
Institut für Geodäsie und Geoinformation der Universität Bonn

Professur für Astronomische, Physikalische und Mathematische Geodäsie

Enhancing Numerical Simulation of Mass Density in
Earth’s Upper Atmosphere using Data Assimilation

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Agrar-, Ernährungs- und Ingenieurwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Armin Corbin

aus Aachen

Bonn 2025





Referent: Prof. Dr.-Ing. Jürgen Kusche (Universität Bonn)
Korreferent: Prof. Dr.-Ing. Michael Schmidt (DGFI - TU München)
Korreferent: Prof. Dr. Yuri Shprits (GFZ Potsdam)

Tag der mündlichen Prüfung: 1st July 2025
Angefertigt mit Genehmigung der Agrar-, Ernährungs- und Ingenieurwissenschaftlichen Fakultät
der Universität Bonn



Front cover picture: The output of the TIE-GCM is visualized using the Waterman butterfly projection.
The left wing indicates the mass density and the right wing the electron number density for 10 April
2010 at about 200 km altitude.



Abstract

The atmosphere’s mass density is variable in space and time and directly proportional to atmo-
spheric drag, which decelerates all objects in the atmosphere. Thus, the mass density should be
specified with high accuracy and precision for applications depending on atmospheric drag accel-
eration, such as precise orbit determination, satellite lifetime assessment, and satellite re-entry
prediction. The lower a satellite’s orbit, the larger the atmospheric drag. Thus, atmospheric
drag is especially of concern for low-Earth orbiting satellites. The mass density is not directly
observed along satellite orbits but is simulated by physics-based numerical or empirical mod-
els. Numerical models providing the mass density suffer from simplifications, assumptions, dis-
cretization, uncertain parameters, idealized external forcings with limited temporal resolution,
and unrealistic boundary conditions. Thus, the mass density predictions of numerical models
show significant differences compared to other models and observations. Data assimilation is the
combination of observations and models, taking into account their uncertainties. Several stud-
ies demonstrated that data assimilation enhances the prediction skills of numerical atmosphere
models. However, data assimilation experiments require significant computational resources and
typically cover only periods lasting a few days. In addition, the uncertainty of the model fore-
casts is tailored to the specific conditions of the assimilation experiment and is not transferable
to other periods. Moreover, spurious correlations in the model covariances often require local-
ization, which limits the improvements of the models to the vicinity of the sparse observations.
Here, I implement a new assimilation system for the Thermosphere Ionosphere Electrodynamics
General Circulation Model using the Parallel Data Assimilation Framework to address those
limitations. Time-variable perturbations of the model inputs allow a realistic representation of
the model’s uncertainty. They reduce spurious long-range correlations in the model covariances
and adapt to the time-variable conditions in the Earth’s space environment. The assimilation
of accelerometer-derived mass densities enhanced the models’ prediction skills globally in three
about two-week-long validation periods covering solar minimum and maximum conditions, quiet
times, and geomagnetic storms. As semi-empirical atmosphere models represent a harmonized
collection of a substantial record of observations, it is much more straightforward to assimilate
their output instead of assimilating the corresponding observations separately. This approach
corrected the model’s mass density estimation during geomagnetic quiet conditions. As the
physical and chemical processes within the atmosphere couple the electron number density and
the mass density, the assimilation of one can correct the estimate of the other. However, the
assimilation of electron number densities from an empirical model did not improve the mass
density prediction compared to accelerometer-derived mass densities. Co-estimation of model
parameters enables the correction of model dynamics. Here, a single parameter, the Joule heat-
ing factor, was co-estimated. The default Joule heating factor was found to fit well with the
corresponding period.





Zusammenfassung

Die Massendichte der Atmosphäre ist zeitlich und räumlich variabel und dirket proportional zum
Luftwiderstand, der alle Objekte in der Atmosphäre abbremst. Daher muss die Massendichte
für Anwendungen, die von der Beschleunigung durch den atmosphärischen Luftwiderstand ab-
hängen, wie z. B. die genaue Bestimmung der Umlaufbahn, die Ermittlung der Lebensdauer
von Satelliten und die Vorhersage des Wiedereintritts von Satelliten, mit hoher Genauigkeit und
Präzision vorgegeben werden. Je niedriger die Umlaufbahn eines Satelliten ist, desto größer
ist der Luftwiderstand. Daher ist der Luftwiderstand besonders für Satelliten in niedrigen Er-
dumlaufbahnen von Bedeutung. Die Massendichte wird nicht direkt entlang der Satellitenbah-
nen beobachtet, sondern stammt aus Simulationen physikalisch basierter numerischer oder em-
pirischer Modelle. Die Genauigkeit numerische Modelle, die die Massendichte simulieren, wird
durch Vereinfachungen, Annahmen, Diskretisierung, unsicheren Parametern, idealisierten exter-
nen Kräften mit begrenzter zeitlicher Auflösung und unrealistischen Randbedingungen limitiert.
Daher weisen die Massendichtesimulationen numerischer Modelle im Vergleich zu anderen Mod-
ellen und Beobachtungen erhebliche Unterschiede auf. Datenassimilation ist die Kombination
von Beobachtungen und Modellen unter Berücksichtigung ihrer Unsicherheiten. Mehrere Stu-
dien haben gezeigt, dass die Datenassimilation die Vorhersagefähigkeiten von numerischen At-
mosphärenmodellen verbessert. Allerdings erfordern Datenassimilierungsexperimente erhebliche
Rechenressourcen und decken in der Regel nur Zeiträume von wenigen Tagen ab. Darüber hinaus
ist die Unsicherheit der Modellvorhersagen auf die spezifischen Bedingungen des Assimilation-
sexperiments zugeschnitten und nicht auf andere Zeiträume übertragbar. Außerdem erfordern
Scheinkorrelationen in den Modellkovarianzen oft eine Lokalisierung, die die Verbesserungen auf
die Umgebung der spärlichen Beobachtungen beschränkt. Daher, implementiere ich ein neues As-
similationssystem für das Thermosphere Ionosphere Electrodynamics General Circulation Model
unter Verwendung vom Parallel Data Assimilation Framework, um diese Einschränkungen zu
beheben. Zeitvariable Störungen der Modelleingaben sorgen für eine realistische Darstellung
der Modellunsicherheit. Sie reduzieren störende langreichweitige Korrelationen in den Model-
lkovarianzen und passen sich den zeitvariablen Bedingungen in der Weltraumumgebung der Erde
an. Die Assimilation der von Beschleunigungsmessern abgeleiteten Massendichten verbesserte
die Vorhersagefähigkeiten der Modelle weltweit in drei etwa zweiwöchigen Validierungsperio-
den, die solare Minima und Maxima, ruhige Zeiten und geomagnetische Stürme abdeckten. Da
halb-empirische Atmosphärenmodelle eine harmonisierte Sammlung einer beträchtlichen Anzahl
von Beobachtungen darstellen, ist es viel einfacher, ihre Ergebnisse zu assimilieren, anstatt die
entsprechenden Beobachtungen separat zu assimilieren. Mit diesem Ansatz wurde die Schätzung
der Massendichte des Modells während geomagnetisch ruhiger Bedingungen korrigiert. Da
die physikalischen und chemischen Prozesse in der Atmosphäre die Elektronenzahldichte und
die Massendichte koppeln, kann die Assimilation der einen Dichte die Schätzung der anderen



Dichte korrigieren. Die Assimilation von Elektronenzahldichten aus einem empirischen Mod-
ell konnte jedoch die Massendichteabschätzung im Vergleich zu den aus Beschleunigungsson-
den abgeleiteten Massensichten nicht verbessern. Das Mitschätzen von Modellparametern er-
möglicht die Korrektur der Modelldynamik. Hier wurde ein einziger Parameter, ein Faktor für
das Stromwärmegesetz, mitgeschätzt. Es zeigte sich, dass der Standardwert bereits gut zum
entsprechenden Zeitraum passte.
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Captain’s Log, supplemental. The Enterprise, spiraling down out of
control. Ship’s outer skin heating rapidly due to friction with planet
atmosphere.

(Star Trek TOS 1x06 ’The Naked Time’)

1. Introduction

After the launch of the first artificial satellite into orbit around the Earth in 1957, the number
of satellites and their use for society has skyrocketed in recent years. McDowell (2025) reports
28 282 satellites in an orbit around the Earth in February 2025. Satellites orbiting Earth enable
global broadcasting, communication, cartography, surveying, navigation, Earth observation but
also military reconnaissance and espionage (e.g., Maini and Agrawal, 2014, Part II). 83% of
the satellites orbiting Earth are in the low Earth orbit (LEO) regime1, which are all orbits up
to 2000 km above the Earth’s surface. According to Kepler’s third law, a satellite orbits Earth
in 127min at an altitude of 2000 km and in 88min at an altitude of 200 km. Examples of LEO
satellites are altimeter satellites (e.g., Stammer and Cazenave, 2017) measuring the sea level,
satellites measuring Earth’s gravitational potential (e.g., Hofmann-Wellenhof and Moritz, 2006),
and the International Space Station (ISS).

In addition to Earth’s gravity (e.g., Hofmann-Wellenhof and Moritz, 2006), which forces
satellites into orbit around the Earth, satellites are affected by non-gravitational forces (e.g.,
Montenbruck and Gill, 2000). For satellites flying below about 1000 km, atmospheric drag is the
largest non-gravitational force. It is caused by the collision of the satellites with the particles
of the rarefied upper atmosphere2. The atmospheric drag is proportional to the mass density of
air (e.g., Anderson, John D. and Cadou, Christopher P., 2023).

Although the air in the upper atmosphere is very thin–at 100 km, the mass density of the
air is about seven orders of magnitude lower than on the ground, and at 1000 km 14 orders of
magnitude lower–the lifetime of LEO satellites is limited to several years due to atmospheric drag,
which slows the satellites down and reduces their altitude (e.g., King-Hele, 1987). Atmospheric
mass density decreases roughly exponentially with altitude, so drag is less significant for satellites
above the LEO. On the other hand, the atmospheric mass density increases exponentially as
satellites lose altitude, intensifying drag and accelerating orbital decay. Eventually, atmospheric
drag becomes so intense that satellites burn and disintegrate. Fragments may fall to Earth unless
they are completely incinerated during re-entry (e.g., Klinkrad et al., 2006). When planing
a satellite mission, reliable mass density forecasts along the satellite’s orbit are required for
predicting its lifetime. During a LEO satellite mission that is not equipped with instruments to
measure acceleration, precise and accurate mass density estimates are required for determining

1McDowell (2025) lists 23 560 LEO satellites.
2The term ’upper atmosphere’ is not consistently defined. In Prölss (2004, p. 29), it begins at the mesopause

(above about 90 km), while others define it to start above the tropopause (above about 15 km). Those layers are
explained later in Section 2.2. In this thesis, ’upper atmosphere’ refers to the atmosphere above an altitude of 90
km unless otherwise indicated.
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1. Introduction

a highly reliable orbit (e.g., Montenbruck and Gill, 2000). At the end of a satellite mission,
the mass density is also needed to predict the re-entry time and position (e.g., Klinkrad et al.,
2006).

On 7 March 2024, ESA published an article about the impending re-entry of battery packages
of the ISS, which crashed on 8 March 2024:

The European Space Agency (ESA) Space Debris and Independent Safety Offices
are closely monitoring the reentry of a pallet of used ISS batteries and calculating
estimates for when and where the reentry will occur.

The batteries, nine in total, were released on 11 January 2021 and will undergo a
natural reentry, which is now predicted for around 18:56 CET on 8 March [2024] +/-
0.4 days.

The total mass of the batteries is estimated at 2.6 metric tonnes, most of which may
burn up during the reentry. While some parts may reach the ground, the casualty
risk – the likelihood of a person being hit – is very low.

The reentry will occur between -51.6 degrees South and 51.6 degrees North. Large
uncertainties, primarily driven by fluctuating levels of atmospheric drag, prevent
more precise predictions at this time. The closer we get to the expected reentry
window, the better the concerned region can be geographically constrained.

[...] (Reentry of International Space Station (ISS) Batteries into Earth’s Atmosphere
2024)

This quote illustrates the current limits in predicting orbits of LEO satellites. It should be noted
here that the probability of being killed by re-entering space debris is very low as the following
comparison of exposure time spans of equivalent fatality probability demonstrates:

The annual risk of a person being killed by a re-entering man-made space object
is equivalent to the risk of being killed while traveling 1 meter in a car, doing 10
seconds of skiing, working 1 second as a fire fighter, or spending 5 minutes of your
life at the age of 60. (Klinkrad et al., 2006, p. 271)

1.1. Factors Determining the Mass Density of the Upper
Atmosphere

The upper atmosphere’s mass density depends on the conditions in Earth’s space environment
(also called space weather, e.g, Luhmann and Solomon 2014; Prölss 2004; Yau et al. 2019a)
and the lower atmosphere (e.g., H.-L. Liu, 2016). Figure 1.1 shows an overview of the pro-
cesses impacting Earth’s mass density. Most of the ultra violet radiation emitted by the Sun
is absorbed in the upper atmosphere. This heats the atmosphere and causes an up-welling of
denser air. Moreover, the absorption of solar radiation ionizes the atmosphere. The number of
charge carriers in the upper atmosphere is several orders of magnitude lower than the number
of electrically neutral components. The charged part of the atmosphere is called the ionosphere,
and the electrically neutral part is referred to as the neutral atmosphere.
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Figure 1.1.: This sketch (not to scale) illustrates the primary energy inputs of the upper atmo-
sphere. The Sun continuously emits electromagnetic radiation in a wide spectrum
and a plasma called solar wind. Moreover, the Sun generates the interplanetary
magnetic field (IMF). The solar wind streamlines and the IMF field lines coin-
cide. Regions where fast-moving solar wind streams meets slower-moving solar wind
streams are called corotating interaction regions (CIRs). The highly energetic part
of solar radiation is absorbed in the upper atmosphere, which heats and ionizes the
atmosphere. Solar radiation is only absorbed on the day-side. Thus, on the night-
side, separated by the solar terminator, conditions are significantly different. Most
of the solar wind is shielded by Earth’s magnetic field. Solar wind particles precip-
itating in the atmosphere generate additional heat. Solar flares and coronal mass
ejections (CMEs) are outbursts on the Sun. Solar flares, CMEs, and CIRs can cause
geomagnetic storms when hitting Earth. Around each magnetic pole, an oval with
high electron density is formed. Field-aligned currents are electric currents aligned
to Earth’s magnetic field that vertically couple the atmosphere around the poles.
Waves from the lower atmosphere arising, for example, from atmospheric tides, vol-
canic eruptions, or tsunamis propagate upwards into the upper atmosphere. All
those processes affect the neutral density, and accordingly, the atmospheric drag
acting on a LEO satellite as it orbits Earth. Thus, LEO satellites experience very
different conditions in the atmosphere.
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The solar radiation emission is subject to various temporal variations, which are also seen
in the mass density. Prominent features are the eleven-year activity cycle of the Sun and the
27-day rotation cycle of the Sun. Nonperiodic events such as solar flares, coronal mass ejections
(CMEs), or corotating interaction regions (CIRs) may cause geomagnetic storms when hitting
Earth that induce severe mass density variations in the upper atmosphere and endanger the
technical infrastructure (e.g., M. Hapgood, 2019). For example, a geomagnetic storm can affect
electric power grids on Earth’s surface, disrupt communication, including navigation signals
from satellites, and also destroy circuits aboard spacecraft. The three most severe geomagnetic
storms according to Cliver et al. (2022, Figure 39) are the Carrington event in 1859 (Carrington,
1859; Hodgson, R., 1859), the Chapman–Silverman storm in 1872 (Hayakawa et al., 2023), and
the New York Railroad Storm in 1921 (Love et al., 2019).

[...] In the last extreme geomagnetic storm on record, the great Halloween Storm of
2003, anecdotal testimony from USAF operators during the storm recounts that the
majority of LEO satellites were temporarily lost, requiring several days of around‐the‐clock
work to reestablish the catalog. (T. E. Berger et al., 2020)

Even minor geomagnetic storms can have practical and financial consequences, as the loss of 38
Starlink satellites on 3 February 2022 illustrates (M. Hapgood et al., 2022).

1.2. Challenges in Observing and Modeling the Mass Density in the
Upper Atmosphere

The mass density in the atmosphere is observed by different remote sensing and in-situ mea-
surements. Observations with high temporal resolution are derived from accelerometer mea-
surements onboard satellites (e.g., Doornbos, 2012; Vielberg, 2024). However, those observa-
tions are sparse and require careful accelerometer calibration, accurate and precise simulation
of non-gravitational accelerations and gas-surface interaction, as well as, accurate and precise
information about the free stream velocity, mass, and orientation of the satellite. One can also
derive the mass density by analyzing the orbital decay of any tracked satellite. The downside of
this approach is the limited temporal resolution. Inverting acceleration or orbital delay to mass
density requires an accurate aerodynamic model. The lack of such a model limits the accuracy
of these mass densities.

Direct measurements of the neutral and ion density, and also the composition are possible by
mass spectrometers. However, there is no current mission equipped with a mass spectrometer to
observe Earth’s upper atmosphere. Remote sensing techniques such as incoherent scatter radar
and radio occultation provide electron density observations.

Many models have been developed to get access to the mass density at an arbitrary point
in time and space. These are especially helpful for LEO satellites that are not equipped with
suitable instruments to measure the neutral mass density or the non-gravitational accelerations.
There are numerical models and (semi-) empirical models. Numerical models forward a given
initial state by applying first principles/physical laws. To this end, the atmosphere is discretized
in space and time. Discretization, assumptions, simplifications, uncertain initial states, bound-
ary conditions, external forcings, and model parameters limit the prediction skills of numerical
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Figure 1.2.: The time series show the neutral mass density along the orbit of CHAMP. The dot-
ted lines are accelerometer-derived densities (IGG: Vielberg et al. (2021), TOLEOS:
Doornbos (2012), March et al. (2021), and Siemes et al. (2016). Solid lines are den-
sities obtained from semi-empirical models, and the dashed-dotted line corresponds
to the mass density of a numerical model (TIE-GCM 2.0). More details about the
models can be found in Chapter 5.

models. Semi-empirical models are mathematical functions fitted to observations. The temporal
and spatial resolution of the observations, the temporal resolutions of the external forcings used
as model drivers, the drivers themselves, and assumptions limit empirical models.

Figure 1.2 shows simulated and observed mass densities along the orbit of the Challenging
Minisatellite Payload (CHAMP) satellite mission (Section 4.1.1) flying at � 300 km altitude for
a four hour period. Within the period shown, the mass densities differ by up to a factor of two
at the same time and place. These discrepancies are caused by the limitations of the models
and observations explained before. Doubling the density approximately leads to an error of 17m
within one orbital revolution and more than 4 km after one day1. Although the mass density
differences are typically lower, this illustrates the importance of improving the accuracy of mass
density models.

The misfit of different mass density estimates has been examined in many studies. In summary,
model performance depends on solar activity and the location on Earth (Section 5.3). Recent
models capture observations of neutral mass density roughly within � 5%-15%. However,

1These errors are computed by exploiting that the drag acceleration is directly proportional to the mass
density (Equation 3.5) and assuming a constant reference drag acceleration a0 of 1.15� 10�6 ms�2. After the
time ∆t has passed, the difference in the satellite’s path length is ∆s � 1

2
a0

�
1� ρ

ρ0

	
∆t2, with the scale factor

for the mass density ρ
ρ0

.
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average misfits between different models of up to 70% have also been reported during periods
of increased solar activity.

1.3. Challenges in Upper Atmosphere Data Assimilation

The core functionality of numerical models of the upper atmosphere is based on physics and
chemistry. Combining physics and observations can improve the fidelity of the simulation of the
upper atmosphere. An established tool for that is data assimilation, which seeks to combine
models and observations optimally, taking into account their uncertainty (e.g., Asch et al., 2016;
Lahoz et al., 2010). For large-scale non-linear systems such as the upper atmosphere, ensemble-
based Kalman filters have been developed. These methods are derived from the Kalman filter
(Kalman, 1960) and employ an ensemble of model instances to implicitly represent the model
uncertainty (e.g., Evensen, 1993; Evensen et al., 2022; Vetra-Carvalho et al., 2018). At prede-
fined points in time, called assimilation steps, the Kalman filter updates the state of the system
with the observations available at that time.

While ensemble-based Kalman filters render large-scale problems feasible, their computational
demands remain significant. An advantage of ensemble-based data assimilation is the straight-
forward derivation of model uncertainty.

A few studies have already demonstrated that data assimilation can improve the prediction
skills of upper-atmosphere models. Section 7.1 provides an review of these studies. The studies
showed how assimilating accelerometer-derived mass densities, electron density profiles from ra-
dio occultation, and total electron content (TEC) measurements improves mass density forecasts.
Nevertheless, the review in Section 7.1 revealed the following challenges for upper atmosphere
data assimilation.

Runtime Assimilation experiments are computationally expensive and require longer run times
compared to standalone model runs. However, the runtime of assimilation experiments is often
longer than necessary because of the use of so-called offline implementations, which require
reinitialization of the model after each assimilation step. Additionally, slightly more efficient
assimilation algorithms operating in the error subspace have been developed, but they were not
employed in these studies.

Periods covered by assimilation experiments Because of the long runtime and high compu-
tational costs, most studies cover only a few days and either focus on a sequence of geomagnetic
quiet days or a single storm event. It is desirable, however, to extend the period, ideally to the
whole lifetime of a satellite.

Ensemble Generation As a consequence of the previous aspect, the ensemble generation is
often tailored to the study’s specific solar and geomagnetic conditions, rendering it useless for
other conditions. To conduct assimilation experiments over long periods, the ensemble must
reflect the varying space weather conditions. The ensemble represents the uncertainty of the
model, and the correlation encoded in it controls how ensemble-based Kalman filters update the
state. Additionally, the ensemble typically contains spurious long-range correlations that cause
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unrealistic state updates when assimilating data. So-called localization schemes can suppress
those spurious long-range correlations. However, they result in updates that affect only states
in the vicinity of the observations.

Sparsity of accelerometer-derived mass densities When using localization schemes to sup-
press spurious long-range correlations within the ensemble, the state update is limited to the
vicinity of the satellites whose mass densities are assimilated. Since only a few satellite missions
are equipped with accelerometers suitable for determining the mass density, localization restricts
the state update to a small fraction of the upper atmosphere.

High temporal resolution of accelerometer-derived mass densities Although accelerometer-
derived mass densities have a temporal resolution of a few seconds, the data is assimilated less
frequently. Older studies assimilate the data every 90min whereas more recent studies assimilate
data every 10min. Thus, the full potential of the high temporal resolution is not used. The
frequency of assimilation steps is also connected to the runtime, as an increased frequency of
data assimilation update steps requires additional computational resources.

Model Dynamics For convergent systems, like the upper atmosphere, the model dynamics
tend to restore the original state that the model would have predicted without assimilation after
some time. This is further discussed in Section 6.2 and exemplarily shown in Figure 7.2. For
persistent updates, one can co-estimate the model dynamics.

1.4. Objective of the Thesis

Derived from the challenges described in the preceding section, a new assimilation system is
developed that is used to test the following hypotheses:

(H 1) Implementing an assimilation system without the need for model reinitialization and
using efficient error-subspace filters allows performing data assimilation experiments over
periods from several weeks to a few years and exploiting the high temporal resolution of
accelerometer-derived mass densities with reasonable computational resources.

(H 2) This requires the generation of an ensemble that adapts to space weather conditions and
provides a realistic uncertainty quantification of the model forecast over the complete
period of the assimilation experiments.

(H 3) The ensemble can be generated without severe spurious long-range correlation, making
localization for the assimilation system optional and enabling global state updates.

(H 4) The mass density prediction skills of the assimilation system exceed those from (semi)-
empirical models.

(H 5) Because semi-empirical models of the upper atmosphere are condensed from many dif-
ferent observations that are globally available, one can assimilate them to improve the
density estimation of numerical models.
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(H 6) Persistent model updates can be enabled by co-estimation of model dynamics.

Developing a numerical model from scratch is challenging, so I use the established Thermo-
sphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM; Qian et al. 2014)
developed at the High Altitude Observatory in Boulder, Colorado, as a basis. It is published
under an open source academic research license and has been used already successfully in many
assimilation experiments (Section 7.1). For the first time, data assimilation is implemented into
the TIE-GCM by binding it to the Parallel Data Assimilation Framework (PDAF; Nerger 2024;
Nerger et al. 2020) developed at the Alfred Wegener Institute in Bremerhaven. The imple-
mentation supports the assimilation of data located on trajectories (e.g., in-situ observations
of satellites) or on regular grids (e.g., data derived from semi-empirical models). The imple-
mentation allows the assimilation of an arbitrary number of datasets located on trajectories or
grids simultaneously. The computations require high-performance computers with hundreds of
physical processor cores.

1.5. Outline of the Thesis

Chapters 2 to 6 provide the background information required to understand the implementation
of the assimilation system (Chapter 7) and the assimilation experiments conducted with it
(Chapter 8). Chapter 2 describes the processes summarized in Figure 1.1 in more detail. They
are fundamental for understanding the models of the upper atmosphere, the mapping from
the model forecasts to the observations, the generation of the state ensemble, and interpreting
the experiments. Chapter 3 introduces the aerodynamics for satellites, which are necessary for
understanding the link between drag acceleration and mass density. Observations and models of
the upper atmosphere are summarized in Chapter 4 and Chapter 5, respectively. The emphasis
is on accelerometer-derived mass densities and the TIE-GCM, as they are fundamental to this
thesis. Data assimilation is introduced in Chapter 6 on a general level followed by an in depth
description of error subspace filters, that are used for the assimilation system.

Based on the preceding chapters, Chapter 7 explains the implementation of the assimilation
system. To test the Hypotheses H 1 - H 6 open loop simulation (OLS) and data assimilation
experiments are conducted in Chapter 8. I assimilate mass densities derived from the accelerom-
eters aboard the CHAMP, Gravity Recovery And Climate Experiment (GRACE), and Swarm-C
satellites directly into the TIE-GCM with and without localization. As expected, localization
successfully suppresses long-range correlations but at the cost of limiting the update to the
vicinity along the orbits of the satellites from which the density data were obtained. The global
filter (a filter that does not apply localization) performs slightly worse along the orbit of the
assimilated data but achieves notable improvements along the orbits of other satellites.

Instead of assimilating the enormous datasets from which semi-empirical models are con-
structed, assimilating the output of the semi-empirical model is much more straightforward.
The observations are already harmonized, and the model interpolates them into any position.
To exploit this, I developed a two-step approach (Corbin and Kusche, 2022) that assimilates
the mass density prediction of a semi-empirical model into the TIE-GCM. In the first step, an
empirical model is calibrated with accelerometer-derived mass densities. In the second step, the
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model is globally evaluated on a regular grid and assimilated. While the two-step approach can
improve the estimation of the average mass density, it fails to correct sudden changes since the
temporal resolution is limited to three hours. I show in this thesis that for this conditions direct
assimilation performs better.

Given the coupling between the neutral upper atmosphere and the ionosphere, it is possible to
assimilate electron number density data in order to enhance the mass density estimation. Here,
I assimilate electron number densities from a three-dimensional multi-layer Chapman model
constructed from observations. The TIE-GCM electron number density is corrected towards the
multi-layer model. However, the mass density prediction capabilities are not improved when
compared to accelerometer derived mass densities over the time period studied.

For a persistent correction of the model estimates, one can co-estimate the model dynamics.
In this thesis, I co-estimated the Joule heating factor. It was found that the default value is
already well chosen for the investigated period.

9





2. Space Weather and Terrestrial Aeronomy

The state of the Earth’s upper atmosphere, including but not limited to the mass density, is
strongly influenced by the time-varying emission of electromagnetic radiation and plasma from
the Sun, the Sun’s magnetic field, and waves propagating from the lower atmosphere. These
external influencing factors are responsible for many (periodic) effects visible in the time series
of the data assimilation experiments in Chapter 8. In addition, these external influencing factors
must be considered in constructing upper atmosphere models, which are discussed in Chapter 5.
In Chapter 7, the uncertainty of the state predicted by the TIE-GCM is computed considering
the uncertainty of the variables used to represent the external influencing factors. The basic
physics and assumptions used to construct numerical and semi-empirical models (Chapter 5) and
equations to link the observations to model states which is required in Chapter 7 are summarized
in this chapter.

The atmosphere is a mixture of gaseous particles surrounding Earth and bound by its gravity.
There are electrically neutral and charged particles in the atmosphere. The latter are affected by
and influence electric and magnetic fields. Unfortunately, there is no universal or conventional
definition of space weather. However, as the two examples illustrate, there is some agreement
on the concept.

Space weather refers to the dynamic, highly variable conditions in the geospace
environment including those on the sun, in the interplanetary medium, and in the
magnetosphere-ionosphere-thermosphere system. (Baker, 1998)

We understand space weather to mean all influences and effects of the sun and
other cosmic sources on the state of near-Earth space down to the Earth’s surface.
(Berdermann et al., 2015, translated from German into English)

Space weather (e.g., Luhmann and Solomon, 2014; Yau et al., 2019a) is the most significant
energy input into the upper atmosphere and, accordingly, has a huge impact on satellite drag.

Aeronomy (e.g., P. M. Banks and Kockarts, 1973a,b; Bauer and Lammer, 2004) is “the study
of the physics and chemistry of the upper atmosphere of a planet” (Bauer and Lammer, 2004).
Within the atmospheric sciences, the term is used to distinguish it from meteorology, which is
mainly concerned with the lower atmosphere (Bauer and Lammer, 2004). As space weather
significantly affects the upper atmosphere, aeronomy cannot be studied in isolation from it.

The first Section 2.1 covers the fundamentals of gas mixtures and aerostatics. The second
Section 2.2 explains the terminology used to subdivide the atmosphere into horizontal layers.
Section 2.3 provides a short summary of our Sun, which is the origin of space weather. Sec-
tion 2.3.1 explains how the electromagnetic radiation emitted by the Sun affects the atmosphere.
The subsequent Section 2.3.2 is about the interaction of the plasma emitted by the Sun and the
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2. Space Weather and Terrestrial Aeronomy

Earth’s environment with an emphasis on the upper atmosphere. Vertical coupling is discussed
in Section 2.4. The last Section 2.5 gives an overview of spatial and temporal variations of the
neutral mass density in the upper atmosphere.

2.1. Fundamentals

Models of the upper atmosphere (Chapter 5) use different representations for its composition.
The links between those representations are explained in Section 2.1.1. Section 2.1.1 also ex-
plains how the total mass density is obtained given the composition which is required later for
constructing the observation operator (Section 7.3). Recent models of the upper atmosphere
assume the atmosphere is an ideal gas (Section 2.1.2 ) and most models assume aerostaic equi-
librium (Section 2.1.3). Numerical models frequently use pressure as vertical coordinate. The
conversion from pressure to geometric height is descried in Section 2.1.4. This conversion is
required in Section 7.3 to interpolate the modeled state to the observations.

2.1.1. Gas Mixtures

There are several quantities suited to describe the composition of the atmosphere. A concise
description of mixtures is given by Cvitas (1996) that is summarized in the following: A mixture
consists of two or more different particle types. The special case of a mixture containing two
particle types is called a binary mixture. Measures for the occurrence of a single particle type
are the volume V , the mass m, the particle number N , and the amount of substance n. To
characterize a mixture, one uses the ratio, fraction, concentration, or molality of those measures.

Table 2.1 contains the definition for the corresponding fractions, concentrations, and ratios.
However, only fractions and concentrations are relevant for this thesis. The notation in this
section corresponds to the one in Renner (2007). Although the focus is on gas mixtures here,
the quantities are also valid for substances in different states of matter. The particle types of a
gas mixture are also called species.

mass fraction Given a gas mixture consisting of s species the total mass of the composition

m �
ş

i�1

mi (2.1)

is the sum of the individual masses of each species mi. The mass fraction of a species is the
ratio of the mass of the species and the total mass

wi � mi

m
, (2.2)

with the sum of all mass fractions

ş

i�1

wi � 1 (2.3)

being one.
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Table 2.1.: Overview of quantities describing gas mixtures. The indices i and j refer to the
corresponding particle type within the mixture. The definitions in this table are
taken from Cvitas (1996).

fraction concentration ratio

mass (m) wi � mi°
mj

ρi � mi

V
ζi,j � mi

mj

molar (n) xi � ni°
nj

ci � ni
V

ri,j � ni
nj

number (N) xi � N i°
N j

Ci � N i

V
ri,j � N i

N j

volume (V ) φi � V i°
V j

σi � V i

V
ψi,j � V i

V j

amount of substance fraction Analogously, the total amount of substance in a gas mixture n
is the sum of the amount of substance of each species

n �
ş

i�1

ni. (2.4)

The molar fraction is

xi � ni
n
, with

ş

i�1

xi � 1. (2.5)

particle number fraction The particle number N and amount of substance n are related by
the Avogadro constant NA � 6.02214� 1023 1

mol via

N � NAn. (2.6)

Since this is a constant factor, the amount of substance in Equation 2.4 and Equation 2.5 can
be replaced with the particle number N .

conversion of fractions Given the molar fraction xi and the molar mass (mass per amount of
substance) M i of each species, the mass fraction is computed by

wi � xiM i°s
j�1 xjM j

. (2.7)

Introducing the mean molar mass of a gas mixture

M � m

n
� 1°s

j�1

wj

M j

�
ş

j�1

xj M j , (2.8)
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Equation 2.7 can be written as

wi � xi
M i

M
. (2.9)

From 2.9 one can express the molar fraction as a function of mass fraction

xi � wi
M

M i
. (2.10)

number concentration The number concentration, which is equivalent to the number density,
of a species is the ratio of particle number N i and volume V

Ci � N i

V
. (2.11)

mass concentration The mass concentration

γi � mi

V
� ρi (2.12)

is mass per volume and is equivalent to the mass density.

conversion of concentrations Given the mean molar mass of a gas mixture, the relation be-
tween the number density and mass density of the gas mixture is

ρ � M

NA
C � mC, (2.13)

with the mean mass m � m

N
� M

NA
.

2.1.2. Ideal Gas

An ideal gas is

a theoretical gas composed of many randomly moving point size particles that do
not interact with each other except when they collide elastically. Although in reality,
there is no such thing as an ideal gas, most gases behave close enough to ideal that
the ideal gas law can effectively describe their behavior. Generally, a gas behaves
more like an ideal gas at higher temperatures and lower pressures. (Gaffney and
Marley 2018, p. 198)

For ideal gases, the ideal gas law

p � CkBT , (2.14)

is valid. It relates the pressure p, the number density C, and the temperature T by means of the
Boltzmann constant kB � 1.380 65� 10�23 JK�1. Inserting Equation 2.14 into Equation 2.13
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and using the gas constant R � kBNA one can compute the mass density with

ρ � pM

RT
� pm

kBT
(2.15)

Given the mass fraction, mean molar mass, pressure, and temperature, the number density of a
single species is

Ci � wi

M i

pM

kBT
. (2.16)

2.1.3. Aerostatic Equation

The aerostatic equation (derived in Appendix A.1) states that the vertical pressure gradient is
proportional to the mass density and gravitational acceleration g

dppzq
dz

� �ρpzq gpzq (2.17)

if the pressure force and gravitational force are in equilibrium. This equation is only valid for
an atmosphere at rest, which means there are no winds or other mass transport processes.

Inserting Equation 2.15 into the right side of Equation 2.17 leads to the barometric law (see
Appendix A.2 for a derivation)

pphq � pph0q exp
�
�
» h

h0

1

Hpzqdz



(2.18)

with the pressure scale height

Hphq � kB T phq
mphqgphq �

RT phq
Mphqgphq . (2.19)

Assuming a constant scale height one obtains pphq � pph0q exp
�
�h�h0

H

	
. In that case, the scale

height is the height difference at which the pressure has increased by factor e or decreased by
1
e . Considering Equation 2.19 plotted in Figure 2.1 for an exemplary column, it is obvious that
the scale height is not constant for Earth’s atmosphere.

One can define a similar equation for the number density (see Appendix A.3)

Cphq � Cph0q exp
�
�
» h

h0

1

HCpzqdz



(2.20)

with the number density scale height

1

HCphq �
1

Hphq �
1

T phq
dT

dz

����
z�h

. (2.21)

In the case of Earth’s Atmosphere, both the derivative of the temperature w.r.t. the altitude
and the reciprocal temperature get lower with increasing height. Thus, HC � H for heights
above � 200 km.
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Figure 2.1.: Example of a pressure and number density scale height profiles computed from the
NRLMSIS 2.0 model at 23.5°N 0°E 21 June 2019 12:00 UTC+0.

2.1.4. Height systems

The geopotential difference between two points is given by

∆W �WB �WA � �
»
γ
gprq � dr (2.22)

(Hofmann-Wellenhof and Moritz, 2006, p.158) with geopotential WA and WB at point A and
B, respectively. The geopotential difference ∆W is independent of the curve γ : ra, bs Ñ R

3

connecting both points, since the gravity field g is a conservative force field. The geopotential
number

C �W 0 �WA �
»
γ
gprq � dr (2.23)

is the negative geopotential difference between a point on the geoid and another point located
at an arbitrary position. The potential difference is converted into a physical height by dividing
it by gravitational acceleration g

h � C

g
. (2.24)

Height systems differ in the way g is calculated. In atmospheric science g is frequently chosen
as a constant g0 reflecting the gravity at the surface (e.g., Minzner et al., 1976; Wallace and
Hobbs, 2006). The resulting height

Hpot � C

g0
(2.25)

is called geopotential height. The geodetic community uses the term dynamic height instead.
Geopotential heights do not have a geometric interpretation (Hofmann-Wellenhof and Moritz,
2006, p.160). Given the temperature T and mean molar mass M of the atmosphere along
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Figure 2.2.: For a given geometric height, the corresponding geopotential height is computed
using Equation 2.27. A spherical Earth with a homogeneous density distribution is
assumed.

a vertical column in pressure level coordinates, one can compute the geopotential height at
pressure level k with (see Appendix A.5)

Hpotpkq � Hpotpk0q � R

g0

» k

k0

T pξq
Mpξqdξ. (2.26)

Assuming a spherical Earth with radius RC and homogeneous density distribution, the relation
between geopotential height Hpot and geometric height z is (see Appendix A.5.2)

Hpot � RC z

RC � z
(2.27)

or

z � RCHpot
RC �Hpot

. (2.28)

As shown in Figure 2.2 the geometric height is greater than the geopotential height at the same
location. The higher the altitude, the higher the difference between both.

Equations 2.26 and 2.28 are useful to calculate the geometric height of models that use pressure
or pressure levels as vertical coordinate.

2.2. Characterization of Atmospheric Layers

There are significant variations in the characteristics of the Earth’s atmosphere in the verti-
cal direction. Therefore, it is frequently divided into distinct vertical layers based on different
properties (see Figure 2.3). The upper atmosphere mass density is often associated with the
thermosphere, which is defined by the temperature of the neutral species (Section 2.2.1). How-
ever, the neutral temperature alone cannot explain the vertical mass density profile in the upper
atmosphere. Gravitational binding (Section 2.2.2), composition (Section 2.2.3), and ionization
(Section 2.2.4) are also relevant to understanding the vertical mass density profile.

17



2. Space Weather and Terrestrial Aeronomy

temperature gravitational
binding

composition ionization100

101

102

103

104

105

troposphere

tropopause

stratosphere
stratopause

mesosphere
mesopause

thermosphere

thermopause

homosphere

homopause

heterosphere

hydrogensphere

barosphere

exobase

exosphere

D-region

E-region

F-region

protonosphere

plasmapause

turbosphere

turbopause

fiffusosphere

effusosphere

interplanetary space
al

tit
ud

e
(k

m
)

Figure 2.3.: Characterization of atmospheric layers by different quantities. Adopted from Prölss
(2004, Figure 2.13). The location of the layers is subject to variations and depends
on the location and time.

2.2.1. Temperature Profile of the Atmosphere

A prominent parameter for this division is the neutral temperature, which is the temperature
of the neutral particles within the atmosphere, assuming they are in thermal equilibrium. This
distinction is necessary since charged and neutral particles are not necessarily in thermal equilib-
rium. In fact, for Earth’s atmosphere, charged particles have considerably higher temperatures
on the day-side (e.g., Prölss 2004, Figure 4.3, R. Schunk and Nagy 2009, Figure 11.17). A
typical neutral temperature profile is given in Figure 2.4. Vertical neutral temperature profiles
depend on location and time but maintain certain characteristics (e.g., Prölss, 2004, Section 2.2):
Starting from the ground, the temperature decreases to a height of about 10 km. This first in-
flection point is called tropopause (lowest dashed horizontal line in Figure 2.4). The troposphere
is the layer between the ground and tropopause. Here, most of the water vapor accumulates
and the majority of weather phenomena occur. Above the tropopause, the ozone concentration
increases. The absorption of solar radiation with wavelength greater than 242 nm (located in
the middle ultraviolet (MUV) band, see Table 2.3) by ozone increases the temperature. The
local temperature maximum is located at about � 40 km altitude. This inflection point is the
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Figure 2.4.: Height profile of neutral temperature during quiet solar activity conditions, simu-
lated by the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter
radar (NRLMSIS) 2.0. The boundaries of the layers are highlighted with dashed
horizontal lines: Tropopause, Stratopause, and Mesopause from bottom to top. The
profile is located at 23.5°N 0°E on 21 June 2019, at 12:00 UTC+0. At this time and
location, solar radiation enters the atmosphere almost orthogonally.

stratopause (second dashed horizontal line), and the corresponding layer is the stratosphere.
The layer above the stratosphere is called mesosphere. The temperature decreases again in this
layer, due to decreasing ozone levels. At about 90 km altitude the neutral temperature reaches
a local minimum which is the mesopause (upper horizontal dashed line). Above the mesopause,
the temperature increases exponentially and approaches the limiting exospheric temperature.
This upper layer is called the thermosphere. The temperate increase is caused by the absorption
of solar extreme ultraviolet (EUV) and soft X-rays (XUV) radiation. In fact, the thermosphere
protects all lifeforms on Earth against this ionizing radiation.

The upper boundary of the thermosphere cannot be defined based on the neutral tempera-
ture profile, which lacks distinguishing features beyond the mesopause. Instead, the exobase–
introduced in the following Section 2.2.2–is often used as the upper limit and sometimes referred
to as the thermopause.

2.2.2. Exosphere and Barosphere

Two conditions must be satisfied for a particle to escape from Earth’s atmosphere. First, its
velocity must exceed Earth’s escape velocity to overcome gravitational attraction. Second, the
density must be low enough to avoid collisions which scatter it back to lower altitudes.

Based on gravitational binding (second column from left in Figure 2.3) the atmosphere is
separated into barosphere and exosphere (e.g., P. M. Banks and Kockarts 1973b, Chapter 16;
Bauer and Lammer 2004, Section II.3; Prölss 2004, Section 2.4.1; R. Schunk and Nagy 2009,
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Table 2.2.: Properties of important electrically neutral species found in Earth’s atmosphere
species

symbol name atomic number () mass number () molar mass (gmol�1)

H Hydrogen 1 1 1.008
He Helium 2 4 4.0026
Ar Argon 18 40 39.948
O atomic Oxygen 8 16 15.999
O2 molecular Oxygen 16 32 31.998
N2 molecular Nitrogen 14 28 28.014

Section 10.10). While particles in the exosphere have the chance to escape from the atmosphere,
it is virtually impossible for a particle in the barosphere to do so.

The exobase is the boundary between the exosphere and the barosphere. It is defined as the
altitude at which radially outward moving particles collide only once on average (e.g., Prölss,
2004, Section 2.4.1). Its exact location depends on the exospheric temperature and is approxi-
mately at 420 km altitude (Prölss, 2004, Section 2.4.1). The aerostatic equation (Equation 2.18)
is only applicable to the barosphere since it does not allow for sources or sinks.

2.2.3. Vertical Composition of Neutral Atmosphere

The neutral part of Earth’s atmosphere is a gas mixture (see Section 2.1.1) whose six most
important neutral species are listed in Table 2.2. The composition of this mixture has a strong
vertical dependency, as shown in Figure 2.5 and is another criterion for characterizing atmo-
spheric layers (third column from left in Figure 2.3).

From the ground to about 100 km the atmosphere is well mixed and the mass/number frac-
tions of the species are almost constant. Accordingly, the mean molar mass is constant, too.
This part of the atmosphere is called the homosphere. The homosphere is dominated by molec-
ular nitrogen, which accounts for 76% of its mass. Molecular oxygen accounts for 23%. The
remaining species only contribute to 1% of the mass. The region above the homosphere is
the heterosphere (e.g. P. M. Banks and Kockarts, 1973b, Chapter 14). It is characterized by
gravitational separation, that causes vertical variations of the composition: Heavier particles
are found more often in lower altitudes, while lighter particles are found at high altitudes more
frequently (see Figure 2.5c and d). The boundary between homosphere and heterosphere is
called homopause. Above the homopause, the molecular nitrogen and molecular oxygen levels
decrease gradually, and atomic oxygen becomes dominant at about 400 km. The origin of atomic
oxygen in the atmosphere is the dissociation of molecular oxygen caused by the absorption of
photons from the Sun (Prölss, 2004, Section 2.3.7). Above the atomic oxygen peak, the fraction
of lighter hydrogen and helium atoms gradually increases. The upper region where hydrogen
dominates the atmosphere is called hydrogensphere.
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Figure 2.5.: This figure illustrates the vertical dependence of Earth’s atmospheric composition.
Each color corresponds to a species whose properties are listed in Table 2.2. The
number concentration profiles in panel a were computed with the NRLMSIS 2.0.
The profiles in the other panels were derived from panel a using the relations de-
scribed in Section 2.1.1. The profiles are located at 23.5°N 0°E on 21 June 2019,
at 12:00 UTC+0. At this time and location, solar radiation enters the atmosphere
almost orthogonally. In panel c and d the location of the homopause is marked with
a horizontal dotted line.
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2.2.4. Ionosphere

Above an altitude of approximately 60 km, charge carriers (ions and electrons) populate the
atmosphere. This ionized part of the atmosphere expands beyond 1000 km altitude and is called
ionosphere (R. Schunk and Nagy, 2009). An exemplary simulated height profile of the ion and
electron density is given in Figure 2.6. The ionosphere is a quasi-neutral gas mixture at each
location. Thus, the number of electrons and negative ions is equal to the number of positive ions
(assuming all ions are singly ionized). The global electron density maximum is located between
220 km and 400 km altitude and has values between 10� 105 cm�3 and 3� 106 cm�3 (Prölss,
2004, Section 4.1). Compared with the neutral number density (Figure 2.5a), the electron
number density in the terrestrial ionosphere is several orders of magnitude lower. At roughly
1000 km altitude, protons (H+) are the dominant ion species. Accordingly, this region is called
protonosphere.

The primary source of charge carriers in Earth’s ionosphere is photoionization arising from
solar EUV and XUV radiation. Photoionization produces pairs of free electrons and positively
charged ions when a photon with sufficient energy collides with a neutral atom or molecule. If
the electrons have sufficient energy, they can trigger a secondary ionization. Additionally, at
high latitudes, particle precipitation is an important charge carrier source (e.g., Prölss 2004,
Section 4.2.1, R. Schunk and Nagy 2009, Chapter 9). The population of charge carriers is
balanced by recombination processes (Prölss 2004, Section 4.2.2, R. Schunk and Nagy 2009,
Section 8.4).

The ionosphere is subdivided into D-, E-, and F-region1 (Last column in Figure 2.3). However,
the boundaries of those regions are not well defined (Davies, 1990, Section 1.1), and only distinct
on mid-latitudes at the day-side (R. Schunk and Nagy, 2009, Section 11.4). They are described
by plasma frequency (R. Schunk and Nagy, 2009, Section 11.4) or ion composition (Prölss 2004,
Section 4.1, R. Schunk and Nagy 2009, Section 2.4).

The D-region is dominated by cluster ions2 and negative ions (not considered in Figure 2.6).
Its upper boundary is located roughly at 90 km altitude. The E-region is the region dominated
by molecular ions such as NO+, O2

+, and N2
+. It is located roughly between 90 and 170 km.

The number density of ions is six orders of magnitudes lower than the number density of neutral
species. The F-region is dominated by atomic oxygen ions O+. It is located between 170 km

and 1000 km altitude and contains the global electron density maximum. The ion density at the
peak is about two orders of magnitude lower. The region above the maximum is called top-side
ionosphere. The F-region below the electron density maximum is further subdivided into a F1
and F2-region.

1The letters have no meaning and do not start from ”A”, as the number of regions could not be determined
in advance (Silberstein, 1959).

2“An ion formed by the combination of two or more ions or atoms or molecules of a chemical species often in
association with a second species.” (Todd, 1991, p. 1549)
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Figure 2.6.: This figure illustrates the vertical dependence of the charge carrier composition in
the Earth’s atmosphere. The profile was computed with the International Reference
Ionosphere Model 2022 (IRI-2022, Bilitza et al. 2022) using default settings. The
model assumes a quasi-neutral mixture, i.e., the number of electrons and negative
ions is equal to the number of positive ions. The day-side profiles are located at
23.5°N 0°E on 21 June 2019, at 12:00 UTC+0. At this time and location, solar
radiation enters the atmosphere almost orthogonally. The location of the night-side
is in the opposite location. Panels c and d contain the number fraction w.r.t. the
total number of ions, i.e., at each altitude the fractions sum up to one.
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2.3. The Sun’s Impact on Earth’s upper Atmosphere

The source of space weather is the Sun (Luhmann and Solomon, 2014, p.479). The Sun is the
heaviest body (1.99� 1030 kg) of our solar system containing 99.9% of its total mass (Prölss,
2004, Chapter 3). In terms of mass fraction the Sun mainly consists of Hydrogen (72%) and
Helium (26%). Cecilia Payne was the first to discover that Hydrogen and Helium are the
dominant species of stars (Payne, 1925, Table XXVIII). The remaining 2% are particles with
a mass number greater than four (Prölss, 2004, Chapter 3). Defining the visible solar disk
as the Sun’s surface (photosphere), the radius of the Sun is 6.957� 108m (Prša et al., 2016,
Table 1). The Sun is assumed to be 4.6� 109 years old (Aschwanden, 2014, Table 11.1) and
has an energy production rate or luminosity of 3.828� 1026W (Prša et al., 2016, Table 1). The
interior structure of the Sun is primarily explained by the equilibrium of pressure force and
gravitational force. Since the gravitational force increases towards the center, the pressure and
temperature get higher to keep the balance. Similar to the atmosphere, the density in the Sun
almost decreases exponentially from its center to its surface (Prölss, 2004, Chapter 3).

A point located on the Sun’s equator completes a full revolution approximately every 26.6 days
as seen from Earth; this is called the synodical equatorial rotation period. The corresponding
sideral period is about 24.8 days (Prölss, 2004, Chapter 3). The period depends on the solar
latitude φ and can be approximated with (Aschwanden, 2014, p. 241)

T � 360°
14.522 °d�1 � 2.84 °d�1 sin2pφq . (2.29)

The mean distance to Earth—one astronomical unit (AU)—is 149.6� 109m. The minimal
distance (January) is 147.1� 109m and the maximal distance (July) 152.1� 109m (Prölss,
2004, Table 3.1).

2.3.1. Electromagnetic Emission of the Sun

Of particular interest is the radiation emitted by the Sun since it interacts with the parti-
cles of Earth’s upper atmosphere. The radiation is a product of the nuclear fusion inside the
Sun (Prölss, 2004, Chapter 3). The time series in Figure 2.7b shows the total solar irradiance
(TSI)—that is, the power per unit area over the entire spectrum—normalized to 1AU. Com-
pared with the mean value, the variations are three orders of magnitude lower. Thus, one can
argue that the Sun has a quite constant energy output. Nevertheless, the total solar irradiance
(TSI) variations are strong enough to affect Earth’s atmosphere significantly. The most striking
feature is the oscillation with a period of about eleven years. It is called the solar activity cycle.
In fact, the mean period length of the solar cycle is eleven years with a standard deviation of 14
months (Hathaway, 2015, Figure 24).

Solar activity is described by various indices (see Section 2.3.1.2). The most prominent is
the F10.7 index, which is the solar irradiance at 10.7 cm wavelength at the Earth’s surface. It
is often used as a proxy for EUV radiation, which cannot be measured from the ground since
it is absorbed by the atmosphere (details follow in Section 2.3.1.1). The time series of the
F10.7 index in Figure 2.7a shows the same eleven-year period associated with the solar activity
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Figure 2.7.: Panel a is the Penticton solar radio flux at 10.7cm adjusted to 1AU. Panel b is
the total solar irradiance (TSI) normalized to 1AU computed from NRL2 model
(Coddington et al., 2016), and panel c shows the international sunspot number
(SILSO World Data Center, 1818–2024). The solar cycles are numbered consecu-
tively starting in 1755. The gray numbers in panel c indicate the corresponding
solar cycle.

cycle. The same holds for the time series of the sunspot number in Figure 2.7c. Sunspots
are “dark patches on the Sun where intense magnetic fields loop up through the surface from
the deep interior” (Hathaway, 2015, p. 9). The solar cycle was discovered by Schwabe (1844),
who counted the sunspots for fifteen years in sequence. The terms solar maximum and solar
minimum are frequently used for time periods close to the maximum and minimum sunspot
number, respectively. The solar cycle is associated with an inversion of the magnetic polarity at
the solar maximum (Hathaway, 2015).

The Sun’s radiation has a broad spectrum covering the range between gamma-rays and radio
frequencies. In Figure 2.8, the spectrum before passing Earth’s atmosphere ranging from XUV
to infrared (IR) is presented for two different days. 1 November 2003 represents solar maximum
conditions (sunspot number: 153, F10.7: 210 sfu) and 1 June 2008 solar minimum conditions
(sunspot number: 0, F10.7: 67 sfu). When comparing quiet and active conditions, the largest
differences w.r.t. the order of magnitude are within the XUV and EUV range (see Table 2.3 for
specifications of those ranges). Beginning at the MUV range, it is hard to detect any difference
between solar minimum and maximum conditions. The striking peak at 121.6 nm corresponds
to the Lyman-α radiation of hydrogen (Liddle and Loveday, 2008; Lyman, 1906). At 58.4 nm
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Figure 2.8.: Solar emission spectrum from 0.5 nm to 10 000 nm for solar maximum (2003) and
minimum (2008) conditions. The spectra are averaged over a day and normalized
to 1 AU. The spectra refer to solar radiation before it passes through the Earth’s
atmosphere. The data for this plot comes from three sources. The wavelengths
between 0.5 nm to 190 nm are observations from the Solar EUV Experiment (SEE;
T. N. Woods et al. 2005, level 3 data). The range from 190 nm to 2400 nm are
observations from the SORCE mission (T. Woods et al., 2021) and wavelengths
from 2400 nm to 10 000 nm are computed by the NRLSSI2 model (Coddington et
al., 2016). The bands of the electromagnetic spectrum, indicated by horizontal black
lines, are listed in Table 2.3.
In addition, a solid black line shows the idealized spectrum that the Sun would emit
if it were a black body with a temperature of 5780K.

and 30.4 nm, one can see the emission lines of neutral Helium (He I) and single ionized Helium
(He II), respectively. The global maximum is located in the visible spectrum at about 479 nm.

The irradiance can be considered as an energy flux density with units J
m2s � W

m2 . Given
the spectral irradiances S (units W

m2m) in the interval rλ0, λ1s one can compute the energy flux
density with

Φ �
λ2»
λ1

Spλqdλ. (2.30)

The time series in Figure 2.9 showing the flux densities of the bands in Table 2.3 were computed
by applying Equation 2.30 to the corresponding bands. The time series is almost eleven years
long, so one can observe several periodic effects. Following Prölss (2004, p.99), variations in XUV
(Figure 2.9a), EUV (Figure 2.9b) and radio frequency (Figure 2.9h) are caused by geometric
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Figure 2.9.: The data source for panels a-g is the daily SORCE data (T. Woods et al., 2021).
The fluxes of the corresponding wavelength ranges were computed by integrating
the spectral irradiance over the wavelength using the trapezoidal rule. It is easy to
identify the synodical rotation and solar activity cycle in panels a, b, c and h. By
comparing panel b and panel h, it becomes obvious why the F10.7 index is used as
a proxy for the EUV radiation.
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Table 2.3.: Bands of the electromagnetic spectrum
wavelength interval (nm)

short name name ISO 21348 (2007) observed by SORCE

XUV soft X-rays 0.1 ¤ λ   10 0.50 ¤ λ   9.50
EUV extreme ultraviolet 10 ¤ λ   121 0.50 ¤ λ   120.50

Hydrogen Lyman-α 121 ¤ λ   122 λ � 121.5
FUV far ultraviolet 122 ¤ λ   200 122.50 ¤ λ   199.50
MUV middle ultraviolet 200 ¤ λ   300 200.50 ¤ λ   299.50
NUV near ultraviolet 300 ¤ λ   400 300.50 ¤ λ   399.79
VIS visible light 380 ¤ λ   760 380.04 ¤ λ   758.01
IR infrared 760 ¤ λ   106 761.26 ¤ λ   2412.34

effects and intrinsic variations of the Sun. The geometric effects are the rotation of the Sun and
the orbit of the Earth. The rotation of the Sun causes an oscillation with 27 days (synodical
equatorial rotation period). By reason of the elliptical orbit of the Earth, the distance to the Sun
varies within one year, changing the energy flux density. However, the time series in Figure 2.9
are adjusted to 1AU so that this effect is eliminated. The intrinsic variations are the solar
cycle (eleven years), expansion of emission centers (days to weeks), and solar flares (minutes
to hours) (Prölss, 2004, p.99). Relative variations in the MUV (Figure 2.9d), near ultraviolet
(NUV) (Figure 2.9e), visible light (VIS) (Figure 2.9f) and IR (Figure 2.9g) are lower compared
with the other spectra. Although the F10.7 index is observed in the radio frequency range, it is
highly correlated with the EUV and XUV time series: The Pearson correlation between F10.7
index and XUV as well as EUV is 0.95.

2.3.1.1. Absorption in Earth’s Atmosphere

In a large-scale picture, the atmosphere has two windows that permit radiation with correspond-
ing frequency to reach the ground. Outside those windows, radiation cannot pass. One window
is located around the visible light range, and the other is found in the radio frequency range
(see Figure 2.10a). Radiation with a frequency in the MUV range or higher is stopped by the
atmosphere, making life on Earth as we know it possible by shielding it from most of the ionizing
radiation emitted by the Sun (see Figure 2.8). Ozone, primarily located in the stratosphere, is
important for the absorption of MUV radiation (Figure 2.10d). The two windows are separated
by an opaque block in the far infrared range, mainly associated with absorption by water vapor
in the troposphere (Figure 2.10b). For wavelengths about below 10m (30MHz), the electrons
in the ionosphere act like a mirror making the atmosphere opaque above this limit (e.g. Prölss,
2004, Section 4.7.3).

Where radiation is absorbed in the Earth’s atmosphere depends on the composition along the
path of the photon flux through the atmosphere. For example, a significant amount of MUV
radiation is absorbed by ozone in the stratosphere, where its concentration is highest. Further
important factors for the absorption are the absorption cross-sections and activation energies
of the gas particles as well as the amount and energy of the photons entering the atmosphere
(P. M. Banks and Kockarts, 1973a, Chapter 11). Figure 2 in Bowman et al. (2008b) shows the
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Figure 2.10.: Atmospheric zenith opacity computed with the Planetary Spectrum Generator
(Villanueva et al., 2018) developed at Goddard Space Flight Center. A value of one
means that no radiation at the corresponding wavelength reaches the ground. A
value of zero means the atmosphere is transparent at the corresponding wavelength.
The upper panel shows the opacity of the atmosphere, while the other panels
contain the contribution of some important species and Raylight scatter (RS). The
atmosphere becomes opaque outside the plot at wavelengths longer than 10m. The
opacity was computed at the subsolar point on 21 June 2023 at 12:00 UTC+0.
Thus, the radiation enters the atmosphere in an almost orthogonal way.

altitude of the maximum rate of absorption as a function of the wavelength. There are three
important absorption processes in the upper atmosphere: photodissociation, photoionization,
and dissociative photoionization (Prölss, 2004, Section 3.2.1). Photodissociation (e.g., P. M.
Banks and Kockarts, 1973a, Chapter 8) is the separation of a molecule into parts triggered by the
absorption of a photon with sufficient energy to overcome the molecular binding. Photoionization
(e.g., P. M. Banks and Kockarts, 1973a, Chapter 7) releases free electrons originating from
atoms or molecules when hit by photons with sufficient energy. Dissociative photoionization is
the combination of both processes.

The number of absorbed photons depends on the incident solar photon flux and the neutral
number density of the atmosphere, both of which vary with altitude. At high altitudes, the
neutral density is so low that the photon flux passes through the atmosphere with almost no
chance of collision. As altitude decreases, the probability of collision increases due to the increase
in neutral density, but each collision reduces the photon flux. Therefore, at low altitudes where
the density is high, collisions are unlikely because the majority of the photons have already been
absorbed. The absorption maximum can be found between those extremes (e.g., Prölss 2004,
Section 4.2.1 or Baumjohann 2012, Section 4.3.1). The absorption of solar radiation produces
ions, free electrons, and heat. For idealized conditions, a height profile of the ion production
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Figure 2.11.: The height profile of ion production (green line) is determined by two processes.
Firstly, the neutral density increases from the top of the atmosphere towards the
ground (blue line). Secondly, the photon flux decreases with each (non-elastic)
collision with atmospheric particles on the way from the Sun to the ground (orange
line). At high altitudes, collisions are unlikely due to the rarefied atmosphere. At
low altitudes with high density, collisions are less frequent because most of the
photons have already collided. All functions are normalized with their maximum
to plot them together in one panel. The figure illustrates an idealized scenario for an
isothermal atmosphere with parallel plane layers, featuring only one exponentially
decreasing species and monochromatic solar radiation entering the atmosphere
perpendicularly. In that case, it is described by the Chapman production function.
This figure is adopted from Prölss (2004, Figure 4.4) and Baumjohann (2012,
Figure 4.6).

rate is shown in Figure 2.11. This profile is called the Chapman production function. For actual
conditions involving a multi-species atmosphere with different absorption cross-sections, a broad
solar spectrum, and a curved non-isothermal atmosphere, the Chapman function does not agree
well with the actual profile. However, the individual contributions from photons associated with
a narrow frequency band can be explained well by the Chapman production function (Prölss,
2004, Figure 4.6). The number of ions and electrons is reduced by recombination processes.
Thus, in the night-side upper atmosphere, the number of charge carriers is small except for the
polar oval introduced later in Section 2.3.2.1.

During the absorption process, a fraction of the energy of the photon is transformed into
heat (e.g., Prölss, 2004, Section 3.3). This transfer increases the temperature of the electrons,
ions, and neutral particles in the upper atmosphere. The electron gas is hotter than the ion
gas, which in turn is hotter than the neutral gas (e.g., Prölss, 2004, Figure 4.3). An excessive
heating of the atmosphere is averted by radiative cooling and heat conduction (e.g., Prölss, 2004,
Section 3.3.3).

The temperature increase caused by the absorption of solar radiation has two opposite effects
on the mass density: an expansion of the gas and an upward transport of air. While the
expansion decreases the density at a given altitude, the upward transport of denser air from
below increases the density at the same altitude. At about two scale heights above the heat
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input altitude, the transport-induced effect is greater than the decrease (see Appendix A.4).
Therefore, the air on the day-side is denser compared with the night-side.

In summary, the absorption of solar UV-radiation turns the atmosphere into a conducting
medium (the ionosphere), changes the composition, and increases the density.

2.3.1.2. Solar Indices

The main energy input of Earth’s upper atmosphere is EUV radiation absorbed in the lower
thermosphere. By reason of the absorption, solar EUV cannot be observed from the ground
directly (see Figure 2.10), but only from satellites outside the atmosphere. As mentioned above,
on the ground, one can observe radiation that is not absorbed (e.g., radio waves) as a proxy for
solar EUV. There are several solar indices (Tobiska et al., 2008b, Table 1). Solar indices generally
combine information from different spectral bands into a single number. This compression
facilitates the construction of models, as constructing a model from the full spectra is difficult.

A very frequently employed solar index is the F10.7 index (e.g., Tapping, 2013). Since Earth’s
atmosphere is transparent in the radio frequency range, one can measure the solar radio flux
from Earth’s surface. The F10.7 index is a time series of the solar flux at 10.7 cm wavelength
used as a proxy for EUV. Typically, it is given in solar flux units (sfu) which correspond to
10�22Wm�2Hz�1 � 10 000 Jy. It has been regularly observed since 1947 from radio telescopes
located in Canada. Currently, the measurements are being carried out by the Dominion Radio
Astrophysical Observatory near Penticton. Tapping (2013) states that the uncertainty of the
F10.7 index is max

�
1, F10.7

100

�
sfu. Figure 2.7 shows the F10.7 index, the sun spot number, and

total solar irradiance. The solar cycle is clearly visible in all time series. The F10.7 index is
used as a proxy for EUV since they are highly correlated (see Figure 2.9).

Additional solar indices used by some models discussed in Chapter 5 are summarized in
Appendix B.1.

2.3.2. Solar Wind and Interplanetary Magnetic Field

The solar wind and interplanetary magnetic field are drivers of the TIE-GCM. The corresponding
model inputs are perturbed in Chapter 7 to compute the uncertainty of the TIE-GCM.

The solar wind (e.g. Prölss 2004, Section 6.1 or Gosling 2014) is a supersonic plasma continu-
ously emitted by the Sun. Hence, the interplanetary space is not a vacuum but is filled by this
plasma. The solar wind consists mainly of protons (H+), electrons, and α-particles (H++). The
plasma travels about 3-4 days from the Sun to Earth.

The median velocity of the solar wind at Earth orbit (1AU) is 442 km s�1. 90% of all velocities
(centered around the median) are between 320 and 710 km s�1. The median number density of
the solar wind at 1AU is 6.9 cm�3. 90% of all solar wind number density values (centered around
the median) are between 3 and 20 cm�3. The median number ratio of α-particles compared with
protons is 4.7% (Gosling, 2014, Table 12.1). The Sun’s mass loss due to solar wind is about
6.8� 1016 kg year�1 (Gosling, 2014). The yearly loss is 14 orders of magnitude lower than the
total mass of the Sun.

The Sun’s outward plasma stream and magnetic field are coupled. A simplified model of the
plasma stream and magnetic field in the interplanetary space is described by Parker’s spiral
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(a) The Parker spiral (E. N. Parker, 1958) describes
the steady-state magnetic field of a rotating star
with spherically symmetric plasma outflow. The
outward-streaming solar wind drags the mag-
netic field of the star to infinity. By reason of
rotation, the field lines (solid black lines) are spi-
rals, whose footprints are anchored at the sur-
face of the star (Marchaudon, 2019, Section 8.3).
Here, the IMF of our solar system is shown.
The distances of the planets to the Sun are il-
lustrated by gray circles. The Parker model is
valid for distances to the star where solar gravi-
tation and outward acceleration by high coronal
temperature are negligible. It depends on the
angular velocity of the star and the velocity of
the solar wind.

Ambient
Solar Wind

Rarefaction

Compression

(b) Schematic illustration of the solar wind struc-
ture in the ecliptic with varying plasma veloc-
ities indicated by arrows. The stream lines as-
sociated with slow velocities have a larger cur-
vature. The fast-moving streams overtake the
slower streams, causing compression and, at the
same time, rarefaction where slow streams are
outrun. The varying velocities cause oscillations
in the solar wind parameters associated with the
rotation of the Sun. This figure is based on V.
Pizzo (1978, Figure 1).

Figure 2.12.: Structure of the IMF and solar wind in ecliptic. The illustrations only provide a
simple picture. More sophisticated models can be found, for example, in (Lhotka
and Narita, 2019).

(E. N. Parker, 1958): Since the solar wind has an enormous electrical conductivity, it drags
the magnetic field of the Sun outwards. The magnetic field is assumed to be frozen-in1 into
the plasma: The stream lines of the plasma flow and the field lines of the Sun’s magnetic field
coincide. Since the footprints of the field lines are anchored at the Sun’s surface and the Sun
rotates the shape of the streamlines and magnetic field lines is a spiral (see Figure 2.12a). Its
shape depends on the velocity of the plasma flow and the angular velocity of the Sun. The
spatially extended magnetic field of the Sun in the heliosphere is called interplanetary magnetic
field (IMF; e.g., Lhotka and Narita 2019). Parker’s spiral provides the “lowest-order picture”
(Lhotka and Narita, 2019, p. 299) of the IMF.

In Figure 2.12a, a spherically symmetric plasma outflow is assumed. However, the corona is
spatially variable, leading to considerable variations in plasma outflow. The corona has regions
with opened and closed magnetic field lines2. Coronal holes are regions dominated by open

1More details about frozen field lines can be found, for example, in Baumjohann (2012, Section 5.1.2), Keith
and Heikkila (2020, Section 1.5) or Kelley, Michael C. (2009, Section 2.5.2)

2The Maxwell equations prohibits the existence of magnetic monopoles (Gauss’s law for magnetism). As a
consequence magnetic, field lines are closed curves or extend to infinity. Thus, the term ’open field lines’ does not
mean that the field line does not close, but that the field line does not close within a particular region (Owens
et al., 2011, Section 2.1).
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magnetic field lines (e.g., Aschwanden, 2014, Section 5). The solar wind arising from coronal
holes has higher velocities compared with other regions of the Sun. By reason of the variability
of the corona, slow and fast plasma streams reach Earth alternating, as the Sun rotates. “Faster
moving plasma overtakes slower moving plasma ahead while outrunning slower moving plasma
behind” (Gosling, 2014, p. 266). This causes a compression and rarefaction of the solar wind,
as illustrated in Figure 2.12b. Compressive regions in the solar equatorial plane where faster
plasma overtakes slow plasma are called corotating interaction regions (CIR; e.g., Gosling and
V. J. Pizzo 1999).

Figure 2.13 shows the time series of selected solar wind parameters and the IMF for an
exemplary six-month period close to the solar minimum observed from various spacecrafts at
the L1 Lagrange point. Figure 2.14 contains the power spectra of the same selected solar wind
parameters and the IMF. All spectra have a strong peak associated with the rotation of the
Sun. The spectra also contain distinct harmonics of the solar rotation. For the IMF, the solar
rotation is the dominant period. For the plasma flow speed and proton temperature, the solar
cycle is dominant. The IMF also shows a pronounced yearly dependency.

Among the periodic oscillations, there are also irregular and sudden short-term events such as
solar flares and CMEs affecting the solar wind and the IMF. Solar flares and CMEs are eruptive
phenomena in the solar corona driven by magnetic reconnection (Aschwanden, 2014, Section 6).
They occur isolated or as a combination. A CME is an outburst of plasma that propagates
through interplanetary space, expands in size, and carries the frozen-in magnetic field. A solar
flare describes the rapid release of electromagnetic radiation in almost all wavelengths, including
γ-radiation in case of large flares (Aschwanden, 2014, Section 6). The time series in Figure 2.13
contain a CME that hit Earth on 5 April 2010, causing a geomagnetic storm. At that point in
time, the solar wind velocity and proton temperature rapidly increase and the IMF has large
peaks. According to Figure 2.17, storms only occur during 5% of the time, and only a small
fraction of the storm time is severe. S. C. Chapman et al. (2020) instigated the occurrence of
severe space weather events during the solar cycle and found that there is a roughly 4.4 years
lasting quiet interval per cycle.

2.3.2.1. Interaction with Earth

The interaction of solar wind (Section 2.3.2) with Earth’s environment is essential for under-
standing and modeling the upper atmosphere since it is an important energy input and perturbs
the neutral density (e.g., Prölss, 2011).

The first encounter of the solar wind with Earth’s environment is the (terrestrial) bow shock
(e.g., Balogh and Treumann 2013, Section 10.2.1 or Prölss 2004, Section 6.4) that is a (super-
critical) collisionless shock (Balogh and Treumann 2013 or Baumjohann 2012, section 13.2)
caused by the interaction of Earth’s magnetic field with the solar wind. The concept is similar
to an ordinary gas, where shock waves are produced by objects flying with relative velocities
faster than the speed of sound. However, the mean free path of the solar wind is so large
(almost 1AU at Earth orbit) that particle collisions cannot create this shock. Therefore, the
shock is categorized as collisionless. Instead, the shock is caused by long-range electromagnetic
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Figure 2.13.: Time series of selected solar wind parameters, the IMF (in geocentric solar ecliptic
(GSE) frame, see Appendix E.2) and the Kp index in the first half of 2010 using
the OMNI2 dataset with hourly resolution (Papitashvili and King, 2020c). The Kp
index is measured at the Earth’s surface, while the other time series are observed
from the L1 Lagrange point.
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Figure 2.14.: Power spectra of selected solar wind parameters and the IMF (in GSE frame, see
Appendix E.2) computed from OMNI2 dataset with hourly resolution (Papitashvili
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interaction (Prölss, 2004, Section 6.4.5). The shock slows down the plasma to subsonic speeds.
About 90% of the solar wind is diverted by the shock (Keith and Heikkila, 2020, Section 1.3.1).

The geomagnetic field in the vicinity of the Earth (roughly six Earth radii) is approximately
a dipole field that is tilted w.r.t. Earth’s rotation axis (e.g., Prölss, 2004, Section 5.2). How-
ever, it is subject to spatial and temporal variations, which are described, for example, by the
International Geomagnetic Reference Field (IGRF; Alken et al. 2021) .

The magnetosphere is “the region above the ionosphere in which the magnetic field of the
Earth has a dominant control over the motions of gas and fast-charged particles [...]” (Gold,
1959). The outer boundary of the magnetosphere is called the magnetopause (see Figure 2.15).
“It separates the solar wind plasma and the IMF from the geomagnetic field and plasma of
primarily terrestrial origin” (Keith and Heikkila, 2020, p. 34) and “is determined by the pressure
balance between the solar wind and the planetary magnetic field” (Parks, 2015, p. 1). The solar
wind shapes the magnetopause as sketched in Figure 2.15. The distance from the magnetopause
on the day-side to Earth is about 10 Earth radii (measured from the subsolar point) and is
known to fluctuate about a few Earth radii, mainly depending on the dynamic pressure of the
solar wind. The night-side magnetosphere is also called magnetotail because of its extended
field lines whose shape is similar to the tail of a comet (Prölss, 2004, Section 5.5.1). The extent
of the magnetotail is not well known but it exceeds 100AU (Parks, 2015, p.1). The region
between the bow shock and the magnetopause is the magnetoheath (e.g., Keith and Heikkila,
2020, Section 1.8).

The region where the magnetic field lines are separated between the day-side and night-side is
called cusp (Prölss, 2004, Section 5.5.1). Here, solar wind particles can enter the magnetosphere.

The interaction of the IMF with the terrestrial magnetic field is explained by the Dungey
Cycle (Dungey, 1961): When the field lines of the IMF encounter the terrestrial field lines at
the magnetopause, they merge. The merged field line splits into two ’open’ field lines with one
footprint on Earth (blue field lines in Figure 2.15). The solar wind carries the ’open’ field lines
in the opposite direction to the Sun, over the poles, and to the magnetosphere’s tail. At the
end of the tail, the ’open’ field lines reconnect, causing a plasma transport from the tail towards
Earth (Baumjohann 2012, Section 5.2.1 or Section 2.2.1 Milan and Grocott 2021).

If the equilibrium between solar wind pressure and magnetic pressure shaping the magne-
topause is disturbed, for example, by reconnection of magnetic field lines (Dungey Cycle),
large-scale magnetospheric flows are excited to rebalance the system (Milan and Grocott, 2021,
Section 2.3). “In a steady state this causes a continuous circulation of the magnetospheric flux
and plasma, and this magnetospheric convection is coupled to the ionosphere by tension forces
and gives rise to ionospheric convection.” (Milan and Grocott, 2021, p. 27)

The plasma sheet is located within the region of ’closed’ field lines (see Figure 2.15) located
around the equatorial plane. The lower boundary is located at around 6 Earth radii (Gabrielse
et al., 2022). The plasma in the solar wind, magnetoheath, plasmasheet, plasmasphere, and
lobes can be distinguished by the temperature and density (see Gabrielse et al. 2022, Figure 4.1
or Baumjohann 2012, Figure 1.2).

The charge carriers in the magnetosphere and ionosphere cannot move freely in the magnetic
and electric fields, instead one observes gyro-, oscillatory-, drift- and composite charge carrier
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Figure 2.15.: Schematic cross-section of the magnetosphere in the x-z plane of the geocentric
solar magnetospheric (GSM) system (see Appendix E.2) based on Milan (2009,
Figure 1). The distance between two ticks is ten Earth radii. The field lines of
the IMF merge with the terrestrial field lines and reconnect at the end of the
magnetotail (not visible in this Figure, see Baumjohann (2012, Figure 5.5) for
more details of this process). The merged field lines (only one footprint on Earth)
are called ’open’ field lines (blue lines in this figure). The field lines that are not
interconnected across the magnetopause with the IMF are called ’closed’ field lines
(red lines). At the bow shock, the supersonic solar wind decelerates to subsonic
speed. The magnetosphere is the part of the magnetic field dominated by Earth’s
magnetic field. The boundary layer of the magnetosphere is called magnetopause
(white dotted line). The region between the bow shock and magnetopause is the
magnetoheath. At the cusp (marked with a pattern of parallel lines), the field lines
are separated between those entering the magnetotail and those headed towards
the Sun. This cross-section only provides a limited picture of the magnetosphere.
Three-dimensional drawings of the magnetosphere can be found, for example, in
Yau et al. (2019b, Figure 2.5.1) or Keith and Heikkila (2020, Figure 1.1).

motion (e.g., Prölss 2004, Section 5.3; Baumjohann 2012, Chapter 2; Milan and Grocott 2021,
Section 2.2.2; or Keith and Heikkila 2020, Section 1.4.5).

The polar oval (auroral oval) is a ring-like structure at both magnetic poles. Here, the northern
and southern lights occur. The inner radius is approximately 15°. The center is shifted a few
degrees from the magnetic pole towards the night-side. The outer radius is a few degrees larger
than the inner radius. The oval is wider in the midnight sector. The size of the polar oval
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Figure 2.16.: Schematic of electrical currents at high latitudes adopted from Prölss (2004, Fig-
ure 7.10). The magnetic north pole is marked with a black dot. The orientation
is given by the local time. Birkland currents are also called field-aligned currents.
Birkland currents located at the outer and inner circle are called Region 2 and
Region 1 currents, respectively. A three-dimensional version of this plot can be
found, for example, in Palmroth et al. (2021, Figure 6).

is subject to temporal variations. A geomagnetic storm causes an expansion of the oval. The
region surrounded by the inner edge of the polar oval is called polar cap. The magnetic field
lines going through the polar cap are those associated with the lobes of the magnetotail. The
field lines from the night-side polar oval connect to the plasma sheet, and the field lines from the
day-side polar oval to the cusp and magnetospheric boundary layer (Prölss, 2004, Section 7.1).

Several electrical currents within the magnetosphere are created by the motion of the electrons
and ions in opposite directions. There are currents that flow perpendicular to the magnetic field
lines and currents that are aligned to the field lines. Examples of perpendicular currents are
the ring current, the electrojets within the auroral ovals, and the equatorial electrojet above
the magnetic equator. The large-scale field-aligned currents connect the currents of the polar
ionosphere with the magnetosphere (Baumjohann, 2012, Section 1.3).

Figure 2.16 shows the current system in the auroral region. Hall and Pedersen currents are
perpendicular to the magnetic field. Pedersen currents are parallel to the electric field, while Hall
currents are parallel to it. The electrojets in the polar oval are Hall currents flowing eastward
and westward from the noon to the midnight sector. Within the polar cap, Hall currents
connect the midnight and noon sectors. Birkland currents (field-aligned currents, Birkland
1908) are parallel to the magnetic field lines. They are located at the inner (region 1) and
outer (region 2) edge of the polar oval (Iijima and Potemra, 1978). The upper atmosphere
and magnetosphere are coupled by region 1 and 2 currents. The region 1 currents are aligned
to the ’closed’ night-side magnetic field lines and ’open’ day-side field lines extending to the
magnetotail. The magnetic field lines associated with region 2 currents extend to 7-10 Earth
radii (Prölss, 2004, Section7.6.6). Within the polar oval, region 1 and 2 Birkland currents are
connected by Pedersen currents. The region 1 Birkland currents are connected through the
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polar cap by Pedersen currents. The Hall and Pedersen currents (Figure 2.16) have the greatest
intensity where the corresponding conductivity is greatest. Thus, both currents are strongest
in the E-region (Prölss, 2004, Section 7.3.4). The Pedersen currents heat the atmosphere by
Joule heating (e.g., Richmond, 2021), which is caused by the friction between the charge carriers
colliding with the neutral particles (Prölss, 2004, Section 7.5.2).

Aurora/polar lights are caused by the incidence of energetic particles, mostly electrons. The
particles originate not directly from the solar wind but from the plasma reservoirs connected via
magnetic field lines with the auroral oval: the night-side plasma sheet and the day-side magneto-
spheric boundary layer (Prölss, 2004, Section 7.4). The collisions of the energetic particles with
the gas in the upper atmosphere result in scattering, ionization, dissociation, and excitation.
The dominant emissions of the aurora caused by excitation are the yellow-green line and the red
lines of atomic oxygen, the blue-violet band associated with singly ionized molecular nitrogen,
and the dark red bands of neutral molecular nitrogen (e.g., Prölss, 2004, Figure 7.14). Only a
small fraction of the energy provided by the incident particles is converted to radiation (about
1% or less). Most of the energy is converted to heat or potential chemical energy. In contrast to
the heating associated with the absorption of solar UV radiation, this heating mechanism also
occurs on the night-side (Prölss, 2004, Section 7.4.2).

The heat generated in the polar oval through particle precipitation (aurora) and Joule heating
(ionospheric currents) causes an upward expansion. It drives horizontal winds, which distribute
the heat over a wider area. The vertical wind affects the composition of the atmosphere: The
fraction of heavier species increases while the fraction of lighter species decreases accordingly
(Prölss, 2004, Section 7.5.3).

2.3.2.2. Geomagnetic Indices

Geomagnetic activity can be considered as the variation of Earth’s magnetic field. There are
several indices constructed to represent this variation (Love and Remick, 2007).

A prominent geomagnetic index is the Kp index (Bartels, 1949; Matzka et al., 2021a)–p stands
for planetary–which is a combination of the K index (Bartels et al., 1939) acquired at thirteen
subauroral observatories. The K-index is computed from the variation of the horizontal magnetic
field component within 3 h at a specific location (see Love and Remick, 2007, Figure M32).
Thus, there are eight values per day starting at midnight UTC+0. The Kp and K indices
have 28 different values between zero and nine. Based on Kp values, the National Oceanic and
Atmospheric Administration (NOAA) has introduced a scale for the classification of geomagnetic
storms (NOAA, 2023). When applying the NOAA scale to the official Kp values (Matzka et al.,
2021b), 95.1% of the Kp values indicate quiet conditions. About two thirds of all storms are
minor; only 0.01% of the Kp values correspond to extreme storm conditions (see Figure 2.17).

Additional geomagnetic indices used by some models discussed in Chapter 5 are summarized
in Appendix B.2.
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Figure 2.17.: Histogram of all observed Kp values from 1 January 1932 till 30 Sep 2024 provided
by Matzka et al. (2021b). The upper and lower panels show the probability den-
sity function (PDF) and the cumulative distribution function (CDF), respectively.
PDFs and CDFs are explained in Section 6.1. The Ap index is the Kp index trans-
formed to a linear scale. The color of the bars indicates the geomagnetic storm
scale from the NOAA (NOAA, 2023).

2.4. Vertical Coupling of the Atmosphere

Although the thermosphere is primarily controlled by space weather, it is also affected by the
processes in the atmosphere below (e.g., H.-L. Liu, 2016). In this context, atmospheric tides (e.g.,
Oberheide et al., 2015; Schindelegger et al., 2023)–oscillations of neutral temperature, wind,
composition, and density–are important as upward-propagating atmospheric tides originating
in the lower atmosphere contribute to the longitudinal, seasonal-latitudinal, and day-to-day
variability in the ionosphere and thermosphere (e.g., Schindelegger et al., 2023, Section 4.1 and
references therein). Yue et al. (2023) found that the day-to-day variation of neutral mass density
at 120 km altitude is ’exclusively controlled by the lower atmosphere’, while at 300 km the Sun
is the major driver. Yamazaki and Richmond (2013) describes how upward-propagating tides
affect the density of the charge carriers via electrodynamic and mixing effects.

Atmospheric tides can be represented as zonally propagating waves that are periodic in longi-
tude and time. The tidal spectrum includes many modes that can propagate upwards or down-
wards from the height at which they are excited. As tidal waves ascend in Earth’s atmosphere,
the density decreases, and their amplitude increases as a consequence of energy conservation
(e.g., Schindelegger et al., 2023, Section 1). “Thus, tidal perturbations, which make up only
a fraction of the meteorologically interesting variations in the troposphere, profoundly affect
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the large-scale dynamics of the mesosphere and lower thermosphere [...].” (Schindelegger et al.,
2023)

Atmospheric tides are mainly generated by the Sun and the Moon. Solar tides are mainly
caused by periodic heating, while lunar tides are associated with time-varying perturbations in
Earth’s gravitational field. The semi-diurnal and diurnal solar tides have the largest impact.
The amplitudes of the lunar tides are about an order of magnitude lower (Schindelegger et al.,
2023).

A recent study by Dhadly et al. (2018) could not find evidence for a dependency of the
migrating (sun-synchronous) semi-diurnal and diurnal tides on the solar cycle.

Apart from those periodic phenomena, isolated events such as volcanic eruptions (e.g., Li et
al., 2023) or tsunamis (e.g., Garcia et al., 2014) can affect the thermosphere. For example, the
eruption of Hunga Tonga-Hunga Ha’apai in 2022 (Vadas et al., 2023) caused density variations
that were detected in 500 km altitude by the accelerometers onboard the GRACE-FO mission
(Li et al., 2023).

2.5. Mass Density Variations

As established in Section 2.3.1 and 2.3.2, the solar radiation and solar wind are responsible for
many spatial and temporal variations of the mass density of the upper atmosphere (e.g., Qian
and Solomon, 2012). The impact of the Sun on satellites was discovered at the very beginning
of the space era. Jacchia (1959b) found oscillations in the orbit of Sputnik II (1957 β 1) that
could not explained by gravity. He attributed those oscillations to the rotation of the Sun (see
Section 2.3). Jacchia (1959a) also discovered an anomaly in the orbit of the launch vehicle of
Sputnik 3 (1958δ1), which was caused by a geomagnetic storm (Prölss, 2011). A few years later,
Paetzold and Zschorner (1961) discovered the semiannual variation of the neutral density.

The following discussion is based on data from the NRLMSIS 2.0 empirical model (see Sec-
tion 5.2.1). This model was fitted from many different observations and represents the average
state of the atmosphere well. Other models yield different values, but the general structure of
the atmosphere discussed in this section can be produced with all recent models.

Figure 2.18 shows the neutral mass density from 100 to 500 km altitude. The neutral mass
density on the day-side is generally greater than on the night-side. This is explained by the
heating and associated up-welling of denser air caused by absorption of solar radiation (see Sec-
tion 2.3.1.1). At an altitude of 100 km, the difference between the day and night sides is less
pronounced compared with higher altitudes. This is because, at this altitude, upward propa-
gating atmospheric tides excited in lower layers are the dominant source of density variations.
The maximum of the neutral mass density (white triangle) is on the day-side and delayed w.r.t.
the subsolar point (white circle) since the impulse response of the atmosphere to heating is not
zero. In Figure 2.18, the delay is roughly 3 h at 500 km altitude and 2 h at 100 km. The height
dependency of this delay is also indicated in Figure 2.19 a and b with a red line, which con-
nects the locations of the density maxima at each altitude. The angle between the Sun (12:00)
and the maximum mass density increases with altitude. Comparing the contour lines (solid
white lines) in Figure 2.19 with the dashed white lines of equal altitude reveals the bulge in
the neutral density following the motion of the Sun. When comparing the outermost contour
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Figure 2.18.: The maps show the neutral mass density at various altitudes computed with the
NRLMSIS 2.0 at the solstices of the year 2011 at 12:00 UTC+0. The white dot is
the subsolar point, the white line is the solar terminator, and the white triangle is
the global density maximum. The density maximum is between 1 and 3 h behind
the Sun. The density on the night-side is lower than on the day-side because there
is no solar radiation to absorb.
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line during maximum and minimum conditions, one can see how the stronger solar radiation
vertically expands the atmosphere.

Figure 2.20 shows the average height profiles of neutral mass density and neutral tempera-
ture for solar minimum and maximum conditions. For aerostatic equilibrium conditions (see
Section 2.1.3) and constant density scale height, one would expect linear functions on the loga-
rithmically scaled axes (simple exponential decay of neutral density). However, the atmosphere
is not in aerostatic equilibrium since there is mass transport in the entire atmosphere and par-
ticle escape in the exosphere (Section 2.2.2). Besides, the scale height is not constant. However,
for small vertical increments, the change in the scale height is small, and an exponential function
may be employed for extrapolation and interpolation.

The neutral mass density and temperature are generally higher during solar maximum con-
ditions. During the year 2003 (solar maximum), the median exospheric temperature is 261K

higher than during the year 2008 (minimum conditions). At 100 km altitude, the median neutral
mass density is almost identical during solar minimum and maximum conditions. The largest
difference of the median neutral mass density (solid line) between solar minimum and maximum
in Figure 2.20 is at around 560 km, where it is 7.5 times larger. At the same altitude, the max-
imum neutral mass density (dashed line on the right-hand side) in 2003 was 771 times larger
than the minimum density in 2008.

Figure 2.21 shows the median neutral mass density time series for different altitudes over two
solar cycles. The lower the altitude, the lesser the amplitude of the temporal variations. The
solar cycle, with a period of eleven years, is the most striking oscillation. Superimposed on that,
one can detect annual and semiannual variations. The neutral mass density is also subject to
solar-rotational, daily, and sub-daily variations that cannot be detected on this scale.

Long-term cooling is observed in the upper atmosphere, which also causes a long-term decrease
in neutral density. Roble and Dickinson (1989) simulated the effect of increasing greenhouse gas
concentrations in the mesosphere and thermosphere. They found that a doubling of CO2 and
CH4 concentrations cools the global mean temperature of the thermosphere by 50K. For a
30-40K cooling, Rishbeth and Roble (1992) simulated a 20-40% decrease in neutral density and
a 15 km decrease in F2-layer peak height. Incoherent scatter radar (see Section 4.4) observations
indicate an even higher temperature decrease (Donaldson et al., 2010; Holt and S. R. Zhang,
2008), which is twenty times larger than the simulation (W. L. Oliver et al., 2013). Thus, factors
other than greenhouse cooling should also be considered. W. L. Oliver et al. (2013) suggest an
increased gravity wave action that removes energy in the lower thermosphere as the main driver
of the cooling. Cnossen (2020) attributed rising CO2 levels to the temperature trends in the
thermosphere, using a 65-year long WACCAM-X simulation. She found only small and not
significant influence of altered gravity wave forcing on long-term cooling in the thermosphere.
However, the influence of gravity waves could not be ruled out by this study and it remains
an open question. The study of W. E. Parker et al. (2025) suggests that the greenhouse gases
induced cooling reduces the satellite carrying capacity of orbits between 200 km and 1000 km by
50-65% to the end of the century.
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Figure 2.19.: Neutral mass density cross-sections through the xy-, xz-, and yz-plane of the Earth
fixed frame for solar maximum and minimum conditions. The blue plane represents
the cross-section, and the yellow plane the ecliptic. The partly filled circle located
in the center shows the day- and night-side of the Earth. The altitude ranges from
0 km-750 km. The concentric dashed circles indicate 250 km and 500 km altitude.
The white contour lines correspond to the tics of the color bar. The solar bulge
can be easily detected by comparing the concentric dashed circles with the contour
lines. At high solar activity the density is higher in the thermosphere. The red
lines in panels a and b correspond to the density maximum at each altitude starting
at 200 km altitude. The angle between the Sun (12:00) and the density maximum
increases with altitude. For lower altitudes, the location of the maximum does not
show a smooth vertical dependency.
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Figure 2.20.: Temporally and horizontally averaged height profiles for solar minimum conditions
(2008) and solar maximum conditions (2003). The NRLMSIS 2.0 and IRI-2022
were evaluated hourly for each year on a grid partitioned into cells of equal surface
area and similar shape on a sphere using the algorithm developed by B. Beckers and
P. Beckers (2012). For each altitude and hemisphere, 125 grid cells were evaluated.
The neutral quantities in panels a and b were computed from the NRLMSIS 2.0
and the ion mass density in panel c from the IRI-2022. Accordingly, panel d is
computed from both models. Neutral mass density and neutral temperature are
generally larger during solar maximum conditions. At 450 km, the median neutral
mass density is about 6 times larger. The median neutral temperature is 261K
warmer. The ion mass density is much lower compared with the neutral mass
density. The contribution of the ions to the total mass increases with altitude
(panel d). The maximum ion mass fraction is 0.75% at 700 km altitude. At
500 km it does not exceed 0.14%. However, the NRLMSIS 2.0 and IRI-2022 are
not coupled. Thus, these results should be considered as an approximation.
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algorithm developed by B. Beckers and P. Beckers (2012). For each altitude and
hemisphere, 125 grid cells were evaluated.
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The aerodynamic acceleration is the largest non-gravitational acceleration acting on satellites
close to Earth and, therefore, is important for precise orbit determination of those satellites.
Moreover, the aerodynamic acceleration is crucial for satellite lifetime assessment and re-entry
prediction. Aerodynamic acceleration depends on the geometry of the satellite, its surface ma-
terials, its velocity, and the properties of the surrounding gas, especially the mass density.
Atmospheric drag is the acceleration acting opposite the satellite’s flight direction relative to
the motion of the atmosphere. The two other components of the acceleration vector, the lift and
cross-track acceleration are generally much lower than the drag. Since the drag is proportional
to the mass density of the surrounding gas, which decreases with altitude, the drag decreases
accordingly. For satellites, the drag acceleration is dominant at altitudes below 850 km at so-
lar minimum conditions and below 1750 km during solar maximum conditions (Montenbruck
and Gill, 2000, Figure 3.1). Above those altitudes, solar radiation pressure (see Section 4.1) is
the largest non-gravitational acceleration. Above 1000 km and 2000 km Earth radiation pres-
sure becomes greater than the atmospheric drag for solar minimum and maximum conditions,
respectively (Montenbruck and Gill, 2000, Figure 3.1). At an altitude of about 150 km, the
remaining lifetime of typical (uncontrolled) satellites is shorter than one day (see Figure 3.4),
and at about 78 km, they break up and disintegrate eventually. Thus, the density below this
altitude is relevant for re-entry simulations but not for the operational phase of satellites.

To accurately simulate the aerodynamic acceleration acting on a satellite, the properties of
the surrounding gas, especially the mass density, are required. Additionally, the velocities of
the satellite and the atmosphere are needed. Moreover, accurate information on the energy and
momentum transfer caused by the collisions of the atmospheric particles with the satellite is
needed. The energy and momentum transfer depends on the material properties of the surface
and its coating. Satellites with complex shapes, including concave geometries and superstruc-
tures such as antennas or solar panels, require a three-dimensional satellite macro model (e.g.
March, 2020, Section 2.3) to calculate the angle of attack on a surface element and account for
self-shadowing and multiple reflections. While this thesis focuses on providing highly-reliable
mass densities, the satellite gas-surface interaction is also an active research area (e.g., March
et al., 2021).

First, the type of gas flows that satellites may experience are introduced in Section 3.1. The
basic equations for computing the aerodynamic acceleration acting on satellites are provided in
Section 3.2. In Section 3.3, the gas-surface interaction modeling providing the drag coefficient for
the computations in the previous section is summarized. Finally, a short description of satellite
lifetime and the re-entry is given in Section 3.4.
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Table 3.1.: Gas flow regimes are characterized by the Knudsen number. There is no exact
definition and different authors use slightly different ranges of Knudsen numbers for
the regimes.

range of Knudsen number

regime rarefaction Wu (2022) Sentman (1961)

continuum flow ordinary K < 0.001 K < 0.01
slip flow slightly 0.001 < K < 0.1
transition flow moderately 0.1 < K < 10 0.01 < K < 10
free molecular flow highly 10 < K 10 < K

3.1. Gas Flow Regimes

One can divide gas dynamics into different gas flow regimes (e.g., Chambre and Schaaf 2017, p. 4
or Wu 2022, p. 9), corresponding to different degrees of rarefaction. Typically, a distinction is
made between the continuum-, slip-, transition-, and free molecular flow regime. The continuum-
regime is dominated by intermolecular collisions, whereas the free molecular flow regime is
dominated by molecule-surface interactions. In the slip flow and transition flow regime, both
intermolecular collisions and molecule-surface interactions are important.

The continuum and slip flow regime can be modeled with the Navier-Stokes-Fourier equations,
but in the transition regime, these equations break down (e.g. Wu, 2022, Section 1.2). For the
transition and free molecular flow regime the Boltzmann equation (e.g., S. Chapman 1970,
Chapter 3; Gombosi 1994, Chapter 5; or Wu 2022, Chapter 2.3) is typically employed.

To characterize a flow into a regime the Knudsen number (e.g., Chambre and Schaaf, 2017;
Sentman, 1961)

K � l̄

L
(3.1)

is employed, which is the ratio of the mean free path l̄ to a characteristic length L. The mean free
path (e.g., S. Chapman 1970, p. 86, USSA76 1976, p. 17) is the mean distance a particle travels
without any collision. L is a length that is characteristic of the considered scenario. In the case
of a satellite, L is a characteristic length of the satellite itself. A Knudsen number greater than
one means that the mean free path is longer than the geometry under consideration.

Typical values for the Knudsen number associated with a regime are given in Table 3.1 and
Figure 3.1 shows the Knudsen number for different altitudes and characteristic lengths. At about
150 km, typical geodetic satellites enter the transition flow regime. As shown in Figure 3.4,
satellites at that altitude survive one day without thrusters. Thus, typical Earth observation
satellites are within the free molecular regime for most of their lifetime and enter the transition
regime only at the end. Therefore, the focus is on the free molecular regime:

The free molecule flow regime is the regime of extreme rarefaction. The molecular
mean free path is by definition many times the characteristic dimension of the body
which is assumed to be located in a gas flow of infinite extent. The molecules which
hit the surface of the body and are then reemitted on the average travel very far before
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Figure 3.1.: Knudsen number for different characteristic lengths and altitudes. The mean free
path is taken from the USSA76 (1976). The maximum dimensions of some space-
craft are given for reference. The gas flow regimes are labeled according to Wu
(2022)

colliding with other molecules. It is consequently valid to neglect the effect of the
reemitted particles on the incident stream, at least so far as effects on the body itself
are concerned. The incident flow is therefore assumed to be entirely undisturbed by
the presence of the body. This is the basic assumption of free molecule flow theory.
It is a consequence of this basic assumption that no shock waves are expected to
form in the vicinity of the object. (Chambre and Schaaf 2017, p. 8)

Sentman (1961) and Wu (2022) define the free molecular regime by K ¡ 10. To decide whether
an entire satellite is in a free molecular flow, L should be chosen as the largest dimension of the
satellite (Sentman, 1961, pp. 5–1).

3.2. Aerodynamic Acceleration

The aerodynamic force acting on a satellite is typically represented by (e.g., Doornbos, 2012,
Section 3.2.1)

Faero � 1

2
CaAρ8 |v8|2. (3.2)

The freestream velocity v8 is the relative velocity of the atmosphere w.r.t. the motion of the
satellite before the satellite affects the stream (e.g. Anderson, John D. and Cadou, Christopher
P., 2023). In the case of free molecular flow, where the stream is assumed not to be affected by
the satellite, this is the velocity at the position of the satellite. In other cases, it is the velocity
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that is far ahead of the satellite. Here, ρ8 is the freestream mass density. Again, in the case
of free molecular flow, this is the density at the position of the satellite. The three-dimensional
force coefficient vector Ca is a unit-less and scaled version of the aerodynamic force vector. It is
introduced to account for the gas-surface interaction that depends on the geometry and material
of the satellite (more details are explained in Section 3.3). In literature, it is more common to
provide projections of the coefficient vector (see Figure 3.2), for example, the drag, lift, normal
or axial coefficients (e.g. Anderson, John D. and Cadou, Christopher P., 2023). The reference
surface area of the body is given by A. The choice of the reference surface area is not critical,
but it is important to use the reference surface area that is associated with the force coefficients
in all calculations (Anderson, John D. and Cadou, Christopher P., 2023). In other words, the
reference surface area can be defined as desired, provided that the product of Ca and A remains
constant. For satellites, the reference surface area is typically chosen as the satellite’s projection
on a plane perpendicular to the freestream velocity (cross-sectional surface area). Thus, for a
spherical satellite, the reference surface area is typically the surface area of a circle with the same
radius as the sphere. Assuming a perfectly spherical satellite, the cross-sectional surface area
is independent of the satellite’s attitude. This is not the case for satellites with more complex
shapes.

The drag force

Fdrag � q8ACD (3.3)

is the projection of the aerodynamic force on the freestream velocity (see Figure 3.2) with the
freestream dynamic pressure (e.g., Chassaing, 2022, Equation 3.20a)

q8 � 1

2
ρ8|v8|2. (3.4)

This pressure is the contribution to the fluid’s total pressure explained by its relative velocity
and corresponds to “the increase in pressure when low-speed air is brought to rest” (King-Hele,
1987, p. 20). Even though the factor 1

2 has no significance for high-speed aerodynamics, it is
kept for compatibility. The drag coefficient CD is the projection of the aerodynamic coefficient
Ca on the freestream velocity v8. One obtains the drag acceleration

adrag � q8ACD

msat
(3.5)

by dividing the force by the mass of the satellite. There are equivalent formulations for lift,
axial, and normal acceleration

alift �q8ACL

msat
(3.6)

aaxial �q8ACA

msat
(3.7)

anormal �q8ACN

msat
(3.8)

with CL, CA, and CN being the projection of Ca on the corresponding axes. The components of
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Figure 3.2.: The drag force Fdrag is the projection of the aerodynamic force Faero on the
freestream velocity v8. The lift force is the component of the aerodynamic force
perpendicular to the freestream velocity. The freestream velocity is the velocity of
the atmosphere relative to the satellite, assuming the presence of satellite does not
affect the atmosphere’s motion. The axes of the satellite body frame are labeled
with x and z. The normal and axial forces are the projections of the aerodynamic
force on the x and z axes, respectively. The angle of attack is denoted by α.

the aerodynamic acceleration orthogonal to the drag (lift and side) can be neglected for satellites
typically (e.g., King-Hele 1987, p. 21, Doornbos 2012, Section 3.2.1)

In addition, if there are forces not acting on the center of mass, turning moments arise.
Besides aerodynamic torques also other torques caused, for example, by a gravity gradient or
the Earth’s magnetic field, influence the turning moment. Controlled satellites can neutralize
those moments with control jets and fly without (large) rotations along the orbit. Uncontrolled
objects, however, are destabilized by the moments and tumble in space (King-Hele, 1987, p.20).

Note that the inverse problem to Equation 3.5 (and the other projections) is ambiguous as
one can find arbitrary combinations of drag coefficient, reference surface area, and free stream
mass density explaining the aerodynamic force. Therefore, it is mandatory to consistently use
combinations of q8, A, and CD when any of them have been determined from observations of
the drag force.

3.3. Gas-Surface Interaction for Rarefied Gas Dynamics

The fundamental assumption of rarefied gas dynamics is that particle-particle interactions can
be neglected. Thus, aerodynamic forces can be derived from energy and momentum transfer
between individual particles and the boundary, which is the satellite’s surface in this context.
Gas-surface interaction is typically described statistically employing the mapping between the
distribution of the incident and reflected particle velocities (e.g., Wu, 2022, Chapter 2.6). Since
it is challenging to determine this mapping, simplified empirical approaches employing accom-
modation and reflection coefficients are often employed.

It is assumed that a particle is not reflected instantly but “bounces around in the spaces
between the molecules or atoms of the surface and then at some later time leaves the surface”
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3. Satellite Aerodynamics

(Sentman, 1961, pp. 2–2). Thus, the thermal energy of the impinging particles is accommodated
in the satellite. This is expressed via the thermal accommodation coefficient (e.g. Chambre and
Schaaf 2017, Eq. 4-1 and introduced by Knudsen 1911; Smoluchowski von Smolan 1898)

α � dEi � dEr

dEi � dEw
(3.9)

with incident energy flux dEi and reflected energy flux dEr. The flux dEw denotes the energy
that would be emitted if all incident particles were reflected following a Maxwellian distribution
described by the temperature Tw of the reflecting surface (Chambre and Schaaf, 2017, p. 9). In
the case α � 0, the reflection is perfectly elastic, and the reflected flux is equal to the impinging
flux. The case α � 1 describes a perfect accommodation where the reflected energy flux is
equal to the flux of a Maxwellian distribution associated with the temperature of the surface.
Note that one can refine Equation 3.9 by introducing individual coefficients for each degree of
freedom storing thermal energy (translation, rotation, vibration). The thermal accommodation
depends on the properties of the surface material. Thermal accommodation factors for different
materials are provided for example in Chambre and Schaaf (2017, Table H, 4a).

A frequently chosen approach for modeling the momentum transfer is to separate the reflected
particle flux into a specular and a diffuse proportion (e.g.,Wu 2022, Chapter 2.6.1, Chambre and
Schaaf 2017, Section H.4, or Sentman 1961, p. 2-3). In the case of specular reflection, the angle
of incidence is equal to the angle of reflection. This is not the case for diffuse reflection, where
the angle of reflection is not related to the angle of incidence. It is assumed that the velocity of
the diffusely reflected particles follows a Maxwellian velocity distribution. A specularly reflected
particle transfers momentum only along the normal to the surface, while a diffusely reflected
particle also contributes to the momentum transfer tangential to the surface. Two separate
reflection coefficients, one for the tangential moment transfer and one for the normal moment
transfer, are used to describe the reflection. (e.g., Sentman 1961, p. 2-4 or Chambre and Schaaf
2017, p. 10).

The thermal accommodation and reflection coefficients are equal to zero for hypothetical
materials solely reflecting specularly. For hypothetical materials solely reflecting diffusely, the
coefficients are equal to one (Chambre and Schaaf, 2017, p. 10). The aerodynamic force acting on
an infinitesimal surface element can be computed by Chambre and Schaaf (2017, Equations 7-6
and 7-7) and depends on the thermal accommodation and reflection coefficients. The aerody-
namic force is obtained by integrating the force acting on a surface element over the surface
under consideration. In Chambre and Schaaf (p. 19-20, 2017), the force integral was computed
over planes, cylinders, and spheres, assuming either purely diffuse or secular reflection, and
solved for the drag coefficient. For example, The drag coefficient of a sphere for diffuse reflection
is (Chambre and Schaaf, 2017, Equation 8-6)

CD �
exp

�
�S

2

2



?
πS3

p1� 2S2q � 4S4 � 4S2 � 1

2S4
erfpSq � 2

?
π

3Sw
. (3.10)
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Here erf is the error function and

S � |v8|c
2RT

M

(3.11)

is the dimensionless molecular speed ratio which is the quotient of the freestream velocity and the
most probable random speed of the gas with molar mass M at temperature T and gas constant
R. The most probable random speed corresponds to the velocity where the Maxwell Boltzmann
distribution reaches its maximum (e.g., Gombosi, 1994, Section 2.5.1). A large molecular speed
ratio indicates that the random motion of the gas is less important than the freestream velocity.
The ratio Sw from Equation 3.10

Sw � |v8|c
2RTw

M

(3.12)

depends on the temperature of the surface Tw. For the case that the surface temperature of
the object is in thermal equilibrium with the freestream temperature (T � Tw and S � Sw),
Figure 3.3 shows the drag coefficient for a sphere and a cylinder, assuming diffuse reflection. In
the case of hyperthermal flow S " 1, the random velocity of the gas particles does not play a
role. As the molecular speed in Equation 3.10 approaches positive infinity, the drag coefficient
becomes two, assuming thermal equilibrium of the gas and the surface.

Note that in Equation 3.11, a gas consisting of only a single constituent with molar mass M
is assumed. As a consequence of the assumption that particles do not interact, one can compute
the drag coefficient for a gas mixture from the individual contribution of each species weighted
by the mass fraction (Doornbos, 2012, Equation 3.51)

CD �
ş

i�1

wiCDi. (3.13)

Sentman (1961) provides the axial, normal, and turning coefficients for flat plates, cylinders,
cones, and spherical segments, assuming a completely diffuse reflection of the incident particle
flux and a constant temperature of the reflected particles.

In the case of free molecular flow, one can decompose satellites with complex shapes into simple
geometries to compute the total aerodynamic coefficient because the flow is not disturbed by
the satellite (Sentman, 1961, Section 3). The total aerodynamic coefficient is the sum of all
individual coefficients, assuming there are no secondary reflections. There is an ongoing effort
to improve the models of satellites. For example, the macro model of S. Bruinsma and Biancale
(2003) consists of 15 panels, while the model of March (2020) published 17 years later consists
of hundreds of panels.
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Figure 3.3.: Drag coefficient associated with a purely diffuse reflection for a sphere and cylinder
(Chambre and Schaaf, 2017, Eq. 8-4 and 8-6) aligned to the free stream velocity. It
is assumed that the surface has a uniform temperature equal to the freestream tem-
perature (S � Sw). The reference surface area associated with the drag coefficient
is the projection on a plane whose normal is the freestream velocity.

3.4. Satellite Lifetime and Re-Entry

The satellite lifetime (e.g., King-Hele 1987, Chapter 12 or Klinkrad et al. 2006, Chapter 6.3)
depends on many factors like the mass and geometry of the satellite, its amount of propellant,
the orbit, or space weather.

Assuming an idealized, constant, and spherical atmosphere and an idealized circular orbit the
lifetime of an uncontrolled satellite can be approximated via (King-Hele, 1987, Equation 12.30)

TL � H?
µCa

b

ρF
(3.14)

with the length of the semi-major axis a of the Kepler orbit and a correction factor F for the
co-rotation of the atmosphere introduced by King-Hele (1987, Chapter 2.5). Here, H denotes
the scale height of the mass density. The ballistic coefficient

b � 1

CD

m

A
(3.15)

can be interpreted as a measure of a satellite’s sensitivity to drag (e.g., Doornbos, 2012, pp. 55-
56). When using Equation 3.15, one must make sure to use the reference surface area and drag
coefficient that are assigned to each other. Figure 3.4 shows the dependence of the satellite
lifetime on the semi-major axis according to Equation 3.14 using typical drag coefficients and
mass-to-surface ratios. Although the illustration is highly idealized, it gives a general overview
about the lifetime. A typical spherical satellite (solid line) survives less than a day at an altitude
of around 150 km, a week at 200 km, and a year at 350 km.

As an object re-enters the atmosphere, its temperature rises. When the temperature reaches
the melting point of the material the object is made of, it is ablated (Klinkrad et al., 2006,
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Figure 3.4.: Estimation of the lifetime of an uncontrolled satellite in a circular orbit derived
from Equation 3.14, assuming a spherical, isotherm, and constant atmosphere. The
co-rotation of the atmosphere is neglected (F � 1). The pressure scale height
profile (close enough to density scale height at the plotted altitudes) and the mass
density from the USSA76 (1976) are used. This idealized equation only provides
an approximate estimate and cannot accurately determine the actual lifespan of
a satellite: orbits around Earth are never exactly circular, the mass density of the
atmosphere underlies strong spatial and temporal variations, and the drag coefficient
and mass-to-surface ratio are not constant.

Chapter 9.4). Depending on the properties of the object and the atmosphere, it disintegrates
completely. There are two ways to survive the re-entry: First, effective re-radiation that prevents
the material from reaching its melting point. Second, a sufficiently large heat storage for the
incoming energy (Klinkrad et al., 2006, Chapter 9.4). Parts of the entry object, like solar arrays
or antennas, break up when joints melt or when the aerodynamic forces exceed the stress limits.
Klinkrad et al. (2006, Chapter 9.4). A finding of the Vehicle Atmospheric Survivability Project
(Stern, 2008) in the 1970s was that objects break up at about 78 km altitude. However, these
experiments only considered aluminum structures (Peddakotla et al., 2023). There are several
software packages used for simulating re-entry (e.g., Lips and Fritsche, 2005).
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4. Observations of the Upper Atmosphere

The instruments and their observations introduced in this chapter are the basis of the semi-
empirical models described in Chapter 5. In addition, some of the observations have been used
in data assimilation experiments in this thesis (Chapter 8) or in other studies referenced in
Section 7.1 about related works.

In this chapter ’upper atmosphere’ refers to all layers above the tropopause (see Figure 2.3).
The instruments used to observe Earth’s upper atmosphere are located on Earth’s surface or
carried by satellites, balloons or sounding rockets. Sounding rockets (e.g., Christe et al., 2016;
Larsen, 2015) are used since the end of World War II to measure in-situ profiles of the upper
atmosphere. They are invaluable for probing the atmosphere above the altitude balloons can
reach (� 40 km) and below the altitude where LEO satellite orbits do not decay within a few
days (� 250 km, see Figure 3.4). Sounding rockets can be equipped, for example, with mass
spectrometers (see Section 4.3) to measure the density of the atmosphere or Langimur probes
to measure the electron density.

The mass densities derived from space-born accelerometers are the primary observation of the
assimilation experiments conducted in this thesis and are explained in Section 4.1. This section
also includes a brief description of the satellite missions used in this thesis. The subsequent
Section 4.2 explains how mass density can be derived from any tracked satellite from orbital decay
analysis. Section 4.3 summarizes how mass spectrometers are used for observing atmospheres.
Remote sensing observations of the atmosphere are conducted using incoherent scatter radar
(see Section 4.4), radio occultation (see Section 4.5), spectrographic imagers (e.g., Eastes et al.,
2017; Immel et al., 2017) or radiometers (e.g., Siegel, 2007).

4.1. Accelerometer-Derived Mass Densities

An accelerometer installed on a satellite’s center of mass is in freefall and, therefore, solely
responds to non-gravitational forces, excluding gravitational acceleration. After the calibra-
tion of the accelerometer (Vielberg, 2024, Section 3.1.5.3), the total observed acceleration is
the superposition of aerodynamic acceleration aaero (see Section 3.2), radiation pressure aRP,
satellite-induced accelerations asat and noise ε (Vielberg, 2024, Chapter 4)

a � aaero � aRP � asat � ε. (4.1)

Radiation pressure (e.g., Montenbruck and Gill 2000, Section 3.4 or Vielberg 2024, Section 4.2)
is caused by photons hitting a surface transferring momentum. The momentum carried by a
photon depends on its wavelength: the shorter the wavelength, the greater the momentum. Ra-
diation pressure also depends on the surface area of the object, the angle of incidence, and the
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Figure 4.1.: Photons colliding with satellites transfer momentum and accelerate them. Solar
radiation pressure is caused by photons emitted by the Sun that directly hit the
satellite (orange arrow). Earth radiation pressure (blue arrows) has two components:
photons emitted by the Sun that are reflected by Earth and hit the satellite (albedo),
and thermal radiation emitted by Earth itself.

reflection properties of the surface. The radiative flux decreases quadratically with the distance
to its source. Therefore, radiation pressure also decreases quadratically. Satellites orbiting Earth
experience radiation pressure from the Sun, the Earth, and the Moon (see Figure 4.1). How-
ever, lunar radiation pressure is small compared with the other sources for LEO-satellites. The
incident radiation also heats the satellite, which causes thermal re-radiation pressure (Vielberg,
2024, Section 4.2).

Solar radiation pressure is caused by photons that are emitted by the Sun hitting the satellite
directly. Earth radiation pressure is the combination of radiation emitted by the Sun reflected
towards satellites by Earth’s surface (albedo) and the thermal radiation of Earth itself. While
Earth’s thermal radiation affects the satellite on both the day and the night-side, the solar
radiation is only reflected on the day-side and does not affect satellites shadowed by Earth (see
Vielberg, 2024, Figure 4.4).

The photons do not only transfer momentum, but also thermal energy when being absorbed
by the surface. Therefore, the illuminated side of a satellite has a higher temperature than the
rest of the satellite. Since the thermal emission depends on the temperature (Stefan-Boltzmann
law), the radiation emitted on the illuminated surface has larger momentum, causing a net
acceleration of the satellite that must be considered. Further, satellite-induced accelerations
include twanks, thruster firings, antenna thrust, and accelerations caused by the Lorentz force
(e.g., Vielberg, 2024, Section 4.3).

Provided that the radiation pressure and the satellite-induced accelerations can be modeled
with sufficient accuracy, the aerodynamic acceleration can be calculated by solving Equation 4.1
for it:

aaero � a� aRP � asat � ε. (4.2)

The accelerometer measures the three components with respect to the satellite body-fixed frame.
Inserting the along-track component of the measured acceleration aaero,x into Equation 3.7 and

58



4.1. Accelerometer-Derived Mass Densities

solving for the density (inserting Equation 3.4 for the dynamic pressure) yields the freestream
mass density

ρ8 � 2
msat
A

aaero,x
CA|v8|2 . (4.3)

Since collisions of charged particles transfer momentum to a satellite ρ8 in Equation 4.3 also
contains the contribution of charged particles. However, the mass fraction of ions is well below
1% (see Figure 2.20 d), and the drag force is mainly due to neutral particles.

Accelerometer-derived densities have a temporal resolution of a few seconds. However, a
very well calibrated and ultra precise accelerometer is required, which is only found on a few
satellites. Moreover, there is limited information about the uncertainty of accelerometer-derived
mass densities. The quality of the density computed from Equation 4.3 depends on the quality
of all quantities on the right-hand side. This means accurate and precise estimates for

• the mass and shape of the satellite,

• the radiation pressure and satellite induced-accelerations,

• the axial force coefficient CA and therefore the gas-surface interaction,

• and the velocity of the satellite and the atmosphere (wind) constituting the freestream
velocity v8

are required. Thus, accelerometer-derived densities underlay many assumptions and “the main
challenge lies in attributing how much of the orbital perturbation is the result of changes in the
upper atmosphere versus changes in a satellite’s ballistic coefficient.” (Thayer et al., 2021).

4.1.1. Satellites Equipped with High-precision and High-accuracy Accelerometers

Over the years several LEO satellite missions were equipped with accelerometers sensitive enough
to determine satellite drag: the Challenging Minisatellite Payload (CHAMP; Section 4.1.2) mis-
sion, the Gravity Recovery And Climate Experiment (GRACE; Section 4.1.3) missions, the Grav-
ity field and steady-state ocean circulation explorer (GOCE, e.g., Brockmann et al. 2014), and
the Swarm mission (e.g., Friis-Christensen et al., 2008). In this thesis mainly the accelerometer-
derived mass densities from GRACE and CHAMP are used.

4.1.2. CHAMP

The Challenging Minisatellite Payload (CHAMP; Reigber et al. 2002) mission was launched on
15 July 2000 and re-entered on 19 September 2010, resulting in a mission duration of more than
ten years. The initial altitude was 460 km on a circular orbit inclined by 87.3°. Its objective
was to recover the global gravity field via satellite-to-satellite tracking in low-high mode1 , to
recover the magnetic field, and to profile the atmosphere and ionosphere with GPS. It carried
a ’STAR’ accelerometer in the center of mass that was used to determine non-gravitational
forces. The ’STAR’ accelerometer was a capacitive three-axis accelerometer with a resolution

1CHAMP was the low satellite while Global Positioning System (GPS) satellites were the high satellites
(Hofmann-Wellenhof and Moritz, 2006, p. 277).
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of 1� 10�9m{s2{?Hz (e.g., Flury et al., 2008; Touboul et al., 2004) constructed by the Office
National d’Etudes et de Recherches Aérospatiales (ONERA). In this thesis the CHAMP orbit
computed by Prange (2010) at AIUB is used.

4.1.3. GRACE

The Gravity Recovery And Climate Experiment (GRACE; Tapley et al. 2004) consisted of
two identical satellites on the same orbit separated along track by about 220 km. The primary
objective of GRACE was to measure Earth’s time variable gravity field using satellite-to-satellite
tracking in low-low mode. The main product are monthly solutions of the Earth’s gravity field.
The GRACE mission was launched on 17 March 2002 and re-entered on 10 March 2018. The
mission was almost 16 years in space. The initial altitude was 500 km, and the orbit was
almost polar with an inclination of 89.5°. The follow-on mission GRACE-FO (Landerer et al.,
2020) was launched on 22 May 2018 and is, at the time of the publication, still in orbit. Both
GRACE satellites were equipped with a ’SuperSTAR’ accelerometer (Flury et al., 2008), which
is the successor of the accelerometer installed on CHAMP. It was designed for a resolution of
1� 10�10m{s2{?Hz (e.g., Flury et al., 2008; Touboul et al., 2004). In this thesis only GRACE-A
data is used. The orbit provided in the official GRACE release (Bettadpur, 2012) is used.

4.2. Determination of Mass Density from Satellite Orbits

The kinetic energy and angular momentum of orbits is reduced by atmospheric drag, leading
to a decrease of the semi-major axis and eccentricity (Montenbruck and Gill, 2000). Since the
drag acceleration and the associated orbital decay depend on the mass density, one can derive
it from the orbit.

This approach only requires measuring the trajectory of a satellite and also works for pas-
sive satellites, for example, spherical Satellite Laser Ranging (SLR) satellites. Other techniques
frequently applied for satellite tracking are radio (or optical) tracking, global navigation satel-
lite system (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite
(DORIS).

Orbital decay is not measured instantly, but determined over a certain time-span and therefore
is an integrated quantity. Accordingly, densities derived from orbital decay are not instanta-
neous, but average values along the orbit.

The Staff of the royal aircraft establishment (1957) derived the mass density at the altitude
of Sputnik 1 from the decay of its orbital period. The theory for this approach is described in
King-Hele (1987, Chapter 10). Bowman et al. (2004) derive daily neutral mass density values
from orbital energy dissipation rates (Storz, 2012).

It is also possible to co-estimate mass density within precise orbit determination. Precise orbit
determination requires a force model (e.g. Montenbruck and Gill, 2000, Chapter 3) including
atmospheric drag force. This allows the introduction of correction parameters for the drag
force such as (temporarily resolved) bias or scale parameters. Zeitler et al. (2021) describe how
co-estimation is implemented in two software packages. Mass densities derived within orbit
determination are based on modeled densities, that are corrected with parameters that have

60



4.3. Mass Spectrometry

typically a temporal resolution of hours to days. Moreover, when co-estimating a scale factor
for the mass density, the complete right-hand side of Equation 4.3 is scaled, not only the mass
density. This means the factor may be influenced by scales of the other variables, especially the
axial force coefficient.

4.3. Mass Spectrometry

A mass spectrometer (Gross, 2017) is a type of instrument used to analyze the neutral and
charged composition of the constituents in a sample. There are different constructions (e.g.
Arevalo Jr et al., 2020; Gross, 2017), but the general principle is the same: first, the sample
under consideration is ionized, then separated into its constituents by its mass-to-charge ratio,
and finally, the individual constituents are detected.

There are many satellite missions equipped with mass spectrometers. They are used to exam-
ine solar wind, cosmic dust, planets, moons and comets (Arevalo Jr et al., 2020; P. V. Johnson
et al., 2012; Mahaffy, 1999; Palmer and Limero, 2001; Vazquez et al., 2021).

However, compared with state-of-the-art commercial systems, spaceflight instru-
ments are necessarily constrained in analytical capability because of a trade-off in per-
formance versus resource requirements; even the most advanced orbiters and landed
platforms offer only limited SWaP [size, weight and power] for scientific instruments.
(Arevalo Jr et al., 2020)

An early example of a satellite equipped with a spaceflight mass spectrometer is the third Sputnik
mission, flying from 15 May 1958 until 6 April 1960 that measured the positive ion concentration
of Earth’s atmosphere (ISTOMIN, 1962). The neutral number concentration of N2, N, O and
H was measured by the Atmosphere Explorer missions (AE-C, AE-D, AE-E) from 1973 until
1978 and Dynamics Explorer 2 (DE-2) from 1981 until 1983 (Dandouras et al., 2020, Table 1).
DE-2 carried a quadrupole mass spectrometer1 that was designed to sample the abundances of
neutral species with an accuracy of about 15% (Carignan et al., 1981) every second. “The most
contemporary QMS [quadrupole mass spectrometer] flown to date [...] achieve[d] an extended
mass range of 2 to 535 u with a mass resolving power up to m{∆m = 500 (FWHM [full width at
half maximum]) and 109 total dynamic range.” (Arevalo Jr et al., 2020) Modern spaceflight mass
spectrometers, like the mass spectrometer for planetary exploration (MASPEX, T. G. Brockwell
et al. 2016) achieve a mass resolving power up to m{∆m = 46 000 (full width at half maximum)
(Arevalo Jr et al., 2020).

There is not any recent satellite mission equipped with a mass spectrometer to measure the
mass density of Earth’s upper atmosphere. To detect the major neutral species (H, He, N, O,
N2, NO) and the ionized counterparts (H+, He+, N+, O+, N2

+, NO+) the rejected Deadalus
proposal intended an instrument with mass resolving power of m{∆m = 30, a mass range
larger than 40 u, and dynamic range of 1010 with 16Hz sampling (Sarris et al., 2020, Section
4.2.5). NASA’s upcoming Geospace Dynamics Constellation (GDC) mission (e.g., Akbari et al.,
2024) is intended to fly between 400 km and 350 km and to carry the Modular Spectrometer for

1Details on quadropole mass spectrometers can be found for example in Gross (2017, Section 4.4) and Arevalo
Jr et al. (2020, Section 3.2).
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Atmosphere and Ionosphere Characterization (MoSAIC) experiment. It is a quadrupole mass
spectrometer with an intended cadence of 1-2 s, an accuracy of 10% and a precision of 1%

(Dr. Mehdi Benna, personal communication).

4.4. Incoherent Scatter Radar

Incoherent scatter radars (e.g., Bilitza, 1991; Sulzer, 2015) are ground based instruments pri-
marily used for probing the ionosphere. They measure the number density and temperature of
electrons, and the temperature and velocity of ions in the atmosphere along the line of sight.
Incoherent scatter radars emit electromagnetic radiation with high power (1MW and more) in
radio frequency range using antennas with large apertures of 30m and larger (Sulzer, 2015).
Most of the emitted radiation passes through the ionosphere, except for a small amount being
reradiated by free electrons resulting in incoherent scatter returns. The ratio of transmitted
power to scattered power is approximately 10�19 (Häggström, 2021). Thus, the signal received
at the radars is very weak.

Incoherent scatter radars can reach altitudes up to 2000 km and a resolution of a few hundred
meters. Currently, there are about ten incoherent scatter radars in the world (Häggström, 2021).
Further processing of the measured profiles allows the derivation of many other parameters of
the charged and neutral atmosphere (Häggström, 2021). For example, Nicolls et al. (2014)
have demonstrated that multifrequency incoherent scatter radar measurements allow to infer
the ion-neutral collision frequency, which can be used to scale mass density models.

4.5. Radio Occultation

Radio occultation (e.g., Leroy, 2015; Liou, 2010) is a remote sensing method originally developed
for probing the atmosphere of planets. It requires at least two satellites, one of them sending a
radio signal and the other receiving it. The signal does not travel on a straight line as it would
in vacuum, but it is refracted (delayed and bend) by the atmosphere according to Snells’ law.
When the elevation of the transmitter as seen from the receiver is low or negative (that is the
case during the rise and set of the sender), the way through the atmosphere is much longer
compared with high elevations (e.g., when the sender is in the zenith of the receiver). In these
receiver-sender constellations, the atmosphere occults the sender (see Figure 4.2).

The bending angle and refractivity of the signal depends on the electron density, pressure,
temperature, and water vapor content (most of it is located in the troposphere) of the atmosphere
(Ho et al., 2020), enabling the inversion of the received signals to these quantities. Depending
on the constellation of transmitter and receiver, the signal travels through different heights
so that large areas of the atmosphere can be probed. For Earth, it is convenient to use the
already existing dense network of GNSS satellites as senders (e.g., Leroy, 2015; Limberger, 2015).
Satellite missions equipped with antennas for GNSS radio occultation are for example CHAMP,
GRACE, GRACE-FO, FORMOSAT-3/COSMIC (Ho et al., 2020), FORMOSAT-7/COSMIC-2
(Schreiner et al., 2020), or TerraSAR-X. Each of those missions covers the global atmosphere.
For Earth, the vertical resolution is in the order of hundredths of meters and the horizontal
resolution is in the range of several hundredths kilometers (Leroy, 2015). “GPS RO performs
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LEO

GNSS ξ

Figure 4.2.: Schematic illustration of radio occultation using GNSS satellites (see also Liou (2010,
Figure 2.1.1) or Hajj et al. (2002, Figure 1)). The signal emitted by the GNSS
satellite does not travel on a straight line (dotted line) but is bent by the atmosphere
(solid black path). The bending angle is denoted by ξ.

best in the 8–30 km height region, where the refractivity N can be retrieved with a precision of
0.2% and an accuracy that is an order of magnitude better.” (Leroy, 2015)
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There are many models of the atmosphere with different simulation methods, altitude ranges,
reference systems, and simulated state variables (e.g., Emmert, 2015, Section 3). I consider
global models that can predict the mass density in the LEO regime as it is needed for atmo-
spheric drag computation (see Section 3.2). Models that only consider the charged part of the
atmosphere, like the Global Assimilative Ionosphere Model (GAIM, R. W. Schunk et al. 2004),
are not discussed further here, as the primary goal is to enhance the mass density estimation.

Models can be divided into two types: (semi-)empirical models and numerical models. Em-
pirical models are functions fitted to a large dataset of observations. Provided with position,
time, and solar and geomagnetic activity they compute the state of the atmosphere for the given
inputs. Empirical models approximate the state of the atmosphere at arbitrary position, time
and space weather conditions, based on the underlying observation dataset. Numerical models
forward an initial state based on physical principles like conservation of mass, energy and mo-
mentum. They are discretized in time and space using some grid structure. Numerical models
that describe the global planetary scale motion of a fluid (including gases) are called general
circulation models. (Semi-)empirical models can also incorporate some physics, for example,
aerostatic equilibrium (Section 2.1.3), and are therefore often called semi-empirical models. On
the other hand, numerical models also contain empirical parts, for example, an empirical EUV
model.

While (semi-)empirical models can be limited to a single compartment like the neutral at-
mosphere, numerical models often simulate coupled compartments accounting for their mutual
interaction. For example, in upper atmosphere models, the coupling between the neutral and
charged part of the atmosphere is typically considered. This allows to self-consistently simulate
both compartments.

A key difference between semi-empirical and numerical models is the runtime. Semi-empirical
models can be solved instantly for a single position and time. In contrast, numerical models can-
not: They must be forwarded globally–taking into account all grid cells–from an available initial
state to the chosen point in time. The desired state variable is then obtained by interpolation
from the model grid to the desired position.

With the beginning of the satellite era, the development of upper atmosphere models began.
The timeline in Figure 5.1 gives an overview of the development and lists the associated publi-
cations. While the first empirical models date back to the early 60s, the first general circulation
models were published in the 80s. A more recent development is the use of machine learning to
construct empirical models (e.g., Pan et al., 2024; P. Wang et al., 2023; S. Wang et al., 2014).

Table 5.1 gives an overview of the inputs, outputs, and coordinate systems of some recent
models. All listed models use the F10.7 index (Section 2.3.1.2) as a proxy for solar EUV
radiation. The Drag Temperature Model-2020 (DTM-2020; S. Bruinsma and Boniface 2021)
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Table 5.1.: This table summarizes the properties of selected models providing the mass density
in the thermosphere.

(a) External forcing. SW: solar wind (velocity and density), IMF: interplanetary magnetic field flux
density. See Section 2.3.1.2 and 2.3.2.2 for more details on solar and geomagnetic indices, respectively.

solar forcing geomagnetic forcing

JB08 F10.7, S10, M10, Y10 Dst
MET 07 F10.7 Kp
NRLMSIS 2.0 F10.7 Kp
DTM-2020 F10.7 (or F30) Kp (or Hpo)
TIE-GCM 2.0 F10.7 SW+IMF or Kp
CTIPe F10.7 SW+IMF

(b) Quantities that are written by the models to the output files.

ρ TN TE CN2 CO2 CO CHe CAr CH CN CO� M

JB08 
 
 
 � � � � � � � � �
MET 07 
 
 
 
 
 
 
 
 
 � � 

NRLMSIS 2.0 
 
 
 
 
 
 
 
 
 
 
 �
DTM-2020 
 
 
 
 
 
 
 � 
 � � 

TIE-GCM 2.0 
 
 � 
 
 
 
 
 � � � 

CTIPe 
 
 � 
 
 
 
 � � � � 


(c) Coordinate system used by the models. Unfortunately, the coordinate systems used are not docu-
mented for all models.

coordinate system vertical boundary

latitude ellipsoid lower(km) upper (km)

JB08 geocentric WGS84 175 1000
MET 07 90 2500
NRLMSIS 2.0 geodetic WGS84 0 exosphere
DTM-2020 120 �1500
TIE-GCM 2.0 geocentric 97 �500
CTIPe 80 �500

also allows the F30 index as an alternative driver. The JB08 (Bowman et al., 2008a) does not
rely on the F10.7 index alone for solar forcing but uses additional indices as drivers. The Kp index
(Section 2.3.2.2) is a prominent choice as a geomagnetic activity proxy. The Naval Research
Laboratory Mass Spectrometer and Incoherent Scatter radar 2.0 (NRLMSIS 2.0, Emmert et al.
2021) is the only model listed here whose lower vertical boundary coincides with the Earth’s
surface.

While Figure 5.1 gives a broad overview on models of the upper atmosphere, the only numerical
model described in more detail in Section 5.1 is the Thermosphere Ionosphere Electrodynamics
General Circulation Model 2.0 (TIE-GCM 2.0, Qian et al. 2014). In Section 5.2 some details of
selected semi-empirical models are provided. An overview on studies about the accuracy of the
models is given in Section 5.3.

66



5.
M

odels
ofthe

U
pper

A
tm

osphere

general circulation model

semi-empirical model

1960

1970

1980

1990

2000

2010

2020

USSA 621

USSA Supp. 662

USSA 763

J609

J6510

J7011

J7112

J7713

MSFC/J704

MET-885

MET-996

MET 2.07

MET-20078 JB0614

JB0815

HASDM16

GOST

GOST04

Harris Priester17

modified HP18

robust HP19

CH-Therm20

TD21

Esro 422

GAMDM23

Ogo-624

MSIS-7725

MSIS-8326

MSIS-8627

MSISE-9028

NRLMSISE-0029

NRLMSIS 2.030

DTM7831

DTM9432

DTM-200033

DTM-201334

DTM-202035

T-GCM36

TI-GCM37

TIE-GCM38

TIME-GCM39

TING40

TIE-GCM 2.0

TIE-GCM-X42

TIE-GCM 3.0

CMIT41

CTIM43

CTIP44

CTIPe45 CMAT46

GITM47

WACCM-X48

1USSA62 1962, 2USSA66 1966, 3USSA76 1976, 4D. L. Johnson and R. E. Smith 1985, 5Hickey, Michael Philip 1988, 6R. E. Smith 1998, 7Owens, J.K. 2002, 8Suggs, R.J. and Suggs,
R.M. 2007, 9Jacchia 1960, 10Jacchia 1965, 11Jacchia 1970, 12Jacchia 1971, 13Jacchia 1977, 14Bowman et al. 2008b, 15Bowman et al. 2008a, 16Storz et al. 2002, 17I. Harris and
Priester 1962, 18Wagner and Velez 1972, 19Hatten and Russell 2017, 20Xiong et al. 2018, 21Sehnal 1988, 22von Zahn et al. 1977, 23Emmert and Picone 2010, 24Hedin et al. 1974, 25

Hedin et al. 1977, 26Hedin 1983, 27Hedin 1987, 28Hedin 1991, 29Picone et al. 2002, 30Emmert et al. 2021, 31Barlier, F. et al. 1978, 32C. Berger et al. 1998, 33S. Bruinsma et al. 2003,
34S. Bruinsma 2015, 35S. Bruinsma and Boniface 2021, 36Dickinson et al. 1981,37Roble et al. 1988, 38Richmond et al. 1992, 39Roble and E. C. Ridley 1994, 40W. Wang et al. 1999;
W. Wang 1998, 41Wiltberger et al. 2004, 42Cai et al. 2022, 43Fuller-Rowell,T.J. et al. 1996, 44Millward, G.H. et al. 1996, 45Millward et al. 2001, 46M. J. Harris 2001, 47A. J. Ridley
et al. 2006, 48H.-L. Liu et al. 2018

Figure 5.1.: Timeline of thermosphere mass density models. This overview is not complete. For example, there are many models derived from the
Jacchia models not included. This figure is inspired by Vallado and Finkleman (2014, Fig. 3).67



5. Models of the Upper Atmosphere

5.1. TIE-GCM

The Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM; Qian et
al. 2014) , is developed at the National Center for Atmospheric Research (NCAR) High Altitude
Observatory (HAO). It was first released in 1981. The latest release is the TIE-GCM 3.0 (see
Figure 5.1). For this thesis, the TIE-GCM 2.0 is used since it was the latest release when I
integrated data assimilation. The TIE-GCM is written mostly in Fortran 77 (e.g., Kedward et
al., 2022) and parallelized with the Message Passing Interface (MPI; Message Passing Interface
Forum 2023) . The TIE-GCM 2.0 is a global model of the atmosphere from approximately
97 km to 500 km. The exact location of the upper boundary depends on the location since
pressure is used internally as the vertical coordinate. It “self-consistently solves the fully coupled
nonlinear, hydrodynamic, thermodynamic, and continuity equations of the neutral gas, the ion
and electron energy and momentum equations, the ion continuity equation, and the neutral
wind dynamo.” (Qian et al., 2014) While presenting all the equations in comprehensive detail
would undoubtedly be cumbersome, they have been cataloged in (Qian et al., 2014, Table 1)
and the model description1.

5.1.1. State Variables

The TIE-GCM incorporates 17 prognostic state variables (see Table 5.3). For these state vari-
ables, initial values must be specified before starting the model. In addition, the TIE-GCM
can compute many diagnostic state variables that are computed during the model forecast. An
example of a diagnostic state variable is the neutral mass density. For some of the prognostic
state variables, the temporal gradient is required. It is implicitly represented by including the
corresponding state variable at the previous time step.

5.1.2. External Forcing and Lower Boundaries

Solar XUV and EUV radiation is the major energy input of the thermosphere (see Section 2.3.1.1).
The TIE-GCM approximates the solar spectrum (Section 2.3.1) between 0.05 nm and 175 nm

by proxy models that simulate binned solar energy flux densities (Equation 2.30) based on the
F10.7 index (see Section 2.3.1.2). The spectrum between 175 nm and 105 nm is covered by the
model of T. N. Woods and Rottman (2002). The wavelengths from 105 to 0.05 nm are simulated
according to the approach from Solomon and Qian (2005), which relies mainly on the EUVAC
(Richards et al., 1994) and HFG model (Hinteregger et al., 1981).

The ion convection/electric potential at the poles is either simulated by the Heelis (Heelis
et al., 1982) or the Weimar model (Weimer, 2005). The Heelis model uses the Kp index (see
Section 2.3.2.2). The Weimar model uses the IMF flux density and solar wind velocity and
density from the high resolution OMNI data set (Papitashvili and King, 2020a).

To run the TIE-GCM, one must specify lower boundary conditions for the neutral temper-
ature, the neutral horizontal wind velocity, and the geopotential height. The default setting
assumes there is no wind, the neutral temperature is 181 K, and the geopotential height is
96.4 km. Instead of this flat lower boundary one can load zonal climatologies containing indi-

1https://www.hao.ucar.edu/modeling/tgcm/doc/description/model_description.pdf
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5.1. TIE-GCM

Table 5.3.: This table contains all prognostic state variables of the TIE-GCM 2.0. The short
name is used to label the variables in the output files of the TIE-GCM. If the last
column t� 1 is true, the corresponding state variable is also required at the previous
time step to compute temporal gradients. To distinguish between the current and
previous time step in the output files, the short name of the variable referring to the
previous time step is appended by ’_NM’.

name symbol short name units t� 1

thermosphere
mass fraction of atomic Oxygen wO O1 - yes
mass fraction of molecular Oxygen wO2 O2 - yes
mass fraction of atomic Helium wHe HE - yes
mass fraction of atomic Argon wAr AR - yes
mass fraction of excited Nitrogen in 4S atomic state wNp4Sq N4S - yes
mass fraction of excited Nitrogen in 2D atomic state wNp2Dq N2D - no
mass fraction of nitric oxide wNO NO - yes
neutral temperature Tn TN K yes
neutral zonal wind (in east direction) un UN cm s�1 yes
neutral meridional wind (in north direction) vn VN cm s�1 yes
vertical motion1 ωn OMEGA s�1 no
ionosphere
number density of atomic Oxygen ions CO� OP cm�3 yes
number density of molecular Oxygen ions CO2

� O2P cm�3 no
ion temperature T i TI K no
electron temperature T e TE K no
electron number density Ce NE cm�3 no
electro dynamics
electric potential U POTEN V no

1 Multiplying the vertical motion with the pressure scale height, which is defined in Equation 2.19, yields the
neutral vertical wind velocity in ms�1.

vidual zonal conditions for each month of year and each hour of day. Those climatologies can
be obtained for example from empirical models. Additionally, semi-diurnal and diurnal atmo-
spheric tides simulated by the Global Scale Wave Model (GSWM; Hagan and Forbes 2002; X.
Zhang et al. 2010) can be added to the lower boundary.

5.1.3. Parameters

The model parameters of the TIE-GCM control its dynamics. A few parameters can be con-
trolled via the configuration file read by the TIE-GCM; the majority is hardcoded and requires
recompilation of the code if changed. The sheer number of model parameters makes a compre-
hensive listing impractical. Thus, the following description is limed to the parameters required
for the understanding of Chapters 7 and 8.

The Joule heating (see Section 2.3.2.1) computation in the TIE-GCM does not account for
small-scale fluctuations in the electric field (M. V. Codrescu et al., 1995; Maute et al., 2021).
To compensate for this, a scaling factor, the Joule heating factor, is used within the TIE-GCM
for correcting the Joule heating. The default value is 1.5, increasing Joule heating by 50%.
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The momentum transfer collision frequency of O and O+ in the TIE-GCM is modeled ac-
cording to the Banks model (R. Schunk and Nagy 2009, Table 4.5, P. M. Banks and Kockarts
1973a, Table 9.13, P. Banks 1966, Table 10). The so-called Burnside factor is used within the
TIE-GCM to correct the modeled collision frequency. Ieda (2021) figured that the Burnside fac-
tor was introduced due to a misunderstanding and recommends replacing the Banks model with
the Stallcop model (Stallcop et al., 1991). For the moment, I ignore this and use the classical
model. The default value for the Burnside factor in the TIE-GCM is 1.5.

The TIE-GCM parametrizes the energy distribution of polar rain electrons and cusp electrons
with Maxwellian distributions using the distribution’s peak1 as form parameter (Rees and Luckey
1974, Equation 1, Ashrafi et al. 2005, Equation 6).

5.1.4. Discretization

The TIE-GCM is discretized in time and space. The temporal resolution is set individually
for each model run and is constant over each run. Typically, the duration between subsequent
model steps is chosen between 30 s to 60 s. During geomagnetic storms, higher resolutions, for
example, 10 s, might be necessary for a stable model forward integration.

The TIE-GCM uses mostly polar coordinates with regular spacing for spatial coordinates.
Some state variables are defined on geomagnetic coordinates employing modified magnetic apex
latitude and longitude (see Appendix E.3). The following discussion only refers to the polar
coordinates since all prognostic state variables and all other state variables relevant to this
thesis are specified on those. Further details about the geomagnetic coordinates can be found in
the model description (Grid Structure and Resolution — TIEGCM 2.0 Documentation 2024).

The angles of the polar coordinates are geocentric longitude and latitude. For the TIE-
GCM 2.0, the horizontal resolution can be either 5° or 2.5°. The vertical component is specified
in pressure levels (see Equation A.30). This enables a simplification of the continuity equation:
When using pressure coordinates together with the aerostatic assumption (see Appendix A.1),
the continuity equation is equivalent to that of an incompressible fluid (Emmert, 2015). The
TIE-GCM 2.0 uses 0.5 or 0.25 pressure levels as vertical resolution when running with 5° or
2.5° resolution, respectively. The model covers pressure levels between k � �7 and k � 7

with reference pressure p0 � 5� 10�5 Pa at k � 0. This corresponds to 5.5� 10�2 Pa and
4.6� 10�8 Pa at the lower and upper boundary.

While the horizontal coordinates always refer to the center of the cells, the vertical coordinates
either correspond to the center of a cell or the interface between two cells. The coordinates at the
interfaces are calculated via linear interpolation. Thus, state variables specified at the interfaces
can be used directly as input for vertical integration at the cell centers using the trapezoidal
rule.

5.1.5. Derivatives

The TIE-GCM calculates horizontal derivatives via fourth-order centered finite differences and
vertical derivatives as well as temporal derivatives via second-order centered finite differences

1called ’characteristic Maxwellian energy’ in TIE-GCM
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(a) pressure level is vertical coordinate (b) geometric height is vertical coordinate

Figure 5.2.: These cross-sections through a meridian of the TIE-GCM grid (5° version) illustrate
the difference between pressure level and geometric height. While the pressure levels
are constant, the geometric height is different for each cell and point in time.

(Qian et al., 2014). Those differencing schemes are known to cause a spurious growth of high-
frequency waves over several model integration steps, making the calculations unstable (Shapiro,
1970). The TIE-GCM compensates this effect by smoothing all time-dependent fields with a
Shapiro low-pass filter (Shapiro, 1970, 1975). Additionally, physically unrealistic high-frequency
zonal waves at high latitudes are eliminated in the spectral domain which is accessed via fast
Fourier transformation (Qian et al., 2014).

5.1.6. Interpolation

As described above, most of the state variables in the TIE-GCM are given on a three-dimensional
grid at each time step that is regular in geocentric longitude, latitude, and pressure (see Fig-
ure 5.2a). However, many applications require geometric altitudes instead of pressure as a
vertical coordinate. The pressure levels can be converted to geopotential altitude using Equa-
tion 2.26. This conversion requires the geoptential altitude at the lower boundary (Section 5.1.2).
A subsequent conversion from geopotential to geometric altitude is possible via Equation 2.28.
Within the TIE-GCM 2.0 a slightly more sophisticated approach for converting geopotential to
geometric altitudes is employed that uses gravitational acceleration depending on latitude1. If
not specified otherwise, the TIE-GCM assumes the lower boundary is located at 96.4 km. The
resulting geometric altitudes depend heavily on space weather. The geometric altitude of the
upper boundary varies about around 460 km and 820 km.

1The TIE-GCM 2.0 employs the approximation gpφq � g45p1� a cosp2φq � b cos2p2φqq for calculating Earth’s
gravity. The gravity at 45° is chosen as g45 � 9.806 16m s�2, which is closer to the actual value than the
conventional value (List, 1951, p.4). The coefficient a is �0.002637 and the quadratic term is neglected (b � 0).
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When transforming the original grid to geometric altitudes, one obtains a grid that is reg-
ular in longitude and latitude but not in altitude. Each cell has an individual altitude (see
Figure 5.2b). By performing the interpolation on the irregular dimension (altitude) first, the
remaining dimensions (longitude, and latitude) can be interpolated efficient by exploiting the re-
sulting regular structure. An example of how the interpolation can be implemented is described
later in Section 7.3.

5.2. Semi-Empirical Models

Semi-empirical upper atmosphere models are constructed by fitting extensive temperature, com-
position, and density observation datasets to parametric functions. The datasets are obtained,
for example, from incoherent scatter radar (Section 4.4), mass spectrometers (Section 4.3), de-
rived from accelerometers (Section 4.1), and derived from orbital decay (4.2). Semi-empirical
models represent the average state of the upper atmosphere, parameterized by position, time,
and solar and geomagnetic activity. The development history of empirical models dates back to
the 1960s (see Figure 5.1). Today, the NRLMSIS, Jacchia-Bowman, and DTM semi-empirical
models are frequently employed.

5.2.1. MSIS

The first model of the Mass Spectrometer Incoherent Scatter radar (MSIS) series dates back to
1977 (see Figure 5.1). The latest version is the Naval Research Laboratory Mass Spectrometer
and Incoherent Scatter radar 2.0 (NRLMSIS 2.0, Emmert et al. 2021). As the name suggests,
the original model is based on mass spectrometer (see Section 4.3) and incoherent scatter radar
measurements (see Section 4.4). However, the underlying dataset of observations was drastically
increased in later versions (Emmert et al., 2021, Table 1). The data sets cover altitudes from
0 km up to 575 km. 84% of the observations are located between 0 km and 105 km.

The NRLMSIS 2.0 is a global model from the ground to the exosphere. Although one can
sample the model with an arbitrary resolution, the actual horizontal resolution is limited by
the choice of the parametric functions. The MSIS models use spherical harmonic functions up
to degree six (Hedin 1987, Equation A22 and Emmert et al. 2021, Section 2.4 and text S2) to
expand the vertical temperature and density profile parameters to the global atmosphere. Thus,
the NRLMSIS 2.0 can resolve horizontal signal with wavelengths larger than 360°

6 � 60°.
The response to external forcing is limited by the resolution of the external forcings (Ta-

ble 5.2a). The MSIS models uses the Kp and F10.7 index. Thus, the response to space weather
is delayed up to three hours.

5.2.2. Jacchia-Bowman (JB)

The Jacchia-Bowman models (Bowman et al., 2008a,b) are based on the Jacchia models (see
Figure 5.1). The latest version is the JB08. Its drivers (Table 5.2a) are explained in Tobiska
et al. (2008a), and summarized in Section 2.3.1.2 and Section 2.3.2.2.

The JB08 model is constructed from four mass density datasets (Bowman et al., 2008a,
Section II):
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1. Air Force daily density data (Bowman et al., 2004) derived from orbital decay of satel-
lites with perigee altitudes from 175 km to 1000 km and observed by radar and optical
instruments (Space Surveillance Network),

2. Air Force High Accuracy Satellite Drag Model (HASDM Storz et al., 2002) constructed
from satellite tracking observations (Space Surveillance Network) and tracking inactive
payloads and debris with low perigrees,

3. accelerometer-derived densities from the CHAMP satellite,

4. and accelerometer-derived densities from the GRACE satellite.

The JB08 model reaches from 175 km to 1000 km altitude.

5.3. Model Performance

To compare neutral mass densities derived from models with observations, the ratio between
modeled and observed densities–also called scale factor–is often considered. In case the mass
density is not observed directly, but linked to atmospheric drag via aerodynamics (Section 4.1),
the scale factor cannot be attributed to the mass density alone. Instead, it may also include
errors of the aerodynamic and force models. One has to keep this in mind when interpreting
comparisons based on scale factors.

Gaposchkin and Coster (1990) compared the atmospheric drag of three spherical satellites at
different altitudes obtained from precise tracking data with simulated drag. They used different
empirical density models (J71, DTM78, J77, MSIS83, MSIS86) for the atmospheric drag simu-
lation and found that the simulated drag was not better than 15% accurate at lower altitudes
and worse at higher altitudes.

F. A. Marcos (1990) compared accelerometer-derived mass densities from different satellites
from 150 to 250 km altitude within the period 1974-1982 with 15 empirical models (many versions
of the Jaccia models and models derived from Jacchia models, many versions of the MSIS
model series, and USSA62, USSA66). The mean of the scale factor exhibited a deviation of
approximately �10% from 1, and the standard deviation of the scale factor was around 15%.

F. Marcos et al. (2006) compared several empirical models (J70, MET 2.0, NRLMSISE-00,
DTM-2000, JB06) with daily density values obtained by tracking 38 satellites. The comparison
was made in terms of scale factors and focused on altitudes below 600 km. The mean scale
factors of the models were found to be similar, but the JB06 model, which was the latest model
at the study’s publication, had a standard deviation of the scale factors up to 10% lower.

S. L. Bruinsma et al. (2012) compared the DTM2000, DTM2009, NRLMSISE-00, and JB08
models with neutral mass densities derived from accelerometers, orbital decay/energy dissipation
and thruster data of the drag-free GOCE satellite. The accuracy of the models was found to
depend on the altitude. Using a metric that considered mean, root mean square error (RMSE)
and correlation, the JB08 was the best model below 300 km, between 300-500 km JB08 and
DTM2009 were best, and above 500 km DTM2009 and NRLMSISE-00 were the best performing
models. From that, they concluded that the DTM2009 had the best overall performance.
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S. L. Bruinsma et al. (2014) compared the NRLMSISE-00, JB08 and DTM2012 with data
from the GOCE satellite over a �2.5 year lasting period and found that they match at the 10%

level.
C. He et al. (2018) reviewed twelve empirical density models (Jacchia, MSIS, DTM, and

JB series), compared them with each other and with accelerometer-derived densities from the
GRACE mission from different sources. The accelerometer-derived densities differed by 5%

among each other during high solar activity and 20% during low activity. All twelve models
overestimate the neutral mass density.

Zeitler et al. (2021) computed half-daily scale factors for SLR satellites, GRACE and CHAMP
w.r.t. the NRLMSISE-00 model. They found that the model overestimates the density under
low solar activity and underestimates the density at high activity. The half-daily scale factors,
which indicate the discrepancy between the model and the observations, reached up to 30% at
low solar activity and up to 70% at high solar activity. The mean value of the scale factors
obtained from precise orbit determination using SLR observations indicated that the model
underestimates the densities by 10% to 12% on average during high solar activity. During low
solar activity, the density was overestimated by up to 4% on average.

S. Bruinsma et al. (2023) compared recent mass density datasets. They emphasized that
current density data sets are not consistent and need to be calibrated before combining or
assimilating them.

J. He et al. (2023) investigated a moderate geomagnetic storm using semi-empirical models
(NRLMSIS 2.0 and DTM2013), numerical models (MAGE (TIE-GCM), CTIPe, WAM-IPE and
WACCM-X), and observations (Swarm-A, GRACE-FO). They found that the models captured
the storm induced density enhancement but found discrepancies of up to 70% between the
models.
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Data assimilation (DA) is the science of combining observations of a system, including
their uncertainty, with estimates of that system from a dynamical model, including
its uncertainty, to obtain a new and more accurate description of the system including
an uncertainty estimate of that description. (Vetra-Carvalho et al. 2018)

Data assimilation can be categorized into two branches: statistical and variational methods
(see for example, Asch et al., 2016, Figure 1.5). Statistical data assimilation methods emanate
from estimation theory and maximize the PDF of the state of the system (e.g., by seeking the
state with the smallest variance). The basis for variational methods is optimal control theory.
The name relates to the calculus of variations, which enables finding extrema of functionals.
Variational data assimilation methods minimize a cost function to find the optimal state (Asch
et al., 2016, Section 2.1), for example, using conjugate gradients methods. In certain instances,
statistical and variational methods are identical, resulting in equivalent outcomes (Asch et al.,
2016).

One has to distinguish between filters and smoothers. While filters correct the modeled state
at a point in time using only observations given simultaneously, smoothers also consider future
observations. Filters first forward the model state and then update the state by the given
observations at that time. Both steps (forwarding and updating) are repeated sequentially.

This chapter provides an overview of statistical filters, with a detailed description of ensemble
square root filters used in this thesis. The first Section 6.1 summarizes the stochastic fun-
damentals. The discussion of data assimilation begins in Section 6.2, where the relationship
between models and observations is established. Section 6.3 introduces statistical data assimila-
tion, ensemble (square root) filters, and especially the Error-Subspace Transform Kalman Filter
(ESTKF). How to localize a filter is explained in Section 6.4 and how to co-estimate model dy-
namics in Section 6.5. I do not apply variational methods since this would explicitly require the
variance covariance matrix (VCM) of the model. In addition, for variational data assimilation
over a time window (4DVar), the gradient of the objective function is required, necessitating an
adjoint model formulation (e.g., Errico, 1997) of the TIE-GCM in practice. Therefore, varia-
tional methods are not further discussed here. The interested reader may, for example, refer to
Ide et al. (1997, Section 4), Asch et al. (2016) and Lahoz et al. (2010). In this chapter, I use the
notation for data assimilation proposed by Ide et al. (1997) for vectors, matrices, and operators.

6.1. Stochastic Fundamentals

This section provides a concise overview of random variables, statistical moments, and normal
distributions necessary for deriving statistical data assimilation.
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6.1.1. Random Variables

A continuous random variable X has a cumulative distribution function (CDF) F pxq and a
probability density function (PDF) fpxq related by (Koch, 1999, Definition 2.30)

F pxq �
» x

�8
fptqdt � P pX   xq. (6.1)

The result of F pxq is the probability that the corresponding random variable X is less than x

and fpxq is the probability that the random value has value x. The PDF has to satisfy the
following conditions (Koch, 1999, Equation 2.35)

fpxq ¥0, (6.2)» 8
�8

fpxqdx �1, (6.3)

that means probabilities are non-negative, and the combined probability of all possible outcomes
is one. This is valid for arbitrary dimensions, i.e., x is a vector containing n random variables.
The explicit multidimensional formulation of Equation 6.1 is (Koch, 1999, Definition 2.41)

F px1, . . . , xnq �
» xn

�8
. . .

» x1

�8
fpt1, . . . , tnq dt1 . . . dtn � P pX1   x1, . . . , Xn   xnq. (6.4)

Analogous to the one-dimensional case, the conditions

fpx1, . . . , xnq ¥0, (6.5)» 8
�8

. . .

» 8
�8

fpx1, . . . , xnq dx1 . . . dxn �1 (6.6)

have to be fulfilled (Koch, 1999, Equation 2.45).
For n ¡ 1, one can compute marginal and conditional PDFs. To obtain the marginal PDF

(Koch, 1999, Section 2.2.6)

fpxi�1, . . . , xnq �
» 8
�8

. . .

» 8
�8

fpt1, . . . , ti, ti�1, . . . , tnq dt1 . . . dti. (6.7)

one has to integrate over the variables one wants to marginalize. The conditional PDF (Koch,
1999, Section 2.2.7)

fpx1, . . . , xi|xi�1, . . . , xnq � fpx1, . . . , xnq³8
�8 � � �

³8
�8 fpt1, . . . , tnq dt1 . . . dti

(6.8)

is the cross-section along the conditional variables normalized by the corresponding marginal
PDF. Equation 6.8 is called Bayes’ law since the first known occurrence of this relation can
be found in Bayes and Price (1763). An illustration of Bayes’ law using a bivariate normal
distribution is given in Figure 6.1.

76



6.1. Stochastic Fundamentals

�4

�2

0

2

4 �4

�2

0

2

4
0

0.5

fpx2q

fpx1q

fpx2|x1q

x1 x2

P

0.00

0.05

0.10

fpx1, x2q

Figure 6.1.: This surface plot displays a bivariate normal distribution. The solid black lines are
the corresponding marginal distributions. The red dashed line is a cross-section
through the bivariate normal distribution. The solid red line is the conditional
probability of x2 given x1. It is a scaled or normalized version of the cross-section.

In the following, a more condensed notation using vectors as function arguments is introduced.
Subdividing the random vector x into two parts yields

x �

�
�����������

x1
...
xi

xi�1

...
xn

�
�����������

,////.
////-

x1

,//.
//-x2

�
�
x1

x2

�
(6.9)

then Equation 6.8 can be written as

fpx1|x2q � fpx1,x2q
fpx2q . (6.10)

An alternative formulation is

fpx1|x2q � fpx2|x1qfpx1q
fpx2q . (6.11)
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6.1.2. Moments

The k-th moment of a multivariate PDF is defined as (Koch, 1999, Definition 2.64)

µ
pkq
x1,��� ,xn � EpXk1

1 . . . Xkn
n q �

» 8
�8

� � �
» 8
�8

xk11 . . . xknn fpx1, . . . , xnq dx1, . . . , dxn (6.12)

with order

k �
ņ

i�1

ki, ki P N (6.13)

that is the sum of natural powers applied to each component of the random variable. EpXiq
denotes the expected value (Koch, 1999, Definition 2.60) of the random variable xi. Accordingly,
the k-th moment of a single variable is (Koch, 1999, Equation 2.65)

µpkqxi
� EpXk

i q �
» 8
�8

� � �
» 8
�8

xki fpx1, . . . , xnq dx1, . . . , dxn (6.14)

The first moment (k � 1) is the expected value or mean value and in the following denoted with
µi. Because of Equation 6.3 the first moment of a PDF is equivalent to the center of mass of
fpxq.

6.1.2.1. Central Moments

Moments that are reduced by the mean (Koch, 1999, Definition 2.67)

µ̄
pkq
x1,��� ,xn � E

�
pX1 � µ1qk1 . . . pXn � µnqkn

	
(6.15)

are central moments. The second central moment (k � 2) is called covariance (Koch, 1999,
Definition 2.68)

σi,j � E ppXi � µiqpXj � µjqq �
» 8
�8

� � �
» 8
�8

pxi�µiqpxj�µjqfpx1, . . . , xnq dx1, . . . , dxn. (6.16)

The special case i � j is called variance and is a measure for the scattering of the random
variable. The variance covariance matrix (VCM)

Σ �

�
�����
σ1,1 σ1,2 . . . σ1,n

σ2,1 σ2,2 . . . σ2,n

. . .

σn,1 σn,2 . . . σn,n

�
����� (6.17)

contains all possible combinations of central second moments of a random vector. The diagonal
elements are the variances, and the off-diagonal elements are the covariances. The square root
of the variance is the standard deviation

σi :� ?
σi,i. (6.18)
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Accordingly an alternative notation for the variance is σ2i � σi,i.
The correlation is the covariance normalized by the product of the standard deviations (Koch,

1999, Definition 2.72)

ρi,j � σi,j
σiσj

(6.19)

The correlation matrix R is given by (Koch, 1999, Equation 2.81)

R � FΣF with F �

�
���

1
σ1

. . .
1
σn

�
��� (6.20)

and the VCM accordingly by

Σ � F�1RF�1. (6.21)

The higher the order of a moment, the larger the number of permutations satisfying Equa-
tion 6.13. Two statistics of particular interest derived from a third and a fourth moment are
skewness and kurtosis, respectively. The skewness is the univariate (x1=x2=x3) third central
moment (k1=k2=k3 � 1) normalized by the standard deviation (e.g., Kokoska and Zwillinger,
2000, Equation 2.37)

γ1pxq �
E
�pX � µq3�

σ3
. (6.22)

It characterizes the asymmetry of a distribution. The kurtosis is the univariate (x1=x2) fourth
central moment (k1=k2 � 2) normalized by the standard deviation (e.g., Kokoska and Zwillinger,
2000, Equation 2.42)

β2pxq �
E
�pX � µq4�

σ4
. (6.23)

6.1.2.2. Estimation of Moments from Samples

Given m samples of a multivariate PDF of dimension n one can collect all samples in a matrix

X �

�
�����
x1,1 x1,2 x1,3 � � � x1,m

x2,1 x2,2 x2,3 � � � x2,m
...

xn,1 xn,2 xn,3 � � � xn,m

�
����� (6.24)

where the first index corresponds to the variable and the second index to the sample.
The sample mean of an element xi of the random vector is

µi � µ̂i � 1

m

m̧

u�1

xi,u. (6.25)
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The sample covariance of the random variables xi and xj is

σi,j � σ̂i,j � 1

m� 1

m̧

u�1

pxi,u � µ̂iq pxj,u � µ̂jq . (6.26)

This is an unbiased estimator of the covariance, which considers that one degree of freedom was
lost by the computation of the sample mean. The sample mean of the entire random vector can
be computed by

µ̂ � 1

m
XI (6.27)

and the sample VCM with

Σ̂ � 1

m� 1

�
X � X̄

� �
X � X̄

�T with X̄ � µ̂IT. (6.28)

The rank of the perturbation matrix X � X̄ is at most m� 1, as one degree of freedom is lost
by the computation of the mean from X. Accordingly, the dyadic product is divided by m� 1.
Note that the sample VCM Σ̂ is only invertible if m ¡ n, that is the sample size is greater than
the dimension of the random vector (e.g., Ledoit and Wolf, 2004).

The sample skewness of a variable xi is (e.g., skewness 2025)

γ̂1pxiq � m

pm� 1qpm� 2q
m̧

u�1

�
xi,u � µ̂i

σ̂i


3

, (6.29)

the sample kurtosis is (e.g., kurtosis 2025)

β̂2pxiq � mpm� 1q
pm� 1qpm� 2qpm� 3q

m̧

u�1

�
xi,u � µ̂i

σ̂i


4

, (6.30)

and the sample excess kurtosis

γ̂2pxiq � β̂2pxiq � 3
pm� 1q2

pm� 2qpm� 3q . (6.31)

6.1.3. Normal Distribution

A random vector x of size n is normally distributed x � Npµ,Σq if its associated PDF is given
by (Koch, 1999, Definition 2.125)

fpx1, . . . , xnq � fpxq � 1

p2πqn
2 pdetΣq 1

2

exp px� µqT Σ�1 px� µq (6.32)

and consequently fully defined by the mean vector µ and the VCM Σ.
When subdividing the mean vector and the VCM as in Equation 6.9 one gets

x �
�
x1

x2

�
, µ �

�
µ1

µ2

�
and Σ �

�
Σ11 Σ12

Σ21 Σ22

�
. (6.33)
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The marginal distribution of a normally distributed random vector is a normal distribution
(Koch, 1999, Definition 2.136)

x1 � Npµ1, Σ11q. (6.34)

The same holds for the conditional distribution of normal distributions (Koch, 1999, Theo-
rem 2.137)

x1|x2 � N
�
µ1 �Σ12Σ

�1

22px2 � µ2q, Σ11 �Σ12Σ
�1

22Σ21

�
. (6.35)

This is also illustrated in Figure 6.1.

6.2. Modeling and Observing the State of a System

The state of a system, for example, a pendulum, a vehicle, the ocean, the atmosphere, or the
solar system can be described with a set of time variable parameters. For instance, the state of
the upper atmosphere may include temperature, wind velocity and composition.

“Systems whose future states evolve from their present states according to precise physical
laws or mathematical equations are known as dynamical systems” (Lorenz, 1995, p. 2). In a
convergent system “[...] rather similar initial states, each evolving according to the same laws,
may become progressively more similar” (Lorenz, 1995, p. 3). In contrast, the future state of a
divergent system strongly depends on the initial state, so that “[...] somewhat similar [initial]
states become less and less similar” (Lorenz, 1995, p. 3). Divergent systems can exhibit chaotic
behavior; however, divergence does not inherently imply chaos. “Chaos is aperiodic long-term
behavior in a deterministic system that exhibits sensitive dependence on initial conditions”
(Strogatz, 2019, p. 331). Examples of chaotic systems are double pendulums, weather in the
lower atmosphere, or three-body systems1. A measure of sensitivity to initial conditions is
provided by characteristic exponents (e.g., Eckmann and Ruelle, 1985).

A dynamic model is an approximation of a dynamic system describing its state with a set of
state variables. In practice, the state is discretized in time and space, for example, using a grid
or mesh. Given a parametrization using nx state variables, the model operator M : Rnx Ñ R

nx ,
which is also called forward operator, computes the state x P Rnx at epoch t given a preceding
state2 at epoch s

xptq �Ms,tpxpsqq � ηptq (6.36)

with the model error η P Rnx , which represents imperfections in the model. The model operator
can be a simple linear function, but also a non-linear complex program consisting of thousands
lines of code. The model operator also may include external forcing and boundary conditions.

1An exception is restricted three-body systems (e.g., Frauenfelder and van Koert, 2018) which assume that
the mass of the third body is virtually zero.

2Of course it is possible to construct models that can also propagate the state backward in time, i.e., compute
the state at epoch t given a future state at epoch u.
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An example of external forcing is the EUV radiation of the Sun heating and ionizing the upper
atmosphere.

To run a model as specified in Equation 6.36, initial values for the state xb are required. The
initial state is also called the first guess or background state, hence the index ’b’. For a model
discretized in time, the model operator forecasting the state from time step zero to step n is the
composition

M0,npx0q � pMn�1,n � . . . �M1,2 �M0,1qpx0q. (6.37)

The observations y P R
ny at epoch t are related to the state at the same epoch by the

observation operator H : Rnx Ñ R
ny

yptq � H pxptqq � εptq (6.38)

with the observation error vector ε. If the observations are not positioned at the same location
as the state parameters, the observation operator incorporates an interpolation. The Jacobian
matrix of the observation operator is

Ht � BHpxq
Bx

����
x�xptq

(6.39)

and the Jacobian matrix of the model operator is

M s,t � BMs,tpxq
Bx

����
x�xpsq

. (6.40)

Using the Jacobian matrix introduced in Equation 6.39 one can approximate the observation
operator in Equation 6.38 by a matrix vector product:

yptq �Htxptq � εptq. (6.41)

For a linear observation operator, this equation is exact. Otherwise linearization errors are
introduced. Similarly, using Equation 6.40, the model operators in Equation 6.37 can be ap-
proximated by matrix multiplications.

6.3. Statistical Filters

Statistical filter schemes update the state of a system sequentially at specific epochs by assimi-
lating data at the same epochs. According to Bayes’ law (Equation 6.11), the conditional PDF
of the state x given the observations y is

fpx|yq � fpy|xqfpxq
fpyq , (6.42)

with the prior knowledge fpy|xqfpxq, and the PDF of the observations fpyq as normalization.
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Statistical data assimilation filters seek at finding the state

xa � argmax
x

fpx|yq (6.43)

maximizing the PDF of the state x given the observations y.
Many statistical schemes are derivatives of the Kalman filter. For large-scale problems efficient

ensemble-based methods have been developed.

6.3.1. Kalman Filter

The Kalman filter (Kalman and Bucy, 1961; Kalman, 1960) computes the optimal state that is
the unbiased state with minimal variance if the following conditions are satisfied:

• all errors are unbiased (have zero mean) and are Gaussian (Equation 6.32)

– observation error ε � Np0,Rq
– model error (system noise) η � Np0,Qq
– (initial) state error ξ � Np0,P q

• some errors are uncorrelated

– Model errors η and state errors ξ are uncorrelated (error propagation in Equa-
tion 6.45).

– State errors ξ and observation errors ε are uncorrelated (error propagation in Equa-
tion 6.50).

• operators are linear

– The mapping between the state and observations is linear i.e., the observation opera-
tor is exactly described by the matrix vector product Hpxq �Hx. This ensures the
PDF of the computed observations are Gaussian.

– The system is linear, i.e., the model operator is exactly described by the matrix vector
product Mpxq �Mx. This ensures the PDF of the forecasted states are Gaussian.

If these conditions are violated the state estimated by the Kalman filter is not unbiased or not
of minimal variance or both. The Kalman Filter consists of two steps, the forecast (prediction)
and update (analysis) step. Both steps are repeated sequentially.

Forecast Step The forecasted state xf
i and the associated VCM P f

i are obtained by forwarding
the model to the prediction time ti, that is the point in time at which the next observations are
available:

xf
i �M i�1,i x

a
i�1 � ηi (6.44)

P f
i �M i�1,iP

a
i�1M

T

i�1,i �Qi (6.45)

The inputs for that computation are the state xa
i�1 and the associated VCM P a

i�1 of the previous
update step or the initial values in the case of the first forecast step. Equation 6.45 does not
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consider correlations between the model errors ηi and the errors ξai�1 associated with the state
xa
i�1.

Update Step The update step minimizes

J
�
x
� �1

2

�
x� xf

i

	T�
P f

i

	�1�
x� xf

i

	
�1

2

�
H i x� yo

i

	T

R�1

i

�
H i x� yo

i

	 (6.46)

(e.g., Lahoz et al., 2010), to compute the unbiased state with minimal variance, which is equiv-
alent to the solution provided by Equation 6.43, given that all assumptions of the Kalman filter
are satisfied (Asch et al., 2016, Section 3.4.4). xf

i is the forecasted state and its VCM is P f
i .

yo
i contains the observations and the associated VCM is Ri. The linear observation operator

mapping the state to the observations is H i. An equivalent compact formulation is

J
�
x
� � ���x� xf

i

���2
pP f

i q�1
�
���H i x� yo

i

���2
R�1

i

(6.47)

with }�}M being the scalar product w.r.t. some metric M .
The Kalman filter finds the optimal state in a least squares sense. The first term of Equa-

tion 6.47 penalizes the distance to the forecasted state, and the second term the distance to the
observations. The minimum of Equation 6.47 is (see Appendix A.6.1 for a derivation)

xa
i � xf

i �Ki pyo
i �H ix

f
i qloooooomoooooon

di

(6.48)

with the Kalman matrix or gain matrix

Ki � P f
i H

T

i pRi �H iP
f
i H

T

i q
�1

. (6.49)

The difference between observed and predicted observations yo
i �Hpxf

i q is called innovation and
denoted by d. The entry in the u-th row and v-th column of K contains the influence of the v-th
innovation on the u-th state. A zero element means that the u-th state is not influenced by the
v-th observation. The VCM of the analyzed state xa

i is (see Appendix A.6.1 for a derivation)

P a
i � p1�KiH iqP f

i . (6.50)

6.3.2. Extended Kalman Filter

The Extended Kalman Filter (EKF, e.g., Jazwinski, 1970, Theorem 8.1) is a variant of the
Kalman filter that uses the actual operators instead of the linearized counterparts when possible
and can handle non-linearities better than the original filter. The EKF uses the (non-linear)
model operator to forecast the state (compare to Equation 6.44)

xf
i �Mi�1,ipxa

i�1q � ηi (6.51)
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Ensemble Filters

1960

1970

1980

1990

2000

2010

2020

stochastic filter

error-subspace filter

suboptimal scheme

square root filter

KF1

EKF2

OI 3

EnKF4

stochastic EnKF5

SEnKF6

SEIK7

ESSE8 SEEK9 RRSQRT10
UKF11

EnSRF12 EAKF13 ETKF14

ESTKF15

MLEF16

EnRML17

IEnKF18

DEnKF19

RHF20

MARHF21

1Kalman filter (Kalman and Bucy, 1961; Kalman, 1960) 2extended KF (Jazwinski, 1970; G. L. Smith et al., 1962) 3optimal interpolation (Gandin, 1963) 4ensemble KF (Evensen,
1994) 5stochastic ensemble KF (Burgers et al., 1998; Houtekamer and Mitchell, 1998) 6square root ensemble KF (Evensen, 2003) 7singular evolutive interpolated KF (Pham et al.,
1998) 8error-subspace statistical estimation (Lermusiaux and Robinson, 1999) 9singular evolutive extended KF (Tuan Pham et al., 1998) 10Reduced Rank Square Root KF (Verlaan
and Heemink, 1997) 11Unscented KF (Julier and Uhlmann, 1997) 12ensemble square root filter (Whitaker and Hamill, 2002) 13ensemble adjustment KF (J. L. Anderson, 2001) 14

ensemble transform KF (Bishop et al., 2001) 15error-subspace transform KF (Nerger et al., 2012b) 16error-subspace transform KF (Zupanski, 2005; Zupanski et al., 2008) 17ensemble
randomized maximal likelihood KF (Gu and D. S. Oliver, 2007) 18Iterative ensemble KF (Sakov et al., 2012) 19deterministic ensemble KF (Sakov and Oke, 2008a) 20rank histogram
filter (J. L. Anderson, 2010) 21marginal adjustment rank histogram filter (J. L. Anderson, 2020)

Figure 6.2.: Development time line of Kalman filters focusing on ensemble filters. This overview is incomplete. Stochastic filters use an ensemble
of observations to represent the observation uncertainty. Error-subspace filters account for the rank deficiency in the state ensemble
perturbation matrix and are slightly faster. Suboptimal filters further reduce the cost of the Kalman fitler, but are not optimal even for
linear problems (Todling and Cohn, 1994). Tippett et al. (2003) classified filters using ensembles which are scaled matrix square roots
of the state VCM as square root filters.

85



6. Data Assimilation

Table 6.1.: Dimensions of matrices used in the Kalman filter. ny is the number of observations
and nx the number of state variables.
ny ny � ny nx nx � nx ny � nx nx � ny

yo R xa, xf P a, P f , M H HT, K

but the linearized model operator to propagate the model uncertainties in Equation 6.45. Thus,
the forecasted state is computed without linearization errors, but the representation of the
uncertainty of the forecasted state is subject to linearization errors, for non-linear models. The
innovation is computed with the (non-linear) observation operator (compare to Equation 6.48)

di � yo
i �Hipxf

i q (6.52)

but the linearized observation operator is used in Equation 6.49 and Equation 6.50. This intro-
duces errors in the analyzed state and its VCM depending on the degree of non-linearity. As
the uncertainty remains to represented by VCMs higher statistical moments are not represented
by the EKF. Examples of applications of the EKF that lead to unstable results can be found in
Evensen (1992, 1993) and Miller et al. (1994).

6.3.3. Ensemble Kalman Filters

Applying the (extended) Kalman Filter to large-scale models is extremely costly or even im-
possible. Since the dimension of the state vector is typically greater than the dimension of the
observation vector nx " ny, the limiting factors are the matrices of size nx�nx (see Table 6.1).
The memory required to store the VCM P of the state quadratically depends on the size of
the state vector. For a state vector with five million elements1 one needs 200TB to save the
corresponding VCM with double precision.

The propagation of the model error (Equation 6.45) within the (extended) Kalman Filter
poses two challenges. First, the complexity of computing the matrix product of two quadratic
matrices (without optimization) is Opn3q, so the complexity for Equation 6.45 is Opnx3q. Second,
the linearized model operator is required. For models consisting of thousands of lines of complex
code, calculating the partials may be difficult but can still be determined numerically. Another
challenge is the determination of the VCM of the initial state. This information is typically not
provided by the models.

Although the advances in the performance of computers are significant, the complexity of
the models increases, too. Thus, there is a need for efficient algorithms. The representation
of the uncertainty using ensembles is a popular approach. Another advantage of ensemble-
based approaches is that they provide a natural way to obtain the VCM of the model forecast.
However, one still needs to generate a realistic ensemble, which is often done by perturbing the
model inputs.

1This is a realistic estimate for the state vector of the TIE-GCM with 2.5° resolution: a single field has
144� 72� 56 entries. Thus, using four fields at the previous and current steps results in 4 644 864 elements.
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The number of ensembles members is denoted by ne. Each column of the ensemble matrix
X P Rnx�ne contains the state of the corresponding ensemble member

X � rx0 x1 . . . xnes . (6.53)

The following derivation of ensemble Kalman filters follows Vetra-Carvalho et al. (2018). One
can express the analyzed (updated) ensemble matrix

Xa �X
a � X̂

a (6.54)

as the sum of the analyzed ensemble mean X
a and the analyzed ensemble perturbations X̂

a.
All columns of Xa contain the analyzed ensemble mean xa. The analyzed ensemble mean and
analyzed ensemble perturbations are computed from the forecasted counterparts using a linear
transformation (Vetra-Carvalho et al., 2018, Eq.17-18):

xa �xf � X̂
f
w (6.55)

X̂
a �X̂f

Ŵ (6.56)

The ensemble Kalman filters covered in Vetra-Carvalho et al. (2018) differ in how the weights
w and Ŵ are computed.

Figure 6.2 shows the development history of ensemble-based Kalman filters. The Ensemble
Kalman Filter (EnKF), developed by Evensen (1994), constituted a pioneering contribution to
the development of a variety of filters. As the original EnKF update step underestimates the
spread of the state ensemble, Burgers et al. (1998) and Houtekamer and Mitchell (1998) inde-
pendently introduced perturbations for each ensemble member that are added to the innovation.
The resulting filter is the ’stochastic’ EnKF. However, the addition of sampled perturbations to
the innovation is an additional source of noise. Thus, deterministic filters were developed which
avoid the use of perturbed innovations. These filters were classified as ensemble square root
filters by Tippett et al. (2003), and are explained in great detail in the following.

Representing the VCM by an ensemble Given ne samples of the PDF of the updated state
(or analyzed state), one can approximate the corresponding VCM using Equation 6.28

P a �
�
Xa �X

a� �
Xa �X

a�T
ne � 1

�
X̂

a
�
X̂

a
	T

ne � 1
. (6.57)

The VCM is of low rank since ne is much smaller than nx in practice. Equating Equation 6.50
with Equation 6.57 yields (see Appendix A.6.4)

X̂
a
�
X̂

a
	T

�X̂f �
1ne � STF�1S

� �
X̂

f
	T

(6.58)

with the forecast ensemble perturbation matrix in the observation space

S �HX̂
f (6.59)

87



6. Data Assimilation

and the VCM of the innovation

F � pne � 1qR� SST. (6.60)

Solving Equation 6.58 for the analyzed state perturbations X̂
a yields (see Appendix A.6.5)

X̂
a � X̂

f
T (6.61)

with the transform matrix T P Rne�ne being a square root of

TT T � �1ne � STF�1S
�
. (6.62)

Equation 6.62 can be rewritten as (see Appendix A.6.6)

TT T �
�
1ne �

1

ne � 1
STR�1S


�1

. (6.63)

Note that the factorization TT T is not unique. It has been shown that using a symmetric
transformation matrix T preserves the ensemble mean during the transformation of the ensem-
ble perturbations formulated in Equation 6.56 (e.g., Sakov and Oke, 2008b; X. Wang et al.,
2004). Thus, in practice, the singular value decomposition is often employed to obtain the
transformation matrix.

Inserting Equation 6.61 into 6.57 finally provides the VCM of the analyzed state computed
from the forecasted ensemble perturbations:

P a � 1

ne � 1
X̂

f
TT T

�
X̂

f
	T

(6.64)

Representing the updated state by an ensemble By expressing the gain matrix with the VCM
of the analyzed state (see Appendix A.6.2) and inserting this into Equation 6.48 one obtains

xa � xf � P aHTR�1d. (6.65)

Inserting Equation 6.64 gives

xa � xf � 1

ne � 1
X̂

f
TT T

�
X̂

f
	T

HTR�1d. (6.66)

6.3.4. Ensemble Transform Kalman Filter

The Ensemble Transform Kalman Filter (ETKF) was developed by Bishop et al. (2001). The
weights for the update step follow directly from the previous considerations. Comparing Equa-
tion 6.56 with Equation 6.61, yields

Ŵ ETKF � T (6.67)
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for the weight matrix of the ensemble perturbations. Comparing Equation 6.66 with Equa-
tion 6.55 gives

wETKF � 1

ne � 1
TT TpHX̂

f q
T

R�1d. (6.68)

6.3.5. Error-Subspace Transform Kalman Filter

The ESTKF was developed by Nerger et al. (2012b) by combining the ETKF with the Singular
Evolutive Interpolated Kalman (SEIK) filter (Pham et al., 1998).

The calculation of the ensemble perturbations in Equation 6.54 can be expressed as a matrix-
matrix product

X̂ �X �X �XA (6.69)

with

A � 1ne � Ine�ne

1

ne
�

�
��������

1� 1
ne

� 1
ne

� 1
ne

� � �
� 1

ne
1� 1

ne
� 1

ne
� � �

� 1
ne

� 1
ne

1� 1
ne...

... . . .
� 1

ne
� 1

ne
� � � � 1

neloooooooooooooooooooooomoooooooooooooooooooooon
AS

� 1
ne

� 1
ne

...
1� 1

ne

�
��������
. (6.70)

The rank of X̂ is at most ne � 1 because one degree of freedom is required to calculate the
ensemble mean. As a consequence the sum of each row of X̂ is zero.

The SEIK filter accounts for this rank deficiency by skipping the last column of matrix A

(Nerger et al., 2012b, Eq. 15). Thus, the filter only operates on the first ne � 1 ensemble
perturbations contained in the matrix

LS �XfAS . (6.71)

The matrix LS contains the basis vectors of the error-subspace and has full rank (if the rank of
X̂ is ne � 1, which is typically the case).

The ESTKF uses a different approach to account for the rank deficiency in X̂. It uses a
matrix AE P Rne�ne�1 that subtracts the ensemble mean and additionally a fraction of the last
column of X from all other columns (Nerger et al., 2012b, Eq. 24)

AEpi, jq �

$''''''&
''''''%

1� 1

ne

1
1?
ne
� 1

, i � j ^ i   ne (main diagonal)

� 1

ne

1
1?
ne
� 1

, i � j ^ i   ne (off diagonals)

� 1?
ne
, i � ne (last row)

. (6.72)

Thus, unlike the SEIK filter, the ESTKF does not depend on the order of members in the
ensemble matrix (Nerger et al., 2012b). The columns of AE are orthonormal and orthogonal to
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I and AT

EAE � 1pne�1q. The basis vectors LE P Rnx�ne�1 of the error-subspace are

LE �XfAE . (6.73)

The ESTKF computes the transformation matrix

TET
T

E �
�
1pne�1q �

1

ne � 1
pHLEqTR�1pHLEq


�1

(6.74)

in the error-subspace (Vetra-Carvalho et al., 2018, Equation 77). The weight matrix

Ŵ ESTKF � AETEA
T

E (6.75)

necessary to calculate the ensemble perturbations is obtained by projecting the transformation
matrix in the error-subspace back to the ensemble space (Vetra-Carvalho et al., 2018, Equa-
tion 79). The weight matrix of the ensemble mean is given by (Vetra-Carvalho et al., 2018,
Equation 80)

wESTKF � 1?
ne � 1

AETET
T

EpHLEqTR�1d. (6.76)

Both TE and TET
T

E are computed via eigenvalue decomposition of the right-hand side of Equa-
tion 6.74.

Compared with the ETKF, the ESTKF and SEIK filter have slightly lower computational
costs since the matrix spanning the error-subspace L has one column less than the ensemble
perturbation matrix X̂

f (Nerger et al., 2012b, Section 5).

6.4. Localization

The state of a system often contains variables associated with a specific location, such as the
center of a model grid cell. Observations are measured at specific points in space and time or
refer to integrals over space and/or time. During the update step of the Kalman filter, the
impact of an observation on an element of the state vector depends solely on the correlations
encoded in the VCM of the state. The update step does not explicitly consider the distance
between the location of the observations and states.

If there are spatial (long-range) correlations in the system and they are represented correctly
in the forecasted state VCM, a single observation could theoretically improve the state estimate
of the whole system. For example, a single in-situ mass density observation in the atmosphere
could improve the density estimate of the atmosphere globally. If there is a correlation between
mass density and temperature, both would be updated when assimilating mass density only.

For ensemble Kalman filters, the impact of an observation on an element of the state vector
depends on the correlations encoded in the forecasted state ensemble. As the number of ensemble
members is chosen to be much lower than the dimension of the state vector (ne ! nx) to reduce
computational costs, spurious correlations might arise in the ensemble. Especially over long
distances, the random errors in the representation of the covariances are typically greater than
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Figure 6.3.: Some finite analytical autocorrelation functions with local support in r0, 1s. The
functions can be defined on arbitrary intervals. GCpτq has an additional form
parameter a and is defined in Gaspari et al. (2006, Equation 33) and Moreaux (2008,
Equation 41). The PDAF has implemented GCa�0.5pτq, which mimics a Gaussian
and is explicitly formulated in Gaspari and Cohn (1999, Equation 4.10). fsspτq is
defined in Schuh (2017, Equation 154) and fs2pτq in Schuh (2017, Equation 165). For
covariance localization, the lag is the distance between two states. For observation
localization, the lag is the distance between the subdomain and the observation.

the actual signal for small ensembles (Nerger et al., 2006, p. 640). As a result, spurious
correlations (e.g., Hamill et al., 2001) and locally unrealistic estimates can occur (Nerger et al.,
2006, p. 640).

To address this issue, long-range correlations are filtered out in the analysis step by applying
a suited localization schema. Localization reduces or eliminates the impact of an observation on
an entry in the state vector based on the distance between the state and the observations.

6.4.1. Covariance Localization

Covariance localization (Houtekamer and Mitchell, 1998, 2001) directly operates on the VCM
of the forecasted state P f . Thus, it cannot be applied to filters that do not compute the VCM
or its projection in the observation space explicitly (Janjić et al., 2011; Nerger et al., 2012a).
This is the case for the ESTKF, so covariance localization cannot be applied to it. Covariance
localization suppresses or dampens long-range covariances by an element-wise multiplication of
the forecast VCM with a correlation matrix of compact support. This matrix is constructed
from finite analytical correlation functions, for example, as described in Gaspari and Cohn
(1999), Gaspari et al. (2006), and Moreaux (2008) or as plotted in Figure 6.3. To construct the
correlation matrix, the distances between the individual pairs of states are calculated w.r.t a
given metric and then fed into the finite correlation function.

6.4.2. Domain Localization

Domain localization (Hunt et al., 2007; Janjić et al., 2011; Nerger et al., 2006, 2012a; Ott et al.,
2004; Testut et al., 2003) subdivides the model grid or mesh into subdomains and performs the
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Figure 6.4.: Exemplary illustration of domain localization. A 12�12 regular grid is divided into
16 subdomains of size 3� 3. The center of each subdomain is marked with a black
dot. Observations are marked with crosses. For the subdomain highlighted with
blue, the cutoff radius is illustrated with a blue circle. The update step for this
subdomain only considers the observations within the circle (blue crosses).

analysis step separately on each subdomain, taking only observations within a specified cut-off
distance into account.

An algorithm for domain localization for subspace error filters such as the ESTKF, or SEIK
filter was developed by Nerger et al. (2006). It assumes disjoint subdomains and uses the distance
between the centers of the subdomains and the location of the observations to determine which
observations are included in a local analysis step (see Figure 6.4).

The analysis weights of the k-th subdomain are given by

xa
σ �xf

σ � X̂σwk (6.77)

X̂
a
σ �X̂

f
σŴ k (6.78)

where subscript σ denotes the application of a linear operator that selects only the rows of the
state vector included in the k-th subdomain. In the analysis step all subdomains are updated
according to those equations.

The analysis step of the k-th subdomain for the ESTKF is

wk � 1?
ne � 1

AEσTEδT
T

EδpHδLEqTR�1

δ dδ (6.79)

Ŵ k �AEσTEδAE
T

σ (6.80)

TEδT
T

Eδ �
�
1nδ

� 1

ne � 1
pHδLEqTR�1

δ pHδLEq

�1

(6.81)
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where subscript δ denotes the application of a linear operator that selects the rows of the
observation vector associated with the k-th subdomain and nδ is the number of observations
used in the analysis of the k-th subdomain.

6.4.2.1. Observation Localization

Pure domain localization is binary, meaning that an observation is either included in the local
analysis step or not. A continuous weighting of the observations can be obtained by observation
localization (Hunt et al., 2007), which weights the observations associated with a subdomain
additionally by their distance to the subdomain. Thus, it implies domain localization. The
weighting is similar to the weighting of covariance localization (Section 6.4.1), but instead of the
VCM of the forecast P f , all local VCMs of the observations Rδ are weighted by their distance
to the subdomain.

6.5. Co-estimation of Model Dynamics

Co-estimation of model dynamics can be seen as calibrating (constant) parameters of the model
that determine how a state is forwarded. These parameters do not represent the state of the
system but rather its dynamic behavior. For co-estimating model dynamics the state vector x

is augumented by model parameters c (e.g., Bocquet et al., 2021). The augmented state vector
is then given by

z �
�
x

c

�
. (6.82)

General circulation models like the TIE-GCM consist of many hundredths model parameters
and it is virtually impossible to co-estimate all simultaneously due to multicollinearity. Thus, a
suited set of model parameters has to be determined. Analogous to the state the VCM of the
model parameters is represented by an ensemble. The ensemble matrix of the augmented state
vector is

Z �
�
X

C

�
(6.83)

and the ensemble perturbations are

Ẑ �
�
X̂

Ĉ

�
. (6.84)

During the analysis steps, the model parameters are updated based on their correlation with
the state, which is implicitly contained in the ensemble. Those model parameters are not
necessarily associated with a specific location. In this case applying a localized filter is not
straightforward. Bocquet et al. (2021) describes an approach enabling the localization of the
state and co-estimation of global model parameters. Here, the approach for domain localization
is explained. First, the traditional localized filter is performed to update the state ensemble. In
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a post-processing step, the ensemble of the model parameters is calculated by linear regression
with the state ensemble via (Bocquet et al., 2021, Equation 22)

Ca � Cf � ζĈf pX̂f q
�
pXa �Xf qloooooooooomoooooooooon
Ŵc

. (6.85)

The weights Ŵc can be found by solving the over-constrained linear system ĈfŴc �Xa�Xf

using for example singular value decomposition to obtain the pseudo inverse. This approach
requires finding a suitable value for the tapering coefficient ζ (Bocquet et al., 2021, Section 3.2.4).
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7. Implementation of an Assimilative TIE-GCM
Version

I use the Parallel Data Assimilation Framework (PDAF; Nerger 2024; Nerger and Hiller 2013;
Nerger et al. 2005, 2020) developed at the Alfred Wegener Institute in Bremerhaven to imple-
ment an assimilative version of the Thermosphere Ionosphere Electrodynamics General Circu-
lation Model (TIE-GCM; Qian et al. 2014) developed at the National Center for Atmospheric
Research High Altitude Observatory in Boulder and described in Section 5.1. PDAF and the
TIE-GCM are both open source software1. Although there are already assimilative TIE-GCM
implementations (see Section 7.1), my assimilation system is the first employing a (fully-parallel
online2) PDAF integration. Meaning, the assimilation system does not re-initialize the model
after each analysis step (’online’), making it faster than implementations which require re-
initialization. Additionally, my assimilation system forwards all ensemble members in parallel
and the computations for each member are also computed in parallel (’fully-parallel’). Details
on the parallelization concept are given in Appendix C.2. Each ensemble member is distributed
to a maximum of eight physical processor cores to achieve good efficiency (see Appendix C.3).
PDAF supports many ensemble Kalman filters (Section 6.3.3). However, I implemented only the
Error-Subspace Transform Kalman Filter (ESTKF; Section 6.3.5) into the assimilation system
for two reasons. First, it belongs to the class of square root filters that do not suffer from ad-
ditional sampling noise introduced by the perturbation of observations (Section 6.3.3). Second,
the analysis step is computed in the error-subspace, which slightly reduces the computational
costs (Section 6.3.5), which is relevant as my assimilation system aims at high efficiency and low
run time (see Hypothesis H 1).

The structure of the newly developed TIE-GCM data assimilation system is summarized in
Figure 7.1. The first step is the generation of the ensemble (Section 7.2) by perturbing boundary
conditions, external forcings, and model parameters (boxes in the upper left corner in Figure 7.1).
After forwarding the model, the observation operator of the corresponding observation is used to
map the forwarded state to the observation space (Section 7.3). Next, the ensemble is updated,
possibly using a localization schema (Section 7.5) and/or co-estimating model dynamics in form
of model parameters. Before the updated state can be forwarded, it must be constrained to
maintain physically consistent values (Section 7.4). Section 7.6 describes a two-step approach,
which first calibrates an empirical model using accelerometer-derived mass densities and then
globally evaluates the model and assimilates it. Any observation assimilated into the TIE-GCM
must be located in the same reference system. Thus, satellite orbits provided in the geocentric

1PDAF is published under the LGPL-3.0 license and TIE-GCM under the NCAR TIE-GCM open source
academic research license.

2Additional information on the implementation concept are available online at https://pdaf.awi.de/trac/
wiki/ImplementationConceptOnline
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Figure 7.1.: Flow diagram of PDAF TIE-GCM. Nodes with a double shadow indicate that the
corresponding quantity is given as an ensemble. The state ensemble is generated by
perturbing the model inputs (see Section 7.2), which are located in the upper left
corner of this diagram. References to sections of this thesis are provided in brackets.
The state vector is colored yellow, external forcings with red, boundary conditions
with purple, observations are colored green and steps of the Kalman filter with blue.
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celestial reference system (GCRS) are rotated into the International Terrestrial Reference System
(ITRS) as described in Appendix E.1 in a pre-processing step. Additionally, the orbits and
observations are given in GPS time, while the TIE-GCM uses coordinated universal time (UTC).
For data assimilation, one needs to use the same time scale for models and observations. The
details about the necessary transformation are found, for example, in Müller (1999).

7.1. Related Works

Data assimilation of accelerometer-derived mass densities, electron number density profiles, and
vertical TEC have been applied to numerical models of the upper atmosphere in several studies.
Table 7.1 provides an overview of recent studies. Data assimilation within the TIE-GCM has
been conducted with the use of the Data Assimilation Research Testbed (DART; J. Anderson et
al. 2009) . DART is open source software1. It does not support ’online’ assimilation, meaning the
model is re-initialized after each analysis step. DART was also employed for an assimilation study
using the Global Ionosphere Thermosphere Model (GITM; A. J. Ridley et al. 2006) . For the
Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe; Millward et al. 2001)
model, the Thermosphere Ionosphere Data Assimilation (TIDA; S. M. Codrescu et al. 2018)
software is employed in several studies. However, neither the CTIPe nor the TIDA software are
publicly available. The studies employing ensemble-based Kalman filters investigate assimilation
periods lasting between 1-5 days. A plausible reason for this duration is the computational cost.
However, this is not discussed explicitly in the studies. The studies investigate either specific
geomagnetic storms or periods with quiet geomagnetic conditions. Sutton (2018) almost covered
an entire year including many different geomagnetic conditions at solar maximum conditions.
However, it is also the only study using a variational data assimilation approach and it only
estimates the model drivers. Matsuo et al. (2012) use an update method closely related to
optimal interpolation to estimate the mass density at 400 km altitude for an entire year.

Most studies apply a localization schema to reduce the impact of spurious long-range corre-
lations. When assimilating accelerometer-derived mass densities, localization limits the mass
density improvement to the vicinity of the orbits (e.g., Matsuo et al., 2013). The TIDA software
does not apply localization. This is justified on the grounds that “it becomes improbable for
spurious correlations to arise when the size of the ensemble is an order of magnitude greater
than the number of randomized elements” (S. M. Codrescu et al., 2018). M. V. Codrescu et al.
(2022) and S. M. Codrescu et al. (2018) could improve the mass density estimation along the
GRACE and CHAMP missions by assimilating accelerometer-derived densities from only one of
the satellite missions.

Some of the studies (M. V. Codrescu et al., 2022; Matsuo et al., 2013; Morozov et al., 2013)
co-estimated the external forcings used to drive the models. Matsuo et al. (2013) and Morozov
et al. (2013) assimilated accelerometer-derived mass densities from CHAMP and co-estimated
the F10.7 index. Morozov et al. (2013) demonstrated that the bias between the GITM and the
accelerometer-derived mass densities along GRACE is reduced when co-estimating F10.7.

1Published under the Apache-2.0 license.
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Table 7.1.: This table provides an overview of recent studies on data assimilation in numerical models of the upper atmosphere. This list is not
intended to be complete. To save space in the column labeled ’observations’, the following abbreviations are used here.
COSMIC profiles: Radio occultation Electron density profiles (Section 4.5) form Constellation Observing System for Meteorology,
Ionosphere, and Climate/Formosa Satellite 3 (COSMIC/FORMOSAT-3); ADMD: accelerometer-derived mass densities (Section 4.1).
Additional information about the models can be found in Chapter 5. For more details about the filters see Chapter 6. The time between
subsequent assimilation steps is denoted by ∆t. The number of ensemble members is denoted by ne. See Section 2.3.1.2 for the F10.7
index and Section 2.3.2.2 for the Kp index.

max median
model study software filter ne ∆t observations period Kp F10.7

Lee et al. 2012 DART EnKF 90 1 h COSMIC profiles 12 - 13 Apr 2008 3.3 68
100 1.5 h ADMD CHAMP 28 - 29 Mar 2002 3.3 174Matsuo et al. 2013 DART EnKF 90 1 h synthetic COSMIC profiles 8 - 9 Apr 2008 3.7 69

Hsu et al. 2014 DART EnKF 90 1 h synthetic COSMIC profiles 8 Apr 2008 2.7 69
10 Sep 2005 5.7 306Chartier et al. 2016 DART EnKF 90 1 h vertical TEC 21 Jan 2005 8.0 119

Chen et al. 2016 DART EnKF 90 10min GPS TEC 16 - 18 Mar 2015 7.7 116
Sutton 2018 IRIDEA 9 3 h ADMD CHAMP 21 Mar - 31 Dec 2003 9.0 123

4 - 8 Mar 2008 4.0 68Kodikara et al. 2021 DART EAKF 90 1 h COSMIC profiles 2 - 6 Jun 2014 3.3 109

TIE-GCM

Corbin and Kusche 2022 PDAF ESTKF 100 1 h calibrated NRLMSIS 2.0 27 Mar - 9 Apr 2010 7.7 78

CTIPe

Matsuo et al. 2012 OI 1.5 h ADMD GRACE and CHAMP 2007 5.1 71
S. M. Codrescu et al. 2018 TIDA EnKF 75 10min ADMD CHAMP 20 Mar 2007 0.3 71

27 - 31 Oct 2003 9.0 86
27 Sep - 2 Oct 2002 7.3 145M. V. Codrescu et al. 2022 TIDA EnKF 75 30min ADMD GRACE and CHAMP
26 Jul - 30 Jul 2004 8.7 113

Fernandez-Gomez et al. 2022 TIDA EnKF 75 10min ADMD GRACE 16 - 18 Mar 2015 7.7 116

GITM Morozov et al. 2013 DART EAKF 20 30min ADMD CHAMP 1 - 2 Dec 2002 3.7 146
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The assimilation of COSMIC profiles improved ionospheric parameters, such as the height
of the F2-layer’s peak and the associated electron number density (Lee et al., 2012), the neu-
tral mass density (Matsuo et al., 2013), and the electron number density (Hsu et al., 2014).
While most studies assimilating mass densities seek to improve the mass density estimate itself,
Fernandez-Gomez et al. (2022) investigates how the electron number density estimation can be
improved by the assimilation of mass densities. They found that the electron number density
along the orbit of GRACE simulated by the CTIPe was improved by 22% when assimilating
accelerometer-derived mass densities from the Swarm-A satellite during a geomagnetic storm.

Data assimilation is not limited to numerical models. Forootan et al. (2022) used data assim-
ilation to correct the mass density prediction of the semi-empirical model NRLMSISE-00 and to
simultaneously estimate its key parameters. For this, they employed the EnKF and mass den-
sity observations derived from the GRACE accelerometer. Note that, semi-empirical models are
not dynamical as the prediction does not dependent on previous states. Consequently, the only
method for correcting model predictions during periods not encompassed by the assimilation
epochs is to estimate the model parameters.

So far, an efficient implementation that fully utilizes the high temporal resolution of a few
seconds of the accelerometer-derived densities and runs over arbitrarily long periods has yet to
be investigated.

7.2. State Ensemble Generation

The TIE-GCM is a highly driven model, which means that its long-term behavior does not
depend on the initial state (convergent system) but is controlled by external forcings, model
constants, and lower boundary conditions (see Figure 7.2). Consequently, the model does not
behave chaotic (Section 6.2). Therefore, to obtain a realistic state ensemble spread over longer
time spans, it is necessary to perturb these model inputs rather than the initial states alone.
All perturbations applied to the model inputs are sampled for all ensemble members in advance
of any model run, thus ensuring that any model run can be repeated with the exact same
perturbations if necessary. To get the initial states for each ensemble member, one forwards
some arbitrary initial state for each ensemble member using an OLS long enough for the model
to adapt to the perturbed model inputs.

7.2.1. External forcing

The external forcings of the TIE-GCM (Section 5.1.2) are time-variable, and so is their vari-
ability. Consequently, time-variable perturbations are needed to represent the variability. The
external forcings perturbations are sampled for each ensemble member and point in time. The
ensemble of external forcings perturbations must reflect the variability for each epoch and its
temporal dependence.

7.2.1.1. Sampling Procedure

Initially, it is assumed that for each external forcing parameter, the mean and standard deviation
are given as time series, describing a Gaussian at each point in time. The perturbations are
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Figure 7.2.: An open loop simulation with 96 ensemble members of the TIE-GCM with perturbed
initial states (the first 96 ensembles members of Setup 2) but without perturbing
external forcings, boundary conditions or model parameters was conducted for this
plot. The moments of the neutral density–represented by the ensemble–of all grid
cells are aggregated in this plot. The solid black line is the median, taking into
account all grid cells. The dark gray and light gray areas contain 50% and 95% of all
values centered around the median, respectively. The extreme values are illustrated
with dashed lines. The ensemble spread decreases rapidly. After about two days,
the average standard deviation decreased from a hundredth to a thousandth of the
mean mass density, and the model dynamics took control of the system’s state.
Thus, after two days, the dependence on the initial state is negligible for most grid
cells and continues to drop. To account for the different volumes of the TIE-GCM
cells, all percentiles were computed by weighting the contribution of each cell by its
volume (see Appendix C.4).
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then sampled from the time series of the standard deviations. The temporal dependence of
the perturbations is also taken from the time series of the standard deviations. This procedure
is described in detail in this section and used for all experiments in this thesis. However, in
practice, the mean and standard deviation time series are computed from the same raw data.
Thus, the spectrum of the standard deviation time series inherits frequencies of the mean time
series, which are associated with long-term signals (e.g., the 27-day solar cycle) and should
not be attributed to noise or short-term variability. Hence, in future experiments, one should
directly operate on the raw time series: The trend can be separated by a lowpass filter, and the
remaining signal could be used to sample a time series of perturbations using, for example, an
auto-regressive moving average model.

The perturbation sampling procedure requires for each external forcing parameter an equidis-
tant time series txu∆t of the uncertainty/variability of the parameter with n samples and tempo-
ral resolution ∆t. In the first step, the empirical autocorrelation function of txu∆t is computed,
which is approximated in the second step by an analytical autocorrelation function γptq de-
pending only on the lag t. It is required to choose functions that satisfy all the properties of
autocorrelation functions (e.g. P. J. Brockwell and Davis, 1991, p. 26-28, Proposition 1.51 and
Remark 3).

The correlation matrix P associated with an analytical autocorrelation function is a symmetric
Toeplitz matrix since the covariance only depends on the lag t.

P �

�
����������

γp0q γp∆tq γp2∆tq � � � γppn� 2q∆tq γppn� 1q∆tq
γp∆tq γp0q γp∆tq � � � γppn� 3q∆tq γppn� 2q∆tq
γp2∆tq γp∆tq γp0q � � � γppn� 4q∆tq γppn� 3q∆tq

...
...

γppn� 2q∆tq γppn� 3q∆tq γppn� 4q∆tq � � � γp0q γp∆tq
γppn� 1q∆tq γppn� 2q∆tq γppn� 3q∆tq � � � γp∆tq γp0q

�
����������

(7.1)

The VCM of the perturbations is then given by Equation 6.21. An efficient way to sample an
ensemble from a VCM is using its Cholesky factorization R (e.g., Vono et al. 2022, Algorithm
3.1; Alkhatib and Schuh 2007, Algorithem 1a)

X̂Forcing � RTN (7.2)

with N being a matrix of standard normal distributed random numbers with n rows and ne

columns. However, this algorithm cannot provide arbitrary long time series, as the computa-
tional cost would be too large1. The time series of external forcing perturbations sampled for
this thesis are restricted to one year. To prevent unrealistic values from being sampled from the
tails of the multivariate normal distribution, each value of each sampled time series is limited to
the corresponding 5-sigma environment. This is necessary to prevent unrealistic forcings leading
to model crashes. Due to the limits, the resulting time series are no longer normally distributed
since all samples outside the 5-sigma environment are shifted to the boundaries. However, since

1This is true for dense VCMs. When constructing finite correlation functions, the sparsity of the VCM allows
to considerably extend the period in which perturbations are sampled.
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the probability of a single value being outside the 5-sigma environment is less than 0.0001%,
the deviation from a normal distribution is negligibly small. An alternative to this approach is
to sample from a truncated normal distribution. However, sampling from a truncated normal
distribution requires much more computational resources than sampling a normal distribution,
especially for the case n " 10. The ensemble of the external forcing is obtained by adding the
perturbations X̂Forcing to the external forcing parameter.

7.2.1.2. Application to TIE-GCM

When using the Weimer model (Section 5.1) there are five external forcing parameters that
are summarized in Table 7.2. The standard deviation of the F10.7 index is computed from
Tapping (2013, Paragraph 56). The standard deviation of the solar wind and IMF parameters
is provided in the OMNI Hourly Data Set (Papitashvili and King, 2020c) and computed from
all measurements within one hour. Figure 7.3 shows the ensemble representing the solar wind
density as an example.

Figure 7.4 shows the auto correlation of txu∆t for each parameter. Simple functions con-
structed from the exponential and cosine functions are employed to approximate the empirical
autocorrelation function. They reproduce the main characteristics of the autocorrelation func-
tion but fail to reproduce the details, for example, small peaks associated with the solar rotation
(see Figure 7.4). However, none of the assimilation experiments conducted in this thesis inves-
tigate periods longer than 26 days. Thus the correlation with lags larger than 26 days are not
relevant. Instead of using the analytical function, one can also use the biased empirical corre-
lation function (in Figure 7.4 the unbiased empirical autocorrelation function is shown), which
is also positive definite. However, this restricts one to the sampling frequency of the empirical
function.

To verify the sampling procedure, the given standard deviation of the external forcings is
compared with the standard deviation computed from the ensemble of perturbations. As shown
in Figure D.1, the deviation between given and sampled standard deviation are negligible.

For approximating the autocorrelation of the standard deviation time series of the solar wind
density, a simple exponential function

γ1ptq � exp

�
� lnp2q

T
|t|



(7.3)

parameterized by the half-life time T is sufficient. For the describing the autocorrelation of
standard deviation time series of the solar wind velocity and the three IMF components, I add
another exponential:

γ2ptq � p1�A1q exp
�
� lnp2q

T0
|t|


�A1 exp

�
� lnp2q

T1
|t|



with 0   A1 ¤ 1. (7.4)
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Figure 7.3.: The black dots in Panel a illustrate the solar wind density provided by the TIE-
GCM and used to drive it (derived form the OMNI 5-min Data Set, Papitashvili and
King 2020b). Superimposed is the solar wind density from the OMNI Hourly Data
Set (solid blue line, Papitashvili and King 2020c, which also delivers the associated
standard deviation (blue area). Panel b shows the ensemble of perturbations that
was sampled to represent the standard deviation contained in the OMNI Hourly
Data Set. A single ensemble member is highlighted with red, to show that temporal
correlation is considered in the sampling procedure. Panel c shows the solar wind
density of the OMNI 5-min Data Set perturbed by the ensemble shown in Panel b.
Panel d shows the ensemble mean and the ensemble spread computed from the
ensemble shown in Panel c.
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Figure 7.4.: Empirical (blue lines) and modeled autocorrelation function (orange lines) of the
standard deviation of the external forcings. Only the first 200 days are shown here
since I do not perform experiments with periods longer than some weeks. The x
component of the IMF Bx is plotted here, although it is not an input of the TIE-
GCM.

The analytical autocorrelation function for the uncertainty of the F10.7 index also contains
cosine functions associated with the rotation of the Sun and the solar cycle:

γ3ptq � p1�A1 �A2q exp
�
� lnp2q

T0
|t|



�A1 cos

�
2π

t

4530 d



exp

�
� lnp2q

T1
|t|



�A2 cos

�
2π

t

27 d



exp

�
� lnp2q

T2
|t|

 (7.5)

with the condition 0   A1 ¤ 1^0   A2 ¤ 1^0   A1�A2 ¤ 1. I use the period from 2000 until
2023 for the computation of the empirical autocorrelation functions. For fitting the functions
to the empirical function, only the first 20% of all values are used since the larger the lag, the
larger the uncertainty.

The standard deviations of the components of the IMF flux in Papitashvili and King (2020c)
are given in the GSE, but the TIE-GCM requires them in GSM. Thus, after the sampling, the
sampled perturbations must be rotated accordingly (see Appendix E.2).
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Table 7.2.: The column labeled with ∆t, and γptq contain the temporal resolution of the time
series, and the autocorrelation function fitted to the empirical autocorrelation func-
tion, respectively. See Section 2.3.2 for further information about the solar wind and
IMF, and Section 2.3.1.2 for the F10.7 index. The letters in the column σ indicate
the source of the uncertainty of the corresponding parameter.

external forcing σ ∆t γptq estimated parameters for γptq
solar wind density

a 1h

Eq. 7.3 T � 3.36 h
solar wind velocity Eq. 7.4 T0 � 167 d, T1 � 6.44 h, A1 � 0.92
y component of IMF flux in GSM Eq. 7.4 T0 � 296 d, T1 � 2.76 h, A1 � 0.92
z component of IMF flux in GSM Eq. 7.4 T0 � 300 d, T1 � 3.54 h, A1 � 0.94

F10.7 index b 24 h Eq. 7.5 T0 � 29 d, T1 � 3.92 year, T2 � 16 d,
A1 � 0.71, A2 � 0.17

a Papitashvili and King (2020c)
b Tapping (2013, Paragraph 56)

7.2.1.3. Earth Magnetic Field

In contrast to the previously discussed external forcings, the Earth’s magnetic field is spatially
resolved in the TIE-GCM 2.0. It is represented by the 12th release of the IGRF and is used to
calculate the modified apex coordinates (Appendix E.3). The IGRF uses spherical harmonics
up to degree thirteen and is updated every five years (Alken et al., 2021). There is no time
series available to provide the uncertainty, but Beggan (2022) estimated the “large-scale time-
invariant spatial uncertainty of the IGRF based on the globally averaged misfit of the model
to ground-based measurements [...]” (Beggan, 2022). He provides the standard deviation of
the east, north, and vertical components, as well as the standard deviation of the total field
intensity, inclination, and declination.

Perturbing the east, north, and vertical components can cause instabilities in the model if
a spatially constant perturbation is assumed for the corresponding component of the magnetic
field. This is because the perturbation along a component can be much larger than the magnetic
flux itself. Therefore, I perturb only the total field intensity with the standard deviation found
by Beggan (2022) which is 178 nT. However, this standard deviation was computed for the
magnetic field at the ground. Since Earth magnetic field is well approximated by a dipole field,
the magnetic intensity gets smaller with increasing altitude and towards the equator. At 1000 km
altitude, the total magnetic flux density is about 40% lower than on the ground. Thus, using
the same perturbation for all locations is likely to overestimate the uncertainty at high altitudes
(see Figure C.3). This should be accounted for in a future implementation. Ideally, an ensemble
of spherical harmonics coefficients would be used to represent the uncertainty of the IGRF.

7.2.2. Lower Boundary Conditions

To run the TIE-GCM one must specify the neutral temperature, the horizontal neutral wind
velocity, and the geopotential height at the lowest pressure level (Section 5.1). In all experiments,
the lower boundary conditions are constructed from zonal averages obtained from the NRLMSIS-
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Table 7.3.: The perturbations for the lower boundary conditions listed in this table are sam-
pled from truncated normal distributions with zero mean. The parameters of the
distribution are taken from Corbin and Kusche (2022, Table 1)

perturbation

parameter original value standard deviation limits

neutral temperature

from empirical model

3K � 9K
neutral zonal wind 70m � 210m
neutral meridional wind 5m s�1 � 15m s�1

geometric height 6.5m s�1 � 19.5m s�1

E00 and HWM 07 plus upward propagating atmospheric tides (Section 2.4) simulated by the
Global Scale Wave Model (GSWM; Hagan and Forbes 2002; X. Zhang et al. 2010) .

A very simple approach for accounting for the uncertainty in the lower boundaries is adding
a global offset as done in Corbin and Kusche (2022). This approach does not account for errors
in the phases and amplitudes of the atmospheric tides, though. Offsetting the lower boundary
conditions affects the neutral mass density in the lowest part of the TIE-GCM the most. The
impact of external forcings on the neutral mass density in proximity to the lower boundary is
much greater than for higher altitudes (see Appendix C.1). So, perturbing the lower boundary
conditions is crucial for the ensemble spread of the lower model levels.

A better approach for the ensemble generation of the lower boundary conditions could running
ensemble simulations of the NRLMSIS, Horizontal Wind Model (HWM), and GSWM with
perturbed forcings. However, implementing this approach would require some additional effort.
Thus, for now, I only perturb the offsets. The perturbations for the boundary conditions are
sampled from truncated normal distributions using the parameters listed in Table 7.3.

7.2.3. Model Parameters

The parameters that are perturbed to generate the ensemble are listed in Table 7.4 and de-
scribed in Section 5.1.3. A truncated normal distribution with zero mean is used to sample
the perturbations. The standard deviation corresponds to 10% of the unperturbed value. The
limits are three times the standard deviation. For future experiments, it would be beneficial to
expand the list to further increase the uncertainty of the model’s forecast.
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Table 7.4.: The perturbations for the model parameter listed in this table are sampled from
truncated normal distributions with zero mean. The parameters of the distribution
are taken from Corbin and Kusche (2022, Table 1). Although the Burnside factor is
not listed in Corbin and Kusche (2022, Table 1), it is perturbed for the experiments
in the paper nevertheless).

perturbation

parameter original value standard deviation limits

Joule heating factor 1.5 0.15 � 0.45
Burnside factor 1.5 0.15 � 0.45
peak energy of cusp electrons 100 eV 10 eV � 30 eV
peak energy of polar rain electrons 500 eV 50 eV � 150 eV

7.3. Observation Operator for Neutral Mass and Electron Number
Densities

In this implementation, the observation operator is the composition of two functions Hpxq �
pI �Fqpxq that computes the observed quantity from the state vector via Fpxq and interpolates
it to the position of the observation using a suited interpolation function I. The interpolation
is always performed at the end so that interpolation errors do not affect the computation of
the observed quantity. Only prognostic state variables (see Table 5.3) can be used in the state
vector. Diagnostic state variables are not used to forward the model, therefore, updating them
does not affect the model propagation at all.

To compute the neutral mass density from the prognostic variables of the TIE-GCM (Ta-
ble 5.3), the state vector must include the individual mass fractions wj of the neutral species
and their temperature T . By inserting Equation 2.8 into Equation 2.15 an idealized expression
for the mass density assuming an ideal gas is found:

ρneutral � p

RT
°

species

wj

M j

with species � tO1,O2,He,N2u. (7.6)

The mass fraction of molecular nitrogen results from wN2 � 1 � wO1 � wO2 � wHe. The molar
masses M j of the species are given in Table 2.2. Since the ion mass density is much lower than
the neutral mass density (three orders of magnitude and more, Figure 2.20) one can approximate
the total mass density with the neutral mass density.

The electron number density is a prognostic state variable and can be mapped directly to the
observation. A unit conversion might still be necessary.

Before the actual interpolation can be applied, the pressure levels must be converted to ge-
ometric heights by applying a modified version of Equation 2.26 using a latitude and altitude-
dependent value for the gravitational acceleration. The interpolation is performed first in the
vertical direction. Since this is the only irregular dimension of the TIE-GCM grid, the in-
termediate result is given on a regular grid. The regular structure facilitates the subsequent
interpolations in the remaining dimensions. The interpolation function I is constructed from B-
splines (De Boor, 1978). The degree of the B-Splines can be chosen in the range from 1 (linear)
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to 5 (quintic). In the longitudinal direction, periodic splines are used. The value at the poles
is computed as the mean from the surrounding cells. In case neutral mass density is computed,
the vertical interpolation step is performed in logarithmic space. This reduces the interpolation
error since in logarithmic space the neutral mass density profile is closer to a linear function.

7.4. Constraints on the Updated State

The Kalman filter does not consider any physics when updating the state. Thus, the updated
state may violate physical laws or contain unrealistic estimates. As a consequence, one must
check the state after each update and restore physical consistency if necessary. Otherwise, the
model is likely to crash when further forwarded. Consistency is ensured by applying the limits
listed in Table 7.5.

Additionally, the following constraints are applied after limiting the state variables according
to Table 7.5.

(C 1) The sum of all neutral mass fractions must be one1 (see Equation 2.3). For all grid cells
not satisfying this constraint, the corresponding fractions are divided by the sum.

(C 2) The electron and ion temperature must be greater or equal to the neutral temperature.
Ion or electron temperatures not satisfying this constraint are replaced by the neutral
temperature.

1In practice the sum is constrained to 1-1� 10�12 since the mass fraction of N2 is not part of the state vector
and not part of the sum. This ensures it is not zero in the following calculations.

Table 7.5.: This table lists the limits that are used to constrain the corresponding state variables
after the update step. The reason why a condition is applied is indicated by letters.

state variable limit

name units lower upper

any mass fraction 1� 10�12 e 1
electron number density cm�3 3100 a 4.0� 106 d

neutral temperature K 100 a 2800 c

ion temperature K 100 b 4200 d

electron temperature K 100 b 6100 d

O+ number density cm�3 1� 10�12 e 4.0� 106 d

O2
+ number density cm�3 1� 10�12 e 2.9� 105 d

a same limit as used in TIE-GCM 2.0
b follows from constraint C 2
c derived from the maximum in Figure 2.20 with some extra margin
d 1.2 times the maximum of Halloween storm simulation rounded to two sig-
nificant figures
e limit is actually zero, but in practice a positive value close to zero is used to
prevent invalid division by zero in model code
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7.5. Localization

For domain localization (Section 6.4.2), one has to define a metric that is used for measuring the
distance between observations and the center of the subdomains. PDAF offers different metrics.
For spherical coordinates (longitude λ, latitude φ, altitude z) the distance is computed from the
great circle distance dgc and the vertical distance

dsph �
b
dgcpφ1, φ2, λ1, λ2q2 � pz1 � z2q2, (7.7)

with dgc computed by the haversine formula

dgc � 2RC arcsin

�d
sin2

�
φ2 � φ1

2



� cospφ1q cospφ2q sin2

�
λ2 � λ1

2


�
. (7.8)

In Corbin and Kusche (2022), the coordinates of the observations and the TIE-GCM grid cells
were converted to the grid cell index, and the distance was computed as the Euclidean distance.
This approach was chosen since grids with regular zonal and meridional spacing exhibit an
increase in resolution towards the poles. By measuring the distance in grid cells, the number
of included observations at the poles and the equator is more balanced. This approach is an
implicit non-isotropic localization, since the geometric extent of a grid cell is much larger in the
horizontal than in the vertical direction. The meridional extent of the grid cells is constant,
but the zonal extent depends on latitude and altitude. For the TIE-GCM with 5° horizontal
resolution, a cell located at the ring around the poles at 100 km has a zonal arc length of 49 km
while a cell at the equator at 500 km altitude as an arc length of 600 km. The vertical extends
increases with altitude by reason of the underlying pressure coordinates. For the 5° version the
vertical extend is roughly 2.5 km and 30 km at the lower and upper layer, respectively.

PDAF supports non-isotropic localization since version 2.2 explicitly so that one can have
different radii for vertical and horizontal distances. For observation localization PDAF supports
two correlation functions: exponential decay and a finite 5-th order polynomial mimicking a
Gaussian (defined in Gaspari and Cohn (1999, Equation 4.10) and illustrated in Figure 6.3 with
the green line labeled with GCa�0.5pτq.)

7.6. Assimilation of Semi-Empirical Models via Two-Step Approach

Semi-empirical models are based on substantial records of observations from various instruments
providing global mass density estimates (see Section 5.2). Assimilation of the mass density
estimate of the semi-empirical model is considerably more straightforward than assimilating
all of the datasets utilized in constructing the empirical model into numerical models since
the data has already been harmonized and is globally available. However, the spatial and
temporal resolution of the atmospheric signals captured by the empirical models is limited, and
information contained in the original records is inevitably lost when the observations are fitted
to the empirical model’s representation of the atmosphere. Additionally, most of the recorded
data is during geomagnetic quiet conditions, simply because this is the dominant state of the

109



7. Implementation of an Assimilative TIE-GCM Version

Figure 7.5.: The green lines represent the gird of TIE-GCM 2.0 with 5° horizontal resolution.
The blue grid is the data grid at which the empirical model is evaluated. The black
line is the orbit of the CHAMP satellite at about 300 km. The vertical direction is
not to scale. The image of Earth is part of the ’Blue Marble’ collection and was
created by Reto Stöckli, NASA Earth Observatory.

geomagnetic activity (see Figure 2.17). Consequentially, empirical models perform exceptionally
well during quiet conditions.

The two-step approach developed by Corbin and Kusche (2022) calibrates a semi-empirical
model (NRLMSIS 2.0) with accelerometer-derived mass densities (from CHAMP) in the first
step. Details about this first calibration step are explained in Section 7.6.1. In the second step,
the model is evaluated globally, and the global and calibrated model output is assimilated into
the numerical model. This can be interpreted as ’smart’ interpolation of the accelerometer-
derived mass densities. It allows to update the state of the numerical model globally and
applying localization. However, it comes with a loss of temporal resolution compared to the
original accelerometer-derived mass densities (Section 7.6.1).

The empirical model employed here is the NRLMSIS 2.0 (Section 5.2.1). It is evaluated on a
3D grid that is regular in longitude, latitude, and altitude. This grid is referenced as data grid
in the following. The horizontal resolution of the data grid (see Figure 7.5) is adapted to the
horizontal resolution of the semi-empirical model, which is limited by the maximal degree of the
spherical harmonic coefficients used in the model formulation. The necessary transformation of
the satellite orbit into the ITRS is summarized in Appendix E.1. The following aspects have
changed since the publication of Corbin and Kusche (2022) in the implementation:

• Interpolation in observation operator:

– Cubic B-spline interpolation is used instead of linear interpolation

– Values at the poles (φ � �90°) are added to the knots of the splines and computed
by averaging the surrounding cells.

• Additional physics-based constraints/limits are added to prevent invalid results:

– Limits on ion and electron temperature (Table 7.5) and Constraint C 2

– Limits on ion and electron number density (Table 7.5)

– Positive hall conductivity in the TIE-GCM ion drag computation is enforced.
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7.6. Assimilation of Semi-Empirical Models via Two-Step Approach

– The TIE-GCM routine computing the roots of a quartic equation (used to compute
electron number density) captures negative arguments in square roots.

7.6.1. Calibration

The calibration of the empirical model is based on scale factors between the empirical model
and the accelerometer-derived densities. The time series of scale factors is smoothed with a
low-pass filter to eliminate the dependency of the orbital position. An example of this calibra-
tion is given in Figure 7.6 for the scale factor between mass densities derived from CHAMP’s
accelerometer and simulated by the NRLMSIS 2.0. The scale factor is greater than in most
cases, indicating that the NRLMSIS 2.0 underestimates the mass density compared with the
accelerometer-derived mass densities for the given period. During the 5 April geomagnetic
storm the scale factor peaks with 1.5. A low-pass filter with a cut-off frequency of 3 h is applied
to the time series of scale factors, which corresponds to two orbital revolutions of CHAMP. The
scale factor’s dependency on the argument of latitude is significantly reduced compared with the
unfiltered data (compare panels b and e in Figure 7.6.) While this approach allows scaling the
model globally, it has the disadvantage that the high temporal resolution of the accelerometer
is lost to some extend.

The vertical extent of the data grid at which the empirical model is evaluated is aligned to the
vertical extent of the TIE-GCM, and the spatial resolution is matched to the resolution of the
empirical model. Corbin and Kusche (2022) used a regular grid with 20° horizontal resolution
ranging from 100 km to 550 km with a vertical resolution of 25 km (see Figure 7.5).

7.6.2. Stochastic Model

In Corbin and Kusche (2022), correlations of the observations were neglected in the stochastic
model. However, it is helpful to consider the correlations of the observations to prevent any
unwarranted confidence in the observations. The empirical model has a horizontal resolution of
60° and is evaluated on a 20° grid that is assimilated into the TIE-GCM. Thus, mass densities
located in grid cells close to each other have a large correlation by design. When not considering
the correlations, increasing the localization radius has a similar effect as increasing the weight
of the observations, since more (highly correlated) observations are included that are treated as
they were uncorrelated. Thus, a decent stochastic model should provide the full VCM.

Unfortunately, information about the uncertainty of the modeled state variables is not included
in the output of NRLMSIS 2.0. Thus, the VCM has to be constructed by other means. One
approach is to create an ensemble of NRLMSIS 2.0 instances, where the external forcings of
each instance are perturbed in a manner similar to that done in Section 7.2. The VCM can
then be obtained for each time step from the ensemble using Equation 6.28. Although this is
a promising approach, another much simpler approach based on literature standard deviations,
weighting, and correlation functions is used for now.

The standard deviation of each grid cell of the data grid is obtained by multiplying the
density from the uncalibrated model with a height depended factor (Corbin and Kusche, 2022,
Equation 6). In addition it is weighted with a function depending on the Kp index representing
geomagnetic activity (Corbin and Kusche, 2022, Equation 8), a function depending the spherical
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7. Implementation of an Assimilative TIE-GCM Version

Figure 7.6.: This figure is a modified version originating from Corbin and Kusche (2022, Figure 3)
with an improved colormap. It shows the scale factor between accelerometer-derived
densities of the CHAMP satellite and the NRLMSIS 2.0. A scale factor greater than
one indicates that the accelerometer-derived density is greater than the modeled
density. The unprocessed scale factors are on the left (panels a, b, and c), and the
filtered scale factors are on the right (panels d, e, and f). The argument of latitude is
the angle between the ascending node and the position of the satellite, as measured
in the orbital plane. The satellite passes the night-side and day-side equator at 0°
and 180°, respectively. At 90° and 270° it is closest to the north and south pole,
respectively. The solid black lines in panels a and d indicate the position of the solar
terminator. The solid blue line in panel c and f is the median scale factor at each
orbit. In panels b and e, the blue line is the median scale factor at each argument
of latitude. The light blue area is the 25th to 75th interpercentile range.

and vertical geocentric distance to the satellite that was used for the calibration (Corbin and
Kusche, 2022, Equation 9) and a constant weight factor p0 which is set to one in this thesis.

Figure 7.7 shows an empirical autocorrelation function of the NRLMSIS 2.0 mass density
depending on vertical distance and great circle distance. The autocorrelation decreases much
faster the in vertical direction than in horizontal direction. To approximate the autocorrelation
function with an analytical function the horizontal and vertical distance are combined using
the Euclidean norm and a weight for the horizontal component. Fitting the weight and the
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Figure 7.7.: The spatial correlation of neutral mass density of the NRLMSIS 2.0 was com-
puted in dependence of vertical distance and great circle distance for 1 April 2010
00:00 UTC+0. The model was evaluated on a grid partitioned into cells of equal
surface area and similar shape on a sphere using the algorithm developed by B.
Beckers and P. Beckers (2012). For each altitude and hemisphere, 150 grid cells
were evaluated. The correlations were computed using distance classes (50 for hor-
izontal distance and 30 for vertical distance).

parameter of a simple exponential decay to the data in Figure 7.7 provides the approximation

cp∆h, dgcq � exp

�
������

d�
dgc
2670


2

�∆2
h

20.5 km

�
����
 (7.9)

with the vertical distance ∆h and great circle distance dgc in kilometers. Given the standard
deviations of the observations, one can calculate the full VCM of the observations using Equa-
tion 6.21 where the correlations are computed from Equation 7.9.
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8. Experiments

In Section 1.4, I formulated six hypotheses concerning overcoming challenges pertinent to data
assimilation systems in the upper atmosphere. In this chapter I perform OLSs and data assim-
ilation experiments to test those hypotheses. Since an efficient assimilation system is required,
I investigate first how many ensemble members should be used, which requires balancing com-
putational costs and representativeness of the state ensemble for the model errors (Section 8.1).
In the following Section 8.2, the generation of the state ensemble with time-variable and static
perturbations of the external forcings is compared. I demonstrate that compared with static
external forcing perturbations, time-variable perturbations decrease spurious long-range correla-
tions in the forecasted ensemble of the state. In Section 8.3, the neutral mass density simulated
by TIE-GCM OLSs with 5° and 2.5° horizontal resolution are compared with accelerometer-
derived densities and densities from empirical models. Data assimilation experiments where
mass densities are assimilated are described in Section 8.4. The assimilation of electron densi-
ties from an empirical model is discussed in Section 8.5 and the co-estimation of Joule-heating
in Section 8.6. Most experiments investigate the two-week long period from 27 March 2010 to
10 April 2010. Initially, the period represents quiet conditions, but it also includes a strong
geomagnetic storm that hit Earth on 5 April 2010, allowing the assimilation to be tested under
different conditions. In Section 8.7 additional periods are investigated to demonstrate that the
assimilation system performs equally well for different solar and geomagnetic conditions.

There are three phases of a data assimilation experiment illustrated in Figure 8.1. In the
first phase, a suited initial state is forwarded to the period of the experiment (dashed line in
Figure 8.1). If the forecast duration is long enough (a few days), the exact choice of this initial
state does not matter (see Figure 7.2). In a second phase, the state ensemble is initialized by
applying perturbations to selected model inputs (see Section 7.2) over a suited period (spin-up
phase, solid gray lines in Figure 8.1). In the third phase, using the states at the end of the
spin-up phase (marked with black dots), one can either run an assimilation experiment or an
OLS.

Setup 1: Default TIE-GCM setup for all experiments in this thesis

temporal resolution (step size) 15 s

lower boundary conditions GSWM + climatology from HWM07 and NRLMSIS-E00
ion convection Weimer (2005)

Burnside factor 1.5
Joule heating factor 1.5

external forcings F10.7 index and solar wind from high resolution OMNI data set
(Papitashvili and King, 2020a)
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(a)
initialization spin-up open loop simulation

st
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time

(b)
initialization spin-up assimilation
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Figure 8.1.: This sketch illustrates the three phases of the open loop simulations (panel a) and
assimilation experiments (panel b). The first and second phases are equivalent for
both cases. In the first phase, a single model instance (dashed line) is forwarded
from some initial state (marked with a black x) into the vicinity of the period in
which observations are to be assimilated. Second, in the spin-up phase, the entire
ensemble is forwarded from the last state of the initialization phase. Each solid
line corresponds to an ensemble member. Because of the perturbations, the spread
gradually increases. The resulting initial states for the subsequent assimilation phase
are marked with black dots. As long as the ensemble generation approach is not
changed, the same initial values are used for different assimilation setups or OLSs.
Thus, computational resources are saved since the spin-up phase is computed only
once for all experiments using the identical initial ensemble. The update step of
the Kalman filter reduces the ensemble spread and causes jumps in the time series.
Panel b illustrates both effects.

The default setup for TIE-GCM runs in open-loop mode or performing data assimilation is
summarized in Setup 1. A previous investigation in Corbin and Kusche (2022, Table 3) indi-
cated that the Weimer ion convection model provides better neutral mass density estimates than
the Heelis model (the average difference to accelerometer-derived densities along the CHAMP
orbit was reduced by 87%). Additionally, using zonal mean climatology lower boundary con-
ditions1 gives better results than using a constant lower boundary (the average difference to
accelerometer-derived densities along the CHAMP orbit was reduced by 22%). I use a step
size (temporal resolution) of 15 s for the TIE-GCM since longer step sizes as 30 s or 60 s caused
model crashes more frequently.

1The TIE-GCM provides zonal and climatological lower boundary conditions (only depending on latitude,
month, and hour) that are computed from the NRLMSISE-00 (temperature) and HWM 07 (meridional and zonal
wind).
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8.1. Determination of the Ensemble Size for all Experiments

Setup 2: Spin-up

general

type open loop
TIE-GCM setup 5°, Setup 1
start 17 Mar 2010 00:00 UTC+0
end 27 Mar 2010 00:00 UTC+0
writing frequency every 10 minutes

ensemble

ensemble size 192
perturbations time-variable (P 4, Table 8.1)

8.1. Determination of the Ensemble Size for all Experiments

Two conflicting objectives are minimized to determine the ensemble size: computational re-
sources and sampling error. A large ensemble size reduces the sampling error of the VCM of the
forecasted state but, at the same time, requires significant computational resources. To find a
suited ensemble size, I forecast 192 ensemble members in the spin-up phase1 (see Setup 2) and
analyze subsets of different sizes. The subsets always incorporate the first n members of the
total ensemble.

Figure 8.2 shows how the relative standard deviation (ratio of standard deviation and mean)
of neutral mass density and electron number density depends on average on the vertical position
(altitude or pressure) and ensemble size. The upper row shows the dependency on the pressure
level, and the lower row shows the dependency on the geometric height. The relation between
pressure level and geometric height is explained in Section 2.1.4. The average relative standard
deviation of the neutral mass density is much larger when specified on geometric height instead of
pressure levels. This is because the geometric height itself depends on the neutral mass density:
The geopotential height and, therefore, the geometric height (Equation 2.28) depend on the
lower boundary of the geopotential height and the vertically integrated reciprocal neutral mass
density (see Equation A.29). Since each ensemble member has different neutral mass densities
and lower boundary conditions, the geometric height of each member also has different values.

The height profiles corresponding to ensemble sizes of 32 and 64 members are clearly separated
from the other height profiles corresponding to sizes greater than or equal to 96 (Figure 8.2).
Using ensemble sizes greater than 96 affects the average relative standard deviation of neutral
mass and electron number density only slightly.

So far, only the standard deviations (square root of the main diagonal of the VCM) of the
model forecast have been considered. The correlation matrix of the forecasted state is explic-
itly computed for different ensemble sizes to analyze how the cross-correlations depend on the
ensemble size. The correlation matrix computed from all 192 ensemble members is used as ref-
erence2. The reference correlation matrix is subtracted from the correlation matrices computed
from a subset of the ensemble. The histograms of these differences are shown in Figure 8.3. The
greater the number of ensemble members, the closer the cross-correlations align with the refer-

1The high-performance computing cluster marvin used for all computations in this thesis has 96 processor
cores per node. The nodes are allocated exclusively to ensure that the computations and communication of other
users on the cluster do not interfere with the assimilation runs. Ideally, when using four processor cores per
ensemble member, the ensemble size is a multiple of 24 to use all processor cores on the allocated nodes.

2Note that although the reference matrix is computed from the ensemble with the most members, it remains
underdetermined and singular because the number of ensemble members is less than the size of the state vector.
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Figure 8.2.: The TIE-GCM (5° version) was forwarded ten days with the setup described in
Setup 2. For all cells on the last day of the spin-up phase (from 26 Mar 2010 00:00
to 27 Mar 2010 00:00), the mean and standard deviation of neutral mass and electron
number density were computed. In this figure, the ratio of standard deviation and
mean is shown for different ensemble sizes, indicated by color. The data was reduced
to height profiles by computing the horizontal and temporal median of the ratios
for each ensemble size. The median was weighted using the surface area of each grid
cell (see Appendix C.4). The densities were transformed to geometric height using
linear interpolation to compute the height profiles in the lower row.

ence. Using the half of the full ensemble (96 members), 90% of the cross-correlations differ by
less than �0.1 from the correlations computed from the reference ensemble with 192 members.

Since the standard deviations of neutral mass density and electron number density do not
change a lot when using ensembles with more than 96 members and the cross-correlations largely
agree within �0.1 compared with the reference ensemble with 192 members, I use 96 ensemble
members for all following experiments.
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Figure 8.3.: For this plot, the correlation matrix was computed explicitly via Equation 6.28
and 6.20. However, only a subset was computed since the full correlation matrix
requires too much memory. The subset includes all correlations of wO, wO2 , wHe,
Tn, T e, T i, un, vn, CO� , CO2

�and ρ at two pressure levels located roughly at 282 km
and 472 km. The correlation matrix was computed from the state ensemble at the
end of the spin-up phase (27 March at 2010 00:00 UTC+0) described in Setup 2.
The correlation matrix was computed for different ensemble sizes, taking only the
first n ensemble members into account. The correlation matrix computed from the
largest ensemble (192 members) is used as a reference. The reference matrix is
subtracted from the correlation matrices, and the distribution of the corresponding
differences is plotted here. The histogram is computed only from cross-correlations
of the upper triangle so that symmetric correlations are not counted twice. The
vertical ticks on the upper x-axis indicate the 5th to 95th interpercentile range.
When interpreting these results, one has to consider that the reference correlation
matrix does not contain the true correlations, but is subject to sampling errors.

8.2. Analysis of Correlations encoded in the Forecasted State
Ensemble Matrix

The ensemble of forecasted states depends primarily on the perturbations applied to the external
forcings, model parameters, and boundary conditions (see discussion in Section 7.2). Table 8.1
lists four different configurations of the perturbations. All configurations use the same static
parametrization of the perturbations for lower boundary conditions and model parameters as
described in Table 7.3 and Table 7.4, respectively. The parametrization for lower boundary
constraints and model parameters is consistent to Corbin and Kusche (2022, Table 1).

The first configuration parameterizes the perturbations in the same way as in Corbin and
Kusche (2022, Table 1). That is, all perturbations are static. The second configuration uses
time-variable perturbations for the F10.7 index, solar wind density, and solar wind velocity as
described in Section 7.2. The third configuration perturbs the IMF in addition to the second
configuration. Finally, the fourth configuration perturbs the magnitude of Earth’s magnetic field
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8. Experiments

Table 8.1.: Time-variable and static perturbations are sampled in advance for all ensemble mem-
bers. ’static’ means that the corresponding perturbation is constant for each ensem-
ble member over the entire duration of the experiment. ’time-variable’ indicates that
a time series was sampled for each ensemble member, and the perturbation changes
over time. The temporal resolution of the sampled external forcing perturbation
time series is given in Table 7.2. The row indicated by P 1 corresponds to the per-
turbations in Corbin and Kusche (2022), the last row (P 4) to the complete set of
perturbations described in Section 7.2.

lower boundary parameters F10.7 solar wind IMF |BC|
P 1 static static
P 2 none

P 3
none

P 4

static static time-variable time-variable time-variable static

|BC| in addition to the third configuration and corresponds to the complete set of perturbations
described in Section 7.2.

First, I analyze the correlations of the forecasted state represented by the ensemble for the
four configurations. For all configurations summarized in Table 8.1, Figures 8.4 and 8.5 illustrate
the correlation matrix of the forecasted state that was explicitly computed from the ensemble at
the end of the spin-up phase using Equations 6.28 and 6.20. For visual clarity, only two pressure
levels are shown at approximately 282 km and 472 km altitudes. The matrices are sorted first
by state variable (separated with solid black lines), followed by pressure level (indicated by
alternating black and white stripes at the frame), latitude (slim black and white stripes at the
frame), and longitude.

The static perturbations used in configuration P 1 (equivalent to the configuration in Corbin
and Kusche (2022)) cause high correlations between the entries in the state vector (see Fig-
ure 8.5a). Both spatial correlations (correlations of the same state variable but at different
grid cells) and correlations between different state variables are high. Especially, the negative
correlations in the vast majority of all grid cells between neutral mass densities and neutral
temperatures are striking.

The perturbations control spatial correlations and correlations between different state vari-
ables. While domain localization (Section 6.4.2) can account for spurious spatial long-range
correlations, it cannot compensate for spurious inter-state variables correlations within the same
sub-domain. Thus, to reduce spurious inter-state variable correlations, one must improve the
realism of the perturbations. More realistic perturbations may reduce spurious spatial correla-
tions and allow larger cut-off radii for localization. In an ideal scenario, observations could be
assimilated without needing localization. However, it is unlikely that all spurious correlations
can be eliminated.

When using time-variable perturbations instead of static perturbations for the solar wind
and F10.7 index (compare Figure 8.5a and Figure 8.5b), the correlations between neutral mass
density and the mass fractions of the neutral species are much lower. However, there are still
substantial negative correlations between neutral mass density and the neutral, ion and electron
temperatures. Since the neutral temperature stands in the denominator in Equation 7.6, neg-
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Figure 8.4.: This figure shows (a subset of) the correlation matrix of the forecasted state for
the configurations P 4 (Table 8.1), which is the same configuration P 3, but Earth
magnetic field is perturbed additionally. The matrix is explicitly computed from
an ensemble with 96 members via Equations 6.28 and 6.20 at 27 March 2010 00:00
UTC+0 after forwarding the TIE-GCM 5° 10 days. The matrix is singular because
ne ¤ nx. The entries of the correlation matrix are first sorted by the state variables,
which are separated by solid black lines in this figure. The labels are explained in
Table 5.3. ρ indicates the total neutral mass density. Tn, T e, and T i stand for
neutral, electron and ion temperature, respectively. w is the mass fraction, vn and
un are horizontal wind velocities and C is the number concentration. Each three-
dimensional array holding a state variable was reshaped into a one-dimensional
array where longitude changes fastest, followed by latitude and pressure level. The
alternating black and white bars next to the labels indicate the pressure levels.
Here, only the correlations of the cells at pressure level 2.25 and 6.25, corresponding
roughly to 282 km, 472 km geometric altitude, are shown.
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(a) P 1: Static perturbations as used in Corbin and
Kusche (2022).
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(b) P 2: Same as configuration P 1, but solar wind
and F10.7 perturbations are time-variable.

ρ

ρ

Tn

T
n

Te

T
e

Ti

T
i

wO

w
O

wO2

w
O

2

wHe

w
H

e

vn

v n

un

u
n

CO2
+

C
O

2
+

CO+

C
O

+

−1 0 1

(c) P 3: Same as configuration P 2, but IMF param-
eters are perturbed additionally.

Figure 8.5.: This figure shows the correlation matrices of the forecasted state for the configura-
tions P 1-P 3 listed in Table 8.1. More information on the illustration is provided
in the caption of Figure 8.4.
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8.3. Open Loop Simulations

ative correlations between neutral mass density and temperature are expected. However, the
correlations are almost equal to negative ones for all grid cells in Figure 8.5b. The correlations
between neutral mass density and the temperatures are reduced when using the complete set of
perturbations (Figure 8.4, P 4), The correlation between neutral temperature and ion tempera-
ture is also significantly reduced. The static perturbation of |BC| does not affect the considered
correlation visibly (compare Figure 8.5c and Figure 8.4). However, it affects the standard de-
viation of the model forecast. For example, the neutral mass density is up to 20% larger when
perturbing Earth’s magnetic field.

On the basis of these results, I use Configuration P 4 as the default choice for generating
the perturbations in this thesis since it best reflects the forecasted state’s uncertainty. For this
configuration, the correlations between state variables at the same grid cell (diagonals of sub
matrices in Figure 8.4) are illustrated with world maps in Figure D.2. The neutral temperature
correlates negatively with the neutral mass density almost everywhere. At the pressure level
around 472 km, the atomic oxygen mass fraction is highly correlated with the neutral mass
density almost everywhere. This altitude is very close to the peak of atomic oxygen mass
fraction (see Figure 2.5). The correlation is lower and partly negative at the lower pressure level
located at 282 km. The correlation between electron number density and neutral mass density
is almost identical to that between atomic oxygen ion number density and neutral mass density
because of the assumption of a quasi-neutral atmosphere implemented in the TIE-GCM.

8.3. Open Loop Simulations

OLSs are conducted for analyzing the state ensemble without assimilating any data and for
comparison with data assimilation results.

Figure 8.6 shows the external forcings driving the TIE-GCM and the corresponding standard
deviations for two periods with different geomagnetic activity. In addition, the first four uni-
variate central moments (see Section 6.1.2) of neutral mass density and electron number density
computed from 96 ensemble members are shown. As expected, an elevated standard deviation
in the external forcings also increases the standard deviation in the neutral mass and electron
number densities. During the geomagnetic storm, skewness and excess kurtosis of neutral mass
density deviate significantly from zero, especially at low latitudes, indicating a non-Gaussian
distribution of the state during that period. The state vector must follow a Gaussian distribu-
tion for the Kalman filter to provide the optimal estimate. When the Kalman filter is applied
to non-Gaussian states, the update step can still improve the state estimate; however, then the

Setup 3: Open loop simulation (OLS)

general

type open loop
TIE-GCM setup 5°, Setup 1
start 27 Mar 2010 00:00 UTC+0
end 10 Apr 2010 00:00 UTC+0
writing frequency every 10 minutes

ensemble

ensemble size 96
perturbations time-variable (P 4, Table 8.1)
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Figure 8.6.: The left column shows the first three days of the spin-up phase, and the right column
three days of the OLS including the 5 April geomagnetic storm, indicated by dashed
vertical lines. The first four rows contain the mean values and standard deviations of
the sampled external forcings time series described in Section 7.2.1. The solid lines
correspond to the mean value. The transparent areas correspond to the three sigma
environment. The statistics about neutral mass density (rows 5-8) and electron
number densities (rows 9-12) were computed from Setup 3 (96 members). The
statistical moments plotted here are introduced in Section 6.1.2. For this plot, the
densities at the Greenwich meridian at pressure level 3.5 (�300 km) are shown.
Different latitudes are indicated by color and line style (see legend).
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8.3. Open Loop Simulations

updated state does not minimize Equation 6.47. Particle filters do not assume that the state
vector follows a Gaussian distribution and hence may enable better state estimates for a state
containing higher statistical moments. However, particle filters have sometimes reported to
suffer from particle degeneracy (e.g., Kuptametee and Aunsri, 2022), especially for high dimen-
sional problems. As particle filters are further developed to address high dimensional problems
(e.g., van Leeuwen et al., 2019) they should be considered in future studies.

In Figure 8.7 different mass density time series along the orbits of CHAMP and GRACE are
compared pairwise using 2D histograms. Both axes of each panel refer to the mass density of
the corresponding time series, and the color indicates the frequency. Two time series would
ideally agree if all data were on the diagonal cyan line. If the data in the bins is not symmetrical
w.r.t. the diagonal line, there is a bias between both time series. In the following discussion, the
median of the relative differences between two time series (medianpρ1�ρ2

ρ1
q) is used to quantify

the similarity of two time series.

Comparison of OLS and reference run The reference run is the single instance run of the
TIE-GCM without any perturbation using Setup 1. The relative difference between the OLS
and the reference run with 5° horizontal resolution are on average 2% and 4% for CHAMP
and GRACE, respectively, indicating that the perturbations of the model inputs add a slight
bias to the mass density simulation. This can also be seen in the corresponding histograms in
panels e and m of Figure 8.7. The densities of the OLS are systematically larger than those
of the reference run. Figure D.3 compares the OLS and reference run for different ensemble
sizes. The results do not change significantly for ensembles with more than ten members. For
an ensemble size of 96, the OLS to reference run ratio is on average 99.998% for the neutral
temperature and 102.6% for the mass density.

Comparison of OLSs with 2.5° and 5.0° horizontal resolution For both satellites the TIE-
GCM OLSs with 2.5° and 5° resolution produce similar results (histogram in panels f and n).
For GRACE, the neutral mass densities of the 2.5° OLS are on average 3.6% larger than the
densities of the 5° OLS. The average relative difference between simulated and accelerometer-
derived densities is reduced from �17% to �13%, when using 2.5° OLS instead of 5° OLS. For
CHAMP, the neutral mass densities of the 2.5° OLS are on average 1% larger than the densities
of the 5° OLS. The average relative difference between simulated and accelerometer-derived
densities is increased from 0.6% to 2% when using 2.5° OLS instead of 5° OLS. This effect is
barely visible when comparing panels a and b.

Comparison of NRLMSIS 2.0 with accelerometer-derived densities Comparing the cali-
brated (Section 7.6.1) and uncalibrated NRLMSIS 2.0 with the accelerometer-derived densities,
it becomes visible that the calibration reduces the bias for CHAMP (compare panels c and d).
The effect of the calibration for the GRACE satellite is not as effective (compare panels k and l).
For GRACE, panels i, j, and k show that the mass densities of the TIE-GCM and NRLMSIS 2.0
are systematically lower than the accelerometer-derived densities. Since both models are sim-
ilarly affected, there might be a bias in the GRACE accelerometer-derived densities. This is
in accordance with S. M. Codrescu et al. (2018) and Matsuo et al. (2012) who also report a
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Figure 8.7.: Comparison of neutral mass densities from models and observations along the or-
bit of CHAMP (a-h) and GRACE (i-p) from 27 March 2010 00:00 UTC+0 to 10
April 2010 00:00 UTC+0. The OLS was performed according to Setup 3 for both
model resolutions. The reference TIE-GCM run employed Setup 1. The TIE-GCM
densities were written every 10 minutes and interpolated to the temporally higher
resolved accelerometer-derived densities. The NRLMSIS was calibrated following
Section 7.6. The mass densities were derived from the accelerometers as summa-
rized in Section 4.1. The pairs of time series in each panel would agree ideally if all
data were on the dashed cyan line.
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Figure 8.8.: The ensemble spread of the mass density characterized by the standard deviation is
shown for CHAMP and GRACE. I suspect that the smoother GRACE time series
is related to the B-spline extrapolation from the model grid to the position of the
satellite. The z-component of the IMF in GSM frame and Kp time series are given
in the upper panel to indicate the geomagnetic activity. The left dashed vertical
line indicates the onset of the 5 April 2010 geomagnetic storm, and the right line
indicates the beginning of the recovery phase according to Sheng et al. (2017).

bias between GRACE and CHAMP. Additionally, the model was only calibrated using neutral
mass densities from CHAMP and not from GRACE. From this follows the expectation that
the assimilation of calibrated data within the two-step approach works better for CHAMP than
GRACE.

Comparison of OLS with static and time-variable perturbations The standard deviations of
the modeled mass density–indicating the ensemble spread–of the OLSs employing static and
time-variable perturbations are plotted in Figure 8.8 along the orbits of GRACE and CHAMP.
The upper panel in Figure 8.8 shows the Kp index and z-component of the IMF in GSM frame
to indicate the geomagnetic activity. The onset and end of the 5 April 2010 geomagnetic storm
are marked with vertical dashed lines. The characteristics of the standard deviations are similar
for both satellites. Three days before the geomagnetic storm, during the first half of the storm,
and the recovery phase, the standard deviation of the TIE-GCM is underestimated by the static
setup (orange line) when compared with the time-variable setup (blue line). The delay between
the storm’s onset and the peak of the standard deviation is small for the time-variable setup.
In contrast, the static setup reaches the highest ensemble spread during the second half of the
storm.
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8. Experiments

Setup 4: Direct Assimilation of Mass Densities (D 01)

general

type assimilation run
TIE-GCM setup 5°, Setup 1
start 27 Mar 2010 00:00 UTC+0
end 10 Apr 2010 00:00 UTC+0
writing frequency every 60 seconds

ensemble

initial state Setup 2
ensemble size 96
perturbations time-variable (P 4, Table 8.1)
state vector wO, wO2 , wHe, Tn, un, vn, wO

1,
wO2

1, wHe
1, Tn

1, un
1, vn1

filter

filter localized ESTKF
forget factor 1.0
forecast duration 60 s

localization

sub-domain size 3x3x3 cells
horizontal localization radius 5000 km

vertical localization radius 500 km

weight function GCa�0.5pτq

observation

domain satellite orbit of CHAMP
quantity neutral mass density
uncertainty 5% of neutral density
interpolation cubic B-Spline

8.4. Assimilation of Accelerometer-Derived Mass Densities

Two methods for the assimilation of accelerometer-derived mass densities into numerical models
are discussed. First, the direct assimilation of along-track densities (Section 4.1). Second, the
two-step approach (Section 7.6). It uses the along-track densities to calibrate a (semi-)empirical
model, which is globally evaluated and then assimilated into the numerical model. In this
section, the accelerometer-derived mass densities along the orbits of CHAMP and GRACE from
an updated version of Vielberg et al. (2021)1 are used.

8.4.1. Direct Assimilation

The reference setup for direct assimilation of mass densities is summarized in Setup 4. Some set-
tings were varied and are listed in Table 8.2. However, a multidimensional grid search for tuning
the assimilation setup is computationally expensive. Therefore, only one setting of Setup 4 is
varied at once, while all others are fixed.

Table 8.2 provides for each experiment the median of the difference between the accelerometer-
derived mass densities ρacc and the densities ρassim estimated by the assimilation run along the
orbit of CHAMP and GRACE. The table also provides the RMSE of modeled and observed
mass densities computed as

RMSE �
gffe 1

n

ņ

i�1

�
ρassim
i � ρacc

i

�2
, (8.1)

with n along track observations.

1The dataset contains only NaNs for CHAMP during March 2010. This gap was closed in the new version.
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Table 8.2.: The reference setup is given in Setup 4 and corresponds to the experiment in the first row. Settings that differ from the reference setup
are highlighted by a light gray background. σ denotes the standard deviation of the observations in percent of the neutral mass density.
The computation of ρassim�ρacc uses the TIE-GCM output with a resolution of one minute. The RMSE is computed from Equation 8.1.
The perturbation setups are summarized in Table 8.1 and are used for the spin-up and assimilation phase.
The values in each column containing statistics on the differences are mapped to color values to visualize them. The colors can only be
used to compare values within the same column. For columns containing the median difference, a white cell indicates that the differences
are zero on average. The bluer the cell, the greater the observed mass density relative to the simulated density. The redder the cell, the
greater the simulated mass density relative to the observed density. The cell with the corresponding column’s smallest RMSE is also
white. The more orange the cell, the greater the RMSE.

ρassim � ρacc

TIE-GCM localization radius median (g cm�3) RMSE (g cm�3)

ID resolution horizontal vertical satellites σ perturbations wind CHAMP GRACE CHAMP GRACE

D 01 5.0° 5000 km 500 km CHAMP 5% P 4 yes -2.4e-17 -5.1e-17 1.5e-15 1.3e-16
D 02 5.0° 5000 km 500 km CHAMP 10% P 4 yes -9.2e-17 -5.3e-17 1.8e-15 1.3e-16
D 03 5.0° 5000 km 500 km CHAMP 15% P 4 yes -1.0e-16 -5.2e-17 2.0e-15 1.3e-16
D 04 5.0° 5000 km 500 km CHAMP 2% P 4 yes 6.0e-17 -4.3e-17 1.1e-15 1.2e-16
D 05 5.0° 5000 km 125 km CHAMP 5% P 4 yes 3.7e-17 -4.5e-17 1.9e-15 1.2e-16
D 06 5.0° 5000 km 250 km CHAMP 5% P 4 yes -5.1e-18 -4.9e-17 1.6e-15 1.3e-16
D 07 5.0° 5000 km 750 km CHAMP 5% P 4 yes -2.0e-17 -5.1e-17 1.5e-15 1.3e-16
D 08 5.0° 2500 km 500 km CHAMP 5% P 4 yes -3.1e-17 -5.2e-17 1.6e-15 1.3e-16
D 09 5.0° 10 000 km 500 km CHAMP 5% P 4 yes -4.6e-18 -4.5e-17 1.5e-15 1.2e-16
D 10 5.0° global CHAMP 5% P 4 yes -2.3e-16 -3.4e-17 1.8e-15 9.6e-17
D 11 5.0° 5000 km 500 km GRACE 5% P 4 yes 1.0e-15 -7.3e-18 2.5e-15 6.9e-17
D 12 5.0° 5000 km 500 km CHAMP+GRACE 5% P 4 yes 1.3e-16 -2.7e-17 1.6e-15 8.7e-17
D 13 5.0° 5000 km 500 km CHAMP 5% P 1 yes -1.5e-16 -5.8e-17 1.7e-15 1.4e-16
D 14 5.0° 5000 km 500 km CHAMP 5% P 4 no -5.3e-17 -5.3e-17 1.5e-15 1.2e-16
D 15 2.5° 5000 km 500 km CHAMP 5% P 4 yes -4.9e-18 -4.7e-17 1.5e-15 1.2e-16
D 16 5.0° global CHAMP 5% P 1 yes -2.6e-16 -4.3e-17 1.9e-15 1.1e-16

OLS 5.0° P 4 7.0e-17 -4.1e-17 2.3e-15 1.3e-16129



8. Experiments

Figure 8.9 shows how the differences between accelerometer-derived mass densities and mass
densities from assimilation experiments along the orbits of CHAMP and GRACE are distributed.
Each panel contains experiments in which the same setting was varied. The OLS and reference
experiment D 01 are shown in all panels.

Specifying the uncertainty of the observations is crucial for data assimilation. The Kalman
filter represents the uncertainty of the observations by a VCM. However, many accelerometer-
derived density data sets do not provide the corresponding standard deviations and correlations.
Recently, Siemes et al. (2024) developed an error propagation method for accelerometer-derived
mass densities and applied it to GRACE. They found that the standard deviations obtained
from error propagation are 5% - 20% of the density for GRACE during low solar activity and
about 4%-4.5% of the density for high solar activity. Unfortunately the error propagation has
not been applied to the CHAMP mission, yet. However, an earlier study by S. Bruinsma and
Biancale (2003) found 15% - 25% for the accelerometer-derived mass densities from CHAMP
by comparing them with an semi-empirical model. Here, I use a fixed percentage for the assim-
ilation specified for each experiment in the column denoted with σ in Table 8.2. However, if
available, data sets that provide uncertainty at every time step should be used for future experi-
ments. Considering the experiments with varying uncertainty of the accelerometer-derived mass
densities (experiments D 01 - D 04, Table 8.2), the experiment with the lowest RMSE (Equa-
tion 8.1) for CHAMP is the one assuming the lowest standard deviation for the densities derived
from the CHAMP accelerometer (see also Figure 8.9a). However, one cannot use the observation
uncertainty to tune the filter: When the standard deviation of the observations is decreased until
the update step reproduces the observations perfectly, data assimilation becomes obsolete. In
this case, one can use the observations directly without all the effort data assimilation requires.
Ideally, the observations are provided with realistic uncertainties. By reason of the localization,
the modeled neutral mass densities along the orbit of GRACE are less influenced by the update
step and not well suited for assessing filter’s performance. Still, meaningful comparisons can be
conducted for experiments if they use the same standard deviations for the observations. I use a
somewhat optimistic value of 5% for the standard deviation of the accelerometer-derived mass
density for the remaining experiments.

The choice of the vertical localization radius greatly influences the assimilation results (Fig-
ure 8.9b). While the difference between a vertical localization radius of 750 km (D 07) and
500 km (D 01) is barely visible, shorter vertical radii (D 05 and D 06) perform worse along the
orbit of CHAMP (more considerable bias and RMSE). Within the investigated range between
2500 km (D 08) and 10 000 km (D 09), a larger horizontal localization radius leads to a lower
bias along the orbit of CHAMP. The RMSE is barely affected.

The experiment employing the global ESTKF (no localization is applied, D 10) has a lower
RMSE than the OLS along the orbit of CHAMP. However, it cannot reach the improvements
of the localized version along CHAMP’s orbit (Figure 8.9c). During the experiment, GRACE
flies about 200 km above CHAMP, and the localization restricts updates of model cells this
far from CHAMP. In contrast to the localized filter (D 01), the global filter (D 10) corrects the
densities along the orbit of GRACE and performs better than the OLS. Over the entire duration
of the experiment, the RMSE along the orbit of GRACE is reduced by 26% compared with the
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(c) Comparison of global and localized filter.
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Figure 8.9.: Histograms of mass density differences between TIE-GCM runs and derived from
accelerometers. OLS (orange line) was computed according to Setup 3. The num-
ber in brackets corresponds to the experiments listed in Table 8.2. The reference
assimilation run (D 01) is the black line in all panels.
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reference D 01. The median difference between observations and simulations is reduced by 33%

when comparing with the reference D 01. During the storm, the mass density simulations of the
global filter (D 10) are much closer to observations than the OLS (Figure 8.11), especially along
the orbit of GRACE. There are some pronounced peaks in the GRACE time series of the global
filter that do not occur (so elevated) in the observations, the localized filter (D 01) or the OLS,
for example, at 7:55, 8:50, 10:30, or 12:15. At these points in time, GRACE flies above one of
the poles.

Although spatial long-range spurious correlation in the forecasted ensemble matrix could be
significantly reduced by introducing time-variable external forcing perturbations (Section 8.2), it
is unlikely all have been eliminated. In Figure 8.10, the global ESTKF (D 10) is compared with
its localized counterpart (D 01). The difference between the mass density of the corresponding
experiment and the OLS at about 350 km altitude are shown side-by-side. While some regions
show comparable behavior, the global filter has regions that seem incredible when compared with
the localized filter, for example, in the south of Africa at 4:30 or North America at 9:00. Despite
these effects visible in the world maps, the global filter produced convincing updates when
looking at the density time series along the orbit of GRACE, especially during the geomagnetic
storm (Figure 8.11).

Both CHAMP and GRACE fly in almost polar orbits. But in April 2010 GRACE flies
about 175 km above CHAMP (Figure 8.11) and the right ascensions of the ascending nodes are
wrapped by about 129° during the period of the experiment. The horizontal distances between
both satellites projected on Earth’s surface are plotted in Figure 8.11 c.

In experiment D 11 accelerometer-derived mass densities from GRACE are assimilated instead
of accelerometer-derived mass densities from CHAMP. In experiment D 12 the accelerometer-
derived mass densities from CHAMP and GRACE are assimilated simultaneously. Figure 8.9d
compares the simultaneous assimilation with the assimilation of only one satellite mission. When
assimilating only one satellite mission (D 01, D 11) the mass densities along the other mission
are barely influenced due to localization. However, the differences along the orbit of the mission
that is not assimilated have a larger bias than the OLS run (see Figure 8.9d). When both
satellite missions are assimilated simultaneously (D 12), the differences to the observations for
both satellites are much lower than for the OLS. When the satellites are considered in isolation,
the assimilation run in which only the corresponding satellite was assimilated outperforms the
simultaneous assimilation experiment, especially in the case of GRACE. Compared with the
OLS the RMSE is reduced by 35% for CHAMP (D 01) and 47% for GRACE (D 11) when
assimilated alone. Figure 8.11 shows the mass density along the orbits of CHAMP and GRACE
from the simultaneous assimilation experiment (D 12) during a geomagnetic storm. It is close
to the accelerometer-derived densities but does not follow every peak of the observations, for
example, at 13:30 for GRACE. It would be interesting to find out whether the observations
are erroneous and the model more accurately predicts the atmosphere in these situations or
whether the model fails to account for specific effects captured by the accelerometer-derived
mass densities.

For the assimilation of mass densities the minimal configuration of the state vector includes
the neutral composition and the neutral temperature (see also Section 7.3). However, one can
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Figure 8.10.: Comparison of a local filter (experiment D 01 in Table 8.2) and a global filter
(experiment D 10 in Table 8.2). All maps show the difference between the corre-
sponding assimilation run and the OLS (Setup 3) at pressure level 3.75 (�350 km).
The black star marks the position of CHAMP. The solid black line is the ground
track of CHAMP since the first analysis step. The dashed line is the future orbit.
The yellow dot shows the position of the Sun, and the solid yellow line is the solar
terminator.

append the state vector by additional prognostic state variables (see Table 5.3) that are not
required in the observation operator but are updated based on the correlations encoded in the
forecasted ensemble, nevertheless. The horizontal components of the neutral wind velocity are
included in the state vector for all but one experiment listed in Table 8.2. This is done as not
including the horizontal wind velocities (D 14) in the state vector doubles the bias along the
orbit of CHAMP (compare D 01 and D 14 in Table 8.2). The RMSE is barely affected when the
wind velocity is not included.
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Figure 8.11.: This figure shows time series of mass density along the orbit of CHAMP and
GRACE. The solid lines correspond to TIE-GCM runs (Table 8.2). Black dots
correspond to densities derived from accelerometers. Panel c shows the vertical
and great circle distance on Earth’s surface between CHAMP and GRACE. The
temporal resolution of the model runs is one minute.

Using the TIE-GCM with 2.5° resolution and eight processor cores per ensemble requires
about five times longer than the 5.0° version using four processor cores per ensemble. The bias
to the observations along the orbit of CHAMP (D 01 vs D 15) is reduced by a fifth while the
RMSE is not affected significantly. Still, I recommend using the 5° version, given the much
longer run time of the 2.5° version.

A direct comparison of the density estimates using static and time-variable perturbations
can be conducted but does not provide any insights. Since the static perturbations lead to
a lower ensemble spread (Figure 8.8), the Kalman filter gives less weight to the observations.
Accordingly, experiment D 13 has a larger bias and RMSE than the assimilation run using
time-variable perturbations (D 01) for CHAMP and GRACE.
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Figure 8.12.: The upper panel shows the mass density derived from CHAMP’s accelerometer
(blue line) and the Kp index (red line). Each column in panel b is a height profile
of the ratio of the average standard deviation of the neutral mass density for
experiment D 01 (Setup 4) and the OLS (Setup 3). The average standard deviation
at each pressure level is weighted according to Appendix C.4. Panel c shows the
median of the average ratio for each point in time.

To ensure that the results do not suffer from filter divergence1, the ensemble spread of the
assimilation run (D 01) is compared with the ensemble spread of the OLS. Figure 8.12 shows
in panel a the Kp value to indicate the geomagnetic activity and the accelerometer-derived
mass density of CHAMP as its standard deviation is a percentage of itself. For each pressure
level and point in time, Panel b shows the averaged mass density standard deviation of experi-
ment D 01 divided by the corresponding averaged mass density standard deviation of the OLS.
This illustration shows that the pressure level-wise average standard deviation of the first direct
assimilation experiment (D 01) is, at most altitudes, lower than the corresponding standard
deviation of the OLS. During data gaps where no data is assimilated (31 March and 3 April),
the standard deviation of the assimilation run approaches the standard deviation of the OLS. In
the lower horizontal layers, the standard deviations are almost similar. The vertical localization
effectively limits the influence of the update step at this altitudes. During the storm, the average
standard deviation of the assimilation run is about 50% of the standard deviation of the OLS.
After the geomagnetic storm, the standard deviation increases. Thus, filter divergence is not an
issue in the investigated period when using 96 ensemble members.

1Filter divergence (e.g., Asch et al., 2016, Section 6.5.2) is the consequence of the ensemble size being too small,
leading to a (persistent and escalating) underestimation of the forecasted model error covariance. Consequently,
the ensemble spread diminishes at each analysis step, while the observations have almost no influence on the state.
This can lead to a divergence between the filtered and observed states since the model is almost unconstrained
by the observations.
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Setup 5: Two-Step approach (T 04)

general

type assimilation run
TIE-GCM setup 5°, Setup 1
start 27 Mar 2010 00:00 UTC+0
end 10 Apr 2010 00:00 UTC+0
writing frequency every 10 minutes

ensemble

initial state Setup 2
ensemble size 96
perturbations time-variable (P 4, Table 8.1)
state vector wO, wO2 , wHe, Tn, un, vn, wO

1,
wO2

1, wHe
1, Tn

1, un
1, vn1

filter

filter localized ESTKF
forget factor 1.0
forecast duration 1 h

localization

sub-domain size 3x3x3 cells
horizontal localization radius 5000 km

vertical localization radius 500 km

weight function uniform

observation

domain regular grid (Section 7.6)
quantity neutral mass density from calibrated NRLMSIS 2.0
uncertainty Corbin and Kusche (2022, Equation 7)
interpolation cubic B-Spline
weight 1
half-life horizontal weights 8

half-life vertical weights 500 km

8.4.2. Two-Step Approach

The two-step approach assimilates neutral mass densities located on a global grid that are
derived from a calibrated empirical model (NRLMSIS 2.0) and is described in Section 7.6. The
grid on which the NRLMSIS 2.0 is evaluated is referred to as data grid (a visualization of the
grid is provided by Figure 7.5). The reference setup (T 04) is summarized in Setup 5. Table 8.3
summarizes the differences to the reference setup for all two-step assimilation experiments. Since
semi-empirical models represent a spatio-temporal average state of the upper atmosphere and
the calibration approach (Section 7.6.1) uses a 3 h low pass filter, the two-step approach can
only improve the average behavior of the model.

As explained in Section 7.6.2, the data from the empirical model being assimilated is highly
correlated. Ignoring these correlations using only a diagonal VCM may lead to too large con-
fidence in the observations. In the event that the observations are highly correlated and the
correlations are not taken into account, tuning settings that affect the number of observations
considered by the subdomains may lead to unwanted results. This is because including ad-
ditional observations that are highly correlated with the observations that have already been
considered is effectively equivalent to increasing the weights of the observations that have al-
ready been included. Examples of these settings are the localization radius and the metric used
to measure the distance between observations and subdomains.

The stochastic model for the observations proposed in Section 7.6.2 relies on metric distances
and cannot be determined by using the number of cells as a metric. A disadvantage of this
metric is that the closer a subdomain is located at one of Earth’s poles, the more observations
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Table 8.3.: The reference setup is given in Setup 5 and corresponds to the experiment in the
first row. Light gray highlights the settings that differ from the reference setup.
The color schema applied to illustrate the differences is described in Table 8.2. A
uniform weighting means observation localization is not applied. The computation of
ρassim � ρacc uses the TIE-GCM output with a resolution of 10 minutes. The RMSE
is computed from Equation 8.1.

ρassim � ρacc

median (g cm�3) RMSE (g cm�3)

ID weight R CHAMP GRACE CHAMP GRACE

T 04 uniform diagonal 2.3e-16 -2.4e-17 1.8e-15 8.7e-17
T 05 GCa�0.5pτq diagonal -5.0e-16 -4.8e-17 2.1e-15 1.1e-16
T 06 uniform full -2.8e-15 -1.3e-16 4.5e-15 2.2e-16
T 07 GCa�0.5pτq full -1.9e-16 -3.9e-17 1.9e-15 9.9e-17

OLS 7.0e-17 -4.1e-17 2.3e-15 1.3e-16
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Figure 8.13.: Histograms of differences between TIE-GCM runs and accelerometer-derived neu-
tral densities. The OLS (orange line) was computed according to Setup 3. The
identifiers in brackets in the legend correspond to the experiments listed in Ta-
ble 8.3.

are included. However, at the same time, the stochastic model considers the correlations between
the observations, which accounts for this effect.

Figure 8.13 compares assimilation runs with full and diagonal VCM of the observation, de-
noted by R, along the orbit of CHAMP and GRACE. Experiments T 04 and T 05 both use a
diagonal VCM R. However, experiment T 05 employs observation localization while experiment
T 04 uses a uniform weight (no observation localization). When using a diagonal VCM R, the
median and RMSE of the differences between the assimilation run and the accelerometer-derived
densities are larger when applying observation localization (compare T 04 and T 05). This is
because observation localization downweights observations, and the filter gives more trust to
the model estimate. Using the full VCM R without observation localization (T 06) leads to a
large offset between the mass densities from the assimilation run and the accelerometer-derived
mass densities (see Figure 8.13). This is likely caused by a flawed inversion: Domain localiza-
tion (Section 6.4.2) requires for each sub domain the local part of the inverse of R associated
with the sub domain. In the implementation, the local part of R is inverted, which is not
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Figure 8.14.: The x-axis shows the innovation update ratio, which is the ratio of the state update
in the observation space to the innovation. It measures how much of the innovation
is applied in the update step. A value of one indicates that the innovation is fully
applied to the forecast. In this case, the state in the observation space is equal to
the observation itself. A value greater than one indicates that the update corrects
the state beyond the observation. A value of zero indicates that the state is not
updated at all. Negative values imply that the update pulls the state further away
from the observations. The solid bold line is the median computed over all layers
of the data grid at the corresponding color-coded analysis step. The shaded area
marks the interval between the 25th and 75th percentile. This figure shows the
innovation update ratio for experiment T 07.

equivalent to inverting the complete matrix and then extracting the local part. This error is
mitigated by observation localization. Comparing the experiments using observation localiza-
tion (T 05 and T 07), the experiment using the full VCM R has a lower bias and RMSE w.r.t.
the accelerometer-derived densities.

In the following, the experiment using observation localization and the full VCM R is analyzed
in more detail. Figure 8.14 shows the innovation update ratio

Hpxaq �Hpxf q
y �Hpxf q , (8.2)

which measures how much of the innovation is applied to the state for an update step. A ratio
of zero indicates that the corresponding state is not updated at all. A ratio of one means that
the complete innovation is applied to the forecasted state in the update step. Ratios greater
than one indicate overshooting, meaning the update corrects the state beyond the observation.
For negative ratios, the state is pushed further away from the observation. For experiment D01,
the ratios are between 0 and 1 for most cases, indicating that the update neither overshoots nor
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Figure 8.15.: The z-component of the IMF in GSM frame and Kp time series are given in the
upper panel to indicate the geomagnetic activity. The left dashed vertical line
indicates the onset of the storm, and the right line indicates the beginning of the
recovery phase according to Sheng et al. (2017). Each column in panel b is a height
profile of the ratio of the average standard deviation of the neutral mass density
for experiment T 07 σρ (Table 8.3) and the OLS σρOLS (Setup 3). The average
standard deviation at each pressure level is weighted according to Appendix C.4.
Panel c shows the median of the average ratio for each point in time.

pulls the state further away from the observations. The ratio is largest for the first update step,
especially around 220 km altitude. In the following steps, the ratio becomes lower.

To ensure the experiments do not suffer from filter divergence, the standard deviation of
neutral mass density is compared for experiment T 07 and the OLS in Figure 8.15. The ratio of
the standard deviation drops instantly after the first analysis step. During the 1-hourly forecast
phases the ratio increases. After the onset of the geomagnetic storm indicated by the left vertical
dashed line, the ratio first increases rapidly and then decreases again, reaching the minimum
value. With decreasing geomagnetic activity, the ratio increases again. Filter divergence is
not an issue for the investigated period. However, if the negative trend continues, one should
consider increasing the ensemble spread after each update step using a constant inflation factor.

Figure 8.16 compares neutral mass density for selected points in the atmosphere for the first
two days of the assimilation phase with quiet conditions. The figure shows the mass densities
obtained from the OLS, the assimilation experiment T 07, and the calibrated, and the original
NRLMSIS 2.0. Figure D.4 shows the same for the period of the geomagnetic storm hitting Earth
on 5 April 2010. After each analysis step, the mass density gradually approaches the OLS.
This is explained by the model dynamics, which tend to restore the OLS (see also Figure 7.2).
Accordingly, each assimilation step introduces a discontinuity when the state is updated. At the
poles, the mass density approaches the OLS more quickly, and the jumps at the update steps
(green dots) are particularly large (see panels a-d, q, and r in Figure 8.16). This motivates the
co-estimation of model dynamics, as it potentially can reduce those jumps.
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the OLS mass density, the blue line the calibrated NRLMSIS 2.0 mass density
(Section 7.6.1) that was assimilated and the green line is the assimilation run.
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identifiers in brackets in the legend correspond to the experiments listed in Ta-
ble 8.3.

As already explained in Section 8.3, the calibrated NRLMSIS 2.0 has an offset to the mass
densities derived from GRACE’s accelerometer. Thus, the improvements for the corresponding
along track densities are small (Table 8.3).

While the accelerometer derived mass densities do not enter the assimilation direclty as they
are used for calibartion of the model, the direct approch useses them direclty without any
intermediate steps.

In the two-step approach (Section 7.6), the accelerometer-derived mass densities do not enter
the assimilation process directly. Instead, they are used to calibrate the NRLMSIS 2.0, which
is subsequently evaluated globally and assimilated. Conversely, the direct approach assimilates
the accelerometer-derived mass densities without intermediate steps. In Figure 8.17, the mass
density estimates of the two-step and direct assimilation approach along the orbits of GRACE
and CHAMP are compared with the corresponding accelerometer-derived mass densities. All
selected assimilation runs perform better than the OLS. The simultaneous direct assimilation of
both satellites using localization has the smallest spread. However, the localization restricts the
updates to the vicinity of the orbits. The two-step approach reliably corrects the model over the
two weeks. Considering the entire two-week period, the two-step approach performs better than
the global assimilation for GRACE but worse for CHAMP. However, it cannot compete against
the direct assimilation approaches (global and localized) during the geomagnetic storm, as shown
in Figure 8.18, since the calibrated empirical model has a much lower temporal resolution. Since
the two-step approach performs the analysis step less frequently than the direct assimilation
(every hour vs every minute), it runs about 40% faster.
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Figure 8.18.: This figure shows time series of mass density along the orbits of CHAMP and
GRACE from TIE-GCM runs (solid lines) and derived from accelerometers (black
dots). The dashed vertical lines indicate the satellite’s passage above the north
pole, and the dotted vertical lines mark the passage above the south pole. The
temporal resolution of the model runs is one minute, except for the two-step as-
similation, which wrote the density only every 10 minutes to file.

8.5. Assimilation of Electron Densities

The high resolution global electron density model (HRGEM) developed at DGFI-TUM (Lalgudi
Gopalakrishnan and Schmidt, 2022) provides the electron number density and standard deviation
for positions in the ionosphere that can be chosen arbitrarily. The standard deviations are
obtained from a Monte-Carlo approach. HRGEM is a semi-empirical model using a multi-layer
Chapman representation: The total electron number density is the superposition of the electron
densities associated with the D-, E-, F1-, and F2-layer (Section 2.2.4) and the plasmasphere
(Section 2.3.2.1). The ionospheric layers are described by a Chapman function (see Figure 2.11
for an example of the shape of a vertical Chapman function profile) parameterized by the peak
electron density, the height of this peak and a scale height parameter. The electron number
density in the plasmasphere is represented by exponential decay. The parameters of all layers
and the plasmasphere are expanded by B-splines to the globe and are subject to equality and
inequality constraints, to prevent nonphysical profiles. The parameters are fitted to IRI-2012
model simulations and radio occultation (see Section 4.5) measurements (GRACE, GRACE-

142



8.5. Assimilation of Electron Densities

Setup 6: 3D Electron Density (E 03)

general

type assimilation run
TIE-GCM setup 5°, Setup 1
start 27 Mar 2010 00:00 UTC+0
end 31 Mar 2010 00:00 UTC+0
writing frequency every 10 minutes

ensemble

initial state Setup 2
ensemble size 96
perturbations time-variable (P 4, Table 8.1)
state vector wO, wO2 , wHe, Tn, Ce, CO2

� ,
CO�wO

1, wO2
1, wHe

1, Tn
1, CO�

1

filter

filter localized ESTKF
forget factor 1.0
forecast duration 1 h

localization

sub-domain size 1x1x1 cells
horizontal localization radius 1.5 cells
vertical localization radius 5 cells
weight function GCa�0.5pτq

observation

domain global 5° � 5° � 40 km grid, between 200 km-440 km altitude
quantity electron number density from Lalgudi Gopalakrishnan and Schmidt (2022)
interpolation linear

FO and Formosat-3/COSMIC), and GNSS observations. The model has been tested against
incoherent scatter radar measurements (Section 4.4) and ionosonde data.

For this experiment, the model was evaluated on a grid with 5° horizontal resolution and 40 km

vertical resolution between 200 km and 450 km altitude. The period between 27 March 2010 and
30 March 2010 is investigated. The setup for the assimilation experiment is summarized in
Setup 6.

Figure 8.19 compares the electron number densities for the TIE-GCM and HRGEM at different
altitudes for one point in time, which is characteristic of the investigated period. In most regions,
the TIE-GCM underestimates the electron number density. This behavior has been also observed
by Kodikara et al. (2021). On the night-side the differences are lower than on the day-side. At
320 km and 440 km around the subsolar point the HRGEM estimates a much denser electron
number density than the TIE-GCM.

The HRGEM does not provide correlations. Consequently, the localization radius is chosen to
be very small so that the missing correlations do not disrupt the update. Since each element of
the state vector is updated individually, the runtime of the update step is about 20 times longer
than for the two-step approach, where subdomains of 3� 3� 3 are updated.

In the previous experiments, the state vector only contained state variables associated with
the neutral atmosphere. For the assimilation of electron densities, the electron number density
itself and the ion number densities must be included (Hsu et al., 2014). Only adding the
electron number density to the state vector is not sufficient since the TIE-GCM assumes a quasi-
neutral atmosphere. This assumption recovers the forecasted electron density immediately after
the update when the ion density is not updated. Thus, the prognostic ion number densities
(O1

+,O2
+) must be included in the state vector for an enduring update of the electron density.

The neutral state variables are kept in the state vector. As neutral state variables are correlated
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Figure 8.19.: The maps show the electron number density (difference) in cm�3 for 27 March
2010 12:00 UTC. Each row corresponds to an altitude. The left column contains
the electron number densities from the OLS (P4). The white dot indicates the
position of the subsolar point, and the white line represents the solar terminator.

with the density of charged particles (see Figure 8.5), this allows updating the neutral state
variables by assimilation of electron densities.

It turned out that using cubic B-splines for the vertical interpolation can cause negative
electron densities along the height profile in some cases (small electron densities and large vertical
gradients). This is obviously nonphysical and causes model crashes. Thus, linear interpolation
is used for all experiments where electron densities are assimilated. An alternative way, which
might be considered in future studies, is constraining the B-splines.

The electron densities and their standard deviation provided by the HRGEM require the
following preprocessing. Some of the HRGEM electron densities are less than the lower limit of
the TIE-GCM, which limits the electron density to 3100 cm�3 (see Table 7.5). Thus, it is useless
to assimilate electron densities below this threshold. Consequently, observations below this value
are set to the limit and are down-weighted. Additionally, some of the standard deviations of the
HRGEM electron densities are very small, especially on the night-side. The minimal HRGEM
electron density standard deviation is set to 100 cm�3 to prevent filter failures caused by too-
high confidence in those observations. This limit affects less than 0.1% of the HRGEM electron
densities.

Figure 8.20 compares the electron densities from the HRGEM with those from the OLS and
the assimilation run (E 03) for different altitudes and longitudes. The electron number densities
predicted by the TIE-GCM assimilating HRGEM electron densities (E 03) are much closer to
the electron densities from the HRGEM than the OLS. Similarly to the two-step approach (see
Figure 8.16), the assimilation run has large jumps as it gradually approaches the OLS after
each update step. The jumps are enormous in the auroral region (�82°N), where the update is
large, and at the same time, the model approaches the OLS fast. In the second row the electron
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Figure 8.21.: Each row shows maps for the same pressure level and each column maps for the
same analysis step (Setup E 3). The color indicates the mass density update
divided by the mass density predicted by the OLS at the corresponding cell. A
positive value indicates an increase of the mass density compared to the forecasted
state.

densities on the night-side fall below the limit of 3100 cm�3, so that they are associated with a
very high uncertainty.

The assimilation of electron number density (Setup 6) has almost a negligible impact on the
neutral mass density averaged over a pressure level, with a maximum effect of �2% compared to
the OLS (Figure D.5). However, when looking at individual pressure levels and analysis steps,
mass density updates of up to 35% of the OLS mass density are revealed (see Figure 8.21).
However, those effects occur mainly at poles. Large areas get only very small mass density
updates. At higher altitudes the maximum relative mass density update is larger. For large
areas the state update is small. The assimilation does not enhance the mass density estimate
when compared with the accelerometer-derived densities of GRACE and CHAMP during the
investigated period (see Figure 8.22). The update of the mass densities in the update step is
based on the correlations encoded in the forecasted ensemble. Thus, it may be necessary to
revisit the ensemble generation strategy and adjust it to the scenario in which the electron
density is assimilated to improve the mass density estimate. Unfortunately, this period does not
include a geomagnetic storm. This should be considered in future studies.

Instead of assimilating the three-dimensional electron density, one could also assimilate two-
dimensional data derived from the vertical electron density profiles. Examples of such quantities
are the vertical TEC or the height where the peak of the F2 layer (Section 2.2.4) is located
(hmF2). For vertical TEC assimilation, the observation operator is the sum of all electron
densities over a vertical column. When using a vertical TEC map matching the horizontal
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Figure 8.22.: Histograms of differences between TIE-GCM runs and accelerometer-derived neu-
tral densities. The OLS (orange line) was computed according to Setup 3. The
period from which this diagram was computed is only four days long. So, it cannot
be compared directly with the other histograms shown so far.

grid layout of the TIE-GCM, interpolation is unnecessary. Additionally, compared with the 3D
electron densities, such a map results in a smaller observation vector, decreasing the run time.
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8.6. Co-Estimation of Model Dynamics

First, it is necessary to determine which model parameters are calibrated. External forcings, such
as the F10.7 index, have been co-estimated, for example, in Matsuo et al. (2013, Section 3.2).
However, this does not update the dynamics of the model; rather, it distorts the (measured)
external forcings so that they fit the model more closely. Instead of external forcing, it would
be preferable to co-estimate the model parameters that actually control the model dynamics.

Figure C.2 illustrates the influence of model parameters on the mass density. The Joule heating
factor and the Burnside factor (Section 5.1.3) have a significant impact on the neutral mass
density. For future studies, collaboration with model developers would be helpful in identifying
further uncertain parameters that would benefit from co-estimation.

The model parameters considered here are global, meaning they do not depend on the position.
Thus, when using global filters, one can simply augment the state vector. The parameters are
then updated based on the correlations with the other entries of the state vector. However,
when using localization, different approaches are required to estimate global model parameters
(Section 6.5).

In the following, the co-estimation of model parameters using direct assimilation of accelerometer-
derived mass densities is investigated. The model dynamics are only updated every 20th assimi-
lation step. This is done for two reasons: First, the state has some time to adapt to the updated
parameter. Second, the runtime for the localized filter is reduced.

It is necessary to perturb the co-estimated model parameters in the initial augmented state
vector for each ensemble member. Otherwise, these parameters will not be updated by the
Kalman filter, as their variance is zero. In case the spread of a model parameter is decreased by
the update step, the variance of the state will also be reduced in the subsequent forecast phase.

Setup 7: Calibration (Y 01)

general

type assimilation and calibration
TIE-GCM setup 5°, Setup 1
start 27 Mar 2010 00:00 UTC+0
end 22 Apr 2010 00:00 UTC+0
writing frequency every 60 s

ensemble

initial state Setup 2
ensemble size 96
perturbations time-variable (P 4, Table 8.1)
state vector wO, wO2 , wHe, Tn, wO

1, wO2
1,

wHe
1, Tn

1

filter

filter localized ESTKF
forget factor 1.0
forecast duration 60 s

localization

sub-domain size 3x3x3 cells
horizontal localization radius 5000 km

vertical localization radius 500 km

weight function GCa�0.5pτq

observation

domain satellite orbit of CHAMP
quantity neutral mass density
uncertainty 5% of neutral density
interpolation cubic B-Spline

calibration

co-estimated parameters Joule heating factor
estimation frequency every 20min
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8.6. Co-Estimation of Model Dynamics

Table 8.4.: Overview of assimilation setups that co-estimate Joule heating. The reference setup
is summarized in Setup 7 and corresponds to the experiment in the first row. Settings
that differ from the reference setup are highlighted with light gray.

localization radius

ID horizontal vertical satellites

Y 01 5000 km 500 km CHAMP
Y 02 5000 km 500 km CHAMP+GRACE
Y 03 global CHAMP

Table 8.4 contains the assimilation experiments that co-estimate the Joule heating factor.
For the co-estimation runs, the period is extended by twelve days compared with the direct
assimilation runs (Table 8.2), so the long-term behavior of the co-estimated Joule heating factor
can be better investigated. The time series of ensemble mean and ensemble standard deviation
of the Joule heating factor co-estimated in the experiments Y 01-Y 03 are plotted in Figure 8.23.
While the variance gradually decreases for the global filter, it gradually increases when employing
localization. In the original Kalman filter, the variance of the (augmented) state decreases
after each analysis step (Equation 6.50). In the case of the global filter, the global model
parameters are updated together with the model state in the analysis step of the Kalman filter.
In contrast, the localized filter updates the global model parameters after applying the Kalman
filter, employing a linear regression of the state update (Section 6.5). The increase in ensemble
spread suggests that the combination of localization and co-estimation of Joule heating is not
functioning as intended. In Malartic et al. (2022, Section 2.3.2) an update method for global
parameters after a localized Kalman update with increased accuracy is proposed that might
improve the results for these experiments.

After the geomagnetic storm, the ensemble mean returns almost to the initial value for all ex-
periments. The largest difference to the initial value at the end has experiment Y 02 (0.05, 4%).
This has only a small impact on the mass density (� 1% at 400 km altitude, see Figure C.2),
indicating that the default value for the Joule heating factor is at least for quiet conditions well
suited. In fact, when applying any of the co-estimated ensemble mean Joule heating factor time
series to a single instance TIE-GCM run, the density estimation does not perform better than
the OLS when compared with CHAMP and GRACE accelerometer derived mass densities.

The co-estimation of Joule heating factor could not improve the mass density estimation of
the TIE-GCM in the investigated period. The estimated Joule heating factor suggests that
the default value of 1.5 already fits well with the observations. Here, a 26-day long period has
been examined. For future experiments, longer periods should be considered to exclude the
possibility that this is just a coincidence. The computational cost for the co-estimation runs
applying localization is especially large. Global filters are much faster, as no post-processing step
is required, as the model parameter is estimated during the update step. Moreover, other model
parameters should be considered for future co-estimation experiments. Hard-coded chemical
reaction rates of atmospheric constituents are possible candidate parameters.
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Figure 8.23.: The upper panel contains the ensemble mean of the Joule heating factor co-
estimated in the experiments listed in Table 8.4. The lower panel contains the
associated standard deviations. The black solid horizontal line is the initial mean.
The vertical dashed lines mark the beginning and end of the 5 April 2010 geomag-
netic storm.

8.7. Transferability to Other Periods

So far, the experiments have been conducted in March and April 2010. This period covers only
a small range of solar and geomagnetic activity. Therefore, the following two additional periods
also containing geomagnetic storms are investigated: the period around the Halloween 2003
storm (Denig et al., 2018; Lopez et al., 2004) and the 2015 June solstice1 storm (e.g., Astafyeva
et al., 2016; Augusto et al., 2018; Y. D. Liu et al., 2015). Table 8.5 provides an overview of all
three geomagnetic storms investigated in this thesis. The experiments also cover the period well
before and after the storm so that also quiet conditions are included in the analysis.

For the Halloween 2003 geomagnetic storm, the accelerometer-derived mass densities along
the orbit of CHAMP are assimilated using a local (D 101) and a global filter (D 102). Figure 8.24
compares the accelerometer-derived mass densities with the local and global filter and the OLS.
When comparing the observed densities to the densities simulated in the assimilation runs, the
local (D 101) and the global (D 102) filters outperform the OLS, which drastically underestimates

1The storm is often called ’summer solstice storm’. However, this term is ambiguous. Therefore, I here refer
to it as ’June solstice storm’.
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8.7. Transferability to Other Periods

Table 8.5.: In this thesis three periods containing geomagnetic storms of different intensity are
investigated. This table gives the corresponding solar activity (F10.7) and informa-
tion about the storm for each period. The class of a storm depends on its Kp value
(see Figure 2.17).

F10.7 storm

experiment’s period median min max name period class

25 Oct - 06 Nov 2003 241.6 110.0 307.3 Halloween 2003 29-31 Oct extreme (G5)
27 Mar - 10 Apr 2010 77.8 75.5 85.5 April 2010 05 Apr strong (G3)
15 Jun - 29 Jun 2015 132.9 100.1 174.0 June Solstice 2015 22-23 Jun severe (G4)

Table 8.6.: Some previously conducted experiments are repeated for different periods. The set-
tings are the same as in the column ’setup’, except for the period and the satellite.
The RMSE is computed from Equation 8.1. The color schema applied to illustrate
the differences is described in Table 8.2.

ρassim
� ρacc

median (g cm�3) RMSE (g cm�3)

period ID obervations filter setup CHAMP GRACE CHAMP GRACE

25 Oct 2003 -
06 Nov 2003

D 101 CHAMP local D 01 -2.9e-16 -8.5e-18 1.7e-15 6.7e-16
D 102 global D 10 -4.5e-17 1.1e-16 1.4e-15 5.4e-16

OLS -1.0e-15 -2.2e-16 3.1e-15 1.0e-15

Swarm-C GRACE Swarm-C GRACE

15 Jun 2015 -
29 Jun 2015

D 201 GRACE local D 01 2.9e-16 4.5e-18 4.5e-16 3.7e-16
D 202 global D 10 3.1e-16 5.7e-18 4.5e-16 4.1e-16

OLS 2.7e-16 -2.2e-17 4.1e-16 6.4e-16

the mass density. The median mass density difference along the orbit of CHAMP and GRACE
is two orders of magnitude lower for the local filter (D 101) than for the OLS. The median
difference to the accelerometer-derived mass densities along the orbit of CHAMP is an order
of magnitude lower when the global filter is used instead of the local filter (Table 8.6). During
the Halloween 2003 geomagnetic storm, the vertical separation between GRACE and CHAMP
is approximately 100 km shorter in comparison to the previously investigated period (compare
panel c in and Figure 8.24 and 8.11). Accordingly, the impact of the localized filter on the mass
density along the orbit of GRACE is much stronger than during the April 2010 storm (compare
panel b in and Figure 8.24 and 8.11). Still, in the shown snapshot, the global filter is closer to
the accelerometer-derived mass densities of the GRACE satellite than the local filter.

For the June solstice 2015 storm, the accelerometer-derived mass densities along the orbit
of GRACE are assimilated since CHAMP re-entered in 2010. There is a data gap in the
accelerometer-derived mass densities for GRACE, so the first update step is on 23 June 2015.
Again, a local filter (D 201) and a global filter (D 202) are employed. Figure 8.25 compares
the observed and modeled mass densities along the orbits of the GRACE and the Swarm-C
satellite. As expected, the assimilation runs are much closer to the observations than the OLS
for GRACE. The local filter performs slightly better than the global filter. However, for Swarm-
C the OLS is closer to the observations than the assimilation runs. This does not necessarily
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Figure 8.24.: The two upper panels show time series of mass density during the Halloween storm
2003 along the orbit of CHAMP and GRACE from TIE-GCM runs (solid lines) and
derived from accelerometers (black dots). The temporal resolution of the model
runs is one minute, except for the OLS, which was saved only every 10 minutes.
Panel c shows the vertical and great circle distance on Earth’s surface between
CHAMP and GRACE.

mean that the assimilation has failed. Instead, there may be a bias in accelerometer-derived
densities of the Swarm-C satellite. In fact, the Swarm accelerometers are known to “suffer from
a variety of disturbances, the most prominent being slow temperature-induced bias variations
and sudden bias changes” (Siemes et al., 2016). Since Swarm-C flies only about 60 km higher
than GRACE, one would expect that the OLS for both satellites to perform comparably well.
However, for Swarm-C the observations fit the OLS much worse than GRACE, indicating a bias
in the observations.
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Figure 8.25.: The two upper panels show time series of mass density during the June solstice
2015 storm along the orbit of CHAMP and GRACE from TIE-GCM runs (solid
lines) and derived from accelerometers (black dots). The temporal resolution of the
model runs is one minute, except for OLS, which was saved only every 10 minutes.
Panel c shows the vertical and great circle distance on Earth’s surface between
Swarm-C and GRACE.
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9. Conclusions

A new data assimilation system employing the TIE-GCM 2.0 has been developed to overcome
the limitations of data assimilation systems formulated in Section 1.3 and to enhance the TIE-
GCM’s mass density estimation skills. For this purpose, different data assimilation approaches
have been developed, implemented, and tested. First, accelerometer-derived mass densities
from the CHAMP and GRACE missions were assimilated directly into the TIE-GCM using
localized and global filters. Second, within a two-step approach, the global density estimation
of a calibrated semi-empirical model has been assimilated. Third, the assimilation of global 3D
electron number densities has been implemented and investigated. Finally, the Joule heating
factor has been co-estimated.

9.1. Evaluation of the Hypotheses

In Section 1.4 six hypotheses have been formulated which are evaluated based on the experiments
conducted in Chapter 8.

9.1.1. Runtime of the Assimilation System

Since the PDAF is directly implemented into the TIE-GCM 2.0, it is only initialized once, making
it much faster than implementations that must re-initialize the model after each analysis step.
The ensemble size and the number of physical processor cores per ensemble member were tuned
to save computational resources and enable short runtimes while ensuring adequate model state
updates. A good balance is provided by an ensemble of 96 members and four physical processor
cores per ensemble member for the TIE-GCM 2.0 with 5° horizontal resolution. Additionally,
the choice of the ESTKF slightly decreases the run time as it operates on the error-subspace.
These aspects allow for assimilation experiments covering 14 days, with assimilation steps every
minute in a reasonable runtime of �14 h per assimilation experiment when using localization and
�10 h without localization1. This corresponds to 384 core hours per day when using localization.
Accordingly a data assimilation experiment covering a year would require 140 160 core hours.
This can be easily provided by even small high performance clusters. Thus, Hypothesis H 1 can
be accepted.

Using the TIE-GCM with 2.5° horizontal resolution increases the runtime by about a factor
of 10, while the differences in the mass density forecast to the TIE-GCM with 5° resolution
are comparably minor. Thus, I recommend using the version with the lower resolution for data
assimilation experiments.

1Domain localization (Section 6.4.2) is computationally more expensive as the update step has to be computed
for each subdomain individually.
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9.1.2. Space Weather Dependent Ensemble Generation

Figure 8.8 shows that the model forecast uncertainty fits better to the actual space weather condi-
tions when using time-variable perturbations and perturbing the magnetic field for the ensemble
generation in an OLS. In an actual assimilation experiment, the offset between the simulated
and accelerometer-derived mass density was an order of magnitude larger for static perturba-
tions compared with time-variable perturbations (Experiment D 01 vs Experiment D 13). This,
supports Hypothesis H 2.

9.1.3. Spurious Correlations in the Forecasted Model Errors

The success of data assimilation heavily depends on realistic stochastic models for the observa-
tion and model errors. For the ESTKF, a VCM explicitly represents the observation uncertainty,
while an ensemble of states implicitly represents the model uncertainty. The stochastic mod-
els control how much confidence is placed in the observations and the model. Moreover, the
correlations encoded in the forecasted state ensemble determine how the forecasted state is up-
dated by the filter. Since spurious long-range correlations that produce unrealistic updates are
often present in the forecasted state ensemble, localized filters are often employed. While they
compensate for unwanted unrealistic state updates far away from the observations, they also
limit the region affected by the assimilation. I could reduce spurious long-range correlations in
the model forecast errors by introducing time-variable perturbations of external forcings (see
Figure 8.5). The global assimilation of accelerometer-derived mass densities from CHAMP (Ex-
periment D 10) significantly improved the mass density estimation along the orbit of GRACE,
which flew about 175 km above CHAMP. The offset and RMSE along the GRACE orbit were
reduced by 17% and 26%, respectively, when comparing to the OLS. Nevertheless, Figure 8.10
indicates that some spurious long-range correlations might still exist. When using static per-
turbations and not perturbing the IMF and Earth magnetic field, the global filter had a 26%

larger offset and 15% greater RMSE along the GRACE orbit compared with the assimilation
run with time-variable perturbations and perturbations of the magnetic fields (Experiment D 10
vs Experiment D 16). These findings support Hypothesis H 3.

9.1.4. Improved Mass Density Prediction Skills

The localized assimilation of along-track mass densities significantly improves the model forecast.
For a two-week period in 2010, including a geomagnetic storm, the bias between the modeled
mass densities and the accelerometer-derived mass densities along the orbit of CHAMP was
on average reduced by two thirds compared with the OLS when applying a localized filter
(Experiment D 01). For the same experiment the RMSE of the observed and simulated mass
densities was reduced by one thirds. The simultaneous localized assimilation of GRACE and
CHAMP (Experiment D 12) improved the density in the vicinity of both satellites. The RMSE
of observed and simulated mass densities was reduced by 47% and 30% along the orbits of
GRACE and CHAMP, respectively, for a two-week long period in 2010. The direct assimilation
of accelerometer-derived mass densities was tested under different geomagnetic conditions in
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different years. The assimilation successfully improved the density estimation for all periods
(Table 8.6).

Unfortunately, we do not have independent mass density observations for the investigated
periods against which to compare the different models. Determining the mass densities from
accelerometers (Section 4.1) involves many assumptions, and the observations have systematic
and random errors. The ambiguity between ballistic coefficients and mass density (see Sec-
tion 3.2) affects observations derived from orbital decay and accelerometers. No recent LEO
satellite mission is equipped with a mass spectrometer that could measure the density without
assumptions on the ballistic coefficients.

However, numerical models have a finer spatial resolution than empirical models. While the
TIE-GCM’s lowest possible horizontal resolution is 5°, the NRLMSIS 2.0 represents horizontal
mass density variations of up to 60°. The temporal resolution of the external forcings limits the
temporal resolution of all models. Thus, in the worst case, the NRLMSIS 2.0 has a three-hour
delay to the onset of a geomagnetic storm as it depends on the Kp index. In contrast, the TIE-
GCM can react much faster as it uses the IMF and solar wind with a high temporal resolution
to drive the high latitude convection. Further the assimilation of mass-derived mass densities
with high temporal resolution generates model forecasts that fit well to the corresponding obser-
vations. The data assimilation system thus provides the basis for outperforming semi-empirical
models. However, hypothesis H 4 cannot be validated since there is no suitable observation
independent on the ballistic coefficients for the investigated periods.

9.1.5. Assimilation of (Semi-)Empirical Models

The two-step approach enables global assimilation by assimilating the mass density estimate of a
semi-empirical model. In this thesis, the NRLMSIS 2.0 was calibrated by accelerometer-derived
mass densities. However, the two-step approach does not use the high temporal resolution
of the accelerometers due to a low pass filter. During the 5 April 2010 geomagnetic storms, it
performed inferior to the direct global assimilation of CHAMP data (e.g., Figure 8.18). However,
during quiet conditions, the estimation was successfully improved. In the two-week long period
including the storm, the RMSE of observed and simulated mass densities along the orbits of
GRACE and CHAMP was reduced by 24% and 17%, respectively, compared with the OLS.
Thus, Hypothesis H 5 is valid. However, the approach chosen in this thesis limits the temporal
resolution of the assimilated data.

The assimilation of the electron densities provided by the DGFI-TUM corrected the elec-
tron density estimation but did not improve the mass density estimation when comparing to
accelerometer-derived mass densities. Whether this is also the case during geomagnetic storms
with increased electron densities has yet to be investigated. Moreover, cubic B-splines are not
suited for vertical interpolation of electron densities in the observation operator, as they do not
ensure non-negative electron density profiles.

9.1.6. Co-Estimation of Model Dynamics

The co-estimation of model dynamics is motivated by two reasons. First, the TIE-GCM is a
convergent model highly driven by external forcings (Figure 7.2). Thus, the state gradually
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approaches the OLS after each analysis step. Estimating model parameters controlling the
dynamics may achieve a permanent correction. Second, co-estimating global model parameters
may improve density estimation globally, even when using localization. However, only the
Joule heating factor has been co-estimated here since localized co-estimation experiments are
computationally expensive. The experiments conducted (Table 8.4) indicate that the default
Joule heating factor is already well-chosen. However, longer time periods need to be investigated
to make sure this is not a coincidence. Additionally, other uncertain model parameters should be
identified and co-estimated in future investigations. Thus, Hypothesis H 6 cannot be accepted.

9.2. Outlook

Although the ensemble generation was significantly improved, there is still potential for further
improvements. For example, the perturbation of the lower boundary conditions could be derived
by perturbing the inputs of the models that are used to calculate the lower boundary conditions:
the corresponding models are the GSWM, NRLMSIS and HWM. Moreover, the upper boundary
conditions could be perturbed in addition to the lower boundary conditions, for example, the
oxygen ion flux as suggested by Lee et al. (2012). Additionally, quite simple analytical covariance
functions have been employed so far to model the temporal dependency of the uncertainty of
the time-variable external forcings. Alternatively one could use the empirical covariance, or
auto-regressive processes.

The uncertainty of the accelerometer-derived mass density observations must be better repre-
sented than by a percentage of the density itself. Recent progress in specifying this uncertainty
(e.g., Siemes et al., 2024) should be incorporated in the future. The stochastic model used to
represent the uncertainty of the empirical model used for the two-step approach (Section 7.6.2)
is highly dependent on a percentage of the density. An alternative to this rather simple approach
is to run an ensemble of the empirical model with perturbed inputs.

Theoretically, one could also improve the state forecast of upper atmosphere numerical models
globally by assimilating data from many well-distributed satellites. However, the simultaneous
assimilation of data from different sources requires compensating for possible biases between
them. As semi-empirical models also face this problem, they might provide valuable information
for bias correction.

Future research should consider longer periods for the assimilation experiments, covering
multiple years or even decades. This could help to understand long-term effects, such as the
observed long-term cooling of the upper atmosphere discussed in Section 2.5. The assimilation
run has the potential to function as a ”true state,” thereby enabling a comparative analysis with
TIE-GCM simulations employing varying levels of CO2. This setup allows for the attribution of
the rise in CO2 concentration to the observed cooling of the upper atmosphere.

Some aspects may further improve the performance of the TIE-GCM 2.0. First, the Burnside
factor could be replaced (Ieda, 2021). Second, the climatological zonal lower boundary could be
derived from the latest versions of the HWM and NRLMSIS. Third, there is a newer version of
the IGRF that could replace the old one. The TIE-GCM 3.0 has already updated the IGRF.
Many other aspects have been updated as well. Higher resolutions are possible. However,
resolutions even higher than 2.5° will likely increase the runtime drastically if not compensated
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by more or faster processor cores. Also, the model is extended to higher altitudes so that, for
example, the observation operator never needs to extrapolate the mass density to the orbit of
GRACE. Despite the new TIE-GCM version, the here developed assimilative TIE-GCM 2.0 can
be used for future studies. The higher resolution of the new version cannot be used for long
periods without extraordinary computational costs. Doubling the TIE-GCM 2.0 resolution (5.0°
to 2.5°) increased the run time already by a factor of ten. Still, potential runtime improvements
in the TIE-GCM 3.0 need to be analyzed. However, the number of cells increases by a factor
of eight when doubling the resolution which increases computational costs accordingly. Besides,
the update to version 3 has not changed the model dynamics drastically, so that one can expect
comparable model forecasts for both versions. Still, comparisons between the TIE-GCM 2.0
and TIE-GCM 3.0 should be conducted in the future to determine in which situation the here
developed assimilative TIE-GCM could benefit from an upgrade to the latest release.

Apart from the assimilation approaches, two aspects are desirable for further advances. First,
the assimilation would benefit from observations of the mass density that do not rely on an
accurate and precise simulation of the gas surface interaction to rule out the ambiguity between
mass density and ballistic coefficients. Fortunately, the upcoming NASA Geospace Dynamics
Constellation (GDC) in 2030 or the ESA earth explorer candidate ’keystone’ may deliver such
observations in the future. Second, a decent uncertainty quantification of accelerometer-derived
mass densities and semi-empirical models would immensely enhance the realism of the assimi-
lated mass densities. The MAGIC mission, preceding GRACE-FO, consists of two GRACE-like
pairs in a bender constellation and is already approved. Although the ambiguity with ballistic
coefficients affects the accelerometer-derived mass density of the MAGIC mission, it ensures
mass densities with high temporal resolution for future assimilation systems.
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A. Derivations

A.1. Aerostatic Equation

The following derivation is taken from Prölss (2004). Considering only gravity and pressure
force, the atmosphere is in equilibrium if both forces compensate at any height. Given a surface
area A at height z (see Figure A.1), one can write

Fppzq � Fgpzq, (A.1)

with the pressure force Fppzq pressing the surface upwards and the gravitational force Fgpzq
pulling the surface to the ground. Inserting the definitions of the forces, one obtains:

Appzq �A
» 8
z
ρpz1q gpz1q dz1

ppzq �
» 8
z
ρpz1q gpz1q dz1

dppzq
dz

� d

dz

» 8
z
ρpz1q gpz1q dz1

dppzq
dz

�� ρpzq gpzq

reducing A

differentiate w.r.t. z

d

dx

³x
a fptqdt � � d

dx

³a
x fptqdt � fpxq

(A.2)

gravity
Fgpzq

pressure
Fppzq

Height

z

A

Figure A.1.: The gray plane can be considered as a massless impermeable membrane. The air
column above causes the force FG due to gravity. It is counterbalanced by the
pressure force Fp from below (adapted from Prölss (2004, Figure 2.14)).
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A. Derivations

A.2. Barometric Law

By inserting the ideal gas law into aerostatic equation one obtains

dppzq
dz

�� ρpzq gpzq � �mpzqppzq
kBT pzq gpzq � � ppzq

Hpzq . (A.3)

This is a first order ordinary differential equation, which is solved by rearranging it to a separable
equation:

dpphq
dh

�� pphq
Hphq

dpphq
dh

1

pphq � � 1

Hphq» h

h0

dppzq
dz

1

ppzqdz ��
» h

h0

1

Hpzqdz

lnpppzqq
∣∣∣h
h0

��
» h

h0

1

Hpzqdz

ln

�
pphq
pph0q



��

» h

h0

1

Hpzqdz

pphq
pph0q � exp

�
�
» h

h0

1

Hpzqdz



pphq �pph0q exp
�
�
» h

h0

1

Hpzqdz



divide by pphq

integrate both sides

³ f 1pxq
fpxq dx � lnx

lnpaq � lnpbq � ln
�
a
b

�

(A.4)

A.3. Number Density Scale Height

Here, the instructions given by Prölss (2004, p.38) are used to derive an equation for the number
density profile. By replacing the pressure in Equation 2.18 with Equation 2.14 we find an
expression for the number density

pphq �pph0q exp
�
�
» h

h0

1

Hpzqdz



(A.5)

CphqT phqkB �Cph0qT ph0qkB exp

�
�
» h

h0

1

Hpzqdz



(A.6)

Cphq �Cph0qT ph0q
T phq exp

�
�
» h

h0

1

Hpzqdz


. (A.7)

pphq � CphqT phqkB

eliminate kB
divide by T phq

The pressure scale height is defined as (see Equation A.3)

Hphq � �pphq 1

dpphq
dh

. (A.8)
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A.4. Density Change by Transport and Expansion

Analogously one can define the number density scale height with

HCphq � �Cphq 1

dCphq
dh

. (A.9)

The derivative of Equation A.7 is obtained by applying the product rule

dCphq
dh

�Cph0qT ph0q
�
� 1

T phq2
dT phq
dh



exp

�
�
» h

h0

1

Hpzqdz



�
�
� 1

Hpzq


exp

�
�
» h

h0

1

Hpzqdz


Cph0qT ph0q

T phq

� � Cph0qT ph0q
T phq exp

�
�
» h

h0

1

Hpzqdz

�

1

T phq
dT phq
dh

� 1

Hpzq



�� Cphq
�

1

T phq
dT phq
dh

� 1

Hpzq



factorize

use Eq. A.7

(A.10)

In the next step we divide the equation by Cphq and see that we have the reciprocal of Equa-
tion A.9 on the left-hand side:

�dCphq
dh

1

Cphq �
1

T phq
dT phq
dh

� 1

Hpzq (A.11)

1

HCphq �
1

T phq
dT phq
dh

� 1

Hpzq (A.12)

A.4. Density Change by Transport and Expansion

Following (Prölss, 2004, p.129), one can assess the effect of a temperature increase on the neutral
density using Equation A.7. Let C1phq be the neutral density at temperature T1phq, and C2phq
be the neutral density at a higher temperature T2phq ¡ T1phq. Then, the density ratio is

C2phq
C1phq �

C2ph0q
C1ph0q

T 2ph0q
T 2phq
T 1ph0q
T 1phq

exp

�
� ³hh0

1

H2pzqdz



exp

�
� ³hh0

1

H1pzqdz

 . (A.13)

Assuming constant lower boundary condition, i.e., C2ph0q � C1ph0q and T 2ph0q � T 1ph0q and
making use of the exponent quotient rule, we get

C2phq
C1phq �

T 1phq
T 2phq exp

�
�
» h

h0

1

H2pzqdz �
» h

h0

1

H1pzqdz



(A.14)

C2phq
C1phq �

T 1phq
T 2phq exp

�» h

h0

� 1

H2pzq �
1

H1pzqdz


. (A.15)

Using Equation 2.19, assuming gravitational acceleration and mean molecular mass are equal at
both altitudes, one can express H2 as function of H1

H2 � T 2

T 1
H1. (A.16)
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Inserting yields

C2phq
C1phq �

T 1phq
T 2phq exp

�» h

h0

1

H1pzq �
T 1pzq
T 2pzq

1

H1pzqdz



C2phq
C1phq �

T 1phq
T 2phqloomoon

temperature-induced

exp

�» h

h0

�
1� T 1pzq

T 2pzq



1

H1pzqdz



looooooooooooooooooooomooooooooooooooooooooon
transport-induced

.

factorize 1

H1pzq
(A.17)

Since T2phq ¡ T1phq the first term describes the temperature-induced decline of the neutral
density and the second term the transport-induced increase (Prölss, 2004, p.129).

Substituting T 1phq
T 2phq with sphq and finding parameters for which transport-induced increase is

greater than the temperature-induced decrease we obtain

exp

�» h

h0

1� spzq
H1pzq dz



¡ 1

sphq (A.18)

Using trapezoidal rule
³b
a fpxqdx � pb� aqfpaq�fpbq

2 we get the approximation

» h

h0

1� spzq
H1pzq dz � ph� h0q

1� sphq
H1phq � 1� sph0q

H1ph0q
2

(A.19)

Since sph0q � T 1ph0q
T 2ph0q is one by definition, this simplifies to

» h

h0

1� spzq
H1pzq dz � ph� h0q1� sphq

2H1phq . (A.20)

Inserting the approximation for the integral yields

exp

�
ph� h0q1� sphq

2H1phq


¡ 1

sphq . (A.21)

Using the substitution ∆ � h�h0
H1phq which can be interpreted as the height above the lower layer

expressed as a multiple of the scale height we get

exp

�
∆
1� sphq

2



¡ 1

sphq . (A.22)

Figure A.2 shows that at two scale heights above h0, the transport-induced increase dominates
the temperature-induced decrease.
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Figure A.2.: Contour plot of fp∆, sphqq � exp
�
∆1�sphq

2

	
� 1

sphq . For values of fp∆, sphqq ¡ 0

there is a net density increase due to transport.

A.5. Geopotential Height

We start from the aerodynamic equilibrium using geometric altitude z as vertical coordinate

dppzq
dz

� �ρpzq gpzq. (A.23)

Inserting ideal gas law we get

dppzq
dz

�� ppzqMpzq
RT pzq gpzq

� RT pzq
ppzqMpzq

dppzq
dz

� gpzq

�R
» z2

z1

T pzq
ppzqMpzq

dppzq
dz

dz �
» z2

z1

gpzqdz

�R
» z2

z1

T pzq
ppzqMpzq

dppzq
dz

dz �Cpz2q � Cpz1q

�R

g0

» z2

z1

T pzq
ppzqMpzq

dppzq
dz

dz �Cpz2q � Cpz1q
g0

�R

g0

» z2

z1

T pzq
ppzqMpzq

dppzq
dz

dz �Hpotpz2q �Hpotpz1q.

isolate g

integrate both sides w.r.t. z

use the definition of geopotential

divide by g0

Hpot=
C

g0
(see Equation 2.25)

(A.24)

After rearranging, we get the following expression for the geopotential height:

Hpotpz2q � Hpotpz1q � R

g0

» z2

z1

T pzq
ppzqMpzq

dppzq
dz

dz. (A.25)
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A. Derivations

To transform this equation to pressure coordinates, we substitute the geometric height z with
pressure p

Hpotpzpp2qq � Hpotpzpp1qq � R

g0

» p2

p1

T pzppqq
ppzppqqMpzppqq

dppzppqq
dz

dzppq
dp

dp. (A.26)

From the inverse function theorem, we get

dzppq
dp

� 1

dppzq
dz

. (A.27)

Thus, dppzppqq
dz

dzppq
dp is the identity. Moreover, we define T pzppqq :� T ppq, Mpzppqq :� Mppq, and

Hpotpzppqq :� Hpotppq. And finally, we see that ppzppqq � p and get

Hpotpp2q � Hpotpp1q � R

g0

» p2

p1

T ppq
pMppqdp. (A.28)

Using Equation 2.15 this can be expressed as integral over the reciprocal mass density:

Hpotpp2q � Hpotpp1q � 1

g0

» p2

p1

1

ρppqdp (A.29)

A.5.1. Geopotential Height of a Pressure Level

The pressure level k is defined as

kppq � ln
p0
p
� ln p0 � ln p (A.30)

and has the derivative

dkppq
dp

� �1

p
. (A.31)

Substituting the pressure in Equation A.28, one gets

Hpotpp2q �Hpotpp1q � R

g0

» p2

p1

T ppq
pMppqdp

Hpotpppk2qq � Hpotpppk1qq � R

g0

» k2

k1

T pppkqq
ppkqMpppkqq

dppkq
dk

dk

Hpotpk2q �Hpotpk1q � R

g0

» k2

k1

T pkq
Mpkqdk

substitute pressure
with pressure level
Inverse function theorem,
T pppkqq :� T pkq,
Mpppkqq :�Mpkq

(A.32)

A.5.2. Relation between Geometric and Geopotential Height

The geopotential of a spherical Earth with homogeneous density distribution is given by

W prq � µC
r

(A.33)
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for r ¥ RC. The corresponding gravitational acceleration is

gprq � � d

dr
W prq � µC

r2
. (A.34)

Inserting Equation A.33 into Equation 2.23 gives the geopotential number of a point with geo-
metric height z above the Earth’s surface:

C � µC
RC

� µC
RC � z

(A.35)

� µC z

RCpRC � zq .

Inserting this into Equation 2.25 yields

Hpot � 1

g0

µC z

RCpRC � zq . (A.36)

Using Equation A.34 for the gravity at Earth’s surface g0 � gpRCq � µC
RC2

yields

Hpot �RC
2

µC

µC z

RCpRC � zq (A.37)

� RC z

RC � z
.

The inverse function is

HpotpRC � zq �zRC (A.38)

HpotRC �Hpotz �zRC
Hpotz � zRC ��HpotRC

zpHpot �RCq � �HpotRC

z �� HpotRC
Hpot �RC

z � RCHpot
RC �Hpot

.

A.6. (Ensemble) Kalman Filter

A.6.1. Kalman Filter

To find the optimal state x, the objective function (also given in Equation 6.46)

J
�
x
� �1

2

�
x� xf

	T

P f�1
�
x� xf

	
�1

2

�
Hx� yo

	T

R�1
�
Hx� yo

	
.

(A.39)
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A. Derivations

is minimized. Here, all time indices are dropped since all variables are given at the same epoch.
The derivatives of the quadratic forms present in Equation A.39 are generally given by

Bpx� bqTNpx� bq
Bx �2Npx� bq (A.40)

BpAx� bqTNpAx� bq
Bx �2ATNpAx� bq with NT �N . (A.41)

Thus, the derivative of Equation A.39 is

∇Jpxq � P f�1px� xf q �HTR�1pHx� yoq. (A.42)

Setting the derivative to zero and solving for x yields

0 �P f�1px� xf q �HTR�1pHx� yoq
�P f�1

x� P f�1

xf �HTR�1Hx�HTR�1yo

�pP f�1 �HTR�1Hqx� P f�1

xf �HTR�1yo

x �pP f�1 �HTR�1Hq
�1

pP f�1

xf �HTR�1yoq

multiply out the brackets

factorize x

multiply with pP f�1 �HTR�1Hq�1

(A.43)

In the next step, the Sherman Morrison-Woodbury formula (Woodbury, 1950)

pA�UCV q�1 � A�1 �A�1UpC�1 � V A�1Uq�1
V A�1 (A.44)

is applied, which yields

x �
�
P f � P fHTpR�HP fHTq�1

HP f
	
pP f�1

xf �HTR�1yoq
x �P fP f�1looomooon

1

xf

�P fHTR�1yo

�P fHTpR�HP fHTq�1

HP fP f�1looomooon
1

xf

�P fHTpR�HP fHTq�1

HP fHTR�1yo.

eliminate
the brackets

(A.45)

Multiplying the second term with pR�HP fHTq�1pR �HP fHTq does not change the result
since it is equal to the identity matrix. The result is

x �xf

�P fHT pR�HP fHTq�1pR�HP fHTqlooooooooooooooooooooomooooooooooooooooooooon
1

R�1yo

�P fHTpR�HP fHTq�1

Hxf

�P fHTpR�HP fHTq�1

HP fHTR�1yo.

(A.46)
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A.6. (Ensemble) Kalman Filter

The previous step enables the factorization of P fHTpR�HP fHTq�1 in the second, third and
fourth term:

x �xf � P fHTpR�HP fHTq�1
�
pR�HP fHTqR�1yo �Hxf �HP fHTR�1yo

	
(A.47)

Eliminating the inner brackets gives

x �xf � P fHTpR�HP fHTq�1

�
�RR�1loomoon

1

yo �HP fHTR�1yo �Hxf �HP fHTR�1yo

�



(A.48)

x �xf � P fHTpR�HP fHTq�1
�
yo �Hxf

	
.

Finally, defining the Kalman matrix as K :� P fHTpR �HP fHTq�1 and denoting the state
optimizing Equation A.39 with xa, simplifies the equation to

xa �xf �K
�
yo �Hxf

	
. (A.49)

The covariance matrix of the optimal state xa can be derived by variance propagation. First
the partials of Equation A.49 are computed:

Bxa

Bxf
�1�KH (A.50)

Bxa

Byo
�K (A.51)

Since xf and yo are assumed to be uncorrelated, error propagation yields

P a �
�Bxa

Bxf

�
P f

�Bxa

Bxf

�T
�
� Bx
Byo

�
R

� Bx
Byo

�T
�p1�KHqP f p1�KHqT �KRKT

�p1�KHqP f p1�HTKTq �KRKT

�pP f �KHP f qp1�HTKTq �KRKT

�P f �KHP f �P fHTKT �KHP fHTKT �KRKTloooooooooooooooooooooooooomoooooooooooooooooooooooooon
0

.

insert derivatives
pU � V qT � UT � V T

pUV qT � V TUT

eliminate brackets

(A.52)

The expression above the bracket is zero since

KHP fHTKT �KRKT � P fHTKT !�0
K
�
HP fHTKT �RKT

	
� P fHTKT �0

K
�
HP fHT �R

	
KT � P fHTKT �0

P fHT
�
HP fHT �R

	�1 �
HP fHT �R

	
looooooooooooooooooooooomooooooooooooooooooooooon

1

KT � P fHTKT �0.

factorize K

factorize KT

insert defintion of K

(A.53)
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Thus, the VCM of the optimal state is

P a � P f �KHP f . (A.54)

A.6.2. Equivalent Expression for Analysis Error

Using the Sherman Morrison-Woodbury formula (Woodbury, 1950) the Kalman Gain (Equa-
tion 6.49) can be expressed as (e.g., Bocquet and Farchi, 2024, Equation 1.24)

K � pP f�1 �HTR�1Hq
�1

HTR�1. (A.55)

Inserting A.55 into Equation 6.50 gives

P a �p1�KHqP f

�p1� pP f�1 �HTR�1Hq�1HTR�1loooooooooooooooooomoooooooooooooooooon
K

HqP f

�� pP f�1 �HTR�1Hq
�1

pP f�1 �HTR�1Hqloooooooooooooooooooooooooomoooooooooooooooooooooooooon
1

� pP f�1 �HTR�1Hq
�1

HTR�1H
�
P f

�pP f�1 �HTR�1Hq
�1�

P f�1 �HTR�1H �HTR�1Hlooooooooooooomooooooooooooon
0

�
P f

�pP f�1 �HTR�1Hq
�1

P f�1

P flooomooon
1

�pP f�1 �HTR�1Hq
�1

.

insert Equation A.55

replace identity

factorize
pP f�1 �HTR�1Hq�1

(A.56)

Comparing this with Equation A.55 gives an equation of the gain matrix depending on the error
of the analysis step

K � P aHTR�1. (A.57)

A.6.3. Kalman Gain from Ensemble

K �P fHTpR�HP fHTq�1

�
X̂

f
�
X̂

f
	T

ne � 1
HT

�
��R�H

X̂
f
�
X̂

f
	T

ne � 1
HT

�
�

�1

�X̂
f
ST

ne � 1

�
R� SST

ne � 1


�1
S �HX̂

f

(A.58)
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A.6. (Ensemble) Kalman Filter

An equivalent formulation can be found by expanding the fraction with pne � 1q

K �X̂
f
ST

ne � 1

�pne � 1qR� SST

ne � 1


�1

�X̂
f
ST

ne � 1
pne � 1q �pne � 1qR� SST

��1

�X̂f
ST
�pne � 1qR� SST

��1

paAq�1 � a�1A�1

eliminate ne-1

(A.59)

Using the definition of the VCM of the innovation F � pne � 1qR� SST, one finally gets

K � X̂
f
STF�1 (A.60)

A.6.4. Quadratic Analyzed Ensemble

Starting from Equation 6.50 and skipping the indices, one obtains

P a �p1�KHqP f

X̂
a
�
X̂

a
	T

ne � 1
�p1�KHq

X̂
f
�
X̂

f
	T

ne � 1

X̂
a
�
X̂

a
	T

�p1�KHqX̂f
�
X̂

f
	T

X̂
a
�
X̂

a
	T

�pX̂f �KHX̂
f q
�
X̂

f
	T

X̂
a
�
X̂

a
	T

�pX̂f �KSq
�
X̂

f
	T

express VCM
via ensemble

eliminate ne-1

pull X̂f into brackets

S �HX̂
f

(A.61)

Inserting the expression for the gain matrix derived in Appendix A.6.3 yields

X̂
a
�
X̂

a
	T

�pX̂f � X̂
f
STF�1Sq

�
X̂

f
	T

�X̂f p1� STF�1Sq
�
X̂

f
	T factorize X̂

f
(A.62)

A.6.5. Ensemble of Analyzed Model Perturbation

X̂
a
�
X̂

a
	T

�X̂f �
1� STF�1S

� �
X̂

f
	T

X̂
a
�
X̂

a
	T

�X̂f
TT T

�
X̂

f
	T

X̂
a
�
X̂

a
	T

�X̂f
T pX̂f

T qT

X̂
a �X̂f

T

1� STF�1S :� TT T

ATBT � pBAqT

(A.63)
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A.6.6. Rewrite Transform Matrix Product

Applying the Sherman Morrison-Woodbury formula (Woodbury, 1950) to the right-hand side of
Equation 6.62 yields

TT T �1� STF�1S

� �1� STpF � SSTq�1S
��1

� �1� STppne � 1qR� SST � SSTq�1S
��1

� �1� STppne � 1qRq�1S
��1

�
�
1� ST 1

ne � 1
R�1S


�1

Sherman Morrison-Woodbury

insert defintion of F

paAq�1 � a�1A�1

(A.64)
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B. Solar- and Geomagnetic indices

B.1. Solar Indices

The F10.7 index is discussed in Section 2.3.1.2. Here additional indices used by models discussed
in Chapter 5 are summarized.

B.1.1. F30

The F30 index (de Wit and S. Bruinsma, 2017; de Wit et al., 2014) is a proxy for solar EUV
radiation similar to the F10.7 index but measured at a wavelength of 30 cm. It is constructed
from radio polarimeters observations at 30 cm which have been conducted since 1 March 1957,
first from the Toyokawa Observatory and later from Nobeyama Observatory, both in Japan
(Shimojo and Iwai, 2023). de Wit and S. Bruinsma (2017) recommend using F30 over F10.7 for
thermospheric applications since it enables a more accurate neutral density modeling.

B.1.2. S10

The S10 index (Tobiska et al., 2008b; Tobiska and Bowman, 2005) (sometimes also called S10.7
and formerly called SEUV) is derived from the observations of the Solar Extreme-ultraviolet
Monitor (SEM) installed on the Solar and Heliospheric Observatory (SOHO, Domingo et al.,
1995) satellite located on the Lagrange Point 1. It observes solar EUV emission from 26 to 34 nm

every 15 s since 1995. The emissions in that band are dominated by the chromospheric He II
line at 30.4 nm (see Figure 2.8). To calculate the S10 index the emissions are integrated over
the observed wavelengths, normalized by the daily mean value, and converted to solar flux units
via linear regression to the F10.7 index (Tobiska and Bowman, 2005, Equation 1).

B.1.3. Y10

The Y10 index (Tobiska et al., 2008a) is a combination of two indices. The Xb10 index, which
represents the solar X-ray emission at 0.1–0.8 nm, and the L10 index, which represents the
Lyman-α emission. Both the X-ray and Lyman-α emissions are deposited into the mesosphere
and lower thermosphere. During solar maximum, the X-ray emissions are dominant, while
Lyman-α is the dominant driver during solar minimum conditions (see Figure 2.8). The Y10
index “is weighted to represent mostly Xb10 during solar maximum and to represent mostly
Lyman-α during moderate and low solar activity” (Tobiska et al., 2008a) using the F10.7 index.
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B. Solar- and Geomagnetic indices

B.1.4. Mg II core-to-wing

Near 280 nm, the solar spectrum (see Figure 2.8) has absorption lines associated with singly
ionized magnesium (Mg II). The core-to-wing ratio was first described by Heath and Schlesinger
(1986). It is the ratio of the irradiance at the peaks (cores) of absorption lines of MG II to
the irradiance in the nearby continua (wings). See Snow et al. (2019, Figure 2) for a detailed
spectrum.

The Mg II core-to-wing ratio (Heath and Schlesinger, 1986; Rodney A., Viereck and Puga,
Lawrence C., 1999; Snow et al., 2019; Viereck et al., 2001) has been derived from different
satellite missions. It is highly correlated to the variability of the solar spectral irradiance in the
ultra violate range. An advantage of the Mg II core-to-wing ratio is that instrumental errors
affecting both cores and wings are eliminated.

Viereck et al. (2001) argues that MG II core-to-wing ratio is a better proxy for EUV than
F10.7.

B.1.5. M10

The M10 index (Tobiska et al., 2008b; Tobiska and Bowman, 2005) (sometimes also M10.7 index)
is basically the Mg II core-to-wing index converted to solar flux units via linear regression with
the F10.7 index.

B.2. Geomagnetic Indices

The Kp index is discussed in Section 2.3.2.2. Here additional indices used by models discussed
in Chapter 5 are summarized.

B.2.1. AP index

The AP index is the Kp indexed transformed to a linear scale (see Figure 2.17).

B.2.2. Hpo index

The Hpo index (Yamazaki et al., 2022) is a Kp-like index with higher temporal resolution and
without an upper limit. The probability density distribution of Hpo was designed to be similar
to the distribution of the Kp-index (see Figure 2.17). There are two products, the Hp60 and
Hp30 index, with 60 and 30 minutes temporal resolution, respectively.

B.2.3. Dst index

The disturbance storm‐time index (Sugiura, 1963) is determined from near-equatorial observa-
tories. Those observatories are sensitive to the equatorial ring current (e.g., Baumjohann, 2012,
Section 3.6) that is located several Earth radii above the ground. During geomagnetic storms,
the enhanced ring current, which flows westwards, decreases the horizontal component of the
magnetic field (mostly pointing towards north) in the equatorial region on the ground (Love and
Remick, 2007). This effect does not depend on the longitude. Dst can be computed continuously
also for quiet conditions. It has a temporal resolution of one minute.
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C. TIE-GCM

C.1. Sensitivity

It is quite easy to find out how a state variable simulated by a model responds to changes in
a model parameter. One can simply perturb a single parameter within a range while holding
all other parameters constant. However, this approach does not provide information about the
combined response when perturbing multiple parameters simultaneously. Moreover, when ana-
lyzing the responses, one must keep in mind that the effect depends on the chosen perturbation.
Choosing realistic perturbations is crucial to rank the parameters by their sensitivity. Even
for unrealistic perturbations, one can compare the sensitivity of a single parameter at different
altitudes.

Here, the sensitivity is investigated for solar minimum conditions (F10.7: 70 sfu, the IMF is
zero in the x and y component and 0.01 nT in z direction, the solar wind velocity is 400 km s�1,
and the solar wind density is 4 cm�3). The initial state is the climatological state included in
the TIE-GCM data. The climatological state is forwarded cyclically over five days to reach a
steady state using the 5°-version. I analyze the last forecast of the model run.

The average impact of the lower boundaries on the neutral mass density is illustrated in
Figure C.1. The influence of a global offset in the lower boundary conditions on the neutral
mass density decreases with altitude. Within the analyzed range, the impact of the neutral wind
on the neutral density is rather small at all altitudes. Changing the wind speed by �10m s�1

(�20%) changes the neutral mass density by not more than �0.2%. In contrast, a 40K (20%)
warmer neutral temperature at the lower boundary increases the neutral mass density at 400 km
by 5%. The minimal value of geopotential height is limited to 95 km in the TIE-GCM. Thus, all
the lines corresponding to perturbations less than -2 km give the same result. Note that realistic
perturbations for lower boundary conditions should be derived from ensemble runs of the model
providing the lower boundaries in the future.

Figure C.2 and Figure C.3 contain the impact of some model parameters and the external
forcings on the neutral mass density, respectively. For all external forcings, the influence increases
with altitude.
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Figure C.1.: Sensitivity of horizontally averaged neutral mass density w.r.t. lower boundary con-
ditions. The original TIE-GCM data was interpolated to a regular grid (described
in Section 7.6). Each cell was weighted by its surface area (Appendix C.4).
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Figure C.2.: Sensitivity of horizontally averaged neutral mass density w.r.t. some model param-
eters. The original TIE-GCM data was interpolated to a regular grid (described
in Section 7.6). Each cell was weighted by its surface area (Appendix C.4). The
maximal absolute perturbations of all shown parameters are 20% of the default
value.
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Figure C.3.: Sensitivity of horizontally averaged neutral density w.r.t. external forcing. The
original TIE-GCM data was interpolated to a regular grid (described in Section 7.6).
Each cell was weighted by its surface area (Appendix C.4).
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C.2. Parallelization

C.2. Parallelization

The TIE-GCM 2.0 is parallelized by subdividing the model grid into subdomains horizontally.
There is no parallelization along the vertical direction. This is illustrated in Figure C.4 for
an exemplary configuration using eight subdomains1. For computing the horizontal gradients,
each subdomain requires the data at the rim from the neighboring domains. This data is made
available by halo cells located around each subdomain. The exchange of the periodic cells in
longitude is implemented explicitly. However, this is actually not necessary since this is covered
by the halo exchange. I suspect this exchange was not removed when the parallelization was
implemented.

I use the fully parallelized implementation of PDAF. Thus, each ensemble member is computed
in parallel, and all members are computed in parallel. Each subdomain of each ensemble is
assigned to its own physical processor core. The processor cores communicate via the MPI.
Each of this processor cores is represented by a so called rank within the MPI. An exemplary
layout of the MPI ranks is illustrated in Figure C.5.

1Do not confuse these subdomains with those used for domain localization (Section 6.4.2). Here a subdomain
is the part of the complete domain that is assigned to a single physical processor core.
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Figure C.4.: Distribution of the model grid on eight subdomains and processor cores for 5°
resolution. The blue cells are the halo cells (called ghost cells in TIE-GCM code)
that contain the data from the neighboring subdomains (not on the poles). The
green and orange cells are periodic cells in longitude that are also exchanged. Since
there are already the halo cells, they are actually unnecessary.
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Figure C.5.: Exemplary MPI layout of the fully parallel PDAF implementation with 96 ensemble
members each distributed over 4 physical processor cores. For this configuration,
each number represents a MPI rank, physical processor core, and subdomain at
the same time. The MPI communicators are illustrated by rectangles. Each row
corresponds to an ensemble member or a model instance. Each column corresponds
to a subdomain of the model.

C.3. Scaling

It is not possible to reduce the execution time of a computer program immeasurably by dis-
tributing its computations over an ever-increasing number of processor cores. Typically, it is
not possible to parallelize all of the program’s computations, which means that the other proces-
sor cores must wait until the serial computations are finished. In addition, the communication
between the processor cores slows down the execution.

According to Amdahl’s law (Amdahl, 1967), the theoretical speedup SA of a program paral-
lelized using n processor cores with equal performance and serial fraction f is (e.g., Gustafson,
2011, p. 53)

SApn, fq � 1

f � 1� f

n

. (C.1)

One can measure the speedup S by dividing the time T1 required to execute a program on
a single processor core by the time Tn required to execute the same program with n processor
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Figure C.6.: Strong scaling behavior of TIE-GCM 2.0 compiled without PDAF coupling. The
benchmarks were computed on the JURECA cluster using the default TIE-GCM 2.0
setup. The results were written to a file every sixtieth step. On other clusters, a
similar behavior was observed. The dashed and dashed-dotted lines were fitted to
the data points.

cores (e.g., Zahorjan et al., 1989)

Spnq � T1
Tn
. (C.2)

The efficiency (Zahorjan et al., 1989) E using n processor core is

Epnq � Spnq
n

. (C.3)

The speedup and efficiency of the TIE-GCM 2.0 are plotted in Figure C.6. Note that the file
I/O and the solver for partial differential equations in the TIE-GCM 2.0 are not parallelized
limiting the speedup. Data is written at every sixtieth step. My analysis indicates that the
standalone TIE-GCM with 5° resolution should not use more than four physical processor cores
and the TIE-GCM with 2.5° not more than eight physical processor cores, to maintain an
efficiency above 70%. In panel B.6a one can see that the speedup fo the 5° version degenerates
when using more than 32 physical processor cores. That means the program runs longer with
64 than with 32 physical processor cores. This is likely due to the overhead introduced by the
halo communication. I estimated the serial fraction by fitting Amdahl’s law through the data
points. The estimated serial fraction of the TIE-GCM 2.0 is 7.2% and 3.6% for 5° and 2.5°
horizontal resolution, respectively. The fraction increases when writing results more frequently.
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C.4. Account for Different Volumes of Grid Cells when Computing
Statistics

The grid cells in the TIE-GCM all have varying volumes. The cells become smaller towards the
poles because the number of cells per longitudinal ring is constant. Additionally, the height of
the cells increases with altitude since pressure coordinates are used for the vertical component.
Furthermore, two grid cells located at the same pressure will not have the same height since a
surface of constant pressure deviates from a sphere.

For a three-dimensional grid defined by polar coordinates (λ, φ, r)

�
��
x

y

z

�
�� �

�
��
r sinpφqsinpλq
r sinpφqcospλq

r cospφq

�
�� (C.4)

with radius r P R�, longitude λ P r�π, πq, and latitude φ P r�π
2 ,

π
2 s the volume of a grid cell is

given by

V �
r1»
r0

λ1»
λ0

φ1»
φ0

r2 cospφq dφdλdr (C.5)

�1

3
pr31 � r30qpλ1 � λ0q psinpφ1q � sinpφ0qq . (C.6)

Note that Equation C.6 ignores the fact that each vertex of a grid cell has a different altitude.
It assumes that the upper vertices and lower vertices have the same altitude. However, the error
is neglect-able when using the average altitude at the top and bottom.

When computing statistics, one can weight each cell with the corresponding volume to account
for the differences in volume.

When averaging cells at the same vertical coordinate, one can weight them by the surface area

S �
λ1»
λ0

φ1»
φ0

r2 cospφq dφdλ (C.7)

�r2pλ1 � λ0q psinpφ1q � sinpφ0qq . (C.8)

Since in this scenario the radius r is constant, one can ignore it for the weighting. In case the
longitudinal spacing λ1 � λ0 of all gird cells is equal one can simply use sinpφ1q � sinpφ0q as
weights.
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Figure D.1.: For the year 2010 the standard deviation of the external forcings described in Sec-
tion 7.2 are plotted. The black line corresponds to the given standard deviations
(see Table 7.2). The blue line is the standard deviation computed from the ensemble
of perturbations sampled via Equation 7.2. The red line is the difference between
the given and the sampled standard deviation. Compared with the absolute values
the error is negligible.
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Figure D.2.: Each map contains the correlation between neutral mass density and a state variable
provided at the top of each column. Each row of maps correspond to a pressure
levels. The average altitude of each pressure level is provided on the left of each
row. The correlations are computed from an ensemble with 96 members at 27
March 2010 00:00 UTC+0 after forwarding the TIE-GCM 5° 10 days. The ensemble
was generated using configuration P 4 (Table 8.1). The correlations in each map
corresponds to a diagonal of a sub matrix surrounded by black lines in Figure 8.4.
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Figure D.3.: The panels in the upper row show the mass density ratio of the OLS (P 4) and ref-
erence run (single instance run without perturbations) depending on the ensemble
size. The lower rows show the corresponding ratio for the neutral temperature. All
grid cells from 26 March 2010 till 27 March 2010 have been used to calculate the
average ratios. Weights are computed according to Appendix C.4. For ensemble
sizes larger than 10, the differences w.r.t. the reference run become small. At low
altitudes, the OLS computes a mass density that is up to 10% larger compared to
the reference run independent of the ensemble size. At higher altitudes, the density
is also larger for the OLS but at a much smaller percentage.
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E. Coordinate Systems

This thesis includes various coordinate systems which are suited for different applications. This
chapter gives a compact overview of the used coordinate systems.

E.1. Transformation between Celestial and Terrestrial Reference
System

Satellite orbits are best computed in quasi-inertial geocentric reference systems fixed to the
stars (celestial reference system). Atmospheric models are typically computed on a non-inertial,
geocentric reference system co-rotating with Earth (terrestrial reference system). Thus, to bring
observations along an orbit and models together, the transformation between both systems is
required.

By convention, the International Terrestrial Reference System (ITRS) defined in the IERS
Conventions (2010, Section 4.1.4), and the geocentric celestial reference system (GCRS) also
defined in the IERS Conventions (2010, Section 2.1) are employed. Both systems share the
same origin and scale and differ by a set of time-dependent rotations. The transformation from
a point in the GCRS xGCRS and the same point in the ITRS xITRS reads (IERS Conventions
2010, Equation 5.1)

xGCRS � QptqRptqW ptqxITRS, (E.1)

where Qptq is the rotation caused by precession and nutation, Rptq is the daily rotation of Earth,
and W ptq represents polar motion (for example, Dehant and Mathews, 2015).

In this thesis, the values for the rotations are taken from the IERS EOP 14C04 time series
(Bizouard et al., 2019).

E.2. Geocentric Solar Coordinates

The x axes of the GSE and GSM coordinate systems (e.g. M. A. Hapgood, 1992) are aligned to
the Sun-Earth line (see Figure E.1). Such coordinate systems are useful to investigate phenomena
occurring on the day or night-side of Earth. GSE and GSM differ in the definition of the z axis.
The Z axis of the GSE system is the ecliptic pole, whereas the z axis of the GSM system is
aligned to the projection of the dipole axis to the YZ plane of the GSE system. For both
systems, the y axis completes the right-hand system. The transformation between the GSE and
GSM system is a single rotation around the common x axis (e.g. M. A. Hapgood, 1992, Eq. 6).
This transformation depends mainly on the daily rotation, the orbit of Earth around the Sun
and the wandering of the dipole axis.

xxix



E. Coordinate Systems

xTRF

yTRFψ

yGSM

xGSE

yGSE

zGSE

@

ε
zTRF

dipole axis
zGSM

ψ

Figure E.1.: The gray circle illustrates the ecliptic. ε indicates the obliquity and the Sun is
indicated by @. GSE and GSM system differ only by a rotation (ψ) around the
common x axis which points from the Earth towards the Sun. The z axis of the
GSE system is the ecliptic pole. The z axis of the GSM system is aligned to the
projection of the dipole axis on the YZ plane (green square) of the GSE system.

E.3. Magnetic Apex Coordinates

Magnetic Apex Coordinates (Laundal and Richmond, 2017; VanZandt et al., 1972) are used to
describe magnetic field lines. The apex is the point of a field line with the largest altitude. An
individual dipole field line is constructed by

rpφq � ARC cos2pφq (E.2)

from the condition that field lines are co-aligned with the magnetic field (Prölss, 2004, p.216).

A � RC � hA
RC

is the apex radius or shell parameter, hA is the geometric distance between Earth
surface and the apex, and r is the distance between the geocenter and the point on a field line
given by the latitude φ. See Figure E.2 for an illustration of a field line.

The apex latitude φA is the intersection of a field line with apex radius A and the surface of
Earth. Setting rpφq � RC and solving Equation E.2 for φ yields

RC �ARC cos2pφAq
1 �A cos2pφAq
1 �

?
A cospφAq

φA �� arccos

�
1?
A




�� arccos

�c
RC

RC � hA

�

eliminate RC
apply square root

solve for φA

insert definition of A

(E.3)

The first coordinate of magnetic apex coordinates is either the apex radius or the apex latitude.
It specifies an apex shell. The second coordinate is the apex longitude specifying a single field
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Figure E.2.: The apex shell is defined by the apex height hA or apex latitude φA. A single
field line (red line) is defined by the apex longitude λA. The third coordinate is
the height above the reference surface, which is indicated by the color map. This
definition is ambiguous because there are two points of the same height for each
field line. To solve this, the sign of φA is used: a positive value indicates a point
above the magnetic equator, a negative one below.

line. The third coordinate is the height above Earth’s surface. Instructions on how to transform
geographic coordinates to apex coordinates are found in (VanZandt et al., 1972).

Modified apex coordinates (Richmond, 1995) define the apex latitude not on Earth’s surface,
but on a reference surface with altitude hR above Earth (dashed half circle in Figure E.2)

φM � � arccos

�d
Req
C
� hR

Req
C
� hA

�
(E.4)

This is useful since only field lines that intersect with the reference surface are defined. Field
lines below this surface are not represented by modified apex coordinates (see Figure E.3).
This facilitates looping over all latitudes in models that are not extended to the ground as the
TIE-GCM.

Ignoring that apex and modified apex coordinates use different Earth radii, one can directly
transform them into each other via

φM � � arccos

�c
1

A

RC � hR
RC

�
. (E.5)
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Back cover picture: Eight ensemble members of a TIE-GCM 2.0 5° open loop simulation are visualized
by mapping the mass density at pressure levels 25, 20, and 15 using the waterman butterfly projection.
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