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Abstract
This thesis focuses on developing mathematical models utilizing complex biomedical
datasets to understand epidemiological and cell-biological processes. The thesis is divided
into three primary research articles and addresses how differential equation models can be
applied to enhance insights into disease dynamics and cellular communication processes.
The research is motivated by the need to better understand complex biological processes,
particularly epidemiological patterns in populations and cellular dynamics. The COVID-19
pandemic highlighted the importance of life sciences in global health and underscored the
role of computational methods and mathematical modeling in analyzing biomedical data.
Mechanistic models incorporating biological knowledge are chosen over purely data-driven
models due to their ability to integrate prior information and predict beyond the available
data. The thesis focuses on ordinary differential equations (ODEs) and partial differential
equations (PDEs) as tools to model time-dependent biological processes.
The thesis addresses two main research questions:

I. How can mechanistic models enhance classical cohort studies to understand disease
dynamics better?

II. How can mechanistic models be utilized to capture communication processes derived
from single-cell data?

The research involves integrating data into differential equation models through the follow-
ing steps:

1. Data Preprocessing: Reducing the complexity of high-dimensional datasets using meth-
ods like Principal Component Analysis, diffusion maps, and clustering.

2. Model Construction: Developing ODE and PDE models tailored to specific biomedical
phenomena.

3. Parameter Estimation: Using statistical methods and gradient-based optimization
techniques to estimate unknown parameters in the models.

4. Uncertainty Analysis: Employing techniques like Markov Chain Monte Carlo to assess
the reliability of model predictions.

The thesis consists of three key studies:

A. SEIR Modeling for COVID-19 in Ethiopia: The first study focuses on integrating an-
tibody data into Susceptible-Exposed-Infectious-Recovered (SEIR) models to predict
the spread of SARS-CoV-2 in Ethiopia. Three models are developed: a basic SEIR
model, an extended SEIR model, and one including a variant model for a new virus
strain. Key insights include the impact of healthcare workers’ exposure and the un-
derreporting of infections in Ethiopia.

B. Multivariant and Antibody-Level Modeling: This second study extends the SEIR mod-
eling to a model including multiple virus variants and one focusing on antibody levels.
They provide insights into how variant-specific immunity and vaccination affect the
spread of COVID-19. The model predicts early and widespread vaccination could have
significantly mitigated infection waves in Ethiopia.

C. PDE Modeling of Cell-to-Cell Communication: The final study develops a PDE-ODE
model to describe immune cell activation via ligand-mediated communication. Applied
to single-cell RNA sequencing data, the model highlights the role of cell-to-cell com-
munication in immune responses and demonstrates the impact of ligand concentration
on cellular dynamics.

The thesis concludes that mechanistic models, particularly ODE and PDE systems, are
powerful tools for integrating biomedical datasets and providing valuable insights into dis-
ease dynamics and cellular processes. Future research could explore incorporating more
detailed genetic data to enhance model accuracy or multi-scale modeling, linking within-
host viral dynamics to population-level models.
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1 Introduction

This thesis is structured in a cumulative format, comprising three research articles that
present the integration of complex biomedical datasets into differential equation models:

A. Seroepidemiology and model-based prediction of SARS-CoV-2 in Ethiopia: longitudinal
cohort study among front-line hospital workers and communities [1].

B. Long-term monitoring of SARS-CoV-2 seroprevalence and variants in Ethiopia pro-
vides prediction for immunity and cross-immunity [2].

C. A dynamic model for Waddington’s landscape accounting for cell-to-cell communica-
tion [3].

Each article was (co-)authored by the author of this thesis, with contributions from various
co-authors who assisted with data collection, analyses beyond the scope of this thesis, and
supervision. They are reprinted as part of this thesis in Appendices A, B and C and the
specific contributions the author of this thesis made to each paper will be detailed in the
respective publication summary sections.
In addition to the primary research of this thesis’ author in the area mentioned above,
the author also contributed to the following projects:

• Development of the parameter estimation standard PEtab [4].

• COVID-19 modeling using early Wuhan public data [5].

• Mini-batching method for large-scale cancer cell line optimization [6].

• Development of the parameter estimation toolbox pyPESTO [7].

• Cost-effectiveness analysis of vaccination strategies in Ethiopia [8].

This thesis is structured in six sections. In the remainder of Section 1, we provide back-
ground, motivation, and goals for the research presented in this thesis and state the
research question. In Section 2, we introduce the mathematical framework of the meth-
ods employed in addressing these questions. Next, in Sections 3, 4, and 5, we provide a
summary of each publication focusing on the contributions of this thesis’ author. Finally,
in Section 6, we conclude by recapitulating the achieved scientific results, the advance-
ments in knowledge gained regarding the scientific questions, and an outlook on potential
future research.

1.1 Background, Motivation, and Goals

Life science is an umbrella term for several sciences investigating different aspects of living
entities and processes at various scales, such as biology, genetics, ecology, and medicine [9].
Their goals range from a deep understanding of systems to improving health outcomes.
Recently, the COVID-19 pandemic has highlighted the crucial role of life sciences in
ensuring global public health. On a macro scale, most countries tracked the disease
spread and monitored specific variants within their populations, while the World Health
Organization (WHO) tracked global dynamics. This led to the development of non-clinical
intervention strategies like lockdowns, isolation of infected individuals, and facial mask
mandates [10]. Simultaneously, researchers worldwide focused on understanding the virus

1



at a micro level and leveraging this knowledge to combat its spread. The discovery of the
virus’s spike protein as a cell entry mechanism and its use in traditional vector-based and
novel mRNA vaccination methods stands out as a critical achievement [11]. Even though
the threat of SARS-CoV-2 has decreased due to widespread immunity from infections and
vaccinations, other health challenges remain. On the one hand, there are more structural
challenges, like reproductive rights and malnutrition, that are best addressed in politics
and logistics. However, there are also the threats posed by particular diseases like mutated
viruses with pandemic potential, diabetes, and various forms of cancer [12]. The recent
pandemic also underscored the crucial role of computational methods for life sciences [13].
Statistics on past disease trends and population model predictions became a staple in
the daily news, while sophisticated computational techniques significantly aided vaccine
development. This period has particularly highlighted the necessity of mathematical
models for systematically analyzing complex biological phenomena and predicting future
outcomes. Echoing George Box’s famous assertion that ”all models are wrong, but some
are useful,” one can always choose from various modeling approaches, each with different
simplifying assumptions and core ideas to approximate reality most helpfully.
Modeling approaches can be categorized as mainly data-driven approaches or approaches
driven by already-known mechanisms. Often, researchers use terms like machine learning,
empirical modeling, and artificial intelligence to refer to data-driven approaches [14, 15].
As there is no consensus definition, particularly on machine learning and artificial intelli-
gence, we will use empirical models as an umbrella term for the data-driven approaches.
Where empirical models deduce patterns solely from observed data, their counterpart,
the mechanistic models, incorporate known mechanics into the model before calibrating
it with data. Recently, empirical models, particularly large-scale deep neural networks
such as Google’s AlphaFold—which predicts protein structures—have garnered significant
attention [16]. With the rise of big data, e.g., in cell biology driven by next-gen sequenc-
ing [17], one might be inclined to conclude that empirical modeling is the sole future of
modeling in life sciences. However, it is crucial to recognize that these two approaches
differ fundamentally in their core assumptions, leading to distinct advantages and dis-
advantages depending on the research goals, data complexity and availability, as well as
prior knowledge. Baker et al. [15] identified three key differences:

1. Mechanistic models inherently struggle to incorporate data of different scales, a task
more straightforward in machine learning.

2. The mechanistic framework allows for integrating prior information, enabling work
with smaller datasets, whereas machine learning always requires large datasets.

3. Mechanistic models can be employed for predictions on questions outside the scope
of the integrated data after validation. In contrast, machine learning predictions
are limited to within the scope of the training data.

Here, we focus on mechanistic models, in particular systems of differential equations,
which describe changes in a state with respect to a function of the state itself. We
employ two subclasses of differential equations: ordinary differential equations (ODEs)
and partial differential equations (PDEs). ODEs, which describe mean effects over time,
are a very commonly used modeling framework in systems biology for integrating complex
biological data to understand the underlying processes [18]. Specifically in epidemics, they
have a long history of being employed to model the spread of infectious diseases through
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populations via compartmental modeling. They are still one of the main tools used
nowadays [19–21]. PDEs, on the other hand, also account for spatially non-homogeneous
effects and can be very useful for describing cell populations across states [22–24].
Since the complexity, which is required to model biomedical phenomena, often prohibits
purely analytical analysis of such models, numerical methods have been developed tailored
explicitly to solving ODEs and PDEs [25, 26] and will be employed by us. Moreover,
models usually have unknown quantities, which must be inferred from measurement data.
Such inference problems are also unlikely to be solvable analytically; hence, numerical
inference strategies have been developed to address this issue [27].
The inclusion of mechanistic knowledge keeps computational and data demands, in gen-
eral, lower than in purely empirical models. However, one still has to leverage which
simplifications are reasonable to effectively integrate data into these models and use them
to gain insights. Or, in the language of George Box, one has to find out how wrong the
model can be while still being functional.

1.2 Research Question

In this thesis, we will focus on the question of how to integrate complex biomedical datasets
into differential equation models to enhance our understanding of epidemiological patterns
and cellular communication processes. This question will be addressed by answering the
following two subquestions, where the first aims to gain insights on the macro-level of a
population of people and the second at the micro-scale of single cells:

I. How can mechanistic models enhance classical cohort studies to understand disease
dynamics better?

II. How can mechanistic models be utilized to capture communication processes derived
from single-cell data?

These questions are addressed in three publications, which are summarized in Sections
3, 4 and 5: Question I is tackled in [1] and [2], which are summarized in Subsections 3
and 4, respectively. The former presents three ODE models capturing the development
of SARS-CoV-2 antibody levels in community members and health care workers in two
Ethiopian cities. The latter is based on the medical follow-up study, where the original
survey of antibody prevalence was extended and enriched by variant information obtained
from sequenced positive PCR tests. These data sets are integrated into two ODE models,
where one captures the variant dynamic by describing infection pathways of up to four
infections, and the other makes full use of the antibody data to predict immunity levels
and retrospective vaccination effects. Question II is addressed in [3] where a PDE-ODE
system is introduced, which captures the developmental potential landscape of commu-
nicating cells by describing cell densities and ligand concentrations simultaneously. It
is summarized in Subsection 5. However, before presenting the results, we must first
introduce the core mathematical concepts used to address these research questions.
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2 Mathematical Framework

For data integration into biomedical models, particularly for the three publications pre-
sented in this thesis, the basic workflow usually consists of the following steps:

1. Data Preprocessing : As data collected from experiments might not be directly usable
within a computational model, preprocessing of the data becomes necessary. This
process can range from simple tasks like aggregating antibody data over time to more
complex procedures, such as trajectory inference on single-cell sequencing data.

2. Model Construction: Formulating an appropriate model is crucial. If the model is
incorrectly specified or simulated, statistical assumptions might be violated, and
conclusions drawn from the model might be invalid. We rely on established frame-
works in differential equations, but these frameworks must be adapted and enhanced
for each case.

3. Parameter Estimation: After constructing the model, the unknown parameters must
be estimated from the collected data to conclude dynamics and dependencies of
interest. While we use established frameworks for this purpose, selecting suitable,
statistically motivated objective functions and efficient optimization algorithms is
essential to ensure feasible and accurate parameter estimation.

4. Uncertainty Analysis : As parameter point estimates depend on the collected data
and only a subsample of the population can be observed, the parameter estimates
are inherently associated with uncertainty. Uncertainty analysis is used to quantify
the uncertainty amount and understand the parameter estimates’ reliability.

In the following, we will discuss the mathematical backgrounds of methodologies for these
steps. We aim to balance generalizability and a clear focus on the specific applications
relevant to our research.

2.1 Data Preprocessing

In life sciences, complex datasets often exhibit multimodal characteristics and significant
variability in statistical power, resolution, and detail across different observations, time
points, and conditions. This inherent variability requires a careful balance between main-
taining granularity, preserving statistical power, and managing computational demands.
Additionally, the high-dimensional nature of the data presents challenges, as it is not
always immediately apparent which underlying phenomena should be modeled. As a
result, preliminary data analysis may be necessary to supplement standard aggregation
techniques. While the field of data processing and analysis is vast and could warrant
multiple theses, this section will specifically focus on the dimension reduction, clustering,
and smoothing methods employed in this work.

2.1.1 Principal Component Analysis

Datasets are often inherently high-dimensional, especially in single-cell transcriptomic
sequencing. Visualizing and analyzing such datasets directly can be computationally
challenging and may obscure meaningful patterns. To address this, dimensionality re-
duction techniques are commonly applied for visualization and before proceeding with
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further analysis. One widely used linear dimensionality reduction method is Principal
Component Analysis (PCA) [28].
Consider a high-dimensional dataset D ⊂ RnD , where nD represents the number of di-
mensions. Suppose this dataset has been normalized to have zero mean, and we seek
a lower-dimensional representation. The objective of PCA is to find orthogonal axes,
denoted as (vi)

nD
i=1, that capture the greatest variance in the data, with the first axis cap-

turing the greatest variance, the second capturing the next greatest variance orthogonal
to the first, and so on. These axes, known as principal components , serve as a new coordi-
nate system. Dimensionality reduction is then achieved by projecting data points d ∈ D
onto the first nr principal components (vi)

nr
i=1, where nr ≪ nD, thus preserving as much

variance as possible.
To ensure no single dimension dominates the analysis, it is typical to standardize the data
before applying PCA. Standardization shifts non-zero mean data to have zero mean and
scales each feature to have unit variance, preventing dimensions with disproportionately
large variance from skewing the results.
The principal components are derived by solving a series of maximization problems. The
first principal component v1 is the direction along which the variance of the data is
maximized:

v1 = arg max
∥v∥=1

∑

d∈D
(dTv)2.

Subsequent components vk are found by removing the projection of the data onto the
previously computed components and then maximizing the variance in the remaining
subspace:

Dk =

{
d−

k−1∑

i=1

dTviv
T
i

∣∣∣∣∣ d ∈ D
}
,

vk = arg max
∥v∥=1

∑

d∈Dk

(dTv)2.

The components are usually derived by performing an eigenvalue decomposition on the
covariance matrix of the data or through singular value decomposition (SVD) of the data
matrix. The eigenvectors represent the directions in which the data varies the most,
while the eigenvalues measure the amount of variance captured along each direction. By
ordering the eigenvectors based on their associated eigenvalues, the desired sequence of
principal components, (vi)

nD
i=1.

Each data point d ∈ D can then be represented in the reduced space spanned by the first
nr components, using the coordinates (dTvi)

nr
i=1. The transformation from the original

coordinate system RnD to the principal components can be interpreted as an orthogonal
transformation (involving rotations and reflections) of the data around the origin, aligning
the principal components with the axes of maximum variance.
The dimensionality of the reduced dataset, nr, is often chosen based on the percentage of
variance explained by the first nr components. This percentage is computed as the ratio
of the sum of the nr largest eigenvalues to the sum of all eigenvalues. Commonly, nr is
selected for visualization purposes (i.e., nr = 2 or nr = 3) or to ensure that the explained
variance exceeds a predetermined threshold.
While PCA is a powerful tool for dimensionality reduction, it has limitations when applied
to nonlinear datasets. For instance, PCA struggles to capture structure in datasets where
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samples of one class encircle samples of another. To address such cases, kernel PCA [29]
can be employed. Kernel PCA maps the data into a higher-dimensional feature space
before performing PCA, though this requires careful tuning of hyperparameters to ensure
effective results.

2.1.2 Diffusion Maps

To overcome the limitations of linear methods in the case of nonlinear data, one can em-
ploy diffusion maps . This nonlinear technique assumes the data lies on a low-dimensional
submanifold within the sample space RnD [30]. Learning this manifold is done by per-
forming a random walk through the graph of data points. For computing the transition
probabilities, we need a kernel k, which is required to be symmetric, i.e., k(x, y) = k(y, x),
and positivity preserving, i.e., k(x, y) ≥ 0. Through normalization by d(x) =

∑
y∈D k(x, y)

we obtain a transitionkernel of a Markov chain on D:

p(x, y) =
k(x, y)

d(x)

with the property
∑

y∈D p(x, y) = 1. To construct the diffusion map, we compute the
eigenvalues λi and eigenvectors ψi of the |D|×|D|-dimensional transition matrix P , where
Pxy = p(x, y). If we assume that the graph is connected, finite and that k(x, x) > 0, we
obtain a sequence of eigenvalues 1 = λ0 > |λ1| ≥ |λ2| ≥ . . ., where the first eigenvector ψ0

corresponds to the unique stationary distribution

π(y) =
d(y)∑
z∈D d(z)

.

Hence, the first eigenvalue-eigenvector pair will often be omitted in the following steps.
To capture the intrinsic geometry of the data, one defines the t-step diffusion distance
between two points as

Dt(x, y) =

(∑

z∈D

(p(x, z)− p(y, z))2

π(z)

) 1
2

.

This distance measures how similar two points are based on their connectivity in the data
manifold, and it can be shown that

Dt(x, y) =

(∑

j≥1

λ2tj (ψj(x)− ψj(y))2

) 1
2

, (1)

where ψj(x) denotes the x-th entry of ψj. Now, one can embed the data into a low-
dimensional space using the first nr informative diffusion maps (λtjψj)

nr
j=1. Informative

here means that one is excluding the first eigenvalue and eigenvector, corresponding to
the stationary distribution, Since (1) ensures that the Euclidean distance in the reduced
space approximates the t-step diffusion distance in the original data space, we obtain a
meaningful representation of the data’s intrinsic structure.
In the context of single-cell analysis, Gaussian kernels are a reasonable choice [31]. Hence,
we define

k(x, y) = exp

(
−∥x− y∥

2

2σ2

)

6



as the kernel. Alternatively, one can use data-dependent kernel bandwidths σ, e.g., by
incorporating information about the neighborhood of the data points and obtaining

k(x, y) = exp

(
− ∥x− y∥

2

2(σ2
x + σ2

y)

)
.

Usually, one wants to disregard local cell densities since varying densities might be an
artifact of the measurement process without any underlying biological relationship influ-
encing those variations. Therefore, we divide the kernel by the densities around x and y
to obtain transition probabilities:

p(x, y) = C(x)
k(x, y)∑

x′∈D k(x′, y)
∑

y′∈D k(x, y′)
,

where C(x) is the normalizing constant, such that
∑

y p(x, y) = 1 for all x ∈ D. Moreover,
implementations like [32] set t = 0 such that the diffusion maps simplify to (ψj)

nr
j=1, the

eigenvectors of P .

2.1.3 Diffusion Pseudotime

In the case of the data D representing single-cell measurements, in addition to dimension-
ality reduction, researchers are often interested in obtaining developmental trajectories.
These so-called trajectory inference methods can be viewed as reduction methods to a
one-dimensional space that includes an ordering representing the developmental stage. In
this section, we introduce diffusion pseudotime [33], which builds directly upon the theory
of diffusion maps.
Diffusion pseudotime is defined as the distance:

dpt(x, y) = ∥M(x, ·)−M(y, ·)∥ ,

where M =
∑∞

t=1 P̄
t. Here, P̄ is the transition matrix from the previous section, where the

eigenvector ψ0 corresponding to the largest eigenvalue 1 and the steady state distribution
is subtracted from P , resulting in P̄ = P − ψ0ψ

T
0 . Since all remaining eigenvalues of

P̄ have absolute values smaller than 1, we can use the identity from spectral theory
M =

∑∞
t=1 P̄

t = (I − P̄ )−1 − I for the computation of M . The above-defined diffusion
pseudotime distance represents the probability of reaching cell y starting at cell x over
infinite time. To infer a trajectory, we select a fixed root cell r ∈ D, e.g., a known stem
cell, and assign diffusion pseudotime values to all d ∈ D using dpt(r, d). We obtain the
developmental trajectory by sorting all cells by their assigned values in ascending order.

2.1.4 Uniform Manifold Approximation and Projection

Here, we introduce another nonlinear dimension reduction method mainly employed for
visualization: Uniform Manifold Approximation and Projection (UMAP) [34]. Like diffu-
sion maps, it tries to capture the manifold on which the data lies and operates on a graph
constructed between data points. It has solid theoretical backgrounds in algebraic topol-
ogy and fuzzy set theory, motivating some choices of computational derivation, which we
will focus on in this section. The core idea is to capture the local connectivity of the
data manifold by a collection of fuzzy 1-simplicial sets and to represent those in a low-
dimensional space. A 1-simplex is a line segment connecting two points, and “fuzziness”
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implies that the connection of points is not binary on or off. Still, there is a certain
ambiguity or strength of connection, e.g., the connection for two close points could be 0.9
while for two far away points, it could be 0.1. UMAP starts by constructing the k-nearest
neighbour graph in the original data space. Then, it computes the fuzzy simplicial set,
which captures the local connectivity of the data, by assigning probabilities to the edges
of the graph based on the distances between points, thereby creating a fuzzy topological
representation. To be precise: For each pair of data points xi and xj, it calculates a
membership strength pij that represents the likelihood of xj being a neighbor of xi. This
is done using a smooth, exponential decay function of the distance between xi and xj:

pij = exp

(
−d(xi, xj)− ρi

σi

)

Here, d(i, j) is the distance between points xi and xj, usually Euclidean distance, ρi is the
distance to the closest neighbor of xi (to account for local density variations), and σi is a
scaling factor ensuring that each point has approximately the same number of significant
neighbors nneighbor. Since pij is not symmetric, it represents a directed graph with weighted
edges, and we obtain an undirected graph by fuzzy set union, i.e. p̄ij = pij + pji − pijpji.
In the probabilistic sense, this represents the probability of xi being in the neighbor set of
xj or xj being in the set of xi. UMAP then constructs a low-dimensional representation
by optimizing the embedding that minimizes the cross-entropy function aligning the fuzzy
simplicial sets of the high-dimensional and low-dimensional data:

∑

e∈E
wh(e) log

(
wh(e)

wl(e)

)
+ (1− wh(e)) log

(
1− wh(e)

1− wl(e)

)
, (2)

where E is the set of possible 1-simplices, i.e., in the graph sense, edges between nodes, and
wh(e) and wl(e) are the weights of each edge e in the high, respectively low, dimensional
space. Here, a second hyper-parameter comes into play: the minimal distance allowed
between points in the low-dimensional representation. The choice of this minimal distance
and the number of neighbors nneighbor is crucial for obtaining meaningful low-dimensional
representations. Generally speaking, higher nneighbor will preserve more global structure
and be more computationally demanding. In contrast, minimal distance controls the
spread of the data points in the low-dimensional representation, and a higher minimal
distance leads to a higher spread. In practice, the UMAP algorithm starts at random
initializations of low-dimensional representations. It uses a differentiable approximation
of (2) and the gradient descent method to obtain the embedding.

2.1.5 k-Means

A common question in data analysis is whether clusters can be deduced from the data
alone without prior knowledge. While dimension reduction methods aim at finding struc-
ture in the variable space, clustering approaches search for structure in the observations
and, therefore, can be employed complementary to or independent of dimension reduc-
tion. One approach for clustering datasets is the method of k-means , which aims to find
a partition of the dataset D such that the variance in each cluster is minimized [35]. This
minimization equates to the minimization of the sum of squared distances of each data
point to its cluster center, i.e., mean. Formally, the objective is denoted as

arg min
(D1,...,Dk)∈C

k∑

i=1

∑

d∈Di

∥d− µi∥2, (3)
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where

C =

{
(D1, . . . ,Dk) subsets of D

∣∣∣∣
⋃̇k

i=1
Di = D

}

and µi is the mean of Di. Algorithmically, this is usually implemented in an iterative ap-
proach similar to expectation-maximization: The process begins with a random selection
of k initial means, µ1, . . . , µk. Each Di is then defined as the set of data points with the
minimal distance to µi, i.e.,

Di = {d ∈ D : ∥d− µi∥2 ≤ ∥d− µj∥2 ∀j = 1, . . . , k},

and points assigned to multiple clusters are removed from all but one, e.g., randomly or
by a rule on their index. Subsequently, µi is redefined as the mean of Di, and this process
is repeated until convergence is achieved. To ensure that the clustering globally mini-
mizes the total variance described in (3), the algorithm is typically run multiple times,
accounting for the random initialization of the means. As for previously discussed meth-
ods, choosing the right hyperparameter, k, is crucial since it is rarely the case that one
knows how many clusters to expect. Clustering quality can be evaluated using quality
measures like silhouette scores , where mean inner cluster distances are compared to min-
imum in-between cluster distances [36]. Hence, in practice, one can run the clustering
algorithm for multiple values of k, and a-posteriori chose the best scoring k.

2.1.6 Kernel Density Estimates

Data obtained from biological experiments or medical surveys rarely cover time intervals
sufficiently dense to provide a complete picture of the distributions that underlie the
biological processes or disease progression being studied. If one wants to integrate certain
data directly into the model, smoothing techniques can be required. The smoothing
method we will present here is the kernel density estimation, where one tries to capture
the underlying density function f of n independent and identically distributed samples
d1, . . . , dn ∈ D [37, 38]. The kernel density estimator of the samples underlying density f
is defined as

f̂h(d) =
1

nh

n∑

i=1

K

(
d− di
h

)
,

where K : R → R≥0 is the kernel and h > 0 is called the bandwidth. The choice of K is

crucial and can have various forms. However, for f̂h to be a density, i.e., integrate to 1,
also K has to be a density. In our cases, we will resort to the standard normal density and
exponential density functions. The bandwidth h controls the smoothness of the resulting
density estimate, with larger values of h producing smoother estimates and smaller values
capturing more detail, and there are rules of thumb to choose it [39].

2.2 Differential Equation Models

Not all biomedical phenomena are in homeostasis, and sometimes, one wants to cap-
ture the evolution over time, e.g., of a spreading disease or a developing cell population.
Time-dependent mathematical models x(t) can express such biological or epidemiological
processes. The model is called deterministic if it is not dependent on any randomness.
Since biological processes usually involve randomness, a deterministic model represents
mean effects. Assuming the process is smooth enough, it is often easier to formulate
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a relation between the changes of the process over time and the process itself than to
explicitly state the process itself, d

dt
x(t) = f(t, x). This is called a differential equation:

An ordinary differential equation (ODE) in case only the time derivative is involved and
a partial differential equation (PDE) if there are also derivatives with respect to other
variables involved, i.e., d

dt
x(t, s) = f(t, s, x,∇x,∇2x, . . .) for some state variable s. Both

types of differential equations employ distinct analytical and numerical solution methods,
which we will introduce in the following.

2.2.1 Ordinary Differential Equations

Since higher-order ODE systems can be rewritten as first-order systems by treating deriva-
tives of x as additional states, we will not mention them explicitly in this section. We
start by defining the general problem setup:

Definition 1. For x0 ∈ Rn, t0, T ∈ R≥0, such that t0 < T , and a mapping f : [t0, T ] ×
Rn → Rn the equation system

d

dt
x(t) = f(t, x) ∀t ∈ [t0, T ]

x(t0) = x0

is called an initial value problem (IVP).

It is a well-known result in the theory of ODEs that if f is Lipschitz, the IVP has a unique
local solution in the neighborhood of t0 (Picard-Lindelöff, e.g., [40]). Moreover, in the
biomedical context, the systems usually behave well enough that their solution extends
to the whole time interval [t0, T ].
Unless f is linear, finding the analytical solution of the IVP is not straightforward. Hence,
iterative numerical approximation algorithms like the Euler method or more advanced
Runge-Kutta methods are employed [25]. The former can be briefly described by

xi+1 = xi + hf(t0 + ih, xi)

for step size h. The latter is a whole family of methods achieving higher accuracy by
adding a weighted average of multiple function evaluations in each approximation step,
leading to explicit or implicit equations. A prominent example is the Runge-Kutta method
of fourth-order (RK4):

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4),

tn+1 = tn + h,

where

k1 = f(tn, xn),

k2 = f

(
tn +

h

2
, xn + h

k1
2

)
,

k3 = f

(
tn +

h

2
, xn + h

k2
2

)
,

k4 = f (tn + h, xn + hk3) .

10



Since the Euler method only uses one function evaluation at each step, it belongs to the
family of single-step solvers. Runge-Kutta methods use intermediate function evaluations
but disregard the previous steps. In contrast, multi-step methods implement information
from earlier steps at each new step. Prominent examples are, e.g., the families of Adams-
Moulton algorithms and backward-differentiation-formula (BDF) algorithms [41, 42]. The
latter is particularly suited for stiff ODEs, a category of equations that require tiny step
sizes, sometimes even below numerical precision, for numerically stable solving. Both
families have implementations in the framework of SUNDIALS CVODES [43, 44], which
will be employed for solving the ODEs in this thesis through the Python interface of
AMICI [45].

2.2.2 Partial Differential Equations

For notational reasons, we will only mention PDEs up to the second order in this section.
However, everything mentioned here also holds for higher-order equations. Let us first
define the setup:

Definition 2. Let S ⊂ Rns be open, x0 : S → Rnx and t0, T ∈ R+
0 , such that t0 ≤ T .

Then for a mapping f : [t0, T ]×S ×Rnx ×Rns×nx ×Rns×ns×nx → Rnx and an operator B
the equation system

d

dt
x(t, s) = f(t, s, x,∇x,∇2x) ∀t ∈ [t0, T ],∀s ∈ S

Bx(t, s) = g(t, s) on ∂S

x(t0, s) = x0(s) in S

is called a boundary value problem (BVP).

The boundary operator, B, is usually the identity, corresponding to Dirichlet boundary
conditions, the derivative, corresponding to Neumann boundary conditions, or a combi-
nation of the two, corresponding to Robin boundary conditions. Unlike for ODEs, there
is no general existence and uniqueness proof for PDEs, and the applicability of differ-
ent proof approaches like variational techniques or fixed point theorems depend on the
shape of f [46]. A specific type of PDE, which will be put to use in this thesis, is the
reaction-diffusion-drift equation, where f is of the following form:

f(t, s, x,∇x,∇2x) = ∇s(D(t, s)∇sx)−∇s(v(t, s)x) + h(t, s, x).

Here, x could represent expression values of a particular biological or chemical component
at time t and position or state s. Its change over time is governed by diffusion D, advection
or drift v, and the reaction term h. Since for PDEs, finding an analytical solution is
even more improbable than for ODEs, we again resolve to numerical schemes. Various
approaches exist, like finite elements, finite differences, or finite volumes. In this thesis, we
only use the finite volume method (FVM), implemented in the Python framework FiPy
[47]. This method approximates the solution by solving the BVP for integrated averages
on control volumes Vi, such that ⋃̇

i
Vi = S.

After integrating the BVP, the derivatives can be transformed into boundary terms with
the help of the divergence theorem. By setting x̃i :=

∫
Vi
x ds and denoting the unit normal
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vector pointing outward at a.e. point on the boundary ∂Vi as n we obtain the system

d

dt
x̃i =

∫

∂Vi

D(t, s)∂sxn ds−
∫

∂Vi

v(t, s)xn ds+

∫

Vi

h(t, s, x) ds.

The remaining derivative can be approximated by finite differences, and x in the boundary
integral terms can be substituted by an average of neighboring x̃k (or g if it is on the
boundary of S). Finally, unless h is linear and independent of s, the last integral must
be approximated by some transformation of x̃i. Then, we are left with an ODE system,
which we can solve via the methods described in the previous section. More rigorous
calculations for various examples can be found in literature [48, 49].

2.3 Parameter Estimation Techniques

As we have just seen, during the numerical solution of the PDE, the FVM reduces the
PDE to a system of ODEs. Hence, to simplify notation and without loss of generality,
we introduce the concepts of statistical inference in this subsubsection only for ODEs.
Usually, those models depend on unknown quantities θ ∈ Rnθ , like rates of a reaction or
reproduction of a population, which are also called parameters . This now leads to the
parameter-dependent ODE

d

dt
x(t, θ) = f(t, x, θ), (4)

x(t0, θ) = x0(θ),

for which the theory described above can be applied. In the following subsections, we
will show how these states can be mapped to data, i.e., how one defines an appropriate
objective function, and how we obtain a θ such that the model with these parameters
optimally describes our data. In reality, f often also depends on experimental conditions
c ∈ Rnc , which could be, e.g., drug dosages administered to a cell culture. For notational
clarity, we will disregard this dependency in the following.

2.3.1 Observable mapping

We want to infer unknown parameters θ ∈ Rnθ from data ȳ. Since states are usually not
observed directly, we have to define an observable mapping h such that

ȳ(t) = h(t, x, θ). (5)

This could include, e.g., a scaling by s ∈ R>0 of a state x1 to account for relative mea-
surements of some quantities, as is the case, for example, for data from Western blots or
carbon-13 isotopes

h1(t, x, θ) = x1 ∗ s,
or the sum of two states x2, x3 if two isoforms that are part of the model can not be
distinguished during the measurement process

h2(t, x, θ) = x2 + x3.

Moreover, one usually assumes that the observation process is noisy and includes some
error assumption in the observable. There are various possibilities for how the noise could
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be distributed, like Gaussian, Laplacian, or log-normal, and several ways to incorporate
it into the observable mapping, like additive or multiplicative noise. A widespread error
assumption is that one has conditional independent additive Gaussian noise,

h(t, x, θ) = h̃(t, x, θ̃) + ξ(t), where ξ ∼ N (0, σ(t)2), (6)

where h̃ now denotes the theoretical observable function without any noise, h denotes the
noisy observable function. Moreover, in this notation θ̃ denotes model parameters and
observable parameters without potential noise parameters related to σ, and θ refers to the
full parameter vector. For appropriate choices of h̃, this scenario also covers other noise
distributions like log-normal. The potentially time-dependent observable parameters like
noise parameters σ, scalings, or offsets can sometimes be deduced from literature or the
data itself. But generally, one wants to infer the full parameter vector, which is made up
of model parameters and observable parameters

θ =

(
θmodel

θobs

)
.

2.3.2 Objective Function

The goal is to find θ, such that (5) is satisfied, or at least the left and right-hand sides
are as close as possible. One could try to minimize the difference between observations ȳ
and model simulations h for measurement time points ti. In particular, the L2-difference
is commonly used, which is known as least squares objective:

θ̂ = arg min
θ

∑

i

∥∥∥ȳ(ti)− h̃(ti, x(ti), θ)
∥∥∥
2

L2
. (7)

Since, in general, this problem setup has no closed-form solution, one resolves to, often
gradient-based, numerical optimization approaches. That is why the differentiability of
the L2-norm makes least squares advantageous compared to minimizing L1-differences.
Before discussing the optimization approaches in detail in the next section, we will first
have a look at a statistically motivated objective function called the likelihood L, which is
frequently employed in biological modeling [27]. Here, the idea is to find the parameters
θ that maximize the likelihood of the observed data

θ̂ = arg max
θ

L(θ) = arg max
θ

p(ȳ|θ). (8)

Under certain regularity conditions, one can show that maximum likelihood estimation is
consistent and asymptotically efficient [50]. Consistency means, that assuming the data
is generated by h for a large enough data set, the maximum likelihood estimate θ̂ will
be arbitrarily close to the parameters used for generating the data. Logically, one of the
conditions required for consistency is that the optimum θ̂ is unique, called identifiability .
Asymptotic efficiency means that there exists no consistent estimator which has a lower
asymptotic mean squared error.
In the common case of conditionally independent additive Gaussian noise, we can rewrite
(6) as

h(ti, x, θ) ∼ N (h̃(ti, x, θ̃), σ
2
i )
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and plug the multivariate normal density into (8) which leads to

θ̂ = arg max
θ

∏

i

∏

j

1√
2πσ2

ij

exp


−

(
ȳj(ti)− h̃j

(
ti, x(ti), θ̃

))2

2σ2
ij


 ,

where i is the index for time points and j for observations. In the case of multiple exper-
imental conditions, one would also multiply over the condition indices. Since sums are
numerically more stable than products and the logarithm is invariant with respect to the
minimum, due to its monotonicity, one usually optimizes the logarithmically transformed
likelihood, the so-called log-likelihood LL. Moreover, in many optimization packages, the
default optimization is minimization. That is without loss of generality, since multiplica-
tion by −1 can convert every maximization problem to a minimization problem. Hence,
we will minimize the negative log-likelihood

arg min
θ
−LL(θ) = arg min

θ

∑

ij

−


log

1√
2πσ2

ij

−

(
ȳj(ti)− h̃j

(
ti, x(ti), θ̃

))2

2σ2
ij




= arg min
θ

∑

ij


log σij +

(
ȳj(ti)− h̃j

(
ti, x(ti), θ̃

))2

2σ2
ij


 .

In the case where noise parameters σ are known and therefore not estimated, i.e., θ = θ̃,
we can drop the constant log σij from the sum and the negative log-likelihood reduces to
a weighted least squares objective.
Another key likelihood objective used in this thesis is the multinomial likelihood , which is
well-suited for modeling discrete distributions over continuous domains, such as densities
over cell state bins. This approach was introduced in [22] and will be applied to the PDE
models studied here. In these models, the system’s state variable x(ti, ·) at each time
point ti describes a distribution of samples over the state space.
The motivation for using the multinomial likelihood arises from the fact that in solving
the PDE with the FVM we are discretizing a continuous state space into finite control
volumes, and for each time point, we model the distribution of samples across these
volumes. The multinomial likelihood provides a natural way to represent the probabilities
of samples falling into different control volumes, thus aligning with our need to capture
the distribution of the state variable over time.
Consider the case of a 1-dimensional state space discretized into evenly distributed inter-
vals. Without loss of generality, we can take the interval from 0 to 1:

S = [0, 1] =
n−1⋃

k=0

[
k

n
,
k + 1

n

]
=
⋃

k

Vk, (9)

where Vk represents the control volume for the k-th bin. As described in Section 2.2.2,
the FVM computes the integrated averages x̃k of x over each Vk. By choosing, or rather
rescaling an already chosen, observable mapping h such that the sum of these averages
satisfies ∑

k

h(t, xk, θ) = 1, (10)
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we can treat these values as probabilities that a sample lies within each bin Vk.
Given mi samples at each observed time point ti, we can compute the histogram ȳk(ti)
over bins Vk. These histogram values, together with the computed probabilities, can then
be plugged into the multinomial probability mass function Pmult to obtain the likelihood
of parameters θ:

L(θ) =
∏

i

Pmult (ȳ0(ti), . . . , ȳn−1(ti),mi | h(t, x0, θ), . . . , h(t, xn−1, θ))

=
∏

i

mi!

ȳ0(ti)! · · · ȳn−1(ti)!
h(t, x0, θ)

ȳ0(ti) · · ·h(t, xn−1, θ)
ȳn−1(ti).

In practice, we will again use the negative log-transformed likelihood for optimization:

θ̂ = arg min
θ
−
∑

i

∑

k

ȳk(ti) log h(t, xk, θ).

2.3.3 Gradient-Based Optimization

In this subsection, we will discuss how to numerically solve an optimization problem

θ̂ = arg min
θ∈Θ

J (θ), (11)

where J denotes a generic objective function and Θ ⊂ Rnθ is the bounded set of feasible
parameters, which could, e.g., enforce non-negativity for biological rates.
Only in straightforward cases is it feasible to calculate an analytical solution to an op-
timization problem (11); hence, we have to apply numerical optimization methods. A
very straightforward method would be the Monte-Carlo-like approach of random search
where one draws samples (θk)k from a prior distribution, plugs them into J (θk) and
compares the values until convergence criteria are met. Here, the prior distribution can
be informed, e.g., normally distributed around some literature value, or be uninformed,
i.e., the uniform distribution on Θ. For many applications, it is difficult to find good
prior distributions of the same scenario, and covering the entire parameter space Θ in the
uninformed approach can be computationally very demanding or even infeasible. Hence,
there are iterative gradient-based methods which make use of the shape of the objective
function landscape J (Θ) = {J (θ)|θ ∈ Θ} (Figure 1).
One idea of how to navigate through the objective function landscape towards a minimum
is the method of gradient descent [51], where at each iteration, one takes the next step
in the direction of the steepest descent (red arrows in Figure 1). To formalize this,
one starts at a, usually random, initial point θ0 in the parameter space Θ, calculates
∂θJ (θ0) and, since the gradient shows in the direction of the steepest ascend, sets θ1 =
θ0− τ∂θJ (θ0) for a step size τ > 0, which is called learning rate, and repeats the process
until some termination condition is satisfied (Algorithm 1). Usually, this condition ensures
convergence, e.g., via |J (θk+1)− J (θk)| < ϵ or ∥∆θ∥ < ϵ, but the condition can also set
an upper limit on the number of steps.
For Algorithm 1, we assume that J is differentiable with respect to θ, which holds for the
objective functions presented in the previous section as long as the observable function h
is differentiable with respect to θ. The ODE solution itself x(t, θ) is differentiable with
respect to θ as long as f(t, x, θ) and x0(θ) are sufficiently smooth, since from the IVP we
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θ1

θ 2

Objective Function Landscape

Figure 1: Objective function landscape J (Θ) for a 2-dimensional parameter optimization
problem. Function values highlighted by contour lines and steepest descent steps indicated
by red arrows.

Algorithm 1 Gradient Descent

Require: J (θ) differentiable, θ0 ∈ Θ, τ > 0
while Termination condition not satisfied do

Compute ∂θJ (θk)
θk+1 ← θk − τ∂θJ (θk)

end while

obtain

d

dt
xθ = fθ(t, x(t, θ), θ) + fx(t, x(t, θ), θ)xθ(t, θ)

xθ(0) = x0θ,

where xθ denotes the Jacobian of x with respect to θ. This equation has a unique solution
following analog reasoning as in Section 2.2.1.
The proof of why subtracting the gradient points yields the steepest direction is commonly
conducted via Taylor approximation, which states that

J (θk − τ∆θ) ≈ J (θk)− ∂θJ (θk)τ∆θ (12)

for sufficiently small τ and unit vectors ∆θ. Looking at (12), the unit vector minimizing
the right-hand side is exactly ∂θJ (θk)/∥∂θJ (θk)∥, which proofs the claim.
The choice of learning rate τ in Algorithm 1 is critical, and one can choose it differently
at each iteration. More sophisticated algorithms compute an optimal learning rate via
line-search where an additional minimization problem

τ̂k = arg min
τ
J (θk − τ∂θJ (θk))

is solved at each step. Usually, the polynomial approximation (12) is employed, and
optimal τ is found via backtracking, where one starts at rather large τ and iteratively
reduces it until optimality criteria are met[52, 53].
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Before we explore further enhancements of this method, we want to briefly point out
that, unless we have the quite rare case of a convex J , one can end up at local minima or
saddle points. To avoid this, one usually performs a multistart optimization, i.e., multiple
optimization runs for different initial vectors θ0. One can, e.g., sample these start points
uniformly from Θ or employ more sophisticated strategies like Latin-hypercube-sampling,
where the sample space is explored by enforcing that the samples are well-distributed
across a pre-specified hypercube of the parameters. Convergence of these starts to the
global minimum is assessed by comparing all optimization runs’ final objective function
values of all optimization runs and verifying that enough starts ended with the same
minimal value.
Gradient descent already provides a reliable way to reach minima in the objective function
landscape. However, it might not always take the shortest path downhill. To improve the
direction in which to turn at each step, ideally, one does not only look at the steepness
but also at the curvature of the landscape. This is precisely what Newton’s method does.
It can be motivated by the first-order Taylor approximation performed in (12). Since we
now want to consider curvature, we will look at the second-order Taylor approximation,
which is, in particular, the best local second-order polynomial approximation. Here, we
will disregard the unit vector view we imposed above and look at general vectors ∆θ
sufficiently close to θk:

J (θk −∆θ) ≈ J (θk)− ∂θJ (θk)∆θ +
1

2
(∆θ)T∂2θJ (θk)∆θ. (13)

We can find the minimum of (13) by differentiating the right-hand side with respect to ∆θ
and setting it to 0. This implies ∆θ = ∂θJ (θk)(∂2θJ (θk))−1 and thus we obtain Newton’s
method, which is formally stated in Algorithm 2.

Algorithm 2 Newton’s Method

Require: J (θ) twice differentiable, θ0 ∈ Θ, τ > 0
while Termination condition not satisfied do

Compute ∂θJ (θk)
θk+1 ← θk − τ∂θJ (θk)(∂2θJ (θk))−1

end while

Since computing the inverse of the Hessian (∂2θJ (θk))−1 can be computationally very de-
manding, in reality, quasi-Newton methods are often employed. In these methods the
Hessian is approximated by solving the secant equation obtained from the Taylor approx-
imation of the gradient of the objective function:

∂θJ (θk −∆θ) ≈ ∂θJ (θk)− ∂2θJ (θk)∆θ.

There exist algorithms that update this Hessian approximation efficiently along with
the optimization steps, like Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Symmetric
rank-one (SR1), where the former is more robust due to its preservation of positive defi-
niteness. At the same time, the latter can achieve higher accuracy and better convergence
[54, 55]. There are versions for limited memory scenarios, L-BFGS and L-SR1, where only
the most recent steps are saved and used for the next update.
There is also the, in some sense, dual to line-search approach of trust regions [56]. Here,
the step size will be fixed after each step, and inside of this radius around the current
parameter vector, the objective function will be approximated, e.g., quadratically, and
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with this, the optimal direction for the next step is computed. If the approximation is
not good enough in this radius, the step size will be decreased.
Moreover, for convex Θ, which is usually satisfied, e.g., if Θ is the product of closed
intervals, there is also the family of interior point or barrier methods. We will briefly
introduce them via one representative, the primal-dual method [57]. The original opti-
mization problem (11) can be reformulated as

θ̂ = arg min
θ∈Rnθ , cj(θ)≥0

J (θ),

for suitable cj : Rnθ → R. Inspired by Lagrange multipliers, one now introduces an
additional term, the barrier function

Jµ(θ) = J (θ)− µ
∑

j

log(cj(θ))

for a small µ > 0. Now, one aims to find an optimal pair (θ, λ) such that

0 = ∂θJµ(θ) = ∂θJ (θ)− µ
∑

j

∂θcj(θ)

cj(θ)

cj(θ)λj = µ.

Again, this optimum is computed iteratively, and the concepts introduced above, like line
search and the Newton method, can be applied.
A final aspect essential to this section is the calculation of the gradients of the objective
function. Unless one has x as a closed-form solution, calculating the gradients of h, and
hence J , with respect to θ, is not feasible. Therefore, numeric gradient calculation meth-
ods are usually employed, like the rather straightforward approach of finite differences .
It is motivated by the definition of the partial derivatives

∂kJ (θ) = lim
ϵ→0

J (θ + ϵek)− J (θ)

ϵ
,

where ek is the k-th unit vector. Finite difference approximates this by taking a fixed
ϵ0 and dropping the limit on the right-hand side of the equation. For ϵ0 > 0, this is
called forward finite difference, and for ϵ0 < 0, it is called backward finite difference.
However, due to better error control [25], one usually employs the central finite difference
approximation for ϵ0 > 0:

∂kJ (θ) ≈ J (θ + ϵ
2
ek)− J (θ − ϵ

2
ek)

ϵ
.

A more accurate approach is making use of the original ODE problem (4), which is
differentiated with respect to θ to obtain the forward sensitivity equations

d

dt
xθ(t, θ) = fθ(t, x, θ) + fx(t, x, θ)xθ(t, θ),

where again xθ denotes the Jacobian of x with respect to θ, which is also called sensi-
tivities. Since one can usually calculate the Jacobians of f with respect to θ, fθ, and
with respect to x, fx, analytically and x will be obtained by solving the original ODE
anyways, the computational demand of solving sensitivity equations comes down to solv-
ing an nθnx-dimensional ODE system. Compared to finite differences, this will be more
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expensive. Still, since the gradients will induce no additional error on top of the ODE
solving inaccuracy, one assumes that, in the end, the gradient-based optimization will
require fewer steps. Hence, overall computational demand will be lower.
Since the dependency of J on h and h on x is usually not overly complex, one can use
xθ to compute the derivatives of the objective function easily. If we have, for example, a
negative log-likelihood with additive Gaussian noise, whose variance we estimated a priori
from the data, as the objective function, we obtain

∂kJ = −
∑

ij

ȳj(ti)− h̃j (ti, x(ti), θ)

σ2
ij

(
∂θk h̃j (ti, x(ti), θ)

+∂xh̃j (ti, x(ti), θ)xθk(ti)
)
.

In this thesis, we use the interior point method implemented in IPOPT [58] for the
parameter estimation problems involving PDEs, where gradients are approximated via
finite differences. For the purely ODE problems, we employ the trust region optimizer
FIDES [59], which uses a hybrid of BFGS and SR1, along with forward sensitivities
provided by AMICI/CVODES. We call both optimizers through the Python interface of
pyPESTO [7].

2.4 Uncertainty Analysis via Sampling

After finding an optimal parameter vector θ̂ via gradient-based multistart optimization,
the question is how reliable these parameters are and how sensitive the model is towards
small deviations from the optimum [60]. To achieve this, we consider an ensemble of
parameter vectors instead of a single one. Since we only want to compare relevant pa-
rameters, in the sense that they are optimal or close to it, such an ensemble E should
satisfy

E(θ̂) ⊂ {θ ∈ Θ|J (θ) ≈ J (θ̂)}. (14)

A straightforward approach is to define the ensemble as the top K results of the multistart
optimization with N starts, where K << N , and it should be assured that (14) holds.
However, since optimization runs are usually computationally very demanding and the
initial points are chosen randomly, it might prove difficult to provide a thorough un-
certainty analysis purely through this ensemble method. A variety of techniques have
been developed to address this issue. For this thesis, we focus on sampling via Markov
Chain Monte Carlo, which builds on the Bayesian inference theory, which we will briefly
introduce.

2.4.1 Bayesian inference

In contrast to the optimization theory we have seen above, sometimes labeled frequen-
tist inference, where we end up with one optimal vector θ, the so-called point estimate,
Bayesian inference aims at obtaining a whole distribution of parameters, to account for
the inherent stochasticity of looking only at one particular data set with finite sample size
[61]. As the name implies, Bayesian inference grounds in Bayes’ Theorem

p(θ|D) =
p(D|θ)p(θ)
p(D)

, (15)
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where p(θ|D) is called the posterior distribution and p(θ) the prior distribution. From the
frequentist theory, we recognize the likelihood of our data p(D|θ), where it was one of the
possible objective functions. The probability p(D) of the data D is in general unknown,
but since it is constant, we can circumvent it as we will show for the following approaches.
The Bayesian counterpart to maximum likelihood estimation is the maximum-a-posteriori
estimation (MAP). It extends the maximum likelihood by including the prior distribution
via

θ̂ = arg max
θ∈Θ

p(θ|D) = arg max
θ∈Θ

p(D|θ)p(θ) = arg min
θ∈Θ

−(log p(D|θ) + log p(θ)).

We can see immediately that this is equivalent to minimizing the negative log-likelihood
with an additional penalty term introduced by the prior distribution. In the case of
uniformly distributed prior information, − log p(θ) becomes 0 if θ is inside of the bounds
and ∞ if θ is not in the bounds, effectively resulting in the frequentist optimization of
the log-likelihood within parameter bounds. For independent Gaussian priors with mean
vector µ and standard deviations σj we have

− log p(θ) = − log
∏

j

1√
2πσ2

j

exp

(
−(θj − µj)

2

2σ2
j

)

=
∑

j

(
1

2
log(2πσ2

j ) +
(θj − µj)

2

2σ2
j

)
,

which, after dropping the constant first term, effectively becomes an L2-penalty term
scaled by two times the standard deviations. In particular, if we normalize to zero-
mean and standard deviation to 1, we obtain L2-regularization, also known as ridge
regularization. Similarly, one can show that Laplacian priors effectively result in an L1

penalty term and, in the normalized case, L1-regularization, also known as LASSO [62].

2.4.2 Markov Chain Monte Carlo

Although based on the Bayesian framework, MAP yields a point estimate and not the
full posterior distribution p(·|D). To obtain the posterior distribution computationally, we
employ Markov Chain Monte Carlo (MCMC) methods, which construct Markov chains so
that their equilibrium distribution yields the true posterior distribution [63]. In particular,
for a finite number of steps, the chain elements approximate the equilibrium distribution.
Since the distribution of data, p(D), in Bayes Theorem (15) is unknown, we make use of
the Metropolis-Hastings algorithm. This algorithm requires that we know a distribution
proportional to the desired distribution. Since the distribution of data is independent of
parameters, we see in Bayes Theorem that we can use p(D|θ)p(θ) as a known proportional
distribution of the desired posterior p(θ|D). Furthermore, Metropolis-Hastings requires
a symmetric proposal distribution, g(x|y), often considered a Gaussian distribution of
around y. The chain is initialized at θ0, and the proposed next step θ′ is drawn from
g(·|θ0). Then, the acceptance ratio

α =
p(D|θ′)p(θ′)
p(D|θ0)p(θ0)

is computed and a number u drawn from U([0, 1]). If u ≤ α we accept θ′ and set θ1 = θ,
and, if u > α, we reject the proposal and set θ1 = θ0. These steps are repeated until we
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reach the equilibrium distribution. The process is summarized in Algorithm 3. There are
extensions to this algorithm, in particular choosing a proposal distribution, which adapts
at each step based on previous samples, the adaptive Metropolis-Hastings algorithm [64].

Algorithm 3 Metropolis-Hastings

Require: Symmetric proposal distribution g(x|y) and initial θ0 ∈ Θ.
while Chain (θk)k not converged do

Draw θ′ from g(·|θk−1).

Compute α = p(D|θ′)p(θ′)
p(D|θk)p(θk) .

Draw u from U .
if α ≤ u then Set θk = θ′

else Set θk = θk−1.
end if

end while

In our cases, where sampling is feasible, we combine frequentist (or MAP) and Bayesian
approaches by first performing a (regularized) gradient-based optimization and using its
result as the starting point for a MCMC chain. In this sense, MCMC is used as an
uncertainty quantification measure since we obtain distributions around already optimized
parameters. However, one can generally perform a global parameter optimization by
computing multiple MCMC chains starting at randomly selected initialization points.
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3 Integrating an Antibody Study into SEIR-

Modeling to predict SARS-CoV-2 Spread in

Ethiopia

Compartmental modeling is crucial in epidemiological modeling for predicting and ana-
lyzing the spread of infectious diseases [5]. In particular, for SARS-CoV-2, Susceptible-
Exposed-Infectious-Recovered (SEIR) models have shown to be reliable. This section
provides an overview of the study titled Seroepidemiology and model-based prediction of
SARS-CoV-2 in Ethiopia: longitudinal cohort study among frontline hospital workers and
communities [1]. The study conducted an antibody prevalence survey on SARS-CoV-2 in
Ethiopia. We integrated the data into three compartmental population models, described
by ODEs: a standard SEIR model, an extended SEIR model, accounting for two popula-
tions, and a SEIR-based model accounting for an additional virus variant. Serological data
from multiple testing rounds of frontline healthcare workers (HCWs) and communities in
Jimma and Addis Ababa were integrated into the different models. The novelty of this
work lies in the application and extension of SEIR models to scenarios of underreporting
and their specific adaptation to healthcare workers in Ethiopia, addressing critical gaps
in data and disease dynamics in this context. The co-authors performed the antibody
study and preliminary data analysis, while the thesis author conducted the modeling and
parameter estimation and provided the corresponding descriptions and figures for the
original manuscript.
In this summary, we will concentrate on the modeling and parameter estimation. The
original publication is reprinted in Appendix A. It relies mainly on the mathematical
frameworks introduced in Sections 2.1.5, 2.2.1, 2.3, and 2.4.

3.1 Data

The study sampled data from three rounds of SARS-CoV-2 anti-nucleocapsid antibody
surveys conducted between August 2020 and April 2021 involving 1,104 HCWs and 1,229
residents from Addis Ababa and Jimma, alongside national positivity rates from the same
period. The data was aggregated by collection site, participant group, sampling round,
and, for multi-month rounds, by month. Monthly national test positivity rates were also
aggregated. Errors were estimated by sampling from a binomial distribution and later
used in model fitting.

3.2 Models

SEIR Model The basic SEIR model divides the population into four compartments:

• Susceptible (S): Individuals who can contract the disease.

• Exposed (E): Individuals who have been infected but are not yet infectious.

• Infectious (I): Individuals who can transmit the disease.

• Recovered (R): Individuals who have recovered and are immune.
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The transitions between these compartments are governed by the following ordinary dif-
ferential equation (ODE) system:

dS

dt
= −β I

N
S

dE

dt
= β

I

N
S − κE

dI

dt
= κE − γI

dR

dt
= γI,

where

• β is the transmission rate.

• κ is the rate at which exposed individuals become infectious.

• γ is the recovery rate.

• N = S + E + I +R is the total population.

Furthermore, the initial time t = 0 was set to the date when SARS-CoV-2 was first
observed in Ethiopia, as reported by the WHO. The initial number of susceptible indi-
viduals S(0) was set to 510, approximately reflecting the number of participants in each
round and site. The initial numbers of exposed and recovered individuals were both set to
zero. The initial number of infected individuals was treated as a site-specific parameter,
which we later estimated. This approach, combined with the memorylessness of the ex-
ponential transition times, i.e., the Markov property of the underlying stochastic process,
allowed the model to account for different entry times for each site and from the national
entry date. A later entry point is equivalent to an upscaled initial number of infected
individuals.

Extended SEIR Model The extended SEIR model addresses interactions between
HCWs (denoted by index H) and the community (denoted by index C), incorporating a
potentially higher transmission probability from community members to HCWs, modeled
by a factor α. The ODEs incorporate inter-population interactions:

dSH

dt
= −β IH + αIC

N
SH

dEH

dt
= β

IH
N
SH − κEH

dIH
dt

= κEH − γIH
dRH

dt
= γIH

dSC

dt
= −β IH + IC

N
SC

dEC

dt
= β

IC
N
SC − κEC
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dIC
dt

= κEC − γIC
dRC

dt
= γIC

N = SH + EH + IH +RH + SC + EC + IC +RC

Here, we kept 510 as the initial susceptible HCW and set SC(0) to 100,000 to reflect a
realistic ratio of HCW to community members. The entrance of the virus was assumed
to happen in the community, IC(0) = I0, and all other initial values were set to 0.

Virus Variant Model This model considers a new virus strain with increased trans-
missibility. Key assumptions are:

• Increased reproduction rate by a literature-derived factor of 1.35.

• Previous infections with the variant confer immunity to the wildtype but not vice
versa.

This yields the following ODE system:

dS

dt
= −β Iwt

N
S − β Iva + Iva,wt

N
S

dEwt

dt
= β

Iwt

N
S − κEwt

dEva

dt
= β

Iva + Iva,wt

N
S − κEva

dEva,wt

dt
= β

Iva + Iva,wt

N
Rwt − κEva,wt

dIwt

dt
= κEwt − γIwt

dIva
dt

= κEva −
γ

1.35
Iva

dIva,wt

dt
= κEva,wt −

γ

1.35
Iva,wt

dRwt

dt
= γIwt − β

Iva + Iva,wt

N
Rwt

dRva

dt
=

γ

1.35
Iva

dRva,wt

dt
=

γ

1.35
Iva,wt

with initial values S(0) = 510, Iwt(0) = I0 and Iva(t0) = 1 and all others set to 0. As for
I0, we allowed t0 to be site-specific and estimated it.

3.3 Parameter Estimation

The SEIR and extended SEIR models were calibrated using data from the first two rounds
of the antibody study. The SEIR model was fitted separately to the data from HCW and
community members, while the extended SEIR model simultaneously integrated both
datasets. To enhance statistical power while maintaining precision, samples were aggre-
gated by month. The model fitting incorporated Addis Ababa and Jimma data with
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site-specific initial values. Antibody prevalence was mapped to the recovered fraction
R/N . The third round of data was subsequently used to validate the model. Although
data on virus variants were unavailable, national test positivity rates were used to infer
variant dynamics by mapping them to the fraction of the combined infectious population.
All three sampling rounds of community members were utilized to calibrate the virus
variant model, which was not used for predictions but highlighted the need for further
research. For estimation, we assumed additive Gaussian noise as an approximation of
the binomial model and included knowledge from literature about incubation and recov-
ery as priors. The models, the data, and the parameter estimation setup were saved in
the standardized parameter estimation format PEtab, to whose development the author
of this thesis contributed. Parameter values were derived using AMICI with CVODE
backend for simulations and pyPESTO for optimization and sampling. To the latter’s
development the author of this thesis also contributed. A point estimate obtained with
FIDES was then used as the starting point for MCMC sampling via pyPESTO’s adaptive
Metropolis-Hastings implementation.

3.4 Key Insights

Model predictions revealed differences in seroprevalence between HCWs and the com-
munity. Due to community interactions, the extended SEIR model indicated a higher
exposure risk for HCWs. The models without a variant predicted nearing herd immunity
post-study, while the variant model suggested a continuing rise in antibody prevalence.
The data analysis indicated significant underreporting in Ethiopia, with most people en-
countering SARS-CoV-2.
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4 Multivariant and antibody level models of anti-

body data, variant sequences and vaccination of

SARS-CoV-2 in Ethiopia

Building upon the study presented in the previous section, we extended the SEIR frame-
work to a more complex multivariant model that captures the dynamics and cross-
immunities of different SARS-CoV-2 variants over time: Long-term monitoring of SARS-
CoV-2 seroprevalence and variants in Ethiopia provides prediction for immunity and
cross-immunity [2]. Moreover, this study also introduces an antibody-level model, which
provides a detailed understanding of how the levels of anti-nucleocapsid antibodies (Anti-
N) and anti-spike antibodies (Anti-S) develop and decline across the population. Notably,
the development of large-scale COVID-19 models and models including sequencing of vi-
ral variants had not been conducted for Ethiopia before, making this work a significant
advancement. This research deepens our understanding of variant-specific immunity by
incorporating a longitudinal antibody dataset spanning two years, including viral se-
quencing and national test positivity rates. It evaluates the effectiveness of public health
interventions and vaccination strategies in a resource-limited setting like Ethiopia. The
author of this thesis led the modeling and parameter estimation for both models, which
are core to the study, as well as clustering analysis and error estimates of the data and
drafted the related sections, introduction, and discussion of the original manuscript. The
original publication is reprinted in Appendix B. It relies mainly on the mathematical
frameworks introduced in Sections 2.1.5, 2.2.1, 2.3, and 2.4.

4.1 Data

The antibody surveys derived from serological surveys conducted in Addis Ababa and
Jimma were extended by two additional rounds, enhancing the original data set by 3,384
new samples collected between August 2021 and May 2022. For the original and the latest
samples, both Anti-N and Anti-S data were now available. Moreover, study participants
provided information on their vaccination status and vaccination dates. We categorized
the antibody data using k-means clustering. This clustering was applied to positive
antibody data, resulting in the categories of medium and high levels, assumed to represent
one infection or vaccination and multiple infections or vaccinations, respectively. Low
antibody levels, corresponding to responses below the detection cutoff, were classified as
negative.
Additionally, we sequenced 1,873 positive PCR tests, yielding 574 sequences of sufficient
quality. We aggregated the resulting variant strains over their mutations of concern
(MOC) into eight lineage groups and computed mutational distances between these vari-
ants as Hamming distance of MOC.
As in the previous study, we also utilized the nationally reported test positivity rates of
our sampling period.

4.2 Models

Multivariant Model The SEIR model serves as the foundation for describing the
transmission dynamics of SARS-CoV-2, with compartments representing the different
stages of infection: Susceptible (S), Exposed (E), Infectious (I), and Recovered (R). The
transitions between these compartments are governed by ODEs. The study extends this
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basic model to a multivariant framework that tracks the wildtype virus and different
variants of concern (VOC) over time. This model accounts for multiple sequences of
infections and vaccinations, allowing for a detailed analysis of variant-specific immunity
and cross-immunity. Moreover, it incorporates the impact of vaccination, which, based
on the vaccines available in Ethiopia, is handled as being recovered from wildtype. The
dynamics of a first infection with variant i = 1, . . . , 8 are described by the following
system:

Ṡ = −βiÎiS
N
− v1S

Ėi =
βiÎiS

N
− κEi

İi = κEi − γIi

Ṙi = γIi −
∑

j∈Pi

βij ÎjRi

N
− v1Ri

Ṙv = v1S −
∑

j=1,...,8

βj ÎjRv

N
− v2Rv

where:

• the transmission rate associated with variant i, is denoted by βi if there was no
previous infection and βji after recovery from variant j,

• κ is the rate at which exposed individuals become infectious,

• γ is the recovery rate,

• vk denote the vaccination rates for the k-th vaccination.

• Pi is the set of potential reinfections, which we reduced to pathways reflecting the
worldwide disease dynamics, e.g., by excluding wildtype infections after omicron
infections,

• N is the total population,

• and Îj the sum of all currently infected with variant j.

We set the initial number of susceptible S(0) to 120.3e6, roughly reflecting the total
population of Ethiopia at that time. Initial appearances of variants were implemented by
Ii(t0i = 1), and all other initial values were set to zero.
The multivariant model refines the above equations by incorporating compartments for
second infections and vaccinations. For i = 1, . . . , 8, v (numbers for infections, v for
vaccination) and j = 1, . . . , 8 we have

Ėij =
βij ÎjRi

N
− κEij

İij = κEij − γIij
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Ṙij = γIij −
∑

k=7,8

βijkÎkRij

N
− vn(i,j)+1Rij

Ṙiv = vn(i,v)Ri −
∑

k=7,8

βivkÎkRiv

N
− vn(i,v)+1Riv,

where n(Idx) := #{v ∈ Idx}. For i, j = 1, . . . , 8, v and k = 7, 8 we obtain the third
infection or vaccination equations

Ėijk =
βijkÎkRij

N
− κEijk

İijk = κEijk − γIijk

Ṙijk = γIijk −
βijk8Î8Rijk

N
− vn(i,j,k)+1Rijk.

Furthermore, for highly immune evasive Omicron BA.4/5 variant we also implemented a
fourth infection, i.e. for i, j = 1, . . . , 8, v and k = 7, 8, v:

Ėijk8 =
βijk8Î8Rijk

N
− κEijk8

İijk8 = κEijk8 − γIijk8
Ṙijk8 = γIijk8.

The effective infection rates βIdx are split into three parts

βIdx = sseassreinf(Idx)β̂Idx[−1],

the seasonality factor sseas, the reinfection factor sreinf and the transmission rate β̂Idx[−1] of
the currently encountered variant Idx[−1], i.e. variant corresponding to last index entry
of Idx.
The reinfection factor depends on the previously encountered variants encoded in all but
the last index entries Idx[: −1] and the currently encountered variant encoded in the last
index entry Idx[−1] and is formulated as follows

sreinf(Idx) =

{
1, if |Idx| = 1

(1− s0)(1− s)d(Idx[:−1],Idx[−1]), otherwise.

Here d(x, y) is the Hamming distance between MOC observed in variant y and MOC
observed in variant or combination of variants x.

Antibody-Level Model The antibody-level model described the distribution of indi-
viduals with a certain combination of Anti-S and Anti-N levels. For each antibody type,
we consider three discrete categories, with index i = 0 (low), 1 (medium), 2 (high) being
used for Anti-S categories and index j = 0 (low), 1 (medium), 2 (high) being used for
Anti-N categories. The time evolution of individuals in each category, Aij, is governed by
the following equations for i, j = 0, 1, 2:
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Ȧij =− βij ÎAij

N
− vAijχi≤1

+ γ (Ii,j−1χi=2 + Ii−1,jχj=2 + Ii,jχi=2χj=2 + (1− θ)χj=1 Ii−1,j−1

+θIi−1,j−2χj=2)χi≥1χj≥1

+ δNAi+1,jχi≤1 + δSAi,j+1χj≤1 + δSNAi+1,j+1χi≤1χj≤1

+ vAi−1,jχi≥1

− (δNχi≥1 + δSχj≥1 + δSNχi≥1χj≥1)Aij

Ėij =
βij ÎAij

N
− κEij

İij =κEij − γIij,

where

• βij represent antibody-level dependent exposure rates

• χ is the indicator function,

• v represents vaccination rate,

• γ and κ account for recovery and incubation,

• θ is the fraction of population experiencing a boosting effect of Anti-N levels after
recovery.

We set the initial values to

Aij(0) =

{
120.3e6 if i = j = 0

0 otherwise

Eij(0) = 0

Iij(t0) =

{
1 if i = j = 0

0 otherwise.

Moreover, the effective transmission rates βij are defined as

βij = sseas(1− s1)χi≥1 or j≥1(1− s2)χi=2 or j=2

8∑

k=1

αkβ̂k,

with immunity factors s1 and s2, variant distributions αk(t) and variants’ transmission
rates β̂k.

4.3 Parameter Estimation

The model parameters were estimated using the comprehensive dataset of antibody levels,
virus variant distributions, and national test positivity rates. Since sequencing data was
only available for community members, we used the healthcare worker antibody data
to verify our clustering approach conceptually. We performed the estimations with the
antibody data for community members.
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For the multivariant model, only Anti-S levels were utilized to manage computational
feasibility. The antibody model incorporates the variant distributions via weighting fac-
tors for each exposure rate. The weights are computed as normalized Gaussian fits to the
distributions a priori to the estimation, while the transmission rates are later estimated
along with the other model parameters. Vaccination rates were calculated in advance
based on participants’ responses to the antibody survey.
As in the previous study, antibody levels were mapped to the fraction of the corresponding
recovered population relative to the total population. Errors for all data types used in
estimation were inferred using multinomial and binomial models implemented in PyMC3
[65]. The models, the data, and the parameter estimation setup were saved in the stan-
dardized parameter estimation format PEtab, to whose development the author of this
thesis contributed. Estimation was performed with additive Gaussian noise as an approx-
imation to these error models and implemented in the Python frameworks AMICI and
pyPESTO, with CVODE and FIDES providing the simulation and estimation backends.
The author of this thesis also contributed to the development of pyPESTO.

4.4 Key Insights

The multivariant model provides insights into the infection history in Ethiopia, revealing
that most individuals experienced multiple exposures to different variants. The model
identified three major infection waves corresponding to the Wildtype, Delta, and Omicron
BA.4/5 variants. It also highlights the role of cross-immunity in reducing the risk of
reinfection, with reinfection risks varying based on the genetic distance, represented as a
difference in mutations of concern (MOC) between variants.
The antibody-level model predicted that early-on widespread vaccination might have sig-
nificantly mitigated delta and omicron waves. However, following the Omicron wave,
it predicts up to 100% of the population to be in the high antibody category for both
Anti-N and Anti-S, suggesting further vaccinations might have a limited impact on overall
immunity, given the already high levels of antibody saturation.
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5 PDE Modeling of Ligand Feedback in Immune Cell

Activation of Mural Dendritic Cells

This section provides an overview of the mathematical modeling of cell-to-cell commu-
nication within the framework of Waddington’s developmental potential landscape, as
presented in the paper A Dynamic Model for Waddington’s Landscape Accounting for
Cell-to-Cell Communication [3]. The study extends the classical mathematical descrip-
tions of Waddington’s landscape, traditionally used to describe cell differentiation, by
introducing a coupled system of partial and ordinary differential equations (PDE-ODE)
that accounts for the dynamics of cell populations and ligand concentrations. This en-
hanced model provides a more accurate depiction of cellular processes, including the effects
of cell-to-cell communication on developmental pathways. The author of this thesis con-
tributed to the formulation of the mathematical model and formal analysis of existence
and uniqueness. Moreover, he implemented the numerical simulation and the parameter
estimation for the immune cell activation application and drafted the related sections,
introduction, and discussion of the original manuscript. The original preprint is provided
in Appendix C. It relies mainly on the mathematical frameworks introduced in Sections
2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.6, 2.2.2 and 2.3.

5.1 Mathematical Model

The model describes a population of cells communicating through ligands, a key aspect
of biological systems. The state of a cell is denoted by s(t) ∈ Rns , and the ligand concen-
tration by l(t) ∈ Rnl

≥0. The dynamics of the cell state are governed by drift v(s, l, t), which

corresponds to a directed change of state, and diffusion D1/2(s, l, t), which corresponds
to random changes of the state. Together, this is denoted by the stochastic differential
equation (SDE)

ds = v(s, l, t)dt+D1/2(s, l, t)dBt.

From this, we obtain in the limit of large cell numbers a PDE, the population balance
model, which captures the time- and state-dependent number density function u(s, t):

∂u(s, t)

∂t
=

∂

∂s

(
D(s, l, t)

∂u(s, t)

∂s

)
− ∂

∂s
(v(s, l, t)u(s, t)) + g(s, l, t)u(s, t),

where g(s, l, t) represents the effective proliferation rate. The initial and boundary condi-
tions are specified to ensure the model captures the biological reality of cell dynamics and
assumes that all possible cell states are observable, i.e., a nonnegative initial condition
and no-flux boundary conditions.
The ligand dynamics are governed by the following ODE:

dl(t)

dt
=

∫

Ω

α(s, t)u(s, t) ds−
(∫

Ω

β(s, t)u(s, t) ds

)
l(t)− γ(t)l(t)

Here, α(s, t) denotes the ligand secretion rate, β(s, t) the binding rate, and γ(t) the
degradation rate of the ligand. The coupling of these equations enables the model to
dynamically represent the interaction between cells in different states via ligand-mediated
communication.
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5.2 Mathematical Analysis of Model

The proof of existence and uniqueness provides the theoretical foundation for the coupled
PDE-ODE model describing cell population dynamics and ligand-mediated cell-to-cell
communication. The key idea is to demonstrate that, under appropriate conditions, the
system admits a unique global solution. The proof proceeds in several steps. First,
it shows that the ligand concentration, governed by the first-order ODE, has a unique
solution for a fixed cell density distribution. Next, it establishes that for a given ligand
concentration, the cell population dynamics, represented by the parabolic PDE, also have
a unique weak solution using energy estimates and Galerkin approximations. Finally, it
is proven that the mapping from cell population to ligand concentration and back to cell
population forms a contraction, which, with the Banach Fixed Point Theorem, ensures
the existence of a unique local solution for the entire system. This result holds globally by
extending the local solution over any finite time interval. The proof relies on regularity,
boundedness, and Lipschitz continuity in model parameters, ensuring the applicability of
standard PDE and ODE theory.

5.3 Data of Application Study

We applied the model to single cell RNA-seq data of dendritic cell activation after stim-
ulation with lipopolysaccharide from Shalek et al. [66]. They investigate dendritic cell
behavior under two experimental conditions: with communication (in-tube) and without
communication (on-chip). The in-tube setup, where cells communicated through a ligand
(IFN-β), showed progressive cell activation over time, while the on-chip condition, lacking
communication, resulted in limited activation. We confirmed this by performing a UMAP
on the single cell data, which produced two visually distinct clusters: one consisting of
on-chip and early in-tube cells, the inactivated cluster, and one consisting of the later
in-tube cells, the activated cluster. Then, we employed trajectory inference via diffusion
pseudotime for each measurement time point and condition to obtain a 1-dimensional
representation of their data.

5.4 Parameter Estimation

The parameter estimation process ensures that the mathematical model accurately re-
flects biological processes. The following steps were undertaken to estimate the model
parameters in this study.

Parametric Functions To formulate a well-posed inverse problem, the coefficient func-
tions of the equations must be parameterized appropriately. Given the short duration of
the experiment (6 hours), cell growth was assumed to be negligible. It was assumed that
the coefficients do not inherently change over time for the remaining cell dynamics—drift
and diffusion—and the ligand dynamics. Any time-dependent changes in these coeffi-
cients are solely induced by variations in ligand concentrations. The drift and diffusion
terms were parameterized using splines to capture the baseline dynamics, with additional
ligand- and space-dependent components described via Hill functions. Ligand secretion
and binding rates were modeled as Hill functions, while ligand degradation, independent
of time, required no further parameterization. The parameters are denoted by θ and are
bounded within the set Θ.
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Simulation The finite volume method (FVM) was applied specifically to the PDE com-
ponent of the coupled PDE-ODE system modeling cell population dynamics. The FVM
discretizes the spatial domain into control volumes, and the integral form of the PDE is
solved over each volume. Standard numerical solvers were used for the ODE governing
ligand concentration. The initial cell density for the PDE was derived by performing a
kernel density estimation on the experimental data of measurement time point 0, provid-
ing a smooth approximation of the cell state distribution as the starting condition for the
simulation. The initial ligand concentration was set to 0.

Maximum Likelihood Estimation The model parameters θ were estimated by max-
imizing the multinomial likelihood of observing the experimental data given the model.
The optimization problem was formulated:

θml = arg max
θ∈Θ

nt∏

k=1

nc∏

j=1

p(ykj|ϕu(tk, ·; cj, θ)),

where ϕu(t, ·; c, θ) denotes the solution operator for the population density u under con-
dition c and parameters θ. The likelihood was based on the multinomial probability mass
function suitable for the population-level histogram data, which we computed from the
diffusion pseudotime representation of the single-cell measurements.

Discretize-Optimize Strategy The model followed a discretize-optimize strategy, as-
suming that the numerical simulation algorithm provides an accurate solution to the cou-
pled PDE-ODE system. The fractions of cell states required as input to the multinomial
probability mass function were computed directly from the finite volume approximation
of u(t, s; c, θ).

pyPESTO Framework Parameter estimation was implemented using the pyPESTO
framework, to which the author of this thesis also contributed and which offers a wide
range of local and global optimization methods. A multi-start local optimization was
performed using the gradient-based interior point algorithm IPOPT. The gradients were
computed using finite differences.

Quality-of-Fit Assessment The quality-of-fit for the maximum likelihood estimate
was assessed by comparing the experimental data with the expected distribution of mea-
surements from the model. Gaussian kernel density estimates were calculated based on
the states of experimentally observed cells, and these were compared with samples from
the model’s predicted population density u(tk, ·; cj, θml).

Uncertainty Analysis The uncertainty of the parameter estimates was evaluated using
an ensemble method. The top K results from a multi-start optimization were selected as
representatives of the parameter set, providing insights into the confidence intervals for
each parameter.

5.5 Key Insights

The study provides a rigorous mathematical analysis of the model, proving the existence
and uniqueness of solutions to the coupled PDE-ODE system. This theoretical foundation
ensures the reliability of the model under various biological conditions.
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We applied the model to a dataset involving dendritic cell activation upon LPS stimula-
tion to validate it. The model successfully captured cell activation dynamics, highlighting
the critical role of cell-to-cell communication in immune response processes. Moreover,
it was able to describe the effect of cell-to-cell communication on Waddington’s potential
landscape in this scenario. Interestingly, the estimated model parameters show that the
impact of increasing ligand concentrations on the drift is relatively small, while the effect
on diffusion is quite large. In the context of Waddington’s landscape, this suggests that
instead of altering the landscape itself, increasing ligand concentration enhances the ran-
dom change of cell state in the initial stable state, making it more likely for them to leave
this state and move into energetically more favorable potential states.
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6 Discussion of Results

Integrating complex biomedical datasets into differential equation models poses significant
challenges due to the complexity of biological phenomena and the need to balance com-
putational efficiency with model accuracy. In addressing the first research question—How
can mechanistic models enhance classical cohort studies to understand disease dynam-
ics better?—, we proposed advanced SEIR models enriched with longitudinal antibody
studies. Specifically in Section 3, we demonstrated how these models could be used to
gain valuable insights into the dynamics of SARS-CoV-2 spread in Ethiopia. The mod-
els provided a robust framework for understanding and predicting the progression of the
pandemic by distinguishing between healthcare workers and the general community. Us-
ing Bayesian parameter estimation ensured the predictions were accurate and reliable,
potentially aiding in practical public health planning and response. However, including
a hypothetical viral variant in the model underscored the need for more comprehensive
data on virus variants, as increased exposure rates and immunity-evasion properties sig-
nificantly impacted herd immunity levels.
Building on this foundation, Section 4 extended the SEIR framework to include multiple
SARS-CoV-2 variants and vaccination effects, providing a more detailed understanding of
variant-specific immunity and cross-immunity. This section showcased the integration of
newly obtained viral sequencing data into the modeling framework, allowing the capture
of infection pathways across multiple variants and vaccination events. By incorporating
a cross-immunity factor based on the genetic differences between variants, we managed
to maintain computational feasibility while still gaining insights into variant interactions.
Additionally, an antibody-level model was developed to assess the dynamics of the popu-
lation’s anti-nucleocapsid and anti-spike antibody levels. The model predicted that early
and widespread vaccination could have significantly mitigated the impact of the Delta
and Omicron waves, and it provided valuable forecasts about the long-term prevalence of
high antibody levels in the population.
Addressing the second research question—How can mechanistic models be utilized to
capture communication processes derived from single-cell data?— in Section 5, the focus
shifted from whole-population level modeling to single-cell level processes and from in-
fectious diseases to a more general immune response. We introduced a novel PDE-ODE
system that extends models of the classical Waddington’s landscape by incorporating
cell-to-cell communication via ligand dynamics. This model successfully described the
distribution of cells and ligand concentrations simultaneously, offering a comprehensive
view of cellular communication processes. By fitting the model to experimental data
from an immune cell activation study, we demonstrated the critical role of cell-to-cell
communication in immune response. The model’s ability to capture these complex in-
teractions highlighted its potential for broader applications in developmental biology and
immunology.
The scientific results presented in this thesis have significantly advanced our understand-
ing of integrating complex biomedical datasets into mechanistic models, effectively ad-
dressing both macro-level population dynamics and micro-level cellular processes. The
SEIR models developed in this work have improved our ability to predict disease dy-
namics and assess the impact of various factors, such as healthcare worker exposure and
viral variant evolution, on epidemic progression. Although compartmental modeling is
a well-established approach, the models introduced in the first study demonstrated the
advantages of integrating healthcare workers with community members, particularly in
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regions where insufficient testing infrastructure and demographic factors contribute to
severe under-reporting. These models have proven especially valuable in such contexts,
offering a more accurate reflection of the pandemic’s true scale.
The more complex multivariant and antibody-level models developed in this thesis have
provided new insights into the interplay between different SARS-CoV-2 variants and the
role of vaccination in shaping immunity landscapes. This research underscores the po-
tential importance of early vaccination in future pandemics. When early vaccination is
not feasible, its insights into the spread of multiple infections and antibody levels could
imply the adoption of sophisticated vaccination strategies, such as adjusting the number
of administered doses based on previous infections. This approach is further investigated
by a cost-effectiveness analysis from a study conducted in Jimma, Ethiopia, by Gudina et
al. [8], to which the author of this thesis also contributed. It builds on top of the findings
presented here and enhances them by additional antibody survey of persons before and
after vaccination. The methodologies established are not limited to SARS-CoV-2 but can
be generalized to other infectious diseases exhibiting similar transmission dynamics or
immune response mechanisms.
One of the challenges encountered was the limited availability of comprehensive genetic
sequencing data for SARS-CoV-2 variants in Ethiopia. This scarcity necessitated as-
sumptions and estimations that could introduce uncertainties into the models. Address-
ing this limitation requires strengthening local sequencing capabilities and establishing
data-sharing collaborations to enhance model accuracy and reliability. Moreover, the
interdisciplinary nature of this research highlights the value of collaborative efforts in ad-
dressing complex biomedical challenges. By integrating diverse expertise, the developed
models offer a more holistic understanding of disease dynamics and immune responses.
On the modeling side, future research could explore the integration of within-host vi-
ral dynamics and immune system dynamics, e.g., via a target cell-limited model [67],
with population-level models, potentially bridging the gap between individual-level and
population-level understanding of disease dynamics. Integrating different scales could
also address the challenge of linking antibody levels to actual immunity, providing a more
comprehensive understanding of protective immunity within populations. Before the out-
break of COVID-19, the need for such models was already discovered for other infectious
diseases and the subject of special issues, reviews, and opinion letters [68–70]. An ex-
cellent example of how one can bridge the scales can be found in Almocera et al. [71],
who investigate mathematically a model connecting a micro-scale cell model describing
the interaction between virus concentration and T-cells to a macro-scale model describing
populations of susceptible and infected via a viral load dependent transmission rate. A
similar approach tailored to HIV with more compartments can be found in Manda and
Chirove [72]. However, for SARS-CoV-2, there appear to be few attempts to apply such
multi-scale modeling approaches.
However, most of the studies mentioned above only investigate model properties using
parameters from the literature. Since the macro-scale multivariant model described above
is already quite complex, one would have to simplify it to retain computational feasibility
and include more data to inform all parameters during calibration.
Another refinement of the epidemiological models presented in this thesis could involve
incorporating more detailed genetic and immunological data to enhance the accuracy and
applicability of the predictions. However, one would require even more data on the virus
variants to inform such sophisticated models, which is not straightforward for countries
with scarce sequencing infrastructure. Since virus variants constantly mutate and their
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competition for susceptible hosts influences the evolution of new variants, these genetic
pressures are an exciting subject of study [73]. If one could incorporate a reliable repre-
sentation of mutation drivers and virus evolution into mechanistic models, the insights
gained would have substantially more predictive power than what can be inferred from
models describing already existing variants.
On the single-cell level, the PDE-ODE model for cell-to-cell communication has opened
new avenues for exploring cellular interactions in developmental and immune processes.
The rigorous mathematical foundation and successful application of this model to immune
cell activation underscore its potential for future research in other areas of biology.
Applying this framework to more complex developmental processes that fully exploit its
versatility, such as scenarios involving multiple ligands or multiple branching pathways,
presents an exciting direction for future research. A particularly compelling use case would
be, e.g., to describe the entire differentiation landscape of hematopoiesis, where blood stem
cells undergo a highly regulated process of specialization into various blood cell types,
including red blood cells, white blood cells, and platelets. This system involves multiple
stages of differentiation and is influenced by a wide array of signaling molecules [74].
Modeling such a system using the proposed framework would allow a more comprehensive
understanding of how different signaling pathways interact and drive cell fate decisions in
a multi-lineage context.
However, a key challenge lies in advocating for experiments that cover multiple time
points and compare communication and non-communication scenarios. Such experiments
are crucial for gaining deeper insights into these critical communication processes and
validating the model across biological contexts.
Another promising direction for enhancing the framework’s applicability lies in incorporat-
ing neural networks instead of traditional splines and Hill functions as model coefficients
and dependency terms. By formulating such a model combining differential equations and
neural networks, which is also known as a universal differential equation (UDE), it could
achieve even greater generality and flexibility, potentially covering a more comprehen-
sive range of biological scenarios with reduced need for manual specification of functional
forms [75]. The UDE approach would allow the model to learn complex relationships
directly from data, thereby decreasing the reliance on user-defined inputs and improving
its adaptability to various developmental and immune processes.
Since the parameter calibration of the PDE-ODE system is computationally very ex-
pensive, research on amortized inference could also prove valuable. Amortized inference
directly learns the posterior distribution from model simulations with parameters sam-
pled from the prior via an invertible neural network [76]. While the training of the neural
network is computationally demanding, the invertibility of the network can be used to in-
fer parameters from measurements with negligible computational effort. Since the initial
training cost only amortizes if sufficient inference tasks are performed using the trained
network, it works best with standardized experimental setups, where time points of data
collection, measured properties, and observations quantities are comparable.
Overall, this thesis has made significant contributions to computational life sciences by de-
veloping and applying sophisticated mathematical models to real-world biomedical data,
providing a deeper understanding of the complex processes that govern population-level
disease dynamics and single-cell communication. The research presented in this thesis
highlights the importance of integrating complex biomedical datasets into differential
equation models to gain a deeper understanding of epidemiological patterns and cellular
communication processes. The advancements in modeling techniques, parameter estima-
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tion, and data integration in epidemics and cell-to-cell communication demonstrated in
this work contribute to a more nuanced and comprehensive approach to studying biolog-
ical systems, with potential applications in public health, immunology, and beyond.
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Acronyms

Anti-N anti-nucleocapsid antibodies. 26, 28–30

Anti-S anti-spike antibodies. 26, 28, 30

BDF backward-differentiation-formula. 11

BFGS Broyden–Fletcher–Goldfarb–Shanno. 17, 19

BVP boundary value problem. 11

COVID-19 Coronavirus Disease 2019. 1, 36

FVM finite volume method. 11, 12, 14, 33

HCW healthcare worker. 22–25

IVP initial value problem. 10, 15

MAP maximum-a-posteriori estimation. 20, 21

MCMC Markov Chain Monte Carlo. 20, 21, 25

MOC mutations of concern. 26, 28, 30

mRNA messenger RNA. 2

ODE ordinary differential equation. 2, 3, 10–12, 15, 18, 19, 22–24, 26, 31–33, 35, 37

PCA Principal Component Analysis. 5, 6

PDE partial differential equation. 2, 3, 10–12, 14, 19, 31–33, 35, 37

RK4 Runge-Kutta method of fourth-order. 10

RNA ribonucleic acid. 39

RNA-seq RNA-sequencing. 32

SARS-CoV-2 Severe acute respiratory syndrome coronavirus type 2. 1–3, 22, 23, 25,
26, 35, 36

SDE stochastic differential equation. 31

SEIR Susceptible-Exposed-Infectious-Recovered. 22–26, 35

SR1 Symmetric rank-one. 17, 19

SVD singular value decomposition. 5

UDE universal differential equation. 37
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UMAP Uniform Manifold Approximation and Projection. 7, 8, 32

VOC variants of concern. 27

WHO World Health Organization. 1, 23

Glossary

adaptive Metropolis-Hastings algorithm Metropolis-Hastings algorithm with adap-
tive proposal distribution. 21

backward finite difference approximation Finite differences with negative small
step away from differentiation point. 18

bandwidth Hyperparameter of kernel density estimation. 9

Bayesian inference Statistical inference quantifying parameter uncertainty. 19

central finite difference approximation Finite differences with mixture of positive
and negative small steps away from differentiation point. 18

diffusion distance Distance measure based on a random walk. 6

diffusion maps Nonlinear dimension reduction method. 6

diffusion pseudotime A trajectory inference method based on diffusion maps. 7

empirical model Model which is mainly data-driven. 2

finite difference approximation Gradient approximation method substituting the
limit to zero in the definition of gradient by small value. 18

forward finite difference approximation Finite differences with positive small step
away from differentiation point. 18

forward sensitivity equations Equations for computing the derivatives of state vari-
ables with respect to parameters. 18

frequentist inference Statistical inference assuming parameters to be fixed. 19

gradient descent Optimization method of iteratively going in the direction of steepest
descent. 15

gradient-based optimization Optimization methods utilizing gradients of the objec-
tive function. 15

identifiability Property of a parameter estimation problem stating that the optimum is
unique. 13
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interior point or barrier methods Class of optimization methods for convex param-
eter spaces. 18

kernel density estimation Method which tries to capture the underlying density func-
tion of independent identically sampled data. 9

k-means Clustering method based on iteratively assigning data points to closest cluster
means. 8

learning rate Step size of gradient descent. 15

least squares objective Objective function based on minimizing the sum of squared
differences. 13

likelihood Probability of parameters conditional on data. 13

line-search Additional optimization problem in each gradient-descent step for choosing
learning rate. 16

log-likelihood LL Log-transformed likelihood. 14

mechanistic model Model implementing apriori known mechanisms. 2

Metropolis-Hastings algorithm Algorithm for approximating an unknown distribu-
tion using a proposal distribution and a known distribution proportional to the
target distribution. 20

multinomial likelihood A likelihood based on the multinomial distribution. 14

multinomial probability mass function Pmult Probability mass function of the
multinomial distribution. 15

multistart optimization Method of obtaining global optimum by multiple local opti-
mizations starting at sufficiently many different initial values. 17

multi-step solvers ODE solvers using multiple function evaluations per step. 11

Newton’s method Optimization method using gradient and Hessian of objective func-
tion. 17

parameters Unknown quantities of a model like reaction rates. 12

point estimate Estimation result of frequentist inference. 19

posterior distribution Distribution of information on parameters after updating the
prior distribution by the information contained in the data. 20

primal-dual optimization A interior point optimization method. 18

principal components Orthogonal axes of greatest variance in the data. 5

prior distribution Distribution of parameters prior to informing them by data. 20
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quasi-Newton methods Methods using approximations of Hessian in Newton’s
method. 17

random search Method of choosing parameters by drawing randomly from distribution
and comparing objective values. 15

silhouette scores Score to evaluate clustering quality by comparing mean inner to in-
between cluster distances. 9

single-step solvers ODE solvers using one function evaluation per step. 11

stiff equation ODE requiring tiny step sizes for numerical solution. 11

trajectory inference Reduction methods to a one-dimensional space including an or-
dering representing cell developmental stage. 7

trust region optimization Method where at each step a local approximation of objec-
tive function is optimized analytically. 17
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(Birkhäuser Verlag, Basel, 2006).

41. Hairer, E., Nørsett, S. P. & Wanner, G. in Solving Ordinary Differential Equations
I: Nonstiff Problems 303–432 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1987).
isbn: 978-3-662-12607-3. doi:10.1007/978-3-662-12607-3_3.

42. Hairer, E. & Wanner, G. in Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems 255–398 (Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1991). isbn: 978-3-662-09947-6. doi:10.1007/978-3-662-09947-6_2.

43. Hindmarsh, A. C. et al. SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers. ACM Transactions on Mathematical Software (TOMS) 31, 363–
396. doi:10.1145/1089014.1089020 (2005).

44. Gardner, D. J., Reynolds, D. R., Woodward, C. S. & Balos, C. J. Enabling new flexi-
bility in the SUNDIALS suite of nonlinear and differential/algebraic equation solvers.
ACM Transactions on Mathematical Software (TOMS). doi:10 . 1145 / 3539801
(2022).
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Summary
Background Over 1 year since the first reported case, the true COVID-19 burden in Ethiopia remains unknown due to 
insufficient surveillance. We aimed to investigate the seroepidemiology of SARS-CoV-2 among front-line hospital 
workers and communities in Ethiopia.

Methods We did a population-based, longitudinal cohort study at two tertiary teaching hospitals involving hospital 
workers, rural residents, and urban communities in Jimma and Addis Ababa. Hospital workers were recruited at both 
hospitals, and community participants were recruited by convenience sampling including urban metropolitan 
settings, urban and semi-urban settings, and rural communities. Participants were eligible if they were aged 18 years 
or older, had provided written informed consent, and were willing to provide blood samples by venepuncture. Only 
one participant per household was recruited. Serology was done with Elecsys anti-SARS-CoV-2 anti-nucleocapsid 
assay in three consecutive rounds, with a mean interval of 6 weeks between tests, to obtain seroprevalence and 
incidence estimates within the cohorts.

Findings Between Aug 5, 2020, and April 10, 2021, we did three survey rounds with a total of 1104 hospital workers and 
1229 community residents participating. SARS-CoV-2 seroprevalence among hospital workers increased strongly 
during the study period: in Addis Ababa, it increased from 10·9% (95% credible interval [CrI] 8·3–13·8) in August, 
2020, to 53·7% (44·8–62·5) in February, 2021, with an incidence rate of 2223 per 100 000 person-weeks (95% CI 
1785–2696); in Jimma Town, it increased from 30·8% (95% CrI 26·9–34·8) in November, 2020, to 56·1% (51·1–61·1) 
in February, 2021, with an incidence rate of 3810 per 100 000 person-weeks (95% CI 3149–4540). Among urban 
communities, an almost 40% increase in seroprevalence was observed in early 2021, with incidence rates of 1622 
per 100 000 person-weeks (1004–2429) in Jimma Town and 4646 per 100 000 person-weeks (2797–7255) in Addis 
Ababa. Seroprevalence in rural communities increased from 18·0% (95% CrI 13·5–23·2) in November, 2020, 
to 31·0% (22·3–40·3) in March, 2021.

Interpretation SARS-CoV-2 spread in Ethiopia has been highly dynamic among hospital worker and urban 
communities. We can speculate that the greatest wave of SARS-CoV-2 infections is currently evolving in rural Ethiopia, 
and thus requires focused attention regarding health-care burden and disease prevention.

Funding Bavarian State Ministry of Sciences, Research, and the Arts; Germany Ministry of Education and Research; 
EU Horizon 2020 programme; Deutsche Forschungsgemeinschaft; and Volkswagenstiftung.
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Introduction 
Despite the initial prediction that the COVID-19 
pandemic would hit Africa hard, the feared humanitarian 
crisis from COVID-19 has so far largely been avoided.1,2 
The total reported numbers from Africa represent 
only 2·9% of COVID-19 cases and 3·7% of COVID-19 
deaths reported globally.3,4 However, the true number of 
cases and the impact of COVID-19 remains largely 
unknown due to insufficient testing and weak 
surveillance and reporting systems.5–7

Seroepidemiological evidence from various African 
countries showed high prevalence of SARS-CoV-2 

antibodies among health-care workers: 41·2% in 
Democratic Republic of the Congo8 and 45·1% in 
Nigeria9 and 60% among blood donors in South Africa.10 
These findings pose a serious question of the true extent 
to which Africa has been affected by COVID-19, and 
whether this is largely unknown due to underdiagnosis 
and under-reporting.

Ethiopia, which reported its first case on March 13, 2020,11 
has implemented a targeted testing strategy that focuses 
on individuals who are symp tomatic, contacts of 
confirmed cases, and high-risk groups.12 This approach 
neglects most cases with mild or no symptoms.13 With 
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this strategy, fewer than 3% of the population has been 
tested, and only 273 175 cases have been detected.4,14 As a 
result, the true number of SARS-CoV-2 infections in the 
larger community is completely unknown.

Ethiopia lifted most of its COVID-19-related 
restrictions on Sept 8, 2020, and the daily testing 
capacity declined sharply due to insufficient laboratory 
infrastructure, supplies, and trained workforce.6 The 
country saw an increase in the number of cases, test 
positivity rate, severe disease, and COVID-19-related 
deaths from the second half of 2020 to March, 2021.14 As 
for most African countries, Ethiopia does not have 
routine death registration and baseline vital statistics. 
Therefore, it is extremely difficult to estimate excess 
deaths due to COVID-19 by use of mortality data. 
Nevertheless, more deaths compared with similar 
periods during previous years have been reported from 
cemeteries in Addis Ababa.15

Serological studies remain the only option to identify 
the burden of infection in the community and assess 
outbreak dynamics.16,17 Therefore, in this study, we aimed 
to determine the seroprevalence and seroincidence of 
SARS-CoV-2 across time and model the COVID-19 
epidemic among communities and health-care workers 
in Ethiopia.

Methods 
Study design and settings
This population-based, longitudinal, exploratory cohort 
study was done at two tertiary teaching hospitals (Jimma 
Medical Center [JMC] and St Paul’s Hospital), in Jimma 
Town and surrounding rural communities and Addis 
Ababa (figure 1).

JMC is the only tertiary referral centre in southwest 
Ethiopia, with a catchment population of more than 
20 million, 800 inpatient beds, and about 3000 hospital 
workers. It is located in Jimma Town, the biggest city in 
southwest Ethiopia, with a population of 300 000.

St Paul’s Hospital is one of several public tertiary 
teaching hospitals in Addis Ababa, with 700 beds and 
more than 2800 hospital workers. Addis Ababa is the 
capital and largest city of Ethiopia, with an estimated 
population of 5 million.

This research was approved by the Institutional 
Review Boards of Jimma University Institute of 
Health (RPGD/978/2020), St Paul’s Hospital Millennium 
Medical College (PM23/239), and Ludwig Maximilian 
University of Munich (21–0293). Additional approvals 
were obtained from Addis Ababa and Oromia Regional 
Health Bureaus (BEFO/KBTFU/1-16/488). Written 
informed consent in local languages was obtained from 

Research in context

Evidence before this study
The burden of COVID-19 in Africa was not as overwhelming as 
in other regions of the world during the so-called first wave of 
the pandemic. However, an apparent second wave characterised 
by a greater impact on African health systems has been 
observed since the end of 2020. This observation was supported 
by a few cross-sectional serological studies indicating high 
infection rates, mainly among health-care workers. Ethiopia 
reported its first case in March, 2020, but the true burden of the 
pandemic remains unknown due to insufficient testing and 
weak surveillance. We searched PubMed from database 
inception to May 31, 2021, for peer-reviewed articles using the 
terms “COVID-19” OR “SARS-CoV-2” AND “Ethiopia”, with no 
language restrictions. Additionally, we searched bibliographies 
of identified studies and Google for manuscripts and 
unpublished reports. We identified three studies, one in preprint 
version, reporting seroprevalence of SARS-CoV-2 from Ethiopia. 
All three were cross-sectional studies with sample sizes ranging 
from 99 to 1856 individuals and focused mainly on the general 
population of Addis Ababa. Only one study additionally involved 
rural communities, and none involved health-care workers.

Added value of this study
To our knowledge, we provide the first report of prospective 
longitudinal SARS-CoV-2 transmission dynamics and incidence 
rates from an African country, derived from front-line health-
care workers at major tertiary referral hospitals, urban residents, 
and rural communities. The sampling period of this repeated 

seroprevalence survey fell within the transmission period 
between the first and second COVID-19 wave in Africa and 
reveals a strong increase in SARS-CoV-2 transmission within 
different populations. Our data coincided with national reports 
of increased burden of critical patient care and PCR test 
positivity rates. On the basis of our seroprevalence data, we 
additionally provide a modelling analysis predicting possible 
SARS-CoV-2 herd immunity first for the wild-type virus, and 
then assuming introduction of variant strains.

Implications of all the available evidence
This study illustrates current COVID-19 disease dynamics in an 
African population, indicating a predominance of SARS-CoV-2 
transmission in urban settings. It can be speculated that the 
greatest wave of SARS-CoV-2 infection in rural Ethiopia is 
currently evolving, and thus requires focused attention regarding 
health-care burden and outbreak control. Approaching peak 
herd immunity level, either through natural disease exposure or 
SARS-CoV-2 vaccination, is widely investigated regarding not 
only health-care burden, but also emerging viral escape variants. 
COVID-19 vaccinations are currently scaled out in Africa and will, 
for most individuals, represent a booster immunisation after 
previous SARS-CoV-2 exposure. Vaccination strategies should be 
adapted; for instance, assessing the serostatus before 
vaccination and providing boosting only with one dose. On the 
basis of our data on disease dynamics and modelling analysis, we 
expect valuable follow-up information on pandemic disease 
control strategies applicable for Africa.
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all participants. For participants who could not read and 
write, an impartial witness was involved during the 
consenting process to ensure the provision of all 
necessary information before obtaining the participant’s 
fingerprint for consent. Preliminary results were 
communicated to the Ethiopian Public Health Institute, 
Federal Ministry of Health of Ethiopia, and Ethiopian 
Medical Association.

Selection of study participants 
Front-line hospital workers from outpatient and inpatient 
units—including clinical staff, medical interns, cleaners, 
guards, food handlers, and administrative personnel—
were recruited at both hospitals. A sample size of 
499 hospital workers per hospital was targeted on the basis 
of an estimated seroprevalence of 50% (95% CI, 5% margin 
of error) and a design effect of two clusters (JMC and 
St Paul’s Hospital). A non-response rate of 10% for each 
round (a total of 30% for all three rounds) was assumed.

The recruitment of community participants was 
guided by convenience sampling and included urban 
metropolitan settings (Addis Ababa), urban and semi-
urban settings (Jimma Town), and rural communities 
(four rural districts in Jimma Zone; figure 1). In Addis 
Ababa, we intentionally selected two subcities on the 
basis of their population density: Addis Ketema (most 
densely populated) and Yeka (sparsely populated). In 
Jimma Town, we recruited participants from all areas of 
the city. Rural residents were recruited from four rural 
districts located along four main roads connecting to 
Jimma Town. Households were selected randomly in a 
way that avoided frequent interaction from the next 
candidate household to prevent cross-contamination. The 
sample size calculation was done in July, 2020, when not 
much baseline data was available. At the time, we planned 
to include 664 households (332 in Jimma and 332 in 
Addis Ababa). However, we later became flexible as more 
data became available. Moreover, as the rate of dropout 
was more than 30% (our initial expectation), we recruited 
more participants to compensate for the dropouts. As a 
result, we included more participants than initially 
calculated. During data collection, data collectors included 
the next nearest household if the candidate household 
was closed or no eligible participant was available in the 
index household. Only one person from each household 
was recruited. Inclusion criteria were age 18 years or 
older, written informed consent, and willingness to 
provide blood samples by venepuncture.

This study was done between Aug 5, 2020, and 
April 10, 2021, and data collection was spaced with a 
minimum of 4 weeks between each round. All participants 
were enrolled before the introduction of COVID-19 
vaccines in Ethiopia.

Data collection and laboratory procedures 
We collected demographic data, COVID-19-related 
symptoms in the preceding 6 months, and prevention 

practices at the first round. During subsequent rounds, 
participants were asked about new onset of symptoms 
and contact with individuals with confirmed or suspected 
COVID-19. We collected about 3 mL of venous blood for 
serology at each round using standard serum tubes. 
Serum specimens were processed daily and stored at 
–20 °C in aliquots. To ensure best reproducibility and a 
cost-effective operation, one aliquot was subsequently 
thawed and serology testing was done in batches. We 
did measurements with Elecsys anti-SARS-CoV-2 anti-
nucleocapsid assay using the Cobas 6000 module 
e601 system (Roche Diagnostics, Basel, Switzerland).18 
This assay has an in-solution double-antigen sandwich 
format, with a reported specificity higher than 99·8% 
and sensitivity of 100%. It received emergency use 
authorisation from the US Food and Drug Administration 
in May, 2020.19 Results of the serology test were 
communicated to all participants during all rounds via 
text message containing a reminder to practice the 
recommended COVID-19 prevention methods regardless 
of the result. 

Statistical analysis
Data were double entered into a study-specific database 
(EpiData Manager, version 4.6.0.0) and linked with 
serology data from analyser extracts. Data analysis was 
done in R and Python (details in appendix 3 p 1).

We calculated the seroprevalence of anti-SARS-CoV-2 
antibodies as the number of positive cases divided by 
the total number of individuals tested per round. The 
incidence rate (IR) was calculated as the number of newly 

Figure 1: Map of Ethiopia showing the study sites
Base map reproduced from OpenStreetMap and OpenStreetMap Foundation, under the Creative Commons 
Attribution-ShareAlike 4.0 International License. Blue represents urban areas; orange represents rural areas. 
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positive cases divided by those still at risk of infection. The 
IR is presented as rate per 100 000 person-weeks. Only 
participants with at least two timepoints were included in 
incidence calculations (appendix 3 pp 1–2). Prevalence 
and IR are given along with 95% credible interval (CrI). 
We used the national COVID-19 daily official report of the 
Federal Ministry of Health of Ethiopia for COVID-19 to 
compare the seroprevalence changes over time.

SEIR model 
We developed compartment models using a SEIR 
(susceptible, exposed, infectious, and recovered) approach 
to analyse and predict the dynamics of the pandemic, 
encoded using the systems biology markup language 
format and simulated using the software toolbox AMICI. 
The model parameters were inferred with a Bayesian 
approach, integrating our seroprevalence data with 
previous knowledge from the literature on the rates of 
disease progression. We estimated model parameters 

using an adaptive Metropolis Hastings algorithm 
implemented in the Python Parameter Estimation 
Toolbox. For rounds with long recruitment periods, the 
seroprevalence datasets were split into an early and late 
phase. The resulting samples from the posterior 
distribution were used to derive prediction and prediction 
CrIs (more detail about modelling is provided in 
appendix 3 pp 3–5).

Role of the funding source 
The funders had no role in study design, data collection, 
data analysis, data interpretation, writing of the 
manuscript, or the decision to publish.

Results 
Between Aug 5, 2020, and April 10, 2021, we did three 
rounds of seroprevalence surveys. 1104 hospital workers 
and 1229 community residents participated in the study; 
demographic characteristics are provided in the table. 
Flow diagrams for recruitment and follow-up of 
participants are provided in figure 2.

At St Paul’s Hospital, serosurvey rounds were done in 
August and September, 2020; December, 2020, and 
January, 2021 (mean interval 17·7 weeks [SD 2·1] from 
round 1); and February and March, 2021 (mean interval 
9·3 weeks [SD 1·9] from round 2). There was a high 
proportion of dropouts, potentially due to long survey 
intervals; only 51 (10·5%) of 487 individuals included in 
the first round completed all three rounds. Nevertheless, 
we did not observe significant differences in the 
proportions of dropouts regarding seropositivity across all 
cohorts and survey rounds, indicating that dropouts did 
not result in a sampling bias (more detail on missing data 
is provided in appendix 3, pp 5–7). At JMC, survey rounds 
were done in November, 2020; December, 2020, and 
January, 2021 (mean interval 5·2 weeks [SD 0·8] from 
round 1); and January and February, 2021 (mean interval 
6·3 weeks [SD 0·9] from round 2). Dropout rates were 
lower than that in St Paul’s Hospital—360 (70·6%) of 
510 participants completed all three rounds.

Recruitment for the general population started with 
297 participants from urban communities and 238 from 
rural communities in Jimma. The survey rounds were 
done in December, 2020; January and February, 2021 
(mean interval 5·4 weeks [SD 0·6] in urban communities 
and 7·2 weeks [SD 0·9] in rural communities); and 
February and March, 2021 (mean interval 6·6 weeks 
[SD 0·9] in urban communities and 5·1 weeks [SD 1·0] 
in rural communities). General population survey 
rounds in Addis Ababa were done in December, 2020, 
and January, 2021; February, 2021 (mean interval 
4·7 weeks [SD 1·9] in Addis Ketema and 5·1 weeks 
[SD 0·7] in Yeka); and April, 2021 (mean interval 
8·0 weeks [SD 1·8] in Addis Ketema and 6·6 weeks 
[SD 0·5] in Yeka). At baseline, 224 participants from Yeka 
and 218 from Addis Ketema were included; however, new 
participants were added at later survey rounds (figure 2B).

Hospital workers General population

Jimma 
Medical 
Center 
(n=510)

St Paul’s 
Hospital 
(n=487)

Jimma urban 
(n=297)

Jimma rural 
(n=238)

Yeka subcity 
(n=224)

Addis 
Ketema 
subcity 
(n=218)

Age 26 (24–29) 28 (25–31) 31 (25–45) 30 (25–39) 33 (28–40) 38 (30–50)

Sex

Men 239 (46·9%) 233 (47·8%) 117 (39·4%) 158 (66·4%) 58 (25·9%) 42 (19·3%)

Women 271 (53·1%) 254 (52·2%) 180 (60·6%) 80 (33·6%) 162 (72·3%) 173 (79·4%)

Missing 0 3 (0·6%) 0 0 4 (1·8%) 3 (1·4%)

Education

No formal 
education

0 0 18 (6·1%) 49 (20·6%) 32 (14·3%) 31 (14·2%)

Primary 
school

15 (2·9%) 44 (9·0%) 70 (23·6%) 50 (21·0%) 66 (29·5%) 113 (51·8%)

High school 134 (26·3%) 93 (19·1%) 85 (28·6%) 126 (52·9%) 58 (25·9%) 39 (17·9%)

College 
graduate

361 (70·8%) 350 (71·9%) 124 (41·8%) 13 (5·5%) 62 (27·7%) 26 (11·9%)

Missing ·· ·· 0 0 6 (2·7%) 9 (4·1%)

Profession

Medical 
doctor

230 (45·1%) 199 (40·9%) NA NA NA NA

Nurse or 
midwife

164 (32·2%) 112 (23·0%) NA NA NA NA

Other health 
professionals

38 (7·5%) 62 (12·7%) NA NA NA NA

Non-clinical 
staff

78 (15·3%) 113 (23·2%) NA NA NA NA

Missing 0 1 (0·2%) NA NA NA NA

Routine PPE or mask use

PPE at work 507 (99·4%) ··* NA NA NA NA

Mask use in 
public

479 (93·9%) ··* 244 (82·2%) 137 (57·6%) 178 (79·5%) 183 (83·9%)

Missing 0 NA NA NA 5 (2·2%) 10 (4·6%)

Data are median (IQR) or n (%). NA=not applicable. PPE=personal protective equipment. *Such data were not collected 
at baseline for hospital workers at St Paul’s Hospital. 

Table: Demographic characteristics of study participants
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The evolution of seroprevalence over time in different 
cohorts is depicted in figure 2 and figure 3A, and the 
corresponding incidence data are reported in 
appendix 3 (p 1). Differences in seroprevalence for each 
survey period and for seroincidence are summarised in 
appendix 3 (p 2). In August, 2020, SARS-CoV-2 
seroprevalence among hospital workers at St Paul’s 
Hospital was 10·9% (95% CrI 8·3–13·8), increasing to 
53·7% (44·8–62·5) by February, 2021 (figure 2A). The IR 
over this period was 2223 per 100 000 person-weeks 
(95% CI 1785–2696). At JMC, the seroprevalence 
increased from 30·8% (95% CrI 26·9–34·8) in 
November, 2020, to 56·1% (51·1–61·1) in February, 2021, 
with an IR of 3810 per 100 000 person-weeks (95% CI 
3149–4540). The seroincidence in hospital workers from 
Addis Ababa was significantly lower than that in Jimma 
(risk ratio 0·6, 95% CrI 0·4–0·7).

In the most populous area of the general population 
surveyed, Addis Ketema, an initial seroprevalence of 
54·2% (47·5–60·7) in January, 2021, increased to 72·7% 
(65·9–79·1) in April, 2021 (figure 2B); in Yeka subcity, 
we observed an increase from 39·7% (33·4–46·3) 
to 54·8% (47·7–61·9) during the same timepoints. 
The sero prevalence in Addis Ketema was not only 
significantly higher than in Yeka during all rounds, but 
also higher than that of hospital workers at St Paul’s 

Hospital, for example, during the December, 2020, to 
January, 2021 survey (odds ratio [OR] 1·5, 95% CI 
1·1–2·1; appendix 3 p 2). The combined IR from both 
subcities was 4535 (95% CI 3372–5906) per 100 000 
person-weeks, and the overall incidence was signifi-
cantly higher compared with that of hospital workers at 
St Paul’s Hospital (OR 2·0, 1·4–2·8). In Jimma Town, 
a seroprevalence of 32·3% (95% CrI 27·0–37·9) 
in December, 2020, increased to 45·2% (37·7–52·7) 
in February, 2021. The seroprevalence in rural com-
munities was 18·0% (13·5–23·2) from November to 
December, 2020, and 31·0% (22·3–40·3) by March, 2021, 
which was significantly lower than in the city for the first 
two rounds and lower than that among hospital workers 
during all rounds. IRs were similar between urban and 
rural populations in Jimma, with a combined IR of 1720 
(95% CI 1258–2258) per 100 000 person-weeks, and the 
overall Jimma community inci dence was lower than that 
at JMC (OR 0·4, 95% CI 0·3–0·6). The seroincidence in 
communities from Addis Ababa was significantly higher 
than that in Jimma (2·6, 1·6–3·8; appendix 3 p 2).

When comparing the differences between rounds, we 
observed significant differences overall between round 2 
and round 3 (OR 1·92, 95% CI 1·21–3·05). Differences 
between round 1 and round 2 were not significant except 
in St Paul’s Hospital, where round 1 was done much 

(Figure 2 continues on next page)

Round 1: Nov 9–29, 2020 (510 participants)
157 seropositive; 30·8% (26·9–34·8)

Round 2: Dec 13, 2020, to Jan 11, 2021 (434 participants)
198 seropositive; 45·6% (41·0–50·3)

66 new seropositive
132 previously seropositive   

1 lost seropositivity
12 missed round 2

Round 3: Jan 5 to Feb 15, 2021 (372 participants)
209 seropositive; 56·1% (51·1–61·1)

44 new seropositive 
165 previously seropositive 

3 lost seropositivity

64 (12·5%) LTFU 
21 (32·8%) seropositive

A

74 (17·1%) LTFU 
33 (44·6%) seropositive

Round 1: Aug 5 to Sept 3, 2020 (487 participants)
 53 seropositive; 10·9% (8·3–13·8)

Round 2: Dec 2, 2020, to Feb 8, 2021 (317 participants)
138 seropositive; 43·6% (38·1–49·0)

63 new seropositive incident*
49 new seropositive prevalent*
26 previously seropositive

5 lost seropositivity
28 missed round 2

Round 3: Jan 19 to March 12, 2021 (121 participants)
65 seropositive; 53·7% (44·8–62·5)

29 new seropositive incident* 
13 new seropositive prevalent* 
23 previously seropositive prevalent

7 lost seropositivity

247 (50·7%) LTFU
19 (7·7%) seropositive

105 new participants entering

2 new participants entering

226 (71·3%) LTFU
108 (47·8%) seropositive

Jimma Medical Center, Jimma St Paul's Hospital, Addis Ababa
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earlier than in all other cohorts, and thus the finding is 
likely to result from a study design effect (appendix 3 p 2).

On the basis of the results for the first two rounds, we 
constructed an SEIR model for the progression of the 
SARS-CoV-2 epidemic in Ethiopia (figure 4A). We started 
estimating the model parameters with the data for the 
hospital workers because it provided better coverage for 
the early dynamics and more well determined parameter 
estimates. The resulting model for JMC and St Paul’s 
Hospital provided a good description of the available data 
for round 1 and round 2 (figure 4B) and reliable parameter 
estimates (appendix 3 p 3). Particularly, we obtained 

a median exposure rate of 0·08 per day (IQR 0·06–0·13), 
a median incubation period of 5·6 days (2·2–13·6) and a 
median recovery time of 19·3 days (11·4–28·9).

The model showed a seroprevalence approaching a 
predicted saturation level of 50–70%. These predictions 
based on the first two rounds agreed with the findings 
in round 3, which was found to be a seroprevalence of 
53·7% for hospital workers at St Paul’s Hospital from 
mid-January to mid-March, 2021, and 56·1% at JMC 
from January to February, 2021.

In addition to the standard SEIR model, we constructed 
a combined model using data from hospital workers and 

Round 1:
Dec 1, 2020, to Feb 1, 2021 
(297 participants)  
96 seropositive; 

32·3% (27·0–37·9) 

72 (24·2%) LTFU
21 (29·2%)
seropositive

Round 2: 
Jan 2 to Feb 4, 2021 
(191 participants)
78 seropositive; 

40·8% (33·9–47·9)
15 new seropositive‡ 
63 previously 

seropositive
2 lost seropositivity

34 missed round 2

Round 3: 
Feb 2 to March 15, 2021 
(166 participants)
75 seropositive;

45·2% (37·7–52·7)
16 new seropositive‡
59 previously 

seropositive 
3 lost seropositivity

59 (30·9%) LTFU 
16 (27·1%)
seropositive

Mean 5·4 weeks 
(range 4·0–8·6)

Mean 6·6 weeks 
(range 3·0–9·9)

Round 1: 
Dec 3, 2020, to Jan 27, 2021 
(238 participants)
43 seropositive; 

18·0% (13·5–23·2)

85 (35·7%) LTFU
17 (20·0%)
seropositive

Round 2: 
Jan 21 to Feb 25, 2021
(133 participants)
35 seropositive; 

26·3% (19·1–34·3)
16 new seropositive‡
19 previously 

seropositive 
2 lost seropositivity

20 missed round 2

Round 3: 
Feb 4 to March 16, 2021
(100 participants) 
31 seropositive; 

31·0% (22·3–40·3)
12 new seropositive‡
19 previously 

seropositive
1 lost seropositivity

53 (39·8%) LTFU
15 (28·3%)
seropositive

Mean 7·2 weeks 
(range 6·4–11·1)

Mean 5·1 weeks 
(range 1·1–6·6)

Round 1: 
Dec 5, 2020, to Feb 4, 2021
(224 participants)†
89 seropositive; 39·7% 

(33·4–46·3)

32 (14·3%) LTFU
28 (87·5%)
seropositive 

3 new participants 
entering

11 new participants 
entering

129 new participants 
entering

Round 2: 
Feb 1 to March 7, 2021
(149 participants)
68 seropositive; 

45·7% (37·9–53·7)
20 new seropositive‡
47 previously 

seropositive
 7 lost seropositivity

46 missed round 2

Round 3: 
April 1–3, 2021 
(188 participants)
103 seropositive; 

54·8% (47·7–61·9)
0 new seropositive‡ 
 7 previously 

seropositive 
5 lost seropositivity

136 (91·3%) LTFU
56 (41·2%)
seropositive

Mean 4·7 weeks 
(range 0·4–9·3)

Mean 8·0 weeks 
(range 3·9–8·6)

Round 1: 
Jan 2–22, 2021
(218 participants)†
118 seropositive; 54·2% 

(47·5–60·7)

72 (33·0%) LTFU
39 (54·2%)
seropositive

109 new participants 
entering

Round 2: 
Feb 11–26, 2021 
(151 participants)
88 seropositive; 

58·2% (50·3–66·0)
9 new seropositive‡ 

71 previously 
seropositive

3 lost seropositivity
6 missed round 2

Round 3:
April 8–10, 2021 
(176 participants)
128 seropositive; 

72·7% (65·9–79·1%)
11 new seropositive‡ 
33 previously 

seropositive 
7 lost seropositivity

90 (59·6%) LTFU
48 (53·3%) 
seropositive

Mean 7·2 weeks 
(range 6·4–11·1)

Mean 6·6 weeks 
(range 6·0–7·1)

B
Jimma urban Jimma rural Addis Ababa (Yeka) Addis Ababa (Addis Ketema)

Figure 2: Study flow and point prevalence for SARS CoV-2 seropositivity in hospital workers recruited in Jimma and Addis Ababa (A) and in participants recruited from the general population 
in urban and rural Jimma and Addis Ababa (B)
Data are n, n (%), seroprevalence (% and 95% credible interval), or mean (range). LTFU=lost to follow-up. *New seropositive incident refers to seropositive cases with previous negative serology result 
during round 1; new seropositive prevalent refers to seropositive cases that entered the study without a preceding diagnosis. †Additional 13 participants from Addis Ababa, nine of whom participated 
in two rounds and four of whom only participated in one round, were included but did not have data available for subcity. ‡New seropositive refers only to participants who were negative in one or 
more previous rounds, but became seropositive in the subsequent round, excluding new participants entering; therefore, the sum of new and previously seropositive participants does not always equal 
the total number of seropositive participants in that round.
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the community (figure 4C). This model simul taneously 
described both groups and allowed for cross-infections. 
Infection of hospital workers by community members is 
considered more likely due to contact patterns. The 
extended model based on the first two rounds provided a 
good description of the joint datasets and also predicted 
saturation (figure 4D, appendix 3 p 3). As expected, the 
seroprevalences for the hospital workers were predicted 
to be higher than those in the community. Again, the 
model predictions of the extended model were supported 
by the observations in round 3. Moreover, we constructed 
a model considering the possible entry of a SARS-CoV-2 
variant, which will be further debated in the Discussion 
section.

Because of the highly dynamic nature of the 
seroepidemiological change observed in this study, we 
sought to compare it with corresponding clinical effects 
of COVID-19 on the health-care system in Ethiopia. A 
strong increase in the test positivity rate for SARS-CoV-2 
RT-PCR since February, 2021—reaching a high of 28·6% 
on April 1, 2021—was reported by the Ministry of Health. 
Similarly, numbers of admissions to intensive care units 
(ICUs) across Ethiopian hospitals passed 500 for the first 
time in March, 2021, and reached a peak of 1059 on 
April 21, 2021 (figure 3B). Clinical data for signs and 
symptoms of COVID-19 was collected from 1909 partici-
pants; however, only 721 (37·8%) of these participants 
reported having had COVID-19-related symptoms— 
371 (45·8%) of 810 seropositive cases and 350 (31·8%) of 
1099 seronegative individuals (p<0·0001) and none were 
admitted to hospital due to COVID-19.

Discussion
Here, we provide the first data from a seroepidemiological 
investigation for SARS-CoV-2 infection in a population-
based, longitudinal, exploratory cohort study from 
Ethiopia. This study revealed a striking increase in 
seroprevalence of SARS-CoV-2 among front-line hospital 
workers and communities in Ethiopia over the last 
months of 2020 and the first quarter of 2021. A SEIR 
model predicted a seroprevalence approaching saturation 
for hospital workers and urban communities. Although 
no COVID-19-related severe disease (as defined by 
hospitalisation) was reported among our cohorts, the 
substantial change in seroepidemiology in our study 
aligns with increased caseloads and ICU admissions in 
Ethiopia during the same period (figure 3).

After detection of the first few cases, Ethiopia declared 
a state of emergency on April 8, 2020, to contain the 
COVID-19 outbreak and mitigate its impact.20 Various 
restrictions and prohibitions were imposed for 5 months 
to reinforce this, and the spread of infection appeared to 
be halted during that period. Two serosurveys done 
in April and May, 2020, among communities and 
outpatients in Addis Ababa reported seroprevalence of 
8%21 and 3%.22 A seroprevalence survey done between 
July and September, 2020, among the general population 

indicated a seroprevalence lower than 1% in both Jimma 
Town and rural areas and 2–5% in Addis Ababa.23

Our first serosurvey, done from August to 
September, 2020, among hospital workers in Addis 
Ababa showed a seroprevalence of 10·9%, indicating a 
slow but steady spread of SARS-CoV-2 in Ethiopia even 
when restrictions were in place.

Ethiopia lifted the state of emergency and relaxed most 
restrictions on Sept 8, 2020.24 We subsequently observed 
a strong increase in seroprevalence among hospital 
workers to 53·7% in Addis Ababa and 56·1% in Jimma 
Town by March, 2021. Likewise, our community sero-
epidemiological data from two subcities in Addis Ababa 
indicated an increment of combined seroprevalence 
to 63·7% by April, 2021, and to 45·2% by March, 2021, 
in Jimma Town’s urban community. Notably, a lower 
seroprevalence was observed among rural residents 
during all three rounds compared with that among urban 
communities. Seroprevalence among hospital workers 
and the surrounding urban communities were similar, 
except for the densely populated Addis Ketema, where 
seroprevalence was significantly higher than that for 
hospital workers.

It can be speculated that the Ethiopian Government’s 
disease control restrictions during the first few months 
helped in slowing down the spread of the disease. It is 
widely believed that the COVID-19 burden was not as 
heavy in African countries as in other world regions 
because of a younger population being less susceptible 
to severe disease.25 However, the sheer increase of 
SARS-CoV-2 infections as observed in the second wave 
of the African COVID-19 pandemic probably inflicts 
greater health-care challenges.26 In this respect, our data 

Figure 3: Seroprevalence over time for all six cohorts investigated in the study (A), and PCR test positivity 
rates and number of admissions to intensive care units due to COVID-19 in Ethiopia (B)
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are supported by the notification data obtained from 
the Ethiopian Government, showing great increases in 
SARS-CoV-2 RT-PCR test positivity rates and unprece-
dented numbers of ICU admissions (figure 3).

Despite a strong increment in seroprevalence, most 
individuals in our cohorts did not report COVID-19-
related symptoms or hospital admissions. Therefore, 

silent transmission of SARS-CoV-2 infections in Ethiopia 
might be assumed for most of the population, considering 
also the younger age demographics compared with other 
world regions. However, the observed high seroincidence 
with no serious clinical impact can be a blessing in 
disguise because individuals who are asymptomatic 
but possibly infectious probably continue with their 
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Figure 4: SEIR model of SARS-CoV-2 epidemic in Ethiopia
(A) Compartments of the SEIR models and possible transition. (B) Model simulation of SEIR model for HW in Jimma Medical Center and St Paul’s Hospital; data from 
round 1 and 2 were used for model training; later points, including round 3, were predictions. (C) Compartments of the extended SEIR models and possible transition; 
data from round 1 and 2 were used for model training; later points, including round 3, were predictions. (D) Model simulation of extended SEIR model for HW in 
Jimma Medical Center and St Paul’s Hospital and community members in Jimma (combined) and Addis Ababa (combined); data from round 1 and 2 were used for 
model training; later points, including round 3, were predictions. HW=hospital workers. SEIR=susceptible, exposed, infectious, and recovered.
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working, private, and social interactions, thus creating 
a risk for people with predisposing risk factors for 
COVID-19. Conversely, the observed high transmission of 
SARS-CoV-2 in the community with a low number of 
deaths, critical cases, and hospital admissions could lead 
to achieving herd immunity, given that the probability 
of repeated infection is low.27,28

In this study, we were unable to determine the expected 
herd immunity threshold for COVID-19 in Ethiopia due 
to no data on the basic reproductive ratio. Instead, we did 
SEIR modelling to show the epidemic trajectories and 
indicate possible saturation points in time. The model 
assumed constant parameters because the intervention 
measures in Ethiopia were limited. Possible changes 
in behaviour of hospital workers and community 
members over the course of the pandemic and the 
seasonality component were not considered because they 
would have required additional data. However, despite 
these limitations, our model, based on the first two 
survey rounds, predicted disease saturation and assumed 
a related herd immunity by April, 2021. This finding was 
supported by the third-round serosurvey and will be 
further followed up in 2021 and 2022. However, the 
assumed herd immunity in Manaus, Brazil (suggested in 
September, 2020) did not prevent high COVID-19 disease 
burden during a subsequent wave from December, 2020, 
to January, 2021, possibly due to immune escape of the 
newly emerging gamma (P1) strain.29

Although our SEIR model was able to describe and 
even predict seroprevalence observations, it did not 
explain the recent surge in the positivity rate of PCR tests. 
Because the test strategy did not change, we speculate 
that this fraction should, to some degree, reflect the 
current number of infectious individuals. We also 
considered the possible entry of a SARS-CoV-2 variant 
capable of re-infecting individuals who had recovered 
from COVID-19, and we developed a compartment model 
describing this scenario (figure 5, appendix 3, p 4). The 
model provided a good description of the seroprevalence 
data from rounds 1 to 3 for community members and 
hospital workers, as well as the test rates. By contrast with 
the basic SEIR model, it predicted a substantially higher 
number of infectious individuals over the months after 
round 3, as well as a final seroprevalence in the range 
of 80–90%. This prediction suggests that herd immunity 
is not easily reached if re-infections with possible 
secondary transmissions occur.

Although infection-blocking immunity might wane 
rapidly or be challenged by immune escape variants, 
disease-reducing cross-immunity should be long lived, 
according to 2021 models.30 This effect would be even 
stronger when providing booster vaccinations to indi-
viduals previously exposed to SARS-CoV-2. Therefore, 
for individuals who have recovered from COVID-19, one 
booster vaccination dose might be sufficient to provide 
longer protection. Depending on availability of test 
systems or shortage of vaccines in some parts of the 

world, it might be cost-effective and reasonable to test the 
population serologically before administering vaccines.

Our study was based on hospital workers at major 
tertiary hospitals and on residents in typical metropolitan, 
semi-urban, and rural settings in Ethiopia. Because 
of the nature of the design, our study had significant 
dropout during round 3 among community partici-
pants. We recruited additional participants with similar 
characteristics to replace those who dropped out so that 

Figure 5: SEIR model of SARS CoV-2 epidemic in Ethiopia integrating the potential effect of exposure to a 
SARS-CoV-2 variant with immune escape potential
(A) Topology of compartment model that allows for the infection with the variant of individuals who were 
exposed to the original virus. (B) Scaled test positivity rate (mapped from the complete country to the individual 
cities) and seroprevalence. The contribution of different variants is indicated, as well as the proportion of 
individuals exposed to both. SEIR=susceptible, exposed, infectious, and recovered.
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prevalence could be compared with the first two rounds. 
Furthermore, findings might not be generalisable to 
primary-level health facilities, which are the most 
common points of interaction, and to rural communities 
representing the majority of the Ethiopian population. 
Interpretation of our serosurvey data would have been 
more informative in the context of circulating viral 
variant characteristics. However, this information is not 
yet available due to the absence of tests for new variants 
in Ethiopia.

In conclusion, this study has shown that SARS-CoV-2 
infection among hospital workers at tertiary hospitals 
and community residents in Ethiopia has been 
widespread and highly dynamic. Our SEIR model, fitted 
on the basis of the current trend of seroincidence and 
poor adherence to mitigation strategies, has shown that 
front-line hospital workers at tertiary hospitals were 
approaching a threshold for herd immunity, even before 
the start of the vaccination initiative. However, this 
pattern of disease spread poses a substantial risk to the 
community because silent spread among a mostly young 
population might ultimately put infectious pressure on 
highly vulnerable groups of society, leading to increased 
ICU admissions and deaths in the following few months. 
Hence, mitigation measures should target safeguarding 
the most vulnerable, including older people and those 
with underlying medical conditions.
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Supplementary Material    

1. Prevalence and Incidence Estimation 

Supplementary methods 

A two-way, repeated measures ANOVA model was used to examine the effect of population group and time point on 
the number of seropositive individuals. The variability explained by the model is divided into two factors: Group 
(Jimma vs. Addis Ababa and HCW vs Community; between-subjects factor indicating population group) and Round (1, 
2, 3; within-subjects factor denoting time point of the serology test); and an interaction term Group:Round testing 
whether the effect of Round and Group jointly influences the seropositive count, i.e. if some groups have a differential 
effect in specific rounds.  

𝑦𝑦 =  𝛼𝛼 + 𝛽𝛽1 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝛽𝛽2 𝑅𝑅𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅 + 𝛽𝛽3 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺:𝑅𝑅𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅 + 𝜀𝜀 

In this case, 𝑦𝑦 refers to the count of seropositives (pos) within each group and survey round and we have the following 
equations to estimate 𝐺𝐺𝑖𝑖 which is the probability of positive in a group and round. 

𝐺𝐺𝐺𝐺𝑝𝑝𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝑅𝑅𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑅𝑅𝑖𝑖 ,𝐺𝐺𝑖𝑖) 

𝐵𝐵𝐺𝐺𝑙𝑙𝐵𝐵𝑙𝑙(𝐺𝐺𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽1 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝛽𝛽2 𝑅𝑅𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅 + 𝛽𝛽3 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺:𝑅𝑅𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅 

𝛼𝛼,𝛽𝛽𝑖𝑖 ∼ 𝑁𝑁𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵(0,10) 

In addition to considering binomial outcomes, we also examined the count of seropositives assuming a Poisson outcome 
distribution. The equations are similar to the binomial distribution except for the need to have an offset variable 
adjusting for the denominator to estimate the rate 𝜆𝜆𝑖𝑖 for being positive. 

𝐺𝐺𝐺𝐺𝑝𝑝𝑖𝑖 ∼ 𝑁𝑁𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵(𝜆𝜆𝑖𝑖) 

𝐵𝐵𝐺𝐺𝑙𝑙(𝜆𝜆𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽1 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝛽𝛽2 𝑉𝑉𝐵𝐵𝑝𝑝𝐵𝐵𝑙𝑙 + 𝛽𝛽3 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺:𝑉𝑉𝐵𝐵𝑝𝑝𝐵𝐵𝑙𝑙 + 𝐺𝐺𝑜𝑜𝑜𝑜𝑝𝑝𝑜𝑜𝑙𝑙(𝑅𝑅𝑖𝑖) 

𝛼𝛼,𝛽𝛽𝑖𝑖 ∼ 𝑁𝑁𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵(0,10) 

Estimates of the counts along with the 95% Credible Intervals were obtained using non-informative priors (normal 
distribution with mean zero and standard deviation 10) with 5000 warm-up samples followed by 5000 MCMC samples 
for the posterior outcome of a generalized linear model using the brms (Bayesian Regression Models using 'Stan') 
package in R.1,2,3 The prevalence estimates are obtained by dividing the estimated count for positives by the observed 
samples. In case of the sero-incidence measures we have the count of new positives instead of positives and there is no 
component of round. Instead, the denominator is person-weeks of being observed within the study. The above models 
were also used to estimate the contrasts to check group wise and/or round wise differences. We published the code and 
tables used in this paragraph at Zenodo.4 

Supplementary results for incidence and prevalence estimation 

Table S1: SARS-CoV-2 seroincidence rates per person-weeks for HCW at Jimma Medical Center and St. Paul’s 
Hospital, and communities from Jimma and Addis Ababa  

 New seropositives (N) Person-weeks Seroincidence rates per 100,000 person-weeks (95% CI) 
HCW Jimma Medical Center 111 2913 3810 (3149, 4540) 
HCW St· Paul’s Hospital 90 4051 2223 (1785, 2696) 
Jimma Community Combined 44 2556 1720 (1258, 2258) 

Jimma Rural 23 1261 1824 (1157, 2727) 
Jimma Urban 21 1295 1622 (1004, 2479) 

Addis Ababa Community Combined* 46 1017 4535 (3372, 5906) 
Yeka sub-city 24 557 4309 (2761, 6412) 
Addis Ketema sub-city 19 409 4646(2797, 7255) 

*New seropositives and person-weeks from Yeka and Addis Ketema sub-cities do not add up due to missing data for 
sub-city. 
CI – Credible Interval; HCW – Healthcare worker 

Between cohorts, we observed statistically significant differences for seroincidence and seroprevalence during different 
survey periods (Table S2).  For seroprevalence over time, we do not see much difference between Round 1 and Round 2 
except for Addis HCW, which is by design and expected. However, the difference to Round 3 is statistically significant 
(Table S3).  
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Table S2: Difference in the seroincidence and seroprevalence during survey periods between communities and 
health care workers (HCW) observed in Addis Ababa and Jimma.  
Seroincidence (HCW) RR (95% CI)† 

Addis community versus Jimma community  2·6 (1·6; 3·8)* 
Addis HCW versus Jimma HCW 0·6 (0·4; 0·7)* 
Addis community versus Addis HCW 2·0 (1·4; 2·8)* 
Jimma community versus Jimma HCW 0·4 (0·3; 0·6)* 

Seroprevalence (Addis Ababa) OR (95% CI)† 
December 2020/January 2021  

Addis Ketema (R1) versus Addis Yeka (R1) 1·8 (1·2; 2·6)* 
Addis Ketema (R1) versus Addis HCW (R2)‡   1·5 (1·1; 2·1)* 
Addis Yeka (R1) versus Addis HCW (R2)‡ 0·8 (0·6; 1·2) 

February 2021/March 2021  
Addis Ketema (R2) versus Addis Yeka (R2) 1·6 (1·0; 2·5)* 
Addis Ketema (R2) versus Addis HCW (R3)‡  1·2 (0·8; 2·1) 
Addis Yeka (R2) versus Addis HCW (R3)‡ 0·7 (0·4; 1·1) 

April 2021  
Addis Ketema (R3) versus Addis Yeka (R3)‡ 2·2 (1·3; 3·3)* 

Seroprevalence Jimma  
November 2020/December 2021  

Jimma City (R1) versus Jimma Rural (R1) 2·2 (1·4; 3·2)* 
Jimma City (R1) versus HCW (R1)   1·1 (0·7; 1·4) 
Jimma Rural (R1) versus HCW (R1) 0·5 (0·3; 0·7)* 

January 2021/February 2021  
Jimma City (R2) versus Jimma Rural (R2) 1·9 (1·1; 3·0)* 
Jimma City (R2) versus Jimma HCW (R2)   0·8 (0·6; 1·1) 
Jimma Rural (R2) versus Jimma HCW (R2) 0·4 (0·3; 0·6)* 

February 2021/March  
Jimma City (R3) versus Jimma Rural (R3) 1·8 (0·9; 2·9) 
Jimma City (R3) versus Jimma HCW (R3) 0·6 (0·4; 0·9)* 
Jimma Rural (R3) versus Jimma HCW (R3) 0·3 (0·2; 0·5)* 

†Estimate –ratio for the comparison of the contrasts, RR=risk ratio for seroincidence, OR=odds ratio for seroprevalence 
* Statistically significant; R= survey round 
Note: in order to compare seroprevalences between cohorts, we applied periods instead of round. This distinction was 
made as in Addis Ababa survey rounds in HCW did not match those of the corresponding communities in terms of time 
periods (initiated with ‡). In April, no matching HCW information from Addis was available. 

Table S3: Difference in the seroprevalence over the different rounds for the overall population and by cohort  
Effects Odds Ratio* Lower 

95%CI 
Upper 

95% CI 
Statistically significant difference 

Intercept  1·403 1·020 1·937 - 
Yeka Sub-city  0·597 0·379 0·935 Yes 
Jimma City 0·490 0·316 0·755 Yes 
Jimma Rural 0·252 0·152 0·414 Yes 
Jimma Medical Center 0·598 0·410 0·865 Yes 
St· Paul's Hospital Addis 0·549 0·371 0·814 Yes 

Overall Round 1 0·840 0·551 1·259 No 
Yeka Sub-cityRound1 (interaction) 0·935 0·523 1·704 No 
Jimma City Round1 (interaction) 0·825 0·470 1·443 No 
Jimma Rural Round1 (interaction) 0·737 0·386 1·433 No 
Jimma Medical Center Round1 (interaction) 0·631 0·387 1·031 No 
St· Paul's Hospital Addis Round1 (interaction) 0·187 0·108 0·323 Yes 

Overall Round 3 1·918 1·213 3·047 Yes 
AddisYeka Round3 (interaction) 0·755 0·403 1·414 No 
Jimma City Round3 (interaction) 0·624 0·337 1·161 No 
Jimma Rural Round3 (interaction) 0·657 0·318 1·359 No 
Jimma Medical Center Round3 (interaction) 0·798 0·464 1·369 No 
St· Paul's Hospital Addis Round3 (interaction) 0·788 0·420 1·460 No 

*Round 2 is reference category; Addis Ketema is reference site 

In the above table, we see that the interaction effects are not significantly different except for the Round 1 at St. Paul’s 
Hospital (Addis Ababa), which is a design effect. Overall, ignoring the interaction effect, we observed no significant 
difference between Round 1 and Round 2; however, Round 3 compared to Round 2 had an overall increase (OR 1·918 
with 95% Credible Interval (1·213-3·047)). We also observe that within Round 2, Addis Ketema sub-city had the 
highest seroprevalence as compared all the other cohort groups. 

2. The Models 
We considered three different models for the analysis of the virus spread in Ethiopia: A simple SEIR model (which was 
applied separately to data for healthcare workers (H) or community members (C)), an extended SEIR model which 
simultaneously described the populations for healthcare worker and community members, and an SEIR model which 



3 
 

allows for the original virus (wt) and a virus variant (va). We chose SEIR models due to their widespread use for the 
study of the Covid-19 progression,5–9 which facilitates a comparison to related work. Furthermore, we established 
earlier a comprehensive analysis pipeline for these types of models.10 In all these models, the populations are split into 
Susceptible (S), Exposed (E), Infectious (I) and Recovered (R). To compare the model simulations to the observed 
seroprevalence, we compute the ratio of recovered to total population. 

a) SEIR model 

The model structure is depicted in Figure 4A and the corresponding ordinary differential equations (ODEs) for the time-
dependent size of the compartments are: 

�̇�𝑆 = −
𝛽𝛽 𝐼𝐼
𝑁𝑁
𝑆𝑆 

Ė =
βI
N

S − κE 

𝐼𝐼̇ = 𝜅𝜅𝜅𝜅 − 𝛾𝛾𝐼𝐼 
�̇�𝑅 = 𝛾𝛾𝐼𝐼 
𝑁𝑁 = 𝑆𝑆 + 𝜅𝜅 + 𝐼𝐼 + 𝑅𝑅. 

S(0) = 510 

E(0) = 0 
I(0) = 𝐼𝐼0 
𝑅𝑅(0) = 0 

 

The parameters are listed in Table S4. This table includes the respective names in the PEtab model which we published 
at Zenodo.4   

Table S4: Parameters of the SEIR model. Some depend on study site, i.e. Jimma and Addis Ababa. 
Parameter Description Sampling result - Median 

(CI 95%) 
Scale used for 
sampling 

Prior (in scale) Est. Start 
Sampling 

Unit 

β Exp. rate 0·08 (0·06, 0·13)  𝐵𝐵𝐺𝐺𝑙𝑙10 𝒰𝒰(−5, 1) 0·09 1
day

 

κ−1 Inc. period 5·6 (2·2, 13·6)  𝐵𝐵𝐺𝐺𝑙𝑙 𝒩𝒩(1 · 63, 0 · 50) 5·0 days 
γ−1 Rec. time 19·3 (11·4, 28·9) linear 𝒩𝒩(15 · 7, 6 · 7) 15·0 days 
𝐼𝐼0 Initial inf. J:  1·1 (0·3, 3·1) 

A: 1·2 (0·4, 2·9) 
𝐵𝐵𝐺𝐺𝑙𝑙10 𝒰𝒰(−1, 3) J:  0·74 

A: 6·5 
- 

b) Extended SEIR model for two populations 

In addition to the dynamics of the individual populations, we account for their interaction: Infectious healthcare workers 
can expose community members and vice versa. Virus transmission from community members to healthcare workers is 
supposed to be more probable, which is modeled by a factor 𝛼𝛼 > 1. The model structure can be seen in Figure 4C and 
the ODEs are: 

𝑆𝑆�̇�𝐻 = −
β(𝐼𝐼𝐻𝐻 + α𝐼𝐼𝐶𝐶)

𝑁𝑁
𝑆𝑆𝐻𝐻 

𝜅𝜅�̇�𝐻 =
β𝐼𝐼𝐻𝐻
𝑁𝑁

𝑆𝑆𝐻𝐻 − κ𝜅𝜅𝐻𝐻 

𝐼𝐼�̇�𝐻 = κ𝜅𝜅𝐻𝐻 − γ𝐼𝐼𝐻𝐻 
𝑅𝑅�̇�𝐻 = γ𝐼𝐼𝐻𝐻 

𝑆𝑆�̇�𝐶 = −
β(𝐼𝐼𝐻𝐻 + 𝐼𝐼𝐶𝐶)

𝑁𝑁
𝑆𝑆𝐶𝐶  

𝜅𝜅�̇�𝐶 =
β𝐼𝐼𝐶𝐶
𝑁𝑁
𝑆𝑆𝐶𝐶 − κ𝜅𝜅𝐶𝐶  

𝐼𝐼�̇�𝐶 = κ𝜅𝜅𝐶𝐶 − γ𝐼𝐼𝐶𝐶  
𝑅𝑅�̇�𝐶 = γ𝐼𝐼𝐶𝐶  
𝑁𝑁 = 𝑆𝑆𝐻𝐻 + 𝜅𝜅𝐻𝐻 + 𝐼𝐼𝐻𝐻 + 𝑅𝑅𝐻𝐻 

+𝑆𝑆𝐶𝐶 + 𝜅𝜅𝐶𝐶 + 𝐼𝐼𝐶𝐶 + 𝑅𝑅𝐶𝐶 . 

𝑆𝑆𝐻𝐻(0) = 510 

𝜅𝜅𝐻𝐻(0) = 0 
𝐼𝐼𝐻𝐻(0) = 0 
𝑅𝑅𝐻𝐻(0) = 0 

𝑆𝑆𝐶𝐶(0) = 100000 

𝜅𝜅𝐶𝐶(0) = 0 
𝐼𝐼𝐶𝐶(0) = 𝐼𝐼0 
𝑅𝑅𝐶𝐶(0) = 0 

 

 
The parameters are listed in Table S5. This table includes the respective names in the PEtab model which we published 
at Zenodo.4.  All initial states which are not mentioned in the table are set to 0. 

Table S5: Parameters of the extended SEIR model. Some depend on study site, i.e. Jimma and Addis Ababa.  
Parameter Description Sampling result - Median 

(CI 95%) 
Scale used for 

sampling 
Prior (in scale) Est. Start 

Sampling 
Unit 

β Exp. rate 0·08 (0·06, 0·10) 𝐵𝐵𝐺𝐺𝑙𝑙10 𝒰𝒰(−5, 1) 0·08 1
day

 

κ−1 Inc. period 5·4 (2·6, 11·0) 𝐵𝐵𝐺𝐺𝑙𝑙 𝒩𝒩(1 · 63, 0 · 50) 5·7 days 
γ−1 Rec. time 19·8 (14·9, 26·3) linear 𝒩𝒩(15 · 7, 6 · 7) 18·5 days 
α Increased 

HCW risk 
1·5 (1·3, 1·7) 𝐵𝐵𝐺𝐺𝑙𝑙10 𝒰𝒰(−1, 3) 1·5 - 

 
𝐼𝐼0 

 
Initial inf. 

J:  131·4 (56·8, 293·3) 
A: 204·3 (96·7, 428·2) 

 
𝐵𝐵𝐺𝐺𝑙𝑙10 

 
𝒰𝒰(−1, 3) 

J:  121·9 
A: 189·9 

 
- 
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c) Virus variant model 

This model accounts for the possibility that a virus variant altered characteristics is present in Ethiopia. As sequencing 
data are missing, we assume the variant to appear at an unknown time 𝑙𝑙0 and has a reproduction rate increased by a 
factor of 1·35, which is in the range of increase observed for variants such as B·1·1·7 and B·1·351. We account for the 
increase by reducing the recovery rate.11 Moreover we assume previous variant infections make individuals immune to 
wild type infections but not the other way around. 

The model structure is depicted Figure 5A and the ODEs are: 
 

�̇�𝑆 = −
β𝐼𝐼𝑤𝑤𝑤𝑤
𝑁𝑁

𝑆𝑆 −
β(𝐼𝐼𝑣𝑣𝑣𝑣 + 𝐼𝐼𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤)

𝑁𝑁
𝑆𝑆 

𝜅𝜅𝑤𝑤𝑤𝑤̇ =
β𝐼𝐼𝑤𝑤𝑤𝑤
𝑁𝑁

𝑆𝑆 − κ𝜅𝜅𝑤𝑤𝑤𝑤 

𝜅𝜅𝑣𝑣𝑣𝑣̇ =
β(𝐼𝐼𝑣𝑣𝑣𝑣 + 𝐼𝐼𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤)

𝑁𝑁
𝑆𝑆 − κ𝜅𝜅𝑣𝑣𝑣𝑣 

𝜅𝜅𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤̇ =
β(𝐼𝐼𝑣𝑣𝑣𝑣 + 𝐼𝐼𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤)

𝑁𝑁
𝑅𝑅𝑤𝑤𝑤𝑤 − κ𝜅𝜅𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 

𝐼𝐼𝑤𝑤𝑤𝑤̇ = κ𝜅𝜅𝑤𝑤𝑤𝑤 − γ𝐼𝐼𝑤𝑤𝑤𝑤 
𝐼𝐼𝑣𝑣�̇�𝑣 = κ𝜅𝜅𝑣𝑣𝑣𝑣 −

γ
1.35

𝐼𝐼𝑣𝑣𝑣𝑣 

𝐼𝐼𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤̇ = κ𝜅𝜅𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 −
γ

1.35
𝐼𝐼𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 

𝑅𝑅𝑤𝑤𝑤𝑤̇ = γ𝐼𝐼𝑤𝑤𝑤𝑤 −
β(𝐼𝐼𝑣𝑣𝑣𝑣 + 𝐼𝐼𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤)

𝑁𝑁
𝑅𝑅𝑤𝑤𝑤𝑤 

𝑅𝑅𝑣𝑣𝑣𝑣̇ =
γ

1.35
𝐼𝐼𝑣𝑣𝑣𝑣 

𝑅𝑅𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤̇ =
γ

1.35
𝐼𝐼𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 

𝑁𝑁 = 𝑆𝑆 + 𝜅𝜅𝑤𝑤𝑤𝑤 + 𝜅𝜅𝑣𝑣𝑣𝑣 + 𝜅𝜅𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 + 𝐼𝐼𝑤𝑤𝑤𝑤 
+𝐼𝐼𝑣𝑣𝑣𝑣 + 𝐼𝐼𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 + 𝑅𝑅𝑤𝑤𝑤𝑤 + 𝑅𝑅𝑣𝑣𝑣𝑣 + 𝑅𝑅𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 . 

𝑆𝑆(0) = 510 

𝜅𝜅𝑤𝑤𝑤𝑤(0) = 0 

𝜅𝜅𝑣𝑣𝑣𝑣(0) = 0 

𝜅𝜅𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤(0) = 0 
𝐼𝐼𝑤𝑤𝑤𝑤(0) = 𝐼𝐼0 

𝐼𝐼𝑣𝑣𝑣𝑣(𝑙𝑙0) = 1 

 𝐼𝐼𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤(0) = 0 

𝑅𝑅𝑤𝑤𝑤𝑤(0) = 0 

𝑅𝑅𝑣𝑣𝑣𝑣(0) = 0 

𝑅𝑅𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤(0) = 0 
 

 
The parameters are listed in Table S6. This table includes the respective names in the PEtab model which we published 
at Zenodo.4  

Table S6: Parameters of the virus variant model. Some depend on study site, i.e. Jimma and Addis Ababa. 
Parameter Description Sampling result - 

Median (CI 95%) 
Scale used for 
sampling 

Prior (in scale) Est. Start 
Sampling 

Unit 

β Exp. rate 0·08 (0·06, 0·10) 𝐵𝐵𝐺𝐺𝑙𝑙10 𝒰𝒰(−5, 1) 0·08 1
day

 

κ−1 Inc. period 5·0 (2·4, 10·0) 𝐵𝐵𝐺𝐺𝑙𝑙 𝒩𝒩(1 · 63, 0 · 50) 5·3 days 
γ−1 Rec. time 16·7 (12·9, 22·1) linear 𝒩𝒩(15 · 7, 6 · 7) 17·2 days 
𝑙𝑙0 Entry va 184·5 (152·6, 231·3) linear 𝒰𝒰(150, 360) 170·3 days 
𝑝𝑝TPR 

 
Scaling nat. 
TPR 

J:  2·3 (1·5, 3·6) 
A: 2·8 (1·7, 4·3) 

 
𝐵𝐵𝐺𝐺𝑙𝑙10 

 
𝒰𝒰(−1, 3) 

J:  2·3 
A: 2·7 

- 

 
𝐼𝐼0 

 
Initial inf. 

J:  1·8 (0·6, 4·9) 
A: 13·8 (3·6, 42·5) 

 
𝐵𝐵𝐺𝐺𝑙𝑙10 

 
𝒰𝒰(−1, 3) 

J:  2·2 
A: 16·2 

 
- 

d) Calibration workflow 

The models were encoded using the Systems Biology Markup Language (SBML)12 and the Parameter estimation 
problems were formulated using the Parameter Estimation table (PEtab)13 standard. The two community standards 
allow for the direct reproduction of the result in various software tools. 

For parameter estimation, the seroprevalence data for each site, round and study group was each split by month of their 
collection and then accumulated on the mean date respectively. Standard deviations were calculated assuming binomial 
distribution in a similar way as described in the paragraph Prevalence and Incidence Estimation of this section. The 
seroprevalence measurement is assumed to not distinguish between infection with original virus or variant. In addition 
to seroprevalence information, we used for the virus variant model also information about national test positivity rates 
(TPR). As over a long time the number of test and test strategies remained unchanged, we assumed that the TPR is 
roughly proportional to the sum of exposed and infectious individuals in the different groups and location. For 
incubation and recovery times we used priors from literature.14,15 

Bayesian parameter estimation was performed using the adaptive Metropolis-Hastings algorithm methods implemented 
in the parameter estimation toolbox pyPESTO16. Selected results were confirmed using pyMC3. Simulation was 
performed using the simulation toolbox AMICI17. The sampling results were post-processed, e.g. by removing the burn-
in, and convergence was assessed visually and using the Geweke test. 
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Supplementary Results for model prediction 

The parameter sampling for the SEIR model with healthcare workers data was performed with a sample size of 1e6. 
Convergence of parameters was achieved after a burn in of 5e4 samples. 

The parameter sampling for the extended SEIR model for two populations with combined healthcare workers and 
community data was performed with a sample size of 1e5. Convergence of parameters was achieved without any burn. 
The parameter sampling for the virus variant model with combined community and national TPR data was performed 
with a sample size of 1e5. Convergence of parameters was achieved after a burn in of 1e4 samples. 

The parameter sampling for the SEIR model with combined community members data was performed with a sample 
size of 1e6. Since the parameters showed alternating behaviour between two models, we refrained from conducting 
prediction simulations based on this model-data combination. 

The parameter sampling for the SEIR model with combined community members data was performed with a sample 
size of 1e6. Since the parameters showed alternating behaviour between two models, we refrained from conducting 
prediction simulations based on this model-data combination. For completeness we included these prediction results as 
Figure S1. 

Figure S1: SEIR model of SARS-CoV-2 epidemic in Ethiopia.  

 
(A) Compartments of the SEIR models and possible transition. (B) Model simulation for Community members in 

Jimma Medical Center and St. Paul’s Hospital. Data from the 1st and 2nd round was used for model training. 
Later points, including the 3rd round, were predictions. 
 

3. Information on missing data 
The following tables describe the numbers and percentages of missing data between rounds (A. between Round 1 and 
Round 2; B (between Round 2 and Round 3); C. between Round 1 and Round 3) and for different cohorts (1. HCW 
Jimma, 2. urban and rural community combined for Jimma, C. HCW Addis Ababa, D. Addis community combined 
(Ketema and Yeka). Overall, dropout rates are higher, especially in Addis Ababa as compared to Jimma. However, 
dropout rates do not significantly differ between seropositive and seronegative population, which indicates that there 
was no sampling bias over the entire period of the study.  

1. Jimma Health Care Workers (HCW) Missing Data by Result 
A  

Round 2 
  

Round 1 Negative Positive Missing (all) Round 2 Missing % 
Negative 235 66 52 353 14·73% 
Positive 1 132 24 157 15·29% 
(all) 236 198 76 510 

 

B  
Round 3 

  

Round 2 Negative Positive Missing (all) Round 3 Missing % 
Negative 152 43 41 236 17·37% 
Positive 3 162 33 198 16·67% 
Missing 7 5 64 76 

 

(all) 162 210 138 510 
 

 



6 
 

C   
Round 3 

  

Round 1 Round 2 Negative Positive Missing (all) Round 3 Missing % 
Negative Negative 151 43 41 235 17·45% 
Negative Positive 1 55 10 66 15·15% 
Negative Missing 7 2 43 52 

 

Negative (all) 159 100 94 353 26·63% 
Positive Negative 1 0 0 1 

 

Positive Positive 2 107 23 132 17·42% 
Positive Missing 0 3 21 24 

 

Positive (all) 3 110 44 157 28·03% 
(all) (all) 162 210 138 510 

 

2. Jimma Community (combined Jimma City and Jimma urban) 
A  

Round 2 
 

Round 2 Missing % 
Round 1 Negative Positive Missing (all) 

 

Negative 207 31 158 396 39·90% 
Positive 4 82 53 139 38·13% 
(all) 211 113 211 535 

 

B  
Round 3 

 
Round 3 Missing % 

Round 2 Negative Positive Missing (all) 
 

Negative 124 6 81 211 38·39% 
Positive 4 78 31 113 27·43% 
Missing 32 22 157 211 

 

(all) 160 106 269 535 
 

C   
Round 3 Round 3 Missing % 

Round 1 Round 2 Negative Positive Missing (all) 
 

Negative Negative 121 6 80 207 38·65% 
Negative Positive 1 19 11 31 35·48% 
Negative Missing 32 7 119 158 

 

Negative (all) 154 32 210 396 53·03% 
Positive Negative 3 0 1 4 

 

Positive Positive 3 59 20 82 24·39% 
Positive Missing 0 15 38 53 

 

Positive (all) 6 74 59 139 42·45% 
(all) (all) 160 106 269 535 

 

3. Addis Health Care Workers (HCW) Missing Data by Result 
A  

Round 2 
  

Round 1 Negative Positive Missing (all) % Missing Round 2 
Negative 103 53 275 431 63·81% 
Positive 5 22 25 52 48·08% 
Missing 56 48 0 104 

 

(all) 164 123 300 587 
 

B  
Round 3 

  

Round 2 Negative Positive Missing (all) % Missing Round 3 
Negative 28 27 109 164 66·46% 
Positive 6 22 95 123 77·24% 
Missing 18 13 269 300 

 

(all) 52 62 473 587 
 

C   
Round 3 

  

Round 1 Round 2 Negative Positive Missing (all) % Missing Round 3 
Negative Negative 19 12 72 103 69·90% 
Negative Positive 4 4 45 53 84·91% 
Negative Missing 17 11 247 275 89·82% 
Negative (all) 40 27 364 431 84·45% 
Positive Negative 0 1 4 5 

 

Positive Positive 0 4 18 22 81·82% 
Positive Missing 1 2 22 25 88·00% 
Positive (all) 1 7 44 52 84·62% 
Missing Negative 9 14 33 56 

 

Missing Positive 2 14 32 48 
 

Missing (all) 11 28 65 104 
 

(all) (all) 52 62 473 587 
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4. Addis Community (combined for Ketema and Yeka) 
A  

Round2 
  

Round1 Negative Positive Missing (all) % Missing Round 2 
Negative 84 22 62 168 36·90% 
Positive 5 92 68 165 41·21% 
Missing 48 36 259 343 

 

(all) 137 150 389 676 
 

B  
Round3 

  

Round2 Negative Positive Missing (all) % Missing Round 3 
Negative 11 10 116 137 84·67% 
Positive 12 40 98 150 65·33% 
Missing 112 185 92 389 

 

(all) 135 235 306 676 
 

C   
Round3 

  

Round1 Round2 Negative Positive Missing (all) % Missing Round 3 
Negative Negative 9 6 69 84 82·14% 
Negative Positive 0 5 17 22 77·27% 
Negative Missing 14 15 33 62 53·23% 
Negative (all) 23 26 119 168 70·83% 
Positive Negative 1 1 3 5 

 

Positive Positive 8 29 55 92 59·78% 
Positive Missing 3 6 59 68 86·76% 
Positive (all) 12 36 117 165 70·91% 
Missing Negative 1 3 44 48 

 

Missing Positive 4 6 26 36 
 

Missing Missing 95 164 0 259 
 

Missing (all) 100 173 70 343 
 

(all) (all) 135 235 306 676 
 

5. Seroprevalence among complete cases for Jimma 
Complete cases Round Observed Individuals Seropositivity Estimated Seroprevalence reported in 

manuscript 
Jimma HCW 1 360 30·60% 30·8% (26·9%, 34·8%)  

2 360 45·80% 45·6% (41·0%, 50·3%)  
3 360 56·90% 56·1% (51·1%, 61·1%) 

Jimma Urban 1 132 38·60% 32·3% (27·0%, 37·9%)  
2 132 47·00% 40·8% (33·9%, 47·9%)  
3 132 47·00% 45·2% (37·7%, 52·7%) 

Jimma Rural 1 80 17·50% 18·0% (13·5%, 23·2%)  
2 80 25·00% 26·3% (19·1%, 34·3%)  
3 80 27·50% 31·0% (22·3%, 40·3%) 
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Under-reporting of COVID-19 and the limited information about circulating
SARS-CoV-2 variants remain major challenges for many African countries. We
analyzed SARS-CoV-2 infection dynamics in Addis Ababa and Jimma, Ethiopia,
focusing on reinfection, immunity, and vaccination effects. We conducted an
antibody serology study spanningAugust 2020 to July 2022withfive rounds of
data collection across a population of 4723, sequenced PCR-test positive
samples, used available test positivity rates, and constructed two mathema-
tical models integrating this data. A multivariant model explores variant
dynamics identifyingwildtype, alpha, delta, andomicronBA.4/5 as key variants
in the study population, and cross-immunity between variants, revealing risk
reductions between 24% and 69%. An antibody-level model predicts slow
decay leading to sustained high antibody levels. Retrospectively, increased
early vaccination might have substantially reduced infections during the delta
and omicron waves in the considered group of individuals, though further
vaccination now seems less impactful.

The COVID-19 pandemic continues to have a significant global impact,
with a substantial number of deaths continually being recorded
worldwide (covid19.who.int). However, observations indicate a shift
from the initial phase of the pandemic to an endemic stage, with
reduced confirmed case numbers as well as deaths. Despite this, the
emergence and evolution of more transmissible variants still pose a
threat globally, necessitating ongoing monitoring by organizations
such as the World Health Organization (WHO). In order to better

prepare for future Sars-CoV-2 waves and potential pandemics, under-
standing the dynamics of the disease and the immune response pro-
tecting against infection as well as severe disease courses is crucial.

Policymakers rely on accurate data to inform vaccination strate-
gies and intervention measures. However, these strategies may differ
greatly depending on circumstances like information about the actual
virus spread and public acceptance of policies. Especially within the
African continent, comprehensive data is scarce. Even in July 2023, the
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WHO still only lists 9.5 million confirmed cases of SARS-CoV-2 in the
whole of Africa. Given our data, serological evidence of past infection
in Ethiopia alone suggests that by autumn 2022, there were ten times
as many infections in Ethiopia as officially reported1.

Besides the scarcity of data, African countries, including Ethiopia,
face unique challenges in dealing with the pandemic, such as limited
testing infrastructure2, insufficient vaccine supplies3, low vaccine
acceptance4, and being overlooked in global research efforts5. For
Ethiopia in particular, research shows that though adequate pandemic
prevention strategies have been enacted over time, shortages of
medical supplies and equipment is an ongoing struggle6.

In 2021, we demonstrated a severe under-reporting of COVID-19
cases in Ethiopia through an antibody prevalence study1. By employing
epidemiological modeling, we predicted prevalence levels above 50%
for the population. While this earlier phase of the pandemic has
received some research attention, later phases of the SARS-CoV-2
pandemic, including the Delta and Omicron waves, remain inade-
quately investigated in Ethiopia7,8. Additionally, due to very limited
access to sequencing facilities, the knowledge about circulating var-
iants has been scarce. Previous publications touch upon this topic
hypothetically, e.g. Gudina et al. by simulating a scenario with two
variants1, but longitudinal data on variant distribution has only
recently become available for Ethiopia9. We have simultaneously
acquired broad data to address the gaps for modeling and prediction
of the epidemic in Ethiopia.

In this study, we obtained sequencing results for SARS-CoV-2
samples collected at various time points between October 2020 and
July 2022 at two different sites in Ethiopia. This dataset enabled us to
investigate the composition of variants of concerns (VOCs) between
the initial appearance of COVID-19 in Ethiopia in March 2020 to the
spread of Omicron variant BA.4/5 as the dominant genotype in fall
2022. Additionally, we extended our serology-based antibody survey
by conducting two further sampling rounds to cover the time span
between late fall 2020 to April 2022 in a total of five sampling rounds.
In addition to the serological testing against Anti-nucleocapsid anti-
bodies (Anti-N), all samples were re-tested against anti-spike anti-
bodies (Anti-S), and questionnaires were used to explore vaccination-
and potential infection status for all participants. Using this large and
multidimensional dataset for analysis, we developed a large-scale
multivariant model to characterize the infection pathways and to
explore the cross-immunity properties among different variants cir-
culating in Ethiopia. This analysis allowed us to gain insights into the
interplay between the variants and their impact on the overall popu-
lation’s immune response.

Furthermore, we leveraged the information frommultiple rounds
of sampling, which provided Anti-N and Anti-S antibody levels of
individuals. The resulting dataset was used for a detailed temporal
analysis, comparing the antibody levels observed during the initial

three roundswith those from the subsequent two rounds.Weutilized a
second epidemiological model to predict future antibody dynamics,
providing insights into the expected long-term immunity landscape in
the Ethiopian population. This might provide decision makers with
informationwhich is helpful for the assessmentof the situation and the
choice of appropriate measures.

In summary, this study expands upon previous findings and pre-
sents novel insights into the antibodydynamics and concurrent variant
prevalence in Ethiopia. By integrating modeling techniques and broad
datasets, we aim to contribute to a deeper understanding of SARS-
CoV-2 infections and the implications for public health interventions
and vaccination strategies in Ethiopia, other resource-limited settings,
and beyond.

Results
Antibody data reveals majority had multiple infections
In our previous study, we assessed the dynamics of COVID-19 infection
between August 2020 and April 2021 in Addis Ababa and Jimma,
Ethiopia1. To understand how the COVID-19 pandemic evolved after-
wards, we conducted two additional rounds of sampling. As our pre-
vious study predicted a complete transmission within the population
for SARS-CoV-2 in Ethiopia by late 2021, we complemented the pre-
vious semi-quantitative analysis of Anti-N antibody levels by a quanti-
tative analysis of the Anti-S antibody levels in the newly collected and
historic samples to gainmore detailed insight into possible reinfection
occurrences. An overview of the demographics of the participants of
the original three rounds and the two follow up rounds is shown in
Table 1 (for healthcare workers Supplementary Table 1). Study flows
are depicted in Supplementary Fig. 1.

Our SARS-CoV-2 specific antibody tests revealed that in April
2022, the majority of individuals (in Round 5: 95.9% of the healthcare
workers and 94.8% of the community members), reacted positive for
both Anti-S and Anti-N antibodies (Fig. 1a–e), suggesting an infection
event. Based on a previous study, this result is unlikely to be explained
by cross-reactivity10. In Round 3 (April 2021, Fig. 1c) and four (August
2021, Fig. 1d), significant numbers of samples were observed which
showed isolated positivities for Anti-N or Anti-S. This can be explained
by a delayed onset of either Anti-N or Anti-S response shortly after or
during infection or, for Anti-S positivity, by vaccination. As large-scale
vaccination campaigns started in Ethiopia rather late in November
2021, the data suggests that sampling in Round 3 coincidedwithwaves
of SARS-CoV-2 infections. First confirmed vaccinated individuals show
up only in rounds four (August 2021, Fig. 1d) and five (April 2022,
Fig. 1e). Interestingly, although the vaccines used in Ethiopia only
induce Anti-S, most individuals vaccinated also showed reactivity for
Anti-N (in Round 5: 94.8% of the healthcare workers and 96.4% of the
community members), suggesting they had been exposed to the
infection prior to or shortly after vaccination. By Round 4 all vaccines

Table 1 | Demographic characteristics of community members participating in study

Jimma Addis Ababa

R1 (Dec 20) R2 (Jan 21) R3 (Feb 21) R4 (Aug 21) R5 (Apr 22) R1 (Jan 21) R2 (Feb 21) R3 (Apr 21) R4 (Sep 21) R5 (Mar 22)

Participants 536 325 267 539 575 361 314 721 424 461

Age 30 (19, 63) 30 (19, 62) 32 (19, 63) 33 (20, 65) 32 (19, 63) 36 (21, 68) 36 (22, 67) 35 (21, 67) 33 (19, 65) 38 (20, 68)

Sex

Female 260 (48.5%) 166 (51.1%) 136 (50.9%) 331 (61.4%) 317 (55.1%) 279 (77.3%) 236 (75.2%) 360 (49.9%) 209 (49.3%) 162 (35.1%)

Male 276 (51.5%) 159 (48.9%) 131 (49.1%) 207 (38.4%) 258 (44.9%) 79 (21.9%) 70 (22.3%) 109 (15.1%) 71 (16.7%) 299 (64.9%)

Missing 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.2%) 0 (0.0%) 3 (0.8%) 8 (2.5%) 252 (35.0%) 144 (34.0%) 0 (0.0%)

Anti-N positive 139 (25.9%) 114 (35.1%) 107 (40.1%) 313 (58.1%) 543 (94.4%) 165 (45.7%) 150 (47.8%) 234 (32.5%) 286 (67.5%) 458 (99.3%)

Vaccinated 0 (0.0%) 0 (0.0%) 1 (0.4%) 47 (8.7%) 195 (33.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 28 (6.6%) 167 (36.2%)

Age denoted as median and 90% quantiles, and sex in absolute and relative numbers. Round 1-3 (R1-R3) are the previous study1.
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Fig. 1 | Ro-N-Ig and Ro-RBD-Ig-quant measurements of five rounds of con-
venience sampled community members. a–e Scatterplots displaying the rela-
tionship between levels of N- and S-specific antibodies across five rounds of
measurement. Known vaccination status of each participant indicated by colors,
cutoff levels indicated by dashed lines and percentages of people per category

annotated in red. f–g Antibody levels over time between end of 2020 and April
2022. The observations are indicated by circles and the trend is indicated via
smoothing splines constructed on the basis of these data. Source data are provided
as a Source Data file.
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in Ethiopia were Covishield (AstraZeneca type vaccine manufactured
by Serum Institute of India) and by Round 5 Johnson & Johnson has
become another major type of the vaccine. Although few doses of
Sinavac/Sinopharm, Sputnik-V, Moderna, and Pfizer-BioNTech were
reported to be donated to the country, they were very little and hence
negligible. Therefore we can safely disregard the influence of mRNA
vaccines in our study.

Analyzing the magnitude of the Anti-S responses considered
positive (above the test threshold of 0.8), we observed two popula-
tions, separating positive samples into those with higher and lower
levels (Fig. 1c–e, Supplementary Fig. 3c–e, Fig. SN1). Comparing the
data in this study and with experience gathered in our population-
based studies in Munich, Germany11, it can be appreciated that one
exposure to SARS-CoV-2 with a natural infection generally induces
Anti-S values below a cutoff value centered in the middle of the anti-
body level range (shifted log-scale) as indicated with the vertical
dashed line in Fig. 1a and b. Higher Anti-S levels are only reached after
multiple exposures leading to a boosting effect. Employing
1-dimensional k-means clustering with two means on the S-positive
samples from all five rounds, we determined the cutoff value for the
groupswithoneormultiple exposures to be 274.5 (formoredetails see
Supplementary Information’s Supplementary Note 1 and Fig. SN2).
Anti-S results are diluted and measured within the linear range to
provide quantitative results for all samples as described inmore detail
in the Methods section.

For Anti-N values, a clear division into two populations is not as
evident as for Anti-S, likely due to the semi-quantitative nature of the
Anti-N measurements. A noticeable shift towards higher Anti-N values
is observed between Round 4 (Fig. 1d) and Round 5 (Fig. 1e). However,
we also performed k-means clustering on Anti-N values to determine
distinct categories, similar to the process carried out for the Anti-S
signals. Using the calculated cutoffs and positivity thresholds, we
assigned the individual patients for each round into the categories low
(negative, i.e. below threshold),medium (positive, i.e. above positivity
threshold but below calculated category cutoff), and high (above
category cutoff) for both Anti-N and Anti-S, respectively.

Moreover, we summarized the progression of Anti-N and Anti-S
level categories separately over time (Fig. 1f–g). Remarkably, in the
latest round of sample collection in April 2022, a substantial propor-
tion (75-80%) of the sampled individuals exhibited high antibody levels
for Anti-N as well as Anti-S. Since Anti-N is only induced after an
infection due to the spike-protein nature of the vaccines used in
Ethiopia, this suggests that a significant fraction of the population had
already experienced at least two exposures for each antigen by
that time.

Variant sequencing identifies all major substrains
The antibody data provide information about previous infections, but
not about the SARS-CoV-2 variants which caused them. Moreover, up
until very recently, there was no available data on virus variants in
Ethiopia9. Hence, to better understand the pandemic, we sequenced a
total of 1873 SARS-CoV-2 reverse transcription polymerase chain
reaction (RT-PCR) positive swabs, collected in Jimma andAddis Ababa,
between October 2020 and July 2022. Overall 574 sequences were of
sufficient quality to allow full pangolin strain matching and were thus
used for analysis.

The sequencing data revealed the presence of several variant
strains, including wildtype (A and all without any “interesting” muta-
tions, details below), wildtype* (B.1.480), alpha (B.1.1.7), beta (B.1.351),
eta (B.1.525), delta (B.1.617.2 and AY.*), and the two omicron lineages
BA.1 and BA.4/5 (Fig. 2a). At the beginning of the sampling period in
autumn 2020, the wildtype strain was predominant (as expected) and
accompanied by a notable presence of the wildtype* (B.1.480) strain.
However, in late 2020 to January 2021, the alpha variant emerged and
rapidly became the dominant strain, accounting for approximately

80% of the PCR-positive swabs by April 2021. During this time, the eta
lineage also briefly appeared, which was previously reported as the
predominant strain in Nigeria in early Spring 2021 (B.1.525 on cov-
lineages.org). In Ethiopia, the eta lineage was unable to outcompete
the alpha variant, and with the appearance of the delta variant in July
2021, both alpha and eta disappeared. In early 2022, the omicron BA.1
variant emerged and completely took over. Despite that we had only
limited samples during the transition phase, it is evident that by June
2022, the BA.1 variant was subsequently substituted by omicron BA.4/
5. The full and detailed results of the sequencing analysis can be found
in the supplementary materials (Table SN1).

The mutational variety observed in our dataset is extensive, with
mutations spanning from less than 10 to more than 90 mutations
relative to the original wildtype variant that originated in Wuhan
(Fig. 2b, c). As variations in the spike protein play a critical role for
immune escape, we assessed this in more detail following the defini-
tion and mapping of outbreak.info’s mutations of interest or concern
(MOIC)12,13. For the observed strains, the presence and absence of
MOICs are indicated in Fig. 2d. In previous studies14–16, the overall
number of mutations (Fig. 2b, c) was used as ameasure for reinfection
potential. Grouping our variants by MOIC allows us to maintain the
statistical power of the lineage groups for subsequent analysis of
potential cross-immunity while still retaining their relevant spike pro-
tein differences. The grid of distances of MOIC between observed
lineage groups in Fig. 2e demonstrates that our dataset encompasses a
range of distances up to 6, indicating diverse genetic distances
between the variants. Moreover we see that our data set consists of
variants which emerged earlier in other parts of the world, hence
implies a continuous introduction of new variants to Ethiopia rather
than a mutation of the wild-type inside of Ethiopia. We provide more
information about these distances in the methods section of
this paper.

Multivariant model describes antibody prevalence and strains
The long-term antibody and variant data from Addis Ababa and Jimma
provide valuable information about the course of the pandemic. Yet,
the observations themselves did not allow for a direct assessment of
infection or reinfection risk, or (cross-)immunity. Challenges are: (i)
most study participants contributed to less than three of five rounds of
antibody testing and (ii) the participant groups for antibody testing
and swab collection were disjoint. Therefore, it is not possible to map
the data types to each other and to analyze individual disease history.
To achieve a good understanding of the COVID-19 dynamics and the
interactions of different variants in Ethiopia, we instead employ epi-
demiological modeling of population averages.

We constructed a multivariant model to investigate the temporal
evolution of the SARS-CoV-2 pandemic in Ethiopia. The model
accounts for different sequences of infections and vaccination events
(Fig. 3a). The sequence of infections and vaccinations - to which we
refer in the following as pathways - is tracked to determine the
immunity status of individuals. Each infection follows the SEIR sche-
matic, with individuals transitioning from being susceptible to
exposed, then infected, and finally recovered. Due to official vaccine
availability in Ethiopia only after Round 317 in combination with our
previous observation that vaccinated individuals are more likely to
answer questions on the vaccination status on the questionnaire than
unvaccinated individuals,weconsidered individualswithout an answer
(“N/A”) as “unvaccinated” for modeling. The structure of the multi-
variant model is outlined in Fig. 3a using a small number of possible
pathways. The model has a total of 364 possible pathways, and pos-
sesses 950 compartments and more than 950 transitions.

We allowed for immunity and cross-immunity conferred by pre-
vious infections and vaccination in the multivariant model. As the
precise dependencies are not known, we assumed a variant-specific
risk reduction for reinfections with previously encountered variants.
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Fig. 2 | Sequencing results of samples obtained between October 2020 and
July 2022. a Number of successfully sequenced samples, variant frequency and
smoothed variant time-course. Variants are indicated using colors. b,c Phyloge-
netic tree of the sequenced samples, illustrating the relationships between variants
and their sub-variants (full list of variants in Supplementary InformationTable SN1).
Distance between variants represented by overall difference in their mutations.

Lineage groups b and number of mutations in the spike protein c highlighted by
color. d Heatmap indicating which variants possess specific mutations of interest
on their S1 protein. e Heatmap depicting MOIC mutation distances with respect to
mutations of interest between different variants. Distance indicated by gray scale.
Source data are provided as a Source Data file.
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Fig. 3 | Structure andfitting results of themultivariantmodel. aModel structure
depicting up to four consecutive infections/vaccinations. Potential infection
pathways labeled by the stages S(usceptible), E(xposed), I(nfectious) and R(ecov-
ered) and their respective variants highlighted by different colors. Only a small
subset of the in totalmore than 350 possible paths is shown. bModel fitting results
shown by progression of all observables against their respective (mean)

measurements. Bayesian90% credibility intervals formodel simulation obtainedby
sampling included as well as the standard deviation of the measurements. Predic-
tion simulations performed on n = 6001 parameter samples after burn-in from
Markov chainMonte Carlo. Sample sizes of data points provided in Supplementary
Note 2 (Table SN4). Source data are provided as a Source Data file.
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For infection with a different variant, we assume that the infection risk
depends on the difference of MOIC between the previously encoun-
tered variant and the variant to which individuals are exposed. In the
case of multiple previous infections, the union of mutations from the
previous variants is considered, and the distance to the new variant is
calculated. This is based on the assumption that antibodies against
regions with different MOIC can be developed. Vaccination is treated
as a recovery from the wild-type infection. Exposure risk is also influ-
enced by seasonality, which is incorporated using a 1-year-periodic
factor. The unknown parameters of this seasonality factor and cross-
immunity are estimated, along with the appearance times of the var-
iants, incubation and recovery times, a basic exposure rate, and the
exposure multipliers for the variants. A detailed mathematical
description of the multivariant model and a complete list of its para-
meters is provided in Supplementary Information (Supplementary
Note 2 and Table SN5).

To assess the evolution of the SARS-CoV-2 pandemic in Ethiopia,
we parameterized the multivariant model using data on antibody
levels, viral variant distribution, and national test positivity rate. The
Anti-S antibody measurements were used to provide information on
the fraction of individuals with a single infection or vaccination
(medium level) and the fraction of individuals with at least two infec-
tions, vaccinations or a combination of both (high level). Since it is
impossible to distinguish between vaccinations and infections from
Anti-S levels we implemented observables corresponding to the
medium and high levels without discriminating between vaccination
or infection (c.f. Supplementary Note 2 for detailed equations). The
viral variant data provided information on the relative levels of each of
the eight variants, mapping the relative measurements to the per-
centage of individuals in an infectious state associated with each var-
iant. The national PCR test positivity rate was used to determine the
percentage of currently infected individuals, irrespective of the
variant.

The parameterization of the model was performed using Markov
chain Monte Carlo sampling. The sampling results revealed good
agreement of the parameterizedmultivariantmodel with the observed
data (Fig. 3b). The antibody levels and variant distributions (the pri-
mary focus of our investigation) are captured accurately. The national
test positivity rate is described well up to two peaks (which might be
caused by different regions in Ethiopia). In fact looking at the timing of
the first peak, which is missed by our model, we see that our antibody
data is already saturated and hence tells a different story than the
nationally reported data. Most of the model parameters are well
determined (Table SN5 in Supplementary Information) and in agree-
ment with estimates provided in the literature. For a comprehensive
description of estimation and uncertainty analysis results for specific
parameters, as well as convergence information, we refer readers to
the supplementary materials.

Overall, comparison of model simulation and data revealed that
the proposed multivariant model provides a good description for the
progressionof the SARS-CoV-2 pandemic in Ethiopia. Furthermore, the
assumed model for (cross-)immunity appears appropriate to accu-
rately describe the data for Addis Ababa and Jimma.

Reconstruction of infection history and cross-immunities
As the multivariant model provides an accurate description of the
observed data, we used it to study the population-level infection his-
tory in Addis Ababa and Jimma. This infection history is encoded in the
time-dependent state of the parameterized model, which is informed
by our broad datasets.

The analysis of the model predicted that the most common
pathwayof infections and vaccinationswas: 1st infectionwithwildtype,
2nd infection with delta, vaccination, and 3rd infection with omicron
BA.4/5 (Fig. 4a, b). In particular wildtype*, alpha, beta, eta, and omicron
BA.1 are not part of it, of which omicron BA.1 appears in the second

most common pathway (delta, omicron BA.1, omicron BA.4/5) and
alpha appears in the third most common pathway (alpha, delta, vac-
cination, omicron BA.4/5). The estimates indicate that a median of
12.7%with 90% credible interval (CI) of (10.9%,14.4%) of the inhabitants
of Addis Ababa and Jimma followed this pathway. As suggested by the
low percentage of individuals following the most common pathway,
there has been a large degree of pathway variability. Indeed, the 10
most common pathways account for only 59.0% (42.8, 69.8) of the
overall pathways (Fig. 4b). The high variability is caused by a large
number of different combinations of virus variants. Overall wildtype,
delta, and omicron BA.4/5 variants are the primary contributors to the
infection progression (Fig. 4c). They are followed by wildtype*, alpha,
andomicronBA.1, which alsoexhibit notable contributions. Themodel
predicts a negligible impact of beta and eta variants, which is con-
sistent with the data used to parameterize it.

The analysis of the time of infections (Fig. 4c) indicates three
distinct waves, which coincide with reports for wildtype, delta and
omicron BA.4/5. Notably, the emergence of the delta variant marks a
shift where second infections start playing a significant role, which
aligns with findings from other published studies18. Furthermore, with
the introduction of the omicron variants, third infections become
more prevalent, resulting in nearly the entire population experiencing
at least two infections. Until September 2022, the occurrence of fourth
infections appears to be minimal, likely due to the influence of vacci-
nation and pre-existing immunity.

To assess the impact of cross-immunity on the pandemic, we
assessed the corresponding model parameters used to describe it
(Fig. 4d, e). The statistical inference suggests that the reinfection risk
with the same variant - corresponding to a MOIC mutation distance
of 0 - is reduced to 10.0% (5.1, 14.7) of the risk of an initial infection. In
contrast, reinfection with different variants demonstrates a range
of probabilities, ranging from 24.5% (21.3, 27.8) for a MOIC mutation
distance of 1 (e.g., wildtype to wildtype*) to 68.6% (63.2.3, 72.4)
for a distance of 6 (e.g., wildtype* to omicron BA.4/5). The 90% CIs
for all variant-variant combinations are displayed in Supplemen-
tary Fig. 2.

Overall, the multivariant model provided insights in the infection
history by linking datasets collected for different groups of individuals
at different time points. Based on this, it sheds light on the differential
susceptibility to reinfection based on the genetic distances between
variants.

Antibody-level model predicts high immunity and slow decline
Themultivariant model enabled the assessment of the Anti-S antibody
and variant data, yet, it is unable to fully exploit the comprehensive
assessment of Anti-N andAnti-S antibody levels (Fig. 1a–e) available for
a large fraction of our cohort. As this is necessary to assess waning
immunity and the impact of vaccination rates, we decided to develop a
tailored model for the analysis of these aspects.

We constructed an antibody-level model describing the dynamics
of the Anti-N and Anti-S antibody levels. Following the analysis of the
measurement data (Supplementary Information Fig. SN1), we imple-
mented a discretization of both antibody levels in low (negative),
medium andhigh, which yielded amodelwith 9 state variables (Fig. 5a).
Thresholds for these categories were inferred from the data (cf. anti-
body subsection of Results section and Supplementary Note 1 of
Supplementary Information). Infections are assumed to result in
increases of Anti-S and Anti-N antibody levels to the next higher
category, while vaccinations are assumed to result only in an increase
of Anti-S antibody levels to the next higher category. To account for
the semi-quantitative nature of Anti-N measurements and the possi-
bility of boosting Anti-N to high levels with a single infection, the
model allows for a fraction of individuals in the Anti-N low category to
directly transition to the high category. Antibody waning results in a
shift to a lower category.
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To capture the dynamics of the antibody levels in Addis Ababa
and Jimma, the antibody-level model used the available informa-
tion about variants and vaccinations as inputs. The vaccination
rate was calculated as monthly averaged rates based on the vac-
cination information provided by the participants of the antibody
study, and the relative abundance of variants was computed by
fitting Gaussian kernels to the data and using them as weights for

the time-dependent effective transmission rate, i.e., the weighted
sum of all variant transmission rates. The results of these com-
putations can be seen in Fig. SN10 and Fig. SN11 of the Supple-
mentary Information.

Additionally, themodel incorporates seasonality, as described for
the multivariant model. Furthermore, two immunity factors are
introduced asmultipliers of the transmission rate: one applied if either
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of the antibody levels is in themedium category and a second applied
on top of the first factor if either level is in the high category.

Unlike for the multivariate model, the distribution of variants is
derived a priori from available data, and only their transmission rates
and initial time of the overall disease dynamics are estimated. Incu-
bation and recovery times are also estimated. For further information
on themodel setup, parameter details, and estimation results, we refer
readers to the supplementary materials.

The antibody-levelmodel possesses several unknownparameters,
including the rates of antibodywaning, the infection rates for different
variants, and the fraction of infections, which directly result in a high
Anti-N category. We estimate these parameters using Markov chain
MonteCarlo sampling from the availabledata, whichare the fractionof
individuals in different categories and the national PCR test positivity
rate. The parameter estimation provided a model which describes all
these data well (Fig. 5b and c (left)). Indeed, credible intervals for
parameter estimates (Supplementary Information Table SN8), state
variables (Fig. 5b) and predictions (Fig. 5c) were mostly tight, indicat-
ing a low uncertainty of model predictions. In alignment with immune
escape properties of later variants, we estimated higher valued infec-
tiousness parameters for them, e.g. omicron BA.4/5 having 3.3 times
the delta and 10.6 times the wildtype infectiousness. Relative infec-
tiousness for all variants can be deduced from Supplementary Note
Tables SN3 and SN6.

As for the multivariant model there is some discrepancy between
national test positivity rate and model description (which might be
caused by different regions in Ethiopia). Nevertheless, the antibody-
level model provides an accurate description of the available antibody
data, so thatweused it to predict the current antibody levels, including
observations of antibody levels until April 2022. We found that fol-
lowing the omicron wave, our model predicts a remarkable trend
(Fig. 5b): up to 100% of the population is projected to fall into the high
antibody category for both Anti-N and Anti-S antibodies. This predic-
tion is subject to minimal uncertainties. Notably, the parameter esti-
mation determined slow decay of both Anti-N and Anti-S antibody
levels, leading to sustained high levels in the high antibody category
until present times.

Given that the sequence of infections and vaccinations was pre-
dicted to yield high antibody levels, we explored the impact of vacci-
nation rates. In addition to the actual reported vaccination rate, we
considered a 5- and 10-times increased vaccination rate (Fig. 5c, mid-
dle), two levels, which could have been achieved using redistribution
on the global scale. The artificial experiments indicated that increased
vaccination rates would have led to a substantial reduction in infec-
tions during the delta wave. For the omicronwave, a reduced impact is
predicted due to the higher transmission rate, but the number of
hospitalizations could have been substantially lower with higher
vaccination rates.

The second type of prediction involved retrospectively examining
the impact of varying vaccination rates on the overall virus spread. By
multiplying the actual vaccination rate by different factors larger than
1, we investigated how improved vaccination scenarios could have
affected the course of the pandemic. Our analysis reveals compelling

insights: a vaccination rate five times as high as the actual rate,
equivalent to 11.2e7 vaccinated dosages instead of the actually
observed 2.7e7, would have significantly mitigated the delta wave.
Furthermore, higher vaccination rates of 5 or even 10 times the actual
rate could have substantially reduced infections during the omicron
wave, potentially halving or lowering it even further (Fig. 5c second
and third subplot).

Overall, the predictions of the antibody-level model highlight the
critical role of early vaccination in controlling the spread of the virus
and provide valuable information for policymakers and public health
officials. The results of our model offers evidence-based projections
that shed light on the potential outcomes of different vaccination
scenarios, emphasizing the importance of accelerated vaccination
efforts early on in curbing the impact of viral variants, while implying a
minor role of later vaccinations in already saturated natural immunity
level scenarios.

Discussion
The course of the COVID-19 pandemic and current immunity status for
many countries is still not sufficiently understood to inform decision-
making about the effectiveness of past measures and strategies for
future pandemics. This study provides data and model-based analysis
to close some of the gaps for Ethiopia. By performing wide sampling
before the omicron wave and quantifying antibody titres, we provide
insights into the cumulative infection numbers, including the pre-
valence of reinfections. This suggests that by the end of the last sam-
pling round in April 2022, already 55.1% of the inhabitants of Ethiopia
recovered from two SARS-CoV-2 infections. Another 4.1% of the inha-
bitants of Ethiopia recovered from three SARS-CoV-2 infection-
s.Comparing this to the roughly 470,000 officially confirmed case
numbers at the end of April 2022 and the official WHO number of
500,000 cases by late spring 2023 (WHO Covid-19 Dashboard), it is
clear that drastic underreporting regarding the number of SARS-CoV-2
infections has been and is still happening in Ethiopia.

Our broad longitudinal analysis of PCR-positive swabs com-
plemented the information about antibody levels and provided an
overview of disease-driving mutations. In Ethiopia, wildtype, alpha,
delta andOmicronBA.4/5were themost influential SAR-CoV-2 variants
and appeared (except alpha)with a slight delay compared to the global
appearance (Supplementary Information Fig. SN9). In relationwith the
Ethiopian variant survey of Sisay et al. our key findings are confirmed9:
The importance of B.1.480 (wildtype* in our case) and non-concerning
B.1 sublinages (wildtype in our case), the minor role of beta and the
general timeframe and dominance of alpha, delta, and omicron waves
are common discoveries. Since the observation period of Sisay et al.
ends in February 2022, which is around the time when the statistical
power of our sequencing data decreases substantially, future research
about the precise transition between the omicron waves BA.1 and
BA.4/5 could be worth exploring.

To fully exploit the large datasets, we developed two models in
this study. The multivariant model provides, to the best of our
knowledge, one of the most detailed descriptions of the dynamics of
the SARS-CoV-2 pandemic for an African country and is unique as it

Fig. 4 | Analysis of estimated variant-pathways and cross-immunities.
a Illustration of three common pathways depicting the progression from a sus-
ceptible state to acquiring up to four different infections and/or vaccinations over
time. b Proportions of variant-pathway-groups within the population, highlighting
groups that constitute more than 3% of the total population. c Timeline of total
number of infected people (first row) and time-resolved compositions of each
group highlighting the portions of last variant recovered from or vaccination
obtained by color (subsequent rows). d–e Estimated cross-immunity-levels, with
100% corresponding to a zero percent infection probability and 0% corresponds to
infection risk aswithoutprevious infection.dBoxplot of estimated immunity-levels
including sampled uncertainty. Immunity depicted with respect to MOIC mutation

distance between newly encountered and previously encountered variants (-com-
binations) (Center line,median; box limits, upper and lower quartiles;whiskers, 1.5x
interquartile range; points, outliers). e Heatmap of cross-immunity levels between
variants. Y-axis corresponding to previous and x-axis to new variant. Intensity of
colors corresponds to strength of cross-immunity, with darker shades indicating
higher levels of immunity. Empty cells indicating infection combinations excluded
a priori from models based on the world wide variant wave chronology, e.g. a
wildtype infection after recovery from delta. c-e Median and CIs obtained from
n = 6001 samples after burn-in from Markov chain Monte Carlo. Source data are
provided as a Source Data file.
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Fig. 5 | Modeling, fitting results and predictions of antibody-category model.
a Model structure of different antibody category levels and transmission between
them. Antibody levels against N or S, respectively, are indicated by colors. b The
inner grid presents the fitting results to mean measurements (with standard
deviations) along with 90% confidence bands derived from parameter sampling.
The aggregated levels of Anti-S andAnti-N antibodies are displayed in the lower row
and right column, respectively. The prediction phase, where no new antibody data
wasmeasured, is highlighted. c First plot showing the fit of simulated incidences to

measured national test positivity rates (mean and standard deviation taken per
month). Second and third plots illustrating predictions of test positivity rates under
hypothetical scenarios with vaccination rates 5 and 10 times as high as the actual
rate. Last plot showing how different vaccination rates translate to vaccinated
dosages. b, c Prediction simulations performed on n = 30,001 parameter samples
after burn-in fromMarkov chainMonte Carlo. Sample sizes of data points provided
in Supplementary Note 3 (Table SN7). Source data are provided as a Source
Data file.
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allows for the description of multiple waves and the variant replace-
ment dynamics. Many of the important studies on African countries
presented so far focus on individual waves19–21, a specific variant
replacement event22,23, or do not explicitly account for variants24,25.
Here, we showed that our model provides a new way to assess path-
ways of infections and vaccinations as well as cross-immunity between
variants with low prediction uncertainties. By integrating three com-
plementary datasets: antibody, variant, and test positivity data, the
model identified the four most dynamic driving variants and accu-
rately mapped the timing of large-scale occurrences of second infec-
tions to the delta wave. Surprisingly, with the omicron variant, almost
the entire population had a second infection, and third infections also
became relevant. The investigation of cross-immunity revealed that a
simple model based on the distance in MOIC is sufficient to describe
the observed data. Themodel predicts cross-immunities ranging from
24.5% to 68.6% risk reduction.

The estimates and predictions provide an in-depth assessment of
the situation in Ethiopia. On the high level, they also agree with other
studies, including the meta-analysis by the COVID-19 Forecasting
Team, which used Bayesian meta-regression to pool results of 65 stu-
dies from 19 different countries on protection against new variants by
past infections with earlier variants26. For pooled protection against
ancestral variants, which the COVID-19 Forecasting Team uses as a
collective term for all variants which occurred earlier than the alpha
variant, they obtained protection levels of 84.9% (72.8, 91.8). Com-
paring their result (95% CI) to our findings (with 90% CIs) of 90.0%
(85.3, 94.9) of wildtype and wildtype*, which in our context corre-
sponds to variants earlier than alpha variant, against themselves and
75.5% (72.2, 78.7) against each other, we see that our estimates lay well
inside the study’s CI (Fig. 4e, Supplementary Fig. 2). Pooled protection
against the alpha variant is stated to be 90.0% (54.8, 98.4) while our
values range from 53.1% (50.2, 56.0) to 90.0% (85.3, 94.9) (Fig. 4e,
column on alpha variant), where our lowest median is only slightly
below their CI’s lower bound and the CIs overlap (Supplementary
Fig. 2). Protection against beta is reported to be 85.7% (83.4, 87.7).
Since the beta variant did not play a large role in Ethiopia according to
our data, it is not surprising that this very tight interval is not repre-
sented by the values of our beta column in Fig. 4e. The eta variant was
not explicitly investigated by the COVID-19 Forecasting Team. Delta
induces reported protection of 82.0% (63.5, 91.9). Our model suggests
lower protection values despite that wildtype, which is the main var-
iant after which delta reinfections happened according to our model,
has amedian of 63.3% (60.6, 65.9), i.e. for delta the CIs areoverlapping.
For omicron BA.1, the COVID-19 Forecasting Team states protection
levels of 45.3% (17.3, 76.1), which completely covers our values for
previous infection with other variants. Only reinfection with BA.1,
which does not play a role in our findings, is above this interval. For a
meta-analysis on BA.4/5, there were insufficient publications available.
They only cite one study27 with protection levels of 76.2% (66.4, 83.1)
for previous omicron BA.1 and 35.5% (12.1, 52.7), where the former is
only slightly undercut and the latter slightly exceeded by our median
values depicted in the last column of Fig. 4e. Overall, for the variant-
variant combinations, which play a major role according to our model
and are also part of the meta-study, the cross-immunities we obtained
are mostly in accordance with the COVID-19 Forecasting Team’s find-
ings. The other variants must be treated more cautiously since either
their minor role in our model makes it difficult to compare to the
pooled data of the meta-study or the meta-study lacked sufficient
statistical power to report on them.

The analysis based on themultivariant model was complemented
using a tailored model for the description of antibody levels. The
analysis of the available data using this model suggested that antibody
decay is slow, in particular for Anti-S antibodies. This is in accordance
with other research on SARS-CoV-2 antibody decay28, although direct
comparison of numbers is difficult due to the 2-dimensionality and

3-category setup of ourmodel, tackling the issue of limited individuals
participating in all rounds of data collection. Van Elslande et al.
reported a median time to 50% seronegativity of 809.6 days in non-
severe patients (resp. 985.9 days for severe cases) for Anti-S and
273.1 days in nonsevere patients (resp. 327.3 days for severe cases) for
Anti-N28. The decay is assay-specific and thus, should be interpreted
based on the test system used. We have investigated the decay in
unpublished longitudinal cohorts in Munich using the same test sys-
tem as this study (Ro-N-Ig and Ro-RBD-Ig-quant, for details see meth-
ods section) and see similarly slow decay of Anti-N and even slower
decay of Anti-S signals. In accordance with the results, our antibody
model indicated that, particularly with respect to the S-protein, anti-
body levels remain in the high category in the population to date,
suggesting that current vaccinations may have a negligible effect. This
is based on the general population, and thus does not take into
account additional needs of vulnerable groups which might still ben-
efit from vaccination in this setting of recurrent infection waves. Fur-
thermore, by simulating higher vaccination rates retrospectively, we
concluded that it would have been possible to substantially mitigate
the delta and omicronwaves withmore administered vaccines. For the
delta wave this is strongly supported by our healthcare worker anti-
body data, where in August 2021most of the high antibody levels were
caused by vaccination in comparison to community members with
almost no vaccination, but similarly high-level percentages (Fig. 1d,
Supplementary Fig. 3d). On the other hand, for omicron we have high
uncertainties in our predictions (Fig. 5c). Taking into account the high
immune escapeproperty of omicronwewould probably still have seen
a substantial wave, nevertheless with a notably smaller peak. More-
over, from then onmost of the populationwas exposedmultiple times
and thus benefits of the titres are less pronounced now.

It is important to approach these findings with caution, since we
assessed total levels of antibodies, not neutralizing levels, and the
relationship between overall antibody levels and reinfection risk is still
an area of ongoing research. There is literature confirming that relative
reinfection risk after first infection is around the median 32% that our
multivariant model estimated. For example, Iversen et al. present 35%
relative risk after first infection of Danish healthcare workers29.
Transfer of protection data from the literature to Ethiopia is compli-
cated, as the conditions ofmost studies in the field are vastly different.
Protection varies considerably depending on the width of the pre-
existing immune response and the timebetween last exposure and the
exposure in question. The magnitude of the measured antibody levels
also varies depending on the specificity profile of the antibodies and
antigens used in the tests. With larger differences in antigenic struc-
ture, cross-protection decreases and variation in the serology results
increases.

We focused on analyzing data from community members to
investigate the antibody progression associated with SARS-CoV-2
infection. Virus variant-specific information was available for isolates
from the clinics also derived primarily from community members and
not specifically for healthcare workers. A detailed analysis of the
antibody progression among healthcare workers can be found in
Supplementary Fig. 3.

The study presented here provides several new insights, but also
has weaknesses. On the data collection side, the low number of
sequenced swabs after the end of 2021 is problematic. We thus
accounted for inhomogeneous sampling in the statistical analysis and
the parameter estimation. The models we propose here are based on
antibody and variant data from Addis Ababa and Jimma, as well as
nation-wide test-positivity rates. While the sampling regions in Addis
Ababa and Jimma cover areas of different population density and
should prove a broad picture, they might not be fully representative
for the spread of SARS-CoV-2 in Ethiopia. An indication for this is that
the nation-wide test-positivity rate increases in April 2021 and January
2022,while the antibodydata donot show substantial changes at these
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time points or briefly afterwards. Hence, the use of the combined
dataset for the assessment of Ethiopia is an extrapolation. Moreover,
(i) the description of cross-immunity factors as a function solely
depending on MOIC neglects that other mutations might also affect
immune escape potential, (ii) the dependency of cross-immunity after
infections with different variants on the union of mutations from
previous variants might overemphasize later variants (since secondary
infections are assumed tomainly recall cross-reactive antibodies). Yet,
these simplifications were important to ensure computational feasi-
bility andbalancemodel complexity and statistical power in the data. A
consideration of all mutations would have increased the number of
model parameters by a factor of 9.5 and the dataset would have been
insufficient to inform them. Despite its limitations, this study provides
an unprecedented insight into the dynamics of COVID-19 infections
over time and the impact of the variants in Ethiopia. The findings have
valuable implications for current and future research and policy-
making, enabling a better understanding of the actual situation and
offering potential directions for vaccination policies.

To conclude the dynamics of the SARS-CoV-2 variants in Ethiopia
between 2020 and 2022 had similar trends as those observed globally.
However, our five rounds of seroepidemiological survey in Addis
Ababa and Jimma between August 2020 and April 2022, revealed that
in our study group over 96%were exposed at least once to the virus by
the last round of our survey. This figure is much higher than in other
nation-wide reports. Combining longitudinal serology, viral sequen-
cing data, national test positivity rates, and mathematical modeling,
we conclude that most Ethiopians have had multiple exposures to
SARS-CoV-2, leading to high antibody titres with slow decay char-
acteristics. Due to recurrent infections with different variants and
vaccination in many individuals in Ethiopia, we expect a strong hybrid
immunity to date.

The models developed based on the antibody and virus variant
dynamics show that earlier and more widespread vaccination of the
population would have reduced the overall number of infections
considerably. However, the general population has now undergone
multiple infections as detected by serology and most likely will not
benefit much from further vaccinations, especially if the vaccine still
harbors the wild type receptor binding domain sequences. Due to
persistent circulation of the virus with obvious underreporting, the
main focus for preventive actions should be focused on the most
vulnerable groups of the population.

Methods
Ethics
In this study, samples were collected as a follow-up to our previously
published work1.

In brief, we conducted a follow-up investigation on antibody
prevalence at two centers in Ethiopia: Jimma Medical Center [JMC] in
Jimma and St Paul’s Hospital Millennium Medical College in Addis
Ababa. The research was approved by the Institutional Review Boards
of Jimma University Institute of Health (IHRPGD/978/2020 and
IHRPGD/361/2021) and St Paul’s Hospital Millennium Medical College
(PM23/239/2020 and PM23/003/2020) as well as Ludwig Maximilian
University of Munich (21-0293). Further approval from Addis Ababa
andOromia Regional Health Bureaus was also obtained (BEFO/KBTFU/
1-16/488). Written informed consent in local languages was obtained
prior to admission to the study. For participants unable to read or
write, an impartial witnesswas involved andfingerprintswereobtained
for consent. Preliminary results were presented to the Ethiopian Public
Health Institute, Federal Ministry of Health of Ethiopia, and Ethiopian
Medical Association.

Antibody data acquisition
Community members and healthcare workers were recruited for the
serology study based on convenience sampling. Hospital workers –

including clinical staff, medical interns, cleaners, guards, food hand-
lers, and administrative personnel – were recruited at two hospitals,
the St Paul’s Hospital in Addis Ababa and the JimmaMedical Center in
Jimma. In Addis Ababa, community members from Addis Ketema and
Yeka subcities were recruited. In Jimma, no specific region was chosen
and rural participants were recruited around the Jimma Zone. Sample
sizes were initially calculated in July, 2020, when not much baseline
data was available and later became flexible as more data became
available. Moreover, as the rate of dropout was more than 30% (our
initial expectation), we recruited more participants to compensate for
the dropouts (c.f. Supplementary Fig. 1 for detailed studyflow). One
participant per household was sampled to avoid any clustering effects
andhouseholdswere selected randomly in away that avoided frequent
interaction from the next candidate household to prevent cross-
contamination. Overall the median age was 30 with 90% percentile
(20,60) and 55.6% of participants, which provided information about
sex were female (for round and site-specific demographics see Table 1
and Supplementary Table 1). All participants of the first 3 rounds were
enrolled before the introduction of COVID-19 vaccines in Ethiopia. In
later rounds participants provided their vaccination status and dates
through a questionnaire. For more details see in-depth description in
Gudina et al.1.

In total, 3ml of venous blood was collected in standard serum
tubes. After full coagulation at room temperature, serum was har-
vested by centrifugation and stored at −20 °C on the same day as
sampling. The Roche Elecsys® anti-SARS-CoV-2 [Ro-N-Ig] and the
Roche Elecsys® anti-SARS-CoV-2 S [Ro-RBD-Ig-quant] were used for
serologic analysis. Both assays are double-antigen sandwich assays,
detecting antibodies of all subclasses against SARS-CoV-2. Measure-
ments were performed on a Cobas e801 analytical unit (Roche Diag-
nostics, Basel, Switzerland) in Munich, Germany, or a Cobas e601 unit
(Roche Diagnostics, Basel, Switzerland) in Jimma and Addis Ababa,
Ethiopia, using electrochemiluminescence (ELECSYS) technology.

The Ro-RBD-Ig-quant assay uses a truncated S1 protein as an
antigen and is a quantitative assay validated for use with human serum
and plasma. It is linear between 0.4 and 250Units (U) perml, which are
equivalent to the standardized (WHOpublicationWHO/BS.2020.2403)
BAU (Binding Antibody Units) according to the manufacturer’s man-
ual. Values above 250U/mlwerediluted in 10-fold until the linear range
was reached according to the manufacturer’s procedures. Values in
this study weremeasured within the linear ranges and back-calculated
depending on the dilution as appropriate.

TheRo-N-Ig assay is a qualitative assay similar to Ro-RBD-Ig-quant,
but using nucleocapsid as an antigen. The results are given as cut off
index (COI), and only a cutoff for positivity is provided by the manu-
facturer. A linear range is not officially established.We use the raw COI
values in a semi-quantitative manner, as we have observed a good
dynamic range and excellent repeatability of the values. Anti-N mea-
surements were not diluted, so can be outside the linear range in
this work.

Variant data acquisition
A total of 1873 SARS-CoV-2 RT-PCR positive swabs were collected in
Jimma and Addis Ababa, Ethiopia between October 2020 and July
2022. Sample dates were not always available as an exact date, but
rather month and year only. Therefore, the midpoint of the respective
sampling month was used for all samples analyzed. The swabs were
collected from individuals presenting with COVID-19-related symp-
toms, contacts of confirmed COVID-19 cases, and high-risk popula-
tions such as healthcare workers. The specimens were collected at
Jimma Medical Center and St. Paul’s Hospital.

Jimma Medical Center in Jimma Town and St. Paul Hospital in
Addis Ababa are among the major COVID-19 testing and treatment
sites in Ethiopia. Jimma COVID-19 center serves as the only COVID-19
diagnostic facility in southwest Ethiopia, home to about 20 million
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inhabitants. It is the only facility with intensive care for severe COVID-
19 cases in the region. St. Paul Hospital in Addis Ababa is a public
tertiary referral hospital serving as a COVID-19 diagnostic and treat-
ment center for Addis Ababa and surrounding areas.

All RT-PCR-positive specimens were stored at −80 °C at these two
sites during the study period. Specimens in poor storage conditions
and thosewithout proper documentationofdata collectiondateswere
excluded. The stored samples were transported on dry ice to Munich
in Germany. There, whole nucleic acid extractionwas performed using
the tanbead maelstrom 4800 instrument (TANBead, Taiwan) and the
TANBead Optipure Viral Auto Tube / Plate extraction kits (TANBead,
Taiwan). cDNA of the extracts was generated using the LunaScript one
step RT (New England Biolabs).

Following the ARTIC network nCoV-2019 sequencing protocol
v230, amplicons spanning the whole SARS-CoV2 genome were ampli-
fied from the cDNA samples. The resulting products were pooled,
tagmented with NexteraXT library prep kit (Illumina, San Diego, USA),
barcoded, and sequenced on an Illumina NextSeq 2000. For each
sample, the sequenced reads were demultiplexed and mapped to the
SARS-CoV-2 reference genome (NC 045512.2) with bwa-mem31. The
consensus sequences were obtained from the sequenced amplicons
using the iVar package32. Briefly, the package trims the primer
sequences from the mapped reads and filters them by a base quality
>20 and minimal read length of 30 nt. Pileup files are generated from
the mapped reads which are used to assemble the consensus
sequence. The consensus sequence was assigned to SARS-CoV-2
lineages using the Pangolin tool33.

Analysis of antibody data
To ensure a broad analysis, we merged the data collected for com-
munity members in Addis Ababa and Jimma for each round, as the
timing of the sampling campaigns overlapped significantly. This
allowed us to combine the data effectively and to capture a more
comprehensive picture of the antibody dynamics in these
communities.

To facilitate meaningful analysis while preserving the relative
order of magnitude and accounting for zero measurements, we
transformed the antibody measurements using the shifted logarithm
base 10 function (log10(x + 1)). This transformation enabled us to easily
analyze the data across different scales while still maintaining the
interpretation of zero as the absence of detectable antibodies.

For categorizing the antibody levels, we considered measure-
ments for each antibody type independently, disregarding the round
in which they were obtained. Anti-N values and measurements below
the predefined cutoff were excluded from the analysis. We performed
k-means clusteringwith twomeans, i.e. k = 2, on the remaining samples
to assign the measurements into distinct antibody level categories.

Smooth changes in antibody levels over time were visualized
using a monotonic spline-fitting approach. This allowed us to capture
the overall trend and highlight gradual variations in the antibody
responses.

To ensure an adequate number of data points for model fitting
while remaining reasonable errors for the analysis, we performed
k-means clustering (k=2) on the dates of each round. Subsequently, we
split each round into two subgroups based on the clustering results and
aggregated the antibody responses within these subgroups. Addition-
ally, to estimate high-confidence intervals for error analysis, we fitted a
multinomial model to the distribution of the three antibody categories.

To estimate vaccination rates in our study, we employed a fitting
approach using monotonic splines applied to the vaccination infor-
mation provided by the participants, allowing us to capture the tem-
poral trends and variations in vaccination rates accurately. For
comprehensive details on the specific methodologies and results of
the vaccination rate estimation, we refer readers to the supplementary
materials.

For more detailed information and results, we encourage readers
to refer to the corresponding sections in our manuscript.

Analysis of variant data
Whole genome sequencing and subsequent analysis utilized
Nextstrain’s34 Augur software, coupled with Auspice for phylogenetic
analysis and visualization. To classify the sequenced genomes, we
employed pango lineages33 and grouped them based on shared
mutations of interest or concern (MOIC) on the S1 protein according to
outbreak.info12,13. To quantify the genetic distances between these
variant groups, we utilized the Hamming distance, a metric often used
to measure distance in gene alignment14–16. Here we calculate the dis-
tanceonly based ondifferentMOIC and not allmutations to grasponly
themajor immune escape changing differences. For ourmodels below
we allow for additional behavioral differences independently of this
distance. To capture the temporal dynamics of variant prevalence, we
organized the samples according to the month of collection and cal-
culated the fractions of each variant. For a smooth visualization of
these trends, we applied monotonic spline fitting to generate
smoothed curves. To estimate the errors for later parameter estima-
tion, we utilized a multinomial model and fitted it to the monthly
variant distributions. To obtain an input function of variant distribu-
tion for the antibody level category model while maintaining a rea-
sonable level of complexity, we aggregated the samples over two-
month intervals before applying monotonic spline fitting. These pro-
cedures allowed us to effectively characterize the variant dynamics
and obtain essential inputs for subsequent modeling analyses.

Modeling
Themodel-based analysis was performed using compartmentmodels.
Utilizing the SEIR (susceptible, exposed, infectious, and recovered)
framework, which has been shown to be reliable for modeling the
spreadof Covid-191,35, we aimed to analyze and predict the dynamics of
the pandemic.

For the multivariant model we constructed pathways, i.e., chains
of SEIR strands, allowing up to four consecutive infections or vacci-
nations. Pathways which deviated from the chronological order of
variant appearances worldwide were excluded. Furthermore, the
model only allows for a third infection with the two omicron variants
and a fourth infection exclusively by omicron BA.4/5 to account for the
reported inter-infection intervals. We allow for different transmission
rates for each variant—thereby implicitly considering all mutations –

and model their cross-immunity as a function of difference in MOIC.
Rates for first, second and third vaccination were estimated a priori as
splines from the vaccination information of the antibody study parti-
cipants and implemented as time-dependent functions into themodel.

The antibody-level model does not trace pathways of variants and
infections, but categories of antibody levels for Anti-S and Anti-N. Here
the SEIR strands are connecting the categories allowing for a boost in
antibody levels by infection and recovery. For this model the vacci-
nation is calculated a priori as an average vaccination rate and imple-
mented as a time-dependent function into the model. Moreover, we
made the assumptions that people with already high Anti-S levels do
not get vaccinated anymore, i.e., the amount of people still applying
for vaccination after two infections or vaccinations is negligible.
Because of the non-pathway nature of this model we also fitted the
variant distribution a priori and used this fit as weights for a sum over
the variants’ transmission rates to obtain an effective transmission
rate. The exact formula for this can be found in Supplementary Note 3
of the Supplementary Information.

The models were encoded using the Systems Biology Markup
Language (SBML)36 and simulated via the software toolbox AMICI37.
More comprehensive details regarding themodelingmethodology are
provided in the model subsections of Supplementary Notes 2 and 3 of
the Supplementary Information.
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Parameter estimation
To estimate the model parameters, we adopted a Bayesian approach,
integrating categorial antibody data and sequenced variant infor-
mation, along with national test positivity rates and previous
knowledge derived from the literature regarding disease progression
rates. The model parameter inference was performed using an
adaptive Metropolis-Hastings algorithm from a starting point esti-
mated with frequentistic, gradient-based optimization, both expertly
implemented in the Python Parameter Estimation Toolbox
(pyPESTO)38. In order to capture the temporal dynamics of the
antibody levels, we split each antibody round into early and late
phases using the k-means clustering technique. The resulting sam-
ples from the posterior distribution were post-processed, e.g., by
removing the burn-in, and convergence was assessed visually and
using the Geweke test. The samples were then utilized to derive
predictions and associated credible intervals (CIs), providing valu-
able insights into the dynamics of the pandemic. The parameter
estimation problems were formulated using the Parameter Estima-
tion table (PEtab)39 standard. More information on the parameter
estimation setup and results can be found in the corresponding
subsections of Supplementary Notes 2 and 3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The models and population average data are available at Zenodo
[https://doi.org/10.5281/zenodo.10871139]. The variant sequences are
published in the Sequence Read Archive40 under project number
PRJNA1017685. Individual level data will be made available to other
researchers in a reasonable timeframe upon qualified request to the
corresponding authors AK and AW, due to limitations of data sharing
in the ethics statements. Source data are provided with this paper.

Code availability
The code for model creation,data aggregation and figure plotting is
available at Zenodo [https://doi.org/10.5281/zenodo.10871139].
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1 Supplementary Figures

R2: N=314 
Period: 01 Feb - 07 Mar 2021 
→ Sero+ N=158 (52.0%) 
 

R3: N=369 
Period: 01 Apr – 10 Apr 2021 
→ Sero+ N=234 (63.4%) 
 

R2: N=284 
Period: 12 Dec - 08 Feb 2021 
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LTFU, N=137 (39.3%) 
   → 33 Sero+ (24.1%) 
Missed V2, N=74 

LTFU, N=74 (22.8%) 
   → 25 Sero+ (33.8%) 
Missed V3, N=58 

R2: N=325 
Period: 02 Jan – 25 Feb 2021 
→ Sero+ N=114  (35.1%) 

R3: N=267 
Period: 03 Feb – 16 Mar 2021 
→ Sero+ N=107 (40.1%) 

LTFU, N=50 (9.8%) 
   → 17 sero+ (34.0%) 
Missed V2, N=26 

LTFU, N=50 (11.5%) 
   → 21 sero+ (42.0%) 
Missed V3, N=38 

LTFU, N=106 (29.4%) 
   → 68 sero+ (64.2%) 
Missed V2, N=59 

R1: N=510 
Period: 09 Nov 2020 – 18 Dec 2020  
→ Sero+ N= 157 (30.8%) 

R2: N=434 
Period: 18 Dec 2020 – 04 Jan 2021 
→ Sero+ N=198 (45.6%) 

R3: N=372 
Period: 29 Jan – 15 Feb 2021 
→ Sero+ N= 209 (56.2%) 

R1: N=361 
Period: 05 Dec 2020 – 04 Feb 2021 
→ Sero+ N=211 (46.4%) 

R1: N=536 
Period: 01 Dec 2020 – 01 Feb 2021 
→ Sero+ N=139 (25.9%) 

New part. entering 
study, N=371 

LTFU, N=118 (44.2%) 
   →  55 Sero+ (46.6%) 
Missed V4, N=39 

R5: N=575 
Period: 04 Feb – 25 May 2022 
→ Sero+ N= 543 (94.4%) 

LTFU, N=444 (82.4%) 
   → 258 sero+ (58.1%) 

New part. entering 
study, N=441 

LTFU, N=195 (52.4%) 
   →  116 sero+ (59.5%) 
Missed V4, N=23 

R4: N=508 
Period: 08 Mar – 22 Sept 2021 
→ Sero+ N=364 (71.7%) 

R4: N= 539 
Period: 02 Aug – 15 Sept 2021 
→ Sero+ N=313 (58.1%) 

LTFU, N=418 (%) 
   → 300 sero+ 

New part. entering 
study, N=397 

R5: N=510 
Period: 02 Mar – 25 May 2022 
→ Sero+ N= 490 (96.1%) 

New part. entering 
study, N=316 

New part. entering 
study, N=14 

LTFU, N=191 (44.5%) 
   → 158 sero+ (52.0%) 
Missed V3, N= 41 

New part. entering 
study, N=238 

LTFU, N=188 (%) 
   →  110 sero+ (58.5%) 

New part. entering 
study, N=238 

R4: N=419 
Period: 25 Aug – 08 Sept 2021 
→ Sero+ N=286 (68.3%) 

LTFU, N=419 (%) 
   →  286 sero+ (68.3%) 
 
New part. entering 
study, N=461 

R5: N=461 
Period: 01 Jan– 14 Apr 2022 
→ Sero+ N=458 (99.3%) 

LTFU, N=225 (%) 
   →  14 sero+ (6.2%) 
Missed V2, N=43 

R1: N=461 
Period: 05 Aug 2020 – 03 Sep 2021 
→ Sero+ N=40 (8.6%) 

New part. entering 
study, N=105 

LTFU, N=171 (60.2%) 
   →  73 sero+ (42.7%) 
Missed V3, N=60 

New part. entering 
study, N=2 

LTFU, N=82 (71.3%) 
   →  44 sero+ (53.7%) 
Missed V4, N=20 

New part. entering 
study, N=99 

R4: N=176 
Period: 13 Aug – 30 Sep 2021 
→ Sero+ N=128 (74.4%) 

LTFU, N=169 (%) 
   →  126 sero+ (74.6%) 
 
New part. entering 
study, N=173 

R5: N=196 
Period: 01 Mar– 29 Apr 2022 
→ Sero+ N=189 (96.4%) 

Supplementary Figure 1. Study flow and point prevalence for SARS CoV-2 seropositivity in healthcare workers
and community members recruited in Jimma and Addis Ababa including long-term follow-up (LTFU) numbers and
percentages.
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Supplementary Figure 2. Heatmap of median (bold) cross-immunity levels between variants including 90% CIs
(n=6001 samples after burn-in from Markov chain Monte Carlo). Source data are provided as a Source Data file.
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Supplementary Figure 3. Ro-N-Ig and Ro-RBD-Ig-quant measurements of five rounds of convenience sampled
healthcare workers. a–e Scatterplots displaying the relationship between levels of N- and S-specific antibodies
(y-axis, resp. x-axis) across five rounds of measurement. Known vaccination status of each participant indicated by
colors, cutoff levels indicated by dashed lines and percentages of people per category annotated in red. f–g Evolution
of antibody levels over time between Fall of 2020 and April 2022. Times of sample acquisition are highlighted as
circles. Source data are provided as a Source Data file.
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2 Supplementary Table

Supplementary Table 1. Demographic characteristics of healthcare workers study participants. Age denoted as
median and 90% quantiles. Round 1-3 (R1-R3) are the previous study of Gudina et al 2021.

Jimma Medical Center St Paul’s Hospital
R1

(Nov 20)
R2

(Dec 20)
R3

(Feb 21)
R4

(Aug 21)
R5

(Apr 22)
R1

(Aug 20)
R2

(Dec 20)
R3

(Feb 21)
R4

(Sep 21)
R5

(Apr 22)
Participants 510 434 372 508 510 461 284 116 176 196

Age
26

(22, 39)
26

(23, 41)
26

(23, 39)
28

(21, 39)
29

(23, 50)
28

(22, 42)
28

(20, 42)
26

(20, 42)
26

(21, 42)
30

(23, 40)
Sex

Female
271

(53.1%)
231

(53.2%)
199

(53.5%)
273

(53.7%)
68

(13.3%)
236

(51.2%)
103

(36.3%)
44

(37.9%)
92

(52.3%)
4

(2.0%)

Male
239

(46.9%)
203

(46.8%)
173

(46.5%)
233

(45.9%)
45

(8.8%)
222

(48.2%)
76

(26.8%)
30

(25.9%)
56

(31.8%)
4

(2.0%)

Missing
0

(0.0%)
0

(0.0%)
0

(0.0%)
2

(0.4%)
397

(77.8%)
3

(0.7%)
105

(37.0%)
42

(36.2%)
28

(15.9%)
188

(95.9%)
Anti-N
positive

157
(30.8%)

198
(45.6%)

209
(56.2%)

364
(71.7%)

490
(96.1%)

40
(8.7%)

112
(39.4%)

60
(51.7%)

128
(72.7%)

189
(96.4%)

Vaccinated
0

(0.0%)
0

(0.0%)
0

(0.0%)
217

(42.7%)
149

(29.2%)
0

(0.0%)
0

(0.0%)
0

(0.0%)
71

(40.3%)
5

(2.6%)

5/30



3 Supplementary Note 1: Analysis of Antibody and Variant Data

Clustering of Antibody Data

The distribution for the Anti-S antibody levels in Figure SN1 has three distinct peaks: one peak close to zero, one
peak at 2 and one peak at 3.5. Comparing to the distributions with reactivity of Anti-N and with the vaccination
information one can derive that the first of those two peaks corresponds to one infection or vaccination and the
second to two or more infections or vaccinations.
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Figure SN1. Distributions of Anti-S antibody levels for healthcare workers and community members. Reactivity
of Anti-N and vaccination status highlighted by colors (first resp. second row for each group). Source data are
provided as a Source Data file.

As we use a compartment model for the subsequent analysis, we decided to categorize the antibody measurements
based on the observed groups. Therefore, we combined all community measurements, respectively healthcare
worker measurements, from different sites and rounds. First, we individually processed N and S measurements,
excluding NaN values and measurements below the detection threshold. We utilized scikit-learn’s k-means clustering
implementation to categorize the remaining data points above the threshold into two distinct groups1. We chose
clustering the antibody datasets separately, i.e. 1-dimensional clustering, motivated by the bi-modal distributions we
observed in the histograms for Anti-S. Moreover, the separate clustering of the Anti-N or Anti-S data provides: (i) a
slightly higher statistical power, since for some study participants only one the antibody tests, Anti-N or Anti-S,
was successful; and (ii) clear cutoff values for aggregated Anti-S measurements (e.g. by using midpoint of the two
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resulting groups’ centers), which is necessary for the multivariant model. The performance of the k-means clustering
can be observed in Figure SN2.
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Figure SN2. Distribution of positive antibody measurements for community members and healthcare workers
(HCW). Thresholds computed with k-means clustering are highlighted. Source data are provided as a Source Data
file.

To visualize the data, the three groups (below the detection limit, above the limit but below the category separation,
and above the category separation) were aggregated for each round. We employed the monotonic cubic spline
interpolation of the scipy2 package to interpolate the resulting values (Figure 1 of the main manuscript).

There was no vaccine publicly available in Ethiopia until after Round 33. Because of this information about general
vaccine availability in combination with our previous observation that vaccinated individuals are more likely to
answer questions on the vaccination status on the questionnaire than unvaccinated individuals, we considered
individuals without an answer (“N/A”) as “unvaccinated” for modelling. This is also supported by official nation
wide numbers of people with at least one dose of vaccine, provided by Our World in Data (ourworldindata.org) and
depicted in Figure SN3. Moreover, we treat the effect of vaccine and infection on Anti-S levels analogously. This
is based on the comparison of the observed antibody levels for healthcare workers (Supplementary Figure 1) and
community members (Figure 1). There from Round 3 to Round 4 for healthcare workers a clear shift from medium
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Anti-S to high Anti-S is observed in response to vaccination, but community members reach the same levels by
infections alone.
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Figure SN3. Histograms of distributions of vaccination information from study participants at each round. “N/A”
responses before public availability of vaccine in Ethiopia are highlighted by hatching. For community members
official, national vaccination numbers (provided by Our World in Data) are indicated in red above each round and
percentages from our data set of “N/A” responses after public availability of vaccines in Ethiopia are displayed
inside of the corresponding bars. Source data are provided as a Source Data file.

Sequencing Result of Variant Data

For the sequencing data, we merged the data sets from Addis Ababa and Jimma sites and removed entries, where
sequencing failed. The observed Pango4 lineages were assessed for Mutations of Interest or Concern (MOIC) by
referencing the outbreak.info5, 6 database. Based on these mutations, the lineages were grouped and groups lacking
sufficient statistical power, i.e. sample size below 3, were dropped from the data set. The complete list of observed
lineages and their mutations is provided in Table SN1. The samples were then aggregated by the month of collection
and interpolated using scipy’s monotonic cubic spline interpolation for visualization purposes (Figure 2a of main
part).

Table SN1. Variants detected by sequencing.

Pango lineage Samples MOIC Grouped lineage

A 4 - wildtype
A.24 1 - wildtype
A.29 2 N501Y dropped
AY.120 14 L452R, P681R delta
AY.127.1 1 L452R, P681R delta
AY.20 9 L452R, P681R delta
AY.26 1 L452R, P681R delta
AY.32 8 L452R, P681R delta
AY.4 4 L452R, P681R delta
AY.43 5 L452R, P681R delta

continued on next page
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Table SN1, continued

Pango lineage Samples MOIC Grouped lineage

AY.44 7 L452R, P681R delta
AY.45 1 L452R, P681R delta
AY.46 1 L452R, P681R delta
AY.65 4 L452R, P681R delta
AY.83 1 L452R, P681R delta
AY.85 1 L452R, P681R delta
AY.95 1 L452R, P681R delta
B.1 56 - wildtype
B.1.1 6 - wildtype
B.1.1.7 182 N501Y, P681H alpha
B.1.117 1 - wildtype
B.1.160 2 - wildtype
B.1.177.73 1 - wildtype
B.1.178 3 - wildtype
B.1.351 11 N501Y, E484K, K417N beta
B.1.351.5 1 N501Y, E484K, K417N, L18F dropped
B.1.36.17 2 - wildtype
B.1.36.19 1 - wildtype
B.1.395 1 - wildtype
B.1.402 1 - wildtype
B.1.480 45 N439K wildtype*
B.1.525 11 E484K eta
B.1.558 1 - wildtype
B.1.576 1 - wildtype
B.1.617.2 55 L452R, P681R delta
BA.1 24 S477N, N501Y, P681H omicron BA.1
BA.1.1 57 S477N, N501Y, P681H omicron BA.1
BA.1.14 1 S477N, N501Y, P681H omicron BA.1
BA.1.17 14 S477N, N501Y, P681H omicron BA.1
BA.1.18 1 S477N, N501Y, P681H omicron BA.1
BA.1.9 2 S477N, N501Y, P681H omicron BA.1
BA.2 1 S477N, N501Y, K417N, P681H dropped
BA.2.10 1 S477N, N501Y, K417N, P681H dropped
BA.4 1 L452R, S477N, N501Y, K417N, P681H omicron BA.4/5
BA.4.1 20 L452R, S477N, N501Y, K417N, P681H omicron BA.4/5
BA.4.1.1 1 L452R, S477N, N501Y, K417N, P681H omicron BA.4/5
BA.5.2 1 L452R, S477N, N501Y, K417N, P681H omicron BA.4/5
BF.2 1 L452R, S477N, N501Y, K417N, P681H omicron BA.4/5
Q.1 2 N501Y, P681H alpha
Q.4 1 P681R, N501Y, P681H dropped
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Figure SN4. Antibody data of community members and healthcare workers by site of collection. Source data are
provided as a Source Data file.
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4 Supplementary Note 2: Multivariant Model

The multivariant model is encoded in the SBML7 format, integrated with the parameter estimation problem in the
PEtab8 format and made available at Zenodo9. In the following, we provide a compact mathematical description,
while for additional details we refer to the SBML file and the code.

Model Equations

We utilize the SEIR (susceptible, exposed, infectious, and recovered) framework as basis for our model structure.
Assuming a maximum number of 4 infections all combinations of our 8 variants would lead to a system of 84 = 4096
pathways. Hence in order to obtain a computationally feasible system while still retaining realism we exclude
pathways which deviated from the chronological order of variant appearances worldwide. We define by Pi the set of
potential reinfections after infection with variant i, described by Table SN2 where vaccination is treated as previous
infection with the wildtype variant. Furthermore to account for the reported inter-infection intervals we assume third
infections before omicron played a negligible role and allow a fourth infection only for omicron BA.4/5, i.e. Pi

collapses to {7,8} resp. {8}. For i = 1, . . . ,8 representing the variant index, where these numbers correspond to
columns in Table SN2, we have the following equations for first infection or vaccination

Ṡ =−βiÎiS
N
− v1S S(0) = 120.3e6

Ėi =
βiÎiS

N
−κEi Ei(0) = 0

İi = κEi− γIi Ii(t0i) = 1

Ṙi = γIi− ∑
j∈Pi

βi j Î jRi

N
− v1Ri Ri(0) = 0

Ṙv = v1S− ∑
j=1,...,8

β j Î jRv

N
− v2Rv Rv(0) = 0,

where Îi is the sum of all currently infected with variant i, N the sum of all state variables, t0i the entrance date of
variant i and vk denote the k-th vaccination rates.

Table SN2. Boolean table of possible reinfections, where 1 means reinfection in model possible and 0 means no
reinfection allowed. Rows represent variants of previous infection and columns the variants of reinfection.

wildtype wildtype* alpha beta eta delta omicron
BA.1

omicron
BA.4/5

wildtype 1 1 1 1 1 1 1 1
wildtype* 1 1 1 1 1 1 1 1
alpha 0 0 1 1 1 1 1 1
beta 0 0 1 1 1 1 1 1
eta 0 0 1 1 1 1 1 1
delta 0 0 0 0 0 1 1 1
omicron BA.1 0 0 0 0 0 0 1 1
omicron BA.4/5 0 0 0 0 0 0 1 1
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The second infections and vaccinations for i = 1, . . . ,8,v (numbers for infections, v for vaccination) and j = 1, . . . ,8
are described by

Ėi j =
βi j Î jRi

N
−κEi j Ei j(0) = 0

İi j = κEi j− γIi j Ii j(0) = 0

Ṙi j = γIi j− ∑
k=7,8

βi jk ÎkRi j

N
− vn(i, j)+1Ri j Ri j(0) = 0

Ṙiv = vn(i,v)Ri− ∑
k=7,8

βivk ÎkRiv

N
− vn(i,v)+1Riv Riv(0) = 0,

where n(Idx) := #{v ∈ Idx}.
For i, j = 1, . . . ,8,v and k = 7,8 we obtain the third infection or vaccination equations

Ėi jk =
βi jk ÎkRi j

N
−κEi jk Ei jk(0) = 0

İi jk = κEi jk− γIi jk Ii jk(0) = 0

Ṙi jk = γIi jk−
βi jk8Î8Ri jk

N
− vn(i, j,k)+1Ri jk Ri jk(0) = 0

Ṙi jv = vn(i, j,v)Ri j−
βi jv8Î8Ri jv

N
− vn(i, j,v)+1Ri jv Ri jv(0) = 0,

where v4 = 0.

And finally for the fourth infection we have the equations for i, j = 1, . . . ,8,v and k = 7,8,v

Ėi jk8 =
βi jk8Î8Ri jk

N
−κEi jk8 Ei jk8(0) = 0

İi jk8 = κEi jk8− γIi jk8 Ii jk8(0) = 0

Ṙi jk8 = γIi jk8 Ri jk8(0) = 0.

The effective infection rates βIdx are split into three parts

βIdx = sseassreinf(Idx)β̂Idx[−1],

the seasonality factor sseas, the reinfection factor sreinf and the transmission rate β̂Idx[−1] of the currently encountered
variant Idx[−1], i.e. variant corresponding to last index entry of Idx.

The seasonality is formulated as follows

sseas(t) = (1− sfrac)+ sfrac exp(sin(2πt/365+ sshift))/exp(1),

where sfrac denotes the fraction of seasonality effect, i.e. it equals 1 if transmission rates are fully governed by as
yearly cycle and it equals 0 if there is no seasonal effect. The sinus function introduces the periodicity which is
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scaled to have a period of one year. Its peak is shifted by the parameter seasshift and the exponential function ensures
positivity.

The reinfection factor depends on the previously encountered variants encoded in all but the last index entries
Idx[:−1] and the currently encountered variant encoded in the last index entry Idx[−1] and is formulated as follows

sreinf(Idx) =

{
1, if |Idx|= 1

(1− s0)(1− s)d(Idx[:−1],Idx[−1]), otherwise.

Here d(x,y) is the Hamming distance between MOIC observed in variant y and MOIC observed in variant or
combination of variants x. The case where the previous infection(s) x is only one variant, not multiple ones, is
depicted in main paper’s Figure 2e. The parameters s0 and s encode the risk reduction for being encountered with
the same variant as previously and the risk reduction for an infection with a variant with mutation distance 1 to the
former infection’s variant, respectively.

In order to incorporate prior knowledge about the variants transmission rates β̂i, which is often provided relative
between different variants, they are defined as multiplicatives of a base transmission rate βb or of other β̂ j as depicted
in Table SN3.

Table SN3. Definition of transmission rates for different variants.

wildtype wildtype* alpha beta eta delta
omicron

BA.1
omicron
BA.4/5

β̂1 = β̃1 ·βb β̂2 = β̃2 ·βb β̂3 = β̃3 ·βb β̂4 = β̃4 ·βb β̂5 = β̃5 · β̂3 β̂6 = β̃6 · β̂3 β̂7 = β̃7 · β̂6 β̂8 = β̃8 · β̂7

Data Integration

The initial time of our model t = 0 is set to be the 13th of March 2020 as this was stated by national test positivity
data as first Covid-19 case in Ethiopia.

In order to map the model to our data we define three types of observables: Anti-S antibody prevalence, variant
distribution and national incidence numbers. Antibody prevalence is observed as levels of 1 infection or vaccination
and 2 or more infections or vaccinations and hence, its observable functions are defined by

A1 =

(
∑|Idx|=1 RIdx +∑|Idx|=2(EIdx + IIdx)

N

)

A2 =

(
∑|Idx|>1 RIdx +∑|Idx|>2(EIdx + IIdx)

N

)
.

The variant observables are defined for i = 1, . . . ,8 as

Vi =
Îi

∑ j Î j
.

Finally the national test positivity rate is mapped to model simulations by
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Figure SN5. Spline fits to cumulative counts of first, second and third vaccination information obtained from the
antibody study’s participants. Source data are provided as a Source Data file.

Itpr = stpr
∑ j Î j

N
,

where stpr will be estimated.

Measurement errors are assumed to be normally distributed for each time point and observable with standard
deviations taken from the multinomial error estimation described below.

The three vaccination rates for first, second and third vaccination v1, v2 and v3 are fit previously to the parameter
estimation as part of the modeling, by fitting monotonic cubic splines to the antibody cohorts’ vaccination information
and incorporating those splines directly as time dependent functions into the model. The result of those fittings can
be seen in Figure SN5.

For improved time resolution of the antibody data in the estimation process while remaining reasonable errors we
split each round into two subrounds by performing k-means clustering on its sampling dates (Figure SN6). The
antibody prevalence levels were clustered as described in Supplementary Note 3 and then aggregated within the
subrounds.

Error estimates for antibody and variant data were obtained by fitting multinomial models for each data-type
timepoint combination using pymc310. Error estimates for the national test positivity rate were obtained by fitting
binomial models using pymc3. The sample sizes used for these estimations are listed in Table SN4.

Parameter Estimation

There are a total of 24 model and observation parameters subject to estimation. They are listed in Table SN5
including prior information, boundaries, the maximum a-posteriori used as starting point of sampling (obtained by
gradient based optimisation) and their sampling result.

For the base transmission rate we use as priors the Bayesian estimation results of the SEIR model of our previous
study and priors for incubation and recovery times are taken from literature as established in before11. Also prior
information about the increased transmission rates of variants are taken from literature, where available.

The parameter sampling for the multivariant model was performed with a sample size of 1.5e4. The first 9e3 samples
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Figure SN6. Subgroups of antibody sampling rounds obtained by k-means clustering of sampling dates for
community members and healthcare workers. Source data are provided as a Source Data file.
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Table SN4. Sample sizes of aggregated measurements used for fitting the multivariant model. Listed per
corresponding observable and total sample sizes per time point. Time depicted in days since 20th March 2020.

(a) Anti-S antibody levels

Time A1 A2 neg. ∑

266 105 12 335 452
295 44 6 69 119
301 44 6 63 113
310 36 9 22 67
313 27 3 44 74
320 30 2 56 88
328 38 12 33 83
346 45 11 52 108
347 43 7 37 87
359 27 2 40 69
385 79 11 50 140
391 95 26 30 151
512 137 39 84 260
524 135 60 80 275
530 85 30 29 144
543 98 57 28 183
741 38 194 8 240
747 78 291 8 377
754 58 106 1 165
757 30 164 0 194

(b) Variant distributions

Time V1 V2 V3 V4 V5 V6 V7 V8 ∑

216 5 2 0 0 0 0 0 0 7
247 4 1 0 0 0 0 0 0 5
277 4 1 0 0 0 0 0 0 5
311 18 9 15 1 0 0 0 0 43
333 23 19 28 6 0 0 0 0 76
369 25 12 60 0 0 0 0 0 97
403 1 0 37 3 6 0 0 0 47
426 1 1 22 1 5 1 0 0 31
459 0 0 8 0 0 0 0 0 8
489 0 0 14 0 0 1 0 0 15
520 0 0 0 0 0 13 0 0 13
551 0 0 0 0 0 55 0 0 55
583 0 0 0 0 0 18 0 0 18
610 0 0 0 0 0 14 1 0 15
646 0 0 0 0 0 11 48 0 59
666 0 0 0 0 0 0 41 0 41
692 0 0 0 0 0 0 4 0 4
723 0 0 0 0 0 0 1 0 1
817 0 0 0 0 0 0 3 4 7
843 0 0 0 0 0 0 0 20 20

(c) National test positivity rates

Time 247 278 309 338 368 398 429 459 490 521 551 582 612 643 674 703 733 763 794 824 855 886

Itpr 30 31 31 28 31 30 31 29 31 31 30 31 30 31 31 28 31 30 31 30 31 31
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Figure SN7. Multivariant model’s sampled log-posterior and parameter traces. Burn in phase is cut off. Source
data are provided as a Source Data file.

were removed as burn-in. The remaining sample passed the Geweke convergence test as well as visual examination
(Figure SN7). Parameter correlations and distributions are depicted in Figure SN8.

Model Analysis

The model estimates the entry time points of most variants substantially later than the first global appearance
according to outbreak.info (Figure SN9). Global reporting and local estimation coincide only for wildtype*, alpha
and beta, the latter of which does not play a large role in the overall dynamics observed and estimated by us.

Including the top ten infection-vaccination pathways depicted in main paper’s Figure 4 the model estimated 68
pathways contributing more than 0.1 % (Table SN6). We calculated them by checking sizes of all, and in particular
the recovered compartments, after simulating the model until t = 1200, where we encountered equilibrium due to
the lack of new variants after omicron. Then we investigated the transitions inside the pathways (Figure 4c of main
manuscript) by appropriately scaling and stack-plotting the time courses of all recovery states being part of the
pathway. For example for R1,2,3,4 this we would plot R1, R1,2, R1,2,3 and R1,2,3,4.
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Table SN5. Parameters of the multivariant model.

Parameter
Sampling result -
Median (CI 95%)

Parameter
bounds

Scale used
for sampling

Prior (in scale)
Maximum
a-posteriori

Unit

βb 0.13 (0.12, 0.14) [0.01,1] log10 N (−1.10;0.06)11 0.13 day−1

κ−1 1.01 (0.94, 1.07) [0.1,100] log N (1.63;0.50)12 1.12 day(s)
γ−1 8.64 (8.44, 8.89) [0.1,100] linear N (15.7;6.7)13 8.38 day(s)
β1 1.89 (1.79, 1.98) [1.0,10] linear - 1.97 -
β2 1.88 (1.77, 1.97) [1.0,10] linear - 1.96 -
β3 2.24 (2.11, 2.35) [1.0,10] linear N (1.82;0.22)14 2.35 -
β4 1.62 (1.52, 1.73) [1.0,10] linear N (1.50;0.24)15 1.50 -
β5 1.02 (1.00, 1.06) [1.0,10] linear - 1.00 -
β6 1.99 (1.95, 2.04) [1.0,10] linear N (1.99;0.04)16 2.00 -
β7 1.07 (1.02, 1.13) [1.0,10] linear N (1.1;0.05)17 1.09 -
β8 2.85 (2.69, 3.04) [1.0,10] linear - 2.70 -
s0 0.90 (0.85, 0.97) [0.001,1] log10 - 0.87 -
s 0.84 (0.81, 0.86) [0.001,1] log10 - 0.85 -
sshift 155.72 (155.60, 155.84) [0.0,365] linear - 155.80 day(s)
sfrac 0.50 (0.43, 0.55) [0.0,1] linear - 0.48 -
t1 56.97 (56.83, 57.09) [1.0,216] linear - 57.00 day(s)
t2 82.05 (82.00, 82.12) [82.0,216] linear - 82.00 day(s)
t3 144.08 (144.01, 144.26) [144.0,311] linear - 144.00 day(s)
t4 142.11 (142.01, 142.23) [142.0,311] linear - 142.00 day(s)
t5 402.88 (402.73, 402.97) [1.0,403] linear - 403.00 day(s)
t6 380.98 (380.88, 381.09) [323.0,426] linear - 381.00 day(s)
t7 550.91 (550.71, 551.10) [508.0,610] linear - 551.00 day(s)
t8 775.22 (774.97, 775.55) [560.0,817] linear - 775.00 day(s)
stpr 1.10 (1.01, 1.32) [1.0,10] log10 - 1.01 -

04-2020 08-2020 12-2020 04-2021 08-2021 12-2021 04-2022 08-2022
wildtype

wildtype*

alpha

beta

eta

delta

omicron BA.1

omicron BA.4/5 First global appearance
Earliest date in data set
Estimated entry time

Figure SN9. Estimated entry times of variants. First global appearance and earliest date in sequenced data set
included for comparison. Source data are provided as a Source Data file.
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Table SN6. Pathways of the multivariant model which account for more than 0.1%

Rank Pathway Median - 90% CI

1 wildtype - delta - vaccine - omicron BA.4/5 12.7% (10.9%,14.4%)
2 delta - omicron BA.4/5 - omicron BA.4/5 6.4% (5.0%,7.6%)
3 alpha - delta - vaccine - omicron BA.4/5 6.2% (4.6%,7.8%)
4 wildtype - delta - omicron BA.4/5 - omicron BA.4/5 6.0% (4.5%,7.4%)
5 delta - vaccine - omicron BA.4/5 - omicron BA.4/5 5.8% (4.6%,7.0%)
6 delta - vaccine - vaccine - omicron BA.4/5 4.9% (4.2%,5.7%)
7 wildtype* - delta - vaccine - omicron BA.4/5 3.9% (3.0%,4.9%)
8 wildtype - delta - omicron BA.1 - omicron BA.4/5 3.8% (2.2%,5.7%)
9 delta - delta - vaccine - omicron BA.4/5 3.4% (1.6%,5.2%)

10 alpha - delta - omicron BA.4/5 - omicron BA.4/5 3.0% (2.2%,4.1%)
11 delta - omicron BA.1 - omicron BA.4/5 3.0% (1.8%,4.3%)
12 wildtype - vaccine - vaccine - omicron BA.4/5 2.9% (2.5%,3.4%)
13 delta - vaccine - omicron BA.1 - omicron BA.4/5 2.5% (1.5%,3.7%)
14 wildtype* - delta - omicron BA.4/5 - omicron BA.4/5 2.0% (1.4%,2.5%)
15 wildtype - alpha - vaccine - omicron BA.4/5 1.9% (1.5%,2.5%)
16 wildtype - vaccine - omicron BA.4/5 - omicron BA.4/5 1.8% (1.1%,2.3%)
17 delta - delta - omicron BA.4/5 - omicron BA.4/5 1.7% (0.7%,2.9%)
18 alpha - delta - omicron BA.1 - omicron BA.4/5 1.4% (0.8%,2.3%)
19 wildtype - vaccine - omicron BA.4/5 1.3% (0.8%,2.1%)
20 wildtype* - delta - omicron BA.1 - omicron BA.4/5 1.3% (0.7%,2.0%)
21 wildtype - omicron BA.4/5 - omicron BA.4/5 1.3% (0.8%,1.6%)
22 wildtype - delta - omicron BA.4/5 1.1% (0.9%,1.3%)
23 vaccine - delta - vaccine - omicron BA.4/5 1.1% (0.9%,1.2%)
24 delta - vaccine - omicron BA.4/5 1.1% (0.8%,1.5%)
25 delta - delta - omicron BA.1 - omicron BA.4/5 1.0% (0.5%,1.6%)
26 wildtype - vaccine - omicron BA.1 - omicron BA.4/5 1.0% (0.5%,1.6%)
27 alpha - vaccine - vaccine - omicron BA.4/5 0.8% (0.6%,1.0%)
28 delta - omicron BA.1 - vaccine - omicron BA.4/5 0.8% (0.4%,1.3%)
29 wildtype* - vaccine - vaccine - omicron BA.4/5 0.7% (0.5%,0.9%)
30 wildtype - omicron BA.1 - omicron BA.4/5 0.7% (0.4%,1.1%)
31 wildtype* - alpha - vaccine - omicron BA.4/5 0.7% (0.5%,0.9%)
32 vaccine - delta - omicron BA.4/5 - omicron BA.4/5 0.6% (0.5%,0.8%)
33 alpha - delta - omicron BA.4/5 0.6% (0.5%,0.9%)
34 wildtype - alpha - omicron BA.4/5 - omicron BA.4/5 0.6% (0.3%,0.9%)
35 wildtype - wildtype - vaccine - omicron BA.4/5 0.6% (0.3%,1.0%)
36 delta - omicron BA.4/5 - vaccine 0.6% (0.4%,0.8%)
37 wildtype* - vaccine - omicron BA.4/5 - omicron BA.4/5 0.6% (0.4%,0.7%)
38 alpha - vaccine - omicron BA.4/5 - omicron BA.4/5 0.5% (0.3%,0.7%)
39 wildtype - omicron BA.4/5 - vaccine 0.5% (0.3%,0.8%)
40 wildtype - wildtype* - vaccine - omicron BA.4/5 0.5% (0.3%,0.6%)

continued on next page

21/30



Table SN6, continued

Rank Pathway Median - 90% CI

41 wildtype - alpha - omicron BA.4/5 0.5% (0.3%,0.8%)
42 vaccine - delta - omicron BA.1 - omicron BA.4/5 0.4% (0.2%,0.6%)
43 wildtype* - wildtype - vaccine - omicron BA.4/5 0.4% (0.3%,0.5%)
44 alpha - vaccine - omicron BA.4/5 0.4% (0.2%,0.7%)
45 delta - omicron BA.1 - omicron BA.1 0.3% (0.1%,0.8%)
46 wildtype* - omicron BA.4/5 - omicron BA.4/5 0.3% (0.2%,0.4%)
47 delta - delta - omicron BA.4/5 0.3% (0.2%,0.4%)
48 wildtype* - alpha - omicron BA.4/5 - omicron BA.4/5 0.3% (0.2%,0.4%)
49 alpha - omicron BA.4/5 - omicron BA.4/5 0.3% (0.2%,0.4%)
50 wildtype* - vaccine - omicron BA.1 - omicron BA.4/5 0.3% (0.1%,0.4%)
51 vaccine - vaccine - omicron BA.4/5 - omicron BA.4/5 0.2% (0.2%,0.3%)
52 vaccine - omicron BA.4/5 - omicron BA.4/5 0.2% (0.2%,0.3%)
53 wildtype - alpha - omicron BA.1 - omicron BA.4/5 0.2% (0.1%,0.3%)
54 wildtype - wildtype* - omicron BA.4/5 - omicron BA.4/5 0.2% (0.1%,0.2%)
55 wildtype* - delta - omicron BA.4/5 0.2% (0.1%,0.2%)
56 vaccine - vaccine - omicron BA.4/5 0.2% (0.1%,0.3%)
57 wildtype - wildtype - omicron BA.4/5 - omicron BA.4/5 0.2% (0.0%,0.3%)
58 wildtype - omicron BA.1 - vaccine - omicron BA.4/5 0.2% (0.1%,0.3%)
59 wildtype* - wildtype - omicron BA.4/5 - omicron BA.4/5 0.2% (0.1%,0.2%)
60 wildtype* - omicron BA.1 - omicron BA.4/5 0.1% (0.1%,0.2%)
61 alpha - vaccine - omicron BA.1 - omicron BA.4/5 0.1% (0.1%,0.2%)
62 delta - omicron BA.4/5 - vaccine - omicron BA.4/5 0.1% (0.1%,0.2%)
63 alpha - alpha - vaccine - omicron BA.4/5 0.1% (0.1%,0.2%)
64 wildtype - wildtype - omicron BA.4/5 0.1% (0.1%,0.2%)
65 vaccine - delta - omicron BA.4/5 0.1% (0.1%,0.1%)
66 alpha - omicron BA.4/5 - vaccine 0.1% (0.1%,0.2%)
67 vaccine - omicron BA.1 - omicron BA.4/5 0.1% (0.1%,0.2%)
68 wildtype - wildtype - omicron BA.1 - omicron BA.4/5 0.1% (0.0%,0.2%)

Alternative Model Formulations

Initially we considered three potential model extensions: (i) Describing cross-immunities independently of MOIC.
(ii) Allowing all pathways between variants. (iii) No grouping of variants.
In the end all of these formulations proved impractial. For (i) we would have to model individual parameters for
each combination of past infections and new infections. Even with the other simplifications of the model still in
place this leads to a total of 205 immune escape factors instead of the two we have in the current model. For such a
high dimensional parameter estimation the dataset would have been insufficient to inform. (ii) would result in a
model with 12289 different states being computationally infeasible. Extension (iii) implies 50 different variants
instead of the current 8 lineages. Even if we disregard the low statistical power we have for some of these single
sublineages, we would still end up with more than 10000 different model states and five times as many parameters

22/30



as in our current model, make this computationally and with respect to the information in our data set infeasible.
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5 Supplementary Note 3: Antibody-level Model

The antibody-level model is encoded in the SBML format, integrated with the parameter estimation problem in the
PEtab format and made available at Zenodo9. In the following, we provide a compact mathematical description,
while for additional details we refer to the SBML file and the code.

Model Equations

The antibody-level model described the distribution of individuals with a certain combination of Anti-S and Anti-N
antibody levels. For each antibody, we consider three discrete catgories, with index i =0 (low), 1 (medium), 2
(high) being used for Anti-S antibody categories and index j =0 (low), 1 (medium), 2 (high) being used for Anti-N
antibody categories. The distribution changes over time due to infection as well as vaccination and antibody decay.
Defining χbool as the indicator function, i.e. χtrue = 1 and χfalse = 0, we modelled the time evolution of Ai j, i.e.
individuals with Anti-S antibody levels in category i and Anti-N antibody levels in category j, as

Ȧi j =−
βi j ÎAi j

N
− vAi jχi≤1

+ γ (Ii, j−1χi=2 + Ii−1, jχ j=2 + Ii, jχi=2χ j=2 +(1−θ χi=1) Ii−1, j−1 +θ χi=1Ii−2, j−1)χi≥1χ j≥1

+δNAi+1, jχi≤1 +δSAi, j+1χ j≤1 +δSNAi+1, j+1χi≤1χ j≤1

+ vAi−1, jχi≥1

− (δN χi≥1 +δSχ j≥1 +δSNχi≥1χ j≥1)Ai j

Ėi j =
βi j ÎAi j

N
−κEi j

İi j =κEi j− γIi j,

with initial conditions

Ai j(0) =

{
120.3e6 if i = j = 0

0 otherwise

Ei j(0) = 0

Ii j(t0) =

{
1 if i = j = 0

0 otherwise.

Here, Î is the sum of all infected and N is the sum of all state variables. The fraction θ of getting boosted Anti-N
levels after recovery as well as the decays δ will be estimated. Moreover βi j is structured as

βi j = (1− s1)
χi≥1 or j≥1(1− s2)

χi=2 or j=2
8

∑
k=1

αkβ̂k,

where the immunity factors s1 and s2 are obtained via estimation. The αi are the normalized Gaussian fits to the
variant distributions, described above and shown in Figure SN11. βi are the variants’ transmission rates again defined
as multiplicatives of each other as for the multivariant model depicted in Table (SN3). Without loss of generality
here we assume that β1 = βb.
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Table SN7. Sample sizes for aggregated 2-dimensional antibody measurements corresponding to the observables
Ãi j and total sample sizes per time point. Time depicted in days since 20th March 2020.

Time Ã00 Ã01 Ã02 Ã10 Ã11 Ã12 Ã20 Ã21 Ã22 ∑

266 332 10 0 3 62 1 0 33 11 452
295 67 3 0 0 19 0 0 20 6 115
301 60 2 0 3 25 1 0 17 5 113
310 22 9 0 0 11 4 0 15 4 65
313 43 4 0 1 10 0 0 13 3 74
320 51 10 1 2 14 0 3 6 1 88
328 32 4 0 0 20 1 0 13 11 81
346 51 8 0 1 27 3 0 10 8 108
347 33 5 0 2 22 0 0 13 6 81
359 39 2 0 1 20 1 0 5 1 69
385 24 32 5 15 26 2 11 21 4 140
391 6 28 6 12 37 14 12 30 6 151
512 80 22 1 4 71 13 0 44 25 260
524 79 38 3 1 72 19 0 25 38 275
530 7 33 9 13 34 14 9 18 7 144
543 7 26 24 13 35 18 8 33 15 179
741 8 5 3 0 15 24 0 18 167 240
747 6 13 3 2 41 53 0 24 235 377
754 1 7 0 0 24 11 0 27 95 165
757 0 2 0 0 6 15 0 22 149 194

Data Integration

Initial time of the model t = 0 is set to be the 13th of March 2020 as for the multivariant model.

The observables mapping the antibody-level model to data are

Ãi j =
Ai j +Ei j + Ii j

N
and the national test positivity data is mapped with a scaling as before for the multivariant model.

Measurement errors are assumed to be normally distributed and obtained by multinomial error modelling as described
above. The sample sizes used for the error estimates of the nine antibody categories are listed in Table SN7.

The antibody rounds are split into subgroups by sampling dates and clustered into categories as before. Moreover
errors of all data types for estimation are again obtained by multinomial, resp. binomial, models.

The vaccination rate v is implemented as a piecewise linear function which is calculated by monthly averaging the
vaccination information of the antibody sampling cohort a priori to the parameter estimation. The results of this
can be seen in Figure SN10. Note in the equations of the model we made the assumptions that people with already
high Anti-S levels do not get vaccinated anymore, i.e. the amount of people still applying for vaccination after two
infections or vaccinations is negligible.

For the antibody-level model the variant data is directly incorporated as a time-dependent function. First, the variant
data is aggregated into 2-month bins, and Gaussian kernels are fit to the distributions using scipy’s "minimize"
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Figure SN10. Monthly averaged vaccination rates and cumulative vaccinations of antibody study’s cohort. Source
data are provided as a Source Data file.
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Figure SN11. Fits of normalized Gauss kernels to mean variant data. Variant data depicted as mean -/+ standard
deviations. Sample sizes listed in Table SN4(b). Source data are provided as a Source Data file.

function. Finally, the distributions are normalized so that they sum up to 1. The result of this fitting process is
illustrated in Figure SN11.

Parameter Estimation

There are a total of 20 model and observation parameters subject to estimation. They are listed in Table SN8
including prior information, boundaries, the maximum a-posteriori used as starting point of sampling (obtained by
gradient based optimisation) and their sampling result.

The parameter sampling for the multivariant model was performed with a sample size of 1e5. The first 7e4 samples
were removed as burn-in. The remaining sample passed the Geweke convergence test as well as visual examination
(Figure SN12). Parameter correlations and distributions are depicted in Figure SN13.
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Table SN8. Parameters of the antibody-level model.

Parameter
Sampling result -
Median (CI 95%)

Parameter
bounds

Scale used
for sampling

Prior (in scale)
Maximum
a-posteriori

Unit

κ−1 1.1 (0.868, 1.35) [0.01,100] log N (1.63;0.50)12 1.22 day(s)
γ−1 18.7 (18.4, 19) [0.01,100] linear N (15.7;6.7)13 18.8 day(s)
β1 0.152 (0.145, 0.159) [0.01,1] log10 N (−1.10;0.06)11 0.153 day−1

β2 9.93 (9.8, 10) [1,10] linear - 9.99 -
β3 1.67 (1.45, 1.92) [1,10] linear N (1.82;0.22)14 1.67 -
β4 1.5 (1.21, 1.79) [1,10] linear N (1.50;0.24)15 1.54 -
β5 1.4 (1.03, 2.03) [1,10] linear - 1.2 -
β6 1.99 (1.92, 2.05) [1,10] linear N (1.99;0.04)16 1.99 -
β7 1.09 (1.02, 1.17) [1,10] linear N (1.1;0.05)17 1.1 -
β8 2.77 (2.45, 3) [1,10] linear - 2.89 -
δN 0.000135 (6.18e-05, 0.000245) [1e-05,0.01] log10 - 0.00019 day−1

δS 2.29e-05 (1.09e-05, 6.15e-05) [1e-05,0.01] log10 - 1.94e-05 day−1

δSN 1.29e-05 (1.02e-05, 1.96e-05) [1e-05,0.01] log10 - 1.58e-05 day−1

t0 91.4 (76.1, 106) [1,250] log10 - 100 day(s)
sfrac 0.995 (0.984, 1) [0,1] linear - 0.999 -
sshift 213 (213, 213) [0,365] linear - 213 day(s)
θ 0.342 (0.296, 0.386) [0.001,1] log10 - 0.351 -
s1 0.736 (0.677, 0.791) [0.001,1] log10 - 0.737 -
s2 0.635 (0.523, 0.753) [0.001,1] log10 - 0.629 -
stpr 1.03 (1, 1.09) [1,10] log10 - 1 -
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Figure SN12. Antibody-level model’s sampled log-posterior and parameter traces. Burn in phase is cut off. Source
data are provided as a Source Data file.
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Abstract

Waddington’s landscape provides a conceptual model for developmental processes. It is
the basis of various mathematical models describing cell maturation and development at
cell and population levels. Yet, these mathematical models mostly disregard cell-to-cell
communication, an essential process that modulates cellular decision-making and population
dynamics.

In this study, we provide a dynamical model for cell maturation and development which
can be seen as an extension of Waddington’s landscape. The coupled system of partial and
ordinary differential equations describes cell density along the cell state together with ligand
concentrations. Cell-state-dependent ligand production determines ligand availability, which
controls population-level processes. We provide proof of the existence and uniqueness of
solutions for our coupled differential equation system and demonstrate the model’s validity by
analyzing single-cell transcriptomics data. Our results show that cell-to-cell communication
is essential for accurately depicting biological recovery processes, such as the regeneration of
stem cells in the intestine’s crypt and the response of immune cells upon LSP stimulation.

Our findings underscore the importance of incorporating cell-to-cell communication into
mathematical models of biological development. By doing so, we unlock the potential for
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deeper insights into complex processes such as tissue regeneration and immune responses,
offering new avenues for understanding and predicting the dynamics of biological recovery
and cell activation.

Keywords:
Population dynamics, Parameter estimation, Waddington’s Landscape, Cell-to-cell
communication, Stem Cell Regeneration, Dendritic Cell Activation, Single-Cell
Transcriptomics Data

1. Introduction1

Cell-to-cell communication is a fundamental biological process essential for a variety of cell-2

and tissue-level functions, including cell proliferation and differentiation along with devel-3

opment processes and cell activation [1, 2, 3, 4, 5]. Cells communicate through cell-to-cell4

contacts or via secretion, binding, and uptake of biochemical substances. Ligand-receptor5

interactions are crucial since they initiate intracellular signaling cascades, e.g., via protein-6

protein interaction networks. Indeed, cell-to-cell communication can substantially impact7

gene expression and may even be inferred from it [6].8

Given the importance of cell-to-cell communication, it is surprising that many core con-9

cepts conceptualizing cellular development do not account for it. An important example10

is Waddington’s landscape [7], which conceptualizes cell maturation and differentiation and11

links concepts in systems theory [8]. The perspective of cell maturation and differentiation12

as dynamical processes in an energy landscape allows for the mathematical modeling of cell13

population dynamics, particularly benefiting the analysis of single-cell transcriptomics data.14

Differential equations of various forms can describe the dynamics. Ordinary differential equa-15

tion (ODE) systems take gene expressions as state variables and capture the genetic inter-16

dependencies by differential equations [9, 10]. Randomness inherently involved in biological17

processes can be accounted for by extending ODEs to stochastic differential equations [11]18

or through a mean-field approach by using partial differential equations (PDEs) [12, 13, 14].19

PDEs describe evolving cell densities over the molecular space or a dimensionally reduced20

version, and stochasticity is integrated via a diffusion component. Moreover, there are also21

PDE models disregarding diffusion and employing optimal transport frameworks, where the22

core assumption is that cell distributions will choose an optimal path for changing between23

timepoints [15, 16].24

In contrast to these dynamical models, which lack cell-to-cell communication, several statis-25

tical methodologies specifically aiming at analyzing cell-to-cell interactions using single-cell26

transcriptomic data were introduced recently [17]. They identify genetic sequences corre-27

sponding to ligand and receptor proteins and use predefined interaction databases to map28

them together. Cells with a high abundance of a specific ligand sequence are then connected29

to cells that express compatible receptors’ RNA, which leads to an extensive cell-to-cell in-30

teraction network. Some approaches focus on directly pairing ligands to receptors [18], while31

others also take subunits of ligand-receptor complexes into account [19]. Moreover, there are32

methods additionally investigating gene regulatory effects of communication on interacting33
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Figure 1: Conceptualization of Waddington’s Landscape, Pseudodynamics, and ligand signaling.
(A) Waddington’s Landscape: Understanding cell state changes like a ball rolling down a hill from progenitor
state through intermediate stages to different cell fates. (B) Cell measurements on low dimensional sub-
manifold of molecular space. Dynamics on this manifold governed by diffusion, drift, growth, and branching.
(C) Pseudodynamics modeling dynamics of cell densities on inferred trajectories through multiple snapshot
measurements. (D) Schematic of a signaling example, where cells at one fate signal to cells at an intermediate
branching state that they should develop into this fate at higher rates. (E) Potential landscape reshaped
over time by ligand signaling, e.g., from one fate to an intermediate state.

cells [20]. These statistical methods, on their own, consider only static distinct time points34

without incorporating any dynamic component. However, recent approaches try integrating35

these statistical methods into dynamic models. Sha et al. [16] use a reversible dimension re-36

duction, compute unobserved time points with a dynamic model, and apply ligand-receptor37

analysis on those after recomputing the unreduced representation. This approach enables38

the investigation of unobserved time points but, as the underlying receptor-ligand pairing39

methods, remains susceptible to database biases inherent in the ligand-receptor pairings [17].40

To date, we are unaware of any modeling approaches that directly incorporate cell-to-cell41

communication into a dynamic model and could address the abovementioned limitations.42

We propose a dynamical model that simultaneously describes cell distributions over cell43

states and concentrations of signaling ligands. To do so, we build on the idea of Fischer et al.44

[12], who denoted their reaction-diffusion-drift equation as pseudodynamics and facilitated45

the assessment of cell-state dependent differentiation and proliferation rates. We formulate a46

more general version of their model by integrating it into a combined PDE and ODE system.47

This extended model describes the concentrations of both cells and ligands, thereby capturing48

the dynamic nature of developmental potential across a time period rather than at a single49

instance (Figure 1). After laying out the precise formulation of our differential equations, we50

provide proof for the existence and uniqueness of solutions to this system. Then, through a51

simulation study utilizing parameters derived from existing literature, we demonstrate that52

incorporating the communication between cells is crucial for accurately depicting biological53

3



recovery processes, such as the regeneration of stem cells in the intestine’s crypt (data from54

[21]). Furthermore, using a dataset from Shalek et al. [22], we illustrate that the dynamics55

of dendritic cell activation can be deduced from measurements of communicating and non-56

communicating cells, even without direct data on ligand concentrations. Overall this paper57

showcases how cell-to-cell communication can be implemented in dynamic mathematical58

models of biological development.59

2. Mathematical Model60

This study considers a population of cells that communicate via ligands. The state of a cell is61

denoted by s(t) ∈ Ω, where Ω ⊂ Rns is bounded, and the ligand concentration by l(t) ∈ Rnl
≥0.62

Cells can undergo multiple processes:63

1. Cell development: A cell can change its state in response to intra- and extracellular64

processes. The dynamics of the cell state are governed by a stochastic differential65

equation ds = v(s, l, t)dt + D1/2(s, l, t)dBt, with drift term v(s, l, t) and diffusion term66

D1/2(s, l, t). The drift term is considered to be related to the developmental potential67

W defined by Waddington’s landscape (Figure 1A) as ∂
∂s
W = −v.68

2. Cell division and death: A cell can divide and die. The effective proliferation rate,69

which incorporates cell division and death, is denoted by g. We assume in the following70

that cells in state s divide in two daughter cells which are also in state s.71

In the limit of large cell numbers, we obtain a population balance model for the state- and72

time-dependent cell number density function u(s, t) ∈ R≥0:73

∂u(s, t)

∂t
=

∂

∂s

(
D(s, l, t)

∂u(s, t)

∂s

)
− ∂

∂s
(v(s, l, t)u(s, t)) + g(s, l, t)u(s, t) (1)

with initial condition74

u(s, 0) = u0(s) ≥ 0 ∀s ∈ Ω (2)

and no-flux boundary conditions, i.e., drift and diffusion cancel out on the boundary:75

(
D(s, l, t)

∂

∂s
u(s, t)− v(s, l, t)u(s, t)

)∣∣∣∣
s∈∂Ω

= 0 ∀t ∈ [0, T ]. (3)

The total number of cells at time t is given by the integral u over the open set of possible cell76

states Ω. We assume that the range of cell states is finite and that no-flux conditions hold77

at the boundary ∂Ω. The cell state s is defined based on essential characteristics of cells,78

which can be transcript expression and protein abundance of marker genes as measured by79

single-cell RNA-sequencing [23, 24] or flow cytometry [25, 26]. Yet, low dimensional cell state80

specifications can also be used, e.g., based on diffusion maps [27] as in [12]. This exploits81

that single-cell data often lie on or are close to low-dimensional manifolds (Figure 1B-C).82

We consider that cells communicate using a set of ligands which participate in three classes83

of processes:84
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1. Ligand secretion: Ligands are secreted by cells in state s at rate α(s, t).85

2. Ligand binding: Ligands bind to cells in state s expressing the receptors, yielding a86

cell-state specific binding rate β(s, t)l.87

3. Ligand degradation: Ligands are naturally degraded at rate γ(t)l.88

We assume the ligands have a high diffusion coefficient or small distances between cells.89

Accordingly, all cells are exposed to the same ligand concentration, and spatial effects on90

ligand concentrations can be disregarded. The governing equation for the extracellular ligand91

concentration l is92

dl(t)

dt
=

∫

Ω

α(s, t)u(s, t)ds−
(∫

Ω

β(s, t)u(s, t)ds

)
l(t)− γ(t)l(t) (4)

with initial condition93

l(0) = l0 ≥ 0. (5)

Following the previous formulations, we model the overall dynamics of a developing popu-94

lation of cells that communicate via ligands by the collection of Equations (1)-(5). These95

equations form a coupled ODE-PDE system. The equations are coupled via the process96

parameters, source, and sink terms. Cell drift v, diffusion D, and proliferation g can depend97

on the cell state s, ligand concentrations l, and time t. Ligand secretion α and binding β can98

depend on cell state s and time t, and ligand degradation γ can depend on time t. Further-99

more, all process parameters can depend on experimental conditions, which we omitted in100

the expressions to ensure readability. The dependencies are considered to be smooth, using,101

e.g., Hill functions, Gaussian kernels, or splines. For example, mature cells in certain states102

might produce ligands to signal cells in intermediate states, where cells binding the ligand103

are more inclined to develop towards this fate (Figure 1D-E).104

3. Analysis of Mathematical Model105

The coupled ODE-PDE system (1)-(5) has not yet been used to study cell population dy-106

namics. To assess its mathematical validity, we analyze the global existence and uniqueness107

of its solution by applying the approach presented in [28] and [29].108

Therefore, we assume regularity of the model coefficients:109

Condition 1. For the ligand dynamics we assume that α, β ∈ C([0, T ], L∞(Ω) are positive110

a.e. and that γ(t) ∈ C([0, T ],R>0).111

Condition 2. For the cell population dynamics, we assume:112

(i) D(s, l, t), v(s, l, t), g(s, l, t) ∈ L∞(Ω× [0,∞]× [0, T ]).113

(ii) D(s, l, t) ≥ η > 0 for all (s, l, t) ∈ Ω× R≥0 × [0, T ].114

(iii) u0(s) ∈ L2(Ω)115
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(iv) D(s, l, t), v(s, l, t) and g(s, l, t) are globally Lipschitz in l ∈ [0,∞).116

Given these regularity conditions, the following theorem holds:117

Theorem 1 (Existence of unique weak solution). If Conditions 1 and 2 hold, then the ODE-118

PDE system (1)-(5) possesses a unique weak solution (u, l) satisfying119

u ∈ L2([0, T ], H1(Ω)) ∩ C([0, T ], L2(Ω)),

∂su ∈ L2([0, T ], H−1(Ω)),

l ∈ C([0, T ]).

To prove Theorem 1, we will show that (I) the ODE for the ligand dynamics has a unique120

solution lu for a fixed u, (II) the PDE for the cell population density has a unique solution û121

for a fixed lu, and (III) B : u 7→ lu 7→ û = B(u) is a contraction. In this case, Banach’s fixed122

point theorem can be applied and ensures existence and uniqueness [28].123

For the subsequent analysis, we consider the closed set124

X := {u ∈ C([0, T ], L2(Ω)) ∩ L2([0, T ], H1(Ω))

s.t. u ≥ 0 and max
t∈[0,T ]

||u(t)||L2(Ω) ≤ CX ||u0||L2(Ω)}

with the norm ||u||X := maxt∈[0,T ] ||u(·, t)||L2(Ω) and CX = C(Ω, D, v, g, T ).125

We start by verifying existence and uniqueness locally, i.e., on the time interval [0, T0] for a126

sufficiently small T0 ≤ T :127

I. The ligand dynamics are governed by a 1st order linear ODE with time-varying coef-128

ficients. Condition 1, i.e. α, β ∈ C([0, T ], L∞(Ω)) and γ ∈ C([0, T ],R>0), ensures that129

the solution lu(t) to (4) + (5) for a fixed u ∈ X is continuous in t and therefore bounded130

on the closed time interval [0, T0]. The proof is provided in Appendix A, Lemma 1.131

II. The cell population dynamics are shaped by a 2nd-order parabolic PDE with Robin132

boundary conditions. Condition 2 (i)-(iv) and the application of Galerkin Approxima-133

tions and Energy Estimates as in Chapter 7 in Evans’ book [29], provide that the PDE134

(1)-(3) for fixed lu ∈ C([0, T ]) possesses a unique weak solution û ∈ L2([0, T ], H1(Ω))135

with û′ ∈ L2([0, T ], H−1(Ω)). Moreover, û ∈ C([0, T ], L2(Ω)) and the following estimate136

holds for û:137

max
0≤t≤T

||û(t)||L2(Ω) + ||û||L2([0,T ],H1(Ω)) + ||û′||L2([0,T ],H−1(Ω)) ≤ C||u0||L2(Ω),

with C = C(T,Ω, D, v, g). Additionally, if û(s, 0) = u0(s) ≥ 0, then û(s, t) ≥ 0 for all138

t ∈ [0, T ], i.e. non-negativity is preserved. The proof details are provided in Appendix139

A, Lemma 2.140

III. Given that the above holds, we can make use of Banach’s fixed point theorem, which141

implies that there exists a unique fixed point B(u) = û = u if B is a contraction.142
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To be precise, there has to exist a sufficiently small T0 > 0 and ρ ∈ (0, 1) such that143

B : X0 → X0 is a contraction, i.e.144

||B(u1)− B(u2)||X ≤ ρ||u1 − u2||X ∀u1, u2 ∈ X0,

where X0 is the space X reduced to the time interval [0, T0] instead of [0, T ].145

To prove the contraction property, we use that there exists a constant K(T ) > 0 such146

that147

||û1 − û2||X ≤ K(T )||u1 − u2||2X . (6)

where for T → 0, we have K(T )→ 0. Since the construction of K is rather technical,148

we provide it in Appendix A.3. Since T is chosen arbitrarily we can conclude that:149

∃T0 > 0 such that K(T0) < 1⇒ B contraction ,

where T0 = T0(|l0|, ||u0||L2(Ω),Ω, D, v, g) . Since B is a contraction on X0, we can apply150

Banach’s fixed point theorem for closed subsets to B and obtain151

∃!u ∈ X0 : B(u) = u.

This completes the proof of the local existence of a unique solution (u, l).152

To generalize the result for the local existence of a unique solution (u, l) on the time interval153

[0, T0] to any bounded time interval [0, T ] for any T > 0, we define new initial conditions:154

u0(s) = u(s, T0) and l0 = l(T0). As the results (I)-(III) presented above hold for any initial155

conditions which are non-negative (and L2 for u0), it follows the existence of a time T1 such156

that the problem (1)-(5) with the new initial conditions possesses a unique local solution157

on [T0, T1]. We can extend the solution to the bigger interval [0, T1]. This strategy can be158

applied repeatedly, since l is bounded on a bounded interval and for any T > 0, there exists159

a constant C = C(D, v, g) such that ||u(., t)||2L2(Ω) ≤ eCT ||u0||2L2(Ω). The proof details are160

provided in Appendix A.4, Lemma 5. Therefore, we can step-wise extend the existence161

interval of the local solution to any interval [0, T ], which proves the global existence of a162

unique solution for any T > 0.163

4. Numerical simulation and model-based data analysis164

The coupled ODE-PDE system (1)-(5) describes cell population dynamics based on the prop-165

erties of cells in different cell states and ligand characteristics. To study the process dynamics,166

we introduce a numerical simulation method. Furthermore, we formulate the mathematical167

problem for assessing cell and ligand properties based on experimental data and introduce168

parameter estimation and uncertainty analysis methods. To ensure reusability, we made the169

code for simulations, data integration, and models available at Zenodo [30].170
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4.1. Numerical simulation171

To study the dynamics of the coupled ODE-PDE system (1)-(5), we use numerical simulation172

based on the finite volume method (FVM) [31, 32]. This method divides the cell state into a173

finite number of control volumes and then approximates the integral form of the conservation174

laws over these control volumes. It is based on the fundamental theorem of calculus and175

focuses on the fluxes of conserved quantities across the boundaries of the control volumes.176

These fluxes are calculated using approximate solutions at the interfaces between adjacent177

volumes, removing spatial derivatives. The FVM was chosen over the finite element method178

to ensure mass conservation and avoid population growth and shrinkage as a numerical179

artifact.180

We will briefly sketch the discretization scheme for the case of a cell state reduction to a181

one-dimensional space, which is usually done for computational feasibility e.g. by trajectory182

inference, and a non-branching cell lineage to keep notation clear. This means we have183

Ω = [0, smax] and discretize it by choosing nb + 1 equal-distant grid points184

smin = s 1
2
< ... < si− 1

2
< si+ 1

2
< ... < snb+ 1

2
= smax, (7)

which divide the cell state space into nb control volumes, i.e. intervals, [si− 1
2
, si+ 1

2
] with185

i ∈ {1, ..., nb} of length h = si+ 1
2
− si− 1

2
= smax−smin

nb
.186

The grid points on the left edge of the i-th control volume are denoted by si− 1
2

= smin+(i−1)h187

and the grid points on the right edge of the interval by si+ 1
2

= smin + ih. The centers of these188

control volumes are given by:189

si =
si− 1

2
+ si+ 1

2

2
= smin + (i− 1

2
)h, for i = 1, ..., nb.

For each center point, the average density over its control volume is given by:190

ui(t) =
1

h

∫ s
i+ 1

2

s
i− 1

2

u(s, t)ds. (8)

The difference between the actual value at a center point si, u(si, t), and the average over191

the interval, ui, is O(h2) [33]. Applying the finite volume method by integrating over each192

control volume [si− 1
2
, si+ 1

2
] and integrating by parts results in a space-discretization of (1).193

Accordingly, we approximate the integrals of the ligand ODE by sums. Hence, the coupled194

8



PDE-ODE system (1)-(5) reduces to a system of coupled ODEs:195

du1

dt
=− 1

h2

(
D1+ 1

2
(u1 − u2)

)
− 1

2h
v1+ 1

2
(u1 + u2) + g1u1

dui
dt

=− 1

h2

(
Di− 1

2
(ui−1 − ui)−Di+ 1

2
(ui − ui+1)

)

+
1

2h

(
vi− 1

2
(ui−1 + ui)− vi+ 1

2
(ui + ui+1)

)
+ giui, i = 2, . . . , nb − 1

dunb
dt

=
1

h2

(
Dnb− 1

2
(unb−1 − unb)

)
+

1

2h
vnb (unb−1 + unb) + gnbunb

dl

dt
=

n∑

i=1

uiαi −
(

n∑

i=1

uiβi

)
l − γl,

with l = l(t) and γ = γ(t). Moreover, αi = α(si, t), βi = β(si, t), Di± 1
2

= D(si± 1
2
, l, t) and196

vi± 1
2

= v(si± 1
2
, l, t) for i = 0, ...nb, and gi = g(si, l, t) for i = 1, ..., nb.197

We developed two Python implementations for numerical simulation of (1)-(5) for given198

initial conditions and parameters. The educational implementation has been designed for199

testing and avoids using advanced numerical simulation methods. The discretization is con-200

structed explicitly, and the numerical simulation of the system provided by the ODE and201

the discretized PDE is performed using SUNDIALS CVODE [34, 35] via the simulation tool-202

box AMICI [36]. The computationally efficient implementation has been designed to enable203

parameter estimation and uncertainty analysis. This implementation builds on the PDE204

solver package FiPy [37], which handles the spatial discretization described above and the205

time-stepping. For numerical integration over time it employs the approximation206

∫ s
i+ 1

2

s
i− 1

2

∂tu(s, t+ ∆t)ds ≈ (ui(t+ ∆t)− ui(t))h
∆t

.

Setting tk̂ = k̂∆t for a user chosen time step size ∆t and defining uik̂ = ui(tk̂), we obtain a207

system of linear equations. For solving this system, FiPy offers a variety of linear solvers, out208

of which we employed the default: scipy’s linear LU solver[38]. The implementation using209

FiPy requires reduced user input and allows for a straightforward adaptation.210

We assessed the accuracy and efficiency of the two implementations for numerical simulation211

on a 2-dimensional PDE test case with constant ligand concentration. We compared results212

for different spatial discretization and time step sizes, which ensured a high quality of the213

numerical solution.214

4.2. Parameter estimation215

We propose a model-based data analysis approach to determine cell and ligand properties216

based on experimental data. This approach constructs parameters and initial condition of217
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(1)-(5) from measured cell population density ykj, which are collected at time points tk,218

k = 1, . . . , nt and experimental conditions cj, j = 1, . . . , nc. The resulting model comprehen-219

sively describes the available experimental data, and the parameters offer insights into the220

underlying biological processes.221

To ensure that the inverse problem of determining parameters and initial conditions is com-222

putationally feasible, we employ parametric functions for drift v, diffusion D, proliferation g,223

and initial value u0, as well as ligand secretion α, binding β, degradation γ, and initial value224

l0. We consider constants, Hill functions, splines, and combinations thereof. The unknown225

parameters of the parametric functions are denoted by θv, θD, θg, θu0 , θα, θβ, θγ, and θl0 ,226

and collectively as θ = (θv, θD, θg, θu0 , θα, θβ, θγ, θl0). The vector of unknown parameters is227

real-valued and constrained to the set Θ, i.e. θ ∈ Θ ⊂ Rnθ .228

The maximum likelihood estimate of the parameter vector, θml, is obtained by maximizing229

the likelihood of observing the data given the model. Assuming independence of the mea-230

surements for different time points and conditions, the optimization problem is formulated231

as232

θml = arg max
θ∈Θ

nt∏

k=1

nc∏

j=1

p(ykj|φu(tk, ·; cj, θ)),

with φu(·, t; c, θ)) denoting the solution operator for the population density u in (1)-(5) for233

condition c and parameters θ.234

The formulation of the likelihood function depends on the measurement technique and235

the subsequent data processing. Here, we assume that the states of mkj cells are as-236

sessed using single-cell measurement technology followed by dimension reduction to a lo-237

cally one-dimensional manifold. For parameter estimation, histograms are constructed from238

the single-cell measurements. This yields a vector of counts ykj ∈ Nnb
0 , with the i-th en-239

try, ykji, indicating the number of cells in bin i, i.e. with s ∈ (si− 1
2
, si+ 1

2
]. For the240

case of a non-branching cell state (s ∈ Ω = (smin, smax)), the bin intervals are given by241

smin = s 1
2
< ... < si− 1

2
< si+ 1

2
< ... < snb+ 1

2
= smax as in the FVM discretization (7).242

Assuming unbiased cell sampling, the probability of picking a cell with state in bin i is given243

by the fraction of the cells in (si− 1
2
, si+ 1

2
], which is244

fi(c, θ) =

∫ s
i+ 1

2
s
i− 1

2

u(s, t; c, θ)ds
∫ smax

smin
u(s, t; c, θ)ds

. (9)

The likelihood for these types of population-level measurements is given by the multinomial245

probability mass function:246

p(ykj|u(tk, ·; cj, θ)) =
mkj!∏nb
i=1 ykji!

nb∏

i=1

f
ykji
i (u(tk, ·; cj, θ)).

In this study, we determine the maximum likelihood estimate by minimizing the negative247

log-likelihood function. For the considered likelihood function, this minimization problem is248
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given by249

θml = arg min
θ∈Θ

(
−

nt∑

k=1

nc∑

j=1

nb∑

i=1

ykji log fi(φu(tk, ·; cj, θ)) + const.

)
.

We follow a discretize-optimize strategy, assuming that the numerical simulation algorithm250

provides an accurate solution for the coupled ODE-PDE system. The time stepping tk̂ for the251

numerical solution is chosen in such a way that the measurement time points tk are covered252

by tk̂ and no additional interpolation is required. The fraction f is directly computed from253

the finite volume approximation of u(s, t; c, θ), using the fact that plugging (8) into (9) yields254

fi(c, θ) =
ui(t; c, θ)∑nb
j=1 uj(t; c, θ)

.

We implement the parameter estimation using the pyPESTO framework [39], which offers255

a broad spectrum of local and global optimization methods. Following comprehensive test-256

ing, we decided on a multi-start local optimization using the gradient-based interior point257

algorithm IPOPT [40], where the gradient is computed using finite differences.258

To assess the reproducibility of the parameter optimization, we evaluate its convergence with259

the waterfall plots of the optimization results. We compare the measurement data with the260

distribution of measurements expected for the estimate to evaluate the quality-of-fit of the261

maximum likelihood estimate. Therefore, we calculate for each time point and experimen-262

tal condition Gaussian kernel density estimates based on the states of the experimentally263

observed cells and a distribution of Gaussian kernel density estimates for samples from the264

population density u(tk, ·; cj, θml). In particular if the number of observed cells mkj is small,265

kernel density estimates for individual samples from u(tk, ·; cj, θml) can differ substantially266

from u(tk, ·; cj, θml), which is important to consider this in the evaluation the quality-of-fit.267

For models which provide an accurate description of experimental data, an assessment of pa-268

rameter uncertainties is meaningful. We investigate this via the ensemble method, selecting269

the top K results from a multistart optimization with N starts, where K � N , as represen-270

tatives of this set [41]. Then we can asses how tight the uncertainty set is around θml
k̄

for each271

dimension k̄, i.e., how certain we are about this parameter. Given the high computational272

demand of solving our system, we can restrict the computational load to what has already273

been computed for the parameter estimation while efficiently obtaining results on parameter274

uncertainty.275

5. Results276

The numerical simulation and parameter estimation methods introduced in the previous277

section should facilitate the study of a broad range of biological processes. To assess this,278

we model cell population dynamics in the intestinal crypt and characterize the properties of279

dendritic cells upon activation.280
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5.1. Modeling cell population dynamics in intestinal crypts281

To evaluate the applicability of the proposed modeling and simulation framework, we study282

cell proliferation and differentiation in intestinal crypts (Figure 2A). Here, we aim to deter-283

mine whether our framework can effectively capture cell development and the significance of284

ligands in shaping this process. Therefore, we develop a model and study the impact of an285

established knockout experiment on the differentiation process.286

Biological background. The epithelial cells of the crypt in the small intestine exhibit a rapid287

turnover, being renewed every 4-5 days [42]. Stem cells located at the base of the crypt288

primarily proliferate asymmetrically, resulting in one stem cell and one transit amplifying289

(TA) daughter cell. TA cells undergo rapid proliferation and migrate from the crypt base290

outward. During migration, these cells differentiate and undergo cell cycle arrest in the291

upper part of the crypt. As they exit the crypt, they mature into various cell types and292

migrate to the tips of the villi. Paneth cells are the exception to this upward migration;293

during maturation, they move down to the crypt base and reside there alongside stem cells294

[43, 42, 44, 45].295

Communication between Paneth cells, stem cells, and TA cells is crucial for maintaining296

crypt homeostasis [46, 47, 48]. The canonical Wnt3 pathway is a key signal promoting the297

maintenance and proliferation of stem and TA cells in the lower crypt [42, 49, 50]. Indeed,298

there are strong indications that upon loss or damage of the stem cells, Wnt3 activates299

a dedifferentiation process whereby first- and second-generation TA cells regain stem cell300

properties and functionalities.301

Model formulation. To develop a model for cell population dynamics in the intestinal crypt,302

we assess the structure of the cell state space using published single-cell RNA sequencing data303

for epithelial cells of the mouse small intestine [21]. Using the scanpy framework, specifically304

partition-based graph abstraction (PAGA) and diffusion pseudotime [51, 52, 53], we identify305

two differentiation trajectories within the epithelial dataset (Figure 2B-C) for the first two306

diffusion map components. Stem cells differentiate into early-generation TA cells, which307

either develop into Paneth cells or further differentiate into TA cells in subsequent cell cycle308

phases. Upon reaching cell cycle arrest, TA cells commit to mature into specific cell types.309

We represent cell state space as the union of two one-dimensional sets (Figure 2D). The main310

branch, with stem and TA cells, is mapped to Ω1 = [0, 1] and the side branch with Paneth cells311

to Ω2 = [0.3, 1]. The number density on these two line segments is denoted by u1(s1, t) and312

u2(s2, t), and cells are allowed to switch in the branching region s1, s2 ∈ [0.3, 0.4], reflecting313

that cell fate is decided at early TA cell stages (Figure 2D). This yields for all t ∈ [0, T ] the314
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population model315

∀s1 ∈ Ω1 : ∂tu1(s1, t) = ∂s1 (D1(s1)∂s1u1(s1, t))

− ∂s1 (v1(s1, l)u1(s1, t)) + g1(s1)u1(s1, t)

− 1[0.3,0.4](s1)g12u1(s1, t)

∀s2 ∈ Ω2 : ∂tu2(s2, t) = ∂s2 (D2(s2)∂s2u2(s2, t))

− ∂s2 (v2(s2)u2(s2, t)) + g2(s2)u2(s2, t)

+ 1[0.3,0.4](s2)g12u1(s2, t)

where 1[0.3,0.4] is 1 on the interval [0.3, 0.4] and 0 elsewhere. For initial and boundary condi-316

tions, we obtain317

u1(s1, 0) = u1,0(s1), ∀s1 ∈ Ω1

u2(s2, 0) = u2,0(s2), ∀s2 ∈ Ω2

and318

(D1(s1)∂s1u1(s1, t)− v1(s1, l)u1(s1, t))|s1∈{0,1} = 0

(D2(s2)∂s2u2(s2, t)− v2(s1, l)u2(s2, t))|s2∈{0.3,1} = 0

We account for ligand Wnt3 in the model due to its above-described importance and the319

observed in-homogeneous expression (Supplementary Figure S1B). We find Wnt3 to be highly320

expressed in Paneth cells, while the Wnt3 receptors Fzd-7 and Lrp5-receptor are highly321

expressed in stem cells and expressed at intermediate levels for TA cells (Supplementary322

Figure S1). This yields the ligand model323

dl(t)

dt
=

∫

Ω2

α(s)u2(s, t)ds−
(∫

Ω1

β(s)u1(s, t)ds

)
l(t)− γl(t),

with Hill functions324

α(s) = αmax
Knα
α

Knα
α + snα

and β(s) = βmax
K
nβ
β

K
nβ
β + snβ

,

with inflection points Kα and Kβ and Hill coefficients nα and nβ (Figure 3A). Following the325

observation that high levels of Wnt3 inhibit differentiation of cells in the lower crypt, we326

account for a dependence of the drift in the main branch on (a) ligand concentration and (b)327

cell state,328

v1(s1, t, l) =

(
1 + k

(
κ

K
nv,l
v,l

K
nv,l
v,l + l(t)nv,l

− 1

)

︸ ︷︷ ︸
=:vligand

(
K
nv,s
v,s

K
nv,s
v,s + s

nv,s
1

)

︸ ︷︷ ︸
=:vstate

)
ṽ1(s1),

with inflection points Kv,l and Kv,s, Hill coefficients nv,l and nv,s, scaling parameters k > 0329

and κ > 1), and baseline drift ṽ1(s1). The baseline growth, drift, and diffusion coefficients330

are chosen to reflect previous literature. The growth rates are chosen based on knowledge331
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about proliferation rates and cell survival times [42, 54, 49, 44], and are negative for terminal332

cells to reflect their exit out of the crypt. The drift was chosen to match reported transition333

times [42], and is high close to the stem cell state and lower for differentiated cells. The334

diffusion– on which information is scarce– is set to low values overall, despite the regime for335

Paneth cells, which appears highly variable. To ensure smoothness and flexibility, we use336

natural cubic splines (ncs):337

gi(s) = ncs(s; ĝi,0, . . . , ĝi,ni−1),

ṽi(s) = exp(ncs(s; v̂i,0, . . . , v̂i,ni−1)),

Di(s) = exp(ncs(s; D̂i,0, . . . , D̂i,ni−1)),

with n1 = 10 and n2 = 7 grid points (Figure 3B). We ensure positivity for the drift and338

diffusion by exponentiation of the natural cubic splines.339

Model simulation and testing. The model formulation provides a high-level description of340

cell proliferation, differentiation, and communication in the intestinal crypt. Yet, while some341

parameters can be informed based on the literature, others remain unknown. We choose the342

unknown parameters and initial distribution to retain essential biological properties, most343

notably the cell type distribution [55, 45, 56, 57, 44]. The numerical simulation of the model344

for the selected parameters (Supplementary Table S1) reveals a realistic distribution in steady345

state (Figure 4A).346

Following the positive evaluation, we want to determine if the proposed model captures the347

results of previous studies. In particular, we assess if the cell state distribution is stable and348

reverts to the previously observed distribution. Therefore, we perform an in-silico knockout349

of the stem cell compartment. We find that the simulations capture the experimentally350

reported replenishment of the stem cell compartment from the TA cells [47, 46, 48]. Indeed,351

the perturbation is suppressed and the system returns to the original steady state (Figure 4B).352

To assess if the model correctly describes the importance of the Wnt3-mediated feedback in353

the process [48], we perform a second in-silico experiment in which the effect of Wnt3 on354

the drift of stem and TA cells is disregarded (Figure 4B). In this case, the system does not355

return to the original steady state, but the stem cell fraction remains low. Moreover, we can356

see that the potential to develop towards later TA cells is decreased during peaking ligand357

concentrations before returning back to the original shape (Figure 4C).358

In summary, the study shows that the model can describe cell population dynamics in the359

intestinal crypt. The model formulation can be easily informed using prior knowledge. The360

intuitive formulation even allows for directly extracting parameters from the available liter-361

ature. Importantly, other continuum-based approaches, such as the work by [12], would not362

have been able to describe cell-to-cell communication.363

5.2. Inference of LPS-induced Dendritic Cell Activation364

To assess the reconstruction of cell-to-cell communication using the proposed modeling and365

inference framework, we study the activation of dendritic cells with lipopolysaccharide (LPS).366
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Figure 2: Analysis of cells of the intestinal crypt. (A) Visualization of intestinal crypt. Cell types
highlighted by color. (B–C) Analysis of cells measured in the intestinal crypt using (B) PAGA and (C)
diffusion map and diffusion pseudotime (D) Schematic of branching implementation for one-dimensional cell
state space. Branching region highlighted in red.

A B

C

Figure 3: Parameters chosen for steady state of intestinal crypt cells. (A) Ligand coefficients binding
and production rate. (B) Basic splines for cell dynamics parameters diffusion, drift, and growth on main
branch (first row) and side branch (second row). (C) Dependency terms for ligand effect on drift.
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Figure 4: Recovery of steady state after in-silico knockout of stem cells. (A) Steady state on main
branch and side branch. (B) Simulation result after knockout of stem cells. First row depicts result with
ligand feedback, second row depicts results without feedback, and third row depicts ligand concentrations
over time in feedback scenario. Dashed lines indicate a steady state before stem cell removal. (A–B) y-axis
of cell densities provided in symlog scale with linearity threshold 10−2 (C) Product of the drift dependency
factors and drift for multiple values of l.
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Shalek et al. [22] investigated this process under two conditions: (a) an in-tube setup in which367

cells can communicate and (b) an on-chip setup in which cells are unable to communicate368

(Figure 5A–B). Here, we assess the impact of cell-to-cell communication (and its absence)369

on cell differentiation by inferring drift and diffusion rates. Therefore, we formulate a model370

and infer its parameters from the available experimental data.371

Biological Background. LPS is a large molecule found in Gram-negative bacteria’s outer372

membrane, which induces activation of various immune cells through ligation of Toll-like373

receptor 4 and CD14. Dendritic cells’ response depends among other molecules on interferon-374

beta (IFN-β) [22]. Indeed, after the initial exposure, a subset of dendritic cells is activated375

and then communicates with the remaining cells, prompting them to change their cell state.376

Model formulation. To develop a model for dendritic cell activation by LPS, we analyze the377

published single-cell RNA sequencing data by Shalek et al. [22]. Integrating the on-chip and378

in-tube data using Scanorama [58] within the scanpy framework revealed distinct clustering379

patterns. Measurements of on-chip cells 4 hours after LPS stimulation clustered closely with380

in-tube cells taken before and 1 and 2 hours post-stimulation, forming a cluster interpreted381

as inactivated cells. Conversely, in-tube cells measured at 4 and 6 hours post-stimulation382

formed a separate cluster, likely representing activated dendritic cells (Figure 5C).383

To capture the variability, we introduce a one-dimensional cell-state, s ∈ Ω = [0, 1], using384

the trajectories inferred by diffusion pseudotime (Figure 5C), with inactivated cells located385

at low values of s and activated cells located at high values of s, yielding the model386

∂

∂t
u(s, t) =

∂

∂s

(
D(s, l)

∂

∂s
u(s, t)

)
− ∂

∂s
(v(s, l)u(s, t))

dl(t)

dt
=

∫ 1

0

α(s)u(s, t)ds−
(∫ 1

0

β(s)u(s, t)ds

)
l(t)− γl(t),

with non-flux boundary conditions and initial conditions u(s, 0) and l(0). Activated cells are387

assumed to influence inactive cells via a ligand, yielding388

α(s) = αmax
snα

Knα
α + snα

and β(s) = βmax

K
nβ
β

K
nβ
β + snβ

with inflection points Kv,s, Kα and Kβ, Hill coefficients nα and nβ, and maximal values αmax389

and βmax. The functional form of α and β is chosen in a way to reflect that a subset of390

early activated cells communicates to the inactivated cells, i.e., cells of higher cell state s391

express IFN-β and cells with lower cell state s bind it. Drift and diffusion are assumed to392

depend on the cell state and the ligand concentration. The baseline drift and diffusion rates393

are unknown and modeled using exponentials of cubic splines, ṽ(s) and D̃(s). For the ligand394

dependence, we assume a functional form that captures the observation that cell activation,395
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i.e., drift and diffusion rates, at low cell states increase with the ligand concentration, yielding396

v(s, l) = ṽ(s) + vmax
K
nv,s
v,s

K
nv,s
v,l + snv,s

︸ ︷︷ ︸
=:vstate

lnv,l

K
nv,l
v,l + lnv,l

︸ ︷︷ ︸
=:vligand

,

D(s, l) = D̃(s) +Dmax

K
nD,s
D,s

K
nD,s
Ds + snD,s︸ ︷︷ ︸

=:Dstate

lnD,l

K
nD,l
D,l + lnD,l

︸ ︷︷ ︸
=:Dligand

,

with inflection points Kv,s, Kv,l, KD,s, and KD,l, Hill coefficients nv,s, nv,l, nD,s, and nD,l,397

and maximum effect size vmax and Dmax. We assume that there is an effect on diffusion and398

drift for all cells to which a ligand binds, i.e., KD,s = Kv,s = Kβ and nD,s = nv,s = nβ.399

Cell proliferation and death are disregarded due to the short duration of the experiment in400

comparison to the lifespan of dendritic cells [59], yielding g(s, t) = 0. The baseline drift and401

diffusion coefficients are again described using natural cubic splines (ncs):402

ṽ(s) = 10ncs(s;v̂0,...,v̂ni−1),

D̃(s) = 10ncs(s;D̂0,...,D̂ni−1),

with 10 equally spaced grid points. For increased numeric stability we scaled the data to403

[0, 0.9] and set the drift continuously to 0 at s = 1 with a cubic Hermite spline on [0.9, 1].404

The formulated model allows for the communication of cells via the ligand, thereby capturing405

the in-tube setup. To model the on-chip setup, we set Dmax = vmax = 0, which implies the406

lack of any communication effect. For both setups, the initial population densities u(s, 0) are407

set to the kernel density estimates of the cell states obtained from the respective single-cell408

data, and the initial ligand concentration l(0) is set to zero. The latter is plausible, as in the409

experiments, the medium is replaced before the start of the experiment.410

Calibration. To infer the drift, diffusion, and growth rates from the observed data, we employ411

the parameter estimation procedure outlined in Section 4.2. We perform 386 local optimiza-412

tion runs. The Supplementary Table S2 and the Supplementary Figure S2A provide details413

on the parameter constraints and related properties.414

The assessment of the estimation results reveal that the best 10 optimization runs achieve sim-415

ilar objective function values (Supplementary Figure S2B). Furthermore, the parameterized416

model agrees well with the data (Figure 6). The measured distribution is mainly contained in417

the confidence interval of the multinomial distribution obtained for the maximum likelihood418

estimate.419

The parameterized model captures the dynamics observed by Shalek et al. [22]. Cells in420

tube remain for t = 1h and 2h mostly inactive, corresponding to cell states s < 0.5. Only421

a small subset of cells was activated. The activated cells secret ligand, resulting in a steady422

increase of its concentration and the activation of most remaining cells at time t = 4h and423

6h. Cells on chip show hardly any change over time. While the initial distribution is similar,424
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Figure 5: Immune response data of dendritic cells to LPS-stimulation. (A) Timeline and (B)
experimental setup of data used from [22]. (C) Analysis of cells measured in the intestinal crypt using
UMAP and diffusion pseudotime.

the absence of cell-to-cell communications limits the activation of the cell population by the425

few early responding cells. This is in agreement with the results of the UMAP visualization,426

in which measurements for cells on chip at 4h blended in with the measurements for cells427

in tube at 1h and 2h, while measurements for cells in tube at 4h and 6h formed a separate428

cluster.429

The assessment of the model parameters reveals that ligand production is estimated to occur430

only in fully activated cells. At the same time, binding plays a role in the lower half of431

the state space (Figure 7A). Additionally, we can see that in the absence of ligand, drift,432

and diffusion are zero besides for the intervals s = [0, 0.2] and s = [0.5, 0.6] (Figure 7B–433

C). Moreover, diffusion has a third, smaller peak in s = [0.8, 0.9], which might serve as a434

stabilizing factor. Compared to the baseline drift ṽ, the maximum ligand effect size on the435

drift vmax seems relatively small, and hence over time, an increase in drift is barely visible436

(Figure 7B). In contrast, baseline diffusion D̃ is in the same order of magnitude as Dmax and437

over time, an increase of the diffusion in the affected state space regions is clearly visible438

(Figure 7C). In the context of Waddington’s landscape, this suggests that instead of altering439

the landscape itself, increasing ligand concentration enhances the random movement of cells440

on the initial plateau, making it more likely for them to cross the edge and descend into441

lower potential states (c.f. time invariance of developmental potential in the third row of442

Figure 7B).443

In summary, the analysis indicates that the framework allows for integrating different datasets444

and estimating condition-specific models. Furthermore, model calibration provides estimates445

for rates, enabling an in-depth analysis of the process dynamics. Importantly, the statistical446

framework allows for a coherent assessment of the model fit.447
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Cell-to-Cell CommunicationA

No Cell-to-Cell CommunicationB

Figure 6: Fitting results of dendritic cells after LPS-stimulation. Fitting results of model to data.
First row depicts ligand concentrations over time in feedback scenario, second row depicts results with
feedback, and third row depicts results without ligand feedback. Dashed lines indicate measured data and
measurement time points highlighted by color.
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A

C Diffusion Composition and Evolution over Time

Ligand Secretion and Binding

B Drift Composition and its Evolution and Derived Potential over Time

Figure 7: Dynamic coefficients estimated from LPS-stimulated dendritic cells. (A) Estimated ligand
secretion α and binding β. Estimated Hill coefficients (x-value) and half-maximums (y-value) highlighted
in red. (B–C) Estimated drift v and potential derived from it (B) and diffusion D (C) as composition of
baseline, state- and ligand-dependency terms and their evolution over time. Estimated spline knot points
and inflection points in red.
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6. Discussion448

Cell-to-cell communication is an essential biological process that modulates the dynamics449

and equilibria of cell populations. Here, we propose an extension of the established “pseu-450

dodynamics” framework by Fischer et al. [12], which offers significant advancements in451

understanding cell population dynamics. The proposed PDE-ODE system captures the tem-452

poral evolution of developmental processes by incorporating cell state distributions and ligand453

concentrations.454

The flexibility of our model is demonstrated by its applicability to various biological scenarios,455

from tissue regeneration to immune cell activation. We achieved precise simulations that456

align closely with experimental data by parameterizing the state-dependent coefficients and457

employing advanced numerical methods. Using finite volume methods and tools like AMICI458

and FiPy facilitated robust numerical implementation, ensuring the model’s reliability across459

different applications. The successful fitting of both whole activation processes and specific460

marker gene expressions further highlights the model’s versatility.461

Our in-silico knockout experiment of the intestinal crypt highlighted the critical role of cell-462

to-cell communication in tissue regeneration. The model demonstrates that the feedback463

mechanisms, particularly the interaction between Paneth cells and stem cells via Wnt3 sig-464

naling, are essential for the crypt’s recovery. The ability of early TA cells to dedifferentiate465

in response to increased Wnt3 levels underscores the robustness of the crypt’s regenerative466

processes. The absence of such feedback results in incomplete recovery, aligning with empir-467

ical observations that by inhibiting Wnt signaling, one compromises crypt integrity. Future468

improvements for similar applications in a model calibration scenario could be achieved by469

further investigating diffusion’s dominant role in the recovery process. However, as a proof470

of concept simulation study, it validates our model’s potential to simulate complex biological471

phenomena.472

The application of our model to LPS-stimulated dendritic cells, using single-cell transcrip-473

tomics data from Shalek et al., further underscores the importance of intercellular com-474

munication. Our model effectively captures the distinct responses observed between cells475

cultured in tubes (with communication) and on-chip (without communication). The ligand476

concentration dynamics provides insights into the activation process, where the presence of477

communication allows for the proper activation of dendritic cells. Furthermore, we are able478

to fit the model to a representation of the whole cell activation through diffusion pseudotime,479

as well as to the markers for the core antiviral response. This suggests that ligand-mediated480

signaling is a critical component of the immune response, facilitating a coordinated and481

efficient activation of immune cells.482

Our findings emphasize the necessity of incorporating cell-to-cell communication into math-483

ematical models of biological development. The accuracy in simulating cell differentiation484

and activation dynamics offers valuable insights for developmental biology and immunology.485

Future work should focus on extending the model to include additional signaling pathways486

and interactions, potentially involving multiple ligands and receptor types.487

A limitation of the proposed approach is that the available data might be too scarce to488
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identify the ligand responsible for signaling. Since ligand concentrations are usually not489

measured directly, a well-informed parameter estimation needs data on a communication490

scenario and a scenario with inhibited communication (through knockout or physically via491

chips). Moreover, to fully use the potential of our model and investigate temporal dynamics492

and not only steady states, snapshot data of at least two time points are required. This493

broad experimental setup is still uncommon in already published data sets.494

In conclusion, integrating cell-to-cell communication into cell population models represents495

a significant step forward in capturing the dynamic nature of biological processes. Our496

extended PDE-ODE model provides a powerful tool for exploring the complexities of cell de-497

velopment, offering a deeper understanding of the mechanisms underlying tissue regeneration498

and immune activation.499
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Supplementary Figures524

A Bcell type

Figure S1: Distributions of receptor and Wnt3 expressions across cell types. Data from [21]
(A) Diffusion pseudotime ordering with cell cluster annotation and z-scores of Fzd5-, Fzd7- and Lrp5-receptor
expressions. (B) Heatmap showing z-scores of Wnt3, Fzd5, Fzd7, and Lrp5 expression across the cell state
lineage.
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B

A

Figure S2: Results of multistart optimization. (A) Model and data comparison for the cell activation
model. The 10 best parameter fits (out of 384 starts) are depicted in semi-transparent blue. The data are
depicted in orange. (B) Waterfall plot for the cell activation model. Sorted objective function values of all
384 parameter estimation starts. Each start represented by blue point.
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Supplementary Tables525

Table S1: Parameters used for stem cell recovery model described in Section 5.1.

Cell Dynamics
Main Branch Side Branch

D̂1,0 = −3 v̂1,0 = 1.68 ĝ1,0 = 1.03 D̂2,0 = −2.5 v̂2,0 = −2 ĝ2,0 = 0.005

D̂1,1 = −3 v̂1,1 = 1.68 ĝ1,1 = 1.03 D̂2,1 = −2.5 v̂2,1 = −3 ĝ2,1 = 0.06

D̂1,2 = −3 v̂1,2 = 1.4 ĝ1,2 = 1.2 D̂2,2 = −3 v̂2,2 = −3 ĝ2,2 = 0.03

D̂1,3 = −3 v̂1,3 = 0.85 ĝ1,3 = 2.3 D̂2,3 = −3.25 v̂2,3 = −3 ĝ2,3 = −0.052

D̂1,4 = −3 v̂1,4 = 0.85 ĝ1,4 = 2.3 D̂2,4 = −0.025 v2,4 = −8 ĝ2,4 = −0.06

D̂1,5 = −3 v̂1,5 = 0.85 ĝ1,5 = 2.3 D̂2,5 = −0.025 v̂2,5 = −8 ĝ2,5 = −0.07

D̂1,6 = −3 v̂1,6 = 0.45 ĝ1,6 = 2.3 D̂2,6 = −0.025 v2,6 = −8 ĝ2,6 = −0.02

D̂1,7 = −3 v̂1,7 = 0 ĝ1,7 = −4 g1,2 = 0.44

D̂1,8 = −3 v̂1,8 = −2 ĝ1,8 = −4

D̂1,9 = −3 v̂1,9 = −8 ĝ1,9 = −3

Space and Ligand Dependencies of v
Kv,l = 1.3 nv,l = 14 k = 1.3 κ = 8

13
Kv,s = 0.25 nv,s = 10

Ligand Dynamics
Kα = 0.66 αmax = 188 nα = 13 Kβ = 0.25 βmax = 440 nβ = 10
γ = 0.05
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Table S2: Parameter estimation results of cell activation model described in Section 5.2. Ensemble
results of 10 best runs out of 384 starts provided for each parameter as median, minimum and maximum.

Parameter Best Estimation
Ensemble (Top 10 of 484)

Median (Min; Max)
Bounds

D̂0 −2.04 −3.21 (−4.50;−1.90) [−9.0, 0]

D̂1 −0.19 −0.23 (−0.76;−0.16) [−9.0, 0]

D̂2 −2.89 −2.94 (−3.11;−2.85) [−9.0, 0]

D̂3 −6.99 −6.99 (−7.39;−6.01) [−11.0, 0]

D̂4 −2.38 −4.00 (−6.51;−1.53) [−9.0, 0]

D̂5 −0.96 −0.83 (−4.92; 0.00) [−9.0, 0]

D̂6 −8.16 −3.59 (−8.16;−2.02) [−9.0, 0]

D̂7 −1.69 −2.10 (−3.01;−1.69) [−9.0, 0]

D̂8 −3.18 −2.89 (−3.18;−2.61) [−9.0, 0]

D̂9 −5.14 −6.04 (−7.69;−4.99) [−9.0, 0]
v̂0 0.85 −0.19 (−1.13; 1.00) [−5.0, 1]
v̂1 1.00 0.96 (0.44; 1.00) [−5.0, 1]
v̂2 −2.44 −2.43 (−2.56;−2.34) [−10.0, 0]
v̂3 −8.00 −7.62 (−8.00;−5.73) [−8.0, 0]
v̂4 −0.00 −0.02 (−0.07; 0.00) [−8.0, 0]
v̂5 −0.00 −0.56 (−2.03;−0.00) [−8.0, 0]
v̂6 −3.26 −3.46 (−6.13;−2.34) [−8.0, 0]
v̂7 −6.48 −4.43 (−7.94;−1.06) [−8.0, 0]
v̂8 −3.31 −3.67 (−5.12;−2.84) [−8.0, 0]
v̂9 −3.84 −4.10 (−4.95;−3.84) [−8.0, 0]
KD,l 0.00 0.23 (0.00; 0.36) [0.001, 1]
log10Dmax −0.70 −0.72 (−0.82;−0.22) [−2.0, 2]
nD,l 19.94 17.94 (16.69; 20.00) [10.0, 20]
Kv,l 0.50 0.50 (0.50; 0.50) [0.001, 1]
log10 vmax −0.50 −0.50 (−0.52;−0.50) [−2.0, 1]
nv,l 15.08 14.99 (14.05; 16.30) [10.0, 20]
Kα 0.61 0.41 (0.32; 0.66) [0.001, 1]
log10 αmax 2.00 1.65 (1.11; 2.00) [−2.0, 2]
nα 15.20 15.04 (14.41; 15.73) [10.0, 20]
Kβ 0.46 0.47 (0.41; 0.54) [0.001, 1]
log10 βmax −1.68 −1.43 (−1.94;−1.12) [−2.0, 2]
nβ 10.06 15.20 (10.06; 18.17) [10.0, 20]
log10 γ −2.01 −1.77 (−2.25;−1.36) [−3.0, 2]

Appendix A. Additional Proofs526

For ease of notation, we simplify the ligand ODE by defining f(u(t)) :=
∫

Ω
α(s, t)u(s, t)ds527

and h(u(t)) :=
∫

Ω
β(s, t)u(s, t)ds and dropping the time dependency of γ. Hence, the ligand528
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ODE can be rewritten as529

dl(t)

dt
= f(u(t))− (h(u(t)) + γ)l(t). (A.1)

Appendix A.1. Proof of existence of a unique solution lu for fixed u530

Lemma 1. Assume that Condition 1 holds. Then, for a fixed u ∈ X, there is a unique531

solution lu for the ODE system (A.1). This solution is continuous in t and bounded on any532

closed interval.533

Proof: For a fixed u ∈ X, we have that the mappings f ◦ u and h ◦ u are continuous in534

t. Therefore, the ligand ODE (A.1) is a linear non-homogenous differential equation of first535

order and can be solved directly:536

lu(t) ≡ l(t) = e−
∫ t
0 h(s)+γds

(
l0 +

∫ t

0

f(s)e
∫ t
s h(r)+γdrds

)
. (A.2)

Now, we compute an upper bound for the solution lu. Assuming u ≥ 0, lu(t) can be bounded537

from above by the initial conditions and a constant. The non-negativity of u implies h ≥ 0.538

Since additionally γ ∈ R>0 it follows that
∫ t

0
h(σ) + γdσ ≥ 0. Hence,

∫ t
r
h(σ) + γdσ ≤539 ∫ t

0
h(σ) + γdσ, for any r ∈ [0, t]. Therewith, we obtain540

lu(t) = e−
∫ t
0 h(σ)+γdσ

(
l0 +

∫ t

0

f(r)e
∫ t
r h(σ)+γdσdr

)

≤ e−
∫ t
0 h(σ)+γdσ

(
l0 +

∫ t

0

f(r)e
∫ t
0 h(σ)+γdσdr

)

= e−
∫ t
0 h(σ)+γdσl0 + e−

∫ t
0 h(σ)+γdσ

∫ t

0

f(r)e
∫ t
0 h(σ)+γdσdr

≤ l0 +

∫ t

0

f(r)dr,

where in the last step we used the fact that
∫ t

0
h(r) + γdr ≥ 0 implies e−

∫ t
0 h(r)+γdr ≤ 1.541

Taking the absolute value, we obtain:542

|lu(t)| ≤ |l0|+
∫ t

0

|f(r)|dr

≤ |l0|+
∫ t

0

||α||L∞(Ω)|Ω|
1
2 ||u(r)||L2(Ω)dr

≤ |l0|+ ||α||L∞(Ω)|Ω|
1
2

∫ T

0

||u(r)||L2(Ω)dr.

Since u ∈ X, we obtain for all t ∈ [0, T ]:543

|lu(t)| ≤ |l0|+ ||α||L∞(Ω)T |Ω|
1
2CX ||u0||L2(Ω). (A.3)
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Additionally, it is clear from the analytic form of the solution that if l0 ∈ R≥0 and u ≥ 0,544

then lu(t) ≥ 0 for all t ∈ [0, T ].545

Lemma 1546

Appendix A.2. Proof of existence of a weak solution û for fixed lu547

Lemma 2. Assume that Condition 2 holds. For fixed lu ∈ C([0, T ]), the PDE (1)-(3) pos-548

sesses a unique weak solution û ∈ L2([0, T ], H1(Ω))) with û′ ∈ L2([0, T ], H−1(Ω)). Moreover,549

û ∈ C([0, T ], L2(Ω)) and the following estimate holds for û:550

max
0≤t≤T

||û(t)||L2(Ω) + ||û||L2([0,T ],H1(Ω)) + ||û′||L2([0,T ],H−1(Ω)) ≤ C||u0||L2(Ω),

with C = C(T,Ω, D, v, g). Additionally, if û(s, 0) = u0(s) ≥ 0, then û(s, t) ≥ 0 for all551

t ∈ [0, T ], i.e. non-negativity is preserved.552

Proof: In the following, we are applying the results from Chapter 7 in [29]. Note that Ω is553

an open, bounded domain with piecewise C1-boundary.554

From Condition 2 (i) and since lu(t) is continuous and bounded in t ∈ [0, T ] (Lemma 1), it555

follows that D(s, lu(t), t), v(s, lu(t), t), g(s, lu(t), t) ∈ L∞(ΩT ).556

Suppose that u ∈ H2(Ω) is a solution. Then, by multiplying with a test function φ ∈ H1(Ω),557

integrating over Ω, integration by parts, and the application of the boundary conditions,558

yields that for all φ ∈ H1(Ω) and for a.e. t ∈ (0, T ]:559

∫

Ω

∂tu(s, t)φ(s, t)ds =−
∫

Ω

(D(s, lu(t), t)∂su(s, t)− v(s, lu(t), t)u(s, t)) ∂sφ(s, t)ds

+

∫

Ω

g(s, lu(t), t)u(s, t)φ(s, t)ds,

(A.4)

which is the weak formulation of the problem.560

Chapter 7 of [29] gives an existence proof for a weak solution. Below, we briefly sketch their561

argument.562

Since H1(Ω) is compactly embedded in L2(Ω), a common orthogonal basis exists. With this563

orthogonal basis, approximate solutions um are constructed that lie in the finite-dimensional564

subspaces generated by the first m basis functions, and solve the weak formulation with565

respect to test functions from those m-dimensional subspaces. Using energy estimates, one566

can show that the sequence {um} is bounded in L2([0, T ], H1(Ω)) and that {u′m} is bounded567

in L2([0, T ], H−1(Ω)). By the Banach-Alaoglu Theorem, there exist subsequences converging568

weakly to some û in L2([0, T ], H1(Ω)) and L2([0, T ], H−1(Ω)), respectively. Making use of the569

L2-weak convergence, it follows that û solves the weak formulation (A.4). As a consequence570

of Theorem 3 (Chapter 5 in [29]), û ∈ C([0, T ], L2(Ω)). The uniqueness follows directly as in571

Theorem 4 from Gronwall’s inequality (Chapter 7 in [29]). To sum up:572
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If Condition 2 is satisfied, the PDE (1)-(3) possesses a unique weak so-573

lution û ∈ L2([0, T ], H1(Ω))) with û′ ∈ L2([0, T ], H−1(Ω)). Moreover,574

û ∈ C([0, T ], L2(Ω)).575

By the energy estimate, û satisfies the following estimate:576

max
0≤t≤T

||û(t)||L2(Ω) + ||û||L2([0,T ],H1(Ω)) + ||û′||L2([0,T ],H−1(Ω)) ≤ C||u0||L2(Ω), (A.5)

with C = C(Ω, D, v, g) exp(C(Ω, D, v, g)T ).577

In the definition of X, we notated this constant by CX . It remains only to show that578

the solution û preserves non-negativity for a non-negative initial distribution to obtain that579

û ∈ X.580

To this end, we follow the idea of the proof of Theorem 1 in [60] and Chapter 3 in [28].581

Consider w := eλtû, where λ is chosen later. If û satisfies equation (A.4), then it must hold582

for w that:583

∫

Ω

∂tw(s, t)φ(s, t)ds =−
∫

Ω

(D(s, t)∂sw(s, t)− v(s, t)w(s, t)) ∂sφ(s, t)ds

+

∫

Ω

(g(s, t) + λ)w(s, t)φ(s, t)ds, (A.6)

for all φ ∈ H1(Ω) and a.e. t ∈ [0, T ]. Since u(s, 0) ≥ 0 a.e. in Ω, we also have w(s, 0) ≥ 0 a.e.584

in Ω. We will omit the arguments s and t to facilitate notation in the following. We denote585

the positive and negative parts of w by w+ and w− respectively, satisfying w = w+ + w−,586

w+ ≥ 0 and w− ≤ 0.587

To apply the theory of Sobolev functions, we need Stampacchia’s lemma, which is proven in588

[61]:589

Lemma 3 (Stampacchia’s lemma). Let Ω bounded, w ∈ W 1,p(Ω), 1 ≤ p ≤ ∞. Then590

w+, w− ∈ W 1,p(Ω) and591

∂sw
+(s) =

{
∂sw(s), if w(s) > 0

0, else

∂sw
−(s) =

{
∂sw(s), if w(s) < 0

0, else.

The Lemma also implies that w+w− = 0, ∂sw∂sw
− = (∂sw

−)2 and ww− = (w−)2 a.e. in Ω.592

Setting φ = w− in (A.6), we obtain with Lemma 3 for a.e. t ∈ [0, T ]:593

∫

Ω

(∂tw)w−ds+

∫

Ω

D∂sw∂sw
−ds−

∫

Ω

vw∂sw
−ds−

∫

Ω

(g + λ)ww−ds = 0

⇒
∫

Ω

(∂tw)w−ds+

∫

Ω

D(∂sw
−)2ds−

∫

Ω

vw∂sw
−ds−

∫

Ω

(g + λ) (w−)2ds = 0.
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For the first summand on the left side of the equation, we can now, for a.e. t ∈ [0, T ],594

compute:595

∫

Ω

(∂tw)w−ds =

∫

w>0

(∂tw) w−︸︷︷︸
=0

ds+

∫

w≤0

∂t( w
+

︸︷︷︸
=0

+w−)w−ds =
1

2

∫

Ω

∂t(w
−)2ds,

and we obtain596

1

2

∫

Ω

∂t(w
−)2ds+

∫

Ω

D(∂sw
−)2ds−

∫

Ω

vw∂sw
−ds−

∫

Ω

(g + λ) (w−)2ds = 0. (A.7)

By Young’s inequality, for every ε > 0 and a.e. t ∈ [0, T ]:597

v(s, t)|w∂sw−| ≤ | ||v||L∞(ΩT )w∂sw
−| = | ||v||L∞(ΩT )w

−∂sw
−|

≤ ||v||L∞(ΩT )

(
ε|∂sw−|2 +

1

4ε
|w−|2

)
.

Using that for the diffusion term, we have D ≥ θ > 0, we get from equation (A.7) that598

1

2
∂t

∫

Ω

(w−)2ds+

∫

Ω

(θ − ||v||L∞(ΩT )ε)(∂sw
−)2ds+

∫

Ω

−
(
g + λ+

||v||L∞(ΩT )

4ε

)
(w−)2ds ≤ 0.

Choose ε = θ
2||v||L∞(ΩT )

and λ ∈ R such that −
(
g + λ+

||v||L∞(ΩT )

4ε

)
≥ 0. Note that there is599

such a λ since g is bounded by assumption. Then, for a.e. t ∈ [0, T ]:600

1

2
∂t

∫

Ω

(w−)2ds+
θ

2

∫

Ω

(∂sw
−)2ds ≤ 0

⇒ 1

2
∂t

∫

Ω

(w−)2ds ≤ 0.

Integrating over [0, t] and using the fact that w(s, 0) ≥ 0 a.e. in Ω implies w−(s, 0) ≡ 0 a.e.601

in Ω, we obtain for all t ∈ [0, T ]:602

∫

Ω

(w−(s, t))2ds ≤
∫

Ω

(w−(s, 0))2ds = 0.

This implies that a.e. in Ω:603

w−(t) ≡ 0 ∀t ≥ 0⇔ w(t) ≥ 0.

Since û and w have the same sign, it follows û ≥ 0 a.e. in Ω and for all t ∈ [0, T ].604

Lemma 2605

Appendix A.3. Proof of Estimate (6)606

Lemma 4. For all t ∈ [0, T ], in particular for t = T , there exists a constant K(T ) > 0 such607

that608

||û1 − û2||X ≤ K(T )||u1 − u2||2X ,
with K(T ) = CT (1 + T ) exp(TC exp(CT )) and C = C(Ω, D, v, g).609
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Proof: The proof can be divided into two parts, where we need to find the following two610

estimations611

(a) |lu1 − lu2| ≤ C(1 + T )||u1 − u2||X612

(b) ||û1 − û2||X ≤ α||u1 − u2||X for 0 < α < 1.613

(a) Define δl = lu1 − lu2 where614

∂tl
u1 = f(u1)− (h(u1) + γ)lu1 with lu1(0) = l0

∂tl
u2 = f(u2)− (h(u2) + γ)lu2 with lu2(0) = l0.

Note that f and h are Lipschitz continuous in u with constants Lf , Lh. Computing615

∂tδl, yields616

∂tδl = f(u1)− f(u2)− (h(u1) + γ)δl + (h(u2)− h(u1))lu2 .

Multiplying with δl and using that f and h are Lipschitz and that h(u1) + γ ≥ 0:617

(∂tδl)δl ≤ (Lf + Lh‖lu2|)||δu||L2(Ω|δl|
⇒ ∂t|δl| ≤ (Lf + Lh|lu2|)||δu||L2 .

Define K1 := ||α||L∞||1||L2(Ω)CX . Taking the square on both sides, integrating over t,618

and applying Jensen’s inequality yields the estimate:619

∀t ∈ [0, T ] : |δl(t)|2 ≤ (Lf + Lh(|l0|+K1T ||u0||L2(Ω)))
2||δu||2X . (A.8)

(b) Define δû := û1 − û2 = B(u1)− B(u2) where û1, û2 are solutions of620

∂tû1 = ∂s (D(s, lu1 , t)∂sû1)− ∂s (v(s, lu1 , t)û1) + g(s, lu1 , t)û1 with û1(s, 0) = u0(s),

∂tû2 = ∂s (D(s, lu2 , t)∂sû2)− ∂s (v(s, lu2 , t)û2) + g(s, lu2 , t)û2 with û2(s, 0) = u0(s).

Computing ∂tδû yields:621

∂tδû =∂s (D (s, lu1 , t) ∂sδû+ (D (s, lu1 , t)−D (s, lu2 , t))∂sû2)− ∂s (v (s, lu1 , t) δû

+(v (s, lu1 , t)− v (s, lu2 , t))û2) + g (s, lu1 , t) δû+ (g (s, lu1 , t)− g (s, lu2 , t))û2.

Multiplying with δû, and integrating over Ω, we obtain622

∫

Ω

∂t (δû) δû ds =

∫

Ω

∂s [D (s, lu1 , t) ∂sδû+ (D (s, lu1 , t)−D (s, lu2 , t)) ∂sû2

−v (s, lu1 , t) δû− (v (s, lu1 , t)− v (s, lu2 , t)) û2] δû ds

+

∫

Ω

g (s, lu1 , t) (δû)2 ds+

∫

Ω

(g (s, lu1 , t)− g (s, lu2 , t)) û2δû ds.
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Integration by parts, using Conditions 2 (i)+(v), and applying Estimate (A.5), yields:623

1

2
∂t||δû||2L2(Ω) +

∫

Ω

D (s, lu1 , t) (∂sδû)2 ds

≤K2||u0||L2(Ω)|δl|||∂sδû||L2(Ω) + ||v||L∞(Ω)||δû||L2(Ω)||∂sδû||L2

+ ||g||L∞||δû||2L2 +K3||u0||L2(Ω)|δl|||δû||L2 ,

(A.9)

with K2 := (LD + Lv)C exp(CT ) and K3 := LgC exp(CT ), where LD, Lv, Lg are the624

respective Lipschitz constant of D, v, g with respect to l and C = C(Ω, D, v, g).625

Integrating in time and using D ≥ η as well as Young’s inequality, we obtain:626

||δû(., t)||2L2 +
η

2

∫ t

0

∫

Ω

|∂sδû|2dsdt ≤ C

(
||u0||2L2(Ω)

∫ t

0

|δl|2dτ +

∫ t

0

||δû||2L2(Ω)dτ

)
,

with C = C(Ω, D, v, g) exp(C(Ω, D, v, g)T ). Using Equation (A.8), we find627

||δû(., t)||2L2(Ω) +
η

2

∫ t

0

∫

Ω

|∂sδû|2dsdt ≤ C

∫ T

0

||δû||2L2(Ω)dτ + C||u0||2L2(Ω)T (1 + T )||δu||2X

⇒ ||δû(., t)||2L2(Ω) ≤ C̃||δu||2X + C

∫ T

0

||δû||2L2(Ω)dτ.

Then Gronwall’s inequality implies628

||δû||2X ≤ CT (1 + T ) exp(CT exp(CT ))||δu||2X ,

with C = C(Ω, D, v, g).629

Lemma 4630

Appendix A.4. Global solution631

Lemma 5. Given T > 0, there exists C = C(D, v, g) such that ||u(., t)||2L2(Ω) ≤ eCT ||u0||2L2(Ω).632

Proof: Using the weak formulation Equation (A.4) with u as test function, we apply Condition633

2 (iii) and use Young’s inequality to obtain634

d

dt

∫

Ω

u2

2
ds =

∫

Ω

(∂tu)uds = −
∫

Ω

D︸︷︷︸
≥η>0

|∂su|2ds+

∫

Ω

vu∂suds+

∫

Ω

gu2ds

≤ −η
∫

Ω

|∂su|2ds+

∫

Ω

vu∂suds+

∫

Ω

gu2ds

≤ −η
∫

Ω

|∂su|2ds+
1

2
η

∫

Ω

|∂su|2ds+
(
Cη||v||2L∞(Ω) + ||g||2L∞

) ∫

Ω

u2ds(Ω)

≤ −1

2
η

∫

Ω

|∂su|2ds+
(
Cη||v||2L∞(Ω) + ||g||2L∞

) ∫

Ω

u2ds(Ω)

≤ C(η, v, g)

∫

Ω

u2ds.
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Applying the differential form of Gronwall’s inequality, we can conclude that ||u(., t)||2L2(Ω) ≤635

eCT ||u0||2L2(Ω).636

Lemma 5637
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