
Advancing Computational Quantum
Chemistry with Machine Learning

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Christian Hölzer

aus
Köln

Bonn, 2025

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen
Friedrich-Wilhelms-Universität Bonn

Gutachter / Betreuer: Prof. Dr. Stefan Grimme
Gutachter: Prof. Dr. Thomas Bredow

Tag der Promotion: 05.06.2025
Erscheinungsjahr: 2025

Dedicated to the Prüfungsbüro.

Da steh ich nun, ich promovierter Tor,
Bin jedenfalls ein bisschen klüger als wie zuvor!

adapted from Goethe, Faust I

v

Abstract

This thesis focuses on advancing quantum chemistry using machine learning methods. For this
purpose, a dataset for the lanthanoid elements is generated, conformer ranking is addressed leveraging
novel machine learning architectures and the widely used extended tight-binding model is enhanced
with automatic differentiation.
The LnQM dataset, a comprehensive benchmark of 17 269 mono-lanthanoid complexes optimized at
PBE0-D4/def2-SVP level, enables systematic evaluations of quantum chemical and machine learning
methods across the lanthanoid series. It features geometric, energetic, molecular and electronic
properties at lB97M-V/def2-SVPD level, granting insights into lanthanoid chemistry and highlighting
limitations of current atomic charge models.
The ConfRank ansatz improves conformer ranking through pairwise training of state-of-the-art
machine learning models. Utilizing the DimeNet++ architecture, the accuracy of relative energy
prediction on GMKTN55 conformational subsets is improved by 29% on average. Moreover, a
considerable 100-fold computational speed-up compared to the currently used GFN2-xTB method is
achieved using GPU infrastructure.
The dxTB model, a PyTorch implementation of GFN-xTB, demonstrates a novel integration of
quantum chemical algorithms into machine learning frameworks. It allows for differentiation of any
input parameters to arbitrary order, achieving similar runtimes as the original Fortran implementation,
which in turn lacks automatic differentiation. Moreover, parameter optimization can now be conducted
using backpropagation, harnessing the extensive existing machine learning infrastructure, opening up
possibilities to investigate new functional forms of internal xTB procedures and to develop individual,
problem-specific GFN parametrizations.
Together, these contributions chart new directions across different dimensions of computational
research, ranging from data science aspects to model development. This thesis conduces to the
ongoing advancement of machine learning in the domain of computational quantum chemistry and
aims to offer a valuable contribution on the path to improved material sciences, healthcare and beyond.

vii

Contents

1 Introduction 1

2 Theoretical background 3
2.1 Quantum Chemistry . 3

2.1.1 Wavefunction Theory . 5
2.1.2 Density Functional Theory . 13
2.1.3 Semiempirical Quantum Mechanical Methods 18

2.2 Machine Learning . 23
2.2.1 Fundamentals and Key Concepts . 24
2.2.2 Molecular Representations and Descriptors 29
2.2.3 Supervised Learning Approaches in Quantum Chemistry 32
2.2.4 Graph Neural Networks . 35

3 Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes 41

4 Improving GFN-FF Conformer Ranking with Pairwise Training 45

5 An Efficient And Fully Differentiable Framework For Extended Tight-Binding 49

6 Summary and Outlook 53

A Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes – The LnQM
Dataset 59
A.1 Introduction . 60
A.2 Computational Details . 61
A.3 Results and Discussion . 62

A.3.1 Creation of the LnQM dataset . 62
A.3.2 Analysis of Selected Properties . 69

A.4 Conclusions . 73

B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training 77
B.1 Introduction . 78
B.2 Theory and Methods . 80

B.2.1 Conformer Ranking with Machine Learning 80
B.2.2 Machine Learning Interatomic Potentials 82

ix

B.2.3 GFN-FF . 83
B.3 Technical Setup . 84
B.4 Dataset and Preprocessing . 85
B.5 Results . 86

B.5.1 Energetic Improvement . 86
B.5.2 Pairwise Training . 89
B.5.3 Timings . 91
B.5.4 Out-of-Sample Performance Evaluation . 94

B.6 Conclusion . 99

C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding 101
C.1 Introduction . 102
C.2 Theory and Methods . 104

C.2.1 Extended Tight-binding (xTB) . 104
C.2.2 Automatic Differentiation . 107

C.3 Implementation . 109
C.3.1 Structure and Design . 109
C.3.2 Performance . 110
C.3.3 Self-consistent Field Iterations . 113

C.4 Results . 116
C.4.1 Computational Efficiency . 116
C.4.2 Molecular Properties . 120

C.5 Summary and Outlook . 122

Bibliography 125

List of Figures 149

List of Tables 153

x

CHAPTER 1

Introduction

Along the search for artificial intelligence, the field of machine learning (ML) has evolved since
the development of an artificial neuron by Warren McCulloch und Walter Pitts in 1943 [1] and the
perceptron by Frank Rosenblatt in 1958 [2]. After a couple of “AI winters” [3] the topic gained
accelerated traction in the 2000s when algorithms, compute power and data availability had sufficiently
advanced.
The advent of ML in the modern age has led to many improvements in natural science research.
From protein structure prediction [4] to particle identification at the Large Hadron Collider [5], ML
has been adopted to countless applications and has become indispensable in contemporary research.
In chemistry, ML-based methods have enabled rapid predictions of molecular energies, forces,
and reaction pathways, drastically reducing computational costs compared to traditional quantum
mechanical calculations [6–8].
The field of quantum chemistry (QC) emerged with the postulation of the Schrödinger equation in 1926
[9] and the first calculation of the diatomic hydrogen molecule using quantum mechanics by Heitler
and London in 1927 [10]. With the development of density functional theory and the groundbreaking
Kohn-Sham equations [11], computational methods gained more and more attention for the calculation
of atoms and molecules in the 1990s [12].
Nowadays, computational methods have become an integral part of QC and an indispensable tool
for the theoretical description of chemical processes and systems. Computational chemistry offers
a unique contribution to research where experimental realizations are difficult due to toxicological
hazards, resource constraints, or time limitations. In this respect, the application of computational
chemistry in drug discovery[13], catalyst development [14] and material science [15] has significantly
transformed research in the respective areas. Since recently, general-purpose methods in the family
of force fields [16] and semiempirical methods [17, 18] have facilitated calculations of molecular
properties. Thereby opening up unprecedented large-scale analyses of massive amounts of chemical
data, supporting theoretical researchers and researchers in the lab alike. In turn, this data can be used
for parameterizing and benchmarking novel methods or studying chemical space. As a result of the
increased data abundance, aspects of data management, augmentation, and extension have made data
science increasingly important in the field of QC research. Furthermore, since vast amounts of data
are the very context in which ML excels, its methods have become powerful tools for improving and
complementing traditional computational approaches.

1

Chapter 1 Introduction

This thesis is chapterized into sections that explore different levels of ML integration with QC.
Starting from an introduction to the theoretical foundations of QC and ML, it presents scientific work
ranging from dataset generation to the native embedding of ML into QC algorithms. To provide a
comprehensive overview of the theoretical background relevant to the projects presented in this thesis,
chapter 2 outlines the foundations of QC and ML. In this context, section 2.1 contains a derivation of
the Hartree-Fock energy expression from the time-independent Schrödinger equation. Furthermore,
the section addresses the principles of wavefunction theory (WFT) and density functional theory
(DFT), leading up to the fundamental considerations of semiempirical quantum mechanical (SQM)
methods. Further, in section 2.2 the fundamentals of neural networks, along with essential optimization
techniques such as gradient descent and backpropagation are explained. Additionally, the section
highlights the importance of graph neural networks in computational QC, as they allow for an intrinsic
embedding of molecular structures and their associated information. Based on the core idea behind
DFT, the parallels between function approximation in DFT and ML are explored.
Subsequent chapters focus on specific research questions along the integration of ML in the QC

domain. The ensuing chapter 3 explores data generation for lanthanoids. Thereby, the LnQM dataset is
presented – a novel collection of several thousand mono-lanthanoid complexes. This dataset constitutes
the first comprehensive resource covering the entire lanthanoid series, providing electronic, energetic,
and geometric trends across the series. As part of this study, the performance of various charge models
within the lanthanoid regime is analyzed.
In chapter 4 an application of ML for conformer ranking is featured. For this task accurate ranking
of relative energies is essential for the identification of the most favorable conformer. Conformer
ranking is of critical importance for drug design and molecular biology, yet existing methods are either
computationally expensive or lack accuracy for robust predictions in large-scale applications. The
ML-assisted ConfRank approach developed in this research project demonstrates improved ranking
accuracy while significantly reducing computational costs compared to currently employed methods.
The following chapter 5 deep dives into the development of dxTB, a framework designed for the
integration of ML into the widely used xTB method. Using this new framework, it is possible to
compute nuclear gradients of arbitrary order, facilitating the determination of molecular spectra, for
instance. Additionally, ML techniques can be applied to optimize individual parameters within the
GFN parametrization. Moreover, the framework permits for the native use of xTB as a component in
novel ML architectures. In a sense, the dxTB framework allows the reinterpretation of existing QC
methods as ML models. This maintains the accuracy and robustness of traditional QC methods, i.e.
adherence to fundamental physical principles, while facilitating the adaptability of ML models. This
synergistic combination of knowledge enables the use of ML methods without discarding the rich
knowledge in physics and chemistry accumulated over centuries of research.
The thesis concludes with a summary and outlook in chapter 6, which highlights the key findings and
outlines possible future research avenues.

2

CHAPTER 2

Theoretical background

This chapter provides an overview of the most important theoretical concepts relevant to this thesis,
starting with a thematic contextualization of quantum chemistry in section 2.1. Thereby, special focus
is put on wavefunction theory (subsection 2.1.1) and density functional theory (subsection 2.1.2)
concluding with a brief introduction of semiempirical quantum mechanical methods (subsection 2.1.3).
Subsequently, an introduction to machine learning is given in section 2.2, focusing on the basics such
as optimization techniques (subsection 2.2.1) and molecular representations (subsection 2.2.2). A
general overview over supervised machine learning methods in the field of quantum chemistry is
provided in subsection 2.2.3 including the foundations of neural networks. Due to their considerable
importance in the field of computational quantum chemistry, graph neural networks are explored
in greater detail in subsection 2.2.4. For more information on the quantum chemical background,
see also Szabo et al. (1996) and Jensen (2017) [19, 20]. Except for the introduction into quantum
mechanics, atomic units will be used throughout this chapter.

2.1 Quantum Chemistry

Quantum Chemistry (QC) is, as the name suggests, the field in which principles of quantum mechanics
are applied to chemistry. Granted that for many macroscopic phenomena quantum mechanics can
be neglected, its application becomes crucial when addressing small structures. To understand the
different length scales, figure 2.1 provides an overview of the characteristic length scales encountered in
natural science disciplines. Note that the schematically indicated research areas may extend depending
on the specific subtopics within each field.

Figure 2.1: Overview over length scales in nature and a schematic indication on the different research domains
in natural sciences. Adapted from reference [21].

3

Chapter 2 Theoretical background

In the quantum mechanical picture, particles are treated as waves and therefore cannot be described
by Newtonian dynamics anymore. Instead of Newton’s second law in classical mechanics [22], the
Schrödinger equation [9] governs the equation of motion for non-relativistic particles:

8ℏ
m

mC
Ψ(r, C) = ĤΨ(r, C) (2.1)

In this equation, 8 is the imaginary unit, ℏ denotes the reduced Planck constant, and m
mC

represents the
partial derivative with respect to time C, capturing the time evolution of the system. The wavefunction
Ψ(r, C) describes the quantum state of the system as a function of the position vector r and time C,
while the Hamiltonian operator Ĥ encodes the total energy (both kinetic and potential) of the system.
The relation for stationary properties, such as the total energy of the system � or discrete energy levels
in atoms or molecules, can be derived from the time-independent formulation of the Schrödinger
equation:

ĤΨ(r) = �Ψ(r) (2.2)

The resulting eigenvectors Ψ8 give rise to different states of the system, whereby the eigenvalues �8
determine the energy of each state. In order to ensure particle number conservation, the wavefunction
of a particle needs to be normalized 〈Ψ|Ψ〉 = 1. Furthermore, as Ĥ is Hermitian, its non-degenerate
eigenfunctions are orthogonal. The orthonormality condition on the wavefunction can be formulated
in Dirac notation [23] as follows:

〈Ψ8 |Ψ 9〉 =
{

1 for 8 = 9
0 else

(2.3)

The energy of a given eigenstate (or a superposition of eigenstates) can be obtained as the expectation
value of the Hamiltonian

〈�〉 = 〈Ψ|Ĥ|Ψ〉 =
∫ +∞

−∞
Ψ
∗ĤΨ 3r (2.4)

For a specific eigenstates the corresponding energy is retrieved from the main diagonal of the
Hamiltonian matrix

�8 = 〈Ψ8 |Ĥ|Ψ8〉 = �8 〈Ψ8 |Ψ8〉 = H88 (2.5)

For any Hermitian operator with a discrete spectrum, such as Ĥ, the variational principle holds,
resulting in the ground state wavefunctionΨ0 minimizing the energy to �0, while any other admissible
wavefunction Ψ̃ produces an expectation value exceeding �0 ≤ �̃ :

〈Ψ̃|Ĥ|Ψ̃〉 =
∑
_1,_2

〈Ψ̃|Ψ_1
〉〈Ψ_1

|Ĥ|Ψ_2
〉〈Ψ_2

|Ψ̃〉 (2.6)

=
∑
_

_ |〈Ψ_ |Ψ̃〉|
2 ≥

∑
_

�0 |〈Ψ_ |Ψ̃〉|
2
= �0〈Ψ̃|Ψ̃〉 (2.7)

Note that for an accurate description of relativistic systems the Dirac equation [24] is required.

4

2.1 Quantum Chemistry

However, in many organic chemistry applications that typically involve only light elements, relativistic
effects can generally be neglected. This is because electrons in these systems are subject to only
moderate electric fields and accelerations, and thus rarely approach speeds near that of light. In
contrast, for heavier elements relativistic corrections become significant [25]. To address these effects,
several approaches are available, for example using effective core potentials (ECPs) [26]. ECPs replace
inner (core) electrons with an effective pseudopotential to reduce computational effort while efficiently
incorporating relativistic effects by treating only the valence electrons explicitly. Relativistic effects
become particularly relevant in systems containing heavy elements, as demonstrated by examples such
as liquid mercury [27], the color of caesium [28], and lead-acid batteries [29].
For a single-electron system, such as an isolated hydrogen atom, the Schrödinger equation can be
solved analytically. In this case, the wavefunction corresponding to the quantum numbers =, ;, and <
is given by

Ψ=;<(A, \, q) = '=; (A).;<(\, q) (2.8)

where '=; (A) represents the radial component using generalized Laguerre polynomials, and .;<(\, q)
the angular component expressed by spherical harmonics. The associated energy levels �= are
determined by

�= = −
`2

2
U

2

2=2 ≈ 13.6 eV
=

2 (2.9)

with ` = <H<e
<H+<e

≈ <e being the reduced mass, 2 the speed of light, and U ≈ 1
137 the fine-structure

constant. In this formulation, corrections due to fine structure, the Lamb shift, and hyperfine structure
are neglected [30–34]. This analytical solution allows for simplified treatment of multiple systems
such as alkali metals and ions [35].

However, for many-particle systems, analytical solutions are impossible. Even though the underlying
physics and mathematical equations are exactly known, the emerging complexity for many-particle
system is prohibitively high and by far exceeds the expected growth in computational power in the
upcoming decades (c.f. Moore’s law [36]). Therefore, in chemistry, where molecules often contain hun-
dreds or even thousands of electrons, approximation methods are needed. The development of suitable
approximations that allow to calculate solutions for the many-particle Schrödinger equation within finite
computational time is the fundamental challenge in QC. In a nutshell, QC applies quantum mechanical
approximations to model the complex many-particle interactions problem present in molecular systems.

2.1.1 Wavefunction Theory

Wavefunction theory (WFT) comprises methods in QC that explicitly compute a wavefunction by
approximating the Schrödinger equation. Thereby, WFT offers a detailed treatment of quantum
mechanical effects and typically yields highly accurate results. However, this accuracy comes at
the cost of substantial computational demand, limiting the scalability of pure quantum mechanical
approaches. To overcome these limitations, electronic structure theory provides strategies for efficiently
calculating molecular geometries, energy gradients, and other physical properties in larger chemical
systems. For this purpose, the following section will first discuss how the Hamiltonian for general
molecular systems is constructed and simplified using the Born-Oppenheimer approximation. It will

5

Chapter 2 Theoretical background

subsequently explain how one-electron orbitals are build from basis functions and combined into a
many-electron wavefunction via a Slater determinant.

Electronic Hamiltonian
Starting from the time-independent Schrödinger equation 2.2 the wavefunction and corresponding
energy of a molecule can be determined using a Hamiltonian constructed from kinetic T̂ and potential
energy terms V̂ for electrons and nuclei (subscripts 4 and =):

Ĥ = T̂4 + T̂= + V̂44 + V̂=4 + V̂== (2.10)

In the Born-Oppenheimer approximation [37], the significant mass difference between nuclei and
electrons is exploited. Since electrons change momentum on much shorter timescale than the heavy
nuclei, the equations of motion for the fast (electronic) degrees of freedom can be solved independently
from those of the slow (nuclear) ones. In the adiabatic limit, the kinetic energy of the nuclei, T̂=,
can be neglected while the potential between the nuclei becomes a constant, V̂== = �== = const.,
simplifying Equation 2.10 to the electronic Hamiltonian, which depends only on nuclear positions but
not their momenta:

Ĥ4 = T̂4 + V̂44 + V̂=4 + �== (2.11)

For a #-electron system the electronic kinetic energy operator is given by

T̂4 = −
1
2

#∑
8

∇2
8 (2.12)

with ∇8 being the partial differential with respect to the coordinates of electron 8. The electronic
interaction between the particles is given by the Coulomb potentials

V̂44 =
#∑
8

#∑
9
8> 9

1
|®A8 − ®A 9 |

=
1
2

∑
8≠ 9

1
A8 9

(2.13)

V̂=4 = −
#∑
8

 ∑
k

/k

|®A8 − ®'k |
(2.14)

whereby the repulsive electron potential V̂44 is constituted of the pairwise interaction given the
electron coordinates ®A {8, 9 } and the resulting distance A8 9 = |®A8 − ®A 9 | between electrons 8 and 9 . The
attractive nucleus-electron potential V̂=4 for the nuclei in the system and their coordinates ®'k and
nuclear charge /k is composed respectively. For practicality reasons, grouping all terms into one- and
two-electron operators yields

ĥ = T̂4 + V̂=4 and ĝ = V̂44 (2.15)

Having defined the required Hamiltonian, the electronic energy of a molecular system can be obtained
by solving the Schrödinger equation as shown in equations 2.2 to 2.5.

6

2.1 Quantum Chemistry

Basis Sets
The exact electronic wavefunction Ψ(r1, r2, . . . , r#) of an #-electron system depends on 3# spatial
coordinates and is generally too complex to be determined directly. To make the problem tractable,
an approximate form of the wavefunction is constructed, typically using an orbital-based ansatz. In
this approach, the many-electron wavefunction is built from simpler, one-electron functions called
orbitals, which in turn are expressed as linear combinations of fixed basis functions. These orbitals are
usually chosen to be centered on atomic nuclei to reflect the localized nature of electrons around atoms.
For this reason they are commonly referred to as atomic orbitals (AOs). The full set of the utilized
basis functions constitutes the basis set, which plays a central role for the accuracy and efficiency of
electronic structure methods.
A natural starting point for constructing AOs are the analytical solutions of the hydrogen atom. These
functions, such as 1B, 2?, etc., describe the spatial distribution of a single electron bound to a single
nucleus and are well understood both analytically and physically. These so called Slater-type orbitals
(STOs) [38] are solutions to the Schrödinger solution for a hydrogen-like atom (c.f. Equation 2.8)

jSTO(A, \, q) = # A
=−1
4
−Z |A |

.;<(\, q) (2.16)

Slater functions correctly model the cusp behavior at the nucleus and the exponential decay at
large distances. However, their use in multi-electron integrals leads to computational challenges
due to the complexity of evaluating the necessary multi-center integrals. Hence, despite physical
correctness, their high computational cost renders them impractical for numerical integration. In
contrast, Gaussian-type orbitals (GTOs) [39] are computationally significantly more efficient. The
general form of a GTO in Cartesian coordinates is

jGTO(A, \, q) = # A
2(=−1)−;

4
−Z A2

.;<(\, q) (2.17)

where # is a normalization constant, = is the principal quantum number, ; the orbital angular
momentum quantum number and Z is the Gaussian exponent. The angular part is given by the
spherical harmonics .;<(\, q) accordingly [20]. Despite lacking the correct cusp at the nucleus
and decaying too rapidly at large distances, GTOs are employed by most modern QC programs to
approximate the “more physical” STOs [40, 41]. On the one hand, this is due to the fact that integrals
of Gaussian functions possess an analytical closed-form solution, speeding up numerical calculations.
Furthermore, the Gaussian product theorem, which states that the product of two GTOs centered on
different atoms can be expressed as a finite sum of Gaussians along the interatomic axis, facilitates
the calculations further. As a result, multi-center integrals can be reduced to sums over one-center
integrals, achieving a speedup of four to five orders of magnitude compared to Slater functions – even
though a larger number of basis functions is required in general [42].

To flexibly describe the electronic structure of atoms, a wide variety of basis sets, i.e. sets of basis
functions and coefficients, have been developed, each with different advantages and areas of focus.
Thereby, as the basis set size increases, the variational principle ensures an improvement in the total
energy (Equation 2.6). Consequently, the quality of a calculation can be evaluated by performing
computations with progressively larger basis sets [20]. In the limit of infinite number of basis functions,
a complete basis set (CBS) is obtained, which in principle represents the exact wavefunction of a
system. While such a basis set cannot be used in practice due to computational constraints, it serves
as a theoretical benchmark. Many high-level methods aim to systematically approach the CBS limit

7

Chapter 2 Theoretical background

by using increasingly larger and more flexible basis sets, allowing for extrapolation techniques to
estimate the results one would obtain with a truly complete basis set. On the other hand, a minimal
basis set is a type of basis set in which each AO is represented by exactly one basis function. As a
result, it employs the smallest possible number of basis functions needed to describe all electrons in
the ground state of an atom. For example, one function for the 1B- and 2B-orbitals, and three functions
for the 2?-orbitals are used. Due to the limited number of functions, calculations using minimal
basis sets are computationally very efficient. Although computationally inexpensive, such minimal
basis sets offer limited flexibility and are generally mostly suitable for qualitative or educational
purposes. To make basis sets practically useful, they require optimized coefficients to ensure accuracy
and robustness. This is typically achieved by optimizing the basis sets to reference data. Again, the
variational principle (c.f. Equation 2.6) ensures that any improvement in the basis set results in a
lower total energy, ensuring strict convergence from above toward the true ground-state energy. This
property enables the systematic optimization of basis set parameters, as improved parameterizations
necessarily yield lower energy expectation values.
Typically for the generation of basis sets, multiple GTOs are combined into contracted GTOs to

mimic STO-like behavior to compensate for their physical shortcomings [43]. A widely used minimal
basis is the STO-nG family [43], where each STO is represented by = primitive Gaussians. For this
purpose in STO-3G, three GTOs are fitted to each STO, providing a computationally cheap basis
set that is useful for qualitative studies. For improved accuracy, split-valence basis sets have been
developed. One such widely used basis is the Pople basis set 6-31G [44], where core orbitals are
modeled with six contracted Gaussians, while valence orbitals are split into two parts – one represented
by three Gaussians, the other by a single uncontracted Gaussian. This separation into core and valence
orbitals increases variational flexibility in the chemically important valence region.
Extensions to a basis set involve the addition of polarization and/or diffuse functions. Polarization
functions increase the flexibility of the basis by allowing the electron density to become more
asymmetric about the nucleus, which is important for hydrogen bonding involving otherwise isotropic
B-orbitals, for instance. For polarization always function of higher angular momentum are used,
i.e. ?-functions are used to polarize B-orbitals, 3 for ?-orbitals, and so on. Diffuse functions are
additional B- and ?-type basis functions designed to describe electron density far from the nucleus.
They are characterized by small Gaussian exponents, which extend the tail of the AOs and provide the
flexibility needed to model long-range interactions. Diffuse functions are especially important for
accurately describing anions, dipole moments and can also play a crucial role in modeling intra- and
intermolecular bonding. For Pople basis sets polarization functions are indicated after the “G” and
diffuse functions by a “+” or “++” such as seen in the 6-31+G(d) basis set, which is a split valence basis
set with one set of diffuse B?-functions and a single 3-type polarization function on non-hydrogen
atoms [20].
An improvement over minimal basis sets is achieved by increasing the number of basis functions
per atomic orbital. For instance, so-called “Double-Zeta” (DZ) basis sets use two functions for each
orbital, i.e. two B-functions for hydrogen, four B-functions and two sets of ?-functions for second row
elements [20]. This concept can be extended to Triple-Zeta (TZ) and Quadruple-Zeta (QZ) basis sets
accordingly. Well-known examples of making use of zeta-type basis sets include the Ahlrichs def2
basis set family [45], which are widely used due to their computational efficiency and broad elemental
coverage. Moreover, correlation-consistent polarized valence =-zeta (cc-pVnZ) basis sets [46] are
specifically designed to systematically recover electron correlation energy. They do not impose the
same constraints as Pople-style sets (e.g. equal exponents for B- and ?-functions), making them more

8

2.1 Quantum Chemistry

flexible and accurate for correlated methods. The correlation-consistent design ensures that functions
contributing similar amounts to the correlation energy are included at the same function stage. These
basis sets can be further augmented with diffuse functions (aug-cc-pVnZ) [47].
For heavier elements, the large number of core electrons requires many basis functions to describe
them accurately, even though those core electrons are chemically less important. Without this, the
valence orbitals cannot be properly represented due to poor treatment of electron-electron repulsion.
Additionally, relativistic effects become significant for heavier atoms (see above). Both issues can be
addressed by using ECPs, which replace the core electrons with a simplified potential, allowing only
the valence electrons to be treated explicitly [20].
Above described basis sets are focused on molecular calculations. For solid state applications where
periodic boundary conditions are required, plane-wave basis sets based on the lattice wave vector 48 ®: ·®A

can be employed [48].

In molecular systems, where electrons are influenced by multiple nuclei, the localized AOs alone are
not sufficient to represent the full electronic structure. To describe electron distributions that extend
over an entire molecule, molecular orbitals (MOs) are introduced. In the context of computational
chemistry, a MO is a mathematical function that describes the spatial distribution and wave-like
behavior of a single electron within a molecule. A common approach to constructing MOs is via a
linear combination of atomic orbitals (LCAO), in which each molecular orbital q8 is expressed as a
linear combination of AOs j`:

q8 =

#AO∑̀
2`8j` (2.18)

The coefficients 2`8 determine the contribution of each basis function to the MO and are subject to
optimization in later electronic structure methods. As shown in the next section, the coefficients �`8
are typically determined variationally in an iterative procedure whilst #AO and j` are pre-defined.
The LCAO approach approximates the full multi-electron wavefunction of a molecule by expressing it
in terms of MOs, which are constructed from AOs. Since these AOs are defined by the chosen basis
set, the quality and design of the basis set has great influence on the quality in the accuracy of the
resulting wavefunction approximation. Importantly, this idea precedes the formal introduction of the
Hartree-Fock method, which will in the following provide a principled way to determine the optimal
set of MOs for a given system.
Note that in addition to basis sets, alternative methods exist to obtain MOs such as grid-based [49] or
wavelet-based methods [50].

Basis Set Errors
Before diving into how to obtain a molecular wavefunction from a given basis set using the Hartree-
Fock Method, error sources of using basis set representations are briefly addressed. Despite the use of
large and flexible basis sets, finite basis sets inevitably introduce two significant sources of error: the
basis set superposition error (BSSE) and the basis set incompleteness error (BSIE).
BSSE arises when two interacting fragments in a molecular complex can use each other’s basis
functions, leading to an artificially low total energy. Especially with large, flexible basis sets, the
BSSE becomes apparent when calculating the energy of complexes such as hydrogen-bonded dimers.

9

Chapter 2 Theoretical background

In these cases, the basis functions of one monomer contribute additional variational freedom to the
other monomer, leading to an artificial lowering of the complex energy and an overestimation of the
interaction strength. The conventional method to estimate and correct for BSSE is the CounterPoise
(CP) correction [20]. Initially, the complexation energy of the dimer is calculated as

Δ�complexation = � (��)
∗
01 − � (�)0 − � (�)1 (2.19)

where � (��)∗01 represents the energy of the dimer computed with the full combined basis set 01, and
� (�)0 and � (�)1 are the energies of the isolated monomers calculated with their respective basis
sets. Typically, the geometries of molecules A and B in the complex differ from those of the isolated
molecules, therefore the complex’s geometry is indicated by an asterisk (*). To correct for BSSE,
additional calculations are performed in which each monomer is computed in the presence of the
“ghost orbitals” of the other fragment, i.e. the basis functions of the other monomer without its nuclei.
The CP correction is then defined as

Δ�CP =
[
� (�)∗01 − � (�)

∗
0

]
+

[
� (�)∗01 − � (�)

∗
1

]
(2.20)

and the corrected complexation energy is obtained by subtracting this correction from the initially
calculated complexation energy Δ�corrected = Δ�complexation − Δ�CP. Intramolecular BSSE can occur
when non-bonded parts of a molecule, though spatially close, are not bonded and thus benefit artificially
from the additional variational flexibility provided by neighboring basis functions, leading to errors in
computed relative conformational energies. A parameterized correction for intramolecular BSSE,
known as geometrical CP (gCP), requires only geometric information and straightforwardly computed
overlap integrals [51, 52].
In addition to BSSE, the basis set incompleteness error (BSIE) arises from the inherent limitations of
any finite basis set: for an atom, the BSIE is defined as the difference between the value obtained
with a specific basis set and the CBS limit. While in a molecular system the error is a combination
of BSIE and BSSE effects, it is difficult to disentangle both effects [20]. Various approaches have
been developed to minimize both BSSE and BSIE, including the use of larger basis sets to approach
the complete basis set limit or the CP correction method described above. Ultimately, the careful
selection of a balanced basis set and the implementation of correction schemes such as the CP method
are essential for obtaining accurate interaction energies, especially when high precision is required for
weak intermolecular interactions.

Hartree-Fock Method
One of the most important methods to determine a surrogate wavefunction for molecules was developed
by Hartree and Fock around 1930 [53, 54]. Albeit relatively concise to formulate, its importance
can barely be overstated, laying the foundation of quantum chemical computational calculations and
giving rise to many modern QC methods.
In the Hartree-Fock (HF) ansatz, for a system of # electrons, the electronic ground state wavefunction
Ψ4,0 is described by a single normalized Slater determinant [55–57] composed of # independent

10

2.1 Quantum Chemistry

one-electron wavefunctions q8 = f8 · k8 with spin component f8 ∈ {U, V} and spatial orbital k8:

Ψ4,0 ≈ ΦHF(1, 2, . . . , #) =
1
√
#!

���������
q1(1) q2(1) · · · q# (1)
q1(2) q2(2) · · · q# (2)
...

...
. . .

...

q1(#) q2(#) · · · q# (#)

��������� (2.21)

The Slater determinant represents an antisymmetrized product of one-particle functions, abiding the
Pauli principle ΦHF(8, 9) = −ΦHF(9 , 8) [58]. Moreover, if two electrons were to occupy the same
quantum state, the determinant would vanish, reflecting the impossibility for fermions to share identical
quantum numbers ΦHF(8, 8) = 0. In the case of non-interacting fermions, a single Slater determinant
represents the exact wavefunction.
Following the variational principle from Equation 2.6, in the HF ansatz a set of MOs q8 is sought that
minimizes the energy expectation value. Using the expression for the electronic Hamiltonian from
Equation 2.15

Ĥ4 =
#∑
8

ĥ8 +
#∑
8 9

ĝ8 9 (2.22)

and inserting relation Equation 2.13 yields the energy expectation value with respect to Ψ4,0

� = 〈Ψ4,0 |Ĥ4 |Ψ4,0〉 =
#∑
8

〈q8 |ĥ8 |q8〉 +
1
2

#∑
8 9

(
〈q8q 9 |

1
A8 9
|q8q 9〉 − 〈q8q 9 |

1
A8 9
|q 9q8〉

)
(2.23)

To minimize the energy � the Lagrange multipliers n8 9 are introduced to enforce the constraint of
orbital orthonormality 〈q8 |q 9〉 = X8 9 and form the Lagrangian

L = � −
#∑
8 9

n8 9

(
〈q8 |q 9〉 − X8 9

)
(2.24)

The stationarity condition XL = 0 with respect to variations in the spin-orbitals q8 leads to the HF
equations:

f̂8 q8 = n8 q8 8 = 1, . . . , #, (2.25)

where the one-electron Fock operator f̂8, which combines one-electron and effective two-electron
interactions, is defined as

f̂8 = ĥ8 +
#∑
9

(
Ĵ8 9 − K̂8 9

)
(2.26)

Thereby, the two-electron part is expressed by Coulomb operator Ĵ 9 which represents the electron-
electron Coulomb repulsion, approximated by the electron interaction with a mean field generated by

11

Chapter 2 Theoretical background

all other electrons

Ĵ8 9 |q8〉 = 〈q 9 |
1
A8 9
|q 9〉|q8〉 (2.27)

and the Exchange operator K̂ 9 which originates from the wavefunction anti-symmetry due to the Pauli
principle and occurs only for two electrons of the same spin

K̂8 9 |q8〉 = 〈q 9 |
1
A8 9
|q8〉|q 9〉 (2.28)

To solve the eigenvalue problem in Equation 2.25, the MOs q8 can be expanded as linear combinations
of AOs, as shown in Equation 2.18. Note that the canonical MOs q8 serve as a convenient basis
for performing the variational energy minimization. However, the total energy depends only on
the full wavefunction, which is represented by a Slater determinant built from the occupied MOs
(Equation 2.21). Given that the value of a determinant is invariant under unitary transformations of
its rows and columns, the wavefunction and thus the total energy, remains unchanged under unitary
rotations among the occupied MOs. Since the Coulomb and Exchange contribution cancel for an
identical electron K̂88 |q8〉 = Ĵ88 |q8〉, no artificial self-interaction of an electron with itself occurs. This
exact cancellation ensures that the Hartree-Fock method remains free from self-interaction error (SIE).

The Hartree-Fock equations 2.25 in matrix form, known as the Roothaan-Hall equations [59, 60],
can be formulated as

FC = SC& (2.29)

which involves the Fock matrix F, the LCAO coefficient matrix C to represent MOs as linear
combination of AOs, the overlap matrix S and the matrix of orbital energies & . The overlap matrix
accounts for possible non-orthogonality of the orbitals (8 9 = 〈q8 |q 9〉. Thereby, the Roothaan-Hall
equations require an iterative solution due to the dependence of the Fock matrix F on the MOs
themselves (c.f. Equation 2.27 and 2.28) as a given orbital can only be determined if all other occupied
orbitals are known. This leads to a self-consistent field (SCF) procedure, which updates the Fock
matrix F and MO coefficients C iteratively until convergence is achieved. The process commences
with an initial guess for the MO coefficient matrix CC=0, often based on the core Hamiltonian (i.e. no
electron-electron interactions) or a superposition of atomic densities [61]. From these, the electron
density matrix is calculated dC=0

= 2
∑occ
8 �

C=0
`8 �

C=0
a8 , the Fock matrix is constructed FC and the

Roothaan-Hall eigenvalue problem is solved to yield new coefficients CC+1, which are then in turn
used to update the density matrix dC+1. This cycle continues until the change in energy or density falls
below a defined threshold. Once convergence is reached, the resulting orbitals represent a variationally
optimized single-determinant approximation to the ground-state wavefunction of the system. The
self-consistent set of molecular orbitals obtained from this procedure is then used to compute the HF
energy according to

�HF =

#∑
8

〈q8 |ĥ8 |q8〉 +
1
2

#∑
8 9

(
〈q8 |Ĵ8 9 |q8〉 − 〈q8 |K̂8 9 |q8〉

)
(2.30)

12

2.1 Quantum Chemistry

So far, identical orbitals q8 have been used for both spin-up and spin-down electrons. Whereas for
open-shell species the unrestricted HF method is often employed, allowing electrons of different spins
to occupy distinct spatial orbitals q↑

8
and q↓

8
, resulting in different LCAOs for each spin channel.

It is noteworthy that the computational effort for HF calculations formally scales as O(#4
AO) with

respect to the number of atomic orbitals #AO. The primary limitation of the HF method lies in
its mean-field nature: each electron experiences only the averaged potential of all other electrons.
This approximation does not account for the full instantaneous electron-electron interaction V̂44.
Moreover, the use of a single Slater determinant includes electron repulsion only in an averaged
sense. Consequently, even in the CBS limit, the HF method does not yield the exact solution to the
electronic Schrödinger equation within the Born-Oppenheimer approximation. Rather it provides the
best possible wave function that can be obtained using a single determinant [20]. The discrepancy
between the exact non-relativistic energy and the HF energy is known as the electron correlation
energy, defined as �corr = � − �HF [62, 63]. Electron correlation is commonly divided into dynamic
and static correlation. Dynamic correlation accounts for the instantaneous motion of electrons to avoid
one another. While HF includes Fermi correlation for same-spin electrons through antisymmetrization,
it neglects Coulomb correlation between electrons of opposite spin. Static correlation becomes
significant when a single Slater determinant fails to describe the electronic ground state adequately, e.g.
in systems with near-degenerate configurations requiring a multi-determinant description. Although
the correlation energy is often small in absolute terms (�corr/� < 1 %), it is essential for accurately
capturing relative energies, reaction barriers and molecular properties [20].

2.1.2 Density Functional Theory

Density functional theory (DFT) is a quantum mechanical method family in which the ground-state
properties of a molecular system are determined using the electron density d(r) as the fundamental
variable rather than the many-electron wavefunction [64]. In doing so, DFT transits from using
individual particle coordinates to using the total density, circumventing the need to solve the
many-electron Schrödinger equation directly. The theoretical foundation for DFT is laid by the
Hohenberg-Kohn theorems [65]: The first theorem asserts that the ground-state electron density
uniquely determines the external potential Vext(r) (up to a constant), and thus all observables of
the system. Note that for an isolated system, the external potential equates to the nucleus-electron
potential V=4. The second theorem establishes a variational principle: for any trial density d̃(r) that
corresponds to a valid external potential, the energy functional obeys

� [d̃] ≥ �0 (2.31)

where �0 is the true ground-state energy. Thus, given the energy functional � [d] the ground state and
its energy can be determined by systematically varying the electron density [66]. Early attempts of
DFT development tried to express all energy contributions as a functional of the electron density

�DFT [d] = T4 [d] + V=4 [d] + V44 [d] (2.32)
= T4 [d] + V=4 [d] + J[d] + K[d] (2.33)

where T4 [d] signifies the kinetic energy of the electrons and V=4 [d] the nuclear-electron interaction.
The electron-electron interaction V44 [d] is divided into the classical Coulomb repulsion J[d] and the

13

Chapter 2 Theoretical background

Exchange contribution K[d]. However, these orbital-free approaches had poor performance due to
inadequate description of the kinetic energy T4 [d] [20].
In Kohn-Sham DFT (KS-DFT)[11] the concept of orbitals is reintroduced to improve upon the
determination of the kinetic energy and find a variational ansatz for optimizing d(r). Thereby, the KS
formalism decomposes the complex many-body interactions into a set of self-consistent single-particle
equations, rendering DFT practical for applications in QC [67]. For this purpose, in KS-DFT the
kinetic energy is calculated using an auxiliary set of orbitals that reproduces the exact ground-state
electron density.
The kinetic energy functional is divided into two parts: one that can be calculated exactly and a smaller
correction term. For this purpose, a systematic framework for separating the kinetic energy is provided
by introducing a modified Hamiltonian. A _-dependent Hamiltonian can be formulated to establish an
adiabatic connection between the non-interacting reference system and the fully interacting electron
system

Ĥ(_) = T̂ + V̂ext(_) + _ V̂44 (2.34)

where T̂ is the kinetic energy operator, V̂ext(_) is an external potential that is adjusted for each
value of _ to ensure that the ground-state electron density remains constant, and V̂44 represents the
electron-electron interaction. At _ = 1, V̂ext(_) corresponds to the actual electron-nuclear potential
V̂=4, yielding the Hamiltonian of the real interacting system. In contrast, at _ = 0 the electrons do not
interact, and the KS orbitals q8 allow to express the kinetic energy of the fictitious non-interacting
electrons exactly as

TSD [d] =
#elec∑
8=1
〈q8 | −

1
2
∇2 | q8〉 (2.35)

which is equivalent to the HF theory using a Slater determinant utilizing KS orbitals. Note that
KS-DFT is thereby closely related to the HF method, sharing the same formulas for kinetic energy,
electron-nuclear interactions, and Coulomb electron-electron interactions. Despite being only an
approximation for the _ = 1 case, this formulation has two major advantages. First, by computing
TSD [d] exactly from the orbitals, the method captures about 99% of the kinetic energy correctly.
Second, because �XC [d] is typically much smaller than the kinetic energy, the errors introduced by
approximate treatments of exchange and correlation are significantly mitigated. The remaining part,
the kinetic correlation energy, is incorporated into the exchange-correlation energy �XC [d], which
remains the only unknown functional in the KS energy expression. The exchange-correlation energy
is defined by the residual term

�XC [d] =
(
T4 [d] − TSD [d]

)
+

(
V44 [d] − J[d]

)
(2.36)

whereby the first parenthesis can be interpreted as the kinetic correlation energy and the second
considers potential correlation and exchange energy [20]. In a sense, the postulation of the theoretically
exact �XC [d] functional in DFT theory is analogous to the restriction to a single Slater determinant in
HF, where both theories assume non-interacting electrons. Generally, �XC [d] accounts for only a
small portion of the total energy, and even relatively simple approximations yield remarkably accurate

14

2.1 Quantum Chemistry

computational results [20]. The total energy expression in KS-DFT is given by

�KS-DFT [d] = TSD [d] + V=4 [d] + J[d] + �XC [d] (2.37)

Furthermore, �XC [d] encapsulates the exchange-correlation effects that account for the difference
between the true and the non-interacting kinetic energies stemming from the auxiliary reference
system. Thereby, �XC [d] includes for all many-body interactions beyond the classical electrostatic
contributions. However, the exact form of �XC [d] is unknown [68, 69], presenting a fundamental
challenge in DFT, as it prevents the systematic improvement of known DFT models. Consequently, a
hierarchy of approximations has been developed to approach this exact form, balancing computational
efficiency with accuracy. Figure 2.2 gives an overview over the different levels of DFT functionals
and the approximations used on every level.

Figure 2.2: Overview over the different density functional approximation classes.

Local Density Approximation
The simplest approximation is the local density approximation (LDA), derived from the uniform
electron gas (UEG) [12, 70, 71]. Analytic expressions for the correlation energy of the UEG
are available in the high- and low-density limits [72–74], while accurate quantum Monte Carlo
simulations [75, 76] at intermediate densities yield precise values for the correlation energy density
[77]. Furthermore, the LDA exchange part is given by [78, 79]

�
LDA
X [d] = −3

4

(
3
c

) 1
3
∫

d(r)
4
3 3r (2.38)

Although LDA is computationally efficient, by assuming a uniform electron density its usability
is limited to systems exhibiting pronounced electron density homogeneities, such as metals. LDA
implementations include the VWN functional [80] for instance.

Generalized Gradient Approximation
To improve upon LDA, the generalized gradient approximation (GGA) not only incorporates the local
electron density d(r) but also its gradient ∇d(r) [81]. For a GGA the exchange-correlation energy is

15

Chapter 2 Theoretical background

given by

�
GGA
XC [d] =

∫
n
LDA
XC [d(r)] �

GGA
XC [d(r),∇d(r)] 3r (2.39)

where nLDAXC is the local exchange-correlation energy density and �GGA
XC is an enhancement factor that

accounts for density gradients [82]. As �GGA
XC incorporates information from the immediate vicinity of

the local electron density, GGAs are classified as semi-local DFT functionals. Nevertheless, GGAs still
lack sufficient non-local exchange to cancel self-interaction, hence resulting in an over-delocalization
of the electron density (as electrons spuriously repel themselves). Nonetheless, GGAs such as PBE
[82] or BLYP [74], are widely used for molecular systems.

Meta-Generalized Gradient Approximation
The meta-generalized gradient approximation (meta-GGA) extends the GGA approach by including
additional information on the curvature of electron density∇2

d(r) [81]. Due to its numerical instability,
∇2
d(r) is usually substituted by the kinetic orbital energy g(r) [83], which is defined as

g(r) = 1
2

∑
f

#f∑
8=1

��∇q8 (r)��2 (2.40)

with q8 (r) denoting the KS orbitals and #f the number of electrons with spin f ∈ {U, V}. Meta-GGA
functionals (e.g. TPSS [84], r2SCAN [85]) use the most semi-local information among the common
DFT functionals and only lack description of non-local effects. For the calculation of thermochemistry
meta-GGAs provide generally good results [86]. The formal scaling of GGAs and meta-GGAs can be
reduced to O(#3

AO) using approximations such as the resolution-of-identity method [87].

Hybrid Functionals
Hybrid functionals improve upon semi-local approximations by incorporating a fraction of non-
local exact exchange from HF theory (“Fock exchange”), thereby also including information about
the occupied KS orbitals [68]. The theoretical foundation for hybrid functionals is provided by
the Adiabatic Connection Formula (ACF) [88], which expresses the exchange-correlation energy
as an integral over the coupling parameter _ from Equation 2.34 that continuously connects the
non-interacting KS reference system (_ = 0) with the fully interacting physical system (_ = 1)

�XC =

∫ 1

0

〈
Ψ_

��V̂XC(_)
��Ψ_〉 3_ (2.41)

This formulation allows for the systematic inclusion of exact exchange at the non-interacting end of
the integration path, where the exchange energy matches that of HF theory. Hybrid functionals can
thus be viewed as approximations to the ACF, where the exchange energy is constructed as a weighted
average of exact and approximate contributions. The general expression for a hybrid XC functional is

�
hybrid
XC = �

(meta-)GGA
C + (1 − 0X) �

(meta-)GGA
X + 0X �

HF
X (2.42)

where 0X is the mixing parameter and �HF
X represents the non-local exchange energy. The inclusion of

non-local exchange reduces the SIE, and enhances the accuracy of reaction barriers [89]. An overlarge

16

2.1 Quantum Chemistry

addition of non-local exchange may lead to overestimated orbital energy gaps and could worsen
thermochemical predictions that are already well captured by (meta-)GGA functionals. Conversely,
a lower HF exchange fraction tends to better preserve the accurate thermochemistry of semilocal
functionals while providing a less aggressive correction of delocalization errors. The optimal fraction
of exact exchange depends on the property of interest, and therefore varies between different functionals.
Because exchange is evaluated non-locally by integrating d(r, r′) over two spatial coordinates, the
computational cost increases to a formal O(#4

AO) scaling [81]. Examples for hybrid DFT functionals
include B3LYP [68, 74, 90], PBE0 [91, 92] or TPSSh [93, 94].

Range-Separated Hybrid Functionals
Range-separated hybrid (RSH) functionals address inherent limitations in conventional hybrid
approaches by partitioning the electron-electron Coulomb operator into short-range and long-range
components. This partitioning is typically achieved using the error function

1
A12

=
1 − 0′X − 0

′′
X erf (lA12)
A12

+ 0
′
X + 0

′′
X erf (lA12)
A12

(2.43)

where l controls the range separation and 0′X, 0
′′
X are parameters that weight the short- and long-range

contributions, respectively. In practice, the short-range part is treated with a density-based exchange
functional, while the long-range part is evaluated using exact HF exchange. The motivation for
using RSH functionals arises from systematic deficiencies in traditional DFT methods, which often
underestimate excitation energies for charge-transfer and Rydberg states. Such errors are linked to
self-interaction and an overdelocalization of the electron density, resulting in an unphysical lowering
of energies for delocalized systems [20]. By incorporating 100% HF exchange in the long-range,
RSH functionals restore the correct asymptotic behavior of the exchange-correlation potential and
effectively eliminate SIE at large distances. A key aspect of the RSH approach is the free parameter
l, which defines the crossover between the short- and long-range interactions. This parameter can
be tuned either empirically [95, 96] against experimental data or non-empirically [97] by enforcing
conditions such as Koopmans’ theorem [98]. The latter being a so-called “optimally tuned” approach
that yields a distinct l for each system.
This tunability of RSH functionals allows for improved predictions in systems with loosely bound
electrons, such as anions and zwitterions, and helps to avoid issues like the dissociation into fraction-
ally charged fragments. Additionally, this range-separation concept has been widely incorporated
into various DFT functionals, leading to the development of methods such as lB97X [95, 96]
and lB97X-V [99]. Alternative strategies, like the inverse separation used in the HSE functional
[100, 101], which employs HF exchange at short distances and density exchange at longer ranges,
offer different approaches to range separation. In addition, the HISS functional [102] introduces a
modulation in which the HF exchange is initially increased and then decreased as a function of A12,
providing another means of fine-tuning the exchange contributions.

Double-Hybrid Functionals
Double-hybrid functionals further extend the concept of hybrid functionals by incorporating information
from both occupied and virtual KS orbitals, thereby capturing non-local correlation effects [103–106].
They typically include a second-order Møller-Plesset perturbation theory (MP2)-like term to account
for dynamic electron correlation [107]. Thereby, the non-local correlation correction is computed

17

Chapter 2 Theoretical background

using the MP2 formulation, employing DFT orbitals and orbital energies. The general form of a
double-hybrid functional is

�
double-hybrid
XC = (1 − 0C)�

(meta-)GGA
C + 0C �

MP2
C + (1 − 0X)�

(meta-)GGA
X + 0X �

HF
X (2.44)

with 0C controlling the amount of MP2 mixing and �MP2
C representing the perturbative, non-local

second-order correlation energy. Double-hybrid functionals were first introduced by Neese and
Grimme in 2006 [105], since then, a multitude of variants have emerged [108]. Although double-
hybrid functionals, like B2-PLYP [104], achieve high accuracy in QC calculations [89, 109], their
MP2-like scaling of O(#5

AO) limits their applicability to moderately sized systems. Moreover, due to
the presence of theMP2 expression, basis set convergence is slower compared to pureDFTmethods [20].

2.1.3 Semiempirical Quantum Mechanical Methods

Semiempirical quantum mechanical (SQM) methods offer a balanced compromise between accuracy
and efficiency. Usually built upon the HF or DFT formalism, these methods incorporate numerous
approximations, such as neglecting or approximating two-electron integrals, and compensate for the
resulting loss of information by introducing empirically derived parameters. Consequently, SQM
methods have become invaluable in computational chemistry, especially for treating large molecular
systems where full HF or DFT calculations would be computationally prohibitive [110]. Furthermore,
SQM methods find widespread applications in molecular structure optimization and the elucidation
of reaction mechanisms in both organic and inorganic chemistry [108, 111, 112], as well as in
high-throughput screening [113–115] or multilevel modeling [116].
Over the last century, multiple SQM method families have been developed. The Hückel method
[117–119], introduced in the 1930s, was pivotal in simplifying the treatment of c-electron systems
using a SQM approach, approximating the Hamiltonian by employing a minimal basis set with only
on-site and nearest-neighbor interactions. Despite its simplicity, the method proved highly effective in
capturing the essential features of conjugated molecules. To improve the description of more complex
systems, such as non-planar molecules or transition metal complexes [120], the extended Hückel theory
was developed [121]. This method expanded the original framework by including all valence electrons
and was successfully applied in many qualitative studies of inorganic and organometallic compounds
[122]. Historically, the Hückel approaches were pivotal as they introduced key approximations that
laid the groundwork for more advanced SQM methods [122].
Building on the conceptual foundation of Hückel theory, the tight binding (TB) approach was
introduced in 1954 [123]. Closely related to the LCAO ansatz explained above [20], TB assumes that
electrons are tightly bound to their parent atoms [124, 125]. Initially developed for the description of
electron movements in solids, electrons are assumed to remain localized at their respective atomic
centers, with limited interactions with states of surrounding atoms, leading to wavefunctions that
closely resemble the atomic orbitals of isolated atoms [126].
Moreover, SQM methods can broadly be divided into those based on the HF formalism and those
derived fromDFT. Among the HF-based methods, early models such as NDDO (Neglect of Differential
Diatomic Overlap) [127] form the basis, where differential overlap between orbitals is assumed to
be small and hence the overlap matrix is replaced by a unit matrix. Thereby, under the assumption
of zero differential overlap, two-electron integrals containing differential overlap between orbitals

18

2.1 Quantum Chemistry

on two different atoms are neglected, but all two-electron integrals with differential overlap between
orbitals on the same atom are retained [128]. The following methods are essentially modified
versions of the NDDO model, differing primarily in their treatment of core-core repulsion and distinct
parameterizations. InMNDO (Modified Neglect of Diatomic Overlap) [129, 130] empirical parameters
are adjusted to reproduce experimental properties from ground-state stable molecules. For this reason,
MNDO does not capture correlation effects in transition and excited states well [20]. Building upon
MNDO, AM1 (Austin Model 1) was developed to address some of its shortcomings by incorporating
additional Gaussian functions into the core-core repulsion term [131]. This modification helps to
better capture short-range interactions. PM3 (Parametric Method 3) [132, 133] represents another
reparameterization of the AM1 framework, retaining the same underlying NDDO formalism. In PM3,
exactly two Gaussian functions per element are used in the repulsion term, and all parameters are
determined through a fully automated fit to an extensive data set. Later developments such as PM6
[134] and PM7 [135] have significantly advanced the HF-based semiempirical family. PM6 uses a
much larger reference data set for parameter optimization and refines the treatment of core potentials
by employing pairwise parameters for each atomic pair, allowing to reduce the number of Gaussian
repulsion terms to only one for each atom [20]. Furthermore, including parametrization for third-period
elements and transition metals. This improvement allows PM6 to extend its applicability to a wide
range of systems, from organic molecules to inorganic complexes and biological macromolecules,
though it still does not fully account for all non-covalent interactions [136]. PM7 builds on PM6
by incorporating explicit corrections for dispersion and hydrogen bonding, removing the Gaussian
core-core terms for all but the H, C, N, O atoms [20]. These enhancements result in improved accuracy
for typical organic molecules and a more robust overall description without the need for separate a
posteriori corrections. Still, a persistent shortcoming of all NDDO-based methods is their tendency to
significantly underestimate rotational barriers in bonds with partial double-bond character.
In contrast to the HF-based methods, SQM approximations to DFT include Density Functional Tight
Binding (DFTB) [137–141]. DFTB takes a fundamentally different approach by expanding the total
electronic energy around a reference electron density d0, usually derived from a superposition of
neutral atomic densities, and retaining only the leading terms in the expansion:

� [d] = � (0) [d0] + �
(1) [d0, Xd] + �

(2) [d0, (Xd)
2] + � (3) [d0, (Xd)

3] + · · · (2.45)

with Xd = d − d0. Typically, this series expansion is truncated after the third-order term [142, 143], as
higher order terms contribute only marginally to the total energy while substantially increasing compu-
tational complexity and the number of parameters needed. In the regime of small density fluctuations,
the first three terms capture the dominant physical effects, providing a good balance between accuracy
and efficiency. Similar to NDDO methods, DFTB employs a minimal basis set, neglects three- and
four-center integrals, and treats only valence electrons explicitly [20]. The core-core repulsion energy
in DFTB corresponds to the zeroth-order term including no electronic contribution and is typically
parameterized using spline functions fitted to corresponding all-electron DFT results. In its simplest
form, the interactions between atomic orbitals are treated in a TB-like manner using precomputed
Slater-Koster tables derived from DFT calculations. This makes DFTB especially suitable for large
systems such as biomolecules or periodic solids where full DFT calculations would be computationally
prohibitive [144, 145]. However, the standard DFTB formulation struggles with highly polar or
charged systems. To address this limitation, the Self-Consistent Charge extension (SCC-DFTB) [141]
introduces an iterative scheme to adjust Mulliken atomic partial charges. Furthermore, additional

19

Chapter 2 Theoretical background

polarization terms can be added to better describe proton affinities and hydrogen binding [142, 143].
Like standard DFT, DFTB does not inherently account for dispersion interactions, but these can be
added a posteriori [146]. Additional empirical corrections can also be applied to better describe
specific interactions that are poorly captured by DFTB alone, such as halogen bonding [147].
Another prominent DFT-based SQM method is the extended Tight Binding approach. As it is
of particular relevance for this thesis, the following section will present the method developed by
Bannwarth et al. (2019) [17, 18] in detail.

Extended Tight Binding
Inspired by the successes of DFT-based tight binding approaches, the so-called “extended Tight
Binding” (xTB) methods [17, 18, 148, 149] were developed, in which additional corrections and
interactions are incorporated to further refine the electronic structure description in complex systems.
The GFN-xTB method family represents a modern class of semiempirical quantum mechanical
approaches, specifically tailored for efficient and accurate prediction of molecular geometries,
vibrational frequencies, and non-covalent interactions. It is implemented in two parametrizations:
GFN1-xTB [17] and its successor GFN2-xTB [18]. Both methods are based on a minimal valence basis
of atom-centered, contracted Gaussian functions (STO-mG), employing polarization functions for most
main group elements to better capture hypervalent bonding situations. The GFN-xTB Hamiltonian
closely resembles that of DFTB, with GFN2-xTB incorporating electrostatic and exchange-correlation
effects up to second order in a multipole expansion. Contrary to DFTB’s element pair-specific
parameters, GFN-xTB requires only a global and element-specific parameter set. Both methods
GFN1-xTB and GFN2-xTB are parametrized for elements up to radon (/ = 86), thereby including
lanthanoids via an interpolation scheme. For lanthanoids, where the 4 5 shell is very compact and
has thus little influence on chemical bonding, the “ 5 -in-core” approximation [18, 150] is applied,
effectively treating all lanthanoids as lanthanum while implicitly accounting for the 4 5 electrons
through parametrization. Notably, GFN-xTB being spin-restricted, favoring low-spin configurations,
is generally advantageous for electronically complex systems, as it results in more stable calculations
compared to those involving high-spin states.
Similar to DFTB, the Taylor expansion of the total electronic energy in Equation 2.45 forms the basis
for the derivation for the xTB energy. In the GFN1-xTB framework the total energy is decomposed as

�GFN1−xTB = �
(0)
rep + �

(0)
D3 + �

(0)
XB + �

(1)
EHT + �

(2)
ies + �

(3)
ies +)el(el (2.46)

where each term accounts for distinct physical interactions. The zeroth-order energy terms do not
depend on the charge density but account for geometric factors. Density independent terms include
the Coulomb repulsion energy � (0)rep . It is given by the classical pairwise repulsion term, modified by
screening effects:

�rep =
1
2

∑
8, 9

/
eff
8 /

eff
9

A8 9
exp

(
−√U8U 9 A : 58 9)

(2.47)

with /eff
{8, 9 } the effective nuclear charge, U{8, 9 } element-specific parameters, and a global scaling factor

: 5 . All these parameters are fitted, leading to e.g. optimized values of /eff that deviate from the
initial nuclear charge / by up to 30% [17]. Another density independent contribution is the D3

20

2.1 Quantum Chemistry

dispersion correction � (0)D3 [146]. Since GFN1-xTB accounts only for isotropic electrostatics, an
additional correction � (0)XB is required to accurately describe halogen bonding:

�
(0)
XB =

∑
XB

5damp:-

(
Z

12 − :-2Z
6
)
/
(
1 + Z12

)
, with Z =

(
Acov,�-

A�-

)
(2.48)

Thereby, the correction takes the form of a modified Lennard-Jones potential with the effective covalent
distance Acov,�- = :-' (Acov,� + Acov,-) and global, halogen-specific parameters :- , :-2 and :-'.
The damping depends on the angle \ = ^�-� between the acceptor atom � closest to the halogen,
the halogen - , and the donor atom � (Nitrogen or Oxygen) and is designed such that it vanishes for
non-planar configurations:

5damp =

(
1
2
− 1

4
cos \

)6
(2.49)

The first-order energy terms depend linearly on charge density fluctuations, with covalent bond
formation described by Extended Hückel Theory (EHT) providing the dominant contribution:

�
(1)
EHT =

∑̀
,a

%`a �
EHT
`a (2.50)

where %`a is the density matrix in a non-orthogonal basis, and �EHT
`a describes the interaction of

neutral atoms accounting for atomic-environment effects via fractional coordination numbers. The
density matrix is obtained by solving the Roothaan-Hall equations (c.f. Equation 2.29). To simplify
the description of covalent bonding, only valence electrons are considered. Effective one-electron
interactions are computed by scaling the averaged on-site level energies �EHT

``/aa with the overlap
matrix (`a and a shell-pair- and distance-dependent polynomial Π`a:

�
EHT
`a =

�
EHT
`` + �

EHT
aa

2
· (`a · Π`a (2.51)

The function Π`a , which depends on distance and orbital shape, is defined as:

Π`a =
(
1 + :�,;Z

) (
1 + :�,;Z

)
, with Z =

(
A��

Acov,� + Acov,�

)1/2
(2.52)

where ; is the azimuthal quantum number, Acov denotes the covalent radius, and : are element-
specific parameters. Additionally, the initial on-site energies ℎ` are scaled based on the local atomic
environment, incorporating D3 coordination number CN and empirical shell-specific parameters ::

�
EHT
`` = ℎ` (1 + :`CN`) (2.53)

The second-order energy terms describe interatomic electrostatic interactions in an isotropic manner:

�
(2)
ies =

1
2

∑̀
,a

@`�`a@a (2.54)

21

Chapter 2 Theoretical background

where @` and @a are the atomic charges, and the interaction is mediated by the Coulomb tensor �. In
GFN1-xTB, the charge-charge interaction kernel is defined as:

�`a =

√
1

A
2
�� + 5avg(*`,*a)

−2 (2.55)

Here,* represents the Hubbard parameters of the respective orbitals, characterizing their chemical
hardness. The function 5avg provides an averaged value of these parameters, typically using arithmetic
or harmonic means. Since the atomic reference is assumed to be spherical, the chemical hardness* is
uniquely defined for each angular momentum quantum number ; and chemical element. Thereby, atom-
resolved partial charges @� for atom � can be obtained from the sum of orbital charges @� =

∑
`∈� @`.

The third-order energy terms capture on-site exchange-correlation effects using the shell-resolved
partial charges

�
(3)
ies =

1
3

∑
�

Γ� @
3
� (2.56)

with Γ� being an atom-specific Hubbard parameter and @� the Mulliken charge on atom �.
To incorporate Fermi smearing, which accounts for fractional orbital occupations, the electronic free
energy is introduced. This approach considers different electronic temperatures)el and an electronic
entropy (el, following a Fermi distribution for varying occupation numbers. The finite electronic
temperature framework facilitates covalent bond dissociation and enhances the stability of GFN-xTB
methods, particularly for describing transition states and transition metal complexes.

GFN2-xTB refines the GFN1-xTB framework by incorporating improved long-range and anisotropic
interactions. Its total energy expression is given by

�GFN2−xTB = �
(0)
rep + �

(1)
EHT + �

(2)
ies + �

(2)
aes + �

(3)
ies,l + �

(∞)
D4 +)el(el (2.57)

where the D3 dispersion correction is replaced by the D4 dispersion model, along with anisotropic
electrostatic terms, eliminating the need for explicit halogen bonding corrections and using shell-
resolved partial charges in the third-order onsite electrostatics. The anisotropic electrostatic terms are
realized through a multipole expansion, extending the interaction tensors beyond simple point-charge
interactions to include higher-order dipole-dipole and charge-quadrupole terms.
Further implementations of TB include the PTB model [151], which focuses on obtaining the

electronic density matrix d at DFT-level accuracy. By employing a deeply contracted, polarized
valence double-zeta basis set, PTB eliminates the major accuracy bottleneck of traditional SQM
approaches and conducts only two self-consistent field steps after which an interpolation scheme is
employed. Although no explicit energy expression is provided, PTB – constructed in the spirit of
GFN2-xTB and enhanced with additional corrective terms – delivers excellent electronic properties
while reducing computational cost by orders of magnitude compared to conventional DFT methods.

22

2.2 Machine Learning

2.2 Machine Learning

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) focused on algorithms that learn
patterns from data [152]. ML algorithms are computational methods which are typically statistical
and data-driven and characterized by their ability to identifying patterns and relationships within
data. Instead of relying on explicit, hard-coded instructions, ML algorithms build internal models
using statistical techniques and iterative optimization during the training phase [153]. In contrast, AI
encompasses any general pursuit of intelligent behavior in machines to mimic human intelligence,
which includes rule-based systems, logic programming, and other methods not necessarily learning
from data (c.f. [154]).
In recent years, ML has been increasingly employed in QC to efficiently predict molecular properties.
Conventional first-principles methods, such as DFT, become computationally prohibitive as system size
grows (c.f. section 2.1). MLmodels can overcome this limitation by directly mapping molecular inputs
to target properties using data obtained from QC calculations. For this purpose, ML models require
sufficiently diverse and high-quality training data as predictions may become unreliable for molecules
substantially outside the training distribution. Although the initial generation of a representative
dataset and the training process itself can be computationally costly, trained ML models provide fast
predictions at often negligible computational cost, typically scaling linearly with system size $ (#).
As a result of providing rapid predictions and the capability to compute large structures at reasonable
cost, ML models significantly accelerate exploration of chemical space, enabling high-throughput
screening tasks in drug discovery and large-scale applications in molecular simulations, where systems
comprising thousands of atoms at near-DFT accuracy are modeled [155–157].
Primary focus of ML in the context of this thesis lies on supervised learning, where the task is
to approximate a mapping function from an input (molecular representation) to a target property
(energy, force, dipole moment, ionization potential, etc.) based on given input-output pairs as training
reference. However, for a holistic view on ML, it is worth mentioning other paradigms of ML in
the following: Unsupervised learning deals with finding patterns or structure in unlabeled data.
In chemistry, unsupervised methods can be used, for example, to cluster molecules according to
structural similarity or to learn low-dimensional representations of molecular conformations [158, 159].
Generative unsupervised models such as autoencoders [152, 160], generative adversarial networks
[161], or diffusion models [162] can learn distributions of molecular structures and have been used
to propose new molecules or materials with desired attributes by sampling the learned distribution
[163]. Reinforcement learning involves an agent learning a policy for making sequential decisions that
maximize a defined reward. In QC and drug design, it has been employed for tasks such as optimizing
multi-step reaction routes and design chemical libraries with a bias towards compounds within a
desired range of physical properties [164, 165].

Parallels between traditional QC approaches and ML
As described in section 2.1, DFT research aims at finding a functional �DFT [d] that maps electron
density d(r) to the energy of a system (cf. [11, 65]). Since the exact functional remains unknown,
researchers typically construct approximate functionals (e.g. LDA, GGA, hybrid functionals) by
enforcing known physical constraints and fitting to empirical data or higher-level calculations. Similarly,
SQM methods determine optimal parameters by fitting to chemical reference data, effectively
approximating physical interactions through a parameterized model. Both DFT’s search for an
appropriate functional form and SQM’s parameter optimization are reflected in the central idea of

23

Chapter 2 Theoretical background

supervised ML: approximating an unknown function by learning from labeled training data. This
analogy between traditional QC approaches and ML methods naturally suggests the question: Can the
advantages of physics-based QC methods and data-driven ML techniques be effectively combined?
Note that, unlike many common ML applications (e.g. image recognition), where governing equations
are unknown, the ground-truth in QC is given by the Schrödinger equation, which is yet computationally
too costly to compute accurately. As shown in the following section, this scenario has motivated
the development of physics-informed ML methods, which explicitly encode fundamental principles,
such as symmetry invariance or interaction properties, directly into their network architectures.
Indeed, recent work increasingly integrates these approaches, leveraging ML algorithms for automated
functional development, while explicitly incorporating physical constraints to ensure correct asymptotic
behavior and consistency with fundamental principles [166–168]. The integration of physics-based
knowledge and statistical ML approaches will be a central theme throughout this thesis. To establish the
theoretical foundation, this section briefly outlines essential ML concepts relevant to QC applications.

2.2.1 Fundamentals and Key Concepts

In the following key ML principles are introduced, including model training, parameter optimization
via backpropagation, and regularization techniques to reduce overfitting and improve generalization.
Generally, regression predicts continuous values, while classification assigns discrete labels to samples.
In chemistry, regression is widely used to estimate molecular properties like energies, reaction barriers,
or solubilities, whereas classification helps identify toxic compounds, functional groups or charge
transfer nature for instance. For brevity and alignment with projects covered in the thesis presented, this
theoretical introduction focuses solely on regression tasks. It is worth noting that most classification
tasks can essentially be viewed as a form of regression, where continuous predictions are converted
into discrete outcomes using a predefined threshold. The fundamental concepts detailed here will be
used for the optimization of various supervised methods as explained in subsection 2.2.3.

Quantum Chemical Datasets
Before diving into ML concepts, one needs to take a look at the generation and processing of data.
QC datasets form the backbone of ML applications in chemistry and typically consist of collections
of molecules, which can represent a sampling of chemical space [169, 170], sets of conformations
[171, 172], or reaction data [173, 174]. Typically, besides molecular geometries and element types,
QC datasets contain detailed molecular information in the form of physical properties (energies,
dipole moments, atomic charges, etc.) or non-physical properties (SMILES identifiers [175–177],
stereochemistry information, etc.), which can serve as labels for supervised learning tasks. These
properties are either computed using QC calculations (e.g. DFT or SQM methods) or obtained from
experimental measurements.
ML models can be tailored to a specific target (e.g. a distinct reaction or a particular class of chemical
systems), or designed as general-purpose models capable of handling multiple elements and diverse
chemical classes (e.g. ML potentials). Depending on the intended application, the dataset must either
accurately represent a homogeneous chemical domain or be sufficiently diverse to capture broader
chemical complexity. In both cases, robust ML models typically require substantial amounts of data.
While for simpler tasks just a few dozen or hundreds of data points might suffice, more complex tasks
generally require beyond thousands of samples to ensure robust and accurate predictions [178].
It is common ML practice, that the available data is partitioned into separate subsets to facilitate

24

2.2 Machine Learning

objective model development and evaluation [152]. A common approach is to allocate a large portion
of the dataset, often around 80%, for model training and reserve the remaining 20% as a hold-out
test set, ensuring that performance after training is assessed on unseen data for an unbiased estimate
of generalization ability. The training portion is frequently further split to create a validation set,
which is used for hyperparameter tuning and to monitor the learning process. It is critical that the
test set be completely disjunct from the training set and remain unseen by the model during training.
Any inclusion of test data in the training or tuning process results in information leakage, potentially
leading to artificially inflated model performance [179]. Moreover, the repeated use of a single test set
over the years can lead to overly optimistic evaluations, causing benchmarks to become less reflective
of a model’s true performance in real-world scenarios [152].

Overfitting occurs when a model captures not only the underlying data patterns but also the noise in
the training data, resulting in high performance on the training set but poor generalization to unseen
data (i.e. poor performance on the test set). To counteract overfitting, techniques such as regularization
can be employed (see below). Furthermore, when the dataset is small, dividing it into a fixed training
set and (a small) test set can introduce significant statistical uncertainty in the generalization estimation.
In such cases, :-fold cross-validation provides a more robust evaluation method by partitioning the
data into : non-overlapping subsets. In each fold, one subset serves as the test set while the remaining
data is used for training, and the final error is averaged over all folds [152]. Another statistical model
validation method is bootstrap aggregating, where multiple samples are drawn with replacement from
the original dataset to form new training sets. For each bootstrap sample, a model is trained and then
evaluated on the remaining out-of-bag data. The resulting ensemble of trained models can then be
evaluated on the test set. This approach not only provides an estimate of the model’s performance but
also allows for the computation of confidence intervals. Bootstrapping is particularly useful when
dealing with small datasets, as it maximizes the use of available data while mitigating overfitting [152].
Prominent examples of organic datasets include GDB-17 [169], QM9 [170], GEOM [171], and

SPICE [180, 181], which contain millions of molecular structures capturing a wide range of chemical
properties. In addition, specialized datasets such as tmQM [182] for transition metal complexes,
LnQM for lanthanoids [183], and AcQM [184] for actinoids provide targeted insights into specific
classes of molecules. Handpicked collections like GMTKN55 [89, 185], although comprising fewer
molecules, are highly valued for their chemical relevance and diversity. Other notable datasets
include the ANI-1 dataset [157, 186], and the S66x8 dataset [187], which offers detailed insights into
intermolecular interactions at a coupled-cluster reference level. Additionally, the MD17 dataset [188],
derived from molecular dynamics trajectories, and datasets focusing on conformers and solvent effects
in large drug-like molecules [172] further enrich the available resources. This diversity in data not
only enables precise analysis but also fosters the development of robustMLmodels in chemical research.

Loss Functions for Regression Tasks
In supervised learning, the loss function is used to quantify the discrepancy between model predictions
and reference values, directly influencing optimization dynamics of gradient-based methods. Its
appropriate choice is critical to aligning model performance with scientific objectives. For each
input sample G with its associated label Ĥ, a parameterized function 5 with parameters \ generates a
prediction H = 5\ (G). A general loss function ! can then be written as

! := ! (y, ŷ) = ! (5\ (x), ŷ) (2.58)

25

Chapter 2 Theoretical background

where \ represents the parameters of the model, x denotes the input data, ŷ the reference labels,
and y = 5\ (x) the predicted outputs for all samples in the dataset. In regression tasks common loss
functions include mean squared error (MSE) and mean absolute error (MAE), each with distinct
properties affecting sensitivity to outliers. The MSE loss corresponds to the !2 norm of the error
vector and is defined as

!MSE =
1
#

#∑
8=1
(H8 − Ĥ8)

2 (2.59)

where H8 is the reference value and Ĥ8 is the predicted value for the 8-th sample. MSE measures the
average squared error, penalizing larger deviations more strongly due to the quadratic term. However,
this makes MSE highly sensitive to outliers, as large errors contribute disproportionately to the loss.
MSE is a smooth, differentiable function with respect to the difference between H and Ĥ, which
facilitates optimization of the network parameters \ through gradient-based methods (see below).
Additionally, MSE corresponds to performing maximum likelihood estimation under the assumption
of Gaussian noise [189], further justifying its widespread use in regression. Furthermore, the MAE
loss corresponding to the !1 norm of the error vector is defined as

!MAE =
1
#

#∑
8=1
| H8 − Ĥ8 | (2.60)

which represents the average absolute error between predictions and ground truth. Unlike MSE,
MAE is less sensitive to large outliers, making MAE more robust in the presence of high-variance or
noisy data. Note that minimizing the MAE leads the model to predict the median of the conditional
distribution of H given G, in contrast to MSE, which corresponds to the mean [190]. One major
drawback of MAE is that it is not differentiable at zero error due to the cusp of the absolute value
function, though this is typically handled using subgradient methods or smooth approximations in
optimization frameworks [191].
In practice, a variety of loss functions are utilized, each tailored to specific problem characteristics and
data distributions [192]. Further examples include the Root Mean Squared Error (RMSE) loss, which
provides an error metric in the same units as the target variable and gives an unbiased expectation
forecast for asymmetric predictive distributions:

!RMSE =
√
!MSE (2.61)

The Huber loss function [193] combines the advantages of MSE and MAE, behaving quadratically
for small errors and linearly for large ones, making it more robust to outliers. Another example is
the Log-Cosh loss [194], which is defined as the logarithm of the hyperbolic cosine of the predic-
tion error. Similar to Huber loss, it smooths the effect of large deviations while remaining differentiable.

Optimization Algorithms and Backpropagation
For the optimization of many parametric models, especially neural networks, the loss function and
backpropagation play a central role. It is important to note that non-parametric models are generally
trained differently, for example Gaussian processes models typically combine a prior and likelihood
function based on the training samples [195]. In the following the optimization of parametric models

26

2.2 Machine Learning

will be elaborated, as parametric models play a pronounced role in this thesis. Once a loss function
is defined, optimizing a parametric ML model involves finding the model parameters (so-called
“weights”) that minimize this loss on the training data, a process corresponding to a parameter
optimization and in ML referred to as “training”. In most cases, an analytical solution to this
optimization problem is neither feasible nor possible due to the complexity and high dimensionality
of modern ML models. Therefore, numerical optimization techniques are employed to iteratively
adjust parameters and minimize the loss. Gradient descent and its variants, such as stochastic gradient
descent (SGD) [2] and Adam optimizer [196], are widely used, particularly in neural network training,
due to their scalability and efficiency in large parameter spaces. Nevertheless, alternative optimization
techniques exist, including Newton’s method [197–199], quasi-Newton methods (e.g. L-BFGS
[200–204]), and evolutionary algorithms [205, 206], which can be advantageous in specific settings
where gradient information is unavailable.
Gradient descent in its simplest form updates the model parameters \ iteratively in the direction of the
negative gradient of the loss:

\ ← \ − [∇\! (\, x) (2.62)

where [is the learning rate controlling the step size, and ! (\, x) is the loss function evaluated on
the training data x. In practice, computing the gradient on the entire training set x for each update
can be very slow when the dataset is large. Therefore, most implementations use SGD or mini-batch
gradient descent: at each step, the gradient is estimated from a random subset (“mini-batch”) x8 of the
training points [2, 152]. This introduces some noise in the gradient but allows much faster iterations
and often helps escape local minima due to the stochastic nature. For SGD the size of the mini-batch
amounts to one, i.e. a single sample, whereas for mini-batch gradient descent the batch size is a
variable hyperparameter.
Modern optimization algorithms build on basic gradient descent with various enhancements to
improve convergence speed, robustness, and adaptability. One such technique is “momentum”, which
introduces a velocity term that accumulates past gradients as an exponential moving average. This
smooths oscillations in the gradient descent trajectory, particularly in narrow, steep valleys of the
loss landscape, and often accelerates convergence along consistent gradient directions [152]. The
momentum update follows

a ← Va + (1 − V)∇\! (\, x) , \ ← \ − [a (2.63)

where V is the momentum coefficient, [is the learning rate, and ∇\! (\, x) is the gradient of the loss
function with respect to the parameters \. An important class of optimizers employs adaptive learning
rates, i.e. adjusting the step size for each parameter based on the history of gradient magnitudes.
A widely used method in this category is the Adam (adaptive moment estimation) optimizer [196],
which combines momentum with adaptive learning rates. Adam maintains exponentially decaying
averages of past gradients <C and squared gradients EC at a given training iteration C via

<C = V1<C−1 + (1 − V1) 6C (2.64)

EC = V2EC−1 + (1 − V2) 6
2
C (2.65)

where 6C = ∇\! (\C , x) is the current gradient, and V1, V2 are decay rates. To correct for initialization

27

Chapter 2 Theoretical background

bias, Adam applies bias correction before updating the parameters:

\ ← \ − [
<̂F√
ÊF + n

(2.66)

where n << 1 prevents division by zero and the weighted moments <̂F = <C/(1 − V
C
1) and

ÊF = EC/(1 − V
C
2) compute the bias-corrected moment estimate. These weighted moments are used to

counterbalance the initial bias introduced by setting the moment estimates to zero. As the time step C
increases, the correction factors converge to <̂F ≈ <C and ÊF ≈ EC . Since EC estimates the uncentered
variance of the gradient at each step, it can be interpreted as providing an adaptive learning rate
∼ 1/

√
ÊC , resulting in larger(smaller) steps when the gradient fluctuations are small(large). Although

Adam does not guarantee convergence for all convex objectives [207], it has become a standard
optimizer in deep learning due to its robustness, ability to handle sparse gradients, and adaptability
across different parameter scales [208].
Second-order optimization methods, such as Newton’s method [197–199] and quasi-Newton techniques
like Limited-memory BFGS (L-BFGS) [200–204], leverage curvature information to accelerate
convergence. L-BFGS approximates the Hessian using a compact set of vectors, making it feasible for
high-dimensional problems without storing the full matrix [204]. While it requires fewer iterations
than first-order methods, each step is computationally expensive due to the high computational
cost of inverting the Hessian, limiting its use to smaller-scale tasks like fine-tuning small networks.
Large-scale deep learning instead favors first-order stochastic optimizers like Adam, which scale much
more efficiently. In contrast to gradient-based optimization, evolutionary algorithms (EAs) take a
population-based approach, inspired by natural selection [205, 206]. These methods iteratively evolve
candidate solutions using genetic operators such as mutation, crossover, and selection. Evolutionary
strategies and genetic algorithms are particularly useful in non-convex, high-dimensional, or black-box
optimization problems where gradients are unavailable or impractical to compute. While EAs are
often less sample-efficient than gradient-based methods, they excel in optimization landscapes with
multiple local optima and are applied in hyperparameter tuning, reinforcement learning, and neural
architecture search [209].
The basis for gradient-based optimization in neural networks is the backpropagation algorithm

[210], which efficiently applies the chain rule of calculus to systematically compute gradients of
the loss function with respect to each weight within the network. By propagating prediction errors
backward through the network layers, backpropagation enables efficient parameter adjustments for
arbitrary depth of the network, progressively minimizing the loss [152]. One notable advantage
of backpropagation lies in the reuse of all computed partial derivatives, eliminating the need to
recalculate the entire chain of derivatives from scratch for each gradient. Despite its effectiveness,
particularly in supervised learning tasks, gradient-based optimization encounters challenges such as
the vanishing and exploding gradient problems in deep neural networks [211–213]. To mitigate these
issues, specialized architectures and optimization techniques, including residual networks [214, 215]
and normalization methods (e.g. batch and layer normalization) [211, 216], have been developed.
Importantly, backpropagation itself is not an optimization algorithm but a procedure to compute
gradients, which are subsequently used by optimizers such as SGD or Adam to update network
weights. Without backpropagation or a similar automatic differentiation technique, training deep
neural networks with millions of parameters would be impractical [152].

28

2.2 Machine Learning

Regularization Techniques
A constant concern in ML is overfitting, whereby a model captures random noise or specific
idiosyncrasies in the training data instead of the underlying general patterns. Overfitting reduces
the model’s ability to generalize to unseen data, thus necessitating regularization techniques, which
impose constraints or penalties on model complexity. Regularization often involves adding penalty
terms to the loss function !, resulting in a modified cost function !reg that is minimized during model
training. Thereby, the hyperparameter _ controls the strength of the regularization penalty. Two
common approaches are lasso and ridge regularization. In lasso regression (L1), the absolute values
of the weights are penalized [217, 218]:

!reg = ! + _
∑
9

|F 9 | (2.67)

The L1 penalty induces sparsity, potentially driving individual weights to zero and effectively selecting
relevant features, beneficial for identifying critical molecular descriptors in chemical applications. In
ridge regression (L2), the squared Euclidean norm of the weight vector w is penalized [219–221]:

!reg = ! + _
∑
9

F
2
9 (2.68)

This penalty also mitigates overfitting by controlling model complexity. In comparison to L1
regularization, L2 regularization is not sparse, driving weights only close to zero.
Further regularization techniques include early stopping, dropout and data augmentation: In iterative
training methods, it can be observed that both training and validation error initially decrease together,
but after a certain number of iterations, the validation error begins to rise again while the training
error continues to decline. In those cases, early stopping terminates the training process once the
performance on a validation set begins to deteriorate, hence reducing overfitting [152]. Dropout
randomly sets the weight of a fraction of neurons to zero during each training iteration, preventing
individual neurons from relying excessively on specific noise patterns [222–224]. At inference time,
all neurons are utilized again. To compensate for dropout during training, the outgoing weights
of a unit that was kept with probability ? are scaled by ?, ensuring that the expected activation
remains consistent [223]. Data augmentation increases dataset diversity by applying transformations or
perturbations, such as small variations in molecular geometries or alternative molecular representations,
thus improving the model’s invariance and generalization capability. Examples include augmentation
of SMILES string representation [175–177] to enhance ML model performance [225, 226]. Each
of these aforementioned regularization techniques can be used individually or in combination. In
practice, the choice of regularization and its strength (_ or dropout rate, etc.) is often tuned via
cross-validation to find the best trade-off between training and validation error [152].

2.2.2 Molecular Representations and Descriptors

An important step in applying ML to QC is choosing how to represent a molecule in a computer-
interpretable way. This representation, often referred to as a “molecular descriptor” or “feature
vector”, must capture the salient information about the molecule’s structure and composition that
determines the property of interest. At the same time, it should satisfy symmetries with respect to
permutations, rotations and translations of atomic coordinates. Note that most scalar properties (e.g.

29

Chapter 2 Theoretical background

energy) are invariant to the aforementioned transformations, while vector properties (e.g. dipole
moments) generally transform covariant under these transformations. Furthermore, for extensive
properties, descriptors must exhibit size extensivity, i.e. combined non-interacting subsystems should
yield descriptors and predictions reflecting additive contributions. Molecular representations that do
not fulfill these criteria might lead to unphysical behavior. For an overview over different approaches,
in this section common traditional handcrafted descriptors and graph representations are introduced.

Handcrafted Molecular Representations
Early work of ML in QC relied on explicit, fixed-length descriptors of molecules. These descriptors
are mathematical quantities that are derived from the molecular structure including atoms and their
positions and are often designed to be invariant to certain transformations such as rotation of the
molecule.
One of the first successful representations of molecules is the Coulomb matrix [155]. For a molecule
with # atoms, the Coulomb matrix � is an # × # matrix defined by

�8 9 =

{ /8/ 9

‖'8−' 9 ‖
8 ≠ 9

1
2/

2.4
8 8 = 9

(2.69)

where /8 is the atomic number of atom 8 and '8 its Cartesian coordinates. Off-diagonal elements
represent the Coulomb repulsion between atoms 8 and 9 , while diagonal elements are an arbitrary,
fixed formula related to the atomic number – originally 1

2/
2.4
8 was proposed as a heuristic to encode a

notion of atom self-energy. The Coulomb matrix is symmetric and, in principle, contains enough
information to reconstruct the full set of interatomic distances and atom types. However, one problem
is that the matrix depends on the ordering of atoms via the indices 8, 9 . Permuting atom labels will
thus lead to a different matrix and thereby complicating a unique representation for a given system.
To counter this, different sorting strategies can be applied to the entries in the Coulomb matrix (e.g.
by atomic charge). However, this introduces a degree of discontinuity, whereby small changes in
geometry might change the sorting order of atoms.
To improve upon the Coulomb matrix, the Bag-of-Bonds (BoB) representation was developed [227]
by eliminating the need to sort whole matrices. The idea is to treat each type of pairwise interaction
separately. Thereby, all off-diagonal Coulomb matrix elements are grouped into “bags” according
to the pair of atom types involved (e.g. C-H, H-H, C-N, ...). Within each bag, the Coulomb terms
are sorted and padded with zeros to a fixed bag size. Finally, the sorted values from all bags are
concatenated into one long vector. The BoB representation is invariant to atom index permutations but
typically yields a higher-dimensional representation than a Coulomb matrix for the same molecule,
due to being effectively a sparse expansion of the Coulomb matrix entries.
Instead of a global descriptor for the whole molecule, Atom-Centered Symmetry Functions (ACSF)
[228] are a set of local descriptors computed around each atom. ACSFs encode the local chemical
environment of each atom in a way that is invariant to permutations of neighboring atoms and to
overall translation and rotation of the molecule. Typically, a set of radial and angular functions are
defined. For example Behler (2011) suggests, a radial symmetry function for atom 8

�
rad
8 =

∑
9

4
−[('8 9−'B)

2
52 ('8 9) , (2.70)

30

2.2 Machine Learning

where '8 9 is the distance between atom 8 and 9 , [and 'B are parameters , and 52 (') is a cutoff
function that smoothly goes to 0 at some cutoff radius '2 , so that only neighbors within '2 contribute,
ensuring locality. This captures a smoothed histogram of neighbor distances around atom 8. To
enhance local resolution, multiple radial symmetry function can be constructed for different choices
of [, 'B. Angular symmetry functions consider triplets of atoms [228]

�
ang
8
= 21−Z

∑
9

∑
:≠8

(1 + _ cos \8 9:)
Z
4
−[('2

8 9+'
2
8:+'

2
9:) 52 ('8 9) 52 ('8:) 52 (' 9:) (2.71)

with parameters Z, _, [. Here \8 9: is the angle at atom 8 subtended by neighbors 9 and : . This function
accumulates contributions from each pair of neighbors (9 , 8) and (:, 8), encoding both their distances
to 8 and the angle between them. By using various parameter sets ([, 'B, Z , _), one generates a vector
of symmetry function values for each atom that uniquely describes the environment of that atom up to
the cutoff radius. The ACSFs are invariant to swapping neighbors 9 and : due to summation and to
rotation/translation due to their sole dependence on interatomic distances and angles. Despite their
advantages in accurately capturing the local atomic environment, ACSFs become computationally
expensive as chemical complexity increases due to the large number of symmetry functions required.
Additionally, while they explicitly encode local geometry up to three-body correlations, ACSFs
necessitate careful function selection and rely on a fixed cutoff, meaning that long-range interactions
beyond this threshold are neglected unless addressed separately.
Further molecular descriptors include: The many-body tensor representation which generalizes
the Coulomb matrix to include higher-body terms [229]. The smooth overlap of atomic positions
(SOAP) uses a rotationally invariant power spectrum of atomic neighbor density expansions [230].
Classical cheminformatics fingerprints such as Morgan fingerprints [231, 232] encode substructure
patterns as a binary vector in which each bit indicates the presence of a particular chemical fragment
up to a certain radius. These fingerprints are invariant to atom reordering and are extremely effi-
cient to compute, yet they lose geometric information because they typically consider only connectivity.

Graph-Based Molecular Representations
An efficient way to represent molecules is as graphs [233]. In a molecular graph [234], each node
corresponds to an atom, and each edge to a chemical bond connecting the corresponding atoms.
Optionally, graph edges can also connect non-bonded atoms, e.g. by using a distance cutoff to
connect atoms within a certain radius, thereby incorporating geometric proximity beyond formal
bonds. Furthermore, features can be assigned to nodes, edges or even the entire graph. In that case,
each node holds a feature vector containing information such as an encoding of the element type as
well as other atomic properties (e.g. atomic partial charge, hybridization state, electronegativity).
Edges can also store information, such as bond order or distance-based metrics.

An advantage of graph-based molecular representations lies in their intrinsic ability to handle inputs
of variable size. Molecules with arbitrary numbers of atoms directly map to graphs of corresponding
topology. Furthermore, graphs explicitly encode locality via adjacency, naturally capturing the
molecular environment for each atom. Additionally, graph representations facilitate interpretability
by aligning with chemical intuition, offering a direct correspondence between nodes and atoms, as
well as functional groups and subgraphs. In comparison to handcrafted descriptors, little domain
knowledge needs to be embedded explicitly in graph-based approaches as features are “learned” by
the model itself during training [235, 236].

31

Chapter 2 Theoretical background

Another advantage of graph-based molecular representations lies in their inherent adherence to
symmetry. Thereby, representing molecules as graphs naturally respects key physical invariances.
Permuting node indices does not alter the abstract graph structure, since a graph is formally defined by
its connectivity pattern rather than by specific node labels. Consequently, algorithms, which operate on
connectivity and node features, inherently treat isomorphic graphs equivalently, independent of atom
labeling [237]. Furthermore, pure graph representations based solely on connectivity are inherently
invariant to translations and rotations, as they exclude absolute spatial information. However, this
invariance introduces a notable limitation: connectivity-only graphs cannot distinguish between
different spatial arrangements, such as stereoisomers. Therefore, explicit inclusion of geometric
information, typically via distance-based node or edge features, is necessary to enable graph-based
methods to perform tasks like conformational searches effectively. In such cases, modern models
predominantly utilize relative spatial information (e.g. interatomic distances or angles) or employ
specialized equivariant architectures to maintain symmetries [238]. Examples include equivariant
networks such as NequIP [239] and MACE [240], which in-detail go beyond the scope of this
theoretical overview but represent powerful tools for incorporating physical symmetries into learned
representations.

It is important to note that representation quality often directly correlates with model performance:
A powerful learning algorithm cannot fully compensate for a poor choice of representation that does
not reflect important symmetries or loses crucial information. Conversely, a well-chosen representation
can in-theory simplify the task so much that even a simple model would achieve excellent results [152,
241]. The development of representations and models has gone hand-in-hand, leading to the next
section on how supervised learning models are built on top of these representations.

2.2.3 Supervised Learning Approaches in Quantum Chemistry

Having established how to represent molecular data for ML, this section turns to the various supervised
learning models that can be used to map those representations to desired properties. Supervised
models in QC span from simple regression techniques to complex deep learning architectures. The
following section briefly surveys the landscape of these approaches, starting with classical regression
methods and then focusing on neural networks, which are of key relevance to this work.

Traditional Regression Models
Early applications of ML in chemistry often utilized relatively simple regression algorithms on top of
handcrafted molecular descriptors. These methods are grounded in statistical learning theory [242]
and usually offer advantages in terms of interpretability and training on smaller datasets, at the cost of
potentially lower asymptotic performance compared to large neural networks trained on huge datasets.

The arguably most simple regression model is linear regression [189]. This assumes the property H
is a linear combination of the features G 9 : Ĥ = F0 +

∑
9 F 9G 9 . Training involves solving for weights F 9

that minimize loss on the training data. While a linear model is too simplistic for most QC properties
across diverse chemistry, it can be useful in limited contexts such as correlating a property for a series
of similar molecules. Often linear regression in combination with lasso and ridge regularization
(c.f. subsection 2.2.1) is applied in the context of sparse data availability or for feature selection (i.e.
selecting most relevant descriptors from a larger pool). Despite being limited to linear correlations, its
interpretability makes linear regression a great supplement to many statistical analyses.

32

2.2 Machine Learning

Classical linear models such as ridge regression often struggle to capture nonlinear relationships
effectively. A common strategy to address this is transforming input data G into a higher-dimensional
feature space via G ↦→ q(G), where complex nonlinear patterns become linearly representable. However,
explicitly performing this transformation q(G) is typically expensive or impractical.
Kernel ridge regression (KRR) [243, 244] is a nonlinear extension of ridge regression using the

“kernel trick”. Instead of solving the regression in the input space, one implicitly maps G to a
high-dimensional feature space via a kernel function : (G, G ′) = q(G)>q(G ′) that computes scalar
products in the feature space without the need of explicit information on transformation q. Solving the
the regression problem in the feature space using the kernel, enables KRR to model complex nonlinear
relationships while retaining computational efficiency. Kernel functions are designed such that they
quantify the similarity between data points based on their descriptors. Common kernels in chemistry
include Gaussian kernels [155]:

: (G, G ′) = exp
(
− ‖G − G

′‖2

2f2

)
(2.72)

KRR features uncertainty estimates and a closed form solution which is advantageous for small to
medium-sized datasets regarding computing time. However, KRR scales poorly with the number
of training points # , due to solving the linear system requiring $ (#3) operations. Thus, for large
datasets other regression methods (e.g. neural networks) become more feasible.

Gaussian process regression (GPR) [245] is closely related to KRR. Both KRR and GPR leverage
the kernel trick to enhance their expressiveness, allowing them to better fit the training data. While
KRR identifies a single target function by minimizing a loss function, GPR adopts a probabilistic
framework. In GPR, Bayes’ theorem [246] is used to construct a Gaussian posterior distribution
over target functions, effectively merging prior beliefs with a likelihood function derived from the
observed data to estimate the posterior distribution. Indeed, given appropriate hyperparameters, the
mean of this posterior with observation noise is the KRR predictor. GPR intrinsically provides a
prediction uncertainty, making it useful for guiding experiments or active learning approaches [247,
248]. Similar to KRR, the scaling of $ (#3) limits GPR to a small datasets unless sparse GPs or
approximations are used [249, 250].

Generally, the presented regression models require choosing a suitable kernel or assuming linearity,
which means they rely heavily on the quality of the chosen descriptors. If the descriptors lead to the
target quantity being relatively smooth or linear in some transformed space, these regression methods
can produce excellent results even with limited data. However, for more complex tasks where the
choice of descriptors is not straight-forward, neural networks as presented in the next section pose a
viable alternative.

Neural Networks
Neural networks (NNs) are a class of regression models constructed in a layer-wise fashion, which
enables them to capture complex, non-linear relationships within data. Supported by the Universal
Approximation Theorem, even a single hidden layer neural network can approximate any continuous
function on a compact domain to an arbitrary degree of accuracy, given enough hidden units [251,
252]. As a result, NNs have emerged as the method of choice for addressing a wide range of challenges,
from standard pattern recognition [253] to advanced applications in QC [254–256]. Their scalability

33

Chapter 2 Theoretical background

and flexibility allow them to effectively model intricate relationships in data that are often intractable
by traditional methods. In the following, ML architectures most relevant to this thesis are elucidated,
starting with fully-connected feedforward neural networks and progressing to graph neural networks
in the next section, which are particularly pertinent for applications in QC.

Multi-Layer Perceptrons (MLPs) [257] are fully-connected feedforward networks that transform a
fixed-length input vector (i.e. a molecular descriptor) through successive layers to capture complex
nonlinear relationships. Each layer performs a linear transformation followed by a nonlinear activation
function f. A single layer is generally defined by

h8 = f(,8h8−1 + b8) (2.73)

with,8 being the weight matrix and b8 the bias vector in the given layer. By sequentially propagating
vector h8 through each layer, information is processed. Layers other than the input and output layers
are commonly referred to as “hidden layer”. Specifically, the input vector x is fed into the network such
that h0 = x, and the final layer outputs the predicted quantity hlast = ŷ. As detailed in subsection 2.2.2
the input vector x can constitute molecular descriptors such as Coulomb matrix eigenvalues. Common
activation function include rectified linear unit (ReLU) and sigmoidal functions such as logistic and
hyperbolic tangent:

fReLU(G) = max(0, G) (2.74)

flogistic(G) =
1

1 + 4−G
(2.75)

ftanh(G) = tanh(G) = 4
G − 4−G

4
G + 4−G

(2.76)

Typically, the same activation function is used throughout all hidden layers. Depending on the research
question, the activation function for the output layer is adjusted, e.g. when predicting a continuous
scalar variable H ∈ [−∞, +∞] the activation function in the last layer is usually omitted. Optimization
of the network parameters (,8 and b8) is usually performed using backpropagation in combination
with adaptive methods such as Adam (c.f. subsection 2.2.1). Figure 2.3 illustrates a fully connected
feedforward NN with an input vector of dimension 3, a single hidden layer, and a scalar output.

The architecture of a MLP is highly flexible, with no predefined constraints on the number of hidden
layers or the size of each individual layer, i.e. the dimensionality of,8, b8, and consequently h8+1.
The predictive accuracy of NN models often depends not only on the availability of data but also on
the chosen architecture. Deep models have gained prominence for their ability to automatically learn
hierarchical feature representations from raw data [152]. Unlike shallow architectures, deep NNs
stack multiple hidden layers, allowing them to extract increasingly abstract features. This automated
feature learning reduces the reliance on manual feature engineering and often leads to improved
predictive performance [257]. However, the training of deep models can be challenging due to issues
like vanishing or exploding gradients [213] (see also subsection 2.2.1). For example, when the outputs
of multiple sigmoid activations are very small, the gradient associated with these parameters can
become nearly zero. To mitigate these problems, modern techniques∗ such as batch normalization
[211], residual connections [214] or gradient clipping [258] are employed. These innovations have
not only enhanced training stability but have also propelled deep learning to achieve state-of-the-art

∗ Probably, Jürgen Schmidhuber had invented them all already back in 10 000BC.

34

2.2 Machine Learning

Figure 2.3: A fully connected feedforward neural network with an exemplary input vector x (blue), one hidden
layer (yellow), and a scalar output (gray). The arrows represent the flow of information, where weights,8 9 and
corresponding bias terms 18 9 are applied, followed by an activation function f. For visual clarity, these terms
are not explicitly shown on every arrow.

results across a wide range of applications, for instance in computational chemistry [259].
Further examples of the application of NNs in QC include the development of NN potentials by

Behler et al. (2007), which employ MLPs to represent high-dimensional potential energy surfaces
of complex molecular systems [6]. In this approach, the total energy of a system is partitioned into
atomic contributions, applying a separate MLP associated with each element type, that computes
an atom-specific embedding. This is based on the locality assumption, as an atom’s contribution to
the total energy is primarily determined by its local environment. Hence, many´ NN-based models
compute the total energy as a sum of atomic contributions. Moreover, ACSF-based descriptor
models have been proposed [228], taking the ACSF vector of an atom as input for these NNs (c.f.
subsection 2.2.2). Another notable example is ANI-1 [157], a NN potential designed to predict
molecular energies with near-DFT accuracy at the computational cost of classical force fields. It
employs a modified version of Behler-Parrinello symmetry functions to construct atomic environment
vectors, which serve as molecular representations that capture both configurational and conformational
degrees of freedom. For the generation of training data, ANI-1 utilizes Normal Mode Sampling to
produce a diverse set of molecular conformations, thereby enhancing its transferability. Additionally,
PhysNet [260] is a high-dimensional NN designed to predict properties such as energies, forces,
dipole moments, and partial charges. It applies MLPs that leverage learnable distance-based attention
masks to model atomic interactions in a physically meaningful way. By integrating residual blocks
and explicit electrostatic terms, PhysNet effectively captures both short- and long-range interactions,
making it suitable for a wide range of chemical systems.

2.2.4 Graph Neural Networks

Graph Neural Networks (GNNs) [261–263] represent a significant advancement in molecular ML by
providing a native representation of molecular structure (c.f. subsection 2.2.2). Unlike traditional
NNs, like MLPs, which require fixed-size input vectors, GNNs can process molecular graphs of

35

Chapter 2 Theoretical background

arbitrary size, enabling predictions at the node, edge, or global graph level. In a message passing
scheme each atom is initially assigned a feature vector, which is then refined through multiple graph
layers with iterative message passing. This native integration of molecular descriptors renders GNNs
one of the most universally applicable and high-performing architectures, thus playing a central role
in state-of-the-art models for QC [4, 264, 265]. Thereby, a GNN can be trained end-to-end using
techniques such as gradient descent to minimize the loss on the target property (c.f. subsection 2.2.1).
In the following a detailed look at GNNs in the context of QC is given, including their mechanisms,
advantages, and some specific architectures and challenges.
Commonly, a molecule is represented as a graph � = (+, �), where each node 8 ∈ + corresponds

to an atom and each edge (8, 9) ∈ � signifies a bond or interaction between atoms 8 and 9 [263]. The
graph is further augmented with node features ℎ (0)

8
for each atom, which encode the atomic number

– typically represented as a one-hot vector over element types or as an integer embedding – and
may also include additional properties such as atom type, formal charge or hybridization. Similarly,
edge features 48 9 capture characteristics of each bond, such as bond type (e.g. single, double, triple,
aromatic), ring participation, or, in the context of 3D graph networks, spatial information like the
vector or distance between atoms [235]. In fully connected graph representations every pair of atoms
is linked by an edge defined by the interatomic distance A8 9 , with those beyond a certain cutoff typically
being disregarded to manage complexity. In molecular graph representations, rather than constructing
a fully connected graph where every pair of atoms is linked by an edge defined by the interatomic
distance A8 9 , a cutoff is introduced to retain only local connections. This approach yields a graph that
is not fully connected overall, although the resulting subgraphs within the cutoff radius are densely
connected. The ultimate objective is to utilize these inputs and topology to generate predictions of
physical quantities. For molecular properties that apply to the entire molecule, information from all
atoms is aggregated, whereas for atom-specific outputs, such as atomic charges or forces, the network
directly provides per-node predictions.
The core mechanism of many GNNs is iterative message passing. At iteration C, each node 8 has

a state vector (embedding) ℎ (C)
8
. Initially ℎ (0)

8
is the feature embedding of atom 8, usually a learned

vector associated with its element type. At each iteration a “message” is sent from node 9 to neighbor
8:

<
(C)
8 9
= "

(C) (
ℎ
(C)
8
, ℎ
(C)
9
, 48 9

)
(2.77)

The function " (C) for generating messages could be the same at every layer or different. Sometimes,
messages are computed only using the neighbor’s state ℎ (C)

9
and edge features 48 9 – hence not using

ℎ
(C)
8

explicitly as this information is already processed using the update function* (C) (see below) [261,
263]. After message generation node 8 aggregates all incoming messages:

<
(C)
8
=

∑
9∈N (8)

<
(C)
8 9

(2.78)

where N (8) denotes neighbors of 8. Note that the sum (or average) is invariant with respect to
permutations of neighbors. Subsequent to message aggregation the node state is updated using an
update function* (C)

ℎ
(C+1)
8

= *
(C) (

ℎ
(C)
8
, <
(C)
8

)
(2.79)

36

2.2 Machine Learning

where* (C) is typically an MLP that produces the new embedding ℎ (C+1)
8

from the previous embedding
ℎ
(C)
8

and the aggregated message < (C)
8
. Since embeddings and aggregated messages have the same

fixed size for all nodes, fixed-size MLPs can be utilized. The size for these internal representations
are hyperparameters which are part of the architectural design of the model. Hence, the input/output
dimensionality for the employed MLPs is independent of the graph size and thus the same model can
be applied to molecules of different sizes.
Repeating this messing passing for several iterations allows information to propagate through the
graph. After) iterations, each node’s embedding ℎ ())

8
contains information about the node and its

environment up to) edges away. This naturally defines a receptive field for each node, i.e. the part
of the graph, whose information influences the given node. At that point, for a graph-level target, a
readout function ' is applied, “pooling” the information of the graph

Ĥ = '({ℎ ())
8
| 8 ∈ +}) (2.80)

which must be invariant to node ordering. A simple and common ' is summation: Ĥ =
∑
8 5out(ℎ

())
8
),

where 5out might be a small network to map node embeddings to contributions. This works especially
well for extensive properties like energy, where the total energy is expected to be the sum of atomic
contributions [235, 240, 266–268]. Indeed, GNNs can be seen as an extension of the idea behind
Behler-Parrinello networks but with learned message functions instead of fixed symmetry functions
(c.f. [6]). Nevertheless, even for intensive properties, if the network can learn to distribute the
intensive property appropriately among atoms, simple node summation could yield reasonable results.
Though generally for intensive properties, more complex pooling is used [235, 269–271]. A schematic
illustration of a GNN as molecular representation is given in Figure 2.4.
By stacking layers, GNNs can approximate many-body interactions, such as three-body and

four-body interactions, which can be associated with bond and torsion angles, respectively. Thus,
increasing the number of layers expands the receptive field and facilitates the integration of many-body
effects. Some architectures, like DimeNet, even explicitly incorporate angular terms in the message
function rather than relying solely on multiple layers [266, 267].
One limitation of message passing is its inherent locality, which does not explicitly address long-
range interactions. Many molecular properties, however, are affected by interactions beyond nearest
neighbors. For example, in conjugated systems, electron delocalization extends over multiple bonds,
and in proteins or large molecules, non-bonded interactions such as electrostatics and dispersion
operate over long distances. To overcome this limitation, several strategies have been proposed. One
approach is to increase the number of message passing steps) , so that, in theory, every node can
influence every other within) hops. However, a large) can complicate training due to issues like
oversmoothing, where repeated averaging causes node embeddings to become too similar [272], and
oversquashing, where the influence between nodes decreases exponentially with the number of hops
between them [273, 274]. Another strategy is to incorporate distance-based edges beyond covalent
bonds, i.e. connecting all atom pairs within a specified cutoff radius, thereby directly capturing
long-range non-bonded interactions, such as intramolecular hydrogen bonds or interactions between
spatially adjacent regions [238, 266, 267]. Additionally, specialized architectural elements, such as
attention mechanisms, gating functions or Ewald-based message passing, can facilitate the propagation
of indirect influences from far-away nodes by enabling gradients to flow globally [275, 276]. Finally,
multi-scale or hierarchical GNNs can coarsen the graph by merging groups of atoms into super-nodes
[277].

37

Chapter 2 Theoretical background

Figure 2.4: Illustration of a graph-based molecular representation using a GNN. The molecular topology is
represented by a graph whose nodes (blue and green) correspond to atoms, and whose arrows denote covalent
bonds. The node embeddings (yellow) and edge attributes (red) encode the local chemical environment.
Messages are generated from these features and passed between the nodes to propagate information. After
multiple iterations of message passing, a global output quantity can be computed via pooling over all node
vectors.

Multiple GNN architectures for applications in QC have emerged as powerful tools to predict
molecular properties with high accuracy. For example, SchNet [238] employs continuous filter
convolution, where each pair of atoms within a specified cutoff contributes to the message via a radial
basis expansion of the interatomic distance multiplied by a learned filter. Building upon SchNet,
PhysNet [260] incorporates explicit terms for long-range electrostatics and extends the framework
to predict atomic charges and dipoles. It introduces mechanisms to model physical atomic charge
interactions and to ensure energy conservation in MD simulations. Another notable architecture is
DimeNet/DimeNet++ [266, 267], which explicitly incorporates directional (angular) information
during message passing by using a triplet of atoms to compute an angular basis function that modulates
the messages. This design enables DimeNet to achieve very high accuracy particularly for properties
sensitive to angular variations. More advanced recent architectures, such as EGNN [278], GemNet
[268], PaiNN [279], NequIP [239], and MACE [240], have focused on equivariance with respect to
geometric transformations. For instance, PaiNN [279] and similar equivariant GNNs ensure that
rotations of the input coordinates lead to corresponding rotations in the predicted vectorial properties
(e.g. forces or dipoles). NequIP [239] and MACE [240] further utilize ($ (3) group representations,
such as spherical harmonics, to systematically capture directional geometric information, achieving
state-of-the-art performance on force field predictions with substantially reduced data requirements.
As outlined above, GNNs offer several significant advantages for tasks in QC, i.e. a flexible yet

structured approach that aligns well with molecular structure. They effectively overcome many
earlier limitations, like fixed-size input, and thus allow the model complexity to be focused on
learning chemistry rather than symmetries. GNNs naturally allow for constructing predictions that are

38

2.2 Machine Learning

invariant with respect to permutations of atoms, eliminating the need for explicit sorting or additional
preprocessing to fulfill symmetry requirements. Furthermore, GNNs allow for efficient encoding
of local chemical information by directly leveraging the bonded connectivity and functional group
structures inherent in molecular graphs. Unlike traditional methods that rely on MLPs or kernel
approaches to indirectly infer connectivity from descriptors, GNNs operate directly on the graph
structure. In addition, many GNN architectures are inherently extensible, as they capture how a
property scales with molecular size. For instance, adding another CH2 group to a chain can typically
be handled without retraining the model, with the network predicting an incremental change in the
property. Empirically, GNNs have achieved state-of-the-art accuracy on numerous benchmarks, often
outperforming fixed-descriptor methods as data abundance increases [7, 8, 240, 267].
Despite these advantages, several challenges and limitations remain. GNNs can require large

amounts of data to avoid overfitting, especially when deep architectures with many parameters are
used [152, 263]. To mitigate this, techniques such as data augmentation [280], e.g. through rotations
of moieties or small perturbations to atomic positions, and transfer learning via pretraining on large
datasets have been employed [281]. While message passing scales linearly with the number of edges
O(|� |), the inclusion of dense graphs (e.g. by connecting all atom pairs within a large cutoff) can
lead to quadratic scaling ∼ O(|+ |2), which becomes problematic for large molecules, such as proteins,
unless partitioning or sparse representations are utilized. Furthermore, although attention-based GNNs
can provide insights by highlighting influential bonds or substructures, exact interpretability remains
daring [275]. Notably, even with extensive training datasets, GNNs remain stochastic methods that
primarily interpolate within the chemical space defined by the training data. In general, guaranteeing
or even assessing their extrapolation capabilities is challenging. For instance, a model trained on
small organic molecules might not generalize well to larger, more complex drug-like molecules if it
encounters novel patterns or scales beyond those represented in its training set. Additionally, GNNs
typically operate on static graphs, which limits their ability to model dynamic chemical processes
such as reactions or bond-breaking events. Although some approaches have been developed to handle
dynamic graphs or predict bond rearrangements [282, 283], capturing continuous bond transformations
remains difficult. Furthermore, integrating GNNs with established physical principles is an ongoing
research area. Hybrid physics-ML models [284, 285], the prediction of Hamiltonian matrix elements
[286, 287], or corrections to physics-based simulations [288, 289] are under active development.
Eventually ensuring that the outputs of GNNs (and other ML methods) adhere to physical constraints,
such as energy conservation and symmetry requirements (e.g. through equivariant architectures), is
crucial for advancing their applications in QC.

39

CHAPTER 3

Hybrid DFT Geometries and Properties for 17k
Lanthanoid Complexes – The LnQM Dataset

Christian Hölzer,∗ Igor Gordiy,† Stefan Grimme,∗ and Markus Bursch‡

Received 14 November 2023, Published online 18 January 2024.

Reprinted in Appendix A (adapted) with permission§ from
C. Hölzer, I. Gordiy, S. Grimme and M. Bursch, Hybrid DFT Geometries and Properties for
17k Lanthanoid Complexes – The LnQM Data Set, J. Chem. Inf. Model. 64 (2024) 825, DOI:
10.1021/acs.jcim.3c01832.
– Copyright (c) 2024 American Chemical Society

Own manuscript contributions

• sample generation based on CSD database

• performing calculations

• interpretation of the results

• writing of the manuscript

∗ Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
† Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
‡ Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
§ Permission requests to reuse material from this chapter should be directed to American Chemical Society.

41

https://doi.org/10.1021/acs.jcim.3c01832

Chapter 3 Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes

Lanthanoids play a central role in modern technologies and applications, from display technology
[290–292] and medical imaging [293, 294] to catalysis [295] and energy production [296]. However,
despite their importance, there is a need of comprehensive lanthanoids datasets that can support
both theoretical quantum chemical investigations as well as data-driven approaches such as machine
learning.
The LnQM dataset, introduced in this study, addresses this gap by providing detailed information

on 17 269 mononuclear lanthanoid complexes, including their geometrical, electronic, and energetic
properties. A key feature of the LnQM dataset is the systematic permutation of the central lanthanoid
for each ligand motif, ensuring comparability of different lanthanoid complexes. Due to its large
effective ionic radius, lanthanum is taken as a starting point in the +3 oxidation state. The permutation
of other lanthanoids allowed the isolation of specific chemical influences and trends within the
lanthanoid series. Thereby, the dataset focuses entirely on lanthanoid complexes in the +3 oxidation
state combined with a variety of ligands. In total, 31 distinct ligands were included, showcasing a wide
range of chemical variability. These ligands range from simple molecules like water to more complex
structures such as bipiperidine. The molecular distribution covers molecular charges from -1 to +3 and
molecules comprising 10 to 87 atoms. Whereby the majority of samples in the dataset are either neutral
or carry a charge of ±1. The overall dataset composition is well balanced between all lanthanoids.
To ensure the validity of each complex created, various criteria are applied. These constraints range
from convergence of quantum chemical calculations to confirming structural integrity. The latter
include limiting heavy-atom RMSD deviations from the initial lanthanum structures, discarding
strongly distorted complexes or enforcing a minimum coordination number, among others. Generally,
a high convergence rate could be observed, out of 18 075 investigated structures 96% passed the
selection process and could be used for the final dataset. Geometrical optimizations were performed
at the PBE0-D4/def2-SVP level [45, 68, 82, 91, 92, 297–299], while single-point calculations at the
lB97M-V/def2-SVPD level [45, 99, 298–300] level determined the energetic properties. To correct
for London-dispersion, the D4 dispersion correction [301, 302] is applied.
The dataset further includes chemical data such as bond lengths, atomic partial charges, dipole

moments, coordination numbers, and the HOMO-LUMO gap. The aforementioned diversity enables
the dataset to facilitate a detailed comparison of lanthanoid properties independent of ligand effects,
which is crucial for analyzing chemical and physical trends. For instance, the influence of lanthanoid
contraction becomes apparent in bond lengths and HOMO-LUMO energy differences, with the
HOMO-LUMO gap varying by up to 2 eV across the lanthanoid series, peaking, as expected, for
europium and gadolinium. Another key focus of the dataset is the analysis and validation of different
quantum chemical methods for calculating atomic partial charges. In comparison to the orbital-
independent Hirshfeld [303] partition scheme, the Charge Extended Hückel [304] model proved
particularly reliable, whereas orbital-dependent models, such as Mulliken [305] and Löwdin [306],
showed larger deviations, partially due to the diffuse basis set. Additionally, the performance of
force field and semiempirical methods like GFN-FF [16] and GFN2-xTB [18, 148] on lanthanoid
complexes were evaluated. While these methods provide overall reasonable geometrical structures,
they exhibit weaknesses in predicting bond lengths. These limitations can be addressed by specific
parameterizations for lanthanoids, which are now more feasible with the LnQM dataset.

Overall, the LnQM dataset provides a robust foundation for the advancement of quantum chemical
methods and data-driven analyses on lanthanoids. Its open accessibility allows researchers to
explore new research avenues, such as extending the dataset with additional ligands or incorporating
aforementioned spin-orbit couplings. Future studies could include multi-nuclear lanthanoid complexes

42

or focus on experimentally relevant parameters. By enabling a detailed exploration of the versatile
properties of lanthanoids, the LnQM dataset opens new perspectives for scientific research in this
future-oriented domain of chemistry.

43

CHAPTER 4

ConfRank: Improving GFN-FF Conformer
Ranking with Pairwise Training

Christian Hölzer,∗ Rick Oerder,† ‡ Stefan Grimme,∗ and Jan Hamaekers‡

Received 27 August 2024, Published online 20 November 2024.

Reprinted in Appendix B (adapted) with permission§ from
C. Hölzer, R. Oerder, S. Grimme and J. Hamaekers, ConfRank: Improving GFN-FF Conformer
Rankingwith Pairwise Training, J. Chem. Inf. Model. 64 (2024) 8909, DOI: 10.1021/acs.jcim.4c01524.
– Copyright (c) 2024 American Chemical Society

Own manuscript contributions

• conceptualization of research question

• development of methodology and ansatz

• performing data curation and related calculations

• interpretation of the results

• writing of the manuscript

∗ Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
† Institute for Numerical Simulation, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
‡ Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven 1, 53757 Sankt Augustin,
Germany

§ Permission requests to reuse material from this chapter should be directed to American Chemical Society.

45

https://doi.org/10.1021/acs.jcim.4c01524

Chapter 4 Improving GFN-FF Conformer Ranking with Pairwise Training

The ConfRank research project centers on advancing the ranking of molecular conformers, a
challenge that remains central in drug discovery and related fields of computational chemistry.
Leveraging machine learning (ML) and focusing on pairwise training techniques, this approach refines
the prediction of energy differences between conformers, ultimately achieving better performance
than common semiempirical quantum chemical methods in terms of both accuracy and computational
speed.
In pharmaceutical research, the three-dimensional structure of a molecule is critical for its

interactions with biological targets [308–310]. Subtle conformational changes can affect binding
affinity and thus influence biological activity. However, the complexity of conformational space
poses a significant computational challenge. Many molecules adopt multiple conformations with
minimal energy differences, making it difficult to identify the most stable structure. Traditional
methods to tackle conformer search are often based on molecular-dynamics simulations, which can
incur high computational costs [311]. To overcome this, programs such as the Conformer-Rotamer
Ensemble Sampling Tool (CREST) employ meta-dynamics for enhanced conformer sampling [312,
313]. Thereby, force fields or semiempirical quantum mechanical methods can be used to explore the
potential energy surface. For this purpose, both the GFN-FF force field [16] and the semiempirical
GFN-xTB methods [17, 18] are integrated into CREST.

Building upon the advancement of recent ML models predicting single-point energies on individual
molecules [240, 266–268, 314], the project presented extends this research by training pointwise ML
models on relative energy differences between conformers. Instead of predicting absolute conformer
energies for individual samples (pointwise prediction), ConfRank employs a pairwise training strategy
by learning energy differences between conformer pairs from an ensemble (pairwise prediction),
focusing on learning relative differences rather than absolute energy values, facilitated by a pairwise
loss function during training. On a theoretical note, it is argued that taking the difference between two
pointwise model predicitions for a pair of conformers is the most reasonable ansatz for predicting
relative conformer energies in the light of symmetry requirements. Moreover, this approach can be
motivated by the consideration that by focusing on relative rather than absolute energies, the model
should become more sensitive to subtle geometric variations, such as rotations of moieties, and might
benefit from some degree of error cancellation, potentially reducing biased offsets caused by shifts or
scaling issues in the prediction of the absolute energy.

Since in principle any pointwise ML model suitable for the prediction of structure-property relation-
ships could be utilized for the pairwise approach, the performance of different ML models based on
molecular graph representation is examined. The training set for all models includes a comprehensive
collection of 159 760 organic molecules taken from the GEOM dataset [171], with reference data
computed at the r2SCAN-3c [315] level of theory. Thereby, ensembles were generated using CREST
at the GFN-FF level. Subsequently, the conformer ranking accuracy of the ConfRank ansatz was
evaluated compared to GFN-FF and GFN2-xTB, being the default option in CREST. Thereby, the ML
models trained in a pairwise fashion did not only outperform the GFN-FF and GFN2-xTB methods
but also their pointwise trained counterparts. The DimeNet++ [267] demonstrates best overall per-
formance in terms of computational cost to accuracy ratio and is therefore used as baseline hereinafter.
On the GEOM test set it reduces the GFN-FF mean absolute deviation (MAD) of 4.08 kcalmol−1

down to 0.49 kcalmol−1. Accordingly, the root mean square deviation (RMSD) is improved from
5.65 kcalmol−1 down to 0.71 kcalmol−1, achieving an accuracy below the conformer-ranking-relevant
energy window of 1.0 kcalmol−1.

46

ConfRank’s enhancements in statistical accuracy translate directly into better conformer identific-
ation. For this purpose, besides comparison of basic statistical measures such as MAD or RMSD,
correlation and ranking coefficients are taken into account as well as self-developed metrics centered
on conformer ranking. The latter include sign flip probability and the probability for containing
the lowest conformer within a given energy window. The pairwise trained DimeNet++ successfully
identifies 81% of the lowest-energy conformers, a considerable increase compared to the 10%
success rate achieved by GFN-FF and even outperforming GFN2-xTB (47%). Such high accuracy in
identifying the correct conformer is critically important CREST / CENSO pipelines [116, 316], where
incorrectly ranked conformers lead to high computational costs at later stages of the optimization
funnel. Furthermore, using a pairwise trained ML model yields an almost 100-fold computational
speedup for energy calculation compared to GFN2-xTB, leveraging GPU-parallelization and batching.
To assess the robustness and generalizability, ConfRank was also tested against external datasets,

including QM9 [170] and GMTKN55 [89]. These datasets contain a wide variety of molecular
structures, differing in size, complexity, and chemical composition. On the QM9 dataset, large
conformer ensembles on GFN-FF level were evaluated, whereby on the conformational subsets of the
GMTKN55 chemical relevant ensembles were investigated. In both studies the pairwise DimeNet++
excels over the GFN methods. Moreover, the model was also successfully tested on an ensemble
of a biomolecular complex of 176 atoms, a size larger than all structures used in training. Despite
slightly worse results compared to previous studies, the ConfRank ansatz shows promising evidence
to generalize to larger structures.

47

CHAPTER 5

dxtb – An Efficient And Fully Differentiable
Framework For Extended Tight-Binding

Marvin Friede,∗ Christian Hölzer,∗ Sebastian Ehlert,† and Stefan Grimme∗

Received 30 April 2024, Published online 09 August 2024.

Reprinted in Appendix C (adapted), with the permission of AIP Publishing‡ from
M. Friede, C. Hölzer, S. Ehlert and S. Grimme, dxtb – An efficient and fully differentiable framework
for extended tight-binding, J. Chem. Phys. 161 (2024) 062501, DOI: 10.1063/5.0216715.
– Copyright (c) 2024 AIP Publishing

Own manuscript contributions

• conceptualization of research question

• development of methodology and ansatz

• design of software framework

• supporting in visualization and writing

∗ Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
† AI4Science, Microsoft Research, Evert van de Beekstraat 354, 1118 CZ Schiphol, Netherlands
‡ Permission requests to reuse material from this chapter should be directed to AIP Publishing.

49

https://doi.org/10.1063/5.0216715

Chapter 5 An Efficient And Fully Differentiable Framework For Extended Tight-Binding

The integration of quantum mechanical methods into machine learning (ML) models has become
increasingly fundamental in advancing computational quantum chemistry (QC). Numerous approaches
have emerged that utilize ML to predict chemical properties based on features calculated by existing QC
methods [318]. Among those, the extended tight-binding methods GFN1-xTB [17] and GFN2-xTB
[18] have emerged as effective semiempirical quantum mechanical methods for fast and robust
optimization of geometries and calculation of molecular properties. In this project, the groundwork is
laid to enhance these GFN-xTB and enable their further integration into ML frameworks.
The developed method dxTB is an efficient and fully differentiable framework for extended tight-

binding, currently supporting the GFN1-xTBHamiltonian. Thereby, dxtb provides a re-implementation
of the GFN1-xTB method in PyTorch, which allows for automatic differentiation (AD) and seamless
integration into ML frameworks. Generally, fast computation of gradients is paramount for QC
methods as it is not only required for geometry optimization but also for the calculation of higher-order
properties. Although analytical gradients and Hessians are favorable in terms of accuracy and speed,
their derivation demands considerable effort and expertise, often resulting in long development
times and complicated expressions that can be difficult to adapt for new methods. Alternatively,
numerical differentiation for nuclear gradients, whereby derivatives are approximated by evaluating
finite perturbations of atomic positions, is prone to numerical inaccuracies, and scales poorly with
system size, making it less feasible for investigations of larger systems. In contrast, AD offers a
compelling solution by automatically deriving partial derivatives through the application of the chain
rule to the sequence of arithmetic operations conducted in a computer program. By those means,
AD combines the accuracy of analytical methods with the flexibility and ease of implementation
typically associated with numerical approaches, while remaining highly scalable and adaptable to
new models. Moreover, AD inherently facilitates efficient computation of derivatives of the output
quantity (typically energy) with respect to arbitrary input parameters, not just nuclear coordinates. This
capability within dxTB is particularly beneficial for exploring the influence of individual parameters
in highly-parametrized methods such as GFN1-xTB. Such flexibility is generally not achievable using
analytic closed-form solutions, due to the enormous required effort in manual deduction and the large
number of involved parameters.
However, dynamic computational graphs, as used in frameworks like PyTorch, present challenges for
iterative procedures such as the self-consistent field (SCF) procedure in GFN-xTB methods. These
can be addressed either by explicitly differentiating through all iterations (unrolling) [319, 320] or by
applying implicit differentiation [320]. Explicit differentiation for the SCF procedure is supported
by dxTB, but naive unrolling in dynamic graphs leads to high memory usage and computational
overhead, as the memory consumption scales linearly with each iteration, making it unfeasible for the
calculation of large systems. Inspired by experiences from TBMaLT[321], a “perfect guess” shortcut
was tested, where the SCF runs outside the graph and is reconnected via a final tracked iteration.
However, this yields inaccurate gradients, as intermediate charge dependencies are lost. Implicit
differentiation, based on the implicit function theorem, on the other hand requires differentiation only
at the SCF’s converged solution, not across all iterations [320]. This removes guess-dependency,
yields well-defined errors tied to the SCF convergence threshold, and allows for the flexible choice of
iterative solvers. Additionally, it reduces memory usage to a constant footprint.

Regarding software design, dxTB is written in Python and leverages PyTorch [322, 323], a widely
used ML framework. As mentioned above, PyTorch’s automatic differentiation and high-performance
tensor operations enable efficient computation of derivatives, crucial for optimizing molecular
geometries and exploring potential energy surfaces. This eliminates the need for manual derivative

50

calculations and avoids numerical differentiation errors. Also, PyTorch facilitates GPU computation,
making dxTB particularly suited for large-scale ML applications where modern GPU infrastructure
becomes rather indispensable. Additionally, PyTorch’s widespread infrastructure facilitates seamless
integration into research workflows and allows easy extension by other scientists. Also for this
purpose, the dxTB framework embraces a highly modular architecture. This modularity simplifies
the process of adding new features, integrating alternative Hamiltonians, or coupling the framework
with ML models for property prediction. Core functionalities within the software include routines for
computing classical energy terms, such as those related to repulsion and dispersion, as well as the
management of self-consistent interactions that are fundamental in describing electronic structure. A
particularly noteworthy enhancement is the integration of the “libcint” library [324], a state-of-the-art
computational backend built to handle integral evaluations with high computational performance.
By incorporating libcint via the DQC package [325, 326], dxTB achieves a remarkable speed boost
relative to purely Python-based approaches, ensuring that the framework runs efficiently even on larger
and more complex molecular systems. For the implementation of implicit differentiation the xitorch
library[327] was utilized.

Compared to the compiled, Fortran-based tblite implementation of GFN1-xTB [328], dxTB achieves
comparable runtimes for energy and gradient evaluations, managing to limit the overall slowdown to
a factor of about two to five. Note that this difference is expected when contrasting an interpreted
language like Python with a compiled language such as Fortran, yet the aforementioned optimizations
substantially close the performance gap. For example, evaluating energies and gradients for a large
LNCI16 system with 538 atoms [329] takes approximately 180 s with dxTB, versus 41 s with tblite.
When parallelized over four cores, these runtimes reduce to 50 s and 14 s, respectively. Notably, dxTB
with libcint and implicit differentiation significantly outperforms its naive Python AD version, which
requires around 4 000 s for the same system. For the QM9 dataset [170], which comprises around
134 000 molecules, total energy and gradient evaluations using dxTB with libcint take 214min. This
is substantially faster than both the pure AD implementation of dxTB (397min) and dxTB using
analytical derivatives for overlap integrals (366min). In comparison, tblite is still roughly twice as
fast, completing the full set in 99min. A similar trend holds for the smaller yet chemically more
diverse GMTKN55 dataset [89], where the optimized dxTB outperforms pure AD implementation
and completes in 4.1min, while tblite again runs approximately a factor of two faster (1.7min).
These results highlight the significant speed-up enabled by integrating libcint, and demonstrate

that dxTB supporting the GFN1-xTB Hamiltonian, delivers robust and scalable performance across
a wide range of molecular sizes and chemistry. Notably, batching significantly improves runtime.
Batched calculations are consistently faster than sequential processing, both in single-core and parallel
execution. This performance gain is largely due to the elimination of repeated setup steps and overhead
inherent in processing molecules one at a time. For instance, computing energies and gradients for
1 000 molecules from the QM9 dataset takes only 22.2 s when batched on a single core, compared
to 55.4 s when processed sequentially. Parallelizing the batch over four cores further reduces the
runtime to just 15.9 s. To fully exploit the capability of efficiently computing arbitrary higher-order
derivatives using dxTB, vibrational modes and spectroscopic properties of planar ammonia could be
reproduced employing non-numerical (exact) Hessians. Furthermore, the IR spectrum of capsaicin
could be computed without the need of numerical differentiation. The calculation of these higher-order
derivatives could not be done beforehand with the Fortran implementation and is novel to dxTB.
Furthermore, even arbitrary-order derivatives could theoretically be computed using dxTB, opening
up avenues to further investigate chemical space.

51

CHAPTER 6

Summary and Outlook

In the field of computational quantum chemistry (QC) the upcoming usage of machine learning
(ML) leads to transformative advancements, enabling breakthroughs with respect to both accuracy
and computational speed. This allows previously unattainable system sizes and quantities to be
calculated and opens up new research possibilities for investigations in the field of biology and
medicine. Traditional approaches, such as semiempirical quantum mechanical (SQM) methods
and density functional theory (DFT), have long formed the backbone of computational chemistry,
allowing accurate predictions of molecular properties and guiding experimental designs. However,
these methods face challenges in scalability and computational cost, particularly for high-throughput
studies and large or chemically diverse systems. In recent years, advances in computing facilities and
QC methods have enabled the creation of large amounts of high-quality reference data, driving the
development of ML models that achieve high accuracy at a fraction of the traditional computational
cost. Notably, ML not only complements established methods like SQM and DFT but also extends their
applicability to problems previously deemed computationally prohibitive. Thereby, ML techniques
accelerate molecular property prediction, automate retrosynthetic analysis or aid reaction discovery.
In this context, ML is not merely a tool for speeding up calculations but a catalyst for innovation
in QC. ML methods facilitate the exploration of uncharted chemical spaces, enabling large-scale
compound screening, and allowing for iterative improvement through hybrid workflows that combine
ML predictions with physics-based concepts. The development of physics-inspired ML architectures
further enhances the ability to capture the underlying equations of quantum systems, paving the way
for breakthroughs in drug design and materials development.

This thesis focuses on a) the generation of high-quality data and b) the integration of ML methods
into QC algorithms. Data serves as the foundation for most computational methods, making it a
critical resource for research. Hence, the availability of datasets with not only ample quantity but
also sufficient variance and quality is indispensable. However, especially many areas of inorganic
chemistry lack comprehensive datasets to train and test models effectively. To address this gap,
the introduced LnQM dataset provides a foundation benchmark in the context of mono-lanthanoid
complexes. The dataset features a diverse range of 31 organic ligands, including both neutral and
anionic types, and uses permutation of the central lanthanoids to achieve high comparability across
the lanthanoid series. In this, 17 269 structures are optimized at the PBE0-D4/def2-SVP level and
the featured content comprises geometric, energetic, molecular and electronic properties for each
structure at lB97M-V/def2-SVPD level. By enabling systematic comparisons between lanthanoids

53

Chapter 6 Summary and Outlook

within the LnQM, expected trends in the lanthanoid series such as the SOMO- and HOMO-LUMO
gaps can be verified. Moreover, the influence of lanthanoid contraction and discernible trends in
bond lengths for different central lanthanoids are apparent. It could also be shown that neither the
GFN-FF nor the GFN2-xTB method are fully suitable for treating lanthanoid complexes. Even though
geometry optimization through these methods leads to surprisingly similar overall structures compared
to PBE0-D4/def2-SVP level, bond lengths around the central lanthanoid are heavily distorted. Both
methods are therefore inadequate for extensive usage in the lanthanoid regime and should only be
used carefully when treating complexes containing lanthanoids. As noted this is partially due to an
insufficient lanthanoid parametrization of the GFN methods. This topic has been further explored by
Rose et al. (2024) in [330], showing promising results in the description of lanthanoid complexes
using an adopted GFN-FF parametrization. Subsequently, the LnQM study revealed shortcoming in
several charge models. Compared to the density-based Hirshfeld charges, the ab initio charge models
Mulliken and Löwdin exhibit a large spread and no discernible trend along the lanthanoid series. Even
though this is particularly favored due to the diffuse basis set which was employed for the feature
calculation, it highlights the fragile nature of these basis set dependent charge models. At the time of
the study, the atomic partial charges on the central lanthanoid could best be described by the charge
extended Hückel model. Nevertheless, this highlights the importance of evaluating different atomic
partial charge theories and the ongoing need for consistent and reliable charge models, particularly in
the field of inorganic chemistry. To overcome aforementioned charge partition issues, new methods
are constantly being developed. In the course of this research direction, the LnQM dataset has
been utilized for parametrizing new charge models, such as the Charge Extended Hückel model, as
demonstrated by Müller et al. (2024) in [331]. Beyond these insights for QC methods, the systematic
construction of the included lanthanoid complexes allows for the methodical evaluation of QC and
ML model performance across different elements. The controlled ligand motif provides a unique
framework for evaluating the performance of new QC and ML models in a manner that isolates the
influence of the central lanthanoid. By maintaining structural consistency, the methodology enables
a direct comparison of model performance across the entire lanthanoid series, thereby facilitating
the development and benchmarking of models tailored to these elements. As a result, the LnQM
dataset not only supports research in the realm of lanthanoids, but might also inspire the construction
of datasets in adjacent chemical domains.

Another central topic of this thesis is the integration of ML into QC workflows, with the ConfRank
ansatz addressing a core challenge in computational chemistry: the energetic ranking of molecular
conformers. Common computational techniques for conformer generation and ranking often rely
on fast force field methods, which can predict geometries but often lack the accuracy in energy
required to confidently rank near-degenerate conformers. By employing a pairwise training approach,
the prediction accuracy of relative conformer energies can be substantially improved. For a pair
of two conformers from an ensemble, pseudoenergies are inferred using a pointwise ML model.
The conformational energy for the given pair is then calculated using the difference between these
pseudoenergies. In the study it is even shown that the plain difference between these pseudoenergies
is not only the most-straightforward function to combine pseudoenergies for a given pair, but in
fact the only viable choice when symmetry and transitivity constraints should hold. This novel
finding, albeit rather trivial to formulate, might help future researchers to design even more efficient
algorithms for conformer ranking. The employed pairwise loss function focuses on energy differences
between conformers, thus honing sensitivity to geometric variations and benefiting from intrinsic error
cancellation. Especially the latter is of paramount importance when comparing relative rather than

54

absolute energies. For the model choice, various state-of-the-art ML architectures in computational QC
are deployable, ultimately selecting the DimeNet++ as a representative model, based on criteria such as
inference speed and the number of trainable parameters. Using a large organic dataset based on small-
to medium-sized drug molecules for training and testing, it can be shown that the prediction accuracy
for conformer energies improves dramatically compared to the widely used GFN-FF and GFN2-xTB
methods, reducing the root mean square deviation (RMSD) from 5.65 kcalmol−1 to 0.71 kcalmol−1.
Given that these methods are used as default in CREST, one of the de facto standard tools for generating
conformer ensembles, the results highlight the significant possible advancements in conformer search
achievable with ML-based approaches. Further tests on datasets covering a vast organic space, such as
QM9 and GMTKN55, confirm the robust performance of the ConfRank approach. In a significant
part of the ensembles, the lowest-energy conformer could be accurately identified, surpassing the
aforementioned traditional ranking methods by a substantial margin. For example, the RMSD on
the GMTKN55 subsets improves by 29% on average. Furthermore, the performance of the ML
model even closely resembles the performance of the reference r2SCAN-3c composite meta-GGA
DFT-functional on some subsets. Beyond its notable predictive accuracy, the new method is up to
orders of magnitude faster than even GFN-FF, particularly when utilizing GPU infrastructure - which
will probably become indispensable for computational QC laboratories in the future. This speedup in
ranking makes it feasible to scan through vast libraries of conformer geometries and lowers the barrier
for large-scale studies, such as those often required in drug development. Also, the development of new
metrics for the evaluation of conformer ranking accuracy during this work will help future developers
to more efficiently assess and compare new model performances. While future developments can
expand on capabilities to account for non-covalent interactions and incorporate molecular charges,
thereby expanding the range of analyzable systems, ConfRank already demonstrates highly promising
performance in improving the energetic ranking of conformers using ML techniques.

The concluding work in this thesis transitions from merely using ML models as additive corrections
to existing QC algorithms to investigating how the two fields QC and ML can be holistically integrated.
To achieve this, the well-established semiempirical extended tight-binding (xTB) program has been
reimplemented in PyTorch, a leading ML framework written in Python. The differential xTB
(dxTB) model allows for full differentiability by leveraging PyTorch’s native support for automatic
differentiation. Using backpropagation - a technique widely employed in the domain of ML neural
networks - this optimization technique can now be applied to the original method xTB. One challenging
aspect of the implementation lies in the self-consistent field (SCF) procedure, a recursive part of the
calculation that can lead to a computational graph blow-up when using standard explicit differentiation.
To circumvent this and maintain computational efficiency, implicit differentiation is implemented,
utilizing the implicit function theorem. This allows differentiation with respect to the optimality
conditions rather than the entire iterative process. The dxTB implementation is almost fully vectorized,
enabling GPU acceleration for enhanced computational performance. Additionally, all integral-related
computations are delegated to the high-performance C library libcint, offloading the most time-
consuming tasks and allowing overall efficiency close to the Fortran reference implementation. The
dxTB implementation supports batch-wise processing, allowing efficient computations for multiple
molecular systems simultaneously. Furthermore, it enables higher-order nuclear derivatives than
previously possible with the default xTB implementation, in fact even up to arbitrary orders. Even
derivatives with respect to any input variable, such as parameters from the GFN parameterization,
are now feasible. These parameters can also be optimized directly through gradient descent and
backpropagation, offering a new way to optimize the model for specific applications. In the future,

55

Chapter 6 Summary and Outlook

dxTB will support additional Hamiltonians beyond GFN1-xTB, such as GFN2-xTB with its multipole
expansion. Moreover, dxTB enables the native integration of xTB into PyTorchMLmodels, allowing it
to become an integral part of the ML pipeline rather than serving solely as a feature provider. Thereby,
through backpropagation, all parameters of the GFN1-xTB implementation can be individually trained,
enabling the native adjustment of the GFN parametrization to less commonly studied chemical groups,
such as lanthanoids. The LnQM dataset [183], for instance, could serve as a starting point for such
efforts. Additionally, KAN networks [332] could be applied to analyse the functional dependencies of
physical quantities. Their learnable activation functions make them particularly apt for the design
and optimization of internal functions, such as the calculus of coordination numbers. Thereby their
inclusion might provide a flexible attempt for fine-tuning and extending the GFN-xTB model further.
The development of dxTB illustrates the paradigm shift from applying ML to QC towards fully
integrating QC into ML frameworks. Thereby, dxTB serves as a proof of concept on how QC can
evolve into an integral component of ML frameworks, combining the strengths of both disciplines.
In summary, the work of this thesis provides advancements in improving computational QC with

ML along multiple dimensions. Starting from the generation of datasets, over using ML models within
existing QC workflows, up to the integration of QC and ML methods. The combination of the QC and
ML domains is expected to contribute significantly to future research in material science, medicine
and biology. For this purpose, this thesis provides a toolbox and foundation for future developments.

56

Appendix

57

APPENDIX A

Hybrid DFT Geometries and Properties for 17k
Lanthanoid Complexes – The LnQM Dataset

Christian Hölzer,∗ Igor Gordiy,† Stefan Grimme,∗ and Markus Bursch‡

Received 14 November 2023, Published online 18 January 2024.

Reprinted in Appendix A (adapted) with permission§ from
C. Hölzer, I. Gordiy, S. Grimme and M. Bursch, Hybrid DFT Geometries and Properties for
17k Lanthanoid Complexes – The LnQM Data Set, J. Chem. Inf. Model. 64 (2024) 825, DOI:
10.1021/acs.jcim.3c01832.
– Copyright (c) 2024 American Chemical Society

∗ Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
† Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
‡ Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
§ Permission requests to reuse material from this chapter should be directed to American Chemical Society.

59

https://doi.org/10.1021/acs.jcim.3c01832

Appendix A Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes – The LnQM
Dataset

Abstract The unique properties of lanthanoids and their diverse applications make them an
indispensable part of modern research and industry. While the field has garnered attention, there
remains a gap in availablemolecule datasets that facilitate both classical quantum chemistry calculations
and the burgeoning field of machine learning in data science applications. This research addresses
the need for a comprehensive dataset that allows for a comparative analysis of various lanthanoids.
The herein presented, curated dataset includes 17269 mono-lanthanoid structures derived from 1205
distinct ligand motifs. Structures encompass all 15 lanthanoids in the +3 oxidation state and exhibit
molecular charges ranging from −1 to +3, including structures with high spin multiplicity up to
8. Starting from lanthanum complexes, samples were processed with a permutation of the central
lanthanoid atom, resulting in highly comparable subsets, facilitating comparative studies in which
the influence of the lanthanoid can be investigated independently of ligand effects. The dataset
provides a broad range of features such as PBE0-D4/def2-SVP optimized geometries and optimization
trajectories, while also coveringlB97M-V/def2-SVPD energies, rotational constants, dipole moments,
HOMO−LUMO energies, and Mulliken, Löwdin, and Hirshfeld population analyses. Additionally,
coordination numbers, polarizabilities, and partial charges from D4, EEQ, GFN2-xTB, and CEH
calculations are included. The dataset is openly accessible and may serve as a basis for further
investigations into the properties of lanthanoids.

A.1 Introduction

Lanthanoid complexes play an important role in various scientific and technological applications,
such as light-emitting materials used in display technologies and optical sensors [290–292, 333,
334], bio-imaging [335–337], and are particularly important in magnetic resonance and fluorescence
imaging [293, 294, 338–340]. Lanthanoid complexes are also relevant for homogeneous catalysis
[295, 341–344]. Furthermore, lanthanoids are employed as neutron absorbers in nuclear reactors, for
instance, up to less commonplace applications as energy sources in satellites [296, 345].
However, there is currently a significant gap in the available data sets for conducting theoretical

studies on lanthanoid complexes. This lack of available data sets for theoretical studies on lanthanoid
complexes impacts both quantum chemical (QC) methods, such as density-functional theory (DFT),
and emergingmachine learning (ML) approaches [69, 346, 347]. AlthoughMLmethods are considered
promising, they are data-intensive and require sufficient amounts of reference data for model building
and validation. Their effectiveness is therefore highly dependent on the availability and quality of data.
Diverse quantum chemical data sets for more common chemical elements exist for offering validation
opportunities for QC methods. They typically feature relatively few but high-quality data points,
usually at coupled-cluster wave function theory level. For instance, the S66x8 dataset [187] provides
valuable insights into intermolecular interactions at a highly accurate coupled-cluster reference
level (CCSD(T)/CBS) [348]. Moreover, the GMTKN55 database offers an extensive repository of
reaction data widely employed in QC research to validate and enhance computational methods for
thermochemical and kinetic properties [89, 185].
On the other hand, datasets generated with relevant features for ML applications often contain

abundant data points of potentially lower data quality (often below DFT level). The majority of existing
ML datasets focus on organic or main group elements. A typical example is the widely utilized QM9
dataset [169, 170], which contains DFT calculations for a variety of small organic molecules, and the
ANI-1 dataset [157, 186], which was developed specifically for neural network applications to predict

60

A.2 Computational Details

molecular properties. In addition, datasets such as QM7, QM7b, and QM8 allow for a more in-depth
study of the electronic properties of small organic molecules [155, 169, 349–351]. In this context,
it is pertinent to accord special recognition to the "transition metal Quantum Mechanics" (tmQM)
dataset, a compilation that encompasses an extensive set of transition metal geometries along with
corresponding properties of organometallic structures [182]. The tmQM was recently extended by
the tmQMg and the tmQMg-L dataset [352, 353]. Although the tmQM dataset considerably extends
the spectrum of available sets beyond organic chemistry to transition metals, there is currently no
extensive dataset for ML applications in the field of lanthanoids.

In the present study, we introduce a comprehensive dataset for all 15 lanthanoids, focusing on small
to medium-sized mono-lanthanoid complexes, optimized for compatibility with conventional QC
methodologies. This Lanthanoid Quantum Mechanics dataset (LnQM) is designed to provide features
and geometries for ML applications and to facilitate the development of semiempirical methods
with focus on lanthanoids. Our objective is to extend the prevailing momentum of constructing
specialized datasets targeting distinct regions of the periodic table, akin to the tmQM dataset. By
doing so, we aim to facilitate scientific investigations in the domain of lanthanoids. Furthermore,
manual generation of thousands of lanthanoid structures is both time-consuming and susceptible to
errors. Data sources such as the Cambridge Structural Database (CSD) [354] present limitations,
as the quality of the data cannot automatically be assured. Anomalies such as incorrectly assigned
hydrogen atoms could emerge, which cannot be accurately identified and filtered out through automated
means. For this reason, synthetically generated data was used for the study. To facilitate this, we
employed the recently published Architector program, which is specifically designed for the robust
generation of organometallic complexes [355]. A key advantage of generating synthetic data is that it
offers control over created structures, parameters like molecular charge, oxidation state, and ligand
properties. Geometries with various ligand motifs are generated on the GFN2-xTB level [18, 148],
subsequently optimized on the PBE0-D4/def2-SVP level, and singlepoint features evaluated on the
lB97M-V/def2-SVPD level [68, 82, 91, 92, 99, 297, 300]. Details of the software and methods used
are detailed in section A.2. Section A.3.1 outlines the workflow for generating the samples and the
dataset. Following this, section C.4 examines the dataset’s properties. A concluding discussion is
provided in section B.6.

A.2 Computational Details

Quantum mechanical calculations were performed using the ORCA computational chemistry software
suite (version 5.0.4) [40, 356]. Using the PBE0 functional [68, 82, 91, 92, 297], geometry optimizations
employed the def2-SVP basis set [45, 298, 299] and were carried out under default convergence settings.
Dispersion corrections were applied with the D4 scheme [302], integral approximations were enabled
with the RIJCOSX setting [357], and the DEFGRID2 option was used to set up the DFT integration
grid. In accordance with general recommendations on the selection of DFT functionals [86], the
single-point feature calculations have been conducted using the range-separated hybrid lB97M-V
functional [99, 300] utilizing the def2-SVPD basis [45, 298, 299]. This functional integrates the
post-SCF evaluated VV10 non-local dispersion correction [358]. For feature calculation TightSCF
convergence criteria were used. The basis set was chosen to be efficient due to the large number of
calculations required for the dataset, while also accommodating for anions via the diffuse functions.
The def2-ECP Effective Core Potentials (ECPs) were employed for the lanthanoids [359–361]. Atomic

61

Appendix A Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes – The LnQM
Dataset

partial charge calculations are conducted with GFN2-xTB [18, 148] using the tblite framework [328].
Furthermore, for force field calculations, the GFN-FF was applied [16].
The structures of the complexes were generated using the Architector tool (version 0.0.10), the

source code of which is available on GitHub [355, 362]. To facilitate utility tasks and enable efficient
scaling in the generation of structural complexes, the ArchitectorWrapper package was employed
[363]. Data is stored in the hierarchical data format (HDF5) [364]. All scripts were written in Python
version 3.11.4 [322, 365].

A.3 Results and Discussion

A.3.1 Creation of the LnQM dataset

A comprehensive overview of the steps involved in generating the LnQM dataset is given in Figure A.1.
The workflow for the dataset creation is divided: (1) Sample creation, (2) 3D structure generation, (3)
permutation, and (4) feature calculation. The following subsections provide a detailed description of
each step.

Figure A.1: Workflow for dataset creation. Components using the ORCA (ArchitectorWrapper) framework are
indicated by blue (yellow) highlighting. For sample creation, ligands and settings are prepared and fed into the
Architector package for generation of 3D structures. Subsequently, these structures are optimized and permuted.
Finally, singlepoint properties are calculated for each individual sample and stored in a database.

1. Sample Creation
The initial step involves the selection of ligands that are utilized in constructing the samples.
Also, molecular charge and oxidation state of the ligand-lanthanoid complex are determined. The
ArchitectorWrapper package is employed for automated generation of input parameters.

Lanthanum serves as the initial central atom and starting point for generating samples. As elaborated
in the subsequent "Permutation" section, samples for the other 14 lanthanoids are derived based on
these initial lanthanum-based structures. As detailed in Table A.1, lanthanum was selected as the

62

A.3 Results and Discussion

Element EC0C< OS R+3 / Å
La [Xe] 5d1 6s2 +3 1.05
Ce [Xe] 4f1 5d1 6s2 +3, +4 1.00
Pr [Xe] 4f3 6s2 +3, +4 1.00
Nd [Xe] 4f4 6s2 +3, +4 0.98
Pm [Xe] 4f5 6s2 +3 0.97
Sm [Xe] 4f6 6s2 +2, +3 0.96
Eu [Xe] 4f7 6s2 +2, +3 0.95
Gd [Xe] 4f7 5d1 6s2 +3 0.94
Tb [Xe] 4f9 6s2 +3, +4 0.92
Dy [Xe] 4f10 6s2 +3, +4 0.91
Ho [Xe] 4f11 6s2 +3 0.90
Er [Xe] 4f12 6s2 +3 0.89
Tm [Xe] 4f13 6s2 +2, +3 0.88
Yb [Xe] 4f14 6s2 +2, +3 0.87
Lu [Xe] 4f14 5d1 6s2 +3 0.86

Table A.1: Overview over lanthanoids and their properties. Denoted are the atomic electron configuration
(EC0C<), the lanthanoid’s formal oxidation states (OS) and effective ionic radii (R+3) [367–370].

starting point for generating lanthanoid samples for two primary reasons. First, it exhibits the largest
atomic radius among lanthanoids, making it an ideal candidate for initial structure generation, i.e.
allowing for adaptability during lanthanoid permutation without compromising coordination patterns.
Second, its natural oxidation state is +3, which is also the only oxidation state universally available
across all lanthanoids. In accordance with these considerations, the parameters for metal oxidation
state and total spin were set to +3 and 0, respectively. Spin-orbit coupling effects are not considered in
this study, as they are expected to be small for the considered properties [366]. We further constrained
the coordination numbers (CN) for all complexes to fall within a range of 5 to 9, aiming to encompass
a representative set of realistic geometries. Additionally, only samples with molecular charges ranging
from −1 and +3 are considered. This charge constraint was implemented to avoid the generation of
chemically irrelevant or unrealistic structures, particularly as highly negatively charged systems are
prone to yielding implausible (gas phase) geometries not relevant to actual chemical contexts.

A diverse range of ligands was employed to probe the structural and chemical space of lanthanoid
complexes. Table A.2 presents a detailed account of the 31 ligands utilized for constructing the dataset
as well as their frequency in the lanthanum subset. The selection spans from simple, small uncharged
ligands like water, to larger, more complex molecules such as bipiperidine. Mono-atomic anions
like fluoride, chloride, bromide, and iodide were also included to study the influence of halogens.
The inclusion of ligands like thiocyanate allows to investigate varying degrees of polarity and charge
distribution. Additionally, a range of nitrogen-based ligands like pyridine, pyrazine, and ammonia
were employed. Also the role of sulfur and phosphorus containing ligands, such as trimethylphosphite,
were examined. Moreover, neutral and charged ligands have been taken into account. This variability
enables a study of the interactions between lanthanoids and multiple charge carriers. The choice of
ligands includes a diverse array of binding characteristics, featuring mono- and multidentate ligands,

63

Appendix A Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes – The LnQM
Dataset

including bidentate and tridentate configurations. The inclusion of these varied ligands in the sample
permits the investigation and categorization of various bond types and spatial arrangements.
The dataset focuses exclusively on mono-nuclear lanthanoid structures. Aside from the central

lanthanoid atom, no heavy metals or similar entities are included within the ligands or the overall
complexes. This decision was made to isolate the effects of the lanthanoid center and to avoid
additional complexities arising from the presence of other heavy atoms. Systems are inspired by
experimentally synthesizable compounds although explicit verification or restriction to exclusively
experimentally available structures has not been performed.

2. 3D Structure Generation
Subsequent to ligand selection, 3D structures are generated by attaching ligands to the central
lanthanoid using the Architector framework, which involves determining metal center symmetry,
ligand geometry, complex conformers, and identifying the lowest conformers. The Architector setup
was configured using the following settings: GFN2-xTB [18, 148] was selected for both conformer
assembly and final conformer evaluation, multiple conformers were generated and relaxed, with up to
10 different metal-centered symmetries investigated. Initial lanthanoid structures featured lanthanum
in its +3 oxidation state. Final geometric relaxation of the complexes with GFN2-xTB was conducted,
improving the quality of the generated structure. Lanthanum was chosen as initial central lanthanoid
ion for this preliminary structure generation step. Finally, the GFN2-xTB geometries were optimized
at the PBE0-D4/def2-SVP level in the gas-phase.

Figure A.2: Overview over various optimized geometries for different ligand motifs and lanthanoids. Given is a
shortened version of the unique identifier used in the dataset.

64

A.3 Results and Discussion

Name SMILES Frequency Charge / 4

Neutral systems
Acetonitrile CC#N 252 0
Ammonia N 463 0
Bipiperidine N1CCCCC1-C2CCCCN2 205 0
Carbon monoxide [C-]#[O+] 252 0
Diethylenetriamine NCCNCCN 164 0
Ethanol CCO 225 0
Ethylendiamin NCCN 197 0
Methanol CO 272 0
Pyridine C1CCNCC1 242 0
Pyrazine C1CNCCN1 267 0
Tetrahydrofuran C1CCCO1 217 0
Trimethylphosphine CP(C)C 228 0
Trimethylphosphine oxide CP(=O)(C)C 245 0
Trimethylphosphite COP(OC)OC 216 0
Water O 240 0

Ionic systems
Azide [N-]=[N+]=[N-] 196 -1
Acetylacetonate CC(=CC(=O)C)[O-] 177 -1
Benzoate C1=CC=C(C=C1)C(=O)[O-] 155 -1
Bromide [Br-] 179 -1
Chloride [Cl-] 182 -1
Cyanide [C-]#N 395 -1
Ethanolate CC[O-] 193 -1
Fluoride [F-] 202 -1
Glycinate C(C(=O)[O-])N 167 -1
Hydroxide [OH-] 174 -1
Iodide [I-] 186 -1
Isothiocyanate S=C=[N-] 187 -1
Methanolate C[O-] 204 -1
Nitrate [N+](=O)([O-])[O-] 178 -1
Nitrite N(=O)[O-] 197 -1
Thiocyanate [S-]C#N 203 -1

Table A.2: The 31 ligands used for the dataset creation, their SMILES representation, and their abundance in
the lanthanum subset.

65

Appendix A Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes – The LnQM
Dataset

3. Permutation
To create a dataset with comparable lanthanoid configurations, the central lanthanum ion of the initially
generated and optimized complexeswas interchangedwith the other lanthanoids to create corresponding
subsets for each of them. At this point lanthanum complexes are a chemically reasonable starting
point, due the typically similar chemical compositions throughout the lanthanoid series. Moreover,
the ionic radii of the lanthanoids vary systematically as highlighted in Table A.1 with lanthanum
incorporating the largest ion radius, thus preventing structural clashes in the subsequent permutation
steps. By this permutation strategy, the volume of data that is essential for data science applications
is systematically increased. Further, direct comparability across various lanthanoids is guaranteed,
enabling comparative benchmark studies evaluating performance for individual lanthanoids.

During permutation, the ligands and thus the molecular charge remained unchanged; only the spin
multiplicity was affected by the substitutions. As the attached ligands are exclusively closed-shell,
the spin multiplicity was set equivalent to the multiplicity of the isolated lanthanoid ion in the +3
oxidation state according to the NIST database [371].

Furthermore, an examination of spin multiplicities of actinoid compounds as reported by Andreadi
et. al aligned with this adopted methodology, prompting its extrapolation for lanthanoids [372]. In
total, 2406 closed-shell systems are included in the dataset, for higher spin multiplicities up to +8 over
2200 samples are available per multiplicity.

The permutated structures were subsequently optimized at the PBE0-D4/def2-SVP level. To ensure
consistency in data management, samples in the dataset are tagged with a unique identifier (UID).
This UID is based on a hash value of ligands and configuration. Hence, for each lanthanoid, the
LnQM holds a distinct subset with unique structures, but shared ligand motifs. The substitution of
lanthanoids generally exerts a negligible impact on the overall molecular geometry, as illustrated in
Figure S1 in the Supporting Information. For a comparison of the geometric structures for different
lanthanoids, see Figure A.2, which displays a selection of structures from the dataset.

Dataset Composition
Initially, 1500 structures were processed using Architector, of which 1205 (80%) successfully
underwent 3D generation. During the DFT optimization phase, 17661 samples (98%) converged, and
subsequently, 17385 single points (98%) were successfully completed. To ensure the quality of the
dataset, different criteria for the inclusion of samples are scrutinized. Exclusion criteria are based on
several constraints:

1. Heavy atom root-mean-square deviation (RMSD), excluding hydrogen, for each sample was
ensured to not exceed 3Å from the initial structure generated by Architector framework on the
GFN2-xTB level.

2. Permuted samples that diverged from the initial PBE0-D4/def2-SVP optimized lanthanum
complex by an RMSD of more than 4Å were discarded.

3. Samples with an artificially low coordination number CNLn < 2.5 were excluded.

4. All samples with a Ln-{C,N,O,S} distance surpassing 15 00 (∼ 8Å) were removed.

5. Intermediary non-convergence during the geometry optimization process, i.e. observed in
ytterbium samples, led to sample exclusion.

66

A.3 Results and Discussion

Figure A.3: Overview over the LnQM dataset composition and relative sizes of individual lanthanoid subsets.

The refined dataset comprises a total of 17269 data points containing 1205 different motifs in total.
Within this, 657 motifs are presented in all possible permutation combinations, accounting for 9855
directly comparable structures. The dataset is balanced in terms of lanthanoid distribution, the size of
each lanthanoid subset is given in Figure A.3.

Figure A.4 depicts the elemental and molecular size distribution within the LnQM. As expected for
mostly organic ligands, hydrogen and carbon atoms dominate the dataset with relative frequencies of
approximately aH = 0.5 and aC = 0.4, respectively. The relative frequencies for nitrogen and oxygen
range up to aN,O = 0.1. Other elements included in the data, such as fluorine, phosphorus, sulfur,
chlorine, bromine, and iodine, as well as lanthanoids, exhibit relative frequencies significantly below
ax = 0.1. Furthermore, molecules carry a molecular charge ∈ [−1, +3], with 30% of the molecules
being neutral, while 50% carrying a charge of ±1. The dataset predominantly features medium-sized
structures, with the average sample size being =avgatm = 42 atoms. The sample sizes range from =

min
atm = 10

to =max
atm = 87 atoms. Structures with =atm > 90 atoms are deliberately excluded during dataset creation,

as choice of coordination number and ligands inherently limit the overall size of the samples.

4. Feature Calculation
All DFT-based features were computed at the lB97M-V/def2-SVPD level. Geometric properties
include optimized geometries, trajectory points of atomic positions during optimization, as well as
energies and gradients at these points. These points are chosen from the total trajectory using a
logarithmic sampling scheme. The trajectory points provide a dynamic view of the structure, shedding
light on the the local structure of the PES. Such insights prove valuable for studies on non-equilibrium
states and temporal analyses such as molecular dynamics. Additionally, coordination numbers from a
D4 calculation are available, allowing investigations of coordination patterns. Energetic properties

67

Appendix A Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes – The LnQM
Dataset

Figure A.4: The figure provides a comprehensive overview of the LnQM dataset composition. The upper section
(A) depicts the relative distribution of included elements, with lanthanoids consolidated under the label Ln.
Each column is provided with absolute frequency values. The lower left section (B) visualizes the distribution of
molecular sizes. The lower right section (C) displays the distribution of molecular charges across all structures.
The entire dataset comprises 17269 structures.

include the total single-point energy, dispersion correction, exchange-correlation energies. Orbital
energies are available (for open-shell systems in both spin channels) are provided. Molecular properties
include rotational constants, components of the dipole moment along rotational axes, its overall
magnitude, and separate contributions from electronic and nuclear sources. Electronic properties
include the molecular charge, number of unpaired electrons, and overall electron count. Additionally,
the dataset features polarizabilities from D4 calculations using default parameters and diverse sets of
atomic charges from electronegativity equilibration (EEQ) model [149, 373], charged extended Hückel
(CEH) [304], and GFN2-xTB [18, 148] methodologies. Population analyses using Mulliken [305],
Löwdin [306], and Hirshfeld [303] partition schemes were conducted including spin populations.
Mayer bond orders [374], along with free and bonded valences, are included.
Note that only a selection of features can be discussed in detail. A comprehensive overview over all
properties featured in the LnQM is given in Table S1 in the Supporting Information.

68

A.3 Results and Discussion

A.3.2 Analysis of Selected Properties

This chapter offers an analysis of select properties included in the LnQM dataset. It further examines
structural aspects of the LnQM and several properties are investigated for possible trends within the
lanthanoid series.

Frontier Orbital Gaps
Many chemical and spectroscopic characteristics of organometallic complexes correlate with the
energetics of the corresponding frontier orbitals. For closed-shell compounds typically the HOMO-
LUMO gap Δ��−! – the difference between the highest doubly occupied and the lowest unoccupied
molecular orbitals – determines many properties and has a significant impact on the chemical behavior.
With many of the included lanthanoid complexes being open-shell compounds, also the SOMO-LUMO
gapΔ�(−! is of key importance. As illustrated in Figure A.5, clear trends across lanthanoids are evident
in both the average SOMO−LUMO and HOMO−LUMO gaps. Due to the electronic configuration
of the lanthanoid series, unpaired electrons are added to the f -shell from lanthanum to gadolinium.
From gadolinium to lutetium, these unpaired electrons are progressively paired correspondingly. The
SOMO−LUMO gap depicted for the higher populated spin channel is thus sensitive to systems with
many unpaired electrons, like europium (half-filled f -shell, deviation of 0.8 eV), and remains nearly
constant from terbium onward as the unpaired electrons are progressively paired up. The electronic
configuration also results in a continuous increase in the average HOMO−LUMO gap up to gadolinium
(highest number of unpaired electrons), followed by a decrease towards lutetium. This leads to an
overall difference in the average HOMO−LUMO gaps of 2.0 eV.

Atomic partial charges
Partial charges play a crucial role across various chemical domains, such as EEQ within D4
dispersion corrections [302], the newly developed q-vSZP basis set [304] or calculation of the
hydrophilic/lipophilic index [375]. Atomic partial charges of the central lanthanoid are explored based
on various charge models. Figure A.6 contrasts (basis set-based) ab initio and semiempirical charge
models to density-based Hirshfeld charges. In comparison to AIM charges [376, 377], Hirshfeld
charges tend to be numerically smaller and thus in better agreement with common chemical sense.
Hirshfeld and other ab initio partial charges have been calculated on the lB97M-V/def2-SVPD level.

The ab initio charge models, Mulliken and Löwdin, are basis set dependent [20]. Particularly, Mul-
liken partial charges are spread out due to the diffuse functions in the def2-SVPD basis [20] and do not
feature a strong correlation with Hirshfeld partial charges (Pearson correlation coefficient rMul = 0.44,
rLöw = 0.38). A charge model comparison across varying basis set sizes is given in Supporting
Information section 4. This study reveals that Hirshfeld charges exhibit minimal basis set dependence,
establishing them as a robust reference choice. Additionally, basis set dependence for other charge
models is relatively small, affirming the continued suitability of the def2-SVPD basis set in this context.
Although the semiempirical methods EEQ, CEH and GFN2-xTB include parameters for lanthanoids,
these are not explicitly fitted for each individual lanthanoid element but interpolated through the series.
In the EEQ method, the partial charges across different lanthanoids remain consistent (rEEQ = 0.27,
MDEEQ

Ln ≈ 0.6 4) due to uniform parameters across all lanthanoids. The CEH model, optimized to
reproduce Hirshfeld partial charges on lB97X-D4/def2-TZVP level, excellently reproduces the Hirsh-
feld charges for lanthanoids (rCEH = 0.79, MDCEH

Ln < 0.1 4). The trend towards heavier lanthanoids
can possibly be attributed to the interpolation of CEH parameters between lanthanum and lutetium.

69

Appendix A Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes – The LnQM
Dataset

Figure A.5: Average SOMO−LUMO gap (A) and HOMO−LUMO gap (B) for each subset, calculated on the
lB97M-V/def2-SVPD level. The 1f standard deviation is shaded in gray.

These results are remarkable, particularly when considering the CEH method’s low computational
cost, as currently, no other semiempirical charge model can achieve such accuracy. Accounting for
the f-in-core approximation [18], partial charges calculated with GFN2-xTB lead to mean deviations
similar to the CEH deviations. However, as can be derived from Figure A.6 and Figure S2 and S3 in
the Supporting Information, correlation of GFN2-xTB partial charges with Hirshfeld partial charges is
poor (rxTB ≈ 0.00). GFN2-xTB features rather constant partial charges, similar to the EEQ model, as
there is no specific parameterization for lanthanoids. In general, the data suggests that only the CEH
charge model is currently capable of adequately reproducing Hirshfeld partial charge distribution
on lanthanoid structures. More detailed information is provided in the Supporting Information section 3.

70

A.3 Results and Discussion

Figure A.6: Overview of atomic partial charges on the central lanthanoid for each subset of the LnQM for
different charge models (A). Comparison of the mean deviation (MD) of partial charges on the central lanthanoid
atom across various charge models relative to Hirshfeld partial charges (B).

Structural Features
Lanthanoids have gained increasing interest in studies on bioinorganic systems [343, 378], metallopro-
teins [379, 380] and chelating markers for biomolecular NMR [381–383], among other applications.
Therefore, an accurate characterization of their geometrical structures is of key importance. However,
for the study of large structures, computationally efficient methods are essential. In this regard, we
evaluate the performance of GFN-FF and GFN2-xTB compared to hybrid DFT for the assessment of
geometric features.

Nitrogen and oxygen are among the predominant bonding partners of lanthanoids in typical structures
since, as small and hard ions in the +3 oxidation state, they tend to form ionic bonds, with small and
hard donor atoms particularly favored. Therefore, a comparison of nitrogen and oxygen bond lengths
on PBE0-D4/def2-SVP level in different subsets of the LnQM is shown in Figure A.7. For a coherent
comparison, only samples with identical ligand motifs are considered. Bonds are determined using
a Mayer bond order larger than 0.3. Average bond lengths 3PBE0-D4(Ln--) are reasonably close to
expected covalent radii, highlighting the lanthanoid contraction leading to shorter bond lengths. The
covalent radii of cerium and ytterbium exhibit distinctive behavior, which might stem from the initial
calculation of diatomic covalent radii for cerium and ytterbium [384]. In general, the bonds in LnQM
are longer than the theoretically determined covalent radii [384], a result of Pauli repulsion and steric
effects. On average the bond lengths are longer by 6% (3%) for lanthanoid - nitrogen (oxygen) bonds.
These systematically longer bonds are most likely attributed to inter-ligand steric repulsion, such as
touching ligand spheres or imperfectly aligned bidentate ligands.
The potential energy surface (PES) vicinity of the PBE0-D4/def2-SVP optimized structures for

different methods is investigated by re-optimizing these structures using a semiempirical (GFN2-xTB)
and a force field (GFN-FF) method. The histogram in Figure A.8 provides a comparative analysis of
the heavy atom RMSD between PBE0-D4/def2-SVP and GFN2-xTB (GFN-FF) optimized structures
over the whole dataset. Both GFN methods cluster around an RMSD between 0.5 and 1Å. Two
effects arising from using the semiempirical and force field methods seemingly cancel each other
out leading to similar RMSD distributions – on the one hand, GFN2 incorporates the electronic
structure and therefore tends to be closer to the DFT PES. On the other hand, GFN-FF establishes
more rigid bonds based on the original topology, making bond changes less likely. Generally, the

71

Appendix A Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes – The LnQM
Dataset

Figure A.7: Bond lengths between central lanthanoid atom and nitrogen (A) and oxygen (B) considered
in structures with identical motifs for all 15 lanthanoid subsets. Bonds are identified using Mayer bond
orders and respective distance estimates. The red dot indicates the sum of covalent radii of bonded partners
Acov = A

Ln
cov + A

{N, O}
cov .

RMSD displays only little differences from the PBE0-D4/def2-SVP optimized structures. However,
investigating individual bond lengths reveals major discrepancies between the GFN methods and
PBE0-D4/def2-SVP. A comparison of bond lengths 3X(Ln-N) and 3X(Ln-O) between DFT and
semiempirical or force field level is shown in Figure A.9. The GFN2-xTB bond lengths feature a
reasonable correlation rxTB > 0.70, though displaying a large spread. The force field shows only weak
correlation with the PBE0-D4/def2-SVP bond lengths (rFF < 0.60). Indicating reasonable geometries,

72

A.4 Conclusions

although offering room for improvement for geometry optimization on lanthanoids below the DFT
level. Better geometries could be achieved by lanthanoid-specific parameterizations for the GFN
methods.

Figure A.8: Comparison of GFN2-xTB and GFN-FF geometry-optimized structures to PBE0-D4/def2-SVP
level using the heavy atom RMSD.

A.4 Conclusions

Despite the widespread utility of lanthanoids in various research applications, few publicly available
standardized datasets for big data applications are available. To close this gap, the LnQM dataset
is introduced, a comprehensive compilation of more than 17000 mono-lanthanoid structures in the
+3 oxidation state optimized at the PBE0-D4/def2-SVP level. The dataset’s extensive array of DFT
features offers a starting point for data-intensive explorations in the realm of lanthanoids. Beyond
geometries, the dataset encapsulates gradients, optimization trajectories, coordination numbers,
energy-related features like single-point energies and the HOMO−LUMO gap, and partial charges
from various charge models (Hirshfeld, Mulliken, Löwdin, EEQ, among others), and electronic
attributes such as dipole moments, computed at the lB97M-V/def2-SVPD level. Due to the variation
of the central lanthanoid, several lanthanoid-specific subsets are available for all 15 lanthanoids.

The analysis of the dataset demonstrates notable variations in the HOMO-LUMO gap. Furthermore,
LnQM reveals shortcomings in some ab initio and semiempirical charge models, where only the
newly developed CEH method provides satisfactory results. Generally, GFN methods yield reasonably
accurate geometries for lanthanoid complexes, although there is potential for improvement through
dedicated parametrizations for lanthanoids, a capability now made feasible by the LnQM.
The dataset enables comparative analyses across different lanthanoids and serves as a platform

for evaluating the performance of QC methods on distinct lanthanoid complexes and set up machine
learning studies in the future. Upcoming studies might explore different avenues such as extending the
dataset, adjusting initial oxidation states, or modifying molecular charges. Also the incorporation
of additional ligands into the generation setup could yield further insights, particularly for metallic

73

Appendix A Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes – The LnQM
Dataset

Figure A.9: Bond lengths 3X (Ln-{N, O}) using geometry optimization on GFN2-xTB (A) and GFN-FF (B)
level compared to PBE0-D4/def2-SVP level.

complexes or experiment-specific setups. Moreover, the inclusion of multi-lanthanoid structures
could shed light on lanthanoid-lanthanoid interactions. In more detailed analyses, the inclusion of
spin-orbit coupling might be considered. Introducing spin state screening could be implemented to
reliably identify ground states. This might currently pose an issue if the ground state is not identified
correctly. Further limitations arise from the semi-automated Architector generation of structures.
While we strive for a balanced representation in ligand structures, subtle biases, such as more frequent
occurrences of ligands like ammonia or cyanide, are challenging to circumference. Potential biases
may also stem from the limited diversity of ligand motifs, which cannot fully represent "all" real-world
chemical environments. The LnQM is designed to serve as a starting point for continued exploration
in the field of lanthanoid research.

74

A.4 Conclusions

Data availability The dataset is available at https://github.com/grimme-lab/lnqm. Please refer to
the information available there for instructions on setting up and loading the data. The dataset is stored
in HDF5 format. To facilitate access, we provide a Python module for reading the data. Furthermore,
molecular geometries are accessible in xyz and coord file formats.

Acknowledgement

The authors thank Dr. Jan-Michael Mewes for fruitful discussions. AI-based methods were used to
assist in the development of the body text. This work was supported by the DFG in the framework of
the SPP 2363 on “Utilization and Development of Machine Learning for Molecular Applications -
Molecular Machine Learning”. S.G. and M.B. gratefully acknowledge financial support by the Max
Planck Society through the Max Planck fellow program.

75

https://github.com/grimme-lab/lnqm

APPENDIX B

ConfRank: Improving GFN-FF Conformer
Ranking with Pairwise Training

Christian Hölzer,∗ Rick Oerder,† ‡ Stefan Grimme,∗ and Jan Hamaekers‡

Received 27 August 2024, Published online 20 November 2024.

Reprinted in Appendix B (adapted) with permission§ from
C. Hölzer, R. Oerder, S. Grimme and J. Hamaekers, ConfRank: Improving GFN-FF Conformer
Rankingwith Pairwise Training, J. Chem. Inf. Model. 64 (2024) 8909, DOI: 10.1021/acs.jcim.4c01524.
– Copyright (c) 2024 American Chemical Society

∗ Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
† Institute for Numerical Simulation, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
‡ Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven 1, 53757 Sankt Augustin,
Germany

§ Permission requests to reuse material from this chapter should be directed to American Chemical Society.

77

https://doi.org/10.1021/acs.jcim.4c01524

Appendix B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

Abstract Conformer ranking is a crucial task for drug discovery, with methods for generating
conformers often based on molecular (meta)dynamics or sophisticated sampling techniques. These
methods are constrained by the underlying force computation regarding runtime and energy ranking
accuracy, limiting their effectiveness for large-scale screening applications. To address these ranking
limitations, we introduce ConfRank , a machine learning-based approach that enhances conformer
ranking using pairwise training. We demonstrate its performance using GFN-FF-generated conformer
ensembles, leveraging the DimeNet++ architecture trained on pairs of 159 760 uncharged organic
compounds from the GEOM dataset with r2SCAN-3c reference level. Instead of predicting only on
single molecules, this approach captures relative energy differences between conformers, leading
to a significant improvement of the overall conformational ranking, outperforming GFN-FF and
GFN2-xTB. Thereby, the pairwise RMSD of the relative energy difference of two conformers
can be reduced from 5.65 kcalmol−1 to 0.71 kcalmol−1 on the test dataset, allowing to correctly
identify up to 81% of all lowest lying conformers correctly (GFN-FF: 10%, GFN2-xTB: 47%).
The ConfRank approach is cost-effective, allowing for scalable deployment on both CPU and GPU,
achieving runtime accelerations by up to two orders of magnitude compared to GFN2-xTB. Out-
of-sample investigations on CREST-generated conformer ensembles from the QM9 dataset and
conformers taken from an extended GMTKN55 dataset show promising results for the robustness of
this approach. Thereby, ranking correlation coefficient such as Spearman can be improved to 0.90
(GFN-FF: 0.39, GFN2-xTB: 0.84) reducing the probability of an incorrect sign flip in pairwise energy
comparison from 32% to 7%. On the extended GMTKN55 subsets the pairwise MAD (RMSD)
could be reduced on almost all subsets by up to 62% (58%) with an average improvement of 30%
(29%). Moreover, an exemplary case study on vancomycin shows similar performance, indicating
applicability to larger (bio-)molecular structures.

Furthermore, we motivate the usage of the pairwise training approach from a theoretical perspective,
highlighting that while pairwise training can lead to a decline in single sample prediction of absolute
energies for ML models, it significantly enhances conformer ranking performance.

The data and models used in this study are available at https://github.com/grimme-lab/confrank.

B.1 Introduction

In drug research, understanding and identifying conformational isomerism is crucial as the biological
activity of a molecule significantly depends on its precise three-dimensional geometry when interacting
with biological targets, such as enzymes or receptors [308–310, 385–387]. Hence, developing methods
to identify structural and energy differences between conformers is highly important. Thereby,
pinpointing the energetically most favorable conformers is challenging due to the often relatively
small energy differences (on the order of thermal energy at room temperature) and a large number
of conformations [388–392]. Moreover, identifying the lowest-lying conformer in an ensemble of
conformers (”stabilomer”) is particularly relevant, as the lowest energy conformer is generally the most
abundant and relevant form of a molecule under physiological conditions [393–395] and the predicted
effectiveness and specificity of a drug can heavily depend on the most abundant conformer [396–400].
Therefore, understanding and predicting conformational behavior may lead to the development of
drugs with better efficacy, reduced side effects, and improved pharmacokinetic properties. As
such, conformational analysis is a key component in the optimization of therapeutic agents and the
rational design of new drugs. Furthermore, conformers are relevant in quantitative structure-activity

78

https://github.com/grimme-lab/confrank

B.1 Introduction

relationship analyses [401] in the context of biodegradability [402, 403], industrial applications
[404–409], and consumer goods [410–413].

Software designed to generate conformational libraries for a large number of compounds needs to
be computationally efficient while producing high-quality geometries. These models are required to
provide a broad conformational coverage, representing each compound with diverse, non-redundant,
and physically plausible conformers. Conformer ensembles can be generated through systematic,
stochastic, or machine learning (ML)-based methods [414–416].
In the last years, several methods for generating conformer ensembles based on ML models have
been developed, including ones leveraging supervised learning [417, 418], unsupervised learning
[419–421], and reinforcement learning [422–425]. Furthermore, recent advancements in diffusion
models have led to the creation of multiple implementations for conformer generation [426–428].
Systematic methods employ rule-based conformed generation such as rotations around bonds with
fixed angles [429–431] or more elaborated methods i.a. using allowed paths to constrain the search
space [432] or other knowledge bases [433–435]. Other physics- and heuristics-based conformer
generation methods include the open-source cheminformatics library RDKit, which utilizes distance
geometry algorithms for generating small-molecule conformers [436]. Additionally, commercial
software such as OpenEye’s OMEGA [437, 438] employs a torsion-driving approach for conformer
generation.
Various methods explore the conformational space using stochastic methods, often employing
physically inspired approaches such as surface collision [439, 440], Monte Carlo-sampling [441] or
using (accelerated) molecular-dynamics [311, 442, 443].
Among this plethora, the meta-dynamics based Conformer-Rotamer Ensemble Sampling Tool

(CREST) [115, 312, 313, 444, 445] has established itself as one popular method for ensemble
generation due to its robustness and effectiveness in finding and generating relevant conformers [446].
For conformational analysis, two steps are essential: generation of conformer structures and

energetic ranking of these structures. The latter requires a) accurate conformational energies at b) fast
inference timings such that large-scale scanning applications become feasible. Often heuristics or
computationally fast methods such as classical force fields are employed for this task [447–449]. In
recent years multiple ML-based ab initio force fields were introduced [8, 157, 450]. Albeit yielding
sufficient computational speed, classical force fields often lack the accuracy needed for the precise
identification of energetically relevant conformers.

Therefore, conformer generators such as CREST are often concluded with tools like a Commandline
ENergetic SOrting of Conformer Rotamer Ensembles (CENSO) [116, 316] pipeline to refine ensembles
at a higher theoretical level, usually different levels of Density Functional Theory (DFT). Following
different optimization and energy calculations steps, the selection of conformers is narrowed down to
identify the lowest lying conformer. Thereby, major causes of high computational costs are incorrect
geometries or inaccurate energy rankings, and overall computational costs can be significantly reduced
if the initial energetic ranking is improved. An improved energetic sorting allows fewer conformer
candidates to be evaluated using higher-level DFT functionals, which are computationally demanding.
Research on improving geometries during conformer generation, such as through specialized force
fields and ML potentials, is ongoing. In this study, the focus is placed on improvements for the relative
energy prediction. Even though various ML models demonstrate promising results in this context [7,
8, 157, 451, 452] and show promising outcomes when inferring ensemble data instead of single data
[453], to the best of the authors’ knowledge, few research has been conducted on pairwise comparisons
of conformers using ML methods so far.

79

Appendix B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

In this research, a ML training ansatz is developed to improve upon energetic ranking using existing
ML architectures. For this purpose, the training objective of a ML model is shifted towards predicting
relative energies for a given pair of conformers. We exemplarily show that this approach can be applied
to various ML architectures to obtain DFT-like energy rankings at force field cost. In the following
section C.2, the theoretical motivation for the specifics of our pairwise training workflow is presented.
Subsequently, in section B.3 a short overview of the technical setup is given. Section B.4 describes
the training data and curation steps. In the first part of section C.4, the ranking performance of ML
methods is compared to conventional quantum chemistry (QC) methods, in the later part a comparison
of pairwise and pointwise training procedures is conducted. For this purpose, different datasets are
curated, spanning from GEOM and QM9 to GMTKN55. For all samples, references at r2SCAN-3c
level are provided and a trained DimeNet++ model is made available. Section B.6 concludes with a
discussion on potential future research directions such as targeting broader areas of chemical space.

B.2 Theory and Methods

The following section features a formal mathematical problem statement for conformer ranking,
focusing on pairwise training. A brief discussion of the machine learning models evaluated in this
study is provided, followed by an overview of the GFN-FF theory and background, which serves as
the baseline method.

B.2.1 Conformer Ranking with Machine Learning

Problem statement Our goal is the ranking of conformers in an ensemble with respect to their
conformation energy. For a specific molecule, we are given an ensemble of # molecular conformers{
X(8)

}#
8=1

. The 8-th molecular conformer of an uncharged molecule with = atoms is given as

X(8) =
{(

r(8)
9
, / 9

)}=
9=1
, (B.1)

where r(8)
9

denotes the Cartesian coordinates of the 9-th atomic nuclei and / 9 is the respective
atomic number.
Essentially, one can view the total energy as a function � (8)C>C = 5

(
X(8)

)
and approximate it, for

example, by a statistical model and subsequently rank the conformers with respect to the prediction.
The rise ofMachine Learning Interatomic Potentials (MLIPs) over the past years together with advances
of hardware and in particular accelerators such as GPUs has lowered the bar for the development of
highly accurate, yet fast surrogate models. Inspired by the growing availability of powerful machine
learning architectures that have shown their ability to model large datasets, we decide to tackle the
problem of high-throughput conformer ranking by tailoring such a model to our specific application.

Pairwise approach A key challenge in conformer ranking is that we are mainly interested in
potentially very small (. 1 kcal mol−1) relative energy differences between conformers of the same
chemical composition and covalent bond topology, whereas chemically different ensembles might
differ in their total energies by orders of magnitude. A natural solution to overcome this difficulty is to
consider the relative energy of two conformers 8 and 9 , rather than their respective total energies:

�
(8, 9)
A4;

= �
(8)
C>C − �

(9)
C>C (B.2)

80

B.2 Theory and Methods

In this work, we approximate � (8, 9)
A4;

by a neural network based model 5\

�
(8, 9)
A4;
≈ 5\

(
X(8) ,X(9)

)
, (B.3)

where \ denotes the set of trainable parameters. In particular, we investigate the process of
minimizing a loss function L over a dataset D containing relative energies � (8, 9)

A4 5
for pairs of

conformers as computed by a reference method, i.e. finding an optimal set of model parameters \∗ via

\
∗
= arg min

\
E(

X(8) ,X(9) ,� (8, 9)
A4 5

)
∼D

L
(
�
(8, 9)
A4 5

, 5\

(
X(8) ,X(9)

))
.

(B.4)

In contrast to the pointwise training process that is common for most machine learned interatomic
potentials, equation (B.4) minimizes a loss function that depends on pairs of data points, hence we are
in the setting of pairwise learning [454–456]. As a result of learning differences, special importance
is put on (geometric) changes that lead to energetic changes within an ensemble. On the other hand,
contributions that are more or less constant within the same ensemble cancel out in equation (B.2).
Note that machine learning models for ranking have been investigated in various contexts before
[457–462]. Conceptually, our work is closest to the idea of pairwise difference regression [463] and
twinned regression [464, 465].

Symmetry requirements The prediction of relative energies needs to satisfy certain consistency
requirements in order to be meaningful from both a physical perspective and a technical perspective.
That is, for any two pairs 8 and 9 of data points or respectively for any triplet 8, 9 and : our predictive
model 5\ needs to fulfill

I : 5\

(
X(8) ,X(9)

)
+ 5\

(
X(9) ,X(8)

)
= 0 (B.5)

II : 5\

(
X(8) ,X(9)

)
+ 5\

(
X(9) ,X(:)

)
+ 5\

(
X(:) ,X(8)

)
= 0.

(B.6)

The first condition simply implies that the prediction should change its sign when commuting
the arguments (antisymmetry). The second condition guarantees that the prediction for the relative
energy of (:, 8) is consistent with the prediction for (8, 9) and (9 , :) (transitivity). More general, the
predictive model 5\ should yield consistent predictions also for arbitrary =-tuples of data points which
is referred to as higher order loop consistency. As outlined by Wetzel et al. [464], conditions (B.5)
and (B.6) are sufficient for higher order loop consistency. Wetzel et al. [464] suggest using a pairwise
neural network architecture and enforcing the consistency requirements by additional regularization
terms in the loss function. At inference, they consider violations of loop consistency as a measure for
uncertainty of the model prediction. However, in the spirit of Informed Machine Learning [466], we
include these constraints directly into the model architecture, allowing for exact fulfillment of loop
consistency. To that end, we will achieve 2- and 3-loop consistency by decomposing the pairwise
model as

81

Appendix B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

5\

(
X(8) ,X(9)

)
= 6\

(
X(8)

)
− 6\

(
X(9)

)
. (B.7)

This choice seems very natural, and indeed we argue in the Supporting Information that this is the
only way to build a pairwise architecture that satisfies the loop consistency relations.

Additionally, we assume 5\ to be invariant with respect to translations and rotations of the molecule
and invariant with respect to permutations of atom indexing. Hence, it is a natural choice to employ
an architecture from the vast pool of ML models for atomistic systems that have been developed over
the past years [157, 239, 240, 260, 266–268, 278, 314, 450, 467–470] as 6\ . Another nice feature of
decomposing 5\ according to equation (B.7) is that, despite being trained in a pairwise fashion, at
inference, new structures can be evaluated in a pointwise manner by simply applying 6\ . Therefore,
in practice, we still deal with model architectures that operate on single samples but train them in
a pairwise fashion. However, the output of 6\ does not necessarily equate to the actual potential
energy but rather to some pseudo-energy that can be used for computing pairwise differences during
training and for direct ranking at inference time. Intuitively, we expect that during the pairwise training
process, 6\ is optimized to account for differences within ensembles, while being less sensitive to
dependencies that are more or less constant among conformers of the same ensemble. If 6\ was
a classical force field with bond, angle, torsion energy terms etc. we can imagine locally constant
contributions to cancel out in equation (B.7), potentially leading to a less complex loss function
landscape. This becomes especially prevalent in the context of conformer search, where isolated atom
energies, covalent bond energies etc. cancel out (almost) entirely. In the Supporting Information, we
describe how pseudo-energies can be related in part to the actual potential energies by performing a
linear fit of constant per-atom energy contributions.

B.2.2 Machine Learning Interatomic Potentials

Machine Learning Interatomic Potentials are MLmodels that predict the potential energy surface (PES)
of atoms in a system. Traditional methods such as QC can be highly accurate but computationally
expensive. MLIPs aim to provide a balance by offering accuracy close to that of ab initio computations
at a fraction of the computational cost. [471] They are trained on data generated from high-level QC
calculations or (less often) experimental data and can be used to simulate large systems over longer
timescales. Common applications of MLIPs include material science or drug design [472].
Most MLIPs are designed to achieve a linear scaling behavior in terms of the system size by

representing the predicted value as a sum over atom-wise contributions [6]. Of particular importance
for this work are Graph Neural Networks (GNNs), which often construct these atomic contributions
from learned node features that result from the training process. Many GNNs used for the prediction
of atomistic properties employ a variant of message passing [473] and thus belong to the group of
Message Passing Neural Networks (MPNNs). The concept of message passing allows for propagating
information between nodes, edges, etc. along the molecular graph, that is usually specified based on
inter-atomic Euclidean distances and a cutoff radius. As a result, MPNNs can be used to model both
short-range dependencies and long-range dependencies up to the boundary of their receptive field
while retaining their linear scaling behavior. The size of the receptive field can usually be adjusted
by choosing the hyperparameters of a specific MPNN architecture appropriately. An advantage of
modern GNN architectures is that they are usually agnostic to the specific dataset they are trained
on and are often ready to use, requiring almost no feature engineering. During the training process

82

B.2 Theory and Methods

functional dependencies with respect to the molecular geometry, such as dependencies of the energy
on bond stretching or bending, are learned by the network. Note that only atomic coordinates and
atom identifiers are taken as an input.
We want to stress the vast amount of different model architectures available through publications

and open-source software. Although there are publications [471, 474–477] providing an overview of
different architectures, it is usually not obvious which architecture is the best for a specific problem a
priori. For practical reasons, we restrict ourselves to only a few different MPNN architectures. In the
following, we give a short overview of architectures used in this work.

SchNet [314] employs a continuous-filter convolutional neural network architecture to model
atomic interactions, thus transferring the convolution concept from images to molecular graphs.
Its architecture enables the efficient capture of both local chemical environments and long-range
interactions by propagating information across the molecular graph.

DimeNet++ [267] is a MPNN architecture designed to predict molecular properties by leveraging
directional message passing. It is an enhancement of the original DimeNet [266], improving both
performance and computational efficiency. Internally, a radial Bessel basis and a 2D spherical
Fourier-Bessel basis expansion are employed to encode information on interatomic distances and
angular dependencies of nodes. DimeNet++ was one of the first GNNs to incorporate directional
information in its message passing process, allowing for improved accuracy.

GemNet [268] is another architecture based on DimeNet++. In contrast to DimeNet++ it allows
for the explicit description of 4-body interactions (GemNet-Q), although using 3-body information
exclusively is possible as well (GemNet-T). Building on spherical representations the authors show
that GemNet is a universal GNN, hence being able to approximate any continuous function of a point
cloud that is invariant to (global) rotations, translations and permutations. This theoretical result in
combination with diverse training data makes GemNet a promising candidate for accurate modeling
of molecular properties in a wide area of applications.

MACE [240] [478] has its theoretical foundation in the atomic cluster expansion [479] and builds
on (� (3)- and � (3)-equivariant modeling [480] in combination with higher order message passing.
In particular, the message passing process builds on a hierarchical body order expansion. The largest
body order that is taken into account is treated as a hyperparameter providing the possibility – in
addition to other hyperparameters – to balance between computational cost and performance.

B.2.3 GFN-FF

The GFN-FF is a multi-purpose force field in the GFNmethod family that enables accurate and efficient
predictions of molecular geometries, vibrational frequencies, and non-covalent interactions [16]. The
GFN-FF method handles c-conjugated systems by an iterative Hückel scheme. Covalent-bonding
information, atomic charges, and bond orders are calculated from the input molecular structure.
The covalent topology is based on inter-atomic distances '�� compared to a reference value '0

��,
calculated as:

'
0
�� = ('

0
� + '

0
� + 'B 5 C) (1 −

∑
8

28 |Δ�# |
8) (B.8)

where coordination number dependent '0
� and '

0
� are derived from D3 damping radii [481], 'B 5 C is

83

Appendix B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

an element-specific shift, 28 are fitted parameters and Pauling atomic electronegativities �# are taken.
A covalent bond is assigned if '�� < 5' (@)'

0
��, with 5' (@) a charge-dependent scaling function.

Atoms are assigned hybridization states based on neighbors, identifying c-conjugated fragments and
assigning c-electrons. Initial topology-based electronegativity-equilibrium (EEQ)[373, 482] charges
@eeq are derived, and the procedure is iterated to obtain an improved topology.
The total energy is given by the sum of covalent interactions and non-covalent interactions

�GFN-FF = �CI + �NCI, with the covalent part featuring Gaussian-type potentials and three-body
bonding corrections. The non-covalent part employs the EEQ atomic charge model for electrostatics,
a topology-based D4 scheme for dispersion [302], and charge-dependent corrections for hydrogen and
halogen bonds. Energy contributions are composed of the sum of two- and three-particle energies
covalent bonding �1>=3 , angular bending �bend, repulsion �

CI
rep, rotational torsion �tors and three-body

repulsion correction �abc for the covalently bonded part. The intra- and inter-molecular non-covalent
contribution (“non-bonded”) is given by the sum of isotrophic electrostatics �IES, dispersion �disp,
Pauli repulsion �NCI

rep , as well as hydrogen bridge �HB and halogen bridge bond �XB correction terms
[16]:

�CI = �bond + �bend + �
CI
rep + �tors + �abc (B.9)

�NCI = �IES + �disp + �
NCI
rep + �HB + �XB . (B.10)

Although there are a plethora of other force fields (UFF, AMBER, etc.) [447–449], GFN-FF
is highly suitable for the generation of conformer ensembles due to its focus on geometries and
non-covalent interactions. Moreover, GFN-FF includes parametrization for the full periodic table for
elements up to radon (Z ≤ 86), allowing for a broad applicability in chemistry. Furthermore, GFN-FF
is available in CREST [312]. Note that, as the name "GFN" implies, GFN-FF is particularly suitable
for producing reasonable geometries at force field level. However, it was not designed to yield very
accurate conformational energies and performs in this respect similar to other ”traditional” FFs like
Amber or MM3 [449, 483]. In this study, we improve upon this aspect.

B.3 Technical Setup

All quantum mechanical DFT calculations were performed using the ORCA computational chemistry
software suite (version 5.0.4) [40, 356]. Following general recommendations for selecting DFT
functionals [86], reference calculations were conducted using the r2SCAN-3c functional [315].
This composite electronic-structure functional includes a modified version of the semi-classical D4
dispersion model [301, 302, 484, 485] and a geometrical counter-poise correction [51]. The default
convergence criteria were applied, with the DEFGRID2 option for the DFT integration grid. To
compare with semi-empirical quantum methods, the GFN2-xTB method [18, 148] and for force
field calculations, the GFN-FF method was used [16], utilizing xtb version 6.6.1 [486]. Conformer
generation was conducted using CREST [115, 312, 313, 444, 445] version 2.12 and 3.0.2 [487],
employing the default configuration and GFN-FF for the underlying PES. All scripts are written in
Python 3.11.5 [322, 488] using PyTorch [323] version 2.1.0 [489]. Dimenet++ and SchNet model
architectures were directly imported from PyG (PyTorch Geometric) version 2.5.0 [490]. The MACE
architecture used in this work was imported from the mace_torch package version 0.3.5 [491]. The

84

B.4 Dataset and Preprocessing

code from the GemNet architecture was copied from the gemnet_pytorch repository [492] and the
included code for transforming training data into the required format was slightly modified to allow
for integration into our framework. For more details on the software versions used, see the setup
description in the GitHub repository of this work. Data is stored on disk in the hierarchical data
format (HDF5) [364]. Unless explicitly mentioned otherwise, calculations were performed on Intel
Xeon "Sapphire Rapids" 48-core/96-thread 2.10GHz CPUs. Training of machine learning models was
performed on a single Nvidia RTX3070 with 8GB VRAM.

B.4 Dataset and Preprocessing

Figure B.1: Generation of ConfRank training data involves three main steps: sampling, reference calculation,
and feature parsing. During sampling, 20 conformers are randomly selected from each ensemble, including the
lowest energy conformer at the reference energy level. The selected conformers are then optimized on GFN-FF
level. Subsequently, the training targets, energies and gradients, are determined using DFT calculations on the
GFN-FF geometries. Additionally, a GFN-FF singlepoint calculation is performed on the GFN-FF equilibrium
geometries, and further features from the GFN-FF calculation are parsed. Energy and gradient values from
both the r2SCAN-3c reference and GFN-FF calculations are incorporated into the dataset, with nomenclature
indicating geometry level (subscripts) and singlepoint level (superscripts).

For training the MLmodel, a subset of the GEOM dataset [171], encompassing 37 million molecular
conformations across 450 000 molecules was employed in this study. The published GEOM dataset is
characterized by its CREST-generated equilibrium structures and its focus on organic compounds,
making it well-suited for the target purpose in this study. The dataset includes 317 000 conformers for
molecules related to experimental data, e.g. molecules found by in-vitro high-throughput screening
approaches [493].
The workflow for data generation and preprocessing is depicted in Figure B.1. To ensure a broad

representation of chemical diversity and improve generalization across organic chemical space, the
number of samples per conformer ensemble was limited to a fixed amount, which allows the model to
encounter a wide variety of molecules while optimizing computational resources and avoid over- or
undersampling of molecules for which a large or respectively small number of conformers is available.

85

Appendix B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

From the molecules related to experimental data, we randomly select uncharged ensembles with
a number of unique conformers =conf > 20. Subsequently, per ensemble, the lowest DFT-ranked
conformer is sampled alongside 19 other conformers at random.
Samples included in the GEOM dataset are CREST structures optimized on GFN2-xTB level. In

order to train on geometries while being consistent regarding the level of theory, which is compatible
with common CREST output, all samples are optimized on GFN-FF level before further singlepoint
calculations are conducted. As reference labels for training, singlepoint total energies and gradients
are calculated on r2SCAN-3c level and included in the dataset. The r2SCAN-3c DFT functional was
chosen due to its generally good performance on organic conformers and excellent cost-accuracy ratio
[86, 315, 494]. Note that explicitly providing GFN-FF features as input into existing ML architectures
did not yield improvements during training. This can be attributed to the fact that these aforementioned
ML architectures were designed with a focus on geometrical input and feature learning, implying
that relevant features are learned internally and not given explicitly as input. For completeness,
GFN-FF singlepoint features such as topology, bond orders, angle- and torsion- force-constants
and EEQ atomic charges are included in the dataset, allowing for the possibility of stratification
and exploratory data analysis. For future research avenues, we provide this data free of charge at
https://zenodo.org/records/13354132.
Moreover, GFN2-xTB energies and gradients are calculated as well as energies of various ML

models. To prevent overlap of training and test sets, particularly in the context of investigating datasets
from different sources as in section C.4, duplicates were identified and removed using the MolBar
identifier [495]. MolBar hereby identifies constitutional, configurational as well as conformational
isomerisms.

Following this procedure, one arrives at a dataset of 8 986 randomly picked ensembles containing
179 720 conformers - in the following signified as “ConfRank ” dataset. An overview over the content
of the ConfRank dataset is given in Figure B.2. For training 7 349 ensembles are used, keeping 639
ensembles for validation and 998 for testing. It is noteworthy that only 2% of the ensembles from
the initial GEOM dataset are sampled. Nonetheless, we deem the resulting model performances
(c.f. subsection B.5.2) to be sufficient for our purposes, while keeping the computational effort for
r2SCAN-3c reference calculations minimal, and disregard the option to sample more data. The
dataset comprises organic drug-like molecules including biologically active functional groups and
medium-sized compounds up to 145 atoms. An overview on the elemental composition and the
distribution of the number of atoms is shown in Figure B.2. Most conformation energies are below
10 kcalmol−1, making them particularly challenging to resolve, especially for force field methods
[496]. The distribution of relative energies is given in the Supporting Information.

B.5 Results

B.5.1 Energetic Improvement

In order to obtain an overview over the capabilities of existing MLIPs, energetic improvements are
compared for existing force field and semiempirical quantum methods (GFN-FF and GFN2-xTB) [16,
18, 148] with a selection of before-mentioned ML architectures: SchNet, DimeNet++, GemNet-T¶

¶ We found the implementation of GemNet-Q to be too slow in the training process and hence, for practical reasons,
collected results for GemNet-T.

86

https://zenodo.org/records/13354132

B.5 Results

Figure B.2: Overview of the composition of the ConfRank dataset. The main plot displays the elemental
composition of all samples, with absolute values indicated on each column. The inset illustrates the distribution
of molecular sizes in the dataset.

and MACE.
For training and testing the preprocessed ConfRank dataset is employed (c.f. section B.4).
To allow for a fair comparison, all models are trained from randomly initialized weights on the

same training dataset, are evaluated on the same validation dataset (during training) and compared on
the same test set (after training). All of these subsets were selected randomly.

To that end, we adapt the respective open-source implementations to our specific training framework.
Each architecture’s hyperparameters are selected such that the number of trainable parameters is
comparable (ranging from 100k-150k for all models) and such that the receptive fields of the models
are equal. The latter is achieved by setting the number of message passing layers to 3 and the cutoff
radius of each layer to 4Å. Hence, in total the ML models’ receptive fields cover a sphere with a
radius of 12Å. r2SCAN-3c total atomic ground state energies are used to compute a constant energy
contributions of the atoms in the molecule allowing for a fit of total energies. More information on the
training process and hyperparameters can be found in the Supporting Information.

As evaluation metrics, regular statistical measures such as MAD, RMSD, etc. as well as ensemble-
averaged correlation coefficients are evaluated. Details on the metrics and their calculation are given
in the Supporting Information. Furthermore, to emphasize ranking capabilities in the context of
conformer identification, we included the following metrics:

• The sign flip probability (SF) indicates the percentage of wrong sign assignment, i.e. sign(�� −
��) ≠ sign(�DFT

� − �DFT
�).

87

Appendix B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

• The ranking accuracy (Top-) denotes the probability of identifying the “true” lowest conformer
at DFT-level within the - lowest predicted samples using the reference method.

• The energy window accuracy (EW-) represents the probability of finding the “true” lowest
conformer at DFT-level within a given energy window - in kcalmol−1 to the energy of the
lowest predicted sample.

An overview over the performance of different QC methods and ML models is given in the top rows
of Table B.1 and Table B.2.

MD↓ MAD↓ RMSD↓ X2
d? dB g

GFN-FF 0.54 4.08 5.65 -0.79 0.07 0.07 0.05
GFN2-xTB 0.02 1.90 2.59 0.62 0.81 0.75 0.62
DimeNet++ (single) 0.16 1.16 1.64 0.85 0.92 0.88 0.76
DimeNet++ (pair) 0.05 0.49 0.71 0.97 0.98 0.97 0.90
GemNet-T (single) 0.20 1.13 1.63 0.85 0.92 0.88 0.76
GemNet-T (pair) 0.02 0.46 0.66 0.98 0.99 0.97 0.90
SchNet (single) 0.21 1.61 2.38 0.68 0.85 0.81 0.67
SchNet (pair) 0.19 0.99 1.44 0.88 0.94 0.90 0.79
MACE (single) 0.41 1.65 2.29 0.70 0.84 0.80 0.65
MACE (pair) 0.07 0.56 0.83 0.96 0.98 0.96 0.88

Table B.1: Statistical performance metrics for different models and training modes on the test set. MD, MAD and
RMSD of relative energies are given in kcalmol−1. The coefficient of determination ('2) and rank correlation
metrics Pearson d?, Spearman dB and Kendall g are given in absolute values. Correlation coefficients are
ensemble averaged over pointwise energy predictions. Metrics annotated with a ↓ indicate that lower values are
better, otherwise, higher values are preferred.

TheGFN-FFmodel exhibits significant inaccuracies in ranking tasks, as indicated by the highest error
metrics recorded among the evaluated models. Specifically, the statistical measures are extraordinarily
high, with an MAD of 4.08 kcalmol−1 and RMSD of 5.65 kcalmol−1. The high variance and negative
coefficient of determination ('2) underscore the substantial uncertainty associated with using the
GFN-FF model for conformer ranking. These uncertainties support the claim that, despite its fast
runtime, the GFN-FF model alone is only suitable with large energy windows for conformer ranking
tasks (c.f. EW5 in Table B.2). Furthermore, the high SF rate of 0.47 effectively equates to a random
guess when comparing two conformers with the GFN-FF model. The very low ranking accuracy
and energy window accuracy further highlight the high rate of incorrectly assigned lowest-energy
conformers. Only within an energy window of 5 kcalmol−1 can a substantial percentage of the
lowest-energy conformers be reliably considered.

The semiempirical GFN2-xTBmodel significantly improves upon many of the deficiencies observed
with the GFN-FF model, justifying its default setting in CREST despite its higher runtime. Nearly
all statistical measures show improvements of more than 50% compared to GFN-FF. The notably
low MD of 0.02 kcalmol−1 compared to the MAD of 1.90 kcalmol−1 indicates symmetric results
around zero. Despite showing good correlation in conformational energies (d? = 0.77) and ranking
(dB = 0.75), the predictive power of GFN2-xTB remains improvable for reliable conformer ranking.

88

B.5 Results

SF↓ Top1 Top3 Top5 EW1 EW3 EW5

GFN-FF 0.47 0.10 0.21 0.33 0.29 0.57 0.77
GFN2-xTB 0.19 0.47 0.73 0.86 0.74 0.94 0.99
DimeNet++ (single) 0.12 0.61 0.88 0.95 0.88 0.99 1.00
DimeNet++ (pair) 0.05 0.81 0.97 1.00 0.99 1.00 1.00
GemNet-T (single) 0.12 0.61 0.89 0.95 0.89 0.98 1.00
GemNet-T (pair) 0.05 0.82 0.98 1.00 0.99 1.00 1.00
SchNet (single) 0.17 0.49 0.79 0.89 0.79 0.95 0.98
SchNet (pair) 0.11 0.66 0.90 0.96 0.93 0.99 1.00
MACE (single) 0.17 0.45 0.73 0.86 0.77 0.95 0.99
MACE (pair) 0.06 0.79 0.96 0.99 0.98 1.00 1.00

Table B.2: Advanced performance metrics for different models and training modes on the test set. Sign flip
probability (SF), ranking accuracy (Top-), energy window accuracy (EW- , with - in kcalmol−1) are given in
%. Ranking accuracy and energy window accuracy are evaluated on pointwise energy predictions. Details
on the metrics can be found in the main text. Metrics annotated with a ↓ indicate that lower values are better,
otherwise, higher values are preferred.

Aside from GFN-FF’s high errors and GFN2-xTB as a more reliable alternative, ML models
trained on highly accurate data from QC calculations in a pointwise fashion (referred to as “single”)
demonstrate superior performance. Models such as DimeNet++, GemNet-T, SchNet and MACE
outperform both GFN-FF and GFN2-xTB regarding error metrics and correlation. These pointwise
trained models achieve RMSD values between 1.63 and 2.38 kcalmol−1, along with '2 values ranging
from 0.68 to 0.85. Special emphasis can be paid to the best-performing ML models DimeNet++ and
its successor GemNet-T. Those display very good ranking capabilities (d? = 0.92), and allow for tight
energy windows (EW1 > 0.88). However, these “single” sample trained models do not match the
performance levels of their “pair”wise trained model counterparts, presented in the following section.

B.5.2 Pairwise Training

At the core of the ConfRank training workflow resides the pairwise training approach minimizing a
pairwise loss function in the sense of equation (B.4).
Instead of running backpropagation through single entities as is most common in supervised

machine learning, model weights are updated by minimizing a loss function depending on pairs of
data points. Thereby, pairs of conformers within each ensemble are sampled, adapting the model
weights to minimize the relative differences between conformers, and better capture subtle variations
among conformers, leading to more accurate ranking predictions (see below).

Setup An illustrative depiction of the training setup is provided in Figure B.3. By training on
relative energies, the persistent issue of different energy scales between various method classes can be
overcome (esp. between GFN and DFT methods). We minimize the !1-loss between predicted and
actual relative energies according to DFT:

89

Appendix B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

Figure B.3: Schematic approach for pairwise training. For a pair of two conformers from a given ensemble,
pseudo-energies � ′� and � ′� are calculated using a single model (e.g. DimeNet++ architecture). The model
weights are updated using a pairwise loss function.

L
(
�
(8)
DFT − �

(9)
DFT, �

(8)
ML − �

(9)
ML

)
=

|
(
�
(8)
DFT − �

(9)
DFT

)
−

(
�
(8)
ML − �

(9)
ML

)
|

The same model instance is used for both conformers, with weight updates performed after
completing both inference steps. Note that in principle any ML architecture which operates on a single
molecular input can be employed.
The sets of ensembles used for training, validation and testing are the same as in the pointwise

training process. As described earlier, we restrict each ensemble to a number of 20 conformers and we
sample all pairs up to permutation, i.e. we consider all 20(20 − 1)/2 = 190 pairs in each ensemble.
This leads to 1 396 310 pairs in the training set, 121 410 pairs in the validation set and 189 620 pairs
in the test set.

Observations For an exhaustive overview over the performance differences between pointwise and
pairwise training see Table B.1 and Table B.2. Pairwise trained models consistently outperform their
pointwise trained counterparts across virtually all metrics. For detailed description of training settings,
see Supporting Information. The pairwise-trained DimeNet++ shows a substantial improvement of
ranking probability (SF: 0.05, Top1 Accuracy: 0.81) compared to its pointwise trained version (SF:
0.12, Top1 accuracy: 0.61). When selecting all conformers in an energy window of 1 kcalmol−1

starting from the lowest prediction the pairwise trained DimeNet++ finds the actual lowest conformation
99% of the cases, outperforming the pointwise trained model by 11%. For reference, randomly
guessing the lowest conformation would equate to a Top1 accuracy of 1

20 = 5%, as the number
of conformers in each ensemble is exactly 20. Similar improvements are observed for GemNet-T,
SchNet and MACE models, highlighting the superior predictive accuracy and consistency of pairwise
training. Closely followed by Dimenet++ and MACE, the pairwise-trained GemNet-T stands out as the
best performer, achieving the lowest MAD of 0.46 kcalmol−1, the highest '2 of 0.98 and displaying

90

B.5 Results

the strongest correlation metrics (Pearson’s d?: 0.99, Spearman’s dB: 0.97, Kendall’s g : 0.90),
indicating robust and accurate energy predictions of the relative energy well below chemical accuracy
of 1.00 kcalmol−1 (chemical accuracy). Leveraging pairwise training reduces the SF probability
to 5%, allowing to capture 99% of the lowest lying conformers within chemical accuracy. These
results suggest that the pairwise training approach on relative energies allows for very good results for
conformational ranking.

For visual comparison, see the correlation plots in Figure B.4. GFN-FF shows poor correlation with
r2SCAN-3c , with many relative energies exceeding 5 kcalmol−1 and 10 kcalmol−1. It furthermore
fails to distinguish between different conformers, where DFT does not (non-zero conformational
energies). GFN2-xTB improves with a visible correlation and no conformational energies beyond a
10 kcalmol−1 window. In contrast, DimeNet++ demonstrates excellent correlation, with all relative
energies well within a 5 kcalmol−1 window.

B.5.3 Timings

A crucial aspect of improving conformer search is runtime. Enhancements that require excessive
computational time compared to the GFN-FF calculations are impractical and render possible energetic
improvements futile. Therefore, we investigate the runtime of ML models that were adapted to
the ConfRank setup, comparing them with conventional methods. It should be noted that certain
code modifications were required to adapt open-source implementations of the architectures studied
to our framework. Also, model performance might be highly dependent on the chosen model
hyperparameters. Therefore, all results are only representative of our specific implementation and
chosen hyperparameters.

91

Appendix B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

a)

b)

c)

Figure B.4: Correlation of r2SCAN-3c (DFT) and predicted relative energies on the test set across different
methods: a) GFN-FF, b) GFN2-xTB and c) DimeNet++.

92

B.5 Results

0 10 20 30 40 50 60
Batch size

1 102

5 102

1 103

2 103
Nu

m
be

r o
f s

am
pl

es
 p

er
 se

co
nd

 /
s

1

GPU
CPU (1 OMP)
CPU (2 OMP)
CPU (4 OMP)
CPU (8 OMP)
GFN-FF (1 OMP) x10
GFN2 (1 OMP) x10

Figure B.5: Computational runtime of DimeNet++ as a function of the batch size for different numbers of Open
Multi-Processing (OMP) threads and on the GPU when evaluated on its test set. Performance deterioration when
using a single OMP thread for batch sizes larger than 16 is likely due to inefficiencies in workload distribution
and overheads associated with processor-specific chunking of the task. Results are averaged over three runs and
error bands correspond to the standard deviation of those runs.

Figure B.5 compares the runtime of DimeNet++ inference for different degrees of parallelization on
CPU and GPU. Increasing the number of threads in OMP enhances the processing capacity, but GPU
performance far exceeds CPU OMP, enabling an order of magnitude more samples to be processed per
time. Batching also shows a greater impact on GPU performance yielding up to over 1 000 samples /s,
allowing for high-throughput screening and energetic ranking of CREST runs. For comparison,
GFN-FF (GFN2-xTB) singlepoint calculation achieve 143.9 (111.3) samples per second when running
10 single-thread processes in parallel. For GFN-FF and GFN2-xTB timing measurements, data is
read from disk, while for ML models data is stored in PyTorch data structures already loaded in
RAM. Furthermore, given that GFN-FF is expected to be over 100 times faster than GFN2-xTB,
the measured runtimes are likely dominated by I/O operations and system calls. Nevertheless, the
qualitative differences in runtime of traditional and ML methods become apparent. Hence, employing
ConfRank on top of regular GFN-FF calculations results in practically no significant increase in
runtime. Timings are measured on an Intel(R) Core(TM) i7-12700 CPU and a NVIDIA RTX 3070.

As shown in Figure B.6, different ML models exhibit varying inference timings, influenced by their
individual architectures and chosen hyperparameters. We selected a comparable set of hyperparameters
(e.g. cutoff radius and number of message passing layers) and number of trainable parameters for
consistency. DimeNet++ demonstrates a good balance regarding accuracy and computational speed.
Thus, we will focus on and report the DimeNet++ model performance in the following experiments.
However, this choice is not a strict decision, as other models like MACE or GemNet-T can also be
employed at an acceptable computational cost, given the significant runtime advantage over regular

93

Appendix B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

Figure B.6: Comparison of inference times for various ML models on GPU based on batch size. Single sample
inferences were performed on the ConfRank test set, averaged over three runs. Black markers indicate the
standard deviation.

GFN-FF calculations as mentioned before. Furthermore, detailed tweaking of each model and its
hyperparameters beyond the chosen selection could yield further performance gains.

Besides the inference of pairwise energies, the runtime of the conformer sorting process is equivalent
to that of standard sorting algorithms, as it relies on the intermediate energy-like outputs produced by
the ML model (c.f. Figure B.3). In this sorting of pairs, pseudo-energies are directly compared and
conformers sorted accordingly.
These findings highlight that the proposed ML operation for enhancing conformer ranking incurs

minimal costs relative to the initial GFN-FF singlepoint calculations. Additionally, in a typical CREST
run, the computational time is predominantly consumed by geometry optimizations, with singlepoint
evaluations being significantly faster.

B.5.4 Out-of-Sample Performance Evaluation

QM9 + CREST
So far the ConfRank dataset is derived from conformers identified by CREST using GFN2-xTB, as
documented in the GEOM dataset. In the preprocessing step we implicitly assumed that optimizing
these structures at the GFN-FF level yields samples comparable to those from a CREST GFN-FF
run (c.f. section B.4). However, it is important to note that a CREST run using GFN-FF may not
necessarily identify the same conformer geometries as a run using GFN2-xTB due to differences in
the underlying PES.
Since the target of this study is to enhance CREST GFN-FF runs, we test this hypothesis using

conditions reflecting a real-world scenario. For this, we utilize the QM9 subset of the GEOM dataset

94

B.5 Results

[169–171], conducting an unpruned CREST GFN-FF run on each ensemble.
In order to maintain reasonable computational effort for testing, ensembles were randomly sampled

from the QM9 set. To simulate a realistic scenario where only individual structures are known but
not their ensembles, a random conformer was selected from each ensemble. New ensembles are
then created using CREST with GFN-FF and default settings, followed by a subsequent r2SCAN-3c
singlepoint computation for each conformer. In comparison to the accelerated training setup previously,
exhaustive sampling is conducted and all found conformers are taken into account. In the following,
the term “QM9-CREST ” signifies CREST generated ensembles from the GEOM subset corresponding
to QM9 molecules.

The so created dataset initially includes 1 162 712 conformers (110 926 217 pairs) distributed across
17 467 ensembles. The elemental composition comprises H, C, N, O, and F, mirroring that of the
ConfRank training dataset, with no additional elements included. All samples are uncharged and
contain up to nine heavy atoms. As a result, the size distribution of molecules covers a complementary
range not represented in the ConfRank dataset used for training, leading to an out-of-sample scenario.
In a second step, we remove 130 ensembles that include intermolecular non-covalent interactions
according to the molecular topology generated by GFN-FF. Therefore, statistics are computed with
respect to r2SCAN-3c reference energies for 17337 ensembles, corresponding to 1 114 449 conformers
(96 013 287 pairs).

As shown in Figure B.7, the pairwise-trained DimeNet++ outperforms both GFN methods in terms
of ranking accuracy. Notably, DimeNet++ achieves a TOP3 accuracy of 85% and an EW1 of 92%.
These results demonstrate the high efficiency of conformer selection when employing DimeNet++ for
ranking tasks, enabling a tight selection of candidates to identify the lowest-lying DFT conformers
and thus lowering computational costs in downstream calculations such as CENSO.
A full statistical overview over the performance on the QM9-CRESTdataset can be found in the

Supporting Information.
Confclean conformers To assess the robustness of the pairwise trained ML models on out-of-

sample data, we investigate their performance across different datasets. Although a rigorous train-test
split was performed on the ConfRank dataset (see section B.4), the training and testing domains remain
similar due to their common origin. Therefore, in order to thoroughly evaluate the robustness across the
organic chemical space, we compile the Confclean dataset that is mainly based on conformer subsets
of the GMTKN55 dataset [89] which contains carefully curated samples over a wide range of chemical
domains. These GMTKN55 subsets are organically comprised ensembles of varying molecular
size and ensemble magnitude. Chemical motifs range from basic alkane chains to RNA-backbone
conformers. The eight conformer sets of the original GMTKN55 database are further enhanced by the
following subsets: 37conf8 [497], Glucose [498], Maltose [498], MPCONF196 [499]. Each subset
containing different additions to the already present data. A tabular overview of the Confclean dataset
can be found in Table B.3. For statistical evaluation, all combinatorial pairs within each subset’s
ensemble were considered. In contrast to previous experiments, ConfRank results are reported with
respect to coupled-cluster reference energies, primarily based on CCSD(T)/CBS calculations. For a
detailed explanation of the reference methods used, please refer to the corresponding subset publication
cited in Table B.3. Note that parts of the GMTKN55 were used in the parametrization of the GFN-FF.

As shown in Figure B.8 and Figure B.9, DimeNet++ outperforms both GFN-FF and GFN2-xTB on
most subsets. On average, the MAD (RMSD) of relative energies is improved by 30% (29%) across all
subsets. With almost 62% the largest MAD improvement can be observed for the BUT14DIOL subset,
achieving an MAD of 0.38 kcalmol−1 compared to an MAD of 0.98 kcalmol−1 for GFN-FF. Large

95

Appendix B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

Figure B.7: Comparison of GFN methods and DimeNet++ on the QM9-CREST dataset. The units are agreeing
with those reported in previous tables.

MAD improvements can also be observed for MPCONF196 (59 %), Maltose (53%) and Amino20x4
(49%), although for MPCONF196 and Maltose the MADs of 1.90 kcalmol−1 and 1.80 kcalmol−1,
respectively, are still rather large.

However, on certain subsets, DimeNet++ is not able to outperform GNF-FF. On the MCONF subset,
DimeNet++ and GFN-FF perform equally well with an MAD of 0.81 kcalmol−1, outperforming
GFN2-xTB by 48%. Additionally, we included the UPU23 subset, which contains charged RNA-
backbone conformers. Since our model does not account for molecular charge, DimeNet++ processes
these samples as neutral, despite their charged nature. Consequently, DimeNet++ shows the
lowest performance on this subset, with a MAD of 3.85 kcalmol−1, in comparison to GFN-FF’s
2.77 kcalmol−1. In contrast, both GFN-FF and GFN2-xTB can handle charged samples accurately.
The investigation of models that can properly handle charged samples in combination with our
ConfRank framework is left as a possible direction for future research.
When evaluated on the PCONF21 subset, DimeNet++ shows a deterioration of accuracy as well,

resulting in a −23.50% performance decrement compared to GFN-FF. The differences likely stem
from the peptide nature of the PCONF21 conformers for which intramolecular hydrogen bonds play a
pivotal role in this subset, which were underrepresented during training. As a result, we can consider
PCONF21 as a meaningful test case for model development in the future. Interestingly, sugar subsets
perform reasonably well and could be of research interest for cellular membrane molecules. A tabular

96

B.5 Results

Dataset Type Description #pairs Reference
37conf8 O Industry-related organic drug-like conformers 1 036 Sharapa et al.[497]
ACONF H Short alkane chain conformers 73 Goerigk et al.[89]
ACONFL H Long alkane chain conformers 462 Ehlert et al.[500]
AMINO20x4 P Amino acid conformers 200 Goerigk et al.[89]
BUT14DIOL O Butane-1,4-diol conformers 2 080 Goerigk et al.[89]
Glucose S Glucose conformers 13 266 Marianski et al.[498]
MCONF O Melatonin conformers 1 326 Goerigk et al.[89]
MPCONF196 P (A)cyclic peptides andmacrocyclic conformers 1 380 Rezáč et al.[499]
Maltose S U-Maltose conformers 24 753 Marianski et al.[498]
PCONF21 P Tri- and tetrapeptide conformers 75 Goerigk et al.[89]
SCONF S Sugar conformers 111 Goerigk et al.[89]
UPU23 O RNA-backbone conformers 276 Goerigk et al.[89]

Table B.3: Overview of selected GMTKN55 and additional datasets that contribute to the Confclean dataset
[115]. #pairs denotes the number of pairs per respective subset. In total 1 655 peptides (P), 38 130 sugars (S),
535 hydrocarbons (H) and 4 718 other molecules are included.

overview over the results and improvements are given in the Supporting Information.

Figure B.8: Comparison of pairwise MAD for different methods on various subsets of the GMTKN55 containing
conformers. The MAD is averaged across all ensembles within each subset.

Vancomycin To evaluate the applicability of the ConfRank approach to larger molecules, we
included a case study with respect to vancomycin. Vancomycin is selected for two reasons: (a)
vancomycin is a highly relevant molecule in the context of drug development, it being used as an

97

Appendix B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

Figure B.9: Comparison of pairwise RMSD for different methods on various subsets of the GMTKN55
containing conformers. The RMSD is averaged across all ensembles within each subset.

effective antidote against multidrug-resistant Staphylococcus infections [501] and therefore being
classified as critically important for human medicine by the WHO [502]; (b) with 176 atoms,
vancomycin represents a sensible upper limit for performing CREST and DFT reference calculations
with given computational resources. Containing almost twice as many atoms as the largest molecule
in the training set, it also serves as a suitable test system for evaluating the extrapolation ability of our
model. Therefore, we investigate vancomycin as a suitable proxy for evaluating the ConfRank approach
with respect to bio-molecular systems. CREST on GFN-FF level was used to generate the conformer
ensemble, and reference-level r2SCAN-3c conformational energies were subsequently calculated.
As can be seen in Table B.4 the pairwise trained DimeNet++ outperforms the GFN2-xTB in both,

error metrics (RMSD: 2.59 kcalmol−1 vs. 3.26 kcalmol−1) and metrics that measure the ranking
capability (spearman coefficient d(: 0.95 vs. 0.92). Particularly, the capability to include only
conformers within an energy window of 1.00 kcalmol−1 will enhance conformer generation methods
like CREST. Note that both GFN2-xTB and the pairwise trained DimeNet++ model are able to find
the energetically lowest conformer, as defined by the r2SCAN-3c reference computation, within an
energy window of 1 kcalmol−1, whereas GFN-FF does not display sufficient accuracy in this example.
As expected, we observe that the Ml model does not outperform most GFN2-xTB metrics as strongly
as on the test set. This can be explained by the out-of-sample nature of vancomycin compared to the
training set. Although not necessary in this example, this stresses the potential need to enrich the
training set with suitable samples that are relevant for the respective application when moving too far

98

B.6 Conclusion

from the original training distribution. Retraining on custom datasets and therefore adaption of the
ConfRank approach to specific applications is possible using our code. In summary, this exemplary
study shows promising evidence that the ConfRank approach using e.g. the DimeNet++ architecture
appears to be applicable for larger (bio-)molecular structures. However, the authors emphasize that
the investigation of the ConfRank approach in a more realistic biological setting, including solvent
effects and the presence of biological targets, was beyond the scope of this study and remains to be
explored in future work.

MAD↓ RMSD↓ X2 SF↓ EW1 d? dB g

GFN-FF 7.01 8.71 -0.11 0.53 0.00 -0.12 -0.10 -0.07
GFN2-xTB 2.54 3.26 0.84 0.12 1.00 0.92 0.92 0.75
DimeNet++ (pair) 2.00 2.59 0.90 0.09 1.00 0.95 0.95 0.81

Table B.4: Overview of selected performance metrics for the vancomycin ensemble. Since only a single
ensemble is considered, most ensemble metrics are omitted. For detailed descriptions of the metrics, see
Table B.1 and B.2.

B.6 Conclusion

In this study, we demonstrate that pairwise training of pre-developedMLmodels significantly enhances
their ability to improve conformational ranking tasks. These models effectively identify conformational
differences in organic, drug-like molecules across a diverse range of compounds. As detailed in
section C.4, while the GFN-FFmodel exhibits poor correlation in conformer ranking, GFN2-xTB offers
a more reliable albeit computationally more costly alternative. However, pairwise trained ML models
outperform both methods regarding accuracy and computational timing, with the pairwise-trained
GemNet-T model achieving the highest accuracy and Dimenet++ the best cost-benefit ratio.
Despite a relatively small training set of ∼ 160 000 molecules, the pairwise trained models

demonstrate high data efficiency, achieving strong performance also due to the combinatorial increase
of samples and robustness (c.f. transferability to QM9-CREST and Confclean datasets). Additionally,
first tests on vancomycin indicate good performance on larger molecules relevant in the biological
context. ConfRank is hence both data-efficient, requiring fewer samples, and cost-efficient, with fast
inference times. Moreover, the approach yields the flexibility to integrate practically any MLIP with
the pairwise learning for improved conformer ranking. Note that for this purpose, hyperparameter
optimization could be conducted more extensively. In this study we focused on a fair comparison
between the models rather than an undisputable final model.

Future work could explore ranking in solution and address the intrinsic incorporation of molecular
charges to the ranking approach. Special attention should also be given to the accurate representation
of hydrogen as well as halogen bonds. Additionally, the chemical domain space should be expanded
to include non-organic compounds, such as transition metal complexes or lanthanoid structures. In
passing we note, that besides improved energetic sorting, a more accurate geometry optimization is
of high interest for future improvement on conformer search. Furthermore, one could investigate,
the extend to which the presented results are independent of the specific ML model and reference
DFT method. Overall, our results show an improvement in conformer ranking using pairwise training

99

Appendix B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

for GFN-FF geometries and r2SCAN-3c reference energies, paving the way for more efficient and
accurate drug discovery in the future.

Data and Software Availability
The trainedMLmodels andConfRank dataset are available underhttps://github.com/grimme-lab/
confrank and https://zenodo.org/records/13354132. Please refer to the information avail-
able there for instructions on setting up and loading the data and models. The dataset is stored in
HDF5 format. To facilitate access, we provide a Python module for reading the data and models.

Acknowledgement

This work was supported by the DFG in the framework of the SPP 2363 on “Utilization and
Development of Machine Learning for Molecular Applications - Molecular Machine Learning” and in
parts by the DFG in the framework of the CRC 1639 “NuMeriQS” – project no. 511713970. We
thank Dr. Astrid Maaß and Gregor Maier for their inspiring feedback. AI-based methods were used to
assist in the development of the body text.

100

https://github.com/grimme-lab/confrank
https://github.com/grimme-lab/confrank
https://zenodo.org/records/13354132

APPENDIX C

dxtb – An Efficient And Fully Differentiable
Framework For Extended Tight-Binding

Marvin Friede,∗ Christian Hölzer,∗ Sebastian Ehlert,† and Stefan Grimme∗

Received 30 April 2024, Published online 09 August 2024.

Reprinted in Appendix C (adapted), with the permission of AIP Publishing‡ from
M. Friede, C. Hölzer, S. Ehlert and S. Grimme, dxtb – An efficient and fully differentiable framework
for extended tight-binding, J. Chem. Phys. 161 (2024) 062501, DOI: 10.1063/5.0216715.
– Copyright (c) 2024 AIP Publishing

∗ Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
† AI4Science, Microsoft Research, Evert van de Beekstraat 354, 1118 CZ Schiphol, Netherlands
‡ Permission requests to reuse material from this chapter should be directed to AIP Publishing.

101

https://doi.org/10.1063/5.0216715

Appendix C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding

Abstract Automatic differentiation (AD) emerged as an integral part of machine learning, ac-
celerating model development by enabling gradient-based optimization without explicit analytical
derivatives. Recently, the benefits of AD and computing arbitrary-order derivatives with respect
to any variable were also recognized in the field of quantum chemistry. In this work, we present
dxtb – an open-source, fully differentiable framework for semiempirical extended tight-binding
(xTB) methods. Developed entirely in Python and leveraging PyTorch for array operations, dxtb
facilitates extensibility and rapid prototyping while maintaining computational efficiency. Through
comprehensive code vectorization and optimization, we essentially reach the speed of compiled xTB
programs for high-throughput calculations of small molecules. The excellent performance also scales
to large systems, and batch operability yields additional benefits for execution on parallel hardware.
Specifically, energy evaluations are on par with existing programs, whereas the speed of automatically
differentiated nuclear derivatives is only 2 to 5 times slower compared to their analytical counterparts.
We showcase the utility of AD in dxtb by calculating various molecular and spectroscopic properties,
highlighting its capacity to enhance and simplify such evaluations. Furthermore, the framework
streamlines optimization tasks and offers seamless integration of semiempirical quantum chemistry in
machine learning, paving the way for physics-inspired end-to-end differentiable models. Ultimately,
dxtb aims to further advance the capabilities of semiempirical methods, providing an extensible
foundation for future developments and hybrid machine learning applications. The framework is
accessible at https://github.com/grimme-lab/dxtb.

C.1 Introduction

With Kohn–Sham density functional theory (DFT),[11, 65] an accurate description and representation
of electronic structure is available for routine calculations of energies and structures.[86, 503] However,
even using systematic approximations to reduce the computational cost,[315, 504–510] DFT remains
too costly for large scale calculations.[110] The recently introduced extended tight-binding (xTB) based
semiempirical methods[17, 18, 148] alleviate this issue, allowing for a quantummechanical description
while retaining favorable computational cost. Correspondingly, they are routinely applied in high-
throughput calculations (e.g. drug discovery[113], computation of mass spectra[511–513]), molecular
and meta dynamics,[313] conformational searches,[114, 115, 514] and multilevel modeling.[116]
In these applications, semiempirical methods are particularly tasked with evaluating the more

expensive nuclear derivatives: Gradients are essential for geometry optimizations and propagating
forces in molecular dynamics. Hessian matrices, on the other hand, play a crucial role for characterizing
stationary points on potential energy surfaces (transition state search[515, 516]) and to compute
thermostatistical corrections.[517] Moreover, the importance of derivatives in quantum chemistry
extends to other molecular (response) properties or general optimization problems.[518] As a result,
significant efforts in method development are dedicated to the deduction and implementation of
efficient analytical derivatives. Alternatively to these analytical derivatives, more costly and possibly
unstable numerical differentiation algorithms are employed. The rise of machine learning (ML),
however, drew attention to a third method: automatic differentiation (AD).[320, 519] Based on
the chain rule, AD automatically accumulates the known elementary derivatives of any arbitrarily
complicated function with machine precision, avoiding the pitfalls of both former methods. Therefore,
AD holds the potential to significantly streamline and simplify method development by circumventing
explicit derivative code.

102

https://github.com/grimme-lab/dxtb

C.1 Introduction

Following its widespread adoption in ML (particularly through back-propagation[210]) and the
accompanying plethora of frameworks, AD recently also found its way into computational chemistry
(as well as other disciplines[520–523]) with diverse applications ranging from classical molecular
dynamics, through established mean-field methods, to elaborate correlation methods. For example, the
calculation of forces was automatized inmolecular dynamics[524–526] as well as quantumMonte Carlo
(QMC).[527] Other response properties were also computed with AD in auxiliary-field QMC.[528]
Fully differentiable implementations of Hartree–Fock (HF[54, 529]),[326, 530–533] correlated wave
function methods,[531, 532] and DFT[326, 532, 534, 535] were presented with applications to basis
set optimization,[326, 530, 532] arbitrary-order derivatives,[531, 536] response properties,[537] and
ML.[325, 538] Other works utilize AD in the context of coupled cluster,[539, 540] excited states,[541]
or tensor-based methods.[542, 543] Despite these advancements, fully differentiable semiempirical
methods, in particular the xTBmethods, are still underexplored. Recent applications primarily focus on
HF-based approximations,[544, 545] and the density functional tight-binding (DFTB)[137, 141–143,
546, 547] family of methods, facilitated by the TBMaLT toolkit.[321] In our recent contribution to this
field, we implemented an interface to the GFN1-xTB[17] core Hamiltonian within TBMaLT.[321]

To provide a package for extended tight-binding methods, we present dxtb – an open-source, fully
differentiable extended tight-binding framework written in Python and employing PyTorch[548]
for AD. Currently, dxtb implements only GFN1-xTB,[17] but the modular, toolbox-like structure
facilitates straightforward incorporation of both existing tight-binding methods (GFN2-xTB[18]) and
new variants. Besides the simple access to typical response properties already explored in HF and
DFT, dxtb’s PyTorch-based implementation naturally furthers the recently highlighted[549] synergistic
relation between semiempirical methods and ML.

In particular, the xTB Hamiltonian, or, more generally, the parametrization, represents an intriguing
target for (ML-based) optimization. Indeed, the benefit of re-parametrizing semiempirical methods
was already successfully explored for extended Hückel-based[117, 121] models,[550, 551] HF-based
approximations,[552, 553] and DFTB.[554–557] These works employ ML-generated, dynamically
augmentedHamiltonians, often leveraging fully differentiable implementations. While xTB is generally
robust and versatile, its accuracy can be limited in specialized applications that benefit from tailored
parameters. For instance, the IPEA-xTB variant emerged from re-fitting GFN1-xTB to DFT reference
ionization potentials (IPs) and electron affinities (EAs) to enhance mass spectra calculations.[511]
GFN1-xTB was also optimized for organosilicon compounds and halide perovskites.[558, 559] In
fact, even adjusting a single parameter can significantly impact the treatment of uncommon chemical
interactions.[560] Although some programs[328, 561] already provide rudimentary re-parametrization
capabilities for xTB, dxtb considerably simplifies and advances this procedure.
For applications with a stronger focus on machine learning, semiempirical methods offer the

necessary efficiency to be used in tandem with ML, while simultaneously embedding domain
knowledge for enhanced, physics-inspired models. This favorable interplay is exemplified in the ΔML
approach, where the model is trained to predict the difference between a low-level base method and a
high-level target method.[562] Particularly, models rooted in semiempirical methods have demonstrated
remarkable capabilities, achieving corrections towards DFT or Coupled Cluster accuracy, not only
for the training data but also extending beyond.[7, 452, 563–565] With dxtb, full back-propagation
becomes possible, paving the way for even tighter integration of quantum chemistry into ML.[566]
Moreover, dxtb enables the extraction of quantum mechanical features such as the charge distribution
via atomic partial charges, local anisotropy via multipoles, and atom-resolved energy contributions,
enriching the feature set for machine learning models and facilitating a more nuanced representation

103

Appendix C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding

of molecular systems.
In essence, dxtb not only provides a crucial stepping stone to further unlock the potential of

semiempirical methods in ML, but also permits the refinement of tight-binding methods for specific
problems.

The paper is organized as follows. In section C.2, the theory of GFN1-xTB is explained and a detailed
overview of AD is given. The implementation of dxtb is described in section C.3 covering design
choices, performance, and framework-specific challenges. Applications are presented in section C.4.
We summarize our work and consider future directions in section C.5. Finally, we want to emphasize
that dxtb is an open-source project, which can be found at https://github.com/grimme-lab/dxtb,
along with examples and extensive documentation.

C.2 Theory and Methods

C.2.1 Extended Tight-binding (xTB)

We derive the tight-binding energy expression by approximating a non-local KS-DFT energy
functional � [d] expanded around a known reference density d0 up to a given order

� [d] = �
(0) [d0] + �

(1) [d0, Xd] + �
(2) [d0, (Xd)

2]
+� (3) [d0, (Xd)

3] +$ ((Xd)4) , (C.1)

where the reference density d0 is the superposition of spherical, neutral atomic densities, which
allows expressing the energy contributions in terms of charge fluctuations Xd restricted to the valence
electrons.
Correspondingly, the wave function for the xTB Hamiltonian is formulated in terms of a partially

polarized, valence-only minimal basis set of spherical Gaussian-type atomic orbitals (GTO). The GTO
expansion is obtained by approximating a Slater-type orbital (STO) using the STO-nG expansion.[43]
We parametrize the molecular orbitals k 9 as linear combination of atomic orbitals (LCAO)

k 9 (®A) =
#AO∑̀

�` 9q` (®A) (C.2)

where q` are the GTOs and �` 9 are the orbital coefficients obtained self-consistently solving the
Roothaan–Hall type[567, 568] equation

FC = SC9 , (C.3)

where S is the overlap between the GTOs, 9 are the orbital energies, and F is the tight-binding Fock
matrix derived from variationally minimizing the tight-binding energy expression detailed in the
subsequent paragraph. Note that the following expressions focus on GFN1-xTB[17] and are adjusted
to yield atom-resolved§ energies to reflect the implementation.

§ In contrast to Ref. [17], the summations in the equations only run over a single atom, instead of both atoms or all atom
pairs. Hence, the obtained energies do not reflect the total energy of the tight-binding component, but only the energy for
a single atom.

104

https://github.com/grimme-lab/dxtb

C.2 Theory and Methods

For the zeroth order energy contribution, we find the interaction between the spherical atomic
reference densities. Since we use a non-local functional as a starting point, we include the repulsive
interaction between the screened nuclear charges as well as the London dispersion from instantaneous
dipole polarization

�
(0) [d0] =

#atom∑
A

(
�atom [d

A
0] + �

rep
A + �

disp
A

)
, (C.4)

where the atomic energies �atom [d
A
0] are usually removed since they are constant.The repulsion � rep

A
energy is calculated by a pairwise energy expression using the screened Coulomb law between effective
nuclear charges /eff

�
rep
A =

1
2

#atom∑
B≠A

/
eff
A /

eff
B

'AB
exp

[
−√0A0B'

:
AB

]
, (C.5)

where 0A/B describe the screening of the density and factor : an empirical scaling factor.[569] For the
dispersion energy �disp

A , we use the established DFT-D3(BJ)[146, 570] correction

�
disp
A = −1

2

#atom∑
B≠A

6,8∑
=

B=
�
AB
=

'
=
AB + (01'

0
AB + 02)

=
, (C.6)

where 01 and 02 are the global parameters of the rational damping function,[571–573] '0
AB are the

square root of quotients of the �6 and �8 dispersion coefficients. The scaling factor B6 is fixed to unity
to obtain the correct asymptotic behavior, while the B8 scaling factor is a free parameter to compensate
for missing higher order contributions to the dispersion energy.

The first-order contributions from the density arise from the deformed atomic densities interacting
with the zero field of the remaining atoms. This can be concisely expressed by the atomic energy
arising from the core Hamiltonian H0

�
EHT
A =

#AO∑̀
∈A

#AO∑
a

�
0
`a%a` , (C.7)

where P is the density matrix evaluated from the orbital coefficients of occupied molecular orbitals. The
core Hamiltonian itself employs the usual extended Hückel theory (EHT[117, 121]) type approximation
of calculating the diatomic elements from the scaled average of the onsite elements proportional to the
overlap integral S (Wolfsberg–Helmholtz approximation[574, 575])

�
0
`a = ·

�`` + �aa
2

· (`a , (C.8)

where the �``/aa are the atomic level energies. Instead of the simple Wolfsberg–Helmholtz constant,
 represents an elaborate scaling function that depends on the angular momenta of the shells,
interatomic distance and electronegativity to provide the necessary flexibility to capture different
effects not encoded in the overlap alone. In fact, the majority of the xTB parameters (> 50%) are used
to parametrize this transformation of the overlap integral to the core Hamiltonian.

Finally, the interatomic electrostatic interactions are accounted for by the second-order and

105

Appendix C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding

third-order Coulomb electrostatic contributions defined as

�
coul
A = �

coul, 2
A + �coul, 3

A (C.9)

=
1
2

#AO∑̀
∈A

#AO∑̀
@`@a�`a +

1
3
· ΓA

©­«
#AO∑̀
∈A
@`

ª®¬
3

, (C.10)

with ΓA being the derivative of the Hubbard parameter*A,ℓ and �`a as the Coulomb matrix based on
the Mataga–Nishimoto–Klopman–Ohno interaction kernel[576–578] given as

�`∈A,a∈B =
(
'
6

AB + 5av(*A,ℓ ,*B,ℓ′)
−6)−1/6 , (C.11)

where 5av is an average like the harmonic mean. We define the orbital partial charges using the
Mulliken partition scheme via

@` = =
0
` −

#AO∑
a

(`a%a` , (C.12)

where =0
` is the reference population of the respective orbital in the free atom.

The monopole approximation of the electrostatic energy, however, leads to a poor description of
halogen bonds.[139] To correct this deficiency, we additionally include a classical, atom-pairwise,
Lennard–Jones-like halogen-bond correction

�
hal
X =

#B∑
B
5
damp
AXB :X

[(
:XR'

cov
XB

'XB

)12

− :X2
(
:XR'

cov
XB

'XB

)6]
[(
:XR'

cov
XB

'XB

)12

+ 1

]−1

, (C.13)

where - defines the halogen (Br, I, At), � the non-covalently bound Lewis base (N, O), and � the
nearest neighbor of - . The halogen-specific parameter :- adapts the overall strength of the bond,
while :XR and :X2 are global scaling parameters. 'cov

XB denotes the covalent distance of the halogen
bond, and 5 damp

AXB an angle-dependent damping function.

Including the electronic free energy resulting from the fractional occupation of orbitals)el
(
el,[579]

yields the final energy expression for GFN1-xTB[17]

�
GFN1-xTB
total =

#atom∑
A

(
�
rep
A + �

disp
A + �EHT

A

+�coul
A + �hal

A
)
+)el

(
el . (C.14)

Variational minimization leads to the tight-binding Fockian, which can be decomposed into the core

106

C.2 Theory and Methods

Hamiltonian (H0) and charge-dependent contributions (H1).

�`a = �
0
`a + �

1
`a =

1
2
(`a

(

(
�`` + �aa

)
︸ ︷︷ ︸

EHT

−
∑

^

(
�`^ + �a^

)
@^︸ ︷︷ ︸

2nd order

−
(
Γ`@

2
` + Γa@

2
a

)
︸ ︷︷ ︸

3rd order

)
(C.15)

Owing to the charge-dependency of H1, a self-consistent procedure is required for solving the
Roothaan–Hall type equation (Equation C.3).

C.2.2 Automatic Differentiation

Although automatic differentiation (AD) has been researched since the 60s,[319, 320] it only emerged
as a mainstream technique due to its wide-spread adoption by the machine learning community over
the last decade.[580, 581] While its success sparked various recent applications in computational
chemistry,[321, 325, 326, 524, 525, 527, 528, 530–532, 534–536, 538, 545, 582] AD still remains a
rather underexplored differentiation paradigm. For this reason, we give a detailed account of its inner
workings and compare to the established numerical and analytical differentiation techniques.

Analytical differentiation requires the derivation of explicit expressions, either by hand or with
the help of computer tools (symbolic differentiation), and their efficient implementation. Therefore,
the feasibility of analytical derivatives is governed by the complexity of the underlying formulas and
often incurs tremendous human effort. In fact, (even nuclear) gradients of many intricate quantum
chemistry methods were published significantly later than the method itself[583–585] or are still
lacking.[586, 587] The main advantage of analytical differentiation lies in the computational speed
of closed-form expressions, which rationalizes the prevalence of this technique in computational
chemistry. In machine learning, however, the variety and rapid development of model architectures
renders analytical derivatives impractical.
Numerical differentiation, on the other hand, approximates derivatives using discretized points,

usually by employing finite difference methods. Consequently, this technique becomes indifferent
toward the underlying problem or theory, which allows black-box-like application. On the downside,
numerical differentiation is inherently ill-conditioned, prone to step size-related errors, and quickly
becomes computationally expensive due to its scaling with the gradient size.[580] Owing to this
inefficiency, numerical derivatives often only serve as temporary solutions in computational chemistry
when analytical derivatives are unavailable. Moreover, the scaling even represents an insurmount-
able obstacle for state-of-the-art machine learning models, where the number of parameters, and
consequently, the gradient entries, can exceed billions.[588, 589]
These major shortcomings of analytical and numerical differentiation are alleviated by AD – a

set of techniques that augment a computer program such that derivatives are computed without
explicit derivative statements or programmer intervention. The key concept behind AD exploits the
chain rule of differential calculus: Any arbitrarily complicated function can be decomposed into a
sequence of primitives (elementary arithmetic operations, mathematical functions), and combining
their known analytical derivatives following the chain rule gives the derivative of the whole function.

107

Appendix C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding

This not only implies derivative evaluation with machine precision but, in principle, also effortless
differentiation through control flow statements (loops, conditionals, recursion) and complete algorithms.
Correspondingly, general derivative evaluation of arbitrary order is made possible out-of-the-box,
which can considerably simplify method development by relinquishing tedious implementation work.

Despite existing theoretical complexity bounds for automatic derivative evaluation (Baur–Strassen
theorem[590]), judging the general efficiency of AD is not straightforward. The observed cost usually
lies between analytical and numerical differentiation, but is ultimately governed by the underlying
problem, the flavor and implementation of AD. Its recent success in machine learning sparked the
development of a plethora of Python-based (general-purpose) AD frameworks.[548, 591–598] The
Python frameworks utilize the core concepts of the initial, non-ML-oriented AD tools developed in
Fortran or C++, i.e, employing either source code transformation techniques[599–602] or the operator
overloading approach[602–604] for derivative computation. Both variants have differing, almost
opposing benefits regarding flexibility, accessibility and efficiency,[605] that are naturally inherited by
the Python adaptations. The distinction is often expressed in the nature of the computational graph
(static or dynamic) – a directed acyclic graph representation of the complete program with operations
and data as nodes and data flow encoded by edges.

In TensorFlow[595] and Theano[596], for example, programs are constructed in a framework-specific
sub-language to facilitate (source code) transformation into a static computational graph (intermediate
representation). Before execution, this low-level graph representation is compiled/interpreted,
permitting structural and algebraic optimizations.[581] The increased efficiency, however, is bought at
the expense of programmatic flexibility and development convenience.
Frameworks like PyTorch[548] and JAX[593, 594], on the other side, provide more pythonic,

general-purpose AD capabilities. Here, operator overloading facilitates on-the-fly construction of a
dynamic computational graph. While this incurs a performance decrease due to additional overhead
at runtime and missing compiler optimization, PyTorch-like frameworks grant full flexibility with
arbitrary control flow statements, abolish the need for another compiler or interpreter, and uphold
Python’s convenient and simple syntax. Nowadays, most applications in computational chemistry
utilize PyTorch-like frameworks, not least because of the ubiquitous nature of control flow statements
like loops and conditionals.[321, 325, 326, 524, 525, 528, 531, 532, 534, 538, 545, 582] In fact, even
TensorFlow introduced a paradigm shift from static graph building to eager execution in their second
major release.

Besides the specific implementation, the efficiency of AD also depends on the execution order of the
derivative evaluation. Permitted by the associativity of the chain rule, AD is divided into forward and
reverse (backward) mode. In forward mode, derivatives are accumulated along with each primitive
evaluation (constant memory complexity), which translates to solving the chain rule from right to
left or from inputs to outputs. Reverse mode starts from the outputs and traverses the chain rule
in opposite direction (left to right), which necessitates storage of intermediates. Correspondingly,
the memory complexity scales with the number of intermediates. More importantly, however, the
runtime complexities of forward and reverse mode scale with the number of inputs and outputs,
respectively. For this reason, machine learning applications almost exclusively employ reverse mode
AD (backpropagation[210]), as the inputs are usually large features vectors while the output is a
scalar-valued loss. Computational chemistry often follows the same approach due to the central
importance of energy derivatives (e.g. nuclear gradients), although arguments in favor of forward mode
differentiation have also been brought forward.[528, 530] Problems regarding memory consumption
can be alleviated by checkpointing.[320, 528]

108

C.3 Implementation

e-αr2

single

Input
xyz, coord, json, ...

atomic numbers
3D coordinates

charge/spin

Hamiltonians

s
e
lf-

co
n

s
is

te
n
t cl

a
s
s
ic

a
l

dxtb

GFNn-xTB

Tight-binding Components

H0
GFN2H0

GFN1

EAXC(2)
Fel

E
A

E
S

E IES(2
)

E IES(3
)

ALPB(Solvation)

sc-D
4

Erep

EXB

D3(BJ)

D4

...

–

–
–

–+

+ +

+

+

+

chargesbatch

x1 y1 z1

x2 y2 z2...
...

...

x1 y1 z1

x2 y2 z2...
...

...

6 6 1 1...

811 ... 0

6 6 6 ... 0

Pdensity

energies

Edisp

EtotalErep

ESCF

AUTOGRAD
d

μ
+

–

x1 y1 z1

x2 y2 z2...
...

...

coordinates

atoms

1 1 1

1 11

2 2 2

2 22

3 3 3

3 33

dn
n
E

R d
dn

n
E

F d
dn

n
E
α

el

SCF

H0
GFN1

EIES
(2)

EIES
(3)

ErepEXB

D3(BJ)

GF
N1
-x
TB

Calculator

Results

Overlap
Dipole
...

Integrals external
engine

libcint
internal engine

(PyTorch)

Figure C.1: Schematic overview of the dxtb framework. Starting from the left, the user simply provides
the atom types and Cartesian coordinates of a single or multiple structures as input (blue). Secondly, a
tight-binding method is chosen for the calculation. While dxtb implements convenient shortcuts for known
methods (GFN1-xTB), other Hamiltonians and energy contributions can also be selected, as depicted by the
puzzle pieces. Finally, the calculator (gray) is tasked with computing properties like energy, vibrations, or
dipole moments (yellow). Note that the calculator does not implement any derivatives but utilizes PyTorch’s
autograd engine to obtain arbitrary order derivatives of any quantity.

With this in mind, the following section details the implementation and design of our fully
differentiable extended tight-binding package dxtb, which uses PyTorch as a framework for reverse
mode AD and machine learning integration. Furthermore, we discuss important considerations and
caveats of developing tight-binding models in a fully differentiable fashion.

C.3 Implementation

C.3.1 Structure and Design

The main goal of dxtb lies in providing an easily accessible and flexible framework for extended tight-
binding methods that lays the foundation for machine learning applications and method optimization.
Correspondingly, dxtb is written in Python, which currently takes the place of the most popular and
fastest-growing programming language. Additionally, Python established itself as the preferred choice
for ML applications, which is bolstered by the multitude of powerful frameworks and tools.[548,
591–598, 606] From this vast pool, we chose PyTorch[548] due to its easy-to-use, pythonic nature
and flexible AD engine, as outlined in the previous section. All tight-binding expressions are fully
implemented in PyTorch syntax to support unrestricted AD. The overall dxtb framework is constructed
in a modular fashion that abstracts implementation details and provides a robust, consistent and
intuitive user interface in order to facilitate extensibility and library integration. The software design
concept is visualized in Figure C.1 and detailed in the following.
The modular structure is inspired by the different contributions to the final tight-binding energy

109

Appendix C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding

expression (Equation C.14). We split the energy contributions into two overarching base classes:
While the non-self-consistent Classicals (e.g. repulsion or dispersion energy) are simply additive,
the self-consistent Interactions (e.g. electrostatic terms) are charge-dependent and contribute to the
Hamiltonian. The general workflow of all classes encompasses three steps: (1) Initialization with the
parameters of the chosen tight-binding method, (2) building its cache object that avoids superfluous
calculations, and (3) running the energy or potential evaluations.
Since all components of the tight-binding model inherit from one of the two base classes, they

only differ in the specific implementations of their energy or potential evaluation, which allows
further abstraction by collecting all contributions in two lists of component objects. Hence, any new
tight-binding term, or even other (external) interactions, that follow the template classes can simply
be appended to the corresponding lists. We provide a detailed example for the implementation of
the electric field as an additional interaction in the documentation.[607] Finally, we note that all
classes implement functionality for changing the data type (floating-point accuracy) and computation
device, similar to PyTorch’s tensor and model types. Per default, all calculations utilize double-
precision floating-point accuracy, following the standard approach in quantum chemistry and ensuring
consistency with the original Fortran program.
All components of the tight-binding model are consolidated in an ASE-inspired[608], general

Calculator object that acts as the primary entry point for calculations. Upon instantiation, the
Calculator is supplied with a parametrization, from which it creates all required contributions
that define the given tight-binding method. The whole parametrization is conveniently stored in a
single TOML file, although JSON and YAML formats are also supported. The data is then collected
and validated through a recursive Pydantic[609] model. The Calculator also accepts additional
energy contributions that are not defined through the parametrization, like solvation models or external
fields. After initialization, the desired quantities can be requested from the Calculator by calling
the corresponding methods supplied with the target systems. All necessary calculation steps from
classical repulsion energy evaluation to solving the self-consistent charge equations happen in the
background and do not require user intervention. Permitted by the full PyTorch implementation of the
entire workflow, derivatives are available for all results and parameters simply by invoking the AD
engine.

C.3.2 Performance

To uphold the low computational cost associated with semiempirical methods, an implementation that
approaches the efficiency of the original xtb Fortran implementation[486] is desirable. Unfortunately,
a Python implementation usually sacrifices performance for convenience and flexibility. To reduce
computation time, we extensively utilize PyTorch’s efficient handling of operations onmultidimensional
arrays and formulate the vast majority of the code in a vectorized fashion. This avoids slow Python
loop structures by outsourcing the bulk of the computations to PyTorch’s backend, and simplifies
execution on massively parallel hardware thanks to PyTorch’s native graphical processing unit (GPU)
support. Additionally, AD itself benefits from vectorization,[610, 611] and the implementation in
terms of multidimensional arrays lends itself well for an extension to batch operability, which further
exploits vectorization. In batched calculations, = :-dimensional arrays are concatenated to form a
single (: + 1)-dimensional array, eliminating one additional Python loop. Note that the arrays in the
batch dimension must have the same size, i.e. prior to concatenation, arrays sizes must be normalized
using padding. Although additional efficiency for batched calculations may be achieved with sparse

110

C.3 Implementation

array methods, their support in PyTorch is currently limited. dxtb is batch-agnostic, i.e. fully supports
single-system as well as batched calculations.

Unfortunately, certain mathematical structures hinder or even prevent full vectorization of calcula-
tions. Fortunately, only two building blocks of the tight-binding methods are affected. Firstly, the
halogen bond correction in GFN1-xTB requires a nearest neighbor search, which is intrinsically chal-
lenging to vectorize. In fact, within the ML community, substantial efforts are devoted to optimizing
general geometric computations, often employing specialized kernels or libraries.[612–616] Secondly,
the integral computation also poses problems, because the shape of the intermediate integral arrays
varies depending on the angular momenta. While the lack of vectorization in the context of the halogen
bond correction is mitigated by the typically small number of halogen bond donors and acceptors
relative to the overall molecular size, the computation of integrals (and their derivatives) becomes a
bottleneck in the absence of additional enhancements. We tested several algorithms and strategies for
integral calculation, which will be detailed and assessed subsequently. Note that tight-binding methods
neglect more complicated integrals, such as electron repulsion integrals, and only require two-center
one-electron multipole integrals, in particular the monopole (overlap), dipole, and quadrupole integrals.
The timings of the tested approaches are shown for the overlap integral in Figure C.2.

Integrals

The simplest and most naive starting point for the integral implementation constitutes a one-to-
one translation of the loop-based Fortran code to Python. This approach is expectedly plagued
by extreme inefficiency (Figure C.2, “loop-based”) and was quickly discarded, but also revealed
further complications arising from the integral algorithm itself. While the horizontal Obara–Saika
scheme[617, 618] is used in the Fortran implementation due to its favorable performance for low
angular momenta,[619] the mathematical structure prohibits simple vectorization. Therefore, dxtb
implements a pure PyTorch version of the flexible McMurchie–Davidson algorithm[620] that allows
for better vectorization.[619] Note that we explicitly write out the expansion coefficients for the
Hermite Gaussians instead of using the usual recursion relations in order to avoid in-place operations
breaking the computational graph. Otherwise, recursive schemes must be avoided,[531] or custom
derivatives must be written. While the vectorized McMurchie–Davidson ansatz marks a notable
improvement over the naive loop-based version, it remains substantially outperformed by the Fortran
code, displaying a performance deficit of two orders of magnitude across all tested systems (Figure C.2,
“vectorized”).

Additional computational efficiency is achieved by selecting unique orbital pairs (e.g. carbon
2s-orbital and carbon 2p-orbital) and collecting their corresponding coordinates within a system or
batch thereof. The unique pair ansatz effectively enables vectorization over the centers of GTOs,
but can also prevent repeated calculations in loop-based codes.[621] Taking C60 (carbon 2s- and
2p-orbital) as an example, this vectorization over the GTO centers of unique pairs reduces the number
of calls into the integral algorithm from 180 to 3. A graphical depiction of the algorithm is shown
in Figure S5. The unique atom/shell/orbital pair ansatz is also exploited for all parameter-related
computations, albeit the performance gain is only marginal. With this vectorization step, the overlap
calculation can be sped up by another order of magnitude, but only for the medium and large test
molecules (yellow, blue). For smaller molecules (gray), the limited number of unique pairs, coupled
with the overhead introduced by identifying these pairs, diminishes the performance gains. Note that
despite the McMurchie–Davidson algorithm containing no Python loops, it always returns matrices of

111

Appendix C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding

shape ;a × ;b, with ;a/b being the angular momentum of the bra and ket side of the integral, respectively.
Due to these varying shapes, the write-back to the full square integral matrix of shape =AO × =AO
(=AO: total number of atomic orbitals) can never circumvent a Python loop, limiting even the fastest
implementation. The problem of non-vectorized assignment was already pointed out in related
work.[530]

Although the computational speed appears acceptable for a pure Python implementation, several
caveats remain. Firstly, data sets for machine learning in chemistry primarily contain (millions of)
small molecules,[169, 170, 186, 622] which makes the slow integral evaluation for this size particular
punishing. Secondly, the performance penalty incurred by Python loops in the integral evaluation
directly causes inefficient AD, because the computational graph will explicitly contain every iteration’s
operations, instead of squashing higher-level operations into a single node. The negative impact on
both runtime and memory consumption can be clearly observed for the “loop-based” version, which
requires 6.7GB of peak memory for the second-order geometric overlap derivative of vancomycin.
While this clearly constitutes the worst case, even the most efficient approach (“unique pair”) consumes
1.0GB of memory for this derivative.

We attempted to address these runtime andmemory issues by embedding analytical first-order nuclear
overlap derivatives in the AD engine, using the “unique pair” ansatz. While expectedly outperforming
the automatically differentiated first-order derivatives, higher-order derivatives become considerably
slower, because the analytical version employs Python loops again (Figure S1). Additionally, these
Python loops increase memory consumption for higher-order derivatives, with the second-order
overlap derivative of vancomycin now requiring up to 1.2GB. Considering runtime efficiency again,
even fully vectorized analytical implementations do not necessarily outperform AD (Figure S2),
underscoring the limited applicability of selected analytical derivatives. Lastly, the extension of a
purely PyTorch-based integral code remains tedious, especially considering the necessary hand-crafted
optimizations.

To overcome these limitations, we delegate all integral-related computations to the high-performance
C integral library libcint.[324] Specifically, we adopt the PyTorch wrappers of the DQC program
package[325, 326] that bridge the gap between Python and C similar to PySCF.[623] The integration
of external libraries is facilitated by the customization of primitives in AD frameworks: Any sequence
of operations can readily be grouped to a custom primitive, given a corresponding user-defined
derivative. PyTorch itself exploits this feature in linear algebra operations, like matrix multiplication
or decomposition, to improve efficiency and numerical stability of derivatives. Note that vectorized
code extensively utilizes linear algebra operations, which makes not only the calculation itself, but
also the AD much more efficient.[610, 611] If the user-defined derivative is written in pure PyTorch,
the AD engine can directly compute higher derivatives. However, when using the C library libcint, all
work must be conducted externally. To calculate higher-order derivatives, DQC’s recursive strategy
to connect integral (derivative) primitives and (higher-order) integral derivatives is adopted: The
associated first derivative of the integral primitive is a primitive itself; the first derivative primitive
is paired with the second-order integral derivative, which in turn is also a primitive, and the pattern
continues. This scheme only hinges on the derivatives available in libcint, a collection that can be
easily extended with the integrated automatic code generator. With the libcint interface, the overlap
computation finally reaches computational efficiency on par with the Fortran implementation for all
system sizes, as illustrated in Figure C.2 ("libcint interface"). Concerning memory consumption,
obtaining the second-order derivative of vancomycin, for example, requires only 350MB of (peak)
memory compared with the 1.0GB needed for the pure PyTorch version. Moreover, the interface

112

C.3 Implementation

10 3 10 2 10 1 100 101 102 103

Execution Time in s

loop-based
(PyTorch)

vectorized
(PyTorch)

unique pair
(PyTorch)

libcint
interface

(PyTorch/C)

tblite
(Fortran)

457.7

175.4

16.4

35.3

4.6

0.3

2.1

0.3

0.2

0.14

0.02

0.002

0.09

0.03

0.003

1 min

MB16-43/01
(16 atoms)
C60
(60 atoms)
vancomycin
(176 atoms)

Figure C.2: Timings for various overlap integral implementations for three molecules, each belonging to
different size regimes: a small “mindless”[624] 16-atom molecule from the MB16-43 benchmark set[89] with
the sum formula H6B2N2O2FNaAlCl (gray), the medium-sized C60 fullerene (yellow), and vancomycin, a drug
containing 176 atoms (blue). Starting from the bottom, “loop-based” refers to the one-to-one translation from
Fortran to PyTorch. “vectorized” describes the optimized McMurchie–Davidson algorithm. The best pure
Python performance is reached with the “unique pair“ ansatz. Only the version utilizing the “libcint interface”
runs as efficient as the original Fortran “xtb” implementation. The colored dotted vertical lines also mark the
Fortran reference speed. All timings are obtained on a single core. For more technical details, see Supporting
Information.

allows effortless access to higher-order multipole integrals essential for evaluating molecular properties
or multipole electrostatics.
In summary, the efficiency of a pure PyTorch integral implementation is inherently constrained

by Python loops, resulting in execution times that are one to two orders of magnitude slower than
the original Fortran version. However, integrating the high-performance libcint library into the AD
engine yields the desired Fortran-level performance, while simultaneously granting access to arbitrary
integrals and derivatives, perfectly complementing the extensible toolbox concept of dxtb.

C.3.3 Self-consistent Field Iterations

Particular attention must also be dedicated to the self-consistent field (SCF) or charge (SCC) procedure,
which usually presents the bottleneck of tight-binding calculations due to its formally cubic time
complexity. While dxtb’s SCF is nearly as efficient as the Fortran reference, since it primarily involves

113

Appendix C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding

efficiently handled matrix operations, AD of the SCF presents challenges. This issue even extends
beyond the realm of quantum chemistry, because, from a mathematical standpoint, converging the
SCF equates to identifying a fixed point G∗ (\), or more simply, root finding

5
(
G
∗ (\) , \

)
= G
∗ (\) (C.16)

6
(
G
∗ (\) , \

)
= 5

(
G
∗ (\) , \

)
− G∗ (\) = 0 , (C.17)

where \ represents the independent variables (parameters) with respect to which we differentiate.
Such optimization problems are routinely solved with various iterative algorithms, but their AD
only offers two pathways: Explicit differentiation of all iterations (unrolling)[319, 320] or implicit
differentiation[320] of the optimality condition.

Explicit Differentiation

Unrolling iterations plainly exploits the AD engine, eliminating the need for derivative-specific code.
Indeed, dxtb implements the regular SCF procedure with simple (linear) and Anderson mixing[625]
for convergence acceleration. However, recording the computational graph through each iteration
increases memory consumption linearly with the number of required iterations in reverse-mode
AD. This poses an obstacle for calculations of large (batches of) systems, which are clearly in the
scope of semiempirical methods. Minor improvements can be reached by “culling” in batched
calculations:[321] We remove already converged systems from the corresponding batched arrays
to reducing the array sizes and prevent over-convergence. A “perfect guess” short-cut was also
put forward, in which the SCF is executed completely outside the computational graph and only
re-connected with the converged charges, i.e. one extra SCF iteration with gradient tracking enabled
and already converged charges as inputs is carried out.[321] Unfortunately, this ansatz does not yield
exact derivatives, as the converged charges do not depend on previous charges anymore. In fact, Zhang
and Chan demonstrated that a “perfect guess” produces the largest errors, because the iterative probing
of the system’s response incrementally improves the accuracy of the derivative.[532] While typical
calculations require enough iterations to reproduce the analytical derivatives with explicit AD of the
SCF, no rigorous measure for convergence can be evaluated or even accessed and a dependency on the
initial guess remains.
An additional challenge for explicit differentiation originates from the repeated diagonalization

of the Fock matrix in the SCF. Although stable derivatives of eigendecompositions exist,[610, 626]
the reverse-mode backward pass is undefined for degenerate eigenvalues. In practice, this issue is
circumvented by regularization schemes,[321, 327, 522, 528, 532, 542, 626, 627] albeit at the cost of
introducing small errors in the derivatives. dxtb adopts Lorentzian and conditional broadening from
TBMaLT[321] (see Supporting Information). Alternatively, the SCF iterations can be replaced by
eigendecomposition-free direct minimization approaches.[326, 628]

Implicit Differentiation

In contrast, implicit differentiation, by virtue of the implicit function theorem, necessitates derivative
information solely at the solution point, not throughout the entire iteration process.[320] By differenti-
ating the optimality condition (Equation C.17) with respect to \, the task reduces to solving a linear

114

C.3 Implementation

system.

0 =
m6

(
G
∗
, \

)
m\

+
m6

(
G
∗
, \

)
mG
∗

mG
∗

m\
(C.18)

=
m 5

(
G
∗
, \

)
m\

+
m 5

(
G
∗
, \

)
mG
∗

mG
∗

m\
− mG

∗

m\
(C.19)

mG
∗

m\︸︷︷︸
�

= −
(
m6

(
G
∗
, \

)
mG
∗

)−1

︸ ︷︷ ︸
�
−1

·
m6

(
G
∗
, \

)
m\︸ ︷︷ ︸
�G

(C.20)

=

(
1 −

m 5
(
G
∗
, \

)
mG
∗

)−1

︸ ︷︷ ︸
�
−1

·
m 5

(
G
∗
, \

)
m\︸ ︷︷ ︸
�F

(C.21)

Note that we suppressed the implicit dependence of G∗ on \. Further technical simplifications
are possible in reverse-mode AD (see Supporting Information).[532] Requiring only information
at the solution point brings significant advantages for implicit differentiation. First and foremost,
the guess-dependency vanishes and the error becomes well-defined, as it directly depends on the
SCF convergence threshold. Secondly, the underlying iterative algorithm can be chosen freely,
which paves the way for efficient convergence accelerators. Lastly, implicit differentiation only
requires constant memory compared to the linear cost of iteration unrolling. Due to these notable
benefits, libraries[327, 629–631] for user-friendly, black-box implicit differentiation are built on
top of existing frameworks, supporting the recent transition from explicit[530, 538] to implicit[326,
532] differentiation. Additionally, implicit differentiation facilitates the construction of complex ML
model.[632–634]

For our PyTorch-based tight-binding framework, we employ the xitorch library[327] that provides
access to a differentiable fixed point solver (equilibrium) and other functionals. In the context of
the SCF, the equilibrium function 5 comprises all operations of one SCF iteration (building the
Fock matrix, diagonalization, etc.). The dependent variable G corresponds to the self-consistent
variable, i.e. the quantity to converge. dxtb extends the possibility to iterate not only charges but also
the potential and the Fock matrix, facilitating more convergence options and fine-tuning. Finally,
the independent variables \ depict parametric dependencies, such as the nuclear coordinates or the
tight-binding parametrization. Due to the considerable advantages of implicit differentiation, it is the
default option in dxtb for routine automatic SCF differentiation. Note that xitorch already implements
a set of convergence accelerators, namely linear and Broyden (default) mixing, which we extend with
Anderson mixing.

Higher-order Derivatives

Due to the ubiquitous nature of derivatives in quantum chemistry,[518] access to Jacobians and
higher-order derivatives, such as Hessians, is essential for dxtb. PyTorch, however, does not provide
direct access to explicit derivative quantities, since the AD engine is primarily designed for the efficient
computation of vector–Jacobian (or Jacobian–vector) in deep learning contexts, where full Jacobians

115

Appendix C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding

are often not required. While the Jacobian can be built row- or column-wise by supplying different
unit vectors, PyTorch’s novel composable function transforms offer a streamlined and vectorized
alternative.[635] These modular, stackable operations return an altered or enhanced version of the
original function, which, for example, computes its derivative or efficiently operates on a batch of
inputs simultaneously. Function transforms can be arbitrarily combined for the (batched) computation
of Hessians and higher-order derivatives.
Unfortunately, this feature is still under development and does not yet fully support some specific

requirements and edge cases of dxtb. A notable limitation is the incompatibility with the xitorch
library, which crucially handles implicit differentiation of the SCF. This necessitates a fallback to
explicit differentiation methods for Jacobian and Hessian computations, resulting in increased memory
demands. In the future, we aim to substitute xitorchwith a tailored implicit SCF differentiation method.
Concurrently, we plan to incorporate ongoing advancements in PyTorch to broaden dxtb’s capabilities
and enhance its efficiency in handling derivative computations.

C.4 Results

C.4.1 Computational Efficiency

In order to realistically assess the computational efficiency of dxtb, we selected two representative test
cases for tight-binding methods. First, we examine the computational demand for a large molecule,
which is challenging for the routine application of more sophisticated methods due to prohibitive
computational costs. This test highlights the scalability of our implementation and exposes potential
bottlenecks. Second, we investigate the opposite case, i.e. the computation of large numbers of small
molecules, which is relevant for screening applications, benchmarking and machine learning.

Both test scenarios include the computation of nuclear gradients, allowing us to compare the cost of
AD in dxtb against analytical nuclear gradients from the tblite[328] library, a Fortran-based reference
implementation for the GFN1-xTB method. We also explore dxtb’s efficiency regarding the overlap
computation, presenting timings for three different approaches: a semivectorized, pure PyTorch
version using either AD for gradient computation (“AD”) or a custom analytical nuclear derivative
(“analytical”), and an interface with the high-performance libcint integral library (“libcint”).

Finally, we also explore the effectiveness of batched calculations and compare with the standard
sequential evaluation of GFN1-xTB.
Note that although the code runs on and is tested on GPUs, the following results are obtained on

CPUs. We provide some preliminary GPU timings in the Supporting Information (Figure S3, Figure
S4), and a more comprehensive analysis will be the subject of future work, leveraging the recently
launched state-of-the-art cluster at the University of Bonn.

Large Systems

We start by considering 2xHB238 – a large, 538-atom NCI complex from the LNCI16[329] benchmark
set that consists of two dipolar donor-acceptor dye molecules deposited on a graphene sheet. In
Figure C.3, we compare execution times for all approaches, including the tblite reference. We report
single-core execution times (first, left bar) and four-core shared memory parallelization (second,
right bar, hatched) results. The timings are broken down into the components of the tight-binding
method, namely the electrostatics (SCF, blue), the overlap integral (yellow), the classical repulsion

116

C.4 Results

(green), the D3(BJ) dispersion correction (red), and the nuclear derivative (gradient, gray). Since
2xHB238 does not contain halogens, the halogen-bond correction is not required, and hence, omitted.
Although the Fortran code unsurprisingly outperforms the dxtb approaches, there are significant
differences between the tight-binding contributions. Repulsion and dispersion calculations only
consume a marginal fraction of the total execution time and run similarly fast in Fortran and Python
thanks to full vectorization and precomputed parameters. The SCF, on the other hand, emerges as the
computational bottleneck of the energy evaluation due to its formally cubic scaling. Note that the
limiting diagonalization of the Fock matrix is performed by the same optimized linear algebra backend
(LAPACK[636]) in both tblite and dxtb, yielding comparable timings and allowing straightforward
parallelization. Finally, integral and analytical gradient evaluation show remarkable efficiency in
tblite, achieving almost perfect parallelization by reducing the total execution time nearly fourfold
when increasing from one to four cores (41 s to 14 s). Comparing the various integral approaches in
dxtb, only the libcint interface matches Fortran’s integral performance. The semivectorized integral
algorithm in the “AD” and “analytical” approaches is significantly slower, barely benefits from simple
parallelization, and necessitates explicit parallel code. Additionally, Python loops significantly hinder
efficient AD, which is especially evident in “AD” (first bar, gray). While the “analytical” gradient
reduces computational demands and parallelizes more effectively, it remains inferior to the “libcint”
version. Moreover, implementing and optimizing an analytical gradient undermines the purpose of
the AD framework, involving laborious coding while still suffering from Python-induced slowdowns
in higher derivatives (cf. Figure S1). Finally, we note that all approaches are significantly faster than
numerical differentiation: Considering the single-core timing for the singlepoint calculation in Fortran
of 38.4 s, the 6#atoms evaluations for the numerical gradient would require roughly 35 h.

Small Systems

For the investigation of small systems, we consider two datasets: QM9 and GMTKN55. QM9,
comprising approximately 134,000 molecules with up to 29 atoms, includes only the elements H,
C, N, O, and F.[170] Although GMTKN55 has significantly fewer structures (2,462 in total), it
features larger molecules (up to 81 atoms) and a greater variety of elements.[89] Figure C.4 shows
the distribution of single-core execution times for energy and nuclear gradient evaluation across the
QM9 (left) and GMTKN55 (right) data sets. Consistent with the assessment for large molecules,
we include the Fortran reference (blue) and the three PyTorch approaches (“libcint”: yellow, “AD”:
red, “analytical”: green). Starting with QM9, the Fortran implementation (blue) again surpasses all
PyTorch-based implementations, averaging only 40ms per molecule and requiring 1.5 h overall. The
execution time is closely aligned with the distribution of molecular sizes, which is mostly symmetrical
but with some irregularities in larger sizes. The “libcint” interface (yellow) provides the second-best
efficiency, doubling (overall: 3.5 h) to tripling (average: 100ms) the execution time. The pure PyTorch
implementations display broader execution time distributions and are another factor of two slower.
Interestingly, the “AD” method slightly outperforms the “analytical” integral derivatives, which differs
from the large molecule tests. This can be attributed to shorter Python loops due to lower number of
basis functions having a less pronounced impact on runtime, underscoring the scalability issue of
Python loops. The GMTKN55 results mirror those of QM9, with tblite and “libcint” showing sharp
execution time distributions and “AD” and “analytical” exhibiting broader distributions shifted to
longer times. The right-skewed molecular size distribution in GMTKN55 results in long tails for the
timings of the pure PyTorch implementations, hinting towards the scalability challenges of the overlap

117

Appendix C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding

3000

3500

4000
Timings for GFN1-xTB Components (Serial/Parallel)

dxtb
(AD)

dxtb
(analytical)

dxtb
(libcint)

Fortran
(tblite)

0

50

100

150

200

250

Gradient
Repulsion
Dispersion
Integrals
SCF

Serial
Parallel (4)

Ex
ec

ut
io

n
tim

e
in

 s

Figure C.3: Execution times (in seconds) for energy and nuclear gradient evaluation for a large, 538-atom NCI
complex. The first (left) bar of each category displays single-core timings, the second (right) bars are obtained
on four cores with shared-memory parallelization. The four categories (from left to right) reflect the pure
PyTorch implementation in dxtb with AD for overlap derivatives, another pure PyTorch approach with analytical
nuclear overlap derivatives, dxtb with an interface to libcint for all integral-related computation, and finally, the
analytical Fortran implementation from the tblite library.

implementation. However, average timings across all methods are comparable between QM9 and
GMTKN55.

Batched Evaluation

To enhance dxtb’s synergy with ML approaches, the framework fully supports batched calculations,
allowing multiple inputs to be processed simultaneously. In contrast to sequential processing, where
all target systems are fed into the program separately, batching can optimize computational resource
usage by stacking inputs for evaluation with a single program call. To show the efficiency of the
batched approach, we investigate the execution times of energy calculations for four cases covering
different molecular and batch sizes. First, we draw a random subset of 1000 and 2000 molecules from
the QM9 data set. Second, we use crest[114, 115] to create a large conformer ensemble of the highly
flexible alkane =-icosane and a small conformer ensemble of vancomycin, containing 586 and 50
conformers, respectively. Note that due to different system sizes in QM9, the batched tensor contains
padding, which is not required for the conformer sets. We present single-core execution times as well
as timings for shared-memory parallelism using four cores in Table C.1.
Starting with small systems (QM9 subsets), we find that batched calculations are significantly

faster for both single-core and parallel execution. This efficiency gain can be largely attributed to the
elimination of repeated setup and overhead inherent in sequential processing. Notably, sequential

118

C.4 Results

0.0

0.5

1.0 QM9
t = 0.04 s
ttot = 99 min

Fortran (tblite) dxtb (libcint) dxtb (analytical) dxtb (AD)

0.0

0.5

1.0 GMTKN55
t = 0.04 s
ttot = 1.7 min

0.0

0.5

1.0
t = 0.10 s
ttot = 214 min

0.0

0.5

1.0
t = 0.10 s
ttot = 4.1 min

0.0

0.5

1.0
t = 0.18 s
ttot = 397 min

0.0

0.5

1.0
t = 0.16 s
ttot = 6.7 min

0.00 0.05 0.10 0.15 0.20 0.25
Time in s

0.0

0.5

1.0
t = 0.16 s
ttot = 366 min

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Time in s

0.0

0.5

1.0
t = 0.20 s
ttot = 8.0 min

4 9 14 19 24 29
Number of Atoms

0.0

0.5

1.0
133,885
Systems

0 20 40 60 80
Number of Atoms

0.0

0.5

1.0
2,462 Systems

Fr
eq

ue
nc

y
(n

or
m

al
ize

d)

Figure C.4: Distribution of execution times (in seconds) for energy and nuclear gradient calculations across the
QM9 (left) and GMTKN55 (right) data sets. In the bottom panel, the distribution of molecular sizes in the
data sets is shown. Execution times are obtained with the Fortran reference (tblite, blue), dxtb with the libcint
interface (yellow), and the pure PyTorch implementations using either AD for overlap gradients (red) or an
analytical derivative (green).

evaluation of large batches of molecules does not benefit from parallelization. In fact, utilizing four
cores leads to slightly longer runtimes due to communication overhead. Batching, on the other hand,
clearly benefits from parallel execution. Moving to larger system sizes (=-icosane, vancomycin), the
differences between sequential and batched evaluation decrease for single-core execution, mainly
because the diagonalization of the tight-binding Fock matrix becomes the clear bottleneck. In other
words, the proportion of overhead in the total execution time decreases. Nevertheless, in sequential
evaluation, =-icosane barely benefits from parallelization and only vancomycin exhibits an appreciable
speed-up. This shows that a certain system size is required to offset the setup and communication
overhead. Clearly, the batched approach scales better across all four cases, highlighting its suitability

119

Appendix C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding

System Number
of Atoms

Batch
Size

Sequential Batched

1 Core 4 Cores 1 Core 4 Cores

QM9 subset 27 1000 55.4 64.0 22.2 15.9
QM9 subset 27 2000 111.0 127.6 46.4 31.9
=-icosane 62 586 65.4 61.9 62.9 33.8
vancomycin 176 50 81.3 42.0 93.2 37.0

Table C.1: CPU execution time (in seconds) for sequential and batched energy calculations using a single core
and shared-memory parallelism with 4 cores. The QM9 subset is obtained by randomly selecting 1000 and
2000 molecules from the whole set. Note that different system sizes are expanded by padding, i.e. the number
of atoms corresponds to the padded size. The conformer ensembles of =-icosane and vancomycin are generated
with crest.[114, 115]

for parallel computing environments. Finally, to validate the practicality of batching in terms of
memory usage, we measured the memory consumption for the first-order AD nuclear derivative for
all four ensembles in batch mode. We find peak memory requirements of 3.7GB and 7.1GB for the
QM9 subsets with 1000 and 2000 structures, respectively. For the =-icosane conformers, 10.9GB are
necessary, while the vancomycin ensemble utilizes 9.5GB. Given the large system sizes as well as the
cost of reverse-mode AD, these results are both expected and manageable.

In conclusion, dxtb with the “libcint” interface achieves an efficiency close to the (compiler-
)optimized Fortran code, particularly for energy evaluations. The framework can be applied across
different size regimes for high-throughput calculations as well as large molecules, and benefits from
straightforward shared-memory parallelization. Employing batching in parallel computations further
enhances performance, making execution on massively parallel hardware particularly effective. While
pure PyTorch implementations provide reasonable efficiency for small molecules, scalability is always
limited by the merely partially vectorized integral code, which extends to the computation of (higher)
derivatives. As expected, AD-based gradient computation generally lags behind analytical Fortran
gradients. However, we only observe an increase of computation time by a factor of two to five.
Considering the AD engine’s inability to recognize simplifications or zero-valued terms (e.g. due to
the self-consistency of the SCF solution), these performance shortcomings are the cost of convenient
derivative calculation, which we will demonstrate for molecular properties next.

C.4.2 Molecular Properties

AD facilitates the computation of molecular properties, defined as derivatives of the total energy �
with respect to a perturbation. Within the Born–Oppenheimer approximation, geometric derivatives
are of central interest, namely gradients and Hessians. These derivatives are pivotal for characterizing
stationary points on the potential energy surface, a necessity for tasks such as geometry optimization
and transition state searches. Moreover, an eigendecomposition of the mass-weighted Hessian HMW

120

C.4 Results

yields harmonic vibrational frequencies 8 and the corresponding normal modes q

HMWq = 8q (C.22)

with HMW
= M−1HM−1

= M−1

(
m

2
�

mR2

)
M−1 , (C.23)

where M represents a diagonal matrix containing the square root of the atomic masses, and R is the
= × 3 matrix of nuclear Cartesian coordinates.
To demonstrate the effectiveness of AD, we perform a vibrational analysis on the planar ammonia

molecule (transition state in the umbrella inversion), using GFN1-xTB within dxtb. Notably, this
represents the first instance of employing a non-numerical (exact) Hessian within xTB, as the Fortran
implementations do not support higher analytical derivatives. The calculated vibrational frequencies,
listed in Table C.2, successfully capture the characteristic imaginary frequency. Furthermore, they
align perfectly with the numerical approach (finite-differences Hessian) and are in good agreement
with the DFT reference frequencies (lB97X-D4[300–302, 484, 637]/def2-QZVP[638]).

frequency dxtb AD dxtb numerical DFT

1 -1115 -1115 -1130
2 1276 1276 1410
3 1392 1392 1489
4 3615 3615 3730
5 4409 4409 4408
6 4499 4499 4526

Table C.2: Vibrational frequencies in cm−1 for planar ammonia. For dxtb (GFN1-xTB), the Hessian is calculated
both with automatic differentiation (AD) and using finite differences (numerical). The DFT reference employs the
lB97X-D4[300–302, 484, 637]/def2-QZVP[638] level of theory. For the vibrational analysis, the translational
and rotational modes are projected out.

Another class of important (static) properties arises from the response of the system to an external
electric field Y, with practical applications in spectroscopy and non-linear optics.[639–641] The
first-order response is given by the permanent electric dipole moment `, which is defined as the first
derivative of the total energy with respect to the external electric field. The second derivative yields
the electric dipole polarizability tensor U, and the third-order derivative gives the electric dipole
hyperpolarizability tensor V.

` = −m�
mY

(C.24)

U = −m
2
�

mY
2 =

m`

mY
(C.25)

V = −m
3
�

mY
3 =

m`
2

mY
2 =

mU

mY
(C.26)

While rarely practically relevant, even higher derivatives are readily accessible via AD. Note that

121

Appendix C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding

dipole integrals are required for all properties related to the electric field, necessitating the libcint
backend. Combining both types of derivatives, spectroscopic intensities can be computed within the
double harmonic approximation from the first-order geometric derivative of the respective polarization
property. In particular, the square of the first-order response of the electric dipole moment and
the electric dipole polarizability tensor with respect to a displacement along the normal coordinate
determines the infrared (IR) and Raman intensities, �IR and �Raman, respectively.

�IR ∝
(
m`

mq

)2
∝

(
m

2
�

mRmY

)2

(C.27)

�Raman ∝
(
mU

mq

)2
∝

(
m

3
�

mRmY2

)2 (
= j

2
)

(C.28)

Hence, �IR and �Raman are second and third-order properties relating tomixed electric field and geometric
derivatives. In Raman spectroscopy, this derivative is often denoted as the Raman susceptibility tensor
j. Detailed formulas[642–644] are given in the Supporting Information. Figure C.5 displays the IR
spectrum of capsaicin (spice compound in chili peppers), calculated with GFN1-xTB (dxtb, blue)
and, for a qualitative comparison, with DFT (lB97X-D4/def2-QZVP, yellow). The outline of the
dxtb spectrum is obtained from a fully numerical Hessian, electric dipole moment and geometric
dipole derivative, showing perfect agreement with the result from AD. Considering the level of
theory, the GFN1-xTB spectrum is also in reasonable agreement with the DFT reference.[645]
Although Raman spectra are also accessible, semiempirical methods with (mostly) minimal basis
sets are usually not accurate enough,[646–648] and at least polarized double-Z-type basis sets are
necessary.[151] Therefore, the corresponding Raman spectrum of capsaicin is only shown in the
Supporting Information for completeness (Figure S6).

C.5 Summary and Outlook

To further advance the applicability of semiempirical quantum chemical methods, we introduced
dxtb – a fully differentiable framework for extended tight-binding methods. Our PyTorch-based[548]
implementation enables the evaluation of arbitrary-order derivatives through automatic differentiation.
We have demonstrated its effectiveness by obtaining various molecular properties and spectroscopic
quantities without the need for explicit derivative code. Leveraging the access to arbitrary derivatives
within dxtb, we emphasize the potential for streamlined parameter optimization of new tight-binding
methods and the re-parameterization of existing approaches for specialized applications. Moreover,
dxtb’s integration with the PyTorch framework facilitates the combination of machine learning with
semiempirical quantum chemistry. Such hybrid models offer improved accuracy, reduced data
requirements and better transferability, which makes them a promising approach for the exploration of
chemical space.

To retain the favorable computational cost of semiempirical methods, we dedicated significant efforts
towards vectorization and code optimization. While our pure PyTorch implementation already ensures
respectable efficiency, outsourcing the limiting integral calculation to a differentiable libcint[324]
interface significantly improves execution times for energy evaluations, closely matching those of the
Fortran reference implementation for both small and large molecules. Automatic nuclear derivatives

122

C.5 Summary and Outlook

C18H27NO3

Figure C.5: IR spectrum of capsaicin. The blue spectrum is calculated with GFN1-xTB using dxtb with
automatic differentiation (AD). Its outline, however, is computed fully numerically, showing perfect agreement.
For reference, a DFT (lB97X-D4/def2-QZVP) spectrum is also shown (yellow).

are only two to five times slower than their analytical (Fortran) counterparts, underscoring the
effectiveness of automatic differentiation and Python-based frameworks in quantum chemistry. Further
speed-ups can be achieved through parallel execution, especially in combination with batching.
dxtb is designed as a modular, open-source framework to maximize user convenience, encourage

rapid prototyping, and ease development. While the current version of dxtb focuses on GFN1-xTB,[17]
an extension to other tight-binding methods (GFN2-xTB[18]) is straightforward and will be the subject
of future work. Furthermore, we plan on improving GPU performance to advance the application of
extended tight-binding methods to state-of-the-art massively parallel hardware. We will also work
on reducing memory demands in automatic differentiation to broaden the framework’s applicability
to larger systems and more complex derivative computations. Ultimately, our goal is for dxtb to
unlock the full potential of semiempirical tight-binding methods and serve as a catalyst for developing
(hybrid) machine learning applications.

Acknowledgement

M. Friede thanks T. Froitzheim for many fruitful discussions. This work was supported by the DFG
in the framework of the priority program SPP 2363 on “Utilization and Development of Machine
Learning for Molecular Applications – Molecular Machine Learning” (Project No. 497190956).

Data Availability

dxtb is published as an open-source packagewith a permissive Apache-2.0 license at https://github.
com/grimme-lab/dxtb. It can easily be installed using either Python’s package-management system

123

https://github.com/grimme-lab/dxtb
https://github.com/grimme-lab/dxtb

Appendix C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding

pip or the language-agnostic package manager conda. The source code is available on GitHub[649]
and extensively documented.[607] To improve accessibility, dxtb runs under Python 3.8 and all higher
versions and is compatible with PyTorch 1.11.0 and above. At the time of writing, the supported
version comprise Python 3.8, 3.9, 3.10, 3.11 and PyTorch 1.11.0, 1.12.x, 1.13.x, 2.0.x, 2.1.x, 2.2.x.
Besides its library functionality, dxtb also ships with a convenient command line interface that directly
allows running calculations. The whole program is accompanied by an extensive test suite, where we
check against the original implementations[328, 485, 486, 650] but also verify the correct treatment of
erroneous inputs and exception handling.
On a side note: We acknowledged that a PyTorch implementation of the DFT-D3 and DFT-D4

dispersion models as well as the electronegativity equilibration model (EEQ) may be useful outside
dxtb. Hence, we provide all projects as standalone libraries,[651–653] which are again accessible
through pip and conda. Common utility functions are also collected in a separate project. All
PyTorch-related implementations can be found at https://github.com/tad-mctc.
The data that support the findings of the study, as well as additional information, are available

within the article and its supporting material.

124

https://github.com/tad-mctc

Bibliography

[1] W. S. McCulloch and W. Pitts, Bull. Mat. Biophys. 5 (1943) 115.

[2] F. Rosenblatt, Psycho. Rev. 65 (1958) 386.

[3] D. Crevier, Bull. of Sci., Technol. & Soc. 14 (1993) 224.

[4] J. Jumper et al., Nature 596 (2021) 583.

[5] A. Collaboration, Phys. Lett. B 726 (2013) 88.

[6] J. Behler and M. Parrinello, Phys. Rev. Lett. 98 (2007) 146401.

[7] Z. Qiao et al., J. Chem. Phys. 153 (2020) 124111.

[8] D. Anstine, R. Zubatyuk and O. Isayev, ChemRxiv (2023) 296.

[9] E. Schrödinger, Phys. Rev. 28 (1926) 1049.

[10] W. Heitler and F. London, Z. Phys. 44 (1927) 455.

[11] W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.

[12] R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules,
Oxford University Press, 1995.

[13] A. V. Sadybekov and V. Katritch, Nature 616 (2023) 673.

[14] D. Dell’Angelo, Computational chemistry and the study and design of catalysts,
Elsevier, 2022.

[15] R. LeSar, Introduction to Computational Materials Science: Fundamentals to Applications,
Cambridge University Press, 2013.

[16] S. Spicher and S. Grimme, Angew. Chem. Int. Ed. 59 (2020) 15665.

[17] S. Grimme, C. Bannwarth and P. Shushkov, J. Chem. Theory Comput. 13 (2017) 1989.

[18] C. Bannwarth, S. Ehlert and S. Grimme, J. Chem. Theory Comput. 15 (2019) 1652.

[19] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, Dover Publications, 1996.
[20] F. Jensen, Introduction to Computational Chemistry, Wiley & Sons Ltd, 2017.
[21] K. Kamalasanan and C. Sharma, Nanomedicine in Translational Research,

Academic Press, 2024.
[22] I. Newton, Philosophiæ Naturalis Principia Mathematica, Royal Society, 1687.
[23] P. A. M. Dirac, Math. Proc. Cambridge Phil. Soc. 35 (1939) 416.

125

https://doi.org/10.1007/BF02478259
https://doi.org/10.1037/h0042519
https://doi.org/10.1177/027046769401400414
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/https://doi.org/10.1016/j.physletb.2013.08.010
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1063/5.0021955
https://doi.org/10.26434/chemrxiv-2023-296ch
https://doi.org/10.1103/PhysRev.28.1049
https://doi.org/10.1007/BF01397394
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1038/s41586-023-05905-z
https://doi.org/10.1002/anie.202004239
https://doi.org/10.1021/acs.jctc.7b00118
https://doi.org/10.1021/acs.jctc.8b01176
https://doi.org/10.1017/S0305004100021162

Bibliography

[24] P. A. M. Dirac and R. H. Fowler, Proc. R. Soc. London, Ser. A 117 (1928) 610.

[25] P. Pyykko, Chem. Rev. 88 (1988) 563.

[26] P. Schwerdtfeger, Chem. Phys. Chem. 12 (2011) 3143.

[27] F. Calvo et al., Angew. Chem. Int. Ed. 52 (2013) 7583.

[28] C. Addison, The Chemistry of the Liquid Alkali Metals, Wiley & Sons Ltd, 1984.
[29] R. Ahuja et al., Phys. Rev. Lett. 106 (2011) 018301.

[30] A. Sommerfeld, Naturwissenschaften 28 (1940) 417.

[31] A. Sommerfeld, Atombau und Spektrallinien, Friedrich Vieweg und Sohn, 1919.
[32] W. E. Lamb and R. C. Retherford, Phys. Rev. 72 (1947) 241.

[33] E. Fermi, Z. Phys. 60 (1930) 320.

[34] H. Schüler and T. Schmidt, Z. Phys. 94 (1935) 457.

[35] A. Böhm, Quantum Mechanics, Springer, 1979.
[36] G. E. Moore, Electronics 38 (1965) 114.

[37] M. Born and R. Oppenheimer, Ann. Phys. 389 (1927) 457.

[38] J. C. Slater, Phys. Rev. 36 (1930) 57.

[39] S. F. Boys and A. C. Egerton, Proc. R. Soc. London, Ser. A 200 (1950) 542.

[40] F. Neese, WIREs Comput. Mol. Sci. 2 (2012) 73.

[41] F. Furche et al., WIREs Comput. Mol. Sci. 4 (2014) 91.

[42] H. B. Schlegel and M. J. Frisch, Int. J. Quant. Chem. 54 (1995) 83.

[43] W. J. Hehre, R. F. Stewart and J. A. Pople, J. Chem. Phys. 51 (1969) 2657.

[44] W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys. 56 (1972) 2257.

[45] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297.

[46] T. H. Dunning Jr., J. Chem. Phys. 90 (1989) 1007.

[47] R. A. Kendall, T. H. Dunning Jr. and R. J. Harrison, J. Chem. Phys. 96 (1992) 6796.

[48] G. Kresse and J. Furthmüller, Phys. Rev. B 54 (1996) 11169.

[49] C. Cerjan, Numerical Grid Methods and Their Application to Schrödinger’s Equation,
Springer, 1993.

[50] R. Behera and M. Mehra, J. of Mult. Model. 06 (2015) 1450001.

[51] H. Kruse and S. Grimme, J. Chem. Phys. 136 (2012) 04B613.

[52] J. G. Brandenburg et al., J. Phys. Chem. A 117 (2013) 9282.

[53] D. R. Hartree, Math. Proc. Cambridge Phil. Soc. 24 (1928) 89.

[54] V. Fock, Z. Phys. 61 (1930) 126.

[55] J. C. Slater, Phys. Rev. 34 (1929) 1293.

[56] W. Heisenberg, Z. Phys. 38 (1926) 411.

126

https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1021/cr00085a006
https://doi.org/https://doi.org/10.1002/cphc.201100387
https://doi.org/https://doi.org/10.1002/anie.201302742
https://doi.org/10.1103/PhysRevLett.106.018301
https://doi.org/10.1007/BF01490583
https://doi.org/10.1103/PhysRev.72.241
https://doi.org/10.1007/BF01339933
https://doi.org/10.1007/BF01330611
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1103/PhysRev.36.57
https://doi.org/10.1098/rspa.1950.0036
https://doi.org/https://doi.org/10.1002/wcms.81
https://doi.org/10.1002/wcms.1162
https://doi.org/https://doi.org/10.1002/qua.560540202
https://doi.org/10.1063/1.1672392
https://doi.org/10.1063/1.1677527
https://doi.org/10.1039/b508541a
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.462569
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1142/S1756973714500012
https://doi.org/10.1063/1.3700154
https://doi.org/10.1021/jp406658y
https://doi.org/10.1017/S0305004100011919
https://doi.org/10.1007/BF01340294
https://doi.org/10.1103/PhysRev.34.1293
https://doi.org/10.1007/BF01397160

[57] P. A. M. Dirac and R. H. Fowler, Proc. R. Soc. London, Ser. A 112 (1926) 661.

[58] W. Pauli, Phys. Rev. 58 (1940) 716.

[59] C. C. J. Roothaan, Rev. Mod. Phys. 23 (1951) 69.

[60] G. Hall, Proc. R. Soc. London, Ser. A 205 (1951) 541.

[61] J.-M. Mewes, Development and Application of Methods for the Description of Photochemical
Processes in Condensed Phase, PhD thesis: Ruprecht-Karls-Universität Heidelberg, 2015.

[62] P.-O. Löwdin, Phys. Rev. 97 (1955) 1509.

[63] E. Wigner, Phys. Rev. 46 (1934) 1002.

[64] L. H. Thomas, Math. Proc. Cambridge Phil. Soc. 23 (1927) 542.

[65] P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864.

[66] W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory,
Wiley & Sons Ltd, 2001.

[67] T. Ziegler, Chem. Rev. 91 (1991) 651.

[68] A. D. Becke, J. Chem. Phys. 98 (1993) 5648.

[69] A. M. Teale et al., Phys. Chem. Chem. Phys. 24 (2022) 28700.

[70] G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid,
Cambridge University Press, 2005.

[71] A. Sommerfeld, Z. Phys. 47 (1928) 1.

[72] M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106 (1957) 364.

[73] J. P. Perdew, Phys. Rev. B 33 (1986) 8822.

[74] A. D. Becke, Phys. Rev. A 38 (1988) 3098.

[75] M. Nightingale and C. J. Umrigar, Quantum Monte Carlo Methods in Physics and Chemistry,
Springer, 1999.

[76] B. L. Hammond, W. A. Lester and P. J. Reynolds,
Monte Carlo Methods in Ab Initio Quantum Chemistry, World Scientific, 1994.

[77] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45 (1980) 566.

[78] P. A. M. Dirac, Math. Proc. Cambridge Phil. Soc. 26 (1930) 376.

[79] J. C. Slater, Phys. Rev. 81 (1951) 385.

[80] S. H. Vosko, L. Wilk and M. Nusair, Canadian J. Phys. 58 (1980) 1200.

[81] E. Engel and R. M. Dreizler, Density Functional Theory: An Advanced Course,
Springer, 2011.

[82] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

[83] S. F. Sousa, P. A. Fernandes and M. J. Ramos, J. Phys. Chem. A 111 (2007) 10439.

[84] J. Tao et al., Phys. Rev. Lett. 91 (2003) 146401.

[85] J. W. Furness et al., J. Phys. Chem. Lett. 11 (2020) 8208.

127

https://doi.org/10.1098/rspa.1926.0133
https://doi.org/10.1103/PhysRev.58.716
https://doi.org/10.1103/PhysRev.97.1509
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1017/S0305004100011683
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1021/cr00005a001
https://doi.org/10.1063/1.464913
https://doi.org/10.1039/D2CP02827A
https://doi.org/10.1007/BF01391052
https://doi.org/10.1103/PhysRev.106.364
https://doi.org/10.1103/PhysRevB.33.8822
https://doi.org/10.1103/PhysRevA.38.3098
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1017/S0305004100016108
https://doi.org/10.1103/PhysRev.81.385
https://doi.org/10.1139/p80-159
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1021/jp0734474
https://doi.org/10.1103/PhysRevLett.91.146401
https://doi.org/10.1021/acs.jpclett.0c02405

Bibliography

[86] M. Bursch et al., Angew. Chem. Int. Ed. 61 (2022) e202205735.

[87] K. Eichkorn et al., Chem. Phys. Lett. 242 (1995) 652.

[88] J. Harris, Phys. Rev. A 29 (1984) 1648.

[89] L. Goerigk et al., Phys. Chem. Chem. Phys. 19 (2017) 32184.

[90] P. J. Stephens et al., J. Phys. C 98 (1994) 11623.

[91] C. Adamo and V. Barone, J. Chem. Phys. 110 (1999) 6158.

[92] J. P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys. 105 (1996) 9982.

[93] V. N. Staroverov et al., J. Chem. Phys. 119 (2003) 12129.

[94] V. N. Staroverov et al., J. Chem. Phys. 121 (2004) 11507.

[95] J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128 (2008) 084106.

[96] J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10 (2008) 6615.

[97] E. Livshits and R. Baer, Phys. Chem. Chem. Phys. 9 (2007) 2932.

[98] T. Koopmans, Physica 1 (1934) 104.

[99] N. Mardirossian and M. Head-Gordon, Phys. Chem. Chem. Phys. 16 (2014) 9904.

[100] J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys. 124 (2006) 219906.

[101] J. Heyd et al., J. Chem. Phys. 123 (2005) 174101.

[102] T. M. Henderson et al., J. Chem. Theory Comput. 4 (2008) 1254.

[103] S. Grimme, J. Chem. Phys. 118 (2003) 9095.

[104] S. Grimme, J. Chem. Phys. 124 (2006) 034108.

[105] F. Neese, T. Schwabe and S. Grimme, J. Chem. Phys. 126 (2007) 124115.

[106] S. Grimme and F. Neese, J. Chem. Phys. 127 (2007) 154116.

[107] C. Møller and M. S. Plesset, Phys. Rev. 46 (1934) 618.

[108] M. Bursch, Evaluation and Application of Efficient Quantum Chemical Methods for
Sophisticated Simulation of Inorganic Molecular Chemistry,
PhD thesis: Rheinische Friedrich-Wilhelms-Universität Bonn, 2021.

[109] S. Dohm et al., J. Chem. Theory Comput. 14 (2018) 2596.

[110] L. E. Ratcliff et al., WIREs Comput. Mol. Sci. 7 (2017) e1290.

[111] G. Hanschmann and H.-J. Köhler, Z. Phys. Chem. 255 (1974) 1192.

[112] P. Birner, H.-J. Hofmann and C. Weiss, “Die Elektronenkorrelation”,
MO-theoretische Methoden in der organischen Chemie, De Gruyter, 1979 81.

[113] N. D. Yilmazer and M. Korth, Comp. Struc. Biotech. J. 13 (2015) 169.

[114] P. Pracht, F. Bohle and S. Grimme, Phys. Chem. Chem. Phys. 22 (2020) 7169.

[115] P. Pracht et al., J. Chem. Phys. 160 (2024) 114110.

[116] S. Grimme et al., J. Phys. Chem. A 125 (2021) 4039.

[117] E. Hückel, Z. Phys. 70 (1931) 204.

128

https://doi.org/https://doi.org/10.1002/anie.202205735
https://doi.org/https://doi.org/10.1016/0009-2614(95)00838-U
https://doi.org/10.1103/PhysRevA.29.1648
https://doi.org/10.1039/C7CP04913G
https://doi.org/10.1021/j100096a001
https://doi.org/10.1063/1.478522
https://doi.org/10.1063/1.472933
https://doi.org/10.1063/1.1626543
https://doi.org/10.1063/1.1795692
https://doi.org/10.1063/1.2834918
https://doi.org/10.1039/B810189B
https://doi.org/10.1039/B617919C
https://doi.org/https://doi.org/10.1016/S0031-8914(34)90011-2
https://doi.org/10.1039/C3CP54374A
https://doi.org/10.1063/1.2204597
https://doi.org/10.1063/1.2085170
https://doi.org/10.1021/ct800149y
https://doi.org/10.1063/1.1569242
https://doi.org/10.1063/1.2148954
https://doi.org/10.1063/1.2712433
https://doi.org/10.1063/1.2772854
https://doi.org/10.1103/PhysRev.46.618
https://doi.org/10.1021/acs.jctc.7b01183
https://doi.org/10.1002/wcms.1290
https://doi.org/doi:10.1515/zpch-1974-255137
https://doi.org/10.1016/j.csbj.2015.02.004
https://doi.org/10.1039/C9CP06869D
https://doi.org/10.1063/5.0197592
https://doi.org/10.1021/acs.jpca.1c00971
https://doi.org/10.1007/bf01339530

[118] E. Hückel, Z. Phys. 72 (1931) 310.

[119] C. Coulson et al., Hückel Theory for Organic Chemists, Academic Press, 1978.
[120] D. G. Evans, Inorg. Chem. 25 (1986) 4602.

[121] R. Hoffmann, J. Chem. Phys. 39 (1963) 1397.

[122] W. Thiel, WIREs Comput. Mol. Sci. 4 (2014) 145.

[123] J. C. Slater and G. F. Koster, Phys. Rev. 94 (1954) 1498.

[124] W. Harrison,
Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond,
Dover Publications, 1989.

[125] K. Ohno, K. Esfarjani and Y. Kawazoe,
Computational Materials Science: From Ab Initio to Monte Carlo Methods, Springer, 2018.

[126] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Harcourt, 1976.
[127] J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory,

McGraw-Hill, 1970.
[128] P. O. Dral, Quantum Chemistry in the Age of Machine Learning, Elsevier, 2022.
[129] M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99 (1977) 4899.

[130] M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99 (1977) 4907.

[131] M. J. S. Dewar et al., J. Am. Chem. Soc. 107 (1985) 3902.

[132] J. J. P. Stewart, J. Comput. Chem. 10 (1989) 209.

[133] J. J. P. Stewart, J. Comput. Chem. 10 (1989) 221.

[134] J. J. P. Stewart, J. Mol. Model. 13 (2007) 1173.

[135] J. J. P. Stewart, J. Mol. Model. 19 (2012) 1.

[136] J. Řezáč et al., J. Chem. Theory Comput. 5 (2009) 1749.

[137] D. Porezag et al., Phys. Rev. B 51 (1995) 12947.

[138] G. Seifert, D. Porezag and T. Frauenheim, Int. J. Quantum Chem. 58 (1996) 185.

[139] A. S. Christensen et al., Chem. Rev. 116 (2016) 5301.

[140] B. Aradi, B. Hourahine and T. Frauenheim, J. Phys. Chem. A 111 (2007) 5678.

[141] M. Elstner et al., Phys. Rev. B 58 (1998) 7260.

[142] Y. Yang et al., J. Phys. Chem. A 111 (2007) 10861.

[143] M. Gaus, Q. Cui and M. Elstner, J. Chem. Theory Comput. 7 (2011) 931.

[144] B. Hourahine et al., J. Chem. Phys. 152 (2020) 124101.

[145] M. Elstner et al., Chem. Phys. 263 (2001) 203.

[146] S. Grimme et al., J. Chem. Phys. 132 (2010) 154104.

[147] J. Řezáč, J. Comput. Chem. 40 (2019) 1633.

[148] C. Bannwarth et al., WIREs Comput. Mol. Sci. 11 (2021) e1493.

129

https://doi.org/10.1007/BF01341953
https://doi.org/10.1021/ic00245a030
https://doi.org/10.1063/1.1734456
https://doi.org/https://doi.org/10.1002/wcms.1161
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1021/ja00457a004
https://doi.org/10.1021/ja00457a005
https://doi.org/10.1021/ja00299a024
https://doi.org/10.1002/jcc.540100208
https://doi.org/10.1002/jcc.540100209
https://doi.org/10.1007/s00894-007-0233-4
https://doi.org/10.1007/s00894-012-1667-x
https://doi.org/10.1021/ct9000922
https://doi.org/10.1103/PhysRevB.51.12947
https://doi.org/https://doi.org/10.1002/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-U
https://doi.org/10.1021/acs.chemrev.5b00584
https://doi.org/10.1021/jp070186p
https://doi.org/10.1103/PhysRevB.58.7260
https://doi.org/10.1021/jp074167r
https://doi.org/10.1021/ct100684s
https://doi.org/10.1063/1.5143190
https://doi.org/10.1016/S0301-0104(00)00375-X
https://doi.org/10.1063/1.3382344
https://doi.org/https://doi.org/10.1002/jcc.25816
https://doi.org/10.1002/wcms.1493

Bibliography

[149] P. Pracht et al., ChemRxiv (2019) 8326202.

[150] M. Hülsen, A. Weigand and M. Dolg, Theor. Chem. Acc. 122 (2009) 23.

[151] S. Grimme, M. Müller and A. Hansen, J. Chem. Phys. 158 (2023) 124111.

[152] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.
[153] T. M. Mitchell, Machine Learning, McGraw-Hill, 1997.
[154] J. McCarthy et al.,

A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, 1955.
[155] M. Rupp et al., Phys. Rev. Lett. 108 (2012) 058301.

[156] F. Noé et al., Annu. Rev. of Physical Chem. 71 (2020) 361.

[157] J. S. Smith, O. Isayev and A. E. Roitberg, Chem. Sci. 8 (2017) 3192.

[158] A. Glielmo et al., Chem. Rev. 121 (2021) 9722.

[159] H. Hadipour et al., BMC Bioinformatics 23 (2022) 132.

[160] J. Schmidhuber, Neural Networks 61 (2015) 85.

[161] I. Goodfellow et al., “Generative Adversarial Nets”,
Conference on Neural Information Processing Systems, 2014.

[162] J. Sohl-Dickstein et al.,
“Deep Unsupervised Learning using Nonequilibrium Thermodynamics”,
Conference on Machine Learning, 2015.

[163] A. Merchant et al., Nature 624 (2023) 80.

[164] A. A. Volk et al., Nature Communications 14 (2023) 1403.

[165] M. Popova, O. Isayev and A. Tropsha, Science Advances 4 (2018) eaap7885.

[166] J. C. Snyder et al., J. Chem. Phys. 139 (2013) 224104.

[167] F. Brockherde et al., Nature Communications 8 (2017) 872.

[168] R. Nagai, R. Akashi and O. Sugino, npj Comput. Mater. 6 (2020) 43.

[169] L. Ruddigkeit et al., J. Chem. Inf. Model. 52 (2012) 2864.

[170] R. Ramakrishnan et al., Scientific Data 1 (2014) 140022.

[171] S. Axelrod and R. Gómez-Bombarelli, Scientific Data 9 (2022) 185.

[172] L. Medrano Sandonas et al., Scientific Data 11 (2024) 742.

[173] K. Spiekermann, L. Pattanaik and W. H. Green, Scientific Data 9 (2022) 417.

[174] D. Lowe, Chemical reactions from US patents, 2017.
[175] D. Weininger, J. Chem. Inf. Comp. Sci. 28 (1988) 31.

[176] D. Weininger, A. Weininger and J. L. Weininger, J. Chem. Inf. Comp. Sci. 29 (1989) 97.

[177] D. Weininger, J. Chem. Inf. Comp. Sci. 30 (1990) 237.

[178] M. Glavatskikh et al., Journal of Cheminformatics 11 (2019) 69.

[179] S. Kaufman et al., ACM Trans. Knowl. Discov. Data 6 (2012).

130

https://doi.org/10.26434/chemrxiv.8326202.v1
https://doi.org/10.1007/s00214-008-0481-0
https://doi.org/10.1063/5.0137838
https://doi.org/https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1021/acs.chemrev.0c01195
https://doi.org/10.1186/s12859-022-04667-1
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1038/s41586-023-06735-9
https://doi.org/10.1038/s41467-023-37139-y
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.1063/1.4834075
https://doi.org/10.1038/s41467-017-00839-3
https://doi.org/10.1038/s41524-020-0310-0
https://doi.org/10.1021/ci300415d
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1038/s41597-022-01288-4
https://doi.org/10.1038/s41597-024-03521-8
https://doi.org/10.1038/s41597-022-01529-6
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00062a008
https://doi.org/10.1021/ci00067a005
https://doi.org/10.1186/s13321-019-0391-2
https://doi.org/10.1145/2382577.2382579

[180] P. Eastman et al., Scientific Data 10 (2023) 11.

[181] P. Eastman et al., J. Chem. Theory Comput. 20 (2024) 8583.

[182] D. Balcells and B. B. Skjelstad, J. Chem. Inf. Model. 60 (2020) 6135.

[183] C. Hölzer et al., J. Chem. Inf. Model. 64 (2024) 825.

[184] L. Wittmann et al., Phys. Chem. Chem. Phys. 26 (2024) 21379.

[185] A. Najibi and L. Goerigk, J. Comput. Chem. 41 (2020) 2562.

[186] J. S. Smith, O. Isayev and A. E. Roitberg, Scientific Data 4 (2017) 170193.

[187] J. Řezáč, K. E. Riley and P. Hobza, J. Chem. Theory Comput. 7 (2011) 2427.

[188] A. S. Christensen and O. A. von Lilienfeld, arXiv 2007 (2020) 09593.

[189] T. Hastie, R. Tibshirani and J. Friedman,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2009.

[190] J. A. Hanley et al., The American Statistician 55 (2001) 150.

[191] S. Boyd et al., Subgradients, Lecture notes for EE364b, Stanford University, 2022.
[192] J. R. Terven et al., arXiv 2307 (2024) 02694.

[193] P. J. Huber, The Annals of Mathematical Statistics 35 (1964) 73.

[194] R. A. Saleh and A. K. M. E. Saleh, arXiv 2208 (2024) 04564.

[195] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning, MIT Press, 2005.
[196] D. P. Kingma and J. Ba, arXiv 1412 (2014) 6980.

[197] I. Newton, De analysi per aequationes numero terminorum infinitas, ed. by W. Jones,
Samuel Smith and Benjamin Walford, 1711.

[198] J. Wallis, A Treatise of Algebra, both Historical and Practical, John Playford, 1685.
[199] J. Raphson, Analysis AEquationum Universalis, Thomas Bradyll, 1697.
[200] C. G. Broyden, Journal of the Institute of Mathematics and Its Applications 6 (1970) 76.

[201] R. Fletcher, The Computer Journal 13 (1970) 317.

[202] D. Goldfarb, Mathematics of Computation 24 (1970) 23.

[203] D. F. Shanno, Mathematics of Computation 24 (1970) 647.

[204] D. C. Liu and J. Nocedal, Mathematical Programming 45 (1989) 503.

[205] D. Ashlock, Evolutionary Computation for Modeling and Optimization, Springer, 2006.
[206] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary

Programming, Genetic Algorithms, Oxford University Press, 1996.
[207] S. J. Reddi, S. Kale and S. Kumar, “On the Convergence of Adam and Beyond”,

Conference on Learning Representations, 2018.
[208] Y. Zhang et al., “Adam Can Converge Without Any Modification On Update Rules”,

Conference on Neural Information Processing Systems, 2022.
[209] K. O. Stanley and R. Miikkulainen, Evolutionary computation 10 (2002) 99.

131

https://doi.org/10.1038/s41597-022-01882-6
https://doi.org/10.1021/acs.jctc.4c00794
https://doi.org/10.1021/acs.jcim.0c01041
https://doi.org/10.1021/acs.jcim.3c01832
https://doi.org/10.1039/D4CP01514B
https://doi.org/10.1002/jcc.2641
https://doi.org/10.1038/sdata.2017.193
https://doi.org/10.1021/ct2002946
https://doi.org/https://doi.org/10.48550/arXiv.2007.09593
https://doi.org/10.1198/000313001750358482
https://doi.org/https://doi.org/10.48550/arXiv.2307.02694
https://doi.org/10.1214/aoms/1177703732
https://doi.org/https://doi.org/10.48550/arXiv.2208.04564
https://doi.org/https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1090/S0025-5718-1970-0258249-6
https://doi.org/10.1090/S0025-5718-1970-0274029-X
https://doi.org/10.1007/BF01589116

Bibliography

[210] D. E. Rumelhart, G. E. Hinton and R. J. Williams, Nature 323 (1986) 533.

[211] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift”, Conference on Machine Learning, 2015.

[212] S. Hochreiter and J. Schmidhuber, Neural Computation 9 (1997) 1735.

[213] S. Hochreiter, Untersuchungen zu dynamischen neuronalen Netzen,
MA thesis: Technische Universität München, 1991.

[214] K. He et al., “Deep Residual Learning for Image Recognition”,
Conference on Computer Vision and Pattern Recognition, 2016.

[215] A. Veit, M. Wilber and S. Belongie, arXiv 1605 (2016) 06431.

[216] J. L. Ba, J. R. Kiros and G. E. Hinton, arXiv 1607 (2016) 06450.

[217] R. Tibshirani, J. Royal Stat. Soc. B 58 (1996) 267.

[218] F. Santosa and W. W. Symes, SIAM J. Sci. Stat. Comp. 7 (1986) 1307.

[219] A. E. Hoerl and R. W. Kennard, Technometrics 12 (1970) 55.

[220] A. E. Hoerl and R. W. Kennard, Technometrics 12 (1970) 69.

[221] D. E. Hilt and D. W. Seegrist,
Ridge, a computer program for calculating ridge regression estimates, Upper Darby, 1977.

[222] G. E. Hinton et al., arXiv 1207 (2012) 0580.

[223] N. Srivastava et al., Journal of Machine Learning Research 15 (2014) 1929.

[224] L. Wan et al., “Regularization of Neural Networks using DropConnect”,
Conference on Machine Learning, 2013.

[225] E. J. Bjerrum, arXiv 1703 (2017) 07076.

[226] J. Arus-Pous et al., Journal of Cheminformatics 11 (2019) 71.

[227] K. Hansen et al., J. Phys. Chem. Lett. 6 (2015) 2326.

[228] J. Behler, J. Chem. Phys. 134 (2011) 074106.

[229] H. Huo and M. Rupp, Machine Learning: Science and Technology 3 (2017) 045017.

[230] A. P. Bartók, R. Kondor and G. Csányi, Phys. Rev. B 87 (2013) 184115.

[231] H. L. Morgan, Journal of Chemical Documentation 5 (1965) 107.

[232] D. Rogers and M. Hahn, J. Chem. Inf. Model. 50 (2010) 742.

[233] R. Trudeau, Introduction to Graph Theory, Dover Publications, 2013.
[234] V. I. Minkin, Pure and Applied Chemistry 71 (1999) 1919.

[235] J. Gilmer et al., arXiv 1704 (2017) 01212.

[236] D. Duvenaud et al., arXiv 1509 (2015) 09292.

[237] K. Xu et al., arXiv 1810 (2019) 00826.

[238] K. T. Schütt et al., J. Chem. Phys. 148 (2018) 241722.

[239] S. Batzner et al., Nature Communications 13 (2022).

132

https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.48550/arXiv.1605.06431
https://doi.org/https://doi.org/10.48550/arXiv.1607.06450
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1137/0907087
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1080/00401706.1970.10488635
https://doi.org/https://doi.org/10.48550/arXiv.1207.0580
https://doi.org/https://doi.org/10.48550/arXiv.1703.07076
https://doi.org/10.1186/s13321-019-0393-0
https://doi.org/10.1021/acs.jpclett.5b00831
https://doi.org/10.1063/1.3553717
https://doi.org/10.1088/2632-2153/aca005
https://doi.org/10.1103/physrevb.87.184115
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/ci100050t
https://doi.org/doi:10.1351/pac199971101919
https://doi.org/https://doi.org/10.48550/arXiv.1704.01212
https://doi.org/https://doi.org/10.48550/arXiv.1509.09292
https://doi.org/https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.1063/1.5019779
https://doi.org/10.1038/s41467-022-29939-5

[240] I. Batatia et al., “MACE: Higher Order Equivariant Message Passing Neural Networks for
Fast and Accurate Force Fields”, Conference on Neural Information Processing Systems,
2022.

[241] Y. Bengio, A. Courville and P. Vincent, arXiv 1206 (2014) 5538.

[242] V. Vapnik, The Nature of Statistical Learning Theory, Springer, 1999.
[243] E. A. Nadaraya, Theory of Probability & Its Applications 9 (1964) 141.

[244] G. S. Watson, Indian Journal of Statistics A 26 (1964) 359.

[245] D. MacKay, Information Theory, Inference and Learning Algorithms,
Cambridge University Press, 2003.

[246] T. Bayes, Philosophical Transactions of the Royal Society of London 53 (1763) 370.

[247] A. P. Bartók et al., Phys. Rev. Lett. 104 (2010) 136403.

[248] M. J. Burn and P. L. A. Popelier, J. Comput. Chem. 43 (2022) 2084.

[249] M. Bauer, M. van der Wilk and C. E. Rasmussen, arXiv 1606 (2017) 04820.

[250] M. P. Deisenroth and J. W. Ng, arXiv 1502 (2015) 02843.

[251] G. Cybenko, Mathematics of Control, Signals and Systems 2 (1989) 303.

[252] K. Hornik, M. Stinchcombe and H. White, Neural Networks 2 (1989) 359.

[253] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
[254] S. Käser et al., Digital Discovery 2 (2023) 28.

[255] P. Reiser et al., Communications Materials 3 (2022) 93.

[256] M. Kulichenko et al., J. Phys. Chem. Lett. 12 (2021) 6227.

[257] Y. lecun, Y. Bengio and G. Hinton, Nature 521 (2015) 436.

[258] R. Pascanu, T. Mikolov and Y. Bengio, arXiv 1211 (2013) 5063.

[259] G. B. Goh, N. O. Hodas and A. Vishnu, arXiv 1701 (2017) 04503.

[260] O. T. Unke and M. Meuwly, J. Chem. Theory Comput. 15 (2019) 3678.

[261] F. Scarselli et al., IEEE Transactions on Neural Networks 20 (2009) 61.

[262] L. Wu et al., Graph Neural Networks: Foundations, Frontiers, and Applications,
Springer, 2022.

[263] W. L. Hamilton, Synthesis Lectures on AI and ML 14 (2020) 1.

[264] K. Yang et al., arXiv 1904 (2019) 01561.

[265] J. M. Stokes et al., Cell 180 (2020) 688.

[266] J. Gasteiger, J. Groß and S. Günnemann,
“Directional Message Passing for Molecular Graphs”,
Conference on Learning Representations, 2020.

[267] J. Gasteiger et al.,
“Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules”,
Conference on Neural Information Processing Systems, 2020.

133

https://doi.org/https://doi.org/10.48550/arXiv.1206.5538
https://doi.org/10.1137/1109020
https://doi.org/10.1098/rstl.1763.0053
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/https://doi.org/10.1002/jcc.27006
https://doi.org/https://doi.org/10.48550/arXiv.1606.04820
https://doi.org/https://doi.org/10.48550/arXiv.1502.02843
https://doi.org/10.1007/BF02551274
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1039/D2DD00102K
https://doi.org/10.1038/s43246-022-00315-6
https://doi.org/10.1021/acs.jpclett.1c01357
https://doi.org/10.1038/nature14539
https://doi.org/https://doi.org/10.48550/arXiv.1211.5063
https://doi.org/https://doi.org/10.48550/arXiv.1701.04503
https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/https://doi.org/10.48550/arXiv.1904.01561
https://doi.org/10.1016/j.cell.2020.01.021

Bibliography

[268] J. Gasteiger, F. Becker and S. Günnemann,
“GemNet: Universal Directional Graph Neural Networks for Molecules”,
Conference on Neural Information Processing Systems, 2021.

[269] A. M. Schweidtmann et al., Computers & Chemical Engineering 172 (2023) 108202.

[270] W. Pronobis et al., The European Physical Journal B 91 (2018) 178.

[271] R. Ying et al., arXiv 1806 (2019) 08804.

[272] K. Oono and T. Suzuki, arXiv 1905 (2021) 10947.

[273] F. D. Giovanni et al., arXiv 2306 (2024) 03589.

[274] J. Topping et al., arXiv 2111 (2022) 14522.

[275] P. Veličković et al., arXiv 1710 (2018) 10903.

[276] A. Kosmala et al., arXiv 2303 (2023) 04791.

[277] H. Gao and S. Ji, arXiv 1905 (2019) 05178.

[278] V. G. Satorras, E. Hoogeboom and M. Welling, “E(n) Equivariant Graph Neural Networks”,
Conference on Machine Learning, 2021.

[279] K. T. Schütt, O. T. Unke and M. Gastegger, arXiv 2102 (2021) 03150.

[280] R. Magar et al., Machine Learning: Science and Technology 3 (2022) 045015.

[281] V. Zaverkin et al., Phys. Chem. Chem. Phys. 25 (2023) 5383.

[282] L. Kollias et al., J. Am. Chem. Soc. 144 (2022) 11099.

[283] A. Pareja et al., arXiv 1902 (2019) 10191.

[284] P. Shah et al., Computers & Chemical Engineering 194 (2025) 108926.

[285] A. I. Gircha et al., Scientific Reports 13 (2023) 8250.

[286] C. Qu et al., Artificial Intelligence Chemistry 1 (2023) 100025.

[287] C. Qu et al., J. Chem. Phys. 159 (2023) 071101.

[288] L. Bass et al., J. Chem. Theory Comput. 20 (2024) 396.

[289] H. Tu et al., Applied Energy 329 (2023) 120289.

[290] L. Armelao et al., Coordination Chemistry Reviews 254 (2010) 487.

[291] A. de Bettencourt-Dias, Dalton Trans. (22 2007) 2229.

[292] P. Fang et al., Light: Science & Applications 12 (2023) 170.

[293] M. Bottrill, L. Kwok and N. J. Long, Chem. Soc. Rev. 35 (2006) 557.

[294] S. Lacerda and É. Tóth, Chem. Med. Chem. 12 (2017) 883.

[295] R. D. Dicken, A. Motta and T. J. Marks, ACS Catalysis 11 (2021) 2715.

[296] C. F. L. Jr. and R. J. Beaver, Nuclear Applications 4 (1968) 399.

[297] M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110 (1999) 5029.

[298] D. Rappoport and F. Furche, J. Chem. Phys. 133 (2010) 134105.

[299] D. Rappoport, J. Chem. Phys. 155 (2021) 124102.

134

https://doi.org/https://doi.org/10.1016/j.compchemeng.2023.108202
https://doi.org/10.1140/epjb/e2018-90148-y
https://doi.org/https://doi.org/10.48550/arXiv.1806.08804
https://doi.org/https://doi.org/10.48550/arXiv.1905.10947
https://doi.org/https://doi.org/10.48550/arXiv.2306.03589
https://doi.org/https://doi.org/10.48550/arXiv.2111.14522
https://doi.org/https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/https://doi.org/10.48550/arXiv.2303.04791
https://doi.org/https://doi.org/10.48550/arXiv.1905.05178
https://doi.org/https://doi.org/10.48550/arXiv.2102.03150
https://doi.org/10.1088/2632-2153/ac9c84
https://doi.org/10.1039/D2CP05793J
https://doi.org/10.1021/jacs.1c13508
https://doi.org/https://doi.org/10.48550/arXiv.1902.10191
https://doi.org/https://doi.org/10.1016/j.compchemeng.2024.108926
https://doi.org/10.1038/s41598-023-32703-4
https://doi.org/https://doi.org/10.1016/j.aichem.2023.100025
https://doi.org/10.1063/5.0168590
https://doi.org/10.1021/acs.jctc.3c00981
https://doi.org/https://doi.org/10.1016/j.apenergy.2022.120289
https://doi.org/10.1016/j.ccr.2009.07.025
https://doi.org/10.1039/B702341C
https://doi.org/10.1038/s41377-023-01211-5
https://doi.org/10.1039/b516376p
https://doi.org/10.1002/cmdc.201700210
https://doi.org/10.1021/acscatal.0c04882
https://doi.org/10.13182/NT68-A26366
https://doi.org/10.1063/1.478401
https://doi.org/10.1063/1.3484283
https://doi.org/10.1063/5.0065611

[300] N. Mardirossian and M. Head-Gordon, J. Chem. Phys. 144 (2016) 214110.

[301] E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys. 147 (2017) 034112.

[302] E. Caldeweyher et al., J. Chem. Phys. 150 (2019) 154122.

[303] F. L. Hirshfeld, Theoretica Chimica Acta 44 (1977) 129.

[304] M. Müller, A. Hansen and S. Grimme, J. Chem. Phys. 159 (2023) 164108.

[305] R. S. Mulliken, J. Chem. Phys. 23 (1955) 1833.

[306] P.-O. Löwdin, J. Chem. Phys. 18 (1950) 365.

[307] C. Hölzer et al., J. Chem. Inf. Model. 64 (2024) 8909.

[308] A. C. Brown and T. R. Fraser, Transactions of the Royal Society of Edinburgh 25 (1868) 151.

[309] M. Martin-Smith, G. A. Smail and J. B. Stenlake,
Journal of Pharmacy and Pharmacology 19 (1967) 649.

[310] A. Carotenuto et al., Journal of Medicinal Chemistry 49 (2006) 5072.

[311] M. De Vivo et al., Journal of Medicinal Chemistry 59 (2016) 4035.

[312] P. Pracht, F. Bohle and S. Grimme, Phys. Chem. Chem. Phys. 22 (2020) 7169.

[313] S. Grimme, J. Chem. Theory Comput. 15 (2019) 2847.

[314] K. T. Schütt et al., “SchNet: A continuous-filter convolutional neural network for modeling
quantum interactions”, Conference on Neural Information Processing Systems, 2017.

[315] S. Grimme et al., J. Chem. Phys. 154 (2021) 064103.

[316] Commandline ENergetic SOrting of Conformer Rotamer Ensembles,
https://github.com/grimme-lab/censo, 2021.

[317] M. Friede et al., J. Chem. Phys. 161 (2024) 062501.

[318] S.-C. Li et al., J. Am. Chem. Soc. 146 (2024) 23103.

[319] R. E. Wengert, Commun. ACM 7 (1964) 463.

[320] A. Griewank and A. Walther,
Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation,
Society for Industrial and Applied Mathematics, 2008.

[321] A. McSloy et al., J. Chem. Phys. 158 (2023) 034801.

[322] G. Van Rossum and F. L. Drake, Python 3 Reference Manual, CreateSpace, 2009.
[323] A. Paszke et al., Automatic differentiation in PyTorch, 2017.
[324] Q. Sun, J. Comput. Chem. 36 (2015) 1664.

[325] M. F. Kasim and S. M. Vinko, Phys. Rev. Lett. 127 (2021) 126403.

[326] M. F. Kasim, S. Lehtola and S. M. Vinko, J. Chem. Phys. 156 (2022) 084801.

[327] M. F. Kasim and S. M. Vinko, arXiv 2010 (2020) 01921.

[328] Light-weight tight-binding framework, https://github.com/tblite/tblite, 2024.
[329] J. Gorges et al., Synlett 34 (2022) 1135.

135

https://doi.org/10.1063/1.4952647
https://doi.org/10.1063/1.4993215
https://doi.org/10.1063/1.5090222
https://doi.org/10.1007/BF00549096
https://doi.org/10.1063/5.0172373
https://doi.org/10.1063/1.1740588
https://doi.org/10.1063/1.1747632
https://doi.org/10.1021/acs.jcim.4c01524
https://doi.org/10.1017/S0080456800028155
https://doi.org/10.1111/j.2042-7158.1967.tb08007.x
https://doi.org/10.1021/jm060117j
https://doi.org/10.1021/acs.jmedchem.5b01684
https://doi.org/10.1021/acs.jctc.9b00143
https://doi.org/10.1063/5.0040021
https://doi.org/10.1063/5.0216715
https://doi.org/10.1021/jacs.4c04670
https://doi.org/10.1145/355586.364791
https://doi.org/10.1063/5.0132892
https://doi.org/10.1002/jcc.23981
https://doi.org/10.1103/PhysRevLett.127.126403
https://doi.org/10.1063/5.0076202
https://doi.org/https://doi.org/10.48550/arXiv.2010.01921
https://doi.org/10.1055/s-0042-1753141

Bibliography

[330] T. Rose et al., Inorg. Chem. 63 (2024) 19364.

[331] M. Müller et al., J. Phys. Chem. A 128 (2024) 10723.

[332] Z. Liu et al., arXiv 2404 (2024) 19756.

[333] S. Jin et al., Light: Science & Applications 11 (2022) 52.

[334] D. A. Gálico, C. M. Santos Calado and M. Murugesu, Chem. Sci. 14 (2023) 5827.

[335] H. S. Mader et al., Current Opinion in Chemical Biology 14 (2010) 582.

[336] H. Dong et al., Chem. Rev. 115 (2015) 10725.

[337] X. Qiu et al., Acc. Chem. Res. 55 (2022) 551.

[338] J. Rocha et al., Chem. Soc. Rev. 40 (2011) 926.

[339] Y. Cui et al., Chem. Rev. 112 (2012) 1126.

[340] F. A. Almeida Paz et al., Chem. Soc. Rev. 41 (2012) 1088.

[341] Y. Yao and K. Nie, “Lanthanides: Homogeneous Catalysis”,
Encyclopedia of Inorganic and Bioinorganic Chemistry, Wiley & Sons, Ltd, 2012.

[342] F. T. Edelmann, “Homogeneous Catalysis Using Lanthanide Amidinates and Guanidinates”,
Molecular Catalysis of Rare-Earth Elements, Springer, 2010 109.

[343] J. A. J. Cotruvo, ACS Central Science 5 (2019) 1496.

[344] H. Liu, S. Saha and M. S. Eisen, Coordination Chemistry Reviews 493 (2023) 215284.

[345] A. Stwertka, A Guide to the Elements, Oxford University Press, 2002.
[346] L. I. Vazquez-Salazar et al., J. Chem. Theory Comput. 17 (2021) 4769.

[347] J. Kirkpatrick et al., Science 374 (2021) 1385.

[348] K. Raghavachari et al., Chem. Phys. Lett. 157 (1989) 479.

[349] L. C. Blum and J.-L. Reymond, J. Am. Chem. Soc. 131 (2009) 8732.

[350] G. Montavon et al., New Journal of Physics 15 (2013) 095003.

[351] R. Ramakrishnan et al., J. Chem. Phys. 143 (2015) 084111.

[352] H. Kneiding et al., Digital Discovery 2 (2023) 618.

[353] H. Kneiding, A. Nova and D. Balcells, ChemRxiv (2023) k3tf2.

[354] Cambridge Structural Database, Cambridge Crystallographic Data Centre,
https://www.ccdc.cam.ac.uk/. Accessed: 2023-09-18.

[355] M. G. Taylor et al., Nature Communications 14 (2023) 2786.

[356] ORCA – an ab initio, density functional and semiempirical program package, V. 5.0.4, F.
Neese, MPI für Kohlenforschung, Mülheim a. d. Ruhr (Germany), 2022.

[357] B. Helmich-Paris et al., J. Chem. Phys. 155 (2021) 104109.

[358] O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133 (2010) 244103.

[359] M. Dolg, H. Stoll and H. Preuss, J. Chem. Phys. 90 (1989) 1730.

[360] M. Dolg et al., Theoretica chimica acta 75 (1989) 173.

136

https://doi.org/10.1021/acs.inorgchem.4c03215
https://doi.org/10.1021/acs.jpca.4c06989
https://doi.org/https://doi.org/10.48550/arXiv.2404.19756
https://doi.org/10.1038/s41377-022-00739-2
https://doi.org/10.1039/D3SC01088K
https://doi.org/10.1021/acs.chemrev.5b00091
https://doi.org/10.1021/acs.accounts.1c00691
https://doi.org/10.1021/acscentsci.9b00642
https://doi.org/https://doi.org/10.1016/j.ccr.2023.215284
https://doi.org/10.1021/acs.jctc.1c00363
https://doi.org/10.1126/science.abj6511
https://doi.org/https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1063/1.4928757
https://doi.org/10.1039/D2DD00129B
https://doi.org/10.26434/chemrxiv-2023-k3tf2-v2
https://doi.org/10.1063/5.0058766
https://doi.org/10.1063/1.3521275
https://doi.org/10.1063/1.456066
https://doi.org/10.1007/BF00528565

[361] X. Cao and M. Dolg, J. Chem. Phys. 115 (2001) 7348.

[362] Architector 3D chemical structure generation, https://github.com/lanl/Architector, 2023.
[363] Architector-Wrapper package for handling Architector,

https://github.com/grimme-lab/ArchitectorWrapper, 2023.
[364] HDF Group, https://www.hdfgroup.org/, 2023.
[365] Python Programming Language, V. 3.11.4, Guido van Rossum and Python Software

Foundation, https://www.python.org/, 2023.
[366] M. Vasiliu, K. A. Peterson and D. A. Dixon, J. Phys. Chem. A 124 (2020) 6913.

[367] N. N. Greenwood and A. Earnshaw, Chemistry of the Elements,
Butterworth-Heinemann, 1997.

[368] A. F. Holleman, E. Wiberg and N. Wiberg, Lehrbuch der Anorganischen Chemie,
Walter de Gruyter, 1995.

[369] C. E. Housecroft and A. G. Sharpe, Inorg. Chem. Prentice Hall, 2004.
[370] W. M. Haynes, Handbook of Chemistry and Physics, CRC Press, 2016.
[371] NIST Atomic Spectra Database Ionization Energies,

https://physics.nist.gov/asd. Accessed: 2023-10-23.

[372] N. Andreadi et al., Inorg. Chem. 59 (2020) 13383.

[373] S. A. Ghasemi et al., Phys. Rev. B 92 (2015) 045131.

[374] I. Mayer, Chem. Phys. Lett. 97 (1983) 270.

[375] O. Fizer et al., J. Mol. Model. 24 (2018) 141.

[376] R. F. Bader, Acc. Chem. Res. 18 (1985) 9.

[377] R. F. Bader, Chem. Rev. 91 (1991) 893.

[378] S. P. Perlepes, “Bioinorganic Aspects of Lanthanide(III) Coordination Chemistry: Modelling
the Use of Lanthanides(III) as Probes at Calcium(II) Binding Sites”, Cytotoxic, Mutagenic
and Carcinogenic Potential of Heavy Metals Related to Human Environment, Springer, 1997.

[379] C. W. am Ende et al., ChemBioChem 11 (2010) 1738.

[380] J. A. Mattocks, J. L. Tirsch and J. A. Cotruvo,
“Determination of affinities of lanthanide-binding proteins using chelator-buffered titrations”,
Rare-Earth Element Biochemistry: Characterization and Applications of Lanthanide-Binding
Biomolecules, Academic Press, 2021.

[381] D. Joss and D. Häussinger, Prog. Nucl. Mag. Res. Spect. 114-115 (2019) 284.

[382] I. D. Herath et al., Chem. Eur. J. 27 (2021) 13009.

[383] D. Joss, F. Winter and D. Häussinger, Chem. Commun. 56 (2020) 12861.

[384] P. Pyykkö and M. Atsumi, Chem. Eur. J. 15 (2009) 186.

[385] A. C. Brown and T. R. Fraser, Transactions of the Royal Society of Edinburgh 25 (1869) 693.

[386] R. E. Taylor et al., J. Am. Chem. Soc. 125 (2003) 26.

137

https://doi.org/10.1063/1.1406535
https://doi.org/10.1021/acs.jpca.0c05925
https://doi.org/10.1021/acs.inorgchem.0c01746
https://doi.org/10.1103/PhysRevB.92.045131
https://doi.org/https://doi.org/10.1016/0009-2614(83)80005-0
https://doi.org/10.1007/s00894-018-3692-x
https://doi.org/https://doi.org/10.1002/cbic.201000056
https://doi.org/https://doi.org/10.1016/j.pnmrs.2019.08.002
https://doi.org/https://doi.org/10.1002/chem.202101143
https://doi.org/10.1039/D0CC04337K
https://doi.org/https://doi.org/10.1002/chem.200800987
https://doi.org/10.1017/S0080456800035377
https://doi.org/10.1021/ja028196l

Bibliography

[387] P. L. Gentili, Biomimetics 9 (2024) 121.

[388] H. A. Scheraga, “Calculations of Conformations of Polypeptides”,
Advances in Physical Organic Chemistry, Academic Press, 1968.

[389] K. Munkerup et al., Journal of Saudi Chemical Society 23 (2019) 1206.

[390] M. Heger et al., Phys. Chem. Chem. Phys. 17 (2015) 9899.

[391] A. Lakdawala et al., BMC Chemical Biology 1 (2001) 2.

[392] V. Dragojlovic, ChemTexts 1 (2015) 14.

[393] A. Nivedha et al., J. Comput. Chem. 35 (2014) 526.

[394] D. H. R. Barton, Experientia 6 (1950) 316.

[395] V. Pophristic and L. Goodman, Nature 411 (2001) 565.

[396] F. Nitta and H. Kaneko, Molecular Informatics 40 (2021) 2000123.

[397] I.-J. Chen and N. Foloppe, J. Chem. Inf. Model. 48 (2008) 1773.

[398] A. M. Monzon et al., PLOS Computational Biology 13 (2017) 1.

[399] R. D. Cramer, D. E. Patterson and J. D. Bunce, J. Am. Chem. Soc. 110 (1988) 5959.

[400] K. Monde et al., J. Am. Chem. Soc. 128 (2006) 6000.

[401] M. Stahn et al., Environ. Sci.: Processes Impacts 24 (2022) 2153.

[402] D. W. C. S. V. Mani and R. D. Braddock,
Critical Reviews in Environmental Control 21 (1991) 217.

[403] M. Alexander and B. K. Lustigman,
Journal of Agricultural and Food Chemistry 14 (1966) 410.

[404] S. P. Jarvis et al., Nature Communications 6 (2015) 8338.

[405] L. Derdour and D. Skliar, Chemical Engineering Science 106 (2014) 275.

[406] H. P. G. Thompson and G. M. Day, Chem. Sci. 5 (2014) 3173.

[407] E. A. Stone et al., ACS Catalysis 11 (2021) 4395.

[408] J. M. Gallagher et al., Chem 10 (2024) 855.

[409] I. Iribarren and C. Trujillo, J. Chem. Inf. Model. 62 (2022) 5568.

[410] T. Rahaman, T. Vasiljevic and L. Ramchandran,
Trends in Food Science & Technology 49 (2016) 24.

[411] Y. Han, J. H. Cheng and D. W. Sun, Crit. Rev. Food Sci. Nutr. 59 (2019) 794.

[412] M. Manzoor et al., Food and Bioprocess Technology 17 (2024) 2131.

[413] D. K. Sahoo et al., Journal of Photochemistry and Photobiology A 453 (2024) 115671.

[414] P. C. D. Hawkins, J. Chem. Inf. Model. 57 (2017) 1747.

[415] J.-P. Ebejer, G. M. Morris and C. M. Deane, J. Chem. Inf. Model. 52 (2012) 1146.

[416] A. T. McNutt et al., J. Chem. Inf. Model. 63 (2023) 6598.

[417] G. Janson et al., Nature Communications 14 (2023) 774.

138

https://doi.org/10.3390/biomimetics9020121
https://doi.org/https://doi.org/10.1016/j.jscs.2019.07.005
https://doi.org/10.1039/C4CP05868B
https://doi.org/10.1186/1472-6769-1-2
https://doi.org/10.1007/s40828-015-0014-0
https://doi.org/10.1002/jcc.23517
https://doi.org/10.1007/BF02170915
https://doi.org/10.1038/35079036
https://doi.org/https://doi.org/10.1002/minf.202000123
https://doi.org/10.1021/ci800130k
https://doi.org/10.1371/journal.pcbi.1005398
https://doi.org/10.1021/ja00226a005
https://doi.org/10.1021/ja0602041
https://doi.org/10.1039/D2EM00271J
https://doi.org/10.1080/10643389109388416
https://doi.org/10.1021/jf60146a022
https://doi.org/10.1038/ncomms9338
https://doi.org/https://doi.org/10.1016/j.ces.2013.11.025
https://doi.org/10.1039/C4SC01132E
https://doi.org/10.1021/acscatal.1c01097
https://doi.org/https://doi.org/10.1016/j.chempr.2023.10.019
https://doi.org/10.1021/acs.jcim.2c00934
https://doi.org/https://doi.org/10.1016/j.tifs.2016.01.001
https://doi.org/10.1080/10408398.2018.1555131
https://doi.org/10.1007/s11947-023-03212-z
https://doi.org/https://doi.org/10.1016/j.jphotochem.2024.115671
https://doi.org/10.1021/acs.jcim.7b00221
https://doi.org/10.1021/ci2004658
https://doi.org/10.1038/s41467-023-36443-x

[418] M. J. Vainio and M. S. Johnson, J. Chem. Inf. Model. 47 (2007) 2462.

[419] V. Marinova et al., J. Chem. Inf. Model. 61 (2021) 2263.

[420] J. Zhu et al., International Journal of Molecular Sciences 24 (2023) 6896.

[421] J. V. Diez et al., Machine Learning: Science and Technology 5 (2024) 025010.

[422] R. Jiang et al., J. Comput. Chem. 43 (2022) 1880.

[423] G. Simm, R. Pinsler and J. M. Hernandez-Lobato,
“Reinforcement Learning for Molecular Design Guided by Quantum Mechanics”,
Conference on Machine Learning, 2020.

[424] Z. Shamsi, K. J. Cheng and D. Shukla, J. Phys. Chem. B 122 (2018) 8386.

[425] D. E. Kleiman and D. Shukla, J. Chem. Theory Comput. 18 (2022) 5422.

[426] Y. Wang et al., arXiv 2403 (2024) 14088.

[427] C. Zeni et al., arXiv 2312 (2024) 03687.

[428] J. Fan et al., J. Chem. Inf. Model. 64 (2024) 8414.

[429] D. D. Beusen et al., J. Mol. Struct. (Theochem) 370 (1996) 157.

[430] N. Sauton et al., BMC Bioinformatics 9 (2008) 184.

[431] T. Kalvoda et al., J. Phys. Chem. B 126 (2022) 5949.

[432] A. Smellie et al., J. Comput. Chem. 24 (2003) 10.

[433] N. M. O’Boyle et al., Journal of Cheminformatics 3 (2011) 8.

[434] T. Seidel et al., J. Chem. Inf. Model. 63 (2023) 5549.

[435] L. Chan, G. R. Hutchison and G. M. Morris, Journal of Cheminformatics 11 (2019) 32.

[436] S. Riniker and G. A. Landrum, J. Chem. Inf. Model. 55 (2015) 2562.

[437] P. C. D. Hawkins et al., J. Chem. Inf. Model. 50 (2010) 572.

[438] P. C. D. Hawkins and A. Nicholls, J. Chem. Inf. Model. 52 (2012) 2919.

[439] K. Anggara et al., J. Am. Chem. Soc. 142 (2020) 21420.

[440] O. Sperandio et al., European Journal of Medicinal Chemistry 44 (2009) 1405.

[441] M. A. Miteva, F. Guyon and P. Tuffery, Nucleic Acids Res. 38 (2010) W622.

[442] M. Rosa et al., J. Chem. Theory Comput. 12 (2016) 4385.

[443] K. S. Watts et al., J. Chem. Inf. Model. 50 (2010) 534.

[444] P. Pracht and S. Grimme, Chem. Sci. 12 (2021) 6551.

[445] P. Pracht, C. A. Bauer and S. Grimme, J. Comput. Chem. 38 (2017) 2618.

[446] J.-M. Mewes, Personal communication, 2024.
[447] A. K. Rappé et al., J. Am. Chem. Soc. 114 (1992) 10024.

[448] T. A. Halgren, J. Comput. Chem. 17 (1996) 490.

[449] D. A. Case et al., J. Chem. Inf. Model. 63 (2023) 6183.

139

https://doi.org/10.1021/ci6005646
https://doi.org/10.1021/acs.jcim.0c01387
https://doi.org/10.3390/ijms24086896
https://doi.org/10.1088/2632-2153/ad3b64
https://doi.org/https://doi.org/10.1002/jcc.26984
https://doi.org/10.1021/acs.jpcb.8b06521
https://doi.org/10.1021/acs.jctc.2c00683
https://doi.org/https://doi.org/10.48550/arXiv.2403.14088
https://doi.org/https://doi.org/10.48550/arXiv.2312.03687
https://doi.org/10.1021/acs.jcim.4c00928
https://doi.org/https://doi.org/10.1016/S0166-1280(96)04565-4
https://doi.org/10.1186/1471-2105-9-184
https://doi.org/10.1021/acs.jpcb.2c02861
https://doi.org/https://doi.org/10.1002/jcc.10175
https://doi.org/10.1186/1758-2946-3-8
https://doi.org/10.1021/acs.jcim.3c00563
https://doi.org/10.1186/s13321-019-0354-7
https://doi.org/10.1021/acs.jcim.5b00654
https://doi.org/10.1021/ci100031x
https://doi.org/10.1021/ci300314k
https://doi.org/10.1021/jacs.0c09933
https://doi.org/https://doi.org/10.1016/j.ejmech.2008.09.052
https://doi.org/10.1021/acs.jctc.6b00470
https://doi.org/10.1021/ci100015j
https://doi.org/10.1039/D1SC00621E
https://doi.org/https://doi.org/10.1002/jcc.24922
https://doi.org/https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
https://doi.org/10.1021/acs.jcim.3c01153

Bibliography

[450] O. T. Unke et al., Nature Communications 12 (2021) 7273.

[451] D. Folmsbee and G. Hutchison, Int. J. Quant. Chem. 121 (2021) e26381.

[452] A. S. Christensen et al., J. Chem. Phys. 155 (2021) 204103.

[453] S. Axelrod and R. Gómez-Bombarelli,
Machine Learning: Science and Technology 4 (2023) 035025.

[454] A. Christmann and D.-X. Zhou, Journal of Complexity 37 (2016) 1.

[455] Y. Lei, S.-B. Lin and K. Tang, “Generalization Bounds for Regularized Pairwise Learning”,
Conference on Artificial Intelligence, 2018.

[456] Y. Lei, A. Ledent and M. Kloft, “Sharper Generalization Bounds for Pairwise Learning”,
Conference on Neural Information Processing Systems, 2020.

[457] S. Agarwal and P. Niyogi, Journal of Machine Learning Research 10 (2009) 441.

[458] W. Rejchel, Journal of Machine Learning Research 13 (2012) 1373.

[459] M. Köppel et al., Pairwise Learning to Rank by Neural Networks Revisited: Reconstruction,
Theoretical Analysis and Practical Performance, Springer, 2020.

[460] R. Heckel et al., “Approximate Ranking from Pairwise Comparisons”,
Conference on Artificial Intelligence and Statistics, 2018.

[461] I. F. D. Oliveira, N. Ailon and O. Davidov,
Journal of Machine Learning Research 19 (2018) 1.

[462] R. M. Neeser, B. Correia and P. Schwaller, arXiv 2312 (2023) 12737.

[463] M. Tynes et al., J. Chem. Inf. Model. 61 (2021) 3846.

[464] S. J. Wetzel et al., Applied AI Lett. 3 (2022) e78.

[465] S. J. Wetzel, R. G. Melko and I. Tamblyn,
Machine Learning: Science and Technology 3 (2022) 045007.

[466] L. von Rueden et al., IEEE Transactions on Knowledge and Data Engineering 35 (2023) 614.

[467] B. Anderson, T. S. Hy and R. Kondor, “Cormorant: Covariant Molecular Neural Networks”,
Conference on Neural Information Processing Systems, 2019.

[468] A. Musaelian et al., Nature Communications 14 (2023) 579.

[469] C. Chen and S. P. Ong, Nature Computational Science 2 (2022) 718.

[470] B. Deng et al., Nature Machine Intelligence 5 (2023) 1031.

[471] M. Chen et al., Medicinal Research Reviews 44 (2024) 1147.

[472] P. O. Dral, Chem. Commun. 60 (2024) 3240.

[473] P. Veličković, “Message passing all the way up”,
International Conference on Learning Representations, 2022.

[474] C. K. Joshi et al., “On the Expressive Power of Geometric Graph Neural Networks”,
International Conference on Machine Learning, 2023.

140

https://doi.org/10.1038/s41467-021-27504-0
https://doi.org/https://doi.org/10.1002/qua.26381
https://doi.org/10.1063/5.0061990
https://doi.org/10.1088/2632-2153/acefa7
https://doi.org/https://doi.org/10.1016/j.jco.2016.07.001
https://doi.org/10.1021/acs.jcim.1c00670
https://doi.org/https://doi.org/10.1002/ail2.78
https://doi.org/10.1088/2632-2153/ac9885
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1038/s41467-023-36329-y
https://doi.org/10.1038/s43588-022-00349-3
https://doi.org/10.1038/s42256-023-00716-3
https://doi.org/https://doi.org/10.1002/med.22008
https://doi.org/10.1039/D4CC00010B

[475] G. Kim et al., “Benchmark of Machine Learning Force Fields for Semiconductor Simulations:
Datasets, Metrics, and Comparative Analysis”,
Conference on Neural Information Processing Systems, 2023.

[476] V. Bihani et al., Digital Discovery 3 (2024) 759.

[477] A. Duval et al., arXiv 2312 (2024) 07511.

[478] I. Batatia et al., arXiv 2205 (2022) 06643.

[479] R. Drautz, Phys. Rev. B 99 (2019) 014104.

[480] M. M. Bronstein et al., arXiv 2104 (2021) 13478.

[481] S. Grimme et al., Chem. Rev. 116 (2016) 5105.

[482] W. J. Mortier, S. K. Ghosh and S. Shankar, J. Am. Chem. Soc. 108 (1986) 4315.

[483] N. L. Allinger, Y. H. Yuh and J. H. Lii, J. Am. Chem. Soc. 111 (1989) 8551.

[484] E. Caldeweyher et al., Phys. Chem. Chem. Phys. (22 2020) 8499.

[485] Generally Applicable Atomic-Charge Dependent London Dispersion Correction,
https://github.com/dftd4/dftd4, 2024.

[486] Semiempirical Extended Tight-Binding Program Package xtb,
https://github.com/grimme-lab/xtb, 2024.

[487] Conformer-Rotamer Ensemble Sampling Tool, https://github.com/grimme-lab/crest, 2021.
[488] Python Programming Language, V. 3.11.5, Guido van Rossum and Python Software

Foundation, https://www.python.org/, 2023.
[489] J. Ansel et al., “PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode

Transformation and Graph Compilation”, International Conference on Architectural Support
for Programming Languages and Operating Systems, 2024.

[490] PyTorch Geometric, https://github.com/pyg-team/pytorch_geometric, 2024.
[491] MACE, https://github.com/ACEsuit/mace, 2024.
[492] GemNet, https://github.com/TUM-DAML/gemnet_pytorch, 2023.
[493] A. M. Richard et al., Chemical Research in Toxicology 29 (2016) 1225.

[494] H. Mun, W. Lorpaiboon and J. Ho, J. Phys. Chem. A 128 (2024) 4391.

[495] N. van Staalduinen and C. Bannwarth, ChemRxiv (2024) k40v5.

[496] I. Y. Kanal, J. A. Keith and G. R. Hutchison, Int. J. Quant. Chem. 118 (2018) e25512.

[497] D. I. Sharapa et al., Chem. Phys. Chem. 20 (2019) 92.

[498] M. Marianski et al., J. Chem. Theory Comput. 12 (2016) 6157.

[499] J. Řezáč et al., J. Chem. Theory Comput. 14 (2018) 1254.

[500] S. Ehlert, S. Grimme and A. Hansen, J. Phys. Chem. A 126 (2022) 3521.

[501] D. H. Williams and B. Bardsley, Angew. Chem. Int. Ed. 38 (1999) 1172.

[502] World Health Organization, Critically Important Antimicrobials for Human Medicine,
World Health Organization, 2019.

141

https://doi.org/10.1039/D4DD00027G
https://doi.org/https://doi.org/10.48550/arXiv.2205.06643
https://doi.org/10.1103/PhysRevB.99.014104
https://doi.org/10.1021/ja00275a013
https://doi.org/10.1021/ja00205a001
https://doi.org/10.1039/D0CP00502A
https://doi.org/10.1021/acs.chemrestox.6b00135
https://doi.org/10.1021/acs.jpca.4c01407
https://doi.org/10.26434/chemrxiv-2024-k40v5
https://doi.org/https://doi.org/10.1002/qua.25512
https://doi.org/https://doi.org/10.1002/cphc.201801063
https://doi.org/10.1021/acs.jctc.6b00876
https://doi.org/10.1021/acs.jctc.7b01074
https://doi.org/10.1021/acs.jpca.2c02439
https://doi.org/10.1002/(SICI)1521-3773(19990503)38:9<1172::AID-ANIE1172>3.0.CO;2-C

Bibliography

[503] A. D. Becke, J. Chem. Phys. 140 (2014) 18A301.

[504] J. G. Brandenburg et al., J. Chem. Phys. 148 (2018) 064104.

[505] S. Grimme et al., J. Chem. Phys. 143 (2015) 054107.

[506] M. Müller, A. Hansen and S. Grimme, J. Chem. Phys. 158 (2023) 014103.

[507] K. Miyamoto, T. F. I. Miller and F. R. Manby, J. Chem. Theory Comput. 12 (2016) 5811.

[508] J. Witte, J. B. Neaton and M. Head-Gordon, J. Chem. Phys. 146 (2017) 234105.

[509] J. Hostaš and J. Řezáč, J. Chem. Theory Comput. 13 (2017) 3575.

[510] A. Otero-de-la-Roza and G. A. DiLabio, J. Chem. Theory Comput. 13 (2017) 3505.

[511] V. Ásgeirsson, C. A. Bauer and S. Grimme, Chem. Sci. 8 (2017) 4879.

[512] J. Koopman and S. Grimme, ACS Omega 4 (2019) 15120.

[513] J. Koopman and S. Grimme, J. Am. Soc. Mass Spectrom. 32 (2021) 1735.

[514] T. Kamachi and K. Yoshizawa, J. Chem. Inf. Model. 56 (2016) 347.

[515] P. M. Zimmerman, J. Chem. Phys. 138 (2013) 184102.

[516] L. D. Jacobson et al., J. Chem. Theory Comput. 13 (2017) 5780.

[517] S. Grimme, Chem. Eur. J. 18 (2012) 9955.

[518] P. Pulay, WIREs Comput. Mol. Sci. 4 (2014) 169.

[519] M. Bartholomew-Biggs et al., J. Comput. Appl. Math. 124 (2000) 171.

[520] M. Sambridge et al., Geophys. J. Int. 170 (2007) 1.

[521] M. Minkov et al., ACS Photonics 7 (2020) 1729.

[522] S. Colburn and A. Majumdar, Commun. Phys. 4 (2021) 1.

[523] D. Puzzuoli et al., J. Open Source Softw. 8 (2023) 5853.

[524] S. Doerr et al., J. Chem. Theory Comput. 17 (2021) 2355.

[525] S. S. Schoenholz and E. D. Cubuk, “JAX MD”,
Conference on Neural Information Processing Systems, 2019.

[526] M. C. Kaymak et al., J. Chem. Theory Comput. 18 (2022) 5181.

[527] S. Sorella and L. Capriotti, J. Chem. Phys. 133 (2010) 234111.

[528] A. Mahajan et al., J. Chem. Phys. 159 (2023) 184101.

[529] D. R. Hartree, Math. Proc. Cambridge Philos. Soc. 24 (1928) 111.

[530] T. Tamayo-Mendoza et al., ACS Cent. Sci. 4 (2018) 559.

[531] A. S. Abbott et al., J. Phys. Chem. Lett. 12 (2021) 3232.

[532] X. Zhang and G. K.-L. Chan, J. Chem. Phys. 157 (2022) 204801.

[533] J. M. Arrazola et al., arXiv 2111 (2023) 09967.

[534] P. A. M. Casares et al., J. Chem. Phys. 160 (2024) 062501.

[535] C. W. Tan, C. J. Pickard and W. C. Witt, J. Chem. Phys. 158 (2023) 124801.

142

https://doi.org/10.1063/1.4869598
https://doi.org/10.1063/1.5012601
https://doi.org/10.1063/1.4927476
https://doi.org/10.1063/5.0133026
https://doi.org/10.1021/acs.jctc.6b00685
https://doi.org/10.1063/1.4986962
https://doi.org/10.1021/acs.jctc.7b00365
https://doi.org/10.1021/acs.jctc.7b00300
https://doi.org/10.1039/C7SC00601B
https://doi.org/10.1021/acsomega.9b02011
https://doi.org/10.1021/jasms.1c00098
https://doi.org/10.1021/acs.jcim.5b00671
https://doi.org/10.1063/1.4804162
https://doi.org/10.1021/acs.jctc.7b00764
https://doi.org/10.1002/chem.201200497
https://doi.org/10.1002/wcms.1171
https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/10.1111/j.1365-246X.2007.03400.x
https://doi.org/10.1021/acsphotonics.0c00327
https://doi.org/10.1038/s42005-021-00568-6
https://doi.org/10.21105/joss.05853
https://doi.org/10.1021/acs.jctc.0c01343
https://doi.org/10.1021/acs.jctc.2c00363
https://doi.org/10.1063/1.3516208
https://doi.org/10.1063/5.0171996
https://doi.org/10.1017/s0305004100011920
https://doi.org/10.1021/acscentsci.7b00586
https://doi.org/10.1021/acs.jpclett.1c00607
https://doi.org/10.1063/5.0118200
https://doi.org/https://doi.org/10.48550/arXiv.2111.09967
https://doi.org/10.1063/5.0181037
https://doi.org/10.1063/5.0138429

[536] U. Ekström et al., J. Chem. Theory Comput. 6 (2010) 1971.

[537] R. Bast et al., Phys. Chem. Chem. Phys. 13 (2011) 2627.

[538] L. Li et al., Phys. Rev. Lett. 126 (2021) 036401.

[539] F. Pavošević and S. Hammes-Schiffer, arXiv 2011 (2020) 11690.

[540] J. S. Kottmann, A. Anand and A. Aspuru-Guzik, Chem. Sci. 12 (2021) 3497.

[541] J. A. R. Shea and E. Neuscamman, J. Chem. Phys. 149 (2018) 081101.

[542] H.-J. Liao et al., Phys. Rev. X 9 (2019) 031041.

[543] C. Song, T. J. Martínez and J. B. Neaton, J. Chem. Phys. 155 (2021) 024108.

[544] R. Steiger et al., Future Gener. Comput. Syst. 21 (2005) 1324.

[545] G. Zhou et al., J. Chem. Theory Comput. 16 (2020) 4951.

[546] M. Elstner, J. Phys. Chem. A 111 (2007) 5614.

[547] M. Elstner, Theor. Chem. Acc. 116 (2005) 316.

[548] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library”,
Conference on Neural Information Processing Systems, 2019.

[549] N. Fedik et al., J. Chem. Phys. 159 (2023) 110901.

[550] T. Zubatiuk et al., J. Chem. Phys. 154 (2021) 244108.

[551] R. A. Vargas-Hernández et al., J. Chem. Phys. 158 (2023) 104801.

[552] P. O. Dral, O. A. von Lilienfeld and W. Thiel, J. Chem. Theory Comput. 11 (2015) 2120.

[553] G. Zhou et al., Proc. Natl. Acad. Sci. U.S.A. 119 (2022) e2120333119.

[554] C.-P. Chou et al., J. Chem. Theory Comput. 12 (2016) 53.

[555] J. J. Kranz et al., J. Chem. Theory Comput. 14 (2018) 2341.

[556] C. Panosetti et al., J. Chem. Theory Comput. 16 (2020) 2181.

[557] M. Stöhr, L. Medrano Sandonas and A. Tkatchenko, J. Phys. Chem. Lett. 11 (2020) 6835.

[558] L. Komissarov and T. Verstraelen, J. Chem. Inf. Model. 61 (2021) 5931.

[559] S. Raaijmakers et al., J. Phys. Chem. C 126 (2022) 9587.

[560] J.-M. Mewes, A. Hansen and S. Grimme, Angew. Chem., Int. Ed. 60 (2021) 13144.

[561] L. Komissarov et al., J. Chem. Inf. Model. 61 (2021) 3737.

[562] R. Ramakrishnan et al., J. Chem. Theory Comput. 11 (2015) 2087.

[563] K. Atz et al., Phys. Chem. Chem. Phys. 24 (2022) 10775.

[564] L. D. Jacobson et al., J. Chem. Theory Comput. 18 (2022) 2354.

[565] P. Zheng et al., Nat. Commun. 12 (2021) 7022.

[566] H. Li et al., J. Chem. Theory Comput. 14 (2018) 5764.

[567] C. C. J. Roothaan, Rev. Mod. Phys. 23 (1951) 69.

[568] G. G. Hall, Proc. R. Soc. London, Ser. A 205 (1951) 541.

143

https://doi.org/10.1021/ct100117s
https://doi.org/10.1039/C0CP01647K
https://doi.org/10.1103/PhysRevLett.126.036401
https://doi.org/https://doi.org/10.48550/arXiv.2011.11690
https://doi.org/10.1039/D0SC06627C
https://doi.org/10.1063/1.5045056
https://doi.org/10.1103/PhysRevX.9.031041
https://doi.org/10.1063/5.0055914
https://doi.org/10.1016/j.future.2004.11.011
https://doi.org/10.1021/acs.jctc.0c00243
https://doi.org/10.1021/jp071338j
https://doi.org/10.1007/s00214-005-0066-0
https://doi.org/10.1063/5.0151833
https://doi.org/10.1063/5.0052857
https://doi.org/10.1063/5.0137103
https://doi.org/10.1021/acs.jctc.5b00141
https://doi.org/10.1073/pnas.2120333119
https://doi.org/10.1021/acs.jctc.5b00673
https://doi.org/10.1021/acs.jctc.7b00933
https://doi.org/10.1021/acs.jctc.9b00975
https://doi.org/10.1021/acs.jpclett.0c01307
https://doi.org/10.1021/acs.jcim.1c01170
https://doi.org/10.1021/acs.jpcc.2c02412
https://doi.org/10.1002/anie.202102679
https://doi.org/10.1021/acs.jcim.1c00333
https://doi.org/10.1021/acs.jctc.5b00099
https://doi.org/10.1039/D2CP00834C
https://doi.org/10.1021/acs.jctc.1c00821
https://doi.org/10.1038/s41467-021-27340-2
https://doi.org/10.1021/acs.jctc.8b00873
https://doi.org/10.1103/RevModPhys.23.69
https://doi.org/10.1098/rspa.1951.0048

Bibliography

[569] S. Grimme, J. Chem. Theory Comput. 10 (2014) 4497.

[570] S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem. 32 (2011) 1456.

[571] A. D. Becke and E. R. Johnson, J. Chem. Phys. 123 (2005) 154101.

[572] E. R. Johnson and A. D. Becke, J. Chem. Phys. 123 (2005) 024101.

[573] E. R. Johnson and A. D. Becke, J. Chem. Phys. 124 (2006) 174104.

[574] R. S. Mulliken, J. Chim. Phys. 46 (1949) 675.

[575] M. Wolfsberg and L. Helmholz, J. Chem. Phys. 20 (1952) 837.

[576] K. Nishimoto and N. Mataga, Z. Phys. Chem. 12 (1957) 335.

[577] G. Klopman, J. Am. Chem. Soc. 86 (1964) 4550.

[578] K. Ohno, Theoret. Chim. Acta 2 (1964) 219.

[579] N. D. Mermin, Phys. Rev. 137 (1965) A1441.

[580] A. G. Baydin et al., Journal of Machine Learning Research 18 (2018) 1.

[581] B. van Merrienboer et al.,
“Automatic Differentiation in ML: Where We Are and Where We Should Be Going”,
Conference on Neural Information Processing Systems, 2018.

[582] X. Gao et al., J. Chem. Inf. Model. 60 (2020) 3408.

[583] A. Veillard and E. Clementi, Theoret. Chim. Acta 7 (1967) 133.

[584] M. K. MacLeod and T. Shiozaki, J. Chem. Phys. 142 (2015) 051103.

[585] B. Vlaisavljevich and T. Shiozaki, J. Chem. Theory Comput. 12 (2016) 3781.

[586] R. Improta et al., J. Chem. Phys. 125 (2006) 054103.

[587] T. Froitzheim, S. Grimme and J.-M. Mewes, J. Chem. Theory Comput. 18 (2022) 7702.

[588] T. Brown et al., “Language Models Are Few-Shot Learners”,
Conference on Neural Information Processing Systems, 2020.

[589] B. Workshop et al., arXiv 2211 (2023) 05100.

[590] W. Baur and V. Strassen, Theor. Comput. Sci. 22 (1983) 317.

[591] S. Tokui et al., “Chainer: A Next-Generation Open Source Framework for Deep Learning”,
Conference on Neural Information Processing Systems, 2015.

[592] D. Maclaurin,
Modeling, Inference and Optimization with Composable Differentiable Procedures,
PhD thesis: Harvard University, 2016.

[593] J. Bradbury et al., JAX: Composable Transformations of Python+NumPy Programs, 2018.
[594] R. Frostig, M. J. Johnson and C. Leary,

Compiling Machine Learning Programs via High-Level Tracing, 2018.
[595] M. Abadi et al., arXiv 1605 (2016) 08695.

[596] R. Al-Rfou et al., arXiv 1605 (2016) 02688.

144

https://doi.org/10.1021/ct500573f
https://doi.org/10.1002/jcc.21759
https://doi.org/10.1063/1.2065267
https://doi.org/10.1063/1.1949201
https://doi.org/10.1063/1.2190220
https://doi.org/10.1051/jcp/1949460675
https://doi.org/10.1063/1.1700580
https://doi.org/10.1524/zpch.1957.12.5_6.335
https://doi.org/10.1021/ja01075a008
https://doi.org/10.1007/BF00528281
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1021/acs.jcim.0c00451
https://doi.org/10.1007/BF01151915
https://doi.org/10.1063/1.4907717
https://doi.org/10.1021/acs.jctc.6b00572
https://doi.org/10.1063/1.2222364
https://doi.org/10.1021/acs.jctc.2c00905
https://doi.org/https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/https://doi.org/10.48550/arXiv.1605.08695
https://doi.org/https://doi.org/10.48550/arXiv.1605.02688

[597] T. Chen et al., MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous
Distributed Systems, 2015.

[598] Y. Jia et al., Caffe: Convolutional Architecture for Fast Feature Embedding, 2014.
[599] C. Bischof et al., Sci. Program. 1 (1992) 717832.

[600] L. Hascoet and V. Pascual, ACM Trans. Math. Softw. 39 (2013) 1.

[601] R. Giering and T. Kaminski, ACM Trans. Math. Softw. 24 (1998) 437.

[602] C. Bischof, B. Lang and A. Vehreschild, PAMM 2 (2003) 50.

[603] A. Griewank, D. Juedes and J. Srinivasan, ACM Trans. Math. Software 22 (1996).

[604] C. Bendtsen and O. Stauning,
FADBAD, a Flexible C++ Package for Automatic Differentiation, Technical Report, 1996.

[605] C. Bischof and H. Bücker, “Computing Derivatives of Computer Programs”,
Modern Methods and Algorithms of Quantum Chemistry,
John von Neumann Institute for Computing, 2000.

[606] F. Pedregosa et al., Journal of Machine Learning Research 12 (2011) 2825.

[607] Fully Differentiable Approach to Semiempirical Extended Tight Binding,
https://dxtb.readthedocs.io/, 2024.

[608] A. H. Larsen et al., J. Phys. Condens. Matter 29 (2017) 273002.

[609] S. Colvin, pydantic - Data validation using Python type hints,
https://github.com/pydantic/pydantic, 2023.

[610] M. B. Giles, “Collected Matrix Derivative Results for Forward and Reverse Mode
Algorithmic Differentiation”, Advances in Automatic Differentiation, Springer, 2008.

[611] M. Giles, An Extended Collection of Matrix Derivative Results for Forward and Reverse
Mode Automatic Differentiation, Technical Report, 2008.

[612] J. Johnson, M. Douze and H. Jégou, Billion-Scale Similarity Search with GPUs, 2017.
[613] M. Fey et al., SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels,

2018.
[614] J. Feydy et al., “Fast Geometric Learning with Symbolic Matrices”,

Conference on Neural Information Processing Systems, 2020.
[615] K. M. Jatavallabhula et al., arXiv 1911 (2019) 05063.

[616] N. Ravi et al., arXiv 2007 (2020) 08501.

[617] S. Obara and A. Saika, J. Chem. Phys. 84 (1986) 3963.

[618] S. Obara and A. Saika, J. Chem. Phys. 89 (1988) 1540.

[619] F. Neese, J. Comput. Chem. 44 (2023) 381.

[620] L. E. McMurchie and E. R. Davidson, J. Comput. Phys. 26 (1978) 218.

[621] S. G. Balasubramani et al., J. Chem. Phys. 152 (2020) 184107.

[622] Z. Wu et al., Chem. Sci. 9 (2018) 513.

145

https://doi.org/10.1155/1992/717832
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1145/293686.293695
https://doi.org/10.1002/pamm.200310013
https://doi.org/10.1145/229473.229474
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/https://doi.org/10.48550/arXiv.1911.05063
https://doi.org/https://doi.org/10.48550/arXiv.08501
https://doi.org/10.1063/1.450106
https://doi.org/10.1063/1.455717
https://doi.org/10.1002/jcc.26942
https://doi.org/10.1016/0021-9991(78)90092-X
https://doi.org/10.1063/5.0004635
https://doi.org/10.1039/c7sc02664a

Bibliography

[623] Q. Sun et al., WIREs Comput. Mol. Sci. 8 (2018) e1340.
[624] M. Korth and S. Grimme, J. Chem. Theory Comput. 5 (2009) 993.
[625] D. G. Anderson, J. ACM 12 (1965) 547.
[626] M. Seeger et al., arXiv 1710 (2019) 08717.
[627] W. Jin et al., ACS Photonics 7 (2020) 2350.
[628] N. Yoshikawa and M. Sumita, J. Phys. Chem. A 126 (2022) 8487.
[629] M. Blondel et al., “Efficient and Modular Implicit Differentiation”,

Conference on Neural Information Processing Systems, 2022.
[630] J. Ren et al., Journal of Machine Learning Research 24 (2023) 1.
[631] L. Pineda et al., “Theseus: A Library for Differentiable Nonlinear Optimization”,

Conference on Neural Information Processing Systems, 2022.
[632] J. Lorraine, P. Vicol and D. Duvenaud,

“Optimizing Millions of Hyperparameters by Implicit Differentiation”,
Conference on Artificial Intelligence and Statistics, 2020.

[633] B. Amos and J. Z. Kolter,
“OptNet: Differentiable Optimization as a Layer in Neural Networks”,
Conference on Machine Learning, 2017.

[634] S. Bai, J. Z. Kolter and V. Koltun, “Deep Equilibrium Models”,
Conference on Neural Information Processing Systems, 2019.

[635] H. He and R. Zou, Functorch: JAX-like composable function transforms for PyTorch,
https://github.com/pytorch/functorch, 2021.

[636] E. Anderson et al., LAPACK Users’ Guide,
Society for Industrial and Applied Mathematics, 1999.

[637] A. Najibi and L. Goerigk, J. Comput. Chem. 41 (2020) 2562.
[638] F. Weigend, F. Furche and R. Ahlrichs, J. Chem. Phys. 119 (2003) 12753.
[639] J. Hu, N. Whiting and P. Bhattacharya, J. Phys. Chem. C 122 (2018) 10575.
[640] M. S. Bin-Alam et al., Nano Lett. 21 (2021) 51.
[641] F. A. Santos et al., Photonics 10 (2023) 545.
[642] G. Placzek, Z. Phys. 70 (1931) 84.
[643] D. J. Swanton, G. B. Bacskay and N. S. Hush, Chem. Phys. 83 (1984) 69.
[644] D. P. O’Neill, M. Kállay and J. Gauss, Mol. Phys. 105 (2007) 2447.
[645] P. Pracht, D. F. Grant and S. Grimme, J. Chem. Theory Comput. 16 (2020) 7044.
[646] M. Fanti, G. Orlandi and F. Zerbetto, J. Phys. B 29 (1996) 5065.
[647] M. D. Halls and H. B. Schlegel, J. Chem. Phys. 111 (1999) 8819.
[648] S. Kaminski et al., J. Phys. Chem. A 116 (2012) 9131.
[649] Fully Differentiable Approach to Semiempirical Extended Tight Binding,

https://github.com/grimme-lab/dxtb, 2024.

146

https://doi.org/https://doi.org/10.1002/wcms.1340
https://doi.org/10.1021/ct800511q
https://doi.org/10.1145/321296.321305
https://doi.org/https://doi.org/10.48550/arXiv.1710.08717
https://doi.org/10.1021/acsphotonics.0c00768
https://doi.org/10.1021/acs.jpca.2c05922
https://doi.org/10.1002/jcc.26411
https://doi.org/10.1063/1.1627293
https://doi.org/10.1021/acs.jpcc.8b00911
https://doi.org/10.1021/acs.nanolett.0c02991
https://doi.org/10.3390/photonics10050545
https://doi.org/10.1007/BF01391032
https://doi.org/10.1016/0301-0104(84)85220-9
https://doi.org/10.1080/00268970701516412
https://doi.org/10.1021/acs.jctc.0c00877
https://doi.org/10.1088/0953-4075/29/21/020
https://doi.org/10.1063/1.480228
https://doi.org/10.1021/jp306239c

[650] Reimplementation of the DFT-D3 program, https://github.com/dftd3/simple-dftd3, 2024.
[651] PyTorch Autodiff Multicharge (Classical Charge Models).

https://github.com/tad-mctc/tad-multicharge, 2024.
[652] Torch autodiff DFT-D3 implementation, https://github.com/dftd3/tad-dftd3, 2024.
[653] Torch autodiff DFT-D4 implementation, https://github.com/dftd4/tad-dftd4, 2024.

147

List of Figures

2.1 Overview over length scales in nature and a schematic indication on the different
research domains in natural sciences. Adapted from reference [21]. 3

2.2 Overview over the different density functional approximation classes. 15
2.3 A fully connected feedforward neural network with an exemplary input vector x (blue),

one hidden layer (yellow), and a scalar output (gray). The arrows represent the flow
of information, where weights ,8 9 and corresponding bias terms 18 9 are applied,
followed by an activation function f. For visual clarity, these terms are not explicitly
shown on every arrow. 35

2.4 Illustration of a graph-based molecular representation using a GNN. The molecular
topology is represented by a graph whose nodes (blue and green) correspond to atoms,
and whose arrows denote covalent bonds. The node embeddings (yellow) and edge
attributes (red) encode the local chemical environment. Messages are generated from
these features and passed between the nodes to propagate information. After multiple
iterations of message passing, a global output quantity can be computed via pooling
over all node vectors. 38

A.1 Workflow for dataset creation. Components using the ORCA (ArchitectorWrapper)
framework are indicated by blue (yellow) highlighting. For sample creation, ligands
and settings are prepared and fed into the Architector package for generation of
3D structures. Subsequently, these structures are optimized and permuted. Finally,
singlepoint properties are calculated for each individual sample and stored in a database. 62

A.2 Overviewover various optimized geometries for different ligandmotifs and lanthanoids.
Given is a shortened version of the unique identifier used in the dataset. 64

A.3 Overview over the LnQM dataset composition and relative sizes of individual
lanthanoid subsets. 67

A.4 The figure provides a comprehensive overview of the LnQM dataset composition.
The upper section (A) depicts the relative distribution of included elements, with
lanthanoids consolidated under the label Ln. Each column is provided with absolute
frequency values. The lower left section (B) visualizes the distribution of molecular
sizes. The lower right section (C) displays the distribution of molecular charges across
all structures. The entire dataset comprises 17269 structures. 68

A.5 Average SOMO−LUMO gap (A) and HOMO−LUMO gap (B) for each subset,
calculated on the lB97M-V/def2-SVPD level. The 1f standard deviation is shaded
in gray. 70

149

List of Figures

A.6 Overview of atomic partial charges on the central lanthanoid for each subset of the
LnQM for different charge models (A). Comparison of the mean deviation (MD) of
partial charges on the central lanthanoid atom across various charge models relative to
Hirshfeld partial charges (B). 71

A.7 Bond lengths between central lanthanoid atom and nitrogen (A) and oxygen (B)
considered in structures with identical motifs for all 15 lanthanoid subsets. Bonds are
identified using Mayer bond orders and respective distance estimates. The red dot
indicates the sum of covalent radii of bonded partners Acov = A

Ln
cov + A

{N, O}
cov 72

A.8 Comparison of GFN2-xTB and GFN-FF geometry-optimized structures to PBE0-
D4/def2-SVP level using the heavy atom RMSD. 73

A.9 Bond lengths 3X(Ln-{N, O}) using geometry optimization on GFN2-xTB (A) and
GFN-FF (B) level compared to PBE0-D4/def2-SVP level. 74

B.1 Generation of ConfRank training data involves three main steps: sampling, reference
calculation, and feature parsing. During sampling, 20 conformers are randomly selec-
ted from each ensemble, including the lowest energy conformer at the reference energy
level. The selected conformers are then optimized on GFN-FF level. Subsequently, the
training targets, energies and gradients, are determined using DFT calculations on the
GFN-FF geometries. Additionally, a GFN-FF singlepoint calculation is performed on
the GFN-FF equilibrium geometries, and further features from the GFN-FF calculation
are parsed. Energy and gradient values from both the r2SCAN-3c reference and
GFN-FF calculations are incorporated into the dataset, with nomenclature indicating
geometry level (subscripts) and singlepoint level (superscripts). 85

B.2 Overview of the composition of the ConfRank dataset. The main plot displays the
elemental composition of all samples, with absolute values indicated on each column.
The inset illustrates the distribution of molecular sizes in the dataset. 87

B.3 Schematic approach for pairwise training. For a pair of two conformers from a
given ensemble, pseudo-energies � ′� and � ′� are calculated using a single model
(e.g. DimeNet++ architecture). The model weights are updated using a pairwise loss
function. 90

B.4 Correlation of r2SCAN-3c (DFT) and predicted relative energies on the test set across
different methods: a) GFN-FF, b) GFN2-xTB and c) DimeNet++. 92

B.5 Computational runtime of DimeNet++ as a function of the batch size for different
numbers of Open Multi-Processing (OMP) threads and on the GPU when evaluated on
its test set. Performance deterioration when using a single OMP thread for batch sizes
larger than 16 is likely due to inefficiencies in workload distribution and overheads
associated with processor-specific chunking of the task. Results are averaged over
three runs and error bands correspond to the standard deviation of those runs. 93

B.6 Comparison of inference times for various ML models on GPU based on batch size.
Single sample inferences were performed on the ConfRank test set, averaged over
three runs. Black markers indicate the standard deviation. 94

B.7 Comparison of GFN methods and DimeNet++ on the QM9-CREST dataset. The units
are agreeing with those reported in previous tables. 96

150

List of Figures

B.8 Comparison of pairwise MAD for different methods on various subsets of the
GMTKN55 containing conformers. The MAD is averaged across all ensembles within
each subset. 97

B.9 Comparison of pairwise RMSD for different methods on various subsets of the
GMTKN55 containing conformers. The RMSD is averaged across all ensembles
within each subset. 98

C.1 Schematic overview of the dxtb framework. Starting from the left, the user simply
provides the atom types and Cartesian coordinates of a single or multiple structures
as input (blue). Secondly, a tight-binding method is chosen for the calculation.
While dxtb implements convenient shortcuts for known methods (GFN1-xTB), other
Hamiltonians and energy contributions can also be selected, as depicted by the
puzzle pieces. Finally, the calculator (gray) is tasked with computing properties like
energy, vibrations, or dipole moments (yellow). Note that the calculator does not
implement any derivatives but utilizes PyTorch’s autograd engine to obtain arbitrary
order derivatives of any quantity. 109

C.2 Timings for various overlap integral implementations for three molecules, each
belonging to different size regimes: a small “mindless”[624] 16-atom molecule from
the MB16-43 benchmark set[89] with the sum formula H6B2N2O2FNaAlCl (gray), the
medium-sized C60 fullerene (yellow), and vancomycin, a drug containing 176 atoms
(blue). Starting from the bottom, “loop-based” refers to the one-to-one translation
from Fortran to PyTorch. “vectorized” describes the optimized McMurchie–Davidson
algorithm. The best pure Python performance is reached with the “unique pair“
ansatz. Only the version utilizing the “libcint interface” runs as efficient as the original
Fortran “xtb” implementation. The colored dotted vertical lines also mark the Fortran
reference speed. All timings are obtained on a single core. For more technical details,
see Supporting Information. 113

C.3 Execution times (in seconds) for energy and nuclear gradient evaluation for a large, 538-
atom NCI complex. The first (left) bar of each category displays single-core timings,
the second (right) bars are obtained on four cores with shared-memory parallelization.
The four categories (from left to right) reflect the pure PyTorch implementation in
dxtb with AD for overlap derivatives, another pure PyTorch approach with analytical
nuclear overlap derivatives, dxtb with an interface to libcint for all integral-related
computation, and finally, the analytical Fortran implementation from the tblite library. 118

C.4 Distribution of execution times (in seconds) for energy and nuclear gradient calculations
across the QM9 (left) and GMTKN55 (right) data sets. In the bottom panel, the
distribution of molecular sizes in the data sets is shown. Execution times are obtained
with the Fortran reference (tblite, blue), dxtb with the libcint interface (yellow), and
the pure PyTorch implementations using either AD for overlap gradients (red) or an
analytical derivative (green). 119

C.5 IR spectrum of capsaicin. The blue spectrum is calculated with GFN1-xTB using
dxtb with automatic differentiation (AD). Its outline, however, is computed fully
numerically, showing perfect agreement. For reference, a DFT (lB97X-D4/def2-
QZVP) spectrum is also shown (yellow). 123

151

List of Tables

A.1 Overview over lanthanoids and their properties. Denoted are the atomic electron
configuration (EC0C<), the lanthanoid’s formal oxidation states (OS) and effective
ionic radii (R+3) [367–370]. 63

A.2 The 31 ligands used for the dataset creation, their SMILES representation, and their
abundance in the lanthanum subset. 65

B.1 Statistical performance metrics for different models and training modes on the test set.
MD, MAD and RMSD of relative energies are given in kcalmol−1. The coefficient of
determination ('2) and rank correlation metrics Pearson d?, Spearman dB and Kendall
g are given in absolute values. Correlation coefficients are ensemble averaged over
pointwise energy predictions. Metrics annotated with a ↓ indicate that lower values
are better, otherwise, higher values are preferred. 88

B.2 Advanced performance metrics for different models and training modes on the test
set. Sign flip probability (SF), ranking accuracy (Top-), energy window accuracy
(EW- , with - in kcalmol−1) are given in %. Ranking accuracy and energy window
accuracy are evaluated on pointwise energy predictions. Details on the metrics can
be found in the main text. Metrics annotated with a ↓ indicate that lower values are
better, otherwise, higher values are preferred. 89

B.3 Overview of selected GMTKN55 and additional datasets that contribute to the
Confclean dataset [115]. #pairs denotes the number of pairs per respective subset.
In total 1 655 peptides (P), 38 130 sugars (S), 535 hydrocarbons (H) and 4 718 other
molecules are included. 97

B.4 Overview of selected performance metrics for the vancomycin ensemble. Since only
a single ensemble is considered, most ensemble metrics are omitted. For detailed
descriptions of the metrics, see Table B.1 and B.2. 99

C.1 CPU execution time (in seconds) for sequential and batched energy calculations using a
single core and shared-memory parallelism with 4 cores. The QM9 subset is obtained
by randomly selecting 1000 and 2000 molecules from the whole set. Note that different
system sizes are expanded by padding, i.e. the number of atoms corresponds to the
padded size. The conformer ensembles of =-icosane and vancomycin are generated
with crest.[114, 115] . 120

153

List of Tables

C.2 Vibrational frequencies in cm−1 for planar ammonia. For dxtb (GFN1-xTB), the
Hessian is calculated both with automatic differentiation (AD) and using finite
differences (numerical). The DFT reference employs the lB97X-D4[300–302, 484,
637]/def2-QZVP[638] level of theory. For the vibrational analysis, the translational
and rotational modes are projected out. 121

154

Acknowledgements

This thesis would not have been possible without the support, collaboration, and inspiration of many
wonderful people, to whom I would like to express my sincere gratitude.

First and foremost, I thank my committee, especially Prof. Stefan Grimme and Prof. Thomas
Bredow, for their guidance and insightful discussions. Particularly, I thank Stefan for valuable lessons
on research prioritization, leadership, and motivation. Furthermore, I sincerely appreciated the fruitful
collaborations throughout this thesis: At Fraunhofer SCAI, special thanks to Dr. Jan Hamaekers for
project guidance combined with his approachable and positive manner. Many thanks also to Rick
Oerder for enjoyable teamwork, as well as to Gregor Maier and Dr. Astrid Maaß. Moreover, I gratefully
acknowledge the collaboration with Merck KGaA, especially Dr. Martin Fitzner for continuous
scientific exchange, and Dr. Jan Gerit Brandenburg for interesting discussions and his inspiring
personality. Special thanks go to scientific advisors, Prof. Christoph Bannwarth, Dr. Jan-Michael
Mewes, Dr. Markus Bursch and Dr. Sebastian Ehlert for their invaluable scientific input and guidance.
On this note, I warmly thank those who helped proofread this thesis: Dr. Jan-Michael Mewes, Rick
Oerder, Dr. Gerrit Bickendorf, Dr. Markus Bursch, and Dr. Sebastian Ehlert. Special thanks to Dr.
Jan-Michael Mewes for insights beyond chemistry, our regular Satort evenings and demonstrating that
getting older certainly doesn’t mean becoming boring. I warmly thank Dr. Sebastian Ehlert, whose
support left a lasting impression on me and whose inspiring attitude has made him a true role model
for me. Heartfelt thanks to my colleagues at the MCTC institute, especially to Johannes Gorges for
great coffee breaks, fantastic pub-quiz performances, and honest conversations, Dr. Sebastian Spicher
for updates on chemistry and road biking, as well as Marcel Müller for great discussions about skiing
trips. Thanks also to my office neighbors Dr. Jeroen Koopman and Dr. Hagen Neugebauer, and to Dr.
Joachim Laun for memorable rooftop evenings in summer. Also a heartily shout-out to the group’s
newcomers, whom I have not yet had the opportunity to get to know better. For interactions across
working groups and cheerful darts sessions, special thanks to Paul Zaby and Dr. Jan Blasius. I am
very happy and grateful that during my time at the MCTC I met so many people I could learn from.
A huge thanks to our group’s staff, who keep everything running smoothly behind the scenes: especially
Claudia Kronz for impressively managing all organizational aspects (Claudia, if you’re reading this:
thank you very much, you hold everything together!), Jens Mekelburger for always trying to be helpful,
and Dr. Andreas Hansen, whose tennis conversations sparked my initial interest in joining the group.
Last but certainly not least, I deeply thank my family and friends for their unconditional support,

patience, and encouragement throughout this endeavor. I also thank the 1. FC Köln for showing
me that some struggles surpass by far those encountered during a PhD, Paul Kalkbrenner and Hans
Zimmer for providing the soundtrack of this journey, and the Tibetan Imbiss that without their culinary
support, this thesis truly would not have been possible (Bonn-based scientists can relate to).

155

	1 Introduction
	2 Theoretical background
	2.1 Quantum Chemistry
	2.1.1 Wavefunction Theory
	2.1.2 Density Functional Theory
	2.1.3 Semiempirical Quantum Mechanical Methods

	2.2 Machine Learning
	2.2.1 Fundamentals and Key Concepts
	2.2.2 Molecular Representations and Descriptors
	2.2.3 Supervised Learning Approaches in Quantum Chemistry
	2.2.4 Graph Neural Networks

	3 Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes
	4 Improving GFN-FF Conformer Ranking with Pairwise Training
	5 An Efficient And Fully Differentiable Framework For Extended Tight-Binding
	6 Summary and Outlook
	A Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes – The LnQM Dataset
	A.1 Introduction
	A.2 Computational Details
	A.3 Results and Discussion
	A.3.1 Creation of the LnQM dataset
	A.3.2 Analysis of Selected Properties

	A.4 Conclusions

	B ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training
	B.1 Introduction
	B.2 Theory and Methods
	B.2.1 Conformer Ranking with Machine Learning
	B.2.2 Machine Learning Interatomic Potentials
	B.2.3 GFN-FF

	B.3 Technical Setup
	B.4 Dataset and Preprocessing
	B.5 Results
	B.5.1 Energetic Improvement
	B.5.2 Pairwise Training
	B.5.3 Timings
	B.5.4 Out-of-Sample Performance Evaluation

	B.6 Conclusion

	C dxtb – An Efficient And Fully Differentiable Framework For Extended Tight-Binding
	C.1 Introduction
	C.2 Theory and Methods
	C.2.1 Extended Tight-binding (xTB)
	C.2.2 Automatic Differentiation

	C.3 Implementation
	C.3.1 Structure and Design
	C.3.2 Performance
	C.3.3 Self-consistent Field Iterations

	C.4 Results
	C.4.1 Computational Efficiency
	C.4.2 Molecular Properties

	C.5 Summary and Outlook

	Bibliography
	List of Figures
	List of Tables

