
Expanding the Pareto Frontier of Electronic

Structure Methods with Advanced Basis Sets

Marcel Müller

Dissertation



Expanding the Pareto Frontier of Electronic Structure
Methods with Advanced Basis Sets

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Marcel Müller

aus
Waldbröl

Bonn 2025



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

Gutachter/Betreuer: Prof. Dr. Stefan Grimme
Gutachter: Prof. Dr. Thomas Bredow

Tag der Promotion: 2. Juli 2025
Erscheinungsjahr: 2025



Publications

Parts of this thesis have been published in peer-reviewed journals.

1. M. Müller, A. Hansen, and S. Grimme, ωB97X-3c: A composite range-separated hybrid DFT method
with a molecule-optimized polarized valence double-ζ basis set, The Journal of Chemical Physics
158 1 (2023) 014103, doi: 10.1063/5.0133026.

2. S. Grimme, M. Müller, and A. Hansen, A non-self-consistent tight-binding electronic structure
potential in a polarized double-ζ basis set for all spd-block elements up to Z = 86, The Journal of
Chemical Physics 158 12 (2023) 124111, doi: 10.1063/5.0137838

3. M. Müller, A. Hansen, and S. Grimme, An atom-in-molecule adaptive polarized valence single-ζ
atomic orbital basis for electronic structure calculations, The Journal of Chemical Physics 159 16
(2023) 164108, doi: 10.1063/5.0172373

4. M. Müller, T. Froitzheim, A. Hansen, and S. Grimme, Advanced Charge Extended Hückel (CEH)
Model and a Consistent Adaptive Minimal Basis Set for the Elements Z = 1–103, The Journal of
Physical Chemistry A 128 49 (2024), Publisher: American Chemical Society 10723, doi: 10.1021/
acs.jpca.4c06989

For the following articles significant contributions have been made.

5. K. Škoch, C. G. Daniliuc, G. Kehr, S. Ehlert, M. Müller, S. Grimme, and G. Erker, Frustrated
Lewis-Pair Neighbors at the Xanthene Framework: Epimerization at Phosphorus and Coopera-
tive Formation of Macrocyclic Adduct Structures, Chemistry - A European Journal 27 47 (2021),
Publisher: John Wiley & Sons, Ltd 12104, doi: 10.1002/chem.202100835

6. N. Fleck, R. M. Thomas, M. Müller, S. Grimme, and B. H. Lipshutz, An environmentally responsible
route to tezacaftor, a drug for treatment of cystic fibrosis prepared in water via ppm Au catalysis
as entry to 2-substituted indoles, Green Chemistry 24 17 (2022), Publisher: The Royal Society of
Chemistry 6517, doi: 10.1039/D2GC01828D

7. K. Škoch, C. G. Daniliuc, M. Müller, S. Grimme, G. Kehr, and G. Erker, Stereochemical Behavior
of Pairs of P-stereogenic Phosphanyl Groups at the Dimethylxanthene Backbone, Chemistry - A
European Journal 28 20 (2022), Publisher: John Wiley & Sons, Ltd e202200248, doi: 10.1002/chem.
202200248

iii

https://doi.org/10.1063/5.0133026
https://doi.org/10.1063/5.0137838
https://doi.org/10.1063/5.0172373
https://doi.org/10.1021/acs.jpca.4c06989
https://doi.org/10.1021/acs.jpca.4c06989
https://doi.org/10.1002/chem.202100835
https://doi.org/10.1039/D2GC01828D
https://doi.org/10.1002/chem.202200248
https://doi.org/10.1002/chem.202200248


8. P. Pracht, S. Grimme, C. Bannwarth, F. Bohle, S. Ehlert, G. Feldmann, J. Gorges, M. Müller, T.
Neudecker, C. Plett, S. Spicher, P. Steinbach, P. A. Wesołowski, and F. Zeller, CREST – A program
for the exploration of low-energy molecular chemical space, The Journal of Chemical Physics 160
11 (2024) 114110, doi: 10.1063/5.0197592

The following scientific contributions have been presented at conferences, workshops, and summer schools:

1. 60th Symposium on Theoretical Chemistry, Braunschweig, 2024: Poster on the Charge Extended
Hückel (CEH) model and a consistent adaptive minimal basis set (q-vSZP).

2. Chemical Compound Space Conference, Heidelberg, 2024: Poster on BayBE – A Bayesian Back End
for Design of Experiments.

3. Leopoldina Symposium on Molecular Machine Learning “#LeopoldinAIchem”, Leopoldina, Halle,
2023: Poster on the new dxtb and PTB methods and applications in Bayesian optimization and molecular
machine learning.

4. Meeting of the “SPP2363: Molecular Machine Learning”, Jena, 2023: Poster on the new PTB method
and potential applications in molecular machine learning.

5. 17th International Congress of Quantum Chemistry, Bratislava, 2023: Poster on the new PTB-RPBE-D4
composite electronic structure method.

6. CECAM Psi-k Research Conference 2023, Berlin, 2023: Poster on the new PTB method and potential
applications in molecular machine learning.

7. Bunsen-Tagung 2023, Berlin, 2023: Talk on efficient composite DFT approaches for large molecular
systems and screening applications.

8. Kick-off Meeting of the “SPP2363: Molecular Machine Learning”, Leopoldina, Halle, 2022: Poster
on the new PTB method and potential applications in molecular machine learning.

9. European Summerschool in Quantum Chemistry, Palermo, 2022: Poster on the new composite range-
separated hybrid DFT method “𝜔B97X-3c”.

10. 19th International Conference on Density Functional Theory and its Applications, Brussels, 2022:
Poster on the new composite range-separated hybrid DFT method “𝜔B97X-3c”.

11. 12th Triennial Congress of the World Association of Theoretical and Computational Chemists (WA-
TOC), Vancouver, 2022: Talk on simulation of intensities in vibrational spectroscopy by (semi-)empir-
ical methods.

12. 57th Symposium on Theoretical Chemistry, Würzburg (virtual), 2021: Poster on improved simulation
of IR spectra at the force field level.

iv

https://doi.org/10.1063/5.0197592


Abstract

Paul Dirac famously stated in 1929:9

The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known […]. It therefore becomes
desirable that approximate practical methods of applying quantum mechanics should be
developed, which can lead to an explanation of the main features of complex atomic systems
without too much computation.

Nearly a century later, Dirac’s perspective remains as relevant as ever. The rational design of new drugs
and advanced materials is increasingly driven by high-throughput virtual screenings and machine learning
techniques, fueled by vast molecular databases. This accelerating demand for physically grounded data
necessitates electronic structure methods that are not only accurate but also computationally efficient. Yet,
the complexity of the electronic Schrödinger equation makes exact solutions impractical for most systems,
forcing electronic structure theory to rely on a hierarchy of approximations that balance cost and accuracy.
Two approaches stand out in this trade-off: density functional theory (DFT), the workhorse of computational
chemistry for the past 30 years, and semiempirical quantum mechanical (SQM) methods. DFT reformulates
the electronic structure problem in terms of the electron density, deriving interactions from first principles,
whereas SQM methods replace some of these interactions with semiempirical expressions to reduce the
computational complexity. While SQM methods achieve speed-ups of three to four orders of magnitude,
their accuracy remains limited in many applications. A key factor in balancing computational efficiency and
accuracy in both DFT and SQM methods is the Gaussian atomic orbital (AO) basis set, which dictates how
the electronic wavefunction is represented. This thesis explores several approaches to improve this crucial
factor, aiming to advance efficient electronic structure methods to meet future demands.

The first two chapters introduce common approaches in electronic structure theory and different ways of
approximating those. Chapter 3 deals with an approach to lower the computational cost of DFT by developing
a small basis set composite method. It combines a newly developed polarized valence double-𝜁 basis set,
vDZP, with a state-of-the-art range-separated hybrid density functional. Unlike standard basis sets optimized
for atoms, vDZP is variationally optimized for molecular environments and features a deep contraction
to ensure well-suited AOs, particularly relevant for SQM applications. Together with large-core effective
potentials and the D4 dispersion correction, the resulting 𝜔B97X-3c method extends the “3c” composite DFT
series, outperforming conventional triple-𝜁 approaches in cost-to-accuracy ratio. It is particularly well-suited
for large chemical systems, including biomolecules and supramolecular complexes, where non-local Fock
exchange plays a crucial role.

The vDZP basis set is employed in Chapter 4 to develop the so-called density matrix tight-binding (PTB)
method, a new SQM ansatz incorporating two key advancements: (i) a Hamiltonian expanded in a double-𝜁
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basis set and (ii) a parameterization scheme aimed at reproducing the density matrx (i.e., the molecular
orbitals) of a converged 𝜔B97X-3c DFT calculation. PTB predicts infrared and Raman spectral intensities
with near-DFT accuracy and reliably computes atomic charges and bond orders with minimal deviations from
the reference DFT method. As with all projects presented in this thesis, consistent accuracy over different
chemical spaces and across the periodic table is a core focus of PTB.

However, the development of a robust energy expression within this framework proved infeasible. To
overcome this limitation, Chapter 5 introduces q-vSZP, a new environment-adaptive single-𝜁 basis set. It
dynamically contracts or expands based on atomic charge and the number of coordinating atoms, capturing
effects that typically require multiple-𝜁 basis sets. q-vSZP includes all features of vDZP, such as the molecular
optimization and deep contration of the AOs. While q-vSZP is formally a single-𝜁 basis set, it can keep up
with conventional double-𝜁 basis sets in standard DFT thermochemistry benchmarks.

The atomic charges required for q-vSZP are computed using the Charge Extended Hückel (CEH) method,
which is further refined and extended up to actinide elements (𝑍 < 103) in Chapter 6. By designing an
Extended Hückel Theory approach specifically to reproduce atomic charges from a consistent reference DFT
calculation, CEH achieves accuracy comparable to more advanced SQM methods while being 10–20 times
faster due to the absence of self-consistent field iterations and the employed minimal basis set.

This work systematically examines the challenges of efficient electronic structure methods and proposes,
develops, and tests solutions that expand the Pareto front of methods with optimal cost-to-accuracy balances,
as summed up in Chapter 7. All advancements presented in this thesis are implemented in accessible
computational frameworks, either as open-source software or integrated into established closed-source
platforms. The q-vSZP basis set together with the findings from the PTB and CEH development represent a
cornerstone for a next-generation SQM method, addressing the limitations outlined above to the fullest extent
imaginable today.
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CHAPTER 1

From Observation to Simulation

Science, in its most fundamental form, seeks to describe, understand, and predict the natural world. The
methodology of natural sciences is rooted in observation, experimentation, and theorization: observations
inspire hypotheses, experiments test these hypotheses, and theories are formulated to explain and generalize
the observed phenomena. This cycle of empirical investigation and theoretical refinement has driven scientific
progress for centuries, providing insights into the fundamental principles governing nature. In chemistry,
empirical observations initially dictated how substances interact, react, and transform, with theories emerging
only retrospectively to explain experimental findings. While this approach led to remarkable progress, it was
inherently limited in its ability to reveal the underlying causes of chemical behavior at the atomic level.

Alchemy, though based on mystical notions, laid the groundwork for systematic chemical experimentation.
The discovery of mass conservation in the 18th century10 enabled the first structured understanding of
chemical elements. The idea that matter consists of fundamental building blocks, atoms, was formalized in
the early 19th century by John Dalton,11 marking a shift from qualitative to quantitative chemistry. Yet, the
precise arrangement of atoms in molecules remained elusive. This changed with Kekulé’s valency theory
and structural formulas in the mid-19th century,12–14 which provided a systematic framework for chemical
bonding. Around the same time, Mendeleev’s periodic table classified elements by atomic weight and
recurring properties, providing a more structured theoretical foundation of chemistry.15 Still, atomic theory
remained speculative, and experimental chemistry continued to drive discovery.

A fundamental shift occurred at the turn of the 20th century with the realization that atoms themselves were
composed of subatomic particles. J. J. Thomson’s discovery of the electron16 laid the foundation for modern
chemistry by demonstrating that atoms were not indivisible, and further experimental breakthroughs revealed
that electrons play a central role in determining chemical properties. Physicists, who later became widely
renowned, developed the concepts of energy quantization, discrete electron orbitals, and the wave-particle
duality, which culminated in the formulation of quantum mechanics, fundamentally altering the way chemists
and physicists described molecular systems.17–21 At the heart of this new framework stood Schrödinger’s
equation,22 which describes how the energy 𝐸 of a quantum system is related to its wavefunction 𝛹 and the
Hamiltonian operator �̂�:†

�̂�𝛹 = 𝐸𝛹. (1.1)

Quantum mechanics provided a fundamental mathematical framework for understanding the behavior of
electrons in atoms and molecules, enabling theoretical models to predict and complement experimental

† Shown here in its non-relativistic, time-independent formulation.
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Chapter 1 From Observation to Simulation

Figure 1.1: Molecular screening applications. Left: High-troughput screening (HTS) of small molecule compounds
toward a small number of reasonable candidates. Middle: Conformer ensembles of supramolecular complexes. Right:
Docking-site screening in polypeptides or proteins.

findings.23 The emergence of modern digital computers in the mid-20th century transformed theoretical
chemistry from a conceptual discipline into a practical and predictive field, now known as computational
chemistry.24,25

The primary quantity derived from Eq. (1.1) is the total electronic energy – that is, the energy of assembling
the molecule from separated nuclei and electrons. Relative energy differences provide insights into reaction
energies, barrier heights, and conformational stability. Minimizing the energy as a function of the atomic
coordinates yields optimized geometries, while incorporating temperature and propagating the atomic coordi-
nates in time according to Newton’s equations of motion enables molecular dynamics simulations, revealing
time-dependent and thermostatistical properties. Higher-order derivatives of the energy provide access to fur-
ther properties, such as infrared (IR) and Raman spectra or nuclear magnetic resonance shielding constants.26

Today, these and other computational chemistry concepts are used to not only complement experiments but
also to drive discoveries in materials science,27–31 drug design,32–34 and reaction mechanisms.35–38 In recent
years, the scope of computational chemistry has expanded beyond case studies of selected small molecules
in specific reactions to include large-scale screenings across diverse molecule datasets. This encompasses
screening of thousands or millions of small molecule compounds to find the right candidate, exploring the
conformational space of large supramolecular complexes, or searching for docking sites in biomolecules, as
illustrated schematically in Fig. 1.1.

If we do not want to revert to Dalton’s purely atomistic picture, as implemented in common force fields
(FFs) and novel machine learning potentials (MLPs), electronic structure theory must evolve to meet the
new challenges – this is the goal of this thesis. To that end, the following sections of this first Chapter 1
outlines the historical development and contemporary state of electronic structure methods, i.e., systematic
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Chapter 1 From Observation to Simulation

algorithms for solving Eq. (1.1). Chapter 2 discusses the motivation for more approximate solutions to
Schrödinger’s equation and introduces the concept of semiempirical quantum mechanical (SQM) methods.
Building on the theoretical foundation of this chapter, we trace their evolution from early formulations to state-
of-the-art methods widely used in modern computational chemistry. The final section of the chapter reflects
on the progress of semiempirical methods over the past century, identifying key limitations and potential
improvements. The subsequent chapters present novel approaches to approximate electronic structure theory,
from a less empirical approach in Chapter 3 to an advanced SQM model in Chapter 4. Chapters 5 and 6 lay
the groundwork for a refined semiempirical solution that integrates many of these improvements and remains
under development at the time of writing. Finally, Chapter 7 summarizes the contributions of this thesis and
provides an outlook on future developments in the field.

1.1 Electronic Structure Theory

The hydrogen atom is a unique case where Eq. (1.1) can be solved analytically. Here, the Hamiltonian
�̂� consists only of the kinetic energy of the electron, ̂𝑇e, and the Coulomb potential energy between the
negatively charged electron and the positively charged nucleus, ̂𝑉ne:

�̂� = ̂𝑇e + ̂𝑉ne. (1.2)

For a multi-electron system with more than one nucleus, the electronic Hamiltonian generalizes to:

̂𝐻e = ̂𝑇e + ̂𝑉ne + ̂𝑉ee. (1.3)

The individual terms are defined in atomic units as follows:†

̂𝑇e = −
𝑁elec

∑
𝑖

1
2∇2

𝑖 , (1.4a)

̂𝑉ne = −
𝑁elec

∑
𝑖

𝑀atoms

∑
𝐴

𝑍𝐴
|r𝑖 − R𝐴| , (1.4b)

̂𝑉ee =
𝑁elec

∑
𝑖

𝑁elec

∑
𝑗>𝑖

1
|r𝑖 − r𝑗|

. (1.4c)

To arrive at the complete Hamiltonian, the nucleus-nucleus potential ̂𝑉nn has to be added to ̂𝐻e in Eq. (1.3).
Within the Born-Oppenheimer approximation, ̂𝑉nn reduces to a constant energy for a specific arrangement of
atoms.39 The most challenging term in Eq. (1.3) is the electron-electron repulsion ̂𝑉ee, which complicates the
extension to multi-electron systems beyond the hydrogen atom. Since each electron’s position depends on all
others, the wavefunction 𝛹(r1, r2, … , r𝑁elec) in Eq. (1.1) cannot be factorized into a product of single-electron
wavefunctions without introducing approximations, preventing an analytic solution. Various approximations
have been developed to make the equation tractable, as outlined in the following sections. Among the practical
approaches are mean-field methods, with Hartree-Fock (HF) and density functional theory (DFT) being the
two most significant over the past century. Despite their fundamentally different theoretical foundations, their
practical implementations share clear similarities.

† Here, ∇2
𝑖 is the Laplacian acting on the 𝑖-th electron, 𝑍𝐴 is the nuclear charge of nucleus 𝐴, and r𝑖 and R𝐴 denote the position

vectors of electron 𝑖 and nucleus 𝐴, respectively, in a system of 𝑁elec electrons and 𝑀atoms nuclei.
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Chapter 1 From Observation to Simulation

1.1.1 Hartree-Fock Theory

Hartree approximated the many-electron wavefunction, which depends on all electronic coordinates 𝛹(r1, r2, … , r𝑁elec
),

as a product of single-electron wavefunctions 𝜙𝑖(r𝑖):40

𝛹(r1, r2, … , r𝑁elec
) ≈ 𝜙1(r1)𝜙2(r2) ⋯ 𝜙𝑁(r𝑁elec

). (1.5)

This ansatz implies the mean-field approximation, in which each electron moves in the Coulomb potential as-
serted by the average electron distribution.41 However, this formulation did not account for the Pauli exclusion
principle, introduced only a few years earlier, which requires fermionic wavefunctions to be antisymmetric
under particle exchange.21 Fock resolved this issue by incorporating antisymmetrized wavefunctions using
Slater determinants,42 ensuring the correct permutation behavior for electrons as fermions:43

𝛹 ≈ 𝛷SD(1, 2, ⋯ , 𝑁) = 1
√𝑁!

∣
∣∣∣∣∣
∣

𝜙1(1) 𝜙2(1) ⋯ 𝜙𝑁(1)
𝜙1(2) 𝜙2(2) ⋯ 𝜙𝑁(2)

⋮ ⋮ ⋱ ⋮
𝜙1(𝑁) 𝜙2(𝑁) ⋯ 𝜙𝑁(𝑁)

∣
∣∣∣∣∣
∣

. (1.6)

The energy expectation value of a normalized, approximate wavefunction 𝛹 is given by the electronic
Hamiltonian �̂�e:

⟨𝛹|�̂�e|𝛹⟩ = 𝐸 ⟨𝛹|𝛹⟩ = 𝐸. (1.7)

Inserting the Hamiltonian operator from Eq. (1.3) and the antisymmetrized wavefunction 𝛷SD into the
expectation value of the energy, leads to the following HF energy expression:†

𝐸HF =
𝑁

∑
𝑖

𝜖𝑖 − 1
2

𝑁
∑

𝑖

𝑁
∑

𝑗
(𝐽𝑖𝑗 − 𝐾𝑖𝑗) + 𝐸nn⏟

constant
, (1.8)

where 𝜖𝑖 represents the contribution of the one-electron operators ̂𝑇e and ̂𝑉ne. While both 𝐽 and 𝐾 originate
from the electron-electron interaction ̂𝑉ee, 𝐽𝑖𝑗 represents the repulsive Coulomb interaction between electrons
𝑖 and 𝑗. 𝐾𝑖𝑗 enforces the antisymmetrization of the wavefunction by compensation for part of the Coulomb
repulsion leading to an attractive exchange interaction between electrons of the same spin. In Eq. (1.8), the
sum over 𝐽𝑖𝑗 includes the unphysical case where an electron interacts with itself. Although HF is not an
exact theory, it ensures exact cancellation of this self-interaction through the exchange term 𝐾𝑖𝑗. Incomplete
cancellation of self-interaction, as in DFT, where exchange is only approximated (vide infra), leads to
self-interaction errors (SIEs).

As an approximate mean field method, HF obeys the variational principle, which ensures that the energy
of an admissable trial wavefunction remains bounded from below by the exact energy.44,45 The goal is to
determine a set of single-electron wavefunctions [also called molecular orbitals (MOs)], 𝜙𝑖, that minimize
the HF energy 𝐸HF under the constraint of orbital orthonormality:

⟨𝜙𝑖|𝜙𝑗⟩ = 𝛿𝑖𝑗. (1.9)

To enforce this constraint, a Lagrangian functional is introduced:

ℒ = 𝐸HF − ∑
𝑖,𝑗

𝜆𝑖𝑗 (⟨𝜙𝑖|𝜙𝑗⟩ − 𝛿𝑖𝑗) , (1.10)
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Chapter 1 From Observation to Simulation

where 𝜆𝑖𝑗 are Lagrange multipliers. Minimizing ℒ with respect to |𝜙𝑖⟩ leads to:

𝛿ℒ
𝛿⟨𝜙𝑖|

= ̂𝐹|𝜙𝑖⟩ − ∑
𝑗

𝜆𝑖𝑗|𝜙𝑗⟩ = 0. (1.11)

Since 𝜆𝑖𝑗 forms a Hermitian matrix, it can be diagonalized. By choosing a basis of MOs {|𝜙𝑖⟩} that diagonalizes
𝜆𝑖𝑗, the equation simplifies into the eigenvalue form:

̂𝐹|𝜙𝑖⟩ = 𝜖𝑖|𝜙𝑖⟩, (1.12a)

where 𝜖𝑖 are the orbital energies, and the Fock operator ̂𝐹 is given by:

̂𝐹 = ℎ̂ + ∑
𝑗

[ ̂𝐽𝑗 − ̂𝐾𝑗] . (1.12b)

Here, ℎ̂ is the core Hamiltonian, ̂𝐽𝑗 is the Coulomb operator, and ̂𝐾𝑗 is the exchange operator, as defined in
Eq. (1.13). The sum over ̂𝐽𝑗 and ̂𝐾𝑗 represents the effective mean-field interaction in the system.

𝐽𝑖 |𝜙𝑗(2)⟩ = ⟨𝜙𝑖(1) ∣ 1
|r1 − r2| ∣𝜙𝑖(1)⟩ |𝜙𝑗(2)⟩, (1.13a)

𝐾𝑖 |𝜙𝑗(2)⟩ = ⟨𝜙𝑖(1) ∣ 1
|r1 − r2| ∣𝜙𝑗(1)⟩ |𝜙𝑖(2)⟩. (1.13b)

In these expressions, the Coulomb operator 𝐽𝑖 multiplies 𝜙𝑗(2) by the classical electrostatic potential generated
by 𝜙𝑖, whereas the exchange operator 𝐾𝑖 effectively replaces 𝜙𝑗(2) with 𝜙𝑖(2) under the same potential,
reflecting the antisymmetry requirement. Starting from an initial guess for the orbitals, the Fock operator ̂𝐹
is constructed based on the current MOs via ̂𝐽𝑗 and ̂𝐾𝑗, as highlighted in Eq. (1.13). The Fock operator is
then diagonalized to obtain updated MOs and orbital energies. This iterative procedure continues until self-
consistency is achieved, meaning that the orbitals used to construct the Fock matrix [left side of Eq. (1.12a)]
are also its eigenfunctions. Convergence is typically determined by changes in energy or electron density.
This iterative procedure is known as the self-consistent field (SCF) approach.

The mean-field approximation in HF inherently leads to a systematic overestimation of energies, as the
interaction between electrons is only captured on an average basis, neglecting the instantaneous, dynamic
response of one electron to the movement of another. The difference between the HF energy and the true
ground-state energy is known as correlation energy. HF fails to account for dynamic electron–electron response
(often referred to as “dynamic correlation”). Additionally, it neglects near-degeneracy (multi-reference)
effects whenever multiple electronic configurations (i.e., Slater determinants) contribute significantly to
the ground state – commonly termed “static correlation”. Typical cases of static correlation are bond
dissociation processes. Methods based on HF that recover the full or partial dynamic correlation energy
include correlated wavefunction methods such as configuration interaction (CI)46,47 and coupled-cluster
(CC).48–52 Both represent the correlated wavefunction as a combination of the HF reference and additional
excited configurations. Alternatively, perturbative approaches such as Møller–Plesset perturbation theory
treat electron correlation as a perturbation from the HF reference wavefunction.53 Static correlation is
addressed by methods that incorporate multiple Slater determinants, allowing for a proper description of
mixed-configuration states. Examples include complete active space self-consistent field (CASSCF)54–56

and multi-reference CI.57,58 The aforementioned CI method in its full CI limit is capable of capturing both
dynamic and static correlation effects missing in HF. For further details on the working principles of these
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methods, the reader is referred to the cited literature.

1.1.2 Kohn-Sham Density Functional Theory

An alternative approach to solving the many-electron Schrödinger equation was introduced by Hohenberg
and Kohn (HK) in the 1960s, establishing a direct link between the electron density and the total energy of a
system.59,60 The electron density 𝜌(r) is formally defined in terms of the many-electron wavefunction as:

𝜌(r) = 𝑁 ∫ |𝛹(r, r2, … , r𝑁elec
)|2 𝑑r2 … 𝑑r𝑁elec

. (1.14)

This expression gives the probability of finding any of the 𝑁 electrons at position r and serves as the
fundamental variable in DFT. HK proved that the ground-state energy is a functional of the electron density
and that, up to an additive constant in the external potential, the ground-state density uniquely determines this
energy functional. This allows electronic structure to be described entirely in terms of 𝜌(r), without requiring
explicit knowledge of the many-electron wavefunction 𝛹. In contrast, earlier density-based theories by
Thomas, Fermi, and Slater lacked general applicability and rigorous physical foundation for their application
in molecular systems.61–63 Although the HK theorem guarantees the existence of an exact energy functional
𝐸[𝜌] of the electron density, its explicit form remains unknown. This particularly applies to the kinetic
energy functional 𝑇[𝜌], which lacks an analytically known expression in terms of the density alone.

A breakthrough came in 1965 with the work of Kohn and Sham, who introduced an auxiliary system of
non-interacting electrons described by so-called Kohn-Sham (KS) orbitals, for which the kinetic energy could
be calculated exactly.64 Inspired by HF theory, a single Slater determinant represents this non-interacting
system, whose ground-state electron density 𝜌0(r) is (by construction) equal to that of the real, interacting
electron system:

𝜌(r) =
𝑁occ

∑
𝑖

|𝜙𝑖(r)|2 = 𝜌0(r), (1.15)

assuming an 𝑁-electron system described by a set of single-electron wavefunctions (MOs) 𝜙𝑖(r). The
electronic energy can then be partitioned into known and unknown contributions:

𝐸[𝜌, 𝜙] = 𝑇𝑠[𝜙] + 𝐽[𝜌] + 𝑉ne[𝜌]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
known

+ 𝐸xc[𝜌]⏟
unknown

. (1.16)

Here, 𝑇𝑠[𝜙] (the index s represents the Slater determinant origin) is the kinetic energy of a system of
non-interacting electrons, which can be computed exactly from the KS orbitals:

𝑇s[𝜙] =
𝑁occ

∑
𝑖

⟨𝜙𝑖| − 1
2∇2|𝜙𝑖⟩, (1.17)

The terms 𝐽[𝜌] and 𝑉ne[𝜌] represent the classical Coulomb and electron-nucleus interaction, respectively,
while the remaining exchange-correlation functional 𝐸xc[𝜌] incorporates all unknown effects that cannot
be described exactly. This framework of reintroducing orbitals to DFT is known today as KS-DFT.† In the
following, this thesis always refers to KS-DFT when mentioning “DFT”. The KS electronic energy reads

† The KS system is a mathematical tool to reproduce the exact ground-state density. KS orbitals and eigenvalues have no direct
physical meaning, which is, however, widely ignored in practice.
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explicitly:

𝐸KS[𝜌] =
𝑁occ

∑
𝑖

⟨𝜙𝑖| − 1
2∇2 + 1

2 ∫ 𝜌(r′)
|r − r′|

𝑑r′ + ̂𝑉ne|𝜙𝑖⟩ + 𝐸xc[𝜌]. (1.18)

All many-body effects of electron interaction are contained in the exchange-correlation functional 𝐸xc[𝜌],
which absorbs both the difference between the true (interacting) and non-interacting kinetic energy as well as
the non-classical part of the electron-electron interaction (exchange and correlation).60 In the following, 𝑇[𝜌]
represents the true kinetic energy of the interacting system and 𝐸ee[𝜌] describes the correlated interaction of
the electrons:

𝐸xc[𝜌] = (𝑇[𝜌] − 𝑇s[𝜌]) + (𝐸ee[𝜌] − 𝐽[𝜌]) . (1.19)

At this point, KS-DFT remains exact, as no approximations have been introduced. If the exact form of
𝐸xc[𝜌] was known, both dynamic and static correlation effects would be fully captured. Thus, all deviations
from the exact solution originate from the choice of 𝐸xc[𝜌]. Given an appropriate 𝐸xc[𝜌], the KS equations
can be solved iteratively under the orthonormality constraint [Eq. (1.9)], analogous to the Fock equations
[Eq. (1.12a)]:

[−1
2∇2 + ̂𝑉eff(r)] 𝜙𝑖(r) = 𝜖𝑖𝜙𝑖(r), (1.20)

where the effective potential is defined as:

̂𝑉eff(r) = ̂𝑉ne(r) + ∫ 𝜌(r′)
|r − r′|

𝑑r′ + ̂𝑉xc(r). (1.21)

Conceptual differences between HF and KS-DFT lie in their points of approximation. HF approximates
the many-electron wavefunction with a single Slater determinant, while being formally correct and thus
avoiding SIE but neglecting electron correlation. In contrast, KS-DFT is based on the electron density,
which, in principle, fully describes the many-electron system, as the Slater determinant serves only as an
auxiliary construct. However, it approximates the Hamiltonian through a non-exact exchange-correlation (XC)
functional, introducing errors such as SIE. The entire challenge of KS-DFT lies thus in the choice of the XC
functional 𝐸xc[𝜌], for which the exact general expression is still unknown. Functional development follows
two primary philosophies: One approach systematically derives 𝐸xc[𝜌] by enforcing physical constraints
while minimizing the number of empirically fitted parameters, ensuring formal correctness to a given
extent.65–67 For an in-depth discussion of the various physical constraints on 𝐸xc[𝜌], the reader is referred
Refs. [60, 65, 68–70]. Alternatively, semiempirical optimization adjusts the functional form and associated
parameters to best reproduce reference data of target properties.71† Therefore, the mathematical forms of
many approximations for 𝐸xc[𝜌] are often pragmatically designed for performance rather than physical
insight and do not necessarily follow first principles in a strict way.60,69,70 However, many functionals follow
a compromise between both strategies.

In practice, 𝐸xc[𝜌] is commonly decomposed into an exchange term 𝐸x[𝜌] and a correlation term 𝐸c[𝜌] to
distinguish their respective contributions. A key challenge arises from the approximation of 𝐸x[𝜌], which can
lead to incomplete cancellation of the unphysical self-interaction in the Coulomb term [Eq. (1.16)], resulting
in SIEs (vide supra). Several approximations to the exact functional 𝐸xc[𝜌] exist, collectively referred to as
density functional approximations (DFAs), or simply functionals. These can be categorized conceptually,

† This should not be confused with semiempirical quantum mechanical methods, which replace physically defined integrals with
empirical expressions (see Sec. 2.2). Nevertheless, modern KS-DFT functionals are also not purely ab initio, as defined by
Thiel in Ref. [72].
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following Perdew’s “Jacob’s ladder” framework,73,74 which will also be used in this work.

Local Density Approximation

The local density approximation (LDA) is constructed based on the hypothetical system of a uniform electron
gas, and resembles the lowest rung on “Jacob’s ladder”. Its key approximation assumes that the XC energy at
any given point depends only on the absolute, local electron density at that point. Thus, the density at each
position is treated as if it were part of a homogeneous system. The exchange term in LDA follows from the
analytical expression for the exchange energy of a uniform electron gas, as described in Slater’s density-based
correction to HF theory.63 Interpolation formulae connecting the analytic low- and high-density limits of the
correlation energy have been proposed by Vosko, Wilk, and Nusair, as well as by Perdew and Wang.75,76

Despite neglecting all density inhomogeneities in real systems, LDA often yields reasonable predictions
for molecular structures and charge moments, but tends to overestimate covalent bonding.† However, it
usually suffers strongly from SIEs. Its overall accuracy is comparable to HF, but their errors tend to go in
opposite directions: LDA generally overestimates binding energies, whereas HF underestimates correlation
effects. Notably, LDA remains highly accurate for the uniform electron gas and, by construction, serves as a
reasonable approximation for systems with slowly varying electron densities like metallic systems.

(Meta)-Generalized Gradient Approximation

Generalized gradient approximation (GGA) DFAs improve upon LDA by incorporating the gradient of the
electron density, ∇𝜌, to account for inhomogeneities in real systems, i.e., a non-uniform electron gas. This is
typically achieved by applying enhancement factors that scale the LDA 𝐸xc based on the local density gradient.
While GGA functionals are sometimes referred to as non- or semi-local, this is not strictly precise, as they,
evaluate the electron density and its first derivative only at a given point. Popular GGAs include B8877 for
the exchange term, and LYP78,79 or PW9180 for the correlation term. The PBE functional81 provides both an
exchange and a correlation term. Meta (m)-GGA functionals further extend this idea by taking into account
the kinetic energy density, 𝜏(r), or the Laplacian of the electron density, ∇2𝜌.82,83 Thereby, XC effects
can be captured more accurately in many cases. Examples for m-GGA DFAs are TPSS,84 B97M-V,85 and
r2SCAN.66,67 Especially the more recent B97M-V (based on optimized parameterization) and the strongly
constrained r2SCAN provided significant improvements over GGAs, for instance by noticeably reducing the
amount of SIE. GGA and m-GGA functionals correspond to the second and third rung on “Jacob’s ladder”.

Hybrid Methods

Sec. 1.1.2 outlined that KS-DFT employs a non-interacting reference system, represented by a single Slater
determinant, to reproduce the exact ground-state electron density of the real (interacting) system. For any
such hypothetical single-determinant wavefunction, HF provides the exact solution and, crucially, an exact
expression for the exchange energy. Hybrid DFAs bridge the gap between pure density functionals, which
approximate 𝐸x solely from the electron density, and methods incorporating exact exchange‡ from HF theory,
aiming to combine the strengths of both approaches. Due to a more accurate cancellation of 𝐽[𝜌] [Eq. (1.16)],
the amount of SIE can effectively be reduced in this way. This approach is theoretically justified by the
adiabatic connection formula (ACF), which connects the non-interacting and interacting system via the

† There might be exceptions to these rule of thumbs, in particular due to SIE.
‡ Also referred to as Fock exchange.
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integration over intermediate interaction strenghts, indicated by the coupling parameter 𝜆.86 In the non-
interacting limit (𝜆 = 0), the exchange energy is exactly given by the 𝐾 integrals from HF theory.† The
simplest approximation suggests a linear interpolation for the exchange energy, leading to the so-called
half-and-half approach.69,87

𝐸x = 1
2𝐸HF

x + 1
2𝐸LDA/(m)GGA

x . (1.22)

Later realizations of this ansatz introduced semiempirically determined coefficients for the individual contri-
butions. A prominent example is the B3LYP functional:78,88,89

𝐸xc,B3LYP = (1 − 𝑎x)𝐸LDA
x + 𝑎x𝐸HF

x + 𝑏𝛥𝐸B88
x + 𝑐𝐸LYP

c + (1 − 𝑐)𝐸LDA
c , (1.23)

where the empirical parameters 𝑎x, 𝑏, and 𝑐 are set to 0.20, 0.72, and 0.80, respectively. Other established
hybrid DFAs are PBE090 and TPSSh91,92. While empirical studies found that the admixture of exact exchange
improves the accuracy of KS-DFT on average, the optimal specific amount to be added (𝑎x) is rather problem-
specific.69,70,93 Connecting to the remark in Sec. 1.1.2, hybrid DFAs, which correspond to the fourth rung on
“Jacob’s ladder”,‡ are truly non-local to some extent as the expression for the exchange energy in HF, 𝐾, is a
non-local function. This is in contrast to lower-rung density functionals, which rely solely on the density and
its derivatives at a given point.

Range-separated hybrid (RSH) functionals address systematic errors in KS-DFT like SIE and the question
of the amount of exact exchange by partitioning the two-electron operator and more specifically 𝐸x into short-
and long-range components:95–98

1
𝑟12

= 1 − erf(𝜔𝑟12)
𝑟12

+ erf(𝜔𝑟12)
𝑟12

. (1.24)

These functionals use a DFA-based exchange expression (𝐸KS
x ) for the short-range and the exact Fock exchange

(𝐸HF
x ) for the long-range part. The proper handling of the long-range limit reduces SIEs and resolves issues like

artificial charge transfer (CT) in dissociation and zwitterionic structures. The range-separation parameter 𝜔
is often tuned empirically or non-empirically.99 Example DFAs are CAM-B3LYP100, the 𝜔B97 family,101–104

or HSE.105,106 Hybrid functionals that lack such a partitioning are often referred to as global hybrids.

Dispersion-Corrected DFT

Like all mean-field methods, approximate KS-DFT in its common form cannot capture long-range correlation
effects, particularly dispersion interactions, that is, the attractive part of the van der Waals interaction.107§

The first investigations of this issue were presented by Pulay, Gordon, Becke, Hobza, and co-workers in the
1990s.109–112 These interactions arise from instantaneous charge fluctuations and are crucial for accurately
modeling non-covalent interactions, molecular crystals, and large biomolecular systems.107,113–116

Since standard DFAs inherently lack the explicit treatment of dispersion, various correction schemes have
been introduced to remedy this deficiency. Most of them add an additional term to the total energy.

𝐸total = 𝐸KS-DFT + 𝐸disp. (1.25)

† See Eq. 1.8 and 1.13 for reference.
‡ Fifth-rung functionals on “Jacob’s ladder” (often termed double-hybrid DFAs) incorporate virtual orbitals, partially restoring

explicit wavefunction-based correlation, for example through second-order perturbation theory.94

§ Double-hybrid DFAs can capture larger amounts of long-range correlation effects than lower-rung functionals but still benefit
from semiclassical dispersion corrections.108
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Chapter 1 From Observation to Simulation

A widely used semiempirical approach is DFT-Dn. The energy expression for the most recent versions
D3(BJ)ATM and D4 reads:

𝐸D3ATM/D4
disp = − ∑

𝐴𝐵
∑

𝑛=6,8
𝑠𝑛

𝐶𝐴𝐵
𝑛

𝑅𝑛
𝐴𝐵

𝑓 (𝑛)
damp(𝑅𝐴𝐵)

− ∑
𝐴𝐵𝐶

𝑠9
𝐶𝐴𝐵𝐶

9 (3 cos 𝜃𝑎 cos 𝜃𝑏 cos 𝜃𝑐 + 1)

(𝑅𝐴𝐵𝑅𝐴𝐶𝑅𝐵𝐶)3

× 𝑓 (9)
damp (�̄�𝐴𝐵𝐶) , (1.26)

with the dispersion energy modeled as a sum over atom pairs and triples.117–120 Here, 𝑅𝐴𝐵 denotes interatomic
distances, and 𝑓damp is the Becke-Johnson (BJ) damping function that prevents divergence at short range:118

𝑓 (𝑛)
damp,BJ(𝑅𝐴𝐵) =

𝑅𝑛
𝐴𝐵

𝑅𝑛
𝐴𝐵 + (𝑎1𝑅AB

0 + 𝑎2)𝑛 , (1.27)

which contains the cut-off radius 𝑅𝐴𝐵
0 = √𝐶𝐴𝐵

8
𝐶𝐴𝐵

6
. 𝐶𝐴𝐵

𝑛 are the dispersion coefficients, which are defined
semiempirically from tabulated electric dipole polarizabilities of reference compounds. The effective atomic
dynamic polarizabilites used for calculation of the dispersion coefficients 𝐶𝐴𝐵

𝑛 incorporate information about
the chemical environment of each atom by a purely geometry-dependent coordination number. In D4, they
additionally depend on the atomic charges derived by a classical electronegativity equilibration (EEQ) model.
The second term in Eq. (1.26) is an approximation for the three-body dispersion contribution arising from the
interaction of three dipoles, known as Axilrod−Teller−Muto (ATM), with �̄�𝐴𝐵𝐶 being the geometric mean of
all three pairwise distances, and likewise 𝐶𝐴𝐵𝐶

9 being approximated from the pairwise 𝐶6 coefficients.107

𝑓 (9)
damp denotes an additional damping function for the three-body contribution.101 𝑠6, 𝑠8, 𝑠9, 𝑎1, and 𝑎2 are
empirical parameters specific to each functional.

Examples for other dispersion corrections in DFT are the Tkatchenko-Scheffler (TS/TS+SCS) methods that
derive 𝐶6 values from Hirshfeld-partitioned electron densities, with TS+SCS incorporating self-consistent
screening for polarization effects. Many-body dispersion (MBD), such as TS-MBD, goes beyond pairwise
and triple interactions by accounting for collective electronic fluctuations.121,122 The exchange-hole dipole
moment (XDM) model computes 𝐶6 coefficients from the electron density’s exchange hole.123 Non-local
functionals (e.g., vdW-DF124, VV10125 as in 𝜔B97M-V104) avoid pairwise schemes by integrating non-local
correlation functionals for the treatment of dispersion. For an extensive review on dispersion-corrected
mean-field methods, the reader is guided to Ref. [107].

Dispersion corrections have made DFT accurate for inter- and intra-molecular non-covalent interactions
(NCIs), and have become indispensable in modern computational chemistry.126

1.2 The Basis Set Expansion

In practical applications of quantum chemistry (QC) methods, the wavefunction 𝛹 or the electron density
𝜌 must be expressed in a mathematical form suitable for computation. While in theory, both HF and DFT
can be evaluated purely numerically on a grid, such an expression is usually achieved through a basis

10



Chapter 1 From Observation to Simulation

set expansion, where MOs 𝜙𝑖 are represented as a linear combination of predefined basis functions 𝜒𝜇.†
This ansatz transforms an otherwise highly non-linear orbital optimization problem into a computationally
manageable linear algebra problem. Since in molecular calculations usually atom-centered basis functions,
which originally approximate AOs, are employed, the approach is also called linear combination of atomic
orbitals (LCAO):

𝜙𝑖(r) =
𝑁bf

∑
𝜇

𝐶𝑖𝜇𝜒𝜇(r) =
𝑁bf

∑
𝜇

𝐶𝑖𝜇 ∣𝜒𝜇⟩. (1.28)

Here, 𝐶𝑖𝜇 are the expansion coefficients to be determined during the SCF calculation. Using the definition
from Eq. (1.28), the eigenvalue problem from Eq. (1.12a) can be reformulated. While this is demonstrated on
the example of HF, the principle stays similar for KS-DFT. The Fock operator acting on MO 𝜙𝑖 then reads:

̂𝐹
𝑁bf

∑
𝜇

𝐶𝑖𝜇∣𝜒𝜇⟩ = 𝜖𝑖

𝑁bf

∑
𝜇

𝐶𝑖𝜇∣𝜒𝜇⟩. (1.29)

To obtain a generalized eigenvalue problem in the MO coefficients 𝐶𝑖𝜇, we project both sides onto a basis
function 𝜒𝜈 by integrating over all space:‡

⟨𝜒𝜈∣ ̂𝐹
𝑁bf

∑
𝜇

𝐶𝑖𝜇∣𝜒𝜇⟩ = 𝜖𝑖⟨𝜒𝜈∣
𝑁bf

∑
𝜇

𝐶𝑖𝜇∣𝜒𝜇⟩. (1.30)

By introducing the matrix elements of the Fock matrix F and the overlap matrix S,

𝐹𝜈𝜇 = ⟨𝜒𝜈∣ ̂𝐹∣𝜒𝜇⟩ and 𝑆𝜈𝜇 = ⟨𝜒𝜈∣𝜒𝜇⟩. (1.31)

Eq. (1.29) can be rewritten for all MOs 𝜙𝑖 as the generalized eigenvalue problem:

FC = SC𝝐, (1.32)

which is known as the Roothaan-Hall equation.127,128 The elements of the Fock matrix F can now be defined
as follows:§

𝐹𝜈𝜇 = ⟨𝜈|ℎ̂|𝜇⟩⏟
ℎ𝜈𝜇

+ ∑
𝜆,𝜎

𝑃𝜆𝜎 [(𝜈𝜇 ∣ 𝜆𝜎) − 1
2 (𝜈𝜆 ∣ 𝜇𝜎)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐽𝜈𝜇−𝐾𝜈𝜇

, (1.33)

where P is the so-called density matrix:

𝑃𝜆𝜎 = ∑
𝑗

𝑛𝑗𝐶𝜆,𝑗𝐶𝑗𝜎. (1.34)

† Lower-case Latin letter indices denote MOs (𝜙); lower-case Greek letter indices denote atomic orbitals (AOs) (𝜒), i.e. basis
functions.

‡ Real (not complex) functions are assumed throughout.
§ Here, we use the chemist’s notation as follows:

(𝑖𝑗 ∣ 𝑘𝑙) = ∫∫
𝜒𝑖(r)𝜒𝑗(r)𝜒𝑘(r′)𝜒𝑙(r′)

|r − r′| 𝑑r𝑑r′.
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Chapter 1 From Observation to Simulation

Here, 𝑛𝑗 denotes the occupation number, which takes values of either 0 or 2 in (restricted) closed-shell
calculations.† Eq. (1.33) highlights that only the contribution of the two-electron integrals depends on the
density, but not that of the one-electron integrals ℎ𝜇𝜈. Thus, in the iterative solution of HF and DFT, the
density matrix P is refined until convergence is reached. It provides an efficient and numerically stable way
to describe electron distributions in molecular systems. The detailed derivation of Eq. (1.33) and (1.34) is
outlined in Sec. A.1. A new semiempirical method to predict P, circumventing costly ab-initio calculations,
is presented in Chapter 4.

1.2.1 Slater and Gaussian-Type Orbitals

Historically, Slater-type orbital (STO) were introduced as basis functions since they closely resemble hydrogen
atomic orbitals, making them an efficient representation of molecular wavefunctions.129 STOs take the form:

𝜒STO
𝜇 (r, 𝜁) ∝ 𝑌𝑙,𝑚(𝜃, 𝜑)𝑟𝑛−1𝑒−𝜁𝑟, (1.35)

where 𝜁 is an orbital exponent governing the radial decay, and 𝑌𝑙𝑚(𝜃, 𝜙) are spherical harmonics determining
the angular part. 𝑛, 𝑙, 𝑚 are the principal, azimuthal, and magnetic quantum number of the basis function
𝜇. While STOs are physically meaningful, their use in QC is limited due to the complexity of evaluating
multi-center electronic repulsion integrals. Consequently, Gaussian-type orbitals (GTOs) are commonly
employed instead,130 defined as:

𝜒GTO
𝜇 (r, 𝜁) ∝ 𝑌𝑙,𝑚(𝜃, 𝜑)𝑟2𝑛−2−𝑙𝑒−𝜁𝑟2. (1.36)

GTOs enable efficient integral evaluation using the Gaussian product theorem,131 making them the standard
choice in modern (molecular) electronic structure calculations.132

1.2.2 Contracted Basis Sets

To improve computational efficiency while maintaining accuracy, many basis sets are designed as contracted
basis sets. Instead of treating each basis function as an independent primitive Gaussian, contracted basis
functions are predefined linear combinations of primitives:

𝜒𝜅 =
𝑁pr

∑
𝛼∈𝜅

𝑐𝛼𝜒𝛼(𝜁𝛼). (1.37)

𝑐𝛼 are fixed contraction coefficients that define how the primitive Gaussians 𝜒𝛼 with distinct exponents
𝜁𝛼 are combined to form the contracted basis function 𝜒𝜅 with 𝑁pr primitive functions. This reduces the
effective number of basis functions (i.e., AOs) in the SCF procedure, thereby cutting the computational cost
for Fock-matrix construction and subsequent matrix operations. Moreover, combining multiple primitives
into a single AO improves its shape, better resembling the true AO compared to a single primitive Gaussian.
Although modern codes typically compute integrals at the primitive level, only the final contracted integrals
are stored and used, thereby simplifying the MO optimization problem. In practice, the contraction of
primitive functions into a single contracted AO is usually applied for describing the energetically important
but chemical unimportant core electrons.69

† In unrestricted KS or HF, each spin orbital (𝛼/𝛽) is occupied with only one electron.
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Chapter 1 From Observation to Simulation

1.2.3 Effective Core Potentials

For heavy elements (often referred to as 𝑍 > 36),70 fully relativistic QC calculations treating all electrons
explicitly become computationally challenging due to: (i) the large number of core electrons requiring high
angular momentum basis functions, (ii) significant scalar relativistic effects, and (iii) spin-orbit coupling
that cannot be neglected for heavy atoms.133 To address this, effective core potentials (ECPs) as first used by
Hellmann and developed by Phillips and Kleinman replace the explicit treatment of chemically inert core
electrons with an effective potential that reproduces their quantum mechanical influence on valence (and
semi-core) electrons through a semi-local operator.134–137

̂𝑉ECP(r) = − 𝑍eff
𝑟⏟

local term

+
𝑙max

∑
𝑙=0

𝑙
∑

𝑚=−𝑙
|𝑌𝑙𝑚⟩ 𝑉𝑙(𝑟) ⟨𝑌𝑙𝑚|

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
non-local term

, (1.38)

where 𝑍eff = 𝑍 − 𝑁core is the effective nuclear charge (𝑁core: number of core electrons), 𝑙max is the maximum
angular momentum of the core, and 𝑉𝑙(𝑟) are parameterized radial potentials for each angular momentum
channel 𝑙.136 The spherical harmonics 𝑌𝑙𝑚 enforce orthogonality between valence and core orbitals via
the projection operator.138 The use of ECPs significantly reduces computational cost by eliminating core
orbitals from the basis set expansion and by avoiding an explicit treatment of relativistic effects. In modern
DFT calculations, basis sets as the def2 family were often developed for use with matching ECPs, here the
Stuttgart-Cologne ECPs.139–142 Other widely used pseudopotentials include LANL2DZ,143 and CRENBL.144

1.2.4 Balancing Accuracy and Computational Effort

The basis set directly determines the functional flexibility of MOs, dictating how well they can represent the
underlying electronic structure. The number of basis functions per angular momentum of the occupied AO
shell determines the so-called cardinal number 𝜁.† Thus, a cardinal number of 1 corresponds to a single-𝜁 or
minimal basis (MB) set. An established minimal basis (MB) is STO-nG, where each STO is approximated
by a combination of 𝑛 GTOs.145 A common standard for DFT calculations are basis sets of at least double-𝜁
(DZ) or triple-𝜁 (TZ) quality.70 Beyond merely increasing the number of basis functions, additional flexibility
is introduced through polarization and diffuse functions. Polarization functions (often denoted by a suffix “P”)
extend the angular momentum beyond what is required for the atomic ground state, improving the description
of electron density distortions in bonding and external fields. Diffuse functions (often denoted by a suffix
“D”) on the other hand, employ low-exponent basis functions that extend the spatial reach of the wavefunction,
which is particularly important for accurately modeling anions and weakly bound electronic states. While
extended basis sets allow for greater adaptability and accuracy in describing complex electronic environments,
the computational cost grows rapidly with the size of the basis set, as the number of one- and two-electron
integrals that must be evaluated increases polynomially. One of the first extended basis sets for HF and DFT
calculations was Pople’s 6-31G basis set.146 Later, the def2 basis set family by Weigend and Ahlrichs has
become a standard for today’s DFT calculations.70,139 Nowadays, different basis sets exist, often specific to
calculation types and applications.147–152

Basis set errors (BSEs) stem from a finite, that is, incomplete basis set expansion and can be classified into
two different categories:69,153

† Although both variables share the Greek symbol 𝜁, the cardinal number should not be confused with the exponent of a primitive
function, 𝜁𝛼.
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(i) Basis set incompleteness error (BSIE) is the difference in energy between the system calculated in
an infinite basis expansion and a finite basis set.69,153 BSIEs are inherently unsystematic in relative
energies but lead to systematically increased absolute energies.

(ii) Basis set superposition errors (BSSEs) stem from the unphysical use of basis functions of another part
of the molecular system. A fragment appears artificially stabilized in the presence of a neighboring
moiety, not due to genuine interactions but because the additional basis functions compensate for the
incompleteness of its own basis set expansion. This leads for instance to a systematic overestimation
of interaction energies in non-covalent complexes, caused by an asymmetry in the effective BSE of
monomer and dimer.154,155† Methods to address this error are discussed in Sec. 2.1 and Chapter 3.

Consequently, both types of BSEs converge to zero in an infinite basis set expansion. It has been shown that
the HF and DFT energy converges square-root exponentially to the complete basis set (CBS) limit:156,157‡

𝐸HF/DFT(𝑋) = 𝐸(∞) + 𝐴𝑒−𝐵√𝑋, (1.39)

with 𝑋 being a measure for the basis set completeness (e.g., the cardinal number), and 𝐴 and 𝐵 arbitrary
prefactors. Practically, convergence is mostly achieved with quadruple-𝜁 (QZ) or larger basis sets.69,70,157

Beyond the formal size of a basis set – often defined by its cardinal number 𝜁 or the total number of
basis functions – several other factors critically influence its ability to represent the electronic wavefunction
while determining the associated computational complexity. One key aspect is the contraction depth, as
outlined in Sec. 1.2.2. Another decisive factor in the cost-vs-accuracy trade-off is the procedure used to
determine the exponents 𝜁𝛼 (and coefficients 𝑐 in contracted basis sets). Traditionally, basis set parameters
were optimized variationally with respect to atomic energies, which may not be optimal for describing MOs
in molecular systems. Additionally, polarization functions are typically unoccupied in the atomic ground
state, necessitating specialized techniques for their consistent and reliable optimization. VandeVondele,
Hutter, and Jensen introduced basis sets optimized directly in molecular calculations, deviating from the
traditional atomic-based optimization approach.156,159,160 This strategy is particularly relevant for deeply
contracted basis sets, where much of the optimization process shifts from the LCAO approach in the SCF to
the pre-defined contracted AOs and their coefficients. Recently, Shaw and Hill developed a framework for
semi-automated molecular basis set optimization.161

A discussion of the limitations of small or MBs, along with two case studies, is provided in Sec. 2.3.

† Although BSSE is often explained in this way for simplicity, it is not limited to NCIs but is also relevant in intramolecular cases.
‡ Correlated wave function theory (WFT) methods, including double-hybrid DFT methods, exhibit inverse cubic convergence

toward the CBS limit.158
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CHAPTER 2

Semempirical Approaches in Quantum Chemistry

The ab initio methods HF and – particularly since the 1990s – DFT have become the standard for simulating
the electronic structure of chemical systems.8,70,126 However, even with modern high-performance computing
(HPC) infrastructure, the computational cost of these methods limits their applicability to large systems and
HTSs.162,163 In particular, molecular structures with significantly more than a few hundred atoms remain
impractical for routine calculations using standard DFT methods.116 Arguably even more critical is the
ability to perform hundreds or thousands of calculations on small- to mid-sized molecules efficiently.164

Key applications include conformer searches,8,165 molecular docking166 (e.g., for explicit solvation167),
metadynamics (MTD) or molecular dynamics (MD) simulations over long time scales or for extended
molecules,8,168,169 HTS for candidate molecules,31,170 and the exploration of reaction networks.171

The computational complexity of HF/DFT methods is dominated by two steps:

(i) Construction of the Fock matrix† and contraction of P with the integrals, including the computation
of four-center two-electron integrals, which formally scales as 𝒪 (𝑁4

bf).69‡ Apart from the effective
scaling, the computational prefactor is relatively high, making this step the dominant bottleneck in
modern direct SCF approaches.182

(ii) Solving the Fock or KS equation via matrix diagonalization, which scales as 𝒪 (𝑁3
bf).§

Since both computationally demanding steps scale with the number of basis functions 𝑁bf, employing standard
TZ or larger basis sets significantly increases computational complexity. One approach to mitigate this within
first-principles methods is to reduce the basis set size. However, smaller basis sets limit the flexibility of MOs,
leading to BSEs. To address this trade-off, small basis set composite methods incorporating (semi)empirical
corrections for limitations of the basis set have been developed, as will be discussed in Sec. 2.1. A more drastic
strategy for reducing computational cost is to bypass the costly two-electron integrals entirely, replacing them
with empirical expressions for electron-electron interactions. This effectively eliminates the computational

† In KS-DFT often termed KS matrix.
‡ By employing integral screening techniques alone,172,173 the scaling reduces to 𝒪 (𝑁2

bf) asymptotically. With integral approxi-
mations such as the resolution of the identity (RI)174–177 and the chain-of-spheres algorithm for exchange matrix computations
(COSX),178,179 or related methods,180,181 the scaling of Hamiltonian construction in HF and DFT can be reduced to 𝒪 (𝑁𝑥

bf),
with 𝑥 ranging from 1 (asymptotically linear scaling) to 3 (even in relatively small systems) in modern implementations.

§ As with integral evaluation, advanced techniques have been developed to circumvent the cubic scaling of standard diagonalization
methods for large systems.183–186
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Chapter 2 Semempirical Approaches in Quantum Chemistry

Figure 2.1: Schematic illustration of the relationship between computational efficiency and the degree of empiricism in
different classes of computational chemistry methods. comp. DFT denotes small basis set composite DFT methods.†

burden associated with Hamiltonian construction. Such methods are referred to as semiempirical quantum
mechanical (SQM) methods in the following and will be outlined in Sec. 2.2.

Consequently, increasing computational efficiency typically comes at the expense of greater empiricism.
The degree of empiricism can be loosely quantified, for example, by the number of empirical parameters
incorporated into a method. This trade-off between computational cost and empiricism is schematically
illustrated in Fig. 2.1. WFT methods, such as correlated post-HF methods, are purely ab initio, relying
exclusively on first principles. In contrast, standard KS-DFT often includes few semiempirical parameters
that are not strictly dictated by physical laws. This reliance on empirical input is even more pronounced
in composite DFT methods. SQM methods extend this trend further by parameterizing entire Fock matrix
contributions, such as two-electron interactions, instead of computing them from first principles. Even greater
efficiency can be achieved using purely empirical atomistic models that do not incorporate the quantum
mechanical (QM) description of electrons. A conventional example is classical FFs, which describe molecular
systems using analytical potential energy functions to approximate bonded and nonbonded interactions.187–189

More recently, MLPs have emerged, learning energies and forces from reference data (e.g., from DFT) and
approximating these properties using machine learning (ML) techniques such as neural networks.190–193

While atomistic models fall outside the scope of this work, they are included here for reference as they also
yield molecular geometries and relative energies relevant to computational chemistry.

2.1 Small-Basis-Set Corrections

Employing smaller basis sets accelerates calculations by reducing the number of required integrals, the matrix
dimensions and, consequently, the complexity of the optimization problem. However, this comes at the
expense of reduced accuracy, as discussed in Sec. 1.2.4.

Various approaches exist to address basis set deficiencies, with most focusing on systematic BSSEs. One

† The schematic relationships make no claim to strict correctness and are only intended to reflect general trends. For instance, the
number of empirical parameters, as well as the relationship between the computational efficiency of FFs and MLPs methods,
strongly depends on the specific approach and is not further classified in this work.
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of the earliest methods is the Boys-Bernardi counterpoise (CP) correction, which compensates for BSSE by
computing each monomer in a complex using the dimer’s basis set.194 This accounts for the artificial use of
basis functions, and the resulting energy difference is added to the interaction energy. Kruse and Grimme
developed the geometrical counterpoise (gCP) correction, which extends this approach to intramolecular
BSSE.195 Building on gCP, Head-Gordon and co-workers introduced an empirical correction, DFT-C,
designed to provide near-complete-basis DFT results using the diffuse DZ basis set def2-SVPD.139,149,153

DiLabio and co-workers leveraged the functional form of ECPs to enhance the description of NCIs.196,197

Sure and Grimme proposed an empirical short-ranged basis (SRB) correction to counteract the systematic
overestimation of covalent bond lengths in MBs.198 Further examples specifically for WFT and double-hybrid
DFT methods include density-based basis set corrections and the R12/F12 methods that depend explicitly on
the interelectronic distance.199–202

2.1.1 “3c” Composite Methods

The philosophy behind the “3 corrections” composite methods† is to combine HF or DFT functionals with
smaller basis sets while incorporating (semi)empirical corrections to address BSEs (as outlined above) along
with the D3 or D4 dispersion correction. The first method in this series, HF-3c, combines HF with an MB‡

and focuses primarily on accurate geometries and NCIs. It employs the gCP correction for BSSE, the SRB
correction for bond lengths, and the established D3 dispersion correction.198 Subsequent methods in this series
were based on DFT, including PBEh-3c, which utilizes a specially adapted PBE hybrid DFA.115 PBEh-3c
is designed to improve accuracy by incorporating electron correlation effects and using a DZ basis set. A
closely related variant is HSE-3c.212 B97-3c follows a similar philosophy but, for the first time, employs an
adapted TZ basis set and is based on a GGA functional.213 The latest evolution, r2SCAN-3c, is an m-GGA
method incorporating the more recent D4 correction. In addition to the aforementioned properties, it targets
conformational energies and aims to improve thermochemical accuracy.214 Chapter 3 presents 𝜔B97X-3c as
a new addition to this family.

2.2 Semiempirical Quantum-Mechanical Methods

A defining feature of all SQM methods is their goal to emulate DFT or HF, while circumventing their
computational complexity. This is mostly achieved by replacing the costly two-electron integrals with
parametric expressions, reducing the computational burden so that the Hamiltonian matrix diagonalization
becomes the primary bottleneck. This simplification allows SQM methods to achieve significant efficiency
gains of several orders of magnitude while maintaining reasonable accuracy for many applications.72,215,216

SQM methods have a long tradition, beginning with the famous Hückel theory already in the 1930s.217

Further cornerstones for today’s SQM methods were laid in the 1950s and 60s by the Pariser–Parr–Pople
(PPP)218–220 method as well as extended Hückel theory (EHT).221 Modern SQM methods can be separated
into HF- and DFT-based branches. The evolution of SQM methods is illustrated in Fig. 2.2 and will be
outlined in this section.

† The term composite method in QC is also associated with the Gn wave function theory developed by Pople and co-workers,203–206

as well as the Weizmann protocols207–209 and related CBS schemes.158,210 However, these approaches pursue a different goal.
‡ The MB MINIS basis set is used for light elements, while for heavier elements with 𝑍 > 18, split-valence DZ basis sets of the

Ahlrichs type are employed.139,211
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Figure 2.2: Overview of the historical evolution of SQMs methods.

2.2.1 The Beginnings

Hückel Theory

Hückel theory, introduced by Erich Hückel in 1931,217 is a semiempirical method for modeling 𝜋-electron
systems in conjugated hydrocarbons. It simplifies the MO problem by considering only 𝜋-electrons while
treating the potential of all other electrons as a constant, which is neglected.222 MOs are constructed as
linear combinations of atomic 𝑝𝑧 orbitals following the LCAO approach [Eq. (1.28)]. Assuming orthonormal
AOs (𝑆𝜇𝜈 = 𝛿𝜇𝜈) simplifies the generalized eigenvalue problem from Eq. (1.32) into a standard eigenvalue
problem. The Hamiltonian matrix consists of on-site (𝛼) and interaction (𝛽) elements: 𝛼 represents the
on-site energy of a 𝜋 electron localized on a single atom and depends on the specific atom type, while 𝛽
describes the interaction between adjacent 𝑝𝑧 orbitals on neighboring atoms. Consequently, the effective
Hamiltonian matrix 𝐻eff is topology-dependent and consists solely of empirical elements, independent of the
molecular geometry:†

𝐻eff =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛼 𝛽 0 ⋯ 0
𝛽 𝛼 𝛽 ⋯ 0
0 𝛽 𝛼 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝛼

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (2.1)

As 𝐻eff does not depend on the electron density, the eigenvalue problem can be solved non-iteratively:

HeffC = 𝜺C with C =
⎛⎜⎜⎜⎜
⎝

∣ ∣ ∣
c(1) c(2) ⋯ c(𝑛)

∣ ∣ ∣

⎞⎟⎟⎟⎟
⎠

. (2.2)

† For Hückel theory, it is convenient to define 𝐻eff as done in Eq. (2.1). However, this definition is a special case rather than a
general way of constructing a Hamiltonian matrix.
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Eq. (2.2) yields the orbital energies 𝜺 and expansion coefficients c of the MOs. While Hückel theory provides
qualitative MO insights and explains aromaticity according to Hückel’s 4𝑛 + 2 rule, its primary application
today is in education.69

A major advancement of Hückel theory was the incorporation of electron-electron Coulomb repulsion,
requiring iterative solutions of the effective Hamiltonian.223 This refinement was independently introduced in
the 1950s by Pariser and Parr,218,219 as well as by Pople,220 leading to the development of PPP. Starting from
the Fock matrix expression in Eq. (1.33) and incorporating all approximations from Hückel theory, PPP can be
derived by introducing the famous zero differential overlap (ZDO) approximation: products of AOs depending
on the same electron coordinates when located on different atoms are neglected.69† Importantly, all three-
and four-center integrals vanish completely, implying that non-zero (𝜇𝜈|𝜆𝜎) occur only if 𝜈 = 𝜇 and 𝜆 = 𝜎
or if all four indices are equal (the lower-case Greek letters denote AOs). The remaining matrix elements are
not computed explicitly, but are typically replaced by empirical expressions.223,225,226‡ By construction, PPP
reduces to Hückel theory in the limit of non-interacting electrons. Today, PPP remains relevant for modeling
𝜋-conjugated systems, particularly for screening singlet-triplet gaps.225,227,228 A thorough derivation of PPP
from HF is provided in Sec. B.1.

Extended Hückel Theory

Introduced by Hoffmann in 1963, EHT is a generalization of Hückel theory that incorporates both 𝜋- and
𝜎-electrons.221 It extends Hückel’s approach by including all valence orbitals and explicitly accounting for
orbital overlap. The effective EHT Hamiltonian matrix elements are defined as:

𝐻𝜇𝜈 =
⎧{
⎨{⎩

𝐻𝜇𝜈 + 𝐻𝜈𝜈
2 𝐾 𝑆𝜇𝜈, if 𝜇 ≠ 𝜈,

𝐻𝜇𝜇, if 𝜇 = 𝜈.
(2.3)

In the original implementation, 𝐻𝜇𝜇 corresponds to the atomic orbital ionization energy, while 𝐾 is an
empirical scaling factor. Off-diagonal elements 𝐻𝜇𝜈 are computed as the weighted average of the diagonal
entries, scaled by the overlap integral 𝑆𝜇𝜈. As a result, differences in the chemical environment between
atoms of the same type are neglected.69 Similar to the Hückel theory eigenvalue problem in Eq. (2.2), 𝐻eff
is independent of the electron density, so the result is obtained through a single diagonalization. Since
EHT primarily provides qualitative MOs and orbital energies, it is commonly used to generate an initial
density matrix guess in HF or DFT calculations.229,230 Novel advancements related to EHT are discussed in
Chapters 4-6.

2.2.2 Hartree-Fock-based Approaches

Semiempirical approximations to HF were primarily pioneered by Pople in the 1960s.220,231,232 The following
paragraphs provide an overview of HF-based SQM methods, categorized by the extent of integral neglect.69

For more comprehensive insights, the reader is referred to Refs. [69, 223].

Complete Neglect of Differential Overlap Complete neglect of differential overlap (CNDO)233,234 follows a
similar philosophy to PPP, particularly in its use of the ZDO approximation. However, CNDO goes beyond

† Some definitions of the ZDO approximation do not necessarily imply the condition 𝑆𝑖𝑗 = 𝛿𝑖𝑗.224 Here, we consistently adopt
the definition from Refs. [69, 223], implying S to be the unit matrix.

‡ Encompassing elements (𝜇𝜇|𝜎𝜎), (𝜇𝜇|𝜇𝜇), as well as, 𝐻PPP
𝜇𝜇 and 𝐻PPP

𝜇𝜎 . One-center exchange integrals are generally neglected.
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𝜋 electrons and considers all valence electrons in an MB. Interatomic interactions are treated atom-pair-
specifically rather than distinguishing between different AO shells (𝑠, 𝑝, 𝑑, ...). While CNDO provided the
theoretical foundation for later HF-based SQM methods, it has largely been superseded by more advanced
approaches.72,223 Similar to PPP, a key limitation of CNDO is its neglect of one-center exchange integrals.232

An in-depth derivation and explanation is provided in Sec. B.2.

Neglect of Diatomic Differential Overlap Neglect of diatomic differential overlap (NDDO) refines CNDO by
retaining same-atom differential overlap, preserving more electron-electron integrals.† The modified neglect
of diatomic overlap (MNDO) parameterization of NDDO laid the foundation for a series of semiempirical
methods that remain widely used today.235 Notable examples include AM1,236 as well as the PMx methods
developed by Dewar, Stewart, and co-workers.237,238 These methods primarily differ in their parameterization
strategies, the treatment of multipole expansions for two-center two-electron integrals, and the handling of
core-core repulsion.69 Thiel and co-workers introduced methods that incorporate orthogonalization effects,
leading to the development of the OMy series.239–242 A new formulation going beyond NDDO in terms of the
considered integrals was presented by Neese and co-workers.243 The corresponding Fock matrix expressions
are given in Sec. B.3.

IntermediateNeglect of Differential Overlap Intermediate neglect of differential overlap (INDO), independently
proposed by Pople232 and Dixon,244 represents a compromise between CNDO and NDDO in terms of both
empiricism and computational complexity. Differential overlap is retained only for one-center integrals.
The primary distinction from CNDO is the explicit inclusion of one-center exchange integrals of the type
(𝜇𝜈|𝜇𝜈). The original INDO method was soon replaced by several improved variants, such as MINDO.
Further advancements led to the development of ZINDO, which focused on molecular spectra, as well as
further variants such as SINDO and MSINDO.223,245–249 Sec. B.4 includes the general Fock matrix expression
of the INDO method.

2.2.3 The Tight-Binding Approximation for Semiempirical Methods

The tight-binding (TB) approximation was historically used independently of DFT, primarily for predicting
electronic band structures in solid-state physics and dates back to the 1950s.250–255 At its most fundamental
level, it assumes that electrons remain localized around their parent atoms, described by AOs, and interact
only weakly with neighboring atoms.‡ Thus, the principal principal origins of TB theory are closely linked
to other methods for describing the molecular wavefunction from atomic contributions such as the LCAO
approach and (extended) Hückel theory.250,251,255

Density Functional Tight-Binding

For chemical applications, TB became useful through the combination with DFT as introduced by Porezag
et al. in 1995, and termed density functional tight-binding (DFTB).257§ A key distinction from the HF-based
approaches outlined in Sec. 2.2.2 is that DFTB and its variants do not employ the ZDO approximation. That

† This means that (𝜇𝜈|𝜅𝜆) is computed explicitly for 𝜇, 𝜈 ∈ 𝐴 and 𝜅, 𝜆 ∈ 𝐵. 𝐴 and 𝐵 may or may not represent the same
atom.

‡ This contrasts with the nearly-free electron model.256

§ An important preceding work by Seifert already drew a connection to LDA and highlighted the relation to EHT but focused on
band structure energies.258
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is, all elements of S are explicitly considered, and the generalized eigenvalue problem is solved. Furthermore,
DFT includes electron-electron correlation effects to some extent, making DFT as the underlying and targeted
theory generally more accurate than HF.93,259 Since eXtended Tight-Binding (xTB) (vide infra) and the novel
density matrix TB method presented in Chapter 4 build upon DFTB, its underlying concept will be outlined
in detail in the following.

In their foundational work, Porezag et al. outlined a TB-like scheme derived entirely from LDA DFT
instead of experimental data.† Employing the two-center approximation, where higher-order multi-center
terms are formally neglected, the following expression for the effective Hamiltonian results:257,263

𝐻𝜇𝜈 =

⎧{{
⎨{{⎩

𝜀free atom
𝜇 , if 𝜇 = 𝜈,

⟨𝜙𝐴
𝜇 ∣ ̂𝑇 + 𝑉𝐴

0 + 𝑉𝐵
0 ∣ 𝜙𝐵

𝜈⟩, if 𝐴 ≠ 𝐵,
0, otherwise,

(2.4)

where 𝑉𝐴
0 + 𝑉𝐵

0 approximates the effective potential 𝑉eff(r) from first principles LDA via superposition of
atomic potentials:

𝑉eff(r) = ∑
𝐴

𝑉𝐴
0 (|r − R𝐴|). (2.5)

𝜀free atom
𝜇 are the Hamiltonian eigenvalues of the free atom. For generating a minimal set of short-ranged

atom-centered basis functions 𝜇, one typically solves an atomic KS problem in which the atom is placed in
a confining potential.257 The short-range nature of the confined AOs ensures a fast decay with increasing
distance 𝑅𝐴𝐵. By evaluating the integral of the kinetic energy operator and 𝑉eff(r) with the confined atom-
centered functions, the effective potential is projected on them. For each pair 𝐴 and 𝐵, LDA calculations of
the diatomic molecule 𝐴-𝐵 are carried out over a grid of bond distances. This procedure yields two-center
integrals, 𝐻𝜇𝜈(𝑅) = ⟨𝜙𝜇|�̂�KS|𝜙𝜈⟩ and 𝑆𝜇𝜈(𝑅) = ⟨𝜙𝜇|𝜙𝜈⟩ that depend only on the interatomic distance 𝑅.
These interactions can be tabulated and interpolated for given interatomic distances, following the approach
introduced by Slater and Koster in 1954, which has since been widely adopted.250,264–266 In doing so, essential
DFT physics were captured while keeping the TB framework of localized AOs. To obtain total energies, a
simple short-ranged repulsive term

𝐸rep = ∑
𝐴<𝐵

𝑉𝐴𝐵
rep (𝑅𝐴𝐵), (2.6)

consisting of a sum of polynomials is fitted to reproduce DFT reference data, as usual in TB theory. After
solving the generalized eigenvalue problem [cf. Eq. (1.32)], the total energy is obtained as

𝐸tot =
occ
∑

𝑖
𝑛𝑖𝜀𝑖

⏟
⟨𝛹𝑖|�̂�|𝛹𝑖⟩

+𝐸rep, (2.7)

where �̂� is the Hamiltonian defined in Eq. (2.4). Since the Hamiltonian elements do not depend on the
occupation, i.e., no charge redistribution is allowed, the final energy can be obtained in a single diagonalization.
The derivation of empirical parameters from DFT rather than empirical adjustment represented a major
milestone in the development of SQM methods.263

Later, self-consistent variants called self-consistent charge (SCC)-DFTB (also termed DFTB2) and DFTB3
were introduced, which were derived directly from KS-DFT theory.267–269 For that, we recall Eq. (1.18) and
replace the charge density 𝜌(r′) by a reference density 𝜌0(r′), which usually represents that of the neutral

† For related approaches that also tried to derive TB expressions in a less empirical way, see Refs. [260–262].
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unperturbed atom, and a small fluctuation due to the perturbation by the environment 𝛿𝜌(r′):

𝜌(r′) = 𝜌0(r′) + 𝛿𝜌(r′). (2.8)

Inserting into Eq. (1.18) and Taylor expanding 𝐸xc up to the third order leads to Eq. (2.9), which additionally
contains all contributions to 𝑉ee including electron-electron coulomb repulsion as well as semi-local XC.269

𝐸[𝜌0 + 𝛿𝜌] = 1
2 ∑

𝐴𝐵

𝑍𝐴𝑍𝐵
𝑅𝐴𝐵

− 1
2 ∬ 𝜌0(r)𝜌0(r′)

|r − r′| 𝑑r𝑑r′ − ∫ 𝑉xc[𝜌0]𝜌0(r) 𝑑r + 𝐸xc[𝜌0]

+ ∑
𝑖

𝑛𝑖⟨𝜓𝑖|�̂�[𝜌0]|𝜓𝑖⟩ + 1
2 ∬ ⎛⎜

⎝

1
|r − r′| + 𝛿2𝐸xc[𝜌]

𝛿𝜌(r)𝛿𝜌(r′) ∣
𝜌0

⎞⎟
⎠

𝛿𝜌(r)𝛿𝜌(r′) 𝑑r𝑑r′

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸2

+ 1
6 ∭ 𝛿3𝐸xc[𝜌]

𝛿𝜌(r)𝛿𝜌(r′)𝛿𝜌(r″) ∣
𝜌0

𝛿𝜌(r)𝛿𝜌(r′)𝛿𝜌(r″) 𝑑r𝑑r′𝑑r″

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸3

= 𝐸0+1[𝜌0, 𝛿𝜌] + 𝐸2[𝜌0, (𝛿𝜌)2] + 𝐸3[𝜌0, (𝛿𝜌)3], (2.9)

wherein �̂� represents the one-electron contributions by the kinetic energy and the external potential. The
non-self-consistent DFTB1 introduced before can be derived from Eq. (2.9) via neglecting the last two (second
and third order) terms.267 This is a good approximation for all cases, in which the real density of the system is
close to the superposition of atomic densities, that is, no significant CT effects or polarized bonds are present.
SCC-DFTB considers 𝐸2 in addition to the terms contained in DFTB1. Decomposing 𝐸2 into atom-centered
contributions and treating them as monopoles in a first approximation, leads to

𝐸2 ≈ 1
2

𝑁
∑
𝐴,𝐵

𝛥𝑞𝐴𝛥𝑞𝐵𝛾𝐴𝐵(𝑟𝐴𝐵), (2.10)

where 𝛾𝐴𝐵 is chosen such that lim𝑅→0 𝛾𝐴𝐵 = 𝑈𝛼 and lim𝑅→∞ 𝛾𝐴𝐵 = 1
𝑟𝐴𝐵

holds, with the so-called Hubbard
parameter 𝑈𝛼 being related to the chemical hardness.270† Thus, in the limit of large interatomic distances, the
interaction of two charge fluctuations reduces to be of pure Coulomb type since the LDA XC contributions
vanish. The final energy in second order then reads

𝐸DFTB2[𝜌0 + 𝛿𝜌] =
occ
∑

𝑖
⟨𝛹𝑖|�̂�0|𝛹𝑖⟩⏟⏟⏟⏟⏟

𝑛𝑖𝜀𝑖

+𝐸rep + 1
2

𝑁
∑
𝐴,𝐵

𝛾𝐴𝐵𝛥𝑞𝐴𝛥𝑞𝐵

= 𝐸0+1 + 𝐸2, (2.11)

where 𝜀𝑖 are the eigenvalues of the atomic Hamiltonian.
DFTB3268,269,271 incorporates the full expansion from Eq. (2.9) up to third order and adds the following

term to the total energy expression from Eq. (2.11), appyling the same approximations as for the second-order

† 𝛾𝐴𝐴 ≈ 𝐼𝐴 − 𝐸𝐴 ≈ 2𝜂𝐴 ≈ 𝑈𝐴, where 𝐼𝐴 and 𝐸𝐴 are the ionization potential and the electron affinity of 𝐴. Thereby, the XC
contribution is implicitly considered in the second-order term.
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contribution:

𝐸3 ≈ 1
6 ∑

𝐴𝐵𝐶
𝛥𝑞𝐴𝛥𝑞𝐵𝛥𝑞𝑐

𝑑𝛾𝐴𝐵
𝑑𝑞𝐶

∣
𝑞0

𝐶

≈ 1
3

𝑁
∑
𝐴,𝐵

𝛥𝑞2
𝐴𝛥𝑞𝐵𝛤𝐴𝐵(𝑟𝐴𝐵), (2.12)

which contains a derivative of the 𝛾 function with respect to the atomic charge, effectively making the
chemical hardness and the electron-electron repulsion charge-dependent. This derivative of the second-order
interaction kernel is termed 𝛤 and can be estimated from first-principles calculations.

However, DFTB faced a significant limitation: its Hamiltonian construction relies on element pairwise
parameters the number of which scales quadratically as 𝒪(𝑁2

elem.), which makes empirical parameter op-
timization challenging. Numerous DFTB parameter sets exist, tailored for both general applications and
specific element combinations.272–274 A few sets even cover large portions of the periodic table.275,276

Extended Tight-Binding Methods: GFNn-xTB

The xTB methods were introduced in 2017 to address the parameterization challenges of DFTB, shifting
the focus specifically toward Geometries, Frequencies, and NCIs (GFN).259,277 The GFN family began
with GFN1-xTB in 2017,277 later expanding to include GFN2-xTB278 and the non-self-consistent variant
GFN0-xTB.279 Like DFTB3, their theoretical foundation lies in the Taylor expansion of the XC part of the
KS-DFT energy around a reference density 𝜌0, using small charge fluctuations 𝛿𝜌 [see Eqs. (2.8) and (2.9)].
The key differences between xTB and DFTB are:

(i) The semiempirical xTB Hamiltonian elements are explicitly calculated from element-wise parameters
and are not interpolated from tabulated pair-wise DFT data. Thus, element pair-wise parameters are
almost completely avoided, overcoming the parameterization challenges of DFTB. The GFNn-xTB
methods are parameterized for all elements up to radon (𝑍 = 86), ensuring broad applicability.

(ii) The energy expressions derived for zeroth and first order vary significantly from DFTB, primarily due
to point (i). xTB is based on an atom pair-wise function for the repulsion energy and an EHT-type
Hamiltonian.

(iii) The (semi)empirical parameters defining the effective Hamiltonian were not obtained from first-
principles DFT calculations but were optimized to minimize the root mean square error (RMSE) of
xTB-computed target properties with respect to reference data from WFT and DFT,259 with a focus on
the GFN properties.

(iv) Instead of AOs from atomic DFT calculations, xTB employs a minimal set of STOs expanded in
contracted GTO basis functions.145†

The energy contributions in GFN1- and GFN2-xTB are summarized in Eq. (2.13).‡ However, not all terms
occur in both methods, which is why the contributions are not strictly grouped according to their order in the

† GFN1-xTB includes an additional 𝑠 function for hydrogen beyond the MB scheme to improve hydrogen bonding.
‡ The non-self-consistent GFN0-xTB279 differs significantly from this scheme and shall not be discussed in this thesis.
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Taylor expansion from Eq. (2.9), as indicated by the superscript index.

𝐸GFNn-xTB = 𝐸(0)
rep + 𝐸(0)[,(1),(2)]

disp + 𝐸(1)
EHT + 𝐸(2)

IES+IXC + 𝐸(3)
IXC⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

GFN1+GFN2

+ 𝐸(0)
XB⏟

GFN1

+ 𝐸(2)
AES+AXC⏟⏟⏟⏟⏟

GFN2

. (2.13)

The repulsion energy [cf. Eq. (2.6) in DFTB] is defined in an atom pair-wise fashion

𝐸rep = 1
2 ∑

𝐴,𝐵

𝑍eff
𝐴 𝑍eff

𝐵
𝑅𝐴𝐵

𝑒−√𝛼𝐴𝛼𝐵(𝑅𝐴𝐵)𝑘𝑓
, (2.14)

where 𝛼𝐴 and 𝑍eff
𝐴 are empirical, element-specific parameters, with the latter roughly corresponding to

effective nuclear charges. 𝑘𝑓 is a global parameter. The EHT-type first-order term is in principle defined as
follows

𝐸EHT = ∑
𝜇𝜈

𝑃𝜇𝜈𝐻EHT
𝜇𝜈 with 𝐻EHT

𝜇𝜈 = 1
2𝐾 𝑙𝑙′

𝐴𝐵𝑆𝜇𝜈(𝐻𝜇𝜇 + 𝐻𝜈𝜈)[⋯], (2.15)

where 𝑆𝜇𝜈 is the corresponding overlap integral element, and 𝐾 𝑙𝑙′
𝐴𝐵 is an empirical, shell-specific parameter

for shells 𝑙 and 𝑙′ (𝑠, 𝑝, ...).† The parameters 𝐻𝜇𝜇 correspond to the diagonal elements of atomic shell energy
levels, which depend on the chemical environment, e.g., via the coordination number (CN). The dots indicate
further parameterization of 𝐻EHT

𝜇𝜈 specific to GFN1 and GFN2. Detailed definitions are provided in Sec. B.5.1.
𝐻EHT

𝜇𝜈 serves as the analogue to the effective Hamiltonian in DFTB1 (Eq. (2.4)), where a significant portion of
the empirical parameters in GFNn-xTB is embedded, even though their origin is fundamentally different. The
isotropic electrostatics (ES) and XC energies in second and third order remain qualitatively similar to their
DFTB counterparts [Eqs. (2.10) and (2.12)]. However, the 𝛾 function used for damping Coulomb interactions
at short distances follows the Ohno-Klopman form:226,280

𝛾𝐴𝐵,𝑙𝑙′ = 1

√𝑅2
𝐴𝐵 + 𝜂−2

𝐴𝐵,𝑙𝑙′

. (2.16)

In GFN1-xTB, 𝜂𝐴𝐵,𝑙𝑙′ is defined as the harmonic mean (GFN2-xTB: arithmetic average) of effective shell
hardness values of the form 𝜂𝐴 (1 + 𝑘𝑙

𝐴), where 𝜂𝐴 is an empirical atomic hardness and 𝑘𝑙
𝐴 is a shell-specific

scaling parameter. The third-order term [see Eq. (2.12)] appears only as an on-site contribution, making 𝛤𝐴
an atomic parameter, which in GFN2-xTB is additionally scaled shell-wise. Beyond the isotropic second-order
interactions, GFN2-xTB also incorporates anisotropic ES and XC interactions by expanding the atom-centered
contributions up to second order in a multipole expansion.‡ This partially compensates for BSEs caused by
the absence of polarization functions, eliminating the need for explicit hydrogen or halogen bond corrections.
Similar to 𝐸IES, 𝐸AES employs a damping function to prevent divergence at short distances. To improve
the description of weak halogen bonds in view of the missing anisotropic contributions in GFN1-xTB, an
explicit zeroth-order (purely geometry-dependent) correction term 𝐸XB is introduced (cf. Ref. [281] for a
related approach). The explicit formulation of 𝐸AES and 𝐸XB is provided in Sec. B.10. 𝐸disp represents the
semiclassical dispersion correction in both methods, as introduced in Sec. 1.1.2. GFN1-xTB employs the
D3(BJ) dispersion correction, which is a zeroth-order contribution since it is applied as a post-SCF correction.
In contrast, GFN2-xTB uses the charge-dependent D4 correction, which is incorporated self-consistently via

† For certain elements, 𝐾 𝑙𝑙′
𝐴𝐵 in GFN1-xTB depends on the specific element pair 𝐴𝐵, representing an exception to the element-wise

parameterization philosophy outlined above.
‡ This introduces charge-dipole, charge-quadrupole, and dipole-dipole interactions, in addition to the charge-charge interaction in

the 𝐸IES term.
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Chapter 2 Semempirical Approaches in Quantum Chemistry

Figure 2.3: Weighted total mean absolute deviation (WTMAD-2) with respect to reference data for various DFAs
including “3c” composite methods, and GFN2-xTB on the GMTKN55 benchmark set for general main-group ther-
mochemistry.93 The approximate target accuracy (“DFT accuracy at TB speed”) is shown in transparent color. See
Ref. [93] for details on the WTMAD-2 measure. The dashed horizontal lines mark the performance of the “3c”
composite DFT methods.

Mulliken charges282 derived from the density matrix.

2.3 Interim Conclusion on the Shortcomings of SQM Methods

A substantial number of benchmark studies in recent years has demonstrated that SQM methods generally
do not achieve the accuracy of standard DFAs, which represent the workhorses of modern computational
chemistry.8,283–285 While SQM methods can describe geometries and NCIs of neutral systems with reasonable
accuracy,116,286–289 they struggle significantly with relative conformer rankings, thermochemistry involving
bond dissociation, the description of spin states, and the treatment of charged or strongly polarized sys-
tems.8,283–285 As an example for this challenge, Fig. 2.3 compares the errors of various DFAs with those of
the semiempirical GFN2-xTB method on the well-established general main-group thermochemistry, kinet-
ics, and noncovalent interactions (GMTKN)55 benchmark set. GFN2-xTB, one of the most recent SQM
developments, exhibits errors that are, on average, two to ten times larger than those of standard DFAs. Even
lower-rung GGA functionals outperform GFN2-xTB in accuracy. Extensive benchmarking over the past
years has shown that this is not unique to GFN2-xTB but extends to various SQM methods, regardless of
whether they originate from HF or DFT.8,283,290–292 Rather than delving into the individual strengths and
weaknesses of specific semiempirical methods, we emphasize that they have yet to achieve the overarching
goal of “DFT accuracy at semiempirical speed” for the applications described above.
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Chapter 2 Semempirical Approaches in Quantum Chemistry

Figure 2.4: Radial distribution function of the electron density for hydrogen with charges of +0.5 (left), 0 (middle), and
−1 (right), computed using the RSH DFA 𝜔B97X-V with different basis sets.103 CBS refers to an uncontracted 14𝑠
basis set from the TURBOMOLE basis set library.294,295

Having reviewed the historical evolution of SQM methods up to the present, we can now identify their
remaining shortcomings. Some of these limitations apply to all SQM methods, while others are specific to
the more recent DFTB-based variants.

Choice of Basis Set All SQM methods discussed in Sec. 2.2 are formulated using some form of MB set.
MBs impose significant limitations on the MO expansion by restricting it to one fixed Gaussian function per
AO, regardless of the underlying electronic structure theory. In other words, the accuracy of the results is
fundamentally constrained by the choice of basis set.

Fig. 2.4 demonstrates the limitation of using a fixed single Gaussian function per AO through a simple
example: the radial distribution function of the electron density for a hydrogen atom in different charge states.
The employed MB, STO-3G,293 fails to capture the contraction and expansion of the electron density in
response to positive and negative charges, respectively. Beyond charge effects, additional environmental
influences that modify AO shapes – such as compression due to spatial proximity of neighboring atoms (e.g., in
covalent bonds) – cannot be accounted for in MBs. The impact of using a MB compared to various multiple-𝜁
basis sets on a calculated barrier height is illustrated in Fig. 2.5. The MB sets MINIS296 and STO-3G293 fail
to describe the transition state correctly, erroneously predicting it as a local minimum. While basis sets of TZ
quality and larger converge toward the reference barrier height, even the simplest DZ basis set already yields
a positive barrier. Adding polarization functions, as in SVP, further reduces the error, highlighting their
importance. This trend is supported by the mean absolute errors (MAEs) over a representative benchmark set,
where the most significant improvement is observed when transitioning from MBs to a (polarized) DZ basis
set. These limitations of MBs partially explain the insufficient accuracy of GFN2-xTB in the GMTKN55
benchmark set in Fig. 2.3.

A central objective of this thesis is the development of solutions to address basis set deficiencies in SQM
methods. Two strategies are conceivable.

First, the development and implementation of a multiple-𝜁 basis set within an SQM framework. This
approach is pursued in Chapters 3 and 4, where a new small-basis-set composite DFT method is introduced
as a spin-off toward a multiple-𝜁 SQM method, which is realized in form of the PTB method. However, MBs
have been employed in SQM methods for almost a century for good reasons: Introducing more than one
AO shell complicates the parameterization of AO interactions, as multiple interaction terms per element
and angular momentum combination must be considered. Furthermore, element pair-wise parameterized
interactions that do not differentiate between AO shells do not benefit from a multiple-𝜁 basis set at all.
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Figure 2.5: Barrier height of the SN2 fluorine exchange reaction in fluoromethane (CH3F) computed with the RSH
DFA 𝜔B97M-V104 using different basis sets (blue bars).146,211,295,296 The SVP, TZVP, QZVP, and QZVPPD basis sets
correspond to the def2 family.139,149 The theoretical reference at the W2-F12 level is indicated by the gray dashed
line.297 The orange line represents the MAE across the entire BH76 benchmark set for reaction barrier heights in small
organic molecules, which also includes the shown example reaction.93,298

Chapters 5 and 6 describe an alternative approach, where a consistent and easily applicable framework for
an improved MB is developed that retains the accuracy of multiple-𝜁 basis sets.

Reference Data and Target Properties In general, the predictive accuracy of semiempirical methods is
ultimately constrained by the quality and consistency of the reference methods used during parameterization.
Early SQM approaches relied on experimental data, either as targets or directly as parameters. While
experimental data may seem ideal, they present significant drawbacks. First, their availability is limited,
and generating new data is costly in both time and resources. Second, isolating the electronic energy from
other contributions, such as solvation effects, free energy corrections, and finite-temperature effects, is highly
challenging, making a pure representation of the electronic energy difficult.† Later approaches sought to
emulate either HF or DFT interactions and properties, circumventing these complications. DFTB even
replaces entire integrals with tabulated DFT data. Meanwhile, xTB employs theoretical reference data of
varying accuracy during parameterization, ranging from WFT to GGA DFT, depending on the property.

In Chapter 4, we introduce a novel approach in which an SQM method is specifically designed to reproduce
the results of a consistent and highly accurate RSH DFT calculation. Instead of directly fitting parameters to
minimize deviations from target properties, this method aims to replicate the converged electron density matrix
of the reference method. Thus, the work also represents an attempt to incorporate non-local information into
a DFTB-based framework. While some HF-based methods discussed in Sec. 2.2.2 account for one-center
exchange integrals, DFTB and xTB effectively mimic only GGA DFT.

Another key aspect is incorporating data beyond conventional chemical space. This can be achieved by
expanding parameterization and validation datasets to include not only chemically relevant molecules but also
“mindless” molecules – automatically generated structures that do not necessarily adhere to typical bonding
motifs.301 This strategy enhances transferability and is explored to varying degrees in Chapters 4, 5, and 6.

† This distinction is crucial to ensure that temperature-dependent corrections299 and environmental effects (e.g., solvent models)300

can be applied independently without requiring reparameterization of the electronic structure method.164
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Chapter 3 𝝎B97X-3c: A Composite Range-Separated Hybrid DFT Method with a Molecule-Optimized
Polarized Valence Double-𝜻 Basis Set

Originally, the “3c” composite methods were designed for specific properties such as geometries and
interaction energies. With r2SCAN-3c,214 employing a modern meta-GGA DFA,66,67 broader applications,
including main group thermochemistry and accurate conformer energies, have become feasible. However, as
an m-GGA DFA, r2SCAN-3c exhibits significant amounts of SIE, limiting its accuracy for certain applications,
such as polar molecules, barrier heights, and large biomolecules.

𝜔B97X-3c addresses this issue by providing an efficient small-basis-set method capable of accurately
handling such cases.1 While following the “3c” paradigm, it incorporates several key innovations. The first
novelty is the use of the RSH DFA 𝜔B97X-V, which ranks among the most accurate DFAs, particularly
for main-group thermochemistry.93,103 The three components of this small-basis-set variant of 𝜔B97X-V
are: (i) the novel polarized valence double-𝜁 (vDZP) basis set, (ii) matching large-core ECPs, and (iii) the
established D4 dispersion correction, replacing the default VV10 dispersion correction. For the first time
in a “3c” approach, vDZP has been developed entirely from scratch, rather than modifying existing basis
sets from the MINIS296 or def2139 families. Unlike most conventional Gaussian basis sets, its exponents and
coefficients were variationally optimized in molecular DFT calculations for both neutral and ionic systems,
rather than in atomic calculations. This molecular optimization, combined with a deep contraction of the AOs,
significantly improves the description of the electron density in bound and charged species, as demonstrated
for H– . Additionally, this strategy drastically reduces BSSE to levels comparable to conventional triple-𝜁
basis sets. Small residual BSSE effects were absorbed into the D4 parameterization, which was optimized
on a broad set of NCI databases.93,285,292,302–306 As a by-product, we also present new D4 parameters for
𝜔B97X-V (replacing the VV10 contribution) in a converged basis set, significantly improving previous
parameterizations.307 The large-core ECPs reduce computational cost substantially, particularly for heavy
elements. For an appropriate description of metallic systems, vDZP includes additional semi-core electrons
(𝑠 and 𝑝 shell) for groups 1-12, while main groups 13-18 retain a strict valence-only basis. Originally, the
combination of the deeply contracted vDZP basis set and matching large-core ECPs was developed for
the SQM method PTB (see Chapter 4), where Hamiltonian diagonalization – scaling with the number of
contracted basis functions – constitutes the computational bottleneck. By combining 𝜔B97X-V with the
accurate vDZP basis set, 𝜔B97X-3c eliminates the need for the more empirical gCP and SRB corrections
employed in earlier “3c” methods.

𝜔B97X-3c rivals standard hybrid DFT/QZ methods on thermochemistry benchmarks such as GMTKN55,
achieving a WTMAD-2 of 5.5 kcal⋅mol−1 at a fraction of the computational cost, resulting in a speed-up by a
factor of three to five. For NCI benchmarks such as S30L306 and ACONFL,292 it matches or surpasses the
accuracy of the parent functional in the complete basis set.93,307,308 By mitigating SIE, 𝜔B97X-3c enhances
reliability for supramolecular complexes and large biomolecules, where (semi)local DFT methods often fail
due to self-interaction errors and associated convergence issues. For the same reason, transition states as
typical SIE cases represent another key application of 𝜔B97X-3c. Furthermore, since memory requirements
in DFT codes scale with the number of AOs, 𝜔B97X-3c’s vDZP basis saves noticeable amounts of memory
for large-scale computations. A minor limitation arises in transition metal thermochemistry, where the use of
large-core ECPs results in slightly lower accuracy for these systems.

Thanks to its ability to accurately describe NCIs in large systems, 𝜔B97X-3c has been employed to
benchmark SQM and FF NCI energies for structures containing up to 2000 atoms.116 In a recent study, it
has also been applied to investigate reaction paths and transition states in the context of mass spectrometry
simulations.284 𝜔B97X-3c completes the “3c” family by addressing thermochemistry for large systems. It is
particularly advantageous in cases where an efficient yet accurate non-local DFT method virtually free of SIE
is essential. 𝜔B97X-3c is implemented in several QM packages, such as ORCA,309 TURBOMOLE,294 and
Psi4,310 while the vDZP basis set is additionally distributed on an open-source basis set platform.152
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Chapter 4 A Non-Self-Consistent Tight-Binding Electronic Structure Potential in a Polarized Double-𝜻
Basis Set for all spd-Block Elements up to Z=86

The xTB methods, introduced in the late 2010s, have become widely used, robust, and established tools
for a variety of applications, including geometry optimizations,171,311,312 the calculation of thermostatistical
corrections,164,313 and conformer searches.8,30,165 Despite their versatility, their accuracy for typical ther-
mochemistry problems involving bond breaking or transition states remains distinctly lower and is often
insufficient.259,283 Additionally, significant inaccuracies in IR intensities were reported for many test cases.314

A key limitation underlying these issues is the use of an MB set in all xTB methods. Developing a TB method
applicable to thermochemical problems and capable of completely replacing low-cost DFT has thus become
a primary target.

To address these limitations, PTB (density matrix, P, Tight-Binding) has been developed with a strategy
that diverges significantly from previous approaches: Rather than fitting empirical Hamiltonian parameters to
reproduce target properties such as geometries, frequencies, and NCI energies, the PTB parameters were
optimized to emulate the converged one-particle density matrix of the reference DFT method in the same basis
set. This approach builds on the concept of separating energy and potential, as pioneered by Burke et al. in
density-corrected DFT.315 The empirical Hamiltonian parameters were fitted to electronic properties directly
related to P, such as shell populations, atomic charges, bond orders, dipole and second moments, and their
derivatives. The fitting loss function also included the energy difference between a DFT energy expression
evaluated with the PTB density and the converged 𝜔B97X-3c density. A further innovation in PTB is its
reference method. Instead of local DFT, PTB aims to approximate the 𝜔B97X-3c RSH composite method,
as presented in Chapter 3. Like 𝜔B97X-3c, the PTB Hamiltonian is expanded in the vDZP basis, marking
the first time an SQM method employs a basis set with more than one basis function per AO shell (i.e., not
an MB set). PTB operates as a non-self-consistent method, requiring a fixed number of two Hamiltonian
matrix diagonalizations (three for response properties), eliminating any SCF convergence issues. We found
that self-consistent solutions within TB-SQM theory remain robust only when using MBs, as extended basis
sets like vDZP introduce flexibility that cannot be reliably exploited by approximate SQM Hamiltonians.
The PTB Hamiltonian follows the construction principles of xTB and DFTB, but incorporates additional
non-local terms dependent on P to account for the RSH reference DFA. Notably, it requires only AO overlap
integrals, following the tradition of the xTB methods. Via an additional diagonalization, the wave function’s
response to static external electric fields is approximated, enabling the calculation of polarizabilities and
derived properties such as Raman activities. PTB has been parameterized for all elements up to 𝑍 = 86,
excluding the lanthanides.

In thorough tests, the method achieves absolute errors of only 0.02 𝑒− in atomic charges and relative
errors of approximately 5-10 % in dipole moments and polarizabilities. This performance is consistent
even for “mindless” molecules (MLMs) consisting of electronically more complex transition metals and for
highly charged systems. Compared to the xTB methods, PTB demonstrates significantly higher accuracy for
derived electronic properties, such as IR and Raman intensities. Coupling PTB intensities with GFN2-xTB
frequencies yields vibrational spectra approaching DFT quality. Its speed-up of 103 to 104 compared to
conventional DFT enables efficient calculation of Raman spectra for large systems, such as Crambin, a
protein with 327 atoms. Despite requiring only a few hours instead of several days, PTB closely matches the
𝜔B97X-3c reference spectrum. While PTB can successfully emulate the 𝜔B97X-3c one-particle density
matrix, a dedicated TB energy expression could not be established. However, early tests indicated that
combining the PTB density matrix with simple DFA energy expressions, such as RPBE,316 can produce
results comparable to those of the converged density.

PTB represents a significant advancement in exploring the potential of TB methods with extended basis
sets and in emulating DFT electron density. It is natively implemented in the open-source xtb package.259
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Chapter 5 An Atom-in-Molecule Adaptive Polarized Valence Single-𝜻 Atomic Orbital Basis for Electronic
Structure Calculations

Chapter 4 discussed that extended basis sets containing more than one basis function per AO shell are
incompatible with self-consistent SQM methods.2 However, a fundamental limitation of conventional MBs
compared to extended basis sets is their inability to “breathe” in response to the chemical environment. For
example, DZ basis sets allow the LCAO approach to flexibly combine more diffuse or compact AOs of the
same angular momentum on a given atom, enabling the atomic electron density to adapt dynamically. This
flexibility is crucial for achieving higher accuracy, particularly in thermochemical applications.

The seeming contradiction between the benefits of extended basis sets and the necessity of MBs in SQM
methods inspired the development of the charge-dependent (polarized) valence single-𝜁 (q-vSZP) basis. This
basis set aims at achieving the accuracy of DZ or larger basis sets while maintaining a formally minimal
structure, limiting the degrees of freedom within the LCAO during SCF procedures. Despite its single-𝜁
character, each AO in q-vSZP is deeply contracted, consisting of 4 to 8 primitive functions for valence orbitals.
q-vSZP emulates the flexibility of extended basis sets by incorporating the CN and the atomic partial charge
(𝑞) as descriptors, which account for the chemical environment of each atom. These descriptors are used
to modify the AOs of each symmetry-unique atom individually, making q-vSZP atom-in-molecule-specific.
The atomic partial charge is computed using a novel semiempirical charge model called Charge Extended
Hückel (CEH), while the CN is a purely geometric property. CEH is based on an EHT-like Hamiltonian,
fitted to reproduce RSH DFT104 Hirshfeld317 charges, and will be introduced in detail in Chapter 6. A simple
formula employing three empirical prefactors adjusts the effective contraction coefficients of the AOs, which
incorporates linear dependencies on 𝑞 and the CN, a quadratic 𝑞 term, and a linear CN-𝑞 cross-term. Crucially,
only the contraction coefficients are parameterized, not the Gaussian exponents, ensuring that the range of
exponents within the contracted AOs remains fixed. This approach avoids excessively compact or diffuse
functions due to extreme charges or CNs. Several features of the vDZP basis set presented in Chapter 3
were incorporated into q-vSZP. All basis set parameters, including Gaussian exponents, coefficients, the
coefficients’ dependency on the effective charge, and empirical parameters defining the effective charge from
CN and 𝑞, were variationally optimized in molecular DFT calculations, including ions. In line with the
valence-only approach of TB methods, q-vSZP employs large-core ECPs. Unlike vDZP, groups 1–12 are
also treated as valence-only due to this approach. The q-vSZP basis set has been published for all 𝑠𝑝𝑑 block
elements up to radon, with a later update (see Chapter 6) extending support to Fr, Ra, the lanthanide series,
and the actinides.

The comparison of radial electron densities for H and H– illustrates the advantage of q-vSZP over con-
ventional MBs. While MBs yield identical radial distribution functions for both charge states, q-vSZP
adapts to the negative charge, producing a significantly expanded distribution for H– . Another benefit of
the charge-dependent parameterization of basis functions is their response to external electric fields. The
CEH model’s charges are electric field-dependent, influencing the effective AOs and enabling q-vSZP to
achieve isotropic dipole polarizabilities approaching QZ level. The variational optimization for molecular
systems ensures well-defined AOs, resulting in low BSSE comparable to the vDZP basis set and close to that
of standard triple-𝜁 basis sets. For the established GMTKN55 database,93 q-vSZP demonstrates a reasonably
accurate WTMAD-2 of 12.6 kcal⋅mol−1, comparable to the standard split-valence def2-SVP139 basis set. In
contrast, conventional MBs achieve significantly higher WTMAD-2 values, ranging from 30 to 50 kcal⋅mol−1.
Similar improvements are observed in molecular structure determination.

q-vSZP, as the first generally applicable atom-in-molecule adaptive MB available for up to 𝑍 = 103, paves
the way for more accurate TB methods in the future. Given efficient analytical gradient implementations
for environment dependent Gaussian basis sets, q-vSZP will be a relevant tool for QM/QM workflows with
mixed basis sets even in DFT applications.
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Chapter 6 Advanced Charge Extended Hückel (CEH) Model and a Consistent Adaptive Minimal Basis Set
for the Elements Z=1–103

Models for atomic partial charge assignment have a long history, with Mulliken population analysis,282

Hirshfeld density partitioning,317 and natural population analysis (NPA)318 being prominent examples.319

These methods traditionally relied on computationally expensive analyses of converged wavefunctions from
DFT or WFT. However, efficient atomic partial charge determination by classical or SQM methods is essential
for applications such as semi-classical dispersion corrections,119,120,320 polarizable FFs,189,321,322 and as
descriptors for ML applications.323 Chapter 5 presented another computational chemistry application: the
charge-dependent, atom-specific parameterization of basis functions. For this application, highly efficient
charge assignment is crucial to ensure that the setup of the basis set does not become a computational bottleneck.
While SQM approaches like xTB or PTB offer robustness and relatively accurate atomic charges,2 their
computational cost made them unsuitable for this purpose. Conversely, classical charge equilibration (QEq)
models, such as EEQ,120,320 often suffer from artificial CT in NCI complexes with significant electronegativity
(𝜒) differences.

To bridge this gap, we developed the Charge Extended Hückel (CEH) model, as noted in Chapter 5. With
a single diagonalization step in an MB, CEH is approximately 10 to 20 times faster than GFN2-xTB while
adhering to basic QM principles. Thereby, it follows the philosophy of an earlier method called sTDA-xTB.324

The CEH Hamiltonian is based on an EHT-type framework and is expanded in Stewart’s Gaussian expansion
of Slater-type orbitals.145 A feature adapted from past SQM methods is the transformation of AO overlap
integrals into the diatomic frame, with integral elements scaled based on interaction type.247,325,326 The
Hamiltonian’s atomic shell energy levels are parameterized using a 𝜒-weighted CN to partially account
for electrostatic screening effects. As a significant improvement over the initial CEH model presented in
Chapter 5, we introduce a purely geometry-dependent approximation for a pseudo self-consistent solution in
this work: pseudo atomic charges, which do not necessarily sum up to the total molecular charge, are assigned
based on 𝜒-weighted CN values. Additionally, the total charge 𝑄tot is distributed equally. This enables the
inclusion of second- and third-order TB ES in the Hamiltonian, capturing long-range effects absent in the
zeroth-order formulation. After diagonalization, final atomic charges are computed from the density matrix
via Mulliken population analysis.282 To emulate mild static correlation effects, valence MOs are populated
according to Fermi-Dirac statistics at an elevated temperature of 4000 K, effectively mitigating artificial CT
between fragments with close-lying energetic states and thus a small fundamental gap. The CEH model was
parameterized against reference DFT Hirshfeld charges317 at the 𝜔B97M-V104/def2-TZVPPD149 level for
elements up to lawrencium (𝑍 = 103). Remarkably, the 𝑓 electrons are treated explicitly as part of the valence
space for the actinides, a rare feature for SQM methods.

Validation against randomly selected molecules from the PubChem database demonstrates an MAE of
0.019 𝑒− for CEH, outperforming all compared methods, including the computationally more demanding
xTB methods. For MLMs, which provide a stringent transferability test as they do not follow any chemical
bias, the MAE increases to 0.077 𝑒− but remains the lowest among all tested methods. For actinide complexes
from the “lnqm” database,320 CEH exhibits a higher correlation with reference charges than the established
EEQ model. Comparisons of the fit RMSE over comparable training data indicates a consistent accuracy
across the periodic table.

CEH is a valuable general charge model, particular in cases, for which classical QEq models fail due to
their inherent limitations. With its implementation in the openly accessible tblite library, CEH provides
convenient access to robust atomic charges. However, the computationally complex analytic derivative of
the charges with respect to the nuclear positions due to the non-self-consistent QM approach represents a
shortcoming of CEH in comparison to QEq models.
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CHAPTER 7

Summary and Outlook

Over the past decades, discovery and innovation in chemistry have expanded beyond case studies of
individual molecules and reactions to large-scale and high-troughput screenings (HTSs). This transformation,
particularly in theoretical research, underscores the demand for computational methods that balance accuracy
with efficiency. The work presented in this dissertation has contributed to this goal by advancing electronic
structure methods that optimize this trade-off. Fig. 7.1 introduces a new perspective on these developments,
illustrating the relationship between computational cost and accuracy in electronic structure theory and
complementing Fig. 2.1. For relatively small systems, the right answer for the right reason can be obtained
using coupled-cluster or related wave function theory (WFT) techniques. Kohn-Sham-density functional
theory (DFT) offers a computationally more efficient alternative and is routinely applicable to systems of
up to a few hundred atoms. While it has become the workhorse of computational chemistry126 over the
past 30 years, for larger systems or HTS approaches, access to large-scale high-performance computing
resources becomes necessary or DFT is not applicable anymore at all. This is where semiempirical quantum
mechanical (SQM) methods play a critical role, which have been a cornerstone of computational chemistry
for nearly a century. While their accuracy is typically lower than DFT, they achieve speed-ups of three to
four orders of magnitude compared to first-principles methods. The increased efficiency enables calculations
on systems containing tens of thousands of atoms or databases comprising millions of small to mid-sized
molecules in a matter of days. Novel machine learning potentials (MLPs) are a relatively recent addition to
this landscape and are included for reference, as well as conventional force fields (FFs). Consequently, the
different method categories in Fig. 7.1 form a Pareto front,† balancing accuracy against computational cost.
Thus, the overarching goal of this thesis has been to advance methodologies that push the Pareto front closer
to the heaven of computational methods.

After an introduction into the relevant basics of electronic structure theory in Chapter 1, Chapter 2 discussed
how the Gaussian basis functions in the standard linear combination of atomic orbitals (LCAO) expansion
represent a key limiting factor in both small basis set composite DFT methods, such as the “3c” series, and
even more so in SQM methods. While composite DFT methods can be refined through a more sophisticated
balance between computational efficiency and mitigating excessive basis set errors, SQM methods have
traditionally relied on conventional minimal bases (MBs), restricting the LCAO expansion to a fixed atomic

† The Pareto front represents the set of Pareto efficient solutions that achieve the best possible balance between accuracy and
computational cost. A solution is Pareto efficient if no improvement in one dimension (e.g., accuracy) can be achieved without
worsening another, such as computational affordability.327
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Figure 7.1: Accuracy vs. affordability of different categories of electronic structure and simulation methods. MLPs are,
like FFs, not able to describe the electronic structure of a molecule but were included here due to their comparable field
of application.†

orbital (AO) per shell. Fundamentally, most developments that were presented in this work originate from the
central idea of enhancing the basis functions used in wavefunction expansions.

Most conventional basis sets were optimized for atomic situations, overlooking the fact that optimal AOs
for molecular calculations – the primary application – can differ significantly. This limitation is particularly
pronounced in small or reduced basis sets, such as those used in previous composite DFT and SQM methods,
where the molecular orbital (MO) optimization space is inherently constrained. Crucially, improving basis
set optimization does not introduce additional computational complexity, as it merely refines predetermined
parameters. In fact, it can reduce resource demands by eliminating the need for formally larger basis sets, as
better-fitted AOs provide enhanced accuracy with fewer functions. To leverage this potential, we developed
the polarized valence double-𝜁 (vDZP) basis set, designed for both DFT and SQM applications. vDZP
features deep contraction and variational optimization in molecular DFT calculations, ensuring well-matched
AOs that accurately reflect typical molecular environments. Its first application was in the novel 𝜔B97X-3c
composite DFT method (Chapter 3), where vDZP enabled accuracy in thermochemistry and non-covalent
interactions (NCIs) previously achievable only with triple-𝜁 or larger basis sets. A key advantage of vDZP is
its extremely low basis set superposition error, which is particularly beneficial for accurately describing NCIs.
Beyond reducing computational complexity and wall time, 𝜔B97X-3c also lowers memory requirements. Its
integration of large-core effective core potentials and a specifically parameterized D4 dispersion correction
aligns it with the “3c” composite DFT family, while simultaneously reducing empiricism by eliminating the
need for more empirical corrections like the short-ranged basis and geometrical counterpoise corrections.
𝜔B97X-3c has been successfully applied to large systems, including supramolecular complexes116, and
barrier height screenings in mass spectrometry predictions.284 Overall, 𝜔B97X-3c extends the practical reach

† The axes illustrate relative trends rather than absolute values. Specifically trained MLPs can achieve DFT-level accuracy for
certain chemical systems but may fail outside their targeted chemical space, leading to their intermediate placement between
traditional SQM methods and DFT.
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of DFT to very large molecular systems while maintaining high accuracy, effectively shifting the Pareto front
of DFT toward larger system sizes.

Building on vDZP, we extended our focus to improving SQM methods through enhanced basis sets.
Chapter 4 introduced PTB, a novel tight-binding (TB) method rooted in density functional tight-binding and
eXtended Tight-Binding (xTB). PTB represents a milestone in SQM development as the first method expanded
in a double-𝜁 (DZ) basis set. A key advantage of vDZP is its deep contraction, which is particularly beneficial
for SQM methods. Since their computational bottleneck is Hamiltonian diagonalization, which scales with
the number of AOs, the increased number of primitive functions per AO comes at almost no cost. Additionally,
we devised an innovative parameterization strategy for PTB: rather than minimizing the deviation of target
properties, PTB’s parameters were optimized to reproduce the density matrix of the reference range-separated
hybrid DFT calculation in the same basis set – 𝜔B97X-3c. This allows PTB to effectively emulate the
converged MOs of the reference method. By combining the vDZP basis with this density matrix-driven
approach, PTB achieves near-DFT accuracy for key electronic properties such as infrared (IR) and Raman
intensities, which correspond to derivatives of the dipole moment and dipole polarizability, respectively.
Additionally, properties directly derived from the density matrix, such as atomic charges and bond orders,
closely match those from the reference density functional approximation. However, we found that developing
a consistent and reliable energy expression within the xTB framework (see Sec. 2.2.3) remains challenging
and, to date, infeasible. This realization – that a robust TB energy expression is not viable with extended basis
sets – is a key finding of this thesis. Nevertheless, the highly accurate electron density obtained with PTB
presents new opportunities. Early tests suggest its potential for improving density-corrected DFT, either by
enhancing self-consistent field (SCF) convergence or enabling non-self-consistent DFT evaluations. Future
research should explore its broader applications, including its use in machine-learning-driven predictive
techniques.

As discussed in Sec. 2.3, conventional MBs pose a major limitation in electronic structure methods,
particularly in SQM approaches where they remain widely used. However, the previous attempt to improve
SQM methods with multiple-𝜁 basis sets has so far failed to yield a reliable energy expression. To address this
dilemma, we developed the charge-dependent (polarized) valence single-𝜁 (q-vSZP) basis set as an advanced,
molecular environment-adaptive MB (Chapter 5). The key shortcoming of conventional MBs, mostly
developed 40 to 50 years ago,293,296 is their inability to “breathe” in response to the chemical environment due
to the restriction of a single basis function per AO shell. Unlike multiple-𝜁 basis sets, which inherently provide
such flexibility, q-vSZP overcomes this limitation by incorporating atom-specific expansion and contraction
based on the respective coordination number (CN) and atomic charge 𝑞. This adaptation allows the basis
functions to dynamically respond to the molecular environment. For instance, strongly negatively charged
moieties requiring more diffuse Gaussian functions benefit considerably from this adaptability. Additionally,
q-vSZP inherits the key improvements from the vDZP basis set, particularly the variational optimization of
deeply contracted AOs in molecular calculations. Although designed for future SQM methods, q-vSZP was
rigorously validated through DFT calculations, providing an unbiased assessment of its quality. In these tests,
q-vSZP achieved high accuracy on thermochemistry benchmarks, such as the GMTKN55 database, reducing
errors by a factor of two to four compared to existing MBs.93 Thus, q-vSZP provides an ideal starting point
for developing a next-generation SQM method, offering a fundamentally improved MB, and consequently
enabling access to a robust energy expression.

However, q-vSZP introduces additional preparational steps beyond those required for conventional basis
sets. In standard electronic structure calculations, atomic charges are output quantities rather than input
descriptors. In contrast, q-vSZP requires precomputed atomic charges with sufficient accuracy to ensure
a reasonable AO setup. At the same time, this charge determination must be significantly faster than the
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subsequent (S)QM calculation, excluding computationally more demanding semiempirical methods such
as PTB and GFN2-xTB. Thus, the final calculation’s accuracy directly depends on the quality of the input
descriptors 𝑞 and CN. While the CN is purely geometric, determining atomic charges for molecular systems
is non-trivial. To address this challenge, we developed a new charge model rooted in extended Hückel
theory that requires only a single diagonalization, as described in Chapter 6.† Focusing solely on atomic
charge prediction, this Charge Extended Hückel (CEH) model achieves highly accurate atomic charges,
outperforming more complex (but general-purpose) models such as GFN2-xTB. Yet, it is 10–20 times faster
than GFN2-xTB due to the absence of iterative SCF steps.

Over the past two decades, density functionals and SQM methods have significantly improved in accuracy
and applicability. However, the basis sets used in molecular ground-state DFT calculations and SQM methods
have remained largely unchanged. Given their fundamental role in determining how well MOs approximate
the true wavefunction, the advancements introduced with q-vSZP and vDZP represent important steps forward
and will likely shape future developments in the field (see for example Ref. [161]). A logical extension is
the adaptation of the environment-dependent q-vSZP scheme to a DZ basis set, yielding “q-vDZP”. This
approach could allow for a less deep contraction, which is particularly beneficial for DFT applications, as the
number of integral evaluations is reduced. Furthermore, this approach can overcome inherent limitations of
the MB design that environment-dependent contraction coefficients alone cannot resolve. In q-vSZP, AOs
expand or contract only isotropically, lacking the anisotropic flexibility of DZ bases, which is relevant for
accurately describing directional covalent bonds, for example.

The “3c” series also presents a clear path for further development: r2SCAN-3c excels in tasks such as
geometry optimizations and conformer ranking, provided that self-interaction error (SIE) is not an issue, while
𝜔B97X-3c offers distinct advantages for highly accurate NCI energies and systems prone to SIE. However,
𝜔B97X-3c comes with a noticeable increase in computational cost compared to r2SCAN-3c. Earlier “3c”
methods that do not suffer from SIE and are relatively efficient, such as HF-3c or PBEh-3c, fall short in
thermochemical applications. This creates a strong demand for a true successor to HF-3c or PBEh-3c – one
that is (almost) free of SIE, significantly more accurate than its predecessors, yet as efficient as r2SCAN-3c.
A new basis set from the (q-)vXZP series, developed during my PhD, provides a natural starting point for
such a method.

With the insights gained from previous method developments and the highly accurate q-vSZP basis set,
the foundation for a next-generation SQM method, a true successor to GFNn-xTB, has been established. A
key lesson from developing and testing PTB and CEH is the inclusion of reference data beyond the usual
chemical space. An essential component of such datasets is “mindless” molecules (MLMs), molecules that
do not adhere to typical bonding motifs and can be generated automatically by random atomic placement
and subsequent optimization. By enhancing transferability and minimizing bias from curated reference
data, MLMs are poised to play a critical role in future method development, even beyond this project.
At the time of writing, this GFNn-xTB successor – tentatively named general (g)-xTB – delivers highly
promising results across all relevant application areas. While retaining and in some cases improving upon the
performance of specialized xTB methods for geometries, frequencies, and NCIs, g-xTB extends its accuracy
to thermochemical properties, including reaction energies, barrier heights, and isomerizations, reaching the
precision of lower-rung DFT methods. Thus, it fulfills the target set in Fig. 2.3. Moreover, unlike preceding
xTB variants, g-xTB also provides reliable predictions for IR and Raman spectra (following PTB in this

† Classical charge equilibration (QEq) models, such as the EEQ model used in the D4 dispersion correction, suffer from artificial
charge transfer because charges are distributed globally, largely dictated by parameterized electronegativities. A study not
yet published at the time of writing assessed a bond capacitor-based QEq model that mitigates this issue while remaining
significantly faster than QM-based approaches.
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regard), as well as for properties of electronically excited states such as the singlet-triplet energy gap (S1-T1).
In the context of Fig. 7.1, this advancement shifts the Pareto front for SQM methods significantly upwards,

bringing computational chemistry closer to the long-standing goal of “DFT accuracy at SQM speed”. The
dashed Pareto front illustrates the desired scenario where more advanced composite DFT methods such
as 𝜔B97X-3c and the next-generation TB method g-xTB define the frontier of accuracy and efficiency.
While modern MLPs can achieve DFT-level accuracy for specific chemical spaces by learning energies and
forces from data, their lack of embedded QM principles currently prohibits capturing discrete energy levels,
electronic excitation energies, and spin-state preferences, limiting their applicability. By contrast, SQM
methods rooted in well-defined physical approximations provide an increased level of interpretability and
transferability, ensuring robustness even for systems outside the training domain. Given these considerations,
SQM methods are expected to remain indispensable, with an even brighter future ahead.

As electronic structure methods continue to refine the balance between computational cost and accuracy,
the primary bottleneck in practical molecular simulations is shifting away from solving the single-determinant
Schrödinger equation toward more complex challenges that lack broadly accessible solutions yet. These
challenges include accurately modeling environmental effects such as solvent interactions in condensed-phase
systems,300,328,329 finite-temperature effects,330,331 as well as tackling non-adiabatic transitions involving
electron-nuclear coupling332–334 and routine methods for multiconfigurational electronic states.55,335,336

Highly efficient and accurate SQM and DFT methods are key to addressing some of these and other
emerging scientific challenges. This thesis has contributed to advancing the field by developing novel
approaches that push the boundaries of accuracy and efficiency. Thus, we can anticipate groundbreaking
advancements in computational chemistry that, even today, seem extraordinary.

40



Acknowledgements

During the past four years, many people have accompanied me on my PhD journey. Before naming some of
them, I want to express how deeply honored I feel to have conducted my doctoral studies in such an inspiring
environment – both scientifically and personally.

First and foremost, I want to thank my supervisor, Prof. Stefan Grimme, to whom I am grateful in many
ways. Not only did he give me the opportunity to work in his research group, but he also placed his trust in
me to collaborate with him on advanced semiempirical methods and related projects. I deeply appreciate
the countless discussions on electronic structure theory, whether they involved fundamental concepts or
seemingly subtle decisions during development of a method. In all cases, I have learned a lot from him – not
only, but also about quantum chemistry.

I am also very grateful for the opportunity to have attended numerous conferences, some of which will
remain unforgettable. One particularly fond memory is the trip to Vancouver for WATOC 2022, together
with Stefan, Dr. Andreas Hansen, and Dr. Julius Kleine Büning, whose company I enjoyed very much. Other
highlights include the European Summer School in Quantum Chemistry 2022 and the various meetings of the
Priority Programme “Molecular Machine Learning”, for which I am grateful to have been part of. Beyond
the great company on several scientific meetings and proof-reading many of my manuscripts, I want to thank
Andreas for always having an open ear and giving me important and insightful advices.

For the collaborations on scientific projects – both completed and ongoing – I want to express my deep
gratitude to several people beyond those already mentioned: Thomas Froitzheim for his great expertise in
electronic structure theory and for working with me on several projects, of which g-xTB is probably the
biggest one. I have no doubt that Thomas will bring this project to great success, and I feel privileged to be
part of it alongside Stefan and Andreas. Christian Hölzer, for our joint work on new ligand descriptors for
Bayesian optimization, in collaboration with colleagues from the industry side (vide infra). Dr. Philipp Pracht,
for giving me the opportunity to contribute to the latest CREST publication. Dr. Nico Fleck, for entrusting
me with the theoretical studies for our joint publication. Abylay aka Albert Katbashev, for pioneering the
collaboration with Prof. Thomas Kühne on mitigating the diagonalization bottleneck in SQM methods, using
PTB as an example. Thomas Gasevic, for combining the efforts regarding a new publication on “mindless”
molecules. In this context, I’d also like to thank Jonathan Schöps, who contributed a lot to this project
during his focusing laboratory course. Christoph Plett, for the work on the periodic table-wide benchmark
set, together with Robin Dahl and Vanessa Kniebes. Benedikt Bädorf, for continuing the development of
environment-adaptive and molecular-optimized basis sets. Leopold Seidler, for his valuable assistance with
parallelization techniques in Python. And finally, Prof. Gerhard Erker, for welcoming me into two of his
studies on the stereochemical behavior of frustrated Lewis pairs and for supporting me in my application for
the Kekulé fellowship. At this point, I also want to sincerely thank the “Fonds der Chemischen Industrie
(FCI)” for awarding me the fellowship, which co-funded my doctoral studies.

41



Acknowledgements

Of course, I will also have special memories of my office mates Dr. Philipp Pracht, Dr. Marcel Stahn,
and Tim Schramm, whose company I truly enjoyed. In addition, I want to thank Philipp and Dr. Sebastian
Spicher for supervising my very first projects. At this point, I extend my gratitude to all colleagues with
whom I shared my time at the Mulliken Center for Theoretical Chemistry, making this journey unforgettable,
especially those not yet mentioned: Fabian Bohle, Marvin Friede, Johannes Gorges, Lukas Kunze, Sarah
Löffelsender, Thomas Rose, Christian Selzer, Lukas Wittmann, Dr. Markus Bursch, Dr. Sebastian Ehlert,
Dr. Julia Kohn, Dr. Jeroen Koopman, Dr. Hagen Neugebauer, Dr. Zheng-Wang Qu, Dr. Hui Zhu, and Prof.
Marc de Wergifosse. I am particularly glad that the pub quiz tradition will likely outlast my time here, and I
hope the same holds for our table tennis tournaments, which kept us busy during countless coffee breaks
– especially Marvin, Thomas G., Thomas R., Benedikt, Christian S., and Christoph (please forgive me if I
underestimated some people’s passion for table tennis at this point). For administrative and technical support,
I want to thank Claudia Kronz and Jens Mekelburger. A special thanks goes to Dr. Jan-Michael Mewes, who
loves passionate discussions – scientific or otherwise – as much as I do. I also want to thank Dr. Joachim
Laun for his great company at many of our events. Finally, heartfelt thanks to Christoph, Jan, Julius, and
Thomas F. for dedicating several hours to improving this thesis through their meticulous proofreading.

Beyond the purely academic side, I am deeply grateful for the collaboration with the Digital Chemistry
department at Merck KGaA, which introduced me to outstanding scientists and people. I especially want to
thank Dr. Jan Gerit Brandenburg, who also mentored me in later stages, as well as Dr. Martin Fitzner and Dr.
Marko Hermsen, whose company I greatly enjoyed and from whom I learned a lot. I am also grateful for the
opportunity to have worked in Darmstadt for a few months, which gave me enriching insights into digital
chemistry from an industrial perspective.

I would like to thank my doctoral committee in addition to my supervisor: Prof. Thomas Bredow for
serving as the second reviewer of my dissertation, Jun.-Prof. Patrycja Kielb for assuming the role of chair,
and PD Dr. Gregor Hagelüken as the fourth member. I sincerely appreciate the time and effort all four of
them dedicated to my evaluation.

Beyond the scientific community, I want to express my deepest gratitude to my beloved family and friends
for their lasting support – without which I would not be in this position today. A special thanks goes to
Marvin Schumacher, without whom I would probably have been far less successful in my chemistry studies,
especially aside from the theoretical parts. Finally, I am profoundly grateful to Laura for her continuous
support and for always standing by my side throughout this journey. Her patience, encouragement, and the
safe space she has provided have made even the most demanding moments easier. Without her by my side,
this journey would have been a significantly poorer one.

42



APPENDIX A

Supporting Information to Chapter 1: From Observation to
Simulation

A.1 Supporting Information to Sec. 1.2: The Basis Set Expansion of Hartree-Fock

Using the definition of the Fock operator from Eq. 1.12b, the elements of the Fock matrix can be defined as
follows:

𝐹𝜈𝜇 = 𝐻𝜈𝜇 + 𝐽𝜈𝜇 − 𝐾𝜈𝜇. (A.1)

To arrive at a short-hand notation for the Fock matrix elements based on the density matrix P and the
two-electron integrals, we will derive exemplarily the definition of 𝐽𝜈𝜇:

𝐽𝜈𝜇 = ∫ 𝜒𝜈(r) [ ̂𝐽 (𝜒𝜇 (r))] 𝑑r. (A.2)

Here, the Coulomb operator ̂𝐽 acts on the basis function 𝜒𝜇, and the result is projected onto another basis
function 𝜒𝜈. The Coulomb operator acting on a single basis function is defined as follows (utilizing the basis
set expansion of Eq. 1.28):

̂𝐽(𝜒𝜇(r)) = ∑
𝜆,𝜎

∑
𝑗

𝐶𝑗𝜆𝐶𝑗𝜎 ∫ 𝜒𝜆(r′)𝜒𝜎(r′)
|r − r′|

𝑑r′𝜒𝜇(r). (A.3)

We can use the definition of the density matrix P to simplify the expression:

𝑃𝜆𝜎 = ∑
𝑗

𝑛𝑗𝐶𝑗𝜆𝐶𝑗𝜎. (A.4)

Inserting P from Eq. 1.34 yields:

̂𝐽(𝜒𝜇(r)) = ∑
𝜆,𝜎

𝑃𝜆𝜎 ∫ 𝜒𝜆(r′) 𝜒𝜎(r′)
|r − r′|

𝑑r′𝜒𝜇(r). (A.5)

Inserting Eq. A.5 into Eq. A.2 leads to:

𝐽𝜈𝜇 = ∫ 𝜒𝜈(r) ⎡⎢
⎣
∑
𝜆,𝜎

𝑃𝜆𝜎∫ 𝜒𝜆(r′)𝜒𝜎(r′)
|r − r′|

𝑑r′𝜒𝜇(r)⎤⎥
⎦

𝑑r, (A.6)
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which can be rewritten as:

𝐽𝜈𝜇 = ∑
𝜆,𝜎

𝑃𝜆𝜎 ∫∫
𝜒𝜈(r)𝜒𝜇(r)𝜒𝜆(r′)𝜒𝜎(r′)

|r − r′|
𝑑r𝑑r′. (A.7)

For the following simplification, we use the so-called “chemists notation”:69

(𝑖𝑗 ∣ 𝑘𝑙) = ∫∫
𝜒𝑖(r) 𝜒𝑗(r) 𝜒𝑘(r′) 𝜒𝑙(r′)

|r − r′|
𝑑r𝑑r′. (A.8)

The expression for 𝐽𝜈𝜇 then reads:
𝐽𝜈𝜇 = ∑

𝜆,𝜎
𝑃𝜆𝜎 (𝜈𝜇 ∣ 𝜆𝜎) . (A.9)

Applying analogous steps for 𝐾𝜈𝜇 and 𝐻𝜈𝜇 leads to the definition of the Fock matrix:

𝐹𝜈𝜇 = ⟨𝜈|ℎ̂|𝜇⟩⏟
𝐻𝜇𝜈

+ ∑
𝜆,𝜎

𝑃𝜆𝜎 [(𝜈𝜇 ∣ 𝜆𝜎) − 1
2 (𝜈𝜆 ∣ 𝜇𝜎)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐽𝜈𝜇−𝐾𝜈𝜇

. (A.10)
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Supporting Information to Chapter 2: Semempirical
Approaches in Quantum Chemistry

B.1 Supporting Information to Sec. 2.2.1: Hückel Theory

The approximations introduced in the PPP method compared to the non-empirical HF from Sec. 1.1.1 can be
summarized as follows:

(i) Only 𝜋 electrons are taken into account. The 𝜎 electrons are assumed to be an unpolarizable core and
their effect can be absorbed into the one-electron contributions (vide infra).

(ii) A set of only one 𝑝𝑧 orbital per atom is considered, which are assumed to be orthonormal.

(iii) ZDO: That is, products of AOs depending on the same electron coordinates when located on different
atoms are neglected.69 Given (ii), S becomes the unit matrix, i.e. 𝑆𝑖𝑗 = 𝛿𝑖𝑗. This transforms the
generalized eigenvalue problem from Eq. (1.32) into a special eigenvalue problem.†

(iv) As a consequence from (iii), all three- and four-center integrals vanish completely. Non-zero (𝜇𝜈|𝜆𝜎)
occurs only if 𝜈 = 𝜇 and 𝜆 = 𝜎 or if all four indices are equal.

The resulting Fock matrix looks as follows [cf. Eq. (1.33)]:‡

𝐹PPP
𝜇𝜇 = 𝐻PPP

𝜇𝜇 + ∑
𝜈

𝑃𝜈𝜈(𝜇𝜇|𝜈𝜈) − 1
2 ∑

𝜇
𝑃𝜇𝜇(𝜇𝜇|𝜇𝜇), (B.1a)

𝐹PPP
𝜇𝜎 = 𝐻PPP

𝜇𝜎 − 1
2𝑃𝜇𝜎(𝜇𝜇|𝜎𝜎). (B.1b)

Typically, (𝜇𝜇|𝜎𝜎) and (𝜇𝜇|𝜇𝜇), as well as, in part, 𝐻PPP
𝜇𝜇 and 𝐻PPP

𝜇𝜎 , are replaced by empirical expressions,
such as those proposed by Ohno.223,225,226 This empirical treatment allows the one-electron terms to effectively
incorporate contributions from the neglected 𝜎-electron system. Consistent with Hückel theory, 𝐻PPP

𝜇𝜎 is
often neglected when the atomic centers 𝐴 and 𝐵 are not adjacent. However, unlike Hückel and the EHT
approach introduced earlier, the effective Fock matrix in the PPP model depends explicitly on the density

† Some definitions of the ZDO approximation do not necessarily imply the condition 𝑆𝑖𝑗 = 𝛿𝑖𝑗.224 Here, we consistently adopt
the definition from Refs. [69] and [223], implying S to be the unit matrix.

‡ Due to ((ii)), 𝜇 is at atom A, 𝜎 at atom B, 𝜈 at atom C.
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matrix P. Consequently, similar to HF and DFT, the resulting Roothaan equation [cf. Eq. (1.32)] must be
solved iteratively within an SCF framework. A key implication of the ZDO approximation is the neglect of
interatomic exchange interactions, as integrals of this type are generally omitted.

B.2 Supporting Information to Sec. 2.2.2: Complete Neglect of Differential Overlap

The CNDO Fock matrix takes the form:223,233

𝐹𝜇𝜇 = 𝐻𝜇𝜇 + (𝑃𝐴𝐴 − 1
2𝑃𝜇𝜇) 𝛾𝐴𝐴 + ∑

𝐵≠𝐴
𝑃𝐵𝐵𝛾𝐴𝐵

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐽𝜇𝜇−𝐾𝜇𝜇

, (B.2a)

𝐹𝜇𝜈 = 𝐻𝜇𝜈 − 1
2𝑃𝜇𝜈𝛾𝐴𝐵⏟⏟⏟⏟⏟
𝐽𝜇𝜈−𝐾𝜇𝜈

, (B.2b)

with 𝛾𝐴𝐵 ≃ 𝛾𝜆𝜇 ≃ (𝜆𝜆|𝜇𝜇) and 𝑃𝐵𝐵 = ∑
𝜈∈𝐵

𝑃𝜈𝜈. (B.2c)

The underbraces in Eq. (B.2) indicate the principal origin of each term when compared to the HF expression
in Eq. (1.33). The term 𝛾𝐴𝐵 represents the approximated isotropic Coulomb interaction between atoms 𝐴
and 𝐵. The one-electron contributions 𝐻 are further simplified and replaced with empirical expressions.
Additionally, all one-center off-diagonal elements 𝐻𝜇𝜈 (𝜇 ≠ 𝜈 and 𝐴 = 𝐵) are completely neglected. A key
consequence of this approximation is that, for all interatomic terms, different atomic shells (𝑠, 𝑝, 𝑑, ...) are
treated equivalently (𝛾𝐴𝐵), ensuring rotational invariance. Eq. B.3 is obtained by replacing the one-electron
contributions 𝐻 with largely empirical expressions and making the interaction terms 𝛾 fully independent of
the shell type. The final CNDO Fock matrix reads:

𝐹𝜇𝜇 = 𝑈𝜇𝜇 − ∑
𝐵≠𝐴

𝑉𝐴𝐵
⏟⏟⏟⏟⏟⏟⏟

𝐻𝜇𝜇

+ (𝑃𝐴𝐴 − 1
2𝑃𝜇𝜇) 𝛾𝐴𝐴 + ∑

𝐵≠𝐴
𝑃𝐵𝐵𝛾𝐴𝐵

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐽𝜇𝜇−𝐾𝜇𝜇

, (B.3a)

𝐹𝜇𝜈 = 𝛽0
𝐴𝐵𝑆𝜇𝜈⏟
𝐻𝜇𝜈

− 1
2𝑃𝜇𝜈𝛾𝐴𝐵⏟⏟⏟⏟⏟
𝐽𝜇𝜈−𝐾𝜇𝜈

, (B.3b)

with 𝛾𝐴𝐵 ≃ 𝛾𝜆𝜇 ≃ (𝜆𝜆|𝜇𝜇) and 𝑃𝐵𝐵 = ∑
𝜈∈𝐵

𝑃𝜈𝜈. (B.3c)

𝐻𝜇𝜇 is further simplified by separating same- (𝑈𝜇𝜇) and different-atom contributions (𝑉𝐴𝐵). 𝐻𝜇𝜈 elements
with 𝜇 and 𝜈 being centered on different atoms are replaced by the empirical expression 𝛽0

𝐴𝐵, which is scaled
with the corresponding overlap element 𝑆𝜇𝜈, representing an exception from the ZDO approximation.

B.3 Supporting Information to Sec. 2.2.2: Neglect of Diatomic Differential Overlap

NDDO differs from CNDO by retaining same-atom differential overlap. Additionally, all terms in the
expression 𝐻𝜇𝜈 = 𝑈𝜇𝜈 − ∑𝐵≠𝐴(𝜇|𝑉𝐵|𝜈) are kept. The Fock matrix entries in NDDO generalize to the
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following definition, compared to CNDO:223,233

𝐹𝜇𝜈 = 𝐻𝜇𝜈 +
𝐴

∑
𝜎

𝐴
∑
𝜆

𝑃𝜆𝜎 ((𝜇𝜈|𝜆𝜎) − 1
2 (𝜇𝜎|𝜈𝜆)) +

𝐵
∑
𝜌

𝐵
∑
𝜏

𝑃𝜌𝜏(𝜇𝜈|𝜌𝜏), (B.4a)

𝐹𝜇𝜌 = 𝐻𝜇𝜌 − 1
2

𝐴
∑
𝜎

𝐵
∑
𝜆

𝑃𝜆𝜎(𝜇𝜎|𝜌𝜏), (B.4b)

with (𝜇, 𝜈, 𝜎, 𝜆 ∈ 𝐴) and (𝜌, 𝜏 ∈ 𝐵). 𝜇 and 𝜈 can but do not have to be the same basis function.

B.4 Supporting Information to Sec. 2.2.2: Intermediate Neglect of Differential Overlap

The expression for the Fock matrices for diagonal, one-center off-diagonal, and two-center off-diagonal
expression reads:223

𝐹𝜇𝜇 = 𝐻CNDO
𝜇𝜇 +

𝐴
∑
𝜈

𝑃𝜈𝜈 [(𝜇𝜇|𝜈𝜈) − 1
2(𝜇𝜈|𝜇𝜈)] + ∑

𝐵≠𝐴

𝐵
∑
𝜎

𝑃𝜎𝜎𝛾𝐴𝐵, (B.5a)

𝐹𝜇𝜈 = 𝑃𝜇𝜈 [3
2(𝜇𝜈|𝜇𝜈) − 1

2(𝜇𝜇|𝜈𝜈)] , (B.5b)

𝐹𝜇𝜎 = 𝐻CNDO
𝜇𝜎 − 1

2𝑃𝜇𝜎𝛾𝐴𝐵, (B.5c)

with (𝜇, 𝜈 ∈ 𝐴) and (𝜎 ∈ 𝐵).

B.5 Supporting Information to Sec. 2.2.3: Extended Tight-Binding Methods: GFNn-xTB

B.5.1 The Extended Hückel Theory Contribution in xTB

The full EHT Hamiltonian matrix in GFN1-xTB (𝐴 are atoms, 𝑙 shells, and 𝜇 AOs) reads:

𝐻EHT
𝜇𝜈 = 1

2𝐾 𝑙𝑙′
𝐴𝐵𝑆𝜇𝜈(𝐻𝜇𝜇 + 𝐻𝜈𝜈) (1 + 𝑘EN𝛥EN2

𝐴𝐵) ⎛⎜⎜
⎝

1 + 𝑘poly
𝐴,𝑙 ( 𝑅𝐴𝐵

𝑅cov,𝐴𝐵
)

1
2 ⎞⎟⎟
⎠

× ⎛⎜⎜
⎝

1 + 𝑘poly
𝐵,𝑙′ ( 𝑅𝐴𝐵

𝑅cov,𝐴𝐵
)

1
2 ⎞⎟⎟
⎠

with 𝜇 ∈ 𝑙(𝐴), 𝜈 ∈ 𝑙′(𝐵). (B.6)

𝑘EN is global parameter and 𝑘poly
𝐴,𝑙 an atom- and shell-specific parameter. 𝑅cov,𝐴𝐵 corresponds to the sum

of covalent radii taken from Ref. [337]. The distance-dependent polynomial scaling function is a common
feature of GFN1 and GFN2, in addition to the intrinsic distance dependence of S. 𝛥EN𝐴𝐵 is the difference of
the standard Pauling electronegativities of atoms 𝐴 and 𝐵. The GFN2-xTB EHT matrix is multiplied with an
additional term depending on the STO exponents 𝜁𝐴

𝑙 :

Y(𝜁𝐴
𝑙 , 𝜁𝐵

𝑙′) = ⎛⎜⎜⎜
⎝

2√𝜁𝐴
𝑙 𝜁𝐵

𝑙′

𝜁𝐴
𝑙 + 𝜁𝐵

𝑙′

⎞⎟⎟⎟
⎠

1
2

. (B.7)
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The product of two basis function exponents induces effects similar to the kinetic energy integral in DFT or
HF, which also increases with larger exponents. The diagonal elements 𝐻𝜇𝜇 are defined as follows:

𝐻𝜇𝜇 =
⎧{
⎨{⎩

ℎ𝑙
𝐴 (1 + 𝑘CN,𝑙𝑎CN𝐴) , for GFN1-xTB,

ℎ𝑙
𝐴 − 𝛿ℎ𝑙

CN′
𝐴

CN′
𝐴, for GFN2-xTB.

(B.8)

ℎ𝑙
𝐴 and ℎ𝑙

CN′
𝐴

are atom- and shell-specific parameters, while 𝑘CN,𝑙𝑎 depends only on the angular momentum
of the respective shell (𝑠, 𝑝, 𝑑). CN𝐴 is taken from the D3 model117. CN′

𝐴 indicates a modified form in case
of GFN2-xTB.

B.5.2 Anisotropic Electrostatics and Exchange-Correlation Contributions and Halogen Bond Corrections

The anisotropic ES and XC contributions following from the multipole expansion are provided in Eq. B.9
and are clustered according to their interaction type.

𝐸AES = 𝐸𝑞𝜇 + 𝐸𝑞𝛩 + 𝐸𝜇𝜇

= 1
2 ∑

𝐴,𝐵
{𝑓3(𝑅𝐴𝐵) [𝑞𝐴(𝝁𝑇

𝐵R𝐵𝐴) + 𝑞𝐵(𝝁𝑇
𝐴R𝐴𝐵)]

+ 𝑓5(𝑅𝐴𝐵) [𝑞𝐴R𝑇
𝐴𝐵𝜣𝐵R𝐴𝐵 + 𝑞𝐵R𝑇

𝐴𝐵𝜣𝐴R𝐴𝐵]

− 3(𝝁𝑇
𝐴R𝐴𝐵)(𝝁𝑇

𝐵R𝐴𝐵) + (𝝁𝑇
𝐴𝝁𝐵)𝑅2

𝐴𝐵}. (B.9)

𝝁𝐴 stands for the cumulative dipole moment of atom 𝐴 and 𝜣𝐴 for the corresponding traceless quadrupole
moment. The damping function of the 𝐸AES term in second-order is related to the original damping function
in the D3 dispersion correction:117

𝑓𝑛(𝑅𝐴𝐵) =
𝑓damp(𝑎𝑛, 𝑅𝐴𝐵)

𝑅𝑛
𝐴𝐵

= 1
𝑅𝑛

𝐴𝐵
⋅ 1

1 + 6 (𝑅𝐴𝐵
0

𝑅𝐴𝐵
)

𝑎𝑛
. (B.10)

𝑎𝑛 are global empirically adjusted parameters and the covalent radii in 𝑅𝐴𝐵
0 = 1

2 (𝑅𝐴′
0 + 𝑅𝐵′

0 ) depend on the
CN (see Ref. [278] for details). The anisotropic XC contribution in GFN2-xTB corresponds to

𝐸AXC = ∑
𝐴

(𝑓 𝜇𝐴
XC |𝝁𝐴|2 + 𝑓 𝛩𝐴

XC ‖𝜣𝐴‖2) , (B.11)

in which 𝑓 𝜇𝐴
XC and 𝑓 𝛩𝐴

XC are empirically determined element-specific parameters. The halogen bond correction
in form of a pair-wise repulsive Lennard-Jones potential in GFN1-xTB is defined as follows:

𝐸GFN1
XB =

𝑁XB

∑
𝐴𝑋𝐵

𝑓damp,𝐴𝑋𝐵𝑘X
⎡⎢
⎣
(

𝑘XR𝑅cov,𝐴𝑋
𝑅𝐴𝑋

)
12

− 𝑘X2 (
𝑘XR𝑅cov,𝐴𝑋

𝑅𝐴𝑋
)

6
⎤⎥
⎦

⎡⎢
⎣
(

𝑘𝑅cov,𝐴𝑋
𝑅𝐴𝑋

)
12

+ 1⎤⎥
⎦

−1

with 𝑓damp,𝐴𝑋𝐵 = 1
2 (1 − 1

2
𝑅2

𝑋𝐴 + 𝑅2
𝑋𝐵 − 𝑅2

𝐴𝐵
|𝑅𝑋𝐴||𝑅𝑋𝐵| )

6

. (B.12)

𝑘X2 and 𝑘XR are global parameters, while XR depends on the halogen atom 𝑋.
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C.1 Abstract

A new composite density functional theory (DFT) method is presented. It is based on 𝜔B97X-V as one of the
best-performing density functionals for the GMTKN55 thermochemistry database and completes the family
of “3c” methods toward range-separated hybrid DFT. The method is consistently available for all elements
up to Rn (Z=1–86). Its further key ingredients are a polarized valence double-𝜁 (vDZP) Gaussian basis set,
which was fully optimized in molecular DFT calculations, in combination with large-core effective core
potentials and a specially adapted D4 dispersion correction. Unlike most existing double-𝜁 atomic orbital
sets, vDZP shows only small basis set superposition errors (BSSEs) and can compete with standard sets
of triple-𝜁 quality. Small residual BSSE effects are efficiently absorbed by the D4 damping scheme which
overall eliminates the need for an explicit treatment or empirical corrections for BSSE. Thorough tests on a
variety of thermochemistry benchmark sets show that the new composite method, dubbed 𝜔B97X-3c, is on
par with or even outperforms standard hybrid DFT methods in a quadruple-𝜁 basis set, at a small fraction of
the computational cost. Particular strengths of the method are the description of non-covalent interactions
and barrier heights, for which it is among the best-performing density functionals overall.

C.2 Introduction

Composite electronic structure methods have a long tradition in QC dating back to the so-called Gn WFT
developed by Pople and co-workers in the 1980s-90s.203–206 Popular extensions of this approach combining
various theory levels and AO basis sets of different degrees of sophistication in order to save computational
time are the so-called Weizmann protocols207–209 and CBS schemes.158,210

Based on the framework of KS DFT, which is nowadays the most widely used electronic structure method,338

similar but more empirical approaches have been proposed.153,196,259,268,339 Despite its high efficiency, the
limits of conventional DFT are quickly reached for calculations of large systems that contain more than
200-300 atoms. This holds in particular for large-scale screenings, very accurate thermochemical calculations,
or geometry optimizations. The emerging need for fast yet accurate low-cost methods paves the way for
composite schemes also in a DFT framework. Probably most widely used in computational chemistry
nowadays are members of the so-called “3c” family of methods.339 The first 3c method was the HF theory-
based HF-3c198 that contains three name-giving corrections to improve its accuracy. The same concept was
later applied to DFT resulting in the PBEh-3c/HSE-3c/B3LYP-3c115,212,314,339 hybrid, B97-3c213 GGA, and
recently the m-GGA based r2SCAN-3c214 method.

While originally focused on an especially good description of molecular geometries and NCIs, the latest
“3c” methods aim more generally on accurate thermochemistry and conformational energies.70 In this context,
the related DFT-C approach of Witte and Head-Gordon is mentioned, which is specifically recommended for
accurate NCI energy calculations.153 In the same spirit but using ECPs to account for BSSE, a specialized
B3LYP approach in a medium-size AO basis set has been proposed.196,197

The mentioned “3c” methods are successfully applied in various fields. To give just a few examples, they
have recently contributed to a better understanding of the stereochemical behavior of phosphanyl groups5,7

and of the ground-state properties of porphyrinic sandwich complexes340, they served as a reference method
for calculation of IR spectra314 and paved the way for online computer-aided design of catalytic pockets.341

Furthermore, they play a key role in our multi-level workflow “CRENSO”,164 with which thermodynamic
and spectroscopic properties of structure ensembles can be calculated efficiently. However, the existing “3c”
methods are not optimal for certain applications such as the calculation of barrier heights or the study of NCIs
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Table C.1: Comparison of the hierarchy of efficient composite “3c” electronic structure methods.

PBEh-3c B97-3c r2SCAN-3c 𝜔B97X-3c
AO basis set mSV(P) mTZVP† mTZVPP† vDZP
# param. 𝐹𝑥𝑐

‡ 3 10 unaltered unaltered
Fock ex. [%] 42 0 0 16.7-100
dispersion D3117,118 D3117,118 D4119,120 D4119,120

SRB corr.198 no yes no no
gCP corr.195 yes no yes no

of very large systems. For the former, no or a small amount of global Fock exchange is often insufficient for
the desired target accuracy. Extended molecular systems suffer strongly from BSSE with commonly applied
small basis sets and are difficult to SCF converge with (m)-GGA-based methods due to an over-delocalization
of electrons.

In this work, we complete the “3c”-family of methods by 𝜔B97X-3c, a variant with an underlying RSH
functional which strongly reduces the effect of SIE in DFT calculations (see Tab. C.1). We choose one of the
most accurate RSH functionals on the market developed in the group of Head-Gordon termed 𝜔B97X-V.103

When combined with a large AO basis set of QZ quality, this functional performs extraordinarily well on the
huge GMTKN55 thermochemistry benchmark set93 with 1500+ chemically significant relative energies. For
the new “3c” method presented here, 𝜔B97X-V is combined with a newly developed double-𝜁 basis set, a
specially assembled set of effective core potentials, and the established D4 dispersion correction.120 Detailed
explanations of each of these components of 𝜔B97X-3c are given in Sec. C.3.

In addition, we present an improved D4 parameterization for 𝜔B97X-V replacing the density-dependent
VV10125 dispersion treatment employed in the original functional. The first DFT-D4 counterpart for 𝜔B97X-
V was presented earlier by Goerigk et al.307 We show that the 𝜔B97X-D4/QZ method with the here refitted
D4 parameters performs globally better than 𝜔B97X-V/QZ for the GMTKN55 database and other common
thermochemistry benchmarks as well as for NCI benchmarks going beyond those contained in GMTKN55.

C.3 Theory

C.3.1 Basis Set Construction

The direct predecessors of 𝜔B97X-3c, B97-3c213 and more recently r2SCAN-3c,214 were constructed with
slightly modified contracted Gaussian orbital basis sets of triple-𝜁 quality originating from the Ahlrichs basis
set def-TZVP342 and its extension def2-TZVPP,139 respectively. Recently, r2SCAN-3c was adapted for a Slater-
type TZ AO expansion in the AMS modeling suite of programs.343 However, to preserve the computational
efficiency of the existing “3c” family of methods, a smaller basis set that still yields comparable or even
higher accuracy is desired for 𝜔B97X-3c. This is especially important since RSH-DFT is computationally
more demanding than (m)-GGAs like B97-3c and r2SCAN-3c. For this purpose, a new polarized valence
double-𝜁 (vDZP) basis set was constructed, which forms the key part of the new composite method. This
basis was developed also with its application in novel semi-empirical TB methods in mind which will be
published separately. It is characterized by the following key points:

† Modified version of the def2-TZVP basis.
‡ Exchange-correlation enhancement factor.
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• The use of large-core ECPs to reduce the number of explicitly treated electrons and, hence, the required
number of basis functions.

• Optimization of the Gaussian-type primitive functions in atomic and molecular calculations for neutral
as well as ionic systems at the RSH DFT level.

• Relatively deep contraction, i.e., a large number of primitives for each AO to reduce incompleteness
errors but keeping the number of contracted functions small. This reduces the memory demands in the
linear algebra parts of the calculation for very large systems as well as the diagonalization bottleneck
in TB treatments.

Molecule-optimized basis sets are rarely used in quantum chemistry. We are aware of the MOLOPT
sets160 in the CP2K code344 and the polarization consistent (pc-𝑛) basis sets by Jensen.156,159 In the latter,
only the polarization functions are optimized with respect to molecular energies. A significant advantage of
molecular basis set optimizations is that, contrary to atomic optimizations, all angular momentum functions
(i.e., polarization functions not occupied in the atomic ground state) can be determined consistently, as
already noted by Hutter and VandeVondele.160 We observed that even contracted polarization functions can
be obtained reliably in this way, thus further improving the quality of the employed AOs. Zijlstra et al.
observed in agreement with results by Hutter and VandeVondele that molecule-optimized Gaussian basis
sets outperform atom-optimized ones in general applications.345 However, Petersson et al. noticed that the
coupling of different angular momenta in molecular systems makes the basis set optimization converge much
more slowly than in atomic optimizations, which is probably the technical reason why molecular optimizations
are rarely employed for basis set construction.346

Although 𝜔B97X-3c is designed mostly in the spirit of the other “3c” methods, the meaning and definition
of the applied “three corrections” have changed over the years. As before, the acronym stands for the dispersion
correction, as well as for the specially developed AO basis set, but here for the compilation of ECPs, which
are essential for efficiency, as a third modification. As noted already, 𝜔B97X-3c forms the basis of our
next-generation TB method, where the application of ECPs to yield an (almost) valence-only treatment is of
fundamental importance.

Choice of Effective Core Potentials

Finding the right compromise between accuracy and computational efficiency in a “3c”-treatment was a
particular challenge regarding the choice of the ECPs. Consistent sets for all elements up to Rn from one
resource were not available and hence, the potentials from various authors namely the Stuttgart-Cologne,
CRENBL, and SBKJC type ECPs were used, as summarized in Tab. C.2.

For main group elements from group 13 and higher, the ECPs are of “largest core” type, i.e., only the
sp-valence shell is explicitly considered. For the transition metals and group 1 / 2 elements (except Li, Be for
which no ECP is applied), the sub-valence sp-shell (semi-core) is included explicitly in the calculation. In this
way, the chemically important semi-core polarization effects are mostly accounted for. For the lanthanoids,
the 5s5p4f5d electrons (or depending on the element 5s5p4f, see the Supporting Information (SI) for details)
are included.

For the ECP-2-MWB of the elements boron and fluorine, we discovered in the course of this project
that the exponents of the d-f projector Gaussian functions are very small (< 0.04) leading to artificial
potentials in larger molecules. This resulted in inconsistent NCI energies with ECP-caused errors of several

† Modified d-f projector for B and F, see text.
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Table C.2: Type of effective core potential used and the number of core electrons included in the ECP.

𝑍 (element) Type of ECP # core electrons
B–Ne ECP-2-MWB141† 2
Na–Mg CRENBL347 2
Al–Ar ECP-10-MWB141 10
K–Ca CRENBL348 10
Sc–Zn ECP-10-MDF137 10
Ga–Kr ECP-28-MWB141,349 28
Rb–Sr CRENBL144 28
Y–Cd ECP-28-MWB350 28
In–Xe ECP-46-MWB141,349 46
Cs–Ba CRENBL351 46
La ECP-46-MWB140,352 46
Ce–Lu SBKJC-ECP353 46
Hf–Hg ECP-60-MWB350 60
Tl–Rn ECP-78-MWB354 78

kcal⋅mol−1. For boron, we remedied this problem by increasing the exponent and adapting the corresponding
Gaussian-ECP prefactor such that both typical thermochemistry results in GMTKN55 and NCI energies of
boron model complexes are optimally described compared to accurate all-electron reference data. Afterward,
the corresponding p-f projector was fine-tuned to account for the modified d-f projector. For fluorine, no
beneficial effects of modifying the d-f projector were observed compared to its removal, so we deleted it
from the fluorine ECP. The slightly modified ECPs for B and F are given together with the complete set of
potentials in the SI.

Optimization of the vDZP Basis Set

The design and primitive contraction scheme for all elements up to Rn (Z=1-86) are given in Tab. C.3.
Generally, semi-core (sub-valence) shells are described by 4-5 primitives while valence shells contain 2-4
primitive functions. A notable exception is hydrogen where the deep 53 contraction of the two 𝑠-shells
substantially reduces the BSSE compared to, for example, a typical 31 contraction. Similar considerations
apply for polarization functions which generally consist of two primitives instead of normally just one.

The contraction coefficients and primitive exponents of the vDZP basis were fully optimized with the help
of the Powell optimization algorithm355 which does not require any objective function value derivatives. For
each individually treated element, the objective function to be minimized was the sum of atomic and molecule
𝜔B97X-D3356 total energies. The ECPs as described above, but without the mentioned modifications for
B/F, were used in these calculations. The set of systems usually contains the neutral atom, atomic anion and
cation, hydrides XH𝑛 and X2H𝑚 as well as corresponding anionic/cationic hydrides. The hydrogen basis
(which must be generated first in this procedure) was obtained from hydrides of the elements Li-F (including
ions) described initially by a standard def2-TZVP basis which was replaced later by the emerging vDZP sets.
For some metals (and all lanthanoids) fluorides XF𝑛 and X2F𝑚 were additionally included. The inclusion of
ions (anions in particular) ensures that several primitives in the outer (more diffuse) AO are properly defined
and describe “physical” states (see Fig. C.1 in Sec. C.5 for an example). Note that for anions this is only
possible in HF or RSH-based optimizations because the correct asymptotics of the exchange potential is
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Table C.3: Contraction scheme of the vDZP basis set used in 𝜔B97X-3c. Multiply occurring basis set schemes are
given only for their first appearance.

𝑍 (element) contraction scheme
H–He (8s2p) [2s1p] {53/2}
Li–Be (10s3p2d) [3s1p1d] {5 32/3/2}
B–Ne (6s6p2d) [2s2p1d] {42/42/2}†

Na–Mg (9s8p2d) [3s2p1d] {4/5 32/3/2}
K–Ca (9s7p2d) [3s2p1d] {4/4 32/3/2}‡

Sc–Zn (9s6p6d) [3s2p2d] {5/4 22/2/42}§

La, Hf–Hg (8s6p6d) [3s2p2d] {4/4 22/2/42}
Ce–Lu (8s5p5d7f) [3s2p2d2f] {4/4/3 22/1/2/52}

important to yield bound electronic states. The number of systems for each element was between 10 and 20
atoms and molecules. Start parameters for the contraction coefficients and primitive exponents were taken
from existing AOs in the TURBOMOLE basis set library and at later stages of the optimization procedure,
by exponent scaling from neighboring elements. The typical number of objective function evaluations per
element for the complete AO optimizations is on the order of 104.

C.3.2 Dispersion Correction

Long-range electron correlation (London dispersion) effects are included by the atomic-charge dependent D4
correction calculated according to

𝐸D4
disp = − 1

2 ∑
𝐴𝐵

∑
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𝐶𝐴𝐵

(𝑛)

𝑅(𝑛)
𝐴𝐵

𝑓 (𝑛)
damp(𝑅𝐴𝐵)

− 1
6 ∑

𝐴𝐵𝐶
𝑠9

𝐶𝐴𝐵𝐶
(9)

𝑅(9)
𝐴𝐵𝐶

𝑓 (9)
damp(𝑅𝐴𝐵𝐶, 𝜃𝐴𝐵𝐶),

(C.1)

where 𝐴, 𝐵 and 𝐶 denote atoms, 𝑠𝑛 are scaling parameters, 𝐶(𝑛) are the dispersion coefficients, 𝑅𝐴𝐵 the
interatomic distances, 𝑅𝐴𝐵𝐶 atomic triangle averaged distances, 𝜃𝐴𝐵𝐶 the corresponding angles, and 𝑓 (𝑛)

damp
the BJ damping function 𝑓 (𝑛)

BJ

𝑓 (𝑛)
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𝑅(𝑛)
𝐴𝐵

𝑅(𝑛)
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(C.2)

with the functional specific damping parameters 𝑎1 and 𝑎2. The 𝐸D4
disp term is simply added to the dispersion-

uncorrected (without VV10 part) “𝜔B97X-V (−VV10)”/vDZP electronic energy. The medium-range scaling
parameters 𝑠8 and 𝑠9 as well as the damping parameters 𝑎1 and 𝑎2 were determined as usual by a fit to reference
NCI as well as a few conformational energies. The benchmark sets used for training the D4 parameters were
the following (sets for which no reference is given were taken from the GMTKN55 database93): S22, S66,
ADIM6, HEAVY28, HAL59, CARBHB12, NCIBLIND10,302 L7,303 ISO34, ISOL24, TAUT15, BSR36,
DARC, IDISP, ACONF, ACONFL,292 SCONF, MCONF, PCONF21, UPU23, 37CONF8,304 MPCONF196,305

† Equivalent for Al-Ar, Ga-Kr, In-Xe, and Tl-Rn.
‡ Equivalent for Rb, Sr, Cs, and Ba.
§ Equivalent for Y-Cd.
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Table C.4: Optimized parameters of the D4 dispersion correction. Additionally, parameters for the 𝜔B97X-V functional
earlier published by Najibi and Goerigk (see Ref. [307]) are given.

D4 parameter 𝑎1 𝑎2 𝑠6 𝑠8 𝑠9
𝜔B97X-3c 0.2464 4.737 1.0 0.0 1.0
𝜔B97X-D4 (present work) 0.3306 4.279 1.0 0.4485 1.0
𝜔B97X-D4 (Goerigk et al.) 0.0662 5.449 1.0 0.5093 1.0

S30L,306 and IONPI19.285

The parameters in the charge-scaling functions 𝛽 and 𝛾 [see Eq. (2) of Ref. [120]] are kept unchanged
and 𝑠6 = 1 as usual. In general, the small BSSE of TZ quality basis sets like vDZP can be absorbed in the
D4 parameterization. A reasonable approach is to use a zero value for 𝑠8 to ensure a slightly more repulsive
behavior at intermediate distances (see also Ref. [214]), which is also pursued here as a strategy. Thus, no
further corrections like, e.g., gCP195 or related potentials need to be applied for 𝜔B97X-3c.

During the development and testing of 𝜔B97X-3c, we noticed in some cases a questionable behavior
related to the D4 parameters for the existing 𝜔B97X(-V)/QZ functional. Therefore, the presented fitting
procedure was applied to determine improved damping parameters also for 𝜔B97X-D4. As usual, this
refers to the large def2-QZVPP AO basis set without counter-poise correction. The optimized parameter
values are given in Tab. C.4, for comparison together with the parameters suggested by Goerigk et al. In the
following,“𝜔B97X-D4” refers only to the D4 parameters presented in this work.

C.4 Technical Details

The 𝜔B97X-3c composite electronic structure method has been implemented in development versions of the
TURBOMOLE294 and ORCA309,357 programs and is expected to be included in the next official releases of both
program packages. The RI approximation for the electronic Coulomb energy was used with the large universal
auxiliary basis sets by Weigend.358 For the semi-local XC part, the medium-sized numerical quadrature
grids m4 (TURBOMOLE) and DEFGRID2 (ORCA) are used. Semi-numerical treatment of exact exchange
($senex359,360 with m2 grid and RIJCOSX178 with DEFGRID2) is applied per default. An in-depth investigation
of the accuracy of semi-numerical treatment of exact exchange is given in the spreadsheet attached to the SI.
All other DFT calculations were conducted with a current development version of TURBOMOLE 7.6 or the
ORCA 5.0.3309,357 program package release mostly applying large quadruple-𝜁 AO basis sets def2-QZVP
and def2-QZVPP139 (together with corresponding auxiliary basis sets). Other technical settings refer to the
current defaults for standard DFT calculations with both programs.

C.5 Results and Discussion

With r2SCAN-3c as the most recent member, the focus of the “3c” methods expanded from exclusively
structural properties and inter- and intramolecular NCIs to also thermochemical problems, including the
formation of strong covalent bonds. With 𝜔B97X-3c, the scope is further extended towards higher accuracy
for many systems and towards systems prone to SIE. The reason for the latter is mainly the RSH nature of the
method, also circumventing occasional convergence problems of earlier (m)-GGA-based “3c” methods.

As will be shown in the following, 𝜔B97X-3c surpasses the performance of some of the best hybrid
DFAs/large-QZ schemes in many applications, at a fraction of the computational costs. Comprehensive
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Figure C.1: Radial distribution function of the electron density of H− by employing 𝜔B97X-V in combination with
different basis sets. The annotation “CBS” is used for an uncontracted 14s basis set.

benchmarks for thermochemistry, NCIs, barrier heights, metal-organic reactions, and molecular structures
are discussed in the following subsections, proving the general applicability and robustness of the presented
method to a wide variety of systems. Definitions of the applied standard statistical measures and the raw data
required for the reproduction of all plots are given in the SI.

C.5.1 Quality of the vDZP Basis Set

As pointed out earlier, the key ingredient of the new “3c” method presented in this work is the vDZP basis
explained in detail in Sec. C.3.1. Thus, an investigation of the qualitative behavior of the introduced basis set
is appropriate to show that the method is based on solid grounds.

For this purpose, the radial distribution function of the electron density of H− was calculated using 𝜔B97X-
V with a virtually complete basis set as the reference ({14s} as available in the TURBOMOLE basis set library),
the vDZP basis, as well as the Ahlrichs basis sets def2-QZVP and def2-SVP for comparison (see Fig. C.1).
The large def2-QZVP basis set approaches the “CBS” reference closely whereas the double-𝜁 basis set
def2-SVP deviates significantly in the medium- and long-range parts. The highly contracted vDZP basis set
behaves very similarly to both def2-QZVP and the “CBS” limit. The good behavior of vDZP underlines its
advantages with respect to usual double-𝜁 basis sets and shows the importance of optimizing the basis for
molecular and (an)ionic systems. Fig. S4 in Sec. III-B of the SI shows another example, in which electron
densities evaluated with vDZP and def2-SVP / def2-QZVP basis sets are compared.

In the development of 𝜔B97X-3c and its vDZP basis set, another important goal was to avoid significant
BSSE, and any related empirical corrections and to closely approach the physically correct solution. In the
present approach, this is realized by optimizing the basis set in molecular calculations and by deep contraction
of the functions. A quantitative investigation of the amount of remaining intermolecular BSSE is possible by
calculating the BB-CP correction which should vanish for complete basis sets. To this end, small organic
dimers from S22 and heavy main group dimers from HAL59 (both parts of the common GMTKN55 database)
are taken into consideration. In addition to the Ahlrichs basis sets def2-QZVP, def2-TZVP, def-TZVP, and
def2-SVP, also the correlation-consistent cc-pVDZ basis set150 and the popular Pople-style 6-31G* basis
set361 are evaluated. Relative and absolute BB-CP corrections are shown for each case in Fig. C.2. The
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Figure C.2: Boys-Bernardi counter-poise correction evaluated at the 𝜔B97X-V level for different basis sets. Relative
values (blue) for the Boys-Bernardi (BB)-CP correction in % are determined from the absolute values in kcal⋅mol−1

(yellow) with respect to the reference dimerization energies. Small organic dimers are taken from the S22 benchmark
set, heavy main group dimers from the HAL59 set, both of which are part of GMTKN5593.

three commonly applied DZ basis sets perform very similarly with relative BB-CP corrections around 30 %
(small organic dimers) and 40 % (heavy main group dimers), respectively. As expected, the BSSE decreases
significantly when moving to triple- (7 and 13 %, respectively) or even quadruple-𝜁 basis sets (2 % or lower
for both compound classes). Remarkably, vDZP performs close to the Ahlrichs-type TZ basis sets (12 % rel.
BB-CP corr.) for small organic dimers. For heavy main group dimers, the picture is even better with vDZP
(10 % rel. BB-CP corr.) ranking between def2-TZVP and def2-QZVP. This might also be attributed to the
use of large-core ECPs and, consequently, a smaller number of basis functions that potentially could be used
unphysically (see Sec III-A of the SI for a supporting study exemplified for the cc-pVDZ basis set). The low
amount of remaining BSSE can be absorbed by an appropriately fitted D4 dispersion correction, as described
in Sec. C.3.2.

C.5.2 Timings for Large Supramolecular Complexes

The use of a (mostly) valence DZ basis set in combination with large-core ECPs reduces the computational
effort substantially in comparison to usually applied all-electron QZ basis sets. The wall times for a single-
point calculation on a large supramolecular complex, a boron-nitrogen nanotube containing an organic guest
molecule with 381 atoms in total, are discussed as an illustrative example. Wall times relative to r2SCAN-3c
(colored bars) and memory consumption (grey bars) are shown in Fig. C.3. The computational effort required
by typical hybrid density functionals in quadruple-𝜁 basis sets is decreased by a factor 4-5 with 𝜔B97X-3c
and approaches that of class-leading m-GGA density functionals like B97M-V85,308 with large QZ basis set.
For large systems containing many heavy atoms, this favorable behavior increases further due to the fewer
number of basis functions in comparison to methods employing no or only small-core ECPs.

Another aspect that is particularly important for very large systems consisting of hundreds or even thousands
of atoms is memory consumption. Often, such kinds of systems cannot be treated by DFT / WFT methods in
standard TZ / QZ basis sets anymore since the required memory would exceed the available resources. The
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Figure C.3: Wall time required for a single-point calculation of a large boron-nitrogen nanotube containing an organic
guest molecule (381 atoms; see Ref. [362] and [116] for details) using ORCA 5.0.3 on 16 AMD EPYC 7742 cores.
The memory consumption refers to the ORCA printout (per CPU core). The methods are ordered by the associated
computational effort and the colors encode the different rungs on “Jacob’s ladder”74. Note that HF cannot be clearly
categorized on “Jacob’s ladder”, which is why we have assigned it its own color. For all calculations except for“3c”
methods, the def2-QZVPP basis set was used. Default numerical settings were applied throughout, including the
seminumerical COSX (keyword: RIJCOSX).

gray bars in Fig. C.3 clearly show that the memory consumption of 𝜔B97X-3c is an order of magnitude lower
compared to methods with QZ basis sets. Compared to TZ basis sets, it is still reduced by a factor of ≈ 3.

C.5.3 Main-Group Thermochemistry

GMTKN5593 is a comprehensive and well-established benchmark database for main group chemistry. With
over 1500 individual and chemically important reactions, it provides a broad overview of intra- and inter-
molecular NCIs, basic properties, reactions of small and large molecules, and barrier heights. For each
reaction, reliable CCSD(T)/CBS reference data are provided. The GMTKN55 benchmark set introduces a
weighted measure for mean absolute deviations called WTMAD-2, which levels large differences in reaction
energies among the 55 subsets and will be used in the following (see the SI for an explanation of statistical
measures).

For comparison within this and all following benchmark sets, we decided to choose a) state-of-the-art DFAs
with similar construction, b) the most recent member of the “3c” family, r2SCAN-3c,214 and c) the commonly
used B3LYP hybrid density functional,78,88,89 each of them employing a dispersion correction. Apart from
“3c” methods, def2-QZVP(P) basis sets are used throughout (except for a few subsets of GMTKN55 using
specifically augmented def2-QZVP basis sets, see Ref. [93] and [308] for details). WTMAD-2 values for
the whole GMTKN55 database and for each of the five subclasses are given in Fig. C.4 for 𝜔B97X-3c
(blue shaded), the parent functional 𝜔B97X-V including both VV10 and D4 dispersion corrections, the
m-GGA B97M-V,85 the composite m-GGA DFT method r2SCAN-3c and B3LYP-D4. Results for B97M-V,308

B3LYP,93 r2SCAN-3c,214 and 𝜔B97X-V93 were taken from literature and re-evaluated for calculation of
the WTMAD-2. For B3LYP-D4 and 𝜔B97X-D4, only the dispersion correction contribution was added or
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Figure C.4: WTMAD-2 values for the GMTKN55 benchmark set in kcal⋅mol−1. Except for “3c” methods, QZ basis
sets are used throughout (see main text for details). Results for B97M-V308, B3LYP93, r2SCAN-3c214 and 𝜔B97X-V93

were taken from literature and re-evaluated for calculation of the WTMAD-2. For B3LYP-D4 and 𝜔B97X-D4, only the
dispersion contribution was added or replaced, respectively.

replaced, respectively.
𝜔B97X-3c performs equally well or better than r2SCAN-3c in all subclasses, which is evident from an

overall WTMAD-2 of 5.6 compared to 7.5 kcal⋅mol−1. The very commonly applied hybrid DFT method
B3LYP with an extended QZ basis set is significantly behind 𝜔B97X-3c with a WTMAD-2 of 6.4 kcal⋅mol−1.
The best-in-class m-GGA B97M-V308 is on par with 𝜔B97X-3c. Noticeably, the re-fitted parameters of the
D4 dispersion correction for the 𝜔B97X-V functional lead to an improved WTMAD-2 of now 3.7 kcal⋅mol−1

(cf. to 𝜔B97X-D4 by Goerigk et al.307 with a WTMAD-2 of 4.3 kcal⋅mol−1), now outperforming 𝜔B97X-V
in its original form employing the VV10 nonlocal correlation functional (4.0 kcal⋅mol−1).

Especially for barrier heights, 𝜔B97X-3c shows a drastic improvement over its predecessor r2SCAN-3c,
which is a consequence of employing range-separated Fock exchange thereby eliminating most of the SIE.
Noticeably, 𝜔B97X-3c outperforms not only B97M-V but also B3LYP-D4 in this subclass and nearly matches
the performance of the parent functional (𝜔B97X-V/D4), all of which use QZ basis sets. The performance
for barrier heights is furthermore investigated in Sec. C.5.6 on the recently published BH9 benchmark set363.

For basic properties and reactions of small molecules, 𝜔B97X-3c performs also close to the best-performing
functionals in this comparison. For sets such as SIE4x4 (self-interaction-error related problems) and YBDE18
(bond dissociation energies in ylides), 𝜔B97X-3c shrinks the error of m-GGAs such as r2SCAN-3c or B97M-
V by 30-60 %. For SIE4x4, 𝜔B97X-3c shows even the lowest MAE of all tested functionals, proving the
very good applicability for systems prone to SIE.

For reactions of large molecules, B3LYP-D4 and B97M-V yield significantly larger errors than r2SCAN-3c
and 𝜔B97X-based functionals, including the “3c” composite scheme. Specifically, isomerization energies,
such as those composed in CDIE20 (double-bond isomerizations in cyclic systems) and ISO34 (isomerizations
of small and medium-sized organic molecules), are much better described by 𝜔B97X-3c compared to the
m-GGAs r2SCAN-3c and B97M-V and to B3LYP-D4.

For inter- and intramolecular NCIs of small- to medium-sized systems, a slightly larger difference of
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Figure C.5: Error boxplots for the NCIs benchmark sets S22, S30L, IONPI19, and HB300SPX in kcal⋅mol−1. The
whiskers of the boxplots span the entire error range (ErrR) in all cases. *Only equilibrium geometries of HB300SPX
were taken into account.

𝜔B97X-3c from 𝜔B97X-D4 evaluated in the QZ basis set is evident. However, 𝜔B97X-3c is still on par
with B3LYP-D4 and better than r2SCAN-3c. From the comparison with functionals evaluated in the QZ
basis, it appears that the interaction energies of charged species, such as compiled in the CHB6, AHB21, and
WATER27 sets, benefit from larger basis sets. This observation also holds true for interaction energies of
n-alkane dimers in ADIM6. For many of the remaining benchmark sets, there is a significant improvement
over r2SCAN-3c and comparable performance to the other DFAs tested. For the halogen and hydrogen-
bonded complexes in CARBHB12 and HAL59, the performance of 𝜔B97X-3c is similar to that of the parent
functional 𝜔B97X-V/D4 evaluated in the QZ basis set and better than that of the other competitors, which is
in particular remarkable given the clearly smaller number of basis functions in 𝜔B97X-3c. A more in-depth
discussion of the performance for NCIs is provided in the following two sections C.5.4 and C.5.5.

C.5.4 Intermolecular Non-Covalent Interactions of Large Systems

Non-covalent interactions of large systems are particularly challenging for methods using small basis sets,
since BSSE and BSIE effects have a greater relative effect here than for thermochemical properties of small
systems. On the other hand, the application of large basis sets is often not computationally feasible, which is
also due to a massive increase in memory consumption (see also Sec. C.5.2 and Fig. C.3). Moreover, larger
basis sets occasionally require distinctly more SCF steps until convergence than small basis sets, and it is
sometimes difficult to get the SCF calculation converged at all.
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It is therefore all the more desirable that 𝜔B97X-3c is able to describe also large systems accurately. In
the following subsection, a variety of benchmark sets covering intermolecular NCIs is discussed: Fig. C.5
shows error distributions for the S22 (small organic dimers, part of GMTKN55), S30L (realistic host-guest
complexes), IONPI19 (non-covalent ion-𝜋 interactions), and HB300SPX364 (hydrogen bonds) benchmark
sets. Results for further benchmarks such as L7 (large molecule NCIs), R160x6365 (repulsive NCI contacts),
and CHAL336366 (chalcogen bonding) are shown in the SI.

𝜔B97X-3c exhibits very small MAEs (hereafter in kcal⋅mol−1 in parentheses) as well as moderate error
spreads for all four benchmark sets shown in Fig. C.5. The well-known S22 benchmark set from GMTKN55
impressively demonstrates the capabilities of the vDZP basis set in 𝜔B97X-3c: With an MAE of 0.21
kcal⋅mol−1, 𝜔B97X-3c is among the best DFAs ever tested, and in this comparison only beaten by 𝜔B97X-
D4 (0.15). The ErrR is the smallest of all tested methods in this comparison. For S30L, which assesses
host-guest interactions of larger supramolecular complexes, 𝜔B97X-3c (1.7) is very close to the best-performer
r2SCAN-3c (1.5) and is even more accurate than 𝜔B97X-D4 (1.9) and by far better than 𝜔B97X-V (4.0), each
of which evaluated in the QZ basis. The noncovalent ion-𝜋 interactions in IONPI19 are slightly too repulsive
with 𝜔B97X-3c(1.0), though still better described than with r2SCAN-3c (1.3) and B3LYP-D4 (1.4). Again,
𝜔B97X-D4 is the best-performing method in this comparison. The MAE and the ErrR for the description
of hydrogen bonding interactions in HB300SPX could be reduced by 50 % with 𝜔B97X-3c compared to
r2SCAN-3c. Furthermore, there is no systematic error with an mean error (ME) of 0.1 kcal⋅mol−1. 𝜔B97X-3c
(0.29) is almost on par with the best-performing methods 𝜔B97X-V/D4 (0.21/0.20). Also, B97M-V exhibits
a very low MAE of 0.23 kcal⋅mol−1.

Besides the benchmarks shown in Fig. C.5, error box plots for further benchmark sets on NCIs are given
in Sec. II of the SI and are discussed in the following. Extended molecular complexes as present in L7,
stabilized mainly by dispersion interactions, are insightful test cases as their description is challenging for
contemporary computational methods. 𝜔B97X-3c (1.0) outperforms all tested methods except 𝜔B97X-D4
(0.9) and is closely followed by r2SCAN-3c (1.1) (cf. to Fig. S4 in the SI). However, small differences in the
MAEs should be treated with caution as the discussion about highly accurate (𝛥 < 0.5 kcal⋅mol−1) reference
values is still ongoing367 (see Sec. II of the SI for details on the reference data). Furthermore, the statistical
size of seven sample points is at least questionable. Interaction energies of repulsively interacting fragments
studied in R160x6 are slightly too repulsive with 𝜔B97X-3c but still improved compared to r2SCAN-3c. The
corresponding reference data have been revised during the evaluation of r2SCAN-3c (cf. Ref. [214]). In
CHAL336, chalcogen bonds of mainly heavier elements are tested. Again, 𝜔B97X-3c outperforms r2SCAN-
3c and has only slightly larger errors than the other methods assessed in the QZ basis. This is particularly
noteworthy since polarization effects can play a larger role for heavy atoms, while 𝜔B97X-3c relies on
large-core ECPs avoiding the explicit treatment of core electrons.

The excellent results discussed in this section suggest 𝜔B97X-3c as the ideal method for the investigation
of large, non-covalently bound complexes. This is particularly noteworthy from the aspects of computational
effort, memory requirements and convergence issues mentioned earlier, which are mostly overcome with
𝜔B97X-3c. Therefore, it was already utilized as the reference method for benchmarking (semi)empirical
methods on NCIs of very large systems consisting of up to 2000 atoms116.

Remarkably, 𝜔B97X-D4/QZ employing the revised D4 parameterization presented here yields the lowest
MAE of all tested methods in five of the seven discussed benchmark sets for intermolecular NCIs.
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Figure C.6: MAEs for the conformer and intramolecular interaction energy benchmark sets 37CONF8, MPCONF196,
ACONFL, and TMCONF16 in kcal⋅mol−1. In addition, the WTMAD-2 value for the four benchmark sets is shown.
The blue shaded error displays the error by 𝜔B97X-3c.

C.5.5 Conformational Energies and Intramolecular Non-Covalent Interactions

Even though the application for conformer ranking is not the main target of 𝜔B97X-3c, further benchmark
sets on conformer energies going beyond those in GMTKN55 were evaluated. Specifically, conformational
energies of 1) typical organic molecules (37CONF8), 2) peptides and small macrocycles (MPCONF196), 3)
long n-alkane chains (ACONFL), and 4) transition metal complexes (TMCONF16, subset of TMCONF40368)
were considered. In Fig. C.6, MAEs of each conformer set are shown together with the WTMAD-2 over all
sets. The radar chart impressively demonstrates the performance of r2SCAN-3c for conformational energies.
In the overall performance, it is only marginally surpassed by 𝜔B97X-V/D4. 𝜔B97X-3c follows r2SCAN-3c
and outperforms B3LYP-D4 and B97M-V. For the individual benchmark sets, the aforementioned ranking
consistently holds for 𝜔B97X-3c, except for TMCONF16 and ACONFL. For the latter, 𝜔B97X-3c shows
an impressive MAE of 0.2 kcal⋅mol−1, which is already close to the accuracy of the reference method and
proves to be better than the same method evaluated in the QZ basis. Very likely, the molecular optimized
vDZP basis set offers its greatest strengths for these or similar kinds of systems. The slightly larger errors for
TMCONF16 can be attributed to the use of large-core ECPs as explicit interactions with electrons closer to
the nucleus are more relevant for transition metal complexes such as evaluated in this test set.

C.5.6 Barrier Heights

The accurate description of barrier heights is challenging for efficient (m)-GGA methods due to the presence
of SIE which is diminished here by the inclusion of range-separated Fock exchange. The consequence is well
illustrated in Fig. C.7 showing error distributions for the BH9 benchmark set. BH9 consists of 449 chemical
reactions “belonging to nine types common in organic chemistry and biochemistry”363. For each reaction,
the reaction energy and two barrier heights (forward and backward) are given.

Comparing the performance of 𝜔B97X-3c to that of r2SCAN-3c, the error in reaction energies is very
similar whereas the barrier heights are much more accurate with 𝜔B97X-3c in both directions. In fact, the
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Figure C.7: Boxplots for each tested DFA for reaction energies, forward and backward barrier heights of the organic
molecules composed in the BH9 benchmark set (errors given in kcal⋅mol−1). The inlet displays the utilized statistical
boxplot definition, in which ‘IQR’ corresponds to the interquartile range, the distance between the upper and lower
quartiles. Data points outside of the whiskers are labeled as outliers in form of circles.

Table C.5: Statistical evaluation of transition metal thermochemistry in the MOR41, ROST61, MLA24 and revMOBH35
benchmark sets in kcal⋅mol−1. Except for the “3c” composite methods, the tested methods employ the large def2-QZVPP
basis set.

MAE / kcal⋅mol−1 MOR41 ROST61 MLA24 revMOBH35
B97M-V/QZ 3.9 3.4 2.3 1.8
B3LYP-D4/QZ 4.2 3.3 4.0 2.5
r2SCAN-3c 3.7 2.9 4.2 2.7
𝜔B97X-3c 3.4 4.6 1.7 3.2
𝜔B97X-V/QZ 2.2 2.8 1.7 2.3
𝜔B97X-D4/QZ 2.6 3.2 1.7 2.4

MAE of 𝜔B97X-3c (1.9) for the forward barrier heights is on par with that of 𝜔B97X-V/D4 (each 1.8) and
for the backward barrier heights only slightly worse (3.4) than with 𝜔B97X-D4 (2.7) and 𝜔B97X-V (3.1).
B3LYP-D4, B97M-V, and r2SCAN-3c show two to three times larger MAEs (4.6-7.6) than 𝜔B97X-3c for the
barrier heights in both directions. A similar conclusion holds for the standard deviations. The larger errors of
B3LYP-D4, B97M-V, and r2SCAN-3c can be clearly attributed to SIE, as the MAE is almost equal to the
negative ME for all three methods. Consequently, barrier heights are systematically underestimated (see also
Fig. C.7). Evidently, the constant admixture of 20 % exact exchange as in B3LYP-D4 cannot really remedy
this SIE-related shortcoming. Instead, range-separated Fock exchange is required as in the 𝜔B97X-V/D4/3c
methods. In line with the aforementioned results, 𝜔B97X-D4 applied with the large QZ basis set is the
best-performing method in this comparison.

C.5.7 Metal-Organic Reactions

The benchmark sets shown so far covered mostly only main-group chemistry. In the following, the performance
for transition metal thermochemistry is discussed separately. The electronic structure of transition metal
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Figure C.8: MAEs of bond lengths (pm) in the molecular geometry benchmark sets LMGB35, HMGB11, TMC32,
LB12, and CCse21. In the latter, also bond angles (degree) are evaluated. For geometry optimizations in ORCA 5.0.3,
the settings DEFGRID3 and TightSCF were applied throughout.

complexes is usually more complex than that of main group compounds. Therefore, slightly larger deviations
of 𝜔B97X-3c compared to methods employing converged QZ basis sets are to be expected. An additional
challenge for 𝜔B97X-3c arises from the lack of explicit treatment of core electrons due to the use of large-core
ECPs as core-valence contributions can have a noticeable impact in transition metal chemistry.

The performance in this field is evaluated with four benchmark sets, all of them employing high-level
CCSD(T) reference data. They cover closed-shell metal-organic reactions (MOR41369), chemically rele-
vant open-shell transition metal reactions (ROST61290), polyethylene chains cross-linked by metal atoms
(MLA24370), and metal-organic barrier heights (revised MOBH35 benchmark371,372, termed revMOBH35).
Results in the form of MAEs are presented in Tab. C.5 for all four benchmark sets and for each tested method.

Comparing the performance of 𝜔B97X-3c, a difference between closed-shell and open-shell transition
metal reactions is visible: For MOR41, a good result, even better than that of B97M-V, r2SCAN-3c, and
B3LYP-D4, is observed with 𝜔B97X-3c. This is in agreement with MLA24, for which 𝜔B97X-3c is even
the best-performing method, together with 𝜔B97X-V/D4. Remarkably, r2SCAN-3c and B3LYP-D4 show
two- to threefold larger errors than the 𝜔B97X-V/D4/3c methods for MLA24. In contrast, ROST61 and
revMOBH35 reveal larger deviations for 𝜔B97X-3c. Still, the standard deviation (StdDev), the ErrR, and the
ME are similar to the competing methods and neither outliers nor systematic errors were observed. The partly
larger errors for transition metal chemistry can be attributed to the missing explicit treatment of interactions
between valence electrons and electrons in lower shells, as large-core ECPs are used instead. Apparently, this
is more pronounced for open-shell reactions in ROST61 compared to the closed-shell benchmarks. Unlike
to the findings in previous sections, 𝜔B97X-V shows slightly smaller errors than 𝜔B97X-D4 for all four
benchmark sets. This is in agreement with observations in the MOR41 and ROST61 benchmark sets, for
which a similar trend was found in the comparison of B3LYP-D4 and B3LYP-NL.

C.5.8 Molecular Structures

Even though molecular geometries are not the main focus of the method, it can be convenient in some cases to
utilize an efficient RSH method without the need for TZ / QZ basis sets to produce accurate structures. This is
of special importance if, e.g., CT or SIE effects play a role, for which 𝜔B97X-3c performs very well. To check
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the performance for this application, we compare optimized equilibrium distances for five different geometry
benchmark sets and also equilibrium bond angles for one of them, each employing experimental data as
the reference. LMGB35 contains light main group bonds of very small first and second-row molecules373,
while HMGB11 consists of heavy main group molecules. LB12 covers larger organic molecules with
chemically interesting bonding situations. Each of them was compiled during the development of PBEh-3c
(see Ref. [115]). Furthermore, TMC32374 containing 3d transition metal complexes and CCse21375 (small
molecules) were taken into account. Error bars displaying MAEs for each of the sets are given in Fig. C.8.

Remarkably, 𝜔B97X-3c outperforms every tested method, including 𝜔B97X-D4/QZ, for the HMGB11
and LB12 sets, and is on par with 𝜔B97X-V/D4 for LMGB35. This holds not only for the MAE but also for
the ME, showing that no systematic over- or underestimation of bond lengths occurs. Among these, the result
for HMGB11 is probably the most impressive since heavy atoms (up to Pb2Me6) are involved, probing the
influence of the large-core ECPs. Evidently, the molecule-optimized and fine-balanced basis set is superior in
these cases even to the combination of large QZ basis sets with small-core (def2) ECPs, and without the need
for further empirical corrections. CCse21 shows for 𝜔B97X-3c a similar performance to that of 𝜔B97X-V
and 𝜔B97X-D4 with only B3LYP-D4 showing a lower MAE. However, the relative deviation to the MAE of
the best-performing method (B3LYP-D4) is very small (< 0.1 pm) and potentially below the uncertainty of
the reference data. Looking at the bond angles in CCse21, 𝜔B97X-3c together with 𝜔B97X-V/D4 yield the
smallest deviations. TMC32 with electronically more difficult systems reveals a slightly different picture, as
𝜔B97X-3c displays larger errors than the best-performing methods B97M-V, B3LYP-D4, and r2SCAN-3c.
On the one hand, this is related to findings for transition metal chemistry discussed in Sec. C.5.7, where
the large-core ECPs seem to have a more severe influence. On the other hand, the performance of all tested
methods derived from 𝜔B97X-V is very similar and thus, this might also be a limitation inherent to the
chosen DFA. In contrast to results for the majority of the thermochemistry benchmark sets, 𝜔B97X-D4 does
not perform better than 𝜔B97X-V for geometries.

The presented geometry benchmark sets convincingly demonstrate that 𝜔B97X-3c is not only capable of
describing thermochemistry at the hybrid DFT/QZ level but also equilibrium geometries of mostly covalently
bound systems. This is particularly encouraging given that 𝜔B97X-3c comes without any further empirical
corrections such as SRB correction in B97-3c or the gCP correction in r2SCAN-3c (cf. to Tab. C.1).

Besides these systems, also dissociation curves of non-covalently bound fragments were investigated within
the S66x8376,377 and HB300SPX364 benchmark sets (see Tab. I in the SI). For these sets, slightly too-long
equilibrium distances were observed. Nevertheless, the mean absolute difference between association energies
(calculated at the same 𝜔B97X-V/QZ level of dimer complex geometries optimized with 𝜔B97X-3c compared
to 𝜔B97X-V/QZ is about 0.2 kcal⋅mol−1 or 5 % (see Sec. I-B of the SI for details), which corresponds to the
error of very accurate DFAs on fixed geometries. Thus, in principle, 𝜔B97X-3c yields also reliable molecular
geometries of non-covalently bound complexes. However, due to the still considerable computational cost
associated with 𝜔B97X-3c in the vast majority of cases, m-GGA methods such as r2SCAN-3c are to be
preferred due to a better cost-benefit ratio.

C.6 Summary and Conclusions

We presented a new composite DFT method based on one of the leading range-separated hybrid DFAs
available on the market. It offers a unique combination of a molecule-optimized polarized valence double-𝜁
basis set, matching large-core ECPs reducing the computational effort and the conventionally adapted D4
dispersion correction. We show that the vDZP basis exhibits qualitative advantages over usual double-𝜁 basis

65



Appendix C Appendix: 𝝎B97X-3c: A Composite Range-Separated Hybrid DFT Method with a
Molecule-Optimized Polarized Valence Double-𝜻 Basis Set

sets as it is virtually free of BSSE and describes typical electron densities very similar to TZ or even large
QZ basis sets. Small remaining BSSE contributions are absorbed by the D4 parameterization.

𝜔B97X-3c clearly outperforms the commonly used dispersion-corrected B3LYP functional in a large
basis set at a small fraction of the computational cost. Furthermore, r2SCAN-3c as its direct predecessor
and B97M-V as one of the leading m-GGAs are beaten by 𝜔B97X-3c in most cases. 𝜔B97X-3c can often
even keep up with the parent functional 𝜔B97X-V/D4 evaluated in an almost converged QZ basis set. This
conclusion is based on a huge variety of thermochemistry and geometry benchmark sets, with which we
thoroughly investigated the behavior of 𝜔B97X-3c. At this point, we highlight that in all comparisons, only
well-performing state-of-the-art DFT methods were utilized in addition to the commonly used B3LYP-D4,
which further underlines the high performance of the presented method. We especially suggest 𝜔B97X-3c as
an ideal method for investigating the thermochemistry of supramolecular complexes, especially if 1) a higher
accuracy than with (m)-GGA methods is desired or electronic over-delocalization prevents (semi-)local DFT
methods from SCF convergence, or 2) wall time and/or memory restrictions make the use of (hybrid) DFT
methods together with larger basis sets impossible. In addition, the efficient study of barrier heights and
reaction energies (especially for large systems) is a particular strength of 𝜔B97X-3c. The quality of, e.g.,
molecular properties and excited state chemistry with 𝜔B97X-3c for possible further applications is to be
investigated in future studies.

Moreover, a new parameterization of the D4 dispersion correction for the replacement of VV10 in 𝜔B97X-V
was presented. We show that it is superior to the originally used VV10 variant in most cases and reduces the
WTMAD-2 of GMTKN55 by 0.6 kcal⋅mol−1 compared to a previous D4 parameterization. To our knowledge,
𝜔B97X-D4 is the second-best-performing hybrid DFA of all DFT methods ever tested on the GMTKN55
data set.

C.7 Data Availability

The data that supports the findings of this study are available within the article and its supplementary material.
Any further information is available upon request from the authors.

C.8 Supplementary Material

In the supplementary material, which is available free of charge, we provide another example of an electron
density with the vDZP basis set and further investigations on the influence of ECPs on the BSSE, additional
information on the statistical descriptors used throughout, error plots for NCI benchmark sets L7, R160x6,
and CHAL336, tabulated statistical data and additional explanations to the non-covalent molecular geometry
benchmark sets (S66x8 and HB300SPX), the vDZP basis set and matching ECPs in tabulated form, detailed
information on the usage of the dftd4 stand-alone program with the appropriate parameters and a reference
input and total energy output (ORCA 5.0.3) for a molecular example. Moreover, we include a spreadsheet
(benchmarkdata_wB97X-3c.ods) with raw data for all given benchmark sets. The vDZP basis set (including
the ECPs) is also provided in text file format for ORCA and TURBOMOLE within the vDZP_basis.zip

archive.
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Figure D.1: Cover image for volume 158, issue 12, of the Journal of Chemical Physics.

D.1 Abstract

Existing semi-empirical molecular orbital methods suffer from the usually minimal atomic orbital (AO) basis
set used to simplify the calculations. Here, a completely new and consistently parameterized tight-binding
electronic structure Hamiltonian evaluated in a deeply contracted, properly polarized valence double-𝜁
(vDZP) is described. The inner-shell electrons are accounted for by standard, large-core effective potentials
and approximations to them. The primary target of this so-called PTB method is to reproduce the one-particle
density matrix P of a molecular 𝜔B97X-V range-separated hybrid density functional theory (DFT) calculation
in exactly the same basis set. Additional properties considered are orbital energies, dipole polarizabilities
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as well as dipole moment and dipole polarizability derivatives. Key features of the method are a) non-self-
consistency with an overall fixed number of only three required matrix diagonalizations, b) only AO overlap
integrals are needed to construct the effective Hamiltonian matrix, c) new P-dependent terms emulating
non-local exchange are included, and d) only element-specific empirical parameters (about 50 per element)
need to be determined. The method globally achieves high accuracy for the target properties at a speed-up
compared to the 𝜔B97X-V/vDZP reference of about 3-4 orders of magnitude. It performs robustly for difficult
transition metal complexes, highly-charged or zwitterionic systems as well as for chemically unusual bonding
situations indicating a generally robust approximation of the (self-consistent) Kohn-Sham potential. As an
example application, the vibrational Raman spectrum of an entire protein with 327 atoms with respect to the
DFT reference calculation is shown. The method may be used out-of-the-box to generate molecular/atomic
features for machine learning applications or as the basis for accurate high-speed DFT methods.

D.2 Introduction

Quantum chemistry-based electronic structure calculations are currently dominated by KS-DFT126 for system
sizes up to a few hundred atoms. For larger systems with 500-1000 or more atoms,289,378 or for screening of
many thousand candidate structures in automatic chemical space exploration workflows,164,171,323 however,
even simplified DFT schemes such as “3c” composite or related methods153,213,214 become computationally
unfeasible. This is one of the reasons why SQM methods72,379,380 are currently experiencing a renaissance
in the community, both regarding the development of improved methods or in large-scale application stud-
ies.381–384 SQM methods provide a well-known alternative route because they are at least two orders of
magnitude faster than conventional DFT treatments. They approximate single-reference HF or first-principles
DFT and have been investigated extensively already about 3-4 decades ago.72

Along the lines of the development of the so-called density functional (DF) TB methods pioneered by
Seifert, Elstner, and Frauenheim,267,268,385–388 we have contributed to the field with the GFN𝑛-xTB family
of methods.189,259,277–279 They are rooted in DFTB theory but were developed consistently from the very
beginning for all elements up to 𝑍 = 86 (radon) and secondly, with a focus on the primary target properties
Geometries, Frequencies, and Non-covalent interactions (GFN). In particular, the latest GFN2-xTB method
including multipole electrostatics as well as density-dependent dispersion terms has found widespread use
and is routinely used worldwide in various applications.323,389–393

Despite the success of SQM methods also in combination with modern ML approaches,394–397 there are
important challenges ahead regarding the further development of this energy-efficient technology. The most
serious issue is the inherently limited accuracy of SQM methods for chemically important properties, namely
conformational energies,278,368 standard thermochemistry, or for electronically difficult systems like transition
metals for which DFT accuracy is far away.398 Furthermore, molecular properties that are sensitive to details
of the electronic wavefunction like IR intensities are notoriously inaccurate.314 The same is true for Raman
activities, for which SQM approaches399,400 are rarely used as they have not yet been accurate and broadly
applicable enough for routine application.

One of the fundamental reasons for the mentioned SQM problems (besides the typical integral approx-
imations applied very differently in the various methods) is in our opinion the use of mostly minimal,
atom-centered AO basis functions. Although third- and higher-row elements in DFTB and GFN-xTB include
d-functions, the most important ”core” elements HCNOF lack such polarization AOs and in fact, the typically
considered valence shells are minimally described. For good reasons, this somewhat non-physical description
of electronic structure was abandoned already decades ago for HFs and DFT treatments. The current view is
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that reasonable mean-field calculations should employ at least properly polarized valence double-𝜁 (vDZP)
type basis sets consisting of two valence shells for each occupied one in the atomic ground state. This is
not fulfilled by any current SQM method. However, the reasoning for a minimal AO representation in SQM
is clearly two-fold: first, it speeds up integral and in particular matrix diagonalization steps, and secondly,
often overlooked, it avoids numerically large and complicated one-center matrix elements of the Hamiltonian
between AOs of the same angular momentum in a vDZP basis.

Very recently we designed and optimized a completely new vDZP basis set for all elements Z=1-86
including the lanthanides with the goal to use it also for an extended basis set TB method.1 The basic
idea is to avoid the matrix diagonalization bottleneck that appears in many low-cost electronic structure
methods (including DFT for system sizes of 5000-10000 atoms) by constructing a compact (medium-sized),
but inherently accurate AO basis set. This was achieved by a) relative deep contraction (a large number
of Gaussian primitive functions per AOs) and b) full optimization of primitive exponents and contraction
coefficients with respect to DFT (𝜔B97X-D3356) energies of representative neutral and charged atoms and
molecules of the respective element. This new vDZP basis set performs universally well for thermochemistry
and non-covalent interactions and provides small basis set superposition and incompleteness errors with
triple-𝜁 or even quadruple-𝜁 quality. It represents a fundamental ingredient for the here described method
and is used in unmodified form, see Ref. [1] for more discussion and details.

The vDZP basis combined with large-core effective potentials (ECPs) from the literature (ECP-xx-
MWB,140,141,349,350,352,354 ECP-10-MDF,137 CRENBL,144,347,348,351 SBKJC-ECP,353) the adjusted D4 dis-
persion correction,120 and the 𝜔B97X-V RSH density functional103 [without the -V (VV10125) dispersion
part] was used in Ref. [401] to create a composite DFT method dubbed 𝜔B97X-3c as a new RSH member of
the “3c” family. Comparisons of results with self-consistent vs. non-self-consistent implementations of the
VV10 dispersion correction have shown that its influence on the electron density is practically negligible113

and hence, the dispersion uncorrected part of 𝜔B97X-V is used as the base functional here.
For a wide range of benchmark sets, 𝜔B97X-3c provides thermochemical results closely approaching

the accuracy of the best density functionals available evaluated in much larger AO basis sets. As an RSH
functional, 𝜔B97X-3c is practically free of SIE-related problems like vanishing orbital energy gap, artificial
CT, or charge/spin over-delocalization. It seems to be the ideal choice as a reference method for developing a
new TB method evaluated in the large vDZP basis, even though other DFT functionals could in principle also
be used for this purpose.

Opposed to many older SQM approaches which try to approximate HFs or DFT results rather “globally”
for almost all chemical properties and systems, but in the spirit of the special purpose GFN methods, the
approach proposed here aims primarily at reproducing a fully SCF converged 𝜔B97X-3c one-particle density
matrix P as efficiently as possible. Instead of the usual QC procedure of first developing an approximate
energy expression and then deriving the corresponding electronic potential from it, we turn this procedure
around and describe here first an approximate potential and consider suitable energy expressions in further
work. Additionally, an approximate response treatment is introduced to compute the dipole polarizability and
by numerical differentiation Raman intensities. Calculation of first-order properties like dipole or quadrupole
moments including numerical derivatives, e.g., for computation of IR intensities is straightforward.

After the presentation of the PTB theory in the following chapter, Sec. D.3.6 and D.3.7 describe the
determination of the empirical parameters and the compilation of the fit sets. In Sec. D.4, the results for
chemically relevant properties derived from P like atomic charges, shell populations, bond orders, dipole
moments, and dipole polarizabilities are evaluated with reference to the corresponding 𝜔B97X-3c data.
Because this can not be shown comprehensively for the 72 elements which have been parameterized so far
(86 minus the 14 excluded lanthanoids, see below), results for selected elements including some difficult and
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unusual molecules are shown.

D.3 Theory

The method, termed PTB from now on and described below in full detail, has the following characteristics:

• A full self-consistent field (SCF) treatment is avoided and the target DFT reference density matrix
is obtained in just two matrix diagonalization steps starting from semi-classically obtained atomic
charges. A third diagonalization is required for a shell-wise population analysis which forms the basis
of the electrostatic treatment.

• The number of empirical parameters is kept to a minimum by entirely avoiding pair-specific potentials.
Depending on the number of shells for an element in the vDZP basis, the number of empirical
parameters varies between 35 (H, He) over 49 (main group) to 63 (d-block). The main reason for the
greater number of element-specific parameters compared to existing SQM schemes is the larger AO
basis set.

• The method is applicable to diverse chemical systems composed of elements from different corners
of the periodic table and ranging from organic molecules to inorganic main group compounds and
(transition) metal complexes. Electronically degenerate (multi-configurational) situations are handled
by a finite electronic temperature approach as in GFN𝑛-xTB, which allows a qualitatively correct
description of poly-radicals or dissociation processes in a spin-restricted manner.

That one can mimic the result of an ordinary SCF procedure by a simple two-step diagonalization scheme
even for electronically rather difficult cases like transition metal complexes seems hard to believe but is actually
possible as will be shown below. Besides the usefulness of PTB in practice, this finding is theoretically the
most important result of this work. It demonstrates that the separation of energy and potential in electronic
structure theory may be beneficial in QC method development. In this sense, our basic ansatz is related to
recent work by a Sim/Burke collaboration which separates the error from approximate density functionals
like PBE into a (small) functional and larger density (potential) driven error leading to new methods termed
density-corrected (DC) DFT.315 Along these lines, energy expressions for PTB will be developed that are
published separately in the near future.

Turning the argumentation around, it could be the case that traditional SQM with SCF is only possible in a
minimal basis set with little flexibility so that errors in the potential can not destructively be amplified during
the SCF leading overall to rather stable results. We think that extended basis set SQM methods with SCF are
extremely difficult to establish because the variational freedom is already in a vDZP basis quite large and
hence our non-SCF approach is without alternative at this point. For a recent, not fully satisfactory non-SCF
attempt in the GFN framework termed GFN0-xTB, see Ref. [279].

The general workflow of a PTB calculation is schematically shown in Fig. D.2 and discussed in detail in
the next sections.

D.3.1 The PTB Model Hamiltonian

Here we present details of the new QM model Hamiltonian termed PTB in the following. Its purpose is to
provide a reasonably accurate density matrix P from which atomic charges 𝑞𝐴, orbital shell populations 𝑝𝑙

𝐴,
and Wiberg bond orders 𝐵𝑂𝐴𝐵 are obtained (see Sec. D.3.2) (𝐴 refers to atoms or chemical elements, 𝑙 to an
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Figure D.2: Schematic representation of the non-self-consistent PTB workflow.

AO shell (1𝑠, 2𝑠, 2𝑝, ...), 𝑙𝑎 to its angular momentum (𝑠, 𝑝, 𝑑, ...), and 𝐴𝐵 denotes an atom pair). Moreover,
as already noted, derived properties like dipole moments, static dipole polarizabilities, and their geometric
derivatives are of interest.

Opposed to most existing semi-empirical methods, it is defined in an extended, standard polarized valence
(ECP) double-𝜁 Gaussian AO basis of [2s1p]/[2s2p1d] quality (vDZP) in the common notation for (non-
metallic) first- and second-row elements. This basis set, dubbed vDZP, was presented with our new “3c”
method, 𝜔B97X-3c (see Ref. [1]), and detailed explanations, as well as quality checks, are given there. Since
𝜔B97X-3c is evaluated in exactly the same basis set, it is the natural choice for the reference method.

Importantly, due to the use of QC as a basis for the computation of key quantities {𝑞, 𝑝, 𝐵𝑂}, artificial CT
effects present in alternative semi-classical electronegativity equilibration (EEQ) models120,402–404 to compute
such quantities are completely avoided because discrete states are involved (integer-derivative-discontinuity
conditions are obeyed).

More specifically, we diagonalize an effective Hamiltonian Heff in the above basis set twice

HeffC = SC𝝐 (D.1)

to obtain the orbital coefficients C and density matrix P from the occupied states (including Fermi smearing
at finite electronic temperature 𝑇 = 300 K). Before the first diagonalization, the 𝑞𝐴 are initialized with values
from the EEQ model utilized in the D4 dispersion correction, while the values obtained from the first step are
employed in the subsequent diagonalization (two-step SCF as in Ref. [324]). This procedure is robust, and
efficient and accounts for the most crucial polarization effects but avoids SCF convergence problems.

The matrix elements of Heff can be separated into contributions of extended Hückel theory (EHT) type
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𝐻0
𝜅𝜆 and in isotropic electrostatic (IES) contributions which include terms of second and third-order (TO)

in electron density fluctuations 𝛿𝜌. We also include a term akin to one in DFT+U theory.405 The general
expression for the effective Hamiltonian reads

⟨𝜓𝜅|𝐻eff
𝜅𝜆|𝜓𝜆⟩ = ⟨𝜓𝜅|𝐻0

𝜅𝜆|𝜓𝜆⟩ + ⟨𝜓𝜅|𝐻IES+U+TO
𝜅𝜆 |𝜓𝜆⟩ with (𝜅 ∈ 𝑙(𝐴), 𝜆 ∈ 𝑙′(𝐵)) . (D.2)

where 𝜅, 𝜆 are basis functions and 𝑙, 𝑙′ denote atomic shells (𝑙 = 1𝑠, 2𝑠, 2𝑝, ...) of atoms 𝐴 and 𝐵, respectively.
The 𝐻0 matrix elements contain parameterized valence orbital energy levels (related to eigenstates of the
free atom in a zeroth-order approximation in DFTB) which depend in a complicated way on the coordination
number CN𝐴, the interatomic distances 𝑅𝐴𝐵, and the type of orbital interaction (inter- or intra-shell). An
EHT-type expression is also invoked for approximating the off-diagonal matrix elements. Furthermore, an
approximation for the ECPs is included in 𝐻0. 𝐻IES+U+TO adds dependencies on 𝑞𝐴 (shell- and element-wise)
in second and third-order and on the density matrix P for the “+U” contribution. “+U” is a technique
traditionally applied to treat electron over-delocalization in LDA or GGA DFT by a distinction of “localized”
and “delocalized” electrons, realized by a dependence on the orbital occupation.406,407 The setup of 𝐻eff and
explicit expressions are given in subsections D.3.3 and D.3.4. In the following, quantities of type 𝑘𝑙

𝐴 denote
shell-specific and 𝑘𝐴 element-specific empirical (fit) parameters. Global fit parameters do not have any of
these indices. A list of all empirical parameters, including a brief description of each, can be found in Tab. 1
in the Supporting Information (SI).

D.3.2 Population Analysis

For the setup of 𝐻 in the second iteration as well as for evaluation of the final density matrix, an appropriate
population analysis is required, with which atomic charges 𝑞𝐴 and orbital shell populations 𝑝𝑙

𝐴 are obtained.
For this purpose, we have – depending on the AO basis set and field of application – good experience with
the well-known Mulliken or Löwdin schemes.

Given this general application, we propose a mixed approach for the transformation of the density matrix P
expressed in the non-orthogonal AO basis to the orthogonal form P𝑚𝑖𝑥 for population analysis according to

Pmix = S𝑥PS1−𝑥, (D.3)

where 𝑥 = 1
3 . Here, 𝑥 = 0 corresponds to the pure Mulliken partitioning, while 𝑥 = 1

2 yields the Löwdin
approach. The chosen average combines the best properties of each method. Still, it avoids their pitfalls, i.e.,
unphysical (negative) shell populations with Mulliken or too strong covalency with the Löwdin scheme. The
atomic shell charges used to compute the important second-order electrostatic interactions (see Sec. D.3.4)
are obtained from Pmix as follows, i.e.,

𝑝𝐴,𝑙 =
AO
∑
𝑖∈𝑙

𝑃mix
𝑖𝑖 , (D.4)

and
𝑞𝐴,𝑙 = 𝑝ref

𝐴,𝑙 − 𝑝𝐴,𝑙, (D.5)

where 𝑝ref
𝐴,𝑙 is a reference shell population of the neutral atom in its ground state, and 𝑝𝐴,𝑙 is the actual PTB

shell population. The 𝑝ref
𝐴,𝑙 values are obtained as an average from 𝜔B97X-3c data for the molecules in the fit

set where the shell populations are normalized by the total atomic charge to those of a neutral atom and are
obtained with the same mixed Mulliken-Löwdin scheme as in Eq. D.3. Atomic charges are obtained as usual
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from
𝑞𝐴 = 𝑍𝐴 −

AO
∑
𝑖∈𝐴

𝑃mix
𝑖𝑖 . (D.6)

D.3.3 H0 Matrix

The two-center matrix elements of 𝐻0 are given by:

𝐻0
𝜅𝐴𝜆𝐵

= 1
2(𝑘𝑙𝑎

𝐴 + 𝑘𝑙𝑎
𝐵 )𝑆𝑆𝐻0

𝜅𝜆 (𝐻𝜅 + 𝐻𝜆) (1 − (𝐻𝜅 − 𝐻𝜆
𝐻𝜅 + 𝐻𝜆

)
2

𝑘pol) (1 +
(𝑘𝑟,𝐴 + 𝑘𝑟,𝐵) 𝑋

𝑅𝐴𝐵
) + 𝑉ECP

𝜅𝜆 + 𝑉XC
𝜅𝜆

with 𝑋 =
⎧{
⎨{⎩

𝑘it,𝑟, if 𝑛it = 1,
1, if 𝑛it = 2,

and (𝐴 ≠ 𝐵, 𝜅 ∈ 𝑙(𝐴), 𝜆 ∈ 𝑙′(𝐵), 𝑛 ∈ {1, 2}) , (D.7)

where 𝑘pol is a scaling factor that takes large differences in the atomic energy levels 𝐻𝜅 into account, 𝑘𝑙𝑎
𝐴 is

the so-called Wolfsberg parameter in EHT and 𝑘𝑟,𝐴 scales an additional interatomic distance dependence
𝑅𝐴𝐵 of the H0 elements. The distance dependence is scaled by the global parameter 𝑘it,𝑟 in the first iteration
to account for the slightly changed setup of H in the second iteration. These contributions are multiplied with
overlap matrix elements 𝑆𝑆𝐻0

𝜅𝜆 calculated with modified basis set exponents, the origin of which is explained
in detail in Sec. D.3.3. 𝑉ECP is an approximation for the ECP in 𝜔B97X-3c. The one-center off-diagonal
elements of 𝐻0 are defined as follows:

𝐻0
𝜅𝐴𝜆𝐴

= 𝑆𝑆𝐻0
𝜅𝜆 (𝐻𝜅 + 𝐻𝜆) 𝑋 + (𝑆𝑆𝐻0

𝜅𝜆 )
2

(𝐻𝜅 + 𝐻𝜆) 𝑘ocod,𝐴𝑋 + 𝑉ECP
𝜅𝜆 + 𝑉XC

𝜅𝜆

with 𝑋 =
⎧{
⎨{⎩

𝑘𝑙𝑎
𝑠,𝐴 ⋅ 𝑘it,ocod, if 𝑛it = 1,

𝑘𝑙𝑎
𝑠,𝐴, if 𝑛it = 2.

and (𝜅 ∈ 𝑙(𝐴), 𝜆 ∈ 𝑙′(𝐵)) . (D.8)

In both parts, a parameter taking a different behavior for the first iteration into account is incorporated (“𝑋”).
The diagonal elements of H0 are given by

𝐻0
𝜅𝐴𝜅𝐴

= 𝑆𝑆𝐻0
𝜅𝜅 (𝐻𝜅 + 𝐻𝜅) + 𝑉ECP

𝜅𝜅 + 𝑉XC
𝜅𝜅 with (𝜅 ∈ 𝑙(𝐴)) . (D.9)

The atomic energy levels 𝐻𝜅 are based on an empirical parameter 𝐻 𝑙
𝐴 and are defined as follows

𝐻𝜅 = 𝐻 𝑙
𝐴 + 𝑘𝑙

𝐻,𝐴 (CN𝐴 + CN′
𝐴𝑘CN′,𝐴) + CN′

𝐴𝑘shift,𝐴 with (𝜅 ∈ 𝑙(𝐴)) , (D.10)

including dependencies on two different CN measures which are parameterized by 𝑘𝑙
𝐻,𝐴, 𝑘CN′,𝐴 and 𝑘shift,𝐴.

The CNs117 CN𝐴 and CN′
𝐴 are given by

CN(′)
𝐴 = 1

2

𝑁𝑎𝑡𝑜𝑚𝑠

∑
𝐵≠𝐴

(1 + 𝑒𝑟𝑓 (𝑘CN
erf

𝑅𝐴𝐵 − 𝑅cov
𝐴𝐵

𝑅cov
𝐴𝐵

)) with
⎧{
⎨{⎩

𝑅cov
𝐴𝐵 = 𝑟𝑓 ,𝐴 + 𝑟𝑓 ,𝐵 if CN𝐴,

𝑅cov
𝐴𝐵 = 4

3 (𝑟′
𝐴 + 𝑟′

𝐵) if CN′
𝐴,

(D.11)

where 𝑟′ indicates standard covalent radii117 and 𝑟𝑓 are specially fitted element-specific radii. 𝑘CN
erf controls

the steepness of the error function that is used for “counting” nearest neighbors. During the development
of PTB, it turned out that the use of two different CNs with different (separable) radii includes important
information about the second atomic coordination sphere.
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Approximation for Fock Exchange

As an efficient approximation to the “exact” Fock exchange included in the RSH functional, a non-local term
akin to those taken for simple ECPs (see below) is included

𝑉XC
𝜅𝜆 = ∑

𝜌
𝑆𝑆XC𝜅𝜌 (𝐻𝜅

𝑝𝐴,𝑙
𝑚𝑙𝑎

𝑎XC) 𝑆𝑆XC
𝜌𝜆

with
⎧{
⎨{⎩

𝑎XC = 𝑘XC1,𝐴 if 𝑛𝑖𝑡𝑒𝑟 = 1,
𝑎XC = 𝑘𝑙

XC2,𝐴 if 𝑛𝑖𝑡𝑒𝑟 = 2,
and (𝜅 ∈ 𝑙(𝐴), 𝜆 ∈ 𝑙′(𝐵), 𝜌 ∈ 𝑙′′(𝐶)) , (D.12)

in which 𝑚𝑙𝑎 corresponds to the degeneracy [𝑠 → 1, 𝑝 → 3, 𝑑 → 5, ...] of shell 𝑙 to normalize the shell
occupation 𝑝𝐴,𝑙. Similar to H0 itself, a modified overlap matrix is used (see Sec. D.3.3). Shell-resolved
occupations in the first iteration are determined according to Eq. D.17. In iteration two, a shell-dependent
parameter is utilized as actual shell-resolved charges from the first step are available.

Modified Overlap Integrals

In order to make some terms in the Hamiltonian spatially flexible but still obey the symmetries in the system,
modified overlap integrals are introduced. The basic idea is to scale the Gaussian exponents 𝛼𝜅,0 of the
primitive basis function 𝜅 by 𝑘𝑙

𝛼𝐻0,𝐴
in the standard calculation of a modified overlap matrix SSH0 used in H0,

and by 𝑘𝑙
𝛼,XC for the overlap matrix SSXC used for the approximated exchange potential VXC. Furthermore,

the scaling factor for the overlap matrix employed in the setup of H0 is modified in dependency of the shell
charge 𝑞𝐴,𝑙 together with an empirical parameter 𝑘𝑆0

it,𝐴 in the second iteration.

𝛼𝐻0
𝜅 = 𝛼𝜅,0𝑘𝑙

𝛼𝐻0,𝐴
⋅ 𝑋,

with 𝑋 =
⎧{
⎨{⎩

1, if 𝑛it = 1,
𝑘𝑆0

it,𝐴 ⋅ 𝑞𝐴,𝑙, if 𝑛it = 2.
and (𝜅 ∈ 𝑙(𝐴)) , (D.13)

𝛼𝑉XC
𝜅 = 𝛼𝜅,0𝑘𝑙

𝛼XC,𝐴, with (𝜅 ∈ 𝑙(𝐴)) . (D.14)

The basis functions with scaled exponents are normalized as usual.

Approximation for Effective Core Potential

The approximation for the ECP of the inner (not included) electron shells is taken from Ref. [326] (see also
Ref. [138, 408]) and reads

𝑉ECP
𝜅𝜆 =

𝑙core

∑
𝜇

𝑆𝜅𝜇 (𝜖core
𝐶,𝜇𝑘𝜖

ECP,𝐶) 𝑆𝜇𝜆 with (𝜇 ∈ 𝑙core (𝐶) , 𝜅 ∈ 𝑙val(𝐴), 𝜆 ∈ 𝑙′val(𝐵)) (D.15)

where 𝜖core
𝜇 represents a Hartree-Fock orbital eigenvalue of “core”-shell 𝜇 of atom 𝐶 (here, 𝐶 denotes a core

AO index, not a carbon atom). 𝑘𝑒
ECP,𝐶 scales this orbital energy, respectively, the resulting contribution by

𝑉ECP
𝜅𝜆 . As core orbitals, single-𝜁 STO-6G expansions from Stewart145 using Clementi’s STO exponents409,410

are taken.
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D.3.4 Electrostatic Potential and Third-Order Contributions

In the following, an empirically weighted average of the Ohno-Klopman- and Mataga-Nishimoto-damped
Coulomb interaction 𝛾𝐴𝐵,𝑙𝑙′ is used, for which only the prefactors 𝑎OK and 𝑎MN are fitted:

𝛾𝐴𝐵,𝑙𝑙′ = 𝑎OK

√𝑅𝐴𝐵
2 + ( 2

𝜂𝑙
𝐴

−1+𝜂𝑙′
𝐵

−1 )
−2

+ 𝑎MN

𝑅𝐴𝐵 + ( 2

𝜂𝑙
𝐴

−1+𝜂𝑙′
𝐵

−1 )
−1

with (𝑙(𝐴), 𝑙′(𝐵) and 𝑎MN + 𝑎OK = 1) . (D.16)

Instead of an arithmetic average, harmonically averaged chemical hardness parameters 𝜂𝑙
𝐴 are employed.

According to our experience (and in agreement with the common view), other than arithmetic atomic averages
(so-called combination rules) are almost always preferred and the harmonic one is taken as a usual fall-back
when potentially negative quantities are involved. 𝛾 enters the electrostatic part of the Hamiltonian as given
in detail below.

First Iteration

Initial guess atomic charges (𝑞EEQ) are determined by the semi-classical electronegativity equilibrium charge
model (EEQ) as implemented in the D4 dispersion correction method.120 It employs four parameters per
element ENEEQ

𝐴 , 𝜂EEQ
𝐴 , 𝜅EEQ

𝐴 and 𝑎EEQ
𝐴 (see Ref.120 for details). Here, they are modified by the scaling

parameters denoted 𝑘EEQ
EN,𝐴, 𝑘EEQ

𝜂,𝐴 , 𝑘EEQ
𝜅,𝐴 and 𝑘EEQ

𝑎,𝐴 . Shell charges result from a projection of the atomic EEQ
charges onto shells as follows

𝑞EEQ
𝐴,𝑙 = 𝑝ref

𝐴,𝑙
⎛⎜
⎝

1 −
𝑍eff

𝐴 − 𝑞EEQ
𝐴

𝑍eff
𝐴

⎞⎟
⎠

. (D.17)

In the first iteration, 𝐻IES
𝜅𝜆 is set up as follows

𝐻IES+TO
𝜅𝜆 = −𝑆𝜅𝜆(1

2 ∑
𝐶

∑
𝑙′′

(𝛾𝐴𝐶,𝑙𝑙′′ + 𝛾𝐵𝐶,𝑙′𝑙′′) 𝑞EEQ
𝐶,𝑙′′

+ ((𝑞EEQ
𝐴 )

2
𝑘TO,𝐴 + (𝑞EEQ

𝐵 )
2

𝑘TO,𝐵) )

with (𝜅 ∈ 𝑙(𝐴), 𝜆 ∈ 𝑙′(𝐵), 𝑙′′(𝐶)) . (D.18)

where 𝑘TO,𝐴 is an empirical parameter scaling the third-order contribution. For the damped Coulomb
interaction 𝛾𝐴𝐵,𝑙𝑙′ (see Eq. D.16), the prefactors 𝑎OK = 1.6 and 𝑎MN = −0.6 are used. The chemical hardness
values entering Eq. D.16 are defined as follows:

𝜂𝑙
𝐴 = 𝜂EEQ

𝐴 (1 + 0.25 ⋅ 𝑞EEQ
𝐴 ) 𝑘𝑙

1,A (D.19)

𝜂EEQ
𝐴 is the element-wise hardness parameter carried over from the original EEQ model that is scaled by 𝑘𝑙

1,A
(subscript 1 denotes the first iteration) and additionally depends on the atomic charge on atom 𝐴.

Second Iteration

HIES+TO+U contains in the second iteration contributions which can be attributed to 1) damped isotropic ES
(resolved shell-wise), 2) third-order contributions in which squared atomic charges enter (both analog to

77



Appendix D Appendix: A Non-Self-Consistent Tight-Binding Electronic Structure Potential in a Polarized
Double-𝜻 Basis Set for all spd-Block Elements up to Z=86

iteration one), and additionally 3) a term related to “DFT+U”,406,407 each of them using atomic and shell
charges 𝑞 and the density matrix P from the first iteration:

𝐻IES+TO+U
𝜅𝜆 = −𝑆𝜅𝜆(1

2 ∑
𝐶

∑
𝑙′′

(𝛾𝐴𝐶,𝑙𝑙′′ + 𝛾𝐵𝐶,𝑙′𝑙′′) 𝑞𝐶,𝑙′′

+ (𝑞2
𝐴𝑘TO,𝐴 + 𝑞2

𝐵𝑘TO,𝐵) ) + 𝑋𝑃𝜅𝜆 (𝑈𝜅 + 𝑈𝜆) 𝑈damp
𝐴𝐵 ,

with 𝑋 =
⎧{
⎨{⎩

𝑐𝑈d,A, if 𝜅 = 𝜆,
1, else.

and (𝜅 ∈ 𝑙(𝐴), 𝜆 ∈ 𝑙′(𝐵), 𝑙′′(𝐶)) . (D.20)

The diagonal elements of the “+U” contribution (i.e., 𝜅 = 𝜆) are scaled with an additional parameter 𝑐𝑈d,A.
The calculation of third-order contributions is equal to that described in Eq. D.18 for the first iteration. The
damped Coulomb interaction 𝛾𝐴𝐵,𝑙𝑙′ (see Eq. D.16) is calculated by using a purely Ohno-Klopman formula
(𝑎OK = 1.0 and 𝑎MN = 0.0) and chemical hardness values scaled with 𝑘𝑙

𝜂2,𝐴 as follows

𝜂𝑙
𝐴 = 𝜂EEQ

𝐴 𝑘𝑙
𝜂2,𝐴. (D.21)

𝑈𝜅 is defined as follows

𝑈𝜅 = 𝑐𝑙
𝑈eff,𝐴 (1 − (𝑐𝑈1,𝐴 ⋅ 𝑞𝐴 + 𝑐𝑈2,𝐴 ⋅ (𝑞𝐴)2)) with (𝜅 ∈ 𝑙(𝐴)) , (D.22)

where the element values are scaled with the atomic charge in first and second order with the empirical
parameters 𝑐𝑈1,𝐴 and 𝑐𝑈2,𝐴, respectively. Third-order corrections to 𝑈𝜅 proved to be not beneficial. The
“+U” contribution incorporates the following damping function which introduces a different behavior for
long-range interactions

𝑈damp
𝐴𝐵 = 1

2 (1 + 𝑒𝑟𝑓 (−1.8𝑅𝐴𝐵 − 𝐹𝐴𝐵
𝐹𝐴𝐵

)) . (D.23)

𝐹𝐴𝐵 corresponds to an empirically derived analog for the sum of the covalent radii of 𝐴 and 𝐵 and is given by
the following expression

𝐹𝐴𝐵 = 𝑎𝑟,𝐴 + (CN𝐴 − avCN [𝑍 (𝐴)]) 𝑎CN
𝑟,𝐴 + 𝑎𝑟,𝐵 + (CN𝐵 − avCN [𝑍 (𝐵)]) 𝑎CN

𝑟,𝐵. (D.24)

in which “avCN” denotes a “universal” average coordination number determined from the fit set of molecules
a priori. 𝑎𝑟,𝐴 and 𝑎CN

𝑟,𝐴 are an empirically determined atomic radius and a scaling factor for the dependency
on the coordination number of atom 𝐴, respectively.

Finally, the orbital energies from the second diagonalization are shifted to match the corresponding DFT
values according to

𝜖 = 𝜖0 (1 + 𝑔𝜖) + 𝑔𝜖0
(D.25)

where 𝑔𝜖 and 𝑔𝜖0
are empirical parameters. Since the values in the PTB effective Hamiltonian matrix have

only a loose relation to the corresponding ones in the converged DFT Fock matrix and are not fit target
quantities, the resulting orbital energies show systematic errors that have to be adjusted for further property
calculations. Note, that this has no effect on any of our target properties but is useful if the method is used,
e.g., for simplified TD-DFT calculations.411
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D.3.5 Response Approximation

In usual mean-field electronic structure methods that are solved self-consistently, the response of the wave
function to an external electric field is determined via solving the coupled-perturbed SCF equations or by
finite-field perturbation (static field-including SCF). Since this cannot be done exactly in PTB, an approximate
response of the wave function has to be developed. Similar to the procedure for P, a two-step finite electric
field procedure is used.

After adding the exactly calculated potential of a small finite external electric field to the effective Hamilto-
nian matrix of the finished PTB calculation, a new density matrix is obtained by diagonalization. Using the
updated shell and atomic populations (and ignoring all other changes in the Hamiltonian) and the perturbation
by the same external electric field, a second (new) effective Hamiltonian matrix is set up, which is constructed
in a similar way as in the second iteration of the usual PTB procedure. The distinct changes to the Hamiltonian
are explained in the following.

In the two-center part of the setup of H0, the parameters 𝑘res
𝐴 and 𝑘res

pol are used instead of 𝑘𝑙𝑎
𝐴 and 𝑘pol,

respectively, in the original formulation in Eq. D.7. Furthermore, the original overlap matrix S instead of the
scaled overlap matrix SSXC is used during the setup of VXC. This avoids the computation of an additional
overlap matrix and reduces empiricism in the method. The definition of HIES+TO+U contains a mixed field-
perturbed (𝛾) and field-free electrostatic potential (𝛾0), that is, the electrostatic potential resulting from the
updated atomic and shell charges enters partly, controlled by the pre-factor 𝑐res

𝑉ES:

𝐻IES+TO+U
𝜅𝜆 = −𝑆𝜅𝜆

⎛⎜
⎝

1
2 ∑

𝐶
∑
𝑙′′

[𝑐res
𝑉ES (𝛾𝐴𝐶,𝑙𝑙′′

+ 𝛾𝐵𝐶,𝑙′𝑙′′) 𝑞𝐶,𝑙′′ + (1 − 𝑐res
𝑉ES) (𝛾0

𝐴𝐶,𝑙𝑙′′ + 𝛾0
𝐵𝐶,𝑙′𝑙′′) 𝑞0

𝐶,𝑙′′]

+ ((𝑞𝐴)2 𝑘TO,𝐴 + (𝑞𝐵)2 𝑘TO,𝐵) ) + 𝑃𝜅𝜆 (𝑈res
𝜅 + 𝑈res

𝜆 ) 𝑈damp
𝐴𝐵

with (𝜅 ∈ 𝑙(𝐴), 𝜆 ∈ 𝑙′(𝐵), 𝑙′′(𝐶)) . (D.26)

Note that the superscripts in 𝛾0 and 𝑞0
𝐶 do not denote an exponent. The TO correction employs the updated

field-perturbed charges. The diagonal elements of the “+U” part are scaled by an additional parameter 𝑘res
𝑈eff,𝐴

in the response calculation.

𝑈res
𝜅 = 𝑘res

𝑈eff,𝐴𝑐𝑙
𝑈eff,𝐴 (1 − (𝑐𝑈1,𝐴 ⋅ 𝑞𝐴 + 𝑐𝑈2,𝐴 ⋅ 𝑞𝐴

2)) with (𝜅 ∈ 𝑙(𝐴)) . (D.27)

Further details of the calculation of the “DFT+U” part are the same as in Eq. D.22 and D.23. The damped
Coulomb interaction is set up equally to the second iteration, however, a weighted average of the Ohno-
Klopman- and Mataga-Nishimoto damping is applied (similar to the first iteration). Here, the prefactors
𝑎OK = 0.25 and 𝑎MN = 0.75 are used.

The effective Hamiltonian matrix set up in this way is diagonalized. From the resulting density matrix,
the dipole moments are computed as usual and used to derive the static dipole polarizability tensor 𝛼𝐼𝐽 by
numerical differentiation with respect to the field, where 𝐼𝐽 denotes the Cartesian axis. For details on the
computation of IR intensities and Raman activities from numerical first derivatives of the dipole moment and
the static dipole polarizability, see Sec. III-A of the SI.
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D.3.6 Choice and Composition of the Fit Sets

The molecule training sets were derived from the ones used for GFN1-xTB, GFN2-xTB, and GFN-FF but
significantly extended in the number of systems and their chemical diversity. Only closed-shell systems were
considered in the fit but we note in passing that PTB in its spin-restricted form together with Fermi-smearing
is applicable to any open-shell electronic configuration. The molecule size in the set is typically < 30 atoms
with only a few containing around 50 atoms. For the most important elements H, C, N, O (HCNO) which
were also used to determine the few global parameters, some larger molecules with about 100-150 atoms
were included. The number of reference molecules is typically about 100-150 per element leading to about
10000-20000 data points (4300 for He) of the considered fit properties (see below). The corresponding
numbers are considerably larger for HCNO (1200 systems, 145000 fit data points). In order to avoid parameter
interdependencies as much as possible, the HCNO set is rather “pure” with only a small subset of molecules
containing additionally the elements Li, Be, B, and F. For each element 𝑋, the corresponding fit set molecules
contain 𝑋 and mostly HCNO, and from the third row on, also the elements Li-B, F, and Na-Cl. This required
at the end of the fitting process a meta-iteration strategy, i.e., the iterative parameter optimization loops
successively over all elements.

The reference molecules are mostly neutral (70 %) but highly charged (up to +4/-4) systems are additionally
included to put the important description of the electrostatic energy on a solid data basis. They typically
refer to equilibrium structures obtained from DFT or GFN2-xTB calculations. However, many distorted
(non-equilibrium) geometries are included as well. The actual geometry used is of less importance here
because the DFT reference and PTB calculation employ exactly the same input structure, and basically we
demand that PTB reproduces the DFT result for any geometry. A special feature of the new element fit
sets compared to the ones used previously is that each includes about 5-15 so-called “mindless” molecules
(MLMs) which were constructed by optimizing a random ensemble of atoms to the next available energy
minimum301. The MLM generation procedure employs GFN𝑛-xTB/GFN-FF as underlying methods and
produces structures with very unusual bonding situations (see Fig. D.7 a) and b) in Sec. D.4.3) making the
method robustly working also for difficult electronic structures.

D.3.7 Parameter Fitting

The fit procedure is roughly the same as established previously for GFN1-xTB, GFN2-xTB, and GFN-FF. No
special ML techniques were applied. Instead, careful human supervision of the optimization process involving
chemical intuition and detailed on-the-fly cross-checks for physical reliability was involved. The model
parameters were determined by a minimization of the root mean square deviation (RMSD) between calculated
and reference data using three different algorithms depending on the degree of convergence, difficulty of the
element, and other details of the parameterization process. Mostly, and for all final parameter optimizations,
the Levenberg-Marquardt (LM) algorithm412 with line-search and numerical parameter gradients was utilized.
In the initial stages of the fit, a one-parameter-at-a-time optimization strategy was used to avoid the appearance
of non-physical parameter minima which sometimes occur with the LM algorithm in initial optimization
stages. As an alternative optimizer not requiring function value derivatives, the Powell355 algorithm was used
which is very robust and also recommended.

The global and element-wise parameters were simultaneously optimized for the elements HCNO. The
other parameters were optimized element-wise while keeping already existing parameters fixed. The fitting
for the entire periodic table was continued with the halogens and elements Na-S, after which elements were
treated in more or less canonical order (low 𝑍 first) while trying to minimize interdependencies. The 𝑑-block
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Table D.1: Description of the properties for the parameter fit with an approximate weighting of the RMSD for the
HCNO set.

property RMSD weight in %
shell population 15
bond order 3
dipole and second moment 10
polarizability 5
polarizability gradient 5
dipole moment gradient 29
kinetic energy 20
orbital energies 7
𝐸RPBE[𝑃PTB] − 𝐸RPBE[𝑃B97X−3c] 6

elements were considered after finalizing the main groups.
The properties from which the fit RMSD is derived and which define the targets of the method are given in

Tab. D.1. The column denoted by “weight” gives the percentage contribution to the RMSD for the HCNO
molecule set.

The choice of these properties and weights results from the goal of a globally well-balanced performance
regarding a large number of possible areas of application. Besides simple properties like shell populations
or bond orders which are directly related to P, also first-order properties like dipole moment or kinetic
energy are considered. The advantage of using these quantities instead of fitting P directly is that appropriate
weight is automatically placed on practically relevant properties. The inclusion of the derivatives in the fit is
mandatory to obtain reasonable IR or Raman spectral intensities. For subsequent use of the PTB density in
DFT energy expressions (not discussed here), it turned out to be beneficial to additionally include the total
energy difference evaluated with a standard GGA (here the RPBE316 functional) between the PTB density
matrix and one from a full 𝜔B97X-3c treatment (𝐸RPBE[𝑃PTB] − 𝐸RPBE[𝑃B97X−3c]) as a target quantity. This
quantity of course vanishes for a perfect fit, i.e., for 𝑃PTB = 𝑃B97X−3c.

D.3.8 Further Technical Details

All DFT reference calculations were conducted with TURBOMOLE 7.6294 and applying the semi-numerical
exchange approximation359,360 $senex keyword) for the RSH functional. Many test calculations and geometry
optimizations were performed on GFN𝑛-xTB and GFN-FF levels with the xtb code.259,413 The dipole and
polarizability reference data were obtained analytically with TURBOMOLE while they refer to a numerical
differentiation for PTB with an atomic displacement of 0.015 Bohr. The finite electric field perturbation step
was 0.001 a.u.

D.4 Results and Discussion

In the following, we prove the capability of PTB to describe the electronic and molecular target properties
robustly with an accuracy approaching state-of-the-art RSH DFT. The previously developed composite
method 𝜔B97X-3c evaluated in exactly the same basis set is considered as the reference throughout. Of
particular interest is whether PTB is able to capture important electronic effects visible at the RSH DFT level
and avoids typical pitfalls of lower-level methods (i.e., no artificial CT or charge over-delocalization).
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Figure D.3: Electronic and molecular properties for Ritonavir which was not part of the molecule training set. Values
(atomic units) with PTB vs. 𝜔B97X-3c are given for the KS kinetic energy 𝑇KS, the molecular dipole moment 𝜇, and
the static isotropic dipole polarizability 𝛼. For the atomic charges 𝑞, the shell populations 𝑝, and the bond orders, also
the RMSDs with respect to the reference are indicated in the legend.

Properties tested in this section are a) atomic charges and shell populations, b) bond orders (Sec. D.4.3),
c) KS kinetic energies (Sec. D.4.6), d) orbital energy gaps (Sec. D.4.7), e) dipole moments (Sec. D.4.4), f)
polarizabilities (Sec. D.4.5), and derivatives of the g) dipole moment (IR intensities) and h) polarizabilities
(Raman activities) with respect to the position of the nuclei (Sec. D.4.8).

Furthermore, we compare the performance on the fit set over the whole periodic table, i.e., the quality of
the results for the various elements (Sec. D.4.2) and also check the robustness on difficult and chemically
unusual systems to ensure transferability and physically sound behavior (Fig. D.6 and D.7 in Sec. D.4.3).

D.4.1 Molecular Properties of Ritonavir

As a rather typical example for the performance of PTB for organic molecules, we show here results for
various properties of ritonavir as a medium-sized drug compound (see Fig. D.3), which was not part of the
training set. The correlation plot shows impressively the coherence of atomic charges, shell populations,
and bond orders with the corresponding DFT values. Remarkably, no outlier is present, and virtually every
data point is on par with the reference. The KS kinetic energy 𝑇KS, the molecular dipole moment 𝜇, and
the static isotropic polarizability 𝛼 are similarly well described with deviations of mostly ≪ 10 %, which is
comparable to the variance between different common density functional results. Data for a broader range of
also more difficult systems will be shown in the following subsections.

D.4.2 Variation of PTB Performance Over the Periodic Table

In the spirit of the GFN methods259 that are parametrized for all elements up to 𝑍 = 86, we require also PTB
to behave robustly over the whole periodic table. Of particular interest is the question if the method can also
reproduce the more complicated electronic structure of, e.g., transition metal complexes or alkali oxides,
which are challenging with semiempirical methods.290,368

We show in Fig. D.4 the final RMSD of the parameter fit for each element in color-coded form relative
to the value for fluorine. Since the number of reference data points is similar for all elements except for
HCNO, this is a reasonable comparison. The parameters for the elements HCNO were fitted in one common
procedure on a noticeably larger data set and served as a starting point for the other elements. Therefore, the
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Figure D.4: Relative fit RMSD are given in color-coded form over the whole periodic table excluding lanthanides.
The RMSD of fluorine is set to unity. For HCNO, the RMSD is much smaller (about 0.3) and not indicated since
the parameters for these elements were obtained in one common initial fit for many more reference data and thus, a
comparison on the given scale is not reasonable.

relative RMSD is lower (about 0.3) and not comparable to that of other elements.
Unsurprisingly, light non-metallic main group elements show the lowest RMSD, with helium having the

smallest value. Similar low RMSDs were observed for boron and germanium. In groups 13-18, the RMSD
increases from the top left (boron, silicon, aluminum) to the bottom right corner (astatine, xenon, radon). On
the one hand, the more diffuse and polar electronic nature of heavier atoms in molecules makes it generally
more challenging for PTB to reproduce the DFT density matrix. On the other hand, the approximation for
ECPs employed in PTB (see Sec. D.3.3) may introduce a larger error than for lighter atoms. In addition,
versatile molecular systems as reference data points are more difficult to generate for (heavy) noble gas
elements, and hence, these sets contain many difficult cations and/or hyper-valent species. Still, it has to be
noted that the RMSD increases only by a factor of about 1.5 in comparison to second and third-row main
group elements. Coming from main group elements, a sharp cut is visible when going to groups 1-12. As
expected, 3d elements with a partly filled d-shell exhibit the largest RMSDs, being 2-3 times larger than that
of fluorine, which was set to 1. Alkali and alkaline earth metals rank between transition metals and main
group elements. Interestingly, the RMSDs of lithium and beryllium are close to those of main group elements
of comparable weight, indicating their partially non-metallic nature. Their stronger tendency to build defined
covalent bonds compared to heavier group 1 or 2 elements is probably beneficial for their description in a TB
theory.

Since the comprehensive visualization of results for all elements is not convenient, only data for the
elements HCNO, S, Pb, and Ti are shown explicitly in the following sections. Together with Fig. D.4, they
are representative of the entire periodic table.

D.4.3 Atomic Charges, Shell Populations, and Bond Orders

Since the target of PTB is to provide a single-particle density matrix that approximates the DFT reference as
close as possible, the natural choice of property to be checked is the atomic charge 𝑞. In Fig. D.5, this is done
together with shell populations 𝑝 and bond orders, as all of these properties are derived directly from the
density matrix. For HCNO about 110,000 and for S, Pb, and Ti, about 10,000-20,000 data points from the
respective fit sets are evaluated.

Remarkably, despite the sheer size of the data sets, only very few data points deviate from the 1:1 correlation
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Figure D.5: Atomic charges 𝑞, shell charges 𝑝, and Wiberg bond orders in atomic units calculated with PTB compared
to 𝜔B97X-3c for the examples HCNO, S, Pb, and Ti (see Sec. D.4.2). The data points were taken from all molecules in
the full training set for the respective element.

line for HCNO. This also holds true for strongly negative atomic charges close to −2 or very high shell
populations. Furthermore, the distributions in Fig. D.5 are consistent with the tendency for larger deviations
in the order HCNO < S < Pb < Ti that can be abstracted from Fig. D.4: While PTB yields results for S that
are very similar to HCNO, Pb, and in particular the deviations for Ti are more significant. However, it should
be noted that, except for rare cases with difficult electronic structures, qualitatively and in most cases even
quantitatively correct results are obtained even for Ti as one of the most challenging atom types.

The PTB method attempts to capture CT effects accurately as in RSH DFT and to overcome typical
limitations of GGA- or conventional TB-based methods. To assess the amount of artificial CT in PTB, we
investigated in Fig. D.6 the atomic charge of a chlorine atom for different distances to an imidazole unit in a
zwitterion pair. At very short distances < 2 Bohr, where some covalent bond character is present, the charge
should be partially delocalized over the complex, whereas at larger distances > 5 Bohr, it should completely
localize at chlorine. This is described correctly by 𝜔B97X-3c. With GGA methods like RPBE (here evaluated
in the same basis set), the charge localization in the dissociation limit is, as expected, not fulfilled due to SIE.
For larger distances, the corresponding SCF calculation does not even converge. In contrast, with GFN2-xTB
the charge is much too localized at intermediate and short distances, which we attribute to the minimal basis
set employed. PTB describes the situation correctly along the reaction coordinate and similarly to 𝜔B97X-3c
as it is able to capture both the charge delocalization at short distances and the charge localization in the
dissociation limit.
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Figure D.6: The calculated atomic charge on the chlorine atom as a function of the distance to the imidazole ring.
Besides PTB and 𝜔B97X-3c, also results with RPBE/vDZP and GFN2-xTB are presented.

Figure D.7: Atomic charges 𝑞 (italic letters) and Wiberg bond orders (black boxes) for selected atoms and covalent
bonds, respectively, calculated with 𝜔B97X-3c, PTB, and GFN2-xTB. Four molecules (not part of the molecule training
set) are investigated, two of which are so-called “mindless” molecules, while the other two are highly charged (anionic
and cationic) organic molecules.

85



Appendix D Appendix: A Non-Self-Consistent Tight-Binding Electronic Structure Potential in a Polarized
Double-𝜻 Basis Set for all spd-Block Elements up to Z=86

Highly parameterized methods belonging to the class of data science- or ML-driven methods, may suffer
from over-fitting or missing transferability to structures far away from the learned chemical space.414 We
tried to overcome this issue by a) employing only a limited number of empirical parameters, which always
represent physically motivated scaling factors in the Hamiltonian, and b) requiring PTB to give reasonable
results even for very unusual or “extreme” structures. The latter is exemplified here for four systems that were
not part of the fit set and represent extremely challenging test cases (see Fig. D.7). Two of them are so-called
MLMs, constructed semi-automatically (randomly, see Ref. [301]) and which are far from the usual chemical
space of known molecules. The only requirement for their use (also in the training set of molecules) is that
they have a finite HOMO-LUMO gap and proper SCF convergence with GFN2-xTB. The other two systems
are highly charged ionic structures. In Fig. D.7, atomic charges (italic letters) and bond orders (boxes) by
PTB are displayed, along with the GFN2-xTB values for comparison and the corresponding 𝜔B97X-3c result
for reference.

In system a), the atomic charges for the Al atom and for the Co2 atom as well as the bond order for the
Co1-Co2 interaction are given. While GFN2-xTB nevertheless delivers a qualitatively correct result for the
atomic charge of the Al atom, it predicts the incorrect charge sign for the Co2 atom. In both cases, PTB
provides results with ≪ 0.01 𝑒− variances being very close to the reference. The deviations for the bond
orders are somewhat larger but the values are still significantly closer to the reference than with GFN2-xTB.
For the other MLM b), the observations are similar: PTB yields atomic charges and bond orders very close
to the reference with a maximum deviation of 0.08 𝑒−, while GFN2-xTB shows larger variations but is still
qualitatively correct in most cases.

For c) (C4H4O4
4+), the deviations with PTB of up to 0.1 a.u. are slightly larger than in the previous

examples but still smaller than with GFN2-xTB. In particular, the atomic charge of the carbon atoms is
noticeably better reproduced by PTB than with GFN2-xTB. The description of the C3HN2O3

3− anion in
d) profits from the larger vDZP basis set in PTB. Therefore, charges and bond orders are, less surprisingly,
much more accurate than with GFN2-xTB. Interestingly and in agreement with the observations for the
imidazole-chlorine complex, GFN2-xTB overestimates charge separation as the displayed charge for one of
the oxygen atoms is much more negative than with the reference.

In addition to the zwitterion in Fig. D.6 and the very challenging and unusual systems in Fig. D.7, results
for a large test set of about 1,000 randomly chosen molecules from the PubChem database,415 which were
also not part of the fit set, are shown in Fig. S3 in the SI. The RMSDs of the discussed properties for this set
are below those of the fit set, indicating high transferability. For a more detailed discussion, see Sec. I-C of
the SI. Moreover, water hexamer clusters have been investigated in Sec. I-A of the SI.

The presented findings indicate that PTB is not restricted to a specific chemical space but can represent also
extremely complex systems that are far beyond typical application domains. Although electronic properties
were not the main target during the development of GFN2-xTB and it was not fitted to them, in passing it is
noted that the overall results by GFN2-xTB are nevertheless still acceptable.

D.4.4 Dipole Moments

In analogy to the results for charges, populations, and bond orders, the accuracy of dipole moments calculated
with PTB is depicted in correlation plots for the elements HCNO, S, Pb, and Ti in Fig. D.8. For HCNO,
about 1,700 data points (consisting of x, y, and z components of the dipole moments) from the fit set are
displayed, while several hundred data points are contained for the other elements. The conclusion from an
analysis of the results follows the key statements of section D.4.3 – almost no outliers are visible and the
overall accuracy is very high. Interestingly, the moments for Pb are similarly accurate as those of HCNO and
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Figure D.8: Dipole moment (𝑥, 𝑦, and 𝑧 component for each molecule) in atomic units calculated with PTB compared to
𝜔B97X-3c. The dashed line corresponds to a linear fit of the data points.

S, although the global fit RMSD was found to be higher. As expected, Ti shows the largest deviations. In
general, the discrepancies to the 𝜔B97X-3c reference are larger for dipole moments than for zeroth-order
properties like charges and populations, which is plausible since higher-order electric properties probe outer,
diffuse parts of the wave function that are particularly difficult to describe for approximated methods not
evaluated self-consistently.

Similar to the previous subsection, also for dipole moments, the transferability of the results has been
checked for a test set of about 1,000 random molecules from the PubChem database. Even though a very
small number of outliers (three, deviations of about 5 a.u.) were detected, the performance was still similar to
that for the fit sets. For details, see Sec. I-C of the SI.

D.4.5 Polarizabilities

While minimal AO basis sets (as in GFN2-xTB) enable the robust (though not very accurate) computation of
zeroth- or first-order properties (see Sec. D.4.3), they prevent reliable computation of higher-order properties
such as electric dipole polarizabilities, for which extended basis sets are required. Opposed to existing SQM
methods, PTB employs a significantly larger vDZP basis, which overcomes this limitation. Therefore, we
investigated in Fig. D.9 the accuracy of static isotropic polarizabilities 𝛼 with PTB for 369 small organic
molecules (see the SI for details on the test set). Over the entire range of values, the MAE is consistently
only about 1.5 a.u. corresponding to small relative deviations of typically 1-5 %. The good performance
for polarizabilities is particularly noteworthy because of the approximated wavefunction response in PTB.
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Figure D.9: Static isotropic polarizabilities 𝛼 calculated with PTB compared to 𝜔B97X-3c for 369 small to medium-
sized (< 50 atoms) organic molecules, which were not explicitly part of the fit set. The dashed line corresponds to a
linear fit of the data points.

Figure D.10: Relative deviations of the PTB KS kinetic energy 𝑇KS compared to 𝜔B97X-3c in %. Results for fit
set molecules of the elements HCNO, S, Pb, and Ti are given. Furthermore, the mean absolute deviations (MADs)
are indicated in the grey boxes. The relative deviations are represented by standard box plots, in which the box size
corresponds to the median 50 % of the data and the distance to the whiskers to 1.5 times the distance between the upper
and lower quartiles. Data points outside of the whiskers are labeled as outliers in form of thicker circles. All data points
are indicated by small scatter points.

Apparently, the additional two diagonalizations and the use of an adapted Hamiltonian matrix in the response
procedure (see Sec. D.3.5) are sufficient for the computation of accurate isotropic polarizabilities.

A further check for the accuracy of isotropic polarizabilities can be found in Sec. II of the SI for conjugated
alkenes. For all investigated chain lengths, PTB and reference values agree very well indicating the absence
of overpolarization effects in the PTB method. Comparison of 𝜔B97X-3c data to corresponding values for
𝜔B97X-D4 in a large augmented quadruple-𝜁 basis set are also shown, revealing basis set incompleteness
effects for this rather basis set-dependent property on the order of 10 %.

D.4.6 Kohn-Sham Kinetic Energies

Even though not of obvious importance in practical applications, the KS kinetic energy 𝑇KS as calculated
from the exact kinetic energy integrals and the density matrix, is a valuable descriptor for the quality of the
method. Since 𝑇KS (and its error) is proportional to the system size, we decided to show relative deviations
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Figure D.11: Orbital HOMO-LUMO gaps of typical small to medium-sized organic dyes with PTB compared to
𝜔B97X-3c in eV. For selected molecules, their (trivial) name is displayed in the plot. The dashed line corresponds to a
linear fit of the data points, while the grey-shaded area corresponds to the confidence interval at a level of 0.99.

in Fig. D.10, again for structures in the fit set of HCNO, S, Pb, and Ti. In addition, the absolute MAD with
respect to 𝜔B97X-3c data is given.

In general, Fig. D.10 underlines the observations for the previously discussed electronic properties. The
MAD increases when moving from HCNO and S to Pb and Ti. However, the relative mean absolute deviation
(relMAD) is similarly small for all four elements (0.33 % [HCNO] < relMAD < 0.49 % [Ti]). Thus, the
slightly larger absolute errors for Ti are still acceptable and consistent with the overall somewhat more
challenging description of the electronic nature of transition metals. Note that the much larger sample size
for HCNO (about 1,200) than for the other elements (100-300) and the inclusion also of very small systems
(with larger relative errors) lead to a larger number of so-called outliers in the boxplot.

Nevertheless, relMADs consistently below 1 % demonstrate clearly that PTB is capable of describing the
electronic structures of the molecules in the fit set accurately, also beyond the properties discussed so far.
Another sanity check for the robustness of KS kinetic energies computed with PTB is shown in Fig. S2 in the
SI, where 𝑇KS as a function of off all bond lengths of the molecule (i.e., the scaled cartesian coordinates) is
investigated with respect to the 𝜔B97X-3c reference.

D.4.7 Orbital Energy Gaps

Up to now, we have mostly looked into properties defined by the occupied orbitals in the density matrix P.
However, PTB aims also at providing robust orbitals and orbital energies in the virtual space for possible
application in approximate excited state methods such as sTDA-xTB.324 To this end, we compared orbital
HOMO-LUMO gaps of small to medium-sized organic dyes with PTB to the corresponding 𝜔B97X-3c
reference values in Fig. D.11.

The linear fit of the data points (yellow dashed line) reveals a slope that is too steep, i.e., smaller gap values
are slightly underestimated and correspondingly, larger gaps are overestimated. This observation may be
connected to the non-linear shift of the PTB orbital energies to match DFT orbital energies (see Eq. D.25).
Besides that, PTB provides accurate orbital energy gaps with a relMAD of about 7 % and an MAD of only
0.6 eV.

The correct representation of orbital energies and corresponding gaps indicates a physically sound behavior
also in the virtual space. The applicability of PTB for computation of, e.g., electronic spectra in the framework
of sTDA411 is part of current research in our lab.
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Figure D.12: Histogram with spectral match scores 𝑟match for IR spectra of 369 small organic molecules (see the SI for
details on the employed similarity measure and on the data set). 𝑟match = 1 corresponds to a perfect coherence, whereas
𝑟match = 0 indicates no coherence between the spectra. Vibrational frequencies and normal modes, respectively, were
taken from GFN2-xTB throughout, while the IR intensities were calculated with 𝜔B97X-3c (reference), GFN2-xTB,
PTB, and PBE81/def2-SVP139, denoted by “[method]@GFN2-xTB”. The IR spectra of 𝜔B97X-3c@GFN2-xTB type
were considered as the reference. Exemplary IR spectra are given for benzene (left, 𝑟full GFN2−xTB

match = 0.505) and
3-methoxy-propanenitrile (right, 𝑟full GFN2−xTB

match = 0.829). PBE/def2-SVP is omitted in the exemplary spectra since the
spectra would look virtually the same as with 𝜔B97X-3c. The vertical colored dashed lines display the respective mean
𝑟match score.

D.4.8 Infrared and Raman Spectra

As shown in earlier work, IR spectra computed with (semi)empirical methods such as GFN2-xTB (employing
the double harmonic approximation, see Ref. [416]) suffer mainly from errors in the intensities314. Since PTB
was shown to yield excellent electric dipole moments as well as static dipole polarizabilities (see Sec. D.4.4
and D.4.5), it is obvious to also investigate their derivatives with respect to vibrational normal modes to
obtain IR intensities and Raman activities. Given that there is currently no energy expression and hence no
Hessian available for PTB, we stick with the GFN2-xTB normal modes, which is also a reasonable approach
in practice.

In the following, we combine dipole moment- and dipole polarizability gradients with respect to nuclear
coordinates ( 𝜕𝜇

𝜕𝑅𝑥𝑦𝑧
and 𝜕𝛼

𝜕𝑅𝑥𝑦𝑧
) obtained from PTB with GFN2-xTB vibrational normal modes. The same

is done with corresponding gradients calculated with PBE81/def2-SVP139 and 𝜔B97X-3c to obtain spectra
based on DFT intensities for comparison and reference, respectively. In this way, we are only evaluating
IR intensities and Raman activities, but not the influence of the vibrational frequencies or normal modes.
The use of GFN2-xTB vibrational normal modes together with external intensities or activities is indicated
via the notation “[method]@GFN2-xTB”. Consequently, a simple “GFN2-xTB” notation indicates the use
of GFN2-xTB frequencies and intensities. The vibrational spectra derived in this way are quantitatively
compared by introducing a finite linewidth and applying a match score 𝑟match that is a similarity measure
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Figure D.13: IR spectra of 3-pentenenitrile and 1-nitrosopyrrolidine. The experimental gas phase spectra and spectra
calculated with 𝜔B97X-3c@GFN2-xTB, full GFN2-xTB, and PTB@GFN2-xTB are shown.

for two spectra (see also Ref. [314]), where 𝜔B97X-3c@GFN2-xTB spectra are considered as the reference.
Further details on the technical implementation, the generation of spectra with a finite linewidth, and the
employed similarity measure are provided in the SI.

For Fig. D.12, IR spectra of 369 organic molecules (see the SI for details on this test set) were investigated
in this way. The results are visualized in form of a histogram, in which the 𝑟match scores for the whole test
set are plotted for all three methods. 𝜔B97X-3c@GFN2-xTB spectra consequently correspond to 𝑟match = 1.
Moreover, two exemplary spectra are presented.

The histogram shows a fairly broad distribution of 𝑟match values when employing GFN2-xTB intensities,
which is in agreement with the mentioned observations in Ref. [314]. The example spectrum on the left,
which led to an 𝑟match score of about 0.5 for GFN2-xTB, illustrates this nicely: The relative intensities of a
low-lying mode below 1000 cm−1 and the C-H stretching vibration at ≈ 3000 cm−1 are far away from the
reference. PTB in contrast provides relative intensities that are very close to the DFT intensities and this is
furthermore indicated by the statistical distribution in the histogram. The lowest histogram entry is at about
𝑟match = 0.84, and a large majority of data points is ≫ 0.95. For comparison, we included also the respective
distribution for PBE/def2-SVP@GFN2-xTB, which is only marginally better than that of PTB@GFN2-xTB.
Thus, PTB yields accurate IR intensities with deviations from the 𝜔B97X-3c reference in the same order
as the difference between different DFT functionals. The second example spectrum with an 𝑟match value
for GFN2-xTB close to its average score also underlines this observation. The relative intensities of many
vibrational modes are well described by GFN2-xTB, but the deviation for two of the modes is still significant.
PTB, on the other hand, achieves overall quite accurate intensities also for this example.

In Fig. D.13, we also compare spectra calculated with the combined methods as explained above with
experimental gas-phase spectra to highlight the importance of the improved intensities by PTB compared to
GFN2-xTB for practical applications. The spectrum of 3-pentenenitrile on the left shows clearly that the
relative IR intensities with GFN2-xTB are qualitatively wrong for lower-lying scaffold vibrational modes
around 1000 to 1500 cm−1 and for the strongly overestimated intensity of the C≡N stretching mode at about
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Figure D.14: Histogram with match scores 𝑟match for Raman spectra (Raman activity per normal mode) of 369 small
organic molecules. See Fig. D.12 and the SI for details on the method notation, the employed similarity measure, and
the data set. The inlay shows the Raman spectrum of vancomycin (176 atoms, 𝑟PTB@GFN2−xTB

match = 0.988), which was
added to the set of 369 small organic molecules used for the histogram. Values below 0.9 were not present in the data
set. The vertical-colored dashed lines display the respective mean 𝑟match score.

2300 cm−1. The intensities provided by 𝜔B97X-3c are much closer to the experimental spectrum. This also
applies to PTB, which in most cases yields relative intensities that are virtually indistinguishable from the
DFT reference. A similar analysis results for the spectrum of 1-nitrosopyrrolidine, for which the intensities
of many lower-lying modes are distinctly too low with GFN2-xTB as well, while PTB provides intensities
very close to the DFT reference. The spectra show that the remaining deviations in the intensities compared
to experimental spectra are due to a) errors in the vibrational normal modes computed with GFN2-xTB that
also affect the intensities, b) errors resulting from the double harmonic approximation, or c) artifacts in the
experimental data, which cannot be accounted for with the applied theoretical approach (for a more in-depth
discussion on this, see Ref. [314]). Importantly, the insufficient accuracy for dipole moment gradients as in
GFN2-xTB is overcome with PTB.

In contrast to IR intensities that can be routinely calculated also with SQM methods (or even FF methods
like GFN-FF189,314), the calculation of Raman activities has so far been almost exclusively the domain of
DFT or WFT methods. As already hinted in Sec. D.4.5, PTB overcomes this limitation by utilizing for the
first time a significantly larger basis set, which enables the reliable computation of dipole polarizabilities. The
accuracy of their derivative with respect to nuclear coordinates is investigated in the following. Analogously
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Figure D.15: Raman activities of the polypeptide endothelin (327 atoms) computed by 𝜔B97X-3c@GFN2-xTB and
PTB@GFN2-xTB. The high relative intensity of bands at around 3000 cm−1 (regardless of the method) would prevent
a reasonable comparison, which is why only the range from 100 to 2000 cm−1, being more relevant for the protein
structure, is shown. See Fig. D.12 and the SI for details on the method notation.

to the evaluation of IR intensities, we compare Raman activities from PTB with 𝜔B97X-3c reference data
and for better perspective, additionally with PBE/def2-SVP. As for IR intensities, GFN2-xTB frequencies are
used throughout. The notation, the utilized test set (except for vancomycin, see below), and the employed
spectral similarity measure are also identical to the analysis of the IR intensities.

The histogram in Fig. D.14 shows that the results for Raman activities by PTB are even slightly better than
for IR intensities. No spectrum with 𝑟match < 0.9 is found in the test set (see the SI for tabulated data in text
file format) and the average match score with PTB exceeds that for IR intensities. Similar to the previous
analysis for IR spectra, PTB is very close to PBE/def2-SVP and the deviations are only marginal. Besides
the small molecules in the aforementioned test set, we also included vancomycin as a typical drug molecule
consisting of 176 atoms, shown in the inlay in Fig. D.14. As displayed in the figure, its spectral match score
corresponds roughly to the average value (dashed line) very close to unity indicating only tiny differences
between the two spectra.

To further illustrate the capabilities of PTB, we computed Raman activities for the polypeptide endothelin417.
The most relevant part of the spectrum with respect to the protein structure ranging from 100-2000 cm−1418 is
shown in Fig. D.15. Except for small details in the fine structure of the spectrum at around 1200 to 1400 cm−1,
the Raman activities of most vibrational modes are reproduced correctly by PTB, even though their absolute
values (in [Å

4

u ]) are distinctly smaller compared to the previous examples. This PTB@GFN2-xTB calculation
(employing a preliminary PTB implementation) of endothelin consisting of 327 atoms took about two hours,
whereas the reference DFT treatment lasted about ten days with equivalent computational resources.
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D.5 Conclusions and Outlook

We presented in this work new ideas and strategies to develop semiempirical electronic structure theory
further and finally presented a usable method termed PTB, which will be made available free-of-charge in the
xtb quantum chemical program413. A preliminary implementation of PTB is available upon request.

It is out-of-the-box applicable to various electronic structure properties for molecules composed of all
𝑠𝑝𝑑-block elements up to 𝑍 = 86. The main point is to substitute the so far commonly used minimal atomic
orbital basis sets with an extended and properly polarized basis set taken from previous DFT work (vDZP).
This choice together with one of the most accurate range-separated hybrid density functionals (𝜔B97X-V)
as reference forms the basis for the development of the new PTB method. Its main purpose is to provide
extremely fast the one-particle electronic density matrix P and derived properties like atomic charges, shell
populations, dipole moments, and geometric derivatives as well as static dipole polarizabilities. The effective
Hamiltonian matrix elements, which approximate those from a 𝜔B97X-V SCF converged Fock matrix, are
derived in analogy to DFTB3/GFN2-xTB theory but contain additionally new non-local terms to account for
the RSH character of the reference method and the presence of spatially different atomic shells of the same
angular momentum.

For a wide range of molecules from various chemical compound classes (organic, inorganic, transition
metal complexes, clusters, and aggregates) including multiple anions/cations, excellent agreement between
PTB and 𝜔B97X-3c computed properties is obtained. Typical RMSDs are 0.02 𝑒− for atomic charges or shell
populations and about 5-10% for dipole moments and dipole polarizabilities. Artificial charge transfer in,
e.g., zwitterions or SCF convergence problems in electronically difficult small gap systems is largely avoided,
which also results from the applied non-iterative, two-step diagonalization scheme.

As example applications, we show the efficient computation of IR absorption intensities in combination with
GFN2-xTB computed normal modes and for the first time, semi-empirical results for the Raman spectrum of
an entire protein. This is made possible by the achieved speed-up of typically about three orders of magnitude
compared to the corresponding reference DFT calculation (see Sec. V in the SI for details). Compared
to GFN2-xTB, PTB requires only 3-7 times more computational effort. For systems converging slowly in
GFN2-xTB, this ratio is even more advantageous.

No energy expression is available at this point and the entire development was focused to reproduce the
DFT density matrix and some response features of it as accurately as possible. The electronic energy as a
functional of P and corresponding derivatives (nuclear forces) shall be developed in future works. To this
end, strategies either based on DFT and (DF)TB theory or even ML (or combinations thereof) seem to be
promising and are currently being pursued in our laboratory.

D.6 Data Availability

The data that supports the findings of this study are available within the article and its supplementary material.
Any further information as well as a preliminary implementation of PTB is available upon request from the
authors. Additional note in the reprint: PTB is fully implemented in the xtb program package.413

D.7 Supplementary Material

See the supplementary material for the following data, which are available free of charge.

94

https://pubs.aip.org/aip/jcp/article-abstract/158/12/124111/2881578/A-non-self-consistent-tight-binding-electronic


Appendix D Appendix: A Non-Self-Consistent Tight-Binding Electronic Structure Potential in a Polarized
Double-𝜻 Basis Set for all spd-Block Elements up to Z=86

• Additional investigations of electronic and molecular properties with PTB, including a cross-check on
a set of about 1,000 random molecules

• Additional theory on IR intensities and Raman activities, and the quantitative comparison of vibrational
spectra

• Investigation of the computational timings in comparison to the reference DFT calculation for a large
supramolecular system

• Table of all empirical parameters utilized in PTB, including a text file with each parameter given for
all parameterized elements

• Statistical error measures

• Raw data required for reproducing each plot and statistical analysis in the main text

• Test set for static isotropic polarizabilities and for IR and Raman spectra with 369 small organic
molecules and corresponding match scores
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E.1 Abstract

Many low-cost or semiempirical quantum mechanical-based electronic structure methods suffer from the
use of unpolarized minimal atomic orbital (AO) basis sets. In this work, we overcome this limitation by
a fully DFT variationally optimized, adaptive minimal basis set consistently available for the elements up
to radon (𝑍 = 86). The new key feature is to make the linear coefficients of the primitive Gaussians in a
contracted AO dependent on the effective atomic charge of the atom in the molecule, i.e., each symmetry-
unique atom obtains its “own” specifically adapted basis functions. In this way, the physically important
“breathing” of the AOs in a molecule with a) atomic charge (expansion/contraction for anionic/cationic states)
and b) the number of close-lying bonded neighbor atoms is accounted for. The required atomic charges are
obtained from a specially developed extended Hückel type Hamiltonian and the coordination numbers from
the molecule geometry. Proper analytical derivatives of the resulting adaptive basis functions can easily be
derived. Moreover, the basis functions are electric field-dependent, thus improving the description of, e.g.,
dipole moments and polarizabilities. The new basis set termed q-vSZP (charge dependent valence single-𝜁,
polarized) is thoroughly benchmarked for atomic/molecular and thermochemical properties compared to
standard minimal and double-𝜁 basis sets at the DFT level with the accurate 𝜔B97X-D4 functional. It is
shown that q-vSZP is clearly superior to existing minimal basis sets, often reaching double-𝜁 quality or even
better results. We expect it to be the optimal choice in future semiempirical quantum mechanical methods.

E.2 Introduction

Quantum chemistry has revolutionized our understanding of molecular properties and chemical reactivity
by providing a powerful framework for predicting and interpreting chemical phenomena at the electronic
level. At the heart of electronic structure theory are standardized AO basis sets. These sets, comprised
of atom-centered Gaussian or Slater functions, serve as fundamental tools to approximate the electronic
wavefunction of molecules accurately. Comprehensive surveys of state-of-the-art basis set families used in
DFT or WFT based calculations are given in Refs. [132, 419].

The choice of an appropriate AO basis set plays a pivotal role in the accuracy and reliability of quantum
chemical calculations and is usually based on a compromise between target accuracy and accessible compu-
tational resources. While this is intensively discussed in WFT/DFT,70,420 basis set issues are less noticed
or even ignored in SQM methods. Standard approaches like PM6,238 DFTB,267,268 or xTB259,277,278 mostly
employ MB sets without polarization functions, where the exponent of the (usually applied) Slater functions
is considered as an empirical rather than a variational parameter.

Recently, we presented the PTB semiempirical model,2 which for the first time employs a consistent
vDZP AO basis set1 for all chemical elements up to 𝑍 = 86. A vital feature of the variational optimization
procedure for the primitive Gaussian basis function exponents and contraction coefficients in vDZP was to
simultaneously minimize the sum of the total energy of various atomic states, molecules, and charged species
[reference molecules (RMs)]. This, together with a relatively deep contraction (a large number of Gaussian
primitives), leads to chemically flexible AOs reaching the accuracy of standard (atom optimized) triple- or
sometimes even quadruple-𝜁 quality sets.

In this work, we apply this basis set construction concept to the polarized valence single-𝜁 (vSZP) level
and extend it (vide infra). The main reason for this truncation is that the vDZP basis set is i) too large for
typical SQM methods and ii) that non-vanishing SQM Hamiltonian matrix elements between functions of
the same angular momentum on the same atom (e.g., 𝑠 and 𝑠′, 𝑝 and 𝑝′) potentially lead to unstable results in
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conventional SCF approaches (see Ref. [2] for a detailed discussion).
A severe limitation of any MB set (each orbital shell occupied in the free atom is described by only one

radial AO basis function) is that the spatial expansion or contraction of the atomic orbital in the molecular
environment with the effective nuclear charge (screening) cannot be described. In the following, this effect
will also be referred to as “breathing” of the orbitals, a concept well known in valence bond theory421 and
also mentioned in a recent publication by Neese et al.243 (see below). In fact, the whole idea of molecular
basis optimization more or less breaks down in the MB case because the resulting single functions as an
average over the RMs would resemble the AOs of fixed average molecular states, but would never be able to
describe distinctly different situations properly. The only way to overcome this fundamental problem is to
make the basis set adaptive, i.e., individual for every symmetry-unique atom in the system, depending on the
local geometric and electronic structure.

Here, to our knowledge, we describe for the first time a generally applicable, analytically differentiable
procedure for an atom-in-molecule adaptive AO basis set. Based on this, we present a corresponding fully
optimized basis set (for existing ECPs) for all elements up to 𝑍 = 86, except the lanthanides. In order to
indicate the dependence of the AOs on the effective atomic charge 𝑞 as a critical ingredient (see below), the
new basis set is dubbed q-vSZP (𝑞-dependent vSZP). A principal use is in typical SQM methods, where the
contraction depth does almost not affect the computation time. A version with fewer primitive functions
to speed up ’low-cost’ DFT calculations is currently developed along the same lines in our lab, and will be
described separately.

Some special, non-automatic approaches to modify orbital exponents in SQM245,422,423 methods and HF
theory424 depending on the atomic charge state were already proposed decades ago. Very recently, Wang
and Neese, independently from our work, proposed a related idea to make the contraction coefficients in a
minimal ANO-type basis set dependent on the bond length for diatomic molecules.243 While this accounts
for the important expansion/compression of AOs with increasing/decreasing bond distance, in the mentioned
work, the similarly important change of AOs with atomic charge was not considered explicitly.

The ideas presented here account in a general way for both effects, change of 𝑞 and the CN117,118 of an
atom in any polyatomic molecule. The critical point is to pre-compute these descriptors by simple and robust
theoretical models and only make the contraction coefficients (not the Gaussian exponents) linearly dependent
on them. This enables convenient basis set optimization on the one hand and easy differentiation of integrals
to obtain, e.g., nuclear forces on the other hand. The newly introduced contraction coefficient dependency
is variationally optimized as before in DFT calculations for RMs. Therefore, this part of the approach is
considered non-empirical, while the theoretical model to obtain the atomic charges 𝑞 is empirically adjusted
to reproduce DFT data.

The primary purpose of the q-vSZP basis is to be used in next-generation SQM methods developed and
published separately (working title: GP3-xTB). It may also be employed in other low-cost or machine-learning
theoretical models as a physically relatively complete yet efficient and compact representation of electronic
wavefunctions. To highlight the importance of the basis set and exclude other influences, we evaluate q-vSZP
compared to standard basis sets in this work consistently with the same state-of-the-art RSH-DFT functional
(𝜔B97X-D4,103) which has been used in our lab also in previous works on this topic.1 However, we note that
the observations described in the following are relatively independent of the choice of the DFT functional.

After an outline of the theory and some technical details of the optimization procedure, exemplary results
for electron densities, dipole moments, and static polarizabilities are given to illustrate the built-in flexibility
of the new basis set. The main results section describes thorough benchmarking on thermochemical properties
and molecular structures, for which we employ standard databases such as GMTKN55.93
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E.3 Theory

E.3.1 Environment dependency of the basis functions

Within the q-vSZP basis set, the basis functions 𝜙 are no longer identical per atom type or element, as in
standard Gaussian-type AO basis sets. Instead, each of the basis functions 𝜙𝜅,𝐴𝑖

depends on the effective
charge 𝑞eff

𝐴𝑖
of the atom in the molecule. In the following, 𝐴𝑖 denotes a distinct atom of element 𝐴. The

effective charge is determined from the atomic charge 𝑞CEH
𝐴𝑖

(obtained from a new CEH model, see Sec. E.3.3)
and the coordination number CN𝐴𝑖

of the respective atom 𝐴𝑖 (see below). The detailed relations are explained
in the following.

The usual linear combination of primitive Gaussian functions to one contracted Gaussian-type AO (i.e.,
a basis function) is given in Eq. E.1. Therein, 𝜙𝜅,𝐴𝑖

denotes a basis function of atom 𝐴𝑖 consisting of
𝑁pr primitive functions. 𝑐𝜆,𝐴𝑖

and 𝜒𝜆,𝐴 are the effective contraction coefficient and the primitive Gauss
function 𝜆, respectively.

𝜙𝜅,𝐴𝑖
(𝜁𝜅, 𝑞eff

𝐴𝑖
) =

𝑁pr

∑
𝜆∈𝜅

𝑐𝜆,𝐴𝑖
(𝑞eff

𝐴𝑖
)𝜒𝜆,𝐴(𝜁𝜆,𝐴) with (𝐴𝑖 ∈ 𝐴) . (E.1)

To avoid non-linear parameterization (i.e., the Gaussian exponents), we decided to make only the contraction
coefficients atom-in-molecule specific. In deeply contracted basis functions (AOs), the effect of changed
exponents can be emulated by linear variation of the primitive functions. Consequently, the primitive Gauss
functions 𝜒 and the associated exponents 𝜁 do not differ between atoms of the same type, as noted in Eq. E.1,
and are therefore optimized element-wise.

The dependency of the contraction coefficients 𝑐𝜆,𝐴𝑖
of atom 𝐴𝑖 on its effective atomic charge 𝑞eff

𝐴𝑖
is defined

in Eq. E.2
𝑐𝜆,𝐴𝑖

(𝑞eff
𝐴𝑖

) = 𝑐0,𝜆,𝐴 + 𝑐1,𝜆,𝐴 ⋅ 𝑞eff
𝐴𝑖

, (E.2)

where 𝑐0,𝜆,𝐴 is the base (free atom) contraction coefficient of the primitive function 𝜆 for element 𝐴. The
coefficients 𝑐1,𝜆,𝐴 to be determined linearly change the primitive contribution in dependence of the chemical
environment, i.e., reshaping the molecule’s AOs. The effective charge descriptor consists of the most
important atomic charge (linearly and quadratically) and CN-dependent parts as well as an additional cross-
term according to

𝑞eff
𝐴𝑖

(𝑞𝐴𝑖
, CN𝐴𝑖

) = 𝑞CEH
𝐴𝑖

+ 𝑘1,𝐴 ⋅ (𝑞CEH
𝐴𝑖

)
2

+ 𝑘2,𝐴 ⋅ √CN𝐴𝑖
+ 𝑘3,𝐴 ⋅ CN𝐴𝑖

⋅ 𝑞CEH
𝐴𝑖

. (E.3)

The square root of the CN is taken in the third term so that large values, which typically appear in dense metal-
containing systems, are effectively damped. 𝑘𝑥,𝐴 denote element-specific prefactors that are variationally
optimized together with the coefficients 𝑐0,𝜆,𝐴 and 𝑐1,𝜆,𝐴. The atomic charges 𝑞CEH

𝐴𝑖
are obtained from the

newly developed CEH model described in Sec. E.3.3 and CN is the error function-modified coordination
number from Ref. [2]. For a neutral atom (𝑞CEH

𝐴𝑖
= 0, CN𝐴𝑖

= 0), 𝑐𝜆,𝐴𝑖
= 𝑐0,𝜆,𝐴 holds.

Because the analytical derivatives of the 𝑞CEH and CN with respect to nuclear displacement are readily
available, the corresponding AO derivatives can be derived, thus enabling efficient computation of analytical
forces. In passing, we note that the 𝑞CEH

𝐴𝑖
may depend on an applied external electric field, making the basis

functions also field-dependent, which will be explored in Sec. E.5.3 for dipole moments and static dipole
polarizabilities.
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E.3.2 Basis set construction

To approach the target accuracy as close as possible (realistically about vDZP level) while preserving the MB
character (i.e., only one basis function per occupied AO shell), we decided to use a relatively deep contraction
(a large number of primitive functions) for each AO to reduce incompleteness errors. This was inspired
by the recently developed vDZP1 basis set, for which a similar treatment (but with two valence shells) was
successfully applied.

The second feature taken over from the vDZP basis set is the optimization of the exponents and coefficients
in atomic and molecular calculations. Thereby, polarization functions, which are not occupied in the ground
state of the free atom, are optimized to describe typical bonding situations best. Moreover, as a consequence,
deeply contracted basis functions better resemble the actual molecular orbital with larger basis sets, partially
circumventing an extensive LCAO. In the previous optimization of the vDZP basis, the free atom and its
positive and negative ions and hydrides of different compositions were utilized. Here, for q-vSZP, which
features a larger number of variational parameters, additional ions and small molecules containing different
first-row elements were included. See Sec. E.4.3 for details on the optimization process of the basis set and
Ref. [1] for a more in-depth discussion of molecular basis set optimization.

The third similarity to the vDZP basis set is the use of large-core ECPs in the q-vSZP basis set to make
it usable for semiempirical methods, which generally only consider the valence electrons explicitly. As
mentioned above, this choice avoids problems in SQM theory with atomic functions of the same angular
momentum. However, in contrast to the ECPs used in the vDZP basis set, alkaline, and alkaline earth metals,
as well as transition metals (groups 1-12), are now treated as valence only, also due to the beforementioned
reason. Moreover, for group 12 elements, only two electrons are explicitly treated, since the 𝑑-electrons are
considered by matching ECPs. This is realized by using the ECP-<ncore>-SDF ECPs instead of the CRENBL

ECPs for groups 1 and 2 and the CRENBS ECPs instead of the ECP-<ncore>-MWB ECPs for groups 3–11. For
group 12, the ECP-<ncore>-SDF ECPs with two valence electrons are used. See Tab. E.1 for details on the
employed ECP for each element. Most importantly, all first- and second-row elements contain (contracted)
polarization functions, which are generally absent in (standard) SQM methods. We think that in this way,
“the right result for the right reason” can be obtained for electronically more complex cases or important
standard thermochemistry problems (e.g., conformational energies). However, this substantially increases the
computational cost because the basis set size, e.g., for carbon, is roughly doubled due to the additional d-shell.
In passing, we note that for the crucial elements H, C, N, and O, the polarization functions are also relatively
deeply contracted with three primitives to enable proper ”breathing” of these orbitals as well. Here, we only
consider the full basis with polarization functions. Still, for specific SQM methods, it might be beneficial (for
efficiency reasons or to reduce the number of required empirical parameters) to discard them on, e.g., first-
and second-row elements.

In summary, chemical elements in q-vSZP are described consistently by a [1s1p1d] basis ([1s1p] for H and
He). Because we are not aware of any consistent, valence-only ECP for the lanthanide elements, they are
not supported yet in the q-vSZP basis set (details are given in Tab. E.1). In contrast, the new CEH model
described in the following Sec. E.3.3 is also available for the lanthanides.

E.3.3 Charge Extended Hückel Model for Atomic Charges

Initially, we tested the well-established, semiclassical EEQ model, which has been successfully applied for
some years in our D4119,120 and GFN-FF189 methods, to obtain robust atomic charges efficiently. However, in
certain situations (mainly noncovalent complexes composed of elements with considerable electronegativity
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Table E.1: Primitive contraction scheme and ECPs of the q-vSZP basis set for all elements up to radon (except for the
lanthanides). The contraction scheme corresponds always to (𝑥s𝑦p𝑧d) → [1s1p1d] (for H and He: [1s1p]). Columns
three and four indicate the type of effective core potential used and the corresponding number of core electrons.

element prim. functs. ECP type # core el.
H–He (8s3p) - -
Li (5s4p2d) ECP-2-SDF425 2
Be (6s4p2d) ECP-2-SDF425 2
B (6s5p2d) ECP-2-MWB141† 2
C–O (6s6p3d) ECP-2-MWB141 2
F–Ne (6s6p2d) ECP-2-MWB141† 2
Na (4s4p2d) ECP-10-SDF425 10
Mg (4s3p2d) ECP-10-SDF425 10
Al (5s4p2d) ECP-10-MWB141 10
Si (6s4p2d) ECP-10-MWB141 10
P–Ar (6s6p2d) ECP-10-MWB141 10
K,Ca (4s3p2d) ECP-18-SDF425 18
Sc–Cu (5s3p6d) CRENBS348 18
Zn (5s3p2d) ECP-28-SDF426 28
Ga,Br,Kr (6s5p2d) ECP-28-MWB141,349 28
Ge–Se (6s6p2d) ECP-28-MWB141,349 28
Rb (4s3p2d) ECP-36-SDF425,427 36
Sr (4s4p2d) ECP-36-SDF425,427 36
Y–Mo,Ru–Ag (5s3p6d) CRENBS144 36
Tc (5s2p6d) CRENBS144 36
Cd (5s3p2d) ECP-46-SDF426 46
In (5s4p2d) ECP-46-MWB141,349 46
Sn–Xe (6s5p2d) ECP-46-MWB141,349 46
Cs–Ba (4s3p2d) ECP-54-SDF427 54
La (4s2p5d) CRENBS351 54
Hf (4s3p5d) CRENBS351 68
Ta–Au (5s3p5d) CRENBS351 68
Hg (5s3p2d) ECP-78-SDF428 78
Tl,Bi–Rn (6s5p2d) ECP-78-MWB354 78
Pb (5s5p2d) ECP-78-MWB354 78
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differences), the EEQ model produces artificial CT, sometimes on the order of about 0.1-0.2 electrons. This,
in turn, leads to an incorrect AO expansion/contraction and, as a result, unacceptable interaction energy errors
of several kcal⋅mol−1.

In recent years, we have had a good experience with EHT-type SQM Hamiltonians for the determination
of atomic charges by a standard Mulliken population analysis.324 Here, we introduce a stand-alone method
termed Charge Extended Hückel (CEH) to obtain atomic charges for given cartesian coordinates and element
ordinal numbers.

For the CEH method, we solve the general eigenvalue problem

HCEHC = SC𝝐 (E.4)

once, where HCEH denotes the effective Hamiltonian matrix in the special CEH minimal AO basis, S is the
corresponding AO overlap matrix, and C are the MO coefficients with eigenvalues 𝝐. A restricted (Fermi-
smearing) procedure as in the GFNn-xTB methods277,278 is applied. The valence MOs are expanded as usual
in atom centered STOs, which are approximated by Stewart’s Gaussian expansions145 with usually four or six
primitives per AO similar to GFNn-xTB.259 The corresponding Slater exponents 𝜁𝑙 are treated in this part as
empirical parameters.

In the following description, 𝐴 refers to an atom, 𝑙 to an AO shell (1𝑠, 2𝑠, 2𝑝, …), 𝑙𝑎 to the angular
momentum (𝑠, 𝑝, 𝑑, …), 𝐿 stands for the interaction type (see below), and greek indices denote AOs. The
matrix elements of HCEH are given by

𝐻CEH
𝜅𝜆 = 1

2 (𝑘𝑙𝑎(𝑙) + 𝑘𝑙𝑎(𝑙′))
𝜅𝜆

𝑆sc
𝜅𝜆 (𝐻 𝑙 + 𝐻 𝑙′)

𝜅𝜆
with (𝜅 ∈ 𝑙(𝐴), 𝜆 ∈ 𝑙′(𝐵)) , (E.5)

where 𝑘𝑙𝑎 are three (𝑠, 𝑝, 𝑑) global (angular momentum-dependent) Wolfsberg parameters, 𝐻 𝑙 are atomic
shell energy levels (see Eq. E.7 below). Ssc is an overlap matrix that is scaled in the diatomic frame and then
transformed back to the Cartesian coordinate system:247,325,326

𝑆sc
𝜅𝜆 = ∑

𝑚𝑛
𝑂𝜅𝑚 ̃𝑆sc

𝑚𝑛𝑂𝑇
𝑛𝜆

= ∑
𝑚𝑛

𝑂𝜅𝑚

⎛⎜⎜⎜⎜⎜
⎝

(∑
𝜅𝜆

𝑂𝑇
𝑚𝜅𝑆𝜅𝜆𝑂𝜆𝑛) ⋅ 2

( 1
𝑘𝐿

𝐴
+ 1

𝑘𝐿
𝐵

)

⎞⎟⎟⎟⎟⎟
⎠

𝑂𝑇
𝑛𝜆, (E.6)

with O as the unitary transformation matrix for transforming an overlap submatrix between 𝐴 and 𝐵 into the
diatomic frame. The exact diatomic overlap integrals ̃𝑆𝑘𝑙 are scaled depending on whether the interaction
between 𝜅 and 𝜆 is of 𝜎 (𝐿 = 0), 𝜋 (𝐿 = 1), or 𝛿 (𝐿 = 2). The 𝑘𝐿

𝐴 are additional element-specific parameters
for the three different interaction types. For further details on the overlap transformation into the diatomic
frame, see Ref. [247, 325, 326].

The atomic shell energy levels 𝐻 𝑙 are based on the free atom level energies 𝐻 𝑙
𝐴 modified by CN-dependent

terms
𝐻 𝑙 = 𝐻 𝑙

𝐴 + 𝑘𝑙
CN,𝐴CN𝐴 + 𝑘CN,𝐴CN𝜒

𝐴 , (E.7)

with 𝑙 being an AO shell of atom 𝐴. Here, CN𝐴 is the standard CN obtained with empirically fitted atomic
radii 𝑅CN,𝐴, parameterized shell-wise by 𝑘𝑙

CN,𝐴. In order to include some electrostatic screening effects, CN𝜒
𝐴

† modified d-f projector for B and F, see Ref. [1] for details.
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is a second, distinct coordination number with electronegativity weighting, i.e.,

CN𝜒
𝐴 = 1

2

𝑁atoms

∑
𝐵≠𝐴

(EN𝐴 − EN𝐵) (1 + erf (𝑘CN
erf

𝑅𝐴𝐵 − 𝑅cov
𝐴𝐵

𝑅cov
𝐴𝐵

)) , (E.8)

where 𝑅𝐴𝐵 is the interactomic distance, 𝑅𝑐𝑜𝑣
𝐴𝐵 = 𝑅CN,𝐴 + 𝑅CN,𝐵 is the covalent distance, EN𝐴 is the empirical

electronegativity, and 𝑘CN
erf is a global parameter. The last term in Eq. E.7 shifts the levels depending on the

number of spatially close electropositive or -negative neighbors. Atomic charges are determined from the
core charges 𝑍𝐴 and a standard Mulliken population analysis based on the unscaled, exact overlap matrix S
and the final density matrix P:

𝑞𝐴 = 𝑍𝐴 −
AO
∑
𝜅∈𝐴

(PS)𝜅𝜅 . (E.9)

For optimization of the eight (𝑠𝑝-block element) or 14 (𝑠𝑝𝑑-block element), respectively, empirical parameters
employed in the CEH model, refer to Sec. E.4.2.

The accuracy of the atomic charges obtained with the CEH model and electric dipole moments as an
additional check quantity is evaluated and discussed in detail in Sec. I B of the Supporting Information
(SI). In general, the CEH model provides accurate atomic charges and dipole moments that are only slightly
worse than those by more sophisticated methods like GFN2-xTB278 or PTB.2 Furthermore, the deviations
are reasonably consistent over the element groups in the periodic table. Severe outliers, even for chemically
unusual, electronically complicated structures, have not been observed yet. We think that this efficient atomic
charge model can be of general use in quantum chemistry beyond the q-vSZP basis set, e.g., for atomic
charges in semi-empirical dispersion corrections119,120 or for SCC guesses in SQM methods.267,278

E.4 Technical Details

E.4.1 General

All DFT calculations for this work were conducted with the ORCA quantum chemistry package in version
5.0.4.309,357 The DFT functional is fixed to 𝜔B97X-D41,103,307 to evaluate the performance of various basis
sets. The resolution of the identity (RI) approximation for the electronic Coulomb energy with the large
universal auxiliary basis sets by Weigend358 as well as seminumerical treatment of Fock exchange178 were
used throughout. To exclude possible numerical noise (especially for numerical derivatives), high convergence
thresholds (keyword: VeryTightSCF) and grid settings (keyword: DefGrid3) were applied. Because analytical
gradients of the adaptive basis set have not been implemented yet, geometry optimizations are conducted
with numerical energy derivatives, exploiting the adapted basis set for distorted geometries. An analogous
procedure is used for numerical derivatives with respect to an external electric field to obtain either dipole
moments (𝜇 = −𝑑𝐸

𝑑𝐹 ) or static dipole polarizabilities (𝛼 = 𝑑𝜇
𝑑𝐹 ).

All numerical derivatives with respect to nuclear coordinates or external electric fields were conducted with
the help of an in-house Python code, which is publicly available on our GitHub channel (github.com/grimme-
lab).429 Geometry optimizations were done in the external driver mode with xtb.259,278 ORCA input files
taking the atom-in-molecule adaptive basis set into account were automatically generated via a program
incorporating the CEH charge and CN calculation. This program is also publicly accessible on GitHub430

and can easily be modified to generate input files for other quantum chemistry packages as well. A complete
sample q-vSZP input for ORCA 5.0.4, including the atom-in-molecule adaptive basis set, is given in Sec. II D
of the SI for the H2O molecule. The CEH charge model is implemented in the tblite program package,
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accessible via the corresponding GitHub repository (github.com/tblite/tblite).

E.4.2 Optimization of the CEH Model Parameters

The element-specific parameters appearing in the CEH Hamiltonian, i.e., 𝑘𝑙𝑎, 𝐻 𝑙
𝐴, 𝑘𝑙

CN,𝐴, 𝑘𝐿
𝐴, 𝑘CN,𝐴, 𝑅CN,𝐴,

EN𝐴, the Slater orbital exponents 𝜁𝑙 (in total eight for an 𝑠𝑝-block element, 14 for an 𝑠𝑝𝑑-block element), and
𝑘CN

erf have been determined by a least-squares fit of computed Mulliken atomic charges (based on the unscaled
exact overlap integrals) to DFT-based Hirshfeld charges (𝜔B97X-D4/TZVP level). In order to ensure robust
and physically reasonable behavior, DFT-computed dipole moments and bond orders have been included with
an overall weight of about 35 % in the minimized loss function. On average, about 50 small- to medium-sized
molecules (up to about 50 atoms) per element were included in the training set, leading to roughly 1000-2000
training data points per element. The model is consistently available for all elements up to radon, including
the lanthanides. All required empirical parameters mentioned above are provided in an additional text file
parameter_CEH.dat. See Sec. II A of the SI for details and further explanations.

E.4.3 Basis Set Optimization

The optimization procedure for the q-vSZP basis set is very similar to the one applied recently for the vDZP
valence basis set used in the 𝜔B97X-3c composite DFT1 and the PTB2 methods. With the help of the
Powell optimization algorithm,431 which does not require any objective function value derivative, the sum of
atomic and molecular 𝜔B97X-D3356 energies has been minimized. As for the vDZP basis functions, the free
atom and its positive and negative ions and hydrides of XH𝑛 and X2H𝑚 type were used. In addition, small
molecules/ions containing Li, Be, C, N, O, F, and Cl were included to account for more variational parameters
in the present approach. The atoms in the RMs different from the target element were described with the
vDZP basis set to avoid basis set inter-dependencies in the optimization procedure. Because of the additional
𝑐1,𝜆,𝐴 coefficients and three 𝑘𝑥,𝐴 parameters (per element), the overall number of degrees of freedom is
somewhat higher than in a conventional basis set optimization but still manageable. The optimization
procedure showed proper (but slow) convergence for all elements. In about 2-3 % of all cases, two primitives
received very similar Gaussian exponents during optimization, so one of them had to be eliminated to avoid
linear dependencies. The 𝑐1,𝜆,𝐴 were initialized with small positive values for all primitives except the most
diffuse one to which a larger negative initial value was assigned. This corresponds to the physically expected
situation where in an anion with 𝑞 < 0 compared to neutral systems, the smallest exponent primitive is
increased in weight while the contribution of the steeper functions decreases.

The new basis set together with the used ECPs is provided in the SI (as additional text files and in Sec. II B
and C) and within the program described in Sec. E.4.1, enabling single-point energy calculations with standard
quantum chemistry programs. Implementation of the new basis function derivations for analytical DFT
gradient calculations is currently underway in our laboratory and will be described separately.

E.4.4 D4 Parameter Optimization

The D4 parameters for 𝜔B97X-D4/q-vSZP were optimized for the S66x8376,377 benchmark set to reduce the
remaining BSSE. The same procedure was applied to all competing basis sets (including the versions with
added polarization functions, see first paragraph of Sec. E.5), which should ensure a comparison on the same
footing. To avoid problems with finding physically reasonable parameter minima in typical optimization
algorithms for MBs, scans were conducted for a considerable space of D4 parameter combinations. For vDZP
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Figure E.1: Radial distribution function (RDF) of the electron density of the hydrogen atom (left) and hydride (right) by
employing 𝜔B97X-D41,103 in combination with different basis sets. The annotation “CBS” is used for an uncontracted
14s basis set from the TURBOMOLE294,295 basis set library.

and def2-QZVP, the optimized D4 parameters presented in Ref. [1] were taken. The applied D4 parameters
are listed in Sec. II E of the SI.

E.5 Results and Discussion

The goal of the presented atom-in-molecule adaptive q-vSZP basis set is to overcome the inherent accuracy
limitations of typical MB sets without adding additional orbital shells (i.e., avoiding a higher cardinal number).
Therefore, common MBs, such as STO-6G293 or MINIS296 are the natural choice as comparators on the
lower end. Since q-vSZP includes polarization functions for all elements, while the aforementioned MBs are
not polarized per default, standard polarization functions taken from the def2-SVP basis set139 were added
to the MBs, which should ensure a fair comparison. The resulting basis sets are termed “<MB>+P” in the
following.

The (static) DZ basis set,1 which is optimized similarly and contains roughly the same number of total
primitive functions split into two AOs (i.e., vDZP), is taken as an upper limit for the achievable accuracy with
the q-vSZP basis. Additionally, we compare against def2-SVP139 as a very commonly used DZ basis set.

E.5.1 Electron Density of Neutral and Anionic Atoms

The simplest example showing the necessity for radial expansion or contraction of an AO is atomic hydrogen.
In larger-than-minimal basis sets, the SCF determines the contribution of each basis function in the AOs
individually for each calculation by exploiting the LCAO approach. In the example of H−, more diffuse 𝑠
functions have a greater contribution compared to the neutral atom – the AO expands. In contrast, when
using standard MBs, the AOs are fixed to an average atom-in-molecule state.

This effect is illustrated in Fig. E.1 for different basis sets, using 𝜔B97X-D4 throughout. As a reference,
an uncontracted 14𝑠 basis set is used. The shapes of the radial distribution functions (RDFs) of the electron
density do not change between H and H− when employing the polarized MBs STO-6G+P and MINIS+P.
In fact, they even over-localize the electron density in both cases, which is probably owed to the fact that
hydrogen carries a positive partial charge in most common bonding situations, for which these sets have been
developed.
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Table E.2: BB CP corrections evaluated at the 𝜔B97X-D4 level for different basis sets. Relative values for the BB-CP
correction in % are determined from the absolute values in kcal⋅mol−1 with respect to the reference dimerization
energies. The complexes are taken from the S22 benchmark set.432,433

rel. CP corr. (%) abs. CP corr. (kcal⋅mol−1)
STO-6G+P 40.4 4.05
STO-6G 33.5 3.29
MINIS+P 32.1 2.22
MINIS 27.0 2.00
q-vSZP 15.2 0.86
def2-SVP 34.4 2.20
vDZP 13.6 0.64
def-TZVP 8.1 0.49

In contrast, q-vSZP behaves similarly to the DZ bases def2-SVP and vDZP. For the anionic case, the
electron density by q-vSZP is even closer to the converged result than def2-SVP. Since no coordinating atoms
are present, this is purely attributed to the charge dependency in Eq. E.2 and E.3, increasing the contraction
coefficients of the diffuse compared to the compact primitive functions. The vDZP basis set is remarkably
close to the CBS limit for both H and H−.

In Sec. III A of the SI, similarly good results are shown for the neutral and anionic carbon atom.

E.5.2 Basis Set Superposition Error

Inspired by the approach for generating the vDZP basis set, the q-vSZP basis set presented here has been
optimized for atoms and molecules. This leads to generally better fitting AOs in molecules and complexes
and, consequently, to a diminished amount of BSSE since the unphysical use of basis functions of other
atoms is reduced, as discussed in Ref. [1]. The residual amount of BSSE is estimated by calculating BB CP
corrections for the noncovalent complexes in the S22432,433 benchmark set and given in Tab. E.2.

As expected, the additional polarization functions added to STO-6G and MINIS increase the BSSE slightly
by about 5-7 % in comparison to the pure MBs. However, even without the additional polarization functions,
the BSSE is at a level of about 30 %, which is similar to usual DZ basis sets such as def2-SVP. The molecular
optimized q-vSZP and vDZP bases show distinctly smaller relative BSSEs of about 15 %, which is close to
that of def-TZVP.342 Importantly, the surprisingly small absolute BSSE of q-vSZP (<1 kcal/mol) enables its
absorbance in the anyway required D3117,118 or D4119,120 dispersion damping parameters, thereby avoiding
further empirical corrections like, e.g., gCP or DFT-C.153,195

E.5.3 Molecular Properties

In typical QM molecular property calculations, the dipole moment and the static dipole polarizability are
evaluated as expectation values from dipole integrals or as analytical derivatives of the electronic energy
with respect to an external electric field via the coupled-perturbed self-consistent field (CP-SCF) equations,
respectively, while leaving the basis functions fixed. In contrast, in the presented q-vSZP approach, the
basis set is no longer fixed and depends on the CEH atomic charges, which themselves depend on the
electric field. Considering the external electric field within the CEH model, the basis set can adapt to it.
This behavior is numerically investigated for the dipole moment and dipole polarizability by finite-field
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Figure E.2: Static isotropic dipole polarizabilities for nine different organic molecules calculated with 𝜔B97X-D4 using
different basis sets. For “q-vSZP (adaptive)”, the electric field dependency of the basis set is exploited by calculating
the polarizability numerically from dipole moment gradients and turned-on electric field. “q-vSZP (static)” indicates
the analytical polarizability calculation with a zero-field basis. The minimally augmented def2-QZVPP basis set434 is
considered as the reference.

perturbation calculations.
In Fig. E.2, this is explored for static dipole polarizabilities, of which the isotropic value is discussed (termed

polarizability in the following, for the sake of simplicity). For all competing basis sets and “q-vSZP (static)”,
the polarizability is calculated analytically via the CP-SCF method. In contrast, for “q-vSZP (adaptive)”, it is
determined via numerical differentiation of the dipole moment with respect to an external electric field. As
expected, the polarizability increases significantly with basis set size, i.e., MINIS+P ≈ STO-6G+P < q-vSZP
(static) < def2-SVP < vDZP < ma-def2-QZVPP.434 This trend is relatively insensitive to the type of (organic)
compound. On the other side, the adaptive q-vSZP basis yields significantly larger polarizabilities than
the conventional MBs. This is particularly true for unsaturated and conjugated molecules such as aromatic
systems (f.l.t.r.: 1-4) and a series of conjugated alkenes (7-9). For saturated alkanes (5-6), polarizabilities
with the adaptive q-vSZP basis are still larger than with the static approach, but the increase is minor. This
effect can probably be attributed to the CEH model, which allows for the physically correct field-induced
CT. As these CT effects are more dominant in conjugated systems than in saturated alkanes, the charges and,
consequently, the basis set changes more strongly for the former systems. The adaptive q-vSZP basis set
yields polarizabilities that are very close to the ma-def2-QZVPP values. This could provide new opportunities
for the calculation of higher-order molecular properties using MBs (e.g., in future SQM methods).

The analog comparison for dipole moments (expectation value with a fixed basis set vs. field-dependent
numerical derivative) is shown in Fig. 3 in Sec. III B of the SI. The MADs (with respect to ma-def2-QZVPP
dipole moments) amount to 0.39 a.u. for the adaptive approach and 0.08 a.u. for the static approach.
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E.5.4 Main-Group Thermochemistry

A primary target of the presented q-vSZP basis set is the replacement of standard MBs (e.g., STO-6G) in SQM
and potentially also in simplified DFT methods for thermochemical applications. We thoroughly evaluated
the q-vSZP performance at the DFT level together with competing basis sets on the well-known GMTKN5593

benchmark set. GMTKN55 is a comprehensive benchmark database for main group (thermo-)chemistry. All
data points correspond to relative (chemical) energies, avoiding the meaningless comparison of absolute
energies between different basis sets with different ECPs. The database is grouped into five categories,
ranging from basic properties and reactions of small and large molecules over barrier heights to inter- and
intramolecular NCIs. Over 1500 individual reactions with high-level CCSD(T)/CBS reference data are
included. However, a small number of the molecules in the database contain atoms heavier than calcium, for
which the MINIS basis set is unavailable. Therefore, we set up a reduced variant of GMTKN55 containing
only 1414 data points. In this modification, the subsets HAL59, HEAVYSB11, and RG18 contain fewer data
points, and the subset HEAVY28 is omitted. To level considerable differences in reaction energies throughout
the whole benchmark set, the GMTKN55 introduces a weighted error measure for MADs of the distinct
subsets, termed WTMAD-2, which is used in the following throughout to discuss the performance of the
different basis sets. The mean reaction energies, average reaction energies, and number of data points per
subset that enter the WTMAD-2 are modified accordingly in this reduced variant of the GMTKN55.

WTMAD-2 values for each subcategory are shown in Fig. E.3 (top) for 𝜔B97X-D4 employing the q-vSZP
and the competing basis sets vDZP, def2-SVP, STO-6+P, and MINIS+P. The overall WTMAD-2 values are
visualized in the bottom part of Fig. E.3. Results for the original MBs STO-6G and MINIS, as well as for
the q-vSZP basis after truncation of all polarization functions (“q-vSZ”), are given in Sec. I C of the SI.
STO-6G+P shows enormous errors for all subclasses of GMTKN55, indicating the (expected) severe amount
of BSIE. Interestingly, this is significantly less pronounced for MINIS+P, but the errors are still larger than
that for def2-SVP by at least a factor of two. The unpolarized pure STO-6G and MINIS basis sets exhibit
even slightly larger errors. The commonly employed DZ basis set def2-SVP suffers mainly from errors in the
NCIs, which is related to a large BSSE, as shown in Sec. E.5.2. The resulting WTMAD-2 of 13.0 kcal⋅mol−1

is still far away from the performance of the functional in a close-to-converged def2-QZVP basis set (3.7
kcal⋅mol−1, only shown in the bottom part of Fig. E.3). The vDZP basis set (corresponding to 𝜔B97X-3c
from Ref. [1]) is close to the def2-QZVP result, with a WTMAD-2 of 5.5 kcal⋅mol−1.

The here presented q-vSZP basis set lies between def2-SVP and vDZP with a WTMAD-2 of 12.6 kcal⋅mol−1,
outperforming STO-6G+P and MINIS+P and their unpolarized counterparts significantly. Especially for intra-
and even more so for intermolecular NCIs, q-vSZP is more accurate than def2-SVP, which is in agreement
with the above-mentioned BSSEs for the different methods, shown in Fig. E.2. def2-SVP introduces slightly
smaller errors than q-vSZP for basic properties, reactions, and barrier heights. This indicates that atom-in-
molecule-specific contraction coefficients cannot fully compensate for the missing second AO per orbital
shell. However, even for reactions of small molecules, the improvement by q-vSZP is still of about 8 to 13
kcal⋅mol−1 in WTMAD-2 compared to MINIS+P and STO-6G+P. These results underline the importance
of both (i) the molecular optimization of the basis set and (ii) the atom-in-molecule-adaptive contraction
coefficients. In any case, we emphasize that even a MB can keep up with the performance of standard DZ
basis sets such as def2-SVP concerning thermochemical properties.
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Figure E.3: Top: WTMAD-2 values for the subclasses of the GMTKN55 benchmark set in kcal⋅mol−1. Bottom: Overall
WTMAD-2 values for the whole GMTKN55 benchmark set in kcal⋅mol−1. The exact numbers for each basis set are
shown on top of each bar. The asterisk at “def2-QZVP” indicates that for the sets WATER27, G21EA, AHB21, and
IL16, additional diffuse functions were added (see Ref. [93] for details). Raw data required for the reproduction of the
figures can be found in the archive gmtkn55_data.zip in the SI.

E.5.5 Molecular Structures

Very efficient SQM and simplified composite DFT methods are heavily used for optimizing molecular
structures or reaction path searches.171,289,435 Therefore, the presented q-vSZP basis set, designed to provide
the basis for future methods of the types above, should yield accurate equilibrium geometries. This is checked
on the LMGB35 (experimental bond lengths for small, light-main group molecules)115,373 and CCse21
(high-level semi-experimental bond lengths and angles)375 benchmark sets.

For the q-vSZP basis, the correct derivative of the electronic energy with respect to the nuclear coordinates
involves a derivative with respect to the basis set itself (cf. Sec. E.4.1 and E.5.3). Since this has not yet been
implemented analytically, the gradient is obtained numerically via a finite-step size approach. For all other
basis sets, the analytical gradient is used.

The boxplots in Fig. E.4 display the statistical results, with a) showing deviations from reference bond
lengths for the combined CCse21 and LMGB35 benchmark sets. Refer to Sec. I D in the SI for the individual
benchmark sets. Furthermore, b) visualizes deviations from reference bond angles in the CCse21 benchmark
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Figure E.4: a) Bond length deviations from reference values in the combined LMGB35373 and CCse21375 geometry
benchmark sets. b) Deviations from reference angles in the CCse21375 benchmark set. The sketched boxplot under
Figure b) displays the utilized statistical boxplot definition. “IQR” corresponds to the interquartile range, the distance
between the upper and lower quartiles. All results refer to 𝜔B97X-D4 in combination with the respective basis set.
Raw data required for the reproduction of the figures can be found in the SI files ccse21.ods and lmgb35.ods.

set. The comparison of bond lengths in a) reveals that the vDZP basis set performs best, followed by def2-SVP.
All MBs exhibit more significant errors, but q-vSZP yields the lowest MAD compared to STO-6+P and
MINIS+P in both benchmark sets. For CCse21, q-vSZP even outperforms def2-SVP concerning the signed
ME, the MAE, and the ErrR. It is noteworthy that in contrast to the observations made for thermochemical
accuracy in Sec. E.5.4, STO-6+P produces lower (systematic) errors than MINIS+P, also indicated by lower
MEs. The error distributions for bond angles in b) follow the same trends as for the bond lengths with STO-
6G+P and MINIS+P exhibiting more significant deviations compared to def2-SVP and, more particularly, to
vDZP. However, similar to the CCse21 bond lengths, q-vSZP reaches the accuracy of def2-SVP, revealing
almost equal error statistics. The observations made for bond lengths and angles demonstrate the excellent
applicability of the q-vSZP basis set for molecular structure determination.

E.6 Summary and Conclusions

This work introduces an unprecedented general way of setting up an atom-in-molecule adaptive AO minimal
basis set. By adjusting the coefficients of the deeply contracted AOs based on the CN and pre-calculated
atomic charges, the AOs can “breathe”, i.e., expand or contract depending on the chemical environment. The
atomic charges required for this ansatz are efficiently calculated via a robust, novel EHT method termed
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“CEH”. Both the CEH method and the q-vSZP basis set are available for the whole periodic table up to radon
(currently excluding the lanthanides for the basis set because of the lack of appropriate ECPs). A key point of
the CEH method is the account of challenging CT effects exclusive to a QM treatment and not accessible
with, e.g., classical charge equilibration methods.

Besides the atom-in-molecule adaptive contraction coefficients, the q-vSZP basis set profits immensely
from molecular optimization of the entire basis set, the influence of which was proven earlier in Ref. [1]
at the vDZP level. In particular, the low amounts of BSSE of the q-vSZP basis set can be attributed to the
molecular optimization of the basis. The importance of the above-mentioned “breathing” effects depending
on the atomic partial charge was revealed by RDFs of the electron density for neutral and anionic single
atoms. This advantage was further investigated for numerical derivatives of static dipole polarizabilities, for
which q-vSZP by its field dependence circumvents the systematic underestimation of polarizabilities with
usual MBs.

Thermochemical and molecular structure benchmark sets convincingly demonstrate the practical advantage
of combining atom-in-molecule adaptive AOs with molecular optimization of the basis set. The q-vSZP basis
was applied with the state-of-the-art 𝜔B97X-D4 functional. For comparison, we set up polarized versions
of the standard MBs STO-6G and MINIS (“+P”). Additionally, we compared to the DZ basis sets vDZP
and def2-SVP. In all benchmark sets, the single-𝜁 (minimal) q-vSZP basis can compete with def2-SVP as
a standard DZ basis set. Thus, it is to some extent possible to emulate the flexibility of two AOs per shell
with a single AO that adapts to its environment. For the established GMTKN55 benchmark set, the q-vSZP
basis performs immensely better than STO-6G+P and MINIS+P. For molecular structures, q-vSZP provided
equally good and, in most cases, more accurate geometries than standard MBs.

We are currently working on implementing a modified (less polarized) q-vSZP basis in upcoming SQM
tight-binding methods. Additionally, we are exploring its usage in simplified DFT techniques, including
analytical basis set gradients. We plan to incorporate these highly efficient methods for large-scale QM
investigations into freely available QM packages in the near future.

E.7 Data Availability

The data supporting the findings of this study are available within the article and its supplementary material.
Any further information is available upon request from the authors.

E.8 Supplementary Material

In the supplementary material, we provide further statistics on the GMTKN55 benchmark results and on
training data for the CEH model, additional boxplot analyses for the distinct molecular structure benchmark
sets, the q-vSZP basis set and matching ECPs in tabulated form, a reference input and total energy output
(ORCA 5.0.4) for a molecular example, the optimized D4 parameters for all discussed small basis sets, an
analysis of the computational effort associated with the q-vSZP basis set, tests for the robustness of numerical
derivatives with the q-vSZP basis, and further investigations on the q-vSZP electron density and dipole
moments. The q-vSZP basis set (including the corresponding ECPs) is provided additionally in text file
format within the q-vSZP_basis.zip archive. All empirical parameters for the CEH method are provided
within the text file parameter_CEH.dat. The appropriate legend for the parameter file is also given in the SI.
Raw data for the GMTKN55 and molecular structure benchmark sets (LMGB35 and CCse21) are provided
as additional files.
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Figure F.1: Associated Table of Contents graphic for publication in The Journal of Physical Chemistry A.

F.1 Abstract

The Charge Extended Hückel (CEH) model, initially introduced for adaptive atomic orbital (AO) basis set
construction (J. Chem. Phys. 2023, 159, 164108), has been significantly revised to enhance accuracy and
robustness, particularly in challenging electronic situations. This revision includes an extension towards
𝑓-elements, covering actinoids with their 𝑓-electrons in the valence space. We present a novel non-iterative
approximation for the electrostatic contribution to the effective Fock matrix, which substantially improves
performance in polar or charged systems. Additionally, the training dataset for elements 𝑍 = 1 − 103 has
been expanded to encompass even more chemically diverse reference molecules as well as dipole moments
and shell populations in addition to atomic charges. It includes a greater variety of “mindless” molecules
(MLMs) as well as more complex electronic structures through open-shell and highly charged species. The
revised method achieves mean absolute errors for atomic charges 𝑞 of approximately 0.02 𝑒− for randomly
selected (mostly organic) molecules and 0.09 𝑒− for MLMs, outperforming both classical charge models and
established tight-binding methods. Furthermore, the revised CEH model has been validated through density
functional theory calculations with the updated adaptive q-vSZP AO basis set on common thermochemical
databases. Consistent with the extension of the CEH model, q-vSZP has also been variationally optimized
and tested for elements 𝑍 = 58 − 71 and 87 − 103. The original versions of both CEH and q-vSZP are now
considered deprecated.

F.2 Introduction

Semiempirical electronic structure methods have been experiencing a resurgence, as highlighted by a recent
special issue on this topic.215 Modern advancements aim to enhance accuracy, broaden applicability to
more elements and applications, and further improve efficiency for large systems.2,243,259,277,278,436 These
developments are significantly influenced by the rise of ML techniques, leading to potential mutual enhance-
ments.191,437–439

Many low-cost or SQM electronic structure methods are limited by their use of unpolarized minimal AO
basis sets.277,278 To address this issue, we recently introduced a DFT variationally optimized, atom-in-molecule
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adaptive MB set, which has been made available consistently for elements up to radon (𝑍 = 86, excluding the
lanthanides (Lns)) and termed q-vSZP.3,430 The key innovation is the introduction of a linear dependence for
the primitive Gaussian coefficients in a contracted AO on the effective atomic charge of the atom within the
molecule. Each symmetry-unique atom thus acquires specifically adapted basis functions. This approach
enables the “breathing” of the AOs with both the atomic charge (expansion/contraction for anionic/cationic
states) and the number of nearby bonded atoms within a molecule (“Pauli”-type contraction/expansion with
more/less neighbors). The q-vSZP basis underpins our current development of an improved TB SQM method,
intended as a successor to the established GFN2-xTB model278 (working title: g-xTB).

The atomic charges required for the q-vSZP basis setup are determined by the specially developed CEH
model, while coordination numbers are derived from the molecular geometry. During the g-xTB development,
we identified problematic cases for the CEH model addressed here through specific enhancements of the
extended Hückel-type Hamiltonian. Additionally, we extend the model to include the previously missing
elements 𝑍 = 87 − 103 (francium, radium, and the actinides), providing a consistent atomic charge model
and basis set for the first 103 elements. This extension is particularly notable, as (semi)empirical methods
and consistent Gaussian AO basis sets for the 7𝑠 and 5𝑓 elements are rare.440–448 Recent exceptions for the
former include the parameterization of DFTB as well as GFN-FF for 5𝑓 elements.449,450

Initially developed as an auxiliary tool for the charge-dependence of the q-vSZP basis set, the CEH model
has evolved into a stand-alone method for obtaining atomic charges from given Cartesian coordinates, element
ordinal numbers, total charge, and multiplicity of a molecular system. With this, CEH expands on a broad set
of charge models developed in the past based both on SQM404,451–453 and ML454–457 models. Very recently,
Pracht et al. have tested its performance for dipole moments and infrared intensities.458 Investigations of the
accuracy of atomic partial charges with more elaborated DFT and WFT methods have been conducted for a
long time319,459–462 and show that RSH-DFT in a large basis set is a suitable reference for (semi)empirical
approaches463. However, a plethora of charge partitioning schemes exist that could in principle be used to
generate reference charges from DFT calculations.453,460,464–468 In the current work, we have chosen the
Hirshfeld population analysis to assign atomic partial charges, because of its robust definition for large
and diffuse basis sets.469 In contrast, Mulliken population analysis282 exhibits strong basis set dependence,
limiting its application for larger than minimal basis sets. Further tests with the Minimal Basis Iterative
Stockholder (MBIS) method470, a variant of Hirshfeld analysis, yielded excessive polarization in certain
(rather common) cases, such as in zwitterionic aminobutyric acid (see SI for further details). Such strong
polarizations and in general missing robustness are unsuitable for the atom-in-molecule parameterization of
basis functions pursued here. Moreover, the moderate magnitude of the Hirshfeld charges compared to those
of other methods469 is not crucial here, as their contribution to the change of the AOs is scaled linearly on an
element-wise basis.

CEH atomic charges can be used in various applications, such as refining molecular cavities for solvation
free energy calculations471, enhancing the electrostatic energy in force fields189 or non-SCF tight-binding
schemes279, and accounting for the charge dependence of the dispersion coefficients.120,320 Moreover, CEH
charges could serve as drop-in replacements in 4th generation neural network potentials, which often rely on
classical charge equilibration schemes.404,454,472 A focus of this work shall be the general-purpose application
of CEH charges, independent of the q-vSZP basis set.

The paper is structured as follows: After revisiting the theory and detailing the Hamiltonian improvements,
we describe the changes in both the CEH parameter fit and the q-vSZP optimization, as well as the extensions
to newly considered elements for both parts. The quality of the CEH charges is assessed by comparison
to corresponding DFT data across a large and chemically diverse set of molecules, including MLMs and
actinide complexes. Lastly, an established range-separated density functional (𝜔B97X-D41,103,307,473) is used
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to benchmark the q-vSZP basis set on standard thermochemical data and realistic 𝑓-element applications.

F.3 Theory

F.3.1 Charge Extended Hückel Model

The CEH charge of atom 𝐴 is defined by the standard Mulliken population analysis282

𝑞CEH
𝐴 = 𝑍𝐴 −

AO
∑
𝜅∈𝐴

(PS)𝜅𝜅 , (F.1)

where 𝑍𝐴 denotes its effective core charge, S the overlap matrix, and P the density matrix. P is constructed
from the MO coefficient matrix C obtained by a single solution of the Roothaan-Hall-type equation127,128

HCEHC = SC𝝐. (F.2)

HCEH is an extended Hückel-type221 Hamiltonian, and 𝝐 are its eigenvalues. The valence MOs are occupied
based on the (restricted) Fermi-Dirac distribution at an elevated temperature to mimic the effect of static
correlation in systems with a small fundamental gap. Atom-centered Slater-type orbitals with empirical
exponents 𝜁𝑙 approximated by Stewart’s Gaussian expansions145 are used as the valence minimal AO basis
set. All elements use a consistent contraction depth of six primitives per AO. The Gaussian expansions for
Fr, Ra, and the actinides (principal quantum number (PQN) 7) are unavailable and thus substituted by the
corresponding PQN=6 AOs. For the Lns (𝑍 = 57 − 71), 𝑓-electrons are not explicitly treated in the valence
space (𝑓-in-core approximation).

In a major improvement over the previous CEH version, we introduce a pseudo-charge-dependent (first-
order) Hamiltonian contribution H1∗, which accounts explicitly for long-range electrostatic interactions:

HCEH = H0 + H1∗ (F.3)

Long-range interactions are missing in the extended Hückel-type (zeroth-order) Hamiltonian H0 due to
its exponential decay with the (diatomic frame scaled) atomic orbital overlap Ssc (see the SI for details on
the construction of H0). To avoid the self-consistent solution of equation F.2 necessary with an explicitly
charge-dependent SQM Hamiltonian, H1∗ uses a newly defined purely geometry-dependent approximation
for the local atomic charges 𝑞loc. For this, we distribute the total molecular charge 𝑄tot equally to all atoms in
the molecule and further assign partial charges based on the relative electronegativities 𝜒. As a measure, we
use the 𝜒-weighted coordination number CN𝜒, which is already part of the previous CEH Hamiltonian:3

𝑞loc
𝐴 = 𝑘𝑞,𝐴 ⋅ CN𝜒 + 𝑘tot ⋅ 𝑄tot

𝑛at
(F.4)

Here, 𝑘𝑞,𝐴 and 𝑘tot are element-wise and global parameters, respectively, and 𝑛at is the number of atoms. Note
that the sum of the local charges does not necessarily conserve the overall molecular charge. Instead, it aims
to reproduce only the relative magnitude of atomic charges in a local environment. While this is a crude
approximation, its local nature has the benefit that no artificial charge transfer can occur, which plagues more
sophisticated electronegativity-based charge equilibration models.3,120 With 𝑞loc, the standard expressions for
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the atom-resolved second- and onsite third-order tight-binding define the matrix elements of H1∗:

𝐻1∗
𝜅𝜆 = −1

2 (
𝑛at

∑
𝐶

𝑞loc
𝐶 (𝛾𝐴𝐶 + 𝛾𝐵𝐶) + 𝛤𝐴(𝑞loc

𝐴 )2 + 𝛤𝐵(𝑞loc
𝐵 )2) 𝑆𝜅𝜆 ∀𝜅 ∈ 𝐴, 𝜆 ∈ 𝐵 (F.5)

The distance dependence of the second-order term is described by the standard, screened Coulomb-type
Mataga-Nishimoto-Ohno-Klopman formula226,280,474

𝛾𝐴𝐵 = 1
𝑅𝐴𝐵 + 𝜂−1 (F.6)

with the interatomic distance 𝑅𝐴𝐵 and the arithmetic average 𝜂 of the Hubbard parameters 𝑈𝐴 and 𝑈𝐵. 𝑈𝐴 and
its derivative 𝛤𝐴 are treated as element-wise fit parameters. For optimization of the 15 (𝑠𝑝-block element), 19
(𝑠𝑝𝑑-block element), or 23 (𝑠𝑝𝑑𝑓-block element) element-wise empirical parameters and 7 global parameters
employed in the CEH model, see the following chapters.

F.3.2 The q-vSZP Basis

Environment Dependency of the q-vSZP Basis Functions

The q-vSZP basis set, as described in Ref. [3], operates on the simple principle that the contraction coefficients
of the primitive Gaussian functions depend on the chemical environment of each atom. Thus, every symmetry-
unique atom in a molecule obtains an individual basis, enabling the AOs to “breathe”. Since this fundamental
concept remains unchanged in the revised version presented here, only a brief overview of the theory will be
provided (for a comprehensive overview, refer to Ref. [3]).

Eq. F.7 defines a contracted Gaussian-type AO 𝜙𝜅,𝐴𝑖
as a linear combination of 𝑁pr primitive Gaussian

functions 𝜒𝜆,𝐴 with the contraction coefficients 𝑐𝜆,𝐴𝑖
. Here, 𝐴𝑖 is a symmetry-unique atom of element 𝐴.

𝜙𝜅,𝐴𝑖
(𝜁𝜅, 𝑞eff

𝐴𝑖
) =

𝑁pr

∑
𝜆∈𝜅

𝑐𝜆,𝐴𝑖
(𝑞eff

𝐴𝑖
)𝜒𝜆,𝐴(𝜁𝜆,𝐴) with (𝐴𝑖 ∈ 𝐴) . (F.7)

The radial extent of the AO can be changed by linear variation of the contribution of each primitive function in
the deep contraction. Note that the exponents 𝜁𝜆,𝐴 of each primitive Gauss function 𝜒𝜆,𝐴 remain unchanged
between atoms of the same element. The dependency of the contraction coefficients 𝑐𝜆,𝐴𝑖

of atom 𝐴𝑖 on its
effective atomic charge 𝑞eff

𝐴𝑖
is linear:

𝑐𝜆,𝐴𝑖
(𝑞eff

𝐴𝑖
) = 𝑐0,𝜆,𝐴 + 𝑐1,𝜆,𝐴 ⋅ 𝑞eff

𝐴𝑖
, (F.8)

where 𝑐0,𝜆,𝐴 is the base (free atom) contraction coefficient and 𝑐1,𝜆,𝐴 is the linear coefficient for the primitive
function 𝜒𝜆,𝐴. The effective charge descriptor 𝑞eff

𝐴𝑖
consists of atomic charge (linearly and quadratically) and

CN-dependent parts as well as an additional cross-term according to

𝑞eff
𝐴𝑖

(𝑞𝐴𝑖
, CN𝐴𝑖

) = 𝑞CEH
𝐴𝑖

+ 𝑘1,𝐴 ⋅ (𝑞CEH
𝐴𝑖

)
2

+ 𝑘2,𝐴 ⋅ √CN𝐴𝑖
+ 𝑘3,𝐴 ⋅ CN𝐴𝑖

⋅ 𝑞CEH
𝐴𝑖

. (F.9)

The square root of the CN is taken in the third term to damp large values appearing in dense metal-containing
systems. 𝑘𝑥,𝐴 denote three element-specific prefactors that were variationally optimized together with the
coefficients 𝑐0,𝜆,𝐴 and 𝑐1,𝜆,𝐴. The atomic charges 𝑞CEH

𝐴𝑖
are obtained from the CEH model, and CN is the
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error function-modified coordination number from Ref. [2]. Thus, the effective contraction coefficient 𝑐𝜆,𝐴𝑖

reduces to 𝑐0,𝜆,𝐴 for a neutral atom (𝑞CEH
𝐴𝑖

= 0, CN𝐴𝑖
= 0).

The development of the analytical gradient in the context of DFT and SQM calculations for the now
implicitly nuclear position-dependent basis set contraction (including the necessary 𝜕𝑞CEH

𝜕𝑅 analytical derivative)
is currently underway in our laboratory and will be described separately.

Basis Set Construction and Extension for Lanthanides, Francium, Radium, and the Actinides

The main design principles of the first q-vSZP version were maintained:

• Deep contraction (a large number of primitive functions) of each AO. This generally reduces BSIEs
despite having only one basis function per AO shell, i.e., a MB. Additionally, a large number of
primitive functions allows for greater flexibility within the concept of adaptive primitive coefficients.

• Variational optimization of all basis set parameters in Eqs. F.7, F.8, and F.9 in both atomic and molecular
calculations. See the Technical Details section below for an in-depth explanation of the optimization
process, and Refs. [1, 3] for a more extensive perspective on the background of molecule-optimized
basis sets.

• Consistent large-core ECPs leading to a valence-only basis set. This makes the q-vSZP basis compatible
with typical SQM methods that usually consider valence electrons only.

While the fundamental construction principle of deeply contracted basis functions remains the same, the
specific contraction scheme varies for some elements in the revised version (see Tab. F.1, changes in bold
letters). Most importantly, this work presents an extension for the lanthanides (Z=58–71), francium, radium,
and the actinides (89–103) (see Tab. F.2), which have gained increasing importance also in theoretical studies
in recent years.477 The third design principle of a valence-only basis set is mostly maintained; however, the
q-vSZP basis for the added elements relies on standard small-core ECPs instead of large-core ECPs. This
decision was made because robust large-core ECPs for these elements were unavailable, according to some
initial tests. Instead, we chose standard Stuttgart-Cologne small-core ECPs140,142,475,476 and added semi-core
basis functions for the remaining electrons aside from the valence shells. These semi-core functions emulate
a larger-core ECP but are not adaptive to the environment, i.e., the second set of coefficients 𝑐1,𝜆,𝐴 is zero
for all non-valence functions. This allows for the optimization of a valence basis set without the need for
matching ECPs and reduces the number of parameters in the basis set optimization. In novel SQM methods,
the semi-core basis functions can be discarded, resulting in a consistent adaptive q-vSZP basis set for the
valence region. Similar to the first q-vSZP version, polarization functions on first- and second-row elements
might also be dropped for specific SQM methods to reduce the number of parameters and the computational
effort.

F.4 Technical Details

F.4.1 General

† Modified d-f projector for B and F, see Ref. [1] for details.
‡ The ECP was taken from the TURBOMOLE294,295 basis set library, with the ℎ projector being removed from the published ECP.
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Table F.1: Primitive contraction schemes and ECPs of the q-vSZP basis set for all elements up to radon (except for the
Lns). The contraction scheme corresponds always to (𝑥s𝑦p𝑧d) → [1s1p1d] (for H and He: [1s1p]). Columns three and
four indicate the type of effective core potential used and the corresponding number of core electrons. Changes with
respect to the first q-vSZP version are denoted in bold letters.

element prim. functs. ECP type # core el.
H (8s3p) - -
He (8s2p) - -
Li (5s5p2d) ECP-2-SDF425 2
Be (6s4p2d) ECP-2-SDF425 2
B (6s5p2d) ECP-2-MWB141† 2
C–O (6s6p3d) ECP-2-MWB141 2
F,Ne (6s6p2d) ECP-2-MWB141† 2
Na (4s4p2d) ECP-10-SDF425 10
Mg (4s3p2d) ECP-10-SDF425 10
Al (5s4p2d) ECP-10-MWB141 10
Si (5s4p2d) ECP-10-MWB141 10
P–Ar (5s5p2d) ECP-10-MWB141 10
K (4s3p2d) ECP-18-SDF425 18
Ca (4s3p3d) ECP-18-SDF425 18
Sc (5s2p6d) CRENBS348 18
Ti-Cu (5s2p6d) CRENBS348 18
Zn (5s3p2d) ECP-28-SDF426 28
Ga (5s4p2d) ECP-28-MWB141,349 28
Ge-Kr (6s5p2d) ECP-28-MWB141,349 28
Rb (4s3p2d) ECP-36-SDF425,427 36
Sr (4s3p3d) ECP-36-SDF425,427 36
Y (5s2p6d) CRENBS144 36
Zr–Mo,Ru–Ag (5s3p6d) CRENBS144 36
Tc (5s2p6d) CRENBS144 36
Cd (5s3p2d) ECP-46-SDF426 46
In (5s4p2d) ECP-46-MWB141,349 46
Sn–Xe (6s5p2d) ECP-46-MWB141,349 46
Cs (4s3p2d) ECP-54-SDF427 54
Ba (4s3p3d) ECP-54-SDF427 54
La (4s2p5d) CRENBS351 54
Hf (4s3p5d) CRENBS351 68
Ta–Au (5s3p5d) CRENBS351 68
Hg (5s3p2d) ECP-78-SDF428 78
Tl (5s4p2d) ECP-78-MWB354 78
Pb (5s5p2d) ECP-78-MWB354 78
Bi–Rn (6s5p2d) ECP-78-MWB354 78
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Table F.2: Contraction schemes and ECPs of the q-vSZP basis set for the Lns, Fr, Ra, and the actinides (Ans). Columns
five and six indicate the type of effective core potential used and the corresponding number of core electrons.

element contraction scheme ECP type # core el.
Ce,Pm (23s19p14d7f) [3s3p2d1f] {8/8 8/7/7 7/4/7/7} ECP-28-MWB140 28
Pr,Nd,Dy,Er (23s19p13d7f) [3s3p2d1f] {8/8 8/7/7 7/4/6/7} ECP-28-MWB140 28
Sm,Eu (23s18p12d7f) [3s3p2d1f] {8/7 8/7/6 7/4/6/7} ECP-28-MWB140 28
Gd,Ho,Yb (23s18p13d7f) [3s3p2d1f] {8/7 8/7/7 7/4/6/7} ECP-28-MWB140 28
Tb (23s18p14d7f) [3s3p2d1f] {8/7 8/7/7 7/4/7/7} ECP-28-MWB140 28
Tm (23s19p12d7f) [3s3p2d1f] {8/8 8/7/6 7/4/6/7} ECP-28-MWB140 28
Lu (23s18p13d7f) [3s3p2d1f] {8/8 8/6/7 7/4/6/7} ECP-28-MWB140 28
Fr (18s18p4d) [2s2p1d] {9/9 9/9/4} ECP-78-MDF475‡ 78
Ra (18s18p4d) [2s2p1d] {9/9 9/9/4} ECP-78-MDF476‡ 78
Ac,Pa (22s19p12d7f) [3s3p2d1f] {8/8 7/7/6 7/4/6/7} ECP-60-MWB142 60
Th (23s19p12d7f) [3s3p2d1f] {8/8 8/7/6 7/4/6/7} ECP-60-MWB142 60
U–Am (23s18p13d7f) [3s3p2d1f] {8/7 8/7/7 7/4/6/7} ECP-60-MWB142 60
Cm–Es,Md,No (23s17p13d7f) [3s3p2d1f] {8/7 8/6/7 7/4/6/7} ECP-60-MWB142 60
Fm,Lr (22s17p13d7f) [3s3p2d1f] {8/7 7/6/7 7/4/6/7} ECP-60-MWB142 60

The CEH charge model is implemented in the tblite program package, accessible via the corresponding
GitHub repository (github.com/tblite/tblite).

All DFT calculations for this work were conducted with the ORCA quantum chemistry package in version
5.0.4 or 6.0.0.309,357 If not stated otherwise, the DFT functional for all q-vSZP comparisons is 𝜔B97X-
D41,103,307,320. The RI approximation for the electronic Coulomb energy with the large universal auxiliary
basis sets by Weigend358 as well as the seminumerical COSX178,179 were used throughout. For numerical
derivatives, high convergence thresholds (keyword: VeryTightSCF) and grid settings (keyword: DefGrid3)
were applied to exclude numerical noise to the extent possible. The D4119,120,320 parameters employed with
the (revised) q-vSZP basis set were taken from the original publication in Ref.3.

Like in the first version, geometry optimizations are conducted with numerical energy derivatives, fully
adapting the basis set for each distorted geometry. All numerical derivatives with respect to nuclear coordinates
or external electric fields were conducted with the help of an in-house Python code, which is publicly
available within the corresponding GitHub repository429 (github.com/grimme-lab/NumgradPy). Geometry
optimizations were conducted with the ANCopt optimizer in xtb259,278,478, driving the single-point and
gradient calculations by ORCA. The program for automatic generation of the ORCA input files with the atom-
in-molecule adaptive basis set is publicly accessible on GitHub (github.com/grimme-lab/qvSZP).430 It can
easily be modified to generate input files for other quantum chemistry packages as well.

F.4.2 Optimization of CEH Parameters

The parameters of the revised CEH model presented in this work were determined by a least-squares fit to
Hirshfeld317 charges at the 𝜔B97M-V104/def2-TZVPPD149 (def-TZVP479 for actinides) level of theory. Like
in the first version, dipole moments and bond orders were additionally included in the parameter fit to ensure
robustness and stability. A new ingredient to the fit is the size of the fundamental gap, which is crucial in light
of the substantially increased electronic temperature (4000 K compared to 300 K in the CEH-v13). While the
increased temperature improves electronically complicated systems, a small fundamental gap can result in
artificial CT. Since CEH contains no non-local exchange to open the HOMO-LUMO gap naturally, a dynamic
penalty is applied to the gap. For complicated systems (e.g., open-shell radicals), where the reference method
has a small gap, a low weight in the fit-loss function is placed on the gap, while for simple systems, the large
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Figure F.2: Relative final RMSEs of the parameter fit in color-coded form over the whole periodic table. The RMSEs have
been evaluated against Hirshfeld317 charges, molecular dipole moments, Wiberg bond orders480,481, and fundamental
gaps (see main text) at the 𝜔B97M-V104/def2-TZVPPD149 (def-TZVP479 for actinides) level of theory. The parameters
for the elements “HCNO” as well as for the Lns and Ans were obtained in one common parameter fit.

gap has to be reproduced more closely. Beyond atomic charges 𝑞, which remain the primary target property,
shell populations and dipole moments were also utilized as training data in order to obtain a physically well
founded model. For the parameter fit of the revised CEH version presented here, a stronger focus has been
put on electronically complex situations: “Mindless” molecules (see the corresponding Results section and
Ref. [301] and [2] for details), systems with high absolute charges of up to +4/-4, and open-shell structures
with unusual spin and oxidation states.

To determine the relative accuracy between different elements, Fig. F.2 compares the final RMSEs of the
parameter fit throughout the whole periodic table. Since the parameters for the elements H, C, N, and O
(“HCNO”), the lanthanides, and the actinides were obtained in one common parameter fit each, they appear
as a single color in the figure. The relative accuracy of CEH with respect to the DFT reference corresponds to
chemical intuition: Non-metallic elements that form defined covalent bonds are easier to describe than metals
and heavier atoms. Still, for early 3d transition metals, the fit RMSE is of the same order of magnitude, being
only 4-5 times higher than for HCNO. This is in line with the findings during the development of our latest
tight-binding method, PTB,2 and thus underlines the robustness and consistency of the CEH model.

F.4.3 Optimization of the q-vSZP Basis Set

The parameters 𝜁𝜆,𝐴, 𝑐0,𝜆,𝐴, 𝑐1,𝜆,𝐴, 𝑘1,𝐴, 𝑘2,𝐴, and 𝑘3,𝐴 were optimized variationally, similarly to the first
version of q-vSZP. See Ref. [3] for details of the optimization process. An important difference from the
first version is the use of reference DFT charges at the 𝜔B97M-V104/def2-TZVPPD149 Hirshfeld317 level for
optimizing the basis set instead of the CEH charges used during application. This has two advantages: First, the
optimization process becomes independent of changes in the CEH model, e.g., avoiding re-parameterizations
due to changed CEH parameters. Second, since the basis set parameters were optimized with reference DFT
charges, rare cases where the CEH charges are qualitatively incorrect do not affect the basis set optimization.
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Table F.3: Statistical metrics for the evaluation of atomic partial charges of randomly selected molecules from
the PubChem database with respect to DFT reference charges (see the main text for technical details). Outliers
(∣𝑞𝑖,𝑗 − 𝑞𝑖,DFT∣ > 1.0) were not taken into account. Table entries that correspond to the least accurate result are given in
italic letters, bold letters denote the most accurate results.

Method PCC SRCC MAE RMSE # outliers
EEQ 0.879 0.873 0.089 0.109 1

EspalomaCharge 0.788 0.743 0.194 0.251 92
CEH-v1 0.961 0.922 0.024 0.036 1
CEH-v2 0.963 0.895 0.019 0.027 1

GFN1-xTB 0.947 0.919 0.063 0.110 1
GFN2-xTB 0.971 0.945 0.037 0.063 1

The optimization of the q-vSZP for the new elements (Lns, Fr, Ra, and Ans) requires a good choice of the
initial starting point for the basis set optimization. Since small-core ECPs are used, a set of orthogonal
coefficients is constructed from an initial fully decontracted calculation of the atom. During the optimization,
the orthogonality between the semi-core (later excluded in the SQM development) and valence basis functions
is enforced by a penalty calculated from their overlap. The new basis set, along with the ECPs used, is
provided in the SI and within the program in Ref. [430], enabling single-point energy calculations with
ORCA309,357.

F.5 Results and Discussion

The main goal of this work is to provide a consistent and reliable charge model as well as an adaptive minimal
basis set for the whole periodic table (𝑍 ≤ 103). A particular focus lies on the behavior of the newly included
𝑓-elements. In the following, CEH-v2 and q-vSZP-v2 denote the updated version of the original CEH and
q-vSZP (denoted CEH-v1 throughout the manuscript, respectively).

F.5.1 Atomic Partial Charges

Randomly Selected Molecules from the PubChem Database

Realistic test cases outside the fitting regime are essential to validate the robustness and accuracy of novel
methods. This applies not only to modern ML-FFs192 but also to SQM methods, such as the CEH model.
Here, we chose to fetch a test set of random molecules from the PubChem database415; see also Ref. [2] and
[482] for further examples. The random selection of the molecules and preparation of their 3D structure is
conducted via two Python scripts that are publicly available483,484: First, random numbers between 1 and
107 serving as PubChem Compound Identification integers for unique chemical structures are generated.
After downloading the structures, they are converted from 2D to 3D, if necessary. Lastly, the geometries are
optimized on the GFN2-xTB level of theory.278 The final set of 916 random molecules and a detailed register
of its composition is included in the SI.

For comparison, alternative methods for generating atomic partial charges were tested on the same dataset.
In addition to the classical EEQ120,402–404 and SQM methods – GFN1-xTB277 and GFN2-xTB278 – a hybrid
physical/artificial neural network (ANN)-based approximation to AM1-BCC451 charges, called Espalo-
maCharge455, was evaluated. For this method, only neutral molecules were included, as specifying the
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Figure F.3: Comparison of the correlation of atomic partial charges calculated with EEQ120 (yellow), EspalomaCharge455

(green), GFN1-xTB277 (purple), and GFN2-xTB278 (red) versus CEH-v2 (blue) with DFT Hirshfeld317 charges at the
𝜔B97M-V104/def2-TZVPPD149 level of theory. Additionally, the first CEH version (“CEH-v1”) is also included for
comparison. The raw data set comprises 916 molecules with 43240 atomic charge data points 𝑖. Outliers (∣𝑞𝑖,𝑗 − 𝑞𝑖,DFT∣ >
1.0) as well as hydrogen charges were omitted. The dashed lines correspond to a linear regression of the data. For
the scatter plot, data points for which all compared methods provided charges within a range of 0.1 were not included
graphically to improve readability, by avoiding a large number of points very close to the 1:1 line. Thus, a data point is
only plotted if the following condition holds: max ∣𝑞𝑖,𝑗 − 𝑞𝑖,𝑘∣ ≥ 0.1, with 𝑗 and 𝑘 being the different charge predictions
in the plot.

formal charge was not possible. Additionally, molecules that encountered technical errors with Espalo-
maCharge were excluded from the comparison. Throughout the study, Hirshfeld317 charges obtained from
𝜔B97M-V104/def2-TZVPPD149 calculations were used as the reference.

The correlation of atomic partial charges with the reference DFT charges is visualized in Fig. F.3. To
simplify the visualization, each figure contains the CEH-v2 partial charges and those of one of the competing
methods listed above. In addition, statistical metrics for the accuracy of the partial charges are provided in
Tab. F.3. The CEH-v2 model (blue) clearly outperforms the EEQ model (yellow) on the test data. Since both
models (EEQ as implemented in Ref. [120]) were parameterized on DFT/triple-𝜁 Hirshfeld charges, the better
performance of CEH-v2 can be purely assigned to its more sophisticated construction. However, it should be
noted that EEQ is faster by a factor of about ten in medium-sized systems as it requires only the solution of a
linear system of equations in the number of atoms compared to the diagonalization in the number of AOs for
CEH. The preceding version, CEH-v1, is only moderately less precise, which is unsurprising given that the
objective of the revised version was to enhance robustness for challenging cases and expand applicability
rather than improving the accuracy.

The hybrid physical/ANN approach “EspalomaCharge” yields only mediocre accuracy on the test data
with a significantly lower Pearson correlation coefficient (PCC) of about 0.79 compared to 0.96 with both
versions of the CEH model. In part, this can be attributed to the different targets of emulating AM1-BCC
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and not Hirshfeld317 charges. However, Spearman’s rank correlation coefficient (SRCC), which should be
less susceptible to absolute errors or shifts, is also lower by a similar degree (0.74 vs 0.90). Furthermore,
EspalomaCharge yields 87 outliers excluded from the statistical analysis and the plot, while CEH-v2 led
to only one outlier. In contrast, the SQM methods GFN1- (purple) and GFN2-xTB (red) exhibit results
comparable to CEH-v2. While the CEH-v2 MAE and RMSE are lower by a factor of about two to three
compared to the xTB methods, the SRCC is slightly closer to unity for both GFN1- and GFN2-xTB. This
aligns with the difference in construction between xTB and CEH: The self-consistent xTB charges lead to
more consistent trends, while CEH yields lower absolute errors due to the direct fit on Hirshfeld charges. An
observation that holds for all compared methods (yet less pronounced for GFN2-xTB) is the overestimation
of absolute charges (for both positive and negative charges) compared to the DFT Hirshfeld charges, which is
largely the reason for the higher absolute errors. However, this might also be due to the differences in charge
partitioning, as xTB provides Mulliken charges which are generally larger than Hirshfeld charges.

Actinoid Complexes

While for organic molecules consisting of elements 𝑍 ≤ 18, many different methods for atomic partial charge
assignment are available, this is not the case for the An series of elements, i.e., for 89 ≤ 𝑍 ≤ 103. Especially
empirical approaches such as charge equilibration, FF, and SQM methods are rare due to the complex
electronic structure and high effort of individually parameterizing each element. Recently, the EEQ model
used for the D4 dispersion correction has been extended to the An series based on a large set of automatically
generated An complexes (“AcQM” data set, see Ref. [320]), coming with 𝜔B97M-V104/ma-def-TZVP434

(def2-TZVPP139 for non-An atoms) Hirshfeld317 charges. Out of the 2531 structures, 1282 are realistic
An complexes, and 1249 are small so-called “mindless” complexes. The latter were generated by random
placement of 1-8 atoms around a single An atom and subsequent geometry optimization (see Ref. [320] for a
more detailed explanation). Since the CEH-v2 model is also available for all elements 𝑍 ≤ 103, the accuracy
of atomic charges of both methods in comparison to reference DFT values is assessed on AcQM in Fig. F.4,
with the statistical evaluation in Tab. F.4. For all structures, only the charge of the An atom was taken into
account.

Both methods agree well with the reference charges, yielding almost identical MAEs and RMSEs of
0.2 and 0.3 e−, respectively. This is particularly noteworthy as the classical EEQ model does not treat the
electronic structure but only distributes charges over the molecule based on electronegativities and three
further empirical parameters. In contrast, the CEH-v2 model explicitly treats the valence electrons (including
the 𝑓-shell), which is expected to improve the consistency of the atomic charges. This is also observed for the
PCCs and SRCCs, which significantly improve with CEH-v2. Visual inspection of the regression shows that
CEH-v2 provides almost no systematic error, whereas EEQ underestimates the absolute value of the charges.
The latter is not in agreement with the previous analysis on randomly selected organic molecules, for which
EEQ overestimated the magnitude of the partial charges. The number of outliers with ∣𝑞𝑖,𝑗 − 𝑞𝑖,DFT∣ > 1.0
is slightly higher for CEH-v2 compared to the EEQ model. The reason for the distinctly higher CEH-v2
error measures for the actinides in comparison to the randomly selected molecules might be both i) the fact
that only charges of the electronically more complex actinide atoms were considered and ii) the unusual and
partially artificial multiplicity and oxidation state assignments in the AcQM data set. The performance for
the lanthanide series has been assessed in the original publication of the CEH model and is similar to the
actinides.

124



Appendix F Appendix: Advanced Charge Extended Hückel (CEH) Model and a Consistent Adaptive
Minimal Basis Set for the Elements Z=1–103

Figure F.4: Comparison of the correlation of atomic partial charges calculated with EEQ120,320 (yellow) versus CEH-v2
(blue) with DFT Hirshfeld charges at the 𝜔B97M-V104/ma-def-TZVP level of theory. Only the actinide charges 𝑖 (i.e.,
charges for atoms with 𝑍 > 88) were taken into account. Outliers (∣𝑞𝑖,𝑗 − 𝑞𝑖,DFT∣ > 1.0) were omitted. The dashed lines
correspond to a linear regression of the data. For the scatter plot, data points for which all compared methods provided
charges within a range of 0.1 were not included graphically to improve readability, by avoiding a large number of points
very close to the 1:1 line. Thus, a data point is only plotted if the following condition holds: max ∣𝑞𝑖,𝑗 − 𝑞𝑖,𝑘∣ ≥ 0.1,
with 𝑗 and 𝑘 being the different charge predictions in the plot.

Table F.4: Statistical metrics for the evaluation of atomic partial charges of actinide complexes with respect to DFT
reference charges (see the main text for technical details). Outliers (∣𝑞𝑖,𝑗 − 𝑞𝑖,DFT∣ > 1.0) were not taken into account.

Method PCC SRCC MAE RMSE # outliers
EEQ 0.764 0.637 0.231 0.289 32

CEH-v2 0.848 0.738 0.241 0.308 48

“Mindless” Molecules

A recently revived approach for evaluating the performance for previously unseen systems involves the use of
so-called “mindless” molecules (MLMs).2,301,485 To facilitate their routine generation, we developed a new
Python package, “MindlessGen,” which enables the efficient and highly customizable creation of MLMs.486

Further details on the software and in-depth analyses of these molecules will be presented elsewhere.
We generated a small set of five MLMs with diverse atomic compositions and compared the atomic partial

charges of selected atoms derived from EEQ and CEH-v2 with reference DFT charges at the 𝜔B97M-V/def2-
TZVPPD level. All molecules are of closed-shell character and carry a net charge ranging from -2 to 2.
Fig. F.5 illustrates the distinct charges for each molecule and selected atom. Consistent with the previous
analyses on randomly selected mostly organic molecules, the EEQ model overestimates the charges. However,
it is noteworthy that the classical charge equilibration method successfully captures basic trends and the
correct sign of the atomic partial charge. In the examined cases, CEH-v2 yields absolute errors ranging from
0.02 to 0.17 𝑒−, which exceed the statistical error measures for the chemically more meaningful, randomly
selected molecules but remain within a comparable range. This underscores the value of using a chemically
diverse training set to improve the method’s robustness.

The trend observed in Fig. F.5 is further supported by the statistical comparison of 100 distinct MLMs in
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Figure F.5: “Mindless” molecules with atomic partial charges for selected atoms, generated with 𝜔B97M-V/def2-
TZVPPD (“DFT”), EEQ, and CEH-v2. The black element symbol indicates the atom for which the partial charge is
examined. Molecular structures and atomic partial charges for all molecules are contained in the SI.

Figure F.6: Comparison of the correlation of atomic partial charges calculated with EEQ120 (yellow) and GFN2-xTB278

(red) versus CEH-v2 (blue) with DFT Hirshfeld317 charges at the 𝜔B97M-V104/def2-TZVPPD149 level of theory. The
dashed lines correspond to a linear regression of the data. The raw data set comprises 100 MLMs with 944 atomic
charge data points. For a single molecule, the GFN2-xTB SCF did not converge and the corresponding GFN2-xTB
charge entries were excluded. Except for these charges, no data points were omitted. The mindlessgen.toml file
defining the generated molecules is provided in the SI.

Table F.5: Statistical metrics for atomic partial charges of 100 MLMs with respect to DFT reference charges (see the
main text and the SI for technical details).

Method PCC SRCC MAE RMSE
EEQ 0.876 0.857 0.150 0.192

GFN2-xTB 0.874 0.881 0.124 0.167
CEH-v2 0.946 0.942 0.077 0.108
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Figure F.7: Atomic partial charge of sodium in LiNa depending on the inter-atomic distance. The equilibrium distance
of 2.87 Å was determined by optimization with 𝜔B97X-3c1. For 𝜔B97M-V104, the def2-TZVPPD basis set149 was
employed.

Fig. F.6 (technical details are given in the SI). In addition to the EEQ model, we compared the results with
GFN2-xTB. The CEH-v2 model produces significantly fewer data points with large deviations from the 1:1
line than both EEQ and GFN2-xTB. This is reflected in the correlation measures with respect to the reference
charges listed in Tab. F.5: EEQ and GFN2-xTB exhibit almost identical SRCC and PCC values, which are
distinctly lower than with CEH-v2. Notably, the simpler EEQ model comes close to the performance of the
self-consistent GFN2-xTB. The same trend is observed for the absolute deviations measured by the MAE
which is almost halved compared to the other methods. Further statistical measures for GFN1-xTB and
CEH-v1 and technical details are given in the SI.

Systems Susceptible to Artificial Charge Transfer

Artificial CT is a general problem of empirical charge models and even low-level DFT calculations.70,487

The development of the CEH model was even prompted initially by artificial CT observed with the EEQ
model.3 Here, the dissociation of non-covalently bound subsystems with a large difference in electronegativity
would lead to significant CT (i.e., CH4 and O2 transfer 0.17𝑒− if calculated as a complex). Analogously,
ammonium fluoride does not dissociate heterolytically with EEQ (𝑞F = −0.33 at a distance of 6 Å). CEH
alleviates this problem by introducing the energy levels of a Hamiltonian populated by the Aufbau principle.
Thus, both CEH and DFT provide an almost integer negative charge on the fluorine atom in NH4F at the
same distance. However, the explicit electronic structure poses a new challenge if the electronic levels
are energetically close, which is common during homolytic bond cleavage. In QM methods, this situation
can lead to convergence failures in SCF-based approaches and artificial CT to the lower energy level in
single-diagonalization approaches.

During the development of a new TB method (working title: g-xTB), we observed the latter issue in
CEH-v1: For a diatomic system like LiNa, artificial CT occurs from the slightly higher lying Li valence
2s level to the sodium, leading to the unphysical heterolytic dissociation into Li+ and Na– above 5.0 Å.
As apparent from the gray lines in Fig. F.7, the increasing CT (solid line) runs in parallel with the quickly
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Figure F.8: Correlation of experimental Hammett parameters for para-substitution (𝜎𝑝) from Ref. [488] and [489] with
CEH-v2, EEQ, and GFN1-xTB atomic charges of the carbon atoms (𝑞𝑝) in para-position. The dashed line represents a
linear regression fit with a confidence interval of 95 % in light gray.

diminishing fundamental gap (dashed line) at larger distances (0.02 eV above 5 Å). One approach to mitigate
this issue in a single-diagonalization approach is an increased electronic temperature, which “smears out”
the occupation over the energy levels. For close-lying levels, Fermi statistics at a sufficiently high electronic
temperature (4000 K for CEH-v2) yields an almost equal population of both levels. The increased electronic
temperature in CEH-v2 (blue lines) limits the CT to < 0.2𝑒− in the dissociation limit, even though the
HOMO-LUMO gap is even smaller than in CEH-v1 (0.01 eV at 10 Å). Beyond the electronic temperature,
CEH-v2 uses an explicit electrostatics term and a slightly more diffuse basis set to delay the decay of the
off-diagonal Hamiltonian matrix elements. This leads to a larger and more slowly decaying fundamental gap
and also a limitation of artificial CT at shorter distances (< 0.1𝑒− below 5Å). As expected, both EEQ and
𝜔B97M-V correctly dissociate also with an equal population at lithium and sodium.

Prediction of Experimental Hammett Parameters with CEH Charges

Linear free energy relationships (LFERs) have long been a cornerstone of physical organic chemistry, providing
a quantitative framework to relate substituent electronic effects with chemical reactivity. These relationships,
particularly in the context of the Hammett equation, allow for the correlation of reaction rates and equilibria
with substituent constants, providing insights into mechanistic pathways. Traditionally, these substituent
constants (Hammett parameters such as 𝜎𝑝) have been derived from empirical data, yet modern computational
methods offer an alternative path to capture these effects. In recent work, Luchini and Paton benchmarked
the correlation of various computational charge schemes and other computationally derived properties with
experimental Hammett parameters.488 In Fig. F.8, we employ CEH-v2 atomic charges to demonstrate its
capability to predict substituent effects on reactivity in aromatic systems using the same experimental data.

The squared PCC 𝑅2 amounts to 0.73, which is very close to the published results for DFT Hirshfeld317

and GFN1-xTB277 Mulliken282 charges of 0.92 and 0.79, respectively. EEQ120,404 yields a distinctly lower
𝑅2 of 0.57. The robust performance of CEH-v2 compared to related yet computationally more involved
methods is particularly remarkable since very small charge deviations of < 0.05 𝑒− determine the quality of
the correlation. These subtle relative differences are generally easier to capture with self-consistent methods
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Figure F.9: WTMAD-2 values for the subclasses of the GMTKN55 benchmark set in kcal⋅mol−1. Raw data required
for the reproduction of the figure is provided in the SI.

since initial errors can be corrected during later iterations.

F.5.2 DFT Calculations Using q-vSZP

Main Group Thermochemistry

Since the revised version of the q-vSZP basis is supposed to be the foundation of novel minimal basis (MB)
(semiempirical) QM methods, its accuracy shall be tested along similar lines as the first version. Thus, the
following analysis highlights the differences to the first version in Ref. [3]. As with the first version, a reduced
version of the GMTKN55 database is used, which does not contain elements heavier than calcium to ensure
comparability to other MBs.

Fig. F.9 shows that the overall performance of the q-vSZP basis is maintained, with slight differences from
the first version. The WTMAD-2 changes from 12.6 to 13.0 kcal⋅mol−1. In particular, q-vSZP-v1 (light blue)
performed slightly better on intramolecular NCIs and reaction barrier heights. Meanwhile, q-vSZP-v2 (dark
blue) is more accurate for reaction energies for large systems and isomerizations. Overall, the differences
between the two versions are negligible, especially when compared with conventional non-adaptive MBs. The
electron density on charged species, the amount of BSSE of the q-vSZP basis set, and electric field-dependent
molecular properties are virtually unaffected by the presented update and will thus not be discussed again.

Diuranium Carbide Cluster Stabilized Inside C80

Smaller and more efficient yet still accurate basis sets are particularly rare for heavier elements like lanthanides
and actinides. To the best of our knowledge, q-vSZP is the first minimal basis set to cover these elements
consistently. It is crucial to ensure that both qualitative and, where possible, quantitative accuracy are
preserved since SQM methods using q-vSZP otherwise have to compensate for potential basis set limitations.
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Figure F.10: U2C@C80, a diuranium cluster stabilized inside a C80 fullerene cage. The depicted geometry has been
taken over from Ref. [320], and was optimized at the PBE0-D4/def2-SVP level of theory.

A relevant test case is U2C@C80 (cf. to Fig. F.10), a diuranium cluster stabilized inside a C80 fullerene cage.
By assessing its interaction energy, which involves a mixture of covalent and non-covalent contributions320,490,
also BSSE and effects dominated by polarization and more diffuse functions are probed.

Calculating the interaction energy with 𝜔B97X-D4103 using a standard triple-𝜁 basis set such as def2-
TZVP139 (def-TZVP479 for uranium) yields an interaction energy of -268.7 kcal⋅mol−1. This result closely
aligns with the PBE0-D4491,492 interaction energy of -277.1 kcal⋅mol−1 reported in Ref. [320] with the same
basis set. In comparison, 𝜔B97X-D4/q-vSZP gives an interaction energy of -287.3 kcal⋅mol−1, representing
a deviation of -19 kcal⋅mol−1 or 7 %, which might be partly attributed to a small BSSE. All calculations
used fixed geometries based on the PBE0-D4/def2-SVP139 level of theory from Ref.320. For the def2-TZVP
calculations, the optimized D4 parameters from Ref.[1] were employed, while the q-vSZP-v2 calculation
utilized the D4 parameters from q-vSZP-v1.3

In addition to reduced computational demands per SCF step, smaller basis sets notably alleviate the issue
of tedious SCF convergence with extended Gaussian basis sets. In this example, q-vSZP required only 20 %
of the computation time, completing 188 SCF cycles compared to 392 cycles with def2-TZVP, albeit reduced
convergence and numerical grid settings for the latter.

Molecular Structures of Lanthanide Complexes

Lanthanide complexes from the LnQM data set493 were taken as exemplary compounds to ensure the accuracy
of molecular geometries optimized with q-vSZP-v2. While the analytical nuclear gradient (current work in
our lab) of the q-vSZP basis set is indispensable for effective application in computational chemistry tasks,
the geometries for small systems can still be optimized with the numerical gradient.

Fig. F.11 depicts structure overlays for two different octahedral Ln complexes with common ligands such as
ammonia, halides, cyanide, and water. Both the visual inspection and the RMSE of the Cartesian coordinates
suggest a qualitatively good agreement with the def2-TZVPP reference structure. As a single exception, the
nitrogen atom of the thiocyanate group in complex a) binds almost at a 180∘ angle to the central ytterbium
atom in the reference structure, whereas the q-vSZP-v2 structure is kinked. A similar albeit less pronounced
situation is the case for the cyanide group in complex b). Both observations can be attributed to the minimal
basis set character of q-vSZP, potentially preventing some important hybridizations.
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Figure F.11: Overlay of molecular geometries optimized with 𝜔B97X-D41,103,120, using the q-vSZP-v2 (blue) and
def2-TZVPP139 (light gray) basis set. The RMSE on the Cartesian q-vSZP-v2 coordinates with respect to the def2-
TZVPP geometry is given in Ångström. For q-vSZP, numerical gradients generated by infinitesimal deflection of the
Cartesian coordinates via a Python package written in-house429 were employed. Single-point energies were obtained via
ORCA-6.0.0.309 The actual optimization was conducted with xtb259 as a driver. The def2-TZVPP geometry optimization
was conducted using analytical gradients in ORCA-6.0.0.

F.6 Conclusions

The CEH model and the adaptive minimal q-vSZP basis set have been revised and extended towards the
often underrepresented lanthanides and actinides. The revised versions (denoted CEH-v2 and q-vSZP-v2
throughout the manuscript) replace the original versions from Ref. [3].

The extension of the CEH model to accommodate 𝑓-elements, alongside the introduction of a novel non-
iterative approximation for electrostatic interactions and further parameterization enhancements, leads to
improved applicability and robustness, particularly in challenging electronic environments. For actinides, 𝑓-
electrons are even explicitly treated in the valence space. The ability of CEH to provide accurate atomic partial
charges has been validated against DFT reference data for a wide range of molecular systems, from randomly
selected PubChem molecules to actinide complexes and “mindless” molecule. The CEH model consistently
surpasses traditional charge equilibration schemes and hybrid physical/ANN-based methods, delivering lower
absolute errors and stronger correlations with DFT-calculated charges. Moreover, it is approximately ten times
faster than GFNn-xTB for typical applications. Its success in reproducing correlations with experimental
Hammett parameters further demonstrates its potential as a versatile partial charge model in computational
chemistry.

The updated adaptive q-vSZP basis set benefits from a more consistent optimization using reference charges
and extends the variationally optimized minimal basis to cover the entire periodic table up to lawrencium
(𝑍 = 103). With its combination of generality, consistency, and the minimal basis approach to alleviate the
diagonalization bottleneck, q-vSZP stands as an optimal basis set choice for future SQM methods.

These advancements provide a robust foundation for the development of future (semiempirical) methods,
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enabling the efficient treatment of large, chemically diverse systems while maintaining the accuracy of more
computationally intensive QM approaches.
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F.8 Supplementary Material

The Supporting Information is available free of charge at pubs.acs.org/doi/10.1021/acs.jpca.4c06989: The-
oretical details of the CEH model, additional information on the random molecule selection and analysis,
the q-vSZP basis set and corresponding ECPs in a machine-readable format, and details on the “mindless”
molecule generation and benchmark data are provided in the electronic SI. Additionally, molecular structures
and corresponding charges for randomly selected molecules, actinide complexes, and “mindless” molecules;
CEH-v2 and EEQ charges for the LFER correlation; tabulated results for the U2C@C80 association energy;
detailed GMTKN55 benchmark data; and relevant scripts for generation of the most important figures are
contained in assets/SI-qvSZP-v2within the q-vSZP GitHub repository (github.com/grimme-lab/qvSZP).430
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