is not adequate if the underlyingmodel
has an additive structure.

The models applying the minimal node size criterion per-
formed slightly better than models using permutation tests
and the post-pruning method. The rather weak performance
of the permutation test indicates that the test procedure is
too conservative to detect numerous informative variables in
settings with moderately sized linear effects.

Figure4 shows that the PE for the settingswith low censor-
ing increased until t = 7 for all of the models. The LASSO
performed best across all time points in both the low- and
high-dimensional setting. While the SB MNS model was
outperformed by the LASSO, it was superior to the Null
and BART model in the low-dimensional setting as well as
to the Full model in the high-dimensional setting. For the PE
curves of the other proposed-tree-structuredmodels, we refer
to Figures S11 and S12 of Online Resource Supplement 3.

4.3 Tree-structuredmodel with interaction effects
between time and explanatory variables

The data of the third scenario was generated based on a pre-
dictor of the form

η(xi , t) = γ0 + γ1 I (t ≤ 4 ∧ xi1 = 0 ∧ xi3 ≤ 0)

+ γ2 I (t ≤ 4 ∧ xi1 = 0 ∧ xi3 > 0)

+ γ3 I (t ≤ 4 ∧ xi1 = 1)

+ γ4 I (t > 4 ∧ xi2 ≤ 0)

+ γ5 I (t > 4 ∧ xi2 > 0)

with γ0 = −0.5, γ1 = −4, γ2 = −3, γ3 = −2, γ4 = −1,
γ5 = 0. Figure S2 in Online Resource Supplement 3 illus-
trates the predictor function represented as a tree structure.

From Table 3 and Fig. 5 it is seen that the performance of
the different models deviated from each other more strongly
than in the previous scenarios. While the LASSO yielded
higher TPR than the tree-structured models, the proposed
models resulted in much lower FPR than LASSO and BART
and exhibited good predictive performance. In particular,
they performed substantially better than the Null model as
well as the Full model in the high-dimensional settings).

Among the proposed models, the ST model (seventh,
eighth and ninth boxplots in Fig. 5), whose structure corre-
sponds to the form of the true underlying predictor function,
was clearly superior to the SB and PCB models. Further,
the difference in predictive performance between the SB and
PCB models shows that the abrupt change in the hazard at
time point t = 4 could be captured less adequately by the
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Table 3 Results of the
simulation study: Explanatory
variables (scenario 3)

Model Stopping Low-dimensional High-dimensional
criterion

Censoring rate 0.3 0.5 0.7 0.3 0.5 0.7

TPR_X SB PT 0.487 0.463 0.270 0.383 0.310 0.190

MNS 0.490 0.453 0.363 0.390 0.387 0.247

PR 0.483 0.463 0.330 0.403 0.367 0.233

PCB PT 0.493 0.483 0.300 0.393 0.323 0.193

MNS 0.483 0.467 0.353 0.400 0.377 0.260

PR 0.493 0.480 0.347 0.413 0.370 0.247

ST PT 0.713 0.693 0.550 0.687 0.650 0.440

MNS 0.740 0.550 0.360 0.710 0.503 0.330

PR 0.700 0.710 0.523 0.700 0.677 0.463

BART – 0.684 0.624 0.482 0.426 0.380 0.255

LASSO – 0.893 0.910 0.830 0.760 0.733 0.590

FPR_X SB PT 0.011 0.011 0.011 0.003 0.002 0.002

MNS 0.033 0.017 0.009 0.002 0.002 0.001

PR 0.014 0.017 0.004 0.001 0.001 0.000

PCB PT 0.011 0.014 0.010 0.003 0.004 0.002

MNS 0.031 0.029 0.011 0.002 0.002 0.001

PR 0.018 0.010 0.006 0.001 0.001 0.001

ST PT 0.017 0.013 0.016 0.004 0.003 0.002

MNS 0.007 0.041 0.009 0.002 0.007 0.001

PR 0.003 0.003 0.004 0.001 0.001 0.001

BART – 0.137 0.130 0.125 0.017 0.015 0.020

LASSO – 0.696 0.654 0.537 0.239 0.207 0.173

Average true positive rates (TPR_X) and false positive rates (FPR_X) of the explanatory variables for the
low-dimensional settings (left) and high-dimensional settings (right) and different degrees of censoring
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(a) Low-dimensional setting
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(b) High-dimensional setting

Fig. 5 Results of the simulation study: Predictive performance (sce-
nario 3). The figure shows the predicted log-likelihood obtained from
fitting the different models for the low-dimensional setting (left panel)

and the high-dimensional setting (right panel) with low censoring
(30%). For the results with medium and high censoring, see Figure
S7 and S8 of Online Resource Supplement 3
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(a) Low-dimensional setting
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(b) High-dimensional setting

Fig. 6 Results of the simulation study: Prediction error curves (sce-
nario 3). The figures show the prediction error curves (averaged over
100 replications) of the proposed tree-structured model with the lowest
integrated prediction error (ST PR) and the competing models for the
low-dimensional setting (left panel) and the high-dimensional setting

(right panel) with low censoring (30%). For the results of the other
proposed tree-structured models, see Figures S13 and S14 of Online
Resource Supplement 3. Values of the integrated PE for all settings
(with low, medium and high censoring) are given in Table S5 of Online
Resource Supplement 3

smooth function of the SB model. According to the TPR in
Table S2 in Online Resource Supplement 3, a split in t = 4
was carried out by the PCB and STmodels in each replication
(as all values were equal to one).

In addition, Table 3 shows that the ST model resulted in
much lower TPR when applying the minimal node size cri-
terion compared to the permutation tests or the post-pruning
procedure in the settings with medium and high censoring.
This may be explained by the unbalanced size of the termi-
nal nodes of the tree according to the true underlying model.
This also results in a decreased predictive performance (see
Figures S7 and S8 in Supplement 3 of the Online Resource).

The PE curves shown in Fig. 6 were very close at early
time points, but for later time points (t > 4) in particular
the BART model performed worse than the other models,
which may be caused by the low number of observations at
subsequent time points (leading to a stronger influence of
the prior distributions). The proposed ST PR model showed
the lowest PE among the competitors across all time points
for low- and high-dimensional data. For the PE curves of the
other proposed-tree-structured models, we refer to Figures
S13 and S14 of Online Resource Supplement 3.

4.4 Run-time

In the last part of the simulation study we investigated the
computing times of the proposed tree-structured models and
compared them to the alternative approaches LASSO and
BART. To do so, we evaluated the run-times in simula-
tion scenario 2 with low censoring. This setting was chosen
because increasing the degree of censoring results in a lower

number of rows in the augmented data matrix (ñ) and there-
fore generally reduces run-times. Table 4 shows that the
run-times differ strongly depending on the structure of the
model (SB, PCB or ST) and the stopping criterion (PT, MNS
or PR). Run-times were consistently longer compared to the
LASSO model, which on average took only one minute or
less in both settings, and also longer than the BARTmodel in
some cases. Among the proposed tree-structured approaches
the post-pruning method was least expensive, in particu-
lar for the ST and PCB model. A higher number of noise
variables (high-dimensional setting) increased the run-times
when using the minimal node size criterion or the post-
pruning method. In contrast, the run-times decreased with
a larger number of noise variables if permutation tests were
applied. This is because the effort of the permutation test
approach directly depends on the actual size of the fitted trees,
which was considerably smaller in the high-dimensional set-
ting (resulting in lower TPR, cf. Table 2). Moreover, the long
run-times of the SB model demonstrate the computational
demand of refitting the smooth baseline function γ0(t) in
each iteration, and the low performance of the PCB MNS
model resulted from the optimization of the minimal node
size on a two-dimensional grid.

5 Application

To illustrate the use of the proposed models, two real-world
examples were considered. In both applications, we com-
pared the different approaches also considered in the simula-
tion study and selected the best-performing approach using
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Table 4 Results of the
simulation study: Run-times

Model Stopping criterion Run-time
Low-dimensional High-dimensional

SB PT 156 95

MNS 93 231

PR 33 66

PCB PT 17 9

MNS 125 317

PR 3 6

ST PT 11 8

MNS 6 16

PR 2 5

BART – 56 55

LASSO – >1 1

Run-times in minutes averaged over 100 replications for fitting the different models in simulation scenario 2
with low censoring (30%) in the low- and high-dimensional setting. The calculations were performed on a
high performance computing cluster that consists of 35 nodes with a total of 944 cores for general purpose
computing. An additional 372 cores are reserved for machine learning computations and aided by 6 A100 or
V100S NVIDIA GPUs. The cores are a mixture of older (e.g. Nehalem, Opteron) and modern (AMD Epyc)
processors. The total memory of the system is 4.6 terabytes and roughly 400 terabytes of hard drive space
are available for storing project data. Connections between nodes are using 40 or 56 gigabits per second
Infiniband links

a cross-validation procedure. The corresponding results are
presented in the following.

5.1 Patients with acute odontogenic infection

We considered data of a five-year retrospective study inves-
tigating hospitalized patients with abscess of odontogenic
origin conducted between 2012 and 2017 by the Department
of Oral and Cranio-Maxillo and Facial Plastic Surgery at
the University Hospital Bonn. Patients with an acute odon-
togenic infection suffer from pain, swelling, erythema and
hyperthermia. If not treated at an early stage, such infections
may spread into deep neck spaces and lead to perilous com-
plications by menacing anatomical structures, such as major
blood vessels, the upper airway and the mediastinum (Bia-
sotto et al. 2004). The primary objective of the study was
to identify risk factors that are associated with a prolonged
length of stay (LOS) in the treatment of severe odontogenic
infections. As the LOS was recorded in 24-h intervals (that
is, time was measured in days t = 1, . . . , 18), the use of a
discrete hazard model is appropriate.

Here data from 303 patients that underwent surgical treat-
ment in terms of incision and drainage of the abscess were
considered. Intravenous antibioticswere administered during
the operation and for the length of inpatient treatment. Fur-
ther details on the study can be found in Heim et al. (2019).
The characteristics of the patients considered for modeling
were: age in years, gender (0: female, 1: male), an indicator
of whether the infection spread into other facial spaces (0:
no, 1: yes), the location of the infection focus (0:mandible, 1:

Table 5 Analysis of the odontogenic infection data

Model Stopping criterion Predictive log-likelihood

SB PT −70.31

MNS −70.23

PR −69.91

PCB PT −70.43

MNS −70.43

PR −70.56

ST PT −71.12

MNS −74.06

PR −71.27

BART – −71.21

LASSO – −70.77

Full – −73.36

Null – −80.93

Predictive log-likelihood values for the different modeling approaches
based on ten-fold cross-validation. The bold value corresponds to the
best perfoming model

maxilla), the administered antibiotics (0: ampicillin, 1: clin-
damycin), the presence of diabetes mellitus type 2 (0: no, 1:
yes) and an indicator of whether the infection was already
removed at admission (0: no, 1: yes). Basic statistics of the
LOS and the patients characteristics are summarized in Table
S6 in Online Resource Supplement 4.

The logistic discrete hazard model with predictor (4)
including linear effects of the explanatory variables that was
recently applied for statistical analysis by Heim et al. (2019)
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Fig. 7 Analysis of the odontogenic infection data. The figure shows
the results obtained from fitting the SB model with minimal node size
criterion to the odontogenic infection data. On the left, the estimated
smooth baseline function is presented. The graph on the right shows the

estimated tree obtained from fitting the SB model with minimal node
size criterion. The estimated coefficients γm are given in each leaf of
the tree, where the right node on the first tree level serves as reference
node
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Fig. 8 Analysis of the odontogenic infection data. The figure shows
the estimated probability of being of being still at ward for the three
different groups of patients determined by the terminal nodes of the
fitted tree

indicated that age and spreading of the infection focus into
facial spaces significantly affected the LOS (with error level
α = 0.05), while all the other variables showed no evidence
for an effect.

In the first step of our analysis, we compared the tree-
structured models (SB, PCB, ST, and BART), the LASSO
model, the Full and the Null model with regard to their
predictive performance. More specifically, we calculated
the predictive log-likelihood values using ten-fold cross-
validation. In case of the proposed tree-structured models,
permutation tests, the minimal node size criterion, and the
post-pruning method were used to limit the size of the trees.
Additionally, a minimal bucket size constraint of mb =
�0.1ñ�, where ñ is the number of observations (i.e. rows)

in the augmented data matrix, was set for all tree-structured
models. The optimal minimal node size, the optimal subtree,
and the optimal LASSO penalty parameter were respectively
determined by means of leave-one-out cross-validation on
each of the ten training samples. Accordingly, predictive log-
likelihood values were calculated for each of the ten test
samples. Afterwards, the minimal node size, the subtree, and
the penalty parameter value with the largest average predic-
tive likelihood were selected.

Table 5 shows that theSBmodel applying the post-pruning
method achieved the best performance, that is, the highest
cross-validated log-likelihood value. In the second step of the
analysis, we therefore fitted the SB PRmodel to the complete
data. To determine the optimal subtree, we again performed
leave-one-out cross-validation and selected the model with
the highest predictive log-likelihood. The smooth baseline
function of the SB model was fitted by five cubic P-splines
with a second order difference penalty.

Figure7a shows the estimated smooth baseline function
γ0(t) obtained from fitting the SB PR model. The figure
illustrates that it was highly unlikely for patients to be dis-
charged in the first few days after surgery. The probability of
being discharged strongly increased until day five, but subse-
quently remained constant until day 18. Figure7b shows the
estimated tree-structured effects of the explanatory variables
on the LOS. According to the first split, patients with spread-
ing into facial spaces (Spreading=1) had a lower probability
of being discharged. In the group of patients without spread-
ing into facial spaces (Spreading=0), age was identified as an
additional risk factor affecting the LOS. Patients who were
older than 68 years were less likely being discharged than
patients who were 68 years of age or younger. For patients
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Table 6 Analysis of the lymphantic filariasis data

Model Stopping criterion Predictive log-likelihood

PCB PT −15.50

MNS −14.99

PR −18.07

ST PT −15.45

MNS −14.92

PR −15.08

BART – −15.29

LASSO – −15.00

Full – −16.45

Null – −15.25

Predictive log-likelihood values for the different modeling approaches
based on ten-fold cross-validation. The bold value corresponds to the
best perfoming model

68 years of age or younger without spreading the continua-
tion ratio was increased by the factor exp(1.044) = 2.841
compared to patientswith spreading. Figure8 depicts the cor-
responding estimated survival functions for the three groups
of patients determined by the tree.

Overall, our results strongly coincide with the findings by
Heim et al. (2019). Based on the predictive log-likelihood,
however, the tree-structured models SB and PCB sur-
passed the BART as well as the unrestricted and penalized
models with linear effects (Full, Null and LASSO). This
indicates that the tree-structured model (detecting an interac-
tion between Spreading and Age) describes the association
between the LOS and the explanatory variables best.

5.2 Patients with lymphatic filariasis

As a second example, we considered data from a randomized
controlled trial in patients with lymphatic filariasis that was
carried out in the western region of Ghana. Lymphatic filari-
asis is a filarial worm disease transmitted by mosquitoes that
affects approximately 120 million persons worldwide and
can lead to the development of severe lymphedema (LE) or
hydroceles. Themain objective of the studywas to investigate
the effect of antibiotic doxycycline in LE patients. Doxycy-
cline has been shown previously to ameliorate LE severity
in a subgroup of the population (Debrah et al. 2006). While
the primary outcome of the study was change in LE stages,
a key secondary outcome was time to occurrence of acute
attacks, which are caused by secondary infections through
skin lesions. Patients were examined 3 (t = 1), 12 (t = 2)
and 24 (t = 3) months after treatment onset, i.e., time was
measured on a discrete scale with unequally spaced time
intervals.

A sample of 118 patients was analyzed. The empirical
distribution of the event times was 23.73%, 31.36% and

44.92% for T̃ = 1, 2, 3, respectively. The censoring rate
was 34.75% (patients, who did not suffer from an attack dur-
ing follow-up). For details on how the trial was conducted,
see Mand et al. (2012). The characteristics of the patients
that were included in the analysis are: age in years, weight in
kilograms, microfiliariae count, gender (0: female, 1: male),
infection status (0: negative, 1: positive), administered drug
(0: placebo, 1: 6-week course of amoxicillin at 1000mg/d,
2: 6-week course of doxycycline at 200mg/d), lymphedema
stage before treatment and hygiene status before treatment
(0: poor, 1: moderate, 2: good). Based on the inclusion crite-
ria of the study, only patients with LE stages 1–5 according
to the scheme by Dreyer et al. (2002) were considered. Two
patients were excluded from the analysis because of miss-
ing values in the explanatory variables. Summary statistics
on the characteristics of the patients are given in Table 12 in
Supplement S7 of the Online Resource.

Based on a log-rank test, Mand et al. (2012) found a sig-
nificant difference between the doxycycline and the placebo
group with regard to the occurrence of acute attacks (with
error level α = 0.05). However, there was no evidence for
a difference between the doxycycline and the amoxicillin
group. More recently, the study data was analyzed with the
survival treemethodbySchmid et al. (2016). In their analysis,
splits in hygiene status, LE stage and drug were performed,
indicating that these characteristics affect the risk for an acute
attack.

Our analysis of the data was performed analogously to
the analysis of the odontogenic infection data (using ten-fold
cross-validation and theminimal bucket size constraintmb =
�0.1ñ�). Note that the three patients with LE stage 1 and 4
were excluded from the cross-validation step. Because of
the small number of time intervals, fitting a smooth baseline
function was not reasonable and the SB model was omitted.

The results of ten-fold cross-validation are shown in Table
6. The highest predictive log-likelihood value was achieved
by the ST model applying the minimal node size criterion,
which is (apart from the criterion for split selection) equiva-
lent to the survival tree by Schmid et al. (2016). We therefore
fitted theSTMNSmodel to the complete data (after determin-
ing the optimal minimal node size using again leave-one-out
cross-validation).

Figure9 shows the estimated tree structure, which con-
curs with the findings by Schmid et al. (2016), cf. Figure
7 therein. The first split was performed in hygiene show-
ing the importance of good hygiene for lowering the risk
for an acute attack. The subsequent splits reveal an interac-
tion between time, lymphedema stage and drug for patients
with poor to moderate hygiene. That is, within the first three
months of the study, a higher lymphedema stagewas shown to
be a relevant risk factor, whereas after three months patients
treated with doxycycline were shown to be at lower risk for
an acute attack than patients in the placebo or amoxicillin
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−1.168  0.607  1.163  0.000

−0.633

6 7 8 9

3

Hygiene<=1 Hygiene=2

Time=1 Time>1

Stage<=2 Stage>2 Drug<=1 Drug=2

Fig. 9 Analysis of the lymphantic filariasis data. The figure shows the estimated tree obtained from fitting the ST model with minimal node size
criterion. The estimated coefficients γm are given in each leaf of the tree, where the rightmost node on the third tree level serves as reference node

group. The continuation ratio for patientswith poor tomoder-
ate hygiene was increased by the factor exp(1.163) = 3.199
after three months for patients treated with placebo or amox-
icillin compared to patients treated with doxycycline. This
finding confirms the results of the analysis by Mand et al.
(2012) who found that the effects of doxycycline for the risk
of an acute attack develop over the course of the second and
third follow-up interval.

The predictive log-likelihood values for the considered
models hardly deviate from each other (apart from the PCB
PR model) indicating a lack of evidence for the superiority
of one or several models (Burnham and Anderson 2002).
However, the estimated STmodel coincides with the survival
tree established by Schmid et al. (2016), confirming their
findings and supporting the validity of our approach.

6 Summary and discussion

The results of the simulation study and the applications to
real-world data indicate that the proposed tree-structured
models are promising tools for modeling discrete event
times. The tree-structured models, unlike common paramet-
ric approaches, are able to capture non-linear effects and
interactions between the explanatory variables, as illustrated
by the results in Figs. 7 and 9. Even though the linear model-
ing approach surpassed the tree-structured approaches in the
simulations, where the true effects were linear (see Sect. 4.2),
the proposed models were shown to be highly effective in
identifying the informative variables, particularly in high-

dimensional settings. The STmodel has a more flexible form
than the SB and PCBmodel, as splitting in t allows to account
for time-varying effects of the explanatory variables on the
hazard. Yet, this may come at the price of interpretability of
the tree structure and corresponding effects.

Our approach differs from traditional recursive partition-
ing algorithms: (i) Fitting of our tree-structured models is
done within the framework of parametric discrete hazard
models, which allows to apply software for binary regression
modeling. Split selection and pruning of the built tree(s) are
therefore naturally based on the likelihood. (ii) The SB and
PCB model exhibit the common additive form of parametric
discrete hazard models, which facilitates the interpretation
of effects in terms of continuation ratios. (iii) The predictor
function can be specified in a very flexible way including
the survival tree by Schmid et al. (2016) as special case. (iv)
The framework is easily generalizable, for example, to an
additive discrete hazard model of the form

η(t, xi ) = γ0(t) + tr(xi ) + z�i β,

where z is an additional set of explanatory variables with
linear effects on the outcome. An exemplary code how to
fit such a model using TSVC is given in Online Resource
Supplement 2.

One of the most important parameters for tree building
is the number of splits that determines the size of the tree.
Hence, before fitting one of our proposed models, one needs
to consider which of the three criteria (PT, MNS or PR) to
apply. In terms of predictive performance, the permutation
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test, the minimal node size criterion, and the post-pruning
method yielded very similar results. The permutation test,
which is the most conservative criterion (resulting in much
lower FPR), appears slightly favorable in settings with low
censoring, whereas the minimal node size criterion appears
advantageous (showing higher TPR) for data with higher
censoring rates, and the post-pruning methods appeared
beneficial in high-dimensional settings. Both, performing
permutation tests as well as determining the optimal min-
imal node size, may become computationally expensive,
depending on the number of permutations or the resampling
scheme used. In the latter case, for example, optimization on
a two-dimensional grid (within the PCBmodel) using (leave-
one-out) cross-validation requires high computing time (cf.
Table 4). In terms of run-time, the post-pruning method
proved to be superior, as the optimal subtree is selected from
the sequence of nested subtrees that were already built on the
training sample during iteration.

Alongside the logistic link function defined by the logistic
distribution function (whichwe focused on in this article), the
probit link function based on the standard normal distribu-
tion, and the complementary log-log (cloglog) link function
defining theGompertz model are popular choices. A compar-
ison of parametric discrete hazard models with different link
functions (considering information criteria) has been con-
ducted by Hashimoto et al. (2011). All of the corresponding
discrete hazard models postulate a proportionality property
that affects the interpretation of parameters (Tutz and Schmid
2016, Chapter 3). In case of the logistic link function, the SB
and PCBmodel yield proportionality with respect to the con-
tinuation ratios. Assume an SB model (7) with one split in
x j at split point c j , where γ1 is the coefficient of the left
node and γ2 is the coefficient of the right node. Then the
continuation ratio at time t is given by

�(t | x j ) = P(T = t | x j )
P(T > t | x j )

= exp
(
γ0(t) + [γ1 I (x j ≤ c j )

+ γ2 I (x j > c j )]
)
.

Consequently, the term

exp(γ2 − γ1) = �(t | x j > c j )

�(t | x j ≤ c j )

is the factor by which the continuation ratio changes if x j
increases such that it exceeds c j . Since the effects of the
explanatory variable x j are independent of time t , if γ2 > γ1,
the continuation ratio of the second subgroup is higher at all
time points. For the STmodel such proportionality only holds
in specific time intervals (see, for example, the tree in Fig. 9).

Regarding the choice of the link function one should note,
that the logistic and the probit link function are based on den-

sity functions that are symmetric about the y-axis, whereas
the Gompertz function, which is the basis of the cloglog
model, is asymmetric in the sense that the right-hand asymp-
tote of the function is approached much more gradually. For
binary regression, Chen et al. (1999) recommended the use
of an asymmetric link function in cases where the number of
zeros and the number of ones in the data is highly unequally
distributed. This is the case here, because the augmented data
matrices used for tree building comprise a disproportion-
ately high number of zero values. In addition, the Gompertz
model is equivalent to the Cox proportional hazards model
for continuous event times (with regard to the effects of the
explanatory variables), if the original data were generated by
the Cox model but only grouped event times are recorded
(Tutz and Schmid 2016). Hence, the use of the cloglog link
function in the scope of the proposed tree-structured hazard
models might by worth investigating. For more details on
link functions for binary regression models, see also Czado
and Santner (1992) and Prasetyo et al. (2019).

Although only time-constant values of the explanatory
variables were considered in the simulation study and the
presented applications, it is also possible to deal with time-
varying information. Instead of repeating the vector of
explanatory variable row-wise, the vector of valuesmeasured
at each time point could be entered in the corresponding rows
of the augmented data matrix. The use of time-varying infor-
mation, however breaks the relation between the survival
function and the hazard function (2), because an observed
value at t indicates that the individual must have survived up
to t and thus S(t | xi t ) = 1.

In future research the computation of standard errors for
the parameters γ̂ or for the hazards λ̂(t | xi ) directly, for
example by bootstrap procedures, needs to be investigated.
Moreover, the proposed class of models can be extended to
an ensemble method, as survival forests for continuous (Ish-
waran et al. 2008;Moradian et al. 2017;Wang et al. 2018) and
discrete-time data (Bou-Hamad et al. 2011b; Schmid et al.
2020; Moradian et al. 2021), and adapted to competing risk
data, similar to the approach by Berger et al. (2019).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-022-10196-
x.

Acknowledgements Support by the German Research Foundation is
gratefully acknowledged.

Author Contributions Conceptualization: Moritz Berger; Methodol-
ogy: Moritz Berger; Formal analysis and investigation: Nikolai Spuck;
Writing—original draft preparation: Nikolai Spuck; Writing—review
and editing: Nikolai Spuck, Matthias Schmid andMoritz Berger; Fund-
ing acquisition: Moritz Berger; Resources: Nils Heim, Ute Klarmann-
Schulz and Achim Hörauf

123

35



20 Page 20 of 21 Statistics and Computing (2023) 33 :20

Funding Open Access funding enabled and organized by Projekt
DEAL. This work was supported by the German Research Foundation
(DFG; Grant number BE 7543/1-1)

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Berger, M.: TSVC: tree-structured modelling of varying coefficients. R
Package Vers. 1(2), 2 (2021)

Berger, M., Tutz, G., Schmid, M.: Tree-structured modelling of varying
coefficients. Stat. Comput. 29(2), 217–229 (2019). https://doi.org/
10.1007/s11222-018-9804-8

Berger, M., Schmid, M.: Semiparametric regression for discrete time-
to-event data. Stat. Model. 18(3–4), 1–24 (2018). https://doi.org/
10.1177/1471082X17748084

Berger, M., Welchowski, T., Schmitz-Valckenberg, S., Schmid, M.: A
classification tree approach for the modeling of competing risks
in discrete time. Adv. Data Anal. Classif. 13(4), 965–990 (2019).
https://doi.org/10.1007/s11634-018-0345-y

Biasotto, M., Pellis, T., Cadenaro, M., Bevilacqua, L., Berlot, G.,
Lenarda,R.D.:Odontogenic infections and descending necrotising
mediastinitis: case report and review of the literature. Int. Dent. J.
54(2), 97–102 (2004). https://doi.org/10.1111/j.1875-595x.2004.
tb00262.x

Bou-Hamad, I., Larocque, D., Ben-Ameur, H.: A review of survival
trees. Stat. Surv. 5, 44–71 (2011). https://doi.org/10.1214/09-
SS047

Bou-Hamad, I., Larocque, D., Ben-Ameur, H.: Discrete-time survival
trees and forests with time-varying covariates: application to
bankruptcy data. Stat. Model. 11(5), 429–446 (2011). https://doi.
org/10.1177/1471082X1001100503

Bou-Hamad, I., Larocque, D., Ben-Ameur, H., Mâsse, L.C., Vitaro, F.,
Tremblay, R.E.: Discrete-time survival trees. Can. J. Stat. 37(1),
17–32 (2009). https://doi.org/10.1002/cjs.10007

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, J.C.: Classifica-
tion and Regression Trees. Taylor and Francis, Moneterey, CA
Wadsworth (1984)

Burnham,K.P.,Anderson,D.R.:Model Selection andMultimodel Infer-
ence, 2nd edn. Springer, New York, NY (2002)

Carmelli, D., Zhang, H., Swan, G.E.: Obesity and 33-year follow-up for
coronary heart disease and cancer mortality. Epidemiology 8(4),
378–383 (1997). https://doi.org/10.1097/00001648-199707000-
00005

Chen, M.H., Dey, D.K., Shao, Q.M.: A new skewed link model for
dichotomous qantal response data. J. Am. Stat. Assoc. 94(448),
1172–1186 (1999). https://doi.org/10.2307/2669933

Chipman, H.A., George, E.I., McCulloch, R.E.: BART: Bayesian addi-
tive regression trees. Ann. Appl. Stat. 4(1), 266–298 (2010).
https://doi.org/10.1214/09-AOAS285

Cox, D.R.: Regression models and life tables. J. R. Stat. Soc. Ser. B
(Stat. Methodol.) 34(2), 187–220 (1972). https://doi.org/10.1111/
j.2517-6161.1972.tb00899.x

Czado, C., Santner, T.J.: The effect of link misspecification on binary
regression inference. J. Stat. Plan. Inference 33(2), 213–231
(1992). https://doi.org/10.1016/0378-3758(92)90069-5

de Boor, C.: A Practical Guide to Splines. Springer, New York, NY
(1978)

Debrah, A.Y.,Mand, S., Narfo-Debrekyei, Y., Basta, L., Pfarr, K., Labri,
J., Lawson, B., Taylor, M., Adjei, O., Hoerauf, A.: Doxycycline
reduces plasma VEGF-C/sVEGFR-3 and improves pathology in
lymphatic filariasis. PLoS Pathog. 9(2), e92 (2006). https://doi.
org/10.1371/journal.ppat.0020092

Dreyer, G., Addiss, D., Dreyer, P., Noroes, J.: Basic lymphoedema
management: treatment and prevention of problems associated
with lymphatic filariasis. Hollis Publishing Company, Hollis, NH
(2002)

Eilers, P.H.C., Marx, B.D.: Flexible Smoothing with B-splines and
Penalties. Stat. Sci. 11(2), 89–121 (1996). https://doi.org/10.1214/
ss/1038425655

Gordon, L., Olshen, R.A.: Tree-structured survival analysis. Cancer
Treat. Rep. 69(10), 1065–1069 (1985)

Hashimoto, E.M., Ortega, E.M.M., Paula, G.A., Barreto, M.L.: Regres-
sion models for grouped survival data: estimation and sensitivity
analysis. Comp. Stat. Data Anal. 55(2), 993–1007 (2011). https://
doi.org/10.1016/j.csda.2010.08.004

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical
Learning, 2nd edn. Springer, New York, NY (2009)

Heim, N., Berger, M., Wiedemeyer, V., Reich, R., Martini, M.: A
mathematical approach improves the predictability of length of
hospitalization due to acute odontogenic infection. A retrospec-
tive invetigation of 303 patients. J. Cranio-Maxillofac. Surg. 47(2),
334–340 (2019). https://doi.org/10.3844/jmssp.2019.354.365

Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning:
a conditional inference framework. J. Comp. Graph. Stat. 15(3),
651–674 (2006). https://doi.org/10.1198/106186006X133933

Hothorn, T., Lausen, B.: On the exact distribution ofmaximally selected
rank statistics. Comp. Stat. Data Anal. 43(2), 121–137 (2003).
https://doi.org/10.1016/S0167-9473(02)00225-6

Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random
survival forests. Ann. Appl. Stat. 2(3), 841–860 (2008). https://
doi.org/10.1214/08-AOAS169

Kalbfleisch, J., Prentice, P.: The Statistical Analysis of Failure Time
Data, 2nd edn. Wiley Inter-Science, New Jersey, NJ (2002)

Klein, J., Moeschberger, M.: Survival Analysis: Statistical Methods for
Censored and Truncated Data. Springer, New York, NY (2003)

Kretowska, M.: Oblique survival trees in discrete event time analysis.
IEEE J. Biomed. Health Inform. 24(1), 247–258 (2019). https://
doi.org/10.1109/JBHI.2019.2908773

Kuss, O., Hoyer, A.: A proportional risk model for time-to-event analy-
sis in randomized controlled trials. Stat. MethodsMed. Res. 30(2),
411–424 (2021). https://doi.org/10.1177/0962280220953599

LeBlanc, M., Crowley, J.: Adaptive regression splines in the cox
model. Biom. 55(1), 204–213 (2004). https://doi.org/10.1111/j.
0006-341x.1999.00204.x

Mand, S., Debrah, A.Y., Klarmann-Schulz, U., Basta, L., Marfo-
Debrekyei, Y., Kwarteng, A., Specht, S., Belda-Domene, A.,
Fimmers, R., Taylor, M., Adjei, O., Hoerauf, A.: Doxycycline
improves filarial lymphedema independent of filarial infection:

123

36



Statistics and Computing (2023) 33 :20 Page 21 of 21 20

a randomized controlled trial. Clin. Infect. Dis. 55(5), 621–630
(2012). https://doi.org/10.1093/cid/cis486

Meier, L., van de Geer, S., Bühlmann, P.: The Group Lasso for Logistic
Regression. J. R. Stat. Soc. 70(1), 53–71 (2008). https://doi.org/
10.1111/j.1467-9868.2007.00627.x

Moradian,H., Larocque,D., Bellavance, F.: L1 splitting rules in survival
forests. Lifetime Data Anal. 23, 671–691 (2017). https://doi.org/
10.1007/s10985-016-9372-1

Moradian, H., Yao, W., Larocque, D., Simonoff, J.S., Frydman, H.:
Dynamic estimationwith random forests for discrete-time survival
data. Can. J. Stat. (published online) (2021). https://doi.org/10.
1002/cjs.11639

Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Defini-
tions, methods, and applications in interpretable machine learning.
Proc. Natl. Acad. Sci. 116(44), 22071–22080 (2019). https://doi.
org/10.1073/pnas.1900654116

Prasetyo, R.B., Kuswanto, H., Iriawan, N., Sutijo, B., Ulama, S.: A
comparison of some link functions for binomial regression models
with application to school drop out rates in east java. AIP Conf.
Proc. 2194, 020083 (2019)

Probst, P.,Wright,M.N., Boulesteix, A.L.: Hyperparameters and tuning
strategies for random forest. Wiley Interdisciip.: Rev. Data Min.
Knowl. Discov. 9(3), 1301 (2019). https://doi.org/10.48550/arXiv.
1804.03515

Puth, M.T., Tutz, G., Heim, N., Münster, E., Schmid, M., Berger,
M.: Tree-based modeling of time-varying coefficients in discrete
time-to-event models. LifetimeData Anal. 26(3), 545–572 (2020).
https://doi.org/10.1007/s10985-019-09489-7

Rancoita, P.M.V., Zaffalon,M., Zucca, E., Bertoni, F., De Campos, C.P.:
Bayesian network data imputation with application to survival tree
analysis. Comput. Stat. DataAnal. 93, 373–387 (2016). https://doi.
org/10.1016/j.csda.2014.12.008

Schmid, M., Küchenhoff, H., Hoerauf, A., Tutz, G.: A survival tree
method for the analysis of discrete event times in clinical and
epidemiological studies. Stat. Med. 35(5), 734–1 (2016). https://
doi.org/10.1002/sim.6729

Schmid, M., Welchowski, T., Wright, M.N., Berger, M.: Discrete-time
survival forests with Hellinger distance. DataMin. Knowl. Discov.
34, 812–832 (2020). https://doi.org/10.1007/s10618-020-00682-
z

Segal, M.R.: Extending the elements of tree-structured regression. Stat.
MethodsMed.Res.4(3), 219–236 (1995). https://doi.org/10.1177/
096228029500400304

Segal, M.R.: Features of tree-structured survival analysis. Epidemiol-
ogy 8(4), 344–446 (1997)

Sleeper, L.A., Harrington, D.P.: Regression splines in the cox model
with application to covariate effects in liver disease. J. Am. Stat.
Soc. (1990). https://doi.org/10.1080/01621459.1990.10474965

Sparapani, R.A., Logan, B.R., McCulloch, R.E., Laud, P.W.: Nonpara-
metric survival analysis using Bayesian Additive Regression Trees
(BART). Stat. Med. 35(16), 2741–2753 (2016). https://doi.org/10.
1002/sim.6893

Sparapani, R.A., Spanbauer, C., McCulloch, R.: Nonparametric
machine learning and efficient computation with Bayesian addi-
tive regression trees: the BARTR package. J. Stat. Software 97(1),
1–66 (2021). https://doi.org/10.18637/jss.v097.i01

Tiendrébéogo, S., Somé, B., Kouanda, S., Gbété, S.D.: Survival analysis
of data in HIV infected persons receiving antiretroviral therapy
using a model-based binary tree. J. Math. Stat. 15, 354–365 (2019)

Tutz, G., Schmid, M.: Modeling Discrete Time-to-Event-Data.
Springer, New York, NY (2016)

van der Laan, M.J., Robins, J.M.: Unified Methods for Censored Lon-
gitudinal Data and Causality. Springer, New York (2003)

Wallace, M.L.: Time-dependent tree-structured survival analysis with
unbiased variable selection through permutation tests. Stat. Med.
33(27), 4790–4804 (2014). https://doi.org/10.1002/sim.6261

Wang, H., Chen, X., Li, G.: Survival forests with R-squared splitting
rules. J. Comp. Biol. 25(4), 388–395 (2018). https://doi.org/10.
1089/cmb.2017.0107

Welchowski, T., Berger, M., Koehler, D., Schmid, M.: discSurv: Dis-
crete Time Survival Analysis. R package version 2.0.0 (2022)

Willet, J.B., Singer, J.D.: Investigating onset, cessation, relapse, and
recovery. J. Consult. Clin. Psychol. 61(6), 952–65 (1993). https://
doi.org/10.1037/0022-006X.61.6.952

Wood, S.N.: Fast stable restricted maximum likelihood and marginal
likelihood estimation of semi-parametric generalized linear mod-
els. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 73, 3–36 (2011).
https://doi.org/10.1111/j.1467-9868.2010.00749.x

Wood, S.N.: Generalized AdditveModels: An Introduction with R, 2nd
edn. Chapman & Hall, Boca Raton, FL (2017)

Yuan, M., Lin, Y.: Model selection and estimation in regression with
grouped variables. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 68(1),
49–67 (2006). https://doi.org/10.1111/j.1467-9868.2005.00532.x

Zhang, H., Singer, B.H.: Recursive Partitioning in the Health Sciences.
Springer, New York, NY (1999)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

37



38

3.2 Publication 2: Mathematical approach improves predictability of length of hospitalisation

due to oral squamous cell carcinoma: a retrospective investigation of 153 patients

Elahi F, Spuck N, Berger M, Kramer FJ, Heim N. Mathematical approach improves predictabil-

ity of length of hospitalisation due to oral squamous cell carcinoma: a retrospective investiga-

tion of 153 patients. British Journal of Oral and Maxillofacial Surgery 2023; 61: 605-611

https://doi.org/10.1016/j.bjoms.2023.09.004

https://doi.org/10.1016/j.bjoms.2023.09.004


Mathematical approach improves predictability of length of
hospitalisation due to oral squamous cell carcinoma: a
retrospective investigation of 153 patients
Franziska Elahi a,⇑, Nikolai Spuck b, Moritz Berger b, Franz-Josef Kramer a, Nils Heim a

aDepartment of Oral and Cranio-Maxillo and Facial Plastic Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
b Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany

Received 13 April 2023; revised 6 July 2023; accepted in revised form 18 September 2023
Available online 21 September 2023

Abstract

Oral squamous cell carcinoma (OSCC), a common cancer of the head and neck, is a major public health problem. The length of stay in
hospital (LOS) of patients with OSCC, which can range from a few days to several months, has implications for the patient’s recovery. The
aim of the study was to identify and evaluate risk factors that have an impact on the prolongation of inpatient hospital stay. A four-year
retrospective study reviewed hospital records of 153 inpatients with OSCC. A statistical model for discrete time-to-event data, with the
LOS in hospital measured in days for which the event of interest was discharge from hospital, was applied. The model utilises a tree-
building algorithm to identify relevant risk factors for a prolonged LOS. Age, type of flap, and occurrence of complications turned out
to be relevant variables. Before, and on day 12, the LOS was mainly dependent on flap type and age, whereas after day 12 it was influenced
by the presence of early complications. Predicting the likelihood of discharge can improve the management and resource utilisation of the
healthcare system among inpatients.
� 2023 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

Keywords: Oral squamous cell carcinoma; Length of hospitalization; LOS; Reconstruction

Introduction

The most common neoplasm of the oral cavity is squamous
cell carcinoma (OSCC), which accounts for over 90% of all
cases of head and neck cancer.1,2 With 377,000 incident cases
and 177,000 deaths related to lip and oral cavity cancer world-
wide in 2020,3 OSCC is a major public health problem.
Despite diagnostic and therapeutic advances there has been
no significant improvement in prognosis over the past decade,
and the five-year survival rate remains low, at around 50%.2,4,5

Length of stay (LOS) in hospital is an important indicator
of clinical severity and resource consumption. The LOS of

patients with OSCC can range from a few days to several
months, and these variations have implications for a patient’s
recovery. Prolonged LOS is associated with an increased
incidence of complications, higher mortality, and delay in
adjuvant therapy. It also has a negative impact on healthcare
resources and hospital costs.6–8

The aim of the study was to identify and evaluate risk fac-
tors that have an impact on the prolongation of inpatient hos-
pital stay. We present a statistical model that enables the
prediction of LOS by revealing the most important clinical
determinants.

Material and methods

Patients

A four-year retrospective study reviewed the hospital
records of 153 patients who were admitted with histologi-
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cally confirmed OSCC and treated as inpatients at the
Department of Oral and Maxillofacial Plastic Surgery of
the University of Bonn, Germany from January 2014 to
December 2017.

The variables considered included age at diagnosis, gen-
der, localisation of the tumour, size, spread to nearby lymph
nodes and metastasis of the tumour (TNM), tumour grade,
and R-classification. The flaps used for reconstruction were
divided into local flap reconstruction/primary closure (rota-
tion flap, dorsal tongue flap, transposition flap), free flap (ra-
dial forearm free flap, fibular free flap, scapular free flap,
anterolateral thigh flap), and pedicle flap reconstruction (pec-
toralis major flap, nasolabial flap, supraclavicular flap).

Furthermore, comorbidities, HPV status, habits of smok-
ing and/or alcohol consumption, malignancies in medical
history, haemoglobin level, blood transfusion requirement,
occurrence of complications during hospital stay, and neces-
sity for and length of stay in the intensive care unit, were also
evaluated.

All patients had a pathological diagnosis of OSCC and an
oncological resection with subsequent inpatient hospitalisa-
tion. Exclusion criteria were outpatient care or palliative
treatment only.

The length of stay was defined as the time between the
day of admission until the day of discharge. Patients were
usually admitted to the hospital one day before surgery.

Management of missing values

Of the 153 patients, 33 had missing values in at least one of
the variables used for statistical modelling. To facilitate use
of all the data in the statistical analysis, missing values were
imputed using multiple imputation based on random forests.

Statistical model

The survival tree proposed by Schmid et al9 was fitted to the
imputed data to identify relevant risk factors associated
with a prolonged LOS. Their model estimates the hazard
for a discrete time-to-event outcome, which equals the con-
ditional probability that an event occurs at time point t
given that the event has not occurred before t, and given
the values of the considered variables. Basically, the dis-
crete hazard drives a binary variable that indicates whether
the event occurred at time t or not, so parametric and tree-
based modelling strategies for binary response data can be
applied (see Tutz and Schmid10 and Berger and Schmid11

for more details).
Patients with a LOS of more than 50 days were treated as

censored. Time since admission and all the aforementioned
variables (except HPV status and requirement for blood
transfusion) were considered as candidates for splitting dur-
ing tree building. Following the approach by Schmid et al,9

splits were selected by minimising the Gini impurity (which
is widely applied in tree-based modelling), and the optimal
minimal node size was determined based on the Bayesian
information criterion.12,13

Sensitivity analysis

The imputation strategy involves a stochastic element. To
assess the dependence of the results of the statistical analysis
on the imputation mechanism, the model was fitted on 100
imputed versions of the data. For all repetitions, the inte-
grated average difference between the survival functions of
the corresponding model and the main model was
calculated.14

Results

Patients

A total of 153 patients (65.4 % male, 34.6% female), mean
(range) age 64.8 (32 – 94) years, were included in the study.
The median (range) LOS was 15 (4-75) days. The most
affected subsites were the tongue (35.8%), lower jaw
(17.6%), and floor of the mouth (16.6%) (Table 1). Due to
the fact that in some cases the tumour extended into several
areas simultaneously, the total number of tumour locations
was higher than the number of patients.

The TNM classification is shown in Table 2. In one case
each, no information on nodal metastasis and R-status was
provided in the records. In 15 cases no grading information
could be found. In total, 49.7% of the patients underwent
local flap reconstruction, 39.9% received a free flap, and
10.5% a pedicle flap.

Postoperative complications during the first 21 days
occurred in 30.1% of cases. The most frequent were postop-
erative bleeding and flap necrosis, followed by wound dehis-
cence, general wound healing disorder, and formation of a
fistula (Table 3). Multiple complications occurred in 16
patients (10.5%) which led to a higher number of cases.

Systemic comorbidities were found in 58.2%, of whom
41.6% had multiple comorbidities. Cardiovascular disease
occurred in 58.7% of the cases, internal diseases in 12.0%,
pulmonary diseases in 12.8%, and metabolic diseases in
16.5%.

Twenty-four per cent had malignancies in their medical
history and 79.7% required a stay in the intensive care unit,
the ICU-LOS ranging from 1-21 days (median 1 day). The
perioperative dynamics of haemoglobin was Hb pre/Hb post

Table 1
Tumour localisation and frequency.

Tumour localisation No. of occurences

Tongue 69
Lower jaw 34
Floor of the mouth 32
Cheek intraoral 17
Upper jaw 15
Lip 11
Soft palate 7
Hard palate 7
Pharynx 1
Patients in total 153
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13.3/10.2 g/dl. Sixteen per cent of the patients needed a
blood transfusion, and in 24 cases no information could be
found. Thirty-two per cent of patients had therapeutic antico-
agulation before surgery. HPV infection was detected in two,
22 patients had a negative HPV test, and in 129 there was no
information on HPV status. A high percentage had a history
of smoking (66.7%) and/or drinking (44.4%).

The results obtained from fitting the survival tree in Fig-
ure 1 show that age at diagnosis, type of flap, and occurrence
of complications (�21 days after surgery) affect LOS.
Specifically, the conditional probability of discharge within
the first 12 days after admission in patients with free or pedi-
cle flaps was estimated to be 0.004 if the patient was 64 years
of age or younger (left most panel), and 0.016 if the patient
was older than 64 years (second panel from the left). For
patients with local flaps the conditional probability of dis-
charge was 0.017 before day seven (third panel) and 0.109
from days 7 to 12 (fourth panel). After day 12 patients with
early complications were less likely to be discharged (condi-
tional probability: 0.075; fifth panel) than patients without
early complications (conditional probability: 0.183; right
most panel). Please note that the actual day of an early com-
plication was not recorded and that the model fit could be
refined if this information was available.

Survival probability

The panels in Figure 2 show that patients with free or pedicle
flaps who were aged 64 years or younger had a median LOS
of 21 days if an early complication occurred (black line, fig-
ure on the left) and a median LOS of 16 days if no early com-
plication occurred (black line, figure on the right). The
probabilities of still being on the ward after 15 days
P ðT i > 15Þ were estimated as 0.756 and 0.521 with and
without the occurrence of an early complication, respec-
tively. For patients older than 64 years with free or pedicle
flaps the median LOS was 19 days with the occurrence of
an early complication (P T i > 15ð Þ ¼ 0:650; blue dashed
line, figure on the left) and 15 days without the occurrence
of an early complication (P T i > 15ð Þ ¼ 0:458; blue dashed
line, figure on the right). Patients with local flaps had a med-
ian LOS of 12 days independent of whether an early compli-
cation occurred (P T i > 15ð Þ ¼ 0:357; grey dotted line,
figure on the left) or not (P T i > 15ð Þ ¼ 0:246; grey dotted
line, figure on the right).

Sensitivity analysis

Of the 100 fitted survival trees, 86 were identical to the main
model presented, indicating that the results were consistent
across the 100 imputed data sets, and that the influence of
the imputations on the model fit were minor.

The means (and standard deviations) of the integrated
average differences across the 100 repetitions for the identi-
fied risk groups were -0.011 (0.003; top right panel), -0.001
(0.002; top right panel), 0.003 (0.008; centre left panel), -
0.005 (0.014; centre right panel), 0.002 (0.005; bottom left
panel), and 0.003 (0.007; bottom right panel) (Fig. 3).

Discussion

The type of flap used for reconstruction depends on multiple
factors, including size, thickness and location of the anatom-
ical defect, but patient-related factors such as patients’ preop-

Table 2
Patient and tumour characteristics. At T0, the primary tumour was already
completely removed by excisional biopsy. Surgery was performed to widen
the safety margin according to the guidelines.

Total (n=153)

Gender:
Male 100
Female 53

Tumour size:
T0 10
T1 56
T2 49
T3 14
T4 24

Nodal metastasis:
N0 97
N1 20
N2 33
N3 2

Extracapsular growth 31
Metastasis:

None 152
Distant 1

Tumour grade:
Well differentiated 32
Moderately differentiated 78
Poorly differentiated 27
Undifferentiated 1

R status:
R0 141
R1 11

Table 3
Frequency of complications during the 21 days after surgery.

Complications No. of occurences

Postoperative bleeding 11
Flap necrosis 11
Ischaemia of the flap 1
Wound healing disorder 7
Abscess 3
Dehiscence 7
Fistula 6
Major haematoma 2
Postoperative acute coronary syndrome 1
Hypertensive crisis 2
Myocardial infarction 1
Cardiac decompensation 1
Haemorrhagic shock 1
Soft tissue emphysema 2
Pulmonary embolism 2
Pneumonia 2
Pneumothorax 2
Respiratory insufficiency 4
Pleural effusion 4
Hyperactive delirium 1
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erative conditions, their concomitant diseases and constitu-
tional type, also play a role.15 Patients with a microvascular
pedicle or free flap are highly unlikely to be discharged
before day 12; for patients with a local flap, the probability
of discharge is substantially higher, between 6 and 13 days.

Local flap techniques are suitable for the reconstruction of
small surgical defects due to local anatomical limitations.
Larger defects are usually covered by pedicle or free flaps.16

Since resection and reconstruction are more extensive, the
operating time is statistically longer.17 A prolonged operat-
ing time has been shown to significantly increase the likeli-

hood of complications, with the risk approximately
doubling when the time exceeds two hours. The risk of com-
plications also increases progressively as operating time
increases.18 In addition, the setting of several wound surfaces
and the associated longer healing and mobilisation time pro-
long the LOS.

The average age at diagnosis in this study was 64.8 years.
Advanced age is not an exclusion criterion for any surgery,
but comorbidities increase the risk of complications during
and after surgery, and have an impact on morbidity and mor-
tality.19,20 Several studies on head and neck cancer have

Fig. 1. Survival tree model. The panels in the leaf nodes of the tree show the conditional probabilities of discharge on day t given that the patient is still on the
ward (orange bars), and conditional probabilities of not being discharged on day t (grey bars) for the identified risk groups.

Fig. 2. Estimated survival probabilities. The survival functions S tjxið Þ ¼ P ðT i > tÞ for the different risk profiles were determined based on the hazards
estimated from the model. The panels show the estimated survival probabilities (the probabilities of still being on the ward at day t) for the six identified risk
profiles.
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reported that the American Society of Anesthesiologists sta-
tus (ASA), not age, is the determining factor for the occur-
rence of postoperative complications.19,21

A correlation between duration of surgery and the pres-
ence of complications, especially in older patients, has been
mentioned in several studies.22,23 This may be attributed to
the fact that older patients are often more sensitive to the

effects of prolonged anaesthesia and are less able to compen-
sate for fluid shifts and major blood loss.24

In our study the overall complication rate was 30.1%,
with multiple complications occurring in 21 of these cases
(13.7 %), which is similar to other studies.25 As mentioned
above, increases in operating time and comorbidities have
an impact on the development of complications.

Fig. 3. Sensitivity analysis. The figures show the estimated survival probabilities for the risk groups identified by the main model determined by the 100
models fitted for sensitivity analysis. To calculate the survival probabilities for the models, where variables different from the main model were selected for
splitting, categorical variables (except early complication and flap type) were set to their mode value, and the mean was used for continuous variables (except
age).
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During data collection, complications were divided into
early complications (�21 days after surgery) and late com-
plications (>21 days). This information must be taken into
account because the actual day on which the complication
occurred was not recorded. Availability of this information
would have refined the estimates obtained in our study.

The median LOS in this study was 15 days, which is in the
middle range of comparable studies reporting a median LOS
of 10-24 days.26–29

Similar to our study, the occurrence of complications and
type of flap were among the factors responsible for a pro-
longed hospital stay. Additionally, initial high T status
(T3-4) and lymph node stage (N2-3), tracheotomy, ASA
score of 3-4, prognostic inflammatory and nutritional index
(PINI) of more than 2, transfusion, and prior radiation ther-
apy, were highlighted as factors for a prolonged hospital
stay.

The applied survival tree model identified different risk
groups that each comprised patients with a certain combina-
tion of factors. A classic parametric modelling approach for
the discrete hazard yields separate effect estimates for each of
the included variables, which may be advantageous in many
situations. Here, however, a tree-based approach was
deemed favourable due to the large number of considered
variables, and its ability intrinsically to select relevant vari-
ables and detect interactions.

To avoid loss of statistical power due to incomplete data,
missing values were imputed, which may affect the results of
the fitted model. The survival tree was fitted on 100 different
versions of imputed data to investigate the dependence of the
results on the imputations. This sensitivity analysis showed
that the effect of the imputations on the results of the statis-
tical analysis was strongly limited.

Because of the possible absence of other confounding
variables that cannot be captured in the patient record or in
this study, the study is limited by its retrospective design.
In future studies, it would be worthwhile examining addi-
tional variables such as duration of surgery, necessity for tra-
cheostomy, and classification of complication according to
severity. These factors could provide further insights into
their potential impact on patient outcomes and LOS.

The sample size of this study was relatively small and
included patients from one institution only. A future goal
should be to test the mathematical approach in cohorts with
a wider, more diverse study population, which may help to
confirm these findings and examine its usefulness in a
broader context.

Research on LOS is critical for effective resource man-
agement and patient care. By predicting LOS based on deter-
mining factors, hospitals can more accurately predict the
number of inpatient days, optimise resource allocation, and
develop effective clinical pathways. For example, this
knowledge can help develop personalised methods to stratify
risk in patients, develop improved recovery programmes,
meet patient expectations, and improve overall healthcare
outcomes.

Conclusion

The LOS among patients with OSCC continues to pose a
major challenge to patients’ health and public healthcare
resources. Using our statistical model, the probability of dis-
charge based on the decisive criteria can be predicted, which
may improve the management and resource utilisation of the
healthcare system among inpatients.
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Abstract

Tree-structured models are a powerful alternative to parametric regression models if non-linear effects
and interactions are present in the data. Yet, classical tree-structured models might not be appropriate
if data comes in clusters of units, which requires taking the dependence of observations into account.
This is, for example, the case in cross-national studies, as presented here, where country-specific
effects should not be neglected. To address this issue, we present a flexible tree-structured approach
that achieves a sparse modeling of unit-specific effects and identifies subgroups (based on individual-
level covariates) that differ with regard to the outcome. The methodological advances were motivated
by the analysis of quality of life in older adults using data from the survey of Health, Ageing and
Retirement in Europe. Application of the proposed model yields promising results and illustrated the
accessibility of the approach. A comparison to alternative methods with regard to variable selection
and goodness-of-fit was performed in several simulation experiments.
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1 Introduction

People’s quality of life (QoL) is essential in evaluating and guiding many health, social, commu-
nity and environmental policy actions (Bowling and Stenner, 2011). Often, QoL is of particular
interest in the group of older adults since they tend to make up a larger proportion of the pop-
ulation in most industrialized countries each year and are most likely to experience events that
negatively affect their autonomy and everyday life (Borrat-Besson et al., 2015). According to
Eurostat (European Commission and Eurostat, 2024) the median age of the population in the
EU increased from 39.0 years in 2003 to 44.5 years in 2023. In order to provide an explicit and
well-defined measure for QoL in older adults, Hyde et al. (2003) developed the so-called Con-
trol, Autonomy, Self-Realization and Pleasure (CASP) scale comprising 19 Likert-type items on
these four domains. The CASP-19 scale has become a widely applied and well-established tool
in studies investigating QoL in older adults, see, among others, Sim et al. (2011), Howel (2012),
Kim et al. (2015), and Frias-Goytia et al. (2024).

Here, we analyze data from the survey of Health, Ageing and Retirement in Europe, in short
SHARE (see Börsch-Supan et al., 2013, for methodological details). The main objective of
SHARE is to collect panel data that enables researchers to investigate the impact of socio-
economic and health-related factors on the ageing process. Moreover, SHARE constitutes a
cross-national survey that is aimed to explore the differences between European countries in
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dealing with the consequences of population ageing. SHARE provides information on individu-
als aged 50 years and older gathered in 27 European countries and Israel. QoL was measured
on a SHARE-specific CASP scale, which utilizes an adapted 12-item version of the CASP-19
questionnaire (Borrat-Besson et al., 2015).

When analyzing QoL in SHARE one has to deal with the issue that the data is clustered by
country and therefore observations can not be treated as independent. It appears sensible to
assume that measurements within units (here countries) tend to be more similar than measure-
ments between units. This heterogeneity needs to be taken into account using an appropriate
regression approach. In our application we consider a sample of n = 45, 038 observations from
the ninth wave of SHARE collected from October 2021 to October 2022 (Bergmann et al., 2024;
SHARE-ERIC, 2024), which contains between 391 (Israel) and 3, 116 (Belgium) observations
per country. In this paper, we propose a novel approach for modeling the CASP score using a
tree methodology that (i) accounts for heterogeneity between the 28 different countries by sparse
modeling of country-specific effects, and (ii) is able to identify distinct subgroups of individuals
which differ with regard to their CASP score based on socio-economic and health-related factors
as well as their interactions.

Regression approaches for modeling heterogeneity among units are manifold. The most popular
tool is mixed effects regression, for example, in SHARE a model with country-specific random
intercepts. Mixed effects regression models postulate that the random effects follow a common
predefined distribution (typically a normal distribution), which results in a parsimonious model
specification (Verbeke and Molenberghs, 2000; Molenberghs and Verbeke, 2005). This strong
assumption, however, comes at the price that statistical inference may be sensitive to a misspec-
ification of the random effects distribution (Heagerty and Kurland, 2001; Litière et al., 2007).
In addition, Grilli and Rampichini (2011) showed that a correlation between random effects and
explanatory variables may lead to biased effect estimates. An alternative to mixed models are
fixed effects models, in which each country has its own parameter. In the literature fixed effects
models are also referred to as “no-pooling” models (Gelman and Hill, 2007) and are based on the
assumption that the country-specific effects are unrelated and exist completely independently
from each other (Bell et al., 2018).

To overcome both the limitations of mixed and fixed effects models, it can alternatively be
assumed that the unit-specific effects follow a more flexible discrete distribution. This implies
that there are groups of units sharing the same effect. In our application, the identification of
groups of countries that are similar with regard to their QoL and the interpretation of relevant
differences are of great interest. Clustering of units can be achieved by using finite mixtures of
regression models (Grün and Leisch, 2007), by Bayesian mixed models with Dirichlet process
prior (Heinzl and Tutz, 2013) and within fixed effects models applying penalized maximum
likelihood estimation (Tutz and Oelker, 2017) or tree-based splits (Berger and Tutz, 2018). The
latter, which we are focusing on here, is based on a fixed effects model containing tree-structured
unit-specific intercepts and a linear function of a set of explanatory variables. Berger and Tutz
(2018) demonstrate that their approach is very flexible in capturing heterogeneity among units
particularly in scenarios where the distribution of random effects is skewed and in scenarios
with correlation between random effects and covariates. Yet, the approach by Berger and Tutz
(2018) is still limited as it only uses a linear combination of the explanatory variables in the
predictor function. When modeling associations in SHARE the assumption of linearity may be
too restrictive as it does not account for possible non-linear effects and interactions between
socio-economic and health-related factors of interest (for example, level of income and chronic
diseases). To address this issue, we propose a regression model extending the approach by Berger
and Tutz (2018) that comprises two tree structures: One tree determining unit-specific (country-
specific) effects, and one tree modeling the effects of covariates (individual-level health-related
and socio-economic factors).

The underlying concept of recursive partitioning or tree-based modeling originates from the
framework of classification and regression trees (CART) proposed by Breiman et al. (1984).
When growing a classical tree the predictor space is partitioned into a set of disjoint subsets by
sequentially applying binary splits. In each subset a simple model (for example, a constant) is
fitted. Overviews and comparisons of recursive partitioning methods have been given by Strobl
et al. (2009), Doove et al. (2014) and Kern et al. (2019). The tree methodology applied here
(see Section 3 for a detailed description of the algorithm) slightly differs from theses approaches,
as we do not apply a traditional recursive partitioning algorithm, but fitting and tree building
is performed within the framework of fixed effects models. The key advantages of our proposed
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model are (i) the flexibility in capturing the effects of individual-level factors (including non-
linear effects and interactions), (ii) its built-in mechanism to select the relevant factors, and (iii)
sparse modeling of unit-specific effects assuming a discrete distribution.

The remainder of this article is structured as follows: In Section 2 we introduce the notation,
describe the proposed tree-structured model and discuss alternatives based on random effects.
Details of the fitting procedure are outlined in Section 3. In Section 4 we apply the proposed
model for analyzing the CASP score in the SHARE data. In Section 5 the proposed model is
compared to alternative methods based on several simulation experiments. The article concludes
with a summary and discussion on the different methods for modeling heterogeneity (Section 6).

2 Regression for clustered data

Consider clustered data with n units given by (yij ,xij), i = 1, . . . , n, j = 1 . . . , ni, where yij
denotes the value of the outcome variable of observation j from unit i and x⊤

ij = (xij1, . . . xijp)
denotes the vector of a set of covariates. In general, it is assumed that the values of the covariates
vary within units and that the number of observations per unit ni may differ across units. In the
following, alternative parametric and non-parametric approaches for modeling clustered data are
considered. The focus is mainly on models with unit-specific intercepts.

2.1 Models with random effects

In classical generalized linear mixed effects models (GLMMs; Verbeke and Molenberghs, 2000)
with random intercepts, the expectation of the outcome variable µij = E(yij |xij , bi) is linked to
the covariates in the form

g (µij) = η(xij , bi) = β0 + x⊤
ij β + bi , (1)

where g(·) denotes a suitable link function, β is the vector of regression coefficients (that is,
the vector of fixed effects of the covariates) and bi denotes the random intercept of unit i. It is
commonly assumed that the random intercepts follow a normal distribution, i.e. bi ∼ N(0, σ2

b ).
This distributional assumption on the random intercepts makes the GLMM very efficient, as
only the variance parameter has to be estimated in the random effects part of the model.

The simple form of the GLMM in Equation (1) comes with the drawback that only linear main
effects of the covariates on the outcome are assumed. This, however, may be too restrictive
in real-world data (for example, in our application to SHARE), as it does not account for
possible non-linear effects and interactions between covariates. To address this issue Hajjem
et al. (2011) and Sela and Simonoff (2012) simultaneously proposed a flexible non-parametric
approach using recursive partitioning. Their approaches, referred to as mixed effects regression
trees (MERT) and RE-EM trees, respectively, combine a simple random intercept model with a
standard regression tree. The predictor function of a RE-EM tree can be written as

η(xij , bi) = β0 + tr(xij) + bi , (2)

where the function tr(·) is determined by a tree structure. This means that tr(·) sequentially
partitions the observations into disjoint subsets Nm,m = 1, . . . ,M , based on the values of the
covariates and assigns a constant γm to each subset Nm (by averaging the respective outcome
values). The constant γm can also be interpreted as the regression coefficient in Nm. Hence, the
function tr(·) is given by

tr(xij) =

M∑
m=1

γm I(xij ∈ Nm) , (3)

where I(·) denotes the indicator function. Importantly, higher-order interactions can be captured
by the tree in a very flexible way. RE-EM trees are fitted iteratively by alternating between two
steps: (i) Fitting the tree tr(xij) by applying the CART algorithm, while keeping the random
effects fixed, and (ii) estimating the random intercepts, while keeping the tree structure fixed.
More recently, Fu and Simonoff (2015) introduced an adapted version of the RE-EM tree that
applies conditional inference trees instead of CART. In a similar vein, an flexible tree-based
approach building on the framework of conditional inference trees has been proposed by Fokkema
et al. (2018).

3

49



Both, GLMMs and RE-EM trees specify normally-distributed random intercepts to describe the
heterogeneity between units. This is useful if the focus mainly is on the effects of the covariates
(particularly, in scenarios, where n ≫ ni). Yet, in our analysis of the CASP score in SHARE,
we are explicitly interested in cross-national differences, that is, in the country-specific effects.
We therefore propose to use a fixed effects model instead, which is outlined in the next section.

2.2 Models with tree-structured fixed effects

An alternative to the mixed effects models introduced in the previous section, are fixed effects
models (FEMs) with predictor function

η(xij , β0i) = β0i + x⊤
ij β , (4)

where each unit has its own parameter β0i. The specification of one parameter per unit can
easily turn into problems, because it results in a very large number of coefficients, which affects
estimation accuracy and complicates the interpretation of effects. For example, in wave 9 of
SHARE 28 country-specific intercepts need to be estimated when using the FEM in (4). To deal
with this issue, Berger and Tutz (2018) proposed a tree-structured FEM, which assumes that
there are groups of units that share the same effect on the outcome variable. Building clusters
of units highly reduces the number of parameters and increases stability of the estimates. The
tree-structured FEM by Berger and Tutz (2018) has the form

η(xij) = tr0(i) + x⊤
ij β , (5)

where tr0(·) describes the unit-specific intercepts represented by a tree structure. The tree forms
clusters of units with the same effect on the outcome and is given by

tr0(i) =

C∑
c=1

β0c I(i ∈ N0c) , (6)

where C denotes the number of identified clusters N0c and β0c is the corresponding cluster-
specific intercept. To obtain tr0(i), the observations are sequentially partitioned into disjoint
subsets using the unit number as the only covariate, while the other parameters (effects of the
covariates) are fitted simultaneously to all observations. Berger and Tutz (2018) proposed to
treat the unit number as ordinal variable by ordering the units with respect to their means of
the outcome variable before tree building.

Just like the GLMM, the tree-structured FEM in Equation (5) is restricted to linear main effects
of the covariates, only. To overcome this limitation and inspired by the works of Hajjem et al.
(2011) and Sela and Simonoff (2012) on mixed effects models, we propose a tree-structured
FEM, where the effects of the covariates are also determined by a tree structure. Specifically,
the predictor function of our proposed model contains two trees and can be written as

η(xij) = tr0(i) + tr(xij) , (7)

where tr(·) and tr0(·) are defined as in Equations (3) and (6), respectively. The model in (7) is
constructed in a stepwise procedure, where in each step either a split in the tree of the covariates
tr(·) or in the tree that determines the clustering of units tr0(·) is performed. The starting point
is a simple model with a global intercept, only. Assuming that a split in xk at split point ck is
selected in the first step, results in a model with predictor function

η[1](xij) = β
[1]
0 + γ

[1]
1 I(xijk ≤ ck) , (8)

where β
[1]
0 is a global intercept and γ

[1]
1 is the effect on the outcome in the left node. Note that

the right node {xijk > ck} in tr(·) serves as a reference node to ensure parameter identifiability.
In the second step, either one of the current nodes is split further or a split with regard to the
one of the units in the intercept tree is performed. Let us assume splitting the units into the
clusters N01 and N02 is the second step. This yields the predictor function

η[2](xij) = β
[2]
01 I(i ∈ N01) + β

[2]
02 I(i ∈ N02) + γ

[2]
1 I(xijk ≤ ck) , (9)
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where β
[2]
01 and β

[2]
02 are the unit-specific intercepts in the two selected nodes and γ

[2]
1 is an update

of the parameter from the previous iteration. To determine the split in tr0(·) the unit number is
treated as an ordinal variable (see Section 3 for details on the fitting procedure). A third split
in tr(·) with regard to xℓ at split point cℓ in the left node then results in a predictor of the form

η[3](xij) =β
[3]
01 I(i ∈ N01) + β

[3]
02 I(i ∈ N02)

+ γ
[3]
1 I(xijk ≤ ck)I(xijℓ ≤ cℓ) + γ

[3]
2 I(xijk ≤ ck)I(xijℓ > cℓ) , (10)

with the new effects γ
[3]
1 and γ

[3]
2 .

It is important to note that the coefficients of the tree-structured model in (7) can only inter-
preted with regard to a reference node. For example, if the outcome variable yi is metrically

scaled and g(·) is the identity link, the coefficient β
[3]
01 denotes the expected values of the out-

come variable in cluster N01 given that xijk > ck (that is, for the subgroup in the reference

node). Analogously, the coefficients γ
[3]
1 and γ

[3]
2 determine the effects on the outcome variable

compared to the subgroup in the reference node. To allow for a more intuitive interpretation of
the model coefficients, we propose to apply the adjustment

β̃0c = β0c + γ̄ and

γ̃m = γm − γ̄ , (11)

where γ̄ = 1
n

∑n
i=1

1
ni

∑ni
j=1 tr(xij) denotes the mean of the coefficients in the tree of the

covariates across all individuals. The coefficients β̃0c can then be interpreted as the average
cluster-specific intercepts and the coefficients γ̃m represent subgroup-specific effects compared
to these averages. In case of a metrically scaled outcome variable (see also our application to

SHARE in Section 4) this translates into the expected values for each cluster (β̃0c) and subgroup-
specific deviations from these expectations (γ̃m). More details on the fitting procedure are given
in the next section.

3 Fitting procedure

In each step of the tree-building algorithm, the best split among all candidate variables (that
is, one component of x or the unit number i) and among all possible split points is selected,
starting from a predictor function with global intercept, only. For this, all possible models with
one additional split in either the tree of the covariates tr(·) or the tree that determines the
clustering of units tr0(·) are evaluated and the best performing one yielding the smallest deviance
is selected. In FEMs the deviance is a quite natural measure of the model fit. This criterion is
also equivalent to minimizing the entropy, which has been used as a splitting criterion already
in the early days of tree construction (Breiman et al., 1984). Note that, in contrast to common
trees, in each step of the algorithm all the observations are used to derive estimates of the model
parameters. Hence, all parameters are refitted in each iteration and no previously estimated
parameters are kept. This ensures that one obtains valid estimates of the two tree components
(the coefficient estimates of either of the two components are adjusted for the change through a
split in the other) together with the splitting rule.

When selecting the first split in tr0(·) with regard to the unit number, one has to consider 2n−1

possible partitions, which may be a very large number. To avoid this exponential computational
cost, we instead order the units with respect to their means of the outcome variable ȳi beforehand
and treat the unit number as an ordinal variable during tree building. Therefore, only n − 1
possible splits have to be considered. This approach, which has also been used by Berger and
Tutz (2018), has been shown to work well in earlier research, see Breiman et al. (1984) and
Ripley (1996) for binary outcomes and Fisher (1958) for continuous outcomes.

To determine the optimal number of splits and hence the size of the trees, we use a post-
pruning strategy, where a large number of splits Smax is carried out first and afterwards the trees
are pruned to an adequate size to prevent overfitting. Running the stepwise algorithm (with a
sufficiently large number of splits) results in a sequence of nested models. These models can be
evaluated with regard to their goodness of fit applying a likelihood-based criterion. Specifically,
we suggest to select the optimal number of splits by maximizing the cross-validated predictive
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log-likelihood. In the simulation study and our application to SHARE, we use 10-fold cross-
validation and additionally apply the one standard error (1SE) rule. That is, one selects the
model yielding a cross-validated log-likelihood value within one standard error of the model with
the maximal value. This is in line with the algorithm by Sela and Simonoff (2012). Subsequently,
the final model with the selected number of splits is fitted to the entire data.

To prevent the algorithm from building extremely small nodes (with only a few observations),
an additional minimal bucket size constraint nmb may be applied. With the minimal bucket
size constraint, the minimum number of observations required in any terminal node is limited
downward.

To summarize, the following steps are performed during the fitting procedure:

1. Ordering of units: Order the units i ∈ {1, . . . , n} according to the average values of the
outcome variable in each unit ȳi and initialize the corresponding ordinal variable.

2. Initial model: Fit the model without any covariates, yielding a single estimate of the
intercept β̂0.

3. Tree building: Set s = 1.

(a) Fit all candidate models with one additional split regarding one of the covariates or the unit
i, that fulfill the minimal bucket size constraint, in one of the already built nodes. If none
of the additional splits meets the minimal bucket size constraint, terminate the algorithm.

(b) Select the best performing model based on the minimal deviance.
(c) Fit the selected model and set s = s+ 1. If s < Smax, continue with step (3a).

4. Post-pruning: Select the optimal model from the sequence of nested models generated in
steps (2) and (3) based on the predictive log-likelihood applying k-fold cross-validation with
the 1SE rule. Then fit the model with the corresponding number of splits to the complete
data set.

Technically, the proposed algorithm can be embedded into the framework of tree-structured
varying coefficients models (TSVC; Berger et al., 2019). The models can therefore be fitted by
the eponymous R add-on package TSVC (Berger, 2023), where the covariates x and the unit
number i serve as effect modifiers, modifying the effect of constant auxiliary variables.

4 Application: Quality of life in SHARE

SHARE is a longitudinal, cross-national survey that collects data from individuals aged 50 years
and older living in the European Union and Israel (Börsch-Supan et al., 2013). Data collection for
the first wave of SHARE started in 2004 in 19 different countries. Since then a total of nine waves
have been conducted. The survey was mainly designed to provide information on how socio-
economic and health-related factors influence the aging process. Here, we analyze data from the
ninth wave collected from October 2021 to October 2022 across 28 countries (Bergmann et al.,
2024; SHARE-ERIC, 2024). The objective of our analysis was the flexible modeling of QoL in
terms of the CASP score by (i) accounting for country-specific effects in a sparse way, and (ii)
identifying subgroups of individuals which differ in their CASP score based on socio-economic
and health-related factors.

In a preliminary step, for households with more than one individual participating in the survey
one representative was selected at random. This resulted in an analysis data set of n = 45, 038
individuals from 28 countries. Figure 1 shows the distribution of individuals included in the
analysis by country. The country with the largest number of participants was Belgium with
n = 3, 116, whereas only n = 391 participants from Israel were eligible for our analysis (which
constitutes the lowest number of participants). The individual-level factors considered for mod-
eling were: sex, age (in years), number of people living in the household, number of children,
number of chronic diseases, educational level, employment status, and the level of income (the
income decile which the household falls in by country). Summary statistics of these factors are
given in Table 1. For more details on the ninth wave of SHARE, see also Bergmann et al. (2024)
and SHARE-ERIC (2024).

We fitted the proposed tree-structured FEM (7) to the analysis data set, where the socio-
economic and health-related factors presented in Table 1 and level of income were considered
as covariates in tr(·) and the countries were treated as the units in tr0(·). The maximal number
of splits considered was Smax = 20, and the optimal number of splits was selected based on the
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Fig. 1: Analysis of the SHARE data: Distribution of individuals by country. Absolute and
relative frequencies of individuals per country included in the analysis data set

Table 1: Analysis of the SHARE data. Summary statistics of the individual-level factors included
in the analysis

Variable Summary statistics

xmin x0.25 xmed x x0.75 xmax

Age 50 62 69 69.3 76 105

Household size 1 1 2 1.9 2 11

Number of children 0 1 2 2.0 3 17

Number of chronic diseases 0 1 2 1.9 3 14

Sex Male (0) 18 166 (40.3%)

Female (1) 26 872 (59.7%)

Education Pre-education (0) 1 123 ( 2.5%)

Primary education (1) 5 242 (11.6%)

Secondary education first stage (2) 7 214 (16.0%)

Secondary education second stage (3) 17 919 (39.8%)

Post-secondary education (4) 2 295 ( 5.1%)

Tertiary education first stage (5) 10 864 (24.1%)

Tertiary education second stage (6) 391 ( 0.9%)

Employment Unemployed or retired (0) 35 197 (78.1%)

Employed or self employed (1) 9 841 (21.9%)

10-fold cross-validation with the 1SE rule. The minimal bucket size was set to nmb = 100 and
the maximal depth of the tree to dmax = 4.

Figure 2 visualizes the results with regard to tr0(·). Five clusters of countries were identified when
fitting the model: The first cluster with the lowest expected CASP score is the smallest compris-
ing only two countries (Bulgaria and Greece). The cluster with the second lowest expected QoL
contains Eastern and Southern European countries (Cyprus, Italy, Latvia, Lithuania, and Roma-
nia). Central to Eastern European as well as the countries from the Iberian peninsula comprise
the third cluster (Croatia, Czech Republic, Estonia, Hungary, Israel, Slovakia, Spain, Poland,
and Portugal). The cluster with the second highest expected QoL is composed mostly of Cen-
tral European as well as Scandinavian countries (Belgium, Finland, France, Germany, Slovenia,
and Sweden). Finally, the cluster with the highest expected CASP score contains the five coun-
tries Austria, Denmark, Luxembourg, the Netherlands, and Switzerland. These results indicate
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Cluster

1 (Expected CASP score: 32.26)
2 (Expected CASP score: 34.24)
3 (Expected CASP score: 36.69)
4 (Expected CASP score: 38.66)
5 (Expected CASP score: 40.41)

Fig. 2: Analysis of the SHARE data. Identified clusters of countries in tr0(·) when fitting the
TTSC model

that the populations of wealthier countries tend to experience a higher QoL, which was shown
previously in a study by Diener and Diener (1995) based on data from 101 nations. Specifically,
Greece and Bulgaria, which constitute the cluster with lowest expected CASP score, exhibited
the lowest gross domestic product (GDP) per capita of all countries in the EU in 2021, whereas
Luxembourg, Denmark, the Netherlands, and Austria (i.e. EU countries in the fifth cluster)
exhibited the highest, third, fourth and seventh highest GDP, respectively (European Commis-
sion and Eurostat, 2024). In addition, Niedzwiedz et al. (2014) analyzed data from wave 2 and
3 of SHARE and found that older adults from countries with more generous welfare regimes
experienced higher QoL, which is confirmed by our findings: Scandinavian countries and coun-
tries with Bismarckian welfare regimes (e.g. Austria, France, Germany, and Switzerland) were
placed in the the upper two clusters, while countries with Southern or Post-communist welfare
regimes were mostly in clusters with lower expected QoL.

Figure 3 shows the results with regard to tr(·). Number of chronic diseases, level of income, and
age of the individuals were selected as splitting variables during tree building and in total eleven
different subgroups were identified. In particular, the number of chronic diseases was shown to
have a very strong effect on QoL, as it was the first splitting variable in the root node and was
selected for splitting most often. The corresponding results indicate that an increasing number of
chronic diseases is associated with a decreased QoL, which aligns with the findings by Heyworth
et al. (2009) and Rothrock et al. (2010), who investigated the effect of chronic conditions on
health-related QoL in United Kingdom (UK) and United States (US) citizens, respectively.
Moreover, negative associations between the number of chronic diseases and QoL were frequently
reported in the past decades (Marengoni et al., 2011; Makovski et al., 2019) and were also found
in data from previous waves of SHARE (Makovski et al., 2020; Rodŕıguez-Bláquez et al., 2020).
Moreover, household income is demonstrated to play an important role, where adults who are
among the wealthier parts of the population of their respective country showed higher QoL. The
positive effect of income on QoL was previously shown by Killingsworth (2021) in US citizens
and von dem Knesebeck et al. (2007) in wave 1 of SHARE. Age was also selected for splitting
but appeared to be only relevant for adults suffering from at least one chronic disease.
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Fig. 3: Analysis of the SHARE data. Identified subgroups of individuals in tr(·) when fitting the TTSC model. Diseases, Income, and Age refer to the
number of chronic diseases the person suffers from, the income decile the household falls in, and the age in years, respectively
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From Figure 3 it is seen that the subgroup with the lowest expected QoL (among the people
aged 50 years or older) constitutes individuals who suffer from more than four chronic diseases
and are among the poorest 50 percent in terms of household income in their country. Individuals
from this subgroup are expected to exhibit a by 5.10 points lower CASP score than the expected
value of their country. On the other end, individuals with no chronic diseases that were among
the wealthiest 40 percent of older adults from their country are shown to experience the highest
QoL at a by 3.40 points increased CASP score compared to the expected value of their country.

5 Simulation study

To assess the performance and further analyze the properties of the proposed model, we consid-
ered different simulation scenarios. The simulation study was aimed to (i) investigate how the
performance is affected by specific characteristics of the data, like the form of the data gener-
ating process (DGP; linear or tree-based), the number of units, the number of individuals per
unit, and the number of covariates, and (ii) to compare the proposed tree-structured model (7)
to alternative models.

5.1 Simulation design

We considered four simulation scenarios that were based on a DGP with predictor (1) com-
prising linear effects of the covariates and random unit-specific intercepts (scenario 1 ), a DPG
with predictor (2) comprising tree-structured effects of the covariates and random unit-specific
intercepts (scenario 2 ), a DGP with predictor (5) comprising linear effects of the covariates and
clustered fixed effects of the units (scenario 3 ), and a DGP with predictor (7) composed of tree-
structured effects of the covariates and clustered fixed effects of the units (scenario 4 ). Further
details on the DGPs will be given in the following subsections.

In all simulation scenarios, we considered six different settings and performed 100 replications
each. In the first setting (setting 1 ), we simulated data with n = 20 units, ni = 50 observa-
tions per unit and p = 10 potentially informative covariates. We included six metrically scaled
covariates X1, . . . , X6 ∼ N(0, 1) and four binary covariates X7, . . . , X10 ∼ Bin(1, 0.5). Standard
normally distributed error terms were included in the DGP. In the following we also refer to this
first setting as base setting. In the five other settings only one parameter compared to the base
setting was modified to generate the data, while all the other parameters were kept fixed. In set-
ting 2 and setting 3 we modified the ratio of units compared to the observations per units, setting
n = 40/ni = 25 and n = 100/ni = 10, respectively. We considered a higher dimensional covari-
ate space with p = 100, X11, . . . , X15 ∼ N(0, 1), and X16, . . . , X100 ∼ Bin(1, 0.5) in setting 4. In
setting 5 the variance of the error terms was increased to σ2

ε = 2. The last setting (setting 6 )
differs depending on the specific scenario and is described in the respective subsections.

The following models were fitted to the simulated data in each scenario:

(i) the linear mixed model (1) with linear effects of the covariates and random unit-specific
intercepts (LMM ),

(ii) a LMM with variable selection by LASSO as proposed by Groll and Tutz (2014), which applies
an L1-penalty on the linear effects of the covariates (LMMP),

(iii) the RE-EM tree (2) by Sela and Simonoff (2012) with tree-structured effects of the covariates
and random unit-specific intercepts (RE-EM ),

(iv) the LMM tree by Fokkema et al. (2018), which also has the form in Equation (2), but compared
to RE-EM applies the framework of conditional inference trees (LMMT ),

(v) the tree-structured FEM (5) by Berger and Tutz (2018) with linear effects of the covariates
and tree-structured fixed effects of the units (LTSC ),

(vi) a LTSC model, with variable selection applying backward selection (LTSCB),
(vii) the proposed tree-structured FEM (7) with tree-structured effects of the covariates and tree-

structured fixed effects of the units (TTSC ),
(viii) a model without any covariates and only a constant global intercept (Null), and
(ix) the true data-generating model (Perfect).

The LMMT model by Fokkema et al. (2018) implements a fitting procedure similar to the RE-
EM tree, where the algorithm alternates between two steps: (i) Fitting the tree structure, while
keeping the random effects fixed, and (ii) estimating the random effects, while keeping the tree
structure fixed. Instead of the CART algorithm, the LMMT model applies conditional inference
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trees (Hothorn et al., 2006). That is, in each iteration a test for parameter instability is carried out
for each covariate and the covariate showing the strongest association with the outcome variable
is selected for splitting (if it is significant at a predefined significance level α). The approach by
Fokkema et al. (2018) is based on the framework of model-based recursive partitioning (Zeileis
et al., 2008), which additionally allows that in each terminal node of the tree a separate regression
model is fitted. Here, we specified an intercept-only model to ensure comparability. Note that
this is conceptually equivalent to the conditional inference-based version of the RE-EM tree by
Fu and Simonoff (2015).

For the random intercepts in LMM, LMMP, RE-EM, and LMMT normality was assumed. The
optimal penalty parameter λ for the LASSO in LMMP was selected based on the Bayesian
information criterion (BIC; Schwarz, 1978). The optimal number of splits in RE-EM, LTSC,
LTSCB, and TTSC was selected based on 10-fold cross-validation with the 1SE rule (see also
Section 3). The minimal bucket size (i.e. the minimum number of observation required in a node)
was set to nmb = ⌊0.1 ·

∑n
i=1 ni⌋ in all tree-based models (RE-EM, LMMT, LTSC, LTSCB,

and TTSC). For the LTSCB model, first the LTSC model with the optimal number of splits
was fitted and subsequently covariates were excluded from the linear predictor using backward
selection based on BIC, while the tree structure of the unit-specific effects was kept fixed. Note
that the perfect model cannot be fitted in practice as it is unknown and serves as reference, only.

5.2 Evaluation criteria

To assess the performance of the competing models in terms of goodness-of-fit, we considered
the root mean squared error (RMSE) separately for the effects of the covariates and for the
unit-specific effects. The RMSE of the covariate effects was calculated by

RMSEX =

√√√√ 1

n

n∑
i=1

1

ni

ni∑
j=1

(
η̃X(xij)− ˜̂ηX(xij)

)2
,

where ˜̂ηX(xij) = η̂X(xij)− 1
n

∑n
i′=1

1
ni′

∑ni′
j′=1 η̂X(xi′j′) corresponds to the covariate-specific devi-

ation from the unit-specific expectation (also compare the adjustment of the coefficients in
Section 2.2). Specifically, for the models with linear effects of the covariates (LMM, LMMP,

LTSC, and LTSCB) we have that η̂X(xij) = β̂1xij1 + · · ·+ β̂pxijp and for the models with tree-

structured effects of the covariates (RE-EM, LMMT, and TTSC) we have that η̂X(xij) = t̂r(xij).
The RMSE of the unit-specific effects was calculated by

RMSEI =

√√√√ 1

n

n∑
i=1

1

ni

ni∑
j=1

(
η̃I(i)− ˜̂ηI(i)

)2
,

where ˜̂ηI(i) = η̂I(i) +
1
n

∑n
i′=1

1
ni′

∑ni′
j′=1 η̂X(xi′j′) corresponds to the expected outcome value of

unit i. For models with random unit-specific intercepts (LMM, LMMP, RE-EM, and LMMT)

this means η̂I(i) = β̂0 + bi and for models with tree-structured fixed effects (LTSC, LTSCB, and
TTSC) this means η̂I(i) = t̂r0(i). Of note, for TTSC η̃X(·) and η̃I(·) could also directly be derived
from the adjusted coefficients defined in (11). The true values of η̃X(·) and η̃I(·) are determined
analogously based on the true values.

In addition, true positive rates (TPR) and false positive rates (FPR) for the covariates were
considered. The TPR is the proportion of informative covariates that were correctly identified
to have an effect on the outcome variable and is given by

TPRX =
1

|{k : ϑk = 1}|
∑

k:ϑk=1

I(ϑ̂k = 1) ,

where ϑ = 1 if Xk has an effect on the outcome variable and ϑk = 0 otherwise. The FPR specifies
the proportion of noise variables that were falsely identified to have an effect on the outcome
variable. It is given by

FPRX =
1

|{k : ϑk = 0}|
∑

k:ϑk=0

I(ϑ̂k = 1) .
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5.3 Linear DGP with random unit-specific intercepts

The first scenario was based on a DGP of the form

yij = β1xij1 + β2xij2 + β7xij7 + bi + εij ,

with β1 = 0.8, β2 = 0.4, and β7 = 0.8. Hence, three out of ten (or one hundred) covariates were
informative. The random unit-specific intercepts bi follow a standard normal distribution. The
data sets in settings 1 to 5 were generated as described above. In setting 6, we assumed that
a correlation between X1 as well as X2 and the random intercepts bi is present. Specifically, a
correlation of ρ = 0.9 was introduced by adopting the sequential procedure described in Tutz
and Oelker (2017).

Table 2: Results of the simulation study: Variable selection (scenario 1). Average true positive
rates (TPR) and false positive rates (FPR) for the covariates in the six different settings. The
table displays the results for all models that involve variable selection. Setting 1 serves as base
setting with n = 20, ni = 50, p = 10 and error variance σ2

ε = 1

Model Setting 1 2 3 4 5 6

Base n = 40 n = 100 p = 100 σ2
ε = 2 ρ = 0.9

ni = 25 ni = 10

TPR LMMP 1.000 1.000 1.000 1.000 1.000 1.000

RE-EM 0.787 0.763 0.807 0.827 0.647 0.683

LMMT 0.963 0.937 0.963 1.000 0.967 0.843

LTSCB 1.000 1.000 1.000 1.000 1.000 1.000

TTSC 0.843 0.797 0.837 0.827 0.777 0.640

FPR LMMP 0.003 0.004 0.004 0.001 0.004 0.004

RE-EM 0.000 0.000 0.000 0.000 0.000 0.000

LMMT 0.000 0.001 0.000 0.003 0.007 0.004

LTSCB 0.003 0.004 0.003 0.008 0.003 0.000

TTSC 0.000 0.000 0.000 0.000 0.000 0.000
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Fig. 4: Results of the simulation study: RMSEX (scenario 1). Boxplots of the RMSEX in the
six different settings. Setting 1 serves as base setting with n = 20, ni = 50, p = 10 and error
variance σ2

ε = 1. The median values of the perfect model are marked by the dashed lines
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The results in Table 2 indicate that all considered models were very efficient in detecting the
informative covariates. The models with linear effects (LMMP and LTSCB) exhibit perfect
TPRs equal to one and very low FPRs below 0.01 across all settings. Among the models with
tree-structured effects LMMT yielded the highest TPRs. RE-EM and TTSC showed more con-
servative results, which may be due to the application of the 1SE rule. Changing the ratio of n
to ni (settings 2 and 3) and increasing the number of noise variables (setting 4) only had a minor
impact on the variable selection rates. In settings 5 and 6, however, it is seen that the TPRs
decreased for the tree-structured models indicating that variable selection becomes less reliable
for these methods if the error variance is large or informative covariates are strongly correlated
with the random intercepts. These patterns can also be observed in Figure 4, which depicts the
results for RMSEX. The models with linear effects (LMMP and LTSCB), which follow the true
DGP, are shown to perform best and even similarly well to the perfect model. The corresponding
models without variable selection (LMM and LTSC) performed only slightly worse throughout
all settings and consistently better than the tree-structured models. In addition, all of the con-
sidered models yielded a much higher variance in RMSEX if correlation between the informative
covariates and the random intercepts was present (setting 6).
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Fig. 5: Results of the simulation study: RMSEI (scenario 1). Boxplots of the RMSEI in the
six different settings. Setting 1 serves as base setting with n = 20, ni = 50, p = 10 and error
variance σ2

ε = 1. The median values of the perfect model are marked by the dashed lines

Figure 5 shows that the RMSE of the unit-specific effects were lowest for the models with
random effects (LMM, LMMP, RE-EM, and LMMT) across all settings except for setting 6.
Here, LMM and LMMP still performed best, but the tree-structured FEMs with linear covariate
effects (LTSC and LTSCB) were beneficial compared to RE-EM and similar to LMMT. This is
in line with the results obtained by Berger and Tutz (2018) for correlated covariates. Further,
it underlines that if correlation between the covariates and the random intercepts is present, a
correct specification of the covariate effects (that structurally aligns with the DPG) is highly
important for an unbiased estimation of the unit-specific effects. The proposed TTSC model
exhibited the highest RMSEs compared to all other competitors except for the Null model, which
was to be expected as it aligns the least with the structure of the DPG.

5.4 Tree-structured DGP with random unit-specific intercepts

In the second scenario, the true DGP had the form

yij =γ1I(xij1 ≤ 0 ∧ xij2 ≤ 0) + γ2I(xij1 ≤ 0 ∧ xij2 > 0)+

γ3I(xij1 > 0 ∧ xij7 = 0) + γ4I(xij1 > 0 ∧ xij7 = 1) + bi + εij
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Table 3: Results of the simulation study: Variable selection (scenario 2). Average true positive
rates (TPR) and false positive rates (FPR) for the covariates in the six different settings. The
table displays the results for all models that involve variable selection. Setting 1 serves as base
setting with n = 20, ni = 50, p = 10 and error variance σ2

ε = 1

Model Setting 1 2 3 4 5 6

Base n = 40 n = 100 p = 100 σ2
ε = 2 ρ = 0.9

ni = 25 ni = 10

TPR LMMP 0.987 0.983 0.980 0.967 0.930 0.997

RE-EM 1.000 0.993 0.997 1.000 0.873 0.880

LMMT 1.000 1.000 1.000 1.000 1.000 0.997

LTSCB 0.950 0.940 0.943 0.987 0.833 0.930

TTSC 0.993 0.990 1.000 0.993 0.933 0.927

FPR LMMP 0.001 0.001 0.001 0.007 0.011 0.010

RE-EM 0.000 0.000 0.000 0.000 0.000 0.000

LMMT 0.001 0.001 0.002 0.001 0.019 0.004

LTSCB 0.001 0.000 0.001 0.007 0.004 0.004

TTSC 0.000 0.000 0.000 0.000 0.000 0.000
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Fig. 6: Results of the simulation study: RMSEX (scenario 2). Boxplots of the RMSEX in the
six different settings. Setting 1 serves as base setting with n = 20, ni = 50, p = 10 and error
variance σ2

ε = 1. The median values of the perfect model are marked by the dashed lines

with γ1 = −1.35, γ2 = −0.45, γ3 = 0.45, and γ4 = 1.35. Hence, again three out of ten (or
one hundred) covariates were informative. Analogously to scenario 1, the unit-specific intercepts
were standard normally distributed and for setting 6 a correlation of ρ = 0.9 between X1 as well
as X2 and the random intercepts was introduced.

It is seen from Table 3 that the considered models exhibited high TPRs (> 0.8) and low FPRs
(< 0.02) across all settings. The models with tree-structured effects of the covariates (RE-EM,
LMMT, and TTSC) were superior to the other competitors with the highest TPRs and the
lowest RMSEX close to the perfect model (see Figure 6). As in scenario 1, RE-EM and TTSC
selected no non-informative covariates (FPRs = 0). Compared to LMMT, RE-EM and TTSC
yielded slightly lower TPRs and higher RMSE values in setting 5 with higher error variance.
Furthermore, the results in Table 3 indicate the models with linear effects (LMMP and LTSC)
were quite able to identify the informative covariates but the RMSEX demonstrate that they
were unable to capture the non-linear covariate effects. Overall, the performance suffered in
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Fig. 7: Results of the simulation study: RMSEI (scenario 2). Boxplots of the RMSEI in the
six different settings. Setting 1 serves as base setting with n = 20, ni = 50, p = 10 and error
variance σ2

ε = 1. The median values of the perfect model are marked by the dashed lines

terms of variable selection and RMSEX if correlation between the informative covariates and the
random intercepts occurred (setting 6).

Similar to scenario 1, the results in Figure 7 show that the models with random effects (LMM,
LMMP, RE-EM, and LMMT) were able to estimate the unit-specific effects more accurately than
the tree-structured FEMs (LTSC, LTSCB, and TTSC) in settings 1 to 5. In setting 6, however,
the models that capture tree-structured effects of the covariates showed superior performance
compared to the linear models. In particular, TTSC yielded lower RMSEI than LMM and LMMP.
The results in scenario 2 again indicate that neither the ratio of n to ni, the number of noise
variables nor the variance of the error terms (varied in settings 2 to 5) changed the general
pattern of the results.

5.5 Linear DGP with clustered unit-specific effects

The data in the third scenario were generated according to the DGP

yij = tr0(i) + β1xij1 + β2xij2 + β7xij7 + εij

with β1 = 0.8, β2 = 0.4, and β7 = 0.8. Hence, the linear predictor of the covariates coincided
with scenario 1. In order to obtain clusters of units with the same intercepts, we drew a uniformly
distributed random auxiliary variable ui ∼ U(0, 1) for each of the n units. For settings 1 to 5,
the effects of the units were then generated by

tr0(i) = β01I

(
ui ∈

[
0,

1

3

])
+ β02I

(
ui ∈

(
1

3
,
2

3

])
+ β03I

(
ui ∈

(
2

3
, 1

])
with β01 = −1.25, β02 = 0, and β03 = 1.25. That is, C = 3 clusters of units of roughly equal size
were present in the data. In setting 6 we increased the number of clusters to C = 6 and applied
the function

tr0(i) =β01I

(
ui ∈

[
0,

1

6

])
+ β02I

(
ui ∈

(
1

6
,
2

6

])
+ β03I

(
ui ∈

(
2

6
,
3

6

])
+

β04I

(
ui ∈

(
3

6
,
4

6

])
+ β05I

(
ui ∈

(
4

6
,
5

6

])
+ β06I

(
ui ∈

(
5

6
, 1

])
with β01 = −1.5, β02 = −0.9, β03 = −0.3, β04 = 0.3, β05 = 0.9, and β06 = 1.5.
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Table 4: Results of the simulation study: Variable selection (scenario 3). Average true positive
rates (TPR) and false positive rates (FPR) for the covariates in the six different settings. The
table displays the results for all models that involve variable selection. Setting 1 serves as base
setting with n = 20, ni = 50, p = 10, σ2

ε = 1 and number of clusters C = 3

Model Setting 1 2 3 4 5 6

Base n = 40 n = 100 p = 100 σ2
ε = 2 C = 6

ni = 25 ni = 10

TPR LMMP 1.000 1.000 1.000 1.000 1.000 1.000

RE-EM 0.753 0.817 0.760 0.773 0.590 0.760

LMMT 0.963 0.993 0.950 1.000 0.963 0.970

LTSCB 1.000 1.000 1.000 1.000 1.000 1.000

TTSC 0.783 0.803 0.803 0.807 0.710 0.817

FPR LMMP 0.006 0.004 0.009 0.004 0.006 0.006

RE-EM 0.000 0.000 0.000 0.000 0.000 0.000

LMMT 0.000 0.000 0.000 0.002 0.007 0.000

LTSCB 0.004 0.001 0.004 0.006 0.003 0.004

TTSC 0.000 0.000 0.000 0.000 0.000 0.000
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Fig. 8: Results of the simulation study: RMSEX (scenario 3). Boxplots of the RMSEX in the
six different settings. Setting 1 serves as base setting with n = 20, ni = 50, p = 10, σ2

ε = 1 and
number of clusters C = 3. The median values of the perfect model are marked by the dashed lines

The results shown in Table 4 and Figure 8 are fully in line with those of scenario 1 (see Table 2
and Figure 4), where the effects of the covariates also followed a linear DGP. Specifically, the
linear models (LMMP and LTSCB) showed perfect TPRs with low FPRs across all settings.
In addition, LMMT performed best among the tree-structured models and achieved TPRs of
0.95 or higher and decent RMSEX in all settings. Overall, non of the considered models showed
considerable differences in variable selection rates and RMSEX compared to the base setting.
Exceptions were the RMSEX of the models without variable selection (LMM and LTSC) in
setting 4 and RE-EM and TTSC in setting 5. RE-EM, in particular, strongly deteriorated in
terms of TPR as the variance of the error terms increased.

Figure 9, which depicts the results of RMSEI, shows that the tree-structured FEMs (LTSC,
LTSCB, and TTSC) yielded more accurate estimates of the unit-specific effects than the models
with random effects (LMM, LMMP, RE-EM, and LMMT) in settings 1, 4 and 5. As the number
of units increased and the number of observations per unit decreased (settings 2 and 3), however,
assuming random effects tended to be beneficial. In addition, a larger number of clusters also led
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Fig. 9: Results of the simulation study: RMSEI (scenario 3). Boxplots of the RMSEI in the six
different settings. Setting 1 serves as base setting with n = 20, ni = 50, p = 10, σ2

ε = 1 and
number of clusters C = 3. The median values of the perfect model are marked by the dashed lines

to a higher RMSEI of the tree-structured FEMs compared to the models with random effects
(setting 6). As the error variance was increased in setting 5, the tree-structured FEMs were still
superior to the models with random effects, but showed much higher variability. Although the
effects of the covariates followed a linear DGP, the TTSC model was not inferior in terms of
RMSEI compared to LTSC and LTSCB.

5.6 Tree-structured DGP with clustered unit-specific effects

In the fourth scenario, the true DGP had the form

yij =tr0(i) + γ1I(xij1 ≤ 0 ∧ xij2 ≤ 0) + γ2I(xij1 ≤ 0 ∧ xij2 > 0)+

γ3I(xij1 > 0 ∧ xij7 = 0) + γ4I(xij1 > 0 ∧ xij7 = 1) + εij ,

where γ1 = −1.35, γ2 = −0.45, γ3 = 0.45, γ4 = 1.35. Hence, the function tr(·) of the covariates
coincided with scenario 2. The function tr0(·) of the intercepts was defined analogously to scenario
3.

The results in Table 5 and Figure 10 are comparable to the results in scenario 2 (see Table 3
and Figure 6), where the effects of the covariates also followed a tree-structured DGP. It is seen
that all the considered models were able to identify the informative covariates quite well, but the
RMSEX values demonstrate that the linear models (LMM, LMMP, LTSC, and LTSCB) were
unable to capture the non-linear covariate effects. The models with tree-structured effects of the
covariates (RE-EM, LMMT and TTSC) yielded by far the lowest RMSEX across all settings.
While the differences between the six different settings appear small, RE-EM and TTSC had
worse performance in terms of TPR and RMSEX in setting 5 with increased variance of the error
terms.

The RMSEI shown in Figure 11 strongly coincide with the results observed in scenario 3 (see
Figure 11), where we also considered a DGP with clustered unit-specific effects. Specifically, the
results indicate that the tree-structured FEMs (LTSC, LTSCB, and TTSC) were beneficial if
the number of units was low, the number of observations per unit was high, and there were only
few clusters of units present in the data. Overall, the TTSC model was shown to perform well in
these settings in terms of variable selection and MRSE on the covariate- as well as the unit-level.

To summarize the results of simulation scenarios 1 to 4, we made the following empirical key
observations:
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Table 5: Results of the simulation study: Variable selection (scenario 4). Average true positive
rates (TPR) and false positive rates (FPR) for the covariates in the six different settings. The
table displays the results for all models that involve variable selection. Setting 1 serves as base
setting with n = 20, ni = 50, p = 10, σ2

ε = 1 and number of clusters C = 3

Model Setting 1 2 3 4 5 6

Base n = 40 n = 100 p = 100 σ2
ε = 2 C = 6

ni = 25 ni = 10

TPR LMMP 0.993 0.993 0.990 0.957 0.923 0.973

RE-EM 1.000 0.993 1.000 1.000 0.857 0.997

LMMT 1.000 1.000 1.000 1.000 1.000 1.000

LTSCB 0.953 0.923 0.913 1.000 0.867 0.930

TTSC 0.983 0.983 0.993 0.987 0.877 1.000

FPR LMMP 0.017 0.017 0.016 0.005 0.023 0.013

RE-EM 0.000 0.000 0.000 0.000 0.000 0.000

LMMT 0.020 0.019 0.014 0.002 0.019 0.026

LTSCB 0.001 0.004 0.001 0.005 0.001 0.001

TTSC 0.000 0.000 0.000 0.000 0.001 0.000
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Fig. 10: Results of the simulation study: RMSEX (scenario 4). Boxplots of the RMSEX in the
six different settings. Setting 1 serves as base setting with n = 20, ni = 50, p = 10, σ2

ε = 1 and
number of clusters C = 3. The median values of the perfect model are marked by the dashed lines

1. All competitors showed high performance with regard to variable selection independent of
the DPG.

2. Based on the RMSE, the tree-structured models were able to capture non-linear effects and
interactions well.

3. Misspecification of unit-specific effects barely affects the goodness-of-fit of covariate effects.
4. Misspecification of covariate effects leads to biased unit-specific effect estimates, if correlation

between the covariates and the unit-specific effects is present.
5. Tree-structured clustering is beneficial if the ratio of units to the observations per unit n/ni

is low and the number of clusters of units C is small.

6 Summary and discussion

In order to analyze QoL in the group of elderly Europeans using data of SHARE, we devel-
oped a tailored tree-structured approach. Established methods for modeling clustered data allow
to combine tree-structured effects of individual-level covariates with random country-specific
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Fig. 11: Results of the simulation study: RMSEI (scenario 4). Boxplots of the RMSEI in the
six different settings. Setting 1 serves as base setting with n = 20, ni = 50, p = 10, σ2

ε = 1 and
number of clusters C = 3. The median values of the perfect model are marked by the dashed lines

effects (Hajjem et al., 2011; Sela and Simonoff, 2012; Fu and Simonoff, 2015; Fokkema et al.,
2018), and to combine linear effects of covariates with clustered fixed country-specific effects
(Berger and Tutz, 2018). A method that simultaneously includes tree-structured effects of covari-
ates and clustered fixed country-specific effects has not been available so far. In the present
paper, we fill this gap. Specifically, the proposed model extends upon tree-structured cluster-
ing, which is designed for sparse modeling of unit-specific intercepts (Berger and Tutz, 2018).
We combine the tree representing unit-specific effects with a tree structure capturing effects of
individual-level covariates. This second tree identifies subgroups of individuals that differ with
regard to their outcome (the CASP score in SHARE). This accounts for non-linear effects and
interactions between covariates, inherently performs variable selection and enables an accessible
interpretation of parameters (see also the last paragraph in Section 2.2).

Our simulation study demonstrates that the proposed approach is competitive with alternative
random effects-based approaches. Specifically, the proposed tree-structured FEM was shown to
be advantageous if interactions between covariates were present and if there were only a few
clusters of units with the same effect on the outcome. While random effects were also shown to
work well in most settings and to be rather robust against violations of normality, confirming
the findings in previous research (see, for example, Bell et al., 2018, and Schielzeth et al., 2020),
the proposed tree-structured FEM yielded superior results in cases, where the number of units
was low and the number of observations per unit was high. This is the case in SHARE with data
from 28 countries and up to 3,000 observations per country. The analysis of SHARE presented
in Section 4 highlights the applicability of the proposed method and confirms important findings
about QoL in older adults.

While the focus in the simulation study and the application was on normally-distributed outcome
variables, the proposed likelihood-based algorithm is generally applicable to differently scaled
outcomes (including binary and discrete outcome variables). In addition, the predictor function
is easily generalizable to an additive model of the form

η(xij , zij) = tr0(i) + tr(xij) + β⊤zij , (12)

where zij = (zij1, . . . , zijq) denotes an additional set of covariates with linear effects on the
outcome. A random effects-based approach for modeling clustered data that also enables the
combination of tree-structured and linear effects of the covariates was proposed by Gottard et al.
(2023). Their model can be represented by an additive predictor with a linear term and three
tree structures for unit-varying and unit-constant covariates as well as for interactions between
unit-varying and unit-constant covariates.
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In this paper, we reduced our considerations to clustered unit-specific intercepts. The proposed
tree-structured algorithm, however, would also allow for clustered unit-specific effects of covari-
ates (analogously to random slopes in random effects models). Referring to the set of covariates
zij , the model in Equation (5) can be extended to

η(xij , zij) = tr0(i) +

q∑
r=1

trr(i)zijr + tr(xij) ,

where the functions trr(·) are defined analogously to tr0(·) as

trr(i) =

Cr∑
ℓ=1

βrℓ I(i ∈ Nrℓ) ,

where Nrℓ denotes the ℓ-th cluster of the units with respect to the effect of Zr and βrℓ denotes the
respective slope parameter. The fitting procedure described in Section 3 can easily be adapted
to this case by considering the possible splits in all q + 2 trees in each step of the tree-building
algorithm. In the first step, an order of the units i ∈ {1, . . . , n} needs to be determined with
respect to each covariate, which is not necessarily the same.

If the focus is on predictive performance, the proposed model can be extended to an ensemble
method. In this vein, Adler et al. (2011) investigated bootstrap-based strategies for dealing with
longitudinal data in random forests, and Hajjem et al. (2012) proposed a random effects-based
random forest approach for modeling clustered data.
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The tree-structured varying coefficient (TSVC) model is a flexible regression approach that allows 
the effects of covariates to vary with the values of the effect modifiers. Relevant effect modifiers 
are identified inherently using recursive partitioning techniques. To quantify uncertainty in 
TSVC models, a procedure to construct confidence intervals of the estimated partition-specific 
coefficients is proposed. This task constitutes a selective inference problem as the coefficients of 
a TSVC model result from data-driven model building. To account for this issue, a parametric 
bootstrap approach, which is tailored to the complex structure of TSVC, is introduced. Finite 
sample properties, particularly coverage proportions, of the proposed confidence intervals are 
evaluated in a simulation study. For illustration, applications to data from COVID-19 patients and 
from patients suffering from acute odontogenic infection are considered. The proposed approach 
may also be adapted for constructing confidence intervals for other tree-based methods.

1. Introduction

Regression analysis is a powerful tool to quantify the association between an outcome variable and a set of covariates and to make 
inferences about the true parameter values. Classical statistical theory provides asymptotic properties for estimators of regression 
coefficients that allow performing hypothesis tests and constructing confidence intervals (CIs) based on their estimates. It is, however, 
a well known result that classical inference is invalid if the analysis involves a data-driven model selection procedure, that is, if the 
structure of a model’s predictor function is determined in a data-driven way (e.g. by forward or stepwise variable selection; Taylor 
and Tibshirani, 2015), as statistical uncertainty induced by the model selection is neglected.

In this article we deal with this issue in the context of CIs for regression models with varying coefficients. This class of models 
first introduced by Hastie and Tibshirani (1993) generalizes the class of linear regression models, as they allow that coefficients of 
covariates change with the value of other variables, the so-called effect modifiers. Fan and Zhang (2008) and Park et al. (2015) gave 
comprehensive reviews on varying coefficient models and discussed several fitting approaches. In the past years varying coefficient 
models have been considered extensively, which has led to many extensions of the classical approach, see, for example, Wang and 
Hastie (2014), Buergin and Ritschard (2015, 2017), Lee et al. (2020), and Zhou and Hooker (2022). A large part of this methodology 
makes the basic assumption that the effect of each covariate is modified by a known set of potential effect modifiers, which is specified 
before model fitting. Then one determines the way the coefficients are modified. This prerequisite is relaxed by tree-structured varying 
coefficient (TSVC) models proposed by Berger et al. (2019), which select the effect modifiers from the whole set of available covariates 
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in a data-driven way and allow that the varying coefficients are caused by the interaction of several effect modifiers. The TSVC model 
applies recursive partitioning to identify relevant effect modifiers, which yields a separate tree 𝑇𝑗 for the linear effect of each covariate 
𝑋𝑗 , where each leaf node contains a partition-specific coefficient. Building a tree means to find a partition of the covariate space 
using binary splits, which induces a piecewise constant predictor function. In TSVC models, each split refers to a coefficient and 
is determined by an effect modifier and a corresponding splitting rule: For a metrically or ordinally scaled effect modifier 𝑋𝑘 , the 
splitting into two partitions has the form ‘𝑁1 = 𝑁 ∩{𝑋𝑘 ≤ 𝑐} and 𝑁2 = 𝑁 ∩{𝑋𝑘 > 𝑐}’, with regard to split point 𝑐, where 𝑁 denotes 
the parent node.

While TSVC models may apply a concept of statistical significance to decide whether to split or not (described in detail in Berger 
et al., 2019), they so far do not allow for inference on the varying coefficients within the nodes of the fitted trees. Here, we fill this 
gap proposing a bootstrap-based approach.

When constructing CIs for tree-structured varying coefficients one needs to take into account that the tree structures and therefore 
the partitions that differ in terms of their effect (defined by the effect modifiers and splitting rules) were estimated from the data 
(here denoted by ). This is further aggravated by the fact that the trees suffer from high variability, that is, only a small change in 
the data  can lead to a rather different model structure (here denoted by ), which may even strongly deviate from the true data 
generating process (DGP). Neglecting this uncertainty induced by the data-driven tree building procedure yields CIs that are likely 
to be too short. More specifically, it must be taken into account that the coefficients of interest 𝛽

𝑗𝑚
(the linear effect of covariate 𝑗 in 

node 𝑚 of tree 𝑇𝑗 ) arise out of model structure , that is, that the model selection event ̂ = occurred.

The TSVC model  considered in this paper is defined by a set of partitions  = {{𝑁𝑗𝑚, 𝑚 = 1, ...,𝑀𝑗}, 𝑗 = 1, ..., 𝑝}. Therefore, 
a 100(1 − 𝛼)% CI of 𝛽

𝑗𝑚
is supposed to satisfy

ℙ
(
𝛽

𝑗𝑚 ∈ 𝐶𝐼(𝛽
𝑗𝑚 ) | ̂ =

)
≥ 1 − 𝛼 , (1)

which constitutes a so-called selective inference or post selection inference problem (Berk et al., 2013; Fithian et al., 2014; Lee et al., 
2016). This issue has been intensively studied in linear regression models (Zhang et al., 2022). Selective CIs were proposed, among 
others, by Tibshirani et al. (2016) for sequential variable selection procedures, by Ruegamer and Greven (2018) after likelihood-

based model selection in linear models, and by Suzumura et al. (2017) for linear models including higher-order interactions. More 
recently, Zhao et al. (2022) proposed a selective inference approach for LASSO-based varying coefficient models, Ruegamer et al. 
(2022) investigated selective inference for additive and linear mixed effect models, and Zrnic and Jordan (2023) address the selective 
inference problem by building on the framework of algorithmic stability. With respect to tree-structured models, Gottard et al. (2023) 
proposed a simple splitting of the data into training data for fitting the model and test data for conducting inference, which, however, 
comes at the price that only a subset of the observations is used for tree building and for subsequent inference. Loh et al. (2019) 
proposed bootstrap-calibrated CIs within the GUIDE regression tree framework and Neufeld et al. (2022) proposed “Tree-Values”, a 
selective inference framework for regression trees.

In line with the principle of selective inference, we propose a parametric bootstrap approach to construct 100(1 − 𝛼)% percentile 
CIs 𝐶𝐼𝑃 (𝛽

𝑗𝑚
) for a TSVC model  with varying coefficients 𝛽

𝑗𝑚
, 𝑗 = 1,… , 𝑝 ,𝑚 = 1,… ,𝑀𝑗 , that satisfy Equation (1).

To the best of our knowledge parametric bootstrap has so far not been used in the context of selective inference. In general, 
our method is not restricted to the specific implementation of TSVC but could also be adapted to construct confidence intervals for 
parameters of other tree-based models (see also the discussion in Section 6).

The remainder of this paper is organized as follows: In Section 2, the class of TSVC models and the fitting procedure are described. 
Section 3 outlines our parametric bootstrap approach for constructing percentile CIs of the varying coefficients. To assess coverage 
proportions of the proposed CIs, we conducted a simulation study presented in Section 4. In the simulation study, we also contrast 
our proposal to bootstrap-calibrated CIs. In Section 5, we show the results of two applications fitting TSVC models to data of pa-

tients suffering from COVID-19 and acute odontogenic infection, respectively. Finally, our findings are summarized and discussed in 
Section 6.

2. Tree-structured varying coefficients

Let 𝑌 be a outcome variable of interest and 𝑿 = (𝑋1,… ,𝑋𝑝) be explanatory variables that are ordinally or metrically scaled, or 
dummy-coded representations of nominal variables. In generalized regression models it is assumed that the outcome 𝑌 given the 
values of covariates 𝑿 follows a distribution from the exponential family. The expected outcome is related to the covariate vector in 
the form 𝔼(𝑌 |𝑿) = 𝑔−1(𝜂(𝑿)), where 𝑔(⋅) denotes a suitable link function and 𝜂(⋅) denotes the predictor function. Most frequently it is 
assumed that the predictor function is characterized by a linear combination of the covariates. In the more general varying coefficient 
model introduced in the seminal work by Hastie and Tibshirani (1993), the predictor function is given by

𝜂(𝑿,𝒁) = 𝛽0 + 𝛽1(𝑍1)𝑋1 +⋯+ 𝛽𝑝(𝑍𝑝)𝑋𝑝 , (2)

where 𝑍1,… ,𝑍𝑝 denote (additional) random variables that serve as effect modifiers and change the linear effects of 𝑋1,… ,𝑋𝑝 through 
unspecified functional forms.

The model with predictor (2) requires the effect modifiers to be specified beforehand. In practice, however, it is often unclear 
which variable modifies the effect of another variable. In addition, each varying coefficient may not be determined by just one 
variable and the effect may be driven by an interaction between several effect modifiers. To address these issues, Berger et al. (2019) 
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proposed the tree-structured varying coefficient (TSVC) model, which applies a recursive partitioning method to detect relevant effect 
modifiers. Since the effect modifiers are inherently selected by the tree building algorithm, only the set of covariates 𝑋1,… ,𝑋𝑝 is 
considered for modeling. If effect modifiers are present, they are from this set and modify coefficients of covariates from this set. The 
predictor function of a TSVC model  is given by

𝜂(𝑿) = 𝛽

0 + 𝛽

1 (𝑿[−1])𝑋1 +⋯+ 𝛽
𝑝 (𝑿[−𝑝])𝑋𝑝 , (3)

where 𝑿[−𝑗] denotes the set of covariates 𝑋1,… ,𝑋𝑝 excluding 𝑋𝑗 . By definition, the effect of each covariate can be modified by 
each other covariate except itself. The functions 𝛽

𝑗
(⋅) are each determined by a tree structure. This means that each function 𝛽

𝑗
(⋅)

sequentially partitions the observations into disjoint subsets 𝑁𝑗𝑚, 𝑚 = 1, ...,𝑀𝑗 , based on the values of the selected effect modifiers 
and assigns a different regression coefficient for 𝑋𝑗 to each partition 𝑁𝑗𝑚. These functions can be written as

𝛽
𝑗 (𝑿[−𝑗]) =

𝑀𝑗∑
𝑚=1

𝛽
𝑗𝑚 𝐼(𝑿[−𝑗] ∈ 𝑁𝑗𝑚) , (4)

where 𝐼(⋅) denotes the indicator function. Hence, the structure of a TSVC model  is characterized by the set of partitions  =
{{𝑁𝑗𝑚 ,𝑚 = 1,… ,𝑀𝑗} , 𝑗 = 1,… , 𝑝}. Each coefficient is derived from binary splits successively partitioning the observations of one 
parental node into two child nodes (cf. Hastie et al., 2009). We start from a model with non-varying linear effects, only. Then, the 
first split yields model [1] with predictor

𝜂
[1] (𝑿𝑖) =𝛽[1]

0 + 𝛽[1]

1 𝑋1 +⋯+
(
𝛽[1]

𝑗1 𝐼(𝑋𝑘 ≤ 𝑐𝑘) + 𝛽[1]

𝑗2 𝐼(𝑋𝑘 > 𝑐𝑘)
)

𝑋𝑗

+⋯+ 𝛽[1]
𝑝 𝑋𝑝 ,

where 𝑐𝑘 is the split point in effect modifier 𝑋𝑘 selected by the algorithm regarding the effect of 𝑋𝑗 , 𝛽[1]

𝑗1 is the linear effect of 𝑋𝑗

in partition {𝑋𝑘 ≤ 𝑐𝑘} and 𝛽[1]

𝑗2 is the linear effect of 𝑋𝑗 in partition {𝑋𝑘 > 𝑐𝑘} adjusted for the other effects in [1]. Hence, after 

the first step, the varying coefficient of 𝑋𝑗 is determined by 𝛽[1]
𝑗

(𝑋𝑘) = 𝛽[1]

𝑗1 𝐼(𝑋𝑘 ≤ 𝑐𝑘) + 𝛽[1]

𝑗2 𝐼(𝑋𝑘 > 𝑐𝑘). In the next step, either 
a different coefficient is selected for splitting or the same coefficient is further modified. If the coefficient of variable 𝑋𝓁 is split in 
𝑋𝑟 at split point 𝑐𝑟 this yields the predictor

𝜂
[2] (𝑿) =𝛽[2]

0 + 𝛽[2]

1 𝑋1 +⋯+
(
𝛽[2]

𝑗1 𝐼(𝑋𝑘 ≤ 𝑐𝑘) + 𝛽[2]

𝑗2 𝐼(𝑋𝑘 > 𝑐𝑘)
)

𝑋𝑗

+
(
𝛽[2]

𝓁1 𝐼(𝑋𝑟 ≤ 𝑐𝑟) + 𝛽[2]

𝓁2 𝐼(𝑋𝑟 > 𝑐𝑟)
)

𝑋𝓁 +⋯+ 𝛽[2]
𝑝 𝑋𝑝 ,

where 𝛽[2]

𝓁1 denotes the effect of 𝑋𝓁 in {𝑋𝑟 ≤ 𝑐𝑟} and 𝛽[2]

𝓁2 denotes the effect of 𝑋𝓁 in {𝑋𝑟 > 𝑐𝑟}. That is, the varying coefficient of 
𝑋𝓁 has the form 𝛽[2]

𝓁 (𝑋𝑟) = 𝛽[2]

𝓁1 𝐼(𝑋𝑟 ≤ 𝑐𝑟) + 𝛽[2]

𝓁2 𝐼(𝑋𝑟 > 𝑐𝑟). Further splits are performed analogously until a predefined stopping 
criterion is met (see below for details). In each step a so far non-varying effect turns into a varying coefficient or an already selected 
varying coefficient is split once more.

Sketch of the fitting procedure

In each step of the tree building algorithm, the best splitting rule from among all possible combinations of covariate 𝑋𝑗 , respective 
candidate effect modifier 𝑋𝑘,𝑘 ≠ 𝑗, and split point is selected, starting from a linear predictor without varying coefficients. For this, all 
candidate models with one additional split are evaluated and the best-performing one that yields the smallest deviance is selected. In 
generalized regression models the deviance is a quite natural measure of the model fit. This criterion is also equivalent to minimizing 
the entropy, which has been used as a splitting criterion already in the early days of tree construction (Breiman et al., 1984). Note 
that, in contrast to common trees, in each step of the algorithm all the observations are used to derive new estimates of the model 
parameters. This ensures that one obtains valid estimates of the different components together with the splitting rule.

To determine the optimal number of splits and hence the size of the trees, Berger et al. (2019) proposed an early stopping strategy 
based on permutation tests. This offers an approximate solution to control the global type I error rate (that is, the proportion of falsely 
identified covariates with varying coefficients). In this paper, we use an alternative post-pruning strategy, where a large model is 
grown first and is then pruned to an adequate size to avoid overfitting. Running the stepwise TSVC algorithm (with a sufficiently large 
number of splits) yields a sequence of nested models that are assessed with regard to their goodness of fit using a likelihood-based 
criterion. Subsequently, the best-performing model is selected and fitted on the whole data with the corresponding number of splits. 
This post-pruning strategy is less computationally intensive than early stopping using permutation tests and was previously shown to 
perform similarly well (Spuck et al., 2023). Note, however, that the post-pruning strategy, unlike the permutation test approach, does 
neither control the global type I error rate nor the probability of falsely identifying a variable as effect modifier and may therefore 
lead to less parsimonious models. Here, we select the optimal number of splits by minimizing the Bayesian information criterion (BIC; 
Schwarz, 1978). The BIC of a TSVC model [𝑠] is given by

𝐵𝐼𝐶
(
[𝑠]) = −2 ln

(
𝐿[𝑠]

)
+ 𝑠 log(𝑛) , (5)
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where 𝐿[𝑠] denotes the maximized value of the likelihood function of model [𝑠] , 𝑠 =
∑𝑝

𝑗=1 (𝑀𝑗 − 1) is the total number of per-

formed splits, and 𝑛 denotes the number of observations. In order to prevent the nodes from becoming too small yielding unstable 
coefficient estimates, a minimal bucket size constraint can be applied. The minimal bucket size constraint requires a minimum number 
of observations in every terminal node.

3. Selective confidence intervals

To demonstrate the selective inference problem formalized in Equation (1) that comes with the TSVC model, we consider a simple 
example with two metrically scaled covariates 𝑿 = (𝑋1,𝑋2). Let 𝑌 be the outcome variable that follows a normal distribution, 
𝑌 ∼ 𝑁

(
𝜇(𝑿), 𝜎2), with conditional expectation

𝜇(𝑿) = 𝛽0 + 𝛽11 𝐼(𝑋2 ≤ 𝑐2) 𝑋1 + 𝛽12 𝐼(𝑋2 > 𝑐2) 𝑋1 + 𝛽2 𝑋2 . (6)

Hence, there exists a varying linear effect of 𝑋1 on 𝑌 modified by 𝑋2. Specifically, two regions with different linear effects of 𝑋1
are present: region 𝑅11 = {𝑋2 ≤ 𝑐2} with linear effect 𝛽11 and region 𝑅12 = {𝑋2 > 𝑐2} with linear effect 𝛽12. The linear effect of 𝑋2
remains the same across the whole covariate space, that is, 𝑅2 = {𝑋1 ∈ℝ}.

Assume a TSVC model 1 is fitted to a sample 1 = {(𝑦(1)
𝑖

,𝒙
(1)
𝑖

= (𝑥(1)
𝑖1 , 𝑥

(1)
𝑖2 )), 𝑖 = 1,… , 𝑛}, where the values of the outcome variable 

𝑦
(1)
𝑖

were drawn from the normal distribution with conditional expectation (6). If the structure of the fitted model coincides with the 
true DGP (one split of 𝑋2 in the linear effect of 𝑋1 with split point 𝑐2), that is, ̂ =1 = {{𝑅11,𝑅12},{𝑅2}}, one obtains estimates 
𝛽11, 𝛽12, 𝛽2 of the underlying DGP parameters. However, since the structure of model 1 is determined based on the sample 1, the 
partitions detected by the algorithm are likely to deviate from the true underlying regions, which means 1 ≠ {{𝑅11,𝑅22},{𝑅2}}. 
For instance, assume the predictor function of model 1 is given by

𝜂1 (𝑿) = 𝛽
1
0 + 𝛽

1
11 𝑋1 + 𝛽

1
21 𝐼(𝑋1 ≤ 𝑐1) 𝑋2 + 𝛽

1
22 𝐼(𝑋1 > 𝑐1) 𝑋2 .

In this model, the interaction between 𝑋1 and 𝑋2 was found correctly but its form is flawed. Specifically, we have that 1 =
{{𝑁11},{𝑁21,𝑁22}} with 𝑁11 = {𝑋2 ∈ ℝ},𝑁21 = {𝑋1 ≤ 𝑐1} and 𝑁22 = {𝑋1 > 𝑐1}. As the structure of the model is misspecified, 
none of the estimated coefficients �̂�1 = (𝛽1

11 , 𝛽
1
21 , 𝛽

1
22 ) matches the true underlying effects 𝜷 = (𝛽11, 𝛽12, 𝛽2) from the DGP (6). 

Instead, as outlined analogously for data-driven variable selection in linear models by Berk et al. (2013), the coefficient vector �̂�1

actually is an estimate of the solution to the optimization problem

𝜷1 = 𝔼
(
�̂�
1) = arg max

𝒃𝟏
𝔼
(
𝐿1

(
𝒃1 | 𝑌 ,𝒙(1)

))

= arg max
𝒃𝟏

𝐿1

(
𝒃1 | 𝜇(𝒙(1)),𝒙(1)) , (7)

where 𝐿1
(⋅) denotes the likelihood function of model 1. Note that, following Berk et al. (2013), the expectation is evaluated only 

with regard to the outcome variable 𝑌 , and the values of the covariates are treated as fixed at the observed values 𝒙(1) = (𝒙(1)1 ,𝒙
(1)
2 ). 

By definition, 𝜷1 maximizes the likelihood of the model with the fixed structure 1 using the expected values of the outcome 
variable given the observed values of the covariates (i.e. assuming that the DGP is known). In addition, Equation (7) implies that the 
target effects 𝛽

𝑗𝑚
in different models are generally different. For example, applying the TSVC fitting procedure to another sample 

2 = {(𝑦(2)
𝑖

,𝒙
(2)
𝑖

= (𝑥(2)
𝑖1 , 𝑥

(2)
𝑖2 )), 𝑖 = 1, ..., 𝑛} yields a new model 2 with a potentially different structure. Assume the predictor function 

of model 2 is given by

𝜂2 (𝑿) =𝛽
2
0 + 𝛽

2
11 𝐼(𝑋2 ≤ 𝑐2) 𝑋1 + 𝛽

2
12 𝐼(𝑋2 ≤ 𝑐2) 𝑋1

+ 𝛽
2
21 𝐼(𝑋1 ≤ 𝑐1 )𝑋2 + 𝛽

2
22 𝐼(𝑋1 > 𝑐1) 𝑋2 .

Even though the estimated coefficients 𝛽1
21 and 𝛽2

21 of 𝑋2 refer to same partition 𝑁21, they do not estimate the same effect, because 
model structures 1 and 2 do not match and were adjusted for differently structured effects of 𝑋1.

More generally, given a data set  = {(𝑦𝑖,𝒙𝑖 = (𝑥𝑖1, ..., 𝑥𝑖𝑝), 𝑖 = 1, ..., 𝑛} and a TSVC model with selected structure  = {{𝑁𝑗𝑚 ,𝑚 =

1, ...,𝑀𝑗} , 𝑗 = 1, ..., 𝑝} fitted to the data, the corresponding coefficient vector �̂�
estimates the best approximating varying linear 

coefficients given the selected model structure  defined by

𝜷 = 𝔼
(
�̂�
)

= arg max
𝒃

𝐿

(
𝒃 | 𝜇(𝒙),𝒙) . (8)

Our objective is to construct selective CIs for the coefficients 𝛽
𝑗𝑚

as defined in Equation (8) that satisfy Equation (1). For this purpose, 
the distribution of 𝒚 conditional on the model selection event ̂ = needs to be considered. Note that if the structure of the selected 
model coincides with the structure of the DGP, the best approximating varying linear coefficients match the true effects of the DGP. 
In linear regression models with LASSO penalization, Lee et al. (2016) found that if the selection event ̂ = can be characterized 
by a set of inequalities 𝑨𝒚 ≤ 𝒃, where 𝑨 and 𝒃 must not depend on 𝒚, ̂ = constitutes a linear selection event and exact statistical 

74



Computational Statistics and Data Analysis 207 (2025) 108142

5

N. Spuck, M. Schmid, M. Monin et al. 

inference of the coefficients conditional on the selection event can be performed. Specification of the selection event for TSVC models, 
however, would require a vast number of inequalities. The main reason is that the TSVC algorithm involves the fitting of several trees, 
which is considerably more complex than fitting of a single tree or a predictor function with interactions of predefined order (scenarios 
investigated by Neufeld et al., 2022 and Suzumura et al., 2017, respectively). Specifically, in the first iteration of the TSVC algorithm, 
the event of selecting one splitting rule is characterized by 𝑝(𝑝 − 1)𝑛 inequalities, assuming 𝑝 continuous covariates with 𝑛 possible 
split points each. Each inequality specifies that the maximal likelihood value of a model that results from one of the possible splitting 
rules (i.e. a combination of covariate 𝑋𝑗 , effect modifier 𝑋𝑘,𝑘 ≠ 𝑗, and split point) is lower than the maximal likelihood value of the 
model with the selected splitting rule. Overall, (𝑛𝑝2𝑆) inequalities are required to describe the selection of one particular sequence 
of nested TSVC models [𝑠], 𝑠 = 1,… , 𝑆 , and an optimal model  out of it. Since there are cases where the same model structure 
 can arise from a number of different sequences of nested models (e.g. when the same splits are performed in a different order), 
the conditioning set that characterizes the selection event ̂ = is a union of sets defined by these inequalities.

To tackle this complex mechanism, we propose a parametric bootstrap approach tailored to the selective inference problem at 
hand (described in detail in Sections 3.1 and 3.2). Basically, given a TSVC model  fitted to data  with coefficients 𝛽

𝑗𝑚
, we (i) 

generate samples 𝑏 by drawing new values of the outcome variable 𝑌 while keeping the covariate values fixed using a parametric 
bootstrap scheme and (ii) calculate estimates of 𝛽

𝑗𝑚
from the TSVC model 𝑏 fitted to 𝑏 in order to construct percentile CIs based 

on these estimates.

3.1. Calculating bootstrap effect estimates for given 

To construct a CI for the coefficient 𝛽
𝑗𝑚

from a given model with structure  satisfying Equation (1), we compute estimates for 
𝛽

𝑗𝑚
from a set of bootstrap samples 𝑏, 𝑏 = 1,… ,𝐵 (see Section 3.2 for details on the applied bootstrap sampling scheme). A naive 

approach, which simply enforces the structure of the original model  on each sample, would imply that the model structure is 
predefined and neglect the uncertainty induced by the data-driven tree building procedure. To account for this uncertainty, we first 
apply the TSVC fitting procedure to the samples 𝑏, resulting in 𝐵 different models 𝑏 of potentially different form. For each 𝑏 the 
predictor function of model 𝑏 is given by

𝜂𝑏 (X) = 𝛽
𝑏

0 + 𝛽
𝑏

1 (X[−1])𝑋1 +…+ 𝛽
𝑏
𝑝 (X[−𝑝])𝑋𝑝

with

𝛽
𝑏
𝑗

(𝑿[−𝑗]) =
𝑀

(𝑏)
𝑗∑

𝑚=1 
𝛽
𝑏
𝑗𝑚

𝐼(𝑿[−𝑗] ∈ 𝑁
(𝑏)
𝑗𝑚

) .

Secondly, we determine an estimate of the coefficient of interest 𝛽
𝑗𝑚

from the original model based on bootstrap model 𝑏 by 
averaging the node-specific effect estimates 𝛽𝑏

𝑗𝑚
with regard to the corresponding partition 𝑁𝑗𝑚 from the original model yielding

𝛽
(𝑏)
𝑗𝑚

= 1 
|𝑁𝑗𝑚|

∑
𝑖∶x𝑖∈𝑁𝑗𝑚

𝛽
𝑏
𝑗

(x𝑖[−𝑗]) . (9)

This means, for each covariate 𝑋𝑗 each observation is assigned to one of the subsets 𝑁𝑗𝑚 that was identified by the original model , 
and subsequently the average value of the function 𝛽𝑏

𝑗
(⋅) from model 𝑏 across the observations in 𝑁𝑗𝑚 is calculated. Therefore, 

Equation (9) defines an estimate of 𝛽
𝑗𝑚

for bootstrap sample 𝑏 that accounts for the uncertainty induced by the data-driven tree 
building.

Finally, a 100(1 − 𝛼)% percentile CI for 𝛽
𝑗𝑚

is constructed as

𝐶𝐼𝑃

(
𝛽

𝑗𝑚

)
=
[
𝛽

𝛼∕2
𝑗𝑚

;𝛽1−𝛼∕2
𝑗𝑚

]
, (10)

where 𝛽𝑞
𝑗𝑚

denotes the 100𝑞-th percentile of the set of bootstrap estimates 𝛽(1)
𝑗𝑚

,… , 𝛽
(𝐵)
𝑗𝑚

.

3.2. Parametric bootstrap procedure

By the definition in Equation (9) one can determine bootstrap estimates of the coefficients of interest 𝛽
𝑗𝑚

. Yet, calculating these 
estimates does in itself not condition on the model selection event ̂ =. To take this into account, we mimic the conditioning by 
applying a parametric bootstrap scheme, which is based on the original model .

For each observation 𝑖, the value 𝑦(𝑏)
𝑖

in bootstrap sample 𝑏 is drawn from the conditional distribution of 𝑌 | 𝑿 = 𝒙𝑖 given the 
fitted TSVC model , following the parametric bootstrap sampling scheme described in Efron and Tibshirani (1993). That is, the 
new outcome values 𝑦(𝑏)

𝑖
are generated from a distribution with expectation

𝔼(𝑌 | 𝑿 = 𝒙𝑖) = 𝑔−1
(
𝜂(𝒙𝑖)

)
, (11)
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where 𝜂(⋅) is the predictor function of the original TSVC model fitted to . Of note, we keep the values of the covariates 𝑿 fixed 
at the observed values 𝒙𝑖, which is in line with the definition of the best approximating varying linear coefficients in Equation (8). 
Drawing from the conditional distribution also ensures that a bootstrap estimate can be calculated in each sample even if a node 
in the original model is very small (unlike with a nonparametric bootstrap scheme where it is not ensured that a bootstrap sample 
contains observations from every node).

If a Gaussian TSVC model is considered, 𝑔(⋅) is the identity link and the new outcome values of the bootstrap samples are drawn 
using

𝑦
(𝑏)
𝑖

∼ 𝑁
(
𝜂(𝒙𝑖), �̂�2

𝜀

)
,

where 𝑁(⋅, ⋅) denotes the normal distribution and �̂�2
𝜀 is the residual variance of model . For a binary logistic TSVC model, the new 

outcome values are generated as

𝑦
(𝑏)
𝑖

∼ Bin
(
1, logit

(
𝜂(𝒙𝑖)

))
,

where Bin(⋅, ⋅) denotes the binomial distribution. In general, this approach allows to generate 𝐵 bootstrap samples 𝑏 = {(𝑦(𝑏)
𝑖

,𝒙𝑖), 𝑖 =
1,…𝑛} for any kind of generalized TSVC model.

To summarize, given a TSVC model  fitted to data , we propose to perform the following steps to construct 100(1 − 𝛼)% CIs 
for the coefficients 𝛽

𝑗𝑚
:

1. Bootstrap sampling: Generate 𝐵 bootstrap samples 𝑏 = {(𝑦(𝑏)
𝑖

,𝒙𝑖), 𝑖 = 1,…𝑛} by sampling new outcome values from the con-

ditional distribution of the outcome variable with expectation (11).

2. Model fitting: Apply the TSVC fitting procedure described in Section 2 to each sample 𝑏 in order to obtain a model 𝑏 for 
each sample.

3. Calculating bootstrap estimates: Determine the estimates 𝛽(𝑏)
𝑗𝑚

as defined in Equation (9) for each model 𝑏.

4. Percentile intervals: Construct percentile CIs by computing the 100(𝛼∕2)-th and 100(1 − 𝛼∕2)-th percentiles of the set of boot-

strap estimates 𝛽(1)
𝑗𝑚

,… , 𝛽
(𝐵)
𝑗𝑚

as described in Equation (10).

The proposed CI method is available in the R add-on package TSVC version 1.7.2 by Berger (2025).

4. Simulation study

To assess coverage proportions of the proposed parametric bootstrap percentile CIs, we considered different simulation scenarios. 
The aims of the simulation study were (i) to evaluate how the coverage of the proposed CIs is affected by the structure of the DGP, (ii) 
to investigate the effect of sample size and noise in the DGP on the coverage proportions, and (iii) to compare coverage proportions 
of the proposed CIs to those based on alternative types of CIs (e.g. simple asymptotic normal distribution-based Wald intervals). 
The scenarios were based on a linear DGP without varying effects (scenario 1), a tree-structured varying effect DGP (scenario 2), a 
tree-structured varying effect DGP where effect modifiers were prespecified before model fitting (scenario 3), and a tree-structured 
varying effect DGP with additional noise variables (scenario 4). Further details on the DGPs will be given in the following subsections. 
In each replication of the three scenarios, a TSVC model was fitted to the data, where the maximal number of splits was set to 𝑆 = 5
and the BIC was used to determine the optimal number of splits. For the resulting coefficients of interest, 90% as well as 95% CIs 
were constructed using the following methods:

(i) simple asymptotic normal distribution-based Wald type CIs (Wald),

(ii) our proposed parametric bootstrap percentile CIs (Parametric percentile), and

(iii) Wald type CIs, where an adjusted 𝛼-level is determined via bootstrap calibration to account for the uncertainty induced by the 
tree building (Bootstrap calibration; Loh et al., 2019).

The 100(1 − 𝛼)% Wald type CIs are calculated as

𝐶𝐼𝑊

(
𝛽

𝑗𝑚

)
=
[
𝛽

𝑗𝑚 + 𝑧𝛼∕2SE(𝛽
𝑗𝑚 ); 𝛽


𝑗𝑚 + 𝑧1−𝛼∕2SE(𝛽

𝑗𝑚 )
]

, (12)

where 𝑧𝑞 denotes the 100𝑞-th percentile of the standard normal distribution and SE(𝛽
𝑗𝑚

) denotes the standard error of the coefficient 
estimate (not including the uncertainty induced by the model selection). The bootstrap calibration method introduced by Loh et 
al. (2019) is designed to construct CIs for coefficients of regression models that were fitted on subgroups identified by a GUIDE 
regression tree. We applied a version of their algorithm adapted to TSVC models. For a detailed description of the approach, see 
the Supplementary Material. The proposed parametric percentile CIs and the bootstrap-calibrated CIs were constructed based on 
𝐵 = 1000 bootstrap samples, respectively.

In the three simulation scenarios we considered a continuous outcome variable and either two or three covariates with a potential 
effect on the outcome, where 𝑋1,𝑋2 ∼ 𝑁(0,1) and 𝑋3 ∼ Bin(1,0.5). We considered sample sizes of 𝑛 ∈ {200,500,1000} and DGPs 
with normally distributed error terms with standard deviations of 𝜎𝜀 ∈ {1,2}.
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Table 1
Average number of splits based on 5000 replications when fitting a TSVC model for a linear DGP (sce-

nario 1). The first row shows the average total number of splits per replication in the TSVC models. 
Below the average number of splits per replication is reported separately for each combination of co-

variate and effect modifier. The column DGP contains the true number of splits.

Covariate Effect modifier DGP 𝑛 200 500 1000 
𝜎𝜀 1 2 1 2 1 2 

— — 0 0.63 0.63 0.34 0.34 0.22 0.22

𝑋1 𝑋2 0 0.32 0.32 0.18 0.18 0.11 0.11 
𝑋2 𝑋1 0 0.31 0.31 0.17 0.17 0.11 0.11 

Fig. 1. Fitted tree-structured varying coefficients and 95% CIs for a linear DGP (scenario 1). The figure shows the estimated effects 𝛽𝑟

𝑗𝑚 of the original model fitted 
to the data 𝑟 , the best approximating linear coefficients 𝛽𝑟

𝑗𝑚 as defined in Equation (8), corresponding 95% Wald type and parametric percentile CIs for the varying 
linear coefficients of 𝑋1 for 10 exemplary replications. The number of coefficients of 𝑋1 in the true linear DGP is 1. The underlying data were drawn from a linear 
DGP with 𝑛 = 200 and 𝜎𝜀 = 1.

Coverage proportions were calculated based on 𝑅 = 5000 replications. For the varying linear coefficients of a covariate 𝑋𝑗 , the 
average coverage proportion was calculated as

𝐶𝑗 =
1 
𝑅

𝑅 ∑
𝑟=1 

1 
𝑀𝑟

𝑗

𝑀𝑟
𝑗∑

𝑚=1
𝐼
(
𝛽
𝑟
𝑗𝑚

∈ 𝐶𝐼(𝛽𝑟
𝑗𝑚

)
)

,

where 𝑟 denotes the TSVC model fitted in the 𝑟-th replication and 𝑀𝑟
𝑗

denotes the number of coefficients of 𝑋𝑗 in model 𝑟. The 
average coverage proportion across all covariates is then given by

𝐶av =
1
𝑝 

𝑝 ∑
𝑗=1 

𝐶𝑗 .

4.1. Linear DGP

In the first scenario, 𝑋1 and 𝑋2 were included as covariates and potential effect modifiers in the TSVC fitting procedure. The DGP 
of the first scenario was given by

𝑦𝑖 = 0.25 𝑥𝑖1 + 𝜀𝑖 , 𝑖 = 1,… , 𝑛 , (13)

which means that 𝑋1 has a simple non-varying linear effect and 𝑋2 is non informative. The proportions of variance explained by 𝑋1
were approximately 0.06 (𝜎𝜀 = 1) and 0.02 (𝜎𝜀 = 2).

Table 1 shows that the number of splits performed by the TSVC fitting procedure increased with lower sample size but appeared 
to be unaffected by the standard deviation of the error term. Hence, the structure of the model tended to be closer to the DGP with 
larger sample sizes. Of note, the average number of falsely performed splits was nearly equal for the informative covariate 𝑋1 and 
the non-informative covariate 𝑋2.

Exemplary results of the fitted CIs are depicted in Fig. 1. The figure illustrates that the proposed parametric percentile CIs coincided 
with the simple Wald type CIs in cases where no splits were performed (i.e. if there was only one coefficient of 𝑋1 , as, for example, 
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Table 2
Coverage proportions of 95% CIs based on 5000 replications for a linear DGP (scenario 1). For each 
CI method the first row shows the coverage proportion averaged across all coefficients (𝐶av). Below 
coverage proportions are reported separately for each covariate (𝐶𝑗 ). Coverage proportions for 90% 
CIs are given in Table S1 in the Supplementary Material. Coverage proportions of 95% and 90% CIs 
using early stopping by permutation tests are reported in Tables S14 and S15 in the Supplementary 
Material.

CI method Covariate 𝑛 200 500 1000 
𝜎𝜀 1 2 1 2 1 2 

Wald — .833 .833 .875 .875 .900 .900

𝑋1 .832 .832 .874 .874 .903 .903 
𝑋2 .835 .835 .877 .877 .896 .896 

Parametric percentile — .951 .951 .949 .949 .949 .949

𝑋1 .950 .950 .949 .949 .951 .951 
𝑋2 .952 .952 .949 .949 .947 .947 

Bootstrap calibration — .883 .883 .902 .902 .916 .916

𝑋1 .880 .880 .900 .900 .919 .919 
𝑋2 .885 .885 .903 .903 .914 .914 

in replication 2). In cases with more than one coefficient (for example in replication 1), the parametric percentile CIs were wider 
and were therefore more likely to cover the best approximating coefficient. An evaluation of the average widths of the CIs and 
corresponding standard deviations is presented in Tables S2 and S3 in the Supplementary Material. From Fig. 1 it is also seen, that 
unlike the Wald type CIs, the parametric percentile CIs were not necessarily symmetric around the coefficient estimate. Note that, due 
to the linear DGP without varying coefficients, the best approximating coefficient equals the true effect from the DGP independent 
of the selected TSVC model structure.

From Table 2 it is seen that the proposed parametric percentile CIs yielded coverage proportions very close to the nominal level 
across all settings (with varying 𝑛 and 𝜎𝜀). The coverage proportions of the Wald type CIs were far too low but increased with higher 
sample size. This is likely due to the lower number of splits performed for larger samples (see Table 1) and the fact that the Wald 
type CIs are valid and yield the desired coverage if no splits are performed (i.e. if the coefficients are simply non-varying). The 
bootstrap-calibrated CIs showed improved coverage proportions compared to the Wald type CIs but performed considerably worse 
than our proposed CIs (coverage proportions < 0.92). Analogous results were observed for 90% CIs (see Supplementary Material 
Table S1). With early stopping by permutation tests (see Supplementary Material Tables S14 and S15) the coverage proportions of 
the parametric percentile CIs remained unaffected, while the bootstrap-calibrated CIs were too conservative and showed to be highly 
sensitive to the pruning method.

Of note, even with this simple underlying linear DGP without varying effects, neglecting the fact that constructing CIs for TSVCs 
is a selective inference problem (e.g. by applying a naive Wald type CI) may yield highly anti-conservative results with low coverage.

4.2. Varying effect DGP

The data in the second scenario was generated by

𝑦𝑖 = 0.5 𝐼(𝑥𝑖2 ≤ 0.5 ∧ 𝑥𝑖3 = 1) 𝑥𝑖1 − 𝐼(𝑥𝑖2 > 0.5) 𝑥𝑖1 + 𝜀𝑖 , 𝑖 = 1,… , 𝑛 . (14)

Here, a varying effect of 𝑋1 that is determined by a tree structure with three terminal nodes was present. The covariates 𝑋2 and 𝑋3
did not have a linear effect but served only as effect modifiers for 𝑋1 . The proportions of variance explained by the covariate and the 
effect modifiers were 0.26 (𝜎𝜀 = 1) and 0.08 (𝜎𝜀 = 2).

Table 3 shows that the average number of splits performed by TSVC decreased with sample size and noise. It is also seen that the 
proportion of splits performed for the linear effect of 𝑋1 increased with sample size, which suggests that the structure of the fitted 
models aligned more closely with the structure of the DGP if 𝑛 was large. Furthermore, the table shows that 𝑋2 was more likely to 
be selected as an effect modifier than 𝑋3, which reflects the tendency of the tree building towards the selection of continuous over 
binary splitting variables.

Fig. 2 as well as Supplementary Material Tables S5 and S6 illustrate that the parametric bootstrap approach yielded wider CIs than 
the normal distribution-based Wald type approach (which resulted in much better coverage proportions, see Table 4). Note that, in 
this scenario, the best approximating coefficients differed between replications depending on the structure of the fitted TSVC model. 
In most of the depicted replications the three regions with coefficients 𝛽11 = 0, 𝛽12 = 0.5, and 𝛽13 = 1 appear to be identified quite 
well. There were, however, also cases where too many (replications 4 and 8) or too few splits in the coefficient of 𝑋1 were performed 
(replication 7).

Table 4 shows that the coverage proportions of the proposed parametric percentile CIs were slightly conservative but approached 
the nominal level of 95% for larger sample size and lower noise. Coverage proportions for the coefficients of 𝑋1 exceeded the nominal 
level the most whereas the CIs for the coefficients of 𝑋3 (eighth row in Table 4) were close to the nominal level across all settings. This 
may be due to the fact that 𝑋3 was a binary variable and therefore allowed only one split point when selected as effect modifier. While 
the bootstrap calibration approach outperformed the normal distribution-based Wald type approach, both resulted in insufficiently 
low coverage across all settings (< 0.87 and < 0.92 on average). Coverage of the Wald type CIs increased with larger sample size, but 
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Table 3
Average number of splits based on 5000 replications when fitting a TSVC model for a varying effect 
DGP (scenario 2). The first row shows the average total number of splits per replication in the TSVC 
models. Below the average number of splits per replication is reported separately for each combination 
of covariate and effect modifier. The column DGP contains the true number of splits.

Covariate Effect modifier DGP 𝑛 200 500 1000 
𝜎𝜀 1 2 1 2 1 2 

— — 2 3.55 3.05 3.04 2.73 2.87 2.66

𝑋1 — 2 2.47 1.43 2.42 2.00 2.47 2.22

𝑋2 1 1.50 1.03 1.41 1.14 1.43 1.23 
𝑋3 1 0.97 0.40 1.02 0.86 1.03 1.00 

𝑋2 — 0 0.31 0.42 0.18 0.20 0.12 0.13

𝑋1 0 0.29 0.39 0.18 0.19 0.12 0.13 
𝑋3 0 0.02 0.03 0.01 0.01 0.00 0.01 

𝑋3 — 0 0.77 1.20 0.43 0.53 0.28 0.30

𝑋1 0 0.42 0.72 0.23 0.31 0.15 0.16 
𝑋2 0 0.35 0.48 0.21 0.22 0.13 0.14 

Fig. 2. Fitted tree-structured varying coefficients and 95% CIs for a varying effect DGP (scenario 2). The figure shows the estimated effects 𝛽𝑟

𝑗𝑚 of the original model 
fitted to the data 𝑟 , the best approximating linear coefficients 𝛽𝑟

𝑗𝑚 as defined in Equation (8), corresponding 95% Wald type and parametric percentile CIs for the 
varying linear coefficients of 𝑋1 for 10 exemplary replications. The number of coefficients of 𝑋1 in the true varying effect DGP is 3. The underlying data were drawn 
from a linear DGP with 𝑛 = 200 and 𝜎𝜀 = 1.

no differences with regard to 𝑛 and 𝜎𝜀 were apparent for bootstrap calibration. The coverage proportions of the 90% CIs exhibited 
an overall similar pattern (see Supplementary Material Table S2).

4.3. Varying effect DGP with known effect modifiers

In the third scenario, the varying effect DGP from Equation (14) was applied again. However, compared to scenario 2 it is now 
assumed that the effect modifiers were known before model fitting, i.e. it was specified that only 𝑋2 and 𝑋3 are considered as potential 
effect modifiers in the TSVC fitting procedure. This type of scenario is common in applications, where prior knowledge is available 
or certain shapes of interactions between variables are scientifically not meaningful (see for example the application to real-world 
data in Section 5.2). Note that, while knowing the effect modifiers simplified the model selection problem, the TSVC algorithm still 
needed to detect which coefficients are modified by which effect modifier and the corresponding splitting rule.

The average number of splits shown in Table 5 was lower than in the second scenario and closer to the true number of 2 splits 
across all settings. As in the previous scenarios, fewer splits were performed if the sample size was large and the level of noise was 
high. In addition, it is seen that nearly none of the splits were performed in the coefficient of 𝑋2 , where the only available splitting 
option was 𝑋3.

Table 6 shows that the proposed parametric percentile CIs yielded coverage proportions close to the nominal level for the coef-

ficients of 𝑋1 and 𝑋3 (sixth and eighth row) and rather conservative coverage proportions for the coefficients of 𝑋2 (seventh row) 
across all settings. The fact that 𝑋1 was no longer considered as a potential effect modifier for 𝑋2 and 𝑋3 led to substantially improved 
coverage proportions for the coefficients of 𝑋1 compared to the results observed in the previous scenario (see Table 4). The Wald 
type and bootstrap-calibrated CIs again tended to yield insufficient coverage proportions but they were much closer to nominal level 
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Table 4
Coverage proportions of 95% CIs based on 5000 replications for a varying effect DGP (scenario 2). 
For each CI method the first row shows the coverage proportion averaged across all coefficients (𝐶av). 
Below coverage proportions are reported separately for each covariate (𝐶𝑗). Coverage proportions 
for 90% CIs are given in Table S2 in the Supplementary Material.

CI method Covariate 𝑛 200 500 1000

𝜎𝜀 1 2 1 2 1 2 
Wald — .795 .795 .843 .852 .865 .867

𝑋1 .824 .807 .862 .873 .879 .883 
𝑋2 .797 .801 .849 .857 .868 .872 
𝑋3 .764 .777 .817 .825 .849 .846 

Parametric percentile — .968 .971 .966 .970 .963 .965

𝑋1 .981 .984 .979 .985 .972 .977 
𝑋2 .971 .975 .971 .972 .971 .972 
𝑋3 .951 .955 .948 .952 .947 .948 

Bootstrap calibration — .901 .911 .901 .914 .911 .908

𝑋1 .922 .916 .914 .934 .918 .917 
𝑋2 .896 .913 .899 .909 .911 .809 
𝑋3 .886 .903 .890 .899 .903 .899 

Table 5
Average number of splits based on 5000 replications when fitting a TSVC model for a varying effect 
DGP with known effect modifiers (scenario 3). The first row shows the average total number of splits 
per replication in the TSVC models. Below the average number of splits per replication is reported 
separately for each combination of covariate and effect modifier. The column DGP contains the true 
number of splits.

Covariate Effect modifier DGP 𝑛 200 500 1000 
𝜎𝜀 1 2 1 2 1 2 

— — 2 2.95 2.39 2.64 2.45 2.60 2.37

𝑋1 — 2 2.64 2.06 2.47 2.29 2.49 2.26

𝑋2 1 1.61 1.35 1.44 1.29 1.45 1.24 
𝑋3 1 1.03 0.71 1.03 0.99 1.04 1.01 

𝑋2 𝑋3 0 0.01 0.01 0.01 0.01 0.00 0.00 
𝑋3 𝑋2 0 0.30 0.32 0.16 0.16 0.11 0.11 

Table 6
Coverage proportions of 95% CIs based on 5000 replications for a varying effect DGP with known ef-

fect modifiers (scenario 3). For each CI method the first row shows the coverage proportion averaged 
across all coefficients (𝐶av). Below coverage proportions are reported separately for each covariate 
(𝐶𝑗 ). Coverage proportions for 90% CIs are given in Table S3 in the Supplementary Material.

CI method Covariate 𝑛 200 500 1000

𝜎𝜀 1 2 1 2 1 2 
Wald — .873 .870 .903 .903 .915 .915

𝑋1 .862 .856 .895 .897 .906 .910 
𝑋2 .899 .899 .920 .919 .934 .931 
𝑋3 .858 .855 .893 .892 .906 .903 

Parametric percentile — .952 .957 .955 .957 .956 .956

𝑋1 .948 .961 .951 .955 .949 .951 
𝑋2 .970 .970 .971 .972 .972 .972 
𝑋3 .939 .940 .944 .943 .946 .946 

Bootstrap calibration — .923 .928 .928 .930 .934 .931

𝑋1 .925 .925 .928 .928 .929 .928 
𝑋2 .929 .935 .927 .936 .946 .944 
𝑋3 .914 .924 .918 .927 .925 .922 

of 95% compared to scenario 2. The bootstrap-calibrated CIs achieved proportions around 0.93 if the sample size was large and the 
level of noise was low. Similar results were observed for the 90% CIs (see Supplementary Material Table S3). Average widths of the 
CIs are given in Supplementary Material Tables S8 and S9. Wald type CIs were shorter than the parametric percentile CIs throughout 
all settings. The bootstrap-calibrated and the parametric percentile CIs were similarly wide, indicating that the symmetric shape of 
the bootstrap-calibrated CIs may be the cause of insufficient coverage proportions.
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Table 7
Average number of splits based on 5000 replications when fitting a TSVC model for a varying effect 
DGP with additional noise variables (scenario 4). The first row shows the average total number of splits 
per replication in the TSVC models. Below the average number of splits per replication is reported 
separately for each combination of covariate and effect modifier. The column DGP contains the true 
number of splits.

Covariate Effect modifier DGP 𝑛 200 500 1000 
𝜎𝜀 1 2 1 2 1 2 

— — 2 4.39 4.09 3.70 3.54 3.11 3.11

𝑋1 — 2 2.48 1.84 2.44 2.25 2.25 2.26

𝑋2 1 1.46 1.19 1.42 1.27 1.24 1.25 
𝑋3 1 1.02 0.64 1.02 0.98 1.01 1.01 

𝑋2 𝑋3 0 0.01 0.01 0.01 0.01 0.00 0.00 
𝑋3 𝑋2 0 0.21 0.25 0.14 0.14 0.11 0.10 
Noise — 0 0.24 0.29 0.16 0.16 0.11 0.11

𝑋2 0 0.21 0.25 0.14 0.15 0.10 0.10 
𝑋3 0 0.03 0.03 0.02 0.02 0.01 0.01 

Table 8
Coverage proportions of 95% CIs based on 5000 replications for a varying effect DGP with additional 
noise variables (scenario 4). For each CI method the first row shows the coverage proportion averaged 
across all coefficients (𝐶av). Below coverage proportions are reported separately for each covariate 
(𝐶𝑗 ). Coverage proportions for 90% CIs are given in Table S3 in the Supplementary Material.

CI method Covariate 𝑛 200 500 1000

𝜎𝜀 1 2 1 2 1 2 
Wald — .832 .819 .877 .871 .877 .894

𝑋1 .863 .848 .890 .887 .890 .914 
𝑋2 .768 .760 .821 .821 .821 .842 
𝑋3 .820 .804 .872 .866 .872 .888 
Noise .840 .826 .883 .877 .884 .899 

Parametric percentile — .944 .941 .951 .951 .951 .952

𝑋1 .957 .955 .949 .955 .950 .962 
𝑋2 .980 .977 .988 .985 .988 .988 
𝑋3 .969 .968 .972 .976 .972 .971 
Noise .933 .930 .943 .943 .943 .943 

Bootstrap calibration — .928 .933 .921 .924 .924 .924

𝑋1 .944 .947 .931 .940 .932 .931 
𝑋2 .913 .922 .910 .916 .908 .908 
𝑋3 .925 .931 .920 .924 .924 .924 
Noise .928 .933 .922 .923 .925 .925 

4.4. Varying effect DGP with additional noise variables

In the fourth scenario, we again considered the DGP in Equation (14). In order to investigate the performance of the proposed 
CIs in a higher dimensional scenario, we included seven additional noise variables 𝑋4 ,… ,𝑋6 ∼ 𝑁(0,1) and 𝑋7,… ,𝑋10 ∼ Bin(1,0.5). 
In such scenarios with a larger number of covariates, it is usually not meaningful to assume that each covariate can be modified by 
each other covariate. Otherwise, the interpretability of the TSVC model would strongly suffer. Therefore, as in scenario 3, we only 
allowed 𝑋2 and 𝑋3 as the potential effect modifiers.

It is seen from Table 7 that the average number of splits increased with the number of covariates (cf. Table 5 in scenario 3). 
Analogously to the previous scenarios, the number of splits decreased with sample size, and almost no splits in the effect of 𝑋2 were 
performed. While the true splits with regard to 𝑋1 were selected quite well, there was also a substantial proportion of falsely selected 
splits in the noise variables.

Table 8 shows that the average coverage proportions of the parametric percentile CIs were close to the nominal level across 
all settings. The parametric percentile CIs referring to the potential effect modifiers 𝑋2 and 𝑋3 yielded rather conservative results, 
whereas the coverage proportions for the noise variables was below the nominal level if the sample size was low (𝑛 = 200) but 
approached the 95% level as the sample size increased. Similarly to the previous scenarios, the Wald type CIs yielded highly anti-

conservative coverage proportions but improved with increasing sample size. The bootstrap-calibrated CIs exhibited larger but still 
anti-conservative coverage proportions that changed only little across the different settings. An overall similar pattern was observed 
for the 90% CIs (see Table S10 in the Supplementary Material). The parametric percentile and bootstrap calibration approach yielded 
CIs of similar width (see Tables S11 and S12 in the Supplementary Material), which, taking together all the results, supports the 
finding that the symmetrically constructed bootstrap-calibrated CIs are inappropriate for TSVC models.
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Table 9
Runtimes of the parametric percentile approach. Median runtimes 
in minutes for the four different simulation scenarios based on 100 
replications in the setting with sample size 𝑛 = 200 and standard 
deviation 𝜎𝜀 = 1. CIs were constructed based on 𝐵 = 1000 bootstrap 
samples. The first and third quartile of the runtimes are given in 
brackets. The calculations were performed on a high performance 
computing cluster that consists of 7 nodes with a total of 720 AMD 
Epyc CPUs and 2.2 terabytes RAM for general purpose computing. 
GPU nodes are one 35 Intel Xeon Gold 6 150 CPUs, 500 GB RAM, 
two NVIDIA V100, and one NVIDIA P40. Roughly 162 terabytes of 
hard drive space are available for storing project data. Connections 
between nodes use 10 gigabits per second Ethernet links.

Simulation scenario Run time (in minutes) 
1 15 [14, 27] 
2 62 [56, 104] 
3 25 [21, 42] 
4 78 [70, 167] 

4.5. Runtime

In the final part of the simulation study, we investigated the computing times of the proposed parametric percentile CIs. For this, 
we considered 100 replications of the setting with sample size 𝑛 = 200 and standard deviation 𝜎𝜀 = 1 for each of the four simulation 
scenarios described in Sections 4.1 to 4.4. Table 9 shows that the distributions of the runtimes for each scenario are right-skewed. 
This reflects that in some iterations a relatively high number of splits was performed, which increased runtime. It is also seen that 
the runtime of the algorithm differed strongly between the four simulation scenarios. Overall, runtimes increased with the number 
of covariates: Scenario 1 with only 𝑝 = 2 covariates exhibited the lowest median runtime while the highest median runtime was 
observed in simulation scenario 4 with 𝑝 = 10. On the other hand, the computational complexity can be decreased substantially by 
prespecification of the effect modifiers: Scenario 2, where all covariates served as potential effect modifiers, showed runtimes that 
were about twice as high as in scenario 3, where 𝑋1 was excluded from the set of possible effect modifiers. Limiting the set of possible 
effect modifiers leads to a lower number of available splitting rules and thereby a lower number of candidate models to be fitted in 
each iteration of the tree-building procedure.

Overall, runtimes of the proposed algorithm depend on the number of covariates 𝑝, the number of potential effect modifiers, the 
maximal number of splits 𝑆 , and, of course, the number of bootstrap samples 𝐵.

5. Applications

To illustrate the proposed parametric bootstrap approach for constructing CIs for TSVCs, two applications to real-world patient 
data were considered. The results are described in the following.

5.1. Patients with COVID-19

We considered data from a retrospective study in patients with PCR-confirmed COVID-19 that were admitted to the infectious 
disease department of the University Hospital Bonn between March 2020 and November 2021. A main objective of the study was to 
investigate the effect of treatment with the monoclonal antibody combination casirivimab/imdevimab (CVIV) on the need for oxygen 
support in the further course of the disease. We analyzed data from 𝑛 = 238 patients hospitalized within five days after infection. For 
more details on the study, see Huebner et al. (2023). The characteristics of the patients included in our analysis are: Sex (0: female, 
1: male), age in years, whether the patient suffered from another respiratory disease (0: no, 1: yes), and treatment with CVIV (0: no, 
1: yes).

Huebner et al. (2023) analyzed the data using propensity score-weighted logistic regression. A need for oxygen support was shown 
to be significantly less frequent following treatment with CVIV (at error level 𝛼 = 0.05). Exploratory analyses indicated higher age as 
one of most relevant risk factors for requiring oxygen support in COVID-19 patients.

Our objective was to detect possible interactions between the four variables and we allowed each variable to be modified by each 
other variable. In order to do so, we fitted a logistic TSVC model with binary outcome ‘need for oxygen support’ (yes/no) to the data, 
where the BIC was used to select the optimal number of splits, the maximal number of splits considered was 𝑆 = 5 and we set the 
minimal bucket size to 𝑛mb = 20. Then we applied the proposed parametric bootstrap approach to obtain percentile CIs of the odds 
ratios based on 𝐵 = 1000 bootstrap samples. For comparison, we also calculated asymptotic normal distribution-based Wald type CIs.

The results in Table 10 and Fig. 3a show that one split in the treatment effect with regard to age at split point 60 years was 
performed. According to the coefficient estimates, patients of age 60 years or younger benefited more from the CVIV treatment than 
patients older than 60 years. The Wald type CIs implied significant effects of age and CVIV treatment in both identified age groups 
at error level 𝛼 = 0.05. The proposed parametric percentile CIs were much wider and indicated only a significant effect of treatment 
with CVIV for the group of patients aged 60 years or younger but no significant treatment effect for patients older than 60 years. Sex 
and the presence of another respiratory disease both showed no evidence for an effect. 
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Table 10

Effect estimates, odds ratios, and 95% CIs of the odds ratios from the logistic TSVC model fitted to the 
COVID-19 data.

Covariate Partition 𝛽 exp(𝛽) Wald type CI Parametric percentile CI 
Sex — 0.399 1.491 [0.826; 2.709] [0.814; 2.987] 
Age — 0.022 1.023 [1.004; 1.041] [0.983; 1.053] 
Respiratory disease — -0.028 0.972 [0.426; 2.305] [0.420; 3.131] 
CVIV Age ≤ 60 -2.969 0.051 [0.012; 0.158] [0.000; 0.137] 

Age > 60 -1.005 0.366 [0.170; 0.785] [0.016; 11.771] 

Fig. 3. Varying coefficients detected in the real-world applications. The figures show the tree-structured representation of the varying effects of antibody treatment 
on need for oxygen support and of diabetes on LOS in hospital for patients suffering from COVID-19 and acute odontogenic infection, respectively.

5.2. Patients with acute odontogenic infection

In a second application, we analyzed data from a retrospective study investigating hospitalized patients with abscess of odontogenic 
origin conducted between 2012 and 2017 by the Department of Oral and Cranio-Maxillo and Facial Plastic Surgery at the University 
Hospital Bonn. Patients with an acute odontogenic infection suffer from pain, swelling, erythema and hyperthermia. If not treated 
at an early stage, such infections may spread into deep neck spaces and lead to perilous complications by menacing anatomical 
structures, such as major blood vessels, the upper airway and the mediastinum (Biasotto et al., 2004). The primary objective of the 
study was to identify risk factors that are associated with a prolonged length of stay (LOS) in the treatment of severe odontogenic 
infections. LOS was recorded in days (𝑡 = 1,… ,18). Here data from 303 patients that underwent surgical treatment in terms of incision 
and drainage of the abscess were considered. Intravenous antibiotics were administered during the operation and for the length of 
inpatient treatment. Further details on the study can be found in Heim et al. (2019). Characteristics of the patients relevant for 
modeling were: age in years, spreading of the infection focus into facial spaces (0: no, 1: yes), and the presence of diabetes mellitus 
type 2 (0: no, 1: yes).

Puth et al. (2020) analyzed the data using a logistic discrete hazard model with tree-structured varying coefficients (see the 
Supplementary Material for more details on the logistic discrete hazard model). Specifically, they allowed for the coefficients of all 
covariates to be modified by 𝑡 (time since admission), which was considered as the only potential effect modifier. The number of 
splits performed was determined using a permutation test (Berger et al., 2019). Their findings indicated that the effect of diabetes is 
modified by 𝑡, where patients suffering from diabetes are much less likely to be discharged within the first four days since admission 
but after four days the effect of diabetes vanishes.

We analyzed the data analogously allowing only 𝑡 as potential effect modifier, except using BIC to obtain the optimal number of 
splits with a maximal number of splits of 𝑆 = 5 and a minimal bucket size of 𝑛mb = 20. With the adapted strategy we were able to 
reproduce the fitted model structure by Puth et al. (2020). Then we applied Wald type CIs and the proposed parametric bootstrap 
approach to obtain 95% CIs of the coefficients based on 𝐵 = 1000 bootstrap samples. As detailed in the Supplementary Material the 
exponential coefficients refer to the ratios of the continuation ratios.

The results are shown in Table 11 and Fig. 3b. The parametric percentile CIs were again much wider than the Wald type CIs and 
indicated a significant effect of spreading of the infection focus into facial spaces on the time to discharge but no significant effect of 
age (in contrast to the Wald type CI). Importantly, both CI methods indicated that diabetes significantly decreased the probability of 
being discharged within the first 4 days since admission, whereas no effect of diabetes after day 4 was shown, confirming the findings 
by Puth et al. (2020).
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Table 11

Effect estimates, exponential coefficients, and 95% CIs of the exponential coefficients from the 
logistic discrete hazard TSVC model fitted to the odontogenic infection data.

Covariate Partition 𝛽 exp(𝛽) Wald type CI Parametric percentile CI 
Age — -0.008 0.992 [0.983; 0.999] [0.983; 1.001] 
Spreading — -0.939 0.391 [0.255; 0.584] [0.204; 0.614] 
Diabetes 𝑡 ≤ 4 -2.438 0.087 [0.004; 0.409] [0.000; 0.760] 

𝑡 > 4 0.002 1.000 [0.578; 1.695] [0.430; 2.159] 

6. Summary and discussion

TSVC models are flexible tools for generalized regression that allow the linear effects of the covariates to vary with the effect 
modifiers and apply a tree building procedure to inherently detect relevant effect modifiers. Constructing CIs for TSVCs is a selective 
inference problem as statistical inference is performed after model selection. In this vein, we proposed a parametric bootstrap approach 
tailored to the complex selection mechanism of TSVC.

The applications to real-world data from COVID-19 patients and from patients suffering from acute odontogenic infection showed 
that the proposed CIs may differ strongly from naive Wald type CIs and lead to different conclusions when assessing statistical 
significance of the coefficients. Both, the effect of CVIV in the group of elderly patients and the effect of diabetes within the first 
four days of hospitalization are highly clinically meaningful. This highlights that accounting for the selective inference problem is 
essential when statistical inference on the parameters of a TSVC model is of interest. In the simulation study, our approach yielded 
coverage proportions close to the nominal level for the linear DGP whereas the simple Wald type CI and the bootstrap calibration 
approach by Loh et al. (2019) showed insufficient coverage. Low coverage proportions of bootstrap-calibrated CIs are also in line with 
findings in previous papers (Neufeld et al., 2022). The results of simulation scenario 3 (where the effect modifiers were prespecified 
before model fitting) also demonstrate that the performance of the CI methods depends on the complexity of the selection problem. 
In more complex scenarios, where the effect modifiers are not known beforehand (scenario 2), the proposed approach showed rather 
conservative results for the coefficients of continuous covariates, whereas Wald type and bootstrap-calibrated CIs yielded coverage 
proportions that were far too low. Overall, naive Wald type CIs are markedly out of target if there is strong uncertainty of the 
predictor-response relationship and there is only weak evidence of possible interactions (and the associated split points) given a 
set of covariates. For example, the large discrepancy between the Wald type CI and the parametric percentile CI in the COVID-19 
application indicates that there is only weak evidence for the split at 60 years of age. On the other hand, if the group of elderly above 
60 years of age clearly benefited less from the treatment, there would be less uncertainty in the interaction effect and the Wald type 
CI for CVIV: Age>60 may be closer to the parametric percentile CI.

The parametric bootstrap procedure offers an approximate solution for conditioning on the model selection event. As further 
refinement, weighted percentiles could be applied, where the bootstrap estimates from models with tree structures that are more 
similar to the originally fitted TSVC model are given more weight in the percentile calculation of the proposed algorithm (see step 4 
in the algorithm described in Section 3.2).

TSVC models can be fitted using the eponymous R add-on package (Berger, 2025). While the implementation generally allows that 
the effect of each covariate is modified by the other variables, the package also enables to flexibly incorporate prior knowledge about 
the model structure. For instance, if the effect modifiers are known beforehand (as in simulation scenario 3 and 4 and the application 
to the odontogenic infection data), this can be specified in the arguments of the TSVC modeling function. It is also possible to declare 
covariates having fixed non-varying linear effects, and covariates that serve as effect modifiers, only.

Berger et al. (2019) proposed to apply permutation tests as an early stopping criterion for the tree building in TSVC models. In 
each iteration, a test is performed to assess whether a further split should be performed or not. That is, these tests allow for inference 
on the difference between the coefficients in two nodes but not on the coefficients themselves. Our approach fills this important 
gap and allows to quantify uncertainty of the parameter estimates and to assess statistical significance of the varying coefficients 
in each node. Of note, the proposed CI approach can be used in combination with any stopping criterion for the tree building in 
TSVC, including permutation tests and minimal node size tuning. Here, we selected the optimal number of splits based on the BIC. 
Alternatively, the Akaike information cirterion (AIC) or the cross-validated predictive log-likelihood can be applied.

The proposed CI approach may easily be extended to construct confidence intervals for parameters of other tree-based models, 
which is a promising focus for future research. Examples include probability estimates in the leaf nodes of a classification tree, 
parametric models in model-based recursive partitioning (Zeileis et al., 2008), and survival trees (Schmid et al., 2016; Spuck et al., 
2023). In order to perform the parametric bootstrap, it is required to make an appropriate distributional assumption. Distributional 
regression within the scope of tree-based models has currently been studied by several authors, see, among others, Schlosser et al. 
(2019) and Weinhold et al. (2020).
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2025.108142. 
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4 Discussion with references

The articles in this dissertation enhance the applicability of tree-based regression in biomedi-

cal research by introducing novel flexible tree-based models tailored to different data scenar-

ios and by developing a framework for selective inference for TSVCs.

The application of the survival tree in Publication 2 (Elahi et al., 2023) illustrated the advan-

tages of tree-based modeling for the analysis of biomedical data. Specifically, the survival

tree selected three characteristics of the OSCC patients (type of flap, age, and whether an

early complication occurred) that affected the LOS most strongly from a set of more than

fifteen covariates, which illustrates the inherent variable selection in tree-based models. In

addition, the tree-based modeling approach facilitated the detection of important interactions

between time and the characteristics of the patients. Type of flap and age were shown to

affect the probability of being discharged from hospital only within the first twelve days since

admission, whereas the occurrence of complications affected LOS only after day twelve. The

graphical representation as a hierarchical tree (see Publication 2, Fig. 1) allows for an intuitive

interpretation of the results. Furthermore, the results of the simulation studies confirmed that

tree-based modeling is highly effective at selecting relevant covariates and capturing interac-

tion effects, in particular, in high-dimensional settings, see Publication 1 (Spuck et al., 2023)

and the Unpublished Manuscript (Spuck et al., 2025 a). On the other hand, the proposed

tree-based models performed worse than the linear competitors in scenarios with linear data

generating processes (Spuck et al., 2023; 2025 a).

Notably, all proposed models can be fitted within the framework of TSVC by applying the

eponymous R add-on package (Berger, 2025). Tree-based modeling of varying coefficients

was further explored, for example, by Bürgin and Ritschard (2015) for longitudinal ordinal data,

by Puth et al. (2020) in the context of time-varying coefficients in time-to-event analysis, and

by Zakrisson and Lindholm (2025) in combination with cyclic gradient boosting. The additive

structure of the predictor functions and the likelihood-based TSVC fitting procedure make the

proposed models easily generalizable and allow extensions that combine the tree structures

with linear terms. This may be particularly advantageous in biomedical applications, where
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prior knowledge on the effects of some of the covariates is available. Due to the likelihood-

based TSVC model fitting procedure, the proposed methods can be applied with outcome

variables on a variety of different scales and with a number of different link functions.

In Spuck et al. (2023), various criteria to limit the complexity of the tree-based models and

avoid overfitting were compared. The post-pruning strategy yielded models with a predictive

performance similar to the rather conservative permutation test approach (Berger et al., 2019).

Therefore, less computationally intensive post-pruning strategies based on cross-validation

(Spuck et al., 2025 a) and an information criterion (Spuck et al., 2025 b) were adapted in the

following projects. Note, however, that the post-pruning strategy is unable to guarantee a

prespecified error level and may lead to less parsimonious models.

It is a well-known result that tree-based models suffer from high variability and are prone to

overfitting (Hastie et al., 2009). To overcome these challenges and improve predictive perfor-

mance, the proposed models can be extended to ensemble methods. Tree-based ensemble

methods were studied previously, for example, by Schmid et al. (2020) and Moradian et al.

(2022) in the context of discrete time-to-event data and by Hajjem et al. (2012) and Speiser

et al. (2019) in the context of clustered data.

The simulation results in Publication 3 (Spuck et al., 2025 b) confirm the selective inference

problem with tree-based approaches (cf. Neufeld et al., 2022). In particular, asymptotic nor-

mal distribution-based CIs for TSVCs yielded insufficient coverage proportions across all sim-

ulation scenarios. The proposed CI method resulted in coverage proportions closer to the

nominal level with more conservative results as the complexity of the model selection prob-

lem increased. Of note, the proposed approach was designed for TSVC models, but can

easily be adapted to construct CIs for parameters from other tree-based models, for instance,

model-based recursive partitioning (Zeileis et al., 2008), and models for discrete time-to-event

analysis (Schmid et al., 2016; Spuck et al., 2023), or clustered data (Spuck et al., 2025 a),

which appears promising to explore in future research. However, unlike other approaches

for selective inference (Tibshirani et al., 2016; Neufeld et al., 2022), the proposed bootstrap

approach is not based on classical statistical theory and should be viewed as an approximate
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solution for complex tree-based models, where no asymptotic approach is currently available.

The ability of the proposed tree-basedmethods to handle very high-dimensional data is limited

by computational cost. The CI method in Spuck et al. (2025 b) is particularly demanding due to

the repeated application of the complex TSVC fitting procedure, where the number of required

optimizations of the likelihood function grows with the number of covariates.

4.1 Conclusion

In summary, this cumulative dissertation increases the applicability of tree-based regression

approaches with a focus on biomedical research. A major contribution is the extension of the

catalog of available tree-based models for discrete time-to-event and clustered data. Further-

more, the dissertation outlines a novel approach for inference on parameters from tree-based

models and thereby helps overcome one of the major drawbacks of tree-based approaches.
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