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Zusammenfassung

Roboter automatisieren zunehmend Aufgaben, die kostenintesiv oder
gefährlich sind oder präzise Messungen in großem Maßstab erfordern.
Durch die Kombination von Fortschritten in der Hardwareentwick-
lung und im maschinellen Lernen können Roboter mittels Sensoren

Daten sammeln und Messungen automatisiert interpretieren, um Informationen,
z. B. zur Analyse von Nutzpflanzen für Züchter oder von Städten zu Zwecken
des Katastrophenmanagements, zu erfassen. Klassische Missionen zur Informa-
tionserfassung setzen oft eine bekannte Umgebung voraus und sammeln tradi-
tionellerweise Daten entlang vorprogrammierter Pfade. Für die Datenerfassung
in unbekannten Umgebungen ist häufig eine manuelle Überwachung oder Be-
dienung erforderlich, was den Grad der Automatisierung einschränkt. Um das
Potenzial, Informationen zu erfassen voll auszuschöpfen, benötigen wir Algorith-
men, die es dem Roboter ermöglichen, Aktionen direkt an Bord zu planen und
auszuführen. Um ihr Verhalten flexibel anzupassen, müssen Roboter die unbe-
kannte Umgebung autonom erkunden und dabei Ressourcenbeschränkungen wie
z.B. begrenzte Energie- und Rechenkapazitäten eines unbemannten Luftfahrzeugs
(UAV) berücksichtigen. Eine wichtige Fähigkeit besteht darin, unter Unsicherheit
Entscheidungen darüber zu treffen, wo neue Daten über interessante Regionen
gesammelt werden sollen, z. B. über Krankheitsherde in einem Erntefeld, ba-
sierend auf dem unvollständigen Umgebungsverständnis während einer Mission.
Diese Aufgabe wird auch als adaptives Wegplanungsproblem bezeichnet.

Die Hauptbeiträge dieser Arbeit sind neuartige, lernbasierte, adaptive Wegpla-
nungsmethoden für die UAV-basierte Informationserfassung in unbekannten Um-
gebungen. Unsere Methoden leiten ein ressourcenbeschränktes UAV in Regionen,
in denen es informative neue Messungen sammeln könnte, um sein aktuelles Um-
gebungsverständnis zu verbessern und so effizient Informationen zu sammeln.

Zuerst stellen wir eine neue adaptive Wegplanungsmethode vor, die klassische
Wegplanungsansätze mit Fortschritten im Bereich des bestärkenden Lernens kom-
biniert, um Strategien zur Informationserfassung zu trainieren. Wir entwickeln
ein auf einer Baumsuche basierendes Wegplanungsverfahren, das durch gelern-
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te neuronale Netze gesteuert wird. Unsere lernbasierte Methode beschleunigt die
Wegplanung während der Mission auf einem ressourcenbeschränkten UAV im
Vergleich zu nicht lernbasierten, rechenintensiven Planungsmethoden.

Die meisten Wegplanungsmethoden werden für bestimmte Kartenrepräsentatio-
nen der Umgebung entwickelt und trainiert. Dadurch sind sie entweder für die
Erfassung von Informationen mit kontinuierlichen Werten, wie z. B. der Oberflä-
chentemperatur, oder diskreten Werten, wie z. B. der Segmentierung von Unkraut
und Pflanzen, geeignet. Unsere zweite Methode löst diese Einschränkung durch
eine neue Formulierung des adaptiven Wegplanungsproblems auf, die Missionen
mit beliebigen zu beobachtenden Informationen vereinheitlicht. Basierend auf un-
serer Formulierung trainieren wir eine karten-agnostische Strategie zur Informa-
tionserfassung in Umweltbeobachtungsmissionen mittels bestärkenden Lernens.
Zusätzlich vereinheitlicht unsere Formulierung vorherige Wegplanungsmethoden.

In Missionen, bei denen Bilder mithilfe von mehrschichtigen Bildverarbeitungs-
modellen semantisch interpretiert werden, verschlechtern sich Modellvorhersagen
in unbekannten Umgebungen oft. Daher sind kostenintensive manuelle Anno-
tation der gesammelten Bilder erforderlich, um das Bildverarbeitungsmodell zu
verbessern. Um das semantische Sehen eines UAV in unbekannten Umgebungen
zu verbessern, stellen wir ein neues adaptives Wegplanungssystem für das aktive
Lernen von semantischen Segmentierungsmodellen vor. Im Vergleich zu aktuellen
nicht-adaptiven Kampagnen zur Sammlung von Trainingsdaten verbessert unser
System die semantische Segmentierung schneller und reduziert gleichzeitig die
Anzahl der benötigten manuell annotierten Bilder.

Unsere vierte Methode ist ein neues halbüberwachtes Lernverfahren zur Verbes-
serung des semantischen Sehens in unbekannten Umgebungen, um den Aufwand
der manuellen Annotation weiter zu verringern. Für das Modelltraining kombi-
nieren wir eine kleine Menge an manuell annotierten Bildpixeln mit automatisch
annotierten Pixeln, die auf der semantischen Umgebungskarte basieren, die das
UAV online erstellt. Unsere Methode benötigt weniger als ein Prozent der ma-
nuell annotierten Pixel, um eine ähnlich akkurate semantische Segmentierung zu
erzielen wie die auf der manuellen Annotation aller Bildpixel basierende Methode.

Die in dieser Dissertation vorgestellten Methoden wurden in begutachteten Kon-
ferenzbeiträgen und Zeitschriftenartikeln veröffentlicht. Unser Beitrag, in dem wir
offenen Forschungsfragen des aktiven Lernens mittels adaptiver Wegplanung dis-
kutieren, erhielt den Preis für den besten Beitrag in dem IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems Workshop on Label Efficient Learning Para-
digms for Autonomy at Scale. Des Weiteren haben wir Implementierungen aller
Methoden der Forschungsgemeinschaft als Open Source zur Verfügung gestellt.
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Abstract

Robots increasingly automate tasks that are costly, dangerous, or re-
quire precise measurements at scale. Combining advances in hard-
ware with recent progress in machine learning-based computer vision
enables robots to collect data with onboard sensors and interpret mea-

surements to gather information, e.g. monitoring crop conditions for breeders or
cities for disaster management. Classical information-gathering missions might
require the environment to be known before deployment and traditionally execute
pre-programmed paths for robotic data collection. In unknown environments,
robot autonomy is often limited by the need for human supervision or operation.
To fully leverage the information-gathering potential, we need algorithms that
enable the robot to plan actions onboard during its deployment. Mainly, robots
must autonomously collect information and adapt their behaviour online in the
unknown environment while considering onboard resource constraints, such as
the limited energy and compute power of unmanned aerial vehicles (UAVs). A
key aspect is making decisions under uncertainty where to collect new informa-
tive data about areas of interest, e.g. disease hotspots in a crop field, based on
the robot’s incomplete understanding of the environment during a mission. This
task is also known as the adaptive informative path planning problem.

The main contributions of this thesis are novel learning-based adaptive in-
formative path planning approaches for UAV-based information gathering in un-
known environments. Our approaches guide a resource-constrained UAV towards
areas where it could collect informative new measurements to enhance its cur-
rent understanding of the environment in which it operates, thus increasing its
efficiency in information gathering within the mission constraints.

The first approach is a new adaptive informative path planning method com-
bining classical robotic path planning with reinforcement learning to train strate-
gies for information-gathering missions. We connect the adaptive informative
path planning problem and the general reinforcement learning problem. Using
this connection, we develop a tree search-based replanning procedure guided by
learned neural networks. Our learning-based method accelerates path replan-
ning during deployment on a resource-constrained UAV compared to previous
non-learning-based adaptive informative path planning methods.
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Most adaptive informative path planning methods are designed and trained
for certain environmental map representations. This makes them applicable to
either monitor continuous-valued information, such as surface temperature, or
discrete-valued information, such as segmentation of weeds and crops. How-
ever, these methods cannot be applied to changing to-be-monitored information
without re-designing or re-training planning strategies. The second approach ad-
dresses this limitation by introducing a novel mathematical formulation of the
adaptive informative path planning problem that unifies missions with arbitrary
to-be-monitored environment information. Using our formulation, we train a
map-agnostic information-gathering strategy with reinforcement learning for en-
vironmental monitoring missions. Moreover, our formulation unifies previously
developed adaptive informative path planning methods.

In missions that require semantic interpretation of images using deep learning-
based vision models, the model’s prediction performance and, hence, the UAV’s
efficiency in information gathering typically degrade in unknown environments.
Thus, these missions require costly human annotations of collected images to
re-train and improve vision models. We propose a novel adaptive informative
path planning framework for active learning of semantic segmentation models
to improve a UAV’s semantic vision in unknown environments while reducing
human annotations. Our key insight is to link model uncertainty measures from
active learning to the information-gathering planning objective. Our framework
improves the semantic segmentation performance faster while drastically reducing
the number of human-labelled images required to train the semantic vision model
compared to non-adaptive exhaustive training data collection campaigns.

Lastly, our fourth approach is a novel semi-supervised learning method for
improving semantic vision in unknown environments to further reduce human
labelling efforts. For model training, we combine a sparse set of image pixels
selected for human labelling with automatically labelled pixels based on the se-
mantic environment map the UAV builds during deployment. Our new pixel
selection method for human labelling outperforms state-of-the-art methods. Our
automatically generated labels further improve model performance. Overall, our
method requires less than one per cent of the human-labelled pixels to maintain
semantic segmentation performance similar to exhaustively labelling all pixels.

Our approaches proposed in this thesis have been published in peer-reviewed
conferences and journals. Our paper discussing open research questions in ac-
tive learning of robot vision received the best paper award at the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems as part of the Workshop on La-
bel Efficient Learning Paradigms for Autonomy at Scale. We made all method
implementations available as open source to foster further research.
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Chapter 1

Introduction

Tremendous advances in the fields of robotics and machine learning
have sparked a new wave of robotic systems that aim to automate
tasks executed in environments other than carefully controlled lab
conditions. These robots are deployed in various environments to

execute costly, dangerous tasks, as well as those which require precise measure-
ments at scale. Robots are used to monitor crop conditions [95, 172, 179] to
deliver valuable information for crop breeders, manage weeds in arable fields to
reduce agrochemical usage [1, 104], and are used in urban planning to analyse land
use [75, 133, 166] or in industrial sites to inspect infrastructure [86, 186]. In ad-
dition, remarkable progress in deep learning-based vision techniques [59, 81, 168]
enables robots to automatically interpret data collected with onboard sensors,
e.g. segmenting imagery of arable fields into different semantics, such as weed
and crop [109, 140, 176], to extract task-relevant information from collected data.

Although such vision methods allow automated interpretation of collected
sensor data, many of today’s robotic systems act mainly as passive data collec-
tion devices. Classical robotic systems require human supervision or operation to
collect data in an unknown environment. If the environment is known before de-
ployment, traditional robotic systems often execute pre-programmed paths along
which the data is collected [48]. To fully leverage the potential of information
gathering in unknown environments, a robot needs to be equipped with the abil-
ity to actively plan its next actions directly onboard during deployment. In this
way, the robot can flexibly adapt its behaviour online based on its current un-
derstanding of the environment, which allows for gathering more information in
less time during a mission [64]. To this end, the robot needs to autonomously
explore initially unknown environments while considering the platform’s resource
constraints, such as limited energy and compute power of unmanned aerial ve-
hicles (UAVs). To achieve this, a key algorithmic capability is to decide where
to move next to efficiently collect informative data about task-relevant areas of
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Figure 1.1: Overview of a robotic system for an onboard perception-action loop. The robot
is equipped with sensors to collect measurements, which are fused into an environment map.
Based on the current map and the robot’s state, the planning algorithm decides which action to
execute next. The controller computes the low-level actuation commands to execute the action.

interest based on the robot’s current noisy and incomplete understanding of the
environment during deployment [106, 127], such as finding areas of high weed
pressure in arable fields to inform in-field management.

Robotic information gathering is closely connected to active perception, re-
quiring a percept to reason about how to change a passive sensor’s state to gather
goal-specific information, i.e. to perform active sensing [5]. The robotic system
relies on a perception-action loop to adaptively plan the next actions for active
sensing. A typical system incorporating this perception-action loop is depicted in
Fig. 1.1. The robot is equipped with an onboard sensor to collect measurements,
which are fused into an environment map based on the robot’s current pose and
previously collected measurements. The planning algorithm uses the environment
map and the current robot state to reason about and decide on which action, e.g.
movement, to execute next. The controller is responsible for the low-level ac-
tuation of motors to execute the planned action. Classical planning algorithms
enable the robot to plan its path towards a goal position [58, 73, 87]. Although
these planning algorithms tell the robot how to navigate towards a position, they
cannot plan where to go next on a higher level of reasoning, rendering them
impractical for fully autonomous guidance in unknown environments.

The focus of this thesis is to develop novel planning algorithms that efficiently
guide a resource-constrained robot online in an initially unknown environment
towards areas where the robot could potentially collect informative new sensor
measurements to improve its understanding of the environment. In the literature,
this is known as the adaptive informative path planning (IPP) problem [64, 127].
Non-adaptive IPP methods pre-plan informative paths prior to a mission and ex-
ecute these fixed paths during deployment [106]. These methods perform well
in exploring unknown environments with limited resources but cannot adapt
their behaviour during a mission based on the robot’s evolving understanding
of the environment. Thus, non-adaptive IPP methods may be limited in terms of
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1. Introduction

information-gathering efficiency in scenarios where measurement uncertainty de-
pends on the observed data or in which information is non-uniformly distributed,
e.g. if a user is interested in certain non-uniformly distributed environment fea-
tures, such as hotspots of weed pressure in an arable field. In contrast, adaptive
IPP methods replan informative paths onboard during deployment based on the
robot’s evolving understanding of the environment. This thesis focuses on new
adaptive IPP methods in the context of information-gathering missions over 2D
flat terrains deployed on UAVs. An example of such a mission is a UAV with
limited compute resources and flight time, monitoring unknown arable fields and
tasked to precisely map surface temperature hotspots as these areas might in-
dicate plant drought stress. Our proposed methods could be adopted to robot
platforms and mission goals different from the ones showcased in this thesis.

Despite an increasing research effort in the development of adaptive IPP al-
gorithms and their encouraging higher information-gathering efficiency than non-
adaptive pre-programmed paths, classical adaptive IPP methods still show limi-
tations. First, most adaptive IPP methods solve the planning problems described
above in a computationally expensive fashion. This leads to high onboard com-
pute requirements, slow replanning of future paths, or a sacrifice of path planning
performance. Thus, the adaptivity and practicality of classical adaptive IPP algo-
rithms for onboard deployment on resource-constrained mobile robots are limited.
Second, most adaptive IPP methods assume a reliable performance of onboard
sensors used to interpret and extract information from incoming measurements.
However, with today’s widespread adoption of deep learning-based computer vi-
sion models, e.g. to semantically segment buildings, streets, and vegetation in
collected images for urban planning purposes, this assumption is often not valid.
As the environment for robot deployment is initially unknown, the incoming sen-
sor measurements often deviate from those the deep learning-based vision system
was trained on. In these cases, the prediction quality of these kinds of sensors
often drastically degrades. Thus, the amount of information extracted from indi-
vidual sensor measurements is limited by the vision model’s performance, leading
to an overall degraded robotic information-gathering efficiency.

This thesis will tackle these outlined limitations and propose new, more ef-
ficient approaches to these problems. Overall, this thesis answers the following
three research questions in the context of adaptive IPP for terrain monitoring in
unknown environments as depicted in Fig. 1.2:

1. How to increase the compute efficiency of adaptive IPP algorithms without
sacrificing planning performance in information-gathering missions?

2. How to improve deep learning-based vision models in unknown environ-
ments while minimising the amount of new human-labelled training images?

3



1.1. Main Contributions

Figure 1.2: Overview of research questions (grey), hypothesis (green), main contributions (red),
and structure (orange) of this thesis. In Chap. 4 and Chap. 5, we propose new adaptive IPP
methods using reinforcement learning. In Chap. 6, we introduce an adaptive IPP framework
for active learning of deep learning-based robot vision. In Chap. 7, we develop a new semi-
supervised learning method for robot vision. Our research hypothesis is that combining robot
learning and planning improves the efficiency of robotic information gathering.

3. Which image queries should be labelled by a human annotator, and which
vision learning signals can be derived from the robot’s actively improving
understanding of the environment to make labelling more efficient?

We propose novel approaches for adaptive IPP combining advances in machine
learning with classical robotic planning approaches. Our main research hypoth-
esis is that these integrated robot learning and planning approaches can enhance
information-gathering efficiency in UAV-based terrain monitoring missions. In
Chap. 4 and Chap. 5, we propose new learning-based adaptive IPP methods us-
ing reinforcement learning to tackle the first question. In Chap. 6, we introduce
a novel adaptive IPP framework for active learning of deep learning-based vi-
sion sensors to answer the second question. In response to the third question, in
Chap. 7, we develop a new semi-supervised learning method for robotic semantic
vision using adaptive IPP to drastically reduce human labelling efforts.

1.1 Main Contributions
The main contributions of this thesis are novel approaches for adaptive IPP in
UAV-based terrain monitoring missions combining robot learning and planning.
In Chap. 2, we review existing IPP approaches and discuss the advantages of
our proposed methods. Our methods presented in Chap. 4 and Chap. 5 leverage
advances in reinforcement learning (RL). To aid understanding of these adaptive
IPP methods, in Chap. 3, we introduce basic RL terminology and algorithms.
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1. Introduction

In Chap. 4, we introduce a novel adaptive IPP algorithm for information
gathering in UAV-based terrain monitoring missions. The robot is tasked to map
continuous-valued features over 2D flat terrains, such as signal strength or sur-
face temperature. It aims to quickly find and precisely map user-defined areas of
interest, e.g. areas of high surface temperature in arable fields, performing online
replanning of paths on a compute- and flight time-constrained UAV. Specifi-
cally, we combine recent advances in RL for playing board games with classical
sampling-based robotic path planning algorithms into a novel RL-based adap-
tive IPP approach. Our approach shows high information-gathering efficiency in
terms of map uncertainty reduction over time while drastically reducing replan-
ning run time compared to previous non-learning-based adaptive IPP methods on
compute-constrained platforms. These results could facilitate deploying adaptive
IPP methods on resource-constrained mobile robots.

Despite progress in learning-based adaptive IPP methods, these approaches
are often not applicable beyond the specific mission characteristics they were
trained on. First, learning-based methods assume to-be-mapped terrain features
either to be continuous-valued, e.g. surface temperature, or discrete-valued, e.g.
weed-crop classification. Mapping continuous- or discrete-valued terrain features
requires different map representations that are directly input to the learned plan-
ning strategies. Thus, these strategies are only applicable to the map representa-
tion on which they were trained. Second, planning strategies are trained on static
user-defined parameters, such as sets of feature values qualifying a terrain area
to be of interest for precise mapping, e.g. high surface temperature values above
a certain threshold. Thus, these approaches tend to overfit a single user-defined
criterion for areas of interest, dropping in performance as user interests change.
Overall, these assumptions require laborious re-design and time-consuming re-
training of learning-based methods as mission characteristics change.

In Chap. 5, we address these limitations and propose a novel map-agnostic
adaptive IPP formulation for terrain monitoring. We derive a new planning state
representation as input to the adaptive IPP strategy that unifies varying map
representations. Based on this map-agnostic state and a new reward function, we
train a single adaptive IPP strategy using RL that is applicable to continuous-
and discrete-valued terrain feature monitoring missions with different user-defined
areas of interest. Our planning strategy maintains information gathering per-
formance on various terrain monitoring missions compared to state-of-the-art
map-specifically designed or trained adaptive IPP methods. Hence, our approach
facilitates deploying learned adaptive IPP strategies without re-designing and
re-training for specific mission characteristics. Furthermore, our map-agnostic
formulation integrates with and unifies state-of-the-art non-learning-based adap-
tive IPP methods while maintaining their performance.
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1.1. Main Contributions

Chap. 6 answers the question of how to adapt deep learning-based semantic
vision models to unknown environments while minimising the number of costly
human-labelled images. We introduce a novel adaptive IPP framework for active
learning in semantic mapping missions, e.g. monitoring of buildings, streets and
vegetation for urban planning purposes. Active learning is a branch of computer
vision research that aims to develop algorithms selecting a minimal number of
to-be-labelled data points from an existing large pool of unlabelled data maxi-
mally improving the vision model’s performance. In contrast, we directly deploy
the robot in the initially unknown environment without prior access to such a
data pool. We develop adaptive IPP algorithms to target areas of informative new
training data that potentially maximise semantic segmentation performance upon
vision model retraining. We attain this targeted planning behaviour by proposing
novel robotic planning objectives that combine ideas from active learning with
adaptive IPP. Our framework maximises the deep learning-based vision system’s
performance while minimising the number of human-labelled images compared
to state-of-the-art planning methods for active learning across various environ-
ments with vastly different semantics. Thus, our approach minimises the human
labelling effort required to adapt the robot’s vision in unseen environments.

Finally, in Chap. 7, we extend our adaptive IPP framework for active learning
by developing a new semi-supervised learning approach to reduce human labelling
efforts further. Instead of labelling all pixels of an image manually, we propose
a new selection criterion to choose a sparse set of pixels from collected images to
be labelled by a human annotator. Additionally, we automatically create con-
sistent semantic labels from the robot’s online-built semantic environment map
to further improve the model’s performance without additional human labels.
Our semi-supervised approach to adaptive IPP for active learning drastically re-
duces the human labelling effort of state-of-the-art fully supervised approaches
while maintaining the vision model’s performance. Furthermore, it outperforms
self-supervised approaches in semantic terrain mapping missions. Hence, our ap-
proach answers the third research question of how to leverage the robot’s under-
standing of the environment and which labelling queries to ask a human annotator
to most efficiently adapt the robot’s vision to unseen terrains.

In sum, this thesis presents novel approaches for adaptive IPP in the context
of UAV-based terrain monitoring missions. We make several key contributions
to the field of robotic information gathering and to the field of active learning
for robot vision. Our approaches show how to combine adaptive IPP with RL
and how to combine adaptive IPP methods with semi-supervised active learning
to improve the information-gathering efficiency of prior state-of-the-art methods.
We made implementations of all presented methods publicly available to foster
further research. The links to the implementations are listed in Sec. 1.2.
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1.2 Publications
Parts of this thesis have been published in the following peer-reviewed conference
and journal articles, to which I have been the main contributor:

• Julius Rückin, David Morilla-Cabello, Cyrill Stachniss, Eduardo Montijano,
and Marija Popović. Towards Map-Agnostic Policies for Adaptive Infor-
mative Path Planning. IEEE Robotics and Automation Letters (RA-L),
10(5):5114–5121, 2025. doi: 10.1109/LRA.2025.3557233.

• Julius Rückin, Federico Magistri, Cyrill Stachniss, and Marija Popović. Ac-
tive Learning of Robot Vision Using Adaptive Path Planning. In IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS) Workshop on Label
Efficient Learning Paradigms for Autonomy at Scale, 2024

• Julius Rückin, Federico Magistri, Cyrill Stachniss, and Marija Popović.
Semi-Supervised Active Learning for Semantic Segmentation in Unknown
Environments Using Informative Path Planning. IEEE Robotics and Au-
tomation Letters (RA-L), 9(3):2662–2669, 2024.
doi: 10.1109/LRA.2024.3359970.

• Julius Rückin, Federico Magistri, Cyrill Stachniss, and Marija Popović. An
Informative Path Planning Framework for Active Learning in UAV-Based
Semantic Mapping. IEEE Trans. on Robotics (TRO), 39(6):4279–4296,
2023. doi: 10.1109/TRO.2023.3313811.

• Julius Rückin, Liren Jin, Federico Magistri, Cyrill Stachniss, and Marija
Popović. Informative Path Planning for Active Learning in Aerial Semantic
Mapping. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2022. doi: 10.1109/IROS47612.2022.9981738.

• Julius Rückin, Liren Jin, and Marija Popović. Adaptive Informative Path
Planning Using Deep Reinforcement Learning for UAV-based Active Sens-
ing. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2022. doi: 10.1109/ICRA46639.2022.9812025.

As part of my doctoral studies, I have contributed to the following peer-
reviewed journal and conference publications, which are not part of this thesis:

• Marija Popović, Joshua Ott, Julius Rückin, and Mykel J. Kochenderfer.
Learning-based Methods for Adaptive Informative Path Planning. Journal
on Robotics and Autonomous Systems (RAS), 179:104727, 2024.
doi: 10.1016/j.robot.2024.104727.
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• Apoorva Vashisth, Julius Rückin, Federico Magistri, Cyrill Stachniss, and
Marija Popović. Deep Reinforcement Learning with Dynamic Graphs for
Adaptive Informative Path Planning. IEEE Robotics and Automation Let-
ters (RA-L), 9(9):7747–7754, 2024. doi: 10.1109/LRA.2024.3421188.

• Jonas Westheider, Julius Rückin, and Marija Popović. Multi-UAV Adap-
tive Path Planning Using Deep Reinforcement Learning. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2023.
doi: 10.1109/IROS55552.2023.10342516.

• Gianmarco Roggiolani, Julius Rückin, Marija Popović, Jens Behley, and
Cyrill Stachniss. Unsupervised Semantic Label Generation in Agricultural
Fields. In Frontiers in Robotics and AI, 12, 2025.
doi: 10.1109/IROS55552.2023.10342532.

• Alireza Ahmadi, Julius Rückin, Michael Halstead, Marija Popović, and
Chris McCool. OptimWeeder: A Reinforcement Learning-Based Approach
to Control Mobile Multi-Axes Weeding Systems. Computers and Electron-
ics in Agriculture, under review, 2024

• Tobias Zaenker, Julius Rückin, Rohit Menon, Marija Popović, and Maren
Bennewitz. Graph-based View Motion Planning for Fruit Detection. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2023. doi: 10.1109/IROS55552.2023.10342532.

• Liren Jin, Xieyuanli Chen, Julius Rückin, and Marija Popović. NeU-NBV:
Next Best View Planning Using Uncertainty Estimation in Image-Based
Neural Rendering. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2023. doi: 10.1109/IROS55552.2023.10342226.

• Liren Jin, Julius Rückin, Stefan H. Kiss, Teresa Vidal-Calleja, and Marija
Popović. Adaptive-Resolution Field Mapping Using Gaussian Process Fu-
sion with Integral Kernels. IEEE Robotics and Automation Letters (RA-L),
7(3):7471–7478, 2022. doi: 10.1109/LRA.2022.3183797.

Additionally, we made our RL-based adaptive IPP approaches, the adaptive
IPP framework for active learning, and the semi-supervised learning method for
active learning publicly available to encourage further research:

• Chap. 4 presents our RL-based adaptive IPP algorithm for information
gathering in continuous-valued terrain monitoring missions. The implemen-
tation is available online at: https://github.com/dmar-bonn/ipp-rl
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1. Introduction

• Chap. 5 presents a map-agnostic formulation of the adaptive IPP prob-
lem for a broad family of terrain monitoring missions, enabling training of
more generally applicable adaptive IPP strategies. The implementation is
available online at: https://github.com/dmar-bonn/ipp-rl-gen

• Chap. 6 presents our IPP framework for active learning of semantic robotic
vision. The IPP framework implementation is available online at: https://
github.com/dmar-bonn/ipp-al-framework. The uncertainty-aware Bayesian
semantic segmentation network proposed as part of this framework is avail-
able online at: https://github.com/dmar-bonn/bayesian_erfnet

• Chap. 7 presents our semi-supervised learning approach for active learn-
ing of semantic robotic vision using adaptive IPP. The implementation is
available online at: https://github.com/dmar-bonn/ipp-ssl
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Chapter 2

Related Work

There has been remarkable progress in the field of robotics, driven
by the ever-growing need to automate complex, repetitive, costly,
dangerous or error-prone tasks in various domains [7, 36, 56]. In
recent years, tremendous advances in deep learning-based computer

vision have enabled robots to perceive and interpret environments in which they
are deployed [59, 81, 168], leveraging advanced sensors, such as RGB-D cam-
eras [43, 55, 151] and LiDAR scanners [85, 110, 188]. To achieve autonomous
execution of tasks, robots need to plan their actions to reach the task’s goal
based on perceived environment information. Various methods for local naviga-
tion and planning of paths in an a priori known environment exist [73, 82, 87].
However, planning robot actions in an initially unknown environment to maximise
the robot’s understanding of the environment under limited budget constraints
is still an open and challenging research question.

To achieve autonomy, robots must operate in and efficiently gather informa-
tion about unknown environments. As a solution to this problem, IPP methods
aim to plan robot actions that maximise the gathered information using noisy
onboard sensors considering resource constraints, such as time or energy [61,
63, 102, 106]. IPP was applied in information gathering tasks, such as terrain
monitoring [61, 63, 126, 161, 171], exploration [16, 18, 23, 99], and search and res-
cue [105, 116] using mobile ground [16, 18], aerial [126, 171] or aquatic robots [61].

We divide this chapter into two subsections. To begin, we review IPP ap-
proaches for planning informative next actions and discuss the advantages of our
RL-based approaches over existing approaches in Sec. 2.1. In Sec. 2.2, we ex-
amine the active and semi-supervised learning paradigms known from computer
vision research and discuss how our adaptive IPP approaches extend this idea to
robotic information gathering. For an in-depth review and taxonomy, we refer
the reader to our survey of learning-based adaptive IPP approaches [127].
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2.1. Informative Path Planning

2.1 Informative Path Planning

Informative path planning methods seek action sequences that maximise the in-
formation gathered about an initially unknown environment using noisy onboard
sensors while taking into account the robot’s limited resources, e.g. flight time or
energy [102, 106, 127]. These approaches are applied in various domains, such as
terrain monitoring [61, 63, 126, 161, 171], precision agriculture [107, 124, 171, 187],
exploration [16, 18, 23, 99], or search-and-rescue [105, 116], using diverse robot
platforms, such as UAVs [126, 171], unmanned ground vehicles [16, 18], or un-
manned surface vehicles [61]. The methods developed in this thesis are mostly
concerned with terrain monitoring and exploration tasks deployed on UAVs. Our
methods could be applied to other robot platforms, e.g. unmanned ground vehi-
cles and unmanned surface vehicles, with minimal platform- and sensor-dependent
changes, and could be extended to other environments, e.g. in indoor scenarios.

IPP approaches can be categorised into non-adaptive and adaptive plan-
ning methods. Non-adaptive approaches pre-plan static paths prior to a mis-
sion [48, 106, 163] while adaptive methods replan paths onboard based on the
robot’s current understanding of the environment [30, 61, 63, 102, 117]. Many
non-adaptive methods pre-compute paths that exhaustively and often uniformly
cover the entire environment following geometrically motivated patterns, such as
lawnmower-like coverage paths [28, 108]. These methods assume homogeneous
distribution of information, e.g. of areas of interest, or a user being interested in
exploring the entire terrain apart from certain areas of interesting. Furthermore,
they assume homoscedastic uncertainty [76] in collected sensor measurements,
i.e. sensor noise independent of the robot’s state, e.g. a UAV’s altitude, and the
measured observation, e.g. a sensor that detects weeds and crops in an arable
field equally well. If one or both assumptions do not hold, these non-adaptive
methods plan suboptimal paths regarding information-gathering efficiency.

In practice, users are often interested in non-homogeneously distributed areas
of interest, such as clusters of high weed pressure in arable fields. The task of ter-
rain exploration can be viewed as a special case in this more general class of tasks,
where areas of interest span the entire terrain. Additionally, most sensors have
heteroscedastic uncertainty characteristics [76], e.g. due to lower ground sampling
resolution at higher UAV altitudes or due to deep learning-based sensors that de-
grade in performance on underrepresented classes in long-tailed problems [189].
Adaptive IPP methods were proposed for various tasks and deployed on differ-
ent robot platforms. Adaptive methods consistently show better information-
gathering performance than non-adaptive approaches [30, 61, 63, 102, 117].

Adaptive IPP methods can be categorised into non-learning-based [30, 61,
63, 102, 117] and learning-based planning approaches [19, 24, 29, 32, 116, 174].
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Many adaptive IPP approaches enhance their planning performance by using
some form of learning to update environment maps based on previously collected
measurements, e.g. using Gaussian processes [61, 63, 102, 117, 117, 126], or
completing unknown space using neural networks [35, 50, 94, 150, 164, 192]. Here,
we categorise adaptive IPP methods as non-learning-based planning methods if
they solely employ learning-based techniques to update or enhance mapped sensor
information but do not use learning-based methods to perform path planning.
The learning-based adaptive IPP methods proposed in this thesis also employ
Gaussian process-based mapping [61, 63, 102, 126]. Such learning-based mapping
methods can potentially enhance the robot’s understanding of the environment
and subsequently better inform the decision-making in the planning algorithm.
We view these methods as an interesting orthogonal research direction to learning-
based planning methods and do not include them in the subsequent discussion.
We refer the reader to Sec. 4.1 of our survey [127] for more details.

Various non-learning-based adaptive IPP approaches have been proposed.
These methods mainly differ in their replanning procedures and can be cate-
gorised into sampling-based, optimisation-based, and geometric planning algo-
rithms. Sampling-based methods iteratively sample potential paths and evaluate
the sampled paths’ information values based on the robot’s current understanding
of the environment [11, 30, 63, 117, 142]. These approaches build upon well-known
sampling-based search algorithms, such as receding horizon planning [63, 142] or
Monte Carlo tree search [11, 30, 117], to gradually steer the sampling process to-
wards paths of higher information value. Receding horizon-based algorithms plan
in continuous robot workspaces while Monte Carlo tree search-based algorithms
usually assume a finite number of discrete actions the robot can execute. Due
to the exponential growth of candidate paths with increasing non-myopic plan-
ning horizons, non-learning-based sampling-based IPP algorithms require sam-
pling many potential future paths to generate high-quality planning solutions.

In contrast to sampling-based methods that iteratively sample waypoints to
find a path, optimisation-based methods aim to directly optimise the information
value of a complete path in the space of all possible paths the robot can execute.
Optimisation-based methods differ in the algorithms they use to solve this opti-
misation problem. Most works utilise derivative-free blackbox optimisation meth-
ods, such as variants of evolutionary algorithms [61, 126] or Bayesian optimisation
algorithms [102, 171], to plan paths in continuous space. Similar to sampling-
based methods, blackbox optimisation methods often require many potential can-
didate paths for which evaluating their information value is compute-expensive,
resulting in slow replanning of paths. Ott et al. [117] propose a value-based dy-
namic programming algorithm to optimise informative paths over a discrete grid
of waypoints. Although they propose a fast-to-compute information value of po-
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tential waypoints along a path, dynamic programming approaches suffer from the
exponential growth of paths to evaluate. In contrast to the planning problems
considered in this thesis, they assume knowledge of a robot’s goal destination,
which allows for an efficient decomposition of the problem. Other approaches
aim to compute the gradient of the information value function with respect to
the continuous-time path and then leverage gradient-based first- or second-order
optimisation algorithms [37, 111, 118]. These approaches require fully differen-
tiable information value functions, robot motion and sensor models, making them
less flexibly applicable to various information-gathering setups.

Geometry-based methods collect potential next robot poses based on the ge-
ometry of the already explored space [138, 141, 182]. Commonly, these methods
select candidate poses at frontiers of explored and unexplored environment spaces.
The information value of each candidate pose is evaluated, and the pose that holds
the maximal information value is greedily selected [136, 138, 141, 182]. These
methods have been proven to be efficient for the exploration of entire environ-
ments as frontiers lead to paths that aim to maximise the explored area [182] while
possibly considering additional criteria, such as sensor uncertainty [136, 138]. In
scenarios where information about certain areas of interest should be precisely
mapped, e.g. hotspots of high surface temperature, frontier-based methods strug-
gle to inspect these areas more closely as soon as they are discovered once.

Non-learning-based adaptive IPP methods show promising results, consis-
tently outperforming classically used non-adaptive path planning methods in
robotic information gathering. However, non-learning-based methods tend to
be computationally inefficient in replanning paths based on the evolving under-
standing of the environment [19, 126, 135]. The information criteria estimating
a path’s information value are commonly expensive to compute. As many poten-
tial future paths must be evaluated to find informative paths, non-learning-based
methods often do not allow for fast or frequent online replanning. Reducing the
number of candidate paths these methods evaluate leads to faster replanning
but often degrades information-gathering performance during deployment. This
makes it challenging to deploy them on resource-constraint robots.

In recent years, learning-based methods have been proposed to tackle the
adaptive IPP problem, providing higher compute efficiency and achieving sim-
ilar or better planning performance on some information-gathering tasks. All
learning-based methods achieve this by shifting the computational burden of find-
ing a well-performing planning policy to an offline training phase and inferring the
learned planning policy at deployment [4, 19, 24, 29, 32, 83, 98, 116, 130, 169, 174].
These approaches can be categorised into imitation learning methods [4, 29, 32,
98, 130] and RL methods [19, 24, 83, 116, 169, 174] used to learn planning policies.
Imitation learning methods learn a policy in a supervised fashion that maximises
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the likelihood of resembling an expert adaptive IPP policy [123]. These expert
policies could be generated by human operators guiding the robot manually or us-
ing previously discussed non-learning-based adaptive IPP methods. In contrast,
RL methods learn policies in a trial-and-error interaction with an environment
to maximise the experienced sum of rewards received along executed paths.

In this thesis, we focus on RL-based methods to learn adaptive replanning
policies since imitation learning is often limited by the quality and quantity of the
expert policy data available. Furthermore, we exploit probabilistic environment
map representations capturing the robot’s understanding of the environment to
construct information-theoretic rewards that incentivise the robot to minimise
the remaining map uncertainty. These rewards, so-called intrinsic rewards [26],
can be computed in an unsupervised fashion without prior knowledge of expert
data or an environment in which the robot is trained.

RL-based methods have been proposed for specific adaptive IPP tasks, such
as environment exploration or terrain monitoring of areas of interest using occu-
pancy grid maps [18, 22, 98, 116, 169] or monitoring interesting continuous phys-
ical phenomena using Gaussian processes [19, 27, 34, 174]. These works mainly
differ in the design of their reward function influenced by the mission goal, robot
and environment state representation, policy and critic function approximators,
and actions space design. Methods for exploration of the entire environment de-
sign reward functions measuring coverage of the environment [14, 83, 98, 192],
while methods considering precisely mapping areas of interest on a terrain com-
monly reward decreasing map uncertainty in these areas [3, 19, 34, 170, 185]. All
works store a spatial map in their state representation using different map repre-
sentations, such as occupancy maps [22, 23, 98, 100, 116, 184, 192], sub-sampled
Gaussian processes [27, 34, 169, 174], or topological graph maps [18, 19, 24, 185].
Most works use well-known RL algorithms to train planning policies, e.g. classical
off-policy deep Q-network [22, 27], sample-efficient off-policy soft actor-critic [18],
or popular on-policy proximal policy optimisation [18, 19, 100, 184]. In Chap. 4,
we use RL to train policies and value functions to steer the sampling process
and to evaluate future paths’ information values. In this way, we circumvent
sample-inefficient candidate path selection and compute-expensive information
value evaluation. Our RL-based approaches not presented in this thesis learn
multi-robot adaptive IPP policies for terrain monitoring [175] and single-robot
policies for viewpoint planning in 3D environments [167], e.g. in orchards.

In contrast to non-learning-based adaptive IPP methods, these prior RL poli-
cies for adaptive IPP, including our approach proposed in Chap. 4, are lim-
ited in their general applicability to varying information-gathering tasks. These
RL-based approaches design policies tailored towards one specific information-
gathering task, assuming occupancy maps to map discrete-valued terrain features,
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such as arable field or urban area classification, or pre-trained Gaussian processes
to map continuous-valued terrain features, such as surface temperature or signal
strengths. These methods use their map representations directly in the planning
state representation, thus requiring adaptation and re-training as the map, and
hence, planning state representations change. This prohibits the application of
learned policies to various monitoring missions that require different map rep-
resentations. Moreover, these works consider a static user-defined criterion for
areas to qualify as interesting, e.g. a fixed temperature threshold or semantic
class. Thus, these approaches tend to overfit a static user-defined criterion for
areas of interest, dropping in performance as user interests change.

In Chap. 5 of this thesis, we propose a novel map-agnostic formulation of
the adaptive IPP problem for terrain monitoring. Our new planning state repre-
sentation unifies varying map representations and user-defined criteria qualifying
areas as interesting. Combining this map-agnostic state space with a new reward
function, we train a single adaptive IPP policy using RL that is applicable to
continuous- and discrete-valued terrain feature monitoring missions. In this way,
our approach facilitates the deployment of learned adaptive IPP policies without
re-designing and re-training approaches for specific terrain monitoring missions.

2.2 Adaptive Informative Path Planning for
Active Learning

Adaptive IPP methods discussed in Sec. 2.1 assume a reliable performance of the
onboard sensors used to interpret and extract information from incoming mea-
surements of the unknown environment. However, this assumption often does
not hold when using deep learning-based robotic vision systems to extract the
information of interest from sensor measurements. As the environment is un-
known, the incoming sensor measurements often differ from the ones the vision
system was trained on. Hence, the prediction quality of deep learning-based
robotic vision degrades, which limits the amount of information extracted from
sensor measurements. Thus, time-consuming and costly human labelling of col-
lected images is needed to re-train and improve these vision systems. In response,
some approaches aim to collect the most informative images to improve a robot’s
deep learning-based vision system while reducing human labelling costs. These
approaches combine elements of active learning with robotic planning.

The goal of active learning is to maximise model performance while minimising
the amount of labelled training data used to train the model. It assumes the
existence of a large unlabelled data pool, then iteratively selects a single data
point from the pool by maximising an acquisition function until a labelling budget
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is exceeded [17, 44, 92, 165]. Settles [148] provides a comprehensive overview
of active learning approaches for low-dimensional machine learning problems.
Recent active learning approaches focus on training deep learning models from
high-dimensional inputs, e.g. images, where a single data point has a negligible
effect on model performance. Active learning methods for deep learning collect a
batch of data from the unlabelled data pool instead of single data points, called
batch-mode active learning [47, 53, 70, 147]. However, these strategies decide
which images to label from an existing already collected large data pool. We
directly deploy the robot in an unknown environment. Thus, we do not have
access to such a data pool before the robot’s deployment.

In contrast, our methods in Chap. 6 and Chap. 7 of this thesis propose novel
adaptive IPP frameworks for active learning, collecting new batches of to-be-
labelled data directly by deploying a robot in an initially unknown environment.
We link the active learning acquisition function to a planning objective, adaptively
guiding the UAV towards areas of informative training data and show how to
incorporate recently proposed active learning acquisition functions [8, 12, 47]
into planning algorithms. Furthermore, we investigate how planners, planning
objectives, and terrain mapping influence the active learning performance. In the
following, we discuss the previously proposed acquisition functions used in the
classical active learning setup assuming an existing unlabelled data pool.

2.2.1 Active Learning for Computer Vision
Active learning methods used in computer vision can be categorised into prob-
abilistically motivated uncertainty-based approaches, geometrically motivated
representation-based approaches, and hybrid approaches using a combination of
uncertainty- and representation-based methods.

Uncertainty-based active learning methods select data with the highest model
uncertainty [8, 47, 70, 71]. Early methods use Gaussian processes [71] or support
vector machines [70] to quantify model uncertainty in tasks with low-dimensional
inputs. Measuring model uncertainty requires integrating model predictions with
respect to all model parameters. As deep neural networks have high-dimensional
model parameter spaces, it is computationally challenging to compute their model
uncertainty. One approach is to estimate the model uncertainty deterministically
in a single forward pass. Although computationally efficient, these methods often
do not deliver well-calibrated uncertainty estimates for real-world robotic vision
tasks [128]. This leads to uncertainty estimates that do not reflect the actual
model prediction quality on data collected during deployment. Alternatively, Gal
and Ghahramani [46] propose using dropout [159] at test time, running multi-
ple forward passes with different smaller parts of the model parameters selected
randomly. This technique is called Monte Carlo dropout and efficiently approxi-
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mates the Bayesian posterior over the model parameters. They use Monte Carlo
dropout in acquisition functions maximising model uncertainty, applied to image
classification [47]. Monte Carlo dropout can be seen as an ensemble of smaller
networks selected from a single trained large network. Other works use neural
network ensembles for model uncertainty estimation [84, 122] where each network
is independently initialised and trained. Despite higher training costs, indepen-
dently trained ensembles achieve better prediction performance and uncertainty
calibration than Monte Carlo dropout [8, 39]. Recent advances make ensemble
training computationally more efficient [39, 67]. In Chap. 6, we study the appli-
cability of different uncertainty-based active learning acquisition functions [8, 46]
in the context of robotic planning as mission objectives.

Representation-based active learning methods maximise training data diver-
sity by selecting data points with novel representations in the model’s learned
latent feature space [40, 147, 155]. Approaches inspired by generative adversarial
networks use a generator to learn the joint data representation, while the discrim-
inator distinguishes between labelled and unlabelled data [40, 155]. Sener and
Savarese [147] select a minimal number of data points, called a core-set, geomet-
rically covering an unlabelled data pool in the model’s latent space. However,
both approaches require large in-domain data pools to learn rich representa-
tions of the data-generating distribution. These methods are impractical in our
adaptive IPP scenario as robots operate in unknown and visually varying envi-
ronments. In contrast, Blum et al. [12] propose a method for quantifying data
novelty in semantic segmentation tasks without access to large in-domain data
pools. They use kernel-density estimation of unlabelled images in the network’s
learned latent space, i.e. the learned embedding of an image into a manifold re-
sembling semantic similarity between images the network was trained on. Pixels
of an image are considered novel if they are embedded into regions of the latent
space different from the ones images used for network training are embedded
into. They use this novelty estimation in a local image-based planning objective
and apply it for active learning in aerial semantic mapping. We integrate their
novelty estimation into our new global map-based planning objectives proposed
in Chap. 6. We rigorously analyse its active learning performance using various
global planning schemes and datasets. Our experimental results indicate higher
active learning performance using uncertainty-based planning objectives instead
of the representation-based objective proposed by Blum et al. [12].

Uncertainty-based methods tend not to draw data points from the data-
generating distribution but favour rare data points and outliers. In contrast,
representation-based methods tend to select non-informative, easy-to-classify data
points at later stages with more training data accessible. Hybrid approaches com-
bine uncertainty- and representation-based methods [93, 173, 183, 190]. Combin-
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ing both paradigms, especially in batch-mode active learning, has been shown to
result in a strong performance. Zhdanov [190] selects data points near k-means
cluster centres of the unlabelled data pool to extract representative samples [190].
Li and Guo [93] fit a Gaussian Process on the unlabelled data pool to compute
the mutual information between labelled and unlabelled data points as a measure
of representativeness. Wang and Ye [173] introduce an alternating optimisation
between maximising mean discrepancy of labelled and unlabelled data in the rep-
resentations’ latent space and uncertainty of selected batches. Similar to Blum et
al. [12], Yang et al. [183] use the cosine distance in the network’s latent space to
select representative samples from the most uncertain images in the unlabelled
pool. These methods rely on the existence of a large unlabelled data pool. Thus,
they are not directly applicable if the environment is initially unknown.

2.2.2 Robotic Planning for Active Learning
Using autonomous robots to reduce manual labelling effort for training deep
learning models is a relatively unexplored research area. In the following, we
discuss planning methods that improve robotic vision in unknown environments.
These approaches can be categorised as self-supervised or fully supervised learning
methods, depending on the human labelling required to train the vision model.

Georgakis et al. [51] propose an approach for active semantic goal navigation
which uses ensembles to estimate model uncertainty in their planning objective.
Other approaches introduce self-supervised methods to improve or adapt the
robot’s vision to new environments, eliminating the need for manual labelling.
Frey et al. [45] introduce a self-improving continual learning framework for se-
mantic segmentation in indoor scenes by generating pseudo labels from 3D maps.
Zurbrügg et al. [191] extend this approach to an embodied agent autonomously
navigating towards high training data novelty viewpoints. Chaplot et al. [20]
suggest a similar self-supervised approach for semantic segmentation in indoor
scenes training an exploration policy with RL to target uncertain 3D map parts.
The policy training depends on the simulation environment and the current vision
network at the same time. As RL performance tends to degrade with simulation
to real-world gaps, this method requires realistic domain-specific simulators and
introduces policy re-training costs after each vision network re-training.

Although self-supervised planning approaches for active learning do not re-
quire any human labels [20, 45, 191], as discussed by Chaplot et al. [20], they
rely on large labelled indoor datasets for pre-training a semantic segmentation
model to produce high-quality pseudo labels in new indoor scenes [20, 45, 191].
If the pre-trained model misclassifies objects, these errors not only prevent learn-
ing semantics, but could even be reinforced in the case of over-confident predic-
tions. Zurbrügg et al. [191] experimentally show that the model improvement
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strongly depends on the chosen pre-training dataset and on the indoor envi-
ronment in which the robot is deployed. Aerial mapping missions present even
more visual variability, with few and often small pre-training datasets available,
further exacerbating these issues. As the environment and often domains are
initially unknown, these purely self-supervised methods require enormous engi-
neering work to relax the above-mentioned assumptions. Hence, self-supervised
methods are not directly applicable to our use case. Our experimental analy-
sis shows that self-supervised approaches applied to UAV-based aerial semantic
monitoring missions drastically lack active learning performance compared to our
fully supervised approach. Further, our results verify that systematic prediction
errors of self-supervised methods limit the model performance improvements.

Most similar to our approach in Chap. 6 is the local planning approach of Blum
et al. [12] for active learning in semantic mapping. Their planning objective aims
to promote training data novelty in semantic prediction tasks. We combine their
ideas on novelty estimation for active learning with our adaptive IPP framework
for active learning. In contrast to Blum et al., we propose a general unified adap-
tive IPP framework supporting probabilistic semantic mapping, various acquisi-
tion functions, planning objectives, and global map-based planning algorithms.
We also provide in-depth empirical analyses and show that our map-based plan-
ners outperform the state-of-the-art local planner proposed by Blum et al..

2.2.3 Semi-Supervised Learning of Robotic Vision
Although our fully supervised adaptive IPP framework for active learning shows
state-of-the-art active learning performance, it requires dense human-labelled
pixel-wise annotations of selected informative images. To further reduce the re-
quired human labelling efforts, we propose a novel semi-supervised approach to
adaptive IPP for active learning in Chap. 7. In the following, we discuss recent
progress in research on efficient human labelling and semi-supervised learning to
enhance model training in case only few or sparse human labels are provided.

Shin et al. [149] have recently introduced an efficient label selection paradigm,
which selects a sparse set of pixels for human labelling to train semantic segmen-
tation models. They compute the prediction uncertainty of each pixel and select
pixels for human labelling among the most uncertain ones. This targeted pixel se-
lection improves prediction performance faster compared to non-targeted random
pixel selection. In a study with human annotators, Benenson and Ferrari [9] show
that selecting sparse sets of to-be-labelled pixels reduces human labelling efforts
compared to dense pixel-wise labels. In contrast to pixel-wise uncertainty-based
selection criteria, Xie et al. [181] propose a method that chooses to-be-labelled
image regions used to re-train a pre-trained model in scenarios where the target
domain deviates from the source domain. They select the image regions with
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highly cluttered model predictions to identify potential prediction errors, which
they term region impurity. In Chap. 7, we propose a new sparse human label se-
lection strategy inspired by Xie et al. [181] to drastically reduce human labelling
efforts. Instead of selecting image regions, we select individual pixels in regions
with high impurity. Opposed to Xie et al. [181], we do not greedily choose pixels
with the highest region impurity but randomly select pixels from a set of candi-
date pixels above a region impurity threshold. We find our method to select in-
formative pixels for human labelling while ensuring label diversity, outperforming
state-of-the-art sparse human label selection methods in aerial mapping missions.

Semi-supervised semantic segmentation methods build upon a low budget
of human-labelled training samples and improve model performance further by
generating pseudo labels from model predictions of unlabelled data [60, 120].
Most real-world datasets have long-tailed class distributions, resulting in biased
pseudo labels with limited learning signal for model training. To avoid these
issues, He et al. [60] propose a method to re-distribute pseudo labels to match the
class distribution of labelled data. Conceptionally similar, our semi-supervised
training leverages a low number of sparsely human-labelled samples and combines
them with automatically generated pseudo labels. In contrast to image-based
pseudo label methods for semi-supervised semantic segmentation [60, 120], our
robotic planning approach renders pseudo labels from a probabilistic semantic
map of the environment. Instead of using dense pixel-wise map-based pseudo
labels proposed by Frey et al. [45], we select sparse pseudo-labelled pixels with
low map-based model uncertainty. Our pseudo label selection outperforms state-
of-the-art methods [60] applied to robotic planning.

Overall, we combine our adaptive IPP method for active learning with our
new sparse human label selection and uncertainty-aware pseudo-label generation
into a novel semi-supervised robotic planning framework for active learning. This
method combines the advantages of self- and fully robotic active learning. We
maintain the general applicability and performance of our fully supervised ap-
proach while drastically reducing the required human annotations.
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Chapter 3

Basic Techniques

The goal of this thesis is to develop adaptive IPP methods that in-
crease the efficiency of robotic information gathering, such as in ter-
rain monitoring missions. Combining approaches that learn decision-
making from data and classical non-learning-based robotic planning

approaches has the potential to leverage advantages from both paradigms. This
could improve performance in robotic information gathering in two ways. First,
learning-based methods could increase adaptability towards new, unseen envi-
ronments a robot might be deployed in. Second, learning-based methods could
reduce the classical planning methods’ computational requirements, allowing for
faster information gathering and facilitating deployment.

In this thesis, we propose new adaptive IPP methods that combine the paradigm
of RL with robotic planning. A basic understanding of RL terminology and al-
gorithms is required to understand our learning-based adaptive IPP methods,
particularly those presented in Chap. 4 and Chap. 5.

In this chapter, we first introduce the Markov decision process (MDP) frame-
work in Sec. 3.1 to formalise an agent’s sequential decision-making in stochastic
environments. Next, we state the general RL problem and introduce Bellman
equations used in value-based dynamic programming algorithms to solve the RL
problem in Sec. 3.2. Finally, in Sec. 3.3, we introduce the family of actor-critic
RL algorithms used in this thesis. For an in-depth introduction to dynamic pro-
gramming, we refer the reader to Bertsekas [10], and for an in-depth introduction
to RL algorithms, see Sutton and Barto [162].

3.1 Markov Decision Processes
Reinforcement learning is a branch of machine learning concerned with an agent
making sequential decisions. The agent is placed in an environment and interacts
with it by executing actions and receiving subsequent observations and rewards
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Agent Environment

Action

Observation
and reward

Figure 3.1: Schematic overview of the RL prob-
lem. The agent interacts with an environment
sequentially by executing actions and then re-
ceiving observations and rewards.

as depicted in Fig. 3.1. An RL algo-
rithm aims to learn optimal sequen-
tial decisions that maximise the re-
turn, i.e. the sum of rewards over
time, through trial-and-error interac-
tion with the environment. Learning
optimal sequential decisions through
RL constitutes a broad framework en-
compassing a wide range of decision-
making problems with various real-
world applications. A non-exhaustive
list of decision-making problems that
RL has been applied to include learning to play Atari [112, 144] and board
games [144, 152, 153], economics and finance [21], and controlling robots, such as
legged robots in challenging terrains [62, 88], and drones during autonomous rac-
ing [72, 158]. To formalise and unify these sequential decision-making problems,
we first introduce the concept of Markov decision processes.

A Markov decision process is a tuple ⟨S,A, T, R⟩ formalising the interaction
of an agent with a stochastic environment, where

• S is the state space;

• A is the action space;

• T (s′ | s, a) ∈ [0, 1] is the state transition function with a ∈ A and s, s′ ∈ S;

• R(s, a, s′) ∈ R is the immediate reward function.

The state space S is a set of states an environment can be in, and the action
space A is a set of actions an agent can execute in the environment. Both the
state and action space can be finite or potentially infinite. The transition function
T (s′ | s, a) is a probability distribution describing the dynamics model of the
stochastic environment. Given an environment state s and executed action a,
T (s′ | s, a) is the probability of the environment ending up in a next state s′. Note
that the MDP formulation assumes that the environment state transitions only
depend on the current state and chosen action, independently from previously
chosen actions and states the environment might have been in. This is termed the
Markov property. The dynamics model of the environment might or might not be
known in advance. RL methods that exploit the existence of or try to learn such
a dynamics model from data are called model-based methods, while methods that
do not exploit or learn the dynamics model are called model-free methods. The
immediate reward function R(s, a, s′) rewards or penalises the agent for taking
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an action a in a given state s that leads to a next state s′ that might be beneficial
or detrimental towards achieving a desired goal state sg ∈ S. For example, an
agent could be rewarded (positive reward function value) for executing an action
a in a certain position within a maze that brings the agent closer to the desired
goal sg. In contrast, an agent could also be penalised (negative reward value) for
colliding with an obstacle in the environment.

Note that the MDP framework assumes the environment to be fully observ-
able, i.e. we can directly observe and thus know the exact environment states s.
However, most real-world decision-making problems, including robotic decision-
making problems and the adaptive IPP problem in particular, are not fully ob-
servable. Instead, most real-world problems only allow us to partially observe
the environment state, e.g. due to a limited sensor range with which an agent
can scan the environment or due to uncertain observations from noisy sensor
measurements. Thus, partially observable problems are captured by the par-
tially observable Markov decision process framework [79]. In practice, as we also
show for our RL-based robotic adaptive IPP methods in this thesis, one can often
transform a partially observable Markov decision process into an (approximately)
fully observable MDP. This is important as most RL algorithms assume fully ob-
servable problems to work well. Based on the MDP formulation derived in this
subsection, we subsequently formalise the general RL problem.

3.2 Reinforcement Learning Problem
For a given MDP ⟨S,A, T, R⟩ as defined in Sec. 3.1, the RL problem aims to
learn optimal sequential decisions that maximise the sum of immediate rewards
over time. This can be formalised as the following optimization problem

π∗ = argmax
π∈Π

E
st+1∼T (·|st,at)
at∼π(·|st)
s0∼µ(s)

[
N−1∑
t=0

γtR(st, at, st+1)

]
, (3.1)

where π : S → A is a policy mapping states to actions, Π is the set of all possible
policy functions, and γ ∈ [0, 1] is a discount factor weighing the importance of
future rewards. The policy π can be a deterministic function mapping a state to
a deterministic action or stochastic, mapping from a given state to a probability
distribution over the action space A.

In this thesis, we are mostly concerned with learning stochastic policies as
they allow for applying the large class of policy gradient-based RL algorithms
introduced in Sec. 3.3. Additionally, sampling an agent’s next action from a
stochastic distribution naturally leads to exploration of the environment during
policy training, which is crucial for the success of the RL trial-and-error paradigm.
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Furthermore, this thesis focuses on episodic instead of infinite-horizon RL prob-
lems with a finite number of time steps N ∈ N before an episode terminates,
e.g. due to energy or time constraints of a robot. Thus, in Eq. (3.1), we draw
initial states s0 ∼ µ(s0) from a distribution µ(·) over the state space, where
τ = (s0, a0, . . . , aN−1, sN) defines an episode occurring with probability

p(τ | π) = µ(s0) π(a0 | s0) T (s1 | s0, a0) · · · π(aN−1 | sN−1) T (sN | sN−1, aN−1), (3.2)

following a policy π and dynamics model T during the episode. As follows, the
notation of the RL problem in Eq. (3.1) can be simplified to

π∗ = argmax
π∈Π

E
τ
[R(τ) | π], (3.3)

where R(τ) =
∑N−1

t=0 γtR(st, at, st+1) is the sum of immediate rewards as in
Eq. (3.1) and the expectation over episodes τ is defined according to Eq. (3.2).

Many RL algorithms build on top of the concept of state-value functions or
action-value functions to derive algorithms finding optimal policies π∗ satisfying
Eq. (3.3). The state-value function Vπ : S → R computes the expected sum
of immediate rewards received when starting from a state st = s and choosing
subsequent actions according to a given policy π as

Vπ(s) = E
τ

[
N−t−1∑
k=0

γkR(st+k, at+k, st+k+1)

∣∣∣∣∣ st = s

]
. (3.4)

Intuitively, the state-value function evaluates the decision-making quality fol-
lowing a given policy π. Instead, the action-value function Qπ : S × A → R
computes the expected sum of immediate rewards received when starting from
a state st = s, choosing a given action at = a in this state st, and choosing
subsequent actions from at+1 on according to the policy π as

Qπ(s, a) = E
τ

[
N−t−1∑
k=0

γkR(st+k, at+k, st+k+1)

∣∣∣∣∣ st = s, at = a

]
. (3.5)

Intuitively, the action-value function evaluates the benefit of executing a spe-
cific action (not necessarily chosen by following policy π) at the current time
step t and then following policy π for subsequent time steps t+ k for k > 0.

Note that the true value functions Vπ and Qπ for a given policy π are unknown.
Deriving Vπ and Qπ for a given policy is called policy evaluation. To this end, we
recursively re-define the value functions introduced in Eq. (3.4) and Eq. (3.5) as

Vπ(s) = Eτ [R(st, at, st+1) + γVπ(st+1) | st = s], (3.6)
Qπ(s, a) = Eτ [R(st, at, st+1) + γVπ(st+1) | st = s, at = a], (3.7)
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Algorithm 1 Model-based Policy Evaluation
Initialise value function V (s) ∀s ∈ S
while V (s) not converged ∀s ∈ S do

for s ∈ S do
V (s) =

∑
a∈A π(a | s)

∑
s′∈S T (s

′ | s, a)(R(s, a, s′) + γV (s′)) (Eq. (3.6))
return value function V as solution to Vπ

using the linearity of the expectation operator, the Markov property, and the
definition of the state-value function in Eq. (3.4). Eq. (3.6) and Eq. (3.7) are also
known as the Bellman expectation equations, which allow us to iteratively find
Vπ and Qπ in a model-based fashion using immediate rewards R(st, at, st+1) and
the dynamics model T (st+1 | st, at) as shown in Alg. 1. If the dynamics model is
unknown, we can sample the expectations in Eq. (3.6) and Eq. (3.7) using Monte
Carlo estimates of the agent’s interactions with the environment according to its
policy π. Model-free policy evaluation is further discussed in the Sec. 3.3.

Furthermore, we reformulate the RL problem of finding an optimal policy π∗

satisfying Eq. (3.3) as the problem of finding the optimal state-value function

V ∗(s) = max
π∈Π

Vπ(s) = Vπ∗(s), (3.8)

or finding the optimal action-value function

Q∗(s, a) = max
π∈Π

Qπ(s, a) = Qπ∗(s, a), (3.9)

by definition of Eq. (3.3), the state-value function of a given policy π∗ in Eq. (3.4),
and the action-value function of a given policy π∗ in Eq. (3.5). This established
equivalence between optimal value functions V ∗ or Q∗ and optimal policies π∗

leads to a family of value-based algorithms that solve the RL problem in Eq. (3.3)
by finding the optimal value functions V ∗ or Q∗ instead of finding the optimal
policy π∗ in the space of policy functions Π.

Value-based algorithms use variants of the classical value iteration formalised
in Alg. 2. By repeatedly applying the Bellman optimality equations in Line 4
to an initial guess of the state-value function V , V provably converges to the
optimal state-value function V ∗ [10]. We can derive an optimal policy π∗ from
the optimal state-value function V ∗ given the dynamics model T as in Line 7.

The most popular successor of value iteration is Q-learning, which aims to
learn the optimal action-value function Q∗ by repeatedly applying Bellman opti-
mality equations and using function approximators to represent Q∗, e.g. neural
networks [112]. The optimal policy can be derived by π∗(s) = maxa∈AQ∗(s, a),
i.e. by inputting the current state s into the function approximator of Q∗ and
choosing action a with the highest Q-value Q∗(s, a). Thus, Q-learning is a model-
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Algorithm 2 Model-based Value Iteration
Initialise value function V (s) for all s ∈ S
while V (s) not converged for all s ∈ S do

for s ∈ S do
V (s) = maxa∈A

∑
s′∈S T (s

′ | s, a)(R(s, a, s′) + γV (s′))

Initialise policy π for all s ∈ S
for s ∈ S do

π(s) = argmaxa∈A
∑

s′∈S T (s
′ | s, a)(R(s, a, s′) + γV (s′))

return policy π as optimal policy

free algorithm that does not require knowledge about the dynamics model T to
infer the optimal policy from the optimal action-value function.

In this thesis, we mainly use a different family of RL algorithms called actor-
critic algorithms. In contrast to value-based methods, actor-critic methods di-
rectly optimise the policy π∗ in the space of all possible policies Π. To increase
the efficiency of this direct policy search, given a current policy π, actor-critic
methods utilise value functions derived from policy evaluation as introduced in
this subsection to guide the optimisation process [162]. The following subsection
develops a basic understanding of these actor-critic RL algorithms.

3.3 Actor-Critic Algorithms

We introduce a family of RL algorithms called actor-critic algorithms that we use
and expand on in the methods proposed in this thesis. In contrast to value-based
RL algorithms introduced in Sec. 3.2, actor-critic methods directly optimise a
policy in the space of all possible policies Π. Thus, these methods view the RL
problem formalised in Eq. (3.3) as a direct optimisation problem and aim to find
the optimal policy π∗ as the solution to Eq. (3.3) directly.

To manipulate the policy in the space of all policy functions Π, commonly, the
policy function π : S → A is turned into a function approximator πθ : S×Θ→ A,
where θ ∈ Θ = RD is a set of D parameters defining the function πθ. This way,
our optimisation problem in Eq. (3.3) is restricted to the space of all possible
policy functions parameterised by some θ ∈ Θ. Typically chosen parametric
forms range from the space of linear models to neural networks parameterised
by θ. Although, in theory, Θ ⊂ Π and thus it might be that the optimal policy
π∗ /∈ Θ, in practice, we choose Θ to be an expressive and large parametric function
space that includes (near-)optimal policies π∗. Hence, we can transform the RL
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problem in Eq. (3.3) into the following optimisation problem

π∗ = argmax
π∈Π

E
τ
[R(τ) | π] = argmax

θ∈RD
E
τ
[R(τ) | πθ]. (3.10)

This optimisation problem can be solved with any derivative-free black box
or numerical optimisation algorithm. However, in practice, gradient-based opti-
misation is often more efficient. To apply gradient-based optimisation methods,
such as gradient descent or (quasi-)Newton methods, the gradient of the expec-
tation Eτ [R(τ) | πθ] with respect to θ needs to be computed. This gradient is
called the policy gradient. Intuitively, policy gradient RL algorithms aim to es-
timate this gradient pointing towards the direction in policy space Θ that results
in policies with a higher expected sum of immediate rewards. Using the policy
gradient theorem [162], the gradient of the expected return can be rewritten as

∇θ E
τ
[R(τ) | πθ] = E

τ
[∇θ log (p(τ | πθ))R(τ) | πθ] (3.11)

= E
τ

[
N−1∑
t=0

∇θ log (πθ(at | st))R(τt:N)
∣∣∣∣∣ πθ
]

(3.12)

= E
τ

[
N−1∑
t=0

∇θ log (πθ(at | st))Qπθ(st, at)

∣∣∣∣∣ πθ
]
. (3.13)

In the first step, Eq. (3.11), we use the score function gradient estimator [113]
known from maximum (log-)likelihood estimation in statistics and classical su-
pervised learning to transform the gradient of the expectation into an expectation
of the gradient of the episodes’ τ log-probabilities. In the second step, Eq. (3.12),
by definition of Eq. (3.2), the log operator, and linearity of the gradient operator,
the product of probabilities turns into a sum of gradients of log-probabilities.
In this sum, terms related to the initial state distribution µ(s0) and dynamics
model T (st+1 | st, at) are dropped as they do not depend on θ. This is crucial
as it allows us to derive policy-gradient algorithms model-freely without prior
knowledge about the environment’s dynamics model T . Instead, we sample an
agent’s experienced state transitions and immediate rewards while interacting
with the environment. We use this experience to compute Monte Carlo estimates
R(τt:N) of the returns of an episode τ from time step t on as an estimate of the
unknown true action-value function Qπθ(st, at) in Eq. (3.13). This procedure used
to estimate the policy gradients based on sampled experience, then updating the
policy πθ in direction of this gradient to improve the current policy, and repeating
until convergence, yields the well-known REINFORCE algorithm [178].

Although conceptually simple, Monte Carlo estimates of policy gradients have
high variance, making learning sample-inefficient. Actor-critic methods introduce
two key ideas to reduce the variance of the gradient estimates, thus improving

29



3.3. Actor-Critic Algorithms

learning efficiency and training stability. First, they learn value function approxi-
mators, e.g. Qψ(st, at) ≈ Qπθ(st, at) where Qψ could be any model parameterised
by ψ ∈ RD′ , ranging from a linear model to a neural network. The variance is
reduced by learning approximations of Qπθ(st, at) not only for sampled states st
but also for related states that share similar features. This changes the policy
gradient computation formalised in Eq. (3.13) to

∇θ E
τ
[R(τ) | πθ] = E

τ

[
N−1∑
t=0

∇θ log (πθ(at | st))Qψ(st, at)

∣∣∣∣∣ πθ
]
. (3.14)

The function approximator Qψ(st, at) is called the critic as it evaluates the
current policy πθ but does not take active decisions on what actions to take next
as this is decided by policy πθ, also called the actor.

A second commonly used technique to reduce the variance of the policy gra-
dient estimates in actor-critic algorithms is reducing the variance of returns R(τ)
using baselines b : S → R that only depend on the state. This changes the policy
gradient formalised in Eq. (3.13) to

∇θ E
τ
[R(τ) | πθ] = E

τ

[
N−1∑
t=0

∇θ log (πθ(at | st)) (Qπθ(st, at)− b(st))

∣∣∣∣∣ πθ
]
. (3.15)

Since b(st) does not depend on an action at ∼ πθ(at | st), it does not change
the policy gradient with respect to θ. It can be shown that the state-value
function b(st) = Vπθ(st) from Eq. (3.4) maximally reduces the variance of the
policy gradient estimator in Eq. (3.15) [162]. Intuitively, this critic term tells
how much better or worse it is to pick an action at than following the policy πθ
in state st. We call Aπθ(st, at) = Qπθ(st, at) − Vπθ(st) the advantage function
of a given policy πθ. Combining the idea of learned function approximators as
critics with the idea of state-value functions as baselines leads us to the following
lower-variance policy gradient estimator

∇θ E
τ
[R(τ) | πθ] = E

τ

[
N−1∑
t=0

∇θ log (πθ(at | st)) (Qπθ(st, at)− Vπθ(st))

∣∣∣∣∣ πθ
]

(3.16)

= E
τ

[
N−1∑
t=0

∇θ log (πθ(at | st)) (R(st, at, st+1) + γVπθ(st+1)− Vπθ(st))

∣∣∣∣∣ πθ
]

(3.17)

≈ E
τ

[
N−1∑
t=0

∇θ log (πθ(at | st)) (R(st, at, st+1) + γVψ(st+1)− Vψ(st))

∣∣∣∣∣ πθ
]
, (3.18)

where Eq. (3.16) holds as the state-value function Vπθ is not changing the gradient
since it only depends on the state st, and Eq. (3.17) holds by definition of the
action-value function in Eq. (3.7). Last, in Eq. (3.18),we make use of a state-value
function approximator Vψ ≈ Vπθ parameterised by ψ to approximate the true
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Algorithm 3 “Vanilla” Actor-Critic Algorithm
Initialise actor and critic parameters θ, ψ
while policy πθ not converged do

Collect episodes τ following policy at ∼ πθ(· | st)
Compute policy gradient estimate of ∇θ Eτ [R(τ) | πθ] with Eq. (3.18)
Update actor θ ← θ + α∇θ Eτ [R(τ) | πθ] via gradient ascent
Fit critic Vψ optimising Eq. (3.19) using gradient descent

return policy πθ as (approximately) optimal policy

advantage function Aπθ(st, at) ≈ Aψ(st, at) = R(st, at, st+1) + γVψ(st+1)− Vψ(st).
A simple way to learn Vψ ≈ Vπθ is to use ordinary least squares minimisation of
the returns over all sampled episodes τ and time steps t ≤ N resulting in

argmin
ψ

E
τ,t
[∥Vψ(st)−R(τt:N)∥2], (3.19)

which is, in contrast to model-based policy evaluation in Alg. 1, a model-free
Monte Carlo estimation method to evaluate policy πθ. Thus, combined with the
model-free estimation of policy gradients in Eq. (3.18), actor-critic methods learn
policies from experience without any knowledge of the dynamics model T .

Actor-critic methods are most commonly implemented as shown in Alg. 3.
First, we collect episodes τ by interacting with the environment following a cur-
rent policy πθ. Second, we estimate the policy gradient in Eq. (3.18) as the sum
over all episodes and time step terms ∇θ log (πθ(at | st))Aψ(st, at). Third, we use
gradient ascent to update policy parameters θ in the direction of the policy gradi-
ent estimate. Last, we refit the critic using gradient descent to satisfy Eq. (3.19).
We repeat the procedure until convergence of policy πθ.

Most modern variants of actor-critic RL algorithms are concerned with re-
ducing the variance of the policy gradient estimate when using neural networks
as actors and critics, i.e. how to design sample-efficient low-variance baselines
without suffering from highly biased gradient estimates. Proximal policy optimi-
sation (PPO) [146] is a state-of-the-art actor-critic algorithm that we also use in
this thesis for RL-based adaptive IPP methods. PPO proposes to use a gener-
alised version of the advantage function approximator Aψ in Eq. (3.18) to increase
sample efficiency [145]. Furthermore, PPO restricts its policy updates to gradient
ascent step sizes α in Line 5, Alg. 3, which ensure small but stable policy updates.
This increases training stability since updates to a policy that are too large make
learning critic Vψ of a given policy πθ challenging. Apart from these two impor-
tant modifications, PPO and other state-of-the-art actor-critic algorithms share
the same underlying concepts with the vanilla actor-critic algorithm in Alg. 3.

In general, model-free actor-critic algorithms use a provided (often simulated)
environment to collect experience executing a current policy. Access to the en-
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vironment’s dynamics model is not required, making actor-critic methods easily
applicable for policy learning in complex environments without well-known dy-
namics models. Based on the collected experience, the current stochastic policy
and critic are updated in a gradient-based fashion. The policy is updated by the
policy gradients estimated using the critic which evaluates the policy’s perfor-
mance. To represent policies and critics, we commonly parameterise both func-
tions as neural networks. This way, leveraging recent progress in neural network
architectures, we can process complex environment state information commonly
occurring in robotic tasks, such as images from the robot’s camera, grid maps
and topological maps of the environment.

The following two chapters show how RL algorithms can be used to make
information gathering via adaptive IPP more efficient. In Chap. 4, we show how
a specific adaptive IPP problem can be modelled as a MDP and reformulated as a
RL problem, which allows us to speed up sampling-based robotic planning using
stochastic policies and state-value functions learned during training in simula-
tion. Hence, we solve this specific adaptive IPP problem during deployment in a
computationally efficient way. In Chap. 5, we derive a state space representation
and reward function for a broad family of adaptive IPP problems unified in a
novel MDP formulation. In contrast to our method proposed in Chap. 4, this
allows us to learn a single planning policy applicable to many varying adaptive
IPP problems using any RL algorithm introduced in this chapter.
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Chapter 4

Adaptive Informative Path
Planning Using Deep
Reinforcement Learning

Recent years have seen increasing usage of mobile robots in a variety of
information-gathering missions, including environmental monitoring
[61, 63, 89, 126], exploration [36], and inspection [48]. These mo-
bile robotic systems promise a safe and economical solution for many

applications that require precise measurements at scale [38]. Currently, mobile
robots are often manually supervised or operated in environments unknown be-
fore deployment. Other robotic systems pre-plan paths along which robots collect
data. These static pre-planned paths often limit the information-gathering effi-
ciency if the information is non-uniformly distributed as the robot cannot react
to newly incoming measurements. To fully exploit their automation potential,
mobile robots need to explore unknown environments autonomously and actively
plan their next actions onboard. To achieve this, a key challenge for a robotic sys-
tem is to reason about where to move next to efficiently collect new informative
data based on its incomplete understanding of the environment and resource con-
straints, such as limited onboard energy and compute. In literature, this problem
is also known as the adaptive informative path planning problem [106, 127].

This chapter examines the problem of precisely mapping user-defined areas
of interest in an unknown environment using a resource-constrained UAV. The
UAV is equipped with an onboard camera to collect noisy measurements and
is limited in flight time and compute power. The environment is characterised
by an a priori unknown non-uniform 2D scalar feature field on the terrain, e.g.
surface temperature, humidity or signal strength. A user-defined range of feature
values qualifies an area of interest, e.g. indicating hotspots [61, 126]. To max-
imise the information gathered about the areas of interest, the UAV adaptively
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Figure 4.1: Left: Our RL-based adaptive IPP approach applied in a UAV-based crop field
surface temperature monitoring mission aiming to precisely map temperature hotspots (red).
Right: The UAV’s current surface temperate map belief (top-down view of the flat terrain) is
induced by previously collected camera measurements. Based on the map belief, the UAV plans
a future path (orange) maximising information about hotspots. An actor-critic neural network
steers sampling candidate paths (grey) and estimates their information value about hotspots.

replans paths based on its evolving understanding of the environment captured
in a continuously updated terrain map.

Many information-gathering approaches tackling the adaptive IPP problem
have been proposed [30, 61, 63, 126, 171]. These approaches enable adjusting the
robot’s path based on incoming sensor measurements and its potentially chang-
ing understanding of the environment. Moreover, these works show that adap-
tive replanning of paths increases the information-gathering efficiency in many
applications compared to executing pre-planned static paths. Adaptively replan-
ning paths is commonly realised using sampling-based [30, 63] or optimisation-
based [61, 126, 171] planning methods. Both approaches involve an iterative
two-step procedure converging to informative future paths. A candidate path is
selected or sampled, and its expected information value about areas of interest is
estimated. This is done by simulating potential future measurements along the
path based on the robot’s current terrain map and updating it accordingly. This
procedure is computationally expensive for two reasons. First, the number of fu-
ture candidate paths grows exponentially with the path’s length, often requiring
many iterations to converge to informative future paths. Second, computing the
information value of a path is slow as computing expected future map updates is
computationally expensive for commonly chosen scalar field map representations,
such as Gaussian processes [61, 102] or Kalman filters [126]. In this chapter, we
aim to overcome these limitations leveraging offline-trained neural networks that
guide the replanning procedure during deployment in a compute-efficient fashion.
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The main contribution of this chapter is a new adaptive IPP approach for
UAV-based information gathering illustrated in Fig. 4.1. Our method combines
sampling-based planning with reinforcement learning to accelerate onboard re-
planning of paths during deployment. Specifically, we train a strategy that steers
the sampling of candidate paths towards potentially informative future paths and
train an information value estimator offline in simulated information-gathering
missions using RL. During deployment, we perform sampling-based planning
of future paths guided by the offline-learned sampling strategy. Furthermore,
the sampled candidate paths’ information values are evaluated using the offline-
learned information value estimator. In this way, our planning procedure requires
fewer iterations to converge to informative future paths and estimates information
values of paths more efficiently, resulting in accelerated replanning of paths.

In sum, we make the following claims. First, our RL-based adaptive IPP
method accelerates the replanning of paths compared to non-learning-based state-
of-the-art methods, resulting in higher information-gathering performance on sim-
ulated terrain monitoring missions. Second, our adaptive IPP method outper-
forms traditionally used pre-computed coverage paths in real-world dataset-based
robotic information-gathering missions. Third, we verify the individual compo-
nents and design choices of our adaptive IPP algorithm in an ablation study.

This chapter incorporates material from the following peer-reviewed confer-
ence publication, for which I have been the main contributor:

• Julius Rückin, Liren Jin, and Marija Popović. Adaptive Informative Path
Planning Using Deep Reinforcement Learning for UAV-based Active Sens-
ing. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2022

4.1 Adaptive IPP as a Reinforcement Learning
Problem

We first review the problem of adaptive IPP in the context of our UAV-based 2D
scalar feature field monitoring missions in Sec. 4.1.1. In Sec. 4.1.2, we formalise
the connection between the adaptive IPP problem and the general RL problem
introduced in Chap. 3. Subsequently, this established connection enables us to
design our new RL-based adaptive IPP method detailed in Sec. 4.2.

4.1.1 Adaptive IPP for UAV-Based Terrain Monitoring
We consider a UAV with position pt ∈ R3 at time step t, equipped with a
downwards-facing camera. The UAV is deployed in a terrain ξ ⊂ R2 that is
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assumed to be flat. The terrain is characterised by its unknown temporally static
scalar feature field F : ξ → R, e.g. a surface temperature field. The UAV’s
mission goal in robotic information gathering is to find areas of interest ξI ⊂ ξ

and precisely map the scalar feature field F in these areas ξI . An area of interest
is defined by an interesting feature value threshold fth ∈ R, such that any x ∈ ξI
has a feature value F (x) ≥ fth. In this way, the user can define hotspots or
anomalies the UAV should focus on while mapping the environment.

The UAV collects camera measurements zt ∈ RW×H of the terrain at each time
step t, where W ×H is the image resolution. The collected images are assumed
to be noisy, such that each pixel i follows zi,t = F (xi,t)+ε, where ε ∼ N

(
0, ν(pt)

)
is zero-centered Gaussian noise with altitude-dependent variance ν(pt) ∈ R and
xi,t is pixel’s i location downwards-projected on the terrain from position pt.

To map the scalar feature field F , we follow the probabilistic terrain mapping
method of Popović et al. [126]. The map is updated in a probabilistic sequential
Bayesian fashion. A prior map distribution p(F ) is given by a Gaussian Process
with mean function m : ξ → R and a kernel function k : ξ × ξ → R defining the
covariance between two points in the terrain. To avoid computationally expensive
Gaussian process updates at time step t, a Kalman filter with mean µt and
covariance matrix Pt is used to represent the map belief F̂t ∼ N (µt,Pt).

To construct a fixed-dimensional map state required to compute Kalman filter
updates, the terrain ξ is discretised into a set of equidistantly distributed grid
cells with centre positions X ⊂ R2. The prior mean µ0 is initialised by querying
the mean function for each grid cell x ∈ X as µ0(x) = m(x). Similarly, the
prior covariance matrix P0 is initialised by querying the kernel for each pair of
grid cells x, x′ ∈ X as P0(x, x′) = k(x, x′). At each time step t, the map belief
F̂t ∼ N (µt,Pt) is updated based on newly collected measurements zt recorded
at a UAV position pt and downwards-projected to the flat terrain. This is done
by applying the Kalman filter update equations [129] to the previous map belief
given by µt−1 and Pt−1. For further details on the Kalman filter updates using
the camera measurements, we refer to Popović et al. [126].

Our adaptive IPP problem for UAV-based terrain monitoring aims to find a
path ψ∗ = (p1, . . . , pN) that maximises the information gathered about areas of
interest ξI , where pt ∈ R3, t ∈ {1, . . . , N}, are UAV positions above the terrain
in the three-dimensional workspace. To this end, the path ψ∗ maximises an
information criterion I : Ψ→ R over the set of all possible paths Ψ, so that

ψ∗ = argmax
ψ∈Ψ

I(ψ), s.t. C(ψ) ≤ B, (4.1)

where C : Ψ → R+ maps a path to its associated execution cost, B ∈ R+ is the
UAV’s mission budget limit. The information criterion I(ψ) is computed based
on the set of measurements z1:N collected along path ψ at positions p1:N .
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4. Adaptive Informative Path Planning Using Deep RL

Since we focus on the scenario of monitoring a terrain using a UAV, the
costs C(ψ) of executing path ψ = (p1, . . . , pN) are the defined by the flight time

C(ψ) =
N∑
t=1

c(pt, pt+1), (4.2)

where pt ∈ R3 is a 3D measurement position above the terrain the image is
recorded from. Hence, the function c : R3 × R3 → R+ computes the flight
time between measurement positions. We approximate the UAV’s flight time by
assuming constant acceleration and deceleration ±ua and maximum velocity uv.

Similar to previous adaptive IPP works [61, 102, 126], the information crite-
rion I measures the information gathered about areas of interest ξI by evaluating
the uncertainty of the map belief F̂t in these areas. As areas of interest ξI are
unknown, to adaptively plan paths towards these areas as we discover them, we
approximate areas of interest at time step t as [61, 126]

X̂I,t =
{

xi ∈ X | µt,i − βPt,i,i ≥ fth
}
, (4.3)

where µt,i and Pt,i,i are the mean and variance of grid cell xi at time step t,
β ∈ R+ is a user-defined confidence interval width, and fth ∈ R is the user-
defined interesting feature threshold. In this way, we consider both areas likely of
interest based on gathered measurements and areas in which the map is uncertain.

As in prior works [61, 126], we use the reduction of map uncertainty as
the measure of information in Eq. (4.1). Map uncertainty is captured by the
trace Tr(Pt) of its covariance matrix Pt as this measure is known to encourage
A-optimal map estimates [154]. Furthermore, we restrict our information crite-
rion to only consider map uncertainty reduction in areas X̂I,t that might be of
interest. Specifically, our information criterion I(ψ) for a path ψ is defined as

I(ψ) =
N∑
t=1

∑|X |
i=1 Ixi∈X̂I,t−1

(Pt−1,i,i − Pt,i,i)

c(pt−1, pt)
, (4.4)

where the nominator expresses the reduction in the covariance trace from the
previous to the current time step after collecting a measurement zt at position pt
and updating the map belief accordingly. The indicator function Ixi∈X̂I,t

is one if a
grid cell xi belongs to an area that might be of interest, else it is zero. Hence, the
covariance trace reduction is only considered in areas X̂I,t−1 that were believed
to be of interest in the previous time step. In this way, we balance exploration
and adaptively focus on already discovered areas of interest. We normalise the
information gained at position pt by the flight time required to reach pt. This
encourages the UAV to efficiently allocate its maximal flight time B.
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4.1.2 Connecting Adaptive IPP and Reinforcement
Learning

Next, we cast the adaptive IPP problem for terrain monitoring formalised in
Sec. 4.1.1 into a RL problem, enabling us to use RL techniques to train the UAV
to plan informative paths. We highlight the RL definitions required to establish
this connection and refer to Chap. 3 for an in-depth introduction to RL.

The RL problem aims to find a policy π∗ : S → A in the space of all possible
policies Π that maps an environment state s ∈ S to an action a ∈ A, such that

π∗ = argmax
π∈Π

E
τ

[
N−1∑
t=0

γtR(st, at, st+1)

∣∣∣∣∣ π
]
= argmax

π∈Π
E
τ
[R(τ) | π], (4.5)

where at ∼ π(st), γ ∈ [0, 1] is a discount factor weighing the importance of future
rewards R(st, at, st+1), and R(τ) =

∑N−1
t=0 γtR(st, at, st+1) is the sum of discounted

rewards of an episode τ = (s0, a0, . . . , aN−1, sN).
In the terrain monitoring scenario described in Sec. 4.1.1, the state st at time

step t is only partially observable as the scalar feature field F is unknown and
can only be estimated using noisy measurements zt. However, the probabilistic
map belief F̂t ∼ N (µt,Pt) given by the Kalman filter mean µt and covariance Pt

recovers a Markov decision process as in Sec. 3.1 with belief states [162]

st = (µt,Pt, pt−1, Bt), (4.6)

where µt and Pt define the probabilistic belief over all possible feature fields F ,
pt−1 is the UAV position after reaching the previously planned position assuming
a noise-free localisation system and Bt ≤ B is the UAV’s remaining flight time.

In our adaptive IPP problem formalised in Eq. (4.1), a planning policy π maps
belief states st defined in Eq. (4.6) to the next UAV position pt = at = π(st) ∈ R3

in the workspace above the terrain, such that the path

ψπ = (p0, . . . , pN−1) = (π(s0), . . . , π(sN−1)) (4.7)

is induced by the planning policy π. Hence, the RL problem in Eq. (4.5) is
equivalent to finding an optimal planning policy π∗ ∈ Π, so that

π∗ = argmax
π∈Π

E
τ
[R(τ) | π] (4.8)

= argmax
π∈Π

E
τ
[I(ψπ) | π] (4.9)

= argmax
π∈Π

E
τ

[
N∑
t=1

∑|X |
i=1 Ixi∈X̂I,t−1

(Pt−1,i,i − Pt,i,i)

c(pt−1, pt)

∣∣∣∣∣ π
]

(4.10)

= argmax
π∈Π

E
τ

[
N−1∑
t=0

γtR(st, at, st+1)

∣∣∣∣∣ π
]
. (4.11)
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The first step in Eq. (4.8) starts from the general definition of the RL problem
in Eq. (4.5). In the second step, in Eq. (4.9), we specify the sum of discounted
rewards R(τ) as the UAV’s mission goal to maximise the information criterion I
as stated in the adaptive IPP formalised in Eq. (4.1). Note that the episode
τ = (s0, π(s0), . . . , π(sN−1), sN) encompasses the path ψπ induced by planning
policy π as defined in Eq. (4.7). The third step in Eq. (4.10) makes direct use
of the definition of a path’s ψπ information value I(ψπ) formalised in Eq. (4.4).
The map belief and UAV position required to compute I(ψπ) are captured in
the episode τ as belief states st defined as in Eq. (4.6). In the fourth step, we
establish equivalence between the adaptive IPP problem and RL problem. The
equivalence between both problems holds for γ = 1 and by defining the reward
function of the terrain monitoring scenario detailed in Sec. 4.1.1 as

R(st, at, st+1) =

∑|X |
i=1 Ixi∈X̂I,t

(Pt,i,i − Pt+1,i,i)

c(pt−1, pt)
, (4.12)

where actions at = π(st) = pt are the next planned measurement positions. We
can use this established equivalence of the adaptive IPP and RL problem to
train adaptive IPP policies π∗(st) that process our belief states st introduced in
Eq. (4.6) and map it to next measurement positions that maximise the sum of our
adaptive IPP rewards in Eq. (4.12). In practice, these adaptive IPP policies π∗

could be trained with any RL algorithm introduced in Chap. 3.
In our RL algorithm subsequently introduced in Sec. 4.2, we perform sampling-

based planning combined with RL. We do not directly use a learned policy π∗ to
output the next measurement position. Instead, we sample potentially informa-
tive next measurement positions from a learned stochastic policy π over all possi-
ble next measurement positions to guide the planning process in a sample-efficient
fashion. Furthermore, sampling-based planners evaluate a sampled path’s ψπ in-
formation value I(ψπ) in a compute-expensive fashion. To circumvent this, we
leverage the established equivalence between the information criterion and the
sum of discounted rewards in Eq. (4.11). Generally, a policy’s π state-value
function starting in state s at time step t is defined as

Vπ(s) = E
τ

[
N−t−1∑
k=0

γkR(st+k, at+k, st+k+1)

∣∣∣∣∣ st = s

]
. (4.13)

This state-value function is equivalent to evaluating the information value
I(ψπ,t) of a path ψπ,t. This can be seen by inserting our reward in Eq. (4.12),
γ = 1 and using Eq. (4.11). The path ψπ,t is induced by policy π and starts at
some time step t with belief state st = s, i.e. ψπ,t = (π(st), . . . , π(sN−1)) as in
Eq. (4.7). In practice, the policy π used to sample future paths and the state-
value function Vπ(st) = I(ψπ,t) evaluating sampled paths’ information values
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Train actor-critic network on
generated sampling policies

and paths' information values

Simulate terrain monitoring
missions using actor-critic

network-guided tree search

Policy improvement

Policy evaluation

Figure 4.2: Overview of our iterative approach. An actor-critic network predicts informa-
tive measurement positions and estimates a path’s information value to guide a tree search in
simulated information-gathering missions (policy improvement). Then, the neural network is
re-trained on the tree search’s sampling policy and paths’ information values (policy evaluation).
This process is iteratively repeated until convergence of information-gathering performance.

can be learned with actor-critic RL algorithms described in Sec. 3.3. Similarly,
we describe our new RL-based adaptive IPP method in the following Sec. 4.2
that leverages these established equivalences between RL and adaptive IPP to
accelerate sampling-based replanning of informative paths.

4.2 Reinforcement Learning Algorithm
We aim to learn planning policies for adaptive IPP in UAV-based terrain moni-
toring missions offline in simulation to allow for fast online replanning at deploy-
ment. To achieve this, we build upon the connection between adaptive IPP and
RL we established in Sec. 4.1. Specifically, we combine recent advances in RL by
Silver et al. [152, 153] with sampling-based replanning of paths. Next, Sec. 4.2.1
overviews our RL-based planning policy training procedure.

4.2.1 Algorithm Overview
Our RL-based approach combines Monte Carlo tree search (MCTS) for adaptive
IPP [30] with an actor-critic network, conceptually depicted in Fig. 4.2. During
training, the algorithm alternates between collecting experience by simulating
terrain monitoring missions based on the current actor-critic network and using
this experience to re-train and improve the actor-critic network, similarly to clas-
sical actor-critic algorithms introduced in Sec. 3.3. Terrain monitoring missions
are generated by simulating diverse scenarios with varying 2D scalar feature fields
and random initial UAV positions p0 as explained in Sec. 4.2.2.

At each time step t during a mission, we execute a tree search similar to MCTS
that plans the next measurement position pt based on the current belief state st
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introduced in Eq. (4.6) using an actor-critic network as explained in Sec. 4.2.3.
The tree search returns a sampling policy π(st) that mimics the sampling-based
search, from which the next measurement position pt is drawn. Additionally, the
information value Vπ(st) = I(ψπ,t) of the path induced by π is computed after
termination of the mission. The sampling policies and paths’ information values
are stored in an experience buffer along with respective belief states st.

The stored experience is used to re-train the actor-critic network based on
the sampling policies and corresponding information values. In Sec. 4.2.4, we
introduce the used actor-critic convolutional neural network architecture that
processes a belief state. Additionally, we show how to train it based on the
collected experience. Finally, we describe implementation details that aim to
further improve planning performance and sample efficiency in Sec. 4.2.5.

4.2.2 Mission Generation at Training Time
We aim to learn an actor-critic neural network predicting sampling policies and
information values that guide a tree search procedure to efficiently find informa-
tive paths during deployment. We train this planning strategy offline on a diverse
set of simulated UAV-based terrain monitoring missions.

We randomly generate ground truth 2D scalar fields F : ξ → [0, 1] of the
to-be-monitored environmental phenomenon with spatial correlations, similarly
to Popović et al. [126]. We assume the terrain ξ = [0, 1]2 to be a scale-agnostic
unit-square and the feature values F (x) at a point x ∈ ξ to be normalised be-
tween 0 and 1. This ensures that we can reuse our learned planning strategy for
different to-be-monitored continuous scalar features that might vary in absolute
magnitudes and units, such as surface temperature or signal strength.

During a mission, downwards-facing camera measurements zi,t = F (xi,t) + ε

at UAV position pt are simulated independently for each pixel i. Each pixel i is
projected onto the flat terrain ξ to find its measurement point xi,t ∈ ξ. We add
altitude-dependent zero-centered Gaussian noise to the ground truth feature field
value F (xi,t) by sampling ε from N

(
0, ν(pt)

)
. Following Popović et al. [126], mea-

surement noise ν(pt) increases with higher UAV altitudes as the camera’s ground
sampling distance increases as well. Hence, the planning algorithm has to balance
a larger field of view from higher altitudes, potentially yielding information about
larger terrain areas with increasing measurement uncertainty.

We simulate a fixed number of terrain monitoring missions. A mission is
terminated when the maximal flight time budget B is depleted, where flight
times are calculated using Eq. (4.2). At each time step t, the tree search is
executed to plan the next UAV position pt based on the current belief state st
in Eq. (4.6), where we use the actor-critic network to guide the search. The
tree search returns a sampling policy π(st) the next measurement position pt
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is drawn from. Additionally, the executed path’s information value I(ψπ,t) is
computed based on the received immediate rewards. Belief states st, sampling
policies π(st), and information values I(ψπ,t) are stored in an experience buffer.

In the following Sec. 4.2.3, we detail the actor-critic network-based tree search
used to derive the sampling policy. Subsequently, we describe our actor-critic
network architecture and explain the training procedure in Sec. 4.2.4.

4.2.3 Sampling-Based Planning with Neural Networks
At each time step t of a terrain monitoring mission, we execute a tree search
formalised in Alg. 4 similar to MCTS [13] that plans the next measurement posi-
tion pt based on the belief state st in Eq. (4.6). The search is guided by an actor-
critic neural network parameterised by θ ∈ RD that processes the belief state st
and outputs prior sampling probabilities πθ(st) over all possible next measure-
ment positions pt ∈ Pt and an estimated information value Vθ(st) ≈ I(ψπ,t).

The tree search is executed iteratively for a fixed number of iterations S ∈ N
from a root node n0 representing the current belief state st in Line 1. A node i
at tree depth d is denoted as nd,i and consists of its respective belief state st+d,
subsequently reachable child nodes nd+1,j ∈ N i

d+1 at depth d+ 1, and total value
and visit counts initialised as V (nd,i) = 0 and N(nd,i) = 0. In each iteration,
in Line 22, the tree is traversed until the UAV’s flight budget is exceeded or
the maximum path length L, we plan ahead is reached. If a leaf node nd,i at
depth d < L with no child nodes N i

d+1 = ∅ is reached in Line 23, we expand
the search tree by adding child nodes nd+1,k for each possible next measurement
position pt+d reachable within the remaining UAV flight time Bt. Then, we
estimate the information value I(ψπ,t) ≈ Vθ(st+d) of leaf node nd,i using the
critic network, see Line 28. In this way, we avoid the costly simulation of future
measurements and map updates up to the planning horizon t + L required to
evaluate the leaf node’s information value in non-learning-based search methods.

If node nd,i is not a leaf, i.e. N i
d+1 ̸= ∅, we select a child node nd+1,k ∈ N i

d+1

to traverse the tree along a subsequent measurement position in Line 29 that
maximises the probabilistic upper confidence tree (PUCT) bound [144]

PUCT(nd+1,k) = Q(st+d, pt+d) + πθ(st+d)k U(nd+1,k), (4.14)

Q(st+d, pt+d) = R(st+d, pt+d, st+d+1) + γ
V (nd+1,k)

N(nd+1,k)
, (4.15)

U(nd+1,k) =

√
N(nd,k)

1 +N(nd+1,k)

(
c1 + log

(
N(nd,k) + c2 + 1

c2

))
, (4.16)

where Q(st+d, pt+d) is the information value of starting at node nd,i and choos-
ing the next measurement position pt+d leading to child node nd+1,k. The child
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Algorithm 4 Actor-Critic Network-based Tree Search
procedure Plan(st, S)

s← 1 ▷ counts search iterations
Initialise search root node n0 with state st
Initialise total node value V (n0) = 0 and visit counts N(n0) = 0

Initialise empty set of children N 0
1 = ∅

while s ≤ S do ▷ performs S search iterations
Search(n0, 0) ▷ traverses and updates tree from root to leaf node
s← s+ 1

return N(n1,k) ∀n1,k ∈ N 0
1 ▷ visist counts of root node’s children

procedure Simulate(st, p)
Get terrain points xi ∈ ξ for all pixels i from measurement position p
εi ∼ N (0, ν(p)) for all pixels i ▷ sample i.i.d. altitude-dependent noise
zi,t+1 ← µt(xi) + εi for all pixels i ▷ simulate measurements from map
Update Kalman filter to N (µt+1,Pt+1) based on N (µt,Pt) and zt+1

Construct belief state st+1 as in Eq. (4.6) with Bt+1 = Bt − c(pt−1, p)
Compute reward R(st, p, st+1) using Eq. (4.12)
return belief state st+1 and reward R(st, p, st+1)

procedure Search(nd,i, d)
Extract state st+d from node nd,i ▷ i-th node at tree depth d

Extract children N i
d+1 of nd,i ▷ nodes at depth d+ 1 reachable from nd,i

if Bt ≤ 0 or d = L then return 0
if nd,i is leaf node then ▷ check for N i

d+1 = ∅
for pt+d ∈ Pt+d reachable within remaining budget Bt do

Add new child node nd+1,k with position pt+d
V (nd,i)← Vθ(st,d) ▷ Infer information value from critic network
N(nd,i)← 1

return Vθ(st,d)

nd+1,j ← argmaxnd+1,k∈N i
d+1

PUCT(nd+1,k) ▷ using Eq. (4.14)
st+d+1, R(st+d, pt+d, st+d+1)← Simulate(st+d, pt+d)
V (nd,i)← V (nd,i) + R(st+d, pt,d, st+d+1) + γSearch(nd+1,j, d+ 1)

N(nd,i)← N(nd,i) + 1

node’s information value is estimated based on its total value V (nd+1,k) nor-
malised over the number of search iterations N(nd+1,k) traversing through nd+1,k.
The constants c1, c2 ∈ R+ are factors weighing the exploration term U(nd+1,k)

balancing between choosing measurement positions with high information val-
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ues Q(st+d, pt+d) and measurement positions that are traversed less frequently.
In contrast to non-learning-based search methods, we do not uniformly explore
measurement positions based on their visit counts but favour child nodes nd+1,k

with high prior sampling probability πθ(st+d)k predicted by our actor network.
In this way, we improve the tree search’s sample efficiency as it is guided towards
paths with high estimated information value. Similarly to Silver et al. [152],
we add Dirichlet-noise to the root node’s sampling probabilities πθ(st) to foster
exploration of immediate next measurement positions during training.

For a chosen child node nd+1,j with position pt+d maximising the PUCT in
Eq. (4.14), we estimate the immediate reward R(st+d, pt+d, st+d+1) by simulating
a measurement at pt+d in Line 13. As the UAV cannot collect real measurements
during planning, we query the Kalman filter’s mean µt+d(xi) at measurement
points xi projected from pt+d on the terrain to get the maximum a posteriori
estimate of a potential future measurement zt+d at pt+d. Additionally, we sample
zero-centered altitude-dependent measurement noise ε from N (0, ν(pt,d)) consid-
ering the camera’s noise. We update the map based on the simulated measure-
ment zt+d using the Kalman filter equations described in Sec. 4.1.1. Based on
the updated map belief, we construct the state st+d+1 of child node nd+1,j as
in Eq. (4.6) and compute the reward R(st+d, pt+d, st+d+1) using Eq. (4.12). We
compute the path’s information value from child node nd+1,j on, which is used
to derive the path’s information value starting in parent node nd,i, recursively
repeating the traversal in Line 31 until a leaf node is reached.

After S search iterations, we derive the sampling policy π(st) of the root
node’s state st for each child node n1,k ∈ N 0

1 based on its visit counts as

π(st)k =
N(n1,k)

1/τ∑
n1,l∈N 0

1
N(n1,l)1/τ

, (4.17)

whereN 0
1 are the root’s child nodes with associated measurement positions. Sam-

pling policies are uniform for hyper-parameter τ → ∞, and policies peak to
argmaxk π(st)k as τ → 0. During training, pt is sampled from π(st) with τ > 0,
resulting in next state st+1 and reward R(st, pt, st+1). State st, sampling pol-
icy π(st), and reward R(st, pt, st+1) are stored in an experience buffer D. During
deployment, we choose the most informative next measurement position pt set-
ting τ = 0 and not adding Dirichlet-noise to πθ(st). In the following Sec. 4.2.4,
we detail the actor-critic network training using gathered experience D.

4.2.4 Network Architecture and Training
Our actor-critic network is parameterized by θ ⊂ RD with its architecture being
depicted in Fig. 4.3. It predicts prior sampling probabilities πθ(st) and infor-
mation value Vθ(st) ≈ I(ψπ,t) of a path starting in state st following the tree
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Figure 4.3: Our actor-critic convolutional neural network processes belief states st. We leverage
an ERFNet encoder [131] with 10 residual blocks providing shared representations for predict-
ing prior sampling probabilities πθ(st) and information value Vθ(st). Both heads comprise
three convolutional blocks and global pooling to make the convolutional neural network map
dimension-agnostic. Finally, fully connected layers project to predictions πθ(st) and Vθ(st).

search-induced sampling policy π in Eq. (4.17). We design a convolutional neural
network that processes a belief state st defined in Eq. (4.6) with a shared encoder.
We leverage non-bottleneck-1D blocks proposed by Romera et al. [131] to reduce
inference time. The encoder is followed by two separate prediction heads for prior
sampling probabilities πθ(st) and information value Vθ(st). Both heads consist
of three blocks with 2D convolution, batch norm, and SiLU activations. The last
block’s feature maps in each head are flattened to fixed-dimensional latent vectors
using global average and max pooling before applying final fully connected layers
to ensure the architecture is map dimension-agnostic.

The network’s input consists of (i) the covariance matrix Pt, (ii) the remain-
ing budget Bt, (iii) the UAV position pt, (iv) a cost grid map with c(pt, xi)
approximating the UAV’s flight time from position pt to a measurement position
above xi ∈ X , and (v) X̂I,t indicating areas that are likely of interest according to
Eq. (4.3). Additionally, we input the previous two covariance matrices Pt−2,Pt−1,
measurement positions pt−2, pt−1, and remaining budgets Bt−2, Bt−1. All inputs
are min-max normalised and expanded to the covariance matrix dimensions.

The convolutional neural network is trained with stochastic gradient de-
scent using a one-cycle learning rate over three epochs [156]. We sample states
st, sampling policies π(st), and received rewards R(st, pt, st+1) from experience
buffer D. The sampling policies are prediction targets for the prior sampling prob-
abilities πθ(st). Furthermore, we compute L-step information values Vπ(st) =∑L−1

d=0 γ
dR(st+d, pt+d, st+d+1) based on the L rewards subsequently received from

state st on, where L is the planning horizon of the tree search, acting as predic-
tion targets for estimated information values Vθ(st). The actor-critic network is
trained to minimise the loss function

L(θ) = E
st,π(st),
Vπ(st)∼D

[
α(Vθ(st)− Vπ(st))2 − βπ(st)T log

(
πθ(st)

)]
+ λ∥θ∥2, (4.18)
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where α is the critic loss coefficient, β is the actor loss coefficient, and λ ≥ 0 is
the weight decay coefficient. After re-training is completed, we again generate
new missions as explained in Sec. 4.2.2 using the re-trained actor-critic network θ
in the tree search to plan next measurement positions as detailed in Sec. 4.2.3.

4.2.5 Implementation Details
In the following, we describe the implementation details of our tree search al-
gorithm introduced in Sec. 4.2.3 and of our actor-critic network architecture de-
scribed in Sec. 4.2.4 that aim to improve information gathering performance.

A major shortcoming of neural network-guided tree search [153] is that the
sampling policy in Eq. (4.17) reflects the search exploration dynamics induced
by the PUCT in Eq. (4.14). The root’s child node visit counts N(n0

1,k) do not
necessarily capture the information valuesQ(st, pt) for possible next measurement
positions pt from the root node’s state st given a finite number of search iterations.
Hence, the tree search tends to overemphasize initially explored measurement
positions pt, leading to bias in collected experience D and in the trained actor-
critic network. Next, we introduce techniques to counteract these problems.

To avoid overemphasizing initially explored measurement positions, explo-
ration while traversing the search tree is desirable. However, increasingly ex-
ploiting known informative positions is beneficial in later re-training iterations.
Thus, we exponentially decay the exploration constant c1 in Eq. (4.14) after each
re-training. Similarly, we introduce an exponentially decaying amount of Dirich-
let noise added to the root node’s prior sampling probabilities πθ(st) to gradually
exploit the learned prior sampling probabilities.

Additionally, we introduce an experience buffer D of increasing size |D| to
accelerate training [96]. On the one hand, a substantial amount of experience is
required to train the convolutional neural network on a diverse set of simulated
information-gathering missions. On the other hand, in earlier training stages,
a small experience buffer accelerates network improvements while larger buffers
in later training stages ensure data diversity. Hence, we linearly increase the
experience buffer size in each iteration of generating new episodes.

Moreover, we adapt two techniques introduced by Wu [180] to improve the tree
search’s sample efficiency and the network’s architecture. First, forced playouts
and policy pruning decouple the tree search’s exploration dynamics and sampling
policies π(st). While traversing the search tree, under-explored child nodes n0

1,k

of the root node n0 are chosen by setting PUCT(n0
1,k) = ∞ in Eq. (4.14). In

Eq. (4.17), these child node visits N(n0
1,k) are subtracted again unless measure-

ment position pt+1 of child node n0
1,k led to a high information value. Second, we

use multiple global pooling bias blocks in the actor-critic network’s shared en-
coder. These blocks split the feature maps of previous non-bottleneck-1D blocks
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into two disjoint subsets. Global adaptive pooling is applied to the first subset
of feature maps, and a fully connected layer projects the pooled features to a
latent vector with dimensions equal to the number of feature maps in the second
subset. The projected latent vector is then used as a channel-wise bias for the
second subset of feature maps. This enables our convolutional neural network to
focus more easily on spatially local and global features required for adaptive IPP.
For details on forced layouts and global pooling bias blocks, we refer to Wu [180].

4.3 Experimental Evaluation
The experiments are designed to evaluate our approach and experimentally inves-
tigate the claims made in this chapter. First, we show that our RL-based adaptive
IPP method accelerates the replanning of paths compared to non-learning-based
state-of-the-art methods, resulting in higher information-gathering performance
in simulated UAV-based terrain monitoring missions as shown in Sec. 4.3.2. Sec-
ond, in Sec. 4.3.3, we validate that our method outperforms traditionally used
pre-computed coverage paths in a previously unseen real-world dataset-based
field surface temperature mapping mission. Third, we verify the individual com-
ponents of our adaptive IPP algorithm in an ablation study discussed in Sec. 4.3.4.

4.3.1 Experimental Setup

Mission setup. The procedure for simulating UAV-based terrain monitoring
missions is detailed in Sec. 4.2.2. Our simulation setup considers terrains ξ ⊂ R2

with 2D scalar feature fields F : ξ → [0, 1], where scalar values F (x) are assumed
to be normalised between 0 and 1. We discretise the terrain ξ into a 2D grid
map X to perform Kalman filter map updates F̂t ∼ N (µt,Pt) as described in
Sec. 4.1.1. We set the interesting feature threshold fth = 0.4 and randomly
split the terrain ξ into high- and low-value regions to create areas of interest ξI
following Popović et al. [126]. The UAV’s measurement positions are defined
by a discrete 2.5D lattice above the terrain ξ [126]. The lattice mirrors the
15× 15 grid map X on two altitude levels at 8m and 14m. We use the altitude-
dependent inverse sensor model by Popović et al. [126] to simulate camera noise,
assuming a downwards-facing square camera footprint with 60◦ field of view. The
terrain map’s Gaussian process prior is defined by a constant mean function with
m(x) = 0.5 for all x ∈ ξ. The Gaussian process uses the Matérn 3/2 kernel with
length scale 3.67, signal variance 1.82, and noise variance 1.42 by maximizing log
marginal likelihood over independent maps [126]. The UAV’s mission budget is
B = 150 s flight time, its initial position is p0 = (2, 2, 14)m, and its constant
acceleration-deceleration is ±ua = 2m/s2 with maximum speed uv = 2m/s.
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Hardware. We execute the UAV-based terrain monitoring missions on a
laptop with a 1.8 GHz Intel i7 CPU, 16 GB memory without GPU acceleration
to avoid unfair advantages in inference speed of our actor-critic network, trained
offline on a single machine with a 2.2 GHz AMD Ryzen 9 3900X with 64 GB
memory and a NVIDIA GeForce RTX 2080 Ti GPU.

Evaluation metrics. We repeat 10 UAV-based terrain monitoring missions
and report means and standard deviations. All performance metrics are com-
puted over areas of interest ξI ⊂ ξ to assess the methods’ adaptive replanning
capabilities. The adaptive IPP performance of a method is assessed by the map
uncertainty and error in areas of interest as in prior works [30, 61, 126]. At time
step t, the current map belief’s F̂t ∼ N (µ,Pt) uncertainty is defined as

Unc(F̂t, ξI) =
∑
xi∈X

Ixi∈ξIPt,i,i , (4.19)

where Ixi∈ξI is one, if grid cell xi ∈ X is part of an area of interest ξI , else zero,
and Pt,i,i is the grid cell’s xi current map variance. In this way, we compute the
trace of the covariance matrix of the current map belief in areas of interest ξI .
Lower map uncertainty values indicate better adaptive IPP performance.

The map error at time step t is captured by computing the root mean squared
error (RMSE) between the map belief F̂t ∼ N (µ,Pt) and the ground truth scalar
feature field F in areas of interest ξI as

RMSE(F̂t, F, ξI) =
√

1

NI

∑
xi∈X

Ixi∈ξI (µt(xi)− F (xi))2 , (4.20)

where NI is the number of grid cells in X belonging to areas of interest ξI , µ(xi)
is the map’s current mean estimate for a feature value at grid cell xi and F (xi))
is the ground truth feature value of the grid cell. Lower map errors indicate
better adaptive IPP performance. We evaluate map uncertainty and error over
the spent mission time as in prior works [30, 61, 126]. The spent mission time
incorporates the path travel time and planning runtime to evaluate performance
under limited onboard resources. A faster reduction of map uncertainty and error
over the spent mission time indicates better adaptive IPP performance.

Baselines. Our RL-based adaptive IPP approach is compared against state-
of-the-art non-learning-based adaptive IPP methods. All baselines use the same
reward function defined in Eq. (4.12) and simulate future measurements and map
updates during planning using the current map belief as described in Sec. 4.2.3.
We implement (i) MCTS, a rollout-based solver to plan the next measurement
position based on sampled future finite-horizon paths using progressive widen-
ing of the action space [160] and a generalized cost-benefit rollout policy for
adaptive IPP scenarios as proposed by Choudhury et al. [30]; (ii) CMA-ES fine-
tunes an initially greedily chosen path over the 2.5D lattice in the continuous
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3D workspace using covariance matrix adaptation evolution strategy (CMA-ES)
as proposed by Popović et al. [126]. Both planners consider a 5-step planning
horizon and we set CMA-ES hyper-parameters to 45 iterations, 12 offsprings, and
(4, 4, 3)m coordinate-wise step size in line with Popović et al. [126]. Furthermore,
we investigate two non-adaptive baseline planners that pre-compute paths before
deployment, thus not inducing any replanning runtime costs during deployment.
The random strategy chooses the next measurement position at random while
the coverage strategy pre-computes equidistantly spaced measurement position
at a fixed 8m altitude to spatially cover the entire terrain.

4.3.2 Simulation Results
The first set of experiments evaluates our RL-based adaptive IPP approach
against state-of-the-art non-learning-based methods in simulated terrain moni-
toring scenarios to investigate our first claim. In line with Popović et al. [126],
we randomly split the terrain into low- and high-value areas of interest as illus-
trated in Fig. 4.4d to assess the methods’ adaptive replanning capabilities. Our
results show that our RL-based tree search approach accelerates replanning, re-
sulting in higher information-gathering performance in the simulated UAV-based
terrain monitoring missions compared to state-of-the-art baseline methods.

Fig. 4.4 illustrates the information-gathering performance of our method (red)
compared to state-of-the-art adaptive IPP methods. As in prior works [30, 61,
102, 126], all methods adaptively replanning paths based on the current map
belief show on average faster reduction of the map uncertainty and error in areas
of interest. Although some coverage paths quickly gather information about
areas of interest, we observe high variance in the coverage strategy’s information-
gathering performance as it cannot adaptively focus on areas of interest. This
validates that adaptive IPP methods are required to achieve higher information-
gathering performance than traditionally used pre-computed paths.

Particularly, our method reduces the map uncertainty and error in areas of
interest on average faster than the state-of-the-art adaptive CMA-ES (blue) and
MCTS (green) replanning strategies. Additionally, our method substantially re-
duces replanning runtime, achieving a speedup factor of 8 − 10× compared to
non-learning-based CMA-ES and MCTS planning methods. These results high-
light the improved efficiency in our tree search and confirm that the actor-critic
network can learn informative measurement positions from training in diverse
simulated terrain monitoring missions. Fig. 4.4d shows a simulated terrain mon-
itoring mission split into low (blue) and high-value areas of interest (green) and
the path planned by our method. The UAV uses most of its mission budget for
collecting measurements of areas of interest as they are discovered. This qualita-
tively validates the learned adaptive planning strategy of our method.
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(a) Map uncertainty reduction (b) Map error reduction

(c) Replanning runtime (d) Planned UAV path in simulation

Figure 4.4: Our approach against state-of-the-art adaptive IPP methods in simulated UAV-
based terrain monitoring missions. Solid lines indicate means over 10 missions, and shaded
regions indicate the standard deviations. (a+b) On average, our RL-based approach ensures
the fastest map uncertainty and error reduction in areas of interest over the mission time.
(c) Furthermore, replanning runtime is reduced by a factor of 8 − 10× compared to adaptive
baselines. (d) The planned path (evolving over time from blue to red) validates the adaptive
behaviour of our approach, exploring the terrain while focusing on high-value areas (green).

4.3.3 Results on Real-World Surface Temperature Data

The second set of experiments evaluates our method in a UAV-based terrain
monitoring scenario using a real-world orthomosaic dataset to assess our second
claim. Our method outperforms traditionally used pre-computed coverage paths
in terrain monitoring missions on previously unseen real-world terrain datasets.

We demonstrate our approach using real-world surface temperature data of
a crop field. The data was collected in a 40 × 40 m large area of a crop field
nearby Forschungszentrum Jülich, Germany (50.87◦ lat., 6.44◦ lon.) on July 20,
2021. The data was acquired with a DJI Matrice 600 UAV carrying a Vue Pro
R 640 thermal sensor. The collected images were then processed using Pix4D
software to generate an orthomosaic representing the surface temperature in our
simulation as illustrated in Fig. 4.5a. We consider areas with surface temperatures
above 25◦C to be of interest as hot field regions could correlate with drought stress
of crops that might require intervention. We compare our approach against a
non-adaptive coverage path traditionally used to monitor arable fields [48].
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(a) Surface temperature data (b) Planned UAV path and map (c) Map uncertainty reduction

Figure 4.5: Real-world dataset-based UAV surface temperature mapping scenario. (Left) The
surface temperature orthomosaic of a crop field with high temperature (red) indicating areas
of interest. (Centre) The mapped surface temperature and path planned using our approach
(evolving over time from blue to red). (Right) Our RL-based approach ensures fast map uncer-
tainty reduction in high-temperature areas, outperforming traditionally used coverage paths.

Fig. 4.5b shows the planned path above the crop field and the resulting ter-
rain map using our method. Our method explores the terrain and allocates more
of the mission budget for collecting measurements in areas of interest with high
surface temperatures as they are discovered (red). This qualitatively verifies the
adaptive replanning behaviour of our learned tree search on previously unseen
real-world terrain data. Furthermore, Fig. 4.5c quantitatively shows that our
approach ensures fast map uncertainty reduction in areas of high surface temper-
ature. The coverage path cannot adapt its behaviour based on already collected
measurements and thus fails to quickly reduce map uncertainty in areas of high
surface temperature. These results verify the successful transfer of our actor-critic
network trained in simulation to a real-world dataset and demonstrate the tree
search’s benefits over traditionally used pre-computed monitoring approaches.

4.3.4 Ablation Study
The third set of experiments is an ablation study designed to evaluate the tree
search and actor-critic network components detailed in Sec. 4.2.5, investigating
our third claim. Our results verify that the individual components often improve
the map uncertainty and error reduction, validating our algorithm design.

We perform an ablation study comparing our approach to versions of itself
(i) removing proposed tree search components detailed in Sec. 4.2.5 and (ii)
changing the actor-critic architecture introduced in Sec. 4.2.4. We reduce the
grid map’s X resolution from 15× 15 cells used for experiments in Sec. 4.3.2 and
Sec. 4.3.3 to 10 × 10 cells to retrain the different variants more efficiently. We
compare them in simulated terrain monitoring missions as in Sec. 4.3.2.

The ablation study results are summarised in Tab. 4.1. Considering not only
the current state information as input to the actor-critic network but also provid-
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Unc. ↓ RMSE ↓ Time ↓
Variant 33% 67% 100% 33% 67% 100% [s]

Our approach in Sec. 4.2 73.61 31.83 12.44 0.15 0.09 0.05 0.64
(i) w/ constant buffer size 83.25 50.17 24.68 0.16 0.12 0.09 0.68
(i) w/ fixed exploration constants 95.27 39.46 21.86 0.20 0.11 0.08 0.65
(i) w/o forced playouts 79.23 28.53 22.62 0.18 0.09 0.07 0.66
(ii) w/o glob. pool. bias blocks 103.58 45.78 31.44 0.19 0.11 0.10 0.64
(ii) 5 blocks in encoder 82.90 29.94 17.94 0.16 0.08 0.07 0.55
(ii) w/o input feature history 102.40 40.48 31.33 0.20 0.10 0.09 0.66

Table 4.1: Ablation study results of our approach presented in Sec. 4.2. We systematically
(i) remove algorithm components and (ii) change the actor-critic architecture to quantify their
impact on the adaptive IPP performance. The map uncertainty (Unc.) and error (RMSE)
are evaluated after 33%, 67%, and 100% spent mission time. Faster map uncertainty and error
reduction over time indicate stronger performance. Our approach introduced in Sec. 4.2 achieves
the fastest and most stable reductions in uncertainty and RMSE over the mission time.

ing it with a history of the previous two map beliefs and UAV positions results
in facilitated learning and, thus, substantially faster map uncertainty and error
reduction. Similarly, using global pooling bias blocks in the actor-critics en-
coder proposed by Wu [180] enhances learning, reflected in noticeably improved
information-gathering efficiency. Reducing the actor-critic network’s size to 5

instead of 10 encoder blocks has a less pronounced effect on the planning per-
formance but still leads to higher remaining map uncertainty and error after
termination of the mission. Moreover, the algorithm’s components influencing
the tree search behaviour, i.e. using dynamically adjusted exploration constants
while traversing the search and using forced playouts of the root node’s under-
explored child nodes, both lead to lower final map uncertainty and error in areas
of interest. Finally, dynamically increasing the size of the experience buffer D
while generating training episodes results in faster map uncertainty and error
reduction as well. Overall, these results show that our algorithm and actor-critic
network design choices consistently improve the information-gathering efficiency
in simulated UAV-based terrain monitoring missions.

4.4 Conclusion

To gather information in unknown environments, robots must decide onboard
where to move next to collect new measurements that improve their understand-
ing of the environment. Recent adaptive IPP methods enable robots to plan their
next measurement positions based on already gathered measurements. However,
these approaches involve compute-expensive procedures to replan paths, resulting
in decreased information-gathering efficiency on resource-constrained robots.
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To address this issue, we proposed a new adaptive IPP approach that combines
sampling-based planning with RL to accelerate onboard replanning of paths on
resource-constrained UAVs. To achieve this, we formalise the connection between
the adaptive IPP problem for information gathering in terrain monitoring and the
general RL problem. We then use this established connection to offline-train a
neural network in simulated UAV-based terrain monitoring missions, which steers
the sampling of potential future candidate paths and estimates their expected in-
formation value based on the robot’s current understanding of the environment.
Our experimental results show that our RL-based adaptive IPP method accel-
erates the replanning of paths, resulting in higher information-gathering perfor-
mance than state-of-the-art non-learning-based adaptive methods in simulated
UAV-based terrain monitoring missions. Furthermore, our method outperforms
traditionally used pre-planned coverage strategies on previously unseen real-world
crop field surface temperature data-based mapping missions.

These results suggest that, in response to the first research question posed
in this thesis, our approach combining RL and sampling-based planning presents
one possible way forward to increase the compute efficiency of adaptive IPP al-
gorithms without sacrificing information-gathering performance. However, our
method is trained for specific terrain monitoring missions, restricting its appli-
cation to monitoring continuous-valued terrain features, such as surface temper-
ature. Additionally, we trained our planning algorithm on static user-defined
mission characteristics, such as fixed interesting feature value thresholds qualify-
ing an area to be of interest for precise mapping. Hence, changing user-defined
mission characteristics might require re-training. Moreover, other information-
gathering missions, such as monitoring streets, vegetation, and buildings in a
city for urban planning purposes, require monitoring discrete-valued semantic
information and thus require re-designing the method. In Chap. 5, we address
these limitations by proposing a novel adaptive IPP formulation that unifies this
broad family of information-gathering missions. Similar to this chapter, we then
train a single adaptive IPP policy with RL applicable to a large variety of terrain
monitoring missions using our unified formulation.
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Chapter 5

Map-Agnostic Policies for
Adaptive Informative Path
Planning

Recent advances have prompted a series of non-learning-based meth-
ods that address the adaptive IPP problem [61, 63, 102, 117, 117, 126].
To adaptively replan paths, non-learning-based adaptive IPP meth-
ods rely on evaluating the potential information value of many pos-

sible future paths in the environment. As computing the information value in-
volves costly simulation of expected future measurements and map updates, these
procedures are computationally expensive. This makes it challenging to deploy
non-learning-based methods on resource- and compute-constrained robots while
ensuring frequent replanning of paths. To overcome these issues, learning-based
adaptive IPP approaches, such as ours described in Chap. 4 have been proposed.
These methods train planning policies offline in simulation and perform compute-
efficient policy inference at deployment [18, 19, 27, 98, 116, 135, 174].

The majority of approaches consider different to-be-mapped information, i.e.
environmental features, of interest during a mission. Mapping continuous-valued
features, e.g. bacteria levels [61] or signal strength [102], is commonly performed
using Gaussian processes [19, 27, 61, 102, 119, 171, 174] or Kalman filters [126,
135] as map representations. Mapping discrete-valued features, e.g. semantically
segmenting crops and weeds in arable fields [175] or analysing rural area land
use [126], is commonly performed using grid maps [18, 98, 116, 126, 175]. These
approaches require re-designing the environment representation used for planning
as the to-be-mapped environmental features, and thus, the map representations
change. Furthermore, learning-based approaches, including the approach dis-
cussed in Chap. 4, are not only specifically designed for but also trained on a
single environment map representation. This prohibits their direct application

55



Dis
cre

te fea
ture

s

Con
tinu

ous
fea

ture
s

Map-agnostic
adaptive IPP policy

Unified terrain
representation

Figure 5.1: Robots perform continuous- or discrete-valued terrain feature monitoring missions,
e.g. mapping surface temperature or urban semantics. We transform mission-specific terrain
map representations, e.g. Gaussian processes or occupancy grid maps, into a novel unified state
representation for adaptive informative path planning (IPP). In this way, we design and train a
single map-agnostic planning policy applicable to largely varying terrain monitoring missions.

to a larger variety of robotic information-gathering missions since these methods
require re-training planning policies as map representations change.

To address this issue, we argue in this chapter that the broad pool of ex-
isting adaptive IPP approaches should be viewed along two dimensions: the
map-specific formulation modelling the adaptive IPP problem and the algorithm
used to offline-train or online-search the planning policy. The formulation of the
adaptive IPP problem is the most critical design decision to ensure the unified
applicability of planning policies across various monitoring missions. This mo-
tivates the need for a map-agnostic formulation of the adaptive IPP monitoring
problem that directly integrates with any (non)-learning-based policy search al-
gorithm used for adaptive IPP. Particularly, this formulation ensures training
and deploying learned policies in largely varying monitoring missions.

The main contribution of this chapter is such a novel map-agnostic formulation
of the adaptive IPP problem for terrain monitoring. Our formulation unifies
continuous-valued, i.e. regression, and discrete-valued, i.e. classification, terrain
feature monitoring for adaptive IPP policies as illustrated in Fig. 5.1. To achieve
this, we unify the planning algorithm’s state space representation across terrain
map representations used for replanning paths online. Based on this unified
planning state space and a new reward function for adaptive IPP, we train and
deploy a generally applicable planning policy on previously unmet variations of
terrain monitoring missions using RL. To this end, we condition the learned
planning policy on the user-defined and map-specific mission hyperparameters to
increase performance across diverse monitoring missions.
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5. Map-Agnostic Policies for Adaptive Informative Path Planning

Overall, we make the following claims in this chapter. First, our map-agnostic
planning policy trained and deployed on vastly varying simulated terrain moni-
toring missions performs on par or better than state-of-the-art map-specifically
trained policies and non-learning-based adaptive IPP approaches. Second, our
map-agnostic policy performs similarly to state-of-the-art adaptive IPP methods
on various real-world terrain datasets. Third, with our experiments, we demon-
strate that our map-agnostic adaptive IPP formulation easily integrates with
and unifies previous non-learning-based state-of-the-art adaptive IPP algorithms
while maintaining or improving their planning performance.

This chapter incorporates material from the following peer-reviewed journal
publication, for which I have been the main contributor:

• Julius Rückin, David Morilla-Cabello, Cyrill Stachniss, Eduardo Montijano,
and Marija Popović. Towards Map-Agnostic Policies for Adaptive Informa-
tive Path Planning. IEEE Robotics and Automation Letters (RA-L), 10(5):
5114–5121, 2025

5.1 Map-Agnostic Adaptive Informative Path
Planning

We aim to formulate the adaptive IPP problem for terrain monitoring [63, 64,
102, 106, 126] in a map-agnostic fashion to offline-learn or online-solve planning
policies across different monitoring missions and map representations without re-
designing or re-training policies. In Sec. 5.1.1, we start by making the challenge of
map-agnostic adaptive IPP mathematically precise and introduce the associated
sequential decision-making problem. Next, we present our novel map-agnostic
formulation of the adaptive IPP problem in Sec. 5.1.2. Particularly, in Sec. 5.1.2.3,
we show how to use this novel formulation to train a single map-agnostic adaptive
IPP policy across a wide range of terrain monitoring missions.

5.1.1 Problem Formulation
We consider a robot with pose pt ∈ RDr at time t, moving in an a priori unknown
terrain. The terrain ξ ⊂ RDe is characterised by its unknown and stationary
feature field F : ξ → F . The continuous or discrete terrain feature space F is
the mission-specific information the robot is tasked with to gather. The goal is
to estimate and precisely map the terrain feature field F in interesting areas,

ξI = {x ∈ ξ | F (x) ∈ FI} ⊆ ξ , (5.1)

where FI ⊆ F is the user-defined set of feature values qualifying a point x ∈ ξ as
interesting, e.g. a subset of value ranges or a subset of semantic classes.
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5.1. Map-Agnostic Adaptive Informative Path Planning

To accomplish this objective, the robot is equipped with a sensor to collect
measurements z ∈ Z from the terrain, e.g. semantically segmented RGB images,
thermal images, or radiation levels. At each time step t, the measurements pro-
vide noisy information about F according to zt ∼ p(z | pt, F ). They are used to
model a stochastic process F̂t over all possible terrain feature field functions F ,

F̂t ∼ p(F | z1:t, p1:t, θF ) , (5.2)

where z1:t ∈ Z t is the set of all measurements collected at poses p1:t. The map rep-
resentation is indicated and parameterised by hyperparameters θF . Most works
update the map belief F̂t for continuous-valued features F ⊆ R with pre-trained
Gaussian processes or Kalman filters [177]. Map beliefs F̂t for discrete-valued
features F ⊆ N are commonly updated using occupancy grid mapping [114].

We aim to find an optimal action sequence or path ψ∗ = (a1, . . . , aN), where
at ∈ A ⊆ RDa are relative pose changes. The path ψ∗ maximises an information
criterion I : AN × ξI → R, where AN encompasses all paths of length N . The
information criterion, as in Eq. (4.1), associates measurements z1:N collected along
path ψ with their information value I(ψ, ξI) about areas of interest ξI , so that

ψ∗ = argmax
ψ∈AN

I(ψ, ξI), s.t. C(ψ) ≤ B, (5.3)

is the optimal path with the highest information value about areas of interest. The
path’s execution cost is given by C : AN → R, e.g. battery capacity or travel
time. The robot’s maximum mission budget is denoted as B ≥ 0. As feature
field F and thus areas of interest ξI are a priori unknown, Eq. (5.3) cannot be
solved offline. The optimal path ψ∗ in Eq. (5.3) changes as F̂t is updated based on
new measurements. Therefore, online replanning is required to find an optimal
path ψ∗ that adaptively focuses on areas of interest ξI as they are discovered.

The concrete formulation of Eq. (5.3) depends on the specific terrain monitor-
ing mission. Depending on the mission, the spatially mapped terrain features F
might be discrete, such as semantic classes, or continuous, such as surface temper-
ature. Different terrain features might require different map representations F̂t
with hyperparameters θF . Furthermore, the user specifies feature values FI ⊆ F
that qualify an area to be of interest. We denote H = {F ,FI , θF} as the set of
mission hyperparameters defining the specific instantiation of Eq. (5.3).

As shown in Sec. 4.1, the adaptive IPP problem in Eq. (5.3) can be trans-
formed into a sequential decision-making problem solvable with RL by

π∗ = argmax
π∈Π

I ((π(s0), . . . , π(sN−1)), ξI)

= argmax
π∈Π

N−1∑
t=0

γtR (st, π(st), st+1, ξI) ,
(5.4)

58



5. Map-Agnostic Policies for Adaptive Informative Path Planning

where π : S → A is a planning policy mapping state st ∈ S at time step t to an
action at = π(st), and Π is the function space of all possible policies. Thus, the
path ψ is given by ψ = (π(s0), . . . , π(sN−1)). Usually, a mission- and map-specific
reward function R(st, π(st), st+1, ξI) ∈ R resembles the information criterion I.
It rewards taking actions at in state st that lead to a next state st+1 with increased
information about areas of interest ξI . The discount factor γ ∈ [0, 1] weighs the
importance of future rewards. As areas of interest ξI are unknown, prior adaptive
IPP methods [19, 61, 126, 135, 175] approximate unknown areas of interest ξI . To
this end, they use map-specifically computed confidence intervals based on hand-
tuned confidence thresholds, e.g. as shown in Eq. (4.3), rewarding uncertainty
reduction over map belief F̂t in these approximated areas of interest.

Different from existing adaptive IPP approaches that consider terrain map-
specific planning state formulations st with approximated areas of interest, in
Sec. 5.1.2, we formulate the problem in Eq. (5.4) in a fully probabilistic and map-
agnostic fashion. To this end, we propose a planning state st that unifies the
adaptive IPP problem across different map representations F̂t. This allows us to
apply a single learned policy π∗ to varying terrain monitoring missions. Based
on this planning state, we introduce a new reward function for Eq. (5.4) enabling
training or online-solving policy π∗ for different terrain monitoring missions. Ad-
ditionally, we use the mission hyperparameters H to condition the learned pol-
icy π∗ on the user-defined and mission-specific problem characteristics.

5.1.2 Map-Agnostic Planning Policy
Our approach is conceptually depicted in Fig. 5.1. We unify the adaptive IPP
problem formalised in Sec. 5.1.1 across different map representations required to
spatially capture continuous- and discrete-valued terrain features. To this end,
we view any terrain monitoring mission as a binary segmentation task, probabilis-
tically splitting the terrain into areas of interest and uninteresting areas. Based
on this belief over areas of interest, we propose a map-agnostic planning state
space in Sec. 5.1.2.1 and introduce a new reward function for adaptive IPP in
Sec. 5.1.2.2. This allows us to online-solve or offline-train a planning policy in
a unified fashion across different map representations. Last, in Sec. 5.1.2.3, we
show how we use our state space and reward function to offline-train an adaptive
IPP policy on varying terrain monitoring missions in simulation.

5.1.2.1 Unified Planning State Space

Our formulation of planning states st ∈ S encodes all information required to
solve the adaptive IPP problem in Eq. (5.4). This includes the robot’s state es-
timation, its current understanding of the terrain, and mission hyperparameters.
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(a) Continuous-valued terrain features

(b) Discrete-valued terrain features

Figure 5.2: Our unified belief p
(
F (x) ∈ FI | F̂t

)
over areas of interest ξI for continuous- and

discrete-valued terrain features. (a) Posterior normal distributions inferred from a Gaussian
process or Kalman filter map representation at a point x in the terrain ξ with an interesting
value threshold fth = 0.6. The unified belief is computed by the orange area under the curve,
which is larger for observed areas of interest (yellow) than for unknown uncertain areas (grey).
(b) The unified belief is given by the sum of posterior probability masses over interesting classes
(orange) with higher probability for observed areas of interest (green, red). Posterior probability
masses are extracted from occupancy grid map cells corresponding to point x in the terrain ξ.

We propose a belief over areas of interest ξI as input to the planning policy π(st)
that unifies continuous- and discrete-valued terrain features requiring different
map representations F̂t in Eq. (5.2). Assume that Xt is a finite subset of points
xt ∈ ξ spatially sampled from the terrain ξ at time step t at which we aim to
infer the state st(xt). Then, for each point xt ∈ Xt, the state st(xt) is defined as

st(xt) =
(
p
(
F (xt) ∈ FI | F̂t

)
, H
(
F̂t(xt)

)
, pt, Bt, H

)
, (5.5)

where p
(
F (xt) ∈ FI | F̂t

)
is the probability of xt being part of an area of in-

terest ξI , H
(
F̂t(xt)

)
is the uncertainty of the mission-specific map belief F̂t at

point xt, pt is the robot’s current position, Bt ≤ B is the remaining budget, and
H are the mission hyperparameters specifying Eq. (5.3). For occupancy maps,
H
(
F̂t(xt)

)
is the Shannon entropy at xt. For Gaussian processes or Kalman filters,

H
(
F̂t(xt)

)
is the variance at xt. Our method supports any spatial arrangement

of points Xt at which we capture the planning state. It can be integrated with
any equidistant grid-like sampling of the state space over the terrain ξ as used
in [117, 126, 135, 175] or topological sampling as used in [18, 19, 167, 174].

In contrast to previous works relying on map-specific formulations of state st
with binary approximations of interesting areas, our planning state formulation in
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Eq. (5.5) introduces a fully probabilistic and map-agnostic belief over areas of in-
terest, denoted as F̂I,t ∼ p

(
F (xt) ∈ FI | F̂t

)
. Next, we show how to compute this

unified belief for continuous- and discrete-valued terrain feature mapping missions
with different map representations and illustrate its computation in Fig. 5.2.

Consider discrete feature spaces F = {1, . . . , K} with K ∈ N semantic classes.
Areas of interest ξI are given by a user-defined set of interesting classes FI ⊆ F
with |FI | ≤ K. As the map belief F̂t ∼ p(F | z1:t, p1:t) is represented using
occupancy grid maps, the unified belief F̂I,t(x) over areas of interest is defined as

p
(
F (x) ∈ FI | F̂t

)
=
∑
fI∈FI

p
(
F (x) = fI | z1:t, p1:t

)
, (5.6)

where fI is a single class in the set of interesting classes FI . The fI-th layer of the
occupancy map at the grid cell corresponding to x ∈ ξ provides the probability
p
(
F (x) = fI | z1:t, p1:t

)
of point x belonging to class fI .

Next, consider continuous feature spaces F = [fa, fb] with fa ≤ fb. Inter-
esting areas are given by user-defined thresholds fth with fa ≤ fth ≤ fb, such
that FI = [fth, fb]. As the map belief F̂t is represented by a Gaussian pro-
cess or Kalman filter, the probability density over feature values is given by
F̂t ∼ N (µ(x), σ(x)2 | F̂t) with posterior mean µt(x) and variance σt(x)2 of F̂t at
point x. The unified belief p

(
F (x) ∈ FI | F̂t

)
over interesting areas is defined as

p
(
F (x) ∈ FI | F̂t

)
=

1√
2πσt(x)2

∫
fth

exp
(
−(f − µt(x))2

2σt(x)2

)
df

= 1− Φ

(
fth − µt(x)√

σt(x)2

)
,

(5.7)

where Φ(·) is the cumulative distribution function of the standard normal distri-
bution measuring p

(
F (x) ≤ fth | F̂t

)
, integrating w.r.t. feature values f ≥ fth.

The mission-specific hyperparameters H = {F ,FI , θF} directly influence the
computation of our unified belief over interesting areas F̂I,t in Eq. (5.6) and
Eq. (5.7). This makes the effect of the chosen mission hyperparameters accessible
to the planning policy, thus improving adaptivity to the concrete instance of
Eq. (5.4) a planning method aims to solve. For learning-based planning methods
aiming to train a policy π∗ offline, we additionally condition the planning policy
on the mission-specific hyperparameters as it allows us to train a single policy that
can solve Eq. (5.4) for various terrain monitoring variants H without retraining.

5.1.2.2 Adaptive Planning Reward Function

We introduce a new reward function for the adaptive IPP problem formalised
in Eq. (5.4) based on our unified planning state formulation st presented in
Sec. 5.1.2.1. The unified planning state formulation and reward function could be
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5.1. Map-Agnostic Adaptive Informative Path Planning

integrated into any non-learning-based planning method searching for the optimal
policy π∗ online or learning-based planning method for training π∗ offline.

Our goal is to quickly find areas of interest ξI in Eq. (5.1) and precisely
estimate the feature field F in these areas. Hence, we aim to maximise information
about the map belief in areas of interest. To adapt paths towards areas likely of
interest, we reward uncertainty reduction in F̂t proportionally to our belief over
interesting areas F̂I,t(x) ∼ p

(
F (x) ∈ FI | F̂t

)
as defined in Eq. (5.6) and Eq. (5.7).

Assume X is a finite subset of points x ∈ ξ representing an equidistant grid over
the terrain. We define the reward function in Eq. (5.4) as

R(st, at, st+1) =
∑
x∈X

H
(
F̂t(x)

)
−H

(
F̂t+1(x)

)
H
(
F̂t(x)

) p
(
F (x) ∈ FI | F̂t

)
, (5.8)

where H
(
F̂t(x)

)
is the uncertainty of the mission-specific map belief F̂t at a point

x ∈ X . The map belief F̂t+1 at the next time step t + 1 is updated according
to Eq. (5.2) after executing action at and collecting a new sensor measurement
zt+1 ∼ p(z | pt+1, F ) from a next pose pt+1. For occupancy maps, H

(
F̂t(xt)

)
is the exponential Shannon entropy at x. For Gaussian processes and Kalman
filters, H

(
F̂t(xt)

)
is the variance at x.

Rewarding the uncertainty reduction of our new unified belief over areas of
interest F̂I,t would be sufficient to achieve competitive adaptive IPP performance
in many terrain monitoring missions. However, for maximal performance across
various missions, it is necessary to reward uncertainty reduction of the mission-
specific map belief F̂t in areas likely of interest as in Eq. (5.8). As an example,
consider exploration missions with interesting features FI = F . Then, inter-
esting areas ξI = ξ cover the whole terrain by definition of Eq. (5.1). Assum-
ing occupancy maps, by definition of Eq. (5.6), for any point x ∈ ξ, it holds
p(F (x) ∈ FI | F̂t) = 1 even before a mission starts. Hence, the uncertainty of the
unified belief over areas of interest is H(F̂I,t(x)) = 0, thus not providing infor-
mative rewards to map the terrain feature field F precisely. Instead, we reward
uncertainty reduction over the map belief F̂t proportionally to our new unified
belief over interesting areas F̂I,t. In this way, our reward function encourages
exploring uncertain areas of the terrain while adaptively refining the map belief
in areas of interest as they are discovered during a mission.

5.1.2.3 Planning Policy Training Details

We use RL to train a single unified planning policy π∗ on simulated terrain
monitoring deployments with previously unmet mission variations. We detail our
terrain monitoring mission simulations, encoding of mission hyperparameters H
and the used RL algorithm and policy network representing π∗. In practice, any
policy learning method, e.g. imitation learning, policy network architecture, and
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hyperparameter encoding could be used to train the policy with our map-agnostic
adaptive IPP formulation introduced in Sec. 5.1.2.1 and Sec. 5.1.2.2.

Mission simulations. We randomly choose missions that aim to map terrain
feature fields F either with continuous- or with discrete-valued features F . In
the case of continuous-valued features, we use a Gaussian process with randomly
sampled kernel hyperparameters θF to represent and update the map belief F̂t in
Eq. (5.2). For discrete-valued features, we use an occupancy map to represent and
update F̂t. We simulate randomised ground truth feature fields F with spatial
correlations of different extents, as depicted in Fig. 5.4 to encourage learning
planning strategies generalising to varying feature fields. We randomly sample
the set of interesting feature values FI from the feature space F .

Hyperparameter encoding. We explicitly input mission hyperparame-
ters lGP and fth into state st. The map hyperparameter lGP ≥ 0 ∈ θF is the
lengthscale of a Gaussian process Matern kernel used to represent the map be-
lief F̂t. This is important as different lengthscales result in different map updates
along paths, potentially affecting decision-making. Map beliefs F̂t assuming spa-
tially independent measurements z, e.g. occupancy grid maps, are naturally
encoded by lGP = 0 as Matern kernels with lGP → 0 assume spatially indepen-
dent measurements. The user-defined value fth ∈ F determines the interesting
features FI . Interesting feature thresholds fth encode prior user belief about
the spatial extent of interesting areas ξI over the terrain ξ. For example, for
continuous- or discrete-valued missions with FI = F , conditioning the policy on
fth = 0 encodes those interesting areas that cover the entire terrain.

Policy training. We train our policy π∗ using proximal policy optimisa-
tion (PPO) [146], which is an actor-critic RL algorithm, as it is known for its
versatile usage and reasonable training stability. For details on actor-critic RL
algorithms, we refer to Chap. 3. We compute our planning state representation
in Eq. (5.5) over an equidistant grid Xt. Our shared actor-critic neural network is
parameterised by θ and processes this state representation as shown in Fig. 5.3.

We use the IMPALA encoder [41] to process the unified belief over areas of
interest p

(
F (x) ∈ FI | F̂t

)
and map belief uncertainty H

(
F̂t(x)

)
. The IMPALA

encoder consists of three convolutional blocks with 16, 32 and 32 channels, re-
spectively. Each block consists of a convolutional layer followed by max-pooling
to downsample feature maps by a factor of 2 and two subsequent residual blocks
as proposed by He et al. [59]. In total, the IMPALA encoder consists of 15 con-
volutional layers. After the last convolutional layer, a fully connected non-linear
layer projects the feature maps to a 256-dimensional latent map state vector.

We use a multilayer perceptron (MLP) to process the current robot’s posi-
tion pt, remaining budget Bt and mission hyperparameters H. These state values
are encoded using positional encoding [168]. Next, we process them with the

63



5.1. Map-Agnostic Adaptive Informative Path Planning

Figure 5.3: Our shared actor-critic neural network architecture used by the proximal policy
optimisation algorithm to process planning state information. We use the IMPALA encoder [41]
combined with a simple two-layer MLP encoder to process map and robot state information,
respectively. Based on the shared latent state vector, individual actor and critic predictions
heads output the stochastic policy πθ(st) and state-value function Vπθ

(st) given state st.

2-layer MLP with 256 hidden units per layer to output the latent robot state
vector. Subsequently, the latent map and robot state vectors are concatenated
and processed by another 2-layer MLP with 256 hidden units per layer to output
a latent state vector. Based on this latent state vector, two independent predic-
tion heads, consisting of a single linear layer each, output the stochastic policy
π

θ
(st) ∈ [0, 1]|A| and state-value function Vπ

θ
(st) ∈ R, where |A| is the number of

actions in action space A. We train the network until performance converges.
During deployment, we perform inference based on the policy π∗

θ parame-
terised by the trained actor-critic network θ. At each time step t, we select the
next action at ∈ A with the highest probability based on state st as

at = argmax
i∈{1,...,|A|}

π∗
θ
(st)i. (5.9)

Note that our proposed method could be combined with any other RL al-
gorithm to train adaptive IPP policies and any other actor-critic network ar-
chitecture to process state information computed at Xt. Advances in network
architectures designed for learning-based adaptive IPP methods, such as the one
introduced by Cao et al. [19], are orthogonal research directions to our method.
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5.2 Experimental Evaluation
The experiments are designed to evaluate our approach and experimentally back
up the claims made in this chapter. First, in Sec. 5.2.2, we show that training
our single unified policy on various monitoring missions yields competitive perfor-
mance with state-of-the-art online non-learning-based policy search methods and
offline-learned policies adapted and re-trained for each class of monitoring mis-
sions with specific map representations. Second, in Sec. 5.2.3, we verify that our
single unified policy trained in simulation performs similarly to these state-of-the-
art adaptive IPP methods on unseen real-world datasets. Finally, in Sec. 5.2.4,
we demonstrate that our map-agnostic adaptive IPP formulation unifies existing
adaptive IPP methods while maintaining or improving planning performance.

5.2.1 Experimental Setup
Mission setup. The procedure for simulating monitoring missions is described in
Sec. 5.1.2.3. For discrete-valued terrain features, we assume three classes F with
interesting classes FI of varying spatial extent. We equip a simulated UAV with
a sensor delivering image-like semantic measurements zt spanning a downwards-
projected field of view. We use occupancy grid maps F̂t for terrain mapping
and confusion matrix-based sensor noise as in [126, 175]. For continuous-valued
terrain features, we assume features F = [0, 1] with interesting thresholds fth,
such that FI = [fth, 1]. Simulated UAVs are equipped with sensors delivering
point measurements zt with Gaussian noise, mapped using Gaussian processes as
in [19, 61, 117, 126]. We distinguish between the classical evaluation on fixed
mission hyperparametersH = {fth, lGP} = {0.4, 0.35} as in [19, 61, 126, 135, 175],
denoted as static, and our more challenging scenario of randomly sampled H
with fth ∈ [0.0, 0.8] and lGP ∈ [0.15, 0.55] denoted as varying. The mission
budget is set to B = 100s, and initial robot positions p0 are sampled randomly.
We assume relative 2D robot position changes at ∈ A on an equidistant grid
as in [117, 126, 135, 175]. To benchmark our approach, we simulate ground
truth feature fields F with varying spatial correlations as shown in Fig. 5.4.
Additionally, we evaluate on real-world orthomosaic feature fields F in Fig. 5.5.

Baselines. We consider state-of-the-art adaptive IPP methods as baselines.
In contrast to our RL-Ours method, all baseline methods rely on map-specific
planning state spaces. All baseline methods consider the current robot posi-
tion pt and remaining budget Bt in their state. Continuous-valued terrain fea-
tures are modelled by directly using posterior mean µt(x) and variance σt(x)2 of
the Gaussian process at points x ∈ Xt as in [19, 61, 117, 126, 135]. Discrete-valued
terrain features are modelled by directly using the posterior occupancy map
p
(
F (x) | z1:t, p1:t

)
and its entropy H(F̂t(x)) at points x ∈ Xt as in [126, 175]. All
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Table 5.1: Hyperparameters of (left) Monte Carlo tree search (MCTS) and (right) covariance
matrix adaptation evolution strategy (CMA-ES) used as online policy search algorithms.

Hyperparameter Value Hyperparameter Value

MCTS

Horizon (T ) 5

CMA-ES

Horizon (T ) 5
Discount factor (γ) 1.0 Discount factor (γ) 1.0
Num. simulations 65 Max. iterations 10
Exploration coeff. 1.41 Population size 8

Rollout policy Uniform Initial std. dev. 0.08

baseline methods reward map uncertainty reduction in areas of interest approxi-
mated by hand-tuned and map-specific confidence intervals as in [19, 61, 126].

Based on these map-specific states and rewards, we implement state-of-the-
art online policy search methods and offline-train planning policies using RL.
As uncertainty reduction depends on unknown future sensor measurements, for
online policy search methods, at time step t, we simulate expected future sensor
measurements zt+1. To this end, during online planning, we sample zt+1 from the
current probabilistic posterior map belief F̂t according to zt+1 ∼ p(z | pt+1, F̂t) at
a potential future robot pose pt+1. We use the respective inverse sensor model to
transform zt+1 into a probabilistic observation to update the posterior map F̂t+1.

As online policy search methods, we implement (i) MCTS, a rollout-based
solver to plan the next action based on sampled future finite-horizon paths to
estimate next actions’ value functions, similar to Ott et al. [117]; (ii) CMA-ES
fine-tunes an initial greedily chosen path over a finite horizon in continuous space
over the terrain in an evolutionary fashion using the covariance matrix adaptation
evolution strategy (CMA-ES) [57] as proposed by Popović et al. [126]; (iii) Greedy
executes a greedily chosen next-best action as described by Popović et al. [126].
Hyperparameters for MCTS and CMA-ES are summarised in Tab. 5.1 and tuned
for performance while avoiding excessive replanning run times.

To offline-train RL-Base planning policies, we use RL assuming Static hyper-
parameters and perform policy inference online as in [18, 19, 116, 167, 174, 175].
For a fair comparison with our novel map-agnostic RL-Ours policy, we use the
same actor-critic network trained with PPO for all RL-Base policies as detailed
in Sec. 5.1.2.3. PPO hyperparameters used to train all learning-based policies are
summarised in Tab. 5.2. Furthermore, we pre-compute lawnmower-like coverage
paths commonly used in real-world terrain monitoring deployments.

Evaluation metrics. All adaptive replanning performance metrics are com-
puted over areas of interest ξI in Eq. (5.1) after a mission is terminated. For
continuous-valued mapping missions, we compute the final covariance log-trace
of map F̂t normalised by the prior covariance log-trace of F̂0 (Unc.), and RMSE
and mean log loss (MLL) of F̂t w.r.t. the ground truth feature field F as
in [61, 102, 126]. For discrete-valued mapping missions, we compute the final

66



5. Map-Agnostic Policies for Adaptive Informative Path Planning

Table 5.2: PPO hyperparameters used to train RL-Ours, RL-Base-C, and RL-Base-D policies.

Hyperparameter Value

Horizon (T ) 64

Optimizer Adam with ϵ = 10−5

Learning rate LinearAnneal(3 · 10−4, 0)

Num. epochs 8

Minibatch size 4096

Num. workers 256

Discount factor (γ) 0.99

GAE factor (λ) 0.95

Entropy coefficient 0.01

Clipping range 0.2

VF coefficient 1.0

Max. grad. norm 0.5

Num. env. steps 107

Map state dimensions Xt 64× 64

Shannon entropy of map F̂t normalised by the prior Shannon entropy of F̂0 (Unc.),
and mean Intersection-over-Union (mIoU) and F1-score of F̂t w.r.t. the ground
truth feature field F as in [116, 126, 175]. Moreover, we compute an information
integral (II) as one minus the area under the normalised map uncertainty (Unc.)
over budget curve. The II captures the uncertainty reduction speed over the
depleted budget in a single metric. All metrics are averaged over 100 missions,
repeated with three different random seeds. We report mean and standard devi-
ations over the three seeds. Each metric is formalised as follows.

Assume X is a subset of points x ∈ ξ sampled from an equidistant grid over
the terrain ξ. First, we show how to compute the evaluation metrics used to
measure performance in the continuous-valued terrain monitoring missions.

The RMSE captures the error between the map belief F̂t and the ground truth
feature field F in interesting areas ξI ,

RMSE
(
F̂t, F, ξI

)
=

√
1

NI

∑
x∈X

Ix∈ξI (µt(x)− F (x))
2 , (5.10)

where t = 100 as we are interested in the map’s final RMSE, µt(x) is the posterior
mean of map belief F̂t at point x, and NI = |{x ∈ X | x ∈ ξI}| is the number
of points in X that belong to areas of interest ξI . The indicator variable Ix∈ξI is
equal to 1, if x is part of an area of interest ξI , else 0.

The MLL captures the uncertainty-weighted error between the map belief F̂t
and the ground truth feature field F in interesting areas ξI ,

MLL
(
F̂t, F, ξI

)
=

1

NI

∑
x∈X

Ix∈ξI

(
1

2
log(2πσt(x)2) +

(µt(x)− F (x))2
2σt(x)2

)
, (5.11)
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where t = 100 as we are interested in the map’s final MLL, and σt(x)2 is the
posterior variance of map belief F̂t at point x.

The remaining uncertainty of the map belief F̂t in areas of interest ξI is

Unc
(
F̂t, ξI

)
=

1

NI

∑
x∈X

Ix∈ξI
log(σt(x)2)
log(σ0(x)2)

, (5.12)

where t = 100 as we are interested in the map’s final uncertainty, and σ0(x)2 is the
map belief’s prior variance at x. In this way, we compute the Gaussian process
covariance matrix trace. As the covariance trace is reduced exponentially with
the number of collected sensor measurements and since the overall magnitude
depends on the Gaussian process prior variance, we scale the posterior variances
logarithmically and normalise by the map’s prior log-variance.

Second, we show how to compute the evaluation metrics used to measure
performance in the discrete-valued terrain monitoring missions. We compute
the confusion matrix between map predictions argmaxk≤K p(F (x) = k | F̂t) and
ground truth F (x) for all x ∈ ξI , where K is the number of classes. Then,
the mIoU captures the error between the map predictions and the ground truth
feature field F in areas of interest ξI ,

mIoU
(
F̂t, F, ξI

)
=

1

|FI |
∑
k∈FI

TP(k)
TP(k) + FP(k) + FN(k)

, (5.13)

where t = 100 as we are interested in the map’s final mIoU. The true and false
positives TP(k) and FP(k), and true and false negatives TN(k) and FN(k) for a
class k in the set of interesting classes FI are given by the confusion matrix.

Similarly, the F1-score captures the error between the map belief F̂t and the
ground truth feature field F in areas of interest ξI ,

F1
(
F̂t, F, ξI

)
=

1

|FI |
∑
k∈FI

2TP(k)
2TP(k) + FP(k) + FN(k)

, (5.14)

where t = 100 as we are interested in the map’s final F1-score.
The remaining uncertainty of the map F̂t in areas of interest ξI is defined as

Unc
(
F̂t, ξI

)
=

1

NI

∑
x∈X

Ix∈ξI
H
(
F̂t(x)

)
H
(
F̂0(x)

) , (5.15)

where t = 100 as we are interested in the map’s final uncertainty, H(F̂t(x)) is
the Shannon entropy of the occupancy grid map’s categorical distribution over
all classes at the grid cell corresponding to x, and H0(x) is the prior map belief’s
Shannon entropy at x. As the posterior entropy’s overall magnitude depends on
the prior map entropy, we normalise it by the prior map’s entropy.
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Finally, the II of map belief F̂t in areas of interest ξI is defined as

II
(
F̂t, ξI

)
= 1−

∫ 1

0

Unc
(
F̂t′·B, ξi

)
dt′ , (5.16)

where t′ = t
B
∈ [0, 1] with t ≤ B is the mission time step normalised by the initial

mission budget B. Like this, the specified integral is the normalised area under
the uncertainty-over-budget curve. This area captures how fast map uncertainty
is reduced in areas of interest ξI . The area is bounded between 0 and 1 as time
steps t′ and uncertainty’s Unc

(
F̂t′·B

)
are normalised between 0 and 1. We assume

a piecewise linear uncertainty-over-budget curve for numerical integration.
Hardware. We train the RL policies on a workstation equipped with an

Intel i9 − 10940X 3.30GHz 14-core CPU, 64GB memory, and an NVIDIA RTX
A5000 GPU. Training for 107 environment steps using the IMPALA-MLP policy
network takes around 56 hours wall-clock time using our implementation. For
the run time analysis of RL-based and online policy search approaches, we use a
less powerful computer equipped with an Intel i7−1165G7 2.80GHz 4-core CPU,
32GB memory, and no built-in GPU. In this way, we closely mimic mobile robot
compute constraints and avoid the unfair advantages of GPU-accelerated policy
network inference over classical non-GPU-optimised planning algorithms.

5.2.2 Simulation Results
The first set of experiments investigates our first claim. We show that our map-
agnostic adaptive IPP policy yields competitive performance with state-of-the-
art online policy search methods while substantially reducing replanning run-
time. Furthermore, our map-agnostic policy outperforms state-of-the-art map-
specifically designed and offline-trained policies in varying terrain monitoring
missions. We evaluate all methods in simulated continuous- and discrete-valued
terrain feature monitoring scenarios as described in Sec. 5.2.1. We consider the
classical static and our varying mission hyperparameter evaluation protocols to
benchmark adaptive IPP approaches on challenging inter-mission variations.

Tab. 5.3 summarises the simulation results. In line with our findings in
Chap. 4 and other RL-based adaptive IPP works, map-specifically designed and
trained RL-Base-C and RL-Base-D policies outperform state-of-the-art online
policy search methods in their respective continuous- and discrete-valued terrain
feature monitoring missions with static hyperparameters they were trained on.
Although we do not only train on missions with static hyperparameters, our sin-
gle map-agnostic RL-Ours policy shows competitive performance on continuous-
and discrete-valued monitoring missions with static hyperparameters. We achieve
similar planning performance compared to online policy search methods and the
RL-Base-C/D policies in these static scenarios.
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Table 5.3: Comparison of state-of-the-art map-specifically designed and trained methods to our
map-agnostic planning policy (RL-Ours) on simulated continuous- and discrete-valued terrain
feature monitoring missions. Best average performances are marked in bold, and second-best av-
erage performances are underlined if standard deviations in brackets overlap. Our map-agnostic
policy performs best in case of varying user-defined mission hyperparameters and similar to
state-of-the-art adaptive IPP methods in case of static mission hyperparameters.

Approach Static H Varying H Time
II↑ Unc.↓ MLL↓ RMSE↓ II↑ Unc.↓ MLL↓ RMSE↓ [s]↓

C
on

tin
uo

us

RL-Ours 25.8 (0.17) 60.6 (0.22) -64.6 (0.12) 3.83 (0.08) 26.2 (0.65) 60.4 (0.64) -60.5 (0.59) 3.81 (0.07) 0.004
RL-Base-C 26.1 (0.25) 59.6 (0.28) -66.2 (0.39) 3.67 (0.02) 24.0 (0.94) 64.2 (1.07) -48.4 (4.64) 5.51 (0.97) 0.004

MCTS 25.6 (0.09) 60.7 (0.08) -64.9 (0.52) 3.83 (0.16) 25.3 (0.41) 61.1 (0.24) -59.5 (0.70) 4.27 (0.22) 2.86
CMA-ES 23.1 (1.27) 63.0 (3.41) -60.1 (6.38) 5.45 (2.67) 21.5 (1.44) 64.3 (2.32) -55.4 (5.52) 2.59 (0.85) 6.05
Greedy 24.5 (0.14) 62.0 (0.12) -62.0 (0.26) 4.11 (0.11) 25.2 (0.66) 61.7 (0.29) -58.0 (1.55) 4.35 (0.24) 0.05

Coverage 15.3 (0.16) 75.5 (0.39) -28.0 (1.44) 10.8 (0.12) 13.4 (0.28) 77.1 (0.25) -30.6 (0.87) 9.93 (0.20) -

Static H Varying H Time
II↑ Unc.↓ mIoU↑ F1↑ II↑ Unc.↓ mIoU↑ F1↑ [s]↓

D
isc

re
te

RL-Ours 31.5 (0.12) 38.3 (0.76) 20.8 (0.26) 25.6 (0.19) 30.5 (0.12) 39.2 (0.42) 20.4 (0.17) 25.3 (0.12) 0.004
RL-Base-D 31.1 (0.09) 38.6 (0.43) 20.7 (0.14) 25.5 (0.09) 30.4 (0.57) 40.2 (0.95) 20.1 (0.29) 25.0 (0.26) 0.004

MCTS 30.7 (0.25) 41.9 (0.31) 19.5 (0.08) 24.5 (0.12) 30.8 (0.21) 41.2 (0.85) 19.8 (0.31) 24.7 (0.24) 1.95
CMA-ES 29.6 (1.87) 43.2 (2.38) 19.2 (0.85) 24.2 (0.76) 30.0 (1.45) 42.4 (0.61) 19.5 (0.42) 24.4 (0.51) 3.75
Greedy 29.9 (0.24) 44.4 (0.83) 18.7 (0.26) 23.8 (0.22) 29.4 (0.17) 45.6 (0.59) 18.2 (0.22) 23.2 (0.22) 0.03

Coverage 29.7 (0.46) 44.3 (0.37) 18.7 (0.12) 23.8 (0.12) 27.9 (0.24) 45.3 (0.37) 18.4 (0.12) 23.3 (0.08) -

Feature field F Map belief F̂t Unified belief F̂I,t

Figure 5.4: (Top-left) Simulated continuous-valued terrain feature field with values from low
to high indicated as a colour gradient from blue to red. Shaded areas indicate non-interesting
areas with low values in dark blue. (Bottom-left) Simulated discrete-valued terrain feature field
with different colours indicating the semantic classes. The red class indicates areas of interest.
(Top-centre) Mission-specific Gaussian process map belief F̂t. (Bottom-centre) Mission-specific
occupancy map belief F̂t, where grey areas are unknown. (Right) Our fully probabilistic and
map-agnostic unified belief over areas of interest F̂I,t. The probability of an area being of
interest, ranging from low to high, is indicated as a colour gradient from blue to yellow.
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Temperate-1 Temperature-2 Potsdam [68] RIT-18 [75]

Figure 5.5: Real-world terrain orthomosaic datasets. (Left) Crop field surface temperatures,
where high surface temperature (red) indicates areas of interest. (Right) Semantic urban and
rural terrains, where vegetation (green and light blue) indicates areas of interest.

Noticeably, our map-agnostic policy outperforms the map-specific RL-Base-
C and RL-Base-D policies on varying hyperparameters that cause larger inter-
mission variations. This verifies the advantage of our unified policy being trained
and conditioned on larger mission variations. In contrast, the RL-Base-C policy
trained on static hyperparameters does not match the performance of the on-
line policy search methods. This verifies that the learning-based adaptive IPP
baselines degrade in performance as user-defined mission characteristics, such as
interesting feature values and map hyperparameters, change between missions.

Furthermore, our map-agnostic policy outperforms the strongest MCTS adap-
tive IPP method on missions with varying hyperparameters while substantially
reducing replanning runtimes at deployment. This shows that we can success-
fully train a single map-agnostic policy, which is applicable and well-performing
in monitoring scenarios with large variations in user-defined hyperparameters
and terrain map representations. Fig. 5.4 shows simulated ground truth feature
fields F with paths planned based on our unified belief F̂I,t over initially unknown
non-shaded and red areas of interest ξI , derived from mission-specific map beliefs
F̂t with yellow indicating a high probability of interesting areas according to F̂I,t.

5.2.3 Results on Real-World Datasets
The experiments on real-world orthomosaics illustrated in Fig. 5.5 are designed to
assess our second claim. Our results verify that our map-agnostic policy trained in
simulation performs similarly to state-of-the-art adaptive IPP methods on previ-
ously unseen real-world terrain datasets. We compare our policy RL-Ours to map-
specifically designed non-learning-based planning methods and map-specifically
trained policies RL-Base-C/D. We consider two continuous-valued surface tem-
perature orthomosaics of crop fields near Bonn, Germany, mapped using Gaus-
sian processes, where high surface temperatures above 25◦C are interesting (red).
Furthermore, we execute discrete-valued semantic monitoring of an urban area in
Potsdam, Germany [68] and a rural area [75] (RIT-18), mapped using occupancy
maps, where vegetation features are of interest (green and light blue).
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Table 5.4: Comparison of state-of-the-art map-specifically designed and trained methods to our
map-agnostic planning policy (RL-Ours) on real-world continuous-valued surface temperature
(Temperature-1/2) and discrete-valued urban (Potsdam) and rural (RIT-18) semantic terrain
datasets. Best average performances are marked in bold, and second-best average performances
are underlined if standard deviations in brackets overlap. Our map-agnostic policy performs
similarly to state-of-the-art adaptive IPP methods.

Approach Temperature-1 Temperature-2 Potsdam [68] RIT-18 [75]
II↑ Unc.↓ II↑ Unc.↓ II↑ Unc.↓ II↑ Unc.↓

RL-Ours 25.4 (0.31) 62.2 (0.09) 27.6 (0.26) 58.6 (0.22) 32.9 (1.92) 35.8 (3.10) 31.7 (1.25) 39.9 (0.64)
RL-Base 24.6 (0.62) 63.1 (0.46) 26.7 (0.14) 60.6 (0.85) 31.9 (1.82) 36.4 (2.24) 32.2 (0.31) 39.6 (0.59)

MCTS 25.3 (0.22) 61.9 (0.21) 27.7 (0.49) 58.4 (0.49) 31.7 (0.45) 40.8 (0.93) 30.7 (0.50) 42.2 (0.17)
Greedy 25.2 (0.46) 62.4 (0.45) 27.1 (0.43) 58.9 (0.29) 29.8 (0.29) 44.0 (0.66) 29.7 (0.45) 46.0 (0.54)

Coverage 14.7 (0.34) 75.9 (0.08) 15.8 (0.84) 73.4 (0.98) 29.3 (0.60) 44.6 (0.17) 29.7 (0.62) 45.4 (0.91)

Tab. 5.4 summarises the real-world dataset results. In line with Chap. 4
and state-of-the-art baselines, our map-agnostic policy consistently outperforms
non-adaptive coverage paths, which ignore knowledge collected about the terrain
during deployment. This showcases the advantages of adaptive online replanning
for robotic information gathering compared to traditionally used pre-planned
coverage paths. Notably, our map-agnostic policy outperforms greedy planning,
highlighting the performance gain of non-myopically learned adaptive IPP poli-
cies on real-world datasets. Additionally, our policy performs similarly to the
strong MCTS online policy search method while substantially reducing replan-
ning runtimes from seconds to milliseconds as shown in Tab. 5.3. Furthermore,
our map-agnostic policy performs better than the map-specifically designed and
trained RL-Base-C and RL-Base-C policies on most real-world datasets. This
highlights the strong performance of our policy in previously unseen terrains,
which is potentially due to its training on diverse simulated monitoring missions.

While our map-agnostic policy is directly applied to all real-world terrain
dataset missions without adaptation or re-training, greedy and MCTS methods
require re-design for continuous- and discrete-valued terrain feature monitoring
missions as explained in Sec. 5.2.1. The learning-based policies RL-Base-C and
RL-Base-D even require re-training. Particularly, the RL-Base-D policy can only
be applied to semantic monitoring missions with the same number of classes used
for training, further complicating the deployment of map-specifically trained poli-
cies. These results highlight the advantages of our map-agnostic policy, validating
its performance on real-world terrain data while facilitating deployment.

5.2.4 Map-Agnostic Online Planning Policy Search
The next set of experiments investigates our third claim. We demonstrate that
our map-agnostic formulation integrates with and unifies state-of-the-art online
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Table 5.5: Integration of our map-agnostic adaptive IPP formulation (ours) into state-of-the-art
online policy search methods. Best average performances are marked in bold, and second-best
average performances are underlined if standard deviations in brackets overlap. Our map-
agnostic formulation maintains or improves performance over previous map-specific formula-
tions for continuous- (prev-C) and discrete-valued (prev-D) terrain feature monitoring missions.

Policy IPP Varying H
II↑ Unc.↓ MLL↓ RMSE↓

C
on

tin
uo

us

Greedy prev-C 25.2 (0.66) 61.7 (0.29) -58.0 (1.55) 4.35 (0.24)
ours 25.3 (0.41) 61.3 (0.42) -59.0 (0.73) 4.15 (0.16)

MCTS prev-C 25.3 (0.24) 61.1 (0.24) -59.5 (0.70) 4.27 (0.22)
ours 27.0 (0.42) 59.6 (0.26) -63.8 (0.34) 4.00 (0.24)

CMA-ES prev-C 21.5 (1.44) 64.3 (2.32) -55.4 (5.52) 2.59 (0.85)
ours 21.8 (2.25) 64.5 (1.97) -54.1 (5.67) 2.73 (1.26)

II↑ Unc.↓ mIoU↑ F1↑

D
isc

re
te

Greedy prev-D 29.4 (0.17) 45.6 (0.59) 18.2 (0.22) 23.2 (0.22)
ours 30.5 (0.33) 44.5 (0.19) 18.6 (0.00) 23.6 (0.05)

MCTS prev-D 30.8 (0.21) 41.2 (0.85) 19.8 (0.31) 24.7 (0.24)
ours 31.4 (0.78) 41.0 (0.96) 19.8 (0.31) 24.7 (0.31)

CMA-ES prev-D 30.0 (1.45) 42.4 (0.61) 19.5 (0.42) 24.4 (0.51)
ours 29.6 (1.33) 41.6 (0.37) 19.7 (0.21) 24.6 (0.42)

non-learning-based policy search methods developed for adaptive IPP while main-
taining or improving their performance in various terrain monitoring missions.

To demonstrate the universal applicability of our approach, we integrate
our map-agnostic adaptive IPP formulation (ours) with the greedy, MCTS and
CMA-ES policy search algorithms used in state-of-the-art non-learning-based
adaptive IPP methods [30, 61, 117, 126]. We compare our formulation to previ-
ously used map-specific adaptive IPP formulations for continuous- (prev-C) and
discrete-valued terrain feature monitoring (prev-D) described in Sec. 5.2.1.

Tab. 5.5 summarises the planning performances of the different online policy
search methods. Our map-agnostic adaptive IPP formulation consistently per-
forms on par with adaptive IPP formulations specifically designed for continuous-
and discrete-valued monitoring missions, irrespective of the policy search method.
Notably, our map-agnostic formulation even improves the average planning per-
formance of policy search algorithms in some scenarios. These results verify that
our method successfully integrates with state-of-the-art adaptive IPP methods
without requiring map-specific adaptation. In this way, our approach contributes
to unifying the broad family of adaptive IPP approaches.
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5.3 Conclusion

Depending on the information-gathering mission, different environmental fea-
ture information is considered for mapping. Continuous-valued features, such
as surface temperature, are mapped using Gaussian processes or Kalman filters,
while discrete-valued features, such as semantic segmentation of urban areas,
are mapped using occupancy maps. Previous adaptive IPP methods consider
either continuous- or discrete-valued feature monitoring missions. They directly
integrate the respective environment map as their state representation used for
planning. Thus, these approaches require re-designing the state representation
as the to-be-mapped environment features change. Learning-based adaptive IPP
policies are trained on these mission-specific state representations, hence even
requiring re-training as to-be-mapped environment features change.

To address this issue, we have proposed a novel map-agnostic formulation of
the adaptive IPP problem in this chapter. Our adaptive IPP formulation is gener-
ally applicable to various continuous- or discrete-valued terrain feature monitor-
ing missions. Our main contribution is a planning state representation unifying
different map representations. Based on our planning state representation and
a newly introduced reward function for adaptive IPP, we train a single planning
policy with RL on terrain monitoring missions with varying map representations
and user-defined areas of interest. Our experimental results show that our learned
map-agnostic policy yields competitive performance with state-of-the-art online
non-learning-based policy search methods and offline-learned policies re-designed
and re-trained for each class of monitoring missions with specific map represen-
tations. Moreover, our planning policy trained in simulation performs similarly
to state-of-the-art adaptive IPP methods on unseen real-world datasets. Further-
more, our map-agnostic adaptive IPP formulation unifies existing adaptive IPP
methods while maintaining or improving planning performance.

Our experimental results demonstrate that, in response to the first research
question posed in this thesis, modelling the adaptive IPP problem in a map-
agnostic fashion opens up the path for RL-based adaptive IPP methods that in-
crease the compute efficiency while providing competitive information-gathering
performance for a large family of terrain monitoring missions. However, in mon-
itoring missions during which the robot is tasked to map discrete-valued seman-
tics, such as monitoring buildings, streets, cars, and vegetation in cities for urban
planning purposes, deep learning-based models perform semantic segmentation
of collected images. These semantic segmentation models are commonly trained
on costly static human-labelled datasets. As robots are deployed in unknown
and changing environments, the collected images often deviate from the ones the
semantic vision model was trained on. This often results in degraded semantic
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segmentation prediction quality and, thus, in degraded performance in robotic
information gathering. To this end, in Chap. 6, we propose a novel adaptive IPP
method that aims to improve the robot’s semantic vision in unknown environ-
ments while minimising the number of human-labelled images.
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Chapter 6

Adaptive Informative Path
Planning for Active Learning in
Semantic Mapping

Adaptive informative path planning methods show encouraging per-
formance in robotic information gathering as also shown in Chap. 4
and Chap. 5. They improve upon classically used non-adaptive pre-
programmed information-gathering missions while ensuring a greater

level of autonomous decision-making capabilities in unknown environments. How-
ever, these adaptive IPP methods, including the ones presented in Chap. 4 and
Chap. 5, assume reliable onboard robotic vision to interpret collected sensor mea-
surements semantically. Common monitoring applications that require the robot
to have a pixel-wise semantic understanding of images are urban planning, in-
spection of industrial parks and monitoring of arable fields or rural areas.

Recent breakthroughs in computer vision [59, 81, 168] have enabled automated
scene understanding in large-scale complex aerial environments [49, 75, 176] using
deep learning-based vision models. These models are usually trained on a static
curated human-labelled dataset. As the robot is deployed in unknown environ-
ments, sensor measurements often deviate from the ones the model was trained
on. The visual appearance of environments might change, e.g. between two cities
or as seasons change. Furthermore, the model may be pre-trained on another
domain, e.g. urban images, and deployed at an industrial site. In both scenar-
ios, the prediction quality of semantic segmentation models often degrades. This
results in an overall degraded information-gathering efficiency. Thus, a critical
requirement for robot autonomy and information gathering is the robot’s ability
to improve its deep learning-based vision with minimal expert guidance.

In this chapter, we examine the problem of active learning in UAV-based se-
mantic mapping missions. Our goal is to improve the robot’s semantic vision
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Figure 6.1: Our adaptive planning for active learning in UAV-based semantic mapping deployed
in a photo-realistic simulator [157] (top). We compute an acquisition function, e.g. model un-
certainty, and predict semantics (centre-right). We fuse both in terrain maps (bottom-right).
Our map-based planners replan a UAV’s path (orange, bottom-left) to collect the most infor-
mative, e.g. most uncertain (yellow, bottom-right), images for network re-training.

capabilities in unknown environments while aiming to minimise the number of
human-labelled images required for training the vision model. To this end, we
introduce a planning approach that exploits active learning ideas for computer
vision. We incorporate active learning techniques into a new adaptive IPP frame-
work for improving robotic semantic vision. The UAV replans its path online as
new observations are collected to adaptively target areas of potentially informa-
tive new training data. The newly gathered images are semantically labelled by
a human annotator. We re-train a semantic segmentation model based on the
labelled data to maximise its prediction performance.

Various active learning methods reduce the requirements for human-labelled
training data [17, 44, 71, 92, 93, 165, 173]. Recently, active learning approaches
for deep learning models are gaining attention [40, 47, 147, 155, 183, 190]. These
works develop acquisition functions for selecting to-be-labelled training data to
maximise model performance. They assume access to large pre-recorded unla-
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belled in-domain data pools to select training data from. Instead, we deploy
the robot in unknown environments. Thus, we do not have access to a data
pool before the robot’s deployment. To avoid this issue, active learning works
for aerial imagery use the UAV for passive data collection to record static data
pools [74, 90]. In contrast, we address the thesis’ second research question of how
to improve robotic vision in unknown environments with a minimal number of
human-labelled images by combining active learning and adaptive planning.

The main contribution of this chapter is a generally applicable adaptive IPP
framework performing active learning of robotic semantic vision. Our frame-
work’s benefit is that it reduces the human labelling effort to improve robotic
semantic vision in new and unseen terrains. A key novelty is to enable adap-
tive robotic data collection by linking ideas from active learning to planning
objectives as illustrated in Fig. 6.1. To this end, we integrate various model
uncertainty and training data novelty estimation techniques from active learn-
ing research [46, 84, 128] into deep learning-based semantic segmentation mod-
els [131, 132]. The inferred pixel-wise semantic labels, estimated model uncer-
tainty and novelty scores are fused sequentially into a probabilistic terrain map
as new observations are acquired. As a key feature, our framework iteratively
replans the UAV’s path to collect the most informative, i.e. the most uncertain
or novel, images for human labelling and model re-training in a targeted fashion.

In sum, we make the following claims. First, our adaptive planning method
reduces the number of human-labelled images required to maximise semantic seg-
mentation performance compared to pre-programmed data collection campaigns
and state-of-the-art local planning for active learning [12]. Second, our prob-
abilistic global mapping of gathered information enhances map-based planning
performance for active learning. Third, our Bayesian extension of the determinis-
tic ERFNet [131] improves semantic segmentation performance and yields more
consistent model uncertainty estimates, resulting in higher planning performance
for active learning than previously used non-Bayesian planning objectives.

This chapter incorporates material from the following peer-reviewed journal
and conference publications, for which I am the main contributor:

• Julius Rückin, Federico Magistri, Cyrill Stachniss, and Marija Popović. An
Informative Path Planning Framework for Active Learning in UAV-Based
Semantic Mapping. IEEE Trans. on Robotics (TRO), 39(6):4279–4296,
2023

• Julius Rückin, Liren Jin, Federico Magistri, Cyrill Stachniss, and Marija
Popović. Informative Path Planning for Active Learning in Aerial Semantic
Mapping. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2022

79



6.1. Adaptive Informative Path Planning for Active Learning

Sensor data
(RGB)

Online inference Probabilistic semantic
mapping

Informative planning

Image collection Labelled
images

Human labelling

New network parameters

Network re-training

Images

UAVAL acquisition
function

Map
states

Pose and budget

Semantics and
uncertainty Path

Collected
images

Figure 6.2: A pre-trained semantic segmentation network is deployed on a UAV. During a mis-
sion, the network predicts pixel-wise semantics, model uncertainties as outlined in Sec. 6.1.1.1,
and novelty scores from RGB images as described in Sec. 6.1.1.2. This information is projected
onto the terrain to build global maps capturing these variables as explained in Sec. 6.1.2. Based
on the current UAV position, budget, and posterior map state, our algorithm adaptively replans
paths for the UAV to collect potentially informative training data for improving the network
performance as presented in Sec. 6.1.3. After the mission, the collected images are labelled by
a human annotator and used for network re-training before re-deployment of the UAV.

6.1 Adaptive Informative Path Planning for
Active Learning

The goal of our approach is to autonomously collect informative training data to
improve the robot’s semantic vision with a minimal number of human-labelled
images. To achieve this, we present our adaptive IPP framework for active learn-
ing in UAV-based semantic mapping shown in Fig. 6.2. Our robot setup considers
a UAV collecting images of a terrain using a downwards-facing RGB camera. Our
framework links active learning with planning objectives guiding the UAV to ar-
eas of informative training data. As new data is collected, we use a lightweight
fully convolutional neural network to predict pixel-wise semantics as described
in Sec. 6.1.1. Moreover, we estimate the pixel-wise model uncertainty associated
with the network’s prediction as explained in Sec. 6.1.1.1 and training data nov-
elty of the collected image as outlined in Sec. 6.1.1.2. Next, we fuse semantics,
uncertainty estimates, and novelty scores into a probabilistic terrain map as de-
tailed in Sec. 6.1.2. The UAV position, its remaining budget, and the current
map state are combined into new active learning-based planning objectives used
to adaptively replan the future path towards informative training data as pre-
sented in Sec. 6.1.3. A key feature of our framework is its general applicability.
By design, it is agnostic to the chosen network architecture. It supports different
uncertainty estimation techniques, mapping methods, and map-based planning
strategies. The following subsections detail the framework’s individual modules
and the specific methods we investigate in this chapter.
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Conv Dropout

Figure 6.3: ERFNet architecture proposed by Romera et al. [131]. The network takes an
RGB image (left) as input and outputs semantic labels (right). We use the network in our
ensemble method to predict model uncertainty or by using dropout at train and inference time
as described in Sec. 6.1.1.1. To this end, we add a dropout layer after each convolutional layer.

6.1.1 Active Learning Acquisition Functions
We first derive measures for an image’s potential information value when a net-
work is re-trained on this labelled data. To this end, active learning methods
propose two main paradigms: uncertainty-based and representation-based acqui-
sition functions. We demonstrate our framework using either paradigm.

We adapt the ERFNet encoder-decoder architecture proposed by Romera
et al. [131] depicted in Fig. 6.3 to our active learning use case. We add a
dropout layer after each convolutional layer to enable estimating model un-
certainty. Although our framework is agnostic to the chosen network archi-
tecture, the lightweight ERFNet is particularly suitable for online robot de-
ployment with limited computational resources. In the following, the model
fw(·) is parameterised by weights w ∈ RD and outputs a probability tensor
p(y | f w(z)) = softmax(f w(z)) ∈ [0, 1]K×w×h, where z ∈ {0, . . . , 255}w×h×3 is
the RGB image with width w and height h, and y ∈ {1, . . . , K}w×h is the
pixel-wise semantic label over K classes. The training set contains N images
Z = {z1, . . . , zN} and semantic labels Y = {y1, . . . , yN}. Our network is trained
to minimise the cross-entropy loss function with weight decay factor λ,

L(w) = − 1

N

N∑
i=1

log
(
p
(
yi | f w(zi)

))
+ λ∥w∥22 . (6.1)

Sec. 6.1.1.1 and Sec. 6.1.1.2 describe uncertainty- and representation-based
methods to estimate the information value of an image for network training.
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6.1.1.1 Bayesian Uncertainty-Based Methods

We estimate pixel-wise model uncertainty over the prediction p(y | f w(z)) as a
measure for the informativeness of image z for re-training [8, 46, 47, 65, 76]. For
this, we leverage advances in Bayesian deep learning, transforming the deter-
ministic ERFNet into a probabilistic version. We consider using two alternative
methods: Monte Carlo dropout [46] and ensembles [8]. To measure model un-
certainty, we use Bayesian active learning by disagreement [65], which computes
the mutual information between the unknown labels y and the posterior distri-
bution over model weights p(w | Z ,Y). However, the posterior over the weights
is intractable for neural networks due to their high-dimensional parameter space
w ∈ RD [46]. Thus, we approximate the true posterior prediction [76] by

p̂(y | z,Z,Y) = 1

T

T∑
i=1

softmax
(
f ŵi(z)

)
, (6.2)

where we independently sample T weights ŵi ∼ q(w) from a prior distribu-
tion q(w) performing Monte Carlo integration over model weights w.

Monte Carlo dropout and ensemble methods provide two alternative ap-
proaches to construct the prior q(w). In Monte Carlo dropout, dropout is applied
independently to the weights w before each of the T forward passes at test time.
In the ensemble method, we train T independently randomly initialised mod-
els f ŵi with stochastic mini-batch gradient descent. For further details on Monte
Carlo dropout and ensembles, we refer to Gal and Ghahramani [46] and Beluch
et al. [8], respectively. Following Gal et al. [47], we approximate the mutual
information as a measure of model uncertainty using Eq. (6.2)

I(y,w | z,Z,Y) ≈ −p̂(y | z,Z,Y)⊤log
(
p̂(y | z,Z,Y)

)
+

1

T

T∑
i=1

p(y | z, ŵi)
⊤log

(
p(y | z, ŵi)

)
,

(6.3)

where log(·) is applied element-wise. Intuitively, this mutual information is high
whenever the average prediction entropy is high (first term) while single predic-
tions’ entropies are low (second term). Thus, predictions are certain but disagree
with each other. We exploit this measure to guide the UAV towards more infor-
mative areas, i.e. areas of high model uncertainty. Note that our framework is
agnostic to both the model uncertainty estimation method and the network.

6.1.1.2 Representation-Based Method

Inspired by recent active learning works [40, 147, 155], we study a representation-
based planning objective as an alternative to uncertainty-based objectives. We
deterministically quantify the network’s prediction confidence by estimating the
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Figure 6.4: Representation-based image novelty score [12]. An RGB image z is passed through
our ERFNet encoder. Its latent vectors rz

i,j are extracted along the channel dimension. We com-
pute the cosine distance between each rz

i,j and its k-nearest neighbours from the representation
vector database consisting of all training images’ Z latent vectors. The resulting novelty image
is upsampled to the spatial dimensions of z. Last, we add all rz

i,j to the representation vector
database. Lighter colours indicate higher novelty, i.e. higher informativeness for re-training.

image’s novelty to the network fw given training images and labels Z,Y similar
to prior work [12, 101, 121, 128]. Intuitively, the image’s novelty is high whenever
the network’s latent representations of a new image z and training images Z are
dissimilar. Although confidence measures for classification are well-known [101,
121], they are not directly applicable to semantic segmentation as they do not
provide pixel-wise scores and are not invariant to object locations. Thus, we use
the novelty measure for semantic segmentation proposed by Blum et al. [12].

We perform kernel-density estimation in the network’s latent space by com-
puting the average cosine distance between the latent representations of im-
age z and its k-nearest latent representations of training images Z. We ex-
ploit the fully convolutional neural network’s architecture, where the network
fw(·) = dwd(ewe(·)) consists of an encoder ewe parameterised by we ∈ RDe , a de-
coder dwd parameterised by wd ∈ RDd . Specifically, we extract representations
ewe(z) = rz ∈ Rw

8
×h

8
×C after the encoder’s last convolutional layer, where C are

the channel dimensions. Induced by the ERFNet architecture, spatial dimensions
are downsampled by a factor of 8 compared to the image. Hence, rz

i,j ∈ RC is a
C-dimensional latent vector of the (i, j)-th 8 × 8 pixels patch of image z. After
model training, we generate a database R =

{
rz1
1,1, ..., rzN

w
8
,h
8

}
of w

8
· h
8
·N patch-wise

representations of the training images Z. Given an image z at inference time, its
(i, j)-th novelty score is computed as

r(z)i,j =
1

k

∑
r∈NN(rz

i,j)

1−
∣∣∣∣ r⊤rz

i,j

∥r∥2 ∥rz
i,j∥2

∣∣∣∣ , (6.4)
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where NN(rz
i,j) is the set of k-nearest neighbors of rz

i,j in R using the cosine
distance as the distance metric. Intuitively, higher novelty indicates higher infor-
mativeness of image z for re-training. Fig. 6.4 provides a schematic of an image’s
novelty score computation. For more details, we refer to Blum et al. [12].

Our framework can easily be adapted to other acquisition functions and fully
convolutional neural networks. In our experimental evaluation in Sec. 6.2, we
showcase our framework’s generality using the uncertainty- and representation-
based objectives with ERFNet [131] and U-Net [132], as described above.

6.1.2 Probabilistic Semantic Mapping

An important basis for our new planning objective functions is our 2D multi-
layer terrain map. This map captures global semantics, training data statis-
tics, as well as model uncertainties and representation novelties introduced in
Sec. 6.1.1. In this way, the map provides different sources of information for
adaptive replanning of paths. We probabilistically update the map information
online as the UAV collects new images. To achieve this, we use sequential oc-
cupancy grid mapping [114] to update each map layer when a new measurement
arrives. We discretise the terrain into three 2D maps GS : G → {0, 1}K×W×L,
GU : G → [0, 1]W×L, and GR : G → [0, 1]W×L defined over a grid lattice G with
W × L spatially independent cells. These maps spatially capture the terrain’s
semantic classes GS, model uncertainties GU , and training data novelty scores GR.

The semantic map GS consists ofK independent layers GSi
: G→ {0, 1}W×L to

map all K classes i ∈ {1, . . . , K}. Each grid cell’s c initial state follows a uniform
prior distribution GSi

(c) ∼ p(GSi
(c) = 1) = 1

K
. When a new image zt arrives at

time step t, the semantic predictions p̂(y | f w(zt)), see Eq. (6.2), are projected to
the flat terrain given the UAV position pt ∈ R3 and camera intrinsics. We use
standard occupancy grid mapping [114] for each layer i and cell c computing the
posterior belief GSi

(c) ∼ p(· | z1:t, p1:t) as

l(GSi
(c) | z1:t, p1:t) = l(GSi

(c) | zt, pt) + l(GSi
(c) | z1:t−1, p1:t−1)− l(GSi

(c)) , (6.5)

where l(·) are the log odds of the binary random variable, p(GSi
(c) | zt, pt) is given

by the projected semantic predictions, p(GSi
(c) | z1:t−1, p1:t−1) is the recursive map

belief, and p(GSi
(c)) is the map prior.

The model uncertainties and novelties are stored in the maps GU and GR with
prior means µU,0 and µR,0 respectively. We fuse projected uncertainties ut given
by Eq. (6.3) and novelty scores r(zt) given by Eq. (6.4) using maximum likelihood
estimation assuming normally distributed GU and GR. To this end, we maintain
a hit map H : G → NW×L, counting the total number of times a grid cell was
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updated. Then, we update the means µU,t(c) and µR,t(c) for a grid cell c ∈ G by

µU,t(c) = µU,t−1(c) +
1

H(c)
(uct − µU,t−1(c)) , (6.6)

µR,t(c) = µR,t−1(c) +
1

H(c)
(r(zt)c − µR,t−1(c)) , (6.7)

where uct and r(zt)c are uncertainties and novelty scores computed as in Sec. 6.1.1
and projected to grid cell c on the flat terrain. Last, a map T : G→ NW×L counts
how often grid cells occur in the training data set to foster data diversity in our
proposed planning objectives. Note that the maps H(·) and T (·) are different
as the camera could provide a high-frequency image stream for mapping while
images only at the planned measurement position are collected for training.

A key feature of our mapping approach is that we accumulate and update
the information between missions by updating the map prior. After each UAV
mission, the network is re-trained on the collected training data. Re-training
changes the semantic predictions, model uncertainty, and representation novelty
estimates. Thus, we store all previously collected images and corresponding UAV
positions. After re-training, we predict semantics, model uncertainties, and rep-
resentation novelties of the stored images and sequentially fuse them into the
maps. Our informed map prior strategy enhances map-based planning by avoid-
ing exploring from scratch or replanning with outdated terrain knowledge.

6.1.3 Adaptive Informative Path Planning Algorithms
We develop adaptive IPP algorithms to guide a UAV to adaptively collect useful
training data for our fully convolutional neural network. Our key idea is to link
acquisition functions introduced in Sec. 6.1.1 to planning objective functions. Our
planning strategies use the probabilistic terrain maps presented in Sec. 6.1.2 to
guide the UAV online towards informative training data in an unknown terrain.

Adaptive IPP algorithms optimise an information criterion I : Ψ→ R≥0 over
paths ψ = (p1, . . . , pP ) ∈ Ψ defined by P waypoints pi ∈ R3 considering a mission
budget B ≥ 0 and cost function C, where Ψ is the set of all possible paths of
length P . The function C : Ψ→ R≥0 defines the cost of executing a path ψ as

C(ψ) =
P−1∑
i=1

d(pi, pi+1) , (6.8)

where d : R3 × R3 → R≥0 computes the travel time between two waypoints
assuming constant acceleration and deceleration ±a, and maximum velocity v.
The key insight of our method is to couple the active learning acquisition functions
with IPP information criteria I. This allows us to maximise model performance
and minimise the number of human-labelled images collected along path ψ.
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(a) Local (b) Frontier (c) Sampling (d) Optimisation

Figure 6.5: Our planners for training data collection. Dark gray dots and lines indicate can-
didate measurements and paths evaluated based on their estimated information adding these
images to the training set. Orange dots and lines indicate the most informative chosen mea-
surements and paths. Light grey depicts unexplored terrain. In (d), black indicates the greedy
initialisation, and ellipses indicate the optimisation of candidate paths in continuous space.

We propose four different replanning strategies in our framework: one local
image-based and three global frontier, optimisation and sampling schemes that
optimise information criteria I given the current terrain map state. The planners
are illustrated in Fig. 6.5. In the following, we exemplarily present our planning
objectives with respect to the globally mapped model uncertainties GU,t at a time
step t, see Eq. (6.6). In case of the representation-based objective, we substitute
the uncertainties GU,t with novelties GR,t, see Eq. (6.7). Our mapping and planning
methods are agnostic to the active learning acquisition function computed for
individual images as in Sec. 6.1.1. Thus, one can extend our framework with
other acquisition functions, as we showcase in our experimental evaluation.

Local planner. Our local planner follows the direction of the highest esti-
mated training data information in the image zt recorded at the UAV position pt.
We select the image edge e∗zt with the highest image-based active learning value,
e.g. model uncertainties ut, normalised by the respective training data counts
in Tt(pt). Training data counts Tt(pt) are extracted from the map by projecting
the camera’s field of view from position pt on the flat terrain. Like this, we select
neighbouring informative images while locally fostering training data diversity.
The next-best measurement position p∗

t+1 is then reached by taking a predefined
step size in the direction of edge e∗zt at a fixed altitude. This resembles the planner
proposed by Blum et al. [12] and generalises it to any active learning objective.

Frontier-based planner. Our global geometric planner guides the UAV to-
wards the frontiers of the explored terrain [182] with the highest active learning
objective in the terrain map. We use the hit map H to identify exploration fron-
tiers. A grid cell ck ∈ G is considered to be known if its hit count is H(ck) > 0. A
grid cell cu ∈ G is considered to be unknown if its hit count is H(cu) = 0. Fron-
tiers are defined as a connected set of known grid cells cu with neighbouring un-
known grid cells. We sample a set of next candidate measurement positions Pct+1
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equidistantly along the frontiers at a fixed altitude. Then, we greedily choose the
next-best measurement position p∗

t+1 ∈ Pct+1 from the set of next candidate posi-
tions. Since the frontier-based planner acts greedily, optimising the information
criterion I reduces to selecting the next-best path ψ∗ = (p∗

t+1) with

p∗
t+1 = argmax

pc
t+1∈Pc

t+1

I((pct+1)) = argmax
pc
t+1∈Pc

t+1

∥GU,t(pct+1)∥1
∥Tt(pct+1)∥1

, (6.9)

where GU,t(pct+1) and Tt(pct+1) are the currently globally mapped model uncertain-
ties and training data counts within the camera’s field of view from position pct+1,
and ∥·∥1 is the vector norm summing all elements. In this way, our frontier plan-
ner balances the exploration of unknown space for training data diversity and
focuses on areas potentially valuable for maximising model improvement.

Optimisation-based planner. Our optimisation-based planner selects a
path ψ∗

t+1 over a fixed horizon of multiple time steps. We use a two-step approach
for efficient online replanning inspired by Popović et al. [126]. As a first step, we
greedily select a path ψgt+1 of length P over a grid above the terrain. In the second
step, we use an optimisation procedure to fine-tune ψgt+1 in the continuous UAV
workspace and return the next-best path ψ∗

t+1.
We iteratively select a path ψgt+1 = (pgt+1, . . . , p

g
t+P ), where each measurement

position pgt+i, i ∈ {1, . . . , P} is chosen over a sparse lattice F of candidate posi-
tions pc ∈ F at a fixed altitude. We sequentially and greedily choose measurement
positions pgt+i for i ≤ P time steps into the future as

pgt+i = argmax
pc∈F

∥GU,t(pc)∥1
d(pt+i−1, pc)∥Tt+i−1(pc)∥1

, (6.10)

where Tt+i−1(pc) is the subset of the forward-simulated training data count map
given by the camera’s field of view at position pc. The forward simulation
of the current map Tt is computed based on the previously selected positions
(pgt+1, . . . , p

g
t+i−1) and their respective camera’s field of views. Forward-simulating Tt

is crucial as one cannot forward-simulate model uncertainties GU,t during plan-
ning. Forward-simulating Tt linearly decreases uncertainty with the number of
training set occurrences. This fosters data diversity and terrain exploration.

Subsequently, we refine the greedy positions of ψgt+1 in parallel in the con-
tinuous UAV workspace. To this end, we initialise an optimisation procedure
with the greedy solution ψgt+1 and extend Eq. (6.10) to an information criterion
I evaluating candidate paths ψot+1 = (pot+1, . . . , pot+P ) by

I(ψot+1) =
P∑
i=1

∥GU,t(pot+i)∥1
d(pot+i−1, pot+i)∥Tt+i−1(pot+i)∥1

. (6.11)

The candidate path ψ∗
t+1 = (p∗

t+1, . . . , p∗
t+P ) maximising Eq. (6.11) is chosen

and measurement position p∗
t+1 is executed. We found that normalising active

87



6.2. Experimental Evaluation

learning information of a path by its execution costs d(·) leads to more efficient
budget allocation. This planner supports any optimisation algorithm, which can
optimise Eq. (6.11), e.g. derivate-free evolutionary algorithms [57].

Sampling-based planner. Our sampling-based planner uses Monte Carlo
tree search [13] to optimise a next-best measurement position p∗

t+1 in a non-
myopic fashion. We simulate a number of future paths ψt+1 = (pn1

t+1, . . . , pnP
t+P )

of length P at a fixed altitude. Each node ni at depth i ∈ {0, . . . , P} in the tree
encodes a possible measurement position pt+i in a simulated path ψt+1. Thus, a
node ni is uniquely defined by its state Sni =

{
pni
t+i, T

ni
t+i, B

ni
t+i

}
consisting of a

measurement position pni
t+i, forward-simulated training data count map T ni

t+i along
the traversed path in the tree to node ni, and remaining budget Bni

t+i. The tree’s
root node n0 is defined by Sn0 = {pt, Tt, Bt}, where pt, Tt and Bt are the current
UAV position, training data count map, and remaining budget. At each node,
the planner selects the next position from a discrete set of actions with different
step sizes and orientations. While traversing the search tree, we use the upper
confidence bound bandit algorithm [13] to choose a child node. When reaching
a leaf node ni, we roll out the remaining P − i measurement positions along
the path by sampling actions uniformly at random until the remaining budget
is exceeded or path length P is reached. A simulated path’s information value
I(ψt+1) =

∑P−1
i=0 R(ni, ni+1) is computed by summing rewards R(ni, ni+1) along

subsequent parent and child nodes ni, ni+1 given by

R(ni, ni+1) =
∥GU,t(pni+1

t+i+1)∥1
d(pni

t+i, p
ni+1

t+i+1)∥T
ni
t+i(p

ni+1

t+i+1)∥1
. (6.12)

Note that T ni
t+i(p

ni+1

t+i+1) are the training data occurrences at the child node’s
position pni+1

t+i+1 after forward-simulating the current training data count Tt from
the root node n0 along the traversed tree path based on the carema’s field of
views up to the parent’s node position. Like this, the reward function estimates
the next position’s information value given the training data count at replanning
time t+i. After simulating a certain number of paths, we select the root node’s n0

child node n∗
1 with the highest information value I(ψt+1) averaged over all path

simulations through node n∗
1. The UAV moves to its associated position pn

∗
1
t+1.

To show that our approach supports various planning algorithms, we pro-
posed the four diverse planners above and demonstrate their integration into our
modular framework. Furthermore, we highlight that our planning strategies are
agnostic to the acquisition functions introduced in Sec. 6.1.1.

6.2 Experimental Evaluation
Our experiments evaluate our proposed method and investigate our claims made
in this chapter. In Sec. 6.2.2, we show that our adaptive planning methods reduce
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Table 6.1: Environment, sensor, and UAV mission parameters for the three datasets.

Parameter Potsdam [68] RIT-18 [75] Flightmare [157]

Type Orthomosaic Orthomosaic Unity/Gazebo
Classes 7 6 10

Task Urban Land Cover Industrial
Area [m×m] 900×900 261×568 150×130
FoV [px×px] 400×400 400×400 480×720
GSD [cm/px] 15.0 8.0 8.3
Altitude [m] 30 15 20
Budget [s] 1800 400 150

Test Images 3500 3500 1000

the number of human-labelled images required to maximise semantic segmenta-
tion performance compared to pre-programmed data collection and state-of-the-
art local planning proposed by Blum et al. [12]. We further verify this claim in
Sec. 6.2.2.1 for various UAV-based semantic terrain mapping scenarios, and un-
der task-dependent design choices, i.e. the UAV’s starting position, pre-training
scheme and model architecture, performing a sensitivity analysis in Sec. 6.2.4.
Second, in Sec. 6.2.3.2, we validate that our probabilistic global mapping of gath-
ered information enhances map-based planning performance. Third, we show-
case that our Bayesian extension of the deterministic ERFNet [131] improves se-
mantic segmentation performance and yields more consistent model uncertainty
estimates, resulting in higher planning performance than previously used non-
Bayesian objectives. To this end, we demonstrate the superior active learning
performance of Bayesian over non-Bayesian objectives in Sec. 6.2.3.4, and con-
firm the superior model performance of our Bayesian ERFNet using Monte Carlo
dropout and ensembles in Sec. 6.2.3.1 and Sec. 6.2.3.3 respectively.

6.2.1 Experimental Setup
Baselines. We compare our planning framework against three baselines: a
traditionally-used coverage-based collection strategy [48], and two random walk-
based exploration planners. The coverage strategy precomputes a static path
maximising the area covered by the UAV to foster spatial diversity of training
data. We precompute lawnmower-like patterns before a mission starts, alternate
the pattern’s orientations, and vary the step size between measurement positions.

We consider two random walk schemes, local and global. Similar to the lo-
cal planner, the local random walk chooses for a given UAV position one of the
four image edges at random. It follows the edge direction with a predefined step
size. The global random walk randomly selects a UAV position in the continuous
space above the terrain, similar to our map-based planners. For better budget
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(a) Coverage pattern (b) Global random walk (c) Local random walk

Figure 6.6: Examples of paths planned by the baseline strategies on ISPRS Potsdam [68].
Orange lines show paths planned in one mission, black crosses indicate collected training images,
and gray areas depict unexplored terrain.

management, we sample positions uniformly at random between a minimum and
maximum radius around the UAV. In this way, both random walks aim to foster
data diversity while handling the budget properly. Both variants resemble the
action spaces of the planners introduced in Sec. 6.1.3, allowing us to study the
influence of the action space design and verify that our adaptive planners max-
imise active learning performance beyond random effects. Fig. 6.6 exemplifies the
paths planned by all three baselines on the ISPRS Potsdam dataset [68].

Datasets. We evaluate our framework on two real-world orthomosaic datasets
and in a photorealistic physics-based UAV simulator resembling real-world de-
ployment conditions. Environment, sensor, and UAV mission settings are shown
in Tab. 6.1. Below, we highlight the key differences between the three scenarios.

First, we use the large 7-class urban aerial ISPRS Potsdam orthomosaic
dataset [68]. This dataset is characterised by a dense spatial distribution of
classes, such that the coverage and random walk baselines can collect visually
and semantically different features easily. We sample 4000 train, 1000 valida-
tion, and 3500 test images uniformly at random from non-overlapping areas in
the orthomosaic. We use the ISPRS Potsdam dataset for the main planning ex-
periments in Sec. 6.2.2 and for evaluating our mapping module in Sec. 6.2.3.2,
Bayesian ensemble in Sec. 6.2.3.3, and planning objectives in Sec. 6.2.3.4.

Second, we use the land cover RIT-18 orthomosaic dataset [75] for our experi-
ments in Sec. 6.2.2.1. It consists of semantics covering large connected areas, e.g.
vegetation and lake, and covers smaller objects, e.g. buildings, with six classes
in total. Since the RIT-18 dataset does not provide different orthomosaics for
training and testing, we evaluate the UAV’s vision capabilities by sampling the
test set from the same area. In contrast to the ISPRS Potsdam dataset, this
does not allow us to draw conclusions about the model’s generalisability, but
about its performance in the deployed environment, which is still a crucial skill
for autonomous robots. Our RIT-18 evaluation resembles that of Blum et al. [12].
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(a) ISPRS Potsdam (b) RIT-18

(c) Flightmare

Figure 6.7: Comparison of active learning performance of our three baseline approaches with
Monte Carlo dropout inference (a) on ISPRS Potsdam [68], (b) on RIT-18 [75], and (c) in the
photo-realistic Flightmare UAV simulator [157]. Steeper curves indicate better active learning
performance. We compare our planning strategies to the best-performing baseline in each
setting: coverage on ISPRS Potsdam and the global random walk on RIT-18 and in Flightmare.

Last, we evaluate our framework in Sec. 6.2.2.1 using Flightmare, a photoreal-
istic simulator emulating UAV dynamics [157]. We deploy a UAV in the provided
‘Industrial’ environment introducing 10 semantic classes of different spatial dis-
tributions, e.g. hangar, container, road, fence, and pipe. The scene covers a
dense area leading to compactly distributed semantics easily explorable by the
baseline approaches. As the ‘Industrial’ terrain is small, we evaluate the UAV’s
semantic segmentation performance in the deployed environment only.

We perform a study comparing the active learning performance of the base-
lines in Fig. 6.7. On the ISPRS Potsdam dataset, the coverage pattern is the
superior baseline. The global random walk exploration performs best on the
RIT-18 dataset and in the Flightmare simulator. While Monte Carlo dropout is
used in Fig. 6.7 to predict semantic segmentation, we found that similar results
hold true for deterministic network and ensemble inference. For visual clarity,
we only compare our framework to the baselines with the strongest performance.

Evaluation Metrics. Our planning pipeline aims to maximise semantic
segmentation performance with minimal human labelling effort, i.e. minimal
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number of human-labelled images. In line with the standard in active learning
literature [8, 12, 47, 53, 65, 70, 147, 165, 166, 173, 183], our key evaluation metrics
assess semantic segmentation performance (dependent variable) over the number
of collected training images (independent variable). Higher semantic segmenta-
tion performance thanks to newly added images indicates better active learning
and thus indicates better planning performance. We choose mIoU, per-pixel accu-
racy, and per-pixel F1-score to access semantic segmentation performance. The
mIoU metric is used in semantic segmentation benchmarks [31, 42] and defined as
mIoU = TP

TP+FP+FN , where TP, FP, TN, and FN are the true and false positives,
and true and false negatives. Per-pixel accuracy acc and F1-score f1 are typically
used in classification benchmarks [33]. They are defined as acc = TP

TP+FP+TN+FN
and f1 = 2TP

2TP+FP+FN . RIT-18 and Flightmare have strongly imbalanced class
distributions. Thus, we use the F1-score instead of accuracy for these scenarios.
Training datasets are incrementally collected while exploring an unknown envi-
ronment. Hence, the training image distribution changes during deployment as
new visual features or semantics are discovered. This leads to non-monotonic
model improvements as the training distribution could differ from the true dis-
tribution. To make model performance trends easier to follow, we additionally
fit trend lines for the experiments conducted on ISPRS Potsdam and Flightmare.
As performance trends are less regular on RIT-18 due to the more challenging ex-
ploration of semantics, we show piecewise linear line plots for these experiments.

Training Procedure. We use our lightweight Bayesian ERFNet for semantic
segmentation proposed in Sec. 6.1.1. The model is pre-trained on the Cityscapes
dataset [31]. We start experiments and training after each of the 10 subsequent
data collection missions from the same checkpoint. This also avoids catastrophic
forgetting and accumulating train time. We re-train the model until convergence
with batch size 8 and weight decay λ = (1− p)/2N in Eq. (6.1), where p = 0.5 is
the dropout probability, and N is the number of training images as in [47]. All
other hyperparameters follow ERFNet [131], not tuned for maximal performance
in our setting, and kept fixed with changing datasets and planners.

Planning Hyperparameters. Our optimisation-based planner leverages
the CMA-ES procedure as it has been shown to yield competitive performance in
terrain monitoring tasks [61, 126]. We fix a set of hyperparameters for all planners
with reasonable length scales on ISPRS Potsdam, i.e. UAV step sizes, minimum
and maximum action space radii, grid discretisation, and initial CMA-ES co-
variance. Only these hyperparameters, which depend on the aerial dimensions,
are scaled with changing environment sizes. The scale-independent hyperpa-
rameters, e.g. the number of tree search simulations, are set in line with prior
works [13, 126]. We fix the UAV’s starting position to the top-left terrain corners.

Planning Strategies. We outline our planning strategies in detail in Sec. 6.1.3.
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(a) Overall active learning performance of different planners (b) Frontier planner per-class performance

Figure 6.8: (a) Comparison of active learning performance with a Bayesian model uncertainty-
based planning objective estimated by Monte Carlo dropout and computing informative prior
maps before each mission starts. All adaptive planners outperform the coverage baseline (yel-
low) with less training data as shown by the dashed lines. Our map-based planners outperform
the local planner (purple). (b) Comparison of per-class performance of map-based frontier vs.
coverage planning. The frontier planner outperforms the coverage baseline (yellow) in almost
all classes as our framework captures task-dependent inter- and intra-class model uncertainties.

In our experiments, we refer to the planners in the legends as follows: the lo-
cal planner is named Local, the frontier-based planner is named Frontier, the
optimisation-based planner is named Optimisation, and the sampling-based plan-
ner is named Sampling. The baseline approaches are referred to as follows: the
coverage pattern is called Coverage, and the global and local random walk explo-
ration strategies are abbreviated with Rand-Glo and Rand-Loc respectively.

6.2.2 Adaptive Path Planning for Active Learning
The first set of experiments analyses the performance of our adaptive planning
approach. It (i) verifies the superior active learning performance of our planning
framework over the baselines, and (ii) shows that our global map-based plan-
ners outperform state-of-the-art local planning, supporting our first claim. The
experiments are evaluated on the ISPRS Potsdam dataset [68] with recomputed
map priors before each mission starts and using the Bayesian model uncertainty
planning objective estimated by Monte Carlo dropout.

Fig. 6.8a summarises the active learning performance with the informed map-
ping strategy for each planner. All adaptive planners reach higher final prediction
performance than the coverage baseline (yellow). This supports the claim that
our framework is generally applicable to different planning algorithms, and it also
suggests that adaptive replanning is key to efficiently improving robot vision. No-
tably, our global map-based planners (orange, blue, green) exceed the coverage
baseline’s maximum prediction performance (≈ 55% mIoU, black dashed line)
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after ≤ 250 labelled images (dashed green line), while the baseline requires ≈ 500

labelled images (yellow dashed line) to reach this performance. Our map-based
planners show stronger active learning performance than the local planner (pur-
ple) proposed by Blum et al. [12], particularly for the uncertainty-based objective.
The map-based planners’ performances upper-bound the local planner’s perfor-
mance for any number of labelled images. Map-based planners drastically reduce
training data requirements and tend to achieve higher final performance.

To better understand the benefits of our adaptive planning method, Fig. 6.8b
exemplarily compares the per-class active learning performance of the map-based
frontier planner (dashed lines) to the coverage baseline (solid lines) in the ISPRS
Potsdam scenario. Our adaptive frontier-based planning strategy shows higher
active learning performance in almost all classes, irrespective of their training
data support. Interestingly, the ‘car’ class (blue) has lower training data sup-
port than the ‘tree’ (green) and ‘vegetation’ (red) classes but shows stronger IoU
performance, even with non-targeted coverage planning. However, adaptive plan-
ning improves the ‘car’ prediction performance even faster than the non-targeted
baseline, showing the benefit of our framework for classes with little training data
support. Furthermore, the ‘tree’, ‘background’ (orange), and ‘vegetation’ classes
have high training data support but are difficult to distinguish. Their visual ap-
pearance from a top-down view depends on the image resolution, altitude, and
season. This leads to challenging predictions, which may be partially attributed
to data instead of model uncertainty, and which cannot be explained away with
more training data [76]. Thus, not all classes with high training data support
benefit to the same extent from adaptive planning. At the same time, the ‘build-
ing’ class (yellow) has high training data support and is reliably detected by both
planners. The frontier-based planner still shows faster performance improvement
as our framework can account for the differing visual appearance and geometry of
office buildings, historical buildings, and townhouses. Overall, the results suggest
that our adaptive map-based planning accounts for task-dependent inter-class and
intra-class model uncertainties, leading to superior active learning performance.

6.2.2.1 Other Semantic Terrain Mapping Scenarios

The second set of experiments suggests that (i) our planning framework reduces
the number of labelled images required to maximise segmentation performance
across substantially different environments, and (ii) our global map-based plan-
ning strategies outperform state-of-the-art local planning in most cases, irrespec-
tive of the chosen planning objective, further validating our first claim.

We evaluate our framework on the RIT-18 dataset [75] and in the Flightmare
simulator [157]. The RIT-18 semantics cover large areas, leading to challenging
exploration. The Flightmare simulator resembles real-world UAV control over
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(a) Bayesian model uncertainty-based objective (b) Representation-based novelty objective

Figure 6.9: Active learning results on the RIT-18 dataset [75] using informative prior maps with
(a) the Bayesian model uncertainty objective estimated by Monte Carlo dropout, and (b) the
representation novelty objective. All map-based planners significantly outperform the random
walk baseline (yellow). Our map-based planners lead to substantially higher active learning
performance than the local planning strategy (purple) using the model uncertainty objective.

a compact, easy-to-explore photorealistic industrial terrain with strong random
walk baseline performance. We access the framework’s performance using the
Bayesian model uncertainty estimated with Monte Carlo dropout, see Eq. (6.3),
and the representation novelty score given by Eq. (6.4).

Fig. 6.9 summarises our planning results on the RIT-18 dataset [75]. Seman-
tics cover large areas, leading to challenging exploration influencing the training
data class distribution. Thus, we see non-monotonic model performance improve-
ments on RIT-18. All map-based planners show significantly higher final segmen-
tation performance than the random walk (yellow), irrespective of the planning
objective. This confirms that adaptive planning reduces human labelling effort
over vastly differing terrains. Particularly, our map-based planners require fewer
training images to achieve segmentation performance on par or higher than the
local planner (purple) in most cases. Notably, the local planner performs worse
than the baseline using Bayesian model uncertainty. This shows that our map-
based planners are more generally applicable than the local planner.

Fig. 6.10 illustrates our results in the Flightmare simulator [157]. All planners
using the Bayesian model uncertainty objective display higher active learning per-
formance than the random walk baseline (yellow). Using the representation-based
objective, only our two map-based optimisation (orange) and sampling (green)
planners result in higher final prediction performance than the baseline. Com-
bined with the RIT-18 results in Fig. 6.9, this suggests that our Bayesian model
uncertainty-based objectives are more robustly applicable across varying terrains
compared to the representation novelty score proposed by Blum et al. [12]. One
possible explanation could be that Bayesian model uncertainty is more strongly
correlated with prediction errors, as indicated by our results in Sec. 6.2.3.1 and
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(a) Bayesian model uncertainty-based objective (b) Representation-based novelty objective

Figure 6.10: Active learning results in the Flightmare simulator [157] using informative prior
maps with (a) the Bayesian model uncertainty objective (Eq. (6.3)), and (b) the representation
novelty objective (Eq. (6.4)). All planners outperform the random walk baseline (yellow) using
the Bayesian model uncertainty objective. Using the representation novelty objective, only our
map-based optimisation and sampling planners show higher final prediction performance.

Sec. 6.2.3.4. In most cases, our map-based planners show higher active learning
performance in both terrains than local planning. This verifies that our map-
based planners are crucial for informative data collection, while local planning is
not robustly applicable to varying terrains and planning objectives.

6.2.3 Ablation Studies
The third set of experiments is a series of ablation studies on our planning frame-
work to assess the second and third claim made in this chapter. In Sec. 6.2.3.1,
we verify that our Bayesian ERFNet with Monte Carlo dropout achieves higher
semantic segmentation performance than the standard ERFNet and provides con-
sistent model uncertainties. Similarly, in Sec. 6.2.3.3, we show that our Bayesian
ensemble provides reliable uncertainty estimates for active learning planning
objectives and achieves higher prediction performance than non-Bayesian and
Bayesian ERFNet with Monte Carlo dropout. Additionally, in Sec. 6.2.3.4, we
validate that our framework supports various active learning acquisition functions
and yields superior active learning performance using Bayesian instead of previ-
ous non-Bayesian planning objectives. These results validate our third claim.
Moreover, we demonstrate the benefit of our mapping module for the map-based
planners in Sec. 6.2.3.2, supporting our second claim.

6.2.3.1 Bayesian ERFNet via Monte Carlo Dropout

The first ablation study results aim to show that our Bayesian ERFNet pro-
posed in Sec. 6.1.1 achieves higher semantic segmentation performance than the
standard ERFNet [131] and provides consistent model uncertainty estimates for
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Train

Validation

Test

(a) ISPRS Potsdam dataset (b) Bayesian ERFNet with Monte Carlo dropout performance

Figure 6.11: (a) The urban ISPRS Potsdam orthomosaic [68]. We simulate images and labels
with a square footprint, downwards-facing camera, and ground sample distance of 15 cm/px to
generate training (orange), validation (blue), and test (red) data from disjoint areas. (b) Our
Bayesian ERFNet (all, p = 50%, blue) with varying Monte Carlo dropout samples compared
against non-Bayesian ERFNet (all, p = 50%) (orange) on ISPRS Potsdam. Metrics are averaged
over three trials with shaded regions indicating standard deviations. For T = 50, Bayesian
ERFNet improves mIoU by 4.6% (left, middle) and reduces ECE by 7.6% (right).

active learning. We perform an ablation study with varying Bayesian units of
the ERFNet base architecture to find the best-performing trade-off between pre-
diction performance and consistent model uncertainty estimation. We assess
four different Bayesian variants of ERFNet with varying dropout probabilities
p = {10%, 30%, 50%}:

• Standard: Dropout layers after all non-bottleneck-1D layers in the encoder
as in the normal ERFNet implementation [131].

• Center: Dropout layers after the last four and first two encoder and de-
coder non-bottleneck-1D layers respectively.

• Classifier: Single dropout layer after the last decoder non-bottleneck-1D
layer before the classification head.

• All: Dropout layers after all non-bottleneck-1D layers in the encoder and
decoder as proposed in Sec. 6.1.1.

• Non-Bayesian: Standard ERFNet architecture without Monte Carlo dropout
but a single deterministic forward pass at inference as proposed in [131].

All models are trained and evaluated on the 7-class urban aerial ISPRS Pots-
dam orthomosaic dataset [68]. We simulate images and labels at random uni-
formly chosen positions from 30m altitude with a square footprint, downwards-
facing camera, and ground sample distance of 15 cm/px. In total, we create 4000,
1000, and 3500 training, validation, and test images, respectively, from disjoint
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Table 6.2: Ablation study of our Bayesian ERFNet trained with varying dropout layers and
probabilities p = {10%, 30%, 50%} on the ISPRS Potsdam dataset [68] with T = 50 MC
dropout samples at inference. Our best Bayesian ERFNet (all, p = 50%) outperforms the best
non-Bayesian ERFNet (p = 50%) by 2.5% mIoU and 4.6% ECE.

Layer variant Accuracy [%] ↑ mIoU [%] ↑ ECE [%] ↓

Non-Bayesian [131] 82.28 / 81.99 / 82.71 64.47 / 64.35 / 66.24 59.98 / 59.09 / 59.43

Standard 82.47 / 82.21 / 83.94 64.81 / 64.70 / 68.00 57.32 / 55.46 / 55.41

Center 81.58 / 82.26 / 82.91 62.34 / 64.47 / 65.78 60.05 / 57.61 / 58.55

Classifier 80.80 / 82.14 / 81.04 62.02 / 63.94 / 62.16 60.62 / 60.40 / 61.02

All (Sec. 6.1.1) 84.00 / 82.20 / 84.24 67.75 / 63.93 / 68.74 55.76 / 53.26 / 54.87

Input Ground Truth Prediction Uncertainty

Figure 6.12: Qualitative results of Bayesian ERFNet with Monte Carlo dropout (all, p = 50%)
trained on the ISPRS Potsdam dataset [68]. High model uncertainty estimates (yellow) in
misclassified regions are potentially valuable to guide the UAV during an active learning mission.

areas as depicted in Fig. 6.11a. We assess the model uncertainty estimation qual-
ity by the expected calibration error (ECE) [52]. At test time, we use a reasonably
large number of Monte Carlo dropout samples of T = 50.

Tab. 6.2 summarises our results. With highest accuracy and mIoU, Bayesian
ERFNet-All, proposed in Sec. 6.1.1, trained with p = 50% performs best. No-
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(a) Frontier-based planner (b) Optimisation-based planner

(c) Sampling-based planner

Figure 6.13: The planners consistently benefit from recomputing informative map priors before
a mission starts (purple). The performance gain of mapping a continuous sensor stream (blue)
instead of only mapping images at planned measurement positions (orange) is less significant.
Combining both (yellow) also leads to consistent performance improvements. Our informative
mapping approach drastically improves the greedy frontier-based strategy in particular.

ticeably, our Bayesian ERFNet-All (p = 50%) outperforms its strongest non-
Bayesian counterpart (p = 50%) by 2.5% mIoU while resulting in 4.6% improved
ECE. Qualitatively, Fig. 6.12 confirms high uncertainty in misclassified, cluttered
regions. Hence, our Bayesian ERFNet provides a reliable planning objective for
active learning. These results validate that our probabilistic model interpretation
improves performance and provides reliable uncertainty estimates.

To assess computational requirements and the applicability of our method for
online replanning, we study the performance of our Bayesian ERFNet with vary-
ing numbers of Monte Carlo dropout samples T = {2, 5, 10, 15, 20, 30, 50} in
Fig. 6.11b. As the number of MC dropout samples increases, prediction perfor-
mance and ECE both improve. Favourably for adaptive online robotic decision-
making, T ≈ 20 samples are already sufficient for converging performance gains.

6.2.3.2 Informative Mapping

To support the claim that our new mapping module described in Sec. 6.1.2 is
important for planning performance, we perform an ablation study to measure
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t = 1 t = 2 t = 3 t = 4

Figure 6.14: Examples of paths planned on ISPRS Potsdam using the frontier-based planning
strategy with (top) and without (bottom) our approach for precomputing informative prior
maps. The priors are computed before each of four subsequent missions, with the UAV starting
in the top-left corner. As shown by the planned paths (orange lines) and measurement positions
(black crosses), using informative priors facilitates spatial exploration across missions and leads
to more targeted training data collection within missions.

its effect on our map-based planners. We consider two mapping setups where
the UAV either maps training images at planned measurement positions only
(pointwise sensor) or maps the images continuously as it moves (continuous sen-
sor stream). Fig. 6.13 displays the active learning performance of our map-based
planners (i) recomputing informative prior maps before each mission starts based
on previously collected data and the re-trained network (purple), (ii) mapping
a continuous RGB image stream (blue) instead of mapping training images at
planned measurement positions only (orange), and (iii) combining both informa-
tive prior maps and mapping continuous sensor streams (yellow). The experi-
ments are evaluated on the ISPRS Potsdam dataset [68]. We fix Bayesian model
uncertainty as our planning objective estimated with Monte Carlo dropout.

All map-based planners show better performance with recomputed map priors
as they exploit already collected terrain information. This suggests that mapping
and updating knowledge across missions with re-trained networks, i.e. changing
vision capabilities, is key to strong planning performance. In contrast, mapping
more information during a mission with a fixed network is less crucial. Mapping
a continuous image stream instead of mapping at planned measurement positions
only leads to performance improvements for the greedy frontier-based planner,
while non-greedy planners do not benefit from mapping more information. Ac-
cordingly, combining mapping continuous sensor streams and recomputing map
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Figure 6.15: Performance of our Bayesian ensemble with varying number T of ERFNets (blue),
non-Bayesian deterministic ERFNet [131] (orange), and Bayesian ERFNet with T = 50 Monte
Carlo (MC) dropout samples (black, dashed) on ISPRS Potsdam. For T = 8, the ensemble
improves mIoU by 4.96% (middle) and reduces ECE by 7.09% (right) over the deterministic
ERFNet, and improves mIoU by 0.90% and reduces ECE by 1.68% over Monte Carlo dropout.

priors leads to higher performance of the frontier- and optimisation-based planner.
The sampling-based planner does not show a performance gain when combining
mapping continuous sensor streams and recomputing map priors. Particularly,
our frontier-based planner shows significant improvements by leveraging the in-
formative mapping procedure. Qualitatively, Fig. 6.14 verifies that informative
prior maps for frontier-based planning lead to more efficient terrain exploration
across missions and targeted data collection within missions, resulting in higher
model performance with fewer training images. Our optimisation- and sampling-
based planners are more robust to less informed map priors, the reason being
perhaps because they use non-myopic planning along multiple waypoints, while
the frontier-based planner only reasons about the next waypoint.

6.2.3.3 Bayesian ERFNet Ensemble Study

To confirm that our Bayesian ERFNet ensemble delivers informative model un-
certainties and yields superior performance, we train it on the ISPRS Potsdam
dataset [68] and compare it to our Bayesian ERFNet with Monte Carlo dropout
and the deterministic ERFNet proposed by Romera et al. [131].

To assess our Bayesian ensemble’s prediction capabilities and computational
efficiency for online inference on UAVs, we study its performance with varying
numbers of ERFNet models T = {2, . . . , 8} in Fig. 6.15. We compare the en-
semble’s performance (blue) to the deterministic ERFNet [131] (orange) using
a single forward pass and to our Bayesian ERFNet using T = 20 Monte Carlo
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Input Ground truth Prediction Error Uncertainty

Figure 6.16: Qualitative results with our ensemble of T = 8 ERFNets trained on the ISPRS
Potsdam dataset [68]. High model uncertainty (yellower) in misclassified regions (whiter, higher
negative log-likelihood) validates that our Bayesian ensemble provides consistent model uncer-
tainty estimates as a basis for an adaptive planning objective in our framework.

dropout samples (black, dashed) for converging to maximal performance. To
quantify the reliability of estimated uncertainties, we measure model calibration
using the ECE metric [52]. Intuitively, model calibration is high, i.e. ECE is low,
when the model’s probabilistic predictions match its accuracy on a test set.

For T = 8 models, our ensemble (blue) improves performance by 4.96% mIoU
and ECE by 7.09% over the deterministic ERFNet. Additionally, for T = 8 mod-
els, our ensemble improves performance by 0.90% mIoU and ECE by 1.68% com-
pared to the Bayesian ERFNet with Monte Carlo dropout. Overall, as the number
of models increases, both performance and calibration improve. Favourably for
online inference, performance gains already converge with T ≈ 6 models. More-
over, the Bayesian ensemble performs on par with the Bayesian ERFNet (T = 20

Monte Carlo dropout samples) already with T = 3 ERFNet models. Thus, our
ensemble requires approx. 6× fewer forward passes, i.e. compute resources, at
deployment to achieve the same performance. At train time, the ensemble’s com-
pute requirements scale linearly with the number of models T , while the Monte
Carlo dropout Bayesian ERFNet’s are constant. However, training is performed
offline and is thus not time-critical. For details about efficient ensemble training,
we refer to Huan et al. [67]. Qualitatively, Fig. 6.16 verifies high model uncer-
tainty in misclassified or hard-to-predict regions. Thus, the ensemble’s model
uncertainties provide reliable information for planning objectives.
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Figure 6.17: Comparison of active learning performance with a Bayesian model uncertainty-
based planning objective estimated by an ensemble of T = 4 ERFNets and computing infor-
mative prior maps before each mission starts. All adaptive planners outperform the coverage
baseline. Our global map-based planners outperform the local planner with less training data.

6.2.3.4 Comparison of Planning Objectives

Our third set of ablation study results shows that Bayesian model uncertainty-
based planning objectives guarantee a strong active learning performance irre-
spective of the uncertainty estimation technique. Furthermore, it verifies that our
adaptive planning supports various active learning acquisition function paradigms,
including representation-based and uncertainty-based objectives.

As we show in this experiment, Bayesian model uncertainty-based planning
objectives outperform baselines with different uncertainty estimation techniques.
We investigate our Bayesian ensemble’s active learning performance on ISPRS
Potsdam. For a fair assessment, we evaluate the coverage baseline with ensem-
ble inference. Fig. 6.17 summarises the results using our Bayesian ensemble of
T = 4 ERFNets for all planning approaches. All adaptive planners show better
active learning performance than the coverage baseline (yellow). This confirms
that adaptive planning benefits from Bayesian model uncertainty-based objec-
tive functions. Similar to our Monte Carlo dropout-based uncertainty estimation
in Fig. 6.8a, map-based planners (orange, blue, green) achieve higher prediction
performance with fewer training images compared to the local planner (purple).
This illustrates the advantage of our map-based planners over local planning.

To further support our framework’s generality under various uncertainty-
based objective functions, we investigate its performance using a classical non-
Bayesian entropy-based acquisition function [47, 128]. Given an image z and a
model with deterministic parameters w, the prediction p(y | z,w) is the likelihood
estimate over semantic labels y. Then, the prediction entropy

H(y) = −p(y | z,w)⊤log
(
p(y | z,w)

)
(6.13)
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Input Ground truth Prediction Error Uncertainty

Figure 6.18: Qualitative results of the non-Bayesian deterministic ERFNet [131] trained on
ISPRS Potsdam. Columns from left to right: RGB input, ground truth, prediction, error image
(negative log-likelihood loss), prediction entropy. High uncertainty areas (yellower) correlate
only weakly with areas of high prediction errors (whiter).

(a) Entropy-based planning objective (b) Representation-based planning objective

Figure 6.19: (a) Comparison of active learning performance with a non-Bayesian entropy-based
planning objective and computing informative prior maps before each mission starts. The
frontier-based, optimisation-based, and local planner outperform the coverage baseline’s active
learning performance. (b) Comparison of active learning performance with representation-based
novelty objective and computing informative prior maps before missions start. All adaptive
planners outperform the baseline (yellow) with fewer training images.

is highest when the prediction is uniform, i.e. most uncertain. Qualitatively,
Fig. 6.18 shows that non-Bayesian entropy only weakly correlates with prediction
errors as it fails to estimate globally calibrated uncertainties. We replace the
Bayesian model uncertainty, see Eq. (6.3), with the entropy of a deterministic
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(a) Frontier (b) Optimisation (c) Sampling

Figure 6.20: Comparison of active learning performance of uncertainty-based planning objec-
tives on ISPRS Potsdam. Our Bayesian uncertainty-based objectives (blue, yellow) tend to
perform better than the non-Bayesian entropy-based objective (orange). The Bayesian ensem-
ble (yellow) achieves the highest active learning performance across the planning strategies.

forward pass. For a fair comparison, the coverage baseline uses a deterministic
forward pass as well. As shown in Fig. 6.19a, the optimisation-based, frontier-
based and local planners outperform the baseline, while the sampling-based plan-
ner performs similarly to the baseline. In line with results for Bayesian model
uncertainty-based objectives, the optimisation-based and frontier-based global
planners show high prediction performance with substantially fewer training im-
ages compared to the local planning strategy. These results verify that our frame-
work also supports non-Bayesian uncertainty-based objectives.

Fig. 6.20 compares the effect of non-Bayesian entropy-based (orange) and
Bayesian model uncertainty-based planning objectives estimated by either Monte
Carlo dropout (blue) or an ensemble (yellow) on the planners’ performances.
Particularly, the map-based planners achieve higher active learning performance
using Bayesian model uncertainty-based objectives irrespective of the uncertainty
estimation technique. The non-Bayesian uncertainty objective yields competitive
performance with multiple planners in early missions. However, the Bayesian
ensemble method generally leads to the best results. This could be due to two
reasons. First, the ensemble shows higher prediction power than the non-Bayesian
model as illustrated in Fig. 6.15. Second, our results in Fig. 6.18 and Fig. 6.15
suggest that non-Bayesian uncertainty is weakly calibrated. This could result in
a less informative planning objective for training data collection.

To confirm that our framework applies to representation-based acquisition
functions, we use the novelty score shown in Eq. (6.4) of a deterministic ERFNet
in our planning objective. For a fair assessment, we also use a deterministic
ERFNet for the coverage baseline. Qualitatively, Fig. 6.21 visualises the nov-
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Input Ground truth Prediction Error Novelty score

Figure 6.21: Qualitative results of a deterministic ERFNet [131] trained on ISPRS Potsdam [68].
High novelty scores (yellower) in case of rare visual cues, such as the helipad (bottom row),
suggest that our representation-based objective provides useful information for planning.

elty scores of a network trained and tested on disjoint areas of ISPRS Potsdam.
Although the novelties do not correlate strongly with prediction errors (whiter),
high novelty (yellower) is assigned to rare visual cues, such as the helipad (bottom
row), which could be an informative objective to collect diverse training images.

Fig. 6.19b depicts the active learning results using representation novelties in
the planning objective. All adaptive planners achieve higher performance than
the coverage baseline (yellow). Moreover, our map-based optimisation (orange)
and frontier (blue) planners require fewer training images than the local planner
(purple) to reach high performance. This validates our claim that our frame-
work generally supports various acquisition function paradigms. Additionally, it
ensures higher performance than the baseline approaches, irrespective of the plan-
ning objective. Our experiments suggest that the map-based planners outperform
the local planner more significantly using Bayesian uncertainty objectives. This
could be a result of the better-calibrated Bayesian uncertainty estimates as shown
in Fig. 6.15, leading to more informative map-based planning objectives.

6.2.4 Sensitivity Analysis

The last set of experiments analyses our planning framework under various task-
dependent design choices to further support our first claim made in this chapter.
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(a) ISPRS Potsdam dataset (b) RIT-18 dataset

Figure 6.22: Comparison of active learning performance on the (a) ISPRS Potsdam dataset [68]
and (b) RIT-18 dataset [75] with the Bayesian model uncertainty-based objective estimated by
Monte Carlo dropout and computing informative prior maps before each mission starts. Results
are averaged over three different UAV starting positions. Shaded regions indicate one standard
deviation. Our map-based planners outperform the coverage baseline (yellow) and local planner
(purple) with less training data while showing less sensitivity to the UAV starting position.

It verifies our framework’s consistently superior active learning performance under
(i) varying UAV starting positions, (ii) different pre-training schemes and (iii)
different model architectures compared to pre-programmed data collection and
state-of-the-art local planning. The experiments are evaluated on the ISPRS
Potsdam [68] and RIT-18 [75] datasets using the Bayesian model uncertainty-
based objective estimated by Monte Carlo dropout. If not stated otherwise, we
use the Bayesian ERFNet pre-trained on Cityscapes [31].

Fig. 6.22 summarises the active learning performance for each planner aver-
aged over three different starting positions at the top-left, top-right, and bottom-
right corners of the terrains. All of our map-based planners reach an, on average,
higher performance than the baselines (yellow) and local planner (purple) on both
datasets. Particularly, the local planner does not perform better on average than
the coverage baseline on ISPRS Potsdam. Furthermore, as indicated by the large
standard deviations of the local planner and random walk (yellow) on RIT-18,
the local planner’s and random walk’s performances heavily depend on the UAV
starting position in challenging to explore terrains. In contrast, our map-based
planners are robust to varying UAV starting positions, resulting in superior active
learning performance compared to local planners and baselines.

Fig. 6.23 summarises the active learning performance for each planner aver-
aged over three differently pre-trained Bayesian ERFNets. Each mission starts
from the top-left terrain corner with Bayesian ERFNet being randomly initialised
or pre-trained on Cityscapes [31] or Flightmare [157]. The standard deviations
are mainly a result of the randomly initialised models having, as expected, weaker
prediction performance than the pre-trained models, irrespective of the planning
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(a) ISPRS Potsdam dataset (b) RIT-18 dataset

Figure 6.23: Comparison of active learning performance on the (a) ISPRS Potsdam dataset [68]
and (b) RIT-18 dataset [75] with the Bayesian model uncertainty-based objective estimated by
Monte Carlo dropout and computing informative prior maps before each mission starts. Results
are averaged over three differently pre-trained Bayesian ERFNets. Shaded regions indicate one
standard deviation. Our map-based planners outperform the coverage baseline (yellow) and
local planner (purple) on average with less training data, irrespective of the pre-training scheme.

Figure 6.24: Comparison of active learning performance on ISPRS Potsdam [68] using a
Bayesian version of U-Net [132] pre-trained on Flightmare [157]. The Bayesian model
uncertainty-based planning objective is estimated by Monte Carlo dropout, and informative
prior maps are computed before each mission starts. All adaptive planners outperform the
coverage baseline (yellow). Our map-based optimisation (orange) and frontier (blue) planners
outperform local planning (purple) with less training data.

approach. All our map-based planners show stronger active learning performance
on average compared to the baseline approaches (yellow) and the local planner
(purple) on both datasets. The local planner fails particularly outperform the ran-
dom walk (yellow) on RIT-18, irrespective of the pre-training scheme. These find-
ings validate our map-based planners’ robustness to varying pre-training schemes.

Fig. 6.24 summarises the active learning performance of our planning frame-
work using a Bayesian variant of U-Net [132]. We extend the U-Net architecture
by adding dropout layers after each convolutional block with a dropout probabil-
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ity of 10%. Like this, we perform Monte Carlo dropout at inference to compute
the uncertainty-based planning objective in Eq. (6.3). We conduct experiments
with the Bayesian U-Net pre-trained on Flightmare [157] using the ISPRS Pots-
dam dataset, starting each mission from the top-left corner. All adaptive planners
exceed the maximum prediction performance of the coverage baseline (yellow)
with less than half of the training images. This confirms the effectiveness of
adaptive planning for active learning, irrespective of the model architecture. Fur-
thermore, our map-based frontier (blue) and optimisation (orange) planners out-
perform local planning (purple), while the sampling planner (green) performs on
par with local planning. This showcases the strong performance of our map-based
planners and our framework’s applicability to different model architectures.

6.3 Conclusion
Adaptive informative path planning methods, including the ones presented in
previous Chap. 4 and Chap. 5, achieve strong performance in robotic informa-
tion gathering as they allow the robot to perform online decision-making. In
this way, robots are equipped with a greater level of autonomy and act more
efficiently when deployed in unknown environments. However, adaptive IPP
methods assume robust onboard robotic vision to interpret sensor measurements
semantically. Modern robotic vision systems rely on deep learning-based seman-
tic segmentation models trained on static human-labelled datasets. As sensor
measurements in unknown environments often deviate from the ones the vision
model was trained on, semantic segmentation performance in the environment
the robot is deployed in commonly degrades. Overall, this results in degraded
robotic information-gathering efficiency, requiring costly pixel-wise human la-
belling of collected images to improve the vision model upon re-training.

To address this issue, in this chapter, we investigated the thesis’ second re-
search question of how to improve a robot’s deep learning-based vision model in
unknown environments with a minimal number of human-labelled training im-
ages. Our main contribution is a novel adaptive IPP framework for active learning
in semantic terrain mapping. A key aspect of our method is linking the planning
objective to active learning acquisition functions. This allows us to adaptively
replan the robot’s paths towards areas of potentially informative new training
data. To ensure maximally informed online decision-making, our global planning
algorithms leverage a sequentially updated probabilistic terrain map capturing
semantics and acquisition function information. The framework provides diverse
acquisition functions, proposes various map-based planning algorithms and is
agnostic to the model architecture. The experimental results show that our
map-based adaptive planning methods reduces the number of human-labelled
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images required to maximise semantic segmentation performance compared to
pre-programmed data collection campaigns and state-of-the-art local planning
for active learning [12]. Furthermore, our probabilistic global mapping of gath-
ered information enhances map-based planning performance for active learning.
Finally, our Bayesian extension of the deterministic ERFNet [131] improves se-
mantic segmentation performance and yields more consistent model uncertainty
estimates, resulting in higher planning performance for active learning than pre-
viously used non-Bayesian planning objectives.

Our results demonstrate that, in response to the second research question
posed in this thesis, integrating adaptive IPP methods with active learning ac-
quisition functions from computer vision reduces the human labelling effort while
improving deep learning-based semantic vision models. However, our framework
relies on pixel-wise human-labelled images for model re-training, still inducing
substantial human labelling costs. Thus, in Chap. 7, we propose a novel semi-
supervised learning method to further reduce the human labelling effort. We also
show how to integrate this semi-supervised learning approach into our adaptive
planning framework for active learning introduced in this chapter.
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Chapter 7

Semi-Supervised Learning of
Semantic Vision Using Adaptive
Informative Path Planning

Perceiving and understanding complex environments is a crucial pre-
requisite for deploying autonomous robots in diverse environments.
Robotic monitoring missions require the robot to perceive and reason
about environments beyond geometry, e.g. semantically segmenting

collected RGB images. Thus, robotic vision systems need to reliably semantically
interpret onboard sensor measurements in novel domains and previously unseen
environments. At the same time, the robot is often resource-constrained, which
requires the robot to explore the environment efficiently, e.g. within a limited
flight time. Recent advances in adaptive IPP, including the methods presented
in Chap. 4 and Chap. 5, enable resource-constrained robots to explore unknown
environments more efficiently. However, classical deep learning-based semantic
vision systems are trained on static datasets. These static datasets do not com-
pletely cover the various domains and semantics encountered during real-world
deployments in diverse unknown environments. This often results in degraded
semantic segmentation performance during deployment.

To this end, we have presented an adaptive IPP framework for active learning
in semantic terrain monitoring in Chap. 6. The framework aims to maximise
the robot’s semantic segmentation performance while minimising the number of
human-labelled images. Although our approach shows promising performance, it
relies on the full supervision of a human annotator, providing costly pixel-wise
semantic annotations for each newly collected training image. To facilitate robot
deployment in unknown environments and achieve higher levels of autonomy in
robotic information gathering, robotic active learning methods need to request
easier-to-annotate and fewer labelling queries to reduce human labelling efforts.
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Figure 7.1: Our semi-supervised active learning approach in an unknown terrain (top). We
infer semantics (top-centre) and model uncertainty (top-right) and fuse both in terrain maps.
The robot adaptively re-plans its path online (orange, top-left) to collect diverse uncertain
(yellower, top-right) images. After each mission, we select sparse sets of pixels for human and
self-supervised labelling (bottom). Self-supervised labels are rendered from low-uncertainty
(blue) semantic map areas. Human labels are queried for cluttered model prediction areas.

Motivated by recent advances in semi-supervised learning [25, 60] and effi-
cient labelling paradigms [149, 181], this chapter examines the problem of semi-
supervised active learning to improve robotic semantic vision in unknown terrains.
We aim to maximise the robot’s semantic segmentation performance while min-
imising human labelling requirements. The robot adaptively re-plans paths online
to collect informative training data to re-train a semantic segmentation model
after a mission. We incorporate two sources of labels for model re-training based
on the collected data: (i) a human annotator and (ii) automatically generated
pseudo labels based on a semantic terrain map incrementally built online.

In the traditional setting, active learning methods select the most informative
images from a large unlabelled dataset [44, 47, 147, 183] to reduce human labelling
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effort. However, these approaches are typically not applicable to robot deploy-
ments in unknown environments, as the collected data is unknown before deploy-
ment. Recent approaches combine self-supervised active learning with planning
to improve the robot’s semantic vision in unknown environments [20, 191]. Self-
supervised methods automatically generate pseudo labels from semantic maps
incrementally built during a mission [20, 45, 191]. These approaches do not rely
on human labels. However, their applicability to unknown environments is of-
ten limited since they require large labelled in-domain pre-training datasets to
produce high-quality pseudo labels without systematic prediction errors [20].

The main contribution of this chapter is a novel semi-supervised adaptive IPP
approach for robotic active learning of semantic segmentation in unknown terrains
illustrated in Fig. 7.1. Our approach bridges the gap between the general appli-
cability of fully supervised robotic active learning methods and the low human
labelling requirements of self-supervised robotic active learning methods. A key
novelty of our semi-supervised robotic active learning method is combining the se-
lection of sparse and informative human-labelled training data and automatically
generating uncertainty-aware pseudo labels. We fuse semantic model predictions
and Bayesian model uncertainty estimates [76] into terrain maps. Based on the
model uncertainty map, our planner adaptively collects images from terrain ar-
eas with high model uncertainty and training data diversity. Inspired by recent
semi-supervised computer vision works [149, 181], we select only a sparse set of
to-be-human-labelled informative pixels from each image using a novel selection
criterion. To further improve model performance, we automatically render pseudo
labels from the semantic terrain map in areas of low model uncertainty. By com-
bining human and pseudo labels, we aim to maximise semantic segmentation
performance while reducing human labelling effort.

In sum, we make three key claims in this chapter. First, our semi-supervised
approach drastically reduces the number of human-labelled pixels compared to
fully supervised robotic active learning approaches. We preserve similar seman-
tic segmentation performance and outperform self-supervised methods. Second,
selecting sparse human labels in our targeted way improves semantic segmenta-
tion performance while minimising overall human labelling efforts. Third, the
uncertainty-aware generation of pseudo labels further improves semantic segmen-
tation performance compared to learning from sparse human labels alone.

This chapter incorporates material from the following peer-reviewed journal
publication, for which I have been the main contributor:

• Julius Rückin, Federico Magistri, Cyrill Stachniss, and Marija Popović.
Semi-Supervised Active Learning for Semantic Segmentation in Unknown
Environments Using Informative Path Planning. IEEE Robotics and Au-
tomation Letters (RA-L), 9(3):2662–2669, 2024
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Figure 7.2: During a mission, a semantic segmentation model predicts pixel-wise semantics and
model uncertainties from an RGB image. Both are fused into an uncertainty-aware semantic
terrain map. Our frontier planner guides the collection of training data for model re-training
based on the robot state and map belief towards areas of high model uncertainty and training
data diversity. After a mission, the collected data is labelled using two sources of labels: (i) a
human annotator labels a sparse set of informative pixels, and (ii) we automatically render
pseudo labels from the semantic map in an uncertainty-aware fashion.

7.1 Adaptive Informative Path Planning
Algorithm

We present a semi-supervised robotic active learning approach for semantic seg-
mentation using adaptive IPP as illustrated in Fig. 7.2. We collect images in
an unknown terrain using a robot with an RGB sensor to improve semantic vi-
sion with minimal human labelling effort. We predict pixel-wise semantics and
model uncertainties to update a probabilistic semantic terrain map, described in
Sec. 7.1.1. Based on the robot’s position, budget, and map belief, we adaptively
re-plan paths to collect training data in areas of high model uncertainty and train-
ing data diversity, explained in Sec. 7.1.2. After a mission has been completed, we
select a sparse set of informative to-be-human-labelled pixels in the collected im-
ages, detailed in Sec. 7.2.1. Additionally, we automatically render pseudo labels
from the online-built semantic map in areas of low model uncertainty, outlined
in Sec. 7.2.2. We combine both sources of labels for model re-training.

7.1.1 Probabilistic Semantic Environment Mapping
A crucial requirement for pseudo label generation and adaptive planning is a
probabilistic map capturing information about the terrain. We use a proba-
bilistic multi-layered semantic terrain mapping to fuse semantic information.
The terrain is discretised into two grid maps MS : G → {0, 1}K×W×L and
MU : G→ [0, 1]W×L defined over W ×L spatially independent grid cells G. The
map MS captures the semantic model predictions, and the map MU stores the
model uncertainties associated with the mapped semantic model predictionsMS.

114



7. Semi-Supervised Learning of Semantic Vision Using Adaptive IPP

The semantic mapMS consists of K layers with one layer per semantic class.
At each time step, a new RGB image arrives. The probabilistic semantic model
predictions and model uncertainties are inferred using a semantic segmentation
model and Monte Carlo dropout [46]. Specifically, we use the Bayesian ERFNet
proposed in Sec. 6.1.1. We project the semantic model predictions and model un-
certainties on the terrain map using the robot’s position and the camera’s field of
view. Each layer in the semantic mapMS is recursively updated using occupancy
grid mapping [114]. The model uncertainty map MU is updated by maximum
likelihood estimation. Our approach is agnostic to the chosen model architecture
and uncertainty estimation technique. Furthermore, it can be integrated with
other model architectures and uncertainty estimation techniques.

Additionally, we maintain a count map MT : G→ NW×L to track the occur-
rences in the human-labelled training data and a hit map MH : G → NW×L to
update estimates of model uncertainties MU . The maps MT and MH are not
identical as the camera could provide a high-frequency image stream for mapping
semantics, uncertainties and hits. In contrast, only images at the planned mea-
surement position are collected for human-labelled training data. Both maps are
used during adaptive replanning of the robot’s path. We detect frontiers of unex-
plored space in the hit map and quantify training data diversity in our planning
objective based on the training data count map.

The semantic predictions and model uncertainties change as the semantic seg-
mentation model is re-trained after each robot mission. Following our informative
mapping module in Sec. 6.1.2, we re-compute the semantic and model uncertainty
maps after model re-training using all previously collected RGB images. In this
way, we obtain maximally up-to-date prior maps for adaptive planning.

7.1.2 Frontier-Based Planning for Active Learning
Our planner is designed to collect new training data in unknown terrains, taking
into account mission budget constraints. We aim to maximise the performance of
a semantic segmentation model with minimal human labelling effort after having
re-trained it on the collected training data. Our planning method searches for a
path ψ∗ = (p1, . . . , pN) ∈ Ψ with N ∈ N robot positions pi ∈ R3, i ∈ {1, . . . , N},
in the set of potential paths Ψ, that maximises an information criterion I : Ψ→ R
while respecting the limited mission budget B ≥ 0 given a function C : Ψ → R
assigning the cost C(ψ) of executing a path ψ.

At each time step t, we adaptively re-plan the next-best robot position p∗
t+1 to

collect informative training data based on the current model uncertainty mapMt
U ,

human-labelled training data count map Mt
T , and hit map Mt

H . We use a ge-
ometric frontier-based planner [182] guided by the information criterion I. The
information criterion estimates the effect of a training image recorded at a can-
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didate robot position on a semantic segmentation model’s performance. Based
on the hit map Mt

H , we assign each grid cell g ∈ G to one of the disjoint sets
GU ∪GO = G containing the unknown and known gird cells, respectively. A grid
cell g ∈ GO is considered to be known if its hit count is MH(g) > 0. A grid
cell g ∈ GU is considered to be unknown if its hit count is MH(g) = 0. Then, a
frontier of explored space is defined as a connected set of known grid cells g ∈ GO,
where each known cell has a neighbouring unknown grid cell in GU [182].

We generate a set of potentially informative next robot position candidates Pct+1,
which are equidistantly sampled positions pct+1 ∈ Pct+1 along the frontiers of
known and unknown space reachable within the remaining mission budget Bt ≤ B

at a fixed altitude. At each time step t, the planner greedily selects the candidate
frontier position pct+1 ∈ P∗

t+1 with the highest information value,

p∗
t+1 = argmax

pc
t+1∈Pc

t+1

I(pct+1) = argmax
pc
t+1∈Pc

t+1

∑
g∈Img(pc

t+1)

cu , if g ∈ GU

Mt
U (g)

Mt
T (g)

, if g ∈ GO ,
(7.1)

where cu ∈ R ≥ 0 is a constant model uncertainty prior that fosters exploration of
unobserved areas. The set Img(pct+1) contains grid cells visible from position pct+1,
obtained by projecting the camera’s field of view at position pct+1 on the terrain.
As model uncertainty is found to be reducible by adding more training data about
which the model is uncertain [76], it possibly increases prediction performance.
Thus, an already observed grid cell’s g effect on semantic segmentation perfor-
mance upon model re-training is estimated to be high if its model uncertainty
Mt

U(g) is also high. To balance between model uncertainty and human-labelled
training data diversity, we normalise a grid cell’s information value by its number
of occurrences in the human-labelled training dataset Mt

T (g).

7.2 Semi-Supervised Model Training
The main contribution of our approach is a semi-supervised model training strat-
egy for improving the robot’s semantic vision. We use a semantic segmenta-
tion model f w parameterised by weights w to predict the pixel-wise probabili-
ties p(· | z,w) = softmax(f w(z)) ∈ [0, 1]K×w×h over all possible semantic labels
y ∈ {1, . . . , K}w×h given image z of resolution w×h. We follow Sec. 6.1.1.1 to es-
timate pixel-wise model uncertainties u ∈ [0, 1]w×h via Monte Carlo dropout [46].

To maximise semantic segmentation prediction performance, we combine hu-
man labels Yl = {y1

l , . . . , y
Nl
l } of images Zl = {z1l , . . . , z

Nl
l } with pseudo labels

Yu = {y1
u, . . . , yNu

u } of images Zu = {z1u, . . . , zNu
u }, where Nl and Nu are the num-

bers of human-labelled and pseudo-labelled images. To reduce human labelling
effort, we select only a sparse set of to-be-human-labelled pixels from each im-
age zil, where i ∈ {1, . . . , Nl}, as described in Sec. 7.2.1. To balance human
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and self-supervision during model training, we also select only a sparse set of
pseudo-labelled pixels from each image ziu, where i ∈ {1, . . . , Nu} as described
in Sec. 7.2.2. Each non-labelled pixel in some label yil or yiu is assigned a void
class N v. During training, we mask the loss with Iy̸=Nv ∈ {0, 1}w×h, where Iy̸=Nv

is zero for each pixel with class N v. The model fw is trained to minimise the
cross-entropy loss function with weight decay coefficient λ,

L(w) =
1

Nlα

Nl∑
i=1

∥∥∥− log
(
p
(
yil | zil,w

))
⊙ Iyil ̸=Nv

∥∥∥
1

+
1

Nuα

Nu∑
i=1

∥∥− log
(
p
(
yiu | ziu,w

))
⊙ Iyiu ̸=Nv

∥∥
1
+ λ∥w∥22,

(7.2)

where α ∈ N is the number of labelled pixels per image, the log-operator is applied
element-wise to the probability matrix, ∥·∥1 sums the elements of a matrix, ⊙ is
the Hadamard product performing element-wise multiplication of two matrices,
and ∥·∥2 is the Euclidean norm of a vector.

7.2.1 Sparse Human Labelling Query Selection
Inspired by Shin et al. [149] and Xie et al. [181], we propose a new model
architecture-agnostic pixel selection procedure for sparse human labels. Our
pixel selection method balances label informativeness and training data diver-
sity. After each mission, for all newly collected images zl recorded at planned
positions p∗

t according to Eq. (7.1), for each pixel (m,n), we predict semantic
probabilities p(· | zl,w)(m,n) ∈ [0, 1]K . Based on this probabilistic prediction, we
extract the maximum likelihood label ỹ(m,n)

l = argmaxk∈{1,...,K} p(k | zl,w)(m,n).
Next, for each newly collected image zl, based on its prediction ỹl, we compute
each pixel’s region impurity score following Xie et al. [181] as

Rr(zl)(m,n) = −
K∑
k=1

log
(
|Nk

r (m,n)|
(2r + 1)2

)
|Nk

r (m,n)|
(2r + 1)2

,

Nk
r (m,n) =

{
(i, j) ∈ Nr(m,n) | ỹ(i,j)

l = k
}
,

(7.3)

where Nr(m,n) = {(i, j) | |i − m| ≤ r ∧ |j − n| ≤ r} is the set of r-step
neighbouring pixels of pixel (m,n), and |·| counts the elements in a set. The region
impurity of a pixel is high whenever the number of different classes predicted
within the pixel’s r-step neighbourhood is high. Hence, high region impurity
indicates locally cluttered predictions. However, a well-trained model typically
predicts locally non-cluttered semantics. Thus, high region impurity potentially
indicates high human label information value upon model re-training.

In contrast to Xie et al. [181], we do not greedily select the α image pixels
that maximise region impurity. Instead, we sample α image pixels uniformly at
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random from the β% pixels with the highest region impurity score per image.
Through this, we foster human label diversity. The user can set α dynamically to
steer the desired human labelling effort. At the same time, β implicitly provides
a lower bound for a pixel’s information value. This lower bound aims to ensure
that human-labelled pixels are informative and maximise model improvements.
Experimentally, we found that values β ≤ 10% ensure informative pixel selection.
Setting β → 100% results in random pixel selection. Particularly for desirably
small labelling budgets α, random pixel selection fails to effectively improve model
performance. Furthermore, we found that greedily selecting the α pixels with the
highest region impurity tends to select similar training data, resulting in worse
prediction performance. Thus, both region impurity and random sampling are
crucial for maximising model performance with low human labelling budgets.

7.2.2 Self-Supervised Pseudo Label Generation
After a mission is finished, we use our incrementally online-built uncertainty-
aware semantic map introduced in Sec. 7.1.1 to generate pseudo labels Yu in a
self-supervised fashion, similar to self-supervised approaches [20, 45, 191]. We
record to-be-pseudo-labelled images zu ∈ Zu equidistantly between two positions
planned for collecting to-be-human-labelled images, see Eq. (7.1). In this way, we
aim to maximise the diversity of our pseudo-labelled training data. Given a robot
position pu at which image zu was recorded, we render a pixel-wise probabilistic
pseudo label p(· | pu,MS) ∈ [0, 1]K×w×h from the semantic mapMS at the image
resolution w×h. To render the map-based semantics, we project the camera’s field
of view at position pu on the terrain. Then, for each pixel (m,n) of zu, we extract
the maximum likelihood pseudo label y(m,n)

u = argmaxk∈{1,...,K} p(k | pu,MS)
(m,n).

In addition, we render the pseudo label’s corresponding pixel-wise model uncer-
tainty uu ∈ [0, 1]w×h from the model uncertainty map MU .

In contrast to previous self-supervised methods [20, 45, 191], we only use a
sparse set of α pseudo-labelled pixels per image zu to train the model via Eq. (7.2).
We experimentally found sparse pseudo labels to better balance between human
and self-supervision. We extend the approach of Shin et al. [149] to a new pixel
selection procedure for sparse pseudo labels yu. Our selection procedure is a
trade-off between semantic map uncertainty and pseudo label diversity. After
each mission, we (re-)render pseudo labels yu and model uncertainties uu based
on the most recent map beliefsMS andMU for all images zu collected in any of
the previous missions. Similar to the human-labelled pixel selection in Sec. 7.2.1,
for each image, we sample α pixels (m,n) at random from the β% pixels with
the lowest map-based model uncertainty u(m,n)

u . We found that providing an
implicit upper bound β for model uncertainty yields higher semantic segmentation
performance than random sampling pseudo-labelled pixels as β → 100%. The
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upper bound on model uncertainty for pseudo-labelled pixels acts as a proxy for
an implicit lower bound on self-supervision quality. Experimentally, we found
that β ≤ 10% usually ensures moderate model performance improvements.

Our semi-supervised training can easily be expanded by independently tuning
different values of α and β for the pixel selection of human and pseudo labels. We,
however, prioritise simplicity and reduce the number of user-defined parameters
to a minimum. Thus, we deploy our approach using the same number of selected
pixels α and bounds β for human- and pseudo-labelled images.

7.3 Experimental Evaluation
Our experiments assess the performance of our semi-supervised robotic active
learning approach and investigate our claims made in this chapter. In Sec. 7.3.2,
we show that our method for selecting human-labelled pixels outperforms state-of-
the-art pixel selection methods in our robotic planning context. In Sec. 7.3.3, we
validate that combining our uncertainty-aware pseudo labels with human labels
improves semantic segmentation performance. Furthermore, we verify that our
semi-supervised method drastically reduces the number of human-labelled pixels
compared to fully supervised robotic active learning approaches while maintaining
similar performance. Finally, in Sec. 7.3.4, we show that our semi-supervised
approach outperforms self-supervised methods in semantic terrain mapping.

7.3.1 Experimental Setup

Baseline & Dataset. We compare our semi-supervised frontier-based planning
approach against a coverage-based strategy that pre-computes paths to maximise
spatial coverage. Our approach is evaluated on the real-world 7-class urban ISPRS
Potsdam orthomosaic dataset [68] by simulating 10 subsequent UAV missions
from 30m altitude with a mission budget of 1800 s. The UAV uses a downwards-
facing RGB camera with a footprint of 400 px×400 px, resulting in 15 cm ground
sampling distance, identical in setup with Sec. 6.2 to ensure a fair comparison
with our fully supervised robotic active learning approach presented in Chap. 6.

Evaluation Metrics. We evaluate semantic segmentation performance (de-
pendent variable) over the number of human-labelled training images or pixels
(independent variable). We use mean Intersection-over-Union (mIoU) [31] and
pixel-wise accuracy [33] to quantify semantic segmentation performance. Higher
semantic segmentation performance thanks to newly added images indicates bet-
ter robotic active learning performance. We run three trials per experiment to
account for inherent randomness in the pixel selection and model training. We
report the mean and standard deviation performance curves.
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Implementation Details. We use Bayesian ERFNet as in Sec. 6.1.1, which
has been pre-trained on the Cityscapes dataset [31]. For a fair comparison, re-
training after each mission starts from this checkpoint and the model is trained
until convergence on a validation set. We use a one-cycle learning rate, a batch
size of 8, and weight decay λ = (1 − p)/2N in Eq. (7.2), where p = 0.5 is
the dropout probability, and N = Nl +Nu is the number of human- and pseudo-
labelled training images [47]. The human and pseudo label pixel selection bounds
are set to β = 5%. The r-neighborhood of the human label selection criterion is
set to r = 1 in Eq. (7.3) as we found considering small regions to perform best.

7.3.2 Targeted Human Label Selection
The first set of experiments shows that our targeted human label selection im-
proves semantic segmentation performance and reduces human labelling effort,
supporting our second claim made in this chapter. We verify that our method
(i) outperforms state-of-the-art pixel selection methods in the robotic active
learning context and (ii) improves semantic segmentation performance over non-
targeted pixel selection with desirably higher gains for lower human labelling
budgets. The experiments are conducted using human labels only.

We compare our human-labelled pixel selection method introduced in Sec. 7.2.1,
referred to as Ours, against four other pixel selection methods. Namely: (i) sam-
ple α pixels from the β% most uncertain pixels by Shin et al. [149], referred
to as Unc-Rand; (ii) sample β% pixels at random, then select the α most un-
certain pixels by Shin et al. [149], referred to as Rand-Unc; (iii) select α pixels
uniformly at random, referred to as Random; and (iv) select α pixels with the
highest region impurity in an r-neighborhood by Xie et al. [181], referred to as
Reg-Imp, where r = 1 yields the best results. We set a low human labelling bud-
get of α = 1000 ≈ 0.6% pixels for each collected image by our frontier planner.
Additionally, we show results for the fully supervised frontier-based and coverage-
based planners, referred to as Frontier and Coverage respectively, using pixel-wise
densely human-labelled images investigated in Sec. 6.2 as a performance upper
bound for the sparsely labelled approaches.

Fig. 7.3 summarises the semantic segmentation performance of the different
pixel selection methods. In line with our fully supervised robotic active learn-
ing approach presented in Chap. 6, the frontier planner (yellow) using densely
human-labelled images achieves the highest performance outperforming the non-
adaptive coverage planner (orange). Notably, our method (dark blue) shows the
fastest improvement and highest final mIoU of approx. 52.5% of all pixel selection
methods. This verifies that our method outperforms the second-best state-of-the-
art Reg-Imp method (green), reaching approx. 49% final mIoU. Particularly, our
human label selection matches the final performance of the fully supervised cov-
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Figure 7.3: Comparison of pixel selection methods with α = 1000 human-labelled pixels per
image using our frontier planner on ISPRS Potsdam. Frontier (yellow) and coverage (orange)
planners use densely labelled images indicating performance upper bounds. Results are averaged
over three runs. Shaded regions indicate one standard deviation. Our proposed method (dark
blue) outperforms the other state-of-the-art pixel selection methods.

Table 7.1: Per-class IoU comparison of sparse human label selection methods with α = 1000

human-labelled pixels per image using our frontier planner on ISPRS Potsdam. ‘Dense’ uses
dense pixel-wise human-labelled images indicating the performance upper bound.

Method Mission Surface Building Vegetation Tree Car Clutter

Random

3

53.98 51.00 40.58 20.87 28.54 7.58
Unc-Rand 58.93 60.89 43.09 25.15 42.04 11.42
Reg-Imp 51.17 48.84 39.96 15.29 0.00 8.26
Ours 59.47 65.74 46.37 33.74 47.20 15.36

Dense 63.93 70.39 49.46 35.82 60.95 10.40

Random

6

59.16 63.30 43.33 31.62 44.68 11.63
Unc-Rand 61.87 68.99 42.50 29.80 52.57 16.60
Reg-Imp 60.19 69.61 46.68 30.83 59.49 12.59
Ours 65.99 72.83 51.56 41.16 61.07 15.53

Dense 71.08 77.72 53.14 45.80 68.81 17.56

Random

9

59.38 64.71 43.80 33.21 50.54 11.33
Unc-Rand 62.40 70.19 46.68 30.91 57.32 14.92
Reg-Imp 62.31 71.78 46.87 36.92 64.57 12.33
Ours 67.94 74.54 52.00 43.37 66.50 16.67

Dense 71.23 78.60 52.79 48.52 71.57 20.11

erage planner while using only approx. 0.6% of the human-labelled pixels. This
highlights the benefits of coupling adaptive planning for collecting training im-
ages with our targeted selection of human-labelled pixels for model re-training.
Tab. 7.1 shows a per-class IoU performance compared with state-of-the-art pixel
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RGB Input Ground truth Prediction Sparse Label Model Uncertainty

Figure 7.4: Qualitative results of our human label pixel selection method on ISPRS Potsdam.
Columns: RGB input, ground truth, prediction, selected to-be-labelled pixels, model uncer-
tainty. Selected pixels are expanded to their one-pixel neighbourhood for visualisation. Our
method selects pixels in areas of cluttered predictions, often corresponding to prediction errors.

selection methods. Our method shows superior per-class performance throughout
all semantic classes. This verifies our method’s ability to select informative pixels
for vastly different semantic classes. Fig. 7.4 displays images collected during a
mission, semantic predictions and corresponding human-labelled pixels selected
for re-training with our method. Favorably, our method selects pixels in areas of
cluttered predictions, often corresponding to prediction errors.

Fig. 7.5 shows the semantic segmentation performance of our targeted pixel
selection method (solid lines) compared to randomly selecting human-labelled
pixels (dashed transparent lines) over varying human labelling budgets. No-
ticeably, for budgets α ≤ 2000 ≈ 1.3% px, our pixel selection method clearly
outperforms random pixel selection. As desired, the performance gain of our
targeted pixel selection method over the random selection drastically increases
with lower human labelling budgets. These results show that our targeted sparse
human label selection is necessary to achieve drastic model performance improve-
ments for reasonably low human labelling requirements. Naive random selection
of human-labelled pixels cannot ensure large model performance improvements
unless human annotators label substantial amounts of pixels. For an extremely
low budget of α = 100 ≈ 0.06% px, our targeted pixel selection method leads to
a substantial final performance gain of approx. 20% mIoU.
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Figure 7.5: Comparison of our human pixel selection method (solid lines) to random pixel
selection (dashed transparent lines) over varying labelling budgets α ∈ [100, 10000] px using
our frontier planner on ISPRS Potsdam. Results are averaged over three runs. Shaded regions
indicate one standard deviation. As desired, the performance gain of our method compared to
random pixel selection drastically increases for lower labelling budgets.

7.3.3 Uncertainty-Aware Pseudo Label Generation

The second set of experiments shows that uncertainty-aware generation of pseudo
labels improves semantic segmentation performance, supporting our first and
third claims made in this chapter. We validate that our pseudo label selection
method outperforms other selection strategies, and combining our human and
pseudo label selection improves semantic segmentation performance across vary-
ing labelling budgets, supporting our third claim. Furthermore, we verify that
our semi-supervised approach drastically reduces the number of human-labelled
pixels compared to fully supervised approaches presented in Chap. 6 while main-
taining similar performance, supporting our first claim. The experiments are
conducted using our human label selection method introduced in Sec. 7.2.1.

We compare our pseudo label selection method introduced in Sec. 7.2.2, re-
ferred to as Ours, against two other pseudo label selection methods for a low hu-
man labelling budget of α = 1000 ≈ 0.6% pixels per image. We (i) re-distribute
the pseudo labels’ class distribution to the true class distribution estimated by
the human labels using per-class model uncertainty thresholds to select on aver-
age α pixels per image as proposed by He et al. [60], referred to as Dist-Align.
We also (ii) randomly select α pixels per image, referred to as Random. Finally,
we compare against (iii) using α human-labelled pixels per image only, referred
to as Human-Only, and against (iv) using the fully supervised frontier-based and
coverage-based planners, referred to as Frontier and Coverage respectively, lever-
aging dense pixel-wise human labels as investigated in Sec. 6.2.

123



7.3. Experimental Evaluation

Figure 7.6: Comparison of pseudo label selection methods with α = 1000 human- and pseudo-
labelled pixels per image using our frontier planner on ISPRS Potsdam. Frontier (yellow) and
coverage (orange) planners use densely labelled images indicating performance upper bounds.
Results are averaged over three runs. Shaded regions indicate one standard deviation. Our
pseudo label selection method (dark blue) outperforms the other selection methods.

Input Ground Truth Pseudo Label Sparse Label Uncertainty

Figure 7.7: Qualitative results of our pseudo label generation on ISPRS Potsdam. Columns
from left to right: RGB input, ground truth, pseudo label, selected pseudo-labelled pixels,
mapped model uncertainty. Selected pixels are expanded to their one-pixel neighbourhood for
visualisation. Our method selects low-uncertainty pixels to minimise pseudo label errors.

Fig. 7.6 summarises the performance of the different pseudo label selection
methods. Combining human with pseudo labels improves the semantic segmenta-
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Figure 7.8: Comparison of our human label selection only (dashed transparent lines), and
combined with our pseudo label selection (solid lines) over varying labelling budgets α ∈
[100, 2000] px per image using our frontier planner on ISPRS Potsdam. Dashed black lines
show the fully supervised frontier planner’s final performance as an upper bound. Results are
averaged over three runs. Shaded regions indicate one standard deviation. Combining our
pseudo with human labels consistently improves performance over using human labels alone.

tion performance over using sparse human labels alone (green). This verifies the
benefits of our semi-supervised robotic active learning approach, combining hu-
man and self-supervision. Our uncertainty-aware pseudo label selection method
(dark blue) achieves approx. 1 − 2% higher mIoU than other methods (purple,
dark red). Our semi-supervised approach particularly outperforms the fully su-
pervised coverage planner using only approx. 0.6% of the human-labelled pixels.
Fig. 7.7 qualitatively shows our pseudo labels generated after mission completion.

Fig. 7.8 shows the performance using our human-labelled pixel selection method
alone (dashed transparent lines) and combining it with our uncertainty-aware
pseudo label selection (solid lines) over varying human labelling budgets α ∈
[0.06, 1.25]% pixels per image using our frontier planner. Combining our sparse
human and pseudo labels consistently improves final semantic segmentation per-
formance by approx. 2 − 3% mIoU across varying human labelling budgets.
Furthermore, training on pseudo and human labels simultaneously yields faster
performance improvements than using our sparse human labels alone. These
results validate the superior performance of our semi-supervised robotic active
learning approach. Especially our semi-supervised robotic active learning ap-
proach rapidly closes the final performance gap to the fully supervised frontier
planning approach proposed in Chap. 6 (dashed black line) with substantially
reduced human labelling requirements. The fully supervised approach reaches
a maximum performance of approx. 57.5% mIoU while our semi-supervised ap-
proach reaches approx. 56% mIoU with only approx. 0.8% of the human-labelled
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pixels. This shows that our semi-supervised robotic active learning approach
requires two magnitudes fewer human-labelled pixels while reaching semantic
segmentation performance similar to fully supervised approaches.

7.3.4 Semi- vs. Self-Supervised Robotic Active Learning
The third set of experiments is designed to support our first claim made in this
chapter. We demonstrate that our semi-supervised robotic active learning ap-
proach outperforms self-supervised robotic active learning approaches by a large
margin regarding semantic segmentation performance under varying human la-
belling budgets for model pre-training and model re-training in unknown terrains.

Similarly to self-supervised robotic continual learning and domain adaptation
approaches [45, 191], we use our frontier planner introduced in Sec. 7.1.2 to guide
uncertainty-driven training data collection. We exploit the online-built semantic
map to generate densely annotated pseudo labels to establish a self-supervised
robotic active learning baseline for semantic terrain monitoring. Current self-
supervised robotic active learning approaches only work with pre-trained semantic
segmentation models deployed in similar environments [20, 45, 191]. In contrast,
our semi-supervised method works in completely unknown terrains. To compare
our approach with self-supervised methods, we relax these assumptions. We con-
sider small amounts of densely human-labelled images for pre-training, randomly
sampled from the terrain in which the robot is deployed. Each approach starts
with this pre-trained model checkpoint. Similar to the experience replay method
of self-supervised approaches [45, 191], the human-labelled pre-training images
are additionally used for all model re-trainings after a mission is completed to
achieve performance improvements in the self-supervised approach.

Fig. 7.9 shows the semantic segmentation performance of our semi-supervised
robotic active learning approach (solid lines) compared to the self-supervised
robotic active learning approach (dashed lines) on the ISPRS Potsdam dataset
with varying numbers of human-labelled pre-training images. For all labelling
budgets of α ∈ {100, 500} ≈ {0.06, 0.3}% human-labelled pixels per image and
{16, 32} densely human-labelled pre-training images, our semi-supervised robotic
active learning approach outperforms the self-supervised robotic active learning
approach by a large margin. With a small number of 16 pre-training images and
little human supervision of α = 100 pixels per image during the missions, our
semi-supervised approach achieves substantially higher final performance than
the self-supervised approach with 32 pre-training images. Moreover, the self-
supervised approach fails to improve its semantic segmentation performance af-
ter five missions, irrespective of the number of pre-training images. This sug-
gests that semi-supervised robotic active learning is necessary for maximally im-
proving semantic segmentation during deployment in varying unknown terrains.
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Figure 7.9: Comparison of our semi-supervised approach (solid lines) with 500 or 1000 human-
labelled pixels per collected image and a self-supervised approach (dashed lines) using 16 or
32 densely human-labelled images for model pre-training. Results are averaged over three runs
on ISPRS Potsdam. Shaded regions indicate one standard deviation. Our semi-supervised
approach outperforms the self-supervised approach for all labelling budget configurations.

Although self-supervised robotic active learning approaches do not require any
human labelling during deployment, they are inherently limited by their lack of
knowledge and systematic prediction errors in unknown terrains, as indicated by
our experimental results and discussed by Chaplot et al. [20].

7.4 Conclusion
The increasingly versatile usage of robots for various terrain monitoring tasks,
such as precision agriculture and urban monitoring, requires robots to semanti-
cally perceive and understand the environment in which they are deployed. Most
robotic semantic vision systems use deep learning-based semantic segmentation
models trained on static curated human-labelled datasets. As robots are deployed
in unknown environments, images recorded during a mission often deviate from
the ones the vision system was trained on. This typically leads to a drop in seman-
tic segmentation performance during deployment when using deep learning-based
vision systems. To tackle this issue, our adaptive IPP approach for active learning
presented in Chap. 6 maximises semantic segmentation performance in unknown
environments while reducing the number of human-labelled images. However,
it still requires dense pixel-wise human annotation of collected training images,
which induces substantial human labelling efforts.

To address this issue, in this chapter, we investigated the thesis’ third re-
search question of which image queries should be labelled by a human annotator
and which vision learning signals can be derived from the robot’s actively im-
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proving understanding of the environment to reduce the human labelling effort
further. Our main contribution in this chapter is a novel semi-supervised robotic
active learning approach that adaptively replans paths to collect new informative
training data. A key aspect of our approach is a new semi-supervised semantic
vision model training strategy that combines sparse human and pseudo labels.
We propose a new method that selects sparse sets of pixels from collected im-
ages for human labelling, targeting diverse image regions in which the seman-
tic model predictions are cluttered, thus likely containing informative labelling
queries. Furthermore, we introduce a new method that automatically generates
pseudo labels rendered from an online-built semantic map in diverse areas of low
model uncertainty, likely containing high-quality pseudo labels.

Our experimental results show that our sparse human-labelled pixel selection
method outperforms state-of-the-art pixel selection methods in the context of
robotic active learning and drastically improves semantic segmentation perfor-
mance over non-targeted pixel selection for low human labelling budgets. Com-
bining our sparse human labels with our uncertainty-aware pseudo label gener-
ation further improves performance. Overall, our semi-supervised robotic active
learning approach drastically reduces human labelling requirements compared
to the fully supervised framework presented in Chap. 6 while preserving similar
semantic segmentation performance. Additionally, our semi-supervised method
outperforms purely self-supervised robotic active learning approaches.

These findings demonstrate that, in response to the third research ques-
tion posed in this thesis, integrating adaptive IPP with semi-supervised learn-
ing reduces human labelling efforts and ensures competitive vision model perfor-
mance in semantic terrain monitoring. Our targeted sparse human label selection
method provides one solution towards more efficient image queries. Moreover,
our uncertainty-aware method that automatically renders pseudo labels from an
online-built semantic map showcases one possible way to use the robot’s under-
standing of the environment to make labelling more efficient. As part of the next
chapter, we discuss other possible pathways to answer our third research question
and further improve robotic active learning approaches.
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Chapter 8

Conclusion

Gathering information autonomously in unknown environments using
onboard sensors for data collection is an important skill for robots.
Real-world applications include environmental monitoring [38, 172,
179], supporting in search-and-rescue scenarios [36] or planetary ex-

ploration missions [117]. Advances in machine learning enable robots to interpret
collected sensor measurements automatically [59, 168, 176]. In this way, the
robot can perceive its environment and update its understanding by capturing
measurements in a map of the environment [80, 114]. To raise the level of auton-
omy in unknown environments, a key robotic skill is to explore the environment
autonomously given resource constraints, such as limited onboard energy and
compute power. For this, robots need to decide where to move next despite only
having access to noisy and incomplete environmental knowledge.

Our main contributions are novel methods that steer a resource-constrained
unmanned aerial vehicle in unknown environments towards areas that yield po-
tentially informative new measurements to improve its understanding of the en-
vironment given a limited mission budget, such as flight time. This problem is
known as the adaptive informative path planning problem [106, 127]. We have de-
veloped novel adaptive informative path planning methods that improve robotic
information-gathering efficiency in unknown environments and the robot’s se-
mantic understanding while minimising human labelling efforts.

The methods proposed in this thesis contribute to answering our three key
research questions: (i) how to increase the compute efficiency of adaptive infor-
mative path planning without sacrificing planning performance in information-
gathering missions, (ii) how to improve deep learning-based vision models in
unknown environments while minimising the amount of human-labelled images
for model re-training, and (iii) which image queries should be labelled by a hu-
man annotator and which vision learning signals can be derived from the robot’s
actively improving understanding of the environment to reduce labelling effort?
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To approach the first research question, we introduce a learning-based method
for adaptive informative path planning that combines classical robotic planning
with reinforcement learning to monitor continuous-valued environmental infor-
mation, such as the surface temperature of arable fields. We perform tree search-
based planning during deployment and steer the search using the neural networks
offline-learned in simulated monitoring missions. Our learning-based method
accelerates the adaptive replanning of paths during deployment compared to
compute-expensive non-learning-based adaptive informative path planning meth-
ods while showing competitive performance. These results could facilitate deploy-
ing adaptive methods on resource-constrained mobile robots.

Most adaptive informative path planning methods are specifically designed
for robotic information-gathering missions with different map representations,
either monitoring continuous-valued environmental information, such as surface
temperatures, or monitoring discrete-valued environmental information, such as
semantic segmentation of crops and weeds in arable fields. Hence, changes in the
to-be-monitored information require re-designing or even re-training the planning
strategy. The second approach addresses this limitation by introducing a novel
mathematical formulation of the adaptive informative path planning problem
that unifies monitoring missions across various map representations into one map-
agnostic planning state representation. Using this state representation and a new
reward function for adaptive path planning, the robot learns a single map-agnostic
adaptive informative path planning strategy applicable to missions with different
to-be-monitored information using reinforcement learning. Our method facil-
itates deploying learned adaptive path planning strategies without re-designing
and re-training them for specific mission characteristics. Additionally, our formu-
lation unifies previously developed planning algorithms while maintaining their
performance. In this way, our second approach makes learning-based adaptive
informative path planning methods a promising solution to our first research
question beyond narrowly defined information-gathering mission characteristics.

Monitoring missions that require a semantic understanding of the environ-
ment, e.g. semantically segmenting an urban area into streets, buildings and
vegetation for urban planning purposes, typically achieve this using deep learning-
based semantic vision models, which process the collected images. These semantic
vision models are commonly trained on static human-labelled datasets. As the
environment in which the robot is deployed is unknown, images collected during
deployment might differ from the ones the model is trained on. In these cases,
deep learning-based vision models degrade semantic segmentation performance,
requiring costly human annotations of collected images to improve the vision
model upon re-training. We propose a novel adaptive informative path planning
framework for active learning of robotic vision in semantic monitoring missions
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to tackle this issue. Our method’s key idea is to link model uncertainty measures
from active learning with the information-gathering planning objective. In this
way, we adaptively guide the unmanned aerial vehicle to collect potentially infor-
mative images for human labelling based on which the model is re-trained. Our
framework reduces the number of human-labelled images and, hence, labelling
costs for model re-training required to reach competitive semantic segmenta-
tion performance compared to prior state-of-the-art and traditional non-adaptive
data collection campaigns for semantic vision model training. This verifies that
combining adaptive informative path planning methods with active learning of
semantic robotic vision is one solution to our second research question.

Lastly, we integrate our adaptive informative path planning for active learn-
ing approach with a novel semi-supervised learning framework for label-efficient
semantic robotic vision training to further reduce human labelling efforts in se-
mantic monitoring missions. We propose combining sparsely selected informative
pixels from collected images for human labelling with automatically labelled pixels
using the robot’s understanding of the environment. First, we present a new pixel
selection method for human labelling that ensures higher semantic segmentation
performance with fewer labelled pixels than state-of-the-art methods. Second, we
introduce a new method to automatically render semantic labels from areas of the
robot’s semantic environment map built during deployment in which the model is
highly certain about its predictions. Combining our automatically labelled data
with human-labelled data for model re-training constantly improves the semantic
segmentation performance. Our adaptive informative path planning method for
semi-supervised active learning of semantic robotic vision reduces the required
human-labelled pixels for model re-training by two magnitudes while ensuring
similar performance compared to fully supervised methods in unmanned aerial
vehicle-based semantic monitoring missions. Thus, our semi-supervised learning
method combined with adaptive informative path planning is one label-efficient
solution to semantic robotic vision as an answer to our third research question.

Overall, our overarching research hypothesis was that integrated robot learn-
ing and planning approaches can enhance information-gathering efficiency in un-
manned aerial vehicle-based monitoring missions. Although our novel methods
present only a few of potentially many pathways to integrate or combine learning-
based approaches with robotic planning methods, we make crucial contributions
to integrated learning and planning for robotic information gathering in various
applications. Our first two approaches show how to combine classical robotic path
planning and reinforcement learning to increase information-gathering efficiency
by advancing and unifying learning-based adaptive informative path planning
methods. Furthermore, our third and fourth methods connect the field of active
learning in computer vision and adaptive informative path planning algorithms
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with semi-supervised learning techniques in a novel fashion. These established
connections between both research fields yield novel methods that increase the
robot’s semantic vision performance while minimising human labelling effort.
Overall, the methods and experimental results presented in this thesis suggest
that integrating learning-based approaches and planning methods more closely
indeed enhances robotic information-gathering efficiency in various applications.

8.1 Future Work
In this thesis, we investigated approaches for robotic information gathering in
unknown environments. We presented multiple new methods for adaptive IPP
enabling efficient collection of information using resource-constrained robots. De-
spite the encouraging performance of our introduced methods and their improve-
ments over previous state-of-the-art approaches, future research to further im-
prove the efficiency of robotic information gathering is required to achieve higher
levels of robot autonomy. In Sec. 8.1.1, we discuss open research questions and
possible future directions to improve the training and generalisability of learning-
based adaptive IPP methods, such as the ones proposed in Chap. 4 and Chap. 5.
In Sec. 8.1.2, we discuss open research questions and possible future directions to
extend our approaches to active learning of robotic vision introduced in Chap. 6
and Chap. 7 and reduce their human labelling requirements further.

This section incorporates material from the following peer-reviewed conference
workshop publication, for which I have been the main contributor:

• Julius Rückin, Federico Magistri, Cyrill Stachniss, and Marija Popović. Ac-
tive Learning of Robot Vision Using Adaptive Path Planning. In IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS) Workshop on Label
Efficient Learning Paradigms for Autonomy at Scale, 2024

8.1.1 Learning-Based Adaptive Informative Path
Planning

In the following, we discuss open challenges in our RL-based adaptive IPP ap-
proaches introduced in Chap. 4 and Chap. 5. We identify open research questions
in planning policy training and their applications to unstructured environments
and multi-robot teams. We suggest future directions for addressing them.

Sample-Efficient Training of Planning Policies. Despite their promis-
ing performance, our adaptive IPP policies learned using RL require substantial
amounts of simulated missions during training. For our method discussed in
Chap. 5, this results in more than two days of policy training on a single GPU
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workstation. We train policies offline and perform policy inference during deploy-
ment. Thus, high training times do not necessarily affect deployment frequencies.
However, the sample complexity of training planning policies with RL is expected
to grow significantly with increasingly complex missions in more complex envi-
ronments, e.g. 3D environments with obstacles causing occlusions.

A promising direction to train planning policies in a more sample-efficient
fashion is to use imitation learning methods. Choudhury et al. [29] introduce
an imitation learning method to train exploration policies that imitate an expert
planner. The expert planner has access to the privileged ground truth infor-
mation of the environment, while the learned policy is trained to imitate this
expert planner based on partial information available during deployment. Sim-
ilarly, future work could investigate using imitation learning methods, such as
behaviour cloning [123], to train policies for our more challenging adaptive IPP
problem. One could readily use our map-agnostic adaptive IPP formulation and
non-learning-based expert planners, such as the map-agnostic Monte Carlo tree
search planning algorithm introduced in Chap. 5, to generate a dataset of ex-
pert paths and their associated information values. Based on this dataset, an
actor-critic network can be trained using imitation learning. The actor-critic
network could also be integrated as a learned policy and value function steering
the sampling-based adaptive IPP algorithm proposed in Chap. 4. Last, one could
use actor-critic RL algorithms to fine-tune the pre-trained policy [98] to further
improve the performance of policies trained with imitation learning.

Unstructured 3D Environments. This thesis focuses mainly on informa-
tion gathering with UAVs monitoring large but flat 2D terrain information. In
general, our adaptive IPP approaches discussed in Chap. 4 and Chap. 5 also apply
to other robot platforms, onboard sensors and obstacle-free 3D environments, e.g.
to unmanned ground vehicle-based indoor temperature mapping scenarios [125].
However, our learning-based adaptive IPP methods must be adapted to extend
the range of robotic information-gathering missions to unstructured 3D environ-
ments with obstacles that result in occlusions. In our joint work led by Apoorva
Vashisth [167], we introduce a learned adaptive IPP policy for deployment on a
UAV in unstructured 3D environments trained using RL. We introduce a topolog-
ical graph representing the action space around the UAV. The graph captures the
collision-free workspace of the UAV to ensure obstacle avoidance in static environ-
ments. Furthermore, we propose a new reward function for viewpoint planning
to maximise newly collected information. Our experimental results show that
both changes to previous methods are necessary to reliably avoid collisions and
to maximise information-gathering performance in 3D environments.

However, these adaptive IPP methods assume static environments. These
approaches either expect obstacle-free robot workspaces or static obstacles that
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do not move during mission time. Moreover, all approaches assume that the to-
be-mapped information of interest, e.g. surface temperature, varies only spatially
across the environment but does not change over time for a fixed point in the
environment. Both limitations are important to address in future methods. The
assumption of temporally static information is often only valid for monitoring
missions with short mission times compared to the rate of change of the informa-
tion. For example, monitoring fruits in an orchard is assumed to be temporally
static as fruit growth is slow. In contrast, monitored temperatures of metallic
surfaces might change rapidly depending on the environmental conditions. Addi-
tionally, enabling the robot to reason about and avoid collisions with dynamically
moving objects could enable missions that track target objects in an environment.
Dynamic object collision avoidance particularly enables deploying adaptive IPP
methods in environments while working alongside other agents, such as human
workers, remote-controlled machines or other autonomous robots.

Heterogeneous Multi-Robot Teams. We focused on robotic informa-
tion gathering with a single robot. In large-scale monitoring missions, such as
monitoring larger regions of oceans or forests, deploying a team of robots in-
stead of a single robot is often advantageous [6, 15]. Robot teams offer improved
information-gathering efficiency in larger environments due to better spatial cov-
erage. At the same time, deploying multiple robots reduces the impact of robot
failures on the information-gathering performance. Leveraging a team of robots
for efficient monitoring comes with new challenges for adaptive IPP methods. A
key skill for robot teams is to plan paths cooperatively to maximise the gathered
information given a limited mission budget. As we showed in Chap. 4 and Chap. 5,
non-learning-based methods for single-robot applications are compute-expensive.

Planning paths cooperatively for robot teams increases replanning times even
further as the number of possible paths and, thus, computational complexity
scale exponentially with the number of robots. To avoid this issue, we introduce
a novel multi-UAV adaptive IPP method that trains planning policies for terrain
monitoring in simulation using multi-agent RL in a joint work led by Jonas Wes-
theider [175]. UAVs compute-efficiently plan paths during deployment based on
their individual understanding of the environment via offline-learned policy infer-
ence while being robust to communication failures with other robots and varying
team sizes. However, this and other multi-robot adaptive IPP methods commonly
consider homogeneous robot teams in which each robot has the same platform,
is equipped with the same sensors and yields the same budget constraints. This
limits the efficiency of information gathering since allocating budgets and paths
cannot complement each robot’s weaknesses. Future methods that plan paths
and allocate resources to heterogeneous robot teams might improve the efficiency
of large-scale information-gathering missions.
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Generalisability of Learned Policies. Learning-based adaptive IPP meth-
ods, as those discussed in Chap. 4 and Chap. 5, show great potential due to
their compute-efficient planning policy inference during deployment. Further-
more, they maintain competitive information-gathering performance with com-
putationally expensive non-learning-based adaptive IPP methods. However, as
with all data-driven methods, our learned planning strategies degrade in perfor-
mance in cases where the environment strongly deviates from the ones seen during
policy training in simulation. As environments are unknown before deployment,
we cannot always ensure that environments simulated during training resemble
deployment conditions. Thus, unlike non-learning-based planning, learning-based
adaptive IPP methods cannot always ensure reliable performance.

An open research question is how to ensure reliable performance in environ-
ments that strongly differ from the ones seen during training. To date, this poses
a general research question in the RL community. Zero-shot policy inference
in unseen environments without adapting the policy to the environment during
deployment often performs poorly, not only in adaptive IPP [78]. To advance
the generalisation abilities of learning-based adaptive IPP methods, one valuable
research question is how to adapt offline-learned planning strategies efficiently
during deployment. This research question is closely related to the field of meta-
RL. Meta-RL aims to offline-learn an initial policy that can be adapted to new
environments and tasks with only a few environment interactions during deploy-
ment [54]. This small amount of newly gathered experience must be informative
to update the initial policy efficiently. Thus, a promising avenue to develop novel
learning-based robotic information-gathering methods could be combining recent
advances from the field of meta-RL with adaptive IPP methods.

8.1.2 Active Learning of Robotic Vision Using Adaptive
Planning

In the following, we discuss open challenges in our approaches to active learning
of robotic vision introduced in Chap. 6 and Chap. 7. We identify open research
questions in self-supervision, uncertainty quantification, continual learning and
model training efficiency and suggest future directions to address them.

Larger Variety of Applications & Tasks. Current adaptive robotic plan-
ning methods for active learning consider applications and vision tasks with lim-
ited variety in their experimental evaluation. Methods that rely on self-supervised
learning to improve semantic vision evaluate performance in 3D indoor household
scenarios using unmanned ground vehicles. Environments used for pre-training
and environments encountered during deployment are often similar in visual ap-
pearance [20, 45, 191]. In contrast, adaptive planning methods that rely on
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human annotations are exposed to larger visual variations. However, they are
only evaluated in UAV-based semantic 2D terrain mapping [12, 134, 136, 138].
For a more challenging and standardised evaluation of methods, it would be
beneficial to deploy and evaluate methods in vastly varying 3D outdoor and
indoor environments using varying robot platforms. Furthermore, most meth-
ods aim to improve semantic segmentation performance in unknown environ-
ments [12, 45, 136, 138, 191]. To enable a broader spectrum of downstream ma-
nipulation and intervention tasks, the robotic vision should also segment and as-
sociate individual object instances with their semantics and semantically segment
other scene parts, i.e. performing panoptic segmentation. This might require in-
tegrating new mapping methods supporting fusing panoptic predictions [143] to
create self-supervision signals. Learning panoptic segmentation also requires new,
efficient human labelling methods beyond costly pixel-wise labels.

Novel Embodied Self-Supervised Learning Methods. Fully and semi-
supervised active learning methods are still impacted by costly human labelling
requirements. Next to accelerating the human labelling process itself, high-
quality self-supervised learning is required to keep the amount of human la-
belling queries low and, at the same time, reach maximal prediction performance.
Self-supervised [20, 45, 191] and our semi-supervised method in Chap. 7 create
pseudo labels from an online-built semantic map. These methods render pseudo
labels from voxel-based maps containing fused semantic predictions from view-
points encountered during deployment. However, voxel-based maps cannot render
image-label pairs from novel viewpoints. Rendering additionally suffers from dis-
cretisation artefacts. Recently, semantic neural rendering approaches enhanced
self-supervised pseudo label quality and diversity. These methods render high-
quality image-label pairs from novel viewpoints not encountered during deploy-
ment. Neural rendering methods have been shown to outperform voxel map-based
self-supervision [97]. Jin et al. [69] combine semantic neural rendering with adap-
tive planning of informative next viewpoints for semantic-geometric single object
reconstruction. Similarly, combining self-supervised semantic neural rendering
with adaptive planning for active learning of robotic vision could improve the
current systems’ vision performances without additional human labels.

Improved Uncertainty Quantification. As discussed by Chaplot et al. [20],
overconfidently wrong predictions could lead to reinforced prediction errors after
re-training on these predictions in a self-supervised fashion. Even our human-
guided methods require well-calibrated model uncertainty estimation to max-
imise the prediction performance while minimising human labelling effort. Thus,
better-calibrated model uncertainty estimation techniques are required as cur-
rent state-of-the-art methods still tend to produce overconfident predictions [8,
46, 128]. Moreover, adaptive planning methods ignore various sources of un-
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certainty. All methods use some form of model uncertainty [191] or prediction
confidence [20] to collect potentially informative training data. Future research
could integrate and disentangle other sources of uncertainty, such as data uncer-
tainty [76] induced by environmental factors or noisy sensors. This information
could be used to avoid requesting human labels for images with high data un-
certainty that contribute little to the model improvements [76]. Additionally,
adaptively planning viewpoints towards hard-to-predict objects due to environ-
mental factors might reduce sources of data uncertainty [115].

Towards Continual Active Learning. Another key challenge for effi-
cient active learning of robotic vision systems is the robot’s ability to continually
learn about new unseen environments. Continual learning requires transferring
the knowledge gained during previous deployments in different environments [91]
without suffering from catastrophic forgetting due to changing training data dis-
tributions [103]. This problem of continual learning is largely ignored in our and
other adaptive planning methods for active learning of robotic vision. To the best
of our knowledge, Frey et al. [45] proposed the only continual learning method for
active learning of robotic vision to date. However, they do not leverage adaptive
planning for training data collection; instead, they treat the robot as a passive
data collection device. Furthermore, their approach is constrained to indoor en-
vironments with a fixed set of known semantic classes, rendering it impractical
for semantics varying across environments. Combining adaptive planning with
continual learning in various environments could lead to more robust vision sys-
tems. Additionally, it could result in a more targeted continuous collection of
informative training data while leveraging already gained previous knowledge. In
this way, the robotic vision potentially generalises better to unseen environments
over time while requiring progressively fewer human labels.

Improved Model Training Efficiency. Our and other adaptive replan-
ning methods for active learning [12, 20, 191] iteratively re-train the vision model
after a mission is finished, required to efficiently adapt the robot’s data collection
based on previously collected training data influencing the model performance.
Although our proposed methods use relatively lightweight network architectures,
iterative re-training is prohibitively expensive in applications that require fast on-
line adaption of vision or frequent re-deployment cycles. One way to improve the
network re-training efficiency could be to leverage recent progress in vision foun-
dation models [77]. These foundation models could serve as pre-trained frozen
semantic feature extractors. Additionally, they could be combined with small,
lightweight, trainable adapter networks for active learning of robotic vision [66].
This could mitigate the costly re-training of larger networks while allowing the
robotic vision to profit from zero- and few-shot generalisation advances in vision
foundation models likely to transfer to our robotic active learning setting.
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